■I ( Digitized by the Internet Archive in 2016 i V'-- https://archive.org/details/studyofproductsoOOcart A STUDY OF THE PRODUCTS OBTAINED BY THE SOLVENT ACTION OF DI-PHENYL ETHER ON VARIOUS COALS BY HERBERT DUANE GARTER THESIS FOR THE DEGREE OF BACHELOR OF SCIENCE / IN CHEMICAL ENGINEERING COLLEGE OF LIBERAL ARTS AND SCIENCES UNIVERSITY OF ILLINOIS 1922 I 92^ UNIVERSITY OF ILLINOIS — ^fay- 3 -& 192-3-.- THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Herb ert- JDuana-Gajitar ENTITLED ^ Btudy of the Products Obtained by of Di-Phenyl Ether on Various Coals. IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE OF Ba&helJDX--0-f-5.cl-enc.e In_ - Ch eml aal - JE n.,su. ne e j: j Instructor in Charge Approved : ACTINGr head of department of _5HEMI_aTRY. r. «iov5iA.u*7o vfte>aiviKU r . k ..am ^ I \ 81 i^HT 3 in rj.m m th.tj of at suIt : ' i. .- rw;^.j ’■' ' ■■“ -’■»• ^ W ► . • ' 5' ’ -» jj ■ ; _- Iv. ^ ^ ^ ™ ■• - ■M * t *ir. rl« Jt ■■ '1^ >-•%/»? . '. -■ 1 crx . -•« 'iL '".--.tN ^ HO cia:-jh otiTOA ^■ f K iLr *w«esiS:^63sn»i^ r \r ^ \ dt„ . k •« ACKHOWLEDCtMEN T This work was undertaken in the Chemical Laboratory of the University of Illinois. The problem was undertaken at the suggestion of Dr. Laynd and its completion was due to a great extent by his kindly co-operation and advise. I wish to take this opportunity of expressing my appreciation. » ■ ^v. , : 'V •:■ ■V 7 > .« ., ' ' '■• iT;’'. 'V;< / V , ii ‘ V ! __,. 4 *.^ ; . . ' /; ;;£al 'I . B:m .eftXdfcrq ^ 1 /^o rroi ft ;qcr*«>ff -.tl ^'*t; -p ii '. V ' .’■ Ai ) '•'00 vtfj<|;iir ‘>J6t!fT!:q ^ *'' ysr^'»eA*^'ijlL!5 j ■ % ^ - i \ l .' «- / v ^.; i ^) c^^l w - iJ ^ We ^>^ 1 . ■-> ^ '1 '/ f : Jif ( 7 *^ ■ '*• Jh 'V Mi . ■ !i ■ ' •».r .lit ' • iK , m. A Study of the Products Obtsdned by the Solvent Action of Di-Phenyl Ether on Various Coals. 1. Introduction. 1. Nature of the Problem. This problem is one of a series of closely related problems which are be»ing studied in this labor- atory with a purpose of learning more about the consti- tuents and carbonization of coal. At first the compo- sition of coal was studied by observing the products that were obtained from the destructive distillation of the coal. Later this problem was attacked using solvents, and much work has been done along this line during recent years. Various compounds have been tried as solvents, but most of them have distinct disadvantages, in some oases the solvent acts as a reagent rather than as a solvent, in some it forms add ition products with the coal, while with other solvents it is either very difficult or impossible to remove the solvent fromt&ie products obtained. It is for this reason that di-phenyl ether has been used and its effect upon the products observed. 2. Historical:- There is nothing in the literature concerning the effect of di-phenyl ether on coal, but a review of t ♦. --T.rd^ '.-ah ♦tf.' lo A ■•ii :'~'-j(: '' ' ^OifeA ■•( - ,- ■ i :0 7 jV •■T. t.Tl '4 cr I'ii ^ XAWtXr ■^ ^ " -■• rtforcj t.v ’. --i'jui a.' 'co^ .'' > "■■*'"**■ • : ■•? i|;. ■ :•' 1 '. C !• j ,r ’.rri 'Jv? > 1 *.' ■■tl o. ■ S./ _W ^r- ;■ * m'O'i T : :; - r '■; , e:.'Tf -V' : (r *: •'^rr/ur'' - ; r of.'r tiJTTC'h '■• 7 ' rfoVJl • >. 4 * ^ V V - . ' .’» V — HW»f^ i: Tv- \ i:?o^ (ti: , vfr.o ^ • t :.Vi-.Ci 6-U.-.C.: >’vv>iT;.V -^ • t.-rjv/ V^i v/rf meiff ' T©rif*:i f ■•: , G.tox -vloi V . '' » ■- • '*. .-71 #,; to; .*J i; €.'i»to1: i’i ■' L • ifcc 7 '. I;, r^' '.*: Jr ^?'bv ::r - at ^ rf-rev ioe ^rr.jJc^C Sif-istcrt '.'cmz ■ 7 ^;^■ ''t r:<*^' VI aiffit ’< H r. ^ iv ‘rv'f.'.^v, - /fniTi; s . .i r- ^ j I ' ft ► « isto.'.'cvo VTift.--' 0? J jC ,..;^ at V’tii*0[i f J ‘ .TV -. v'+M I't;“ ^ .- OB^tQ m I '. ff 4 li .' \ 'r\t 4 JDOfii - 2 - the work that has been done on the solvent and composition of coal problem will serve as a means of showii^ the importance of this line of work, and why it is desirous to obtain a new solvent that will not have the disadvantages ^ich have been given above. Coal is a substance which is the result of the degradation of cellulosic constituents together with resinous materials. The steps in this degradation as, suggested by 1 White and Thiessen are in this order, peat, lignite, bitum- inous, and then anthracite. l!?hite says that the earlier changes in the formation of coal are biochemical, while the later ones are dyn.amo chemical. The formation of each variety of coal depends upon the length of time that the original plant matter has been exposed to the physical forces of the earth. During this time of transformation the material is subjected to heat and pressure. Ash free coal consists of carbon, hydrogen, sulfup oxygen, and nitrogen, but the coal molecule itself is very complea. H9hite has shown that the hydrogen and oxygen content of a coal may be taken as an index to the coking power of the coal. It this hydrogen-oxygen ratio is fifty-nine or more, the coal will usually give good coke. Coals which have been weathered are usually poor cokers and have a low hydrogen-ox^’’ga n 2 ratio. Hobart in his work found that this ratio held true for the coals that he ^ed. The changes in going from vegetable matter to peat . . . V . ^ ^ ,,„ I'c Aomuornco a^ofc ,(tj>ao 8 ^{f 4^ 3f;io* ■ '.s. • , .•■■=■.• . •■- - . . . am.- '■'", ir^M • aon‘-:^2o>6o . ;a j ^ "■ ,• ■*,«_ -•-’ - ■■ . . ■ • J? * >. .- ' ." ! ^ ' *■ rJ-Tdi^ of siJOTtt^tl* 9i ii 5>lri' »k?^S5fXc^ 11 ^ ,1^, 4r/ ^ evj/f #oc X£ Nf Vc«vXo» vec '^h * j •V? .^ircKl^ fffVlj CfW 1 [.o iki i' aoArf miits A et 'litoO / riS ''>*rJ‘^'' ' ’ »tr ,'’ . 1 ^’ h. ' ' '^ . . - . . - efciouf ^i^r^oo: of^oS^JCiaro .'" ' “'' .t;. ' I 'W, ' , ''^ ''«*■' ' s; - ' '■ fi . *» '* 4 iaiulxi 5 »€ «s^/>.»' '•'^^i:^^iS^ .:5^i^-*XT3;tfiyr **e»:t..,to . ^ ' -v ■ ■;. ; .’ ' Q.U aXxfliw tliJOlffiS-rfp-oXrf 6 i/>aX^v>o ' 1 ^,^; «Hlfe^■ V s&hu v £foi ;8 "'lo noL ’^ i «;» ol *rlT ^ - , '‘ft ^*i0.'Atm9 r^fJU ., .-■■■'. .- ■ ■ . ... ■ '■»•' ^V.. t '2 . •■' ^' Xi'a>'i|qip. wl? I^ VtJSUitX aii# ii'fc'<^ ,££CWji^j& a 0''U* ^lo X/io ^9'r^'fl^• ntpif tsc 8 >X•'• if-'. V’JH . . j*c^. ^ , 1 - ..'•^ 5» '*f ts." ,S» . , ti ' ' - ' ' • ■ , / ' -''i '1 tL'lXf/rj ,c9^0'lti'xA *^- - JvifB M 900 '^XfjOo vrw«Tfi ^ ■"■ < ' ji (» 1 , ■'■^.;va A •T.fiaciw. ( . f' <(787/ ci elvo€lon X^cs 84^ iftJcf tax \n^^vio< Srso4rtt>C;,-i?^^ Xa 4 ' fit" soft jjc4 ■ V .j«.-^ ■ ' '•■ 'X'* '■’ ' ^ " ■■ '^' '■' ■ xt?^‘t 3 fcX; a« -fcjb rt«a£|'i 04 00 & ari* , ilk >1 e Wijx .?I ' '■ ■'. Xa^e'" ii \ tif &d iici jfv 8 UoO ^ .83ifw 60O8 ,TXle»iwi» XXiw Xipo ■^ .: . ,i ,3 v.,'4v ’ ; ■ ■ r eriT^o-nftjtyrtvrf' »oX s ev!^;f fenja tnatirn %Qoq. aa/ fce^t ' . • -P''. *‘ ^\ •': ^’••■'' 'fi **'* ZOt f *'*»i *,»'2r oiifjf fcrtr.o'i ■ it C8T airf fit ^x»cf«S ■^Tc’iXj3X‘’g ,V •-- ‘ -c-i- ^.' " ■ ' ■^“‘J -’"•^1 * * ' ♦ ' * '^/li ^ o ^ ^f! tsto*^** %oy. oroft'*' *j/i tog, a t aa '• ift ’'■’■■■ i - V--i-‘ :-’u' :.' ,:»^ ... ■ , V 5 » ‘' 1 ^ i‘ilf- -I " * '* - tW'^’ '. '<’ ■ - >'•• ■ -’■■ #-i •-« ' X" s jaM - 3 - is accomplished with a loss of water and oxygen* The changes in the coal in going from peat to anthra^cite indicates a tendency to approach a hydrocarbon. The hydrogen, carbon, and oxygen come from the celliilosic part of the vegetable matter. The nitrogen comes partly from the animal matter which is included with the vegetable matter and the remainder from the plant substance. The original plant and vegetable matter tooth contain some sulfur. This gives use to the organic sulfur in coal. Other sulfur compounds, chiefly iron and calcium, are formed from the hydrogen sulfide waters that percolate through the coal and precipitates insoluable compounds. _ The iron and calcium compounds usually form most of the ash. The constitution of coal until the present time has been studied almost entirely from the basis of destruction distillation. This method is a poor one, because it does not tell the real nature of the coal, but it has been developed on account of the great commerci fJ. importance of coke and gas manufacturing. The products from such a distillation are the decomposition products of more complex molecules and are divided into gaseous, liquid and solid condensate, and a residue 3 which consists chiefly of carbon and ash. The volatile products consist of ammonia, carbon dioxide, hydrogen sulfide, hydrogen, methane, carbon monoxide, nitrogen, acetylene, ethylene, other hydrocarbons / pyridin, phenol, benzene, toluene, xylene, naptha - Isene, anthracene , .phenanthrene, cresol, and a great variety of aromatic compounds. The presence of a predominance of ring hydrocarbons and their derivatives had led to a belief I ,' ' ‘■•V -T-’ fK r'i'*'l V ■Jip M»OX r ■ . vl *,■» r • *. . -'O C:i;‘ . ‘ •- ti hK ‘ iij; « ,t t / ■;. - s, ,•:?•■•• i , ii ■• '*/ .' .i'\t ■■ •' . '"iiU.''. i .'if.V ‘ r.. j.', ':■ I S ' ■; ^ ~ 0\ ut ^J: ■!%*'•'- JftO? j*«i 'VVy *• . r ••‘100 1 '••;> Ui: i'.r *. . r ..r. c» ■ r, ' *• • 7. * ‘r ■■&:•;! • ". ^sj srf^ - V ' ' / '. i;f* •. f(‘ . '!■,. ■'• • • ■ : I ' •''Ov'-u'r- iv. • ‘ 7-, '* ■ ’. ' .7 >7 1 " . '0 e-c •o ' sir . • I ‘ r ? ' -r. ^ * •^ir* ^ T ' 1 V; ^ 4. . * . ‘ , X '. -'■ r” j 'i. Op- ' '-■ j- :' - .: • .. : , L * #4 b# ^ i. i * ■ ; r 7;. I, OX riO:.'«v ; ■ tp.'fi *■•■,' 1* ‘-7i- . ' : /. or :rl .1 -fe .' loo •it/T , pr'C'T^o e., n--, . j/.. . 'f. -^,c7*. :4-f- , i:': r w.' i ••: -0' .-*, . niOiT^i '.■ ' ':c '>ro:oOO:cr ti7 , o A 0^ / nr{ 0 : . L,^.vX:5©fc .,i; onoiJ ;a. oo.':^ya - in: if. 'b.'oTx,' - 4 - that the coal consisted of ring like compounds. The work that has been done on the destructive distillation side will not be discussed inasmuch as the work is almost entirely a study of the volatile prodnopts from coal and does not involve the use of solvents. Another method of attacking the constitution of co^l problems is by the use of solvents. This has been the basis of much investigation in the connection with the coking properties of coal. Most of this research has been dons on account of the commercial importance of coke. A review of the work along this line follows: 4 Reinsch in 1885 conducted some experiments usirg solvents on coal. He concluded that by means of solvents it is possible to i^solate from coal substances \iiiich are quite amor- phous, do not exhibit signs of organic structure, and which are characterized by their resistance to concentrated mineral acids and atmospheric influences. He is of the opinion that coal is composed of two substances which are distinguished by the difference in their behaviour with alkaline solutions. 5 in 1898 Anderson and Roberts said that caustic potash afforded a means of differentiating coking from non- coking coals. 6 Baker used pyridin having a boiling point o 110-130 C. as a solvent. The percent extract varied with the kind of coal. The highest extract was 30.4 percent. 7 Later Anderson and Hend.erson treated coal - 5 - in a Soxhlet with pyridin. They say that the carbon, hydrogen, and nitrogen in the extract are similar to those in the original coal, although the carbon is usually less. With inferior coking cords they found that the treatment with pyridin destroyed the coking power, and in strong coking coals the coking power is impaired but not destroyed. The amount extracte d was from 15 to 21 percent. 8 In 1908 Bedson and Blair used pyridin as a solvent and obtained an extract that varied from 22 to 32 percent. Bedson used pyridin which gave as high as 20.4 percent extract on cer- tain bituminous cords. It yielded extracts of from dark red to brown color and in some instances it exhibited a green fluores- cence. The undissolved residue from the extraction was almost devoid of coking properties. 9 In 1912 Lewes gave the result of his investiga- tion using pyridin. There acre twC different resinic bodies present in the coed, one is easily oxidizable, soluable in pyridin and saponifiable with alkalies, and which upon weather^ ing is oxidized into humtus body with the evolution of wa.ter and carbon dioxide and is responsible for the heating of coal ain storage: the other class non-oxidi sable , not saponified by alkalies, and forming with pyridin a compound insoluif.ble in excess of reagent, and this class may be hydrocarbons from decomposed resins as the residue in which they are present yield rich liquid hydrocarbons, as tar and pitch, but are not rich in gas. 5* t ,' “a>o ©f.’: ’ 7 V'? 4 ^ I M ■.vr f . r i Ju.a- ft r* t* ' ;.** .^' • • : vX'. .'•ci; ». yZ .^*• - ■ .^; 2i "• I ■ y - fi -T ' ; : ■,'. -■> .t ■ ^ (• f .t i .. * ";• CJC. 't ; TO'Tv a ■V'l I 4 ^ " v-/'r '0 :;r> r.' : ■ ■ ' :::*i:i , r+' ' • ' ^ i j . c ^ . . ,' 6 ■' <, i r ^ r, •■ ^ >*n* - fc. Uw .* T ■l" '• UiV! aoefc--; c<":: ., :;:: ot ac.'iTV.'^ . \' ^ ■* > Q iinx. '• i ."j 4 ^ p; O p: ^ f'' I ' ^ ‘ ‘ I •.• ci'-tl VL ' ■ ^ ' I", f -.>- ^tL‘-k»r^ * • ' -1 *^s 4 . C -1\ f. W ^ t ^ . -V i:l r f“ r o r / . I .. On? ■' * • i, w ji '' ' •--■ . } A' ■ .- . 4 r vi: :i/ ■■■,-'■ ‘ . -.0 r: 0 - •: :/■' V • . . r I. '' ')^- 'C 'I' ' - , ’’ ■ ' . "• : TC 7 .r '9 ,| il s ; . ■ ' f '.'NnJ : f-.i r ' Zy'. ’*!!', '•••.* '’•? -o ' 1' ■ , Xo r.Ovf^p ©i • r ■ *:;0^H '■■ ' - rq i{.r k.x 1 *-.;n loli. ‘ " , I' ■t D 5 :; . *' 'r ' • u, . 40 J*q jfc.vt ■■-''' i ">j. ^ '■ ^-,’C 0 ■ ^ Cl rk t^ ''■'U' .■.;::A 5:1 ^• ' r ■’• - - 6 - 10 Dimroth and Kerkovious used nitric acid on coal. The residue from this extract was a.gain extracted with ether and gave a substance which was amorphous and hygro- scopic. It gave a black color with alkali and was easily soluable in alcohol. 11 Pictet and Ramseyer used benzene on a "fat” French coal and obtained hexatiydrofluorene together with some polymers. 12 Vignon used aniline on different types of coal and obtained extracts which ran as high as 35 percent. He also used beta quinoline on a "fat" coal and obtained an extract of 47 percent. 13 Fisher and Oluud used benzene under pressure. o The extract which was 6.7 per cent, would soften at 140 and o 0 run at 180 C. Cannels coals heated to 350 with naphthalene and extract recovered with chloroform in a Soxhlet gave a yield of 35 to 30 percent. They also used liquid sulfur dioxide to extract the coal, but in such cases the residue was very small. 14 In 1912 Wahl used pyridin in a Soxblet and obtained as high as 25 percent for the extracted material. The residue had poor coking properties, but if the extract was added to the residue, the mixture will produce a coke similar to that of the raw sample. 15 Clark and feeler extracted coal with pyridin and then the pyridin extract was treated with chloroform. It .-Zi IT ^ ’m- 'i'-'fl 'Jifi 1. .» .-. -’ - '• * V*'. '.. ■ oi a- -. ' „ . ■' VfclcH '^o il .*'. \ / ■X , ;: X ' ■ '■' ■' ' • ''”XL ■ '■ cMSoJ 0My> to^'xifxe wlrt jjdipB, . 5 [> i;~-- 6 imd1 I ■f. » »>■ eitwe tv ^x»Atr ?f>:!> ^«®trcjf fcijji doftftT^, - ^ '• • '■' ■ ■ .,• • .*," 1 i. '.:Q "■ '% •'-'••»■ *“1 \^ ^ 'ir « . '■. ^ ^ -V , , ' (toaftl^ i ^ ffjs ^!.acd rfc? - tc( #i5-|i9 ^'fc4MrXt'irfo^fc«x '‘’:ai t■'«' • '• ' ■'Vr^^fMtdcy^iin d'K-ir X>GF‘ 'dlxo.-j ',*t5 .Ool,; am,- ' , •? ■• 1- ;• •> '•• i*! . '-W- • B'’ ■ . . ' • .. '-...T> ■ ' , ''V'-;, ’ , c- ';_,> fifti/'Z ■" ’mfiifi -iutiim htV(: f<£. iB«ff V^,,nit^. ?. ',ioo»■ m - ^1 . Xi^ji :^Xrb:o< 9 Jv xr^ -7 I’ljit SX^X fli ‘:i' - 53 T if sdjf, o,4/d|id r.j r ,,] ' '■^- ■•'''■» f •-•i '"' ' ’ ■ '‘^■'- V.: '’' (siL'l ......r'l’'^ '"’ hh^i . .rXiitlT oioo r; EX)^ * 1 ^? ^ •dJf ^df/Jble ni ad^ o*f .t IqgUiB yrjt’t dtU ^.oti^X'5 xalaadT J?r» ^li^XO ' •. > .mao^cwolrfo diiw tf-6$%tX9 dd.^^ft'^dAf •.i ,..* ■' VSit*. - ■' *. i.‘" ^ r j 1^4 irsds^. . --■^ t- - 7 - was noted from the ultimate analysis that the increase in the amount of nitrogen v/as 3.75 percent, showing that nitrogen had been added from some source. 16 Frazier and Hoffmeji using phenol forund that, some of the substances isolated approach pure compounds, and some appear to be quite pure hydrocarbons containing small amounts of oxygenated compounds. The investigations was to be con- tinued using pyridin as the solvent. 17 Parr and Hadley usir*g phenol say that, (l) Extrac- tion of coal leaves a residue that will not coke. The coking constituents of the coal is in the extract, (s) Destructive distillation of the residue and the extract gave practically the same gases. (3) 0xid3.tion of coal residue, or extract, produces a lowering of the percent of \^olatile matter. (4) Ox- idation decreases the amount of material that can be extracted from coa.1 with phenol and the coking properties are decreased in proportion to the extent of oxidation. 18 Later Cherry working on the effect of oxygen on coal and the subsequent effect of phenol on the weathered coal found that the cellulosi* portion has greater avidity for oxygen than the resinic portion; the effect of oxygen on the cellulosic constituents is sufficient to destroy the coking power of the coal. / ' _ ' • arr-- r^ga 3 e . 'a: -‘ ■' I’ . '•' . . ’ I»|'* • l. ' » , ' * fit > 4 l 4 - tTi tl^ 'SU I - ^ >u ■ ■ p' 02 ? '^ 040 tt^Si 8 »^ ;' K’"' -V * ' V ■ ^;^.. jf ■ ^ -;i. ' L^o*. tii*t njj^n «wflT. >.2 it ,lro V ‘v' ■ ' • "'■ . ‘'- M^v-'' V " \ ytyp^?s f>aiC 7®'2 £joa aiHO* I n -^Lffurocpioo ^ 24 ira ’, 8 ' ,Viv>i-yn/?''*IX*anil TTiTtiiifttAc* A«iod 2 jeorrUM--«Tt.. * r ^'ViX 4 ‘Ci.fo(|) ^ I ;li^^ 5 ^:> 1 f^u w 'itifed 'U f4*jQiih^ •■■ rffTT*e«4#l}j i/,- ' .iV FV'i j 'S ' ^.t. 4 oo' Ih-'.j jjit * ^'- ■ ’ ”•• ‘^*5'S^Vi*^Xjp'£^,lo .*rr'^fjc«. of xii,. .J'-.’ <1 '1 r j '-'iso ’-r t- f- J;; •/- J 1 '■' 5 .'^^' «vf;t'i 4 S 0 ‘ 1 ‘"I V,,.^' ' .•4 ■ - ll ■ ■ •■ ► jL i<-- ‘ *.• >■ ■ tf. ' •■ ■ , . ■ I V '<; — '•■^ 3 f Tr f .- ... .^ . ■' ■ <‘ <-. ^' i,< ..1 . , , , , ■ V.V-.w '» ■ , ' IB ■»,.'. , T^ ■ «. ' IT ^ ''■^V *\ #>■ f- : ¥ ' -k S *.r 4 ) /■ V. .-.''A©?/!! il r'/' -a 'Ar'M V& - 8 - II. Experimentcil . 1. Apparatus. The extraction was conducted in an erlenmyer flask with a long refiiuxing tube. The end of this tube was connected to a trap containing alkaline P3^ro gallop in order to keep oxygen out and thus reduce any tendency to oxidize. The flask was placed in an electric furnace where the tanperature was controlled by a variable resistance. The excess of di-phenyl ether was distilled off, and the extract finally dried in an electric furnace in an apparatus as shown in Figure 1. The apparatus used in all of the carbonization tests is sliown in Figure 2. The apparatus was swept with 200 oc. of nitrogen before and after the run. The extract and residue were both dried in an atmosphere of nitrogen. The extraction with alcoholic potash was carried out in an erlenmyer with a water condenser on a steam bath. 2. Determination of products. The ultimate analysis was made according, to standard methods, and the gases from the carbonization tests were analyzed in a University of Illinois modified Orsat apparatus. The results from the ultimate analysis are checked in tables 5, 6, 7, 8, 9 and 10. li ''TSf T'rjV 7 : II. SfT ■ • '■Vf • '»Vi ■ *v V '. . •' A' •■ :t:. vr" 3nt>jt /a # • V :f*jsXV - 's/ •■■'%•) ;■> * ■ ixi s n>f ■-■ L'> > n ;^rr » ' V f ,7e/> Tv, 'u. i?i r>' v/.w £1 ■ft *j *^-. ’r.y X h r .'■''lifiiod- 4iHr ♦**»-■' r .v-<» ,'rv,' '.<> c 'i: -Jl f) 1 r ^w-j f:. ' ■ r , 1 rc 1 ooe -. X ./ ♦ f ■> ■:■ 'i-7.- c-^r ?7 ^ Tr 3 ’. Vv.t^.' :> ■ - : ;v ' • , r v » _r: ; . . ♦ .‘:^ xe ak :l f'h>2 \' ' .' r' \ • * r .j’r.-'j d'cr ; > ^ir':f ) ' •, 1 <^ , ytfivr/^ rtw ^o /%. i''/tr/to *fj^^'/ /?. /»i^/!f/^/ic /5<< . C- tj ty ^ i, . i 1 . H '% X « s \ W ^ V' 5 V) I Q V 5 0 X ^ 'I X < ? ^ f; ^ ^ ? i A .'» \ 'a ^ V> >) ' 4 l >1 W \. 0 V 0 V 'I S I n ^ o P tJ y. I K “> Jj” - 9 - The tar given off was so small that it could not be separated from the water that condensed with it. The water that did not condense with the tar was caught in a calcium chloride tube and weighed. In the carbonization tests on coal, the hydrogen sulfide was determined ty finding the increase in weight of ^he cadnium sulfate tube. This method, however, wqs not entirely satisfactory so in the later runs the cadrsium sulfide was filtered off and weighed, and the am.ount of hydrogen sulfxLe was calculated froi$ this. 3. Types of Coal Used. Three di "^^ferent coals were used in effort to observe the effect of di-phenyl ether on coals of different character. A fresh sample of Franklin County Blue Ridge Cool was used as a sample from Illinois. The Inaiana sample was a fourth vein coal about four months old, while the Alberta coal was from the Canadian Pacific Phtilroad mine 4^14 and was about one year old. The coals were first extracted with di-phenyl ether and this residue extracted with alcoholic potash. III. Results. Results of all the analyses are given in tabular form in the following tables. In tables 5,6, 7, 8 and 9 and 10 the value in the fifth column for the composition of the extract is obtained by calculating the amount of each const ituoit of the original coal that should go into the extract. ■' , o*: .'o • ' ' : o nl i ' '- .-■-*; ‘1.- ^ ^ ■ 4 i' 1' 1 ' t ' • * -Oit» j ■!. ■ •■ »’ K '* -■ - i ( > i ! 1 - j *jL £ Kji* jTrl C". .r -K- >3 \ 1 1 ■ ' i 4 -' ■• \0\ ‘ .' n ‘•"1 ' ■ ,,.' ■• V' '7 "'r'^ «iitr !i ^ . i ( -^;;i7‘': '. '’j.‘4»c Q^'V; 'i; 1 ) _ ~^«i» f- t ^ *7 ^ • . i: ' ’fe'j ^ i C*' :.vc;0 V* ••v^ *>' 1 ! i '■ ■’ ^'- ' " --i £-:'-V • .*T.- £ ' -■ ■- 1 1. 1 O ' '.;rx*3acro ,i •,! J t - > t . ■ ’ . ■ * ' ' ' *' 6l‘,in**i K V *’v-7.i'T/ '*■ {acr'i • ~ r ■. .1 . - . ;. 'X 3 ' ’ ' !,n.r I • ' ■ ' . j ' . ’ » t- ■ ■ V ■^OYr;,;T-. „;t7 ^'li ^ Tjf'Xfij' * '■• ^ tvcrrol - i* ■ 7 .' L . i" :,>i.^ r-' fi-j ^' • ‘.v'i?.' f ^' '^’Siiti '"v-z 1 j r ■ :t:- ■- ■ i I ^ .' '!'!: iffppf. h I H Extraction of Illinois Coal with Di-phenyl ether. /linount of Coal Amount of Solvent Time Temp, in Furn ice i- Extract of moist, and ash free coal 60 grs. 300 grs. 34 hrs. 0 330 C 3.16 10 ” 300 " 30 « 0 350 C 3.39 10 " 300 ” 6 " 0 360 C 3.39 o CD 300 ” 48 " 0 350 C 3.85 O CO 390 " 00 0 330 C 3.85 O 1 — 1 300 « 30 *’ 0 380 C 3.85 Table I. I srr- ?:::=;:« . ( |^ r^Ttr.^* Mr - pi ■■ '-ir;.-’ : r.l ,„■ J i?l ‘:," ■' ft ' ' -■ V ;,\j 7 ...V:/ .UpO blwrt^i^o. 1 . ■ , . "j;;. . . - .icftf S»T«o .’ tv-.vf--, ti^CP •i»K=Jfc^r^ ;-r-^oiS»fcs= 3 t ViA 4 C 1 » V..fc.4.*^ j .ft,?:? cdf- '. p„ ■ o '.! V -.‘5 ' ^ \, m ^ ( . * ■ ' I “ ■' ': 'J \ -' " . ■• y( V CCS fe • ' M., b' ST’ '■'■'■ A' :? ; . ■ yi. ^'■'ii^j^-%%'"^ - llu>'JV» . A f' \ ^r- :i L , P>' ''•' • ' «CS .* ■^;^fC)^ ;'' V ■ .^, ;. . / , -I- ■ r----- ■., - I ^' ' <^ I ' •' ^ — — .— ifc ^ »*^**- » I '■ *♦ ^ "“* ' **1^'**'" *• ■♦■ ij^i! ^ ^ <1 ^ I' A f 4 ^ ■'’ .^;: ■ ''Iviv . -\y *'JU m . C05*. I K.-' 6x;j .••jJ ■• j»r- *■ ' >»^ ie'* *^y v;. ■ * • • >4.' / .,A ‘i'rP-M ft. < ,la,'rw <(M| • f, ! '‘A „ 1 L "'i* Afti* V *-■ r ,’W‘ -*♦*•'. ■Ai ^.W.i Analysis of Coal Samples Illinois Inciiana Alberta Air Dry Dry IM & A Free Air Dry Dry M & A Free Air Dry Dry M & A Free Air Dry LO 88 3. 33 - - 4.76 - - -0- - - Mo i st . 4.03 - - 1.66 - - .68 - - Vol .Mat 34.85 36.31 39. 39 43.52 44.25 48. 79 15.78 15.89 16.76 Ash 7.50 7.82 - 9.17 9. 33 - 5.22 5.25 - Sulphur 1.31 1.36 1.48 3.75 3.81 4.30 .76 .77 83.74' .81 ^ 88. 30 Total C t 6$. 85 72.78 78.95 70.67 71.85 79.23 83.18 Hydroge: 1 4.67 4.87 5.27 5.03 5.12 5.66 4.42 4.45 4.69 Oxygen 11.09 11.56 12.53 8. 32 8.47 9. 34 4.29 4. 32 4.55 Nitro-r sen 1.55 1.61 1. 75 1.41 1.43 1.58 1.46 1.47 1.55 B.T.U. 12774 13309 14437 12S01 13118 14465 14641 14740 15550 Extract 3.5 3.64 3.95 5. 44 5.52 6.05 .5 .5 .5 \ Table 2. , 5- Analysis of di-phenyl Ether Residues Illinois Indiana Alberta Dry Ash Free Dry Ash Free 1 Dry Ash Free Vol. Mat. 36. 73 39.98 49.41 5 4.15 21. 72 22.90 Ash 8.15 - 8.76 - 5.27 — Sulphur 1.09 1.18 3.98 3.26 . 75 .79 Total C. 73.37 78. 78 73.83 79.83 83. 30 88.31 Hydrogen 5.76 6.38 5.00 5.48 4.71 4.96 Oxygen 11.11 IS. 10 9.10 9.97 4.07 4. 29 Nitrogen 1.53 1.65 1.33 1.45 1.44 1.53 B. T. U. 13107 14369 i 13064 14314 14828 15643 KOH Ext. 6.51 7.09 1.64 1.80 .12 .13 Table 3. 1 t V*' * !'^*''V^^ '‘^’>-'- • •■. ,-V .t '/pr.i y *#% rr' " TjrU . r \ i. rr,. I f f if. Analysis of Alcoholic Potash Residues 1 Illi nois Indiana j Alberta | i Dry Ash Free Dry Ash Free Dry Ash Fr®e Vol. Mat 34.55 34.96 34.93 46.56 17.16 17.56 Ash 6.53 - 24.99 - 2. 32 - Sulphur 1 .35 1. 44 2.94 3.92 .72 .74 Total C. 74.64 79.84 58. 40 77.84 87. 70 89.78 Hydrogen 4.66 4.-98 4.64 6.19 4.21 4.31 Oxygen 12.62 13.50 8.02 10.69 3.96 • • • 4.05 Nitogen 1.21 1.29 1.07 1. 34 1.09 1.11 B. T. U. 12834 13728 108 72 14492 15087 15444 M Table 4. 1 Balance Sheet for Illircis Coal Di-phenyl Ether Residue to Coal Ash Free Residue To M & A Free Coal Coal Differ- ence Amount of Coal to Extract Error Ydeld 96.05 3.95 Total C 78.78 75.68 78.9 5 3.27 3.12 t .15 Sulphur 1.18 1.13 1. 48 .34 .01 / .33 Hydroger 6.28 6.03 5.37 '.76 .21 '.96 Oxygen 12.10 11.63 12.53 .91 . SD 41 Ritro- een 1.65 1.58 1.75 .17 .01 ^.16 B.T.U. 1426R 13705 14437 732 570 ^ 162 Table 5. ■ Balance for Indiana Coal Di-Phenyl Ether Residue to Coal Ash Free Residue To M & A Free Coal Coal Di ffer- ence Amt . of Coal to Extract Error Yield 93.95 6.05 Total C 79.83 74. 89 79.33 4.34 4.79 -.45 Sulphur 3.26 3.05 4.30 1.15 .35 + .90 Hydroger 5. 48 5.15 5.64 . 49 .30 +.19 Oxyg en 9.97 9. 36 9.3ft - .03 .56 58 Nitro- gen 1.45 1.36 1.58 .33 .01 + .31 B. T. U. 14314 13448 14465 1017 875 + 142 Table 6. ( \ i f (,l rTp c r I i Balance Sheet for Alberta Coal Di-phenyl Ether Residue to Coal F Ash Free Residue To M & A Free Coal Coal Differ- ence Amount of Coal to Extract [ Error Yield 99. 5 . .5 Total C 80? -31 87.89 88.30 . 41 .44 -.03 Sulphur .79 .S9 .81 .03 .04 -.02 Hydrogen 4.96 4.91 4.69 -.32 .03 -.24 Oxygen 4.39 4.27 4.55 .18 .02 + .16 Nitrogen 1.53 1.51 1.55 .03 .01 -t.02 B. T. U. 15643 15564 1555 0 '14 77 - 91 Table 7 / Balance Sheet for Alcoholic Pota.sh Residues-Illinois Coal * Alcoholic Potash Residues to Di-phenyl Ether Residue Ash Free Residue To Ash Free Di- phenyl Residues Di-pheny] Residue Ash Free nffer-' ence Amt . 0 f Di-phenyl Res.‘ to Ale*. KOH Ext. Error Yield - 92.91 - - 7.09 - Total C 79.84 74.17 78.78 4. 61 5.57 -.96 Sulphur 1. 44 1. 34 1.18 '-.16 .08 -.34 Hydroge 1 4.98 4.62 6.28 1.66 . 44 •1-1.22 Oxygen 13.50 12.54 12.10 44 . 86 '1.30 Nitrogen 1.29 1.20 1,65 .45 .11 + . 34 B. T. U. 13728 12754 14269 1515 1011 f 504 Table 8. : Balance Sheet for Alcdiholic Potash Residue-Indiana Coal Alcoholic Potash Residues to Di-phenyl Ether Residue Ash Free Residue « - « To Ash Free Di- phenyl Res — Di -phenyl Residue . Ash Free Differ-' ence . Amt . of Di-pheny! Residue to Alc.KOH Extract Error Yield 98.2 . 1.8 Total C 77.84 76.43 79.82 3.39 1.43 4- 1.96 Sulphur 3.93 3.84 3.26 ' .58 .06 - .64 Hydroger 6.19 6.08 5.48 - .60 .09 - .69 Oxygen 10.69 10.49 9.97 -.52 .17 - .68 Nitrogen 1. 34 1.31 1.45 .14 .02 + .12 B. T. U 14492 13631 14314 683 258 + 425 ' Table S, Balance Sheet for Alcoholic Potash Residue- Alberta Coal Alcoholic Potash Residues to Di-phenyl Ether Residue Ash Free Residu e To Ash Free Di- ph9n3’’l Residues Di -phenyl Residue Ash Free Diff. = Amt . of Di -phenyl Residue to Alc.KOH Ext ract Error Yield - 99.87 - - .13 - Total C 89.78 89.66 88. 31 -1.35 .115 -1.46 ■^■^Iphur . 74 .74 .79 .05 .003 + .048 gydrogen 4.35 4. 34 4.96 .63 .005 + .615 Oxygen 4.Q5 4.04 4. 39 .35 .005 + .34 5 N itrogen 1.11 1.11 1.53 .41 .003 + .408 B. T. U, 15 444 15433 15643 330 30 + 200 Table 10. , / 0, Carbonization Tests of Coals, (10 Gr. Sample to 500 J. | Illinois Indiana Alberta Water (CaClJ . 426 fo .249% . 539% Water and Tar 1. 77 fo 2.0 5% . 41% Hydrogen Sulfide .356% .906% none Coke Left 6.75% 6.95% 9. 40% Volume of Sas 500 cc 850 cc 600 cc 0 0 Formation Temp, of H^^S 410 C 340 C - 0 0 Formation Temp, of Tar 410 C - 480 C Kind of Coke Weak Hard Dense > Powder Table 11. ^ -%<■« M u m ■ /f, i* ! fcvr _ I 1 : r t ©MVIw® T *“* '\ jy.-. V I .'■.■'■'■■SI? -'■* -'v . >e? .,3f ■,^''-«, •■ 6*i!i fik-«'J> I 9ft i . ft*- t^_i '• * ' 4m* — ^ ' ' • ' ■- ■ ^;K' ‘ ■ ^^v■'i^i-:^;v:^■ :.. 0 a-jt 0 U ' Cp^ .0 C5^ 1VH c ■ ' A i'*;' r-:^J "/I ti:^ i i .it *i»v 1 -* ■ * # 1 ^ - -ii> ^ «fc 0Hr I u ' ^ ^ 13 , L''^ -.-■ > ‘‘ ,', ■ '.'. 'j' .n •V.- ’A-iv"'*: '.'* . rfB- 'tZ,:'-.~ ,-! ■ i. ’^,-''1 i> , ;« yi<. '^...■irf, ^ ■■/,.>.. ■‘‘’IS |l/ %«'.4 it "f l‘- r..-.as*««r (i* . * -.(jt-l’ f^,s;rac?B=v ' -ai^^itcs __ f . ■' :• N j* j ,' 4' .,''v---'«y 7 Carbonization Tests of Di-Phenyl Residues 5 Grs. to 500 degree 8 C. Illinois Indiana Alberta Water (OaCl^) 1 . 34f. .43fo Water and Tar 1 — 1 30^0 8 . 4f. Hydrogen Sulfide • CO • C5J CD none Coke Left 60< 66 f. 81 fo Volume of Gas 10 5D CO 450 cc 500 cc 0 0 — Formation Temp, of H^S 445 C 410 0 0 0 0 Formation Te-ip. of Tar 410 C 315 C 400 C Kind of Coke Powder Powder Powder Table 12. PiPr"' v: s,:ii:^- r T— ^:r' WV’^''' ft :v‘< i- r.afcr: ■ '4^ V. • f*??* ' -D ^r f: . 'j- i-r'* t. --• '\w ■f' .mO.f, V ^ . *^F* n • ' "* • 4 M ui Vr i'"''- ■; ‘K^ ( ^OitS)) ^^'6! '• I ^tfy»i.r«'ii»i iiii»i>»»lp»i f i i 4 i~" ' ''' . • 4' CO C^< i '■i.'i 9 fcit R^ 3 ( 7 ^tH .-T.. ^ •*'■ .'“■ * .< ,1 V.V TO i'' 0 ■- [ ^ . i; ' ' ■' . . I 0 4X*,. f O'-f.'^X- ^,,H ! ■ ? w^. l"» ’»‘ . p$ r " * " *»*i p ^£2^, r p c^r> kjof a'&- ■9,'^ ■* .■». ....^Mi ^ . - I . . . . ■w 1 ) . v« C, ^ 'a' A .,!-v.v^ ^ ♦v>.‘- .Jh* •>x •> ' . ■^•: 4 V -,-'B V. ,. V, -^rj y— 4 If' ’ , '■ '* t ' ' I 4 ' ► > - i • Uf Vi'-f-!§<^’ ■"''^ '.‘7 ■r*^';<..)--jj..L r... '.' : : Vs 1 - i>\j a .1 ‘‘w 0 ' ■' ■ I f A ■ ■ ■>> y w~ ' O ^ .,.l|it*i' ■ . J'‘„ • ’.^ wt. '/A*; ^ Carbonization Tests of Alcoholic Rotash Residues 0 5 grs. to 500 C. Illinois Indiana A1 berta Water (CaClp.) 1 1c 1.S4 1 1.78 1 Water and Tar 10 1 16 1o 00 Hydrogen Sulfide Hone .25 $ None Coke Left CO 73 1o CO CO Volume of Gas 500 CO 650 CO 600 cc Formation Tenp. of HS V 0 420 C Formation Temp, of Tar 410o C 0 375 C 0 ' 410 C Kind of Coke . . Powder Powder Powder Table 13. - f ' f ' ;.— ■‘•'•\r''^«eag s^r^T/'.w^' ;■ te-’r^-^-ilSii V j ", ^^.j) '< ’iT- >r^ i i ■ i 'i H|P!V '■' -..If#-. .', . i 7 ,Tr',-teJ . ' . ■’«■_■•'?-£ t. '■• *1 ''■ I i' ' - . I I . ' ■'. ■ '^rr':-s.> . V 'Vi?, TV . A, .-■ * ^ :• '. V-frVif . r';- UJ ■ a;J •• . ’-L' I • ' V* ■•> #■' F , -D? «VJC c ■ t ‘ H ‘‘V rTrLOClX/ r ^1 i^ ' :-r* . r Sa' • '' o • V 7 ' J)- -■ t: J 1 JI' '^"~l=y . ' g '*'* *?**» " " r »l<« #^ lii i^ ,i l r -w.^./^ rT 4 & ■ ■ , .,^v < < V I hi Hv. i. ., / 4 .^ <• ■ ■ .' ,. • " ^ •* - -•~>*’‘* ' *»- ■ I i» « jiiitii < 4i -n Xi .^ -^- w ■ «iij^ i i^,^..i..t4U ^ fi' > il^V-ro -‘iQ^T 'X. - -. t ..siJjjrT B - - •■■^ • iti Wmii — »'«|i’ n »' I i>i I i |rgwi y i . -;: /vr ^ L ' Vp^’rfl . ..' ■,<' 1 ?.V,;;. .Si-' • **iii •' -f iV II* r ll ’U ' ' '■ ' '■ . . . . ; .. lA- V' ',7 7 '- ,.p “ ' I.-. > . •■ 1 ;., fC ■' & ■ ‘ ' fit- v 7 'A - Analysis of Gases from Carbonization of Coal Nitrogen Free j 1 1 1 1 i Percent Gases Illinois Indiana Alberta Carbon Dioxide 16.8 6.3 11.0 Oxygen 15. a 40. 4 19.4 Unsat. Hydrocarbon 3.8 4.8 3.3 Aromat. Hydrocarbon 1.8 1. 3 .6 Hydrogen 10. 4 7.0 f= 1 CO 1 — 1 Carbon Monoxide 4.8 4.14 6.8 Methane 31.3 CO • o 1 — 1 31.0 Eth \ne 15.6 35. 3 -10.6 Table 14. V •• r • 1 * '4«A Analysis of Oases from Carbonization of Diphenyl Ether Residues, Nitrogen Free. Percent Oases Illinois Indiana Alberta Carbon Dioxide 11.5 8.8 18.6 Oxygen 43.4 CO • 1 — 1 to 41.6 Unsat. Hydrocarbon 1.6 4.3 3jk-l— . . . Armat. Hydrocarbon 1.1 .9 0 Hydrogen 11.5 3.0 33. 4 Carbon Monoxide 8.1 4.0 3.0 Methane 33.8 48. 3 13. 3 Table 15. Analysis of Gases from the Carbonization of Potash Residues, Nitrogen Free Alcoholic Percent Gases Illinois I nd i ma Alberta Carbon Dioxide 21.4 43.7 27.8 Oxygen 42.3 14.1 24.6 Unsat. Hydrocarbon 2.3 3.2 1.1 Arma t . Hy d ro c arb on 1.1 . 7 0 Hydrogen 4. 3 5.2 16.2 Carton Monoxide 2.3 3.2 2.5 Methane 26.3 30.9 27.8 Table 16. 1 f Volume of Gases from 100 Grams of Coal, Nitrogen Free I cc per 100 grs. Illinois Indi;ana A1 be rta Carbon Dioxide 840 530 660 Oxygen 775 3440 1164 Unsat. Hydrocarbon 193 398 134 , - . Armat . Hy dro c arb on 93 109 36 Hydrogen 531 ' 597 1108 C_arbpn Monoxide 340 353 1 4 409 Methane 1561 904 1860 Ethane 775 3169 639 Total Volume 5000 8500 6000 Table 17, ^ , ‘ , s vc7^ Ito C9«i0 OOiT e)6t4p3^ ' , , 4 ' ^\] ‘ "■ :f ■. .\ r "■<>^- r'S-'>r » *^i^b'- "' ^ , «» ^ i '■'■ -t4>' \'^ ^^^Sitlii■o^,> r •- -t *• if ; . f>v ^ f’“*^ ',L^ ^. ■- J F3;/ f%' t ;, !' ^ ''ii' ife etT ,, : I. ,4. ^ I." 'i'^'pSr: , -'**-•► 44 * ®: «*:oV.li'/i^ '*’- V'i • _/ '■' ■'« •■»' M ! 1 *^» ' t> I ,> "f ,tf Volumes of Gases from 100 grs. of Di-phenyl Residues Nitrogen Free CC per 100 Grs. 111 ino is Indi^ana Alberta Carbon Dioxide 2430 794 1860 Oxygen 9120 3860 4160 Unsat. Hydrocarbon 336 378 310 Armat. Hydrocarbon 331 81 0 Hydrogen 2430 180 2240 Carbon Monoxide 1700 360 200 Methane 47 73 4367 1Z3CL, Tdjtal Volume 21000 9000 10000 Table 18. A.t, .'■■■ . . ■ ■ \T''% >' ■ Xv.'?i y.x> . ^73?. 001 M'rJ’ To > ! i/'. ., . i ‘n {«/; rEi>£ 4 ’.' ^i» j tl. I . 'CXO.,. ^ev MHiM -. A. . . ■ . -5aR?^_ ,'■ I*;-.' *■' ' i’fr J.' w& "i-*- ■' -f >.-'_-06I, ■>[ ' - '\ *•« "•••'-' '>■• . ; I ‘ 1 'jfti'ioiCE- k6#»!j0 > -*T ••••• •'>*,_ *• •♦^•-•; 1 1 # * i p y lib «- ‘-^ i . i - .,'. "i -» vO!' s ' \it: ‘5r: '.'"■ ;'T- ,- ^>: ' tm' “ 3 ■ ’ • ^-■ '/% '|s1b rotmr ;, ,|ir . • '7 ‘ .A J r ;..v» I . t- i .’* • K V . A .-V , . .'•■’’■ 3n-'n :>V.,.i ^ j .S r V( \ :i*vv'"*'- .. ■Ji ■ . v>^l;A^;;' ;i , ■ .: ' ' ■ ■ ■ if. :lt- '#! i_-W -ij • -,ic" ,'d' 'V^-^i, -t' ...>i.«il«,»lW^ r‘^-ikii » *■ 'i' - r. ^* ■ * ? U. r • » >f, * s I* , . • |V , ‘ -V- Ji ^»*■• #■'’'.*5 Sfc t'' .'it -ardW ■ ''■■■./I • ., V ’ ;-i ':J ■; 'V.;/ ^y^JSTT>3^>- . 3 ^ f. '• — Y^ T»« « ,i. ’i ■ ' 'V ’ s » '{,■ 't ■“ . V -■ (A' L '■xs. ju t m utei- •• ,\| "' C \. . ' . ■ ■ ■ ^.' Volume of Gases from 100 Grs. Alcoholic Potash Residues Nitrogen Free CC uer 100 Grams Illinois Indiana Alberta Carbon Dioxide 3140 55 50 3 780 Oxygen 4330 1830 3460 Unsat. Hydrocarbon 330 416 110 A rm at . Hy dro c ar bo n 11 0 91 0 Hydrogen 430 675 1630 Carbon Monoxide 330 416 350 Methane 3630 4033 3780 Total Volume 10000 13000 10000 Table 19. - 10 - IV. Discussion and Conclusion. Di-phenyl ether will remove the coking property of coal. It, however, does not remove all of the resinic mattery for the residue will give tar v/hen carbonized and an extract when treated with alcoholic potash. For two of the samples the ash on the residue is practically equally to the amount of the ash contained in the original coal. This indicates that di-phenyl ether is a true solvent. The residue from the di-phenyl ether extraction can be handled easily, and after washing with ethyl ether it can be crushed, to a fine powder without any difficulty. 19 The H:0 ratio as proposed by ??hite for a guide to the coking power, holds true in all the carbonization tests. The Indiana Coal is the only one that had a hydrogen tO' oxygen ratio greater than 59, and it is the only one that produced a good coke. ^ From Table 1 it can be seen that the amount of material extracted does not depend upon the time of extraction to any great extent. Also, it is not necessary to keep the solvent It its boiling point. The temperature, however, o should not be below 200 C. , because under such conditions the coal will Ccike in the bottom of the flask, and it is more difficult to filter the relative coal solution. The volatile matter on all the residues is higher than on the original coal. This iS due to traces of the sol- vent that were not removed in washing the residues. This fact ,r i V- .. f -I "I . J »r^ljs;iii'ncvl. fr*/: rfOito^u^c vM,. > ■H .'.1 \’^^^oovit ?fc»jD 4 » -f'?'^’ t<- 4’»9 J'v 5 C»d«r-ifI ;} »i' »■ , rMt «ri 6 fW r'tl» 7 .-^ofj %tt .LeoC'lo .'"'■ -, \ tfl. - j ' -. udi \a irt^ ^Xtml 0 ciJf‘ d/i# ' " .,. .«:--''-vjl( !■ "U V.- '.' /--: 4 ' ■f->‘''l '>• . ‘ I "it »ii-t 0^ ritj >/r^ vtx^oi;toAt‘: $jf f«rfrt-a9x •■ • "■■•< tji ^ ■ '••f i ^ -t rlM ' * aWT tiv« -U .^mria^^iiPo disiS '»■ ^ ^:T.' ^ ij V;^" ' ' ' ' ' . « ,?v£p 9 J t * i, t . - ') KV' /lp|tDr 7 T 3 ?s WJtfflpt. ’ 'i^i' ^ . \4 ■ F. ' V .^i^ “ « . i'*;«oil'tii m# jwW‘>*^Te*wi }4 #irrt. *;<(#' lisiiiM^W .1 ^ ^ . '■' s’- i* ^ ' ' ■ ^ s-t^ fri '■•crri t ‘-XodV ' ff 9 ;< 5 yfo- 04 ^ . i «4 sn ’ . io ’^n'.cpiluj:/ nilf -*■ ..V' ■ F- ; np 5 » >?Cf' .f- ':a ac^ Apficiet JPr'^«'-eab fe"'" V.' ' ■ ■ ‘ ' ■ ,E:^i " ■,t’!r 56 V:>i'piX .. cti, . ‘L'Y ‘' J- . ' ■x-'j i:ictj}'tun ^om r^’w op^jlrotnii iL f ,^7 I'V i”'',,- ‘^.1 T ■ ,,. T^-^riX'ii:. ajjitfi. , fX4\rtb'^ ■£a.tf;f»;(r..'p,fi*ff- r^sv- W? KS . / -— J f fi r?fc' «iro£$tf [j i3£jaoo rri erfT *iJci/0 ai b^a^%6n I nhd n^^ypic ’< ■ %o m rreac^ bid ^liSt tjiX^ at 9t/Xi^d n dflx{f ,‘^'s9d0 ,t.L jtdt yo^ '119^^0^' r ►’4 'A. t '’ .-^-'r^ --j Ti' ■. .■• k ,\ '^a''^.zoab s toa's So? if*'**} s/Jh^A^oISif ■ . f I' ^ -TTM .^1 J -eXirfw , 9$lngi^9 ^r(t to .;0t ? -sEV • X ' ' V ' ' r ^ ,afiIT ■ . ' -^I']‘ft$B m-,v 'ir.^ .08 swo^a V- * '" K- t. '; etft tt fpj)% i .. d«JF^o<3r ■■ \ . '" f’.' r.-, t ■'^'1 Hj 5! 1 84^ XLXr TJO? ^S(h^a AinOr ,:^ad9xfi to^ e^L. , ! ' ■^ ,:v - **■ ’?? ' r/ a ■:3-'fv» eafc i^a*! nfJvXi'iil bV t al '’ . ’ >4? ' r ' Bl ^-: ■: II- t* • .- • _ ^ '* *- .* - /- ■ ' 'v ' . ‘ ■-*», If .- -i! ts&i[>5eq . r-£, Jb/ifi ^ae>o^eq Xroo fi^> v'df^ SaL'ot ©aw fl d^sfa^ OiXodooXi;' '*! ■ .' , •', |,ff. "■ ■ It:^4»‘. 1;*%*^^* bkai trs •Sr^/,'ntY nX jbeoi^Xq §aw' ’ *'''• .- ■ ' .i' . , 1 ^ S9v ls>^i oiXA’orv-li-4'tfvJ‘ 40 dar v'lf X/tJfi/©fr 6Airr«oXi-«Xoo' e^v ^ i . XjpO^ X-iiiXj^t'ra - .Tc »oui/. v sdt at oooXo t^av M IXlTr a ; A - it , C'Mo^ooX® oSl "itv (^Itfsi^^TyV 'Od^ xioit 'vi v<. ordT notf-T^-n ri wod« 'iiei;XjXa»*i d6£tof :i^-. 'ii4q- ,%cri?rodt i&&:^bte9i dt^Af aq o'JtladottCi'Je^iTjao^j : . / ‘ ■ ' ' il;.^ y not^rcv-ttxa 9^ ejb^iyn£^ nocftfo otfix ^Jjayt^vitoo ayji4-S [[;-^ ccftcy:) to 'pw-t - 4,[■* ' ■ ' ... 1' ■ . . 'll '.:^.-Aj r '. ® ,"' .*.- :■' ^ *rtnr- t ,0i)»Tott9 «rto Ott':4!^ib4 X m'*v^ WodO’'iia^<^ , •; . >i' . ^ ■ 'W 40 c^d:$;pO 9€Fa*SiOrti vft,’ ^ Jbid .‘loi n-t j84^*j tj-CA -'ix© Xcnnd^, » m'OTX- ki • • - 12 - Carbon monoxide decreases on the coals where carbon dioxide increases and increased on the sample that showed a decrease of carbon dioxide on the di-phenyl ether residue. According 20 to Porter and Taylor carbon dioxide and carbon monoxide come from cellulosic materials, so it would be naturcil to expect an increase on the residues which contain a higher percent of cellulosic material. V. Summary. 1. The products of Di-phenyl ether extraction are in such a condition that they can be easily handled. 2. Time over six hours does not increase the amount of extracted material. 3. The temperature does not have to be at the boilipg 0 point of di-phenyl ether, but it should not be below 200 C. 4. The ' 3 :e si due 8 from both di-phenyl ether and alcoholic potash extractions show an avidity for oxygen. 5. It is impossible to remove di-phenyl ether completely from the residue. 6. Di-phenyl ether does not remove all of the resinic matter, but it leaves a residue that will not coke. 7. The ash on the di-phenyl residue can be usually checked back to the value orir the original coal, showing that di-phenyl ether is a true solvent of the coal substance. 8. Di-phenyl ether is a much better solvent than either phenol or pyridin, because it is easier to 7;ork with than phenol and will not form addition products as pyridin will do. * -t‘ .. <0 ’’■Of-I'i f: : + a It ' V / ' ” > i ■ r 4 ^ 04 * \ •\ r- r I fine’ ot'f ,T:i^ ' '. J - 13 - 9, The use of alcoholic potash is not as advant eous as that of di-phSnyl ether, because it is very easy for the residue to absorb carbon dioxide, and the residue must be I'^c^shed very carefully in order to remove all of the alcoholic potash. _ ' ry .>11 V ^ . i'"' "'' ,, , . * . , *■ V. /.'• ^ i ■',' ,*' ' . ■'/ ' r ■ '^ ' 'yi^lU !iT.'»3r%7 o vni^to iJfMe<»v v^ao .0 ■ ■ ■^-m-S >' ’ ' J,; '■■ w‘-i K, . ., ‘".iriyi ->' I ‘ ■ ' . f It' . . u 0 /‘ (to'qr oi I o 4 o^r o .. . . ' ' I . ■ ■ '