. SK- . um THE UNIVERSITY 0F ILLINOIS LIBRARY 628.3 Se<55 v.i UNIVERSITY LIBRARY UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN The person charging this material is responsible for its renewal or return to the library on or before the due date. The minimum fee for a lost item is $ 1 25 . 00 , $ 300.00 for bound journals. Theft, mutilation, and underlining of books are reasons for disciplinary action and may result in dismissal from the University. Please note: self-stick notes may result in torn pages and lift some inks' Renew via the Telephone Center at 217-333-8400, 846-262-1510 (toll-free) or circlib@uiuc.edu. Renew online by choosing the My Account option at: http://www.library.uiuc.edu/catalog/ Digitized by the Internet Archive in 2015 https://archive.org/details/sewagedisposalpa01unse % ♦ SEWAGE DISPOSA: Modes of Treating Town Sewage - Report of Comm. / I - LXIII - 130 Die Kanalwasser - Bewasserung, Ad. Fegebeutel 1 - 113 Die Kanalwasser - Bewasserung, Ad. F'egebeutel 1-55 Intermittent downward Filtration, J. B. Denton 1-30 Report on Beddington Farm, M 1-12 10 Years experience in works of In- termittent downward Filtration, J. B. Denton 1-87 Landwirthschaftliche Jahrbucher, Dr. H. Thiel 215- - 227 Centralblatt fur Allgemeine Ges>- undheitspf lege, von, 1 - 04 - Drs. Finkelnburg, Lent and Wolffberg Sewage disposal of cities, Harper’s Monthly, J. S. Billings 577 Comm, on Lunacy, G-. E. Waring 21 Disposal of Sewage and Protection of Streams, G. E. Waring 231 The treatment of Sewage’, Dr. C. M. Tidy 612 Proposed plan for a Sewerage System 584 31 258 625 for City of Providence, S. M. Gray, -appendix. \ ”, « . ' r> SEWAGE DISPOSAL. REPORT OF A COMMITTEE APPOINTED BY THE PRESIDENT OF THE LOCAL GOVERNMENT BOARD TO INQUIRE INTO THE SEVERAL MODES OF TREATING TOWN SEWAGE. Pre&ntetr to fiatlj of parliament fiy Command of Her JHajetftg. LONDON : PRINTED BY GEORGE E. EYRE AND WILLIAM SPOTTISWOODE, PRINTERS TO THE QUEEN’S MOST EXCELLENT MAJESTY. FOR HER MAJESTY’S STATIONERY OFFICE. 1876. . Ill CONTENTS. Instructions for Inquiry ------ List of Towns Inspected ------ Conclusions -------- Report -------- Volume and Constituents of Sewage are Modified Estimate of Town Sewage not its Value to a Farmer Town Scavenging ------- Town Sewering and House Draining - Sewage varies in Quality - Sewage difficult to deal with - - - - - Proportion of Sewage to Excreta by Volume and Weight Sewage not profitable to the extent estimated Sewage not to be stored in Cesspools - - - - Mechanical Power of Water - General Remarks on Sewage - Sewage Irrigation proven not to be injurious to Health Money Returns from Sewage contingent on Local Condi- tions - The Pneumatic System ------ Remarks on the Pneumatic System - Town Sewage — its Treatment and Characteristics - Unventilated Foul Sewers and Sewage Tanks dangerous Carelessly cleansing Sewers during periods of Sickness dangerous - - Details of the Modes of dealing with Sewage Rent of Land used for Sewage-irrigation excessive Examples of Sewage-irrigation - - - - - Area of Land required for a Sewage-Farm will depend on Local Conditions ------- Italian Rye-grass the best Crop under Sewage A portion of a Sewage-Farm to be deep drained to act as a Land-filter ------- Drains and Waterclosets ------ Clarification of Sewage ------ Details as to Irrigation by Town Sewage - 541080 a 2 Page ix xi xii xiii xiv xv 33 xvi xvii 33 xviii xix 33 XX 33 xxi xxii xxiv xxv xxvi 33 xxvii 33 33 xxix 33 XXX 33 xxxi xxxii 39260. IV ABSTRACTS From Special Reports. Page Cost of dealing with Sewage by Irrigation : — 1. Banbury _ _ _ - xxxvii 2. Bedford - xxxviii 3. Blackburn _ 4. Cheltenham . - xxxix 5 . Chorley, Lancashire . xl 6. Doncaster . xli 7. Harrogate - xlii 8. Leamington - xliii 9. Merthyr-Tydfil - xliv 10. Rugby - - “ 99 11. Tunbridge Wells - xlv 12. Warwick _ xlvi 13. Wolverhampton - " 99 14. West Derby .. - xlviii 15. Wrexham - xlix Treatment of Sewage by Land-Filtration : — 16. Kendal - - • - 1 Precipitation of Sewage-sludge in Tanks : — 17. Birmingham - - - - i Treatment of Sewage by Chemicals : ; — 18. Coventry - - - - lii 19. Bolton-le-Moors . . - _ liii 20. Leeds - . _ _ _ liv 21. Bradford - - - - lv Treatment of Excreta by the Pail System : — 22. Halifax _ _ _ lv 23. Rochdale - - - - lvi Comparison of the Loss of disposing of Town Sewage in proportion to the annual rateable value of the Town - lviii By Irrigation plus Scavenging - - - - ■ ,, By Chemicals plus Scavenging - - - - „ By Pail System at Rochdale ; the crude Sewage flows into the River ,, By Land-filtration at Kendal - Analyses of Sewage-sludge as treated and Fortified with Chemicals. Report by Dr. a Voelcker, F.R.S., on the Fertilizing and Commercial Value of Town Sewage and Night-soil Manures Theoretical or estimated money value of one ton of the treated Sewage-sludge ------- Practical or market value of one ton of the treated sludge - lx lxi lxiii V APPENDICES. APPENDIX No. 1. Sewage-Farms : — 1. Edinburgh 2. Banbury 3. Bedford 4. Blackburn 5. Cheltenham 6. Chorley 7. Doncaster 8. Harrogate 9. Leamington 10. Merthyr-Tydfil 11. Rugby - 12. Tunbridge Wells 13. Warwick 14. West Derby Page - 1 - 3 . 6 - 9 - 11 - 13 - 14 - 17 - 19 - 23 - 25 - 26 - 29 - 30 APPENDIX No. 2. Land Filtration ; — 15. Kendal - - - - - - - 32 APPENDIX No. 3. Precipitation, Chemical, and Mechanical Processes — 16. Birmingham - - - - - 33 17. Bolton-le-Moors - - - - - 36 18. Bradford - - - - - 41 19. Coventry - - - - - 46 20. Leeds - - - - - - 49 21. Halifax - - - - - 53 22. Rochdale - - - - - 56 APPENDIX No. 4. The Pneumatic System of Treating Excreta as described by the Local Authorities of the Towns visited: — Leyden - - - - - - - -61 Amsterdam - - - - - - -62 Statement by the Director of Public Works - - - 63 Badhoeve Farm, Haarlemmermier - - - - 67 Paris Sewage-farm - - - - - - 68 Berlin do. do. - - - - - - - 70 VI APPENDIX No. 5. Epidemic Disease - - The privy system ------- The Conditions of Towns, Villages, and Houses in Great Britain at this date, 1876 - Sewage Irrigation, Examples of: — 1. Edinburgh, Sewage Meadows at - Raw and Effluent Sewage at 2. Barking, Lodge Farm at - Raw and Effluent Sewage at 3. Aldershot, Sewage-Farm at Raw and Effluent Sewage at 4. Carlisle, Sewage-Farm at - Raw and Purified Sewage at 5. Penrith, Sewage-Farm at Raw and Effluent Sewage at 6. Rugby, Sewage-Farm at _____ Raw and Effluent Sewage at 7. Banbury, Sewage-Farm at Raw and Effluent Sewage at Receipts and Expenditure - 8. Warwick, Sewage-Farm at Raw and Effluent Sewage at 9. Worthing, Sewage-Farm at Receipts and Expenses Raw and Effluent Sewage at 10. Bedford, Sewage-Farm at Raw and Effluent Sewage at Receipts and Expenditure at 11. Norwood, Sewage-Farm at Receipts and Expenditure at Raw and Effluent Sewage at Effluent Water at - 12. Croydon, Sewage-Farm at Raw and Effluent Sewage at Effluent Water at - Purification of Sewage by Irrigation, influence of Season upon the ______ 13. Woking Convict Prison, Experiments at nfluence of Sewage Irrigation on Health - Croydon (South Norwood) Sewage-Farm - Croydon (Beddington) Sewage-Farm - Sewage-grown Grass proved to be wholesome APPENDIX No. 6. List of Patents connected with Sewage and Manures from 1856 to 1875 APPENDIX No. 7. Abstracts from the Reports of Royal Commission, and others, who have inquired into the best modes of distributing the Sewage of Towns, and of applying it to beneficial and profitable uses Extracts from the Reports of the Royal Commission made 1858— 1865 : Precipitation of the solid matter of sewage Pagr 71 73 74 78 78 81 81 83 84 84 85 85 85 86 ^ 86 87 88 88 89 89 90 90 91 91 92 93 93 93 94 95 96 97 98 99 100 102 103 103 104 105 116 - 116 Page Preliminary Report, March 1858 : Conclusions - 120 Second Report, 1861 : Conclusions ------- 121 Recommendation ------- 123 Third Report, 1865 : Conclusions - 124 Extracts from a Report by Henry Austin, Esq., C.E. - - 125 Conclusions ------- 125 Conclusions from the First and Second Reports of the Select Committee on the Sewage of Towns, dated 10th April 1862 : Analysis of Evidence ------- 128 Report on the Results of the Society of Arts Conference on Health and Sewage of Towns, June 1876 : Conclusions - 129 vill EXPLANATION OF THE TERMS USED IN THIS REPORT. Sewage. — The fluid refuse of a town. Sewer. — The main conduit for sewage laid within a town. Drain. — The tributary conduit for sewage from houses to sewers. Sewerage. — A system of sewers. Raw or Crude Sewage.— S ewage as it flows untreated from a sewer. Clarified Sewage. — Sewage deprived of solids and flocculent matters in tanks. Purified Sewage. — Sewage filtered through land sufficiently to have neu- tralized the salts. Excreta, used as a singular noun. — Faeces and urine combined. Dust. — The ashes and other dry refuse from houses. The A. B. C. Process. — Sewage treated with Alum, Blood, and Clay, &c. M. and C. Process. — Initials of the patentees. The ingredients used are lime, carbon, soda, per-chloride of iron, and ashes. The Pail and Goux Systems. — Moveable vessels placed beneath privy seats prepared to receive excreta. LIST OF MAPS AND DETAILS OF SEWAGE-FARMS. Bedford - Doncaster - Wolverhampton Tunbridge Wells, North Farm North Farm Sewage Tank Details Tunbridge Wells, South Farm South Farm Sewage Tank Details West Derby Kendal, General Plan and Details Wimbledon No. - 1 - 2 - 3 - 4 - 5 - 6 - 7 9 , 10 , 11 , 12 13 , 14 SEWAGE DISPOSAL. The Maps referred to in this Report will he found in a separate cover . INSTRUCTIONS TOR INQUIRY, (Copy.) Local Government Board, Whitehall, S.W., Sir, June 19th, 1875. I am desired by the President to enclose, for your information, a copy of a minute of the Board, dated 17th instant, directing an inquiry into the practical efficiency of the chief systems of sewage disposal now in operation, and for which loans have been sanctioned by this Department. The President considers it desirable that the proposed inquiry should be undertaken as soon as possible, and I am therefore to request that you will be good enough to make the necessary arrangements for entering upon it in conjunction with the other gentlemen nominated by him. The principal points to which it is important that your attention should be directed are fully stated in the Minute. I am. Sir, Your obedient servant, (Signed) John Lambert, Robert Rawlinson, Esq., C.B., O.E. Secretary. &c. &c. &c. SEWAGE DISPOSAL. The attention of the Board has for some time past been directed to the great difficulties experienced by sanitary authorities in devising means for the disposal of the sewage of their districts ; and, having regard to the frequent applications which are made to them for advice on this subject, they have deemed it expedient that special inquiry should be made under their direction into the practical efficiency of the chief systems of sewage disposal now in operation, and for which loans have been sanctioned by them. X The systems, to which the Board refer, are those for the disposal of sewage ; 1. By sewage-farms, 2. By land-filtration, 3. By precipitation and by chemical processes : And in order that they may obtain reliable information as to the results of each of these processes, they have determined that Mr. C. S. Bead, M P., one of their secretaries, and Mr. Bawlinson, C.B., their chief engineering inspector, in conjunction with Mr. Smith, the secretary to the late Bivers Pollution Commission, as their assistant, shall, as early as practicable, visit a limited number of localities in which the processes in question are in operation, and report fully to the Board thereon. The points to which attention must be directed and upon which the Board are desirous of obtaining information, are mainly the following : — 1. The nature and character of the works and their actual cost; the rateable value of the district, and the population for which the works are available. 2. The length of time during which they have been in operation. 3. The effect of the works on the sanitary condition of the district, so far as it can be ascertained generally. 4. The efficiency or non-efficiency of the w r orks as a means of disposing of the sewage of the district, and the quality of the effluent water in relation to its purification and deodorization. 5. Whether any nuisance is or has been occasioned by the works. 6. The annual outlay required for their maintenance and working, as distinguished from repayments of principal and interest, which should be shown separately. 7. In the case of sewage-farms, the acreage, description of soil, system of cultivation, the kind of crops, and the financial results. 8. In other cases the amount realized by the sale of the sewage. The Board consider that at least four examples of each system should be included in the inquiry ; and they are desirous that the separate reports should be accompanied by a general report on the merits of the different systems. (Signed) G. Sclater-Booth, Local Government Board, President. June 17th, 1875. TO THE RIGHT HON. GEORGE SCLATER-BOOTH, M.P., President op the Local Government Board. SlB, Having in June 1875 received instructions to inspect ex- amples of main sewerage outfall-works, so as to be enabled to report on the same, and to ascertain the facts as to sewage irrigation, we have visited Edinburgh, Wrexham, Chorley, Blackburn, Doncaster, Harrogate, Wolverhampton, Leamington, Warwick, Rugby, Ban- bury, Bedford, Croydon, Norwood, Reigate, Worthing, Aldershott, Romford, Tunbridge-Wells, Cheltenham, Merthyr-Tydfil, Barking, Norwich, and Enfield; Kendal, where the downward intermittent principle is carried out ; Leeds, Bolton, Coventry, Tottenham, Edmonton, and Hertford, where sewage is treated by a chemical process ; Bradford, Birmingham, and Luton, where sewage-sludge is precipitated by the addition of lime ; and Halifax, Rochdale, Salford, and Manchester, where the pail system is partially used for dealing with excreta. We also visited Leyden and Amstersdam, where the pneumatic system is partially in operation ; Paris, where only a portion of the sewage is utilised in irrigation ; and Brussels and Berlin, where the sewage is about to be disposed of in irrigation. We have obtained returns from the several towns visited as to their population, annual rateable value, the costs of the works connected with sewage treatment, the volume of sewage dealt with, and other details relating to the several points referred to in your instructional minute. The particulars thus obtained will be found in the following Report and Appendices 1, 2, 3, and 4. The several Local Authorities, both at home and abroad, readily furnished such information as they had, and we required, and to them our best thanks are due. Having examined the different modes of dealing with refuse, solid and fluid, in the several towns now reported upon, we beg to submit the following conclusions. Xll CONCLUSIONS. 1. That the scavenging, sewering, and cleansing of towns are necessary for comfort and health ; and that, in all cases, these operations involve questions of how to remove the refuse of towns in the safest manner and at the least ex- pense to the ratepayer. 2. That the retention for any lengthened period of refuse and excreta in privy -cesspits or in cesspools or at stables, cow- sheds, slaughter-houses, or other places in the midst of towns, must be utterly condemned ; and that none of the (so-called) dry- earth or pail-systems, or improved privies can be approved, other than as palliatives for cesspit-middens, because the excreta is liable to be a nuisance during the period of its retention, and a cause of nuisance in its removal ; and, moreover, when removed leaves the crude- sewage, unless otherwise dealt with by filtration through land, to pollute any watercourse or river into which such sewage may flow. We have no desire, however, to con- demn the dry earth or pail systems for detached houses, or for public institutions in the country, or for villages, provided the system adopted is carefully carried out. 3. That the sewering of towns and the draining of houses must be considered a prime necessity under all conditions and circumstances, so that the sub-soil water may be lowered in wet districts, and may be preserved from pollution, and that waste-water may be removed from houses without delay ; and, that the surfaces and channels of streets, yards, and courts may be preserved clean. 4. That most rivers and streams are polluted by a discharge into them of crude-sewage, which practice is highly objectionable. 5. That, as far as we have been able to ascertain, none of the existing modes of treating town-sewage by deposition and by chemicals in tanks appear to effect much change beyond the separation of the solids, and the clarification of the liquid. That the treatment of sewage in this manner, however, effects a considerable improvement, and, when carried to its greatest perfection, may in some cases be accepted. 6. That, so far as our examinations extend, none of the manu- factured manures made by manipulating town's refuse, with or without chemicals, pay the contingent costs of such modes of treatment ; neither has any mode of dealing separately with excreta, so as to defray the cost of col- Xlll lection and preparation by a sale of the manure, been brought under our notice. 7o That town-sewage can best and most cheaply be disposed of and purified by the process of land irrigation for agri- cultural purposes, where local conditions are favourable to its application, but that the chemical value of sewage is greatly reduced to the farmer by the fact that it must be disposed of day-by-day throughout the entire year, and that its volume is generally greatest when it is of the least service to the land. 8. That land irrigation is not practicable in all cases; and, therefore, other modes of dealing with sewage must be allowed. 9. That towns, situate on the sea-coast, or on tidal estuaries, may be allowed to turn sewage into the sea or estuary, below the line of low- water, provided no nuisance is caused ; and, that such mode of getting rid of sewage may be allowed and justified on the score of economy. Borert Bawlinson. Clare Sewell Bead. S. J. Smith, Assistant , 21st July 1876. REPORT. A statement of facts connected with the treatment of sewage at any one town or district can only have a certain limited value, which will be in proportion to the efficiency of the system and the accuracy of the description ; but any single example may not have much value outside of the special conditions of the locality. We have investigated examples of the waste of sewage into the sea, of its treatment in depositing tanks without chemicals, of its treat- ment in depositing tanks with a use of chemicals, of its appli- cation to land in irrigation, by gravitation, and of its application to land by pumping. We have also examined several modes of removing excreta in pails, as at Bochdale. Beports more or less in detail of the several processes are given in the Appendices Nos. 1 to 4. XIV Modifications in the Volume and Constituents of Sewage. The volume and constituents of sewage are modified by : — 1. The surface contour and local rainfall; 2. The geological character of the substrata, the mode of forming the surface roads and streets, and the amount of local traffic ; 3. The volume of water-supply, the mode in which it is applied, and the volume of subsoil-water taken into the drains and sewers ; 4. The mode and efficiency of the main-sewering, house- draining, and the way in which waste- water and excreta are disposed of ; 5. The efficiency, or otherwise, of surface scavenging and sewer and drain flushing. Steep surface gradients and roads and streets macadamized, defectively scavenged, and over which roads and streets there is an excess of quick traffic, as cabs, omnibuses, and vans, will send much detritus into the sewers. Birmingham is an example of all the above-named conditions, and consequently also an example where the solids washed down to the outlet are in excess. The volume of water supplied and passed into sewers, with the volume of subsoil-water entering them, will, during all ordi- nary periods, constitute the volume of sewage to be dealt with ; and as drains and sewers usually receive a portion of the rain, there will, in wet periods, be this volume extra to provide for. Sewers and drains which have been properly designed and well executed transmit sewage day by day as generated, so that it is fresh, and not putrid ; and in the treatment of sewage by any process it is of the utmost importance to deal with it fresh, as there will be less cost in chemicals (if such are used) and les3 nuisance on the surface of the land if the sewage is applied in irrigation. In a town properly sewered and drained, well supplied with water on constant service, and wholly water-closeted, the sewage will be in the richest state, and may be dealt with at the least cost and with the greatest safety to health, either by chemicals or by irrigation over land. In a well sewered town the character of the sewage will vary in proportion to the time of day and to the habits of the population, as it will be richest in the morning, at noon, and in the evening. From midnight to early morning, for six or eight hours, the sewers will contain little more than subsoil-water and waste from defective water-supply fittings. Towns which are defectively sewered, and in which there are many privies and ashpits drained into the rudely-formed sewers, have sewage in its most offensive and dangerous form ; and if such sewers are defectively vent dated, there will be the greatest element of danger to health. To connect dwelling-houses with such sewers by drains, especially if the drains are not ventilated, is to incur the greatest risk of danger to health. Towns in which the so-called dry modes of treatment, or the pail systems prevail, retain human excreta for a longer or a shorter XV period, as where the pails are said to be removed and emptied each week (that is 52 emptyings each year) ; or as in portions of Edinburgh, where the pails are said to be removed from room tenements each day, or (excluding Sundays) 312 times in the year. The wholesomeness of this treatment must depend more upon the absolute and perfect cleansing of the tubs or pails at each removal than upon the time of retention, as foul pails will become putrid, and the leaven of putridity will be communicated to the refuse as it is deposited in the pail, or tub. The cost of collecting and replacing the pails is necessarily in proportion to the convenience for removal and the distance of the depot. The yearly cost of collecting the pails in Rochdale and of working the contents into a solid manure is about 1 1.9. 1 \d. per ton. The yearly costs of manipulating the solids of sewage by mechanical and chemical means are set forth in the abstracts from the reports on Coventry, Birmingham, Bradford, Halifax, and Leeds * Chemists' Estimate of Town Sewage not its Value to a Farmer. With respect to the laboratory value of town refuse and of sewage, or of the manipulated solids of sewage, we do not know of a single case where it is sold at a profit ; and, as a consequence, there has been local disappointment and accumulations of several thousands of tons of manufactured manure, asserted to be worth from one to several pounds sterling per ton, which prices are not realized ; consequently there are these vast heaps encumbering the premises where manipulated. In the case of town sewage, we find that its unceasing flow and the great volume of water to be disposed of day by day, detract from the undoubted manurial value which there is in it, so that sewage containing ammonia, re- presenting a manurial value of 2 d. per ton, has to be given away, or has to be wasted into the sea. With respect to the solid manure made from town refuse and extracted from sewage, its bulk and weight reduce its value, and, as, like sewage, the production goes on all the year round, it must be heaped up until farmers can be induced to remove it — the inducement for them to do so being a price far below the cost of production. See Analyses, pages lxi, lxii, Ixiii. Town Scavenging. Town refuse, both fluid and solid, must be got rid of, and the more completely and rapidly the process is effected the better will it be for the inhabitants. The cost of any process should, however, be a secondary question — always provided that due skill has been, and is used in devising the local works, and proper care has been, and is exercised in supervision and labour. * Note. — The tank mode of treatment costs about 150/. per annum for 100,000 gallons of sewage per day so treated, plus the interest on the cost of tanks and apparatus. XVI With respect to town scavenging, the ashes and other waste refuse will have most value when retained dry, and that town will be best served where the removal is regular, and at short intervals, by dust-carts, into which the dust is discharged direct. It is a dirty process t,o empty dust on to the street-surface to be shovelled up by the men after some of it may have been blown about. Town Sewering and House Draining. Town sewering and house draining are as ancient as civilization. Drain-tubes of earthenware have been found under the mounds of the ruins of the cities of Asia. The Romans sewered their cities and towns, and drained their temples, baths, and public buildings, and the sewage polluted the adjoining rivers. Sanitary progress in Great Britain is recent, and the first rude sewers were more mischievous than beneficial. The earliest Norman castles were not sewered, but were sinks of filth both within and without. One of the earliest improvements was the Guarderobe turret or tower, constructed in an external wall, the floor being carried over the outer face upon corbells. This floor was dished from the sides to a central opening from which excreta could fall outwards to the base of the castle wall. Some of these Guarde- robe towers were removed from Windsor Castle since 1840. About the beginning of this century waterclosets were re-invented and were introduced into better class residences, the drainage from them being to the nearest sewer or from the house to some ditch or watercourse or to a pit, or even over the surface of the ground or into the side-channel of a public road. In London and some other towns the nuisance arising from waterclosets was found to be so great that Improvement Acts were obtained in which clauses prohibiting a use of public sewers for waterclosets were inserted. The old sewers were large, rude in construction irregular in gradient, having flat bottoms and being unventilated, so that every form of refuse passed into them remained to putrify, ferment, and exhale gases of a deadly strength, and on some occasions men on entering to cleanse them fell dead. The comfort and convenience of waterclosets having been expe- rienced parties using them did not like to give them up, and as they were not to use the sewers, they were ordered to construct absorbing cesspools into which the contents from the waterclosets were to be emptied, and cesspools were constructed within the basements, yards, and gardens of London houses by tens of thousands, some larger houses having several. In course of time an overflow from a cesspool, cesspit, or ashpit, was permitted to connect with a sewer. This is the position of things now in Birmingham, Manchester, and most of the large towns of Lancashire and Yorkshire. At Windsor Castle, so recently as 1850, there were 53 cesspools within the basement all full and overflowing. This cesspool plan is in favour and full practice in continental cities and towns, as at Paris, at Brussels at Ostend, and at many other continental towns. In Holland, the rivers and xvii canals are the main-sewers, as, also the main sources of water- supply for domestic purposes. At Paris and at Brussels main intercepting-sewers have been constructed, in both of which cities as in London, the sewage flows into the rivers to their serious pollution. In Holland the pneumatic system has been partially adopted. Frankfort on the Maine has been sewered, and the houses are being drained on the English plan. In the suburbs of Paris sewage irrigation has been partially established, and more complete works of sewage utilization are contemplated. In Brussels there is a very small trial work, and Dantzic has also been sewered on the English plan, and the sewage is applied in irrigation for agricultural purposes. See Appendix No. 5, page 73, Privy system. Sewage varies in Quality. There have been many hundred analyses made of town sewage, and its value is stated to be in proportion to the ammonia found in it. Samples of sewage vary from less than to upwards of 15 grains per gallon, and the chemist's value is one fourth of a penny per ton of sewage for each grain of ammonia in one gallon. The most important element in sewage is the nitrogen, in the state ot ammoniacal salts; or, in combination with organic matters as nitrogenous matter. The nitrogen of ammonia is, however, imme- diately available to vegetation, whilst that which is combined with organic matter only becomes so gradually, through decomposition. Sewage is rich or poor in proportion to the number of waterclosets used and connected with the sewers, and the state of dilution. An extravagant use or waste of water and an excess of subsoil- water seriously increase dilution. Admission of surface-water will also tend to further dilution. But water has value when applied to land in irrigation, and there are cases where extreme dilution of the sewage is not objectionable ; as where the land irrigated is highly absorbent, is of sufficient area, and is under grass. Pump- ing to a moderate elevation — 50 feet or under — is not necessarily costly, as we see that 977,470 tons are pumped at Doncaster to a head of 52 feet at an annual working sum of about 300Z. Sewage difficult to deal with. Sewage as it flows from well-constructed drains and sewers contains much flocculent matter and solid detritus, which in some cases, as at Birmingham, is separated in tanks, to the extent of 109,500 tons per annum, and which sludge is difficult to mani- pulate, impracticable to dry, and unsaleable. Precipitation by the use of chemicals is carried on at Leeds, Bradford, Halifax, Bolton,* and at other places, as detailed in this report. In some cases there is little or no separation, as at Aldershot and Chorley, where the sewage flows direct on to the land ; and at Leamington, Warwick, Bedford, Banbury, Worthing, and Doncaster, where crude sewage is pumped and delivered by carriers over the irrigated lands.f Where 39260. * Note. — Appendix No. 3, pages 33 to 56. f See Appendix 1, pages 1 to 30. XV1U the permanent sewage-carriers are duly proportioned to the volume of sewage, and are of iron, of earthenware, of concrete, or of other solid material, there is no retention of sediment, and consequently, no permanent nuisance as is the case in the large, rude, and foul open sewage-carriers at Edinburgh. Proportion of Sewage to Excreta by Volume and Weight. A population of 100,000, exclusively using waterclosets and producing 2,500,000 gallons of sewage daily, may be contrasted as under, to show the relative volume and weight of the sewage, the urine, and the faeces. In a mixed population of both sexes and all ages the excreta of each person per day has been found by experiment to weigh 2 \ lbs. A gallon of sewage weighs, say, 10 lbs.; 2.500,000 gallons therefore equal 25,000,000 lbs., and the excreta of 100,000 persons equals 250,000 lbs., or the propor- tion is as 1 to 100. The urine of 100,000 persons weighs 234,380 lbs., and the faeces 15,620 lbs. ; the solids (faeces) being by weight and volume to the sewage in the proportion of 1 to 1,600. The so-called solid portion is to the fluid or urine as 1 to 16, that is, ounces to pounds. Where human excreta is retained within houses and towns until it is removed by hand labour, or even by special contrivances, there must be a certain amount of incodVenience experienced which will be annoying ; and as there is and must be a vast amount of labour expended to remove such refuse, the process will be costly, the relative cost being set forth at page 68 of the Appendix. In all the so-called dry processes (which are not dry) there is with the excreta a considerable volume of urine and water. This is so in the pail system, and in every form of improved privy. The advocates of these systems declare that they are aware that town sites must be sewered and that houses must be drained, if only to remove subsoil-water, surface-water, the waste-water used by the inhabitants, and the drainage from stables and privy ashpits. This subsoil-water, surface-water, and waste- water from dwelling-houses, stables, cow-sheds, slaughter-houses, and local manufactures must be treated in the same manner as sewage, before it can be permitted to flow into streams and rivers. The excreta is, however, separated under the idea that there will be more value obtained as manure, and that there will be less pollution at the outlet of the sewers. Experience and analyses show that such conclusions are erroneous. There are in manufacturing towns many sources of pollution other than the drainage of houses, of ashpits and cesspools, of cow- sheds, of stables, and the washing of the streets’ surface ; and in many cases this liquid will have to be provided for in the sewers, as at Coventry, at Kendal, and at other places. Sewers ought, in fact, to receive all water polluted by ordinary pro- cesses, as analysis proves that sewage is very little less polluted by the exclusion of human faeces. The Rivers Pollution Com- missioners state (pages 29 and 30, Report, Mersey and Kibble XIX Basins) that 12 tons of average sewage from a midden and privy town will in round numbers equal 10 tons of sewage from a watercloseted town in manurial value, so that the mischief, cost, and intolerable nuisance of a retention of the privy system — and this also is applicable to all so-called dry systems — only reduces the strength of the sewage by two sixths.* Sewage not Profitable to the Extent Estimated. In 100 tons (224,000 gallons) of sewage, having the equivalent of eight grains of ammonia to the gallon, the ingredients are estimated as having a manurial value of 17s. 7 d. The suspended matter, which will subside when at rest or which chemicals will assist to precipitate, is worth 2s. 2\d . ; other dissolved matter which remains in the clarified water being worth 15s. 4 \cl. This makes the value 2 * 1 penny per ton, or say 2d. per ton, the Royal Commission (1858 to 1865) accepting this estimate of 2d. per ton after a set of exhaustive experiments fully recorded in their three Reports, f came to the conclusion that a farmer having to take and dispose of sewage day-by-day all the year round would not give more than a halfpenny per ton, if even this could be afforded. An examination of the abstracts in this report will show that sewage has very generally been used in irrigation at a loss. Although this estimate appears so favourable we find that it fails to be commercially productive in practice, and we may again repeat that no chemical or other treatment of town-sewage with which we are acquainted is a commercial success ; the suspended solids may be precipitated and the sewage so far clarified by these processes, but the sewage is not purified nor does the sludge appear to be increased in value as a manure so as to command a sale sufficient to pay the costs of production. The pail system, as practised at Rochdale and other places, does not produce a solid manure of sufficient value to repay the con- tingent expenses, and command a ready sale. Sewage not to be stored in Cesspools. Sewage should not be stored in cesspools beneath houses, or near to houses within a town, neither should it be allowed to rest stagnant in badly formed sewers, nor, indeed, in any sewers ; but all waste-water and excreta should pass to the drains unperceived, and should then flow in an unceasing stream ; and, if practicable, at once over and through land properly prepared for its reception and agricultural use. Mechanical Power of Water. Water is a purifier, a cleanser, a dissolver, and a mechanical power, and will carry along down an incline the solid ingredients * Note. — There are recent privy arrangements to intercept urine. The game ■will not, however, be worth the candle. f Note. — S ee Appendix No. 7. b 2 XX A of town sewage, with road detritus, such as grit and silt ; the moving power of water being in proportion to the volume, the vertical depth, and the gradient down which the flow is directed. Flushing by volume and head artificially formed will remove detritus from sewers of low gradients where accumulation may have taken place. A velocity in the sewage of two feet six inches per second will remove any solids likely to be passed into drains and sewers. The weight of detritus and silt moved along with and by the metropolitan sewage is not so great as in some other towns, such, for instance, as Birmingham and Leeds ; because in London much of the sludge is removed from the street gulleys and much is removed from the old flat-bottomed sewers by hand labour. In the aggregate a large weight of detritus is, however, swept along to the outlets, and is discharged into the Thames at Crossness and at Barkino;. O General Remarks on Sewage. The mode of utilising sewage with economy must depend upon local conditions, and a waste of sewage (which is manure) can only be justified when it would cost less to waste it harmlessly than to utilise it, as at Edinburgh, Liverpool, and Brighton, for instance. At Edinburgh the Craigentinny meadows afford the strongest example of pecuniary success in the rough and ready use of crude sewage to produce rank crops of grass ; and at Edinburgh also, in the Water of Leith intercepting-sewer we have an example, on a greater scale, of a waste of sewage into the sea at the Black Rocks outlet. The cases must, however, be considered with all their surroundings. At the Craigentinny meadows crude sewage flows down from the older part of Edin- burgh without stint or charge towards land having little value in its natural state, as it is for the most part blown sand from the adjoining estuary. This sewage is received at a point sufficiently elevated to allow of its gravitating on to the land to be irrigated. It flows into rudely formed open carriers, to the highest points of the estate, from whence it gravitates by cheaply formed sub-carriers over the land below, the effluent escaping down to the boundary line of the sewage farm, which is the sea. The land is of low value as agricultural land ; the sewage is abundant, far more than is required for the area irrigated ; it costs nothing to the pro- prietor of the land ; and its use, its abuse, or its waste is under no local control ; it is applied in the cheapest way, and the crops are put up to auction in one acre plots each year, the purchaser cutting and removing the grass at his own cost. The mode of irriga- tion is uncleanly and rude,, and there is undoubtedly at times an offensive smell from the carriers, from the rudely drenched irrigated surface, and from the effluent water. During winter the sewage is allowed to flow direct into the sea. I XXI Sewage Irrigation proved not to be injurious to Health. There is no record of any special outbreak of disease at or near the sewage farm. The men working on the land and amongst the sewage are reported to be healthy, the men cutting the grass are healthy, and the cows fed upon the grass are also as healthy as other cows, producing wholesome milk ; and with respect to tapeworm, the medical men who attend the Edinburgh hospitals do not find any exceptional excess of this disease amongst their cases ; but, on the contrary, less than in other hospitals. The Craigentinny meadows were made the subject of an ex- haustive inquiry by the War Department during the time that Lord Macaulay was member for Edinburgh and Parliamentary Secretary for that department. Complaints were made that the proximity of the irrigated meadows and the effluvium from them produced disease in excess amongst soldiers quartered in the neigh- bouring barracks. Official inquiry was made by army medical officers, who took the returns of health and mortality for 20 years back from barracks situate in different parts of Great Britain where troops similar in numbers and performing similar duties had been quartered, and these returns were tabulated, the results obtained proving that the barracks adjoining the Edinburgh sewaged meadows had the lowest sick and death rate in the list, so that the allegations against the Craigentinny meadows fell to the ground.* It must not, however, be supposed that rough and ready sewage irrigation is advocated, as the evidence should only be taken as proving that the application to land of putrid and crude sewage in the most gross form does not necessarily breed a local pestilence, though such mal-arrangements may produce an offensive nuisance which ought not to be continued. But we have no evidence that these Edinburgh meadows are a nuisance injurious to health; we are, however, satisfied that the work of irrigation may be carried on in a manner much more cleanly by a construction of settling- tanks to separate the solids and by the construction of permanent main-carriers, which could be regularly cleansed. The utilisation of sewage should, in all cases, be carried on in such manner as, in the vicinity of dwellings, to be the least offensive, although additional costs may, in some cases, be incurred to pay for more complete purification. Money Returns from Sewage contingent on Local Conditions. The tabulated statements now made from experiments with sewage on a great scale show that money returns are contingent upon local peculiarities and management. Where the works necessary to treat sewage are simple in their construction and the treatment js unfettered by patents, there is least loss. Purification of sewage is not, however, effected by any use of chemicals which has been brought to our notice, the result in all cases having been * See also Appendix No. 5, pages 102, 103. XXII clarification only ; that is, a better separation of solids and flocculent matters held in suspension ; seven-eighths of the salts of sewage remaining in the clarified water, so that the pollution of a small river or watercourse would not be prevented, however perfectly the sewage may be clarified, as was proven at Leamington, Black- burn, and Cheltenham, where the salts in the clarified sewage combining with the earthy matters on the beds of the streams, fer- menting gave out offensive gases sending to the surface a black and putrid scum. We have no reliable evidence that the solids extracted and made into a portable manure have any paying commercial value. At Birmingham, as will be seen by the returns, there is now no serious attempt to sell the sewage-sludge, but it is at great cost, 14 1 , 10s. per acre, dug into a portion of the farm- land at a rate of about one acre per week, or at a loss of about 750 1 . a year. At Leeds, Bradford, Bolton, and at Coventry thousands of tons of extracted sewage-sludge remain to cumber the works. At Halifax and Rochdale, where the pail system is in operation and the excreta is collected by hand and mixed with house-ashes, there are also thousands of tons of the prepared manure in store, because a ready sale of it cannot be effected. At London, about 600,000 tons per day of the richest sewage in England is poured into the River Thames ; at Edinburgh, the Water of Leith sewage is wasted into the sea, and this is also the case at Liverpool, at Brighton, and at most of the large towns in England and Wales which stand upon a river-estuary, or fronting the sea, as at Swansea, at Scarborough, at Sunderland, and Newcastle-upon- Tyne, and at other places. The Pneumatic System. One of the most complicated and costly processes for dealing with the solid of human excreta (not with town sewage), is the system known by the name of the inventor, Capt. Liernur. The pneumatic system has been partially introduced at Leyden, Amsterdam, and Dordrecht, where we have seen it working. These towns are flat and are intersected by canals and open watercourses. The towns are not sewered on the English plan, but have surface gutters along the margins of the footwalks into which surface water flows and the inhabitants throw their waste water and liquid household refuse. There are inhabited basements below the level of the streets and gutters — in some streets the gutter is square on section — close to the basement entrance, and covered by a lid of timber which can be raised by the householder for the purpose of discharging slop-water into the channel which communicates at short intervals with a river, canal, or watercourse, as one or the other may be available. There are also small and short surface-drains opening into the water- courses as above described. At present the excreta in these towns passes from the house- drains into the rivers, canals, and watercourses ; the ashes and vegetable refuse being collected from tubs and boxes by what we xxiii in London term dust carts. The rivers, canals and watercourses bordering and intersecting the Dutch towns are made into open sewers. Waterclosets on the English plan are used to a limited extent. A modified privy is however generally arranged within the houses over a vertical shaft which drops the refuse to a drain below. In many cases chamber utensils are used. The Dutch towns are deficient in water supply, so that, almost throughout the country, water from rivers, canals, or the watercourses is used for all domestic purposes, however much tainted it may be. The country being so flat, so intersected by rivers, canals, and watercourses, and the land and street surfaces so little above the general level of the water, has induced the municipal authorities of Holland to come to the conclusion that main-sewers and house- drains, as constructed in English towns, are impracticable ; hence the resort to the pneumatic system. Capt. Liernur acknowledges that towns should have the subsoil water lowered, that they must be sewered, that houses must be drained, and that the fluid refuse of manufactures must be provided for, but insists that human excreta must be removed by separate and costly apparatus, consisting of steam-engines, air-pumps, iron tanks, and cast-iron pipes of five inches internal diameter — none more, none less — these pipes to be jointed as if for carrying water under high pressure. These pipes are not, however, laid in level and right-line lengths, but in the form of saw teeth extended, so as to break the line of pipes vertically into long downward slopes of 1 in 250, and short upward slopes of 1 in 5, the long slope and its short upward slope forming a sort of inverted syphon, where sewage must rest and block the pipe, to be sucked upwards and forwards by the partial vacuum. The soil-pans are not much unlike English waterclosets ; they are fixed beneath a seat, have a syphon bottom outlet, and are specially ventilated. These pans are fixed within buildings as waterclosets are fixed, and are used as waterclosets are used ; the prime difference being that the user of the pneumatic closet has no power of emptying the pan. In some cases, where a closet is liable to be much used, the pan has been filled above the brim, and the air-suction failed to empty it. In all cases the closet is a fixed receptacle, amenable to no control by the users, but dependent for its action upon a perambulating turncock. If servants disobey rules and pour in slops or the con- tents of chamber utensils, and the pan is full before the time of turning on the vacuum comes round, full it must remain ; and if there is overflow the nuisance must be endured. This would be found intolerable in English houses, where the perfect control of the watercloset rests with the user. Capt. Liernur proposes refinements, such as a moveable lining to his pan, that it may be cleaned, which is unnecessary in the English closet. Additions to the receptacle, in the form of a self-acting shallow pan apparatus to contain a small volume of water, is to be added ; this shallow pan to hang vertically when not in use, but to rise into a horizontal position so as to form a false bottom when in use. Standing in front of the seat is to raise the pan and fill it with XXIV water ; moving from the seat is to permit it to fall down again and discharge the contents. Our experience is that self-acting apparatus soon ceases to have any action. The excreta which is pumped to the central station is in a fluid state necessarily, and is put into barrels and sent away to the country, involving trouble, cost, and inconvenience in several forms. The manure is too rich to distribute over grass-land in very dry weather without dilution, and it is too bulky to carry long distances. It is proposed to dry it ; this process must, however, greatly reduce any remuneration to be obtained by sale. At present farmers have tried the manure, and have paid at a rate of 8d. per 32 gallons, or 65 . 8 d. per ton ; but this price was soon abandoned, the price being reduced to 2d. per 32 gallons, or Is. 8 d. per ton ; and ultimately, after further trial, this arrangement ceased, as it was found to be necessary to remove the excreta daily or at other short intervals, because it was not convenient for the farmer either to store it or to use it ; and in winter, during frost, the barrels in store were frozen and burst.* Remarks on the Pneumatic System. Captain Liernur has been particularly fortunate in having the manure which his system produces tried in Holland, as the use, application, and storage of liquid-manure is much better under- stood there than in England. A considerable number of the farmers in Holland grow no straw, consequently, the manure made by the cattle in winter has to be utilized in a liquid state. In England this liquid-manure is generally absorbed by the straw, or by other bedding upon which the cattle stand. Some 20 years ago there was a general movement amongst English farmers for applying the drainage from farm-yards to the land, and tanks, pumps, and liquid-manure carts were, for a time, in great request ; but the application of this farm-sewage produced so little result in proportion to the cost, that pumps and carts for this purpose are now seldom used upon arable farms. We are confident that the liquid which is collected at such cost in barrels would find no ready sale in England, even at a very low price, and we further believe that any English farmer agreeing to take it continuously from any town would not only not pay anything for it, but would certainly charge something considerable for his trouble and for the expence of removal. If the towns of Holland, or portions of such towns, by reason of peculiarities of site and climate, cannot be sewered on English principles, and if the pneumatic system is as cheap as any of the moveable pail systems, it may be the best under such conditions for Holland, because if worked in accordance with the rules laid down the excreta will be removed daily without the intervention, trouble, and dirt involved in the pail system. The pneumatic system only deals, however, with a small fraction of the refuse to be removed from houses leaving all other forms of refuse to be dealt with in the ordinary way, so that Dutch town-sewage must flow into the rivers and canals as now, to pollute the water-supply ; or, * Note. — See Appendix No. 4, pages 61 to 70. t xxv some complicated mode of intercepting it must be provided at an additional cost to the local authorities. The pneumatic system is ingenious, but it is complicated in its construction and working arrangements ; and, consequently it is liable to derangements which are sometimes difficult to mend. We do not know one English town in which the apparatus if adopted would be other than a costly toy. As may be imagined, when the nature of the arrangements and complications are considered, the pneumatic apparatus gets out of order, the slightest crack in any pipe or pipe-joint will reduce the force of the partial vacuum, and even where all the apparatus remains sound the closet-pans may not be emptied ; and, in fact, neither the pipes nor the pans ever are entirely emptied. The power of air and water to remove solids through pipes being as their relative weights and velocity, and air is to water, by weight, about as 800 to 1. Town Sewage: Its Tkeatment and Characteristics. Town sewage is water holding in solution and having in sus- pension certain ingredients which render the water objectionable to the senses of sight and smell and unfit for domestic purposes. The volume of sewage in any town is in proportion to the water used and expended for domestic and manufacturing purposes, with subsoil-water and occasional dilution by rain. Where waterclosets are in general use human excreta is added ; but though this in itself is rich in manurial ingredients and is also liable to become highly polluting, it must ever be a small fraction of the whole volume of sewage — about one hundredth. In the manufacturing districts sewage is largely mixed with the waste ingredients used. Skinners, tanners, dyers, bleachers, brewers, brassfounders, tinplate makers, japanners, wool and woollen goods washing and scouring, chemical works, and paper works, with other forms of manufactures, pollute large volumes of water, to the extent of entire rivers, as in the Aire and Calder in the West Riding of Yorkshire, and in the Mersey and Ribble basins of Lancashire. In the 6th Report of the Rivers Pollution Commission, 1874 ; a map shows the several localities. All chemical treatment of sewage, by patented processes or otherwise, aims at deodorisation ; thatps, at clarification and purifi- cation. The processes are reported to take from sewage turbidity, colour, and scent ; but no such process has ever restored sewage water to its original purity, though most of the suspended solids may have been removed, the salts of sewage remain, and generally some of the chemicals, mixed with the water. The sewage of a town, in which there are no manufactures or dye works, is a turbid liquid, bluish grey in colour, having the scent of stale cabbage water rather than of human excrement ; in warm weather stagnant sewage becomes offensive, having the stench of rotten eggs ; when allowed to stand exposed it does not become clear, but ferments, and if confined in sewers or covered XXVI tanks becomes dangerous to human health, though not to such an extent as the offensiveness may be taken to indicate. When at its worst, on being brought into the open air, men work amongst it without any apparent injury to their health. The only safe way to utilize sewage is, however, by a daily application of it to land whilst it is comparatively fresh, as at Bedford, Aldershot, Carlisle, Doncaster, Chorley in Lancashire, Leamington, Rugby, and other places where sewage irrigation has been established and the sewers transmit in a continuous stream the daily volume. Deceiving sewage in tanks to abstract the solids will add to the impurity and offensiveness of the fluid if there is any lengthened retention, or if the tanks are not rigidly cleansed at short intervals, so as to remove any of the leaven of putridity from the surfaces. All sewage-tanks should be simple in form and construction, the material should be either of a vitreous character on the surfaces, such as glazed bricks, or of Portland concrete ; no sewage-tank should be arched or vaulted over. There may be an open-sided shed louvered at the ridge, and the area of land occupied by both yard and tanks should be fenced in. The sludge separated from sewage contains from 80 to 90 per cent, of water, and if deposited on the surface in this state it will not dry in any reasonable length of time, but will skin over and remain wet. Artificial drying is not practicable on account of the cost. Mixing with dry ashes and street-sweepings appears to answer best. UN VENTILATED FOUL SEWERS AND SEWAGE TANKS DANGEROUS. Foul sewers and foul vaulted sewage-tanks, if unventilated, will contain carbonic acid gas, and will give off sulphuretted hydrogen, both of these gases being generated from decaying vegetable and animal matters. A complete and perfect disinfection of sewage and sewage deposit by the addition of any known materials, solid or fluid, would be so costly as to be impracticable, and the materials so disinfected would have no equivalent increase in commercial value. To completely disinfect one cubic foot of sewage-sludge and excreta would cost, in the materials, about Is. or 27 s. per ton.* Carelessly Cleansing Sewers during Periods of Sickness dangerous. Cleansing the putrid refuse from unventilated sewers or from covered tanks is a dangerous process, men having fallen dead during the operation. A sewer or tank full of refuse is dangerous, but when first emptied, and for some time after, there may be the greatest danger, as the sides and bottom are coated with putrid leaven and the increased cubic space within is filled by highly concentrated gases and effluvium, consisting partly of floating particles suspended in the air. When there are foul sewers and cesspools where disease, such as typhus or typhoid, breaks out, it is then most dangerous to attempt cleansing unless the sick are first removed and the greatest precautions in disinfecting are taken. * Note. — See Appendix No. 5, page 77. XXV11 l Details of the Modes of dealing with Sewage. The application of town sewage to land is shown in this report to be the cheapest mode of disposing of it. The first cost of purchasing land for a sewage farm, of preparing this land to receive and filter sewage, and of constructing the necessary works and machinery, may require a rate in aid during the term allowed for repayment of the capital ; but in most cases ; where the sewage can be applied at a reasonable cost, by gravitation, so far as our investigations have been extended, there will be an available income from the farm at the termination of the temporary debt. Sewage irrigation should in all cases be practised where there is land to be obtained, and the prospect of a balance of income in its favour, as sewage- grown grass is wholesome, and when used for dairy-cow feeding produces good milk, and affords employment to a large number of labourers. The application of sewage to land need not in any case produce a swamp, nor generate malaria, as the volume of sewage applied at any period should be delivered in a thin film, such as the land can absorb at once ; that is, within a few hours of its delivery. Sewage should not in any case drench the land to which it is applied as is usual with water irrigations, where extensive areas are laid under water for several days at a time. The volume of sewage from any town being known, the sewage-farm should be from 10 to 15 per cent, greater than the area required for one week, and no more than one tenth of the area of a sewage-farm should ever be under sewage at one time. A wet season is not, as a rule, detrimental to a sewage-farm. In a wet season the value of sewage grown grass is, however, reduced in value because there is more difficulty in removing crops from the ground. Kent of Land used for Sewage Irrigation excessive. At Croydon some 515 acres of land are under irrigation, the population being about 56,000. This is at a rate of near 10 acres for each 1,000 ; or about one acre to 100. The land in use had an average rental of 265. to 30s, before the Croydon Local Board of Health required it ; the rent now paid averages 10£. per acre per annum.* Examples of Sewage Irrigation. Analyses of crude and purified sewage, at the places named, are given in Appendix No. 5, pages Nos. 77-102 : — Edinburgh, Craigentinny Meadows. Barking, Lodge Farm. Aldershot Farm. Carlisle. Penrith. Rugby. Banbury. Warwick. W orthing. Norwood. Croydon. W oking. * Note. — A sewage-farm will not bear a rent of 10/. per acre, About half this sum is as much as should be paid if the income is to coyer the expenditure. XXV111 Analyses of town sewage haying been so recently made for the special purpose of informing Parliament, that we did not consider it necessary to again incur the costs of special analyses being made for our Report ; but we have deemed it proper to have samples of the most recent specimens of manipulated sewage-sludge analysed, and the results will be found in the Report by Dr. A. Voelcker, F.R.S., pages 40-43, and in Appendices Nos. 1, 2, 3, 4. A sewage-farm should be so laid out and managed that a sufficient area of land shall be under sewage every day in the year, winter and summer ; and as town-sewage is seldom below 40 degrees in temperature, irrigation can be carried on. And if sewage should freeze on the surface of land which is without crop no injury is done, and when thaw sets in absorption takes place. The mode of laying out a sewage-farm cannot be fully des- cribed in this report, but see the maps and diagrams for partial elucidation. As a rule it may be stated that the works should be simple in character that they may be cheap in construction. Good examples may be seen at Doncaster, at Bedford, at Leamington, and at Aldershot. Permanent sewage-carriers should contain the land and be laid so as to be level, the grade of the land being provided for by vertical steps regulated by stops, overflows, and wash-outs ; side- junctions to be provided on the lower sides of the carriers to draw off sewage for distribution over the land. If a permanent sewage- carrier is laid with a fall, it will be impracticable to block the flow at any point and preserve an even surface, as sewage blocked in a sloping channel would flood over the point of stoppage ; hence the necessity for level lines at the surface. Tributary-carriers may be made by a plough, the cross-sectional form and the gradient being suited to the character of the soil ; the larger carriers may have a grade of 1 in 400 ; the smaller or • Annual rateable value - Houses - - - Waterclosets - Privies cleansed at the expense of the owners houses to which they belong - Expenses incurred to dispose of the Sewage. Purchase of sewage farm, repairs, cost of outlet works tanks, preparing filter beds, and levelling land - 18,8 71 The Yearly Cost of disposing of the Sewage. Capital, 18,871/., borrowed at 6 per cent., to be repaid with interest in 30 years. Yearly instalment - ^1,132 Paid for labour and materials in working sewage farm - 110 £1,242 Less receipts from sale of produce - 495 - 13,700 - <£44,600 - 2,727 450 of the £747 li The mean daily flow of the sewage is about 750,000 gallons, equal to 3,348 tons, or 1,222,098 tons yearly. The annual cost to the Town Council in disposing of the sewage is 1,242?. 5s. 24c?., or at a rate of three-eighths of a penny per ton. They receive for the produce 495?., an amount equal to one- eighth of a penny per ton of sewage, and consequently lose 747?. 5s. 24 c?. or about one-fourth of a penny per ton, or at a rate of Is. le?. per head of the population, or 4c?. in the pound on the rateable value of the borough. The volume of sewage is at the rate of 55 gallons per head of the population, or about four persons contribute to every ton of sewage. The capital, 18,871?., will be paid off, and then the annual payment of 1,132?. will cease, and the rates will thus be relieved to the extent of about 6c?. in the pound on the present rateable value. PRECIPITATION OF SEWAGE-SLUDGE IN TANKS. Birmingham. Population (about) ----- 350,000 Rateable value ----- £1,229,844 Houses - 83,420 Waterclosets (about) ----- 8,000 Privies, old system - 35,000 „ pail system ----- 7,000 Ashpits - 25,000 Quantity of refuse removed in 1875 from the privies and ashpits (tons) ----- 128,512 Removing contents ----- £35,180 Cost of cleansing privies and ashpits yearly, and Amount received for refuse - 5,885 Consequent loss on removal, or at the rate of 4s. 6£c?. per ton, or Is. 8c?. per head of the population, or 54c?. in the pound on the rateable value of the borough - £29,295 Expenses incurred to dispose of the Sewage. Purchase of land (farm) - £45,400 Levelling, draining, and laying out - 11,250 Outlet works and tanks - 58,880 Cost of promoting bill in Parliament - - - 10,644 Compensation to Right Hon. Sir C. B. Adderley, M.P. 6,000 <£132,174 The Yearly Cost of disposing of the Sewage. Capital, 132,174?., at 6 per cent., to repay prin- cipal and interest. Yearly instalment - <£7,930 Part of farm held on lease, yearly rent - - 855 Yearly expense of cleansing tanks, removing and digging in 109,500 tons of sludge - - 12,778 Yearly cost of General Scott’s process - - 332 Yearly working expense of farm - - 2,547 8 94 0 0 0 0 0 0 0 0 <£24,442 8 94 Less amount received for portion of sludge sold - - - £202 10 0 Amount received for cement sold (General Scott’s process) - 179 0 0 Amount received for sale of farm produce - - - 2,130 0 0 2,511 10 0 £21,930 18 94 The daily mean flow of the sewage is about 12,000,000 gallons, = 53,5/1 tons, or 19,553,415 tons yearly. The annual cost to the Town Council in disposing of the sewage is 24,442 ?. 8s. 94c?., or at the rate of about nine d 2 lii thirty-seconds of a penny per ton. They receive for it 2,51 1Z. 10s. 0e?., an amount equal to about one thirty-seconds of a penny per ton of sewage, and consequently lose 21,930Z. 18s. 9£c?., or about one-fourth of a penny per ton, or at the rate of Is. 3c?. per head of the population. s. d . Loss per head of the population in cleansing privies - 1 8 „ „ disposing of sewage - 1 3 Total loss - 2 11 or 4 |c?. in the pound on the rateable value of the borough. The yearly loss by cleansing the privies - - ,§€29,295 „ „ disposing of the sewage - - 21,931 Total - .£51,226 or about 2s. lie?, per head of the population, or about 10c?. in the pound on the rateable value of the borough. The volume of sewage is at a rate of 34 gallons per head of the population, or about 6 persons contribute to every ton of sewage. The capital, 132,1 74Z., will be paid off, when the rates will be relieved to the extent of about l^c?. in the pound on the present rateable value. TREATMENT OF SEWAGE BY CHEMICALS. Coventry. Population (about) - Rateable value - Houses - Waterclosets (about) - Privies - Quantity of refuse removed yearly (loads) Cost of cleansing privies yearly and removing contents .£1,050 Amount received for refuse - - - - 110 Consequent loss on removal - £940 or at the rate of 2s. 10c?. per load, or 5f cZ. per head of population. Expenses incurred to dispose of the Sewage. Purchase of farm for irrigation at Whitley, not used for that purpose, but let at an annual rent of 718?. - £27,000 The yearly cost to the corporation of disposing of the sewage is - - - - - Nil. The Yearly Cost to the General Sewage and Manure Company is as under : Cost of works and plant - £12,000 Capital 12,000Z. at 6 per cent, to repay principal and interest. Annual instalment - 720 Working expenses of the process for treating the sewage 122^ hours weekly instead of 168 hours - 2,850 £3,570 The daily mean flow of the sewage is 2,000,000 gallons = 8,938 tons or 3,258,370 tons yearly. The annual cost to the General Sewage and Manure Company in disposing of the sewage is 3,570?., and as there is not a sale for the manure produced from the process carried out by the company, the con- sequent-loss is the above named amount equal to about one-fourth of a penny per ton of sewage, or at the rate of Is. 9\d. per head of the population. - 40,000 -£101,438 - 10,400 5,000 800 6,600 liii l The yearly loss on the cleansing of the privies - - <€940 The yearly loss in disposing of the sewage - - 3,570 .€4,510 or at a rate of about 2s. 3d. per head of the population' or about 9\d. in the pound on the rateable value of the city. The volume of sewage is at a rate of 50 gallons per head of the population, or about 5 persons contribute to every ton of sewage. Bolton-le-Moors. Population (about) - - - - - 93,100 Rateable value - - -€311,563 Houses ------ 18,249 Waterclosets - - - - - 758 Privies and middens - - - - - 1 0,380 Privies, “ pail system ” - - - 700 W eight of refuse removed yearly from privies on both systems (tons) - Yearly cost of cleansing privies on both systems and removing contents - Amount received for refuse - 51,290 €6,645 4.494 Consequent loss on removal or at the rate of 10c?. per ton, or 5^c?. per head of population - €2,151 Capital Expenses incurred to dispose of the Sewage. Intercepting sewers - 10,286 Sewage defecating works - 16,578 €26,864 The Yearly Cost of disposing of the Sewage. Capital 26,864 1. at 6 per cent, to repay principal € s. d. and interest. Yearly instalment - - 1,609 18 4% Cost of treating the sewage by the M. C. process for only 57 \ hours a week, instead of continu- ously for 168 hours in every week of seven days - 1,006 17 0 €2,616 15 4f The daily mean flow of the sewage is about 2,500,000 gallons = 11,161 tons -or 4,073,765 tons yearly. The annual cost to the Town Council in disposing of the sewage is 2,616?. 15s. 4fc?. or at the rate of about one-eighth of a penny per ton, or 6 |c?. per head of population, and this is the consequent loss as there is no sale for the “sludge,” the residuum of the process. If the sewage was treated for the whole of the 24 hours, and for every day in the week by this process, the loss would be at the rate of about three-eighths of a penny per ton, or Is. 83 c?. per head of the population, and this, too, for only about one-half of the sewage of the borough, for the other half flows direct into the river. The yearly loss in cleansing the privies - - €2,151 „ „ in disposing of the sewage - - 2,617 €4,768 or at a rate of Is. 0?c?. per head of the population or 3 |c?. in the pound on the rateable value of the borough. The volume of sewage is at a rate of 27 gallons per head of the population, or eight persons contribute to every ton of sewage. liv The capital, 26,8641. will be paid off in 30 years, and then the rates will be relieved to the extent of about lie?, in the pound on the present rateable value. Leeds. Population (about) - Rateable value - Houses (about) - Waterclosets (about) - - - Privies and middens - Quantity of refuse removed yearly from middens - - 285,000 .€945,141 - 57,000 8,000 - 15,598 privies and - loads 80,000 Cost of cleansing privies and middens yearly, and removing contents ----- €2/, 000 Less amount received for the refuse - 9,000 Consequent loss on removal €18,000 or at the rate of 4s. 6d. per load ; or about Is. 2f d. per head of the population ; or 4\d. in the pound on the rateable value of the borough. Expenses incurred to dispose of the Sewage. Experimental and permanent works for A. B. C. process ------ €57,000 Borwick’s machines for drying sludge - - - 4,000 €61,000 The Yearly Cost of disposing of the Sewage. Capital, 61,000?. at 6 per cent, to repay principal and interest. Yearly instalment - €3,660 Yearly cost of treating the sewage by A. B. C. process 15,000 €18,660 The daily mean flow of the sewage is about 12,000,000 gallons, = 53,571 tons, or 19,553,415 tons yearly. The annual cost to the town council in dis- posing of the sewage is 18,660?., or at the rate of about one-fourth of a penny per ton, or Is. 3^c?. per head of the population, or about 4\d. in the pound on the rateable value of the borough, and this is the consequent loss, there being no sale for the “ sludge/’ the residuum of the process. Loss per head in cleansing privies Loss per head in disposing of the sewage s. d. - 1 2f - 1 3i 2 61 The yearly loss on cleansing the privies The yearly loss in disposing of the sewage © o o o < 0 ^ 00 GO 1 • €36,660 or at the rate of 2s. 6\d. per head of the population, or 9£d. in the pound on the rateable value of the borough. The volume of sewage is at a rate of 42 gallons per head of population, or about six persons contribute to every ton of sewage. The capital, 61,000?., will be paid off, and then the rates will be relieved to the extent of about lc?. in the pound on the present rateable value. lv Bradford. Population (about) - Rateable value ----- Houses ------ Water closets ------ Privies ------- Ashpits ------ Weight of refuse removed yearly from privies on both systems ----- tons 173,723 <£745,671 34,000 4,050 11.500 16.500 56,200 The yearly cost of cleansing the privies and ashpits, and removing refuse which is the property of the contractor ------ ,£8,000 Railway waggons for carrying refuse, cost 4,800Z. at 6 per cent., to repay principal and interest in 30 years - 288 Consequent loss on removal - £8,288 or at the rate of ll^cZ. per head of the population, or about 2f d. in the pound on the rateable value of the borough. Expenses incurred to dispose of the Sewage. Outfall works, tanks, and so-called filters - - £60,000 The Yearly Cost of disposing of this Sewage. Capital 60,000/. at 6 per cent, to repay principal and interest. Yearly instalment - £3,600 Yearly cost of defsecating the sewage - - - 6,276 Total - - - £9,876 The mean daily flow of sewage is about 8,000,000 gallons, =35,714 tons, or 13,035,610 tons yearly. The annual cost to the corporation in disposing of the sewage is 9,876/., or at a rate of about one-sixth of a penny per ton, or Is. IfeZ. per head of the population, or about 3 \d. in the pound on the rateable value of the borough, and as there is no sale for about 7*000 tons of sludge yearly produced, the consequent loss to the borough is the above stated sum. Yearly loss in cleansing privies - £8,288 Yearly loss in disposing of sewage - - - 9,786 Total - - - £18,074 or at a rate of 2s. Id. per head of the population, and about 6d. in the pound on the rateable value. The volume of sewage is at a rate of 46 gallons per head of the population, or about five persons contribute to every ton of sewage. The capital, 60,000/., when paid off, will relieve the rates to the extent of about 3? » 11. Tunbridge Wells - - - 142,914 10 d. „ „ 12. Warwick - - - - 43,339 6^d. i, „ 13. Wolverhampton - - - 210,000 „ ,> 14. West Derby - - - 163,000 K±d 99 99 15. Wrexham - - - - 32,000 Nil. By Chemicals plus Scavenging. 16. Birmingham - - - £1,229,844 lOd. in the pound. 17. Coventry, by a company ' 101,438 To the corporation, Nil for disposing of sewage ; but at 5\d. in the pound for scavenging. 18. Bolton-le-Moors - - - 311,563 3^d. in the pound. 19. Leeds - - - 945,141 9i/7 99 99 20. Bradford - - - * 745,671 6d. „ „ By the Pail System AT Rochdale. The Crude Sewage flows into the River. 21. Halifax - - - 262,581 4d. in the pound. The crude sewage flows into the river. 22. Rochdale - - - - £222,000 8| d. in the pound. By Land Filtration at Kendal. 23. Kendal - - - £44,600 4d. in the pound. lix l This abstract is not in all respects a fair comparison of the relative costs the local rates will have to bear in some of the towns named, as in the case of Bolton, where not half of the sewage is dealt with, and even this is done in a manner which will not be sanctioned under a Rivers Pollution Prevention Act. At Rochdale the crude sewage of the town flows direct into the river, a state of things which certainly cannot be continued, and only a portion of the town is at present supplied with pails; and, as we have shown by working out the figures furnished in the local return, not quite one fourth of the excreta of the population said to be supplied with pails is accounted for. Those towns which have purchased, or leased, land for sewage-farms, as Banbury, Bedford, Wrexham, Wolverhampton, Cheltenham, and Doncaster, show the best results, and levy the lowest rates, and we consider that longer experience will produce even much better results, and in time will show an available income. At Chorley, West-Derby, and Tunbridge- Wells there are good estates to set off against the money expended, the value of which estates will not diminish. At Leeds, Bradford, and Halifax there are only sewage-mud-tanks and so-called filters, with some unprofitable machinery which will not improve in value, and much larger costs must be incurred in these towns before all the sewage can be clarified in the best practicable manner. At Birmingham a large additional purchase of land upon which to purify the sewage is contemplated, and such expenditure will be the best yet made by the local authority. Birmingham is an instance of a town which would not move voluntarily ; and then, being driven to extremities by legal restraints, worked unwillingly, bit-by-bit, and in sewering arrangements throwing the town back in its health returns, by compelling a retention of excreta upon the premises in the vain hope by such means to so lessen the polluting property of the sewage at the outlet as to avoid further litigation. Experience has, however, shown that stopping house drainage and discountenancing waterclosets has only slightly diminished the polluting property of the sewage, but not to any appre- ciable degree which can be accepted as a purification of the river water. We have explained in this report that sewage, with or without the excreta from waterclosets is sewage, and that the entire excreta of a town population added to the waste-water is, by volume, only about as 1 to 100, consequently the capacity of sewers need not be enlarged ; steam pumping power (if re- quired) need not be increased, nor need the area of the land upon which to treat the sewage be added to ; neither need there be one shilling more expended per annum on any process connected with the disposal of the sewage ; but, on the contrary, the land irrigated will be made more profitable. At Doncaster, Leamington, and Warwick the rates levied are for the pur- pose of paying the interest and instalments to redeem the large sums which have been expended upon steam-pumping establishments and cast-iron sewage-mains. At Tunbridge- Wells, West-Derby, and Merthyr-Tydfil, local conditions have necessitated large outlays of capital on the estates and the works for conducting the sewage to the sites, preparing the grounds, and constructing permanent sewage-carriers. These works have been very costly. Longer experience in working the farms will, we anticipate, by improving the income from the produce to be grown, very much lessen the present rates in aid. It may be noted in the details of the several towns described, as at Blackburn, Harrogate, and at Tunbridge Wells, that very large sums have been paid in parliamentary and legal costs, and we have charged these items to the capital accounts in each case as against sewage irrigation, which of course increases the local rate, but it may fairly be said that such items are not necessarily parts of the expenses to be incurred in providing sewage-farms. Some towns suffer much more than others by reason of local opposition, and litigation before parliamentary committees, or, under the powers of the Lands Clauses Act, by arbitration. Land rented at 20s. or 30s. per acre, when required for a sewage-farm, is sometimes valued at several hundreds of pounds per acre, and in the case of Blackburn, portions of the land obtained for sewage irri- gation purposes has cost about one hundred and fifty years' purchase . These difficulties and excessive charges very much retard local improvements and tend to throw the question of sewage irrigation back ; it is, however, only a Lx repetition of opposition which every improvement in civilization has had to fight through. The list of patents taken out to deal with town sewage (Appendix No. 6) shows how much interest the question has excited, and now excites, but large as this list is it furnishes only indirect evidence as to the vast sums of money expended and lost in working some of these patents. It would appear that to learn the lesson that money cannot be made out of sewage-sludge is very difficult, as over and over again it has been proven that there is no commercial value in it. The Leicester works proved this many years since, and every in- dependent chemist of known repute has stated the fact when called upon to analyse sewage-mud. Neither is this mud capable of being fortified by an admixture of chemicals which shall give it a paying commercial value. The sludge is coarse, crude, sloppy, heavy, and very retentive of the water with which it is combined. In 100 tons of sewage-sludge, as it is removed from the tanks, there is not less than 90 tons of water, which in this form is worthless, and by itself the mud will not readily dry, but mixed with ashes, and other forms of towns refuse, it can be made portable and may then, in some cases, be sold to farmers at a low rate, say from Is. to 2s. per ton. When the cost of carting is taken into account this will be its full agricultural value. At Banbury the mixed sewage sludge, ashes, and street sweepings are given away, although the town is situate in an agricultural district. At Leamington about 3,000 cube yards of solid refuse, costing 780Z. to collect per annum, is also given away. At Doncaster, Bedford, and Leamington, where the lands irrigated are light and free, the crude sewage is pumped direct to the land as it comes from the sewers, and being distributed from temporarily formed carriers, which at intervals are ploughed up. There is no nuisance, but the lands are benefited by the amount of warping they get. At Chorley the crude sewage is also placed on heavy land, which has however been drained. At Cheltenham the sewage-farm is clay, and the area is small in proportion to the population, but dressings of sewage are sold to the adjoining farmers at a price per acre of 7s., or as may be agreed upon ; and in this direction we anticipate that many towns when they have established sewage-farms will find relief. In a dry season the contrast of the green fields of a sewage-farm with the parched, bare, and brown meadows adjoining is very striking. In the early spring the sewage farmer may have grass many weeks before there is any to cut upon ordinary meadows, and the weight of grass obtained is far in excess of any unirrigated crops. We furnish plans of the sewage farms at Bedford, Doncaster, Tunbridge Wells, Wolverhampton, and West Derby. The details of sewage carriers, and modes of distribution can, however, only be learned to advantage by personal inspection. Kendal is peculiarly situated, as the land upon which the sewage is clarified is light, open, and washed on its margins by the river, which conditions permit of land filtration over a small area, in comparatively large volumes, at a reasonable cost. Analyses of Sewage-Sludge as treated and fortified with Chemicals.* In order to ascertain the value of the fertilizing properties of sewage and excreta, and also of the manures manufactured therefrom, and of their com- mercial value to the farmer, we collected samples at Bolton, Bradford, Leeds, Coventry, Rochdale, and Halifax, and caused them to be analyzed by Dr. A. Voelcker, F.R.S., and the following is his report thereon : — Report by Dr. Voelcker, F.R.S. — On the Fertilizing and Commercial Value of Sewage and Night-soil Manures. The fertilizing and commercial value of sewage-sludge and of portable manures prepared from sewage, night-soil manures, and of common farmyard manure, chiefly depends upon the proportions of phosphate of lime, potash, and nitrogen which these fertilizers contain. See also Appendices Nos. 1, 2, 3, 4. lxi These fertilizing constituents of manures can be bought at the present time in the form of concentrated artificial manures, such as guano, bone-dust, sulphate ot ammonia, &c. at the following rates : Phosphate of lime at - lc/. per lb. Potash ----- 2d. „ Nitrogen calculated as ammonia at - 8c?. „ I need hardly say that in such concentrated forms phosphate of lime, potash, and ammonia have a much greater value than they possess in the shape of manures, the bulk of which mainly consists of materials without value and occurring in abundance in almost every kind of soil. I would, however, direct attention to the fact that according to my own experience, and that of others, sewage manures, night-soil manures, and ordi- nary farmyard manure contain but little ready formed ammonia, and that by far the largest proportion of the nitrogen in these manures occurs in them in the shape of nitrogenous organic matters, in which form nitrogen is less efficaceous ; and, in consequence less valuable than in the form of ready formed ammonia ; or, salts of ammonia. In estimating the theoretical value of manures, the nitrogen is generally assumed to be present in sewage and similar bulky manures in the form of ammonia ; or, at all events, to have the same value as the nitrogen in the salts of ammonia. This, in my opinion, is a mistake, and the nitrogenous consti- tuents of sewage manures are valued at too high a rate, if their nitrogen is calculated into ammonia, and 8 d. allowed for each lb. of the calculated amount of ammonia. In order to avoid the charge of having put too low an estimate upon the fertilizing constituents of sewage-manures, I have allowed in the estimate 8d. per lb. for the calculated amount of ammonia, which the nitro- genous matters, in a ton of manure, are capable of gradually producing under the most favourable circumstances on their final decomposition. The following tabular statement shows at a glance the theoretical or calcu- lated money value of the different sewage manures which were submitted to me for analysis : — Theoretical or estimated Money Value of One Ton of the TREATED SEWAGE-SLUDGE. (1.) Bolton sludge, from the M. and C. sewage process* - (2.) The same dried, leaving 15 per cent, of moisture in the sludge ------ (3.) Solids drained from sewage before the liming process at Bradford _____ (4.) The same with 15 per cent, of moisture (5.) Bradford Corporation Sewage Outfall Works sludge from drying pits, no artificial heat being used (6.) The same, with 15 per cent, of moisture (/.) Deposit from the sewage of Leeds treated by the A. B. C. processf - (8.) The same with 15 per cent, of moisture (9.) Manure produced by the General Sewage Manure Company at Coventry - (10 ) Rochdale manure - (11.) Manure manufactured by the Goux Company at Halifax - M s. d. 0 9 8* 1 1 1 0 11 Oh 0 19 3 0 4 8 1 0 Oh 0 8 4 h 0 16 8 h 0 16 9h 0 15 0 17 7 According to the most reliable statements the separation of the suspended matters of sewage by precipitation and filtration, and the production of one ton of dried sewage deposits, apart from the costs of the precipitation agents which are used, entails an expense of about 305. for each ton of portable dried sewage * M. and C. are the initials of the patentees. The ingredients used are lime, carbon, house- ashes, soda, and per-chloride of iron. t A. B. C. are the initials of the chief ingredients used in this process, as Alum, Blood, and Clay. lxii manure. It is evident, therefore, that the cost of manufacture considerably exceeds the theoretical or calculated money value of every one of the sewage deposit manures, the composition of which is given in the results of analysis in Appendices Nos. 1, 2, 3, pages 39, 43, 44, 48, 51, 54, and 59. The estimated money value of sewage and night-soil manures, as has been stated already, does not fairly represent their real commercial value. The bulk of all the samples submitted to me for analysis consists of matters which occur in abundance in almost all soils, and which at any rate have no commercial value, or rather, have a negative value, inasmuch as carriage has to be paid for them, and the application of bulky manures necessarily is more expensive than that of concentrated manures, such as guano or bone-dust. It is, therefore, manifestly practically wrong to estimate the money value of such bulky and poor manures by the same standard of prices at which the commercial value of guano, bone-dust, sulphate of ammonia, and similar concentrated artificial manures are estimated. A more rational and correct estimate of the true value of sewage and night-soil manures is obtained by comparing them with ordinary farmyard manure, and the price which is paid for the latter. Good farmyard manure, I find, contains on an average in the ton 6^ lbs. of soluble phosphate of lime, 8^ lbs. of insoluble phosphate of lime, 13 lbs. of potash, and nitrogen equal to I7i lbs. of ammonia. By allowing for soluble phosphate of lime 2 d. per lb., the same price for potash, Id. per lb. for insoluble phosphate of lime, and 8d. per lb. for ammonia, the calculated money value of a ton of farmyard manure amounts to 155. 7\d ., as will be seen from the following figures 5 . d. 6| lbs. of soluble phosphate of lime, worth, at 2c?. per lb. 1 1 8^ lbs. insoluble „ „ lc?. „ 0 8^ 13 lbs. potash „ „ 2d. „ 2 2 Nitrogen equal to 171 lbs. of ammonia, calculating am- monia at 8 d. per lb. - - - - - 1 1 8 Total calculated money value of a ton of farmyard manure - - - - - - 15 74 It thus appears that if we estimate the money value of good farmyard manure, according to the same rules at which the principal fertilizing constituents in the dung can be bought in concentrated manures, one ton of farmyard manure would be worth, in round numbers, 155. However, good dung can be bought * in many places at 5s. per ton, or one-third its estimated money value ; and practically the highest price which a farmer can afford to pay for good dung, if he has to cart it even a few miles, would not exceed 7s. 6d. per ton, one half its estimated money value. The difference between the estimated money value of farmyard manure (calculated at the market rate of the constituents, when sold as concentrated artificial manures), and the actual market price, may be fairly taken to represent the difference in practical value caused by the greater expense of the carriage and application of farmyard manure, and the less vigorous action of organic nitrogenous compounds as compared with ammonia salts. In estimating the commercial value of sewage and night-soil manure, the calculated value of which does not exceed 1/. 15. per ton, precisely the same circumstances have to be taken into account, which affect so largely the market value of ordinary farmyard manure. Accordingly the price which the farmer can afford to pay for the sewage and night-soil manures, analysed by me, or their real money value, will be only from one third to one half that of the calculated estimates given on the basis of their analyses. The following table shows the market price or real money value of the various sewage and night-soil manures, samples of which were submitted to me for analysis : — Practical or Market Value of One Ton of the treated Sludge. (1.) Bolton sludge from the M. and C. sewage process (2.) The same sludge 15 per cent, of moisture (3.) Solids drained from sewage before the liming process, at Bradford - (4.) The same with 15 per cent, of moisture (5.) Bradford Corporation Sewage Outfall Works. Sludge from drying pits without artificial heat ------ (6.) The same dried with 15 per cent, of moisture - (7.) Deposit from the sewage of Leeds treated by the A. B. C. process - (8.) The same sludge with 15 per cent, of moisture (9.) Manure produced by the General Sewage Manure Company at Coventry (10.) Rochdale manure - (11.) Manure manufactured by the Goux Company at Halifax - s. d. s. d. 3 3 to 4 10 7 0 „ 10 6 3 8 „ 5 6 6 5 „ 9 6 1 6 „ 2 4 6 8 „ 10 0 2 9 „ 4 2 5 6 ,, 8 4 5 6 „ 8 4 5 4 „ 8 0 5 10 „ 8 9 In my judgment this tabular statement fairly represents the money value of 1 1 different samples sent to me for analysis at the place where the manures were produced. Some of the products are worth a good deal less than an equal weight of common dung, which fully explains the circumstance that most sewage manures find no ready sale, even at a low price, and that in many works such manures accumulate to an inconvenient extent. Indeed comparatively few farmers are so situated that they can afford the expense of carting semi-dried sewage sludge containing from 60 to 70 per cent, of moisture from the works to their fields. The refusal to accept such sludge as a gift in not a few instances rather shows sound discrimination than ignorance on the part of the farmers. (Signed) Augustus Voelcker. I APPENDICES, APPENDIX No. I.— SEWAGE FARMS. Abstracts from these separate Reports of the different systems are given in our Report. EDINBURGH. The city of Edinburgh has a population of about 196,979, living in 10,559 houses, in which there are 41,615 separate dwellings on the “flat” system. The volume of sewage is about 5,900,000 gallons per day. Sewerage works have from time to time been carried out the old sewers being of rude construction in which sewage stagnates, hence its black and foul condition at the several outlets. Main-sewering is stated to have been commenced about the year 1778, and the system has been extended from time to time, especially in the New-town as it has increased, and works of a better class are still in progress. The oldest main-sewers are built of rough stone, with flat stone bottoms and stone covers, having a sectional area of 18 feet (6 feet by 3 feet) ; the cost of the older sewerage has been 69,000/. Since 1853 main-sewer- age works have been greatly extended at a further cost of 80,000/. and in the valley of the water of Leith, a sewer has been constructed to intercept sewage and the refuse from paper and other mills, and pass the same by a cast-iron outlet-pipe (costing with the other works 85,000/.), into the Frith of Forth at “ Black Rocks.” These works serve for a population of about 100,000. The sewers of Edinburgh are not regularly flushed, and are not at present sufficiently ventilated ; several springs were tapped during the execution of the main-sewerage works, the water being taken into the sewers, and it is estimated that the daily volume from this source is equal to about 40,000 gallons. There are in Edinburgh at present many waterclosets, and in the older and more crowded parts of the city, 9 Macfarlane’s latrines and 35 public privies; but the excreta and other refuse of the inhabitants in the Old-town are chiefly collected in pails or pans, placed in the living rooms ; these receptacles are said to be taken down every morning into the streets, and their contents emptied into the corporation carts and 39260. A 2 so removed. The waterclosets and latrines are connected with the sewers; the privies are emptied by men employed by the corporation. The annual gross cost of cleansing the city of this excremental matter and house refuse is 23,645/., the corporation receiving 7,458/. for 36,637 tons, which is sold to farmers to be used as manure. The sewage is not treated by lime or by any other disinfectant, nor is it filtered, and by far the larger portions from the southern and western parts of the city flow into the Jordon, Broughton, and Lochrin burns, and from thence, unutilized, into the Frith of Forth. The sewage of certain districts of the city has long been used in rough and rude irrigation, in some cases since 1760, the lands irrigated being known as the “ Craigentinny meadows ” which have an area of about 220 acres, “ Lochend meadows ” about 28 acres, “ Lochrin-on- Dalry meadows ” about 40 acres, and “ Brigend and Cairn tows meadows ” about 35 acres, making a total of 323 acres. There are about 250 acres of the Craigentinny and Lochend meadows under sewage irrigation ; of these 200 acres are permanent pasture grasses, and 50 acres Italian rye grass. About 2,500,000 gallons of crude sewage, every 24 hours, flows through the e< Foul Burn ” on to the meadows. The grass is sold by public roup at the beginning of April in each year in allotments of from half a statute acre to one acre in area, at prices varying from 20/. to 40/. per acre per annum ; one allotment (acre) sold last year for 44/. 1 5s. The permanent grass is used for cow feeding and is bought by dairymen at Musselburgh, Portobello, Leith, and Edin- burgh, who have to cut and remove it ; this is done about four times in the season, and yields an aggregate crop of about 40 tons to the acre. The Italian rye grass is cut five times a year and produces occasionally 60 tons to the acre. The irrigation is carried on in the cheapest and rudest way by the owners of the land adjoining the streams into which the sewage flows ; no cost having been incurred in providing permanent carriers of either wood, iron, stoneware, or brickwork. A considerable portion of the sewage is absorbed by the “ sea sand ” of which the irrigated meadows of Craigentinny farm is composed, and thus the soakage of sewage from this land into the “Frith of Forth” is only partially purified. The area of the meadows under irrigation is not sufficient to utilize the whole of the sewage brought down by the “ Foul Burn,” con- sequently a greater extent of crop might be obtained if the sewage could be applied to other portions of the farm or to the adjoining lands. The annual cost of applying the sewage and receipts for the produce are, — Receipts. 250 statue acres of grass at £ average of 30/. per acre 7,500 Expenditure. Wages of watermen three in summer £ and one in winter, and cost of clean- ing out carriers - - 180 Estimated rent of land 250 acres at 2/. per annum * - - - - 500 Balance - 6,820 7,500 7,500 The effluent water was flowing into the “Frith of Forth” at the date of our visit in August 1875. * This is a price far above its agricultural value without the sewage. See analysis by Dr. Yoelcker. 3 If the 2,500,000 gallons of sewage were used in irrigation on these 250 acres of land, each acre would receive upwards of 16,000 tons in the year, and this, valued at 1 d. per ton, would be worth 67/. We have caused an analysis to be made by Dr. A. Voelcker, F.R.S., of the Craigentinny meadows soil, and the following is the result : Results by Analysis of a Sample of Soil taken from the Craigen- tinny Meadows, Edinburgh. Dried at 212 F. the soil contained in 100 parts : — ^Organic matter - - - - - - 1 ' 60 Oxide of iron and alumina - - - - 1 * 04 Phosphoric acid - - - - - - O’ 06 Sulphuric acid - traces Lime - - - - - - - - O’ 08 Magnesia - - - - - - - 0*25 Potash - - - - - - -0*08 Soda - 0*13 Chloride of sodium - - - - - - 0*02 Silica (as white fine sand) - - - - 96 • 80 100*06 ^Containing nitrogen ----- 0*039 Equal to ammonia - - - - - -O' 047 This soil, it will be seen, contains but very little lime, potash, and phosphoric acid, and thus is poor in all the more valuable mineral soil constituents. It contains in round numbers only lj per cent, of organic matter in the perfectly dried soil, and in that state nearly 97 per cent, of fine white sand. The organic matter was present mainly in the shape of roots and vegetable fibres remaining in the land from the crops grown upon it. It is hardly necessary for me to state that the soil from the Craigentinny meadows, Edinburgh, analysed by me is one characterized by extreme natural sterility. The entire value is in the sewage, and the amount realised by the crop is about one halfpenny per ton, less the rent of the land and the cost of the labour. — See pages 78, 79, and 80 as to raw and effluent sewage. BANBURY. Population (about) - Rateable value ------ Houses ------- Water closets ------ Cost of main sewers - Cost of outlet works and laying out sewage farm Volume of sewage every 24 hours - - (gallons) Cost of pumping sewage and working expenses of farm Amount received for produce - - - - 12,000 £34,104 3.485 2.485 £6,400 £5,500 320,000 £1,281 £1,451 Banbury . — This town of 12,000 inhabitants, living in 3,485 houses distributed over an area of 3,920 acres, and having a rateable value of 34,104/., has finally adopted irrigation as a remedy for the pollution a 2 4 caused to the River Cherwell by the unpurified sewage of the town flowing into it. The town was sewered in 1856, and 2,485 waterclosets were connected with the system ; the main outfall being into the River Cherwell. In order to prevent the coarser suspended matters of the sewage from flowing direct into the river, subsidence-tanks were con- structed, and through these tanks the sewage flowed before it reached the river, but this did not remove the soluble matters of the sewage, causing serious annoyance to Mr. John Spokes of Tyford, whose mill is on the Cherwell, about five miles below Banbury, he com- plained of the nuisance, and meeting with no redress, filed a bill in the Court of Chancery on the 20th June 1864, and on the hearing of the cause, the Vice-Chancellor, Sir W. Page Wood, issued an injunction to restrain the Banbury Local Board from causing or per- mitting the main sewers of the town and district to discharge the sewage into the Cherwell. The Local Board were advised “ that the sewage should be treated by per-chloride of iron and caustic lime in the state of so-called 4 milk,’ and in the proportion of 20 grains of the former and 10 grains of the latter to every gallon of liquid sewage, and the treated sewage be allowed to flow slowly through the tanks to enable the mechanically suspended and chemically separated matters to be effectually deposited, and the supernatant liquid to pass off clear and nearly colourless ; and they were advised that there would then be little likelihood of the sewage becoming again putrescent after its admission into the water of the flowing river.” On receipt of this report the Local Board caused additional tanks to be built, so that the sewage after treatment might remain in nearly quiescent state for about four hours before it flowed into the river ; and the above process recommended by Mr. T. Hawkesley and Dr. IL. Letheby was carefully carried on for some time, but failed to purify the sewage, and the Court, on the application of the Plaintiff, issued an order of sequestration. The Local Board then, as better advised, took on lease, from 1 1th day of October 1866, for 28 years, a farm at Warkworth, of 138 acres, the soil being a stiff loam upon a clay subsoil and had it laid out to receive the sewage, but, owing to the configuration of the land, it had to be pumped to a height of 21 feet; and 320,000 gallons) has been daily pumped on to the land ever since the farm was laid out, in winter as well as in summer. Subsequently, the Local Board received sanction to pur chase the before -mentioned land and an additional area of 100 acres, making together 238 acres, costing the sum of 23,400/. There is storeage in the tanks at the pumping station for eight hours flow of sewage ; these tanks are cleaned out every six weeks, and the refuse mixed with the dry house ashes and street sweepings, was formerly sold at Gd. per ton, but, in consequence of an accumulation of nearly 2,000 tons, and there being no sale for it, the refuse with the street sweepings are now allowed to be taken away from the depot free of charge. The privies are cleansed at the cost of the occupiers of the houses to which they belong. The rainfall on the roofs and the surface of the streets flows into the sewage-drains, and thence to the outfall, and has to be pumped to the farm, except in heavy rainfall, and then the storm water flows by the storm-outlet into the Cherwell. The sewers are ventilated at present, partially and imperfectly, by down spouts from the roofs of houses, and also by a few grids on the surface of the street. The cost 5 of the main sewers was 6,400/. ; of the tanks and buildings 1,500/. ; and of pumping-station, rising-main and laying out farm 4,000/. The accounts of the receipt and expenditure for the year 1875 are as follows : — Banbury Local Board of Health Sewage Farm Sales, &c., 1875. Name of Field and Date Description Quantity Product of Amount of Sale. of Crop. sold. Sales. per Acre. Great between Brooks. Acres Chains £ d. £ s. d. April 30 1st cutting - Rye grass 6 3 28 19 0 4 11 11 June 11 2nd „ » 5 Qi 41 13 0 7 0 0 July 30 3rd „ » >} 5 9 42 16 0 7 5 1 September 17 4th „ jj » 5 7 11 18 0 2 1 9 125 6 0 20 18 9 May 14 1st cutting - j> » 8 2 41 18 0 5 2 2 June 25 2nd „ 8 2 55 13 0 6 15 9 August 13 3rd „ 99 99 7 3f 39 18 0 5 8 2 October 8 4th „ » JJ 5 9 ! 6 0 0 1 0 2 143 9 0 18 6 3 West between Brooks. May 28 1st cutting - 99 99 6 H 40 18 0 5 19 5 July 16 2nd 99 99 7 37 9 0 5 1 10 September 3 3rd „ 99 99 5 »! 18 0 0 3 0 10 96 7 0 14 2 1 October 22 - / Mangold 1 \ wurtzel / 2 0 17 15 0 8 17 6 Bast between Brooks. October 22 - f Mangold \ \ wurtzel J 11 H 162 6 0 14 11 8 Horse Stub. August 13 - _ Wheat 8 5 102 0 0 12 0 0 7, 13- - Oats 8 7- 122 10 0 14 0 0 224 10 0 26 0 0 Great Bolland. May 28 1st cutting - Mowing grass 24 5 132 2 6 5 7 10 August 13 2nd „ 99 99 24 5 58 0 0 2 7 4 September 17 » » Aftermath 24 5 12 5 0 0 10 0 202 7 6 8 5 2 JLittie Bolland. May 28 1st cutting - Mowing grass 13 0 79 12 6 6 2 6 August 13 2nd „ - 9 9 99 13 0 40 12 6 3 2 6 September 17 99 99 Aftermath 13 0 14 19 0 1 3 0 135 4 0 10 8 0 6 Name of Field and Date of Sale. Description of Crop. Quantity sold. Product of Sales. Amount per Acre. Upper Plain. Acres Chains £ s. d. £ s. d. May 28 1st cutting - Mowing grass 14 0 75 5 0 5 7 6 August 13 2nd „ 14 0 28 0 0 2 0 0 September 17 „ „ Aftermath 14 0 11 14 0 0 16 0 114 19 0 8 3 6 Middle Plain. May 28 1st cutting Mowing grass 13 5 62 8 9 4 12 6 August 13 2nd „ 91 11 13 5 27 0 0 2 0 0 October ... Aftermath 13 5 6 10 0 0 9 7 95 18 9 7 2 1 Lower Plain. May 28 1st cutting - Mowing grass 12 5 57 16 3 4 12 6 September 3 2nd „ „ „ 12 5 22 10 0 1 16 0 „ 17 Aftermath 12 5 5 12 6 0 9 0 85 18 9 6 17 6 Right of shooting for the sei ason . - - 4 0 0 Keep of four horses - - - 43 8 0 Total £ 1450 19 0 The whole of the crops are sold standing, the Board being at no expense of cutting or carting. v Receipts. SUMMARY. Expenditure. — Area. A. C. Product of sales. Average per acre. Permanent pasture - Ryegrass (including horse keep). Wheat Oats - Mangold wurtzel Right of shooting - Total area of farm (including roads). 77 5 24 4} 8 5 8 7| 13 1| £ s. d. 633 18 0 408 10 0 102 0 0 122 10 0 180 1 0 4 u 0 £ s. d. 8 3 7 16 14 2 12 0 0 14 0 0 13 14 4 182 3| 1450 19 0 - A. E. P. 138 0 38 1450 19 0 10 9 11 Rent (less Property tax) Rates and taxes Superintendence and manual (including engine driver). Oil seed, &c. - Coal .... Own horse labour (about) - Manager’s salary Commission, &c. labour £ s. 622 0 39 12 247 14 76 147 30 45 72 11 £1,280 9 9 Mr. Thomas Garrett, the town surveyor and manager of the farm, has been successful in carrying off several silver cups and money prizes for the roots grown by sewage of the farm. Note. — See pages 87 and 88. BEDFORD. Population (about) ------ Rateable value ------ Houses ------- Waterclosets ------ Cost of main sewers - - - - - Cost of outlet works, pumping station, and laying out sewage farm - Volume of sewage every 24 Fours - - (gallons) Rent, labour, and expense of working farm - Amount received for produce - 18,000 £65,000 3,500 3,000 £19.000 £9,200 700,000 £3,280 £3,461 Bedford. This is an instance of a town which, without being forced by the expensive machinery of the Court of Chancery to get rid of the nuisance caused to the river by sewage pollution, has endeavoured to utilize its sewage by applying it to profitable use in irrigation. The Local Board District of Bedford has an area of 2,200 acres, and a rateable value of 65,000/., with a population of about 18,000 living in 3,500 houses, to which are attached at least 3,000 waterclosets, and as there are no privies, this may truly be termed a watercloset town. A thorough system of sewerage has been carried out, commenced in 1864 and finished in 1868 at a cost of 19,000/. The old sewers are used as surface and storm-water conduits, and these have three outlets into the river Ouse. The whole of the sewage proper is intercepted from the river by the new sewers, and gravitates to a point at Newnham, about a mile from the town, where it flows into a sewage- well, and is thence pumped on to 155 acres of land, a small portion of which is the property of the corporation. The larger part is leased from the Duke of Bedford, the Rev. J. W. C. Campion, and Captain Polhill Turner. The soil of the farm is a rich loam with a gravelly sub-soil, well adapted for the purpose to which it is devoted, and the surface has been especially laid out for irrigation. The permanent carriers are stone- ware pipes, with side- junctions at proper intervals for regulating the flow of sewage on to the plots of land required to be irrigated. The volume of sewage which has to be pumped, is estimated at 700,000 gallons every 24 hours, but of this 300,000 gallons is sub-soil water. The main outfall sewer is 5 feet 3 inches by 3 feet 9 inches in sectional area, three quarters of a mile long ; is laid at a gradient of 1 in 3,520, and serves as a storage-tank. The sewage- well, at the pumping- station, is of small capacity, and -to prevent choking the pumps by the coarser particles of sewage, the suction-pipe is protected by iron screens. The outfall-sewer is cleaned out occasionally, and the deposit which is little more than detritus is carted away. The cost of preparing the land, constructing carriers, erecting pump- ing station, and fitting it with machinery was 7,200/. By the courtesy of the town clerk we are enabled to give a copy of the General Account and Balance Sheet for the year ended 31st Decem- ber 1874, and also proceeds from sales of crops for the year ended. 31st December 1875. 8 The Urban Sanitary Authority for the Borough of Bedford. — Irrigation Farm. — General Account and Balance Sheet at Stock-taking 31st December 1874. Dr. £ s. Stock, December 1873 - 431 0 Working plant, Dec. 1873 222 4 Labour, manager, and engineer Trademen’s bills, &c. Rent ... Rates and taxes Permanent works Oats - Hay - - 48 2 Beans - - - 59 10 Balance for 1874 Cr. d. £ s. d. £ s. d. 0 Sale of Crops - 2515 13 10 0 Stock in hand and purchased, 1874 - 544 8 0 — 653 4 0 Working Plant and Live and Dead 269 9 0 - 667 17 2 Stock. - 780 10 9 Sewage Works - - - 24 2 8 - 917 4 0 Hay - - - 48 2 6 - 113 14 7 Beans - - - 69 10 0 - 24 2 8 107 12 6 - 16 5 0 6 0 - 107 12 6 - 180 15 4 £3,461 6 0 £3,461 6 0 Corn &c., for live stock. — Corn purchased, (see expenditure) Hay from farm - Oats ..... Beans ..... - 40 8 9 - 48 2 6 - 16 5 0 - 59 10 0 £164 6 3 Labour Manager Engineer £ s. d. - 492 9 7 By Sale of Crops, Mr. Stafford - 112 11 1 Manager ... - 62 16 6 £667 17 2 £ s. d. - 1,933 1 1 - 582 12 1 £2,515 13 10 Tradesmen’s bills paid Tradesmen’s bills owing Coals .... Coals owing ... Horse corn, &c. Manure purchased Horse and bullocks purchased Seeds - Hire of Horses for ploughing Mr. Stafford’s commission expenses. - 79 11 7 - 30 10 2 - 260 2 7 - 32 8 0 - 40 8 9 - 10 0 0 - 133 10 0 - 102 8 4 - 30 3 0 and 114 12 6 833 14 11 Deduct bills owing 1873 - 53 4 2 £780 10 9 Stock in hand and purchased, 1874— 30 tons of hay, 57. - 26 loads of beans, 28/- 2 acres of mangolds, 20 7. - 6 tons of potatoes, 47. 16 acres of growing wheat, 50/- Bean, barley, and oat straw Rye grass hay ... Pickling cabbages Carrots .... 12£ oats, 26/- per qr. 6 acres of growing cabbage, 57. - acres of growing rye grass, 50/ 8 bullocks, 157. - 150 0 0 38 8 0 40 0 0 24 0 0 40 0 0 15 0 0 10 0 0 12 0 3 25 0 0 16 5 0 30 0 0 23 15 0 120 0 0 £544 8 0 Rents— The Rev. Campion Captain Polhill Turner - Duke of Bedford - Corporation of Bedford - L. & N. W. Ry.— Sewer under railway. 126 14 11 421 11 3 244 8 2 123 9 8 10 0 £917 4 0 Poor Rates Income Tax Land Tax Insurance 92 0 3 18 3 2 3 12 0 10 0 £113 14 7 Permanent works 24 2 8 Working plant and live and dead stock. 4 horses 175 0 0 3 carts. 87. - 24 0 0 1 horse roll 7 10 0 1 double plough 3 0 0 1 single ditto 1 10 0 1 horse hoe 4 0 0 1 scu filer 4 0 0 2 sets of harrows 2 0 0 1 pulper 2 10 0 1 chaff cutter 4 0 0 1 bean mill 2 10 0 6 wheelbarrows 1 4 0 4 sets of Harness 6 0 0 1 cultivator - 2 15 0 3 cow cribs 3 0 0 Office furniture 2 10 0 Coals in stock 24 0 0 £269 9 0 J. E. Cutcliffe, W. Roff, Harry Thody, Thomas Hall Barkham, Jas. Thos. Hobson, 1 Farming Committee. 9 Borough or Bedford. Urban Sanitary Authority Irrigation Farm. Account of Proceeds from Sales of Crops , year ending 31s£ December 1875. — Area under cultivation. Amount. A. E. p. £ s. d. Italian rye grass - - - - - 22 0 0 399 0 6 Potatoes - - - - - 25 1 0 140 16 6 Mangolds - - - - - 40 2 20 599 6 6 Onions - - - - 10 0 20 287 0 0 Carrots - - - - 7 3 0 116 1 0 Cucumbers - - - - 1 0 0 16 1 0 Vegetable marrows - - - - 0 0 10 1 6 3 Asparagus - - - - 0 0 20 2 11 0 Rhubarb - - - - - 0 0 20 5 0 0 Cabbage - - - - - 6 1 10 87 12 G Pickling cabbage - - - - - 1 1 0 34 18 8 Cauliflowers - - - - 6 0 0 60 0 0 Oats - - - - 14 0 0 135 0 0 Wheat - - - - 16 1 10 228 13 9 Permanent pasture - - - - 30 0 0 181 10 6 180 3 30 £2,294 17 8 Note. — S ee pages 91,92, 93, as to raw and effluent sewage. BLACKBURN. Population (about) - 90,000 Rateable value - - - - £235,127 Houses - - - - - 16,700 Waterclosets - - - - 730 Volume of sewage every 24 hours - - (gallons) 1,500,000 Privies and middens - - - - 10,574 Privies, “ pail ” system - - - - 2,690 Ashpits - - - - 5,287 Yearly cost of cleansing privies on both systems - - £5,641 Amount received for refuse - - - - £1,806 The rateable value of Blackburn is 235,127/., and a population of about 90,000 is here grouped together in 16,700 houses on an area of 3,620 acres. There are at present only 730 waterclosets in the borough, and the fsecal waste of the inhabitants is therefore principally disposed of by 10,574 of the “ old Lancashire middens,” and by 2,690 privies of more modern construction on the “pail” system;, there are also 5,287 ashpits for collecting this form of house waste. The borough has been sewered ; the works were commenced in 1850, and finished in 1873, at a cost, including subsidence-tanks, of 78,24-5/. The old drains have been utilized to convey the rainfall off roads and streets by 10 outlets into the river ; whereas, the new drains are used for the sewage proper, and as all the old middens are drained into the new sewers, the composition of the sewage of Blackburn is very similar to that discharged from an entirely water-closeted town, the proportion of putrescible organic matter in solution in the sewage being slightly less, whilst the organic matter in suspension is somewhat greater. 10 The Rivers Pollution Commissioners caused numerous samples of the sewage of both midden towns and watercloset towns to be analysed in their laboratory, and from the results of these analyses, they were enabled to say : — “ The retention of the solid excrements in ‘middens ’is not therefore attended with any considerable diminution in the strength of the sewage, although the volume even in manu- facturing towns is somewhat reduced. It seems hopeless, therefore, to anticipate any substantial reduction of sewage pollution by dealing with solid excrementitious matters only.” In 1865 the main outfall sewer discharged direct into the “ Blake- water,” and caused serious pollution, not only to that river, but also to the Darwen into which the Blakewater emptied ; the nuisance was com- plained of by the riparian owners, and a Bill was filed in the Court of Chancery by Sir. William Fielden, Bart, (of Feniscowles), praying that the corporation might be restrained from polluting the river Darwen with the sewage of Blackburn, and an injunction was granted. The defendants applied for time to enable them to cause remedial works to be constructed, and the Court gave the time asked for. The corpora- tion then directed subsidence tanks to be built near the river Blakewater on the eastern boundary of the town, and caused the sewage to flow through these tanks and to be treated by the “ lime-process ” ( i.e ., adding a certain proportion of i( milk of lime ” to facilitate deposition) before the sewage entered the river ; but this did not sufficiently mitigate the nuisance, and although the supernatant liquid flowed off comparatively clear, the method failed to purify the sewage so as to render it ad- missible into the river, for at a short distance from the outlet of the sewage-tanks the river was still in a most offensive- condition of putre- faction. The plaintiff then brought an action in the Court of Queen’s Bench and laid the damages at 20,000/. ; the case came on for trial and was referred to Mr. Manisty, Q.C., who found for the plaintiff, but only awarded to him 1,250/. damages, and costs; the cost of the suit in Chancery and the damages and costs in the action at law amounted however to about 12,000/. The corporation then, as advised, determined to adopt sewage irriga- tion, and for this purpose promoted a Bill of Parliament in the session of 1870; there was great opposition to this Bill, but it was passed and it empowered the corporation to acquire 1,090 acres of land, in the town- ships of Pleasington, Houghton, and Samlesbury. The cost of obtaining the Act was 6,500/. In 1872 the corporation took on a lease, for 20 years, at the yearly rent of 484/. 179 acres of land in the townships of Pleasington and Houghton, and directed the outfall sewer to be extended to Higher Park, Pleasington, and 90 acres of the 179 acres, upon which the sewage, would gravitate, to be drained and especially laid out to receive it. The works have been carried out a cost of 11,600/., and about 1,500,000 gallons of sewage every 24 hours have flowed on to the farm, and have been used in irrigation ever since the works were completed. The 90 acres have been cropped this year (1875) 74 acres with Italian rye grass, and 10 acres with mangolds and turnips, whilst the remaining six acres of the land were in fallow and roads. In order to dispose of the produce without loss, the corporation purchased stock. The total expenditure for the year ended 31st December 1875, including working expenses, purchase of stock, and also a sum of 480/., the cost of permanent improvements, was 6,523/. 2s. 9 d., and the receipts for the same period, including sale of fat stock, were 5,781/. 6s., 10 d. It is believed that this year (1876) the receipts will more than cover the expenses. In order to extend their irrigation the corporation, in 1875, concluded II the purchase of 475 acres of land at Samlesbury, at a cost of 69,5001., including expenses of arbitration, easements, &c., being at a rate of about 100 years purchase of the present rents, and they have directed their engineer to extend the sewage conduit on to this newly acquired land at an estimated cost of 7,6501., to which the cost of draining and preparing the land must be added. The farm at Pleasington and Houghton has a light loamy soil upon a gravelly subsoil ; it has been under drained to a depth of 4 feet, the drains being 18 feet apart. It is intended to drain the land at Samlesbury, which is partly loam and partly stiff clay. In addition to the cost of disposing of the sewage in irrigation, there is the cost of cleansing the “middens” and the privies on the “pail” system ; this amounts to 5,641/. 2s. 8 d. yearly, and the annual receipts for the refuse from both kinds of privies is only 1,805/. 12s. 5d. CHELTENHAM. Population (about) ------ 45,000 Rateable value - £217,849 Houses 8,725 Waterclosets - 8,500 Cost of outfall works, purchase and laying out of farm - £18,000 Volume of sewage every 24 hours - - (gallons) 1,250,000 Privies are cleansed at the expense of the occupiers of the houses to which they belong. Cheltenham . — The sewage of this township, which has an area of about 2,000 acres and a resident population, including portions of Charlton-Kings, Leckampton, and Prestbury, of about 45,000, living in 8,725 houses, and a rateable value of 217,849/., is disposed of in irrigation. The natural drainage of the district is into three streams flowing from east to west, i.e ., Wyman’s Brook on the north, the Chelt in the centre, and the Hatherley Brook to the south ; all the sewage, however, runs towards the Chelt and the Hatherley Brook, near which streams the subsidence-tanks have been constructed, from which it flows, by gravitation through earthenware pipes to the farm. The local authority have in contemplation to conduct by pipes in a northerly direction a portion of the sewage from the tank near the Chelt on to land in the parish of Elmstone-Hardwicke, abutting on Wyman’s Brook, and if the proposal be carried out, a great object will be obtained in bringing under sewage irrigation an extended area of land admirably adapted for the purpose; and as the owner and tenant of the land are willing to join in an agreement for 14 years, a degree of permanence will be assured ; the tenant will take the responsibility of dealing with the sewage on his own land so as not to occasion* nuisance or injury to others ; he will also pay a fair rent for it. The watercloset system is generally adopted, there being about 8,500 in the town. The average volume of sewage every 24 hours is 1,250,000 gallons, and as stated above, this flows from the main outfall-sewer into subsidence- tanks, which are constructed with transverse divisions to intercept matters in suspension, and by an arrangement the sewage as it flows through the tanks works a turbine and chain pump ; by this means the Ci sludge ” is pumped up, and mixed with the house refuse and ashes, (about 12 3,234 cubic yards). There is no permanent accumulation of this refuse. The cost of cleansing the tanks and the receipts for the last three years are — Year. Cost of cleansing tanks and incidental works thereto. Receipts for sale of sludge, mixed with ashes, from domestic fires. £ s. d. £ s. d. 1873 237 9 8 293 7 4 1874 278 0 2 271 16 0 1875 296 6 1 347 5 0 Before irrigation was adopted, proceedings were threatened against the Improvement Commissioners, but no action arose, and in 1870 they purchased a farm of 131 acres (6 acres arable and 125 acres in perma- nent pasture) at Boddington on the western side of the town, and distant therefrom about two miles ; the soil is a stiff clay, and the land has a gentle slope from east to west. The sewage is delivered by the earthenware conduit from the tanks on to the high part of the farm, it is occasionally applied to 200 acres of land adjacent to the conduit, for which the tenants pay to the Improvement Commissioners 7s. per acre for each dressing of sewage, amounting last year to the sum of 156/. The whole of the land at the farm, with a trifling exception, can be irrigated from the summit ; there are various branch-pipes for the delivery of the sewage to different parts, and these branches are to a great extent laid in cuttings of a moderate depth, open-carriers having been found objectionable as the cattle trod them out of form, the land being grazed during the greater part of the year. The undulating form of the land, and the arrangement of the branch conduits at different levels afford facilities for passing the sewage again over the lower portion of the farm when it has been over the higher portion of it, and thus is insured more perfect purification of the water before it flows into the Chelt and Hatherley Brook. The sewage-farm has been let at a yearly rent varying from 815/. to 861/., and is now let at a rent of 800/. per annum, subject to the Improvement Commissioners under- taking the duty of applying the sewage, at a cost in labour of 150/. a year, to which must be added the amount of rates and taxes which they also pay of about 50/. a year. There are only three residences, two homesteads, and about 20 scattered cottages near the farm. Pre- vious to the adoption of irrigation, a process of treating the sewage by lime, per-chloricle of iron and Bird’s powder was tried, but the result was unsatisfactory. No complaint lias ever been substantiated since the adoption of irrigation, and there is not now, even in hot summer weather, any nuisauce caused by the effluent from the sewage farm. The cost of the sewerage works has been to the present time 53,400/., including purchase and laying out of farm and building tanks. 13 CHORLEY. Population (about) ------ 20,000 Rateable value ------ £54,407 Houses ------- 4,000 Water closets • ■ 200 Cost of outlet works, purchase, and laying out farms at Common Bank and Plymouth Bridge - - - £16,550 Volume of sewage every 24 hours - - (gallons) 500,000 Privies and middens ----- 1,600 Privies, “ pail ” system - - - - - 700 Cost of cleansing privies on both systems - - £709 Amount received for refuse - - - - £186 Chorley (Lancashire ). — Area of the district 3,613 acres, population about 20,000; annual rateable value, 54,407/. There are about 4,000 houses, 200 waterclosets, and 1,600 privies, but these latter are being gradually abolished and the “ pail ” system introduced, and about 700 privies are now reconstructed on this system. The district, with the exception of a small area at Cowling and Botany, was sewered in 1855, at a cost of 17,000/., and the sewage then gravitated to one outfall in the river Chor. Complaints were repeatedly made to the Improvement Commissioners by the Reverend J. Sparkling, Mr. Henry Alison, Mr. R. Townley Parker, Mr. E. E. Silvester, and Mr. Randolphus de Tr afford, riparian owners, of the nuisance caused by the sewage of the town being discharged into the river Chor and thence carried down into the river Yarrow, which polluted and rendered offensive the water of the Yarrow from the confluence of the Chor to below the village of Croston, and in July 1867 Mr. Edward Silvester and Mr. Henry Alison filed a bill of complaint in Chancery and prayed, “ That the “ defendants be restrained by injunction from causing or allowing the “ sewage to be discharged, or to flow into the river Yarrow so as to be “ a nuisance and pollute the said river.” The defendants (the Chorley Commissioners) by their counsel admitted that the discharge of sewage into the Yarrow, by means of the Chor, had polluted the river, and that the works constructed by them had become a nuisance. A perpetual injunction was issued to restrain the defendants from continuing the same, such injunction not to take effect until the expiration of 12 months from the date of the decree, 23rd November 1867, or until the expiration of such further period as the Court should from time to time direct. With the intention of diverting the sewage from the Chor and Yarrow and utilizing it in irrigation the Improvement Commissioners, on the 21st October 1867, took on lease for 21 years, at a yearly rent of 130/., a farm of 87 acres, at “ Common Bank,” about a mile to the West of Chorley, and subsequently, in 1870, purchased it for 6,450/., and caused it to be laid out to receive sewage. The outfall-sewer was extended and continued on to the farm by cast-iron pipes ; per- manent carriers to distribute the sewage were also constructed of brickwork, stoneware-pipes and wood ; and suitable farm buildings, were also erected; these works cost 4,800/. As soon as the works were completed, the sewage, which is estimated to be about 500,000 gallons every 24 hours, 200,000 of this being subsoil water, flowed continuously over the farm. The land, which is for the most part poor vegetable soil, with a stiff clay subsoil, has been underdrained to 14 a depth of 3 feet 6 inches, the drains being 16 feet apart. The local authority obtained power in 1871 to acquire additional land for the purpose of sewage utilization, and in 1875 purchased and laid out an area of 46 acres, part of “ Kingsley’s farm,” at Plymouth Bridge, at a cost of 5,300/. ; this land has a clay subsoil, and is arranged for the purpose of receiving the sewage of the Chorley Moor district. The Improvement Commissioners have since let this land with the sewage, at an annual rent of 90/., the tenant undertaking to distribute and cleanse the sewage, so as not to cause a nuisance. The sewers are ventilated by 120 open grids, in the surface of the streets near the manholes, by rain-water pipes from the eaves of build- ings, by pipes carried up at the gable ends of buildings, and by con- nexion with the chimney-shaft of the Water Street mill. No com- plaint has been made of the state of the purified effluent water flowing from the sewage farm into the Yarrow. The working of the “ pail ” system is an annual loss, costing more than cleansing privies and middens, but it is believed that the removal, once a week, of the excreta under the “ pail ” system, will improve the health of the inhabitants. The expense of cleansing the privies, and ,962* i,381* ,932* Syll t) 92,439* 111,384 29,5203 3,093* 104,641* No. of Dress- ings. 104,883* 26 927,961 Description of Crop, 1873. Barley and cabbage 8a. 2r. Op. I. It. grt spring with corn. Wheat barley 8a. Or. Op. spring cabb after corn crop. Potatoes and mangold 3u. Or. Op. cabbage 2a. lr. 12p. peas - Permanent pasture X. It. grass, 4 cuttings Savoys after grass Permanent pasture I. R. grass I. R. grass Clover Clover I. It. grass Wheat Permanent pasture Wheat - Wheat - Grass sown with com Beans Mangold and swedes Wheat Wheat Wheat - Permanent pasture, 4 acres sewage( Wheat - Wheat - Fallow for mangold Wheat - 6a. Or. Op. mangold 3a. 2r. 3p. fallow - Wheat ... Swedes - Sewage supplied to farmers Quantity of Sewage applied. No. of Dress- ings. Tons. 35,737* 7 a 23,497 5 _ — — 1 2,474* _ — 8,857 5 152,317* 29 — — — — 126,518 19 93,830£ 15 — — — — — — 9,735* 52,382j 1 17 — — 126, 603^ 31 — J- 51,138* 7 { 161,136 31 — — — — — — — — — — — 30,407£ 8 28,779* 4 — — — l — — — — 12,489 8 — - - — __ 2 7, 886 J 6 3,455* 2 — — — __ 344,196J. - 1,291,441* - Description of Crop, 1874. 8a. 2r. Op. I. R. grass 4a. Or. 1 6p. cabbage 8a. Or. Op. spring cabbage - 6a. Or. 31p. I. It. grass Turnips after cabbage Wheat - Fallow for barley - Grass sown at Michaelmas 9a. lr. 17p. I. R. grass la. Or. Op. cabbage plants - 10a. lr. 17p. cabbage after grass ■ Permanent pasture 13a. 3r. 2p. savoys 7a. Or. Op. cabbage, 1st cut ,, „ 2nd „ 6a. 2r. 3p. wheat - Grass after cabbage and wheat, sown at Michaelmas. Permanent pasture I. It. grass I. It. grass Fallow for roots after grass Beans - Wheat (grass at Michaelmas) I. It. grass - Permanent pasture Beans - - I. R. grass - Wheat I Wheat - Fallow for beans . Beans Clover - Barley - Permanent pasture 4 acres fallow for carrots and parsnips. 4 acres fallow for carrots and parsnips. 6a. lr. 34p. potatoes Mangold - Turnips - Sewage supplied to farmers Total for 1874 Tons. 102,493* 1 1,054* 33,098* 54,260* 5,584* 3,965* 18,894* 1 13,432* 4,820* 12,294* 15,642* 37,407 38,289 24,895* 37,174 67,297* 121,483* 17,937 103,084* 119,094* 17,806* 4,861 63,529 270,133* 1,318,618* Description of Crop, 1876. 8a. 2r. Op. I. R. grass 4a. Or. 16p. fallow for cabbage 58,317* 2,905* ,, cabbage I. R. grass - 29,280 158,265* 6a. Or. 31p. fallow for mangold after grass. 23,056* Beans .... I. R. grass ... 146,675* 9a. lr. 17p. cabbage la. Or. Op. plants ... 32,703* 2,410* Permanent pasture I. R. grass ... 279,010 Permanent pasture Mangold, swedes, and carrots Mangold and 5 acres belonging of ditto belonging to No. 42. Fallow for roots (No. 43) - Wheat (grass grown at Michael- mas). I. R. grass .. .. Beans .... 19a. 2r. 8p. swedes and turnips 4a. Or. Op. mangold Permanent pasture Wheat - I. R. grass Wheat Clover - Potatoes - Permanent pasture 7a. Or. Op. cabbage 2a. lr. 34p. mangold la. Or. Op. rhubarb strawberries Wheat - Fallow for mangold Oats Barley - Quantity of Sewage £['’• of applied. iiigsf" Barley Clover - Sewage supplied to farmers 66,635 117,463* 166,470 7,352 98,734* 11,350 4,559* 9,176* Remarks. Light loam and gravel subsoil. Ditto. Clay, farmyard manured. Light loam, and gravel subsoil. Light loam, and gravel subsoil. Clay. — farmyard manured. Light loam, gravel, and clay subsoil. Clay, and marl. Clay, and gravel. Light loam and gravel subsoil. Ditto. Ditto. Heavy clay. Farmyard manured. Farmyard manured, clay and marl. Heavy loam, clay and marl subsoil. farmyard manured. Light loam, clay subsoil. Heavy clay, farmyard manured. Heavy loam, clay subsoil. Farmyard manured. Ditto. Ditto. Light loam, and clay subsoil. Clay, farmyard manured. Ditto. Light loam, day-subsoil, farmyard I manured. 23 the adjoining farmers on about 80 acres of land for which we received from 205. to 305. per acre. The sewage of Leamington is pumped to the farm daily, and is used in winter on fallow or grass-land, and in summer on grass, cabbage, carrots, parsnips, onions, mangolds and turnips. We never apply any sewage to the root crops, with the exception of cabbage, until May or June ; but this latter crop is sewaged in the spring as soon as the weather will permit. We have tried sewage on corn crop, but found it difficult to apply it while the crop is growing, in fact sewage ought not to be applied to corn crops. The last season we had excellent crops of everything grown on the farm. The farm is worked with 13 horses which are all fed on the sewage produce and do remarkably well.” “ We have also a dairy of 40 cows, the milk is sold on the farm at 11 d. per gallon the cows are all stall fed in summer on grass, and in winter on turnips, mangolds, and hay and straw, cut into chaff, and a little artificial food. The calves are reared and sold when two or three years old ; we also keep a few sheep on the farm. During the last two years we have gained 10 silver cups and a great many money prizes for roots grown by sewage.” MERTHYR TYDFIL. Population (about) ------ Rateable value ------ Houses ------- Waterclosets ------ Cost of outlet sewer, purchase and laying out of land as filters, and as sewage farms - Yearly rent of 59 acres of land held on lease Volume of sewage every 24 hours, about - (gallons) - Privies (2,800) are cleansed at the expense of the occupiers of the houses to which they belong. 55,000 £135,000 10,778 £53,330 £298 1,200,000 Merthyr Tydfil . — This urban sanitary district has an area of 17,714 acres, a population of about 55,000, and a rateable value of 135,000/. There are 10,200 inhabited and 578 uninhabited houses; connected with these are about 8,000 waterclosets and the drainage from about 2,800 privies. In 1864, the waterworks were completed, and it then became necessary to provide for the disposal of the used water which greatly augmented the volume of the sewage. Plans were prepared by Mr. S. Harpur, the engineer, to the local authority for the disposal of the sewage, and approved; the works were commenced in November 1865, but owing to the failure of the contractor, were not completed till 1868, at a cost of 28,000/. ; the crude-sewage was then discharged into the Taff. Soon after the works were completed a Bill of Complaint was filed in the Court of Chancery by Messrs. Nixon and Company, colliery proprietors, Ynysowen, to restrain the local authority from polluting the Taff, and an interim injunction, afterwards made perpetual, was granted. In April 1869, the engineer to the local authority submitted a comprehensive scheme for disposal of the sewage by irrigation ; this was sanctioned, it embraced the taking and laying out at Troedyrhiew, within the parish of Merthyr, 75 acres of land; also 60 acres of common land, and 240 acres of enclosed land in the parishes of Llanfabon and Llanwonno, at 24 from 8 to 1 1 miles from Merthyr, all in the basin of the Taff ; these farms have a fine loamy soil with a gravelly soil. The outfall-works, consisting of 19,000 lineal yards of brick, timber, iron, and earthenware- conduit (from 12 to 24 inches in diameter) were completed in 1873. While these works were in progress the Master of the Rolls directed that means should be adopted for mitigating the nuisance in the Taff, by separating the coarser solid particles of sewage and prevent them flowing into the river ; the local authority then ordered filter- tanks to be con- structed near the outfall, and caused the sewage to be filtered through a medium of furnace ashes 3 feet deep, a small quantity of cream of lime being added to the sewage before filtration ; this method not having satisfied his lordship he issued an order of sequestration, and from that order the local authority appealed. The Lords Justices of Appeal in July 1870 directed Mr. J. Bailey Denton, C.E., to examine and report on the best means of preventing the nuisance complained of, and he recommended that 20 acres of the 75 acres of land at Troedyrhiew should be laid out as land filters, and used on the intermittent principle proposed by the Rivers Pollution Commission ; these works were subse- quently carried out under his superintendence, and worked up to early in the year 1872. The addition of lime to the sewage was then dis- continued, and the land-filter-beds have since been treated as ordinary irrigation ground, and are now so used, together with 230 acres of the other portions of the land, as a sewage irrigation farm. The average dry weather flow of the sewage is 1,200,000 gallons. There are fine storm outlets into the Taff. The cost of the several works was as follows : — Outfall-sewer from Troedyrhiew to the Ynyscadudug Farm, 16,002/. 2 s. 10 d.; building subsidence tanks, 387/. 15s. \d. ; laying out land-filtering areas (including drainage and the carriers upon 20 acres), 4,606/. 12s. 4 d. ; forming, draining, and making carriers on the remaining 55 acres at Troedyrhiew, 1,408/. 6s. 5d. ; purchase and laying out, draining, and fencing the common land at Navigation Farm, 4365/. 11s. 5d . ; purchase, laying out, and draining land at Ynyscadudug Farm, 14,387/. 6s. 0 d. ; purchase of Tyrybont estate, 30 acres, at Troedyrhiew, 3,002/. 2s. 6d. ; purchase of Park Newydd estate of 67 acres, 9.170/. Total, 53,329/. 16s. 7 d. The sewage flows by gravitation on to the farms, and the annual cost of cropping the land and applying the sewage. is 2,391/. 5s. 10c/. ; to this must be added the yearly rent paid by the local authority for that portion of the land held on lease (viz.) 298/. The accounts of the year have not been made up, but it is feared that the receipts will not cover the expenditure. The Troedyrhiew Farm of 70 acres, of which there are about 2 acres of roads, has this year produced the following crops : Italian rye grass, 34J acres ; permanent grass, 5 acres ; cabbage, 8 acres; mangolds, 6 acres ; swedes, 5 acres ; red wheat, 3 acres ; beans, 4 acres; rhubarb, \ acre ; seed beds, 2 acres. The Navigation Farm (60 acres of common land, of which roads occupy one acre) produced Italian rye-grass, 15 acres ; white oats, 35 acres ; willows, 3 acres ; mangolds, 1 acre ; and swedes, 1 acre. Ynyscadudug Farm (93 acres only bore crops) produced hay from 83 acres of permanent grass ; Italian rye grass, 4 acres ; white oats, 4 acres ; and swedes, 1 acre. There were very good crops of hay on the land at Ynyscadudug which realized 61. per acre (the land before the sewage was applied was let at 155. per acre). The Italian rye grass realised 7/. per acre on common land which was formerly worth 2s. 6d. per acre. The oats were sown late and only yielded a light crop. The wheat produced 25 bushels to the acre and a large quantity of fine straw. The mangolds and swedes produced each 30 tons to the acre. The Italian rye grass at Troedyrhiew was cut six times and gave an average of 6 tons per acre at each cutting, and fetched 1/. per ton on the farm ; the pickling cabbage sold for 50/. per acre, and the other cabbage for 30/. per acre. In addition to the sewage 30 tons of stable dung was used on the Troedyrhiew Farm, which is situate within 250 yards of the village. No complaints have been made of nuisance arising from the farm, or of the condition of the effluent water flowing into the river, as it has invariably been bright and pure. The tanks are cleaned out every fort- night, and the “ sludge ” is mixed with the house refuse and dug or ploughed into the land. The inhabitants living near portions of the sewage-farms speak of them as the “ gardens.” RUGBY. Population (about) - 8,400 Rateable value ------ £45,000 Houses ------- 1,700 Waterclosets - - - - - 1,400 Cost of outlet works and laying out farm - £5,800 This Local Board of Health district has an area of 1,617 acres, and a rateable value of 45,000/. The sewage of 8,400 inhabitants of Rugby, living in 1,700 houses, is disposed of in irrigation. There are 1,400 waterclosets, very few privies, and no cesspools. A system of sewerage has been carried out at a cost of 5,764/.; the works were commenced in 1852, and the main-outfall was into the river Avon. On com- pletion of the works the late Mr. Walker applied to the local board to be allowed to divert the sewage from the river, and to use it on his own adjoining land, and concession having been granted to him, a reservoir was constructed, and the sewage was pumped therefrom through cast-iron pipes, laid over the entire farm, on which were fixed a number of hydrants, in suitable situations, and the sewage was distri- buted from thence, as required, by a flexible hose and jet.^ The outlet into the Avon was then only used for storm-water, or when the appli- cation of the sewage to the land was from any cause interrupted. This mode of irrigation was carried on for some time ; but as Mr. Walker did not deal with the whole of the sewage, the river became polluted, and an action at law was, in August 1855, commenced against the local authority by Mr. Charles Caldecott, of Holbrook Grange, a riparian proprietor, but a technical objection having been taken, the action was abandoned. The local board then discussed the best means of disposing of the sewage, and decided in 1857 to hire from Mr. Walker 65 acres of land, at the yearly rent of 290/., including rates and taxes, to con- struct subsiding tanks, and to cause the farm to be laid out on the surface irrigation principle, at a cost of 5,800/. A volume of 400,000 gallons of sewage every 24 hours (150,000 gallons being subsoil water,) has * The cast-iron pipes were extended over an area much larger than could be sup- plied with sewage, and the cost of pumping and ot irrigation by hose and jet proved to be too expensive and was consequently abandoned. 26 flowed continuously since that date over the land. No complaints have been made of the state of the effluent from the farm into the river. The local board at Lady -day, 1874, sublet the land hired of Mr. Walker, to Mr. J. A. Campbell, at a yearly rent of 350/., the local board main- taining their right to dispose of the sewage upon the land, and paying the labour cost of the distribution. In 1871, in order to utilize the sewage of another portion of the district, the local authority hired of the rector of Rugby, about 13 acres of land, at the yearly rent of 54/., and caused the sewer to be extended, and the sewage to flow on to this land ; they have since sublet it, with the sewage, for 79/. per annum. M r. J. A. Campbell has kindly given to us the following in formation : — Acreage of Sewage Farm, under Crop , 61a. Or. 19/?. Crops, 1874. a. r. p. Wheat .... 21 3 22 Beans - 4 2 29 Oats ----- 8 2 2 Italian rye grass - 22 0 11 Total - 57 0 24 Cash produce of farm - 701 11 Expenses, including rent (360/.) 725 13 10 Balance against farm - £24 2 Note. — See pages 86, 87, as to raw and effluent sewage. TUNBRIDGE WELLS. Population (about) - 23,000 Rateable value - - - - - -£142,914 Houses - 5^750 Waterclosets - 5,635 Cost of outlet works, purchases, and laying out of farms - £87,243 Volume of sewage every 24 hours - - (gallons) 650,000 Tunbridge Wells , an urban sanitary district in the counties of Sussex and Kent, disposes of the sewage of its 23,000 resident inhabi- tants by irrigation. The district has an area of 3,352 acres, and a rate- able value of 142,914/. 10s. ; the town portion is drained by main sewers of irregular form constructed of brick, the branch sewers are of stone- ware pipes. Waterclosets are chiefly used, the number being 5,635 in the town. The sewage was formerly allowed to run direct into the Calverley Brook. On the 24th November 1865, an injunction was obtained by Mr. Frederick David Goldsmid of Summer Hill Park to restrain the Im- provement Commissioners from polluting the “ brook,” and the latter having failed to satisfy the court that they had rendered the sewage in- offensive, an order of sequestration was subsequently granted ; this order, however, was suspended from time to time, and finally discharged 27 on 2nd July 1874, on the Commissioners undertaking to intercept the sewage, and practically purify it before it flowed into the brook ; to defray the expense of cleaning out the Summer Hill Lake which amounted to 744/. 17s. 8 d . ; and also to pay the costs of the suit, about 3,000/. To satisfy these conditions, the Improvement Commissioners caused intercepting sewers and outfall works to be constructed, and they also purchased two farms, one of 120 acres of stiff loamy soil 1-| mile to the north, and the other of 165 acres of light open soil 34 miles to the south of the town. These farms are prepared and laid out for irrigation, and the sewage, which is not treated by any chemical process, flows by gravitation through subsidence-tanks, and a daily volume of about 414,000 gallons is thus delivered on to an area of 118 acres at the South Farm, and about 236,000 gallons on to an area of 100 acres at the North Farm, the solid refuse is removed from the tanks when necessary and sold to farmers, who clean out the tanks, remove the deposited material, and pay 65/. a year for it. The effluent water from the North Farm flows into the Calverley Brook, and that from the South Farm into the Brodwater Brook, and the County Ditch, which are tributaries of the Medway. Samples of this water are collected every fortnight by the farm bailiffs, and summitted to the Sewage Outfalls Committee. No complaint has been made of the state of the effluent water since the removal of the order of sequestration. The crops produced this year were, on the North Farm. Italian Rye Grass, 30 acres. Pasture and Meadow, 20 acres. Wheat, 15 acres. Oats, 10 acres. Beans, 9 acres. Barley, 3 acres. Winter Oats, 5 acres. Mangolds, 3^ acres. Swede Turnips, 3 acres. Carrots and Cab- bage, l£ acres. | Per acre. Per acre. Per acre. Per acre. Per acre. Per acre. Per acre. Per acre. Per acre. Per acre. ■“ — — ’ — — — — — — — 65 tons in five cut- tings. A heavy crop of coarse hay stacked on the farm. 5 qrs. 9 qrs. 4 qrs. 5 qrs. 9 qrs. 50 tons 25 tons South Farm. Italian Rye Grass. 21 acres. Pasture and Meadow, 30 acres. Hops, 22 acres. 1 Wheat, 17 acres. Oats, 14 acres. Beans, 4 acres. Mangolds, 3 j acres. Swede Turnips, 5 acres. Clover, 2 acres. Per acre. Per acre. Per acre. Per acre. Per acre. Per acre. Per acre. Per acre. Per acre.. 40 tons Cut for hay or pastured. 13 cwt. 4^ tons 6 qrs. 3 qrs. 40 tons. 30 tons. - The cost of the sewage works (purchase of and laying out of farms, law costs and arbitration, expenses relating to purchase of farms, and compensation to tenants) has been 87,243/. 28 Northern Sewage Farm. Profit and Loss Account for the Year ending; the 25th of March 1876. o Receipts. Expenditure. Dr. Cr. £ s. d. £ s. d. £ s. d. £ s. c To sale of 11 cattle (8 By valuation on the 25th steers 2 cows, and a March, 1875, brought calf ... 213 4 6 forward 1,251 13 „ sale of 40 sheep 113 10 0 „ purchase of 14 cattle „ do. 2 horses 26 0 0 (7 steers, 1 bull, and ~~ 352 14 6 6 calves) 80 9 0 „ do. rye grass 462 3 9 „ purchase of 40 sheep 84 0 0 „ sale of wheat, oats. „ do. 2 horses 132 6 0 „ barley, peas, and beans 314 17 6 — 296 15 „ sale of mangolds 102 0 5 „ farm implements and „ do. milk - 4 8 6 smiths’ works - 20 17 11 „ do. manure 88 6 6 „ seeds ... 73 18 9 „ do. straw - 15 15 5 „ provender 59 1 7 „ do. fagots - 1 12 6 „ bailiff’s wages 97 9 8 „ cattle and pony keep 9 6 6 „ farm labourer 489 11 1 „ garden, meadow, and „ repairs to roads 4 19 2 cottage rents 87 12 0 „ do. farm build- 1,086 3 1 ings ... 7 17 0 „ outstanding accounts 20 10 2 „ rates and taxes 44 18 2 „ insurance 9 11 9 Austen’s Valuation made to „ miscellaneous - 54 16 6 25th March, 1876. — 863 1 To 4 horses 205 0 0 By outstanding accounts 52 18 „ 33 store beasts 453 0 0 „ manures 87 10 0 „ hay, straw, and roots 96 5 0 „ corn ... 231 15 0 „ cultivations and young seeds - 119 9 0 „ implements of hus- bandry - 254 2 6 „ man applying sewage 29 18 0 1,476 19 6 „ balance 471 19 I £2,936 7 3 £2,936 7 ! Southern Sewage Farm. Profit and Loss Account for the Year ending the 25th of March 1876. Receipts. Dr. £ s. d. £ s. d. To sale of 67 cattle (44 steers, 12 heifers, and 11 calves) - -1,110 5 3 „ sale of 63 sheep - 160 15 10 1,271 1 1 „ do. rye grass - 155 18 6 „ do. wheat and oats 204 3 0 „ do. mangolds, &c. 61 18 0 „ do. manure - 30 0 0 „ do. straw - - 2 6 0 „ do. hops (less com- mission, &c.) - 1,363 5 2 „ sale of hop-pole fagots 3 0 0 „ do. cottage rents - 49 9 0 1,869 19 8 „ outstanding accounts 83 3 7 „ do. stock, 12 sheep sold to E. Carey 31 4 0 114 7 7 Austen’s Valuation made to 25th March, 1876. To 7 horses „ 27 store beasts „ 12 sheep „ manures „ hay and straw „ corn - „ cultivations and young seeds - „ hop-poles, manure, and labour „ implements of hus- bandry - „ man applying sewage f79 0 0 534 0 0 32 8 0 71 8 0 32 10 0 176 15 0 112 10 0 505 0 0 234 2 6 29 18 0 2,007 11 6 Expenditure. £ s. d. By valuation on the 25th March, 1875, brought forward „ purchase of 65 cattle (47 steers, 11 cows, and 7 calves) 727 11 0 „ purchase of 76 sheep 154 13 0 „ do. 1 horse 55 0 0 ,, farm implements and smiths’ work - 41 13 7 „ seeds - 64 2 7 „ provender 132 16 1 „ hop-poles 146 13 0 „ hop sets 1 7 0 „ artificial manures - 41 3 0 „ bailiff’s wages 134 6 8 „ farm labourer 424 18 4 „ labour on hops 450 8 6 „ rates and taxes 112 10 4 „ insurance „ repairs to farm build- 8 1 6 ings - 33 1 0 „ hop pocketing 56 14 5 „ coal and lime 13 4 6 „ miscellaneous „ outstanding accounts 61 17 H Cr. £ s. d. 2,370 0 9 937 4 0 1,722 18 5 176 9 0 „ balance • 66 7 8 £5,262 19 10 £5,262 19 10 29 WARWICK. Area (acres) - - - - - Population (about) - 11,000 Rateable value - £43,339 Houses ------- 2,400 Waterclosets ------ 2,000 Cost of main sewers - £6,400 Cost of outlet works, pumping station, and laying out farm- £10,085 Volume of sewage every 24 hours - - (gallons) 700,000 This borough has a rateable value of 43,339/., and a population of about 11,000 residing in 2,400 houses to which are attached 2,000 waterclosets ; there are very few privies. Sewerage works were commenced in 1856 and finished in 1857, at a cost of 6,400/., and the sewage then flowed by two main outfalls into the Avon. The river soon became badly polluted and the riparian proprietors, Miss Ryland, Mr. Edward Greenway, M.P., and Mr. J ohn Staunton, complained of the nuisance and threatened proceedings to compel the corporation to abate it. The outfall sewers were, in 1869, extended to a farm on the Stratford Road about 1J miles from the town. This farm of 135 acres, of stiff clay land, was taken on lease for 21 years at a yearly rent, for the first five years, of 404/., and for the remainder 16 years of the term at 471/. 10s. The corporation directed the farm to be laid out to receive the sewage, and a volume estimated at 700,000 gallons (one third being subsoil water) has been pumped every 24 hours to a height of 64 feet and distributed in irrigation over the land. The old sewers have been made available as conduits for surface water with outlets direct into the river. The sewers are being ventilated by pipes with swan- neck tops carried up near to the surface of the streets into small detritus pits covered over with iron grids. The outlet sewage works, including engines, pumps, and pumping-main and laying out the farm cost 10,084/. 185. 1 d. The working expenses are 572/. 115. 6d. per annum. From 1869 to September 1875 the corporation worked the farm, but have since leased it to a limited company for 21 years at the annual rent of 471/. 105., and have assigned as reasons for so doing that there is an annual loss on the farm, that the corporation have had no capital to properly carry it on, and that the working expenses are taken out of the general district rate. . During the 12 months ended September 1875, the farm has been cropped with oats, 5 statute acres, swedes 6 acres, mangolds 15 acres, beans 3 acres, celery, cabbage and potatoes 4 acres, Italian rye grass 39 acres, and permanent grass 49 acres ; besides these crops there was in fallow and roads an area of about 14 acres. The oats produced a very fair crop ; the swedes were good and gave about 20 tons to the acre. The mangolds were a fair average crop of about 40 tons to the acre. Some of the Italian rye grass was excellent, especially that grown on the land which had been drained, this being cut six times. There was also a very good crop of hay got off the permanent pasture ; the company propose to stock the farm and to under-drain the whole of it ; the drains will be 12 feet apart, and at depths varying from 3 feet 6 inches to four feet ; they also propose to erect suitable farm buildings. The expenditure on the sewage-farm for 1873, including rent, labour, &c. was 1,369/. 6s., and the receipts from the sale of the produce was 907/. 65. 10|c/ ; whilst in 1874 the expenditure was 1,494/. 18$. 8 d., and the receipts were 1,071/. IO5. 4 d. Note. — See page 89 as to raw and effluent sewage. 30 WEST DERBY. Public Offices, Stoney croft, near Liverpool. 24th April 1876. We now furnish the information asked for in letter of the 31st ultimo as to this Board’s sewage farm, &c. For the sake of convenience we have set out the inquiries below, and against them have placed the answers seriatim : — Area in acres of land used and to be used for the utilization and purifica- tion of the sewage of the district. 207 statute acres. A plan is sent herewith. 1. If purchased, the cost ? The nett amount paid owners for the land has been 30,325/. 2s. 0 d. The total amount paid for tenants’ compensation and for the costs of the owners and tenants is 3,916/. Is. 9 t O 1 9. The annual cost of cleansing these ? 7 00/. a year. The work is done by a contractor. This includes those in corporation area. 10. The weight in tons of the refuse ? The probable weight from middens and dry ashpits to be removed per annum is about 17,000 tons in the whole of the district. 11. The price per ton obtained if sold? The refuse is the property of the contractor. 12. The total cost of the works and land and preparation of this land for use as a sewage farm is re- quired ? To 24th March 1876, 61,873/. 5s. 9 d., which includes the items referred to in answers to the first and third queries ; the surveying, engineering, and legal ex- penses, and all other costs and expenses. The amount estimated still to be expended to wholly complete the works at the farm is 1,476/. 14s. 3d., making the total cost 63,350/. 0s. 0 d. 13. The annual cost of working the Sewage Farm ? See answer to query No. 4 above. 14. The estimated income to be obtained from the Sewage Farm ? The total income of every description for the year ending 25th March 1875 (the last year for which the accounts have been audited) was 3,349/. 10s. 10 qv, 9 *, / 0 , 34 Adderley again invoked the aid of the Court of Chancery, and obtained an order of sequestration. About the same date certain other owners of property near the subsidence-tanks also moved the Court to hinder the corporation from depositing on the ground sewage-sludge arrested in the tanks and the Court, in this case also, granted the injunction prayed for. Whereupon the council either removed the sludge or dug it into a portion of the farm-lands. Thus restrained on all sides, instruc- tions were given to the borough surveyor, early in 1871, to submit surveys and levels of any lands he considered most suitable for dealing with the sewage by irrigation, and to employ such assistance as he con- sidered necessary. In June of that year a comprehensive report was joint! v prepared by Messrs. Blackburn, J. Chalmers Morton, Lawson, and Mansergh, and Doctors Voelcker and Hill, recommending the taking 2,000 to 2,500 acres of land near Kingsbury, about eight miles below the present outlet, and the construction of sewage-conduits for conveying the sewage thereto. This report was laid before the council, but the scheme being considered too costly, a special committee was instructed to again consider the whole question of sewage disposal, and acting on their advice the corporation promoted a Bill in Parliament in session 1872 to acquire powers to extend the main-sewer to a portion of the land before described at Kingsbury, and there to obtain 800 acres, on which to purify the whole of the sewage, partly by inter- mittent downward filtration, and partly by irrigation. The Bill passed through committee of the Commons after a lengthy opposition, but was thrown out on the third reading. The costs incurred to the corpora- tion in promoting this Bill amounted to 10,644/. 7s. 10 d., and not havino- passed placed the town in a dilemma ; however, in order to satisfy the requirements of the Court of Chancery, the corporation purchased 24 acres of land, formerly held on lease, for the sum of 8,000/. and subsequently further increased the area of the farm at Saltley by adding to it a purchase of 101 acres, at a cost of 29,400/.; acting on the advice of Thomas Hawkesley, Esq., C.E., as to the best method of treating the sewage at the outlet-works (under their limited powers). The town council, in accordance with his recommendations, caused four additional sets of subsidence-tanks to be constructed, and the sewage to be treated by the lime process. A volume of about 12,000,000 gallons every 24 hours is thus, by the addition of 13 tons of lime, to a certain extent clarified and an average of 365 cubic yards, •or about 300 tons of the suspended matters of sewage, are deposited in the tanks, or about 110,000 tons per annum. The total cost of the outlet works and tanks has been 58,880/. The corporation have per- mitted Major-General Scott, C.B., R.E., to carry on experimentally his process for treating sewage and converting the “ sludge ” into cement, but this has not been done to any great extent, because it is not remu- nerative. The corporation are now making arrangements for carrying the water, clarified by the lime process on to the adjoining lands at Saltley for irrigation and filtration, and it is expected that by these means a more complete purification of the polluted liquid will be effected. The “ sludge,” amounting to 365 cubic yards daily from the subsi- dence tanks, is removed and dug into land, a portion of the farm r at a cost of 14/. 10s. per acre, at a rate of about one acre per week, or, in the whole 56 acres during the year. With reference to the suit instituted by Sir Charles B. Adderley, it was in 1875 arranged that the order of seques- tration should be discharged, and that the injunction should be varied so as admit of the corporation constructing new sewers within the town which they had been prevented doing for some years, as also that the sum of 6,000/. should be paid to Sir Charles Adderley in settlement of 35 damages, costs, and all claims to the date of order ; and that all proceed Ings in the cause should be stayed for five years from the date of order, on the corporation undertaking “ not to construct new sewers too quickly.” The liquid sewage only represents a portion of the faecal waste of the inhabitants, as a considerable portion of the solid excrement, mixed with urine and ashes, is received into the 35,000 old privies and 25,000 ash- pits. There are also the 7,000 privies constructed on the “pail system,” distributed over the borough, and the contents of these re- ceptacles have to be dealt with by the scavenger, and last year (1875) 128,512 tons of this refuse were removed and sent to country depots to be afterwards disposed of to farmers. Statements of income and expenditure on sewage farm, outlet and interception works, also on Major-General Scott’s cement process, and further on the collection and disposal of excreta and house waste and ashes for the year 1875, and an approximate estimate for these services for the present year are given below, together with results of analysis of a sample of the effluent water flowing to the farm during March 1875. Income and Expenditure for the year 1875. Income. Expenditure. £ s. d. £ s. d. Interception Department : Interception Department : Amount received for con- Expense of cleansing tents of privies and and removing con- “ pails ” 5,885 0 0 tents of privies and “ pails ” - 35,180 0 0 Outlet Department : Outlet Department : Amount received for sale Expense of cleansing of a portion of sludge - 202 10 0 tanks, removing and disposing sludge 12,778 0 0 Major - General Scott’s Major - General Scott’s cement process - - 179 0 0 cement process 332 0 0 Farm produce sold - 2,130 0 0 W orking expense of farm 2, ,547 0 0 Borough Surveyor’s Office, Birmingham, January 24th, 1876. Estimates of Income and Expenditure for the year 1876. Income. £ s. d. Interception Department : Amount received for the contents of privies and “pails” - -7,000 0 0 Outlet Department : Amount received for sale of a portion of sludge - 200 0 0 Major - General Scott’s cement process - - 150 0 0 Farm produce sold - - 2,550 0 0 Expenditure. £ s. d. Interception Department : Expense of cleansing and removing con- tents of privies and “pails” - - 36,190 0 0 Outlet Department : Expense of cleansing sludge-tanks, remov- ing and disposing . sludge - - 12,825 0 0 Major - General Scott’s cement process - 300 0 0 Working expenses of farm 2,960 0 0 Borough Surveyor’s Office, Birmingham, January 24th, 1876. 39260. 36 Chemical Laboratory, Corporation Sewage Works, Birmingham. — Certificate — Sample of effluent water from new precipitating tanks at above, taken March 1875. — Examined for general impurities. — Copy; January 26th 1876. Grains per Imperial gallon. Total solid residue containing - - - 58 ' 10 Mineral matter - - - 57 : 10 Volatile matter - - . 7-00 Suspended matter - - - 1-68 Soluble matter - - 49-42 Silica - - - - 0-84 Alumina, oxide of iron, and phosphates - - 0-14 Lime - - - - 12-22 Sulphuric acid - - - 17-38 Chlorine - - - - . - 9*52 Free ammonia - - - 1-218 Albuminoid ammonia - - - 0-042 = disintegrated animal refuse - - - 0-420 Appearance - - - - Clear. Smell ... - - { Slightly ammoniacal Action on test paper - - Alkaline. Owing to the construction of new tanks and other works, as well as the large area of land used for digging in the “ sludge,” the farm is much sacrificed. The valley, too, in which it is situated is an exces- sively cold one, consequently market gardening does not answer, the crops being late. Italian-rye-grass has been found to yield the best result;. but the demand for this produce has not been large. Notwithstanding the expense incurred by the corporation in clari- fying their sewage prior to its discharge into the river Tame, the sewage of adjacent townships, with large and rapidly increasing populations, is being poured daily into the Tame, or into its tributaries, without any attempt at clarification. Recently the Council have convened a meeting of representatives of adjacent boards, and at such meeting it was deter- mined to appoint a joint committee to consider and report with reference to the formation of a combined drainage district. BOLTON-LE-MOORS. The borough of Bolton has a rateable value of 311,563/. and a popu- lation of about 93,100, inhabiting 18,249 houses, which are spread over an area of 2,002 acres. There are only about 758 waterclosets, and the faecal matters of the population are chiefly disposed of by the 10,380 “middens,” and 700 privies on the “pail” system. The “middens” are drained into the sewers, consequently no inconsiderable portion of the solid excrement, partly in solution and partly in suspension, drains into the sewerage system. The borough has been sewered, but the whole of the sewage has not been intercepted, as four of the principal connexions between the main- sewers on each side of the Croal have yet to be made. The cost of the works up to this date (January 1876) 37 has been about 70,000/. The rainfall from the roofs of buildings and surface of streets ordinarily flows into the sewers, but in heavy storms the flood water is discharged by 18 storm-outlets direct into the river. Before any intercepting sewers were constructed, the sewage flowed by about 100 outlets direct into the river, causing a nuisance and serious annoyance to the inhabitants living adjacent and near to the Mill Lodge of the Springfield paper-works. A memorial having been pre- sented to Mr. Secretary Bruce by the owners and occupiers of property (being ratepayers) in the township of Bolton, he directed an inquiry, under the 29th and 30th Victoria, chapter 90, section 49, “ as to the “ alleged default of the corporation of Bolton in not having provided its “ district with proper sewers, and polluting the river Croal.” This inquiry was held on 19th August 1868 by Mr. Arnold Taylor, one of the inspectors of the Local Government Act Office. On receipt of his report, dated 17th December 1868, the Secretary of State directed that a copy of it should be sent to the corporation. After the lapse of nearly a year, no decisive steps having been taken in the meantime to abate the nuisance complained of, the Secretary of State directed (28th June 1869) that the plans and estimates of the borough engineer of Bolton (Mr. J. Baylis), in reference to the diversion of the sewage of the borough from the river Croal, together with any alternative plans that may have been prepared by instructions of the town council be sent to the Local Government Act Office for approval without further delay. These plans and estimates were submitted and approved, but a further delay having taken place in carrying out the works, the Secretary of State, being satisfied that the town council had been guilty of default, issued an order under his hand the 21st day of July 1869, directing that the works necessary for the diversion of the sewage should be com- menced within 14 days from the date of the order, and that the works so commenced should be continued without intermission until completion. The intercepting sewers which have been constructed have cost 10,286/. In June 1870 the corporation entered into an agreement with the " A. B. C. (Native Guano Company),” whereby they contracted to erect works at Burden, near the southern boundary of the borough, at a cost of 16,578/., and the company, on their part, undertook to defsecate and purify the sewage, so as to render it fit to be admitted into the river ; and in consideration for the use of the patents of the company, the cor- poration agreed to pay the working expenses of the process, and to deliver to the company one-fourth part of the manure manufactured at the works from the sewage-sludge. The volume of sewage which flows to the works every 24 hours is about 2,500,000 gallons ; but, in addition to this, there is a further volume of 1,000,000 gallons also intercepted, which is at present discharged by one outlet into the river, as the four syphons under the river to connect this sewer with the main outfall are not finished. There is also an additional volume of about 500,000 gallons of sewage yet to be intercepted, which now passes by several outlets direct into the river. The A. B. C. process was carried on up to June 1873, but was then abandoned, owing to the great expense of working it, and also because the manure manufactured from the sludge could not be sold. We were furnished by the manager of the works (27th January 1876) with the cost of labour and materials required to treat 1,035,000 gallons (about half the present daily flow of the sewage of Bolton,) for a period of 57J hours by the A. B. C. process, i.e.) c 2 38 Manager (Mr. Graham). Salary- Engine driver. (Wages.) Alum preparer. Do. - Mixture grinder. Do. - 4 Labourers, each 11. Is. 0 d. (Wages) - Watchman on Sunday Extra for overtime - 71 cwt. of sulphate of alumina, at Is. S^d. per cwt. - 1 32 cwt. of clay, at 4s. per ton 81 cwt. of carbon (waste product of prus- siate of potash manufacture) - Blood - 8 tons of engine coal, 7s. 6d. per ton Oil, tallow, packing, &c. - Water and gas - £ s. d. 2 17 31 1 10 0 “ 1 4 0 1 2 0 4 4 0 0 2 0 0 8 0 6 1 4 1 6 2 1 4 31 0 1 0 ~ 3 0 0 0 6 0 0 12 0 £23 18 1 To this amount must be added contingencies and the cost of repairs to and deprecation of works and plant. (See also special report on this process by the Rivers Pollution Commission, 1870). The corporation have not been required (up to this date 27th January 1876) to deliver any manure to the order of the patentees, but there is, and has been for the last two years, stored at the works awaiting the order of the company 700 tons of this manure. The sewage is now only treated from 8 a.m. to 6 p.m. on week days and not at all on Sundays, and the whole of the sewage from 6 p.m. to 8 a.m. flows on Snndays untreated direct into the river. The process now used is also a patent one, known as the M. and C. method, and it was stated to us to be identical with the process of Mr. Goodall, which had been tried at Leeds. In carrying out the M. and C. process there is added to the sewage to be purified a mixture consisting of the following ingredients: lime, carbon (a waste product of the prussiate of potash manufacture), house ashes, soda, and per-chloride of iron. The materials are mixed in a “ pit ” and lifted therefrom by means of a dredger into a second mixing pit, from which the mixture is discharged slowly into the sewage as it flows through the works into two depositing tanks, each divided into three compartments, after which the treated sewage flows for a short distance along an open conduit and thence into the River Croal. The tanks are cleaned out every fortnight, and about 70 tons of “ sludge ” are removed therefrom and thrown into heaps at the side of the tanks to part with the moisture which it contains, but it has been found impossible to dry it without applying artificial heat. The cost of working the M. and C. process is stated by the manager to be less than that of the A. B. C. process, and we here append the statement which he supplied to us : “ To the chairman and members of the Bolton Corporation Investiga- tion Committee. “ Bolton Corporation Sewage Works, Gentlemen, * January 14th, 187 5. I beg to submit to you a statement of the cost for labour and materials required for the treatment of 2,500,000 gallons daily of sewage-water for a period of 57-J hours, ( i.e ., 10 hours for five days, and 7^ hours for one day in the week.” 39 Cost of treating Sewage by the M. and C. process. Wages, &c. per week _ £ 2 5. 14 d. 0 One labourer, preparing mixture, &c. - 1 6 0 Two „ at 1/. 2s. each - - 2 4 0 Two „ at 1/. Is. do. - - 2 2 0 Extra for overtime - - - 0 5 0 lame, 7 tons 3 cwt., at 185 . 6d. per ton - 6 12 3 Refuse carbon, 2 tons 15 cwts., ton - at 65 . per 0 16 6 Salts, &c, - - - 0 15 0 Coal, 5 tons at 7 s. 6d. - 1 17 6 Oil tallow packing, &c. - - 0 5 0 Water and gas - - 0 10 0 £19 7 3” It will be observed that this volume of 2,500,000 gallons of sewage is the daily flow to the works, and that when the intercepting sewers are completed, the volume will be augmented to about 5,000,000 gallons, and as the works have been constructed for treating only 3,000,000 gallons a day of 10 hours, they will have to be considerably enlarged. In February and April 1873, the corporation sold to Mr. John Higginbotham of Manchester, 50 tons of the manure manufactured by the A. B. C. process at 55s. per ton, but the persons to whom he after- wards sold it, complained of the quality of it, and he refused to pay for it, and the corporation had to commence proceedings against him to recover the amount. The sewers in the town are ventilated by open grids in the manhole covers and also by 228 separate shafts carried up from the sewers to the surface of the streets and covered by open grids. Besides the yearly cost of dealing with the present limited volume of liquid sewage, there is the further expense of cleansing the 10,380 “middens/’ the 700 privies on the “pail” system, and the yearly cost of this is 6,645/., but this is not all loss as the corporation receive for 51,290 tons of refuse removed from these receptacles, 4,494/. The corporation in order to get rid of the sludge caused some of it to be mixed with the refuse from the middens, and have sold 100 tons of this mixture at Is. per ton. There is, however, about 2,500 tons of the prepared sludge now lying at the works. The M. and C. process, like its twin the A. B. C. process, merely removes the grosser parts of the suspended matters in sewage, but fails to remove the putrescible organic matters in solution, and therefore the clarified sewage cannot be admitted into rivers without causing pollution, this is conclusively proved by the following result of analysis of a sample of the effluent water by Dr. Henry E. Roscoe, F.R.S., Professor of Chemistry, the Owens’ College, Manchester, which has been furnished to us by the town clerk. The Owens’ College, Manchester, To the Town Clerk of Bolton. January 22nd, 1874. Sik, “ I beg herewith to send you results of careful analysis (1) of effluent water and (2) of manure, sent from the sewage department of the borough of Bolton by Mr. John Forster on the 27th of December last.” 40 (1) Effluent Water. Total residue - Grains per gallon. - 62*65 Parts per 100,000. 89 1 5 Loss on ignition - - 5*25 7*5 Nitrogen as nitrites and nitrates - 0*23 0*3292 Free ammonia - • - 1*75 2-5 Albumenoid ammonia - - - 0*448 0-64 Chlorine - - 4*20 6*00 Temporary hardness - - 16*2° — Permanent „ - - 20-0° — Total „ - - 36*2° — As regards the results of this ar lalysis it appears that the water, as compared ‘ with London sewage, contains about half as much animal refuse or products of animal decomposition. As regards the inorganic portion, this water contains considerably more than the London sewage does. These animal impurities are not completely • got rid of by oxidation : and, cn keeping, the water has a putrescent smell, it cannot therefore be said that the process, whatever it may be that the sewage has undergone, has done much to render the effluent water innocuous.” (2) The Manure. Total nitrogen Insoluble phosphate - Soluble phosphate Moisture - Loss on ignition - 0-7 6°/ 0 - 0-93% - None. - 26*67% - 49*80% “ From the preceding analysis of the manure in which I have only determined the constituents of importance, it will be seen that the quantity of total nitrogen and phosphates is so small that the value of the manure is certainly not greater than 1/. per ton. “ I am &c., “ (Signed) Henry E. Roscoe. “ To the Town Clerk, Bolton-le-Moors.” We collected a sample of the sludge of the M. and C. process, and caused it to be analysed by Dr. A. Voelcker, F.R.S. Results of analysis of sample of the sludge from the M. and C. process carried out at Bolton-le-Moors. This sludge in the condition in which it was received by me contained in 100 parts — Water - - - 60*83 ^Organic matter - - - 14-66 Oxide of iron and alumina - - 3*81 Tribasic phosphate of lime - - 0-69 Carbonate of lime - - 8*18 Sulphate of lime - - - 0*59 Alkaline salts, magnesia - Containing potash - - 1-70 - 0*30 and chloride of sodium - 0*04 Insoluble siliceous matter (sand and clay) 9*54 100*00 * Containing nitrogen _ 0-41 Equal to ammonia - 0*49 41 15^ lbs of phosphates, which at 1 d. per lb. are worth In the sample of Bolton sludge there is in a ton : s. d. - - ' - - 1 3J - 1 1 which, calculating - 7 4 6 t 7 q lbs. of potash „ 2d. Nitrogen equal to 11 lbs. of ammonia at 8 d. per lb., is worth >5 ammonia Total estimated money value of 1 ton of Bolton sludge - - 9 If the sludge were dried sufficiently to leave only 15 per cent, of moisture in the material it would have the following composition : Moisture ^Organic matter - Oxide of iron and alumina Tribasic phosphate of lime Carbonate of lime Sulphate of lime - Alkaline salts and magnesia Containing potash and chloride of sodium Insoluble siliceous matter - - 15*00 _ _ 31*82 - . 8-52 _ - 1-49 - _ 17-75 - - 1-27 . - 3-68 - - 0*64 - - 0*08 - - 20-47 100-00 * Containing nitrogen Equal to ammonia 0*89 1-08 A ton of Bolton sludge drieddo that extent contains : 33 lbs. of phosphate of lime, worth at Id. per lb. 14 lbs. of potash „ 2d. ,, Nitrogen equal to 24 lbs. of ammonia, at 8 d. per lb. £ s, d. 0 2 9 0 2 4 0 16 0 Total estimated money value of 1 ton of dried Bolton sludge £1 1 1 For selling value, see page lxiii. The cost to dry the sludge is not given ; but experience indicates that the money expended would be wasted, as dried sand and earthy material has no greater value than when wet. /There is less weight to cart and that is all. BRADFORD. Area - (acres) 7,221 Population, about ------ 173,723 Rateable value - £745,671 Sewerage works cost - - - - - £70,000 Sewage defecation works cost - - £60,000 Waterclosets about _____ 4,050 Daily dry weather volume of sewage - (gallons) 8,000,000 The cost of defecating sewage ( 1875) - £8,000 Privies - - - - - - 11,500 Ashpits ------- 16,500 Yearly cost of cleansing privies and ashpits - - £8,000 Quantity of refuse removed yearly - - - (tons) 56,200 First cost of railway waggons for conveying refuse - £4,800 The borough of Bradford has been sewered at a cost of 70,000/., and the 4,050 waterclosets and 11,500 privies and cesspits used by its 173,723 inhabitants are drained into the system which comprises about 48 miles of main and tributary sewers. The main sewerage works were commenced in 1862 and finished in 1875. In 1868 the entire volume of sewage 42 (about 8,000,000 gallons per day) flowed direct into the Bradford Beck r then a black and offensive stream. The Rivers Pollution Commission designated it “ the most filthy stream they had met with, surpassing the “ worst examples in Lancashire.” Although the sewage was not worse in appearance than the water of the “ Beck,” into which it flowed, Mr. William Crompton Stansfield of Esholt Hall, near Apperley Bridge, considered himself aggrieved by the additional pollution which the sewage caused to the stream, and on the 28th of August 1868, he filed a Bill of Complaint in the Court of Chancery to restrain the corporation from causing or permitting to pass any sewage, filth, or other offensive matter, solid or liquid, into the Bradford Beck in such a manner that the same might pass therefrom into the river Aire to his injury, and prayed that damages might be awarded for all injuries suffered. On the 1st September 1868, the corporation was served with an interim injunction obtained ex parte from the Master of the Rolls, prohibiting them under a penalty of 10,000/. from opening or permitting to be opened any additional main or branch-sewer, or any house-drain or sewer into the outfall-sewer or into the Bradford Beck, or any sewer communicating therewith or emptying itself therein. An answer to the bill was filed, but negociations between the corporation and the Plaintiff ended in an arrangement whereby the injunction was dissolved upon terms, one of which was that the corporation should, on or before the 11th of January, take steps to defecate the sewage passing through the public sewers. The corporation being convinced that any works merely dealing with the sewage of the town would fail to produce any appreciable improvement in the condition of the river Aire, they, in conjunction with other corporations and local boards in the watersheds of the Aire and Calder, introduced a Bill into Parliament during the Session of 1871 called the “ Aire and Calder Conservancy Bill,” which proposed to deal in a comprehensive manner with the sewage of the two watersheds. Violent opposition to this Bill was threatened, and it was consequently withdrawn. The same year the “ Peat Engineering and Sewage Filtration Company,” made an offer to the corporation to apply their system to the sewage of Bradford. Arrangements were made by which the corporation agreed to lease the sewage to this company for a term of 21 years, and to provide lands and buildings in which the operations were to be carried on ; and the Company, on their part, agreed to purify the sewage, estimated at a daily volume of 8,000,000 gallons at their own expense, the residuum to become the property of the company. The company were also to have free use, for the first three years, of the buildings and plant to be constructed by the cor- poration ; but after that period they were to pay the corporation a rent for the use thereof. These works were subsequently erected at a cost of 60,000/., including land and incidental expenses. The company however failed to carry out the contract, and legal proceedings were commenced by the corporation against the company and their sureties to enforce the contract; but the company collapsed, and the corporation in 1874 took possession of the works. The defecation works are situate in a valley between Erizinghall and Massingham, and were specially constructed for carrying out the process of filtration by peat charcoal. This process failed, because the sediment, choked the filters ; and as the filtering medium required to be constantly replaced, the cost was ruinous, and the process had consequently to be abandoned. The corporation then made such alterations to the works as to carry on a combined process of precipitation and fiitration ; and this method has for some time past been in operation for defecating the sewage, which gravitates to the works, and flows into four subsidence tanks, from these tanks it passes along an 43 open conduit, across which iron screens are fixed to hold back any flocculent matters. Below the floor of the building, which is 700 feet long and 32 feet wide, there are 22 tanks, each tank 30 ft. x 32 ft. x 9ft. deep, and these, with the exception of the two middle ones, are used as precipitation tanks for the sludge. At the deepest point of these tanks connexions are made to a 9-inch cast-iron sewer pipe, through which the sediment is passed to “ sludge-pits,” one at each end of the building. The two middle tanks receive sewage from an “ open conduit,” and the coarser particles subside. After flowing through these tanks, lime, in the state of “ milk of lime,” is mixed with the sewage, which then flows along another open conduit into other precipitation tanks, of which there are 34. These tanks are each 22 feet wide by 24 feet long, and of an average depth of 5 feet, and are capable of holding about 18,000 gallons each, or together 612,000 gallons. The bottom of the tanks slope towards the filters, and after the sewage has been allowed to subside from 20 to 30 minutes, the supernatant liquid passes through a self-acting float-valve on to 34 filters ; these are each 22 feet long by 12 feet wide by 2 feet deep, and are filled with coke. From these filters the clarified water passes into another open conduit, called the “effluent canal this runs along the entire length of the filter tanks, and is also partly filled with coke, and from this canal the treated sewage flows into the Bradford Beck. The sewage is allowed a period of from 20 to 30 minutes for subsidence in each tank, and as it only takes 15 minutes to fill a tank and 15 minutes for the clear liquid to run off, each tank, as constructed, is capable of defaecating 1 8,000 gallons per hour, and the 34 tanks 612,000 gallons per hour. The “ sludge ” from the tanks flows through a sewer to the sludge- pits, situate at either end of the main building ; from these pits it is pumped into the tanks under the building, where it has an opportunity of parting with a portion of its moisture, and is thence removed to open sheds ; and although it is there exposed to the air, it only loses a small quantity of its water, and the corporation propose to adopt artificial means to dry the sludge, of which about 22 tons are daily produced from the sewage of the town. The works have a railway siding to the Midland Railway on the one side, and are bounded by the Leeds Canal on the other, so that great facilities are afforded for the removal of the manure. The quantity of lime required for precipitation of the sewage is one ton to every million gallons of sewage, but on Sundays, when the sewage contains no dye water, half a ton to every million gallons is found to be sufficient. The mixing and other machinery is at present driven by three portable steam engines of 10-horse power each, one in the centre of the building and one at each end. The estimate for defaecating the sewage for the year 1876 is as follows : — “ Salary and Wages.” Manager (G. Alsing) Foreman (James Lees) per week Night do. (John Duxbury) do. 1 joiner do. 6 engine tenters (each) do. 18 labourers (day), with extra time, say 61 weeks do. 10 do. night do. do. 2 10 12 5 d. 8 0 0 0 0 0 £ 300 109 78 83 390 1,317 732 s. 0 4 0 4 0 12 0 d. 0 0 0 0 0 0 0 s. d. 1 4 1 4 3,010 0 0 44 Brought forward - £3,010 0 0 “ Materials and Miscellaneous Expenses .” £ s. d. 1,875 0 0 125 0 0 637 0 0 5 0 0 120 0 0 32 10 0 6 10 0 5 10 0 50 0 0 50 0 0 100 0 0 10 0 0 250 0 0 — — 3,266 10 0 £6,276 10 0 The corporation has not as yet been enabled to sell any of the sludge which consequently accumulates at the works. In addition to the cost of defaecating the sewage, the annual cost of cleansing the 11,500 privies and 16,500 ashpits is 8,000/., and the whole of the refuse removed therefrom becomes the property of the contractor and is disposed of by him. Abstract. Annual cost of treating sewage - £6,276 10 0 Annual cost of cleansing privies - 8,000 0 0 Total £14,276 10 0 We collected samples of the solids extracted from the sewage before, and also of the sewage-sludge after treatment, and the following are the results of Dr. Voelcker’s analyses. Sludge from drying pits, no artificial heat being used. On analysis the sludge as received, and calculated with 15 per cent, of moisture, furnished the following results : — - 0*16 - 0-11 100-00 100-00 - 0-14 0-67 - 0-17 0-81 Water - ^Organic matter Oxide of iron and alumina Tribasic phosphate of lime Carbonate of lime Sulphate of lime Alkaline salts and magnesia Containing — Potash and chloride of sodium Insoluble siliceous matter * Containing nitrogen • Equal to ammonia Calculated with 15 per cent, of moisture. 82-41 15-00 7*54 36-44 0-78 3-77 0-69 3-34 5-66 27*36 0-49 2-36 0- 73 3-52 0-77 0-52 1- 70 8-21 3.000 tons of lime - 2.000 tons of breeze for filters 1,040 tons of coke for fuel 5 tons of coals - Gas - 150 gallons of engine oil 224 lbs. cotton waste - 220 lbs. candles - Timber for keeping up plant, machinery, and buildings - Kepair of engines, machinery, &c. Alterations and additions Office requisites* - Rates, taxes, and sundries. 45 In a ton of the wet sludge there are 17J lbs. of phosphate £ s. d. of lime, worth at 1 d. per lb. - - - - 0 1 31 lbs. of potash worth at 2d. per lb. - - - 0 0 7 Nitrogen equal to 4 lbs. of ammonia at 8d. - -028 Total estimated money value of 1 ton of wet sludge £0 4 8 J The dried sludge contains in 1 ton 75 lbs. of phosphate of lime, worth at Id. per lb. - 17^ lbs. of potash, worth at 2d. per lb. - Nitrogen equal to 18 lbs. of ammonia at 8 d. per lb. £ s. d. 0 6 0 1 0 12 3 101 0 Total estimated money value of 1 ton of dried sludge £l 0 1J For the selling value, see page lxiii. Solids drained from Sewage before the Liming Process at Bradford. A sample received in a partially dried condition had the following composition Calculated with 15 per cent, of moisture. Water - - 51 •41 15-00 * Organic matter - 23' •94 41*88 Oxide of iron and aluminia - 2 ■ ■63 4-61 Tribasic phosphate of lime - 0' •69 1-21 Carbonate of lime - 4 ■07 7*11 Sulphate of lime - 0 •42 0-73 Alkaline salts and magnesia - 1 *28 2*24 Containing — Potash - 0*47 0*82 and chloride of sodium - ^0*03 0*05 Insoluble siliceous matter - 15 *56 27*22 100 •00 100-00 * Containing nitrogen - _ 0* 44 0-77 Equal to ammonia - - o- 53 0-93 According to the preceding analytical results the sample with 51*41 per cent, of moisture contains in 1 ton — 15 J lbs. of phosphate of lime, worth at id. per lb. - 101 lbs. of potash „ 2d. per lb. - Nitrogen, equal to 12 lbs. of ammonia at 8d. per lb. Making a total estimated value of 1 ton £ s. d. 0 L 0 1 0 8 3* 9 0 £0 11 0 £ The same material with 15 per cent, of moisture contains in a ton — £ s. d. 27 lbs. of phosphate of lime, worth at id. per lb. - - 0 2 3 18 lbs. of potash „ 2d. per lb. - 0 3 0 Nitrogen equal to 21 lbs. of ammonia at 8 d. per lb. - 0 14 0 Total estimated value of 1 ton £0 19 3 For the probable value, see page lxiii. 46 COVENTRY. Area (acres) - Population (about) - Rateable value - Inhabited houses - Water closets - Cost of the main sewerage works - Volume of sewage every 24 hours, about (gallons) Privies - Cost of cleansing privies (yearly) - 1,600 40,000 4 Z - £101,438 10,400 / 5,000 & o - £33,000 - 2,000,000 2 >‘ : 800 £1,050 Cost of farm for sewage irrigation, 27,000/. The farm has been let in consequence of the offer from the “ General Manure and Sewage Company, Limited,” freeing the corporation (for the time) from the responsibility of purifying the sewage. The city of Coventry has been sewered ; the works were commenced in 1853 and finished in 1855, at a cost of 33,000/. The whole of the sewage flows to one outfall at Whitley into the river Sherbourne, which is a small and rather sluggish stream. There are in the city 10,400 houses, and the excrements of the 40,000 persons who inhabit them are conveyed into the sewers by about 5,000 waterclosets, and consequently into the river into which the sewers discharge themselves, as there are only 800 privies. The sewers are ventilated by open grids in the covers of the 500 manholes, which are formed on the lines of sewers ; they are also ventilated by being connected to fourteen factory chimney shafts, and further by the rain-water stacks from the eaves of houses. The whole of the rain-fall on the roofs and surface of the streets flows into the sewers, and from thence in heavy storms into the river by an overflow outlet specially provided for that purpose situate near Shut Mill Lane. Several springs were tapped while the sewerage works were being constructed, and a volume of about 500,000 gallons from this source enters the sewers daily. The waterworks belong to a private company, and 720,000 gallons of potable water are daily de- livered for the use of consumers. There are also 21 public wells and a great many private wells from which a considerable number of the inhabitants obtain water for domestic purposes. In 1860, complaints having been made by riparian owners of the pollution caused to the river Sherburne, the corporation directed sub- sidence tanks to be constructed near the river, and the outfall to be diverted so that the sewage might be discharged into the tanks, and afterwards filtered through a medium of gravel 3 feet in thickness before it entered the river. The tanks and so-called filters were a failure as regards purifying the sewage ; they only partially extracted the suspended matters, and left the putrescible organic matters in solu- tion, and although this somewhat mitigated the nuisance, it did not produce any substantial diminution of the polluting quality of the liquid. Further complaints having been made of the condition of the river, the corporation, as advised in 1869, purchased 262 acres of land at Whitley at a cost of 27,000/., and instructed Mr. T. Hawkesley, M. Inst., C.E., to prepare a scheme for laying it out as an irrigation farm ; and he subsequently submitted plans and an estimate of the proposed works. The sewage would, owing to the configuration of the land, have to be pumped on to the farm, and this circumstance, in addition to the great cost of the proposed works, caused the corporation to postpone carrying out the scheme. In August 1870, the A. B. C. or “ Native (i Guano Company,” made an offer to the corporation to treat the sewage of the city by their process, but the terms proposed by the corporation 47 were not accepted by the company. On the 25th September 1871, Mr. H. M. Jackson, a riparian owner, filed a bill of complaint in Chancery and applied for an interlocutory injunction to restrain the corporation from passing sewage into the river, but the court declined to grant the injunction and the suit was abandoned. In 1872, the “Peat Engineering and Sewage Filtration Company,” made an offer to the corporation to deal with the sewage by their process, but this offer the corporation did not entertain. On the 25th of October in the same year, the corporation entered into a contract with the “ General Sewage and Manure Company, Limited,” whereby a messuage and 28 acres of land at the outfall works were leased by the corporation to the company for 14 years at a rent of 7 51 . per annum, together with the sewage of the city. The company covenanted to erect the necessary buildings; to furnish the requisite machinery and plant ; to effectually deodorize and purify the whole of the sewage of the city, and to pass the clarified water therefrom into the river Sherburne, and they further covenanted that if default is made, after six weeks’ notice, in carrying out the conditions of the lease, the corporation shall have power of re-entry and to put an end to the lease ; whereupon all buildings and works shall become the property of the corporation without payment or com- pensation to the company ; and the corporation are also to have the option of buying the steam engines, machinery, and other effects on the works at a valuation. The company were to commence to treat the sewage on the 29th of September 1873, but it was not until May 1874 that the works were sufficiently completed to enable them to do so. The “ General Sewage and Manure Company Limited ” was formed in 1872, with a primary object of working on a practical scale the process for the purification of town sewage patented by Dr. Anderson, but the company have also acquired ether patents for improving this process. The works erected by the company at Coventry, at a cost, including machinery and plant, of 12,000/., are situated on the right bank of the River Sherburne about two miles from the city. The sewage, estimated at 2,000,000 gallons every 24 hours, is weak owing to the large volume of subsoil water which mingles with it on its passage through the sewers. On the sewage reaching the works it passes through “ extractors ” which remove the coarser parts of the suspended matters, and it then flows into circular mixing tanks, constructed beneath the floor of the first block of buildings, to these tanks are affixed “agitators” driven by steam power for thoroughly mixing the compound which is here added to the sewage in such quantities as from time to time is required. This mixture consists of a saturated solution of crude sulphate of alumina, which has been heated to the boiling point, and this is prepared at the works from ordinary clay, or from shale of the coal measures, treated with concentrated sulphuric acid (an aluminous shale is at present used). From the mixing pits the sewage flows into another series of tanks under the floor of the second block of buildings, and in these tanks “lime” in the condition of so-called “milk” is added to the sewage which is here also continuously agitated by machinery.” From the “ liming-tanks ” the defaecated sewage flows into uncovered subsidence- tanks ; these are four in number, and each tank is cleaned out every fourth day. The supernatant liquid flows from these tanks in a tolerably clear condition into a conduit which discharges it on to an area of about 4^ acres of loamy soil adjoining the works. This land has been roughly laid out as a land-filter and drained about five feet deep with an outlet at the extreme end of the land into the river Sher- 48 borne. On the date of our visit to the works the effluent water flowing from this outlet was clear and inodorous. The sludge precipitated into the tanks amounts to about 30 tons daily, and this, after being passed through a further straining process, is placed in heaps at the works to lose a still further portion of its moisture. We observed a large accumulation of this deposit. In order to convert the semi-dried sludge into a manure it is further dried by artificial heat by the use of Messrs. Milward’s sewage mud-drying machines. The company treat by their process the sewage flowing to the works between the hours of 5.30 a.m. and 11 p.m., but the sewage of the night ( i.e ., from 11 p.m. to 5.30 a.m.) flows through the tanks, and on to the filtering area without - chemical treatment. The company say that the sewage during that period is chiefly subsoil water, and it only needs to be passed through the tanks mixed with the chemically treated sewage which they contain, and then flow on to the filter beds.” By the courtesy of Messrs. J. C. Melliss and E. F. Coddington, the engineer and the manager of the works, we are enabled to give the working expenses of the company. Working Expenses, Weekly. 22 tons of coal, at 10s. Qd. per ton - £ - 11 s. 11 d. 0 27 cwt. of sulphuric acid, at 76s. 6d. per ton - - 5 3 3 9 tons of sulphate of alumina, 27s. 6d. per ton - - 12 7 6 4^ tons of lime, at 16s. 2d. per ton - Labour (12 men) - - - 3 12 9 - - 16 0 0 Contingencies - - - 1 5 6 50 0 0 This amounts yearly to a sum of 2,600/. ; to this must be added the salary of the manager, 250/., and also a sum for repairs and depreciation of works and plant, also the interest on capital expended, say 600/., per annum. Abstract . Annual cost of treating the sewage - £2,600 0 0 Manager’s salary _____ 250 0 0 Interest on capital expended - 600 0 0 Total _____ £3,450 0 0 There is difficulty in getting rid of the sludge, as also of selling the manure when manufactured, but in January of this year (1876) owing to the exertions of the bailiff of the company’s farm, the farmers in the neighbourhood have purchased and given orders for 350 tons; of the sludge to be taken direct from subsidence-tanks at 3s. per ton, this sludge, costing 4s. 10 d. a ton to produce, when not at once removed, is placed in heaps about the works exposed to the atmosphere, to get rid of some of its water, afterwards if dried by artificial heat it costs in addition 1/. 8s. 9 d. per ton, but if there was a demand for the manure, necessitating its being passed through a filter, and also artificial heat being applied to dry it, the cost would be 21. 10s. per ton. The manure thus produced in a dry state is then ground to powder, for sale to farmers. We collected a sample of the sludge from a heap on the works, and have caused it to be analyzed by Dr. A. Yoelcker, F.B.S., and the following are the results. 49 Analysis of Manure prepared by the General Sewage Manure Company at Coventry. A sample of the Coventry sewage manure was found of the following Composition : — Moisture - IS 47*36 ^Organic matter - - - - 15*95 Oxide of iron and alumina - - - - 5-17 Tribasic phosphate of lime - - - - 1*81 Carbonate of lime - - - 7*32 Sulphate of lime - - - 1*19 Alkaline salts and magnesia - - - 2*38 Containing potash - - 0-20 and chloride of sodium - - - 0*02 Insoluable siliceous matter - - - - - 18*82 100*00 * Containing — Nitrogen _ _ i ■■ « . . • 0*69 Equal to ammonia - •- - - - 0*84 According to the preceding analytical results 1 ton of the Coventry sewage manure contains : — s , d. 4041bs. of phosphate of lime, worth at Id. per lb. 3 44 441bs. of potash ?> 2d. 0 9 Nitrogen equal to 191bs, of ammonia at 8 d. 12 8 Total estimated money value per ton - _ 16 9J For the value to the farmer, see page lxiiii These works have, from the first, been carried on at a loss of not less than 1,500/. per annum for each million gallons of sewage per day treated ; and, apparently, this rate of loss must continue, so long as this mode of treatment is continued. The Corporation cleanse about 800 privies annually, removing 6,600 loads of refuse, at a cost of 1,050/. LEEDS. Area - Population (about) - Rateable value - Waterclosets (about) Main sewerage works cost about - Estimated daily volume of sewage (about) Estimated quantity of “ sludge ” produced daily (acres) 22,000 285,000 - £945,141 8,000 - £240,000 (Gallons) 12,000,000 (tons) 40 Or about 15,000 tons annually. Experimental and permanent works for A. B. C. process at the outfall Knostrop, cost - Borwick’s machines for drying the mud cost £47,000 £4,000 Total cost £51,000 Annual cost of treating sewage by A. B. C. process Number of privies (about) - Annual cost of cleansing privies and middens Amount received for about 80,000 loads of refuse removed £15,000 15,598 £27,000 £9,000 The borough of Leeds has been sewered, and the main outfalls were, until 1852, direct into the river Aire. The sewage was then inter- 50 cepted and conveyed to one outfall at 44 Knostrop.” Waterclosets are connected with the sewers, and the privy cess-pits and ash-middens are also drained into them ; the sewage is however weak as compared with the sewage of London. The Rivers Pollution Commissioners collected samples of the Leeds sewage, flowing from the works at Knostrop, and submitted them to analyses, and in speaking of the result said. 44 The Leeds sewage contained a large portion of suspended matters ; but it was very deficient in soluble fertilizing ingredients, containing only about one third of the proportion present, in average London sew- age. This latter circumstance is due partly to the discharge of much slightly polluting water from factories into the sewers, and partly to the circumstance that 4 springs were tapped during the execution of the sewerage works.’ It is, however, probable that the sewage was excep- tionally weak, at the time our sample was collected (1.30 p.m.) since Glasgow, with a daily water supply of more than 50 gallons her head, furnishes sewage twice as rich in fertilizing ingredients as that of Leeds.” The nuisance caused to the river by the sewage is aggra- vated by the entire volume being discharged through one outfall, at Knostrop, and Sir Charles Hugh Lowther, Bart., and Mr. J. T. Leather, riparian owners, whose lands are situated a short distance below the outfall works, filed on the 5th November 1869, a Bill of Complaint in Chancery, and obtained a perpetual injunction to restrain the corporation from polluting the river Aire by the sewage, at Knostrop ; the Court on application of the defendants granted two years from the date of the decree, in which period the corporation were to devise and carry out a scheme for abating the nuisance ; but the time not proving sufficient to enable them thoroughly to investigate the various remedial processes proposed for consideration, they made further applications to the Court, and on three occasions the time was extended, the last extension was to 1st March 1874. In 1870 the A. B. C. or 44 Native Guano Company” made an offer to the corporation to treat by their process (for a limited period) the sewage discharged from the works at Knostrop, and also to pay the costs of the materials and labour required to carry on the process, provided that the corporation would bear the cost of erecting experi- mental works and supplying the necessary machinery for the purpose ; this the corporation agreed to do, and the works, fitted with the necessary plant, were erected at a cost of 10,000/. The company carried on the process for some time ; but the corporation had no control over the quantity of the chemicals used. On 17th August 1870 an agreement was entered into between the corporation and the A. B. C. Company, by which the corporation undertook to erect permanent works according to plans furnished by the company, for treating the entire volume of sewage (estimated at 12,000,000 gallons daily), and the company, on their part, undertook to be at the expense of successfully purifying and deodorising that volume of sewage, and to manufacture the 44 sludge ” into a manure, and out of any profits from the sale of such manure to pay to the corporation 15 per cent, of the profits. The works were commenced in 1872 and finished in 1875, at a cost of 47,000/. Before the completion of the permanent works the company applied to the corporation to release them from the penalties of the contract, and they alleged as a reason for this request that they could not sell the manure which they had already manufactured at the experi- mental works, and offered, as a consideration for being released, to allow the corporation, without paying royalty, to use all the patents obtained by the company for 44 treating sewage water and matters.” Eventually, the corporation consented to cancel the agreement, and on this being done the A. B. C. Company vacated the works. Some time after Major-General Scott, C.B., and afterwards Mr. Rupert Goodall, 51 and finally Mr. Sylvester Fulda were permitted to carry on experiments with their several processes at the sewage works ; the result was that Goodall’s process ( i.e ., treating the sewage with lime, ground coal ashes, nitrate of iron, and carbon, a waste product from the manufacture of prussiate of potash) promised the best effect. The cost of this process for treating the entire volume of the night and day sewage flowing from the works at Knostrop was estimated at 19s. per hour, and arrangements were subsequently (in August 1874) made by the corporation with Mr. Good all to carry on the work for a period of six months ; but at the end of that time it was found that the sewage could be clarified on a larger scale at a cheaper rate than it had been done at the smaller works, and it was considered advisable to try the process of the A. B. C. Company at the large works, which were originally built for the A. B. C. process, and from January 1875 to January 15th, 1876, the A. B. C. method was carried out at a cost during this year (for lime, carbon, alum, clay, and carbolic-sulphide, inclusive of labour, fuel, oil, tallow, &e.) of 15,000/. This amount is exclusive of the cost of drying the deposit and converting it into a manure, which has not as yet been done. The corporation have recently (January 1876) arranged with Mr. John Hanson, a manufacturing chemist of Savill Town, near Dewsbury, to treat the sewage by a process for which he has obtained a patent, and he proposes to use, in treating 12,000,000 gallons daily, — £ s. d. Six tons of lime at 14s. 6d. per ton - - - - -470 Seven tons of black-ash at 8s. per ton - - - - 2160 Seven tons of new material (as to which no information was given) at 7s. per ton - - - - - -290# £9 12 0 Or at a rate of 16s. per million gallons per day for chemicals alone. To this must be added the cost of labour, coal, and other materials, also the expense of cleaning out the sludge-tanks, and of artificially drying the “ sludge” and converting it into a manure. It is estimated that the quantity of suspended and precipitable matters in the Leeds sewage amounts to 40 tons daily, or about 15,000 tons per annum, and not any of this has been sold, which consequently accumulates at the works. For the purpose of artificially drying the mud and manufacturing a manure therefrom the corporation are erecting two of Borthwick’s drying cylinders ; these will cost about 4,000/. The Hirers Pollution Commission carefully investigated the A. B. C. process, and in their second Report, 1870, submitted the conclusions regarding it to which their inquiries, observations, and analyses had led them. They say, “ As therefore the inevitable conclusion is unfavour- able to the A. B. C. process, in respect of its alleged power to hinder the pollution of rivers by town sewage, so also is it altogether un- favourable to the value of the manure which it manufactures. The one statement is, indeed, in some sense the complement of the other, for just in proportion to the largeness of the amount of fertilising matter which escapes must be the comparative worthlessness of the small remainder which is retained.” We collected a sample of the sludge from the A. B. C. process and caused it to be analysed by Dr. A. Yoelcker, F.R.S., and the following are the results of the analysis : — 39260. D 52 Deposit from the Sewage of Leeds treated by the A. B. C. process. This deposit in the state in which it was received, and calculated for 15 per cent, of moisture, had the following composition : — Calculated with 15 per cent, of moisture. Moisture - _ 57*20 15*00 ^Organic matter - _ 9*45 18-77 Oxide of iron and alumina . 8*10 16-09 Tribasic phosphate of lime - 0*76 1*51 Carbonate of lime _ 5-60 11*12 Sulphate of lime - . 0*45 0*89 Alkaline salts and magnesia - 1-40 2*78 Containing — Potash - 0*39 0-77 and chloride of sodium 0*02 0-04 Insoluble siliceous matter - 17-04 33*84 100*00 100*00 * Containing nitrogen - _ 0-31 0-61 Equal to ammonia - - 0-37 0-74 £ s. d. The partially dried deposit containing 57*20 per cent, of moisture contains in 1 ton 17 lbs. of phosphate of lime, worth at 1 d. per lb. - - 0 1 5 8f lbs. of potash, worth at 2d. per lb. - - 0 1 H Nitrogen equal to 8J lbs. of ammonia at 8 d. per lb. - 0 5 6 Total estimated money value per ton - - £0 00 4^ In a ton of the deposit, with 15 per cent, of moisture, we have — 34 lbs. of phosphate of lime, worth at 1 d. per lb. 17 J lbs. of potash, worth at 2d. per lb. - Nitrogen equal to 16J lbs. of ammonia at 8 d. per lb. £ s. d. 0 2 IQ 0 2 101 0 11 0 Total estimated money value of 1 ton - - - £0 16 8| For the true value, see page lxiii. ===== The cost of treating the sewage in this case is not less than 1,500/. per annum for each million gallons per day, and there is no probability of reduction if the present mode is continued. The Committee of Works persist in expecting 1/. per ton for the manipulated sludge, which they do not obtain; recently (July 1876) they assert that it is selling at 10s. per ton. In addition to the expense of clarifying the sewage by chemical treat- ment, there is the cost to the corporation of cleansing the 15,598 privies and middens, removing the refuse (about 80,000 loads) at a cost of 27,000/. The expense of cleansing and removing is partly recouped by sale of the refuse, which realizes 9,000/., or at a rate of 2s. 2\d. a load, lead ing a deficit of 18,000/. The refuse is bought by farmers to be used for manure. The sewers are ventilated, and, in 1873, 15,000 gullies were converted into ventilators. In the construction of all new sewers ventilating-shafts are built, the gullies are also ventilated, and arrangements are also made for flushing the sewers. 53 HALIFAX. Area - Population, about - - Rateable value - Inhabited houses - Waterclosets - Sewerage works cost - Outfall works and tanks cost - Estimated volume of sewage every 24 hours (gallons) Yearly cost of cleaning tanks and removing refuse - Privies on the Goux system - Yearly cost to corporation of cleansing these receptacles Privies with middens on old system - Yearly cost to corporation of cleansing these “middens ” (acres) 3,768 68,000 - £262,581 11,218 2,600 - £77,000 - £15,954 - 2,500,000 £213 3,159 £1,896 1,500 £ 1,100 The borough of Halifax has been sewered ; the main sewers are built of stone and brickwork, and the branch sewers are formed of stoneware pipes, the main outfall being into the Hebble at Salter Hebble. The sewers are ventilated by means of side chambers built to each manhole ; these are carried up to the surface of the streets and are covered by open grids. The Hebble, a small stream, in its passage through the town is considerably discoloured by refuse from mills and dye works; and, in 1869, it was greatly polluted by sewage. In the month of May of that year, Messrs. J. Holdsworth and Company, whose mill is on the stream about a quarter of a mile from the outfall sewer, filed a bill of complaint in the Court of Chancery, and in July of the same year an injunction was granted to restrain the corporation, from and after the 1st of June, 1870, from causing or permitting the sewage of the borough to flow into the Hebble Brook until the same had been sufficiently purified and deodorised. In February 1870, the late Mr. John Lawson, C. E. (Lawson and Mansergh) at the instance of the corporation, visited Halifax, and after an examination of the district submitted a report on the best mode of disposing of the sewage thereof ; he recommended that “ an irrigation scheme on a comprehensive scale should be carried “ out, and he considered that the 475 acres of land proposed to be pur- “ chased by the corporation would probably be sufficient for the " thorough utilization and purification of the sewage of Halifax ” : he also stated that “ tanks or screeners would be required to take out the “ suspended matters, and the sewerage could be delivered on to the “ greater part of the land by gravitation.” The recommendation of Mr. Lawson was not adopted by the corporation, who in the autumn of 1869 called in Mr: J. Bateman, C.E. to advise them, and he recommended that subsidence tanks should be constructed, and that an intercepting sewer of cast-iron pipes, from 18 inches to 30 inches in diameter, should be laid to convey the sewage of Halifax and discharge it into the tanks and thence into the stream at a point below the plaintiff’s works ; the intercepting sewer and tanks were completed before the 1st of June 1870, and this satisfied the Plaintiffs in the suit. The cost of these works was 15,954/. The volume of sewage flowing through the outlet is estimated at 2,500,000 gallons every 24 hours, and in this volume is included about 500,000 gallons of subsoil water. The sewage is not treated by any chemical agent, but flows into the sub- sidence tanks where the coarser matters and detritus are arrested, but the raw sewage, loaded with the foul matters in solution, passes from the tanks into the Hebble Brook. d 2 54 In 1871 the Goux Manure and Sanitary Company, Limited, applied to the corporation to he allowed to introduce their dry system into the borough ; and offered free of cost to cleanse all the privies which were or would be constructed on the plan they laid down, (i.e.) “ The ashpits and excrement pits under the privy seats were to be thoroughly cleansed, and filled in with dry rubbish to the level of the floor, and the privy seat was to be made removable so that it could be lifted up to place in, or take away, the ‘ receiver ’ or 1 tub ’ ; these tubs were to be 30 inches in diameter and 16 inches deep, and in them a certain quantity of absorbent, either of vegetable or animal fibrous matter, was to be placed, a core was to be inserted around which was to be filled in a further quantity of absorbent matters, and the core was then ; to be removed. The tubs so prepared were to be placed under the privy seat to receive the excreta, and were to be removed and replaced every eight days ; the tubs were, when full, to be taken to the depot, and their contents emptied and mixed together.” The corporation accepted the offer of the company, and the company erected temporary works and plant on land belonging to the corporation at Stone Darn in the borough, but as this land was subsequently required for other purposes, the corporation in March 1873 let to the company land at Salter Hebble, close to the sewage outfall works, at which place the company erected sheds, stables, and offices, for carrying on the process. About this time the company represented to the corporation that they could not sell the manure manufactured by their process, and that they were losing by the work ; and the corporation agreed to pay to the company 7s. per annum for every Goux closet cleansed, and if the contract remained in force after the 1st of January 1875, this amount was to be increased to 12s. per closet, subject to three months’ notice on the part of the corporation, and 12 months’ notice on the part of the company. The company gave notice to the corporation in January 1875 to terminate the contract in January 1876, and the corporation are now considering whether they will or not carry on the system. The company under their contract with the corporation removed about 500 tubs daily from the closets to the works ; these tubs were about two thirds full of excreta, and after being emptied of their con- tents ought to have been thoroughly washed before being prepared for re-use, and although the company professed to have this necessary work done, we saw on the day of our visit to the works, January 16th, 1876, the tubs being lined with the absorbent, and prepared to be used again, without having first been properly cleansed. The company used at Halifax the refuse shoddy as an absorbent lining for the tubs for which they paid 9s. per ton ; the contents of the tubs were, when taken to the works, mixed and turned over in a pit, and afterwards thrown into a heap in the store shed. We saw at least 2,000 tons of this feeble manure stored in that shed, the Company not being able to sell it at the price they asked for it, viz., 15s. per ton. For carrying out their system at Halifax the company expended in erecting sheds, buildings, and cottages, and also in making a road to the works, the sum of 2,000/., and a further sum of 500/. in providing the necessary horses, waggons, carts, and barrows. 55 The receipts and expenditure of the company at Halifax for 1875 were as follows : — Receipts. Expenses. £ s. d. £ s. d. Received of the corpora- 1 manager - - 1 tion for cleansing 3,159 1 inspector closets - - - 1,895 0 0 1 foreman Sale of manure - - 700 0 0 10 collectors . 3,276 Balance (loss) - - 911 0 0 8 drivers 4 emptiers and packers 0 0 1 boy - Keep of 7 horses Hire of 8 ditto 400 tons of shoddy 180 0 0 Gypsum and charcoal 50 0 0 £3,506 0 0 £3,506 0 0 The Kivers Pollution Commissioners, in referring to this process said : — “ It must he remembered, as regards this, and similar expedients, not only that it is but a part of the excrementitious matters which is dealt with, but that even as regards that portion of the excrement which they do remove, they so entirely depend upon efficient cleanly superintendence and direction, that wherever they have merely had the average man to work them, they have failed. Moreover, this very frequent collection of filth by hand from houses, and its removal sometimes through the cottages themselves, almost necessarily under the eye and nose of the household, whatever may, be the importance of the economic object aimed at, is universally condemned by our domestic habits as nasty and offensive.” The yearly cost to the corporation of cleansing the old middens, of which there are 1,500, is 1,100/. ; the refuse becomes the property of the contractor. We collected a sample of the manure manufactured by the Goux Company from the store-shed on the works at Halifax, and have caused it to be analysed by Dr. A. Voelcker, F.R.S., and the following are the results : — Manure manufactured by the Goux Company at Halifax. A sample of this manure on analysis gave the following result : — Moisture - - 51-65 ^Organic matter - - 22-70 Oxide of iron and alumina - - 3 * 96 Tribasic phosphate of lime - - 0-96 Sulphate of lime - - 0-81 Alkaline salts and magnesia - - 2-37 Containing — potash - - 0 30 and cholride of sodium - - 0-38 Insoluble siliceous matter - 17*55 100-00 * Containing — Nitrogen - _ - 0*67 Equal to ammonia - - - 0-82 56 A ton of this manure contains — 2 1 Jibs, of phosphate of lime, worth at Id. per lb. 6f lb. of potash ,, 2d. „ Nitrogen equal to 18 Jibs, of ammonia, at 8 d. per lb. s. d. 1 1 12 5} H n Total estimated money value per ton For the true value, see page lxiii. 15 41 ROCHDALE. Area - Population (about) - Rateable value - Inhabited houses - Waterclosets - Cost of sewage, manure, works, and plant - Volume of sewage every 24 hours - Privies, “ middens ”--- Privies, “ pail system ” - Yearly cost of cleansing privies on pail system Excreta removed yearly Manufactured into manure - Manure sold - 4,136 67,000 - £ 222,000 14,288 350 £10,000 (gallons) 1,250,000 2,844 5,462 £3,405 - (tons) 4,224 - (tons) 3,741 - (tons) 2,000 Yearly cost of cleansing “ middens ” Refuse removed - Refuse, 5,736 tons, sold for (tons) £1,919 13,736 £549 Rochdale has adopted the “ pail ” system for the disposal of the excrements of its 67,000 inhabitants living in 14,388 houses distributed over an area of 4,136 acres, as there were in use on the 28th of January 1876, 5,462 privies on the “pail” system, 2,844 “middens,” and only 350 waterclosets, and we were informed that the “ middens ” are being converted into privies on the “ pail ” system, at the rate of 20 per week. The borough has been sewered and these works have been greatly increased since 1853. In 1853 the corporation obtained an Improvement Act, and the 96th section of that Act provides that it shall not be lawful for the corpora- tion to cause any new sewer to open or drain into the River Roch at any point above the Town Mill Weir, or the stream called the Lord Burn ; but, as the town rapidly extended, new sewers were constructed, and this greatly augmented the volume of sewage flowing into the Roch and seriously polluted it. On the 6th of October 1869 a Bill of Complaint was filed in the Court of Chancery, by Mrs. Sophia Holt (widow), and Messrs. Oliver Holt and William Holt, praying that the corporation be restrained from permitting the new sewers then being laid down in Yorkshire Street or any other new sewer from emptying into the Roch above the Town Mill Weir or into the Lord Burn. On the hearing of the cause, 3rd of January 1870, Vice-Chancellor James granted an injunction as prayed. In order to satisfy the Court, and also with a view of intercepting the sewage and preventing it from polluting the Roch, the corporation, in session 1872, introduced a Bill in Parlia- ment and sought certain powers, one of which was to acquire 1,000 acres of land and on this area to utilize the sewage by irrigation. The land is situate in the township of Unsworth about 5 miles from Rochdale, and is the property of the Right Honourable the Earl of Derby. There was great opposition to the Bill and the clauses relating to the land for irrigation were struck out. The corporation then caused 57 plans to be prepared of an intercepting sewer to divert the sewage from the Roch, and this work is now being carried out a cost of 20,000/. The intercepting sewer commences at Ashbrook Valley on the eastern boundary of the borough, and from that point to Heybrook Valley, it is 4 feet in diameter t and laid at a gradient of 1 in 250; from Heybrook Valley to George Street it is increased to 5 feet in diameter ; from thence to Duke Street it is further increased to 6 feet in diameter; from thence to the Spodden Valley, it is -6 feet in diameter, but laid at a gradient of 1 in 1,000; and from the Spodden Valley to the outfall into the Roch, below Oaken Rod Weir, it is 9 feet in diameter ; laid at a gradient of 1 in 1,000. When these works are completed there will'still be 12 overflow-outlets into the Roch, above the Town Mill Weir, to relieve the main sewers of flood water during heavy storms of rain. The sewers are ventilated by open grids in the covers of the lamp- holes and manholes ; these are placed on the lines of sewers and are not more than 150 feet apart. Owing to the configuration of the town the sewers have steep gradients, and it was found that a considerable volume of sewer gas ascended to the highest points of the system ; to remedy this, self-acting valves (as recommended in the published suggestions of the Local Government Board, pages 7, 8, 9,) are placed in each manhole, and this has had a beneficial effect ; it has prevented the sewer-gas accumulating at the higher points and has facilitated its escape through the gratings in the surface of the streets. The volume of sewage entering the Roch, Spodden, Hey-Brook, and Sudden Brook, by the numerous outlets, is about 1,250,000 gallons every 24 hours. In 1869, the corporation of Rochdale decided that they would not continue the contract for cleansing middens and removal of the contents; and, after some consideration as to the best form of privy and ash place, they adopted the “ pail,” or that now known as the 66 Rochdale system.” The corporation have erected buildings as a depot on a site within the borough, and purchased the necessary plant, horses, and rolling-stock for collecting the excreta and refuse at short intervals. The cost of the works, plant, and stock, up to the 28th of January 1876, has been about 10 , 000 /. The mode of collection is as follows : — “ The town is divided into six districts, and each pail-privy is numbered consecutively in a district register, so that in case of any contagious or infectious disease arising in the town, the numbers of the pail-privies in connexion with the houses in which the disease exists can be communicated to the local authority, when arrangements can be made for the daily disinfection of such pail-privies, and for the isolation of such excreta.” “ As a rule all pail-privies are empted once a week, to ensure which, the driver of the collecting van, on his return to the works, gives in a list showing the number of each pail-privy from which he has collected ; this is posted in a book, in such a form that it can be seen at a glance whether any have been neglected, and on every Monday morning a list of those overlooked (if any) is made, and a supplemental van is then sent out to make good the week’s collection ; the entire onus of removal rests upon the corporation.” “ The pail-privies are supplied at each collection with a fresh pail, which has been well washed, and in which has been placed a liquid deodorizer and disinfectant.” “ The collections, according, to the regulations, should be made between the hours of 7 a.m. and 5*30 p.m.” To prevent any nuisance arising from the collecting van when passing through the streets on its return to the works, air-tight lids are placed 58 upon each pail ; the doors of the van also close against india-rubber beads fixed in the rebates, so as to be air-tight. The ash and refuse-tubs are also emptied systematically, attention being secured to them by the weekly visits which are paid to the privies. In emptying the tubs the ashes are not thrown on the ground, but are emptied directly into a cart, and. before placing the tub again in position the floor of the ash-place is swept. The process of manufacturing the manure is as follows : — the wet- house refuse is tipped from the carts on to drying floors, and when thoroughly dry is, with the other refuse, passed through a riddling machine worked by steam power, which holds back the paper, vegetable, and other refuse, and separates the cinders in two sizes from the ash ; the ash is then removed to any part of the sheds where required, and the cinders are removed and used on the works for generating steam, heating the drying floors, and also for firing the boilers at the public baths ; and some of the cinders remain for sale. All refuse, such as scrap-iron, obtained by this riddling is disposed of ; the vegetable refuse is burnt, and the ash used in the manure. The excreta, upon its arrival at the works, is emptied into a trench formed by banks of ash, previously brought into the shed from the riddling machine ; when this trench is full a quantity of ash is thrown upon the excreta, and the contents are treated with sulphuric-acid, in the proportion of 24 lbs. of acid to each ton of excreta. The proportion in weight of the excreta and ashes thus treated are about equal. Trench after trench are formed and filled until the whole floor of the shed is covered. When seven days have elapsed since the formation of the first trench and the ash there used has become suffi- ciently dry to be again used as an absorbent, new trenches are made in the banks of ash deposited to form the sides of the first trenches, and these are filled with excreta and the ash covered over them and again treated with sulphuric acid, as in the first instance. In this latter case, as ash is only required to cover the excreta, and not to form the banks of the trenches, only 5 cwts. of ash are used to 20 cwts. of excreta. When this second course has covered the area of the shed, the process is repeated in another shed, leaving the first shed at rest for fourteen days, after which it is again treated for a third and also for a fourth time with the like quantity of excreta and ash used in the second course. The total quantities thus treated having become 35 cwts. of ash to 80 cwts. of excreta, the mass is undisturbed for fourteen days, after which it is turned over and remains another seven days, when it is again turned over and for a second time allowed to remain undisturbed for seven days. By this time the mass has become a powdery manure, and is in a condition to be bagged for sale. In 1875, the cost of collection of the pail-refuse and manufacture of the manure, together with the estimated value of the manure manufac- tured, was as follows : — Cost of collection £ - 3,405 £ Value of manure manufactured Cost of manufacture - - 3,651 estimated at 1/. per ton - 4,420 Loss - 2,636 £7,056 £7,056 Note. — The Boclidale manure is not readily taken away from the yard at the estimated price of 1/. per ton, but gradually accumulates. This is the experience in all cases within our knowledge of this and similar modes of dealing with excreta. 59 We saw at the works about 7,000 tons of this manure. There is not a ready sale for it. Only 2,000 tons were sold in 1875; the corporation in consequence caused the manufacture to cease. Since April of that year, 1875, the excrements have merely been mixed with house-refuse and ashes, but there is great difficulty in getting rid of the mixture although the corporation undertake to deliver it to the purchaser at 2s. 6d. per ton, and this appears to be the true value to farmers. The cost of cleansing the middens and removing the contents is 1,919/. per annum, and of the 13,736 tons of refuse removed 8,000 tons are deposited in “ tips ” within the borough, and for the remaining 5,736 tons the corporation receive the sum of 549/. 2s. 11 d. With reference to the 8,000 tons of “ midden ” refuse thrown away on « tips,” we quote the remarks of the Rivers Pollution Commissioners on the “ Collyhurst Tip ” at Manchester (see Report Mersey and Ribble Basins, p. 24) “ The contents of these ashpits are divided by the scaven- gers into so-called, dry and wet ; and it is a matter of serious impor- tance that it is the latter or obviously filthy part alone which is carried to the manure depot, the dry rubbish being carried to any place that may be in course of levelling in the outskirts of the town. Of course such a division is most imperfectly made under such circum- stances ; and it follows that the land is thus filled up with the most objectionable stuff; and as building extends, the surface is gradually covered with houses which, on such foundation, cannot fail to be unwholesome dwelling places. There is now a “ tip ” in a ravine at Collyhurst, on the north side of Manchester, where land is thus being raised fifteen to twenty feet over many acres, by the gradual accumu- lation of filthy rubbish. A sample of water from a pool at the foot of this tip on the outer side of the Queen’s Road, which here crosses the ravine, taken a few minutes after rain, so that it represented the drainage water of this bank, and thus fairly indicated the nature of the stuff it had trickled through, and another sample taken at a later date yielded the following results on analysis. “ Composition of Drainage Water from Collyhurst “ Tip.” <£ Results of Analysis expressed in Parts per 100,000. Dates of collection of samples. Total solid Matters in Solution. Organic Car- i bon. Organic Ni- trogen. Ammonia. Nitrogen as Nitrates and Nitrites. Total com- bined Nitro- gen. Chlorine. Matters in Suspension. Organic Mat- ters in Sus- pension. June 12, 186 1643*5 32*278 3*631 29*525 0 27*946 331*5 16*88 13*48 July 21, 1869 2310*4 22*591 5*257 15*440 0 17*972 440*0 54*36 26*52 “ ^ wil1 be seen from the above numbers that these liquids contained a very large proportion of highly offensive organic matter. They were, in fact, much richer in putrescible matters than any watercloset sewage we have met with. The whole of the made land, indeed, here smells most offensively and can never be built upon without great risk to the health of those who shall occupy the houses. And wn n ° 1 exc ?P tional example connected with the midden system. What to do with the fouled ashes, which it accumulates — filthy stuff, too poor for. use as manure— is one of the great difficulties of the local authorities almost everywhere in Lancashire.” GO Results of Analysis of Pail and Ash Manure . We collected at the depot a sample of the manure manufactured from the refuse of the “ pails,” and have caused it to be analysed by Dr. A. Voelcker, F.R.S., and the following are the results : — This manure is prepared at the Sanitary Manure Works belonging to the corporation of Rochdale, from the contents of pails in which human excreta are collected ; these are dried up with finely-sifted coal ashes, and delivered to farmers in a more or less dried condition. A sample of the Rochdale manure as received contained the following ingredients: — Moisture * Organic matter (including sifted cinders) Oxide of iron and alumina Tribasic phosphate of lime Sulphate of lime Alkaline salts and magnesia Containing potash - and chloride of sodium Insoluble siliceous matter carbonaceous matter from finely 0*75 0*53 15-13 30-62 17*27 0-76 4-82 2-29 29-11 100-00 * Containing nitrogen ------- 0-69 Equal to ammonia ------- 0-84 £ s. d . 1 ton of the Rochdale manure contains [17 lbs. of phosphate of lime, worth at 1 d. per lb. - - - 0 1 5 17 lbs. of potash, worth at 2d. per lb. - - - - 0 2 10 Nitrogen equal to 18^ 0 th lbs. of ammonia at 8 d. per lb. ■ 0 12 2J For the true value, see page lxiii. £0 16 5J Mr. Alderman Taylor in a recent return (1876) set forth that a population of 52,000 in Rochdale is supplied with 5,644 pails, from which, in the year 1875 was collected 5,398 tons of excreta. This gives about 9*2 persons, and about 19*1 cwt. of excreta to each tub. The excreta of one person on an average of an entire popula- tion is 21 lbs. per day, or 8*1 cwts. per year, which, taking 9 • 2 persons to each tub, gives 74*52 cwts., or 3 tons 14 cwts. per pail ; 5,644 pails, at 3 tons 14 cwt. per pail, gives 21,024 tons, as the weight due, if the pails are used by the population to which the statement apportions them, so that about one-fourth of the excreta of the 52,000 persons is alone accounted for. . One form of reply may be, that for parts of the day the inhabitants are from home, at work, and use other privies, this, no doubt, is an explanation so far as it goes ; the statement however gives no indication of such contingency, neither would such explanation be satisfactory if it had been made ; as we see that not more than one-fourth of the excreta is accounted for. 61 APPENDIX No. IV. THE LIERNUR PNEUMATIC SYSTEM OF TREATING EXCRETA. In September 1875 we visited the cities of Leyden and Amsterdam. LEYDEN. At Leyden, accompanied by the town clerk (Mr. Kist) and one of the aldermen, we inspected the pumping station and in answer to our inquiries received the following information. The city of Leyden is built upon about 50 islands formed by the affluents of the Rhine. Here a population of about 39,869 is congregated in about 5,000 houses. Their potable water is derived chiefly from the canals which intersect the city and in some cases at points near the outlets of drains from the houses. These canals are, in fact, not only the main sewers of the city, but the main source of water supply ; a large quantity of solid refuse is also discharged into them ; this has to be con- stantly dredged out, and the operation conducted in hot summer weather is very offensive. The house property drained by the Pneumatic system stands upon an area of about four acres, and consists of a poor-house an orphan-asylum and 146 private houses adjacent thereto, situated at the south of the city in Saint Jakob’s Gracht, Koerpoort Gracht, Keifhoet, Gaarmand, Hoef Straadt and Raamsteeg, near to a large canal, and this district is occupied by a population, including 140 inmates of poor-house and asylum, of 1,197, who have in use 156 Pneumatic privies. The entire cost of the works i.e., erecting pumping-station, providing 8-horse power steam engine, air pumps, 5,560 feet of 5-inch cast-iron pipes laid under streets from pumping station to the houses, cocks, valves, and funnels to privies, was 2,833/., or 18/. 3s. 2 \d. per privy, or 21. 7s. 6d. per head of population. The costs were defrayed by the city council, and we were informed by the town clerk that the council did not propose to extend the system because of the great expense. The engine at the pumping station is only worked for three hours on four days in each week for the purpose of removing the excrements to the pumping station, and the yearly cost of this service, including labour of engine-driver and two turncocks, fuel, and materials was in 1872 333/., or 5s. 6j d. per head ; in 1873 182/., or 3s. 0 \d. per head, and in 1874 259/., or 4s. 3 \d. per head of the population using this service. In May 1875, Mr. M. D. von der Hoef of Oegstgeest near Leyden, entered into an agreement with the Municipal Council to send by his barge, when the canals were open, twenty-five 36-gallon old petroleum barrels twice every week to the pumping station to remove the fcecal matter, and to pay for it at the rate of 2\d. per 32 gallons ; but, in winter, when the canals are frozen, the municipality are to pay the carriage to his farm, which will amount to 5d. per 36-gallon barrel. We visited the dairy farm of 40 cows belonging to Mr. M. D. von der Hoef and saw the mode he adopted of distributing the foecal matter over his farm, the greater part of which is in meadow, a fine rich loam on a sandy subsoil ; six of the barrels unloaded from the barge were placed on a low wheel dray, and drawn by one horse about a quarter of a mile on to the meadow required to be irrigated ; the contents of three of the barrels were emptied into a tank on four wheels, which was then drawn about by a horse from place to place as required, whilst a man with a scoop threw the excrements, which were very dilute, over the meadows. Three men are engaged two days a week in removing the foecal matter from the city and applying it to the land, and this cost 16s. per week, in addition to the sum paid for it. In reply to our further inquiries Mr. van der Hoef said : “ I don’t know what I shall do with the excreta in 62 winter (two months) when it is frozen in the barrels. I suppose I must store it in the shed until the frost has gone ; I have only had the manure since May 1875, and my experience of its utility is very limited.” AMSTERDAM. Amsterdam. — In this city we inspected three of the principal blocks of buildings drained by the Liernur pneumatic pipes, and also saw the working of the system. The Director of Public Works (Mr. J. Kalff) and Mr. J. G. van Niftrik, Stads Ingenieur, accompanied us and gave to us the following information. Amsterdam lies at the influx of the river Amstel into the Y, as this arm of the Zuider Zee, which forms the harbour is called. Canals of various sizes intersect the city in several directions, and divide it into about 90 islands which are connected by means of nearly 300 bridges. It has a population of about 286,932 living in about 30,000 houses. The entire want of spring water at Amsterdam is a serious disadvantage to so large a city. The houses are provided with cisterns for rain- water, which is used by the inhabitants for culinary purposes. The potable water is obtained from a gathering ground situated in the Dunes 13-^ miles from the city, impounded in a reservoir which has an area of seven acres, and a mean depth of 20 feet. The city was formerly supplied from a small river, the Vecht, abstracted at a point above Weesp, about nine miles from the city by means of “ leggers,” or water- barges, constructed for the purpose, and are still used in exceptionally dry seasons. The whole of the sewage flows into the river and canals, which here, as at Leyden, are the main sewers of the city. The drains for carrying off the faecal matter and house refuse are mere surface-carriers continued along the edge of the footpaths in the streets ; covered over with deal flaps hung to the timber kerbing, and discharging into the river and canals, some of these drains were in a very foul condition. The Amstel is nine feet in depth, the canals generally three to four feet only, and the thick layer of mud which covers the beds is stirred up by the passing barges Dredging machines are engaged in removing this mud, and this is found to be a nuisance in hot weather. In order to prevent the entire stagnation of the large volume of sewage poured into the river and canals, a supply of clean water is introduced through a sluice into the canals from the Zuider Zee. The Pneumatic System as described by the Director of Public Works. The Pneumatic system was, on the date of our visit to Amsterdam, in operation in nine blocks of buildings, partially in the old city and partially in the new town, situated at — (1, 2). Marnixkade, (3.) Willemstraat, (4.) Pieter Cornelisz Hoofstraat, (5.) Stadhonderskade and Jacob van Campenstraat, (6.) Bonwkas, (7.) Focke, Simonszstraat (formerly Looyersloot,) (8.) Sarphatistraat and Audueszkade, and (9.) Heerengracht. The blocks 1, 2, and 3 are brought in to communication with a central 63 tank placed between blocks 1 and 2 at the waterside ; this tank is distant from the farthest privies in the blocks Nos. 1 and 2 311 metres, and from those in block No. 3, 288 metres. The pipes in block 3 are syphoned under the Lynbaausgracht canal. The length of the pipes in block No. 4 is 725 metres from the extreme point to the canal side, where there is a steamboat. The greatest length of pipes in block No. 5 is 344 metres ; in No. 6, 467 metres ; in No. 7, 355 meters ; in No. 8, 567 metres, and in block No. 9, 18 metres. The pipes are all of cast iron, and for the blocks 1 and 2 their diameter is 6 inches ; the joints are made with caoutchouc rings and tightened with iron collars. In all the other blocks the pipes are five inches in diameter and the joints are made in the ordinary manner with lead. The depth of the pipes beneath the ground varies from 0‘50 to 1*50 metres ; the greatest depth is the syphon under the Lynbaausgracht canal which is laid at a depth of nearly three metres. A special form of privy-funnel is connected with the “ fall ” or soil pipes by syphons ; there are about 1,100 of these “privies ” in use, by 4,837 persons. The system was applied in 1871 to blocks 6 and 7, in 1872 to blocks 1 and 2, and to the other blocks in 1873 and 1874. In block No. 7, the city council not only paid the cost of the works inside the houses, but also the cost of the works in the streets ; in the whole of the other blocks, however, they only paid the cost of the works in the streets. The entire cost of the work is therefore not known, but the Director of Public Works informed us that he estimates the cost of the works in the streets at 21. per head of the population, and the cost of the works inside the houses at a like sum, or 4 l. per head, but the costs of these latter works will greatly depend on the numbers of floors and numbers of privies in each house. With the exception of the above-named block, No. 7, the work inside has been executed by the owners, and no control has been exercised over the work done ; this latter circumstance is much to be regretted, because the good working of a whole system of pipes depends on the proper execution of the works in the several houses. There are conse- quently places where, from defective house fitting, the system does not work well, so that in some houses the privies do not act as intended. Supervision of any new work within the houses is now enforced. Further Statement by the Director of Public Works. The Director of Public Works in a letter addressed to us, dated 29th September 1875, says: — “We are afraid that we shall not be able to get rid of the whole pro- duction of excreta collected from blocks 1-9 ; it is evident that this cannot be done when the canals and rivers are frozen over, because the transport, per cart, for great distances cannot pay for refuse stuff of that worth and weight.” “ Fixed engines do the work of blocks Nos. 1, 2, 3, and 8, but all the other stations are worked by moveable engines ; a steamboat, if the canals are not frozen.” “ Many stoppages have occurred in the street-pipes ; and in some cases it has been found necessary to disjoint the pipes to remove the obstruc- tion, when it has taken occasionally as much as three days to remedy the defect ; stoppages have been caused by towels, rags, chignons, pieces of meat, and solid substances thrown into the privies. Ball-valves are used in blocks 1, 2, 3, 6, and 7 ; these balls, on becoming fixed, cause very 64 frequent but less important stoppages. The total quantity of excreta removed weekly is about 75 tons, and two thirds of that quantity is water ; enough to prove that the prescribed rule, not to throw water into the privies, is not observed, but not enough to give ground for the opinion that all the slop water from the houses is thrown in.” 44 Until September last (1874), the faecal refuse was leased by a gentle- man farmer residing at some distance from the town who paid for each ton delivered at his farm 4s. ; the delivery of it cost the municipality 3s. 2d. per ton, and although the lease did not terminate before the end of 1875, the gentleman disengaged himself some months before the expiration of the term. He said the stuff was too dilute.” 44 The cost of working amounts to at least 5s. per head per year, but what we are doing here with our eight different points of working ; using steamboat and locomotive, is not a fair trial of the costs of working a good application of the system, as, take a compact block of the town, say 50 or 100 hectares, with a fixed engine in the centre, and the working costs would be reduced.” 44 Besides these costs of working you have to add the interest on the cost of the plant.” 44 Though we have not had a very severe winter since the Liernur system has been in operation, I think no other serious difficuly would be met with than the freezing of the diluted faeces in the barrels, which would make it impossible to get the stuff out of them. Captain Liernur pretends that the faeces ought not to freeze, but we know by experience that the diluted faeces do and the Pneumatic system does not produce other than diluted faecal matter.” 44 To get rid of the stuff we have sold it, in the spring of this year, for 3d. and even for 2d. per barrel of 340 lbs. to different customers. This did very well till June or July, when we could not sell any more, the farmers not wanting manure before the end of the first harvest. We hoped to have the same customers in August, if not before, but until now, the end of September, we have had but few of them. They write that they will return in the spring, and we hope and think so, but you see it is a poor bargain to sell only a few months in the year when you are producing the whole year. So that the question of getting rid of the stuff at a fair price wants still a solution.” 44 Captain Liernur pretends that a former administration has paid no attention to the conducting of the house and kitchen water in separate pipes, and even his friends have insinuated that for that water there was no separate sewer at all, so that people were obliged to throw the water into the Pneumatic pipes. Now, this is not the case, where the Pneumatic system is executed at Amsterdam, there is in the streets a separate system of drains for the rain and house water ; in and near each house there are sinks, and in each kitchen there is the kitchen-sink or sewer ; but Captain Lieurnur is so far right that in the blocks Nos. 2 and 3 there are privies in the kitchen ; this is an abominable arrange- ment, and besides is a constant allurement for the cook to throw water into the pri vy instead of into the sink, the small dimensions of the waste pipe does not afford the servant such a good occasion for emptying her pail at once. However, Captain Liernur goes farther and deems it now necessary that on each floor, in or near the privies there should be a separate sink, the waste-pipe from which should be as large in diameter as the soil-pipe of the privy, so that there should be not the least inducement for the servant to prefer the privy to the sink. Captain Liernur has had occasion to prescribe all these new arrangements, for it is he who projected all the contrivances inside the houses. That 65 he did not prescribe proper fittings in the first instance is his own fault, and it is a poor excuse for him now to say that this was the mistake of the administration, who had nothing to do with the inside fittings, as they only paid for the works in the streets. “ But what is much more serious and to the point is this, that what Captain Lieurnur proposes now, and what is partly done at Leyden, is to my mind in flagrant disaccordance with the principles of the whole system ; there is not the least doubt but that if there were more con- venient ways of getting rid of the house and wash water of the upper floors than by the privy, this (the privy) would not be used, as it is now, for the removing of waste house water ; but it is not the less evident that the privy, in that case, would not receive all the fluid excreta of the night, which would find its way with the wash water down the more convenient sinks. Captain Liernur himself states that perhaps now and then the contents of a chamber-pot will be thrown into his privy-pan, as into a sink. “ Now the quantity of the fluid excreta of the night (the blowing off at night and morning before going to sleep and before rising) is estimated at 4/7th part or more of the fluid excreta of the twenty-four hours, and as the fluid excreta does contain seven times as much nitro- genous or putrescible substances as the solid excreta, it results thereby that the making of convenient sinks in or near the privy closets includes the gathering of, about one half of all the excreta in the expensive iron pipes, and the losing, at least the other half of these substances, down the sinks and the earthenware pipes, which are not destined for that use, so that there is the danger of infection, which the whole Liernur system professes to remove. “ In the 6 Times ’ of the 23rd of September 1874, it is estimated that with the Liernur system waterclosets can be used without losing any of the agricultural value of the excreta by dilution. Now this may be the theoretical notion, but practically it is the reverse. Suppose the privy closets combined with the Pneumatic pipes, even arranged as Captain Liernur proposes, so that only a limited quantity of water is thrown in the privy closet each time it is used. He estimates the needed quantity of water at 2 lbs., and I cannot estimate it less ; it is known that, on the average, each person uses a closet, or urinal, four times in the twenty-four hours, children do this more frequently. Each time the closet is used, however small the quantity of the excreta may be, 2 lbs. of water is to be thrown into the closet ; that is, 81bs. in the 24 hours. On the average, the production of excreta per head is 2\ lbs. in the twenty-four hours ; thereby it results that, even if the contents of the chamber-pot be thrown away elsewhere, the excreta will be diluted with four times their weight of water ; that is, you will obtain a pon- derous mass of no practical agricultural value ; as is proved in Amster- dam, where the diluting with only twice the weight of water suffices to make the manure very difficult to sell at any price, because of the bulk and cost of removal, and in winter of storage. For the same reason, it is not true, what is said in the same paper, the 4 Times/ that the system is independent of the house-dwellers, and yet it is stated that these by their inadvertence or mismanagement cause the city much loss by throwing water down the privy, or solids, such as towels and chignons, whereby stoppages occur in the pipes, as is proved by expe- rience. It is said, that the management is in our hands, and that perfect working depends a great deal on the goodwill of the house- holders and their servants, and a strict observance of given rules, which are in practice grossly neglected. We, however, in Amsterdam dispute this, as we consider that the fault is in the system. We do not think 66 stoppages can be prevented, neither do I believe that there is a city in the world where the Pneumatic system can yield a good return upon the capital employed. I, however, for my part, don’t think this necessary if the hygienic object of the system can be obtained, but I disapprove very strongly of misrepresentation ; the system does cost a great deal of money, and therefore must burden the town with taxes. “ In Amsterdam the system is not used by more than some 6,500 inhabitants.” “ It is not true that the expense of the Pneumatic system in Amsterdam has only been at a rate of 21. per head of the population, including the changing of the existing privies and all other charges. The 21. per head may suffice for the outside, or street works, if you can use the existing sewers for the rain and house water ; but you may reckon at least another 21. per head as the average for the changes inside the houses ; or, in the whole, a cost of 4/. per head of the population. Of course in new quarters there is no changing ; and, therefore less outlay, and the costs of changing in the existing parts of the town differ greatly in various quarters by the construction of the houses, the number of floors, and the number of the house-dwellers. I think, however, that even with a well-arranged system the annual working expenditure for a town of 20,000 inhabitants will exceed 2,000/. I know very well that what we are now doing at Amsterdam, though it is done under the advice of Captain Liernur, is not in all respects a fair trial as to the annual expenditure, because the system costs yearly about 1,200/. for not quite 5,000 inhabitants ; this amount can be lessened much in new works, by not following our example of constructing works in eight different and separated parts of the town, as a compact arrangement would be more economical. However, I think that, basing my opinion on practical experience, it would cost not less than 3,000/. a year to carry out the system completely in a town of say 20,000 inhabitants. This would not however signify much if really the promised 10,000/. were to be got for the faecal waste, as stated in the ‘ Times ’ newspaper, but we did not get more than 2d. for 340 lbs., and the party who had leased the whole for that price abandoned the bargain as soon as he could do so, on the pretence of the excremental matter being too dilute. Now suppose we had sold twice as much water as excreta, then we should have got for the production 1 s. 6d. per head per year, and this for 20,000 inhabitants would be 1,500/. a year. If we could realize such an income we should think ourselves very lucky, and we hope the market we are trying to find would continue such an income. The pastures round this town are used principally, if not exclusively, for milch cows, and these meadows don’t want such rank manure ; but it is not less true, that as long as the canals are not frozen, there is no town situated so advantageously as ours, as, from every point of the city, we can convey, per vessel, this production to other parts of the country. “ I don’t think there can be obtained any financial result by the making of poudrette, but we have no experience of that as none has been manufactured here. The city of Dordrecht will, it is said, try it in a few months. It is a great fault of Captain Liernur and his friends to awake high expectations about the returns to be expected from the sale of the manure. “ If there is any worth in the system, it is in the hygienic side of the question, and I think that, in some cases, it may do much to lessen, if not fully to remove, a great existing nuisance. But I don’t think it possible to apply the Pneumatic system, for instance, to London.” 07 Badhoeve Farm, Haarlemmeemier. We visited the farm of Mr. J. P. Amersfoordt, at Badhoeve Haarlem- mermeer, and that gentleman courteously gave to us the following information : — “My farm has an area of 450 acres, of which 325 acres are meadow, 75 arable, and 50 timber and plantations ; the soil is a rich loam upon a sandy subsoil. I keep a dairy of 45 milch cows, also about 100 oxen and young stock, and about 300 sheep. From January 1873 to December 1874, I received, from Amsterdam, the faecal matter collected by the Pneumatic system, and the following account gives the quantity delivered each month, and the amount paid for it . • Months. Weight in Kilogrammes. Price paid in Guilders and Cents. 1873. May _ 111,180 300-18 June 154,730 417-71 July August - _ 119,420 322-43 _ 94,255 254-48 September October £ - 146,490 395*52 _ 166,615 449 " 86 November _ 146,170 394-65 December - 198,135 534-96 1874. January - _ 215,740 582-49 February - 168,100 453-87 March - 230,765 623-06 April _ 224,345 605 • 73 May _ 230,285 621-76 June _ 250,685 676*84 July _ 305,440 844-68 August - _ 364,130 983-15] 143,530 f I refused to have any more because it September - was so dilute, and the carriage was ex- October - - 363,275 J cessive, and it was delivered on to the November December - 296,430 1 91,670 farm during these four months without any charge being made for it. Total - 4,021,390 Or about 4,022 tons of faecal matter delivered in 20 months, for which I paid the municipality 905/. or at the rate of 4 s. per ton. “ The excreta was sent to me by barges, and about 100 old petroleum barrels, holding about 36 gallons each, were delivered every day, Sunday included. On arrival at Badhoeve, the barrels were unloaded and carted on to the farm ; the contents of five barrels were then emptied into a liquid manure-cart, and drawn over the meadow required to be irrigated ; this method of applying the excrements did very well in fine weather, but after rain the surface of the meadows was so soft that it was very difficult to get the cart over the land, even with a smaller load, ( i.e ., the contents of two barrels at a time.) I found after using the excreta for some time, that the meadows gave little or no indication of being manured, and on my complaining to the municipal authorities of Amsterdam, they caused samples of the faecal matter to be analysed by Mr. J. W. Gunning, Professor of Chemistry of the University of Amsterdam, and the following are the results : — “ In six samples of excreta, each sample being the mean of a series of samples collected during one week, we detected in each case nitrogen 39260. E 08 per cent., No. 1 , — 0 * 348 ; No. 2, — 0 * 366 ; No. 3, — 0 1 400 ; No. 4, — 0 * 349 ; No. 5, — 0* 336 ; and No. 6, — 0*618, the mean of the six samples being —0*403. “ The municipality had guaranteed that the faecal matter should contain, — 0 * 9 of nitrogen per cent. After this I declined to take any more of the manure. The barrels contained all kinds of refuse which had been emptied into the privies, such as old rags, shoes, broken utensils, and corks. I should be willing to take the sewage ; that is, the whole of the solid and liquid excrements combined, if regularly delivered on to my farm by sewer-pipes, but not in the irregular manner in which it has been delivered. The cost of the faecal matter and the cost of distributing it over a portion of my farm came to nearly 41. per acre per annum for the land thus manured. Butter being the chief produce of the farm, my milch cows did not graze the meadows which were manured with the excreta, because I knew by experience that it would have given a taste to the butter ; and we, in this district, are celebrated for making very fine butter ; but oxen, young stock, horses, and sheep fed in these meadows on which the excreta had been put preferred that to any other portion of the pasture. “ The whole of the farm is under-drained to a depth of three feet, the drains are 30 feet apart, and the drain-pipes are so arranged that they can be used for upward, or subsoil irrigation, the water being introduced by means of a syphon laid under the adjoining dam.” Abstract. These Dutch statements show that the first cost of the pneumatic appar- atus is very great, being at a rate of 41. per head of the population, and that the annual expenses are at a rate of 2s. per head. This is all in excess of ordinary sewers and drains, and ordinary scavenging. The income, it will be noted, is at present unsettled and uncertain. The Director of Public Works at Amsterdam, on page 66, states that in his opinion it would cost yearly 3,000/. to carry out the Pneumatic system in a town of 20,000 inhabitants, and that the apparatus would cost not less than 41. per head, or a total of 80,000/., which at 6 per cent, is 4,800/. per annum, or an annual total of 7,800/. If, therefore, London, with its 3,600,000 inhabitants, were to have its excreta re- moved by this system at a proportionate cost, the annual expenditure would amount to 1,404,000/., and all other main sewerage costs would remain as at present. PALIS. The city of Paris has a population of 1,851,792. Formerly the southern part of the city drained into the Seine and Bierve ; and the northern part into the Seine and Menilmontant ; but the whole of the sewage has been intercepted, and now flows to a point at Clichy when it is pumped through iron mains four feet in diameter, carried by the Pont Clichy across the river Seine to Asnieres ; and thence it flows over a portion of the plain of Gennevilliers. To this land also is conducted, through iron pipes laid beneath the carriageway of Ponts St. Ouen and St. Denis, a considerable volume of sewage from the districts of Montmartre, Belleville, St. Owen, and St. Denis. 69 The sewerage system of Paris consists of seven principal and fifteen secondary collectors. On the right bank of the Seine there are three principal collectors, converging to a chief one under the Rue Royale ; (which conveys the sewage to Clichy) ; there are also three on the left bank of the river, and these communicate, with the chief one, by means of two syphons under the Seine. The chief collector is 16 feet in height, 18 feet in breadth, and about three miles in length ; the aggregate length of the main-sewers already completed is about 354 miles. The Plain of Gennevilliers is well adapted for sewage utilization, as it consists of a light open soil on a gravelly subsoil of considerable depth ; and it, therefore, serves the purpose of a natural filter ; but at the date of our visit, in September 1875, only about 400 acres were under irrigation. In outline, the Plain very much resembles, although on a larger scale, the sewage meadows of Carlisle bounded by the Eden ; and also the Kendal sewage farm bounded by the Kent. The principal main sewage-carriers are formed of brickwork, and are 7 feet wide and 3 feet deep, the branch-carriers being 3 feet 6 inches wide and 2 feet deep. The daily volume of the sewage of Paris is equal to 343,700 tons, but only a limited portion of this (i.e., about 28,000 tons) is used on the land required to be irrigated, the remainder flows into the river Seine at Clichy. The whole of the solid excrements of the population are not allowed to go into the sewers ; these and the contents of cesspools are collected and removed to the Forest of Bondy, and are there manufactured into poudrette ; but as the streets are cleansed daily and the droppings of horses and surface dirt are swept and flushed through the gullies into the sewers, the sewage contains a large quantity of solid matter, not only in suspension but also in solution. In 1869 the municipality of Paris, having laid down the carriers, sub-carriers, conduits, and pipes for distributing the sewage over the land at Gennevilliers, conceded to the owners, and also to the lessees of the allotments, the free use of it until 1880, after which time, if they continue to use it, a rent is to be paid. At first there was a great pre- judice against the use of sewage as a manure, and also the produce grown by its aid, but this has gradually died out, and the number of allottees who use the sewage increases every year, and the owners and occupiers are much pleased with the result. The allotments are very numerous, and are let on lease for terms varying from 3 to 15 years. The crops grown under sewage- irrigation have been a perfect success ; they comprised absinthe, artichokes, asparagus, beans, beetroot, cabbage, cordon, carrots, celery, chevil, chicory, cohl-rabi, cucumbers, leeks, melons, onions, parsnips, peppermint, potatoes, pumpkins, spinach, tomatoes, turnips, lucerne, clover, Italian rye-grass, mangolds, wheat, oats, and Indian corn. The market-garden produce yielded very abundant crops. The asparagus is grown in nursery-beds as plants, and afterwards sold to gardeners, who force it for use of consumers. The Indian corn was of exceedingly luxuriant growth, 9 to 10 feet high. The potatoes gave a very good crop ; the sewage is applied to the land before planting pota- toes, and not to the growing crop, except in drought. The Italian rye- grass and lucerne yielded five cuttings for hay and two cuttings green for cattle feeding. It is found that the application of sewage to lucerne more than doubles the weight of the crop. A meadow of natural grass (principally cocksfoot) under sewage treatment, yielded three crops of hay in the year, and these realized 1 51. 1 5s. per acre. Application of e 2 70 sewage to young fruit trees has also been very successful. The average yearly rainfall is 20 inches. The hot and dry plain of Gennevilliers is capable of absorbing a very large volume of sewage, especially in the summer season. It is found that the sewage does not readily freeze, and therefore can be applied continuously to the land. The available area of land at Gennevilliers is insufficient to receive the daily volume of the Paris sewage, and we were informed that it is in contemplation to extend the main conduit to St. Germain, and to irrigate the land lying on the edge of the forest, and also the forest itself if necessary. The effluent water after percolating through the gravelly subsoil flows into the river Seine, and at the date of our visit it was clean, bright, and inodorous. BERLIN. The sewage at present flows into large open channels or gutters by the side of the footpaths in the streets ; these ate principally lined with stone or bricks, and, where they cross the streets, are covered with deals ; the gutters are swept by the scavengers daily, and the solid refuse removed therefrom, but the liquid flows from thence into the river Spree and the canals. A system of sewers is being carried out on the English plan, and for this purpose the city has been divided into five drainage districts, with a separate pumping station to each. The main and branch sewers are built of brickwork, egg-shaped in form ; they vary in height from 4 to 7 feet; the subsidiary sewers are formed of stoneAvare-pipes of of from 9 to 24 inches in diameter. The sewers are chiefly laid at gradients of 1 in 500, the flattest being 1 in 2,400. Each of the five pumping stations will have six engines of 60 horse power each, four “ Gallo Avays ” boilers, and two locomotive boilers as auxiliaries for getting up steam in emergency. The total pumping power will be 1,800 horse. Each of the pumping stations is estimated to cost 50,000/., and the entire cost of the sewerage works, pumping stations, and pumping mains is estimated at 2,000,000/. sterling. No. III. works are nearly completed, and we were informed that the sewerage Avorks in this district Avould be finished, and pumping at this station commenced in 1876. The sewers will receive, in addition to the sewage proper, the whole of the rainfall upon the houses and streets ; arrangements having been made by Avhich, in heavy storms, more than 4/5ths of the flood- Avater will escape by specially provided overflows direct into the river. The average yearly rainfall is 22 inches. The municipal council propose to utilize the sewage in irrigation, and to enable them to do so, they have purchased, at a cost of 400,000/. (or about 100/. per English acre) 2,000 acres of land, a sandy soil, lying to the north, and 2,000 acres to the south of the city, distant there from about 10 English miles, and these farms are being prepared to receive the sewage. The sewage will have to be pumped through cast-iron mains, two to each farm, each 3 feet 6 inches in diameter, to a height of 130 feet. It is estimated that the mean daily volume of sewage thus to be dealt with Avill be 28,000,000 of gallons ; of this volume 16,000,000 of gallons will be delivered over the North Farm, and 12,000,000 of gallons over the South Farm ; and, from the nature of the soil, it is expected that the whole of the sewage Avill be absorbed and completely oxidized. Subsidence -tanks will not be constructed, but the sewage will flow direct from the pumping-main into the carriers, and thence over the land required to be irrigated. The estimated yearly cost of pumping the sewage is 12,000/. One of the pumping-mains is already laid to the South F arm, and 71 upon this farm it is proposed to grow Italian rye-grass, roots, tobacco, all kinds of esculent vegetables, but no cereals. It is also proposed to lay down a branch line of railway from this farm to Marienfelde Station, which is about two miles distant, and by this means to bring the grass and vegetables into Berlin, and, if a ready sale is not found for them, the municipal council propose to keep a dairy of milch cows at their farm, and convey the milk to the city ; they also propose to carry on the farms until they are in good working order, and then to let them with the sewage ; but they do not propose to sell sewage en route , as they expect to make a better bargain by letting the farms and sewage together. APPENDIX No. V. EPIDEMIC DISEASE. Epidemic disease will probably be a means of bringing about the greatest modern improvements in civil and social life, as inquiry and investigation make it more and more apparent that neglect of sanitary requirements in past ages has tended to generate plague and pestilence ; and, in modern days, to bring about their occasional revival, with typhoid and cholera added. There are in the cycle of time wholesome and unwholesome seasons, periods of excessive wet, long continued generating malaria, and seasons of parching drought producing famine, the depres- sing influences in both cases lowering the public health and ^so exposing the human body to other influences immediately surrounding it which aggravate disease. Wet seasons deteriorate vegetation, and tend to pro- duce disease in animals, so that the food of man becomes unwholesome ; dry seasons reduce the produce of vegetation or destroy it altogether, so that man and beast perish. These influences should not be left out of sight in considering causes of disease, neither should they be made too much of ; that is, excess of disease should not in all cases be imputed to climate, to seasons, or to the weather, if other causes more potent and deadly can be discovered and which causes can be removed. There are vague notices of great epidemics in remote ages in Ethiopia, Egypt, and India ; notices more in detail of the plague in Athens 430 years before Christ ; and there are histories of the Middle Age pestilences, plague, sweating-sickness, and black death, with our modern reports on typhoid- fever and cholera. That which we know of parts of Asia and Europe as to the causes of disease we may infer of India, China, and the other inhabited portions of the surface of the globe ; namely, that aggregated populations living amidst filth, devouring unwholesome food, drinking impure water, and living immoral lives, suffer from virulent disease, consequently existence is unwholesome, miserable, and short. Some of the prime causes of disease may be inferred from descriptions of towns, houses, and domestic habits and modes of living during the Middle Ages. Towns were crowded on to the least space possible to afford means for fortifications, the streets were narrow, the houses projecting storey over storey so as to shut out sunlight and diminish the circulation of air, the streets were unsewered and were irregularly paved with large and small boulder stones ; if there was a gutter it was down the centre, and over the surface filth from the adjoining houses was scattered and lay there till it rotted. Within the dwelling houses filth also abounded. (i The basement floors were mud, over which, in those of the better classes, were spread straw or rushes, and on to which went urine of animals and man, spittle, vomit, sloppings of beer, scraps of meat, bones, refuse from fish, and other filthiness not to be named, which were never thoroughly cleansed, the accumulations going on through long intervals.” Such is a brief description of muni- 72 c ipal neglect in England about tlie time of Henry the VHIth. A s tudent need not, however, trouble himself to read history to learn how men consented to live amidst filth and neglect of all sanitary precautions in past ages, as in these days of rapid communication he may within the range of Europe visit and inspect towns, dwellings, and populations existing not very much if any below the horrible conditions described by the old historian ; but even in Great Britain at this day the descrip- tion may be accepted as partially true of vast masses of the populations resident not only in the slums of our great cities and towns, but also in our rural villages, the Common Lodging Houses Act and the more recent Artizan and Labourers Dwellings Act having, however, been passed to provide remedies. In 1848 there was passed the Public Health Act, consolidated into the Public Health Act of 1875, and under this latter Act sanitary work is proceeding. The prime block to more rapid progress being dread of local rating and ignorance of the cost of continued neglect. As there is no value without human life it follows that healthy human life must be of most value, and consequently that any rates which are necessary to secure health and long life must be worth providing. Past history shows that disease in most horrible forms has from time to time destroyed populations living amidst filth indescribable of their own making. Decent inquiries show that modern diseases of malignant types, such as typhus and cholera, generate out of putrid refuse and gross neglect of sanitary works and operations. Modern civilization aggregates populations, and necessitates modern sanitary improvements, and that form of improvement will be best which permanently produces the most favourable results at the least pecuniary cost. In cleansing towns, fluid and solid refuse has to be removed ; its removal must, therefore, be specially provided for. Rain-water may in some cases flow over the surface by natural channels, and in other cases by channels formed for the surface-water. Towns require to be scavenged, and the solids, ashes and vegetable refuse, have to be re- moved by carts. Human excreta must also be removed, either in pails or by some other system, wet or dry, or by waterclosets, drains, and sewers. That system which can be established and carried out at the least first cost, and can be worked with the most complete efficiency, will be the best — efficiency implying comfort and wholesomeness. To remove the waste-water from houses and towns as fast as used there must be drains and sewers, as cesspools and water-carts would be im- practicable. Through properly constructed drains and sewers water will flow to any required distance, and will wash to the outlet all effete matter from the population at once without any secondary intervention or cost. The sewering of towns and the draining of houses is com- paratively new, and .there is much imperfect work. There are also numerous mal-arrangements, such as drains and ashpits within house basements, and unventilated waterclosets within the body of the houses and crowded betwixt bed rooms ; consequently there are nuisances and fevers, all of which may be prevented. In every form of dry method (there is, however, no such thing as a “ dry method ”) or pail-system, there must be retention, for a time, of the excreta ; and there must be fetching, carrying, and returning of the boxes, tubs, pails, or whatever the apparatus may be in which the excreta is received, and the nuisance caused will be in proportion to the time of retention of the excreta within or near the dwelling house, the capacity of the tub or pail to receive the contents without slopping ; the regularity, care, and cleanli- ness in removal ; and the treatment of the refuse at the yard or station. If unceasing attention is given to the removal, and rigid cleansing of the tubs and pails at each emptying, and the intervals of removal are short (never to exceed one week), the terrible nuisance of the old privy 73 and midden system will be abated in some measure ; but a week’s retention of excreta within or near to dwelling houses must constitute a nuisance. The returns obtained and tabulated in this report show that the cost of tub and pail removal is considerable, and that in no case can the manure be sold to a profit. A rate must, therefore, be levied sufficient to pay the interest on capital and working expenses. The cost of sewering and draining must also be paid for by a rate, but along drains and sewers the excreta will pass without any retention or secondary intervention at once to the outlet, there to be disposed of. Deposition in tanks and chemical treatment of the sewage will remove the suspended solids, but will not produce a pure effluent, neither will the deposited material , sewage-sludge, produce a manure having commercial value. There must, therefore, be a rate in aid to work the best known chemical process as yet tried, or the parties working such processes must lose money. In irrigating land with sewage there is both clarification and purification, in proportion to the strength of the sewage, the volume used over any given area at one time, and the adaptability of the land for the purpose ; no mode of treating sewage by deposition and chemicals producing such favourable results. Where sewage can gravitate to land obtainable at its fair agricultural value, there is the least present loss to the com- munity ; and, in nearly all cases when the works have been paid for, there will be an available income, a result not attainable by any other known mode of dealing with sewage. THE PRIVY SYSTEM. il However perfect in theory the ash-pit privy may be as a means of house scavenging in towns, in practice it has been abominable, and though latterly improved by better organisation and more vigorous superintendence, and the gradual adoption of various ingenious con- trivances, it can never be otherwise than highly objectionable — land must get soaked with the drainage water from these cesspools ; the air must get fouled with their stinking vapours ; the sewers must carry from them to the river that which is most filthy and yet most valuable. “ It was a good suggestion by an opponent of the system, that its friends should picture to themselves the sites of Manchester and Salford, with all their dwelling-houses removed and only the privies left — nearly 60,000 of them — rows, and streets, and crowds of them — scattered about almost as thickly in places as the heaps of manure upon a field that has just received a dressing from the dung cart, each heap, however, no mere deposit by a barrow-load, once a year, but a constant collection and continual soakage of filth, which has for years been polluting every corner to which air or water could have access. Is this the site upon which to build a healthy town ? would it not be the first desire of every sensible man to sweep this tilth away, to drain and aerate ; and, if possible, sweeten this land before a single dwelling -place was^ built ; at any rate, to put a final stop to the process which has accumulated so much dirt, to which, indeed, one may fairly attribute much of the responsibility for the high death-rate disclosed by the returns of the Registrar- General, from the South Lancashire towns. Those returns show that typhoid fever, scarlatina, diarrhoea, and other zymotic diseases, commit fearful ravages amongst the popu- lations exposed to such pestiferous influences. “ The relative polluting effect of sewage from midden towns, as com- pared with that from watercloset towns, is no mere matter of opinion founded on a priori argument. It has been made the subject of direct investigation.” (Rivers Pollution Commission Report, Mersey and Ribble Basins, 1870, pp. 28, 29.) “ The proportion of putrescible organic matter in solution in midden 74 towns is but slightly less than in watercloset towns, whilst the organic matter in suspension is somewhat greater in the former than in the latter. For agricultural purposes, 10 tons of average watercloset sewage may, in round numbers, be taken to be equal to 12 tons of average privy sewage. The average quantity of clilorine in 100,000 parts of watercloset sewage is 10*66, while in midden sewage it is 1 1 * 54. This difference is very significant ; it shows that, assuming (which is probably approximately the case) all the urine to reach the sewers in both classes of towns, a larger number of individuals contri- bute to a given volume of sewage in midden than in watercloset towns- Chlorine in these cases represents common salt, and the latter again indicates the proportion of the urine in the sewage. The proportion of chlorine, therefore, ought to give the proportion of average indivi- duals (men, women, and childen) contributing to each kind of sewage, and from this it would follow that the populations producing equal volumes of sewage in midden and watercloset towns are as follows : — In watercloset towns ... ] 5 066 In midden towns - 1,154 The cause of this difference in the volume of sewage per head of population in the two classes of towns is obviously to be sought for in the somewhat increased quantity of water needed by and supplied to the former.”* The Conditions of some Towns, Villages, and Houses in Great Britain at this date, ] 876. 1. There are towns, villages, and houses in Great Britain entirely without sewers, house-drains, or even common privies ; the condition of the streets, roads, and lanes, indicating to sight and smell the habits of such populations. — See Health of Towns Reports, 1842, and the Reports of the Superintending Inspectors of the Board of Health 1848, White- haven for instance. 2. There are other towns, villages, and houses where there are cesspits, cesspools, and privies, for portions of the population ; the privies and ashpits being in all sorts of improper public places, crowded against houses, with some beneath occupied rooms ; and those in open and ex- posed places having shattered doors, broken seats, rude ruinous cesspits ; the places and all about them being filthy beyond description. 3. There are other towns and districts situate in porous but water- logged sites, where there are wells and cesspools side by side ; the sub- soil-water, according to the season, rising or falling simultaneously in both wells and cesspools, the water of the wells being dangerously tainted by sewage from the cesspool. 4. There are some towns and districts imperfectly drained by rudely formed stone drains, originally made to remove surface-water, but which the inhabitants now use for sewage ; consequently creating a nuisance. 5. There are towns and districts partially sewered and where water- closets are partially used, the larger proportion of the population, however, still using common privies and cesspits, whilst many of the inhabitants have no sort of privy accommodation provided, but chamber utensils are used by the females ; the yards, roads, and lanes, being fouled by the males and children. 6. There are towns and districts fully sewered upon correct principles, but the houses are not drained, and, as there is no public water-supply, there are only a few waterclosets— common privies and cesspit-middens remaining. * Extracted from the First and Second Reports of the Rivers Pollution Commis- sioner:^ Mersey and Ribble Basins, pages 24, 25. 75 7. There are towns and districts which are completely sewered, drained, and have a full water-supply. Cesspools and cesspits having been abolished, waterclosets substituted, and the sewage at the outlet being applied to land for agricultural uses. But even in such towns there are grave defects, as neither sewers nor drains are fully ventilated ; and many of the waterclosets are situate in improper parts of the house and are also defectively ventilated. The defects stated in the above seven cases have been described over and over again in the Sanitary Reports of the last twenty-five years, and there has been, and now is, considerable movement to obviate some of the most glaring evils enumerated. But the local authorities, in many cases, shrink from incurring the first costs of main-sewers, house-drains, the abolition of cesspits and privies, and the establishment of waterworks ; the substitution of waterclosets and providing land for sewage irrigation. Hence the adoption of patented schemes of various kinds, dry and wet, for the removal of excreta, all of which are costly failures. The prohi- bition against polluting streams with sewage has also brought in patented modes of dealing with sewage, the inventors professing to purify it, and to make a portable manure out of the sediment which shall have com- mercial value. Every such scheme, up to this time, having, however, failed even to purify the sewage, as well as failed to pay working expenses by the sale of any manure made. Sewering, draining, a public supply of water, and scavenging, are necessary to the comfort and health of town communities, and a purifi- cation of the sewage outside of the town is necessary to the health of the country, and so far no form of portable apparatus, wet or dry, dry-earth closet, or Rochdale, pail, can dispense with sewers, drains, and a public water-supply. So far, then, all are agreed. The waste water from houses, streets, yards, and manufactures must flow away through sewers to some common outlet ; and, as this fluid is polluted by every form of pollution within a town, though excreta is absolutely excluded, it is, in fact, sewage ; it must, therefore, necessarily come under any laws and regulations enacted against polluting streams with sewage. These facts are either not appreciated or are not understood by those persons who adopt the various moveable apparatus and work them at so great a cost to the ratepayers. As to the so-called “ dry-systems ” there is no such system, because all are necessarily more or less wet. The pails do not receive and remove all the urine, as is shown by the returns of the weights removed by the pails used at Rochdale in proportion to the population. Captain Lienur, in his most complicated and costly pneumatic system, does not profess to remove all the urine, but insists upon special provision being made for the reception and removal of waste-water. As side-by-side with his pneumatic privy-pan-closet, he states that there must be a sink for waste-water and the contents of chamber-utensils entirely distinct from his apparatus. This must also be the case with dry-earth closets, as also with moveable pans, tubs, or pails ; either on the Rochdale plan, or indeed on any other such system. These facts being so, where is the advantage gained by all the extra intervention, labour, and costs incurred P The pleas used in favour of these several modes of removing excreta are, their advocates say, greater comfort to the householder, extra cleanliness, freedom from nuisance, and absolute freedom from any form of pollution sufficient to cause disease. This most desirable result unfortunately depends, how- ever, upon so much perfection in the working establishments as to prove, practically, to be unattainable. A dry-earth closet in summer, if not attended to, becomes a small cesspit. And this attention involves daily removal, effective cleansing of the box, and renewal of dry-earth. I have seen dry-earth closets most disgustingly dirty through misuse and neglect. The several portable tubs and pails are also liable to similar contingencies 76 of neglect, as the tubs and pails are at times left too long on the premises, and they then become over full and slop over and flood the surrounding surface with matter most offensive to sight and smell; the removal of the wet tubs and pails is dirty work, as there is frequently slopping over the street-surfaces from the vans during removal, and some of the stores, depots, or yards, to which the pails are removed are reported to be very filthy and offensive. The mixing and making into manure is costly and does not pay. The removal of excreta in this manner is encum- bered with the removal to and from the houses and the depot by van and horse, so that for each ton of excreta there is at the least two tons of dead weight to move backwards and forwards with all the labour besides the wear-and-tear involved. In the Liernur system the appa- ratus draws the excreta to the pumping establishment, but from this point it is loaded into barrels for transmission into the country, where, as we learn, it becomes a nuisance in winter, as the tubs freeze and burst. With respect to the practical value of any of these concentrated manures, that is concentrated when compared with town sewage, it is difficult to arrive at a reliable estimate, as experience so far tends to prove that the chemist’s laboratory estimate of value is not accepted by farmers. The mixed excreta, that is the mixture with ashes, reduces the selling price to 2s. 6d. per ton, and even at this price there are large accumulations during those portions of the year when farmers are busy with sowing, haymaking, or harvesting. In some towns the mixed manure is given. Whatever may be the demand for portable sewage manure in the future, the several modes of manufacture have so far failed to secure for the patentees any profit. The cost of any really effective mode of dealing with excreta should not be sufficient to condemn it, as means of cleanliness, comfort, and health, are worth paying for ; and, if the means used are, under all local conditions, the best for that district, or the ratepayers choose to consider them the best, then they must pay the necessary costs. The promoters of these dry-earth and moevable wet-tub and pail processes are not however contented to perfect and advocate their own special schemes, but they condemn all other modes of dealing with excreta in unmeasured terms, — especially the watercloset, — as this, they say, taints alike the atmosphere both of the town and of the houses. With respect to the use of the watercloset, the case may be thus stated, All parties admit that' towns must be sewered, and that houses must be drained to remove surface-water and waste-water from dwelling-houses and factories ; this being the case, these sewers and drains must be of cross-sectional dimensions sufficient to remove not less than 30 gallons per day, in dry weather from each inhabitant, and the capacity ought not to be less than five times this to provide for occasional rain. All sewers and drains receive more or less of sediment, washed from roofs, yards, sinks, channels, stables, slaughter-houses, cow-sheds, and manu- factories, and along sewers truly formed the entire contents pass day by day to the outlet, and where waterclosets are used the entire excreta, solid and fluid, with the contents from the chamber utensils and slop- pail, pass at once silently and imperceptibly with the sewage to the outlet, there to be dealt with under one set of operations, avoiding every form of secondary intervention involved in a use of dry-earth pan and pail. The entire of the excreta, in proportion to the sewage in dry weather being, by volume, as 1 of excreta to from 100 to 150 of sewage ; and in wet weather, the proportion is of course much greater, conse- quently, in every portable form of dealing with excreta by the dry-earth or tub and pail systems, the bulk and weight is formidable, and the removal costly, whilst in the water drainage system this bulk is unim- portant, because it is only fractional. With respect to the supposed nuisance and danger arising from waterclosets, proper construction and • 77 use render any atmospheric or other taint within the house absolutely impossible, and the sewage flowing daily in a fresh state from the closet-pans along fully ventilated sewers gives no injurious taint. There must, however, be no drains nor openings into drains within the houses. Sink-pipes must discharge over or into a drain outside, and waterclosets must be against an external wall, connected with a soil-pipe, which is carried above the roof ; the upper end to be fully open, and the watercloset rooms must have a day-light window, and fixed means for permanent ventilation to* the external air at the ceiling. With such arrangements, and a good supply of water, one of the best waterclosets will work with perfect safety, and may be, what such places should in all cases be — private. The mode of dealing with the sewage, at the outlet, is in no way complicated nor rendered more difficult to deal with by the addition of the excreta from the watercloset ; indeed, if the sewage is used in irrigation, it is dealt with to much better advantage ; as the fluid is richer by so much manure. Bedford, Leamington, Croydon, and Cheltenham are cases in point, where the entire populations use waterclosets, and the sewage is also used in irrigation for purposes of agriculture. That waterclosets can be used on the greatest scale by an entire popu- lation, is further proved in the case of London, where, for 3,600,000 population there is, on an average, one watercloset to each 5 • 5 of the inhabitants, or about 700,000 waterclosets are in use.* The excreta passed daily from London may be estimated at 4,000 tons, and to remove this in tubs or pails to a distance of five miles, would cost about 1,000/. per diem, or 365,000/. per annum. The daily volume of sewage and excreta of London weighs about 600,000 tons, and this flows along the drains and sewers to the outlet at no cost but that of pumping, which is about 36,000/. per annum. In many towns this cost would not be necessary, as the sewage will flow to the outlet, but in every case of the dry-earth tub or pail systems there must be the cost of hand removal and carting. f EXAMPLES OF SEWAGE IRRIGATION. Extracted from the First Report of the Commissioners appointed in 1868 to inquire into the best means of preventing the Pollution of Rivers. — Mersey and Ribble Basins. The information extracted from this rivers pollution report bears so intimately on the questions discussed in our Sewage Report, and the several analyses are so full and complete, that we have considered it * With respect to waterclosets, soil-pans, and urinals, no watercloset, soil-pan, nor urinal should be supplied with water through a screw-down cock, stool cock, or lever- handle, direct from the water-main, hut through a service-box or water-waste preventer. f The late Dr. Parkes, F.R.S., made exhaustive experiments with disinfectants, and found that it would cost about threepence for the chemicals to disinfect one gallon of putrid excreta, so that the disinfection of 4,000 tons per day of London refuse would cost 11 , 200 /., or at a rate of 4 , 088 , 000 /. per annum, leaving the 600,000 tons of sewage per day (or 219 , 000,000 tons per annum) untreated. These figures only serve to show the extravagance of disinfectants ; as, also, that the small doses of Condy’s fluid, or of any other fluid, or solid, passed down sinks, waterclosets, drains, and sewers, can practically have no beneficial effect. Foul drains and sewers can only be disinfected at a cost proportionate to the weight and volume of excreta and sewage in the drains and sewers, and this we see would be enormous ; they must be flushed with water. Disinfectants may be used with advantage in hospitals, in sick rooms, and in stables ; they may also be used by butchers and by others, but they will be practically useless in cesspools, if only small doses are applied ; and it is to this fact attention is intended to be directed. The vestries are only wasting parish rates when they send round carbolic-acid to be poured down street gullies by tablespoonfulls. The foul gullies, drains, and main-sewers, may require cleansing, and if so, should be cleansed by flushing, as a use of chemicals for the purpose will be out of the question, on account of the enormous cost of such applications. 78 advisable to repeat them, rather than to have incurred the great cost and delay which must have taken place if we had obtained new analyses, which could not in any serious degree have furnished more reliable information than this we have extracted. The questions relative to town-sewage, and the best modes of dealing with it, have been so far exhausted that new experiments are not so much required as condensa- tion of ascertained facts put into the plainest language and the least space. Town-sewage is stronger or it is weaker in proportion to the density of the population, the number of waterclosets in use, and the volume of water with which the excreta is diluted. There are three sources of dilution, as, the volume of water supplied to the inhabitants from waterworks ; the volume of subsoil-water which leaks into the sewers ; and the volume of rain or surface-water which is admitted to the drains and sewers during wet seasons. In manufacturing districts there may be both further dilution and pollution if all the fluid refuse is admitted into sewers. This is, however, a question for municipal regulation. The extracts which follow are given to show town-sewage in its crude state and after filtration through land : — 1. The Sewage Meadows near Edinburgh . — These have long been quoted as an example of the largest produce known to agriculture, yielding grass of a somewhat coarse and “ washy ” character, but per- fectly well adapted for cow food. These meadows cannot, however, be named as a good example of the agricultural remedy for the nuisance created by town sewage ; for it is poured over them in such enormous quantity that the soil has not fair play given to it as a cleanser, and the water therefore leaves the grass land still filthy and offensive. Even here, however, we have a remarkable illustration of the purifying power of soil and plant. Thus, on April 16th, 1869, when the early crop of grass was being cut, and the meadow land was in full spring growth, three samples of the sewage were taken, No. 1 being of the water in the Foul Bum , as it poured, probably 700 tons an hour, over plot No. 11, on the map of the Craigentinny Estate. No. 2 was taken at the foot of this same bed, the water having poured at that rate in half an hour over less than an acre of land. No. 3 was taken at the foot of beds Nos. 45 and 46, the tail water of No. 11, which poured on at their head, having in the meantime taken about an hour to traverse one and a half acres of land. This sample represents the water of the Foul Burn as it flowed into the sea. It was not by any means clean, but how much of its filth had been removed during irrigation by the action, for an hour and a half, of two and a half acres of land on many hundred tons of very foul sewage is plain from the following table : — Raw and Effluent Sewage. — Edinburgh. Results of Analysis expressed in parts per 100,000. Date and Number of Sample. Total Solid Matters in Solution. Organic Carbon. Organic Nitrogen. Ammonia. Nitrogen as Nitrites ana Nitrates. Total Combined Nitrogen. Suspended Matters. 1 Mineral. Organic. Total. No. 1, April 16/69 62-20 6-106 3'613 9-510 0 11-445 11-32 28-08 39-40 „ 2, „ 65-50 4*797 2-086 10-579 0 10-798 9-76 16-64 26-40 „ 3, „ 51-60 3-340 •682 1-989 0 2*320 1-28 4-24 5-52 No. 4, April 17/69 55-00 5-061 2*842 7-865 0 9-319 28-72 29'88 58-60 5, „ 54-80 4-061 1-988 3-100 0 4-541 5-56 7-40 12-96 79 On the following day, after a night’s rain, when the sewage therefore was more dilute, a sample, No. 4 in the above table, was taken from the Foul Burn at Lochend just as it left the pumps, at the rate of about 20 tons an hour, pouring over a plot of Italian ryegrass, 40 yards wide and 44 yards down the slope. It was taking about an hour to traverse this plot of one-third an acre. A second sample, No. 5 in the above table, was taken at the foot of this plot. The composition of these samples is given above ; and comparing No. 1 with No. 3, and No. 4 with No. 5, the cleansing agency of the soil, however incomplete, is very apparent. In point of fact, more than three-fourths of the whole filth, soluble and suspended, was taken out of the water of the Foul Burn by one hour and a half of irrigation in the first case, and nearly two-thirds of the filth in 20 tons of sewage was taken out of it in the latter case, by irrigation over about one-third part of an acre of the fight sandy soil of the Lochend Farm. The Edinburgh experience, however, is rather one of agricultural profit from the use of sewage than of that perfect abatement of its waste and nuisance, which, in the interest of rivers, we desire to see. This arises from the enormous quantity of the sewer water and the small area of land on which it is used. At Lochend and Craigentinny, on the north and east of Edinburgh, about 230 acres receive the whole drainage of 80,000 people, being at the rate of 350 people per acre. At Grange, on the south side of the city, 16 acres get the drainage of a comparatively small number. At Dairy, on the west, 60 acres or there- abouts receive a very large quantity of filthy sewage, which they are unable perfectly to clean ; and there are one or two plots similarly treated on the road to Leith. Here, however, altogether are only 400 acres, whereas the population whose drainage they receive must largely exceed 100,000, and it is not, therefore, surprising that the drainage / water leaves the land by no means perfectly cleansed. The Foul Burn which waters the Craigentinny meadows passes first through Lochend farm, where about 20 acres of permanent grass and 8 acres of Italian ryegrass receive as much of it as the tenant chooses to apply. The quantity is, probably, often as much as 10,000 or 15,000 tons per acre during the growing season, besides an indefinite quantity during winter ; and, of course, a very small proportion of the filth which it brings down from Edinburgh is deposited here. The stream flows on in almost undiminished foulness to the meadows lower down. In addition to the 20 acres of permanent grass land, there are 12 acres arable at Lochend (of which 8 acres are every year in first and second year’s Italian ryegrass) commanded by a self-acting pumping apparatus. A water-wheel, driven by the stream, works a four-fold pump, deliver- ing, when in perfect order, about 1,000 cubic feet per hour, a quantity which, as it works night and day during eight months of the year, corresponds to nearly 20,000 tons, or, even assuming that only half duty is accomplished, is 10,000 tons per acre. In ei ther case it is plain that an enormous quantity is applied — much beyond the needs of the largest possible crop of grass. The grass of Lochend meadows has averaged, during nine of the spring sales at which it is disposed of by auction, 27/. 1 2s. 2d. per statute acre. During the past year the highest price attained was 41/. 17s. Qd. per acre ; and from that down to 19/. an acre has been realised. The Italian ryegrass on the same farm has varied in price from 32/. an acre for the first year’s cuttings to 25/. an acre for the second year’s cuttings. Leaving Lochend the Foul Burn pursues its course to the sea on the Portobello side of Leith ; but it has for many years been diverted, right and left, to a considerable distance from the original watercourse, and a fan-shaped farm of more than 200 acres, widening out as it gets near the coast, has been thus laid out for irrigation at a cost of about 5,000/. This Craigentinny farm includes within its limits land of excellent natural fertility, but it terminates at its lower end in a wide belt of sheer sea sand, which, though now equal in its annual produce to any of the originally superior plots, old men still remember as a barren shore. There is here too a portion of higher land of excellent natural quality watered by a pump, in this instance driven by steam power. The area this year watered thus is eight acres, and as the engine is driven only 300 hours during the six or eight dressings which this land annually receives, the pump, delivering from 60 to 80 tons an hour, does not distribute more than 3,000 tons per acre annually, a quantity which at 1 d. per ton, if ordinary sewage be taken to be worth so much, many ordinary agricultural crops would easily repay. These eight acres of Italian ryegrass have been sold during the past year at from 2 51. to 36/. an acre, — prices equal to those obtained at Lochend, where four times the quantity of sewage is applied. It would seem therefore, that the enormous surplusage of foul water used at the latter place fails to be of any agricultural service. In the lower Craigentinny meadows 190 acres receive probably nine- tenths of the Foul Burn , and, a night and day waterman being con- stantly employed in its distribution, it flows constantly over one plot after another ; a single dressing of five or six hours being given between the several cuttings of grass to each of the 250 plots, or thereabouts, into which the whole area is divided. The summer’s grass of these beds, varying from two to five roods each, is sold by auctidn to the Leith and Edinburgh cowkeepers every spring, and the maximum value reached last year was 36/. 15s. per statute acre. The quantity of grass for which such prices are obtained is believed to vary from 50 to 70 tons per acre. And as the means are perfected of distributing the sewage more evenly, and as the subsoil drainage of the land improves, the quantity and price are both increasing year by year. No exhaustion is apparent anywhere. The sewage brings down more than the plants require of every necessary constituent of their food, so that even the poor sea sand is as fertile as the rest, and the land is getting richer year by year, notwithstanding the enormous crops it yields. Taking the average price of the whole 240 acres to be 24/. an acre, we have a total annual produce of 5,760/. a year extracted by the land and grass from the drainage of 80,000 people, or Is. 5d. from each person annually — certainly not \d. a ton over the enormous quantity of sewage which is here applied. But the area is not sufficient to take up the whole of the filth brought down by the water. A much larger extent of crop could be obtained from the use of it if there were any land convenient on which it could be applied, or if there were a sufficient demand for the produce of it. The Edinburgh experience, therefore, must be quoted not as a successful example of sewage cleansed by irrigation, but rather as an instance of the largest produce raised my means of it from a limited area of land. 2. Lodge Farm , near Barking . — We turn now to an example of another kind, where the supply of sewage is limited and where the object has been, from this limited supply, by means of an ample extent of land, 81 to obtain the largest annual produce. Neither at Edinburgh nor at the farm near Barking in the occupation of the Metropolis Sewage Com- pany has the sanitary result or the purity of the water been the object aimed at. In the latter case, however, it has incidentally been secured. The object having been to obtain by agricultural use the largest return from the sewage used, it became necessary to make it as clean as possible before letting it go. At Lodge Farm, near Barking, the Metropolis Sewage Company in 1866 took about 200 acres, for the most part a light gravelly soil, (an analysis of which is given at page 67,) for the purpose of illustrating thereon the value of North London sewage, of which they hold the concession for a term of years. The land had been accordingly laid out in beds varying from 50 to 150 feet in width, with a central carrier down the middle of each, and having a slope from this carrier on either side, down which the sewage trickles to a midway furrow. The carriers are, as nearly as the general slope of the'land allows, horizontal ; the slope on either side varying from 1 in 20 to 1 in 60. The sewage is pumped from the outfall on the Thames, near Barking, through a 15-inch pipe to a reservoir on the highest part of the farm, and from that it is conducted in open ditches to the ridge-line carriers of these lands. These carriers, being stopped at intervals by the spade of the waterman, over- flow ; and the sewage, passing over and through the soil to the furrows, is by them conveyed to the lower slopes of the farm, over which it is distributed until it either sinks altogether into the land, or flows finally off the surface at the foot of the farm. The soil is too pervious and has too hollow and open a subsoil to permit the water to travel far upon the surface, so that after 50 yards at most of surface flow it sinks to reappear only at the mouth of the main drain of the farm ; which, nearly dry in ordinary weather, pours a full flow within an hour or two of the sewage being applied to the fields. Samples of water taken here represent therefore properly enough the effect of soil and plant upon the London sewage under such circumstances as the Lodge Farm supplies. The following table gives the composition of successive series of samples taken (l) at the carrier, (2) after 50 or 60 yards of surface flow, (3) after a further surface flow ; and ( a ) at the foot of the farm where the main drain pours it into a stream. Raw and Effluent Sewage. — Lodge Farm, Barking. Results of Analysis expressed in Parts per 100,000. Date and Number of Sample. Total Solid Matters. Organic Carbon. Organic Nitrogen. Ammonia. Nitrogen as Nitrates and Nitrites. Total Combined Nitrogen. Suspended Matters. Mineral. Organic. Total. a- April 22, 1868 - 112*50 12*182 3*664 4*000 0 6*958 32. „ „ 90*55 4*331 1*S72 2*250 *026 3*751 *13. „ „ 91*75 2*768 *624 2*500 *032 2*715 Ka. » 79*25 1*366 *329 *800 2*955 3*943- — — — 1 . June 23rd, 1869 65*30 2*596 1*715 4*000 0 5*009 18 48 27*80 46*28 2. ,, „ 74*30 2*028 1*285 2*437 *693 3*985 3*06 3*40 6*46 a. ” 79*50 *887 *236 *425 2*535 3*121 trace. trace. trace. * In this series of samples the suspended matters were not separated, hut the liquids, just as collected, were submitted to analysis. 82 Comparing 1, 2, 3, with ( a ) in the first, anti 1, 2, with (a) in the second of these examples, we observe the cleansing effect of land and soil in two separate instances, in both of which about 2,000 tons of sewage passed in the course of nine or ten hours over five or six acres of land ; but in neither of them had the sample received more than an hour’s treatment from soil and plant together. The soil of the farm is indeed too hollow and porous to allow the most to be made of the manure. Sinking away even in the channels which carry it'from the reservoir, much of the sewage is wasted before it reaches the plant ; and the remainder which trickles over the surface of the grass remains there too short a time for the entire extraction of the fertilising matter which it conveys. It will be seen, however, that the effluent waters marked («) in the two series of trials were to a great extent purified. Turning now to the produce of the sewage, here considered not as a nuisance but as a valuable manure, it appears that 300,430 tons were, in 1867, used over 56 acres of land, and 2,480 tons of Italian ryegrass were cut off that area. Of the sewage, however, no doubt a great deal was lost in the channels and on the land in first starting the process ; and, as regards the grass, we are informed that a large proportion was killed by the unusual frost of January 1867, only 13 acres, in fact, of the whole extent having been in full bearing ; and these yielded 62 tons of grass per acre. It appears, therefore, upon the whole experience, that for every 100 tons of sewage applied one ton of grass per acre was obtained over and above the natural produce of the soil and climate. In 1868 and 1869, experiments over a considerable extent of land have been made with other crops than grass, to which alone, or to equally succulent growths, so dilute a manure as sewage appears at first sight to be adapted. A field of 13 acres of poor gravel that was in wheat in 1867, yielding then about 3^ quarters per acre, was sown in 1868 in the following manner : — 4J acres with wheat early in November, 2\ acres with winter oats, 4 acres with rye, and 2 acres were planted with cabbages in October, which were taken off in March, and mangold sown in their place. The wheat was twice flooded with sewage, in March and in April, 450 to 500 tons to the acre being applied in the two dressings. The crop produced 5J quarters, and three loads of straw to the acre. The winter oats were three times flooded in March and in April, over the whole, and over a part in June, receiving in all about 500 tons to the acre. These oats yielded eight quarters of corn, with three loads of straw per acre. The rye was flooded twice, in March and in April, in all with about 450 to 500 tons per acre ; it was cut in July, and thrashed in the field, yielding six quarters, with three loads of straw. If it be urged that in such an unnsually dry season as 1868, good results would necessarily follow irrigation with town sewage, it must be remembered that although these crops no doubt benefited in common with those of the whole country by the lengthened fine weather, the soil is a dry burning gravel, and no sewage was applied to either wheat or rye after the month of April, up to which time there was the ordinary amount of wet weather, without any unusual heat. The same field has been again in wheat and oats and barley, and the experience of 1869, with a cold May and June, equally with that of the hot and dry season of the previous year, bears ample testimony to the power of sewage upon this soil as a manure for corn crops. The wheat has yielded 4 quarters per acre, the winter oats no less than 1 1 quarters per acre, the barley 83 ripening unkindly only 4J quarters per acre ; but it must be remembered in all these cases that the held, naturally a poor gravelly soil, was then yielding its third successive grain crop. Most satisfactory results also •continued to be reported last year* from Lodge Farm in the cultivation of potatoes, cabbages, "beet, mangold-wurtzel, and other green crops. The Lodge Farm experience, confining it to its growth of grass, may be said to represent a return of 5s. annually from every individual contributing to the sewage used upon it. Supposing the water supply to be over 30 gallons a head, each person will make 50 tons of sewage annually, corresponding to the production of 10 cwt. of grass, worth 10s. a ton. The experience here, combined with the tabular statement, page , of the analyses of the clear effluent water, pouring from the farm into the neighbouring brook, is sufficiently encouraging for those who are interested in the cleanliness of both town and river. We turn now to a large number of instances of irrigation, where the object has been not only to make a profit but to abate a nuisance. Such are the cases of Aldershot, ^Banbury, Bedford, Croydon, Norwood, Rugby, Warwick, and Worthing. 3. Aldershot Farm . — The case of Aldershot may be placed first upon the list, because here land has been taken for irrigation, not by the authorities, but by a tenant who, bound no doubt to cleanse the sewage of the camp, yet has for his principal object the extraction of a profit from its use, so that he comes more nearly under the same class with the example last named. Mr. Blackburn here receives the drainage of the North and South Camps, i.e ., of a population which is fairly represented by a constant number of 7,000 adults. During winter the drainage of this population, amounting to about 700 tons a day throughout the year, is poured in succession over the several fields of the farm, 80 acres in all, one half being in one and two years old Italian ryegrass, and the other half growing crops of potatoes, mangold-wurtzel, cabbages, &c. During the summer the crops upon the arable half take but little of the drainage of the camp, and it is then poured almost exclusively over the Italian ryegrass land. The soil is the poor sand of the Aldershot waste (con- sisting of almost pure silica), prepared at considerable expense by levelling and deep grubbing, so as both to provide a uniform slope over which the water may flow evenly, and to remove the ferruginous “ pan ” which everywhere underlies the soil, and would hinder the even distri- bution of fertilizing matter downwards. A few deep drains serve to draw off the water which sinks beneath the surface. The first set of samples A., taken in the afternoon of July 16th, 1869, were, (1) from the reservoir into which the camp drainage flows; (2) from the lower carrier or surface drain of a plot of about an acre in extent, over a width of 50 yards of which it had slowly trickled amidst a growing crop of ryegrass ; and (3) from the mouth of a drain the only effluent water from the farm. The sewage was unusually offensive at the time, and the effluent water was apparently clear. The difference of composition indicated by the analyses shows that while the water (1) just poured on had, in its first passage over a surface already richly manured, apparently dissolved and carried with it some of the stuff* left by a previous dressing, so that after its 50 yards of passage the sample (2) exhibited in its composition an even larger quantity of filthy matter in solution, yet in the end, and after passing through the land, the organic nitrogen and ammonia as shown in sample (3) had to a large extent disappeared. * Notes upon the Sewage Cultivation of Lodge Farm, Barking, by the Hon. H. W. Petre. — (Effingham Wilson, Royal Exchange). 39260 . « 84 Raw and Effluent Sewage. — Aldershot Farm. Results of Analysis expressed in Parts per 100,000. — Solid Matters in Solution. Organic Carbon. Organic Nitrogen. Nitrogen as Nitrites and Nitrates. Ammonia. Total Combined. Nitrogen. Chlorine. Suspended Matters. Mineral. /Organic. Total. ri . July 16/69 46*6 5*878 2*052 0 9-025 9*484 9-45 6*72 14-28 21-00 A. -$2. „ „ 47 ‘4 7-936 3*053 0 8-267 9*861 9-00 1-76 6-84 8*60 C3. „ „ 18*6 •665 •132 1-152 •486 1-684 3 '55 •68 •66 1-34 t> fl. May 1/68 93*40 16-335 2-694 0 13-054 13*444 5-30 17-90 23-20 ^‘12. „ 39-00 •504 T29 1-312 •622 1*953 “ •38 •02 •40 The set of samples marked B. in the above table were taken on May 1st, 1868. No. 1 was raw sewage, as it passed upon the land, and No. 2 was effluent water from the drain. They indicate an immense reduction in the quantity of all the dissolved polluting materials in sewage by the process of irrigation. The organic carbon was reduced from 16 ’3 to *5, and the organic nitrogen from 2*7 to *1 in 100,000 parts. The above figures show, however, that the whole of this amelioration must not be attributed to the purifying action of the soil and crop, for the solid matters in solution in both series, and the chlorine in series A., point unmistakeably to the admixture of the effluent water with about double its volume of un- polluted spring or subsoil water. All that can be safely inferred from the above analytical results is, that in the series A. the organic impurities, soluble and insoluble, were reduced to less than one-fifth, and in series B. to one-eigliteenth, the original sewage in the latter case being much stronger than in the former. Even after this deduction has been made from the observed effect, the result is a very satisfactory one. In this case the extreme natural poverty of the soil does not seem to have been a hindrance to the efficiency of the process of cleansing by irrigation. The farm, well managed, is covered with a capital plant of vigorous growth, to be fed by the filthy water, which accordingly is greatly purified by the process. Mr. Blackburn lets portions of his land to neighbouring cowkeepers, at 20/. an acre ; and here the grass, cut in regular rotation, was in the heat of July, when everything was withered and burned up around it, a perfect oasis of luxuriant green, yielding annually its four or five crops of eight to ten tons a piece per acre. The Aldershot farm appears the more satisfactory as an example of the sewage nuisance abated, at the same time that its filthy contents are converted into valuable produce, from the circumstance that a previous attempt to deal with it by subsidence and filtration tanks had been a complete failure. Supposing 40 acres here to yield 20/. an acre, and other 40 acres to owe one-half of their crops, or 10/. an acre, to the winter sewaging, we have here a return of 1,200/. from the waste of 7,000 adults, or 3s. 4 d. per head per annum. 4. Carlisle . — The sewage of Carlisle finds its way, for the most part, into the Eden through the main sewer beneath the alluvial pasture land bordering the river. It is delivered in the middle of the river channel through a submerged iron pipe. On the town side of the meadow a pumping station has been erected by Mr. McDougal, to whom the land (about 100 acres) is let; and a quantity is thus 85 lifted, deodorized by treatment with carbolic acid, and distributed over the land by means of light portable iron troughs. These are shifted from place to place by the man in charge, and in this way the sewage pours on at one place after another, distributing itself with more or less regularity, according to the natural surface of the land, which has not been levelled, — flowing here, ponding there, soaking everywhere. There is an obvious increase in this way to the natural fertility of the land ; and a larger quantity of stock is kept upon it than it would naturally maintain. There is no surface drainage from the land to the river, and our sample for analysis was taken by digging a hole three feet deep, close to where the sewage had been lying on the previous day, and taking the water to which we at length came. Raw and Purified Sewage. — Carlisle. Results of Analysis expressed in Parts per 100,000. Description. 2 © +3 ■§ d s-j 5,3 0 1 o 3 I £ mmonia. 3 I* if go ^ .2 • 11 o O © .2 o Suspended Matters. i— i £ 43 EH 0 1 1? O © 1 1? o 8,5 2§ £ EH o Mineral. | Organic. Total. Raw sewage. Sept. 23, 1868. 44-9 2-673 •505 1-912 0 2-080 - 5*24 4-64 9*88 Water from hole dug in irrigated meadow. Sept. 23, 1868. 28*8 *591 •204 •025 0 •225 3-18 0 0 0 As there is properly speaking no effluent water from this meadow, the whole of the sewage applied being absorbed by the sandy soil and there being no drain outlet, the result is not quite so trustworthy as in other cases ; nevertheless we may fairly conclude from it that the soakage from the irrigated land into the neighbouring river is effectually purified. 5. Penrith . — Here the drainage of a town of 8,000 people, only partly provided with waterclosets, is received on 80 acres of good meadow land near the Eamont. A little more has been done here than at Carlisle to distribute the water by means of permanent carriers ; but the treatment is otherwise the same, and the result is very similar. A very large stock of cattle and sheep is kept upon the land to graze down the abundant growth of grass which is obtained. Raw and Effluent Sewage Penrith. Results of Analysis expressed in Parts per 100,000. Description. GO 3 j§ 2 S.2 2 0 | 2 8: | £ Ammonia. © l * GO S © W +3 .2 2 28 0 2 © .2 0 Suspended Matters. •o ° 50 02 O EH ‘2 O p 6 £ 0 p 0 EH 5 0 Mineral. Organic. Total. Raw sewage, Sept. 24, 1868. 53-5 5-111 1-899 10*395 0 10-460 - 5-88 11-88 17*76 Effluent water from drain as it enters the Eamont, Sept. 24, 1868. 21-9 *320 •108 '001 0 •1C9 2-68 0 0 0 f 2 86 Here, as at Carlisle, the whole of the sewage is absorbed into a porous sandy soil, but the drain passing beneath the irrigated land, and alluded to in the table, pours out a considerable and clear stream into the Eamont , and from this the sample of effluent water whose analysis is given was taken. The comparatively small proportions of solid matters in solution, and especially of chlorine in the effluent water, point to the admixture of unpolluted subsoil water with the true effluent sewage, and the figures in the above table indicate that no less than three volumes of this pure subsoil water mingled with one volume of the real effluent sewage. But even after making this deduction from the purifying effect of the irrigation the result is still satisfactory. The whole of the suspended impurity was removed whilst a reduction of the organic matter in solution was effected to the extent of 75 per cent, of organic carbon and 77*2 per cent, of organic nitrogen. 6. Rugby . — -At Rugby, a town of more than 8,000 inhabitants, the Board of Health have taken a lease of 65 acres of land for a term of 31 years, at a rental" which, with rates and taxes, amounts to 4/. 10$. per acre ; and, confident in the powers of their somewhat gravelly soil (lying upon a clay subsoil) to cleanse their town drainage, and to con- vert it into valuable produce, they have laid out nearly 5,000/. on the works required for the distribution of the sewage water over it. An intercepting sewer takes the drainage of all the upper part of the town by natural gravitation to the top of the farm ; and, by a deep and costly tunnel drain, the waste of all the lower part of the town is made to flow (along with the tail % water of the upper fields) over about 16 acres of the lower part of the farm. The quantity of sewage at command is about 900 tons a day, or nearly 4,000 tons per annum for every acre of the farm. The land has been in hand for only one year, and much of it was sown with Italian ryegrass for the first time in the spring of 1869, so that the best results can hardly have been yet realized. The third and fourth cuttings (both heavy crops) were, however, ready in the following month of July, and a sale was being obtained for the grass at 8s. a ton upon the land. A considerable portion had been let at 10/. an acre ; and the 16 acres at the lower end of the farm had supported throughout the spring and summer 54 head of cattle, consuming at least four tons of its grass produce daily ; and a considerable extent of the crop on these 16 acres had been made into hay. In illustration of the cleansing power of land and plant at Rugby, three samples taken about mid-day, July 13, have been analysed ; No. 1 was raw sewage taken from the hydrant as it poured over the top of the farm ; No. 2 was the same sewage taken at the foot of JA acre of land in Italian ryegrass over which it had passed 150 yards down the slope. Thence it flowed along a surface channel about 300 yards to another acre of Italian ryegrass; and No. 3 was taken at the foot of this grass plot about 80 yards from the carrier which supplied it. The following table gives the results : — Raw and Effluent Sewage. — Rugby. Results of Analysis expressed in Parts per 100,000. Hugby Samples. Solid Matters in Solution. Organic Carbon. Organic Nitrogen. Nitrogen in Nitrites and Nitrates. Ammonia. Total Combined Nitrogen. Chlorine. Suspended Matters. Mineral Organic. Total. 1. July 13/69 52*60 5*505 2*322 •ooo 7*276 8*314 8*25 3*48 8*96 12*44 2. „ 65*70 2*547 *506 *000 2*772 2*789 10*20 •72 *28 1*00 3. „ „ 68*20 1*526 *164 *000 *420 *510 10*50 *88 •36 1*24 87 Here then is a case in which the nuisance of the sewage is entirely abated, and so much produce realized as to make it probable that the remedy, which has been here an expensive one, will yet prove profitable, The following account of the experience of 1869 at this place has been communicated to us by Mr. T. M. Wratislaw, Clerk of the Local Board of Health : — “ The gross produce of the sewage-farm, for the year ending 31st December, has been 544/. 16s. 8 d. The total expenses, so far as the payments (including wages for the year) have been made, stand at 458/. 8s. 5c/., and I do not apprehend much addition.” “ I am not aware of the actual number of persons contributing to the sewage utilized, but should estimate 7,800.” 7. Banbury . — A population of about 11,000 people here drain into tanks, from which, through a 12-inch pipe, the sewage is driven by steam power a mile or more to the upper end of a farm of 136 acres, a lease of which has been taken for 21 years, at a rent of 41. 10s. per acre. The quantity thus applied amounts to about 300,000 gallons a day, or about 4,000 tons per acre per annum over that part of the farm which is under irrigation. The sewage settles to some extent in the tanks from which the pumps lift it, and both mud and scum are here taken from it, and mixed with the street sweepings and other scavenging refuse of the town ; and 2,000 tons of this compost were sold last year, for which a sum of about 100/. was received at the depot, -the material being loaded by the purchaser into barges on the canal close by. The liquid part, delivered on the highest part of the farm, having about 17 feet of fall before it reaches the river Cher well, flows twice or thrice over successive fields before it is finally dismissed, and the extreme filthiness of the river formerly complained of is now satisfactorily abated. The following samples illustrate the cleansing process which the sewage thus undergoes. The series A. was taken at our visit to Ban- bury on October 17th, 1868; No. 1 being the sewage which had accumulated in the pumping well from 10 a.m. to 2 p.m., and No. 2 the effluent water as it left the meadows at 1 p.m. The series B. was collected on July 14th, 1869. No. 1 was taken at 10 a.m. and at noon, being raw sewage taken partly from the upper carrier on the farm and partly from the pump well. No. 2 was the water after it had passed over 200 yards in length, and four acres in extent of a field of Italian rye- grass, at the rate of, probably, 70 tons an hour. No. 3 was taken after this tail water had travelled half a mile in an open carrier, and then distributed itself over a flat meadow of permanent grass land. It was passing from the underground drain of the field in question, and represents the sewage as it reached the river. The farm is for the most part a very stiff soil, and the greater part of it is still in old grass land, and neither circumstance is favourable to its efficiency ; the former because the soil tends to crack in dry weather, thus given the sewage direct access to underground drains, and thence to the river before it has been properly acted upon by the soil ; and the latter because the surface of the land not being specially and evenly laid out for irrigation, the water tends to collect in shallow ponds or puddles, to the injury of the produce, without being itself materially cleansed. The accounts given of the produce of the land are satisfactory, and it is believed that the farm will soon repay rent, and costs, and loan, so that the nuisance hitherto created by the town will be ultimately abated without any serious permanent charge upon the inhabitants. 88 The produce of Italian ryegrass and of the meadow land is sold by auction as the successive cuttings are ready for the scythe ; and prices varying from 3/. to 51. an acre have been obtained per cutting. The following are the results of our analyses : — Raw and Effluent Sewage. — Banbury. Results of Analysis expressed in Parts per 100,000. Banbury Samples. Total Solid Matters in Solution. Organic Carbon. Organic Nitrogen. Nitrogen in Nitrites and Nitrates. Ammonia. Total Combined Nitrogen. Chlorine. Suspended Matters. Mineral. Organic. Total. * Cl. Oct. 17/68 - 111*5 6*246 2*764 *000 13*590 13*956 _ 3*90 8*62 12*52 A T2. „ „ - 70*9 2*241 *549 *000 2*282 2*428 13*25 *52 *84 1*36 (1. July 14/69 - 92*4 8*269 2*886 *000 6*702 7*905 8*75 9*56 20*12 29*68 B.l2. „ „ - 66*5 2*670 1*127 *000 3*112 3*690 6*75 1*68 3*84 5*52 C3. „ „ - 51*8 1*008 *207 *668 *725 1*472 5*50 *94 *80 1*74 The Banbury sewage, owing to a deficient water supply, is sometimes much above the average strength, and consequently its efficient cleans- ing is then a more difficult operation ; nevertheless the above results are by no means unsatisfactory ; and they are improving, both as regards the cleanness of the effluent water and the returns from the use of it. The following account of receipts and expenses, in respect of the sewage-farm here, for the year ending Lady-day 1869, has been supplied to us by Mr. T. Pain, the town clerk : — Receipts. Amount realised from sale of ryegrass - . . £ 561 s. 16 d. 6 „ „ mowing grass - - 347 18 2 „ „ oats 0 - 198 0 0 „ „ aftermath - - 166 11 8 Right of shooting over farm, and sundries - - 6 1 6 Payments . Mr. Tomline, a year’s rent less property tax Rates and taxes for the year . - Coals for engine - Labour expended in cultivation of farm Seeds, implements, &c. - Manager’s salary - Auctioneer’s expenses of sale, including com- mission - 1,280 7 10 £ s. d. 605 3 1 57 4 7 111 16 0 216 2 0 82 0 6 45 0 0 73 6 11 1,190 13 1 Profit on farm - - - 89 14 9 Instalment of principal and interest in respect of loan of 4,000/. borrowed to carry out the irrigation work - 250 0 0 89 The produce of the summer of 1869, when we were over the farm, bid fair to at least maintain the satisfactory character of the account on the previous page. 8. Warwick, a town of 11,000 inhabitants, occupying 2,400 houses, of which upwards of 2,000 are connected with the sewers, has lately poured its sewage over a clay-land farm of 100 acres, about a mile away. The quantity thus pumped, and which formerly fouled the Avon , amounts to about 600,000 gallons a day, double the water supply of the town, or nearly 1,000,000 tons a year, corresponding to 10,000 tons per acre annually. A large quantity of very dilute drainage water thus flows over a very stiff and therefore less appropriate soil. What the result is, as regards its cleansing powers, appears from the following analyses : — No. 1 is a sample of raw sewage taken from the receiving tank by the pump at 4 p.m. on July 14th, 1869. No. 2 is the sewage after flowing over seven acres of recently-cut Italian ryegrass taken at the foot of a field of red clay soil down which it had flowed probably 200 yards at the rate of 80 or 100 tons an hour. No. 3 is the same water after a second cleansing over three acres of Italian ryegrass in a field of similar soil. The results here may be taken to represent the powers of plant growth and of mere surface action of clay soil, for none of the water apparently had sunk into the land or been absorbed. Here the filth in about 150 tons of dilute sewage had been satisfactorily reduced by probably two hours’ irrigation treatment, under what must be pronounced unfavourable circumstances. Moreover the sewage, and consequently the residual impurities had obviously undergone concen- tration by evaporation, as is seen from the continuous increase of chlorine in the successive samples. Raw and Effluent Sewage. — Warwick. Results of Analysis expressed in Parts per 100,000. — Total Solid Matters in Solution. Organic Carbon. Organic Nitrogen. Nitrogen as Nitrites and Nitrates. Ammonia. Total Combined 1 Nitrogen. Chlorine. Suspended Matters. Mineral. Organic. Total. 1. July 14/69 - - 66-90 5-133 1-680 •ooo 2-439 3-689 6-30 2*64 3-36 6*00 2. - 69*70 2-727 •575 •ooo 1-705 1-979 7'70 3*30 *78 4*08 3. - 66-10 1-454 •175 *137 *839 1-003 8-15 Trace. Trace. Trace. The farm has been in hand for two years. Pumping commenced only in the autumn of 1868, and it was not continously carried on until the following year. This, together with the difficulty which the low and flat part of the farm presents to the proper drainage from it of so large a quantity of water, has hitherto delayed the satisfactory financial result which is looked for. Nevertheless the nuisance is sufficiently abated, and large crops of Italian ryegrass have been obtained, for which a ready sale at 10s. and 12s. a ton upon the ground has latterly been obtained. The farm must, we understand, pay at least 1,600/. a a year to replace the costs which the town has already incurred and still bears in respect of rent, pumping, and works. 90 9. Worthing , containing about 8,000 inhabitants, has hitherto fouled a stream running into the sea two miles to the eastward of it. The town drainage now runs to a tank from which it may flow as heretofore, and still does run during the night, so that a good deal of very offensive filth even now lodges in the bed of the stream. During the day it is pumped and flows upon the land of the Worthing Land Improvement Company, who have about 100 acres on which to receive it. The soil is a good free loam perfectly well adapted for their purpose, and the natural slopes are quite sufficient for the easy distribution of the water. There are on the lower part of the farm upwards of 40 acres of an alluvial flat of natural grass on which the effluent drainage of the higher arable land received before it leaves the farm. Mr. W. Hugh Dennett, solicitor to the Worthing Land Improvement Company, has communi- cated to us the following account of the gross receipts and working expenses of the sewage-farm for the year 1869 : — Receipts - Expenses “ Balance £ s. d. 1,807 4 9 1,045 6 9 761 18 0 “ In the above expenditure is included a sum of 51/. 13s. 11 d. for a ‘ Level ’ rate, made for the protection of various lands from the en- croachments of the sea, which is a special and not an ordinary parochial rate. There is also included a sum of 50/. for the rent of 8^ acres of the land referred to and comprised in the area stated below. A steam engine on the farm was used for about three months at a cost of about 2 51. “ The population of Worthing is about 7,600. “ The engineer reports that the average volume of sewage pumped each day of 24 hours to the farm is about 480,000 gallons (of which about 130,000 gallons are spring or surface water). In addition to this, about 80,000 gallons of water per day flow into the Treville stream. “ The extent over which the sewage flows is about 83 acres. “ The whole farm consists of about 96 acres, a portion of which is not sewaged ; 42 acres are pasture land. “ I cannot say that the pollution has altogether ceased, because although it is stated that the 80,000 gallons of sewage flowing into the stream per day is top water, yet it flows from the sewage-well, and must be necessarily polluted with sewage. However, the actual pumping of the sewage into the stream ceased some months ago, and the com- munication has been removed. The Local Board of Health have also cleansed the stream, and there is reason to believe that all the sewage pumped goes upon the land, though materially diluted by spring and surface water.” Our samples of the Worthing sewage were taken on July 15th, 1869, about 3 p.in., (1) from the head carrier, (2) from a carrier 150 yards lower down at the foot of a field of Italian ryegrass, over three or four acres of which the sewage was passing at about the rate of 60 tons an hour, and (3) from the effluent stream at the foot of the farm after it had further spread over two or three acres of the flat alluvial grass plot by the river. The following results were obtained on alalysis : — 91 Raw and Effluent Sewage. — Worthing. Results of Analysis expressed in Parts per 100,000. Total Solid Matters in Solution. Organic Carbon. Organic Nitrogen. N itrogen in Nitrites and Nitrates. Ammonia. Total Combined Nitrogen. Chlorine. Suspended Matters. Mineral] 1 Organic. Total. 1. July 15/69 57-6 2-312 2*021 •ooo 3-717 5*082 10*75 1-86 4*74 6*60 2. „ „ 58*8 1*164 •226 1-105 •801 1-991 11-40 Trace. Trace. Trace. 3. „ 59’8 1-324 •334 •248 •591 1*069 11-00 ” ” The sewage, which was somewhat weak at the time of our visit, was sufficiently cleansed by passing over the first plot ; indeed it was cleaner than another sample from the effluent stream which was probably carrying into the river the purified water from the stronger morning sewage. Close proximity to the sea affects the proportion of common salt in the Worthing sewage. The proportion of chlorine in all the samples is much higher than the strength of the sewage would lead us to anticipate. Some of the streets are watered with sea water. 10. Bedford . — At Bedford, which contains about 15,000 inhabitants, large sums have been recently laid out under the direction of Mr. John Lawson, C.E., on both its water supply and its drainage system. The sewers here receive not only the fouled water-supply of the town, together with a certain proportion of the rainfall on its houses and yards, but an immense quantity of land-water from the gravel site on which the town is built. Thus, though the water-supply does not much exceed 150,000 gallons daily, the quantity of drainage which reaches the pumping station, about a mile below the town, is as much as 500,000 or 600,000 gallons daily. Each of the two 12-horse power engines here stationed is, however, capable of lifting 2,000 gallons a minute to a height of 20 feet, so that either of them can master the ordinary dry- weather sewage of the place. During the night the comparatively pure water which then drains away is stored in the outfall sewer and tank at the pumping station. In the daytime it is delivered by an 18-inch iron pipe to the irrigated land 400 or 500 yards off, flowing thence into a small circular tank, and afterwards by two 15-inch pipes, along either side of the nearly flat land which has been laid out in transverse beds for its reception. These beds are about 70 feet wide on the side, with a fall of 8 or 10 inches from the central carrier to the midway furrow. The carriers are either 5-inch pipe tiles with open longitudinal slit, or 8-inch half round tiles ; and a fall of about 1 in from 300 to 800 is given to them. The beds were sown in 1868 with Italian ryegrass, and have yielded heavy crops. Up to the middle of July three crops had been cut off 20 acres, besides one crop off 15 acres sown in 1869, and the sales amounted to nearly 330/. A much larger area of land is about to be taken in hand for irrigation purposes by the Corporation. The extent at present rented is about 50 acres, but a farm of about 200 acres will ultimately be under their management. The cost of pumping, which amounts to 4/. per acre of the land now irrigated, will then be reduced 92 to a rentcharge of about 20s. an acre, which will be more easily repaid. And as the houses become more generally connected with the sewers, both the need of the greater area, and the produce derived from so large a supply of fertilizing matter, will increase. At present, as the following analyses show, the sewage is very weak, but the cleansing process is satisfactory. The samples of raw sewage (1, in the following table) were taken from the above-mentioned tank upon the farm ; the effluent water (2) was taken from a ditch, which is dry except when the sewage is pouring on the land, but which was then flowing rapidly, being supplied from the subsoil drainage of the field which was being irrigated. Samples were taken by us on three occasions. Series A. was collected on Sept. 10th, 1868, series B. on Oct. 10th, 1868, and series C. on July 24th, 1869. Raw and Effluent Sewage. — Bedford. Results of Analysis expressed in Parts per 100,000. Times of Collection. Total Solid Matters in Solution. § 1 P 1 O Organic Nitrogen. Nitrogen in Nitrites and Nitrates. Ammonia. Total Combined Nitrogen. Chlorine. Suspended Matters. Mineral. Organic. Total. A Cl., 4.45 p.m. - 74*8 2-732 *668 *000 2-700 2*891 _ 13*26 13*14 26*40 A 'l2., 5.0 „ - 76-8 •575 •163 •398 •023 •580 7-15 0 0 0 x. Cl., 12.30 P.M. 79-4 1-877 1*304 •ooo 4*300 4-845 5-58 5-50 11-08 J5 * c2., 1.30 „ - 78-3 •742 *381 •600 •010 *989 7-25 0 0 0 n Cl., 4.50 P.M. - 76-1 2-256 1-301 •ooo 3-100 3*854 10*90 8*16 13-68 21*84 1 2., 5 . 30 „ - 81-7 •558 •034 •505 •095 •617 8*17 0 0 0 The undertaking here is thus shown to be sufficient as a sanitary agency, and its ultimate profitableness appears probable from the character of the crops we saw growing on the land. The Italian rye- grass must have weighed 12 to 14 tons per acre. The mangold-wurtzel and kohl-rabi were tolerably promising. The prices obtained by auction for the former crop were improving at the successive sales, as the pre- judice against sewage-grown cattle food was dying out. The difficulties connected with the even distribution of the liquid will also diminish every year as the settlement of the moved land enables the necessary corrections of the surface to be made, so as to ensure a more uniform flow of water over it. The following report for 1 869 has been furnished by Mr. John Lawson, C.E. ; — “ The land leased by the Corporation from the Duke of Bedford contains 54a. 3r. 7p. Of this area 47 acres have been irrigated by sewage. “ Two fields, containing about 22 acres, were sown with Italian rye- grass in 1868, and the produce sold from this land in the year 1869 was about 420/. Of the remaining portion of the land irrigated 15a. 2r. were sown with Italian ryegrass in the spring of 1869, and the remainder with mangold- wurtzel and other root crops. The sales from this portion amount to about 2271. 10$. 4 d. } making a total of 647/. 10$. 4 d. 93 a Produce in the year 1869 as sold by auction £ s. Rent, 55 acres at 4/. 10s. - - 247 10 Auctioneers commission - 33 8 Printing - - - - 22 9 Seeds and plants - - 33 19 Labour, including salary of manager 213 4 Taxes - - - 17 14 Sundry expenses - - - 11 19 d. 0 6 0 0 0 8 0 £ s. d. 647 10 4 580 4 2 £67 6 2” 11. Norwood. The history of the facts connected with sewage irriga- gation at Norwood and at Croydon has been sufficiently prolonged to make it now thoroughly trustworthy and instructive. At the former place about 30 acres of low-lying clay land, with sufficient slope for natural surface drainage, have been well laid out for irrigation by Mr. Baldwin Latham, C.E. The drainage of about 4,000 people is received into a subsidence tank at the upper end, and thence flows along surface carriers, arranged both nearly in contour and down the slope. The fall in these carriers varies from 1 in 100 to 1 in 1,000, and the water stopped at intervals in their course flows over their edges, and so finds its way over the surface of the land. Plots varying in size from one to three acres are irrigated at once, according to the abundance of the supply, which, especially in summer time, when it is most wanted, is barely sufficient for the proper irrigation of the land. Nevertheless, very good crops of Italian ryegrass are cut five or six times a year ; and a ready sale is obtained for the produce, at prices varying from 9 d. to Is. 3d. per rod, or 6/. to 10Z. per acre, and the Croydon Board of Health have in this way obtained a revenue of 22/. per acre during nine months of 1868, and 251. per acre in 1869, which spread over the population to whose drainage it is due, amounts to about 3s. 9 d. per head per annum. Mr. Baldwin Latham has furnished the following satisfactory report of the past year’s experience : — £ s. d. “ The total amount received for the produce in the year was ----- 741 0 6 The expenditure has been as follows : — Rent after deducting income tax - Wages for cutting produce, atten- ding to the distribution of the sewage, re-digging and otherwise preparing the land for crops Seed - Taxes, rates, and tithes - Printing - Sundry bills - £ s. d. 292 16 3 196 1 3 17 2 6 63 15 3 2 3 0 20 16 6 592 14 9 - £148 5 9 Balance 94 “ The area under irrigation is 30 acres. Previous to the Local Board becoming the tenants of the land, the rent paid was 18s. per acre. The adjoining agricultural land is let at less than 1/. per acre rent. The average population draining to this area during the last year has been about 4,000. During the last month or two we have made provision to bring in a much larger area to this outfall, and in order to make pro- vision for the increased population the Board has taken a sufficient area of land adjoining the present irrigation works at a rent of 10/. per acre. This will nearly double the existing area under sewage. It may also be interesting to the Commissioners to know that when the existing works at South Norwood were completed they were let to a tenant for three years, at a rent of 200/. per annum. The Board at this time paid the cost of distributing the sewage, so that as long as the works were let, there was a clear loss to the Board of 180/. per annum, but since they have taken them into their own hands a profit has accrued as will be seen from the foregoing figures.” A series of samples of raw sewage and effluent water has been taken from this land, giving the following results : — Raw and Effluent Sewage. — Norwood. Results of Analysis expressed in Parts per 100,000. Date of Sample. Total solid Matter in Solution. Organic Car- bon. Organic Ni- trogen. Nitrogen in Nitrites and Nitrates. Ammonia. Total Com- bined Ni- trogen. Chlorine. Suspended Matters. Mineral. i Organic. Total. February 25, 1869 f Head - 91-70 3*235 •699 •ooo 2-030 -2-371 8-60 3-68 6-36 10-04 1 Tail - 73-20 1-577 •391 •423 •988 1-628 5-70 Trace. Trace. Trace. f Head - 117-80 5-407 2*294 •ooo 8*970 9-681 8-87 4-08 14-96 19-04 lviarcn iz, looy (.Tail - 83*10 1-294 •184 •381 •965 1-360 8-87 Trace. Trace. Trace. March 25, 1869 (•Head - 75*30 3-275 1*765 •ooo 7*097 7-610 8-50 5-88 8-36 14-24 (.Tail - 97*80 1-061 •189 •462 *342 •933 7*50 Trace. Trace. Trace. The relative cleansing which sewage undergoes by employment for irrigation at different seasons of the year has not yet received any sufficient elucidation. The proximity of Norwood and Croydon to London afforded a favourable opportunity of submitting the effluent water from the two sewage-farms to frequent investigation at all seasons of the year. Arrangements were, therefore, made for the periodical collection of samples for an entire year by our own laboratory man, in order to ascertain how far the efficient cleansing of sewage by this method is affected by the vigour or otherwise of vegetation, and especially whether the process could be relied upon during the winter months when plant life is in a comparatively dormant condition. The following table contains the results of our periodical analysis of the effluent water from the sewage-farm at Norwood : — Effluent Water. — Irrigated Meadows, Norwood. Results of Analysis expressed in Parts per 100,000. 95 Hardness. •moi OoooooiN«ffleioOHMninNT|i(ONON^(?)ffl(»(» I NN'#^H(»T)ib.ooot0O^^HN«Oi«5lOHOCO«N 1 (MrHN05NT)U«CCO)COOO)H i ClHWH(DCHOOO)Om(OaCO 1 T|Ott(OHN^(»(CW rH(M,-c(N(MOOC^(^-Hr- — >Ccocoo>(D(NO)*r;oco^NO)mcoco(oo^m rH •Biuonnny ^n®oc9)'#NHOiftioo®mfio(MHOioi | c)ooiaono® «HO®®m*oaiMiMO!0>oooffiTfi®TtincoHO)OOwcoNO(N gooowoc4i | t'NOHC5®cinMM«t'^®o) , #HH!flnH ^ ^ ^ ^ ^ •uoSoaq. •IN oiubSio vo o jo o w moeocO'— 't-Oii— 'OO-^Ot— i>-iTi. w — 1 00 I 00 IM IM ® 1 ®HOM®0®f)®HiO to (N NNHCONO H U> (N .-i | (M CO i— i O l#co«^®N j00®®NbiON00®ON®N00®00O00®®N®®®®t^0000 G\ t-i ,— i Description and Date of Collection. Average composition of the sewage before irrigation Effluent water, September 24, 1868 - „ October 8, „ ,» tt 22, „ - „ November 19, „ „ December 3, „ tt tt ^ t ft tt tt 31, „ „ January 14, 1869 - „ „ 21, „ after two nights’ frost „ „ 25, „ after seven nights’ frost - 1 1 tt 28, ,, „ Eebruary 11, „ „ tt 25, ,, „ March 12, „ ft tt 25, ,, „ April 8, „ „ „ 22, „ - „ May 6, „ tt »» 20, ,, „ June 3, „ - „ „ 17, „ „ July 1, „ „ „ 15, „ - >> tt 29, ,, „ August 12, „ tt tt 26, ,, „ September 9, „ tt it 24, ,, 96 These results, extending over an entire year, show that the effluent sewage was, except in a few instances, so far cleansed, even upon this heavy clay soil, as to be admissible into running water without nuisance. Two of these instances are instructive, since they occurred consecutively during and immediately after seven nights’ frost, viz., in the samples collected on January 25th and January 28th, 1869. The frost was by no means severe, yet the organic nitrogen rose from *098 to *419 per 100,000 parts of effluent water, showing that the removal of offensive nitrogenous organic matter was partially arrested, and indicating that during a severe winter the purification of sewage upon a non-absorptive clay soil may be seriously interfered with. It is fortunate, however, that the admission of putrescible organic matter into streams during frosty weather is far less objectionable than it is when the temperature is higher, since the organic matter does not render the water offensive so long as a low temperature is maintained. It is more difficult to account for the emission of exceptionally impure water from the Norwood Farm at other periods of the year, viz., on December 3rd, 1868, and February 25th, April 8th, May 6th and 20th, August 12th and 26th, and September 24th, 1869, but it probably arose, in some cases at least, from unpurified sewage gaining access to the drains through cracks in the soil. The hardness of the effluent water was not excessive, although it exceeded considerably that of the water supplied to Norwood. It never contained more than traces of suspended matters. 12. Croydon . — At the Beddington meadows below Croydon, 260 acres of an open soil upon a gravelly subsoil have for the last seven years received the drainage water of from 30,000 to 40,000 people. The water-supply of Croydon and the copious land drainage of the place altogether yield a quantity of sewage equal to at least 3,000,000, some- times exceeding 5,000,000 gallons daily. This passes through tanks where great pains were formerly taken to remove the solid and floating filth which it carried down, but less attention is now paid to this pre- liminary process, and the stream flows on very nearly as it leaves the town to the meadows in the occupation of Mr. Marriage, who, paying the rent at which the Board of Health have hired or bought the land, pays also a profit rent of 1/. per acre per annum for the use of the sewage. The success of sewage irrigation here as a deodorizing and cleansing process is complete, as the analyses show. There is never any lack of water, the soil is open, and has just slope enough to render easy the distribution of the liquid over it and through it, and there is sufficient fall between the top and bottom of the farm to allow the tail water of the upper fields to be spread a second time over fields below before it drains finally away. Very heavy crops of Italian rye- grass have been grown here. As much as 14 to 16 tons per acre are cut early in the month of May, and four or five cuttings a year are obtained, averaging from 8 to 10 tons each per acre. Mr. Marriage has also successfully used dressings of sewage in the cultivation of mangold wurzel ; and when wheat has been grown after sewaged grass, he has irrigated the field with advantage, even so late as the month of July, when the crop has appeared to be flagging and apparently suffering during a drought. Watercresses too have proved here an excellent crop for sewaging, not only from the profit derived from them, but from their cleansing powers upon the dirty liquid. The greater part of the land here irrigated is, however, in grass. That being the only crop which can be continuously watered with advantage, it is necessary to retain the greater part of the farm in grass in order that the enormous 97 quantity of dirty water here passing over the land may be changed from field to field often enough, and cleansed sufficiently before it leaves the land. Latterly, much of the land has been laid down to permanent grasses, which are better adapted for ordinary grazing purposes, and a large herd of feeding cattle have been successfully grazed upon these lands ; being moved from field to field as the water drains off them. This was, however, we presume, a temporary arrangement intended to diminish the tenant’s costs as the expiry of his lease approaches, and not intended as an example of the best method of converting the ferti- lizing matter of sewage into valuable produce. The following results of analysis illustrate the effect of irrigation when carried out upon the porous gravelly soil of the Beddington meadows. It will seen that the sewage as it flows upon the land possesses scarcely half the strength of average London sewage. The effluent water, even in the month of December, was satisfactorily cleansed and contained but mere traces of suspended matters. Raw and Effluent Sewage. — Croydon. Results of Analysis expressed in Parts per 100,000. Description. Total Solid Matters in Solution. Organic Car- bon. Organic Ni- trogen. Ammonia. Nitrogen as Nitrates and Nitrites. Total Com- bined Ni- trogen. Chlorine. Suspended Matters. s Organic. Total. Sewage as it flowed upon 48*0 2*076 *749 2*684 0 2*959 4*39 1*96 6*64 8*60 land, Dec. 23, 1869. Effluent water, Dec. 23, 1869 52-3 *795 *072 *265 1*164 1*454 3*70 Trace. Trace. Trace. Sewage as it flowed upon 48-0 2*882 1*269 2*700 0 3*493 4*30 3*80 10*80 14*60 land, Dec. 30, 1869. Effluent water, Dec. 30, 1869 45-0 •772 *076 *530 *678 1*190 2*95 Trace.- Trace. Trace. The following table contains the results of our periodical analyses of the effluent water from these meadows, extending over an entire year : — Results of Analysis expressed in Parts per 100,000. 98 99 These numerous analyses show that the sewage of Croydon is much more efficiently purified than that of Norwood. Only on one occasion (August 12th, 1869) during the entire year was the effluent water discharged in a somewhat unsatisfactory condition. On all other occasions the organic carbon and nitrogen were present in proportions considerably below those necessary to render the effluent water an offensive addition to a stream at any season of the year. Suspended matters were never present, except in minute quantity. It must be noticed, however, that during the continuance of the seven nights’ frost in January 1869, the purification here, as at Norwood, became markedly impaired, the organic nitrogen increasing from T86 part in 100,000, at which it stood before the frost, to *242 part, whilst the assimilation of ammonia by the vegetation was also retarded, as is seen from the in- creased quantity of ammonia in the effluent water. Unfortunately, the winter of 1868-69 was too mild to permit of this point being satis- factorily tested, and it will therefore be desirable to resume these experiments should there be a longer continuance of frost during the winter of 1869-70. In order to show more clearly the condition of the effluent water from the Norwood and Beddington meadows at different seasons of the year, the following table has been prepared : — Influence of Season upon the Purification of Sewage by Irrigation Results of Analysis expressed in Parts per 100,000. Average composition of effluent Sewage Water. Total Solid Matters in Solution. Organic Carbon. Organic- Nitro- gen. Am- monia. Nitrogen as Nitrates and Nitrites. Tfttal Com- bined Nitro- gen. Chlo- rine. Spring : Norwood ... 88*1 1*500 *303 •816 •220 1-194 8-37 Croydon - 85*4 *594 *104 •072 •225 •388 2*32 Summer : Norwood ... 88*6 1*883 *312 •462 *657 1*361 11-03 Croydon ... 35A *607 *126 •069 *155 *300 2-57 Autumn : Norwood ... 87*0 1*349 *203 •835 •734 1-629 8*94 Croydon ... 43*1 *690 •138 *185 *589 *792 3*20 Winter: Norwood - 87-0 1*271 *273 *876 *313 1-255 7*71 Oroydon 40-6 *612 *145 •204 *533 *846 2-72 After seven days’ frost : Norwood ... 88-8 1*356 *413 1*145 •156 1*534 8*84 Croydon ... 45-6 *591 •239 •871 *448 •992 2-88 It will be seen from the above table that the total solid matters in solution are remarkably uniform at all seasons ; but in estimating the degree of purification effected at different seasons on the two farms, it is necessary to bear in mind the relative strength of the sewage employed in each season, since the purity of the effluent water is considerably affected by the proportion of polluting ingredients in the original sewage ; in other words by the strength of that sewage. The strength of sewage is approximately given by the proportion of chlorine which it contains. Estimated by this standard the sewage of Norwood was strongest in summer, whilst the organic elements in the effluent water were also present in largest proportion during the same season. In winter, when the sewage was weakest, the effluent water was purest. At the Croydon farm, on the other hand, the sewage was strongest in autumn and winter, and the effluent water was also less pure in those seasons. In summer, when the sewage was weaker, the effluent water was also purer, whilst in spring, with a still more dilute sewage, the 39260 , r 100 water leaving the farm attained its highest degree of purity. It follows therefore that the cleansing of sewage is, in the absence of actual frost, less dependent upon season than upon the quality of the sewage itself. It is, however, far otherwise as regards the inorganic (and consequently non-polluting) fertilising constituents, — ammonia, nitrates, and nitrites. These compounds are, as might be expected, removed with greater avidity by vegetation in spring and summer than in autumn and winter. This is clearly seen from the following table, which shows the amount of nitrogen in these three forms left in 100,000 parts of the effluent waters in each of the four seasons, especially if the varying strength of the sewage above mentioned be taken into consideration : — Nitrogen as Nitrates, Nitrites, and Ammonia in effluent Sewage. — Spring. Summer. Autumn. Winter. Norwood •892 1-026 1-422 1*011 Croydon - ■ ■ ■ *284 •212 •741 •701 Note.— Details of the Croydon Sewage-Farms obtained 26th July 1876. District in which the Lands are situate. Area in Statute Acres. Irrigated. Not irrigated. South Norwood, leased at 10/. Os. OcZ. per acre rental. 55 5 Beddington Farm, leased at 10/. Os. 0 d. per acre rental. 392 63 447 68 Abstract. Acres irrigated - 447 Do. not irrigated - - - 68 Total area - - - 515 515 acres of land at per acre rent 10/. = 5,150/. Population of the districts, about 56,000. Annual rateable value of the districts, about 275,000/. Dry-weather flow of sewage used per day, about 3,500,000 gallons. Storm- water flow, about 15,000,000 gallons. N.B. The rental paid for the land for ordinary agricultural purposes was from 26s. to 30s. per acre. The crops grown are Italian ryegrass, mangold wurzle, cabbages, and other vegetables. The gross annual income has been about 8,000/. The annual loss or costs in working the farms has been about 2,750/., exclusive of the interest on the expenditure for laying out the farms. 101 13. Woking . — We refer, in conclusion, to an experiment in sewage irrigation on the slopes of poor sandy soil below the invalid prison at Woking. A population of more than 1,000 adults there receive a water- supply of upwards of 20 gallons a head, equal to about one ton daily to every 10 persons. The whole drainage of the place passes through a tank capable of holding about 1,500 cubic feet, or 40 tons of water ; and thence it has hitherto flowed almost entirely to waste, being used, however, in an unsystematic way, to fertilize the grass fields at the foot of the hill. Two acres upon the slope, in four consecutive plots apiece, were laid out in the spring of 1869, so that a tank-full could at any time be poured upon the upper or any other plot of the series, the tail water being directed on any other plot of the series lower down. The four plots of one acre were sown with Italian ryegrass in March, and three crops averaging more than 12 tons each were cut during the following summer, the plant having been repeatedly sewaged during the intervals. The other acre, lying in fallow, was sewaged in the same way, and samples of the effluent water have occasionally been taken both from plots growing ryegrass and from plots without a crop, in the hope that we should ascertain the increased power of a surface covered with a growing crop as compared with one which depended solely on the soil as a filter. The second acre has subsequently been planted with cabbages, potatoes, and mangold-wurtzel, and these crops have received sewage when the plants required. The difficulty of applying the results obtained here to the circumstances of any other case arises from the extreme hollowness and porosity of the Woking soil. A dressing of 40 tons of sewage, poured in three-quarters of an hour from the upper carrier of one of these quarter-acre plots, is, notwithstanding the steepness of the slope, almost all absorbed before it reaches the foot of the plot. It is only when the land is saturated with rain-water, and thus loses its power of absorption, that the sewage-water poured on at top, and con- ducted over the four plots in succession of the acre then being treated, will reach the bottom of the field. In the interests of the crop it has been therefore necessary to irrigate each plot in succession with raw sewage. The plan has generally been to give each acre so much sewage in the week as to make the result correspond to the allotment of an acre to every 100 persons throughout the year ; and in the further prosecu- tion of the experiment here, when the soil shall have become more clogged with root fibre and with sediment, it is hoped that the effect of the whole acre upon a specified quantity of sewage may be realized and observed. The experiment has also to be extended to other places in order that we may learn from it, if possible, the maximum powers of various soils in cleansing sewage, getting results of the same definiteness in regard to irrigation, as our laboratory experiments have already given us with reference to filtration. Our results at Woking are still incomplete, and must be reserved till the issue of a later report ; but it may be stated as regards the fertilising power of sewage water thus applied, that Italian ryegrass sown in March on poor Woking sand, yielded between July and October three crops of grass, averaging more than 12 tons per acre each ; and that on plots of similar soil the heaviest and most luxuriant growth of savoys, kale, and cabbage has taken place. A bed on which 20 tons of Woking peat had been laid one foot deep and watered in like manner, yielded as abundantly as the rest ; and the result is sufficiently encouraging to justify the prosecution of the experiment on a larger scale, and on peat of a less questionable character, in order to ascertain, in the interests of the great Lancashire towns, whether sewage upon a true bog peat will feed succulent g 2 102 vegetable growth as successfully as it is found to do on all other kinds of soil. The Rivers Pollution Commissioners conclude their remarks on some chemical modes of treating town-sewage as under. Irrigation is the only power of cleansing sewage which has stood the test of experience, and, unless it be extensively adopted, there is but little hope of any substantial improvement in our sewage-polluted rivers. Contrast the chemical methods with the efficiency of irrigation as a utiliser of the manure ingredients of town-sewage. All these ingredients are in this case taken to the land ; and three-fourths of them in winter, four-fifths or five-sixths of them in summer, are left there for the use of growing plants ; the remainder being rendered unoffensive. These manure materials are thus carried, distributed, and buried ; and thus, without the costly labour of the dung cart, manure distributor, or plough, they are brought to the very roots they are to feed ; and the fertility they accordingly produce is unexampled otherwise in English agricul- tural experience. The process can be carried on without offence to any but those who go close to the tanks or channels ; and it can be conducted, as the experience of many years at Edinburgh and Croydon proves {see Report on Mersey and Ribble basins, Vol. I., p. 90), without injury to health. We have therefore no hesitation in recommending irrigation as the only plan of dealing with the sewage difficulty at present known to us which at once abates a nuisance and turns to profitable account an otherwise valueless material. Influence of Sewage Irrigation on Health. It has often been asserted that sewage irrigation has a detrimental influence on the health of persons living near to or working upon sewage- farms ; but nowhere have we found instances of ill-health that are pro- perly attributable to malaria or other causes due to irrigation ; and the evidence of Dr. Littlejohn, medical officer to the Board of Supervision in Scotland ; Sir Robert Christison, Bart., M.D. ; Dr. Ligertwood, staff surgeon ; Dr. Alfred Cresswell, and Dr. Alfred Carpenter, given before' the Rivers Pollution Commission (see Report, Mersey and Ribble Basins, 1870, pp. 90-91), fully confirms this. The Craigentinny Meadows . — After bearing testimony to the health of the village of Restalrig, which is surrounded by the sewage meadows of Lochend and Craigentinny, Dr. Littlejohn says : — “ I expected that the first part of Edinburgh (Regent Terrace and Carlton Terrace), against which the wind blowing over these meadows impinges, would have exhibited evidence of infection in the shape of cholera or typhoid fever ; but I have totally failed to find it so. There are also at Marionville, which is in the very centre of the meadows, a collec- tion of children of the poorest class, who have been kept under the auspices of Dr. Guthrie. Thus the soldiers in the barracks (on the one side, the old people at Restalrig midway, and the very young children with debilitated constitution on the other side) are healthy, With these three delicate tests, including Regent Terrace and Carlton Terrace, we have failed to show that the meadows are prejudicial to health ; in fact, opposite evidence might be obtained of a very strong kind.” Dr. Littlejohn informed one of ns in January 1876 that he had not anything to add to or retract from the evidence he gave before the Rivers Pollution Commission. Sir Robert Christison, Bart., M.D., President of the Royal Society 103 of Edinburgh, in an address on public health in October 1863, speaking of the influence of sewage irrigation on health, said : — “ The irrigated meadows in the immediate neighbourhood of Edinburgh, with foul water, are ague-free. They might with reason be strongly suspected, for as managed they present that frequent alternation of considerable moisture and approach to dryness, that rankness of vegetation, and that abundance of decaying organic matter which are thought when combined eminently to foment intermittent and remittent fevers in countries liable to these diseases ; but if there be any doubt as to the general salubrity of the now famous meadows of Craigentinny, there is none at least as to the total absence of ague among the inhabitants. I have recently been making careful inquiry respecting this famous and somewhat unsavoury institution. Many years ago my own pre- judices were all against the meadows. I have been compelled to surrender them. I am satisfied that neither typhus or enteric fever, nor dysentery nor cholera is to be encountered in or around them, whether in epidemic or non-epidemic seasons, more than in any other agricultural district of the neighbourhood. I think it right in refe- rence to the late introduction of the Craigentinny system of irrigation into the vicinity of other large towns, that these precise facts should be known.” Sir Robert Christison writes to the Secretary to the Commission on the 4th of February 1870, “ I have nothing to add to or subtract from the extract from my Social Science address in 1863, quoted above.” Croydon (South Norwood) Sewage-Farm. “ Dr. Alfred Cresswell in his evidence says : — I have resided in the neighbourhood of the South Norwood Sewage Farm since 1866, and have the largest practice there, especially attending the families of those who work on the farm, and who live in houses within 150 yards of the sewage fields. There is also a large school for girls near to the farm. In this school, in which there are more than 30 inmates, there has not been a single case of illness from preventible diseases, and my last quarter’s bill was 5s. 6d. I have not been able to trace a -single case of illness to the sewage fields. An unpleasant effluvia does exist, but it is so seldom perceptible that a house built within 200 or 300 yards would command the same rent as if half a mile off. My investigations and independent observations during the last three years have made me an advocate for this method of utilising sewage matter; and as an instance of how perfectly the watery portion is purified, I ■can state that the water flowing over these fields and thence conducted into the brook is frequently drank by persons who are ignorant of its source. It is clear, pellucid, and tasteless. Therefore, after watching the working of these fields, my opinion is that when the system of sewage irrigation is well managed the health of the inhabitants in the immediate vicinity is in no way influenced by it.” Croydon (Beddington) Sewage-Farm. “ Dr. Alfred Carpenter says : — The visitor to Beddington will see a number of villas which have been occupied for some years, with irrigated fields both in front and rear, whilst not a trace of enteric disease has appeared in any of them, though I think the Beddington farm is capable of much improvement. It is a farm of nearly 300 104 acres, lying to the west of the town, and is within 500 yards of a populous portion of it, and also within 900 yards of the centre of the place ; and yet I can safely say that the continuance of a west wind is always accompanied by a diminished amount of ordinary sickness in the place, and our ordinary mortality is generally below 20 per 1,040 At Norwood the population is much greater and much nearer to the fields than at Beddington, probably 400 persons living within 200 or 300 yards of the farm. Previously to its establishment in that district fever abounded ; since then that disease has all but disappeared and the mortality of the district has steadily declined.” Sewage-grown Grass is Wholesome. On the Liability to Disease which has been alleged to exist from the Consumption of the Milk and Flesh of Cattle fed on Sewage-grown Vegetables. Dr. Henry D. Littlejohn, in his evidence before the Rivers Pollution Commission at Edinburgh, on September 23rd, 1870, said : — “There are a considerable number of cows kept in Edinburgh and the immediate neighbourhood, and a large quantity of milk is consumed, chiefly obtained from these cows. They are fed with grass that is grown on the Craigentinny meadows. I was of opinion that such grass might be of inferior quality, but I have failed to detect any bad effects resulting from its use. Entozoic disease is remarkably rare in Edinburgh, and tapeworm is hardly ever heard of, except in the cases of persons coming from other places to reside here. Many of the cows which have been fed upon sewage-grown grass are used as food. They are not fattened, because they are always kept in such capital condition ; but the cows which have been so fed find their way to our slaughter- houses, where' they are examined by inspectors and myself, and, so far as my observations have gone, the use of sewage grass for the food of animals is unobjectionable. Trichiniasis is not known in Edinburgh. If there had been anything in the idea that sewage grass would lead indirectly to entozoic disease, it has had plenty of time to develope itself, and Edinburgh is not only the seat of a great medical school, but medical observation is carried to the highest point so that it could not fail of being detected.” APPENDIX No. VI. List of Patents more or less connected with Sewage and Manures. Date. Number of Patent. Name of Patentee. Purpose of Patent. 1856 6 Alexander Cochrane Conveying and collecting sewage water, &e. » 212 Edward Vincent Gardner - Apparatus for heating, drying, evaporating, & c. 33 974 Thomas Squire and Charles Frederick Claus. Artificial manure. 33 1288 William Needham and James Kite. Expressing moisture from sub- stances. 33 1579 James Alexander Manning - Manure. 33 1815 Thomas Wicksteed Sewage. 33 1982 G eorge Warriner - Compound for preserving, deo- dorizing, and fertilizing. 2003 Charles Durand Gardissal - Manure. 33 2159 Stanislas Chodzko - Manure. 33 2273 Jean Francois Victor Lar- naudes. Antiseptic and disinfecting mix- ture. 33 2289 Duncan Bruce Manure. 33 2333 John Gedge Mineral manure. 33 2560 Francis Cook Matthews Manure. S3 2689 Edward Money Manure. 33 2918 Anne Marie Mace - Manure. 33 2924 Frederick Oldfield Ward and Frederick Wynaut. Manures. 33 3000 Joseph Bower Manufacture of manure. 1857 49 Frederick Herbert Maberly - Receptacles for sewerage. 33 114 Sir James Murray - Deodorizing sewage matters, manu- facture and distribution of manures, &c. 33 443 James Taylor Manure. 33 862 John Ward Manure. 33 983 Jean Francois Victor Larnaudes. Disinfecting and deodorizing animal and vegetable substances. 33 992 Jasper Wheeler Rogers Apparatus for the collection of night soil and drainage of houses. 33 1004 Augustus Edward Schmersahl Treating bones to obtain gelatine, size, glue, &c. 33 1069 Thomas Richardson and Manning Prentice. Manure. 33 1591 Frederick Oldfield W ard and Frederick Wynauts. Manufacture of manure, &c. 33 2206 Robert Clark Gist - Manufacture of manure. 33 2220 J ohn McMaster and William Wilson. Manufacture of manure. 35 2438 Richard Archibald Brooman Decomposing soapy wash waters, &c. 33 2627 Edward Owen Manure. 33 2645 Charles Walker Manufacture of manure. 2949 William Thomas Manning - Treatment of sewerage, &c. 33 2980 Jean Baptiste Cony Manufacture of manure and disin- fection of animal and vegetable matters. 106 Date. Number of Patent. Name of Patentee. Purpose of Patent. 1857 >5 3023 Frederick Oldfield Ward 3131 Francis Taylor Manufacture of manure, &c. Closets or privies. 1858 >y >> » j) 5) » » » » » » » fi » 61 171 179 188 199 287 354 400 665 703 733 1245 1456 1499 1549 1616 1620 1664 1793 1817 2073 2451 2977 James Alexander Manning Charles Neillon James Alexander Manning William Edward Newton - Leon Salles de la Magdaleine George Lindsey Blyth Edward Toynbee - John Hadfield Isaac Brown and John Brown Thomas Greenshields Herman Schwietzer, Joseph Holder, and John Broughton. Robert Owen James Cane Coombe John Chisholm Constantine Nicolaus Kottula Richard Archibald Brooman Charles Frederic Yasserot - William Parsons - Charles Felton Kirkman Thomas Pickford - Jean Baptiste Adolphe Duglere. Charles Finlay Oliphant Glassford. Thomas Pickford - Treatment of sewage and other polluted liquids. Manufacture of manure from sewage matters. Manufacture of manure. Obtaining and applying com- pounds of nitrogen. Manure. Manure. Manufacture of manure. Manufacture of manure and other products from sewage matters. Manure. Treating ammoniacal liquor, &c. Manure. Waterclosets, night commodes, &c. Manufacture of manure from foecal and other matters. Treating sewage and other matters, &c. Manufacture of manure. Apparatus for the reception and treatment of sewage. Manure. Separating the solid matter from sewage waters. Treating sewage, &c. Manure. Separating solids from liquids for the purpose of disinfection. Manure. Manure. 1859 99 99 99 99 99 99 99 99 99 99 99 99 99 183 184 195 313 447 539 648 778 879 1220 1280 1368 1388 1559 Thomas Richardson Samuel Osier and John Barton Balcombe. Andre Jacques Amand Gau- tier, lean Gilbert Dumay, and Jean Theodore Persin Alexander Gopsell Pooley - Prederick William Emerson The Rev. Henry Moule John Samuel Dawes Thomas Carr Marc Antoine Francis Mennons. William Edward Gedge Joseph Gibbs John Henry Johnson William Bryer Nation Thomas Bell Manure. Manure. Manure. Apparatus for manufacturing manure. Treating ores of lead, &c. Apparatus for the evaporation of sewage and other waters, &c. Collecting night-soil for agricul- tural purposes. Machinery for disintegrating arti- ficial manures, &c. Treatment of mineral phosphates. Manure. Treatment of coal, &c. for the manufacture of manure. Machinery for reducing solid sub- stances to powder. Manufacture of superphosphate of lime. Manure. 107 Date. Number of Patent. Name of Patentee. Purpose of Patent. 1859 1567 Bridge Standen Manure. ,, 1843 John Dyer Bryant Superphosphate of lime. 1944 Michael John Stark Manure. 99 2107 Nathaniel Heckford Purifying rivers and treating night- soil. ” 2157 John Dales Purification of sewage and other waters, &c. 2200 Patrick Robertson - Manure. 2218 William Henry Buckland - Preparation of peat. 99 2270 George Long and James Archer. Manure. »> 2450 John Armour Apparatus for measuring and regu- lating the supply of substances in preparing mixtures or com- pounds. 99 2460 Henry Phillips and James Bannehr. Manure. 2526 William Mannix Manure. 99 2545 William Clark Compound for preserving and dis- infecting organic substances. 99 2958 Alexander McDougall Preparation of disinfecting and antiseptic substances. 1860 23 Marc Antoine Francis Mennons. Fertilizing compounds. 99 73 Archibald Brounlie Treatment of sewerage matters. „ 232 Thomas Walker Cleansing sewage and other waters. „ 404 Joseph Arnold Manure. 99 703 Thomas Richardson Treating organic substances con- taining phosphate of lime. 9 908 Jasper Wheeler Rogers Coll ecting excrement and facilitating drainage. 1343 James Alexander Manning Treating sewage, &c. „ 1463 Richard Archibald Brooman Desiccating fecal matters, &c. 5) 2023 William Clark Manure. 99 2246 William Edward Gedge Manure. 5? 2296 Thomas Richardson Man- ning Prentice. Treating phosphotic matters, &c. 99 2482 Jasper Wheeler Rogers Apparatus for collecting excrement and draining houses. 99 2777 Mathieu Louis Henrionnet and Leopold Octave Bob- lique. Treating mineral phosphates of lime. 99 2848 George Henry Cail Manure. 1861 249 Henry Phillips and James Bannehr. Urinals ; manufacture of manure. 99 424 Thomas Richardson Manure. 99 684 Jacob Jervell Manure. 9? 876 Francis Taylor Apparatus for receiving, drying, and deodorizing human excrement. 99 1019 Charles Stevens Artificial manure. „ 1276 Frederick Oldfield Ward - Manure, &c. 99 2159 Alexandre Jaille - Manure. 99 2229 Charles Felton Kirkman - Obtaining manure from sewage. 99 2351 J ohn Oliver, John Grantham, William Linnock, and Montague Richard Lever- Obtaining chemical substances ; treatment of vegetable fibre, &c. 99 2525 Thomas Tidmarsh - Manure. 99 2540 Charles Noyes Kernot and Martin Diederich Rucker. Obtaining ammoniacal salts, &c. 108 Date. Number of Patent. Name of Patentee. Purpose of Patent. 1861 2871 Frederick Robert Hughes and Thomas Richardson. Treating saline compounds. 3265 Thomas Pickford - Manure. 1862 338 Marc Antoine Francois Mennons. Treating phosphates of lime. 378 Ditto. Disinfecting animal excretions. }> 587 Bridge Standen Manure, &c. » 807 Michael Henry Kilns, ovens, and furnaces. 908 William Clark Manure. 1188 William Edward Newton « Fertilizing composition. 1409 James House Crushing and reducing substances. » 1623 William Footman - Treating sewage. 2073 Alexander Morrison Fell - Manufacture of sulphate of am- monia and manure. }} 2082 Joseph Daniels. Artificial manure. 2097 William Clark Manure. 2201 John Richard Nichol Utilizing and disposing of the sewage of towns and villages. jj 2669 John Harrop and James Wadsworth. Deodorizing refuse and foecal mat ters for manure. JJ 2712 J ohn Beale and Mary Anne Beale. Manure. 3011 William Clark Utilizing refuse azoted matters. 3132 Thomas Walker Utilizing sewage, &c. JJ 3317 Edward Toynbee - Extracting oils and fatty matters from shoddy, &c. and producing artificial manure. 3> 3449 John Platt and William Richardson. Disinfecting or pulverizing arti- ficial manures, &c. 1863 132 John Harrop Manure. a 321 James Alexander Manning - Treating night-soil, &c. i> 606 Thomas Henry Morrell and Joseph Williamson. Purifying noxious vapours from night-soil, &c. a 731 William Lorberg - Treating rags. » 761 William Clark Preparation of manure, &c. j? 967 Robert Calvert Clapham - Treating waste liquors. 1362 William Clark Manure. si 1435 Henry Martin Manure. » 2208 Thomas Henry Baker and George Friend. Treating excrementitious and sewage matters. 2294 William Lorberg Treating rags. » 2724 Guillaume Ville Treating natural phosphates of lime for agricultural purposes. }) 2731 Jean Augustin Barral and Louise Adolph Cochery. Manure. » 2947 Thomas Carr Amalgamating, agitating, and dis- solving materials. » 3152 John Wright Manufacture of superphosphate of lime. 9> 3264 John Maynes Manure. 1864 592 Edward Bishop and William Bailey. Evaporating the water from fcecal matter. )y 595 James Lee Norton - Manure. a 597 John Thomas Way - Manure. 3> 773 James Robbins Treating substances for producing manure. }J 955 James Cane Coombe Manure. » 1024 George Jarvis Worssam Expressing liquids and moisture from substances. }) 1191 Thomas Walker Utilizing sewage. 109 Date. Number of Patent. Name of Patentee. Purpose of Patent. 1864 99 » 99 99 »> » 1408 Thomas Walker 2072 Francis Taylor 2329 Thomas Walker and Thomas . Ferdinand Walker. 2788 James Alexander Manning - 2832 George Edward Noone 2840 Jacques Jules Renous Cere 3115 William Bardwell - 3160 Henry Bird 3161 Stephen Pierre Andre de Brocalde D’ Eliiza. 3256 Thomas Richardson Preparing phosphates of ammonia, &c. Apparatus for receiving, drying, and deodorizing human excre- ment. Utilizing sewage. Collecting and treating night-soil. Deodorizing and utilizing sewage. Manure. Utilizing sewage, &c. Treating sewage matters. Manure. Manure. 1865 » » )> 99 99 99 99 99 99 202 451 512 893 1877 1935 2626 2808 2830 3115 Benjamin King Richard Smith William Edward Newton - William Moxon Fuller Donald McCrummen Thomas Spencer John Linton Henry Young Darracott Scott. George Bartlett John Thomlinson - Manure. Treating sewage and ventilating sewers. Artificial manures. Reducing waste for manure. Artificial guano. Compounds for promoting vegeta- tion. Utilizing sewage. Treating and deodorizing sewage water. Artificial manure. Disinfectants. 1866 99 99 99 99 99 99 99 99 99 99 99 99 101 191 642 773 898 921 949 1026 1163 2107 2218 2606 2750 2926 2988 3296 3401 Francis Sutton Adolphe Francois Mineur - Victor Larnaudes - Alfred George Lock Charles Thieme Liernur - James Davis Alfred George Lock George William Skinner - George Edward Noone Adolph Kiihne Robert Irvine George William Skinner - Francis Taylor Henri Adrien Bonnneville - James Conyers Morrell Thomas Hoey William Bradburn - Treating sewage and urine. Manure. Disinfecting and preserving fluid. Manure. Collecting sewage, &c. Utilizing and preventing decom- position of substances. Manure. Utilizing sewage. Deodorizing and treating sewage, &c. Purifying water, &c. Treating and purifying water. Utilizing sewage. Apparatus for receiving, drying, and deodorizing human excre- ment. Manure. Dry closets, &c. Flushing waterclosets, &c. Treating exerementitious matters, &c. 1867 119 579 729 788 99 933 1229 Ernst Silvern William Parry and John Frearson. James Conyers Morrell Alfred Henry Hart and William Parry. William Clark Emile Grienin Purifying factory and sewage waters. Treating sewage. Dry closets. Treating sewage. Manure. Disinfecting fecal matters. 110 Date. Number of Patent. Name of Patentee. Purpose of Patent. 1867 »> a » 2549 Frederick Tolhausen 2894 2918 Thomas Henry Baker and Thomas Woodroffe. James Bannehr 3566 Alexander Melville Clark - Disinfecting fecal and manuring matters, &c. Treating and purifying sewage. Supplying deodorizing material to closets, and treating liquid excreta. Extracting ammonia from fer- mented and other liquids, &c. 1868 a a a a a ii a it a a a it a it a 510 566 744 1954 2666 2667 2883 William John Bennett and John Job son. Pierre Nicholas Goux William Knox Stuart William Cameron Sillar, Robert George Sillar, and George William Wigner. John Yule - - - William Shang William Henry Hughan 2919 3087 3203 3341 3390 3457 3562 3714 Edward Henry Prentice James Dewar Gavin Chapman Sigismund-Schuman Alexander Melville Clark - Charles Jones Thomas Smith and John Van Norden Bazalgette. Alexander Melville Clark - 3914 Josiah George Jenning Filtering sewage, &e. Treating and utilizing excreta. Treating and utilizing sewage. Deodorizing sewage tor manure- Removing sewage. Separating sewage. Treating and deodorizing sewage, &c. Treating sewage, & c. Manure. Treating sewage. Waterclosets. Filtering sewage, &c. Treating sewage. Deodorizing and manufacturing manures from sewage, &c. Compound for disinfecting sew- age, &c. Treating sewage and irrrigating land. 1869 a a a it a a a a a a a 506 791 815 826 982 1103 1352 2016 2269 2623 3129 3550 Frederic Delbreil - Josiah George Jennings James Carter John Thomas Darke Joseph Caldwell Lee Edward Charles Cortis Stan- ford. Charles Thieme Liernur John Hart - John Henry Johnson Friedrich Wicke, Julius Bronner, Theodor Peter- sen, and Johann Georg Zehfuss. Francis Taylor Mark French Anderson Removing sewage, &c. Preparing sewage for irrigating. Disinfecting and deodorizing fecal matters, &c. Treating sewage. Collecting and treating excreta. Applying, treating, and utilizing materials for deodorising. Removing and utilizing sewage. Separating, distributing, and uti- lizing sewage. Manure. Treating excreta for manure. Drying excrement. Treating sewage for manure. 1870 a a a ii ii 67 239 364 506 580 607 William Henry Hughan Maxwell Anketell and Oli- ver Frederick Anketell. George William Wigner John Leopard Alexander Bobrownicki and Alfred Didier Marie Mes- nard. David Forbes and Astley Paston Price. Treating sewage, &c. Manufacturing manure and fuel from sewage, &c. Treating and purifying sewage. Treating and filtering sewage. Fuel and manure. Treating sewage. Ill Date. Number of Patent. Name of Patentee. Purpose of Patent. 1870 630 James Conyers Morrell Treating sewage. 679 George William Wigner Centrifugal drying machines. 1061 Thomas James Smith Treating sewage, &c. a 1137 David Forbes and Astley Paston Price. Treating sewage and producing manure. 1200 Ludwig Schad Treating excrement. 1311 Robert Weare Treating sewage, &c. 1314 Astley Paston Price Treating sewage. 1354 George William Wigner Deodorizing and purifying sewage, &c. 1706 Bevan George Sloper Treating sewage. 1949 Peter Spence Treating sewage. 2032 Henry Malcolm Ramsay Treating sewage, &c. ” 2047 John Hughes Lloyd Utilizing and deodorizing sewage matters. 2048 Charles Bartholomew Treating sewage. 2297 Joseph Judge Harp Purify i ng and utilizing sewage. 2534 Ferrar Fenton and Samuel Hollins. Treating sewage, &c. 2653 Charles Felton Kirkman Treating sewage. yy 2832 William Frost Sweetland and John Merfield. Purifying sewage. 2838 Joseph Judge Harp Treating sewage. yy 3107 Amos Bryant and Samuel Hall Culley. Fritze Hille Deodorizing and treating sewage, &c. J) 3167 Manufacture of deodorizing and disinfecting compounds, treatment of sewage, &c. yy 3169 Henry Young, Darracott Scott. Treatment of sewage, &c. yy 3269 Frederick Ludewig, Hahn Danchell. Treating of sewage. yy 3399 Christopher Rawson, Philip Ovenden, James Wylde, William McCree and Henry Hill. Deodorizing and purifying sewage, &c. 1871 297 Proctor Sherwin and John Maude Sutton. Treating sewage matters, &c. yy 329 Bevan George Sloper and Felix Jean Joseph Washer. Treating sewage. yy 351 Charles Baly Treating sewage, &c. yy 804 Richard Dover Treating sewage. yy 1269 Frans Julius Fahlman Disinfecting fecal matter. yy 1469 Adolphus Yideky - Separating solid from liquid excreta,. yy 1897 Ferrar Fenton Treating sewage, &c. 1969 Edward Taylor Treating excreta, &c. for manu- facturing manure. yy 2109 James Beckett and John James Cam. Treating sewage. yy 2140 .lames Irvine Lupton Treating sewage. yy 2243 Henry Young Darracott Scott. Treating sewage. yy 2274 Henry Bright Drying sewage, &c. yy 2481 Francis Parry. Drying precipitated sewage, &c. Treating andfiltering sewage water, &c. yy 2495 James Banks and William W alker. yy 2567 Charles De Chastelain Collecting and filtering sewage. „ 2569 James Burrow Treating sewage, &c. yy 2696 Robert Milburn and Thomas Browning. Drying and treating sewage deposit &c. yy 2760 James Brough Pow Treating sewage. 112 Date. Number of Patent. Name of Patentee. Purpose of Patent. 1871 2841 Daniel Wilks Collecting and utilizing animal re- fuse, sewage, &c. 2878 Bendedict John Angell Treating seaweed. 2926 Adolphe Pierre Yassard Treating liquid sewage, &c. a 2975 Job Cole and William Ab- bott. Treating and utilizing sewage. &c. 2997 Hugh Smith Treating sewage. 3060 William Henry Hughan - Manure. a 3233 Frangois Jules Fahlman Apparatus for treating sewage, &e 3436 James Alfred Wanklyn Utilizing sewage ammonia. .»> 3515 Henry Young Darracott Scott. Treating sewage water 1872 379 Francis Gerard Prange and William Whitthread. Utilizing sewage. 388 Alexander Melville Clarke- Treating sewage, &c. 448 Silvester Fulda Clarifying waters, &c. 465 David Carter Dry earth closets. a 575 William Cameron Sillarand Robert George Sillar. Treating sewage. 671 Robert Blackburn - Treating sewage. a 742 John Bailey Denton and Rogers Field. Regulating intermittent filtration of sewage and irrigation. a 849 Henry Young Darracott Scott. Treating sewage water. 926 Arthur Charles Henderson - Distilling and filtering fecal matters. 99 944 Dugald Campbell - Treating sewage, &c. 99 955 William Weldon Symington Measuring the flow of sewage, &c. jj 1065 Leos Antoine Badin Manure. 99 1327 Thomas Christy the younger Treating ammoniacal liquor, &c. 99 1421 James Robey Filtering medium, &c. Treating sewage deposits. 99 1577 Andrew John Murray 99 1806 William Cameron Sillar, Robert George Sillar, and Christopher Rawson Treating animal matters. 99 2141 Henry Syed Copland Apparatus for mixing and preci- pitating sewage, &c. Drying and pulverising manure cement, &c. Treating sewage. 99 2266 Robert Milburn and Henry Jackson. 99 2279 Isaac Brown 99 2496 Millington Henry Synge - Deodorizing apparatus. 99 2538 Henry Young Darracott Scott. Treating sewage. 99 2687 Bridge Baron Standen Collecting and treating excremen- titious matters. 99 2991 William Ash op Drying sewage. 99 3028 Henry Young Darracott Scott. Treating sewage. j j 3215 John Lewis Felix Target - Receivers for waterclosets. JJ 3348 Rogers Field Sewage tanks. 99 3355 Henry Young Darracott Scott. Treating sewage deposits, &c. jj 3356 James Alexander Manning Treating fecal matters. jj 3412 Gustav Alsing Treating night-soil, &c. 99 3464 Edwin Hills and Benjamin Treating sewage. 99 3529 David Curror and James Dewar. Purifying fluids and manufacturing manures. 99 3670 Henry Young Darracott Scott and Thomas Wal- ker Scott. Preparing lime for treating sewage. 99 3734 William Hart and James Drying sewage precipitates, cement, 1 Hart. pulp, &c. 113 Date. Number of Patent. Name of Patentee. Purpose of Patent. 1872 3755 - Henry Young Darracott Scott. Treating and utilizing sewage water. 55 3788 Charles Denton Abel Conveying sewage from cesspools, &c. » 3805 John Rendall and William Kendall. Slop carts. 55 3821 John Lewis Felix Target - Collecting and disinfecting sewage excreta. 55 3843 George Haseltine - Rendering and drying animal matter, & c. 55 3882 William White Fereday Treating excreta for conversion into manure. 55 3913 Leos Antoine Badine Closets and apparatus for collecting fcecal matters. 1873 154 Henry Young Darracott Scott. Treating sewage. 55 168 John Lewis Felix Target - Treating excreta and sewage. 55 187 Edward Charles Hamilton, William Richard Preston, and Henry Jones. Manure. 55 230 James Robey Charcoal for purifying sewage, &c. 55 266 Frederick Jacobsen Treating sewage. 55 331 Baldwin Latham - Purifying sewage. 55 499 George Frederick Chantrell Receptacle for house refuse, &c. 55 513 Hugh Campbell Manufacture of manure. 55 556 Francis Henry Atkins Filtering apparatus. 55 570 Henry Young Darracott Scott. Treating excreta. 55 712 Thomas Hoey Watercloset apparatus. 55 912 Robert Stevenson Symington Apparatus for dealing with sewage, &c. 55 957 James Robey and George Frederick Chantrell. Filtering and deodorizing medium. 55 1319 Gustav Alsing Treating sewage, &c. 55 1445 Henry Young Darracott Scott. Treating sewage. 55 1509 Do. - Do. 1555 Walter Brown Treatment of sewage. 55 1686 Eugene Moriarty - Treating sewage. 55 1885 Benjamin Green Storing and treatment of sewage. 55 1967 Joseph Townsend - Treating sewage. 55 2071 John Leigh Treating sewage, &c. 55 2317 Jeremiah Marsden and John Collins. Treating sewage. 55 2442 Robert Knott Treating sewage, &c. 55 2450 Edward Charles Hamilton and William Richard Preston. Artificial manure. 55 2454 Frederick Jacobsen Purification of sewage, &c. 55 2532 William White Treating sewage. 55 2534 James Robey Do. 55 2581 John Stephens Treating excreta, &c. 55 2638 John Leigh Manufacture of manure. 55 2662 Christopher Rawssn, Wil- liam Cameron Sillar, John William Slater, and Thomas Sipling Wilson. Manufacture of manure. 55 2760 William Henry Hughan Treating sewage. 55 2791 Rupert Goodall Treating and clarifying waste water from fulling mills, &c. 55 3168 Charles Thieme Liernur Pneumatic drainage works. 114 Date. Number of Patent. Name of Patentee. Purpose of Patent. 1873 3169 William Whitthread Disinfectant and oxydizing agent. » 3331 John Towle Treating sewage. „ 3541 John Hewitt Milnes Utilizing sewage. »» 3632 Alexander Colvin Fraser and William Watson. Treating and utilizing sewage. 55 3742 Henry Young Darracott Scott. Treating sewage water. » 3781 William White Precipitating sewage and other foul waters, &c. 33 3833 Benjamin Green Storing and treating sewage. 55 4092 Henry Malcolm Ramsay Treating sewage. 55 4284 John James Bodmer Drying peat, sewage deposit, &c. 1874 50 William Alfred Gibbs Drying apparatus. 55 160 Augustus Edward Schmer- sahl. Treating sewage. 55 283 Henry Young Darracott Scott and J ohn Berger Spence. Treating sewage, &e. 55 653 Henry Young Darracott Scott. Treating sewage for manure. 55 848 Rupert Goodall Purifying foul water or sewage. 55 1171 Thomas Short Purifying sewage. 1415 William Robert Lake Deodorizing and utilizing sewage. 55 1426 John Towle Collecting, treating, and distributing sewage. 55 1453 Daniel Kinnear Clark Disintegrating and straining ap- paratus. 55 1689 Gustav Alsing Utilizing sewage for manufac- turing artificial fuel. 55 1764 John Howard Kidd Deodorising sewage and making artificial manure. „ 1826 Rupert Goodall Clarifying sewage, &c. 55 1916 John Henry Johnson Filtering sewage, &c. 55 1959 William Henry Hughan Treatment of sewage, &c. 2408 Samuel Hallsworth. and Richard Bailes. Clarifying waste water, sewage, &c. 55 2439 Augustus Edward Schmer- sahl. Treating sewage. 55 2446 William Alexander Lyttle - Treating sewage. 55 2450 Henry Young Darracott Scott. Recovering ammonia for sewage. yy 2461 William Spence Treating sewage. 55 2567 Feorge Willett, Robert James Harris, and James Lund. Filtering sewage. 55 2676 James Alexander Manning - Dry closets, &e. 55 3122 Bridge Baron Standen Treating excrement. 55 3199 John Howard Kidd Treating sewage for manufacturing manure. 55 3225 James Me. Intyre - Purifying sewage waters. 55 3326 Francis Thomas Bond Treating liquid refuse, &c. 55 3384 Francois Alcidi Bonnefin - Treating excrementa. 55 3459 Samuel Hallsworth and Richard Bailes. Treating and clarifying sewage, &c. 55 3751 George Mackay Purifying liquids. 55 3784 Burton Henry Yalle Treating sewage. 55 4158 Rupert Goodall Clarifying impure water or sewage. 55 4247 James Conyers Morrell Sewer pipes, & c. Treatment of sewage. 55 4305 Henry Young Darracott Scott. 115 Date. Number of Patent. Name of Patentee. Purpose of Patent. 1875 150 George Rydill Purifying sewage, &c. ” 214 John Box, EdouardAubertin, Leopold Boblique, and Hypolite Leplay. Disinfection of sewage, &c. )> 373 Henry Young Darracott Scott. Manures. » 399 George Rydill Treating sewage. 573 Samuel Hallsworth and Richard Bailies. Clarifying sewage, &c. 1195 Francis George Whitwharn Treating excreta. 1216 William Edward Newton - Treating fecal matters, &c. 1335 William Morgan-Brown Treating sewage. » 1625 Thomas Pape Filtering and deodorizing sewage. 1759 John Yale - Barge for receiving and conveying sewage. 1845 Mark French Anderson Treating sewage. 1954 Joseph James Coleman Treating sewage. 1972 Daniel Wilks Collecting and treating sewage. ” 2358 James Odams and Robert Blackburn. Apparatus for treating sewage. 2557 Frederick William Granham Filters. ?> 2621 David Gill - Deodorizing sewer gas. » 2675 John Hanson Treating sewage. 5? 2798 Joseph Robinson - Discharge of sewage from towns. J? 2829 Thomas Stevens Treating sewage. y* 3162 Alexander Melville Clark - Treating sewage. 39260. II 116 APPE.NDIX No. VII. Abstracts from the Reports of Royal Commission, and others, who have inquired into the best Modes of Distributing the Sewage of Towns and of applying it to beneficial and profitable Uses. The following extracts are taken from published reports which are now out of print, and which consequently cannot be made generally available. On referring to them, it will be seen that there are detailed statements, as also conclusions and recommendations, which have as much value now as at the time they were made. Our more recent examinations of towns, sewage farms, and the several modes of treating sewage, confirm the conclusions almost to the letter. We therefore point to these extracts as justifying our own conclusions. Extracts from the Reports of the Royal Commission. Precipitation of the Solid Matter of Sewage. Of the different processes that have been proposed for the precipita- tion of sewage, that by lime is the simplest. It is also the only one that has hitherto been put into practical operation to any considerable extent, and we may be therefore allowed, without disparagement to other methods, to select it as a type for illustration of the whole. The use of lime to separate the solid matters of sewage is founded on the following circumstances. Sewage of itself, from the slimy, glutinous character of the matter floating in it, and from the specific weight of that matter being so nearly the same with water, will only separate very imperfectly, and after a length of time, into a clear liquid and a solid deposit. The addition of lime, however, by the chemical changes which it induces, but which we need not here describe, causes a separation of the solid suspended matter in a state of flocculence, in the same way that white of egg clears coffee or isinglass fines beer. The result is that the sewage rapidly changes its character, separating readily into a deposit, which falls to the bottom, leaving a clear liquid. This is essentially the process that is carried on at Leicester, Tottenham, and other places, the two named being the most important. The clear liquid after subsidence of the solid matter is considered comparatively pure and unobjectionable, and is allowed to flow into the rivers. The solid is drained, as far as possible, and finally dried, and then offered for sale as manure. We may state our belief that, as far as present knowledge goes, that is, up to 1858, this very simple process offers as much prospect of com- mercial advantage in respect to the manufacture of a solid manure from sewage as any patent process that has been proposed up to this date. But with reference to the prospect of obtaining any very large profit from the treatment of sewage, we see no reason to dissent from the view that has been individually held and promulgated by several of our members, namely, that neither the lime process nor any other existing method of precipitating sewage is likely to be commercially advantageous to those who engage in it. We consider that this is, however, not the light in which the matter should be viewed. The great problem is to get rid of sewage advantageously to agriculture, if it may be ; if not, at the least expense to the community at large. Throughout the discussions that have hitherto occurred upon this question, the real issue has been left comparatively in abeyance. The 117 primary consideration is not whether sewage can be made serviceable to agriculture, but whether or not there exists any method which, consis- tently with a fair expenditure of money, falling on those who ought in justice to bear it, will practically rid us of the nuisance and danger attendant upon town sewage. The object must be accomplished, and the question is, simply, how its accomplishment can most satisfactorily be attained. All other considera- tions are secondary to this. The process of precipitation by lime, as carried out at Tottenham, and on a larger scale at Leicester, is satisfac- tory up to a certain point. The solid matter of the sewage is effectually separated, and a clear and comparatively innocuous liquid is run off. We shall presently consider the objections that have been urged against this liquid, but we wish now to point out that any nuisance which is chargeable to works such as those at Leicester and Tottenham is due, not to the act of precipitation, but to the process employed for drying the solid matter into a condition fit for sale. At both the establishments in question the sewage is received and treated in closed or covered tanks, and, as the lime considerably diminishes the smell of the sewage, the whole operation can be carried on, and the clear liquid run off, without offence. But the solid deposit which settles down in the form of a thick sludge must be removed, and must in some way be dried. This part of the operation is very difficult ; it requires much space, and the value of the product is too small to allow of the drying being entirely effected by artificial heat. Consequently, both at Tottenham and Leicester, we found great pits and mounds of this sludge undergoing a gradual process of draining and drying in the open air ; and it is to these accumulations of the precipitated matter of sewage, exposed to the sun and other agencies, that the offensive smells must be attributed, which sometimes, but not always, are perceptible from the works. As an inexpensive means of avoiding nuisance, we may here advert to the simple process adopted by the Local Board of Health at Cheltenham for separating and disposing of the solid matters of sewage in conjunction with the use of lime, which has been attended with considerable success. This method seems likely to be made available in many other places with advantage. The chief portion of the solid matter is separated in tanks by deposition and a coarse filtration or straining process, the liquid flowing off is then treated with lime in order to diminish the smell and to pre- cipitate the finer particles in suspension in the water before it is allowed to flow into the stream. The deposit or sludge first obtained is mixed with ashes and scavenger’s refuse of the town, and thus a solid manure is formed which has been bought by the farmers in the neighbourhood at 2s. 6d. per cubit yard. A charge of 35 . 6d. per cubic yard would pay all working expenses and interest on the outlay, and it is thought that this price might be obtained for it ; but one most desirable and necessary thing is to have a regular and speedy removal from the ground. With regard to the liquid which results from the operation of liming sewage, its frequent examination by different chemists has proved, what would in fact have been anticipated, that it contains a considerable quantity of dissolved matter of a vegetable and animal origin which the lime is incapable of separating ; a certain amount of smell also remains, although by no means the same in kind or degree as the crude sewage. In the report of Dr. Hoffman and Mr. Witt, addressed to the referees on metropolitan drainage, the subject of these precipitating processes has been discussed at some length. These gentlemen have arrived at the conclusion that, inasmuch as a quantity of “ putrescible ” matter is left in h 2 118 the liquid resulting from liming the sewage, and that this liquid when kept during warm weather is liable to become a second time offensive to the senses and consequently dangerous to health, such process is not admissible in the case of the metropolis. But we submit that the question is not whether, in the abstract, sewage after treatment with lime contains vegetable and animal matters in solution, and is liable to further putrefaction, but whether such treatment so far destroys the noxious character of sewage that practically it may be thrown into rivers wdthout danger. Without going so far as to say that the precipitation by lime is a perfect process, or that it can in all cases be adopted, we feel satisfied that it does to a great extent fulfil the purpose for which it is employed, so far, at least, as the purification of rivers is concerned. By far the largest amount of nuisance and danger arising from the pollution of rivers by sewage is due to the solid suspended matters which give off noxious effluvia throughout the period of their decomposition. This is especially the case in our tidal rivers, where these deposits form shoals and cover the banks, and at low water offer a vast surface of offensive matter for the contamination of the air. The lime process does effectually remove this gross solid suspended matter, and in so far accomplishes a great and manifest good. It also destroys the immediate influence of the noxious gases in sewage, and although it may, in the abstract, be open to the objection of still leaving matter capable of further putrefaction in the liquid, we are of opinion that wherever this liquid is thrown into a body of water considerably larger than itself (not less than 20 times the volume of the clarified sewage) no evil results will practically be experienced. Our conclusion, then, is, that in the absence of means for a direct application of sewage to land, the methods of precipitation at command by lime do actually offer remedial measures of a satisfactory character. It remains to consider whether these remedial measures are within the fair limits to which a town population may be taxed for the suppression of the sewage nuisance. We have already stated our belief that unless some new process of greater efficiency should be discovered, the formation of a solid manure from sewage will not be remunerative ; that is to say, that the amount realized by the sale of the manure will fall short of the cost of its production. Neither is this to be considered as a condition dependent on the want of appreciation of the manure, which time and better infor- mation on the part of the consumer will remove ; on the contrary , the tendency has been hitherto to put the price above the value which a •sound acquaintance with the nature of manures would attach to it. It is even questionable whether, in some instances, any money at all would be given for this deposit, and in considering the practicability of carrying into effect plans for the precipitation of sewage w r e must be prepared for this eventuality. It will therefore be placing the matter in a necessary, although the least favourable, light, if we consider that the manure when made possesses only so much value as to induce farmers to cart it away without paying for it. It may be desirable, however, that we should here advert to a plan by wdiich the expenses attendant on these pre- cipitating processes would be very materially reduced, and the necessity for works for this purpose in the vicinity of towns, and the possible nuisance or fear of nuisance to wdiich they might give rise, w r ould be entirely obviated. This plan is to limit the process to the precipitation of sewage, and after allowing the clear liquid to run off, to pump the sludge or mixture of deposited matter and water directly on to the fields through pipes. 119 Remarks. — This process of pumping sewage-sludge direct from the tanks where it is deposited to the land is practised at Birmingham. The sludge is spread over land to the extent of one statute acre per week, and is trenched or dug in at a cost of 14/. 10s. per acre. In this position the water absorbs or evaporates, and leaves the dried earthy matter in the soil. After the interval of a year the land can be used for farming purposes. The sludge as pumped contains about 90 per cent, of water, which dries away in about 12 months’ time. It has already been stated that the chief source of nuisance, or liability to nuisance, in such works consists in the necessity for drying the sludge, and a very large portion of the original outlay for works and the area required for such works, and of the daily expenses, is involved in this part of the operation. By the plan above mentioned all these difficulties would be materially reduced, the works would be confined to the precipitating tanks and the engine for pumping, and neither the sewage nor the deposit would see the light of day before the clarified water was discharged in a comparatively innocuous state into the rivers, and the sludge was deposited on the fields. It has been calculated that the quantity of sludge to be pumped would not exceed 5 per cent, of the whole sewage, so that the cost of applying it would be small in comparison with that of distributing the whole sewage on the land. Remarks. — The Commissioners did not apparently anticipate the cost of digging in the sludge at 14/. 10s. per acre, and the loss of at least one year’s rent of the land. We have already stated that the processes for separating the solid matter do not realize the agricultural value of the sewage. It has long been understood that at least four fifths of the substances valuable in relation to vegetation pass away with the water; the solid matter, therefore, which in this plan would be pumped on the land, would not fertilize so large an area as the whole sewage ; but in relation to the necessary disposal of sewage, which it is our duty to keep steadily in view, this circumstance would offer some advantages, inasmuch as it would in many cases be much easier for town authorities to find the smaller area of land upon which it might be applied than that extensive space which the whole sewage would require. Other modifications in carrying out this system will readily present themselves. The two methods for the disposal of sewage, that is to say, by direct •application to land, or by precipitating processes, have been, perhaps, sufficiently considered. It is almost unnecessary to add that they can be worked conjointly, and in some cases such a plan would be attended with advantage. Thus, for instance, where opportunities occurred for the disposal of a part of the sewage for direct application, though the whole could not immediately be so got rid of, the remainder might be treated by methods of precipitation. The erection of works for the latter purpose would obviate the present nuisance, and give time for that change of opinion which will ultimately cause the sewage to be sought after by agriculturists. Moreover, in many cases the previous separation of the solid matter may increase the facilities for liquid application, allowing of the use of large quantities by open irrigation on a limited area without the risk of nuisance. Remarks. — The land filtering process will enable large volumes of clarified sewage to be filtered on small areas, 2,000 persons to one acre. It remains now only to revert to one point in relation to the character of the liquid after these precipitations of sewage have been effected. It has been already mentioned that objections have been taken to lime 120 and other similar processes, on the score that the liquid is liable to become again putrid. We have stated that we believe this circumstance to be practically unimportant, but, as it is a wise policy in all cases to avoid even the occasion of offence, it is very desirable that even this objection should be overcome. If, after the separation of the solid matters by lime or other precipitants, any further treatment of the clear liquid would place it in a condition in which ulterior change involving the production of offensive and noxious smells would be impossible, the problem, both in a theoretical and practical sense, would be most com- pletely solved. We are of opinion that the accomplishment of this object is quite within the means of chemical science, and we feel ourselves justified in expressing this conviction from the results of experiments which have already been made in presence of some members of the Commission, although our investigation of this point is not yet complete. From the whole of our inquiry we have arrived at the following conclusions : — Preliminary Report, March 1858. Conclusions. 1st. That the increasing pollution of the rivers and streams of the country is an evil of national importance, which urgently demands the application of remedial measures ; that the discharge of sewage and other noxious refuse of factories into rivers is a source of nuisance and danger to health ; that it acts injuriously not only on the locality where it occurs, but also on the population of the districts through which the polluted rivers flow ; that it poisons the water, which in many cases forms the sole supply of the population for all purposes ; that it destroys fish ; and, generally, that it impairs the value and the natural advantages derived from rivers and streams of water. 2nd. That this evil has largely increased with the growing cleanliness and internal improvements of towns as regards water-supply and drainage ; that its increase will continue to be in direct proportion to such improvements, and that as these improvements are yet very partial, the nuisance of sewage, already very sensibly felt, is extremely slight as compared to what it will become when sewerage and drainage works have been carried into full effect. 3rd. That, in many towns, measures for improved water-supply and sewerage are retarded from the difficulties of disposing of the increased sewage which would result from them ; that the law which regulates the rights of outfall is in an anomalous and undefined condition ; that judicial decisions of a conflicting character have been arrived at in different instances ; and, that consequently the authorities of towns have constantly before them the fear of harassing litigation. 4th. That the methods which have been adopted with the view of dealing with sewage are of two kinds : the one being the application of the whole sewage in its crude state to land ; and the other, that of treating it by chemical processes, to separate its most offensive portions; that the direct application of sewage to land favourably situated, if judiciously carried out, and confined to a suitable area, is profitable to persons so employing it ; that where the conditions are unfavourable, a small payment on the part of the local authorities will restore the balance. 5th. That this method of sewage application, conducted with moderate care, is not productive of nuisance or injury to health. 6th. That when circumstances prevent the disposal of crude sewage 121 by direct application to land, the processes of precipitation will greatly ameliorate and practically obviate the evils of sewage-outfalls, where there is the sea, or a large river for the discharge of the liquid ; that such methods of treating sewage do not retain more than a compara- tively small portion of the fertilising matter ; and, that although in some cases the sale of the manure may repay a portion of the cost of production, solid manure manufacture is not likely to be successful commercially. 7th. That, considered merely as the means of mitigating a nuisance, these precipitating processes are satisfactory ; that the cost of them in any case is such as town populations may reasonably be called upon to meet ; that the necessary works need not, if properly conducted, be a source of nuisance, and that, by modifications of the existing methods, even the slightest risk of nuisance may be entirely obviated. 8th. That the employment of the one or other method of disposing of sewage, or of both conjoined, must depend upon locality, levels, markets, and a variety of other circumstances, and that the case of each town must be considered upon its own peculiarities. 9th. That there is good ground for believing that the methods yet proposed for dealing with sewage are not the best that can be devised, and that further investigation will probably result in the discovery of processes more thoroughly equal to the suppression of nuisance, and at the same time calculated to give more valuable products. 10. That the magnitude of a town presents no real difficulty to the effectual treatment of its sewage, provided it be considered as a collection of smaller towns. As, however, the conditions under which the evil may be best removed will differ greatly in different localities, we think it would be desirable, before any legislation takes place on this subject, that investigation should be made into the state of the outfalls of different classes of towns, and of the condition of rivers in populous districts, with the view to advise as to the general legislative measures that might safely be adopted. Westminster, 26th March 1858. Second Report, 1861. Conclusions. We submit the following conclusions as the result of these our further investigations : — 1. That the pollution of the rivers of the country is so great and general as to have become a national evil. 2. That this pollution has progressively increased in recent years, is still rapidly increasing, and, unless arrested, must necessarily continue to do so in proportion to the increase of population, the progress of town sewering and house drainage, and the extension of manufactures. 3. That although one of the chief causes of this pollution is the practice of discharging crude sewage, as it comes from towns, into the nearest rivers or watercourses, thus converting them into sewers, yet, the pollution from this cause is by no means confined to towns which have adopted systematic measures for improved sewerage. Nor is the amount of pollution in proportion exclusively to the completeness of such works ; for, in many of the towns in which the bulk of the foul refuse is still retained in cesspools and middens, the neighbouring rivers are in a highly offensive and noxious condition, — even where the cesspool 122 system is maintained on the alleged ground of preserving the local rivers from contamination. 4. That besides the pollution of rivers by the discharge of sewage into them, they are in general made the common and ready receptacles of an immense amount of offensive matter from factories, dye-works, gasworks, iron foundries, mills and other establishments, while cinder- heaps and masses of rubbish of every description that cover their banks, and the large stones and other refuse that obstruct the beds, testify to the general neglect and ill-usage of rivers. 5. That by far the greater part of the solid matter which is held in suspension in water is readily deposited in rivers, covering the banks with mud, permanently raising the beds, gradually destroying the scouring power of the water, and partially silting such rivers up ; and that in some instances these deposits have accumulated to such an extent as to impede navigation, to render the surrounding country subject to floods, and to entail a vast expense in periodic cleansing. 6. That however the appearance of the water may be improved after these deposits have taken place, yet the deposited matters, lying in the bed' of the current, are under conditions favourable for putrefaction. And when the foul mud is disturbed by the prevalence of rain, and during floods, it sends forth its effluvia amidst the populations which are near, and even in the course of the rivers far distant. 7. That this condition of rivers is a public and national nuisance ; it interferes with the convenience and comfort of all classes of the people ; it damages various and important interests, as those connected with manufacturing establishments, canals, fisheries, and so on ; it deteriorates property to a large extent ; and, as interfering with a main source of water supply, is of serious detriment to the public health. 8. That this state of things has grown up in consequence of the anomaly that while important powers of river conservancy have from time immemorial been conferred on local authorities, while special powers have been vested in Improvement Commissioners and companies for isolated local improvement, for drainage, for navigation, and so on, and while even private water-rights and ownerships in streams have been recognized and conferred, no general jurisdiction whatever has been exercised over the whole waters of the country; no protection has been accorded to the many great and varied interests connected with rivers. 9. That the only way of restoring rivers to their original purity is to prevent the discharge of foul matters into them, and especially the discharge of sewage and other refuse of large towns ; but that, in various cases where this treatment has been deemed inadmissible, expedients for the purpose of depriving the sewage of its offensive and noxious properties have been brought into practical operation, and have been attended with more or less success. 10. That among those methods of which experience is most satis- factory no one is suited to the circumstances of all towns, some towns presenting much greater difficulties than others ; yet the more this subject has been investigated the more convincing is the evidence that there is no town which might not, with reasonable care and at moderate cost, greatly mitigate existing evils where it may not be practicable wholly to remove them. 11. That, for example, the chief part of the nuisance arising from the discharge of sewage into rivers and streams may be obviated at once by simply arresting the solid matter in suspension in the liquid, particularly in towns of small populations where the sewers discharge into con- siderable streams of water. In these cases it may be practically sufficient to adopt simple means of deposit, combined with mechanical 123 appliances for arresting solid matters, and these may be of the most inexpensive character ; in other cases, however, and especially during summer, the addition of chemical agents may be required for the more complete separation of solids, and the deodorising of liquid sewage. But although, by such means as the above, sewage may be rendered inoffensive to smell, we cannot guarantee that, even after the best practicable application of such means, sewage can be allowed to flow into any brooks or livers without rendering the waters unsafe and improper for drinking. 12. That among deodorizers, the material which up to the present time has been found the best for this purpose is per chloride of iron , the only objection to its general use being its comparatively high price; but in many cases the employment of the cheaper material, lime, may suffice. 13. That the value of the solid portions of sewage being small, all attempts at realizing profits from its preparation as manure have signally failed ; but, mixed with ashes, sweepings, and other dry refuse of towns, sale is found for it at 2s. or 35. per ton, which is sufficient to pay a proportion of the necessary working expenses of mixing. 14. That the cost of the operation has in various instances ranged from \d. to 2>d. per head of the populalion per annum, including interest on the outlay for works ; there can therefore be no difficulty on the ground of expense in requiring the adoption of adequate means for a removal of nuisance in every case in which injury or inconvience is shown to arise. 15. That the most beneficial and most profitable method of disposing of sewage, where circumstances will admit of this use of it, is by direct application in the liquid form to land ; where such applications can only be conveniently effected near habitations, it may be desirable to employ some deodorizing agent ; but usually, if proper arrangements are made for conveying sewage on the land, this expense need not be incurred. There is reason to hope that trials and experiments instituted by the Commission, and still in progress, in relation to the irrigation of land with sewage, will remove some doubts and difficulties which have hitherto prevailed in retarding a more general adoption of this desirable mode of disposing of and utilising the sewage of towns. Recommendation . Having now fully stated our conclusions as to the means of disposing of the sewage of towns, and shown that the remedies for the evils which are experienced, although various, are both practicable and economical, we beg to repeat our conviction that the only security for a general and continued employment of such means will be the establishment of responsible conservancies throughout the country, armed with adequate powers for prventing damage and for effecting improvements. We believe that these powers would be best vested in independent local authorities, such as the present Commissioners of Sewers ; acting under certain Government regulations in respect to borrowing money, and other matters. Our inquiry, however, has of necessity been of too im- perfect a character to enable us to set forth for consideration any decided measures in detail on so large and important a question. There are many subjects to be inquired into, and vast interests to be considered, which are beyond our present power or our province to enter upon. We can only respectfully but earnestly recommend that such inquiries should 124 be instituted into the various points bearing on the subject, so that measures may be submitted which will enable Parliament to deal with the existing evils in a way most conducive to public interests. Whitehall, August 1861. Third Report of the Royal Commission. Conclusions. To the Lords Commissioners of Her Majesty’s Treasury. May it please Your Lordships, March 1865. We, the undersigned, whom Her Majesty’s Commission, bearing date 5th January 1857, appointed to inquire into the best mode of dis- tributing the sewage of towns, and applying it to beneficial and profit- able uses, have now again, according to our instructions, the honour of reporting to your Lordships our further progress in the matter com- mitted to us for inquiry. Since the date of our last Report (August 1861) we have, through a committee of our number consisting of Mr. Lawes and Professor Way, continued at Rugby the experiments which were undertaken in 1861 on the application of sewage to land. The report of that committee, which ■we append, contains the results for the three years 1862-4. Your Lordships will observe that these experiments have not been confined to the application of sewage in different quantities to land, but have extended to the consumption by cattle of the produce so obtained, and to the production of meat and milk, and have been accompanied by a careful record of the quantities and market value of the products, and by numerous analysis of the sewage before and after irrigation, as also of the grass and of the milk. It appears to us that these experiments have solved many of the difficulties which have hitherto attached to the question of the agri- cultural application of sewage, and that they leave no reasonable doubt of the practicability and advantage of so employing the .sewage of towns. We have also continued to give our best attention to all kindred experiments and inquiries which have been going on elsewhere. As the results of our labours, extending over eight years, we have confidence in submitting to your Lordships the following conclusions 1. The right of way to dispose of town sewage is to apply it con- tinuously to land, and it is only by such application that the pollution of rivers can be avoided. 2. The financial results of a continuous application of sewage to land differ under different local circumstances ; first, because in some places irrigation can be effected by gravity, while in other places more or less pumping must be employed ; secondly, because heavy soils (which in given localities may alone be available for the purpose) are less fit than light soils for continuous irrigation by sewage. 3. Where local circumstances are favourable, and undue expenditure is avoided, towns may derive profit, more or less considerable, from applying their sewage in agriculture. Under opposite circumstances, there may not be a balance of profit ; but even in such cases a rate in aid, required to cover any loss, needs not be of large amount. Finally, on the basis of the above conclusions, we further beg leave 125 to express to your Lordships that, in our judgment, the following two principles are established for legislative application : — First, that wherever rivers are polluted by a discharge of town sewage into them, the towns may reasonably be required to desist from causing that public nuisance : Second, that where town populations are injured or endangered in health by a retention of cesspool matter among them, the towns may reasonably be required to provide a system of sewers for its removal. And should the law, as it stands, be found insufficient to enable towns to take land for sewage application, it would, in our opinion, be expedient that the Legislature should give them powers for that purpose. Whitehall, 1865. Extract from a Report by Henry Austin, Esq., C.E., prepared for the Royal Sewage Commission. Mr. Henry Austin, Chief Inspector of the Board of Health, was also a member of the Royal Sewage Commission, and was requested to prepare a Report for the Commission, of which these are the conclu- sions : — As the result of my inquiries, and of the best attention which I have been enabled to afford to this important subject, I beg to submit the following conclusions : — Conclusions. 1. That although from the earliest agitation of the question of sanitary reform, and of the complete drainage of towns, the mischief from pollution of rivers on the one hand, and the waste of valuable manure on the other, by the direct discharge of the sewage, was insisted upon, no conception was at any time formed of the extent of the evil which now so imperatively calls for remedy. 2. That although the means of remedy by deodorization appear to be as yet but imperfectly understood, and demand further investigation, various processes have for a long time been in more or less successful use for this purpose. That the employment of some of these, known to be destructive of the fertilizing power of sewage, would involve expense without any return, and although such expense, if unavoid- able, should unhesitatingly be incurred to avoid any permanent danger to the population, it appears that other deodorizing materials are not destructive of that fertilizing power. That it is most important, there- fore, to determine whether the fertilizing elements in the refuse are presented in such form as to be practically available for agriculture, either in the solid state or in the liquid form, so as to avoid the injurious consequences and enormous waste of throwing away the sewage. 3. That the nature and value of the chemical constituents of the fcecal matter in sewage having long been known to physiologists and chemists, and admitted to contain all the elements necessary for the food of plants, the recent discussions as to its practical value for agri- culture have not arisen from any doubts on that point, but from the uncertainty whether, being diluted in the large bodies of water employed for the drainage of towns, that value is realizable. 4. That chemical research has not yet arrived at any satisfactory 126 method of economically arresting from solution the fertilizing ingredients in sewage, while the analyses of solid sewage manures, manufactured under various patents, show that, although for the most part possessing a certain low value, they do not justify the high prices at which they have been offered to the public ; nor does there appear to be evidence of any agricultural results derived from their use which will support such a view of their value. 5. That the manufacture from oxcrement of a dry portable manure, as practised at Paris, although realising results of greater value, is appli- cable only where the cesspool system prevails, and leads to an aggrava- tion of the nuisance of that system, which due regard for the public health would not tolerate. 6. That the separate system of drainage, frequently proposed as a solution of the sanitary and agricultural difficulties of the sewage ques- tion, would increase immensely the cost of drainage works, would add to the sources of danger to the public health, and would tend to a waste of fertilizing power. 7. That the practical experience obtained during many years at Edinburgh and Milan has shown the great value qf sewer-water on grass lands, although applied in a state of great dilution ; while valuable experiments have shown the power of soils to remove from solution, and retain for vegetation, the fertilizing elements. 8. That notwithstanding the enormous quantities of sewage-water which have been applied to the land at Edinburgh, the produce is said to be always in corresponding ratio to such quantity, and that the limits of quantity to be applied, and of produce to be realised, have not yet been ascertained. 9. That the precise value of the manure in a given quantity of sewer- water may be readily determined, and, therefore, that the corresponding quantity of water which must be applied to convey a certain required quantity of such manuring elements on to the land may be at any time known. 10. That although such immense agricultural results have been obtained from irrigation with sewage-water at Edinburgh, the method employed has given rise to much complaint of nuisance. That this arises for the most part from foul deposits in wide ditches, and from the large’ evaporating surfaces of the sewage constantly exposed in the channels of irrigation. 11. That all such sources of nuisance and danger are preventible, and should not be tolerated. That no ditches should be used, and that the sew r age should be exposed only during the act of irrigation of each portion of the land, when it would be immediately absorbed and deodorized by the soil. 12. That in order to avoid all further risk of injury to health, whether from discharge of the sewage into the rivers and streams, or from its application to the land, it appears desirable that the solid matter should in every case be separated from the liquid sewage at the outfall, and that a cheap, portable manure should be manufactured therefrom for use in the immediate neighbourhood, as practised at Cheltenham. That it should be mixed with the ashes of the town, or such other deodorizing material as may be most suitable for application to the surrounding land, and prepared, if desirable, with other manuring ingredients for particular crops. 13. That it appears probable that such operation will, in most places, pay its own expenses ; but that as some such measure is absolutely necessary for the public health, even though involving some expense, it 127 should be the duty of local boards and other governing bodies to carry it out, just as much as arrangements devolving upon them for removal of dust or other refuse from the town. It should form, in fact, part of such service, and might be combined in the same contract. 14. That the liquid portion of the sewage, thus cleared of its solid matter, but still retaining its chief value as manure, might then be applied with benefit to the neighbouring lands in any quantity ; but that all land upon which this method of application of the sewage is practised should, if not naturally porous, be artificially drained, as the liquid, if allowed to become stagnant, would, as in common irrigation, be likely to engender disease in the neighbouring inhabitants or in cattle exposed to its influence. 15. That the distribution of manures in the liquid state by the hose and jet, from a system of underground pipes on the land, has been found, by the experience of several years upon farms in England and Scotland, most advantageous, and that the outlay for such works is considered by eminent agriculturists who have had exjDerience of their benefits, as a very profitable outlay, irrespective altogether of the question of sewage distribution. 16. That although the adoption of the the same system at Rugby and other places for the distribution of liquid sewage has been found decidedly successful, the great Edinburgh results are not attainable by this method, unless conjoined with more ample and ready means for getting much larger quantities of sewage on a given area, in less time, and with less labour and expense than can be done with the hose. 17. That upon grass lands, for which the application is best adapted, these larger quantities of the liquid sewage, deprived of its grosser par- ticles, may be economically distributed, especially upon the lower levels, by a combination of the underground pipe system with the subsidiary open irrigation by small contour gutters, practised by Mr. Bickford. 18. That this work, being of a commercial or speculative nature, and not so much required for the safety of the public health, would fall rather within the province of local companies or proprietors than of the local authorities, and to those parties all facilities should be granted for carrying it out. 19. That the solid sewage manure, prepared and deodorized as above proposed, may be anywhere used, and any quantity of the liquid applied on absorbent or properly drained land, without any risk of injury to health, and without any of the oflensiveness constantly experienced from farmyard and other solid manures applied as top dressings. 20. That in any neighbourhoods, however, where no opportunity exists for this beneficial irrigation, the liquid sewage, before being dis- charged into rivers or streams, should, after separation of the solid matter, be treated with lime or other deodorizing and precipitating agents ; a duty which should devolve upon the Local Board or other governing body, as a precaution in which the public health is materially concerned. Lastly, that it is an object of immense public concern that the poisonous accumulations of our towns, now fast becoming the sources of pollution of our rivers and streams, should without delay be rendered powerless for further mischief, and applied as nature’s law demands for reproductive uses. That by this means the greatest sanitary problem will be solved, and the greatest advancement of agricultural prosperity secured. In drawing this report to a close, I venture to express a hope that the attention I have been enabled to give to the subject may have added some little to our information ; but impressed with its great importance 128 and its difficulties, extending as it does into so many branches of inquiry, I feel strongly my own inability to do justice to it. It is a subject of study not for engineers alone, but for agriculturists, physiologists, and chemists of the highest attainments and experience. I have, &c. Henry Austin, Chief Superintending Inspector. Whitehall, March 1857. Conclusions from the First and Second Reports of the Select Committee on the Sewage of Towns. Dated 10th April 1862. Analysis of Evidence. 1. The evidence proves that sewage contains the elements of every crop which is grown. 2. That as compared with solid manure there are advantages in the application of sewage manure to land. 3. The evidence proves that town sewage contains a large amount of heat, which in itself is beneficial in stimulating vegetation. 4. The evidence also proves that the water alone of sewage is of great benefit for agricultural purposes. 5. The evidence further proves that one ton (224 gallons) of average town sewage contains an amount of manure which, if extracted and dried, would be worth a little over 2d., taking Peruvian guano (at 11/. per ton) as the standard. 6. A judicious use of town sewage permanently improves land. 7. Sewage may be applied to common grass, Italian rye-grass, and also to roots and grain crops, with great advantage, dressings with sewage hastening vegetation. 8. Sewage-grown grass has a great effect in increasing the quantity and richness of the milk of cows, as well as improving the condition of the cattle, which prefer sewaged grass to all others. 9. The earth possesses the power of absorbing from sewage all the manure which it contains, if the dressings in volume are proportioned to the depth and quality of the soil. 10. Those who use sewage should have full control over it, that they may apply it when and in what quantities they may require it. 11. Heavy dressings of sewage (8,000 to 9,000 tons per acre) are wasteful ; less dressings (500 to 2,000 tons per acre) when more care- fully applied, produce better results. The enormous dressings recom- mended by some witnesses would be agriculturally useless, as the sewage would flow over and off the surface unchanged. 12. When the sewage of our cities, towns, and villages is utilized to the best advantage over suitable areas, little or no imported or manu- factured manures would be required in such districts. 13. Sewage may be applied with advantage to every description of soil which is naturally or artificially drained. 14. The most profitable returns, as in the case of all other manures, will be obtained when sewage is judiciously applied to the best class of soils. 15. Sewage may be advantageously applied to land throughout the entire year. 16. Some matters used in manufactures which enter town sewers, 129 such as waste acids, would be in themselves injurious if applied to vegetation ; but bearing as they do so small a proportion to the entire volume of sewage into which they are turned, they are rendered harmless. 17. Fresh sewage at the outfall of the sewers, even in the hottest weather, is very slightly offensive ; and if applied to the land in this state, in such dressings as can at once be absorbed by the earth, fear of nuisance need not be felt, as the soil possesses the power to deodorize and separate from liquids all the manure which they contain. 18. Large dressings and an over-taxed soil may pollute surface streams, subsoils, and shallow wells. 19. Solid manure cannot be manufactured from town sewage with commercially profitable results. Report on the Results of the Society of Arts Conference on Health and Sewage of Towns, June 1876. Conclusions. The chairman of the Conference and the Executive Committee, after having carefully considered the information furnished from the various localities as well as the facts brought forward during the Conference, have to submit the following as the conclusions to which such information appears to lead : — 1. In certain localities where land at a reasonable price can be pro- cured with favourable natural gradients, with soil of a suitable quality and in sufficient quantity, a sewage farm, if properly conducted, is apparently the best method of disposing of water- carried sewage. It is essential, however, to bear in mind that a profit should not be looked for by the locality establishing the sewage farm, and only a moderate one by the farmer. 2. With regard to the various processes based upon subsidence, precipitation, or filtration, it is evident that by some of them a sufficiently purified effluent can be produced for discharge without injurious result into water-courses and rivers of sufficient magnitude for its considerable dilution ; and that for many towns where land is not readily obtained at a moderate price those particular processes afford the most suitable means of disposing of water-carried sewage. It appears, further, that the sludge, in a manurial point of view, is of low and uncertain commercial value, that the cost of its conversion into a valuable manure will preclude the attainment of any adequate return on the outlay and working expenses connected therewith, and that means must therefore be used for getting rid of it without reference to possible profit. 3. In towns where a water-carried system is employed, a rapid flow, thorough ventilation, a proper connexion of the house drains and pipes with the sewers, and their arrangement and maintenance in an efficient condition, are absolutely essential as regards health ; hitherto sufficient precautions have rarely been taken for efficiently ensuring all the foregoing conditions. 4. With regard to the various dry systems where collection at short intervals is properly carried out, the result appears to be satis- factory, but no really profitable application of any one of them appears as yet to have been accomplished. 5. The old midden or privy system, in populous districts, should be discontinued, and prohibited by law. 130 6. Sufficient information was not brought forward at the Conference to enable the Committee to express an opinion in regard to any of the foreign systems. 7. It was conclusively shown that no one system for disposing of sewage could be adopted for universal use ; that different localities require different methods to suit their special pecu- liarities, and also that, as a rule, no profit can be derived at present from sewage utilization. 8. For health’s sake, without consideration of commercial profit, sewage and excreta must be got rid of at any cost. The Executive Committee, whilst abstaining from submitting any extensive measures, have no hesitation in recommending that the pre- vention of dangerous effects from sewage gases should receive the immediate attention of the Legislature, and they submit the following resolutions as the basis of petitions to Parliament : — 1. That the protection of public health from typhoid, and other diseases demands that an amending Act of Parliament be passed, as soon as possible, to secure that all house drains connected with public sewers in the metropolis and towns having an urban authority should be placed under the inspection and control of local sanitary authorities, who shall be bound to see to the effective construction and due maintenance of all such house drains, pipes, and connexions. Provisions having this object in view already exist in the Act constituting the Commissioners of Sewers in the City of London, in the Metropolis Local Manage- ment Act, 1855, and in the Public Health Act, 1875, but practically they seem scarcely sufficient for the purpose. 2. That plans of such drains and connexions be deposited in the charge of the respective local authorities, who shall be bound to exhibit them and supply copies of them to the public on payment of a moderate fee. 3. That the owners of houses be compelled by law to send to the respective local authorities, within a specified time after the passing of the Act, plans of all house drains on an appointed scale. Members of the Executive Com-^ mittee. Signed by — 'The Eight Hon. James Stanfield, M.P., Chairman of the Conference. Lord Alfred S. Churchill, Chairman of the Council. F. A. Abel, F.K.S., President of the Chemical Society. Sir Henry Cole, K.C.B. Capt. Douglas Gallon, R.E., C.B., F.R.S. Lieut.-Colonel E. F. Du-Cane, R.E. C.B., Surveyor General of Prisons. LONDON: Printed by George E. Eyre and William Spottiswoode, Printers to tlie Queen’s most Excellent Majesty. Eor Her Majesty’s Stationery Office. [ 1910 .— 1000 .— 11 / 76 .] Kanalwasser- (Sewage) Bewasserung oder die fliissige Dungung der Felder im Gefolge der Kanalisation der Stadte in England. Reise-Bericht. Im Hinblick auf deutsche Verhaltnisse bearbeitet von AI). FEGEBEUTEL, Civil-Ingenieur in Danzig. Mit VII Tafeln, Planen und Zeiehnungen. Danzig. Verlag von A. W. Kafemann. * Einleitung 1 I. Woraus besteht das Kanalwasser (Sewage) der Stadte und welches ist der landwirthschaftliche Werth desselben 5 Die Bestandtheile des Kanalwassers 5 Werthsbestimmungen desselben 7 Das Yerhaltniss des Regen- and Tagewassers zum Kanalwasser 12 II. Das Kanalwasser als Bewasserungswasser resp. seine Ver- wendung zur fliissigen Dungung, seine Temperatur und seine Reinigung 17 Einfluss des Rieselwassers an und fur sich auf die Vegetation der Pflanzen . . 17 Die Temperatur des Kanalwassers 19 Die Reinigung desselben durch die Absorptionsfahigkeit des Bodens 23 Bericht des Herrn Ingenieur B. Latham zu Croydon uber die in Folge der Kanalisation und Bewasserung daselbst herrschen- den Gesundheitsverhaltnisse 25 HI. Die Technik der Bewasserungsanlagen 29 Das Schlauch- und Spritzensystem (Underground pipes and hose and jet distribution) . 29 Vertheilung durch offene Graben (Distribution by carriers) . . 31 Das Hangsystem, Hangbau (catch work-system) Taf. II. Fig. 2 . 31 Das Bet tsvstem (ridge and furrow) Taf. II. Fig. 4 32 Das Furchensystem (pane and gutter) Taf. II. Fig. 3 .... 33 Furchenbewasserung fur Hackfriichte. Taf. II. Fig. 5 .... 34 Anordnung verschiedener JSchleusen, Taf. III. Fig. 1 — 6 ... 34 Ing. Latham’s Kanalwasser- Vertheilungsrohren, Taf. III. Fig. 7 — 9 35 Ueber die aufzubringende Menge des Kanalwassers 35 IV. Die unter Benutzung des Kanalwassers in England ange- bauten Graser und Fruchtarten (Kultur-Berichte) ... 38 Das Kanalwasser zur Berieselung natiirlichen Wiesenlandes . . 38 Das italienische Raygras (Lolium italicum) Taf. V 41 Ertrage in Sud-Norwood 42 Herr W. Hope-Lodge Farm uber die Kultur dieses Grases mit Anwendung von Kanalwasser 43 Versuche in Rugby mit diesem Grase und deren Resultate . . 46 Anwendung des Kanalwassers fur Getreide 49 desgl. desgl. far Hackfriichte und Gemiise . . 50 Seite V. Gegenwartige Verbreitung der Kanalwasser - Bewasserungs- Anlagen in England. Gesellschaften und Projecte zur grbssten Ausbreitung des Systems. Beschreibung vor- zuglicher Anlagen daselbst 53 Verzeichniss der englischen Stadte etc., die das System an- genommen haben 54 Die Metropolis-Sewage and Essex-Reclamation Company ... 55 Project fur die Bewasserung der Woodham - Haide ,, Thames Valley Outfall“ Aus dem Bericht des Ilerrn W. Hope an die „Essex Sewage Farming Association 4 * 56 Beschreibung vorzuglicher Anlagen in England 63 1. Croydon, Beddington und Sud-Norwood 63 2. Die Lodge Farm 67 3. Warwick (Gog Brook-Farm) 70 4. Rugby 73 5. Die Camp Farm bei Aldershott 74 VI. Die Anwendung der Kanalwasserbewasserung auf deutsche Verhaltnisse 77 Vergleiche des Gehaltes des Kanalwassers zu Miinchen mit dem zu Rugby in England 77 Klima und Niederschlage in Norddeutschland im Vergleich zu England 81 Die Bodenverhaltnisse Norddeutschlands im Allgemeinen in Ruck* sicht auf Bewasserungen 83 Entwasserung (Drainage) 88 Technische Ausfuhruug der Bewasserungsarbeiten 90 Ueber die zu verwendende Menge des Kanalwassers .... 91 Welche Graser und Fruchtarten eignen sich mit Riicksicht auf die klimatischen Verhaltnisse zur Kanalwasserbewasserung im • nordlichen Deutschland und wie sind dergleichen Bewasserungs- wirthschaften einzurichten ? 102 Berichtigungen und Bemerkungen. Seite 9 Zeile 6 statt: 28000000 lies: 2,800000. „ 24 „ 11 statt: fehlenden lies: vorhandenen, „ 39 „ 15 ist hinter „dichten tt D ecke einzuschalten. n 58 „ 25 statt: also 5 Prozent Zinsen vom £ lies: ferner 5 Prozent Zinsen von 22 £ fur die Kuh, 1 £ 2 Sh. „ 58 „ 28 ist im engl. Original \ pence per Tag gesetzt, es muss aber heissen 2|- pence per Tag. n 54 „ 7 sind im engl. Original fur die Camp Farm bei Aldershott 396 Morgen bewasserter Flache angegeben, es sind bis jetzt thatsachlich jedoch nur 120 Morgen angelegt. n 62 „ 31 statt 600 Thlr. 20 Sgr. lies: 666 Thlr. 20 Sgr. Einleitung. Man wird im Allgemeinen zugestehen miissen, dass durch den sich von Jahr zu Jahr steigernden Eisenbahnverkehr die grosseren Stadte, welche sich theils durch Lage, Handel und Fabrikwesen auszeichnen, theils als Centralpunkte des grossen Weltverkehrs zu betrachten sind, ein unverhaltnissmassig grosse- res 'Wachsen zeigen, als man nach den bisherigen Erfahrungen der progressiven Population erwarten konnte. Durch diese sich immer mehr und mehr geltend machende Centralisation auf dem Gebiete des offentlichen Verkehrs, durch das Zusammendrangen grosser Volksmassen aufeinen unverhaltnissmassig kleinenKaum sind Calamitaten entstanden, die namentlich einen nicht zu leug- nenden Einfluss auf den Gesundheitszustand der Bewohner aus- iiben. Diese Calamitaten bestehen vorzugsweise einerseits in un- zureichender Wasserversorgung, andererseits in Anhaufung grosser Massen Abfallstoffe, deren mangelhafte Beseitigung, und vor alien Dingen in der fur den Gesundheitszustand so ausserst schadlichen, aus genannten Anhaufungen entspringender Verun- reinigung, man kann mit Rucksicht auf die Gesundheit der Bewohner solcher Stadte sagen, Vergiftung des Grund und Bodens. Gegen diese Calamitaten anzukampfen und sie mit energischen Mitteln zu besiegen, ist die schone und grosse Auf- gabe derVertreter stadtischer Cominunen. So wie der Landwirth durch die Drainirung seiner Felder eine gesunde Vegetation der Pflanzen zu erzielen bestrebt ist, so liegt es dem Stadte-Bewoh- ner ob, in gleicher Weise dahin zu wirken, dass durch die Ent- fernung schadlicher Feuchtigkeiten und Ablagerungen die Gesund- heit der Menschen sicher gestellt werde. Obwohl nun in letzterer Zeit diese Fragen auf der Tagesordnung fast aller grossen Platze des Continents nnd in engerer Reihe unserer grossen deutschen 1 2 Stadte stehen, so sind sie doch noch leider in selir unzureichen- der Weise beantwortet, geschweige denn praktisch gelost worden. Wenn auch fast schon iiberall dem ersten Theile der ge- nannten Uebelstande durch Anlage zweckentsprechender Wasser- leitungen eine grossere Aufmerksamkeit geschenkt worden ist, so liegt jedoch der zweite Theil, die Fortschaffung der Abfall- stoflPe auf naturgemassem und leichtem, der Gesundheit nicht naebtheiligem Wege noch sehr im Argen. Leider ist diese Frage noch immer ein Gegenstand des Kampfes zwischen Yolks- nnd Landwirthen einerseits und den Fachmannern andererseits. Ob Kanalisirung oder Abfuhr, ist die Frage, die noch fortwahrend zu den ausgedehntesten Erorterungen, Polemiken nnd Anfein- dungen Yeranlassung giebt. Und wie leicht ist die Losung dieser Frage auch fur unsere deutschen Verhaltnisse gefunden wenn man sich nur die Miihe geben will, von den Eroberungen auf diesem Gebiete der Cultur Akt zu nehmen, welche uns England seit einigen Jahren vor- fiihrt. Wo bleiben die Streitpunkte der erwahnten Frage, wenn man sieht, dass vermittelst der gefahrlichen verachteten Abfall- stoffe die lippigsten Wiesen und Fruchtfelder erzeugt werden, dass ein nicht zu berechnender Wohlstand, und vor alien Dingen ein besserer Gesundheitszustand ganzer Gegenden erbliiht. Und wodurch wird dieser Zustand erreicht? Es ist nicht meine Aufgabe in diesem Werkchen, mich in den alten Streit uber Kanalisirung oder Abfuhr mit einigen Argumenten des Fiir und Wider der einen oder anderen Methode einzulassen; es ist vielmehr mein Bestreben, iiber das, was ich in dieser Beziehung gesehen, gepruft, und als innige und feste Ueberzeugung aufge- nommen babe, namentlich im Hinblick auf allgemeine Kultur- wissenschaft, Bericht zu erstatten. Dieser Bericht gipfelt in der Ueberzeugung, dass die naturlichste, national-okonomisch wichtigste Methode namentlich iiberall da, wo durch eine ausreichendeWasserversorgung die Vor- bedingungen gegeben sind, allein nur die sein kann, — wo durch ein durchgreifendes Kanal - Schwe mm - System mit Auf- nahme sammtlicher fliissigen und festen Abfallstoffe und mit Ein- schluss des Regenwassers die weitere Benutzung dieser Stoffe zur 3 Bewasserung resp. fliissigen Diingung anliegenden Grund und Bodens moglich gemacht wird. Die grosste Schwierigkeit bestand bekanntlich bisher darin, dass man in Verlegenheit kam, die grosse Masse taglichen Kanal- wassers fortzuschaffen; man leitete es friiher in die Fliisse oder sonst disponiblen Wasserlaufe in derHoffhung, dass die Stromung die moglichst gelosten Sinkstoffe in das Meer fiihren wiirde. Man hatte sicb hierin getauscht; die Sinkstoffe schlugen sich in den ineisten Fallen in den Flussbetten nieder und bildeten Alluvionen, die in wasserarmen Jahren trocken gelegt, die Umgebung dieser Wasserlaufe verpesteten, ausserdem hochst storend auf Schiff- fahrt und Verkehr einwirkten. Diese Uebelstande wurden so gefahrlicher Natur, dass sie fast das ganze Verfahren des Kanal-Schwemm-Systems inFrage stellten und eine erhebliche Stockung in der Fortsetzung dieser Arbeiten veranlassten. Aus dieser Zeit datirt die Streitfrage liber Kanalisation oder Abfuhr, da man, und mit Recht jene bosen Erfahrungen in den Vordergrund stellte, ausserdem noch Protest gegen die kolossale Verschwendung der nutzbarsten Dungstoffe erheben musste. Augenblicklich jedoch liegt diese Sache vortheilhafter, ja so iiberzeugend, dass sie eigentlich als gelost betrachtet werden darf. Die iiber alle Erwartung gelungenen kleineren und grosse- ren Versuche in England, das Kanalwasser der Stadte unmittel- bar zur Bewasserung resp. fliissigen Diingung anliegender Felder zu benutzen, giebt auch uns den Fingerzeig, ebenfalls damit vor- zugehen. Bereits haben einige deutsche Stadte, wie Danzig und Frankfurt a. M., dieses System zur Ausfuhrung zu bringen zum Beschluss erhoben. Nach des Yerfassers Ansicht ist diese Art undWeise der Anwendung eine Erscbeinung, deren grosse natio- nal-okonomische Bedeutung nicht unterschatzt werden kann und deren Klarung entschieden als eine schone Aufgabe, nicht allein der offentlichen Gesundheitspflege, sondern auch der Kultur- Wissenschaft betrachtet werden muss. Aus diesen Griinden habe ich es mir angelegen sein lassen, die vorziiglichsten Anlagen dieser Art in England zu besichtigen und zu studiren, um sie dem deutschen, sich dafiir interessirenden Publikum zuganMich zu machen, gleichzeitig aber auch denjenigen Communen deut- scher Stadte, welche mit dem Gedanken umgehen, fur dasWohl ihrer Bewohner mit gleichen Anlagen vorzugehen, Material in 1 * 4 die Hand zu geben, dessen Benutzung moglicherweise einen Ein- fluss auf ihre Beschliisse ausuben diirfte. Schliesslich aber betrachte ich es noch als eine angenehme Verpflichtung, denjenigen Herren, welche es sich angelegen sein liessen, mich zur Erfullung meiner Aufgabe freundlich zu unter- stiitzen, den Herren Alexander Aird in Berlin, John Aird & Sons in London, Baldwin Latham, Ingenieur der offent- lichen Bauten zu Croydon, den Herren Pennar und Clifford zu Warwick, Herrn Hope zu Lodge-Farm bei Barking, Blakburn zu Kamp-Farm bei Aldershott meinen besten Dank hiermit auszuspreclien. Der Verfasser. Vergleichung der Masse, Gewichte, Mtlnzen. 1 engl. Acre == H /2 magd. Morgen. 1 engl. Fuss == 11,653 preuss. Zoll. 1 Imperial-Yard = 3 preuss. Fuss. 1 Quarter = 5,288 Scheffel (8 Bushels). 1 engl. Bushel = 0,661 Scheffel (4 Pecks 8 Gallons). 1 ton — 20 Zollcenter. 1 engl. Gallon — 3,966 Quart (als Fliissigkeitsmaass) 1 Pfund (avoir du poids) = . 0,905 Zollpfund. 1 engl. Centner = 101,49 Zollpfund. (1 Hun- dredweight = 112 Pfund engl.) 1 Pfd. Sterling = 6 Thlr. 20 Sgr. Pr. Crt. (20 Shillings). 1 Shilling (12 pence) == 10 Sgr. Pr. Crt. 1 Penny = 10 Pfennige. I. Woraus besteht das Kanalwasser (Sewage) der Stiidte and welches ist der landwirtlischaftliche Werth desselben! Kanalwasser ist das durch unterirdische Abzugs-Kanale fortgefiihrte Wasser, bestehend aus unreinem Wasser, welches die festen und fliissigen Excremente von Menschen undThieren, das Spiilwasser der Kiicherr, Schlachthauser, Fabriken aller Art und der Strassen mit Einschluss des sich mit dem Spiilwasser vereinigenden Regenwassers oder Tagewassers enthalt. Selbst- verstandlich werden die Bestandtheile dieses Kanalwassers mit den Gewohnheiten der verschiedenen Bevolkerungen, dem Reich- thum oder der vorherrschenden Armuth gemass variiren. Ferner weichen diese Bestandtheile auch in Bezug auf die Anwen- dung verschiedener Systeme der Wasserversorgung und Ent- wasserung selbstverstandlich bedeutend von einander ab. Aus diesen Griinden miissen auch die Unterschiede in der Zusammen- setzung des Kanalwassers grosser sein, so dass sein chemischer Werth nur nach einer langen Reihe von Versuchen hat festge- stellt werden konnen. Trotz der Verschiedenheit dieser chemischen Analysen wird man doch im Allgemeinen nicht behaupten konnen, dass das Kanalwasser nicht werthvoll genug sei, um eine spatere Benutzung desselben lohnend zu machen. Unter den schatzbarsten Bestand- theilen des Kanalwassers sind wohl die hauptsachlichsten: Stick- stoff, welcher theils in Form vonAmmoniak, theils als organische Masse vorhanden ist; zweitens Kalisalze, Phosphorsiiure u. a. m.; drittens stickstofffreie organische Substanz, welche in zwei Verhaltnissen gefunden wird, erstens loslich und zweitens unlos- lich im Zustande mechanischer Suspension. Durchschnittlich sind in einer Gallone Kanalwassers in Granen enthalten: Stick- stoff 6,7 , Kali 1,1, Phosphorsaure 1,8 und stickstofffreie orga- nische Substanz 30. OdeJi J jlcmtU: ; ?/#&. ' ; ^ 0/9 * .■ h 0 ; ^ Pi ^ / 8 £ r‘- ; Cy 6 Um den allgemeinen landwirthschaftliehen Werth des Kanal- wassers in Riicksicht auf spatere Benutzung zur Bewasserung, resp. fliissigen Diingung v zu veranschlagen, geht man von der Voraussetzung aus, dass man dasselbe direkt in dem Zustande aus den Zuleitungsrohren oder Kothschleusen nimmt, wie es in denselben entstanden ist und gefunden wird, ohne einen vorher- gehenden Prozess der Desinfection erfahren zu haben. Es soil nun hiermit nicht gesagt sein, dass die Benutzung des Kanalwassers nach einer vorhergegangenen Desinfection, d. h. einer Niederschlagung seiner festen Bestandtheile auf mechani- schem oder chemischem Wege nicht auch gewisse pecuniare Vor- theile in Aussicht stellte, jedoch haben sich im Allgemeinen die verschiedenen Arten dieser Desinfectionen fiir eine grossere Be- nutzung dieser Masse in England bis jetzt noch nicht bewahrt. Man hat namentlich in einigen Stadten die umfassendsten Ver- suche dieser Art angestellt, wie z. B. in Birmingham, Leicester, Manchester, Tottenham, welche ohne irgend einen besondern Erfolg gewesensind. Unter anderen wurden in Birmingham kaum 4 Shilling pr. ton (20 Ctr.) fiir den erzielten Niederschlag der festen Bestandtheile des Kanalwassers geboten, deren wirklicher Werth auf 4 Lstr. p. ton angenommen wurde. In der folgenden Tabelle sind die Namen der Hauptorte in England angegeben, wo die Versuche, einen verkauflichen Diinger lierzustellen, fehl- schlugen. Birmingham Carlisle Leicester Canterbury Clifton St. Thomas Coventry Ely Tottenham Ashby de la Zouch Ealing Uxbridge. Im Allgemeinen waren die genannten Operationen mitsolchen grossen Schwierigkeiten verkniipft, um ihnen gegen die sichere und naturgemasse Verwendung des Kanalwassers fur Bewasse- rungen eine besonders giinstige Zukunft in Aussicht zu stellen. Beinahejedes chemische Reagens ist angewandt w r orden, um darin zu einem gewissen Resultat zu gelangen. Wendet man sich nun zu den Untersuchungen, welche, um den Werth des Kanalwassers vorzugsweise fiir die Bewasserung, resp. fliissige Diingung fest- zustellen, gemacht worden sind, so theilt uns Herr Latham, In- genieur der offentlichen Werke zu Croydon in seinem Werk- chen ( The Purification and Utilisation of Sewage , London, 7 E. and F. N. Spoil, 48 Charing Cross, 1867, iibersetzt von E. Wiebe, Baufiihrer in Berlin) folgende Unter- suchungen mit: Der Werth des Kanalwassers ist von mehreren Chemikern unter den verschiedensten Umstanden nach seinen darin enthaltenen Bestandtheilen auch verschieden angenommen worden. Professor J. v. Liebig sehatzte, dass ein ton Londoner Kanalwassers auf 15 Shill. 4 pence (5 Thlr. 3 Sgr. 4 Pf.) pr. Kopf der Bevolkerung zu berechnen sei. Dr. A. W. Hoffmann berechnet, dass die im Kanalwasser schwebenden Stoffe 15 Shill. 3 pence (5 Thlr. 2 Sgr. 6 Pf.) pr. ton werth sind, wahrend der feste Riickstand der gelosten Stoffe 5 Lstr. 5 Shill. (35 Thlr.) und alle Bestandtheile des Kanalwassers in fester Gestalt 6 Lstr. 3 pence (40 Thlr. 2 Sgr. 6 Pf.) pr. ton werth sein wiirden, dass ferner 100 tons Kanalwasser, wie es aus den Londoner Kanalen fliesst, werth sind: 17 Shill. 7 pence (5 Thlr. 25 Sgr. 10 Pf.) oder 2 Shilling 2 x / 2 pence (22 Sgr. 1 Pf.) fur die schweben- den Stoffe, und 15 Shilling 4*/ 2 pence (5 Thaler 3 Sgr. 9 Pf.) fur die aufgelosten Stoffe zu berechnen waren. Nach diesem Verhaltniss ist ein ton Kanalwasser etwas mehr werth, als 2 pence (20 Pf.) oder der jahrliche Werth ist 16 Shill. 8 pence (5 Thlr. 16 Sgr. 8 Pf.) pro Kopf der Bevolkerung, vorausgesetzt, dass 100 tons (3293 Kubikfuss) genau dein einem Individuum zukom- menden Betrag von Kanalwasser entsprechen, was fur London als richtig anzunehmen ware; die wirklichen Zahlen, welche von Hoffmann aus dem Gesammtwerth des Londoner Kanalwassers be- rechnet sind, geben jedoch 10 Shill. 8 pence (3 Thlr. 16 Sgr. 8Pf.) als den Jahreswerth pro Kopf der Bevolkerung. Wenn Dr. Hoffmann den Gesammtwerth des Londoner Kanalwassers auf 1385540 Lstr. pro Jahr berechnet, dieses Kanalwasser ferner von 2600000 Menschen herruhrt, und iiberschlaglich 266000000 tons berechnet ist, so geht hieraus hervor, dass entweder der Gesammtwerth des Kanalwassers hinter der Scliatzung zuruck- bleibt, oder wahrscheinlicher, dass 2 pence pro ton ein zu grosser Werth fur das Kanalwasser ist. Professor Volker schatzt den natiirlichen Werth eines ton Kanalwasser auf 2 pence, setzt aber hinzu, dass dieser theore- tische Werth pro ton in der Praxis sich vermindert und in eini- gen Fallen ganzlich verloren gehen konnte. Herr Lawes schatzt den Werth des Kanalwassers von Rugby auf l 1 /* pence (12 J / 2 Pf.) pr. ton. 8 Herr J. J. Me chi fuhrte vor cler von derKonigin ernannten Immediat-Commission fur. das Kanalwasser der Stadte aus, dass er den jahrlichen Werth des Kanalwassers auf )6 Shill. (5 Thlr. 10 Sgr.) pro Kopf schatzt, auf Grund der Annahme, dass der Werth des Kanalwassers gleich Yio der vcrzehrten Nahrung sei. Letzteren Werth setzt er auf 7 — 8 Lstr. (46 2 / 3 — 5373 Thlr.) pro Kopf der Bevolkerung fest. Herr Ellis schatzt den Werth von 1 ton Kanalwasser auf 2 pence, verglichen mit Guano a 11 Lstr. pr. ton (3 Thlr. 18 Sgr. 9 Pf. pro Ctr.) nach der Voraussetzung, dass 1250 tons Kanal- wasser ebenso viel Dungstoffe enthalten, als 1 ton Guano. Herr Morton berechnet in seiner werthvollen Abhandlung uber Kanalwasser, in einem Vortrage bei der Akademie der Wissenschaften (Society of Arts), dass bei der Verwendung des Kanalwassers auf den Wiesen bei Edingburg nicht mehr als 3 /^ pence (7,5 Pf.) pro ton erreicht sind; wenn das Londoner Kanalwasser nach denselben Verhaltnissen verwerthet wiirde, so wiirde es einen jahrlichen Ertrag von 6 Shill. 3 pence (2 Thlr. 2 Sgr. 6 Pf.) pr. Kopf der Bevolkerung geben. Das mit den Untersuchungen uber Behandlung und Verwerthung des Kanalwassers beauftragte Comite hat berechnet, dass in Croydon nach Abzug von 4 Lstr. (26 Thlr. 20 Sgr.) pr. Acre (16 Thlr. 24 Sgr. pr. Morgen) als des eingesehatzten Werthes des Bodens im Anbau von Ray-Gras 3 / 4 — 1 penny (7,5—10 Pf.) und bei dem Anbau von Wiesengrasern V 2 — 3 / 4 penny (5 — 772 Pf.) pr. ton wirklich erreicht ist. Es ist nun schwierig, bei der Verschiedenheit der Zusam- mensetzung; des Kanalwassers einen bestimmten Durclischnitts- werth festzustellen, ohne dass man sich in seinen Berechnungen finanziellen Tauschungen hingiebt. Wie gesagt, andert sich der Dungstoff je nach der gesellschaftlichen Stellung und den Ge- wohnheiten der Bevolkerung, von der das Kanalwasser herriihrt. ,,DieHerren Hoffmann und Witt haben es versucht, den Werth des Kanalwassers aufjahrliche Ausleerung eines erwach- senen Mannes zuriickzufiihren; sie haben gefunden, dass darin enthalten sind: feste Stoffe: Pfd. Urin .... 61 Koth .... 34 18,1 11 9V4 3 27 872 Ammoniak : Pfd. 15,8 2,3 "Werth : Shill, pence. Thlr. Sgr. Pf. 10 72 3 10 5 1 83/4 — 17 3 95 9 Dr. Thudichum schatzt den Werth des Urins eines er- wachsenen Mannes, wie folgt: feste Stoffe : Ammoniak: Werth: Pfd. Pfd. Shill, pence. Thlr. Sgr. Pf. 47 15,9 10 3^ 3 12 11 und setzt 2800000|^ Personen einer gemischten Bevolkerung = 2000000 erwachsenen Mannern. Ein Mittelwerth der Herren Hoffmann und Witt und Dr. Thudichum berechnet durch die ,, Commission zur Untersuchung iiber die beste Art, das Kanalwasser der Stadte zu behandeln und zu nutzbringendem Gebrauch zu verwenden“, giebt den Werth fur jedes Individuum einer gemischten Bevolkerung an, auf: Ammoniak: Werth: Pfd. Shill, pence. Thlr. Sgr. Pf. Urin 11,32 7 3 2 12 6 Koth 1,64 1 23/4 — 12 34 Summa 12^96 8 53/4 2 24 94 und eine durch die Herren Lawes und Dr. Gilbert gemachte Schatzung zeigt, dass der von den Herren Hoffmann und Thudichum dem Kanalwasser angewiesene durchschnittliche Werth seinen wahren Werth iibersteigt. Sie erklaren, dass der den Kanalen durch eine gemischte Bevolkerung hochst wahr- scheinlich zugefiihrte Betrag von Ammoniak einschl. des Zuflusses aus alien anderen Quellen 12y 2 Pfd. pro Kopf der Bevolkerung nicht iibersteigt, und dass 8 Shill. 4 pence (2 Thlr. 23 Sgr. 4 Pf.) der Jahreswerth pr. Kopf der Bevolkerung ist. Daher wiirde, wenn dieser Werth von 8 Shill. 4 pence (2 Thlr. 23 Sgr. 4 Pf.) an Diinger jahrlich in 100 tons Kanal- und Regenwasser enthal- ten ist, dem Kanalwasser ein durchschnittlicher Marktpreis von 1 penny (10 Pf.) pr. ton (1 Pf. fur 200 Pfd. = 3y 3 Kubikfuss) zukommen. Herr Latham schliesst hieraus nach den an dem Lon- doner Kanalwasser angestellten Beobachtungen, dass es wahr- scheinlich ist, dass der Betrag von Dungstoffen, welcher aus alien anderen Quellen den Kanalen zufliesst, ungefahr dem der jahrlichen Ausleerungen der Bevolkerung an Werth gleichkommt, welche von den Herren Hoffmann u. Witt u. Dr. Thudichum auf 8 Shill. 6 pence (2 Thlr. 25 Sgr.) pro Kopf angenommen ist. Dieser theoretische oder chemische Werth von 8 Shill. 6 pence pro Kopf einer gemischten Bevolkerung ubertriflft um 2 pence den Werth, welcher ihm durch die mit Untersuchun- 10 gen iiber die Behandlung und Verwerthung des Kanalwassers beauftragten Commission beigelegt ist. Halt man sieh an den Normalwertb von 8 Shill. 4 pence (2 Thlr. 23y 2 Sgr.) pro Kopf, so wird jeder Stadt leicht durch Berechnungen nachzuweisen sein, welche Vortheile, resp. Einnahmen von der Verwendung des Kanalwassers zu landwirtbschaftlichen Zwecken mitWahr- scheinlichkeit erreicht werden konnen. Herr W. Hope, Direc- tor der Versuchsstation fur die landwirthschaftliche Verwendung des Londoner Kanalwassers, namentlich zu Bewasserungs- Anlagen zu Lodge- Farm bei Barking, ein Mann von be- reits bedeutenden Erfahrungen beziiglich dieser Benutzung, aussert sich iiber den Geldwerth des Kanalwassers folgender- massen: Er geht weniger von einem Normalwerthe aus, sondern sucht im Speciellen zu bestimmen, welchen Werth das Kanal- wasser in Bezugnahme auf seine Verwendung fur verschieden- artige landwirthschaftliche Produkte haben kann. Diese Schatzun- gcn sind gegen die so eben angefiihrten um so interessanter, als sie gleichzeitig im Vergleich mit diesen einen mehr speciell land- wirthschaftlichen Charakter haben. „Wenn das Kanalwasser fiir dieErzeugnisse des Gemiisegart- ners benutzt wird, so ist sein Werth ausserordentlich gross, da die erzeugten Vegetabilien von der feinsten Beschaffenheit sind. Sie sind namlich mit der grosstmoglichsten Schnelligkeit gewach- sen, wovon besonders die Zartheit derselben abhangigist. Nun ist es bekannt, dass die Gemiisegartner 10 — 20 Lstr. Dungwerth einer soliden Diingung auf den Acre verwenden, wenigstens in der Nahe Londons, wahrend, um die schonste Ernte von Kohl, Blumenkohl, Sellerieetc. zu erzeugen, nur 500 — 1000 tons Kanal- wasser nothwendig sind, je nach der besonderen Giite der Sorte, die man anbaut, und der gewissen Zeit, in welcher man die Ernte zu Markte bringen will. Nimmt man nun die hochste dieser Quantitaten, 1000 tons als gleich dem geringsten Werth einer Garten-Diingung gewohnlichen Diingers oder 10 Lstr. pro Acre an, so wiirde man einen Totalwerth von 2400 pence £2000 Pf.) fiir 1000 tons Kanalwasser oder nahezu 2y 2 pence (2 Sgr. 1 Pf.) pr. ton haben. Man hat keine Ursache anzunehmen, dass diese Ausgabe fiir einen Gemiisegartner zur Verwendung in seinem Garten uniibersteiglich ware, wenn das bedeutende Resultat ins Auge gefasst wird, das man damit ,er- zielt. Es ist merkwiirdig, dass dieser Werth sich nicht bedeu- 11 tend von dem unterscheidet, welcher durch Schatzung der che- mischen Bestandtheile des Kanalwassers gefunden wurde. Das Kanalwasser einer Stadt schwankt in Quantitat, so wie in Qua- litat in den verschiedenen Jahreszeiten, so wie bei verschieden- artigem Wetter, und nichts war schwieriger bei der Organisation der Metropolitan Sewage Company, als zu einer verlassigen Schatzung des Werthes des Londoner Kanalwassers pr. ton zu gelangen, denn die verschiedenen Analysen, welche von Zeit zu Zeit gemacht worden sind, waren nach dem Inhalte einzelner Kanale gemacht, nicht aber auf die grossen Massen des Kanal- wassers, weche in dem Hauptabzugskanale vereinigt fliessen, berechnet gewesen. * „ Will man jedoch, sofahrtHope fort, ganz sicher gehen, so konnte derNormalpreis von 1 penny pr.ton, namentlich imFalle der Verwendung in Gemiisegarten als ein massgebender zu betrachten sein. Geht man in diesen landwirthschaftlichen Schatzungen weiter und stellt den Werth des Kanalwassers fur den Anbau von italienischem Raygras fest, so kann man durchschnittlich annehmen, dass 90 — 100 tons Gras aus 5000 tons Kanalwasser wahrend eines Jahres wachsen konnen. Nun sind 5000 tons zu 1 penny gleich 20 Lstr. 16 Shill. 8 pence (138 Thlr. 26 Sgr. 8 Pf.), wozu man noch rechnen muss, 4 Lstr. pr. Acre, fur Pacht und Steuern, 1 Lstr. fur Verbreitung des Kanalwassers und andere kleine Ausgaben; fur das Mahen von 10 Schnitt jahriich mit der Maschine zu 3 Shill, gerechnet, 1 Lstr. 10 Shill.; das Einfahren von 100 tons nach dem Hofe zu 6 pence, 2 Lstr. 10 Shill, oder eine Totalsumme von 29 Lstr. 16 Shill. 8 pence (198 Thlr. 26 Sgr. 8 Pf.) oder abgerundet 30 Lstr. (200 Thlr.). Da nun nachzuweisen ist, dass 1 ton Grass auf dem Wirthscbafts- hofe sehr wohl 15 Shill. Werth hat, wenn man es zur Ernahrung von Kuhen benutzt, deren Milch zu 15 oder 16 pence pr. Gallon auf dem Hofe verkauft oder zu Butter gemacht, die etwa fur den- selben Preis pr. Pfd. verkauft, die abgerahmte Milch denSchweinen gegeben wird, so hat man einen Bruttogewinn von 75 Lstr. (500 Thlr.) pr. Acre, von welchen 30 Lstr. (200 Thlr.) fur die genannten Ausgaben in Abzug zu bringen sind, mithin immer noch ein Nettogewinn von 45 Lstr. (300 Thlr.) iibrig bleibt. „Verwendet man zu Mangoldriiben (Runkelruben) 2000 tons Kanalwasser a 1 penny, so hat man fiir das Kanalwasser eine Ausgabe von 8 Lstr. 6 Shill. Spence pr. Acre; nimmt man hierzu (•/'far* ****»(& c e * $ 0 - t&o ‘ 12 dieselben Ziffern von 4 Lstr., fur Pacht und Steuern, 1 Lstr. fur Anwendung des Kanalwassers etc., 30 Shill, fur Vorbereitung des Bodens, 10 Shilling fur Samen, und 70 Shilling fur Be- haufeln und Einernten von 70 tons Wurzeln, so hat man eine Total- Ausgabe von 19 Lstr. 6 Shill. 8 pence (128 Thlr. 26 Sgr. 8 Pf.) pr. Acre. Nimmt man man ferner denselben Preis von 15 Shill, pr. ton fur den Werth des erhaltenen Futters, so hat man einen Totalertrag von 52 Lstr. 10 Shill, pr. Acre oder einen Netto-Ueberschuss von 33 Lstr. 3 Shill. 4 pence (221 Thlr. 3 Sgr. 4 Pf.). Da nun nachweislich in der Lodge-Farm 52 V 2 tons Runkelruben mit 1100 tons Kanalwasser erzielt sind, so kann man sicher annehmen, dass mit 2000 tons Kanalwasser 70 tons Mangoldriiben geerntet werden konnen. Man kann hier den Ein- * wurf machen, dass bei diesen Berechnungen nur lediglich vom Kanalwasser der grossen Stadte, nicht aber von dem der kleine- ren die Rede ist, denn obgleich der Regenfall in London im Verhaltniss zur Bevolkerung nur ein geringer ist, so ist doch der Wasserverbrauch grosser und beides zusammengenommen repra- sentirt jahrlich75 — 80 tons Kanalwasser pr. Kopf und pr. Jahr, an- statt wie angenommen 50 tons; wenn nun dieses verdiinnte Kanal- wasser den Werth hat, welcher ihm hier beigelegt ist, so kann Kanalwasser im Werthe von 50 tons jahrlich auf den Kopf, pr. Jahr nicht weniger werth sein u . Dieses waren im Allgemeinen diejenigen Werthsbestimmun- gen, welche man in England fur den landwirthschaftlichen Werth der im Kanalwasser enthaltenen Stoffe gefunden hat, und nach welchen man die Rentabilitat der Kanalwassermassen, nament- lich fur ihre Verwendung zu Bewasserungsanlagen festzustellen sucht. Jedoch liegt es auf der Hand, dass dieser Werth im Allgemeinen auch davon abhangig ist, in wie fern eine Verdiin- nung, wie schon erwahnt, des Kanalwassers eingetreten ist. Je grosser der Regenfall, je reichhaltiger die Wasserversorgung, um so mehr wird eine Verdiinnung des Kanalwassers eintreten, da namentlich in letzterem Falle, wenn viel Wasser zur Dis- position steht, auch viel verbraucht wird. Diese Verdiinnung nun, in welcher die diingenden Stoffe oft im Kanalwasser gefun- den werden, ist mehrfach als Einwand gegen seine Verwendung zu landwirthschaftlichen Zwecken angefuhrt worden. Anderseitig war sie ein Grund zur Anordnung eines doppelten Entwasserungs- Systems, bei welchem ein Kanalnetz fur das Regenwasser, ein 13 anderes fur das eigentliche Kanalwasser dienen sollte; ferner- hin ist auch diese Verdiinnung fiir einige der Grund gewesen, speciell das System der Waterclosets zn verlassen und ein an- deres System anzunehmen, welches zur Entfernung der Facal- stoffe kein Wasser erforderlich machte. Wenn man aber im Allgemeinen annimmt, welche grossen Wassermengen taglich, auch abgesehen von dem System der Waterclosets zur Ent- fernung von Unrath und Koth aus den Wohnungen ver- wendet werden, so ist schon dieses Wasser im Stande, jeden Fluss, in dem man es leiten wiirde, total zu verunreinigen. Fur den Zweck der Bewasserung und damit verbundenen flussigen Diingung ist im Kanalwasser schon an sich die Gegenwart des Wassers von gewissem Werth, den wir weiter unten noch speciel- ler besprechen wollen. Es kann fur jeden, dem der Zweck einer Bewasserung ganz klar geworden ist, auch als ausgemacht be- trachtet werden, dass in alien Fallen, in welchen Kanalwasser mit natiirlichem Gefalle benutzt werden kann, die Verdiinnung anstatt von Nachtheil zu sein, geradezu von Vortheil wird. Selbst in dem Falle, wo zu der Verwendung des Kanalwassers noch gewisse kunstliche Hebungskosten hinzutreten, welche in Bezugnahme auf die Bewasserungsanlage dieselbe vertheuern, muss wiederum inBetracht gezogen werden, dass man bis jetzt noch keine vollkommnere Methode der Geruchlosmachung ge- funden hat, als diejenige, das Kanalwasser zur Bewasserung umliegenden Grund und Bodens zu benutzen, da hierbei gleich- zeitig eine vollstandige Desinficirung mit ausgesprochen ist. Wie wir schon oben mit einigen Worten nachwiesen, ist die Reinigung des Kanalwassers durch angewandte chemische Be- handlung noch nicht in dem Masse gelungen, als dass man diese Manipulation empfehlen konnte. Uebrigens ist die Verdiinnung des Kanalwassers vom land- wirthschaftlichen Standpunkte aus kein besonders grosser Nach- theil, indem gegen andere Berieselungswasser schon an und fiir sich das verdiinnte Kanalwasser eine so iiberwiegend grosse Menge von Dungstoffen enthalt, als dass diese Verdiinnung irgend einen vermindernden Einfluss auf die Pflanzenproduction aus- iiben konnte. Diese Verdiinnung hebt auch die Absorptions- fahigheit des Bodens fiir die Dungstoffe keinesweges auf. Um jedoch noch mehr zu zeigen, wie unwichtig die Frage der Ver- diinnung im landwirthschaftlichen Sinne erscheint, erwahnen 14 wir nur, nacli Herrn Latham’s Mittheilungen, dass ein Feld, welches nach dem Verhaltniss von 20 tons verrottetem /Stall- mist pr. Acre gediingt ist, (260 Center pro Morgen) nach Pro- fessor Volker’s Analyse 530 Pfund Ammoniak, 200 Pfund Phosphorsaure und 200 Pfd. Kali enthalt. Bei einein durch- schnittlichen Regenfall von 26 Zoll auf ein so gediingtes Feld haben wir hiernach eine weit verdhnntere Losung der Dung- stoffe, als im Kanalwasser, denn dabei wiirden enthalten: Stalldung und Regenwasser: Londoner Kanalwasser: Ammoniak 3,96 Gran pr. Gallone 7,20 Gran, Phosphorsaure2,40 „ „ „ 1,44 „ Kali . . . 2,60 „ „ „ 1,63 „ 8,96 Gran pr. Gallone 10,27 Gran. Ferner aussert sich Herr Baldwin Latham (siehe oben citirtes VYerk) hber die Fernhaltung des Regenwassers aus den Kanalen folgendermassen: ,,Der Plan, das Regenwasser von dem Gebrauchswasser der Hauser und Waterclosets zu trennen, hat viel Fiirsprecher und scheint sich bei dem ersten Anblick unserer Aufmerksamkeit zu empfehlen. Man wird jedoch bei genaueren Untersuchungen fin- den, dass dieses System fur grosse Stadte ganz ungeeignet ist, 1) weil es ein grosseres Anlagekapital fur den Bau der Kanale erfordert, 2) weil die zu erreichenden Erfolge unzulanglich sind, 3) aber, weil die CJebelstande, die es vermeiden soli, mehr ein- gebildete alswirkliche sind. Ein grosseres Baucapital fur die An- lagen wiirde sich, wie schon oben angedeutet, ergeben, weil ein doppeltes Kanalnetz und doppelte Rohren von jedem Hause er- forderlich sein wiirden. Das System wiirde sich auch insofern als unausreichend zeigen, da der Regen, welcher auf die Ober- flache der Strassen und Dacher fallt, in den Stadten die Rinn- steine ausspiilt und viel Sinkstofie von grossem Dungwerth mit sich fiihrt, welche die Klarheit jedes Wasserlaufes beeintrach- tigen wiirden, in welchen man sie leiten wollte. DieUebel, welche ein doppeltes Bewasserungssystem beseitigen soil, bestehen mehr in der Einbildung, als in der Wirklichkeit, da es sich noch nicht gezeigt hat, dass der Eintritt einer grossen Regenmenge in einen Kanal irgend eine nachtheilige Einwirkung ausiibt. Im Gegen- theil ist es noch nicht eininal nachgewiesen, dass eine bemerk- bare Yerdiinnung des Kanalwassers bewirkt wird. Durch Dr. 15 Hoffmann ist fur das Londoner Kanalwasscr vor Dr. Brady’s Comite nachgewiesen worden, dass der Kanal der Savoysstreet, bei zwei Gelegenheiten an loslichen Stoffen 94 — 101 Gran per Gallone hatte, wahrend derselbe Kanal nach einem heftigen Regen 296 Gran pr. Gallone enthielt und andere Kanale ent- sprechende Mengen gaben. Uebrigens hangt dieMenge und der landwirthschaftliche Werth der durch den Regen in die Kanale gefiihrten StoflPe ebenso von Bedingungen ab, wie die Zusammen- setzungen des Kanalwassers im Allgemeinen, welche wolil fast in jeder Stadt verschieden sind. Die folgenden Tabellen zeigen die Bestandtheile des von Professor Way analysirten Regen- wassers, welches von den Strassen geschopft wurde, bevor es die Kanale erreichte. Bestandtheile des Strassen-Abflusswassers in London. Nro. der Flasche. Name der Strasse. Beschreibung der Fahrbahn. Grosse des Verkehrs. Gran in 1 Gallone losl. | unlosl. Bestandtheile. Sum- ma. 1 Dukesstreet, Manchestersquare Macadam mittel 92,8 105,95 198,75 7 Foleystr. ob. Th. 7) klein 95,30 116,30 211,60 5 Gowerstreet Granitpflaster mittel 126,00 168,3 294,30 12 Nortonstreet „ klein 123,87 3,00 126,87 3 Hampsteadroad iiber den Kanal Kiesstrasse gross 96,00 84,00 180,00 4 Ferdinandstreet 7) mittel 44,00 48,3 92,30 2 Ferdinaudplace 77 klein 50,80 34,30 85,10 10 Oxfordstreet » gross 276,23 567,10 813,33 6 T> Macadam 7 > 193,62 390,30 584,92 11 * 7) V 34,00 5,00 39,00 Von 4 Proben des in vorstehender Tabelle beschriebenen Wassers wurden besondere Analysen gemacht und man erhielt die in unten stehender Tabelle erhaltenen Ergebnisse. Professor Way fahrt fort: Soweit London in Betracht kommt, scheint es ziemlichsicher zu sein, dass die Fliissigkeiten, welche den Ka- nalen wahrend des Regens von den Strassen zufliessen, beziiglich des Gehaltes an Dungstoffen ebenso werthvoll sind, als der ge- wohnliche Kanal-Inlialt. Es scheint daher kein Grund zu sein, wegen der Verdiinnung und Verschlechterung des Kanalwassers, welche man von diesem Wasser furchten konnte, dasselbe von den Kanalen auszuschliessen. Analyse der loslichcn StofFe in Ycrschiedenen Proben you Strassen-Abllusswasser. Gran in 1 Gallone Grosser Verkehr Kleiner Verkehr Granit Macadam Granit Macadam Nro. der Flasche Nro. der Flasehe 10. 6. 12. 7. Gebundenes Wasser u. losl. organ. Substanz. 77,56 29,07 22,72 13,73 Kieselsaure 0,51 2,81 — — Kohlensaure 15,81 12,23 0,00 0,00 Schwefelsaure 36,49 38,23 46,48 34,08 Kalk 6,65 13,38 25,90 16,10 Magnesia 0,00 23,51 Spur 3,50 Eisenoxyd und Thonerde mit etwas phosphors. Kalk 2,58 1,25 — — Chlorcalcium 0,00 10,99 0,00 2,79 Chlornatrium 58,84 44,88 18,44 19,70 Kohlensaures Kali 82,76 18.27 8,75 5,23 „ Natron — — 1,58 — Sumraa 276,23 194,62 123,87 95,13 Man sollte uberhaupt nicht vergessen, dass heftige und stiirzende Regengusse selten vorkommen, und dass im All- gemeinen mehr als die Halfte des Regens innerhalb einer Periode von 20 — 30 Tagen fallt. Betrachtet man aber die andere Halfte als gleichmassig durch das Jahr vertheilt, und macht fur die Verdunstung und Yersickerung die nothigen Abzuge, so ist der Theil der letzteren Halfte, der seinen Weg in die Kanale findet, in der That verschwindend klein cc . Ferner bat Herr Bazalgetto fur London nachgewiesen, dass von j /4 Zoll Regen nicht mehr als y 8 Zoll, dagegen von 7*> Zoll Regen mehr als 1 /± Zoll in die Kanale gelangen. Es mag nachzuweisen sein, dass der Handelswerth des Kanalwassers, wenn es viel Regenwasser mit Strassenschlamm enthalt, ein geringerer ist, als wenn die Dungstoffe aus den Hau- sern allein darin enthalten sind. Jedoch darf man nie vergessen, dass es sich nicht um die Verwerthung allein, sondern auch um die Reinigung des Kanalwassers, vom sanitatlichen Standpunkte aus betrachtet, handelt, und aus letzterer Rucksicht scheint es so- gar geboten, jdlen Regen den Kanalen zuzufiihren. 17 II. Das Kanalwasser als Bewasserungswasser, resp. seine Verwendimg zur fliissigen Mngung, seine Temperatur und seine Reinigung. Fiir jede Bewasserung ist die Giite des Wassers der Haupt- factor. Schon in den altesten Zeiten ist der giinstige Einfluss desselben auf die Vegetation anerkannt. Ganze Landerdistrikte, wie z. B. in Spanien, der Lombardei, im sudlichen Frankreich, Egypten verdanken ihren hohen Culturzustand und den Reich- thum ihrer Gegenden dem wohlthathigen Einfluss des Wassers. Zwar hat dasselbe in nordlichen Gegenden, durch climatische Einwirkungen beeintrachtigt, nicht ganz den hohen Werth, wie man ihm in jenen warmeren Landern beimisst; jedoch auch im nordlichen Europa konnen Be wasserungen mitreichem fruchtbaren Wasser grosse Ernten erzeugen. Die bei weitem wichtigste Wir- kung des Rieselwassers ist unzweifelhaft die dungende. Die Diinger- und Pflanzen-Nahrungsstoffe, welche dasselbe mit sich bringt und enthalt, bestehen vorzugsweise in Ammonia k und organischen stickstoffhaltigen Korpern, in Kohlensaure, Kalk, Natron, Kali etc. Je reicher ein Wasser mit solchen in ihm gleichmassig vertheilten Ingredienzien versehen ist, um so in- tensiver ist seine Einwirkung auf die Pflanzenvegetation und auf die Verbesserung des Bodens, der von ihm beriihrt wird. Wie schon angedeutet, sind alle diese genannten Korper im Wasser gelbst, also in einer Form vorhanden, in der sie von den Pflanzen unmittelbar aufgenommen werden konnen. Schon an sich bietet das Wasser als solches eines der wesent- lichsten Nahrungsmittel der Pflanzen. Viele Pflanzen verdanken 2 18 fast bios dem Wasser und den atmospharischen Stoffen ihre Erhaltung und ziehen nur wenig Nahrung aus den Bestand- theilen des Bodens. Seine Einwirkung auf die Vegetation zeigt das Wasser in mehrfacher Weise. Es tritt 1) als Losungsmittel auf, indem es alle zur Ernahrung der Pflanze dienlichen Boden- bestandtheile verflussigt und sie zum Uebergange in die Pflanzen geschickt macht; 2) vermoge der demselben beigemischten fremd- artigen Stoffe als ernahrendes, so wie in mechaniseher Weise Boden verbesserndes Mittel. Schon blosses Kegenwasser, das reinste von allem in derNatur vorkommenden, enthalt Stoffe bei- gemischt, welche den Pflanzen als Nahrung dienen und deren Wachsthum befordern. Quellwasser, wenn auch krystallhell er- scheinend, enthalt dergleichen Stoffe noch in bei weitem grosse- ren Umfange; die uppige Vegetation der von Quellwssser beriihr- ten Gewachse zeigt diese Einwirkung zur Geniige. Den meisten Pflanzennahrungsstoff aber enthalt das Wasser der Fliisse und Bache; je fruchtbarer und je kultivirter der Boden ist, mit welchem es in Beriihrung gekommen, je mehr Dungstoffe durch den Regen von denFeldern, aus den Ortschaften, von den Strassen etc. abgespult und denselben zugefuhrt werden, je reicher kann ein solches bezeichnet werden. Um so viel mehr wird das Wasser der kanalisirten Stadte, welches die der Pflanzen- Vege- tation so ausserst zutraglichen Bestandtheile und in so reichem Maasse enthalt, von ausserordentlichem Werth sein. Nicht allein Pflanzen aus der Klasse der Graser, sondern auch viele andere Nutzgewachse werden durch die Beriihrung mit diesem reich- haltigen Wasser ein ausserordentliches Wachsthum, ein kaum geahntes Gedeihen zeigen. Es kann wohl als bekannt voraus- gesetzt werden, dass die Pflanzen das Unterscheidungsvermogen besitzen, nur solche Nahrung in sich aufzunehmen, die ihrem speciell individuellen Wachsthum giinstig ist. Dieses gilt nicht nur von den Nahrungsstoffen aus dem Boden, sondern auch von denen aus dem Wasser. Nun eignet sich wohl keine Art und Weise mehr, um den Culturgewachsen eine grossere Zufuhr von ausgezeichneten Nahrungsmitteln zuzufuhren, als diejenige der Bewasserung, resp. fliissigenDiingung, welche wir hier besprechen wollen. Selbst im allergrossten Maasstabe lasst sich diese Ope- ration nach den Erfahrungen der Neuzeit ausfuhren, obgleich Klima und die Giite des Bodens als mit gleichberechtigte Fac- toren anzuerkennen sind. 19 Im Allgemeinen spielt das Klima und die von demselben dem Wasser gegebene Temperatur eine grosse Rolle bei alien Bewasserungen, namentlich in nordlichen Gegenden. Selbst ge- wohnliches Fluss-Rieselwasser schiitzt erfahrungsgemass die von ihm beriihrten Pflanzen gegen nachtheilige Froste, darum rieselt man in der Bewasserungspraxis stets sehr stark, wenn man im Fruhjahre eine kalte Nacht erwartet. Selbst, wenn Naclitfroste Bewasserungsflachen ohne Wasser iiberraschen, so werden deren nachtheilige Folgen aufgehoben, wenn am Morgen darnach sogleich Wasser aufgelassen wird. Audi wird sich die Temperatur der ganzen Fiache erhohen, wenn das warmere Wasser an kalten Tagen fiber dieselbe vertheilt wird. Auf diese Weise wird mit einer hoheren Durchschnittstemperatur aucb eine schnellere Vegetation erzeugt werden miissen. Kanalwasser hat nun hinsicbtlich seiner Temperatur, vermoge seiner Ent- stehung in eingeschlossenen Raumen und seines Durchganges durch geschlossene Kanale und Rohren einen besonders hohen Werth fur Bewasserungen, vorzugsweise im Winter. Der Werth dieser hohen Temperatur zeigt sich namentlich in die- ser Jahreszeit und besonders bei langen und anhaltenden Frosten. Es ist erfahrungsgemass merkwiirdig, dass, wenn der hochste Temperaturgrad nothig wird, das Kanalwasser ihn besitzt, mit anderen Worten: Die Temperatur des Kanalwassers steigt mit der Dauer des Frostes. Dieses ist augenscheinlich dem durch den Frost unterbrochenen Zufluss des Tagewassers und den Gewohnheiten der Bevolkerung zuzuschreiben, da viel weniger kaltes Wasser im tiefsten Winter als zu anderen Zeiten, dagegen mehr warmes Wasser verbraucht wird. So gross ist der Einfluss der Temperatur, dass man bemerken kann, wie auf einem mit Kanalwasser berieselten Felde sogar bei grossem Frost die Vege- tation nicht still steht. Herr Baldwin Latham zu Croydon hat fiber diesen wich- tigen Punkt die eingehendsten Untersuchungen angestellt. Der- selbe ist namentlich durch einen wahrend des Winters 1864 auf den berieselten Feldern von Siid-Norwood angestellten und wah- rend eines Zeitraums vonstrengem Frost durchgefiihrten Versuch in den Stand gesetzt worden, ein Feld mit italienischem Ray- grase zu bestellen, welches erst im Monat November besaet wurde, und als er das Gras zwischen Weihnachten desselben 2 * 20 Jahres mass, fand er die Pflanze 6" hoch und noch in iippigem Wachsthum. Wahrend des folgenden Jahres ist dann das Gras 6mal geschnitten worden, das letzte Mai in der Weihnachtswoche 1865. Wahrend dieses Versuchs hatte das Kanalwasser in alien Fallen seiner Anwendung eine Temperatur von einigen Graden iiber der der Atmosphare — aber nicht so hoch, als das in einem anderen Falle gebrauchte, namlich auf der eben- falls unter Herrn Latham’s Leitung mit Kanalwasser berie- selten Farm von Beddington. Man wird finden, dass die Tem- peratur des Kanalwassers einer Stadt, die mit Wasser aus Quellen oder artesischen Brunnen versorgt wird, im Winter stets eilie hohere und zu alien Zeiten eine gleichmassigere Tempera- tur hat, als dasjenige, was aus einem Fluss oder grossen Bach bezogen wird. Anderseitig kann, wenn in einer Stadt nur eine kleine Menge Kanalwasser vorhanden ist, dasselbe nicht auf einer so hohen Temperatur gehalten werden, als in einer Stadt, in welcher die Masse des Kanalwassers grosser ist, da in der kalten Jahreszeit die Beriihrung mit der Luft auf eine kleine Quantitat viel mehr, als auf eine grosse Masse wirkt. Herr W. Hope erhielt im Jahre 1869 auf der Lodge- Farm z. B. am 26. Januar den ersten Schnitt Raygras, im vorhergehenden Jahre (1868) dagegen wurde der erste Schnitt auf demselben Stuck erst am 12. Marz genommen. Man sollte iibrigens, ausserte sich derselbe in Bezugnahme hierauf, das Kanalwasser stets anwenden, wenn anscheinend gar kein Wachs- thum vorhanden ist, denn der Grund und Boden kann, wenn er nicht etwa vorher mit Kanalwasser uberinassig gefiillt wurde, wahrend des Winters alles das, was die Pflanzen nicht gebrau- chen, aufbewahren. Dem Umstande der intensiven Winter- bewasserung schreibt Herr Hope die vielmaligen und reichen Ernten des Raygrases zu. Die folgende Tabelle giebt nun die Temperatur des Croydoner Kanalwassers, welches nach Bedding- ton und Sud-Norwood fliesst. Aus dieser Tabelle ersieht man, dass zur Frostzeit das Kanalwasser eine hohe Temperatur hat, welche es wahrend seines Fliessens iiber das Land nach und nach verliert. Ferner hat man gefunden, dass wenn die Tempe- ratur der Luft hoher ist, als die des Kanalwassers, und beson- ders bei sonnigem Wetter, das Kanalwasser, wahrend es fiber das Land fliesst, an Temperatur zunimmt. In diesem Falle be- virkt die Berieselung mit Kanalwasser eine Ermassigung der 21 Temperatur des Bodens. DerWerth der Temperatur ist so gross, dass er bei Bewasserungsanlagen nicht gleichgiltig bleiben kann. Noch von grosserer Wichtigkeit ist die Kenntniss, dass bei Mangel an Warme die Wirkungen derselben grostentheils dadurch hervorgebracht werden konnen, dass man der Stromung des Kanalwassers erne grossere Geschwindigkeit giebt. Erfah- rungsgemass ist hier Bewegung gleichbedeutend mit Warme. Hieraus ergiebt sich, dass man bei Anlage von Bewasserungen dieser Art den tiefer gelegenen Flachen eine grossere Neigung geben muss, als denjenigen, welche das Rieselwasser zuerst bekommen. Bcobaehtungen auf den Berieselungsfeldern. Datura Zu Croydon. Zu Siid-Norwood. Bemerkungen. Lufttemperatur fur Zeit und Ort des Versuches. Temperatur des der Stadt zugefiihrteu Wassers. Temperatur des Kanalwassers Luft- temperatur Regenhohe in Zollen. Lufttemperatur. Temperatur des Kanalwassers in den Filtei-n. wahrend es fiber das Land fliesst. nachdem es das Land verlassen hat. Maximum. Minimum. in den Filtern. wahrend es iiber das Laud fliesst. nachdem es das Land verlassen hat. j 1865. 13. + 0,9 +8,4 +10,2 — — -0,4 -3,6 — -1,3 +2,7 +1,8 +1,8 14. — — — — — +0,4 -9,8 — -0,4 +4,0 +3,1 +0,4 t) 15. — — — — — +1,3 -5,8 — -1,8 +3,6 +3,6 +0,4 16. +0,4 +8,4 + 9,6 +7,6 +0,9 +3,6 -1,8 — +0,9 +3,6 +3,1 +0,9 17. *) +8,4 + 7,6 — — +3,6 — 1,3 0,47 +0,9 +3,1 +2,7 +2,7 t) 18. +4,0 — + +6 — — +6,2 +1,3 0,10 +4,0 +3,6 +3,1 +3,1 !/ 20. — — — — — +2,7 —5,3 — +0,4 +3,6 +1,3 +1,3 frj 21. 0 — + 7,6 +7,6 +1,3 +1,8 -1,3 0,08 +1,8 +3,1 +2,7 +0,4 rH 22. +-3,1 +8,9 + 8,4 — — +6,7 +1,3 — +4,9 +3,6 +3,6 +4,0 23. 4-8,2 +9,3 + 8,4 — — +8,9 +4,4 - +7d +4,0 +4,0 +5,8 24. +4,4 +9,3 + 7,3 — — +6,7 -0,9 0,58 +4,9 +4,4 — — 25. +5,6 +9,1 + 8,2 — — +8,0 +1,3 — +5,8 +4,0 — +5,3 27. +6,2 +9,1 + 8,2 — — +9,3 +3,6 — +6,2 +4,4 — +6,2 28. +8,4 +9,1 + 8,0 — - +8,4 +2,7 — +7,1 +4,9 — +7,J *) Scbneefall. f) Es liegt Schnee. Zu Croydon. Zu Siid-Norwood. T3 p p •S Temperatur des Luft Temperatur des •s s l~~2 Kanalwassers temperatur a © h Kanalwassers Datum g | S £ c3 (D SJ Td in z $ © T3 P | Jh -m 1 3 £ g s C/2 'P U S % ; p .2 a* a rP 'P c n S JS S 3 a a p a © tSJ fl © JO fl 03 © ft a © H © £ K5 X! q> g 1 o> •2 03 T) _ U) © a 1 a -m 3 n o a; ft fcC | © •fl S3 fl * © U % > ijj ;s bD fl _. XJ fl § 4* > 43 =s J a 3 © H 5 £ 1-3 3 & § * « s tJ & • s £ J J3 t © TD 2 a 5 e* 1. +6,7 +9,1 +8,0 — — +80 +3,6 — +6,7 +4,4 — +5,8 2. +7,1 +9,1 +8,0 — — +7,1 —0,9 0,19 +6,7 +4,9 — +6,7 3. +5,6 +9,1 +9,1 — — +8,0 —5,3 — +5,8 +4,4 — +5,8 4. +5,6 +9,3 1+8, < — — +7,1 —0,9 0,16 +6,2 +4,7 — +5,8 6. +4,0 +9,3 +8,2 — — +4,0 -0,4 0,24 +3,6 +4,4 +4,0 +3,6 7 . +4,0 +8,9 +8,2 — — +5,3 3,6 — +3,6 +4,0 +3,6 +3,6 1 18 . +4,0 +8,9 +8,2 — — +5,3 0,9 — +3,1 +4,0 +3,6 +3,6 9. +3,3 +8,9 +8,4 — — +5,8 -1,3 0,06 4,0 -0,4 +4,0 + 3,6 +3,6 10. +5,8 +9,1 +8,4 — — +4,9 +0,4 0,12 4,9 -2,2 +4,0 +4,0 +4,9 11. +4,9 +8,9 +8,4 — ~ +5,8 +0,4 0,03 4, 9-1, 3 +4,4 +3,0 +4,0 13. +3.1 +9,1 +8,7 — — +6,7 0 — +4,0 +4,4 +4,4 +4,9 £ i 14. +3,6 +8,9 +8,4 — — +4,9 +0,4 — +3,1 +4,4 +4,4 +4,0 «« \ ^ ' I 15 ' +2,7 +9,1 +8,4 — — +3,1 0 — -12,7 +4,4 +3 6 +2,9 16. +4,2 +9,3 +8,7 — — +5,8 -2,2 — +4,9 +4,4 +4,9 +6,2 17. +4,9 +9,1 +8,7 — — +6,2 -3,1 — — — — 18. +5,3 +9,1 +8,4 — — +4,4 +0,4 — 4-7,6 +4,4 — — 20. +0,7 +9,1 +8,7 — — +1,3 —3,6 — 4,4-0 +4,2 +3,6 +3+ 21. +3,1 +9,1 t8,7 — — +4,0 — 1,8 — 9,8 -0,9 +4,2 + 4,0 +4,9 23. +4,9 +9,3 +8,4 — — +5,3 — 4,4 — — — — — 24. +5,3 +9,3 +8,9 — — +5,8 —4,9 — — — -- — 25. +5,3 +9,8 +9,3 — — +5,8 -0,4 — — — — — 27. +4,9 +9,6 +-8,9 -r — +4,4 -4,0 — — — — — 1 28. +3,3 + 10,2 +9,3 — — +7,6 -3,1 — — — — — 130. +6,7 +10,2 +9,3 — — +7,1 -2,7 — — — — — 31. +12,0 + 9,8 +9,3 — — +11,6 +5,3 — — — — 1. +10,7 + 9,3 +-8,9 — — +10,7 -1,3 — — — — — 3. +10,7 + 9,6 +9,3 — — +12,0 +1,8 — — — — — 1 4. +12,4 + 9,6 + 9,3 — — +13,3 +2,7 — — — — — *C , ) 5. + 11,6 + 9,6 +9,1 — — +12,0 +6,7 0,09 — — — — 1 6 - +12,4 + 9,6 +9,3 — — + 14,7 45,3 — — — — — J +13,3 + 9,6 +9,1 — - +15,1 +3,6 — — — — — | f 8. +15,6 + 9,6 +9,4 — — +19,1 +2,2 — — — — — 10 +15,6 + 9,6 +9,8 — — +19,6 +2,2 — — — — — 11. +15,1 + 9,7 +9,3 — — +18,2 +2,7 — — — — — 1866. Jan. 20 +8,9 +8,9 — +7,6 +7,8 +8,4 +4,0 — — — — — 23 Eine unschatzbare Erfahrung bei derBenutzung desKanal- wassers zur Bewasserung ist wohl die, dass dasselbe fast sofort, wenn es mit dem Boden in Beriihrung kommt, einen unzweifel- haften Reinigungsprozess durchmacht und nach dem Grade der wiederholten Benutzung zuletzt naturlich an Qualitat und Quan- titat verringert und verkleinert, klar und rein abfliesst. Die Rei- nigung des Kanalwassers und folglich die Aufnahme seiner Dungstoffe durch Pflanzen und den Boden findet stets und immer zu alien Jahreszeiten vollstandig statt. Es kann daher dieser Vorgang der Reinigung nicht allein der mecbanichen Auf- nahme des Kanalwassers durch den Boden zugeschrieben wer- den, denn ware dies der Fall, so miisste dieser Process der Reinigung aufhoren, sobald die Poren des Bodens mit dem Kanal- wasser oder selbst mitWasser, wie bei Regen wetter, gefullt sind. Doch zeigt die Erfahrung, dass bei Regenwetter, selbst wenn die Menge des Kanalwassers grosser, und das Land vollstandig von demselben angefullt ist, die Reinigung ebenso gut, wie zu jeder andern trockenen Zeit stattfindet. Die Reinigung des Kanal- wassers ist jener werthvollen Eigenschaft zuzuschreiben, welche jede Bodenart in grosserem oder geringerem Umfange besitzt, namlich der Verwandtschaft der Bestandtheile des Bodens zu den dungenden Stoffen des Kanalwassers, durch welche die- selben zuriickgehalten werden, bis die Pflanze sie braucht. Schwere Bodenarten, wie Lehm- und Thonboden, haben eine viel grossere Verwandtschaft zu diesen dungenden Stoffen, als reiner Sandboden, und man kann es diesen Eigenschaften mit zuschreiben, dass Lehm- und Thonboden sich mehr als jeder andere Boden durch Fruchtbarkeit auszeichnet, wenn er mit Kanalwasser behandelt wird. Bei der Verwendung von Kanal- wasser erfiillt mithin der Boden eine dreifache Aufgabe: Die Dungstoffe aus dem Wasser auszuziehen, einen Theil davon an die Pflanzen abzugeben, und den Rest fur deren kiinftigen Bedarf aufzubewahren. Hiermit erklart sich auch der Prozess der absoluten Reinigung, indem durch diese genannten Eigen- schaften, den Dungstoff zu fixiren, das Wasser geklart wird. Thatsache ist es, dass schwere Boden, welche mechanisch weniger aufsaugend sind als leichte oder sandige Boden, das Kanalwasser ebenso wirksam reinigen als letztere. Das ord- nungsgemass abgerieselte Kanalwasser zeigte in alien Fallen 24 der vom Verfasser in England besichtigten Anlagen eine durch- aus klare Farbung ohne jeglichen Gernch. Dasselbe hatte einen milden, faden Geschmack und war vom Flusswasser grosser Strome kaum zn unterscheiden. Bei Untersuchungen in Croydon beziiglich hierauf, fand man in runden Zahlen folgendes Er- gebniss: An fremden Bestandtheilen enthielt das Wasser der Londoner Wasserwerke 21 Gran per Gallone, das Kanalwasser ip Croydon vor seiner Verwendung 39 Gran nnd nach seiner Verwendung 23 Gran. Hierbei ist noch zu bemerken, dass beim Berieseln eine gewisse Quantitat Wasser verdunstet, mithin die in ihm Bestandtheile concentrirter erscheinen. In einigen Fallen, wie z. B. in Croydon wurden mit dem abgerie- selten Kanalwasser Miihlenwerke getrieben. Dasselbe floss in einen das Kirchspiel durchfliessenden Bach, denWandle, dessen Wasser eine durchaus klare und schone Farbung hatte, ob- gleich in den Ableitungsgraben nach diesem Bache sich eine sehr iippige Wasserpflanzen-Vegetation entwickelt hatte, ein Beweis von der noch grossen Fruchtbarkeit des bereits klar laufenden Rieselwassers. Verfasser hat hiernach die feste Ueber- zeugung, dass sogar noch dieses Wasser, namentlich zur Be- wasserung tief liegender natiirlicher Wiesen mit ausserordent- lichem Erfolge zu verwenden ware. Ebenso war dieses Wasser, wie schon erwahnt, vollstandig geruchlos, so dass auch hierin wiederum ein Moment gefunden wird, welcher in Bezugnahme auf den Gesundheitszustand der umliegenden Gegenden von grossen Folgen sein durfte. Man kann sich im Allgemeinen nicht an den Gedanken gewohnen, dass der Reinigungsprocess des Kanalwassers durch die Bewasserung ein so ausserordent- licher ist; man glaubt, es ist sonderbar, dass selbst Leute von Fach noch immer diesen Glauben hegen, dass die Umgebung derartiger Bewasserungsanlagen mit der Zeit einen Herd von Krankheiten erzeugen, trotzdem die jahrlich gemachten Erfah- rungen, nach denen wir uns nun einmal richten miissen, gerade das Gegentheil bevveisen. Selbst bei den Anlagen in England, wie z. B. auf der Camp-Farm bei Aldershott, wo das Kanal- wasser nur einen verhaltnissmassig kleinen Weg durch die Kanale zu passiren hat und viele Stofle, die sich in denselben losen sollen, noch nicht einmal den vollstandigen Process dieser Losung durchgemacht haben, ist beim Austritt desselben aus dem Hauptkanal in die sogenannte Kothschleuse verhaltniss- 25 massig wenig Geruch zu verspiiren. Ein Theil des Croydoner Kanalwassers wird sogar, obgleich diese Anordnung geandert werden soli, durch einen offenen Kanal in die Bewasserungsfelder gefuhrt. Die Stoffe waren in diesem Kanal, der fur einen Zulei- tungskanal ein ziemlich starkes Gefalle hatte, vollstandig gelost. Das Kanalwasser hatte eine grauliche Farbung; selbst unmittel- bar an diesem Zuleitungskanal war von einem auffallenden Ge- ruch nicht die Rede. Bei bewegter Luft konnte man auf weitere Entfernung an der Windseite nichts verspiiren. Der sich un- mittelbar an diesen Zuleitungskanal, da, wo das Kanalwasser in die verschiedenen Vertheiler der Bewasserungsflache trat, in kleinen Quantitaten abgesetzte Riickstand, namentlich auf den Sohlen der Zuleiter und unmittelbar um die Rieselrinnen, war im trockenen Zustande fast geruch- und geschmacklos. Derselbe zeigte in diesem Zustande eine schwarze Farbung; bestimmt erkennbare Bestandtheile irgend eines festen Stoffes der im Kanal- wasser mannichfach enthaltenen Ingredienzien waren nicht zu er- kennen, vielmehr machte diese Masse den Eindruck einer bnichi- gen, miirben Substanz. Aehnlich wie hier verhielten sich diese Erscheinungen mehr oder minder bei alien andern Anlagen wie z. B. auf der Lodge-Farm, Norwood, Aldershott, Warwik, Rugby, Birmingham etc., die der Verfasser besichtigt hat. Ueber die hierauf Bezug habenden Gesundheitsverhaltnisse im Allgemeinen giebt namentlich Herr Baldwin Latham als Mitglied der Commission von Croydon und Umgegend einen sehr eingehenden Bericht. Er stellt darin, beziiglich der Sani- tats-Verhaltnisse der Stadt Croydon fest, dass nach erfolgter Kanalisation dieser Stadt der Gesundheitszustand ein ausserst giinstiger geworden ist. Die mittlere Sterblichkeit der Stadt Croydon war in 7 Jahren vor Einrichtung der sanitaren Werke 23,66 pr. 1000 und in 13 Jahren nach ihrer Vollendung war die Sterblichkeit 18,64 pr. 1000 gewesen, mithin eine Verminderung von 5,02 pr. 1000 pro Anno. Die Sterblichkeit im Jahre 1848 betrug 28,16 pr. 1000 und im Jahre 1867, 16,6 pr. 1000. Im Jahre 1848 bestand die Einwohnerzahi in 19380 Seelen, im Jahre 1867 dagegen in 50750; es hatte sich also die Einwohner- zahi um \§ 0 % vermehrt und die Sterblichkeit um 40 vermin- dert. Zwischen diesen extremen Perioden, nachdem die Werke vollendet undin geregeltenBetrieb gekommen sind, war die mittlere Einwohnerzahi in 13 Jahren, anfangendmit dem Jahre 1855, 37375. 26 Wenn man den mittlern Lebensgewinn von 5,02 pr. 1000 mit der mittleren Einwohnerzahl in Tausende und mit der An- zahl Jahre zusammen multiplicirt, erlialt man 37375 X 5,02 X 13 = 2439 Leben gespart. Von dieser Zahl wiirden 6 Ao oder 1464 Erwachsene oder Personen fiber 20 Jahre sein und wahr- scheinlich y 10 Altersschwache. Nach diesem Abzug blieben immer noch 1317 Leben in der vollen Lebenskraft gewonnen. Bringt man nun die Anlagekosten in Verbindung mit den ge- wonnenen Leben, so erhalt man den Geldwerth dieser An- lagen; zuvorderst: Ankauf von freiem Lande (freehold Land) 50,000 Lstr. Bau der Werke 70,000 „ Kanale, Kanalisirung, Berieselungsanlagen, offentliche Badeanstalten, Schlachthauser und andere iu Bezugnahme auf offentliche Gesundheitspflege ausgefuhrte Verbesse- rungen 75,000 „ Summa 195,000 Lstr. Dagegen : 2439 Begrabnisse durchschnittlich gespart a Lstr. 5 Lstr. 12,159 — Shill. 2439 X 25 = 60,795 Krankheitsfalle a 1 Lstr. verhindert „ 60,975 — „ 1317 Arbeitswerthe a Lstr. 19. 20 Shill, in 6% Jahren „ 166,328 5 „ Lstr. 239,998 5 Shill Diese Zahlen zeigen, dass in Croydon in der kurzen Zeit von 13 Jahren als Folgen der Anlage dieser Werke eine Summe resultirt, die um 25# die Totalkosten derselben fibersteigt. Obgleich es nun hier versucht worden, Geldwerth gegen Menschenleben zu halten, muss doch anerkannt werden, dass ein Menschenleben unschatzbar ist und dass das Faktum: 2439 Menschenleben gewonnen zu haben, ein lebendiger Beweis der unendlichen Vortheile dieser sanitaren Werke ist. Diese Be- rechnung erreicht noch nicht die Hohe des ganzen Gewinns. Die Mittelwerthe geben nicht den vollen Gewinn, wenn die Bevol- kerung sich stark vermehrt und die Sterblichkeit ebenso stark abnimmt; es sollte auch erwogen werden, wie gross die wahr- scheinliche Zunahme der Sterblichkeit gewesen ware, wenn die 27 urspriinglichen Zustande bis zur Gegenwart geblieben waren, denn die Sterblichkeitstabellen vor Anlage der sanitaren Werke und sanitaren Yorsichtsmassregeln zeigen eine allmalige Zunahme. Trotz aller Vortheile aber, die durch Anlage dieser sanitaren Werke erreicht worden sind, darf man doch nicht ubersehen, dass die ersten Bestrebungen unserer sanitaren Reformatoren durch die Verunreinigung der Fliisse und Wasserlaufe des Landes vereitelt worden sind. Dieser immer mehr und mehr um sich greifende und wachsende Uebelstand des Systems ist durch die Benutzung des Kanalwassers zur Bewasserung geho- ben worden und jene faulenden Stoffe, die unsere Fliisse und Wasserleitnngen verpesten, konnen mittelst eines naturliclien Processes aus dem Strom der Vernichtung in eine Richtung gelenkt werden, welche den Wohlstand der Nation nur auf das grossartigste vermehren kann. Die Resultate der Kanalwasser- Berieselungen sind erstaunlich. Kriiftige und gesunde Pflanzen erzeugen sich, grosse und vieltragende Aehren entstehen, wah- rend das schlammige Kanalwasser zu verhalttiissmassig reinem Wasser verwandelt wird. Folgende Analyse giebt das Resultat. Dieselbe ist von Dr. Oddling; eine Zusammenstellung von Proben, die jede viertel Stunde wahrend 24 Stunden am 23. und 24. November 1867 ge- nommen wurden. Das Kanalwasser iiberrieselte zur Zeit 30 Acres Land, auf welche dasselbe continuirlich in nahe zu zwei Tagen geflossen war. Die Menge, welche in 24 Stunden iiber dieses Areal floss, war 3274300 Gallonen und das abfliessende Wasser nach der Reinigung betrug 2245200 Gallonen, so dass 31 y 2 Procent des ganzen Volumens verloren ging. Da das Land vor diesem Experimente vollstandig gesattigt war, so kann man wohl annehmen, dass 15,75 Procent oder die Halfte des ganzen Verlustes der Verdunstung durch die Pflan- zen und von der Wasseroberflache zukommt. Dieses wiirde zur Verdichtung solcher Unreinigkeiten beitragen, die im abfliessen- der Wasser bleiben, im Verhaltniss zur Abnahme des Volumens. In der Analyse zeigt die dritte Spalte das Resultat, welches man durch Verdichtung des Wasserquantums erhalt: (Siehe die umstehende Tabelle.) 28 Wasser in Croydon unmittelbar im Brunnen. Nov. 1867. Croydon. Kanalwasser nach der Reinigung Nov. 1867 durch Berie- selung. Wasser von Croydon auf denselben Zustand der Verdichtung gebracht wie das Kanal- wasser. Gran pr. Gran pr Gran pr. Gallone. Gallone. Gallone. Fester Ruckstandim Ganzen 21,777 26,180 25,233 Mineralisehe Stoffe . . 21,409 25,025 24,807 Fliichtige Stoffe . . . 0,368 1,155 0,426 Kochsalz 1,454 3,400 1,684 Ammoniak 0,032 0,042 0,037 Stickstoff in Form von Am- moniak 0,026 0,032 0,030 Stickstoff in Form v. Oxyd 0,243 0,419 0,281 Stickstoff als organ. Stoff 0,002 0,144 0,0023 Ein Vergleich zwischen der zweiten und dritten Spalte zeigt, wie nahe sich das Kanalwasser dem reinen Trinkwasser, wie dasselbe nach der Stadt kommt, genahert hat. Beachtungs- werth ist, dass das ganze Quantum organischer und fliichtiger Stoffe in dem abfliessenden Wasser, nachdem dasselbe uber das Land vertheilt worden, geringer ist, als die mittlere Quantitat in dem Trinkwasser von irgend einer der bestehenden Wasser- Compagnien Londons. Es kann deshalb init Sicherheit behaup- tet werden, dass Kanalwasser nach solcher Reinigung geeignet ist, in jedem Fluss oder Wasserlauf ohne Nachtheile eingeleitet zu werden. Wir bemerken, dass die Analyse des Kanalwassers wah- rend einer fur das System sehr ungiinstigen Periode des Jahres gemacht wurde. Aus alledem geht hervor, dass die Anwendung des Kanalwassers zur Bewasserung des Landes, verbunden mit seiner Reinigung, sich ausserst giinstig erwiesen hat. Zweifel sind nur entstanden hinsichtlich der Wirkung bei grosserer Vertheilung des Kanalwassers iiber ausgedehnte Areale in der unmittelbaren Nahe grosser Stadte. Jedoch stellt sich das Resultat der Verwendung des Kanalwassers fur den Land- bau in sanitarer Hinsicht ebenso giinstig. Nach Untersuchun- gen in Norwood, welches sein Berieselungs- Areal unmittelbar * 29 an einem bewohnten Distrikt belegen hat, hat wahrend der drei Jahre, dass das Kanalwasser auf dieses Areal ge- leitet worden ist, eine Sterblichkeit und zwar 1865 von 18,17 1866 von 15,13, 1867 von 14,21 pr. 1000 stattgefunden, wah- rend dasselbe Areal aber inclusive entfernterer Localitaten wahrend derselben Periode die respectiven Sterblichkeiten von 21,26, 20,04 und 16,60 pr. lOOOgehabt hat. Es scheint also, dass das schnelle Wachsthum der Pflanzen, die Assimilation von stickstoff- und kohlenstoffhaltigen Stoffen sammt dem Freiwer- den grosser Volumen Sauerstoff mittelst der Pflanzen als Gegen- mittel angesehen werden konnen gegen die Krafte, welche sonst verderblich in ihren Wirkungen sein wiirden. (Siehe Inaugural Address of Baldwins Latham C. E. delivered before the society , January 20, 1868, upon subjects of importance to the profession more especially on the results of sanitary enqineerinq . London, E. & F. Spon. 1868.) HI. Die Technik der Bewasserungsanlagen. Die hauptsachlichsten Methoden, welche man in England fur die zweckgemasse Vertheilung des Kanalwassers iiber die Felder zur Anwendung gebracht hat, sind nun folgende: 1. Durch tiefliegende eiserne Rohren und spat ere Yertheilung durch Schlauche und Spritzen (Under ground pipes and hose and jet distribution). Dieses System kann wohl als das alteste bezeichnet werden, dessen sich schon friiher einige englische Landwirthe bedienten, um Diinger in fliissiger Form iiber die Felder zu vertheilen. Schon Anfangs der 50er Jahre gingen der in landwirthschaftlicher Beziehung hoch renommirte Herr J. J. Me chi auf seiner Farm Teptree- Hall, so wie Herr Kennedy auf seiner Farm Myer-Mill bei Maybole in Ayrshire damit vor, den gesammten Hofdiinger in fliissiger Form fiir ihr ganzes Areal und fiir sammtliche Friichte, die sie darauf bauten, zu benutzen, und auf diese Weise das bisher befolgte Dungwesen tollig umzugestalten. Es wurde dazu namentlich der von den verschiedenen Yiehsorten auf den Gii- tern erhaltene Harn benutzt. Dazu kamen noch andere Diin- gungsmittel, wie Gaswasser und Guano, letzterer natiirlicher- 30 weise ebenfalls in Wasser aufgelost, die diesen Harn- und Jauchemassen beigemengt wurden. Zu dieser Mischung wurde eine 8 — lOfache Menge Wasser zugesetzt, und diese verdunnte Masse durcli Rohrenleitungen in die Felder gefuhrt, dort mittelst Hydranten wieder an die Oberflache gebracht und durch Schlauche auf den Feldern entsprechend vertheilt. Da sich nach diesen in der ersten Zeit ihrer Aufnahme viel besproclienen Versuchen eine verhaltnissmassig grossere Anzahl englischer Landwirthe fand, welche dieses System ebenfalls adoptirten, so war es naturlich, dass sich bei den ersten Versuchen, das Kanalwasser der Stadte zur fliissigen Diingung, resp. zur Bewasserung der Felder auszunutzen, dasselbe auch hierbei zur Anwendung kam. Bei der grosseren Verbreitung jedoch, die nach und nach die Kanalwasser -Bewasserungen fanden, bei den grosse- ren Flachen, die naturgemass durch den ununterbrochenen Zufluss des Kanalwassers veranlasst, ausgebaut werden muss- ten, stellten sich sehr bald die Mangel dieses Systems heraus. Sie bestehen namentlich darin, dass zuvorderst die Ausfiihrung desselben bedeutende Geldmittel erfordert, welche im grossen Maasstabe eine Durchfiihrung beinahe unmoglich macht, zwei- tens jedoch, dass sich auch in technisch -landwirthschaftlicher Beziehung die Mangelhaftigkeit dieses Systems herausstellte. Ein Hauptmangel ist namentlich der, bei der Vertheilung durch Rohrenleitungen und Schlauche auch stets den genugen- den Druck in den Leitungcn haben zu miissen, der im Stande ist, das Wasser in einer betriichtlichen Hohe liber die Ober- flache des Feldes zu vertheilen, denn im alleraussersten Falle sind bei diesem Rohrensystem, abgesehen von der zur Ueber- windung des Reibungswiderstandes in den Leitungen nothigen Druckhohe meist noch 10 Fuss Druckhohe nothig, um das Land zu besprengen. Beim Pumpen ist dieser Druckhohe wegen eine erhohte Betriebskraft erforderlich, und da man im Allgemeinen annimmt, dass die Ausgabe fiir Brennmaterial der Hohe pro- portional gesetzt werden kann, und man bei der Vertheilung durch Rohrenleitungen das Kanalwasser immer holier als das Land heben muss, so kann dieses System nicht so billig sein, ats ein solches, in welchem man das Kanalwasser nur bis zur Terrainhohe zu heben braucht. Der grosste Vorwurf, welcher jedoch dieses System trifft, ist derjenige, dass es nicht in alien Jahreszeiten anwendbar ist. 31 Wie schon erwahnt, befinden sich in den Feldern in passender Entfernung von einander Hydranten, an welche man Schlauche befestigt, die das Kanalwasser zu vertheilen haben. Diese Schlauche muss man natiirlich bei der Vertheilung uber die Oberflache desLandes hinziehen, daher ist selbstverstandlich, dass dieses System nicht gut anwendbar ist, wenn die Frucht eine gewisseHohe des Wachsthums erreicht hat, indem sie durch die dariiber weggezogenen Schlauche beschadigt wird. Ferner zeigen sich im Winter bei dieser Vertheilung noch die erheblichsten Schwierigkeiten. Man geht nun allmahlig augenblicklich in England uberall von diesem System ab; ja sogar die englischen Landwirthe, die dieses System eingerichtet, und die doch nur mit kleinen Massen Dungwasser zu thun haben, verlassen das- selbe ebenfalls nach und nach. Die zweite Methode zur Verbreitung des Kanalwassers ist nun die durch offene Graben verschiedener Grosse und Lage ( Distribution by carriers). Es nahert sich die- ses System vollstandig dem unseres deutschen Wiesenbaues, nur mit demUnterschiede, dass im Allgemeinen grossere Berieselungs- flachen innerhalb des Systems construirt werden. Es kommen drei Arten oder Abweichungen dieses Systems zur Anwendung. Das erste wird Auffange-System ( catchwork-system , catch- water-system) genannt und reprasentirt nach unseren deutschen Begriffen den Hangbau. Dasselbe wird im ausgedehntesten Maasstabe bei ziemlich stark koupirten Terrains zur Anwendung gebracht, besteht in einer Reihenfolge von iibereinanderliegenden Graben, welche meistentheils in den Horizontalkurven des Ter- rains construirt werden. Das Kanalwasser fliesst aus den hochst- gelegenen Vertheilungsgraben, wohin dasselbe meistentheils durch unterirdische eiserne Rohrenleitungen von grosserem Durch- messer entweder durch naturliehen Druck oder durch Hebung pr. Dampfkraft geschafft wird (siehe Tafel I., den Bewasserungs- plan von Warwick), uber die Rander derselben auf das Land in die unterhalb liegenden niedrigeren Rinnen ab, von diesen wieder in die folgenden, bis es die niedrigsten erreicht hat, und somit auf dem tiefsten Punkt des Feldes angelangt, in klarem Zustande in einen Abzugsgraben fallt. (Siehe Tafel II. Fig. 2.) Wenn also bei diesem Bau das Kanalwasser in a eintritt, so fliesst es nach b und c und wird durch e abgefuhrt. (Siehe auch Taf. I., den Bewasserungsplan von Warwick, Abth. Nr. 7, 10, 1 1.) 32 Die Breite der durch die Horizontallinien gebildeten Hange ist verschieden, im Durchsclmitt 30 — 50 Fuss. Einen bestimmten regelmassigen Hangbau hat Verfasser bei keiner Anlage gesehen; im Gegentheil schmiegt man sich so viel wie moglich dem Ter- rain an und ebnet auf sehr sorgfaltige Weise die naturlichen unregelmassigen Hange. Aucb ist das Gefalle, was man dem- selben giebt, sehr verschieden. Man scheint auch hierin nicht sehr heikel zu sein, indem ich bei den verschiedenen Bauten der- gleichen Hange von 1:12 — 1 : 20 sogar bis zu 1 : 4 — 5 gefunden habe. Die Kosten der Herstellung sind sehr verschieden. Sie schwanken je nach dem Umfange der Planirungsarbeiten von 2—25 Lstr. pr. Acre. Das zweite namentlich in Anwendung fur Felder mit gerin- gerer Neigung wird Beet- System ( bed-system ) nach unseren deutschen Begriffen Beet-Bau genannt. Eine andere Benennung dieses Systems in England ist auch Rucken- und*Furchen- system (ridge and furrow). Bei diesem System wird das Land in einer Reihe von Rucken und Furchen bearheitet, indem man die Erde der Seitenhange gegen den Scheitel des Ruckens bringt. Das Kanalwasser fliesst aus einer meistentheils horizon- tal oder mit sehr geringem Gefalle auf der Hohe des Ruckens angelegten Rieselrinne von beiden Seiten herab. Die Breite dieses Riickenbaues ist im Allgemeinen von jeder Seite 40 bis 50 Fuss, da man darauf Riicksicht nehmen muss, dass nach Ab- erntung einer oder der andern Frucht der Acker zur Vorberei- tung einer weiteren Kultur wieder dein Pfluge anheim fallt. Auf mehreren Anlagen, namentlich auf der Lodge-Farm ist dieses System in grosster Ausdehnung zur Anwendung gebracht. (Taf. II., Fig. 4 zeigt diese Anordnung.) Aus der Aufnahmerinne a fliesst das Kanalwasser in die Ableitungsrinne b u. s. w. Auf undurchlassigem Boden hat man unterhalb der Ableitungsfurchen b noch in einer Tiefe von 3—4 Fuss Drainstrange gezogen, um ein Stagniren des Wassers an diesen Punkten, namentlich bei geringen Gefallverhaltnissen, zu verhindern. Das Gefalle, welches man diesem Rucken gegeben hat, ist ungemein verschieden. Auch hier richtet man sich viel nach der Terrainlage. Verfasser hat diese Gefalle von 1 : 20 (Lodge-Farm) bis zu 1 : 120 angetroffen. Herr Hope auf der Lodge-Farm hielt diese Art und Weise der Vertheilung des Kanalwassers fur die vortheilhafteste und einfachste, namentlich die Anordnung moglichst egal breiter 33 Riicken und mit genau ausgegliehenen einheitlichen Gefallen. Er sucht die Vortheile derselben namentlich in der mehr gleichmassigen Yertheilung des Kanalwassers zur regelrechten Bewasserung der Pflanzen und in der sich wiederholen- den gleichmassigen Beackerung des Landes mit besonderer Riicksicht auf Dampfkultur. Die Kosten dieses Baues variiren zwischen 5 und 20 Lstr. pr. Acre je nach den Terrainschwierig- keiten, die zu iiberwinden sind. Herr Hope berechnet dagegen dieselben mit Zuhulfenahme des Dampfpfluges, der vorzugsweise das Aufwerfen der Riicken auf leichte Weise bewerkstelligen soli, auf 1 — 3 Lstr. pr. Acre. Das dritte System, ebenfalls eine Art unausgebildeten Riickenbaues, anwendbar in Terrains mit sehr geringen Gefallen, wird Furchen -System ( pane and gutter) genannt. Es ist dieses System eine Nachbildung der Bewasserungsbauten in Piemont und der Lombardei, und besteht darin, dass in der Rich- tung des steilsten Gefalles, in Zwischenraumen von 30—66 Fuss, Vertheilungsrinnen construirt werden, denen aus dem Zuleitungs- graben, welcher diesen Rinnen quer vorliegt, das Kanalwasser zugefuhrt wird. Dasselbe wird durch, von Zeit zu Zeit ange- brachte Staubrettchen, die taglich je nach Umstanden drei- bis viermal versetzt werden, gezwungen, sich uber das Land rechts und links zu ergiessen. Die Bewasserungsfelder sind ausserdem in bestimmte Abtheilungen getheilt, in denen von Abtheilung zu Abtheilung, wiederum kleine Zuleitungsgraben das aus den Riesel- rinnen bis dort hinstromende Kanalwasser fassen und abermals auf genannte Weise weiter vertheilen, dessen Rest, schliesslich klar abgerieselt, in den Ableitungsgraben ablauft. Tafel II., Fig. 3 zeigt die Anordnung einer solchen Anlage. Dieses System ist namentlich in grossem Massstabe in Croydon und Norwood zur Anwendung gekommen. Tafel II., Fig. 1 versinnlicht den Plan der auf diese Weise bewasserten Felder zu Norwood. (Siehe speciell die Beschreibung der Anlagen zu Norwood, so wie den Bewasserungsplan von Warwick Tafel I., Abth. 5, 6, 12 — 15.) Nach Herrn Latham’s Ansicht soli dieses System das einfachste und wirksamste sein, indem man das Kanalwasser zu alien Zeiten der Pflanze mit Leichtigkeit zufiihren kann. (Letz- teres gilt wohl auch bei guter Anlage von den beiden anderen Systemen.) Es erfordert vor alien Dingen eine ausserst sorgfal- tige Planirung des Landes, da jede Unebenheit das Wasser 3 34 aufhalt und ein Stagniren desselben demWachsthum derPflan- zen schadlich wird. Im Allgemeinen richtet sich wohl der gesammte Bewasse- rungsbau nach der Lage des Terrains und den verschiedenen Gefallverhaltnissen, welche die Anwendung der einen oder an- dern Art vorschreiben. Dass nun in Bezugnahme auf den An- bau der verschiedenen Friichte, welche bewassert werden sollen, kleine Aenderungen in der Leitung des Kanalwassers vorgenom- men werden mussen, versteht sich von selbst. So unter Anderem empfiehlt sich auf streng abgeglichenen Flachen mit bestimmtem Hauptgefalle, welche fur Grasbau im Furchensystem bewassert werden, auch die sogenannte Furchenbewasserung, hauptsach- lich fur Hackfriichte. So zeigt uns Tafel II., Fig. 5 die Art und Weise, wie Hackfriichte auf der Camp-Farm bei Aldershott bewassert werden. Es werden 10 — 12 Zoll breite kleine Riicken gepfliigt, deren Seitenfurchen bei ca. 8 Zoll oberer Breite und 6 Zoll Tiefe abgeglichen und fur den Lauf des Kanalwassers bequem gemacht werden. Es ist hierbei Grundsatz, dass das Kanalwasser die Pflanzen nicht beriihren darf, da in diesem Falle ein zu geiles Wachsthum unausbleiblich ware. Die feinen Saugwurzelchen, namentlich der Knollengewachse und Ruben finden durchweg das sich in den Furchen bewegende Kanal- wasser, und auf diese Weise werden ganz erfreuliche Resultate, sehr grosse Exemplare von Ruben, Zwiebeln, Kohl und ander- weitigem Gemiise erzielt. Das Heranbringen der Kanalwasser- massen auf die zu berieselnden Flachen geschieht, wie schon ge- sagt, jetzt meistentheils durch unterirdische eiserne Rohren, welche, wie z. B, in Warwick, Rugby, das Kanalwasser in einfach gemauerte Fangschleusen ergiessen, von welchen aus dasselbe durch die Zuleitungsgraben iiber die Felder vertheilt wird. Tafel III., Fig. 1 und 2 zeigen die Construction solcher grosseren massiven Vertheilungsschleusen. Kleinere Schleusen, je nach der Situation (Tafel III., Fig. 3, 4, 5, 6), werden zur weiteren Vertheilung des Kanalwassers in den Zuleitungs- graben angebracht. Das Profil dieser Zuleitungsgraben schwankt zwischen 2 — 3 Fuss mittlerer Breite bei 1 — iy 2 Fuss Tiefe und hat weiter nichts Eigenartiges. Die Rieselrinnen oder Furchen sind 8 — 10 Zoll breit und 6 Zoll tief. Herr Ingenieur Latham be- dient sich in neuerer Zeit namentlich beim Furchen- und Beet- System thonerner Rohren, welche mit langlichen Seitenoffnungen 35 (Schlitzen) versehen das Kanalwasser fiber die Flache verthei- len. Blecherne Staubrettchen werden an den bestimmten Punk- ten zwischen die Stosse dieser Rohren geschoben und vermitteln auf diese Weise die gleichmassige Vertheilung (Tafel III., Fig. 7, 8, 9). Die Rohren haben 6 — 8 Zoll Durchmesser und werden in zwei verschiedenen Formen angefertigt. Einmal in halber Rohrenform mit Schlitzen an den Seiten, und zweitens in beinahe voller Rohrenform mit einer Abflachung auf der einen Seite, in welcher diese schlitzformigen Oelfnungen oben angebracbt sind. Diese Rohren haben eine Lange von 2 Fuss 3 Zoll und sind aussen und innen glasirt. Sie werden in die Zuleitungsrinnen stumpf an einander gelegt, so dass die dfinnen blechernen Stau- brettchen, wenn nbtliig dazwischen geschoben werden konnen. Bei neu angelegten Bewasserungsarbeiten, namentlich in leichten sandigen Bodenarten, gewahren sie einen entschiedenen Vor- theil, da das Zufallen und Zuwehen der kleinen Grabchen nicht mehr zu furchten ist und gleich von Anfang an dem Kanal- wasser eine regelmassige Vertheilung gestattet wird. Im Ganzen diirfte jedoch diese Anordnung fur grossere Flachen etwas theuer zu stehen kommen. In Norwood sah Verfasser diese theilweise durchgeffihrt (Tafel III., Fig. 9). Da wo nun auf mehr undurchlassigem Boden ein etwaiges Stagniren des Wassers zu beffirchten ware, hat man sich durcli Drainage ge- holfen, welche diesen Uebelstanden bekannterweise sofort abhilft. Besonders diirfte wohl beim Beet- und Furchen- System die- selbe fiberall Anwendung finden. Das aus den Rohren stromende Drainwasser wie z. B. in den Anlagen zu Rugby ist klar und rein, in den Rohren nicht die Spur eines etwaigen Riickstandes zu finden. Da es neuerdings Princip ist, das Kanalwasser moglichst unverfalscht auf die Flachen zu bringen, so hat man auch keine besonderen Filtervorrichtungen noting und wo dieselben noch bestehen, gehen sie nach und nach ein. Beim Austritt aus den Stadtkanalen tritt das Kanalwasser in eine grossere Kothschleuse, welche vergitterte Durchlasse besitzt, um schwerer zersetz- bare Stoffe, wie Holzspane, Lumpen, Reisig u. s. w., aufzuhal- ten und vom eigentlichen Kanalwasser zu trennen. Die Menge des Kanalwassers nun, welche einer bestimmten Bewasserungsbodenflache pro Jahr zugefuhrt werden kann, ist 8 * 36 bislier in England der Gegenstand vieler Streitigkeiten. gewesen, da die Bewasserungen nicht alle zimi Grasbau, sondern auch theils zum Hackfrucht-, Getreide- und vorzugsweise zumGemuse- bau in Anwendung kommen. Deshalb ist es wohl natiirlich, dass die zu verwendende Menge des Kanalwassers im Verhaltniss zu diesen verschiedenen Friichten schwankt. Nimmt manjedoch den Grasbau als massgebend an, und erwagt man die Menge des verwendeten Kanalwassers zur Jahresproduction von vielleicht 30 — 40 — 50 tons pr. Acre, so kann man hieraus zu einem bestimm- ten Durchschnittssatze der zu verwendenden Menge gelangen. Im Allgemeinen nimmt man in England an, dass 5000 — 6000 tons (100,000 bis 120,000 Ctr.) noting sind, um das genannte Quantum Gras zu erzielen. Es wiirde dies eine jahrliche Stauhohe von 109,192 Centimeter pr. Jahr und 0,299 Centimeter pr. Tag oder 90135 Cubikfuss pr. Jahr und pr. Morgen reprasentiren. Inge- nieur Latham aussert sich liber diesen Punkt in seinem bereits mehrfach angezogenem Werkchen folgendermassen: ,,Wahrscheinlich ist der richtigste Weg, die Menge des Kanalwassers fur eine bestimmte zu bewassernde Flache zu fin- den der, den ganzen Betrag der Bestandtheile in den erziel- ten Ernten zu ermitteln u . Latham bezieht sich namentlich in dieser Beziehung auf Untersuchungen J. v. Liebig’s, der gezeigt hat, dass, wenn der Boden reiner Sand ist, und das Kanalwasser sammt- liche fiir das Wachsthum der Pflanzen nothigen Stoffe liefern soli, — esist hier vorzugsweise von italienischemRaygrase die Rede — 2430 tons nothig sein wiirden, um 4 tons Heu zu erzeugen. Wenn dagegen der Boden an und fiir sich reich an Kali ist, so dass er das der Pflanze nothige Kali zur Halfte liefert, so wiirden 1255 tons fiir 4 tons Heu geniigen. ,,Da jedoch“, fahrt Latham fort, ,,die auf einem berieselten Felde erzielte Menge Heu die von Herrn v. Liebig angenommenen 4 tons bedeutend iiber- steigt, so wird der Betrag von Kanalwasser, der auf einem ge- gebenen Felde benutzt werden kann, auch entsprechend grosser sein. Halt man es fur wiinschenswerth, so viel Kanalwasser zu- zufuhren, als fiir das Wachsthum der Pflanze nothig ist, ohne auf die Bodenkraft zu rechnen, so ist es klar, da 20 tons be- rieseltes Gras 4 tons Heu geben und diesen 4 tons Heu 2430 tons Kanalwasser entsprechen, dass, um 30 tons Gras zu erzielen, 3645 tons Kanalwasser pr. Acre und Jahr nothig sein werden, fur 40 tons Gras 4860, fiir 50 tons 6075 Kanalwasser. Liefert 37 dagegen der Boden die Halfte des nothigen Kali, so werden nur die halben Mengen Kanalwasser erforderlich sein 44 . „Wenn nun 40 tons Gras pr. Acre (508 Ctr. pr. Morgen) sehr leicht auf einer gut eingerichteten Rieselflache erzeugt wer- den konnen, und es nicht angeht, den Boden in irgend einer Art zu erschopfen, so mogen 4860 tons pr. Acre als der richtige Be- trag des Kanalwassers angenommen werden, d. h. wenn man voraussetzt, dass das Kanalwasser denselben Gehalt hat, als das Londoner bei trockenem Wetter. Die Kanalwasser-Menge fur trockenes Wetter lasst sich nur nach der Wasser-Versorgung ermitteln, und man thut daher gut, die einem Acre zuzufuhrende Quantitat Kanalwasser auf den Normalwerth der beitragenden Personenzahl zuruckzufiihren, weil bei grosserer Verdiinnung auch eine grossere Menge zur Erzielung desselben Erfolges nothig sein wird. Man kann es fast als genau annehmen, dass der In- halt der Londoner Kanale bei trockenem Wetter der zugefiihrten Wassermenge gleich ist, was bei 30 Gallonen gleich 4,4 Cubik- fuss pr. Kopf und Tag 48,88 tons geben wiirde, oder nach den vorigen Ermittelungen wiirde ein Acre Land zur Erzeugung von 40 tons Gras das Kanalwasser von 100 Personen nothig haben. Diese Rechnung stimmt vollstandig mit den zu Croydon gemach- ten Erfahrungen iiberein und ebenso mit den Versuchen der bereits mehrere Male erwahnten Konigl. Commission, welche zu dem Schluss kam, dass 5000 tons Kanalwasser jahrlich das richtige Mass zur Erzielung der grossten Resultate ware 44 . Da diese Menge Kanalwasser auch mit der Annahme ande- rer Autoritaten wie Hr. W. Hope, Lodge-Farm, Hr. Marriage, Croydon-Farm, Hr. Clifford, Warwick, und vor alien Dingen mit den Unfcrsuchungen in Rugby iibereinstimmt, daher als eine ausreichende fur den Grasbau bezeichnet wird, fur andere Frucht- arten undCulturen jedoch verschieden abweichende Mengen von Kanalwasser zur Verwendung gebracht werden, so kommen wir auf dies Verhaltniss noch oft bei der Besprechung der Culturen der einzelnen Gewiichse zuriick. Fur unsere norddeutschen Ver- haltnisse durfte diese Menge wegen des kleineren jahrlichen Regenfalls nicht ausreichend sein, wie im VI. Abschnitt nach- gewiesen werden soil. 38 IV. Die nnter Benntzung des Kanalwassers in England angebauten Graser und Fruchtarten. (Cultur-Berichte.) Da nun das Kanalwasser ein Dunger ist, der sich fortwah- rend und zu alien Jahreszeiten erzeugt und unmoglicb mit Vor- theil nur zur Benutzung in gewissen Jahreszeiten aufbewahrt werden kann, so liegt es auf der Hand, dass man fur seine An- wendung bestimmte Cultur-Systeme einrichten muss, so wie die dazu geeigneten Fruchtarten mit Sorgfalt ausgewahlt werden und erfahrungsgemass auf einander folgen mussen. Es scheint nun yon Hause aus natiirlich, dass man die flussige Diingung vorzugsweise fiir Graslandereien (naturliche Wiesen) anzuwenden hatte. Jedoch haben die englischen Erfahrungen bewiesen, dass ihre Anwendung nicht ganz in der Weise geschehen kann, wie man sie bisher bei Bewasserungsarbeiten anderer Art zur Aus- fiihrung gebracht hat, da namentlich der starke Dunggehalt des Kanalwassers fur den eigentlichen Rieselwiesen-, resp. Riesel- grasbau eher hinderlich, als nutzbar war und nicht die Resultate geliefert hat, die man Anfangs erwartete. Es hat sich heraus- gestellt, dass die Anwendung des Kanalwassers auf sogenannte naturliche Wiesen ( meaclow-land ') schwierig ist, namentlich weil dieselben, wenn auch in Abtheilungen bewassert, nicht das ganze Jahr hindurch eine Bewasserung vertragen und zweitens, weil die eigentliche Wiesenvegetation, das Gemisch verschiedenarti- ger hoch und niedrig wachsender Graser und Pflanzen mit der Zeit eine Aenderung erfahrt, und nur einige besonders schnell und hochwachsende Graserarten das Terrain behaupten. Die Versuche, die mit Kanalwasser-Bewasserung naturlicher Wiesen in England wohl als massgebend betrachtet werden konnen, sind namentlich in Rugby und auf den Craigentinny-Wiesen bei Edinburg gemacht worden. Es hat sich in Rugby evident herausgestellt, dass nach mehrjahriger Anwendung des Kanalwassers nur noch zwei bis drei Arten und zwar hochwachsende Graser auf den betreffen- den Wiesen zuriickgeblieben sind. Diese Graser bestanden namentlich in Knaulgras ( Dactylis glomerata ), Wiesenschwingel (Festuca pratensis),Hon\ggvdLS (Holcus lanatus), und an holier ge- legenen Randern aus zerstiickelten Bestanden des gemeinen Rispengrases (Poa trivialis) in Verbindung mit zahlreicher Queeke ( Triticum repens). Die so schatzbaren Leguminosen und andere werthvolle Wiesenkrauter waren verschwunden. Augenblicklich hat man auch aus diesen Umstanden auf genannter Versuch- station die Berieselung dieser naturlichen Wiesen mit urspriing- lichem Kanalwasser aufgegeben und sich nur auf den Anbau des italienischen Raygrases ( Lolium italicum) beschrankt. Auf- fallig ist, dass namentlich die Queeke bei der Kanalwasser- Bewasserung so sehr iiberhand nimmt, und an den Punkten, wo der Graserbestand schwach ist, das Land mit einer dichten)(inter allmahliger Vertreibung der sammtlichen andern edlen Graser und Pflanzen iiberzieht. Diese Thatsache hat sich namentlich bei der unplanmassigen Bewasserung der Craigentinny- Wiesen im grossen Massstabe herausgestellt. Es ist dort fast wenig mehr zu sehen, als machtige Bestande dieses Grases, welches nun auch nach und nach den fruheren Bestand, namentlich die Poa trivia- lis verdrangt. Ein anderer Uebelstand ist darin gefunden worden, dass sich die im Kanalwasser in nicht sehr verdiinntem Zustande befindlichen Dungstoffe theilweise in den dichten Grasbestanden an den betreffenden Blattchen der feinen und dichten Untergraser festsetzen und auf diese Weise das Wachsthum derselben in hohem Grade beeintrachtigen. Es ist mithin die Erfahrung gewonnen, dass nur aus der Klasse der Graser, schnelle und hochwachsende sich fur diese Bewasserung eignen und bedeutende Ertrage brin- gen. Die Resultate in Rugby mit Bewasserung von Wiesen- grasern sind folgende: Heuge von gewohnliehem Viesengrase, welches bei Rugby im Durchschnitt von 3 Jolireu pr. Acre erzieit winde. Gras. Heu. Ctr. Pfd. Ctr. Pfd. Ohne Berieselung 1 1 186 24 66 88 ) 60,000 | 445 63 101 89 Berieselt mit Ctr. pr. Acre . . ) J20 000 I 606 62 115 51 \ 180’000 652 15 129 52 40 Folgende wichtige Gesichtspunkte sind bei diesen Versuchen besonders hervorzuheben: 1. Durch Kanalwasser-Bewasserung in den Wintermonaten lasst sich ein sehr fruher Schnitt im nachsten Friihjahr er- moglichen; es istjedoch die Zunahme der Production durch die Winterbewasserung verhaltnissmassig gering zur ver- wandten Quantitat Kanalwasser; 2. der Zeitraum, in dem Ueberfluss an griinem Futter vorhan- den ist, wird durch Kanalwasser-Bewasserung von Anfang der eigentlichen Vegetationsperiode bis Ende derselben von beiden Seiten bedeutend verlangert. Dieser Ueberfluss steigert sich, je grosser die Menge des Kanalwassers war, die zur Verwendung kam bis zura Maximalquantum von 9000 tons pr. Acre; 3. eins der Versuchsfelder gab einen viel geringeren Ertrag pr. Acre ohne Kanalwasser wie ein anderes. Die Boden- untersuchung (Analyse) ergab, dass dessen Bodenbestand- theile schlechter waren; unter dem Einfluss jedoch von reichlicher Kanalwasserbehandlung gab dieses Feld vollig den gleichen Ertrag als wie das fruchtbarere Feld im natiir- lichen Zustande; 4. wenn man fur die beiden Versuchsfelder den dreijahrigen Durchschnitt nimmt, dann war der erhaltene Ertrag ohne Kanalwasser ca. 9y 4 tons grunes Gras pr. Acre und Jahr, gleich ca. 3 tonsHeu; mit 3000, 6000 und 9000 tons Kanal- wasser pr. Acre und Jahr betrugen die Ertrage respective 22 */ 4 , 30y 4 und 32 1 /, tons grunes Gras gleich resp. 5, 5 3 / 4 und 6y 2 tons Heu; 5. die hochsten Ertrage wurden im dritten Jahr derVersuche erreicht und zwar mit 9000 tons Kanalwasser pr. Acre und Jahr, in einem Felde 35 tons und in dem andern 37 tons grunes Gras gleich resp. 6 tons 12 3 / 4 cwts. und 7 tons 5 cwts. Heu; 6. die mittlere Zunahme fur jede 1000 tons Kanalwasser be- trug, wenn 3000 tons pr. Acre und Jahr verwandt wurden, ca. 5 tons grunes Gras; bei 6000 tons 4 tons 2y, 2 cwts.; und bei 9000 tons 3 tons 3y 4 cwts.; 7. die Production pr. Acre war um so grosser, je grossere Quantitaten Kanalwasser zur Anwendung kamen; aber die Zunahme der Production fur eine gegebene Menge Kanal- 41 wasser war um so kleiner, je grosser die Berieselungs- massen waren. Neuerdings hat ein Herr John Hart einen Apparat erfun- den, welcher auf mechanischem Wege eine gewisse Klarung des Kanalwassers herbeifubren sol), um dasselbe auch fiir die Be- wiisserung naturlichen Graslandes ohne die besprochenen Nach- theile benutzen zu konnen. Wir komraen noch spater im Ab- schnitt VI. auf diesen Apparat zuriick. Dasjenige Gras nun, wel- ches sich vorzuglich fur Kanalwasserbewasserungen bewahrt hat und von dem die grossten Ernten erzielt werden, ist nun ent- schieden das italienische Raygras (Lolium italicum). Taf. V. Die Eigenschaften dieses Grases sind fur jene Cultur wie geschaffen. Unter alien Grasern giebt es kein Gras, welches sich von der Besamung an so schnell entwickelt, und wenn es seinen ihm zusagenden Boden gefunden hat, so hoheErtrage giebt, wie das italienische Raygras. Es gedeiht am besten in fruchtbarem, jedoch nicht undurchlassigem Boden, namentlich wenn ihm durch Dungung, respective fliissige Dungung nachgeholfen wird. Das Gras dauert langer als zwei Jahre, allein im dritten Jahre lasst die Bestockung und somit auch der hohere Ertrag nach, deshalb ist es als dauerndes Wiesengras weniger werth, aber im reinen Zustande auf Felder angebaut oder im Kleegrasgemerige desto mehr zu empfehlen, weil es durch seine schnelle Entwickelung und Bestockung wesentlich zu grossen Heuertragen beitragt. Es kann im Herbst sowohl, wie im Friih- jahr gesaet werden. Zur ersteren Saat kann man in nordlichen Klimaten nicht gut rathen, da es, allein angebaut, iiberhaupt hiesige Winter schwer iiberdauert, es miisste denn sein, dass die neuere Benutzung der Bewasserung mit Kanalwasser diesen Um- stand ausgleicht. Es ist bedeutend empfindlicher, wie das soge- nannte englische Raygras (Lolium perenne jedoch bestockt es sich im Friihjahre fast ebenso schnell und reichlich, so dass man auch mit der Fruhjahrssaat reichliche Ertrage erzielt. Man nimmt als Saatquantum pro preussischen Morgen nach bisherigen Verhaltnissen ca. 30 — 40 Pfund an und walzt den Samen nach der Saat fest ein. Schon innerhalb fiinf Tasren erscheint es, bestaudet sich auch ohne Bewasserung gleich so stark, dass es Ende Mai schon, 3 Fuss hoch, in Bluthe steht, und, wenn es nicht Samen tragen soli, geschnitten werden kann. Es treibt von Natur viel Halme, die meistentheils ohne Aus- 42 laufer aus einer Wurzel entspringen und schlank in die Hohe wachsen. Hier im nordlichen Deutschland (auf einer friiheren landwirthschaftlichen Versuchsstation) zu Hohenstein bei Danzig im April gesaetes italienisches Raygras gab ohne Be- wasserung resp. Bejauchung pro Morgen in zwei Sehnitten Ende Juni und Mitte September . . . 17,500 Pfd. Der Nachgrasschnitt im October betrug . . 900 „ Zusammen 18,400 Pfd. grime Masse. Das Grummetheu von einem der Versuchsstucke von 72 □Fuss wog 3 Pfd., mithin pr. Morgen 1080 Pfd. Seine nabren- den Bestandtheile kommen denen des englischen Raygrases gleich, jedoch ist das Heu ungleich schoner, zarter und weicher. Bei Versuchen mit Bejauchung wurden 4 Schnitte gewonnen. Ein Abweiden ist nicht rathlich, da es wie alle Graser, die keine feste Narbe bilden, das Abbeissen nicht gut ver- tragt und im spateren Ertrage nachlasst. Gegenversuche mit englischem Raygras ( Lolium perenne) gaben pro preuss. Mor- gen in 3 Sehnitten nur 12,900 Pfd. grime Masse, mithin war der Ertrag von jenem ein Drittheil grosser. Dieses Gras wirdnun in England fiir die in Rede stehenden Bewasserungs-Culturen hauptsachlich angebaut und giebt sehr hohe Ertrage. Die Menge desselben, welches auf den gut berieselten Feldern in Siid-Norwood wahrend des Jahres 1868 gewachsen ist, war iiber 50 tons oder 1000 Ctr. pr. Acre (635 Ctr. pr. Morgen). Unter gewohnlichen Umstanden kann man auf 40 tons oder 800 Ctr. pr. Acre (508 Ctr. pr. Morgen) rechnen und da zu Croydon dieses Gras an Ort und Stelle mil 17 — 20 Shill, pr. ton (10 Sgr. pr. Ctr.) bezahlt wird, so kann man den Jahresertrag auf 30 — 40 Lstr. pr. Acre oder 130 — 170 Thlr. pr. Morgen rechnen. Es werden jahrlich 6, ja, in manchen Jahren sogar 10 Schnitte genommen. Die folgenden Zahlen zeigen die Lange der aufeinanderfolgenden Schnitte von diesem Grase, die zu Siid-Norwood ira Jahre 1867 gewonnen sind: erster Schnitt 35 Zoll. zweiter „ 40 „ dritter „ 42 ,, vierter „ 32 „ 43 funfter Schnitt 24 Zoll sechster „ 14 „ Im Ganzen 187 Zoll oder 15 Fuss 7 Zoll engl. = 15 Fuss D/a Zoll preuss. Herr Hope ausserte sich iiber dieCultur dieses Grases mit Benutzung von Kanalwasser folgendermassen: „Das italienische Raygras muss um die Mitte oder gegen das Ende des Monats August gesaet werden, und zwar 3 Bushel (2 Schffl. preuss.) pr. Acre. Denselben Herbst sollte dann ein leichter Schnitt genommen werden, welcher ausserdem, dass er einen kleinen Gewinn abwirft, auch die Wirkung hat, dass man die ersten diinnen und zarten Blattchen los wird, welche die jungen Pflanzen aus dem Samen aufschiessen lassen. Es wird sich hiernach eine kraftigere Vegetation erzeugen, die der Winterkalte trotzt und befahigt ist, in moglichst friiher Zeit im * folgenden Friihjahr einen Schnitt zu geben. Nach diesem Schnitt im Herbst muss das Gras mit einer Kanalwasser- menge von ca. 400 tons pr. Acre und pr. Monat bewassert wer- den, welches eine totale Bewasserungsmenge fur die folgenden vierzehn Monate von etwas mehr als 5000 tons (5600) pr. Acre giebt u . ,,Wann nun der erste Schnitt im folgenden Friihjahre genom- men wird, hangt natiirlich sehr von der Lange und der Strenge des Winters ab. Im Jahre 1869 fand z. B. der erste Schnitt, den man auf der Lodge-Farm nahm, am 26. Januar statt, im vorhergehenden Jahre wurde der erste Schnitt am 12. Marz gemacht u . „Uebrigens hat (wie auch schon im 2. Abschnitt unserer Ab- handlung angedeutet wurde) die Winterbewasserung mit Kanal- wasser ganz besondere Vortheilc, indem die Pflanzen trotz des ge- ringen Wachsthums vielmehr Dungstoffe verbrauchen, als man es, ohne Erfahrung iiber diesen Punkt zu haben, glauben sollte. Viele sind der Meiuung, dass man das Kanalwasser wahrend harten Frostes und Schnees nicht verwenden konnte, ohne die Gewachse zu beschadigen. Dies ist jedoch entschieden nicht der Fall. Das Kanalwasser befindet sich stets iiber dem Gefrierpunkt und das Zusammentreffen desselben mit den Pflanzen muss deshalb stets von wohlthatiger Wirkung sein, indem es dieselben, wenn nicht anders, doch vor Kalte schatzt. Aus diesem Grunde gehen der Jahreszeit des Wachsthums nur kraftige junge Pflanzen ent- 44 gegen, die freigebig wahrend des Winters ernahrt wurden und die darnach streben, uppig empor zu schiessen, sobald durch- schnittlich warmeres Wetter eintritt w . „Hieraus lasst sich auch die grossere Anzahl der Schnitte, die das italienische Raygras wahrend eines Jahres giebt, genii- gend erklaren 44 . „Es ist nun Thatsache, dass einzelne Felder im vergangenen Jahre auf der Lodge-Farm nicht weniger als lOmal gemaht wur- den, und es ist anzunehmen, dass das italienische Raygras uber- haupt bei verstandiger Behandlung iiberall im Siiden Englands lOErnten gewahren kann 44 . „Forner ist beobachtet worden, dass in der Haupt-Vege- tationsperiode (Mai, Juni, Juli) dieses Grases dasselbe in den ersten Tagen nach dem Schneiden durchschnittlich jeden Tag einen Zoll wachst und dieses Wachsthum pr. Gewicht durch- schnittlich fur jeden Zoll an Hohe ca. eine halbe Tonne pr. Acre betragt. Die Friihjahrsschnitte kann man durchschnittlich auf 20 — 24 Zoll Hohe veranschlagen, so dass diese 10—12 tons wiegen, ehe die Pflanze zu schossen anfangt. Es muss noch erwahnt werden, dass man, uni gute Resultate zu erzielen, die Felder, welche ital. Raygras tragen sollen, in verschiedene Abtheilungen eintheilt, so dass sie nach der Reihenfolge geschnitten werden konnen, bevor sie beginnen Samen anzusetzen. Obgleich nun dieses Ziel nicht immer zu erlangen ist, so lasst es sich doch annahernd ausfiihren. Auf diese Weise kann man leicht 8 — 10 Schnitte des Jahres erhalten, die an Gewicht sich ca. auf 7 — 12 tons stellen wurden. Es ist nun nicht zu leugnen, dass man auf der Lodge-Farm bis jetzt nicht uber 71 tons pr. Acre hinaus gekommen ist, aber dies liegt wohl daran, dass das Kanalwasser nicht in genugender Menge verwendet, und das Gras auch nicht immer in den passenden Monaten gesaet wurde. Der ausserordentliche Ertrag nun, der auf diese Weise vom italieni- schen Raygrase erlangt werden kann, weist darauf hin, dass diese Pflanze die grosste Menge des Kanalwassers absorbiren kann. Diese Eigenschaft giebt daher einen Anhalt zur Bestim- niung der Minimallandflache, auf der das Kanalwasser einer Stadt wahrend eines Jahres verwendet werden konnte. Doch muss man nicht glauben, dass das italienische Raygras alle die Dungstoffe, die im Kanalwasser vorhanden sind, vollstandig 45 verbraucht, da letzteres die Pflanzennahrstoffe in einem andern Verhaltnisse enthalt, als sie das italienische Ray gras bedarf tc . ,,Wie man nun die noch im Boden vorhandenen reichlichen Dungstoffe nach dem Anbau yon Raygras am besten benutzt, dar- tiber mussen noch vielfaltige Erfahrungen gesammelt werden. Im Jahre 1863 wurden in der Lodge-Farm ausserordentlich reiche Haferernten von einem Stuck Land gewonnen, welches vorher 4000 tons Kanalwasser pr. Jahr empfing und 71 tons Raygras pr. Acre geliefert hatte. Die Kraft und Ueppigkeit des Wachs- thums des Hafers war von solcher Art, dass man daraus ent- nehrnen konnte, dass offenbar damit noch nicht der Bestand an Dungstoffen ganzlich erschopft war. Doch ist leider dieser Ver- sueh noch unvollstandig geblieben, da das Stuck Land wiederum zum Grasbau benutzt wurde. Nach meiner Meinung wurde die Kartoffel das geeignetste Gewachs sein, welche auf Raygras im nachsten Jahre folgen konnte“. „Wir machten mit dieser Frucht einige Versuche, dieselbe bei geeigneter Bestellung mit Kanalwasser zu behandeln, hatten auch Knollen von grosser und wohlschmeckender Beschaffenheit erzielt, jedoch konnte leicht die grosse Fruchtbarkeit des Kanalwassers den Erfolg haben, dass die Kartoffeln mehr ins Kraut schossen und weniger Knollen erzeugten, deshalb sind sie sicherer in zweiter Tracht ohne Bewasserung nach Raygras zu nehmen. Ob nun eine schwere Kartoffelernte im Stande sein wurde, den noch vom Raygras iibrig gebliebenen ganzen Rest von Dung- stoffen zu erschopfen, dariiber liegen ebenfalls noch keine sicheren Erfahrungen vor. Aber angenommen, dass sie dies konnte, so wiirde man finden, dass die Grundflache des Landes, auf welche das Kanalwasser einer Stadt verwandt werden kann, wenigstens doppelt so gross sein muss, als das kleinste Areal fur Raygras, welches in einem Jahre wachst u . Hochst interessant sind die Versuche, welche seit einer Reihe von Jahren in Rugby durch die Konigliche Commission fur die ,,Sewage-Utilisation u gemacht worden sind. Diesen um- fassenden, anregenden Versuchen verdanken besonders jetzt viele kleine Stadte ihre lohnenden „Sewage-Farms u . Die Versuche erstrecken sich namentlich 1. auf die anzuwendende Menge des Kanalwassers pr. Acre fur naturliche Wiesen (meadow -land ) , wie bereits erwahnt, ferner auf italienisches Raygras und Getreide; 46 2. auf Zunahme der Productionsfahigkeit des mit Kanalwasser bewasserten Bodens, im Gegensatz zu unbewassertem; 3. auf die Zunahme des Nahrungsstoffes im bewasserten grunen o o Grase und Heu, im Gegensatze zu unbewassertem durch Fut- terungsversuche in Bezugnahme auf Milchergiebigkeit und Mastungsfahigkeit. Da diese Versuche so reichhaltig sind, dass deren Aufzah- lung die, fur diese erste Abhandlung iiber diesen Gegenstand ge- steckten Grenzen weit iiberschreiten wiirde, so seien nur einige wichtige Versuchsarbeiten, welche mit italienischem Ray grase ge- macht wurden, erwiihnt, um verschiedene Kanalwassermengen in ein Verhaltniss zur Production zu bringen. Im September 1863 wurde ein Feld, dass vorher mit Stall- dung gedungte Futterwicke getragen hatte mit italienischem Raygrase angesaet. Das Gras hatte sich egal bestaudet und w r ar gut durch den Winter gekommen, ohne eine Bewasserung erhal- ten zu haben. Im folgenden Friihjahr wurden 3 Parcellen von gleicher Grosse abgetheilt. No. 1 sollte ohne Bewasserung bleiben. No. 2 sollte mit 3000 und No. 3 mit 6000 tons Kanalwasser pr. Acre und Jahr bewassert werden. Der Zufluss des Kanalwassers war jedoch wahrend des Jahres nur schwach, so dass Ende October No. 2 nur 787 tons und Nr. 3 1522 V 2 tons erhalten hatten. Folgende Tabelle enthalt nun das Ergebniss: 1. des Quantum Kanalwassers; 2. der erhaltenen Ertrage; 3. der Zunahme derselben in Gestalt von griinem Gras und trockenem Heu. (Siehe die umstehende Tabelle.) 47 Ohne Kanal- wasser Mit Kanalwasser Feld 1. Feld 2. || Feld 3. Verwendetes Kanalwasser pr. Acre. II. Ohne Kanal- wasser Mit Kanalwasser Feld 1. || Feld 2. || Feld 3. Raygras pr. Acre wahrend jedes einzelnen Mts. ' tons I tons | tons T. C.Q. P. T. C. Q. P.|| T . C. Q.P. April >5 55 48 April 3 4 1 21 4 3 1 22 3 15 3 15 Mai 5) 152,1 257,6 Mai 1 17 2 23 — — — 1 11 1 7 Juni 178,0 354,7 J uni 8 18 0 22 7 1 1 27 6 9 3 13 Juli ** 218,1 43,1 Juli — - — — 5 16 3 21 6 10 2 21 August 120,8 163,4 August 2 0 1 13 1 !4 1 13 3 0 2 10 Septbr. 55 1 60,1 219,9 Sept. 0 9 2 7 0 13 1 6 1 12 0 11 Octbr. 55 58,1 75,9 Octbr. 0 6 0 9 1 5 3 16 2 3 0 12 Sura m a 787,2 ;| 1522,6 Summa 16 16 019 20 15 1 2! 25 3 2 5 nr. Raygras pr. einzelnen Acre in jedem Schnitte. IV. Total-Production pr. Acre. T. C.Q..P. T.C. Q. P.f T.C. Q.P. 1. 5 2 0 16 4 3 1 22 3 15 3 15 2. ^ 8 18 0 2 7 1 1 27; 5 14 0 3 3. '5 2 0 1 13 5 16 3 21 7 7 1 13 4 0 9 2 7 1 14 1 13 l 4 2 2 23 5. 0 6 0 9 0 13 1 6 2 0 1 23 6. — — — — 1 5 3 16 2 3 0 12 Sa. III. 16 16 0 19 20 15 1 21 25 3 2 5 Gr. Gras 16 16 0 19 20 15 1 21 25 3 2 5 A Is Heu 4 18 3 8 5 5 0 16 5 12 2 11 V. Produktive Zunahme pr. Acre. Gr. Gras — — — — 3 19 1 2 II 8 7 1 14 Als Heu — — — — 0 6 1 8| 1 o .13 — 3 VI. Zunahme pr. 1000 tons \ -erwendetes K an; alwasser. Gr. Gras — — 1 — - [ 5 0 2 25 5 9| 3 17 Als Heu — - — -! 0 8 0 4 0 9| 0 5 Um das Quantum Heu dem grunen Grase „aquivalent“ zu bestimmen, ist die durch Versuche bestimmte Masse vollkommen trockener Substanz im Grase im Verhaltniss von 84 : 100 ver- mehrt. Dies unter der Annahme, dass das Heu 84 pCt. trok- kener Substanz und 16 pCt. Feuchtigkeit enthalten wiirde. Im Zollgewicht verhalten sich obigeSummen wie umst. bezeichnet: Ohne Kanal- wasser | Mit Kanalwasser Ohne Kanal- wasser Mit Kanalwasser Feld 1. Feld 2. | Ctr. Feld 3. Ctr. Feld 1. Ctr. Pfd. Feld 2. Ctr. | Pfd. Feld 3. Ctr. | Pfd. Summa I. »> 15744,0 30452,0 IV. Total-Production pr. Acre. *) tons. tons. tons. G runes Gras Als Heu v. : 335 98 Produ 75 ctive 415 105 Zuiu 25 ihm< 505 112 50 (Summall. (16%) || | Ctr. | Pfd. (20|) | Ctr. | Pfd. P6*) Ctr. | Pfd. Summalll { *) 1 ton | 335 | — | = 20 Ctr.; 1 415 | - | 1 cwt. =1 ] 505 | — [00 Pfd. Grimes Gras Als Heu VI. Zunabi ven me pr. arandt< 1000 5S Ki 80 6 tons inalw 25 (20, asse 160 13 300 ( r. 75 3tr.) Grimes Gras Als Heu — — 100 8 75 110 9 — Als Anfangs April die Versuche ihren Anfang nahmen, war bereits das Gras so hoch gewachsen, dass ein erster Schnitt fiir nothig befunden wurde, um die Rieselrinnen passend einzurichten und dieselben fur eine Separatbewasserung yon Nro. 2 — 3 entsprechend zu verandern. Es wurde deshalb nur wenig Kanalwasser vor Ende April gegeben und dies wenige nur auf No. 3. Die Wirkung des Kanalwassers ergab (so wie die zweite und dritte Abtheilung der Tabelle zeigt) hauptsachlich in den spateren Monaten und spateren Schnitten der Saison eine Ertrags- abnahme und zwar sehr nahe im Verhaltniss zu den verwandten Quantitaten Kanalwasser; das Totalverhaltniss pr. Acre war, ohne Kanalwasser (obgleich sich das Feld in gutem Diinger- zustande befand) etwas iiber 16 3 /4 tons (335 Ctr.), mit 787 tons Kanalwasser etwas iiber 20 3 / 4 (415 Ctr.) und mit 1522y 2 tons Kanalwasser nahe 25*/ 4 tons (505 Ctr.) griines Gras; oder wenn man in gleichmassigem Zustande von Trokenheit iiberhaupt als Heu rechnet, waren die Quantitaten Equivalent mit 4 tons 18 3 / 4 cwts. (98 Ctr. 75 Pfd.) 5 tons 5y 4 cwts. (105 Ctr. 25 Pfd.) und 5 tons 12y 2 cwts. (112 Ctr. 50 Pfd.) respective. Die Zunahme der Production pr. Acre war nahezu 4 tons (80 Ctr.) griines Gras bei der geringeren und nahezu 8 tons (160 Ctr.) bei der grosseren Bewasserung; obgleich die Zunahme von wirklich trockener Substanz nur durch 6y 4 cwts. (6 Ctr. 25 Pfd.) und 13 3 / 4 cwts. (13 Ctr. 75 Pfd.) respective reprasen- tirt wird. Die Zunahme fiir 1000 tons Kanalwasser (20000 Ctr.) war mit der geringeren Bewasserung 5 tons 3 / 4 cwts. (100 Ctr. 75 Pfd.) und mit der grosseren nahezu 5 tons 10 cwts. (110 Ctr.) griines Gras; aber die Zunahme der wirklich trockenen Sub- stanz wird nur durch 8 cwts. (8 Ctr.) und 9 cwts. (9 Ctr.) repra- sentirt;. die Zunahme von wirklich trockener, fester Substanz ist deshalb eine nur kleine. Das Hauptresultat ist aber, dass die Productionszunahme fast ebenso gross, wenn nicht grosser, im Raygras war, wie in den meisten Fallen in derselben Jahreszeit imWiesengras (Knaul- gras,Honiggras, Wiesenschwingel, gemeines Rispengras,Quecke), bei welchem so viel grossere Quantitaten Kanalwasser zur An- wendung kamen (5 — 6000 tons pr. Acre), obgleich die Zunahme von trockener Substanz in Form von Heu gewohnlich beim Wiesengras grosser war; d. h., das relative grossere Quantum 49 Kanalwasser, auf Wiesengras verwendet, gab im Mittel eine grossere Zunahme von trockener oder fester Substanz fur ein gegebenes Quantum Kanalwasser, als wie die viel kleineren Quan- titaten, die auf Raygras verwendet wurden. Ausserdem ist noch anzufuhren, dass die Zunahme beider von griinem Gras und von trockener Substanz in Form von Heu, auf No. 3 bedeutender war mit dem grosseren Quantum Kanalwasser, wie auf No. 2 mit dem geringeren Quantum. Schliesslich ist die Kgl. Commission nach einer grossen An- zahl von Versuchen, welche theils zu Rugby, Warwick oder Croydon veranstaltet worden sind, auffolgende einfache Satze gekommen: dass sowohl in Bezug auf Milehertrag als auf Gewichtszunahme, doch besonders in Bezug auf ersteren, ein Thier von gegebenem Gewicht mehr Ertrag gab, wenn man es mit Gras ohne Bewasse- rung, als wenn man es mit Rieselgrasfutterte, und dass ein gege- benes Gewicht von frischem Grase s ohne Bewasserung ausgiebiger war, als ein gleiches Gewicht von frischem bewasserten Grase; dass aber ein gegebenes Gewicht von in bewassertem Grase vor- handener trockener oder fester Masse mehr Ertrag gab, als ein gleiches Gewicht in nicht bewassertem Grase. Hieraus wurde fol- gen, dass .Heu von bewassertem Grase eine bessere Wirkung auf Futterung und Milehertrag hat, als Heu von nicht bewassertem. Ausser dem italienischen Raygrase hat man auch mit eini- gen fremd eingefuhrten hochwachsenden Grasern, wie mit dem Bromus Schraderi ( Ceratoehloa australis , Hornschwingel), so wie mit Bromus odoratus auf der Lodge Farm Kanalwasserbewasse- rungsversuche geinacht, ohne jedoch bis jetzt in die Augen springende Erfolge zu erzielen. In Bezugnahme auf die Anwendung des Kanalwassers fiir Getreide (Weizen, Roggen, Gerste, Hafer, Mais) muss auf die Menge und hauptsachlich auf die Zeit der Bewasserung die grosste Aufmerksamkeit verwandt werden; bei unzeitgemasser Anwendung schiesst das Getreide zu sehr in den Halm, giebt zu viel Stroh, lagert sieh sehr bald und setzt weniger Korner am Die besten Ernten hat unstreitig der Hafer, mit Kanalwasser gedungt, geliefert, wie die Versuche in Rugby ergeben haben. Mit Verwendung von 500 tons Kanalwasser pr. Acre wur- den auf der Lodge-Farm sehr gute Weizenernten gemacht und zwar durchschnittlich 5 Quarter (1 Quarter = 8 Bushels — 26 Scheffel 6 V 4 Metz preuss.) pr. Acre geerntet. 4 50 Im ersten Jahre, als manVersuche mit Kanalwasser auf Wei- zen machte, wahlte man ein dem Boden nach ziemlich leichtes und kiesiges Stuck Feld. Zwei Theile desselben wurden genau ver- messen, der eine Theil ohne Bewasserung gelassen, der andere mit 500 tons Kanalwasser gediingt. Jede Parcelle war 1 Acre gross. Der Erfolg war bemerkenswerth. Der unbewasserte Theil gab 3 Quarter 5 Bushel (= 19 Scbffl. D/ 2 Mtz. preuss.) und drei Fuhren Stroh; der bewasserte Theil gab, wie zu er- warten war, einen grosseren Strohertrag, 4 J / 2 Fuhren, mithin 50 pCt. Zuwachs und 5 Quarter 3 Bushel (— 28 Schffl. 4 J / 2 Mtz. preuss.) Korner. Hafer und Roggen haben eben falls einen grosseren Ertrag mit Kanalwasser gedungt gegeben, als ohne dasselbe. Urn aber einen weiteren Beweis von der Anwendung des Kanalwassers auf Getreide zu geben, sei noch ein kleiner Versucb angeftihrt, der mit Mais im Sommer 1868 gemacht wurde. Der Mais wurde erst Anfangs Juni gelegt und erhielt erst Mitte Juli eine Kanalwasser-Bewasserung, als er nach lan- ger Diirre fast vertrocknet war. Nichtsdestoweniger wuchs er in den folgenden 33 Tagen96 Zoll oder fast 3 Zoll jeden Tag und die meisten Kolben reiften mit grossem Korneransatz vollstandig. Kanalwasserdiingung fiir Hafer ist namentlich in Rugby seit mehreren Jahren zur Anwendung gekommen. Bei einem Versuche wurden 135y 2 tons Kanalwasser pr. Acre benutzt und eine Zunahme der Production von mehr als 5 pence pr. ton Kanalwasser erzielt*); bei 510 tons pr. Acre war die Mehrproduction iy a pence pr. ton Kanalwasser. Beide Ver- suche wurden in dem ungewohnlich fruchtbaren Jahre 1863 und mit Kanalwasser von nahe zu doppelt des mittleren Gehaltes als dasjenige, welches in London in einer trockenen Jahreszeit zur Anwendung kommt, vorgenommen. Aus diesen Griinden ist es klar, dass die Resultate ganz aussergewohnlich waren und wohl nicht ganz als maassgebend betrachtet werden konnen. Aller Wahrscheinlichkeit nach sind 500 tons Kanalwasser pr. Acre ansreichend, um damit reiche Ernten zu erzielen. Bei bei- den Versuchen fand eine Ueberproduction von Stroh statt und das Getreide hatte sich vollstandig gelagert. Hochst wichtig und ertragreich sind nun die Kanalwasser- kulturen mit Hackfriichten und Gemusen aller Art. Man be- *) Oder nahezu dreimal den Marktwerth der Bestandtheile deS Kanal- wassers, angenoramen dass diese ausgezogen und getrocknet worden sind. 51 wassert augenblicklich in England: Runkelruben (Mangold), Zuckerruben, Turnips, Pastinak, mehrere Sorten Kohl, Zwie- beln, Bohnen, Mohren, Canariensamen, Flachs und Futterkrauter, wie z. B. Luzerne und spat bliihenden rothen Klee. Ueber letztere zwei Pflanzen liegen noch wenig Erfabrungen vor. Runkel- und Zuckerruben wurden zweimal, das erste Mai nach dem Aufgehen der Pflanzen, das zweite Mai im Monat Juli mit Kanalwasser bewassert. Auf der Lodge-Farm wurden mit 1000 tons Kanalwasser pr. Acre im Jahre 1868 51 tons (1020 Ctr.) pr. Acre Runkelruben und mit der gleichcn Menge Kanalwasser 30 tons (600 Ctr.) Zuckerruben pr. Acre gewonnen. Erstere in England durchweg Mangoldwurzeln ( Beta vulgaris cicla) genannt, werden auf alien Sewage-Farmen eifrig cultivirt und zwar meistentheils zum Wurzelgewinn, anderntheils auch zum Blattgewinn. Man unterscheidet hierbei zwei Arten, den gemeinen Mangold (romischen Kohl) und den dickrippigen Mangold. Der letztere liefert Spielarten mit weissen, gelben und rothen Rippen. Den gemeinen Mangold benutzt man auch als Schnittkohl, saet die Samen im Friihjahr bis gegen die Mitte des Monat Mai, in 10—12 Zoll von einander entfernten Reihen, deren Pflanzen schon nach 6 — 7 Wochen einen Schnittkohl geben und die Kiiche zu einer Zeit mit Gemiise versorgen, wo daran am meisten Mangel ist. Verpflanzt man die jungen Pflanzen der letzteren Art, so werden sie fussweise von einander gesetzt und liefern spater viel Blattfutter. Im Jahre 1869 wurden auf der Lodge-Farm mit 1,100 tons Kanalwasser 52 1 / 2 tons (1050 Ctr.) pr. Acre Runkelruben gewonnen. Da von dieser Frucht nament- lich viel Erfahrungen hinsichtlich seiner Bewasserung mit Kanal- wasser vorliegen und diese Erfahrungen mehr oder weniger auf andere ahnliche Wurzelgewachse anzuwenden sind, so diirfte es zweckentsprechend sein, Herrn W. Hope’s Ansichten und Erfah- rungen hieriiber zu horen. Wenn man annimmt, ausserst sich derselbe, dass 100 Personen nothig sind, um 40 tons Ray- gras mit 5000 tons Kanalwasser zu erzeugen , so wurden 1,100 tons fur Runkelruben verwendet, dem Kanalwasser von 22 Personen pr. Acre gleich sein; Hr. Hope ist jedoch der Ansicht, dass das doppelte Quantum Kanalwasser, also 2000 tons, nothig ist, um damit 10 — 20 tons Runkelruben mehr zu erzielen, wenn man auch im Uebrigen die Pflanze richtig cultivirt, und einen Verlust an Gewicht pr. Acre dadurch zu verhindern sucht, dass 4 * man keine Liicken in dem Pflanzenreihen duldet. Gleich nacli dem Verpflanzen rath derselbe eine starke Bewiisserung mit Kanalwasser an. Will man die Pflanzen saen und spater ver- ziehen, so rniisste gleich nach der Saat, eine 2 — 3malige Bewasse- rung erfolgen. Eine weitere Ursache, um Verluste an Gewicht pr. Acre zu haben, ist die, dass viele Pflanzen in Samen schiessen, und keine Wurzel, so wie mangelhafte Blatter ansetzen. Nun mag es auf den ersten Blick wunderbar ersclieinen, dass diese Eigenschaft vieler Pflanzen durch eine zur Zeit angepasste und richtige Bewasserung verhindert werden kann. Viele Pflanzen schiessen namlich regelmassig im Sommer, wenn nach langerer Zeit plotzlich viel Regen fallt in Samen, da durch die trockene Zeit ihr Wachsthum theilweise gehemmt, durch den Regen wie- der angeregt, leicht zwei verschiedene Richtungen annehmen kann, einmal zur Vergrosserung der Wurzel und Wurzelblatter oder zum Austrieb der Samenstaude. Bei einer Kanalbewasserung existirt nun eine langere Trockenperiode nicht, und genannteVege- tationsiibelstande konnen vermieden werden. Als Thatsache sei angefuhrt, dass von 3y 2 Acres im Jahre 1868 auf der Lodge- Farm angebauten Runkelruben nicht eine einzige Pflanze in Samen geschosst ist, da man genannten Verhaltnissen aufmerk- sam Rechnung trug. Wie uberhaupt grosse Trockenheit den Wurzelgewachsen im Allgemeinen schadet und den Gewinn an Gewicht beeintrach- tigt, ersieht man daraus, dass auch die Wurzeln hartrindig wer- den, und selbst sich bei spaterem Regenwetter nicht mehr recht erholen wollen, indessen schwindet dieser Verlust, wenn man in solcher Zeit im Stande ist, Kanalwasser zur Anwendung zu bringen. Das Wachsthum wird dann stetig sein und selbst bei sengender Hitze nicht aufhoren. Das, was die Landwirthe unter ,,Wachsthnmwetter a verstehen, milde feuchte Luft, kann hier- durch kiinstlich erzeugt werden; die Pflanzen erfreuen sich zweier machtiger Reizmittel: Wasser und Sonne, ersteres ausserdem noch erfiillt mit den kostbarsten Pflanzennahrungsstoffen. Ueber die Verwendung des Kanalwassers fur den Anbau von Gemtisen und anderen Eriichten fur den menschlichen Be- darf verweise ich auf den nachstfolgenden Abschnitt, in welchem die Erfahrungen der Anbauversuche der verschiedenartigsten Gewachse in Form eines Berichtes an die „Essex-Sewage- Farming- Association^ die namentlich auf der Versuchsstation 53 der „Metropolis- Sewage -Company 44 der Lodge-Farm seit vier Jahren gesammelt sind, gegeben werden. Im Allgemeinen sind in Bezugnahme auf die zu verwendende Menge des Kanalwassers, die geeignetste Zeit der Anwendung desselben, die Wahl der passenden Fruchtarten und deren Reihenfolge noch viel Studien zu machen, noch viel Erfahrung zu sammeln; die allergrosste Aufmerksamkeit muss weiteren Beobachtungen gewidmet wer- den, um die Grundsatze zur Erzielung moglichst grosser und reicher Erfolge kennen zu lernen. Die geognostische Beschaffenheit des Bodens, seine phy- sikalischen Eigenschaften, Lage, Configuration des Terrains, die climatischen Verhaltnisse der Gegend, daraus entpringende Wahl fur die Art des Bewasserungssystems bedurfen einer eingehen- den Beobachtung und Beurtheilung und bilden eine schone und lohnende Aufgabe, sowohl fur den Culturingenieur, als wie fur den Landwirth. V. Gegenwartige Verbreitnng der Kanalwasser-Bewasserungs- Anlagen in England. Gesellschaften und Projecte zur grossten Ausbreitung des Systems. Beschreibung vorziiglicher Anlagen daselbst. Seit den Jahren 1860/61, in welchen das Parlament eine Konigl. Commission zur Untersuchung und Prufung des in Rede stehenden Systems einsetzte und diese Commission vorzugsweise zu Rugby, spater auch an mehreren andern Orten ihre Versuche machte und bis auf den heutigen Tag unausgesetzt thatig ist, haben viele Stadte und Ortschaften Englands dasselbe adoptirt. Namentlich hat sich die Stadt Croydon ausgezeichnet, indem sie die erste Stadt war, welche nach dem Gesetz iiber offentliche Gesundheitspflege von 1848 baute, es war ferner die erste Stadt, die das System mit runden Rohren annahm, ein System, welches im ganzen Lande die Entwasserungspraxis um- gestaltet hat, und nach der Einfuhrung des genannten Gesetzes die jetzige Verwerthung des Kanalwassers einfuhrte, nachdem man jede denkbare Art der Geruchlosmachung genau und un- parteiisch gepriift hatte. Folgendes Verzeichniss enthalt nun die Stadte bis 1867/68, welche vorzugsweise das in Croydon ausgeprobte System der 54 Kanalwasserbewasserung angenommen und zum Theil ausgefuhrt haben. Nro. Namen der S t a d t e. Bevol- kerung. Wassermenge Bewasserte Flache in Morgen preuss. in Gallonen a 3,966 Quart preuss. in Kubikfussen preuss. 1. Aldershott (Lager) 14000 — 396 2. Alwick (Cannongate) 6000 300000 44000 55—4634 3. Bingley (Yorkshire) 10000 __ — 48—63 4. Birmingham . . . 300000 15000000 2200000 206 5. Braintree .... 5000 — Versuche 32 6. Bury St. Edmunds 13000 — Yersuche — 7. Carlisle .... 21000 843000 123640 127 8. Cheltenham . . 36000 1000000 146667 190 0. Croydon .... t 48000 2-5000000 300* — 730000 570 10. Edinburg .... 180000 — — — 11 Hopwood . . . 2200 — — 10 12. Leek . ... 10500 400000 58667 206 13. Mansfield .... 10000 — — 634 14. Melton-iUowbray . 4500 — Versuche — 15. Milverton . . . 1400 4000 587 6 16. Mold 4000 6000 880 10 17. Nottingham . . . 120000 — Versuche — 18. Oswestry .... 5000 — — 475 19. Rugby 8000 80—200000 11730-29330 634—792 20. St. Thomas Exeter 4500 — 29330 238 21. Swaffham . . . 2000 — Versuche 8 22 Tavistock . . . 8000 — — 14 23. Uckfield .... 1200 — — 6 24. Worthing .... 6000 700000 102667 63 25. Warwick .... 11000 500000 66000 150 Unter den grosseren Projected welche vorzugsweise augen- blicklich in England der Bearbeitung unterliegen, ist namentlich dasjenige der Herren Hope und Napier, das Londoner Kanal- wasser bei Barking Creek (Sammelreservoir, Abbey-Mills) in die Hohe zu pumpen und theils durch Rohren, theils durch offene Kanale an die Ostkiiste nacb den Maplie-Sands, den Foul- ness-Sands und Dengie-Flats zu fuhren, das umfassendste. Diese Diinensande liegen zwischen der Themse und dem Black- water und umfassen ca. ein Terrain von 40000 preuss. Morgen. Obgleich diese Sandflachen die ganze Masse des Kanalwassers aufnehmen konnen, wollen die Unternehmer doch noch in dem hochliegenden Hauptzuleitungskanal hin und wieder Reservoire anbringen, urn anliegenden Giitern nach Wunsch Kanalwasser abzulassen. In dieser Weise wurde sich das Project noch ausser- ordentlich ausdehnen. Nach dem Gesetz vom 19. Juni 1865 hat das Parlament dieser Gesellschaft bedeutende Rechte verliehen. Unter folgenden Hauptbedingungen hat sich dieselbe constituirt: Die Gesellschaft fiihrt den Namen „Metropolis-Sewage- and Essex-Reclamation-Company u . Wahrend der ersten vier Jahre gehort sammtlicher Rein- ertrag der Gesellschaft. Spater wird dieser, nach Abzug der Tilgungsprozente der Actien und der laufenden Unkosten, wie folgt, vertheilt: 1) 5 pCt. Zinsen auf das Actiencapital. 2) Der Mehrertrag von 5 bis 15 Prozent wird zwischen der Gesellschaft und dem Magistrate der Hauptstadt getheilt. 3) Von 15 — 25 Prozent fallt x /4 den Actionaren und der Rest dem Magistrate zu. 4) Was fiber 25 Prozent betragt, wird zur Halfte getheilt. Nach 34 Jahren hat der Magistrat das Recht auf 2 Jahre Ktindi- gung hin diese Bedingungen abzuandern. Die Gesellschaft hat das Recht auf das erforderliche Haupt- Capital von 14000000 Thalern eine zum Betrage von 4666666 Thlrn. 20 Sgr. Obligationen auszugeben. Dies Actienkapital wird in 21000 Certificate getheilt, jedes, zu 666 Thlr. 20 Sgr., die nach erfolgter Einzahlung in Actien von 66 Thlr. 20 Sgr. zerfallen. Der Gesellschaft ist durch das Gesetz gestattet, die Ar- beiteu der Eindeichung, der Wasserleitungen, der Drainage und Bewasserung unter Aufsicht vom Parlament bestellter Commis- sare vorzunehmen, wie auch die dem Meere abgewonnenen Lan- dereien ganz oder theilweise zu verpachten, mit Hypotheken zu belasten, zu verkaufen oder zu vertauschen. Ausserdem unter alien Flussen, Eisenbahnen, Strassen durch oder darfiber hinweg zugehen, mit einem Worte ohne Hindernisse ihr Werk durch- zuffihren. Obgleich nun die Gesellschaft bis jetzt noch nicht an die Ausfiihrung der iibrigens augenblicklich einer Umarbeitung unterworfenen Plane gegangen ist, so hat dieselbe doch die in diesem V/erkchen vielfach herangezogene Versuchsstation die Lodge Farm bei Barking unter Herrn Hope’s Direction 56 gegriindet. Dieselbe umfasst ein Areal von 160 Acres (240 pr. Morgen). Wir komraen noch spater auf die Spezialbeschreibung dieser Farm zuriick. Ferner hat sich aus dieser Gesellschaft noch eine zweite Filialgesellschaft constituirt, welche sich: ,, Essex Sewage Farming Association 41 nennt und welche ebenfalls die Absicht hat, mit Londoner Kanalwasser grossere Flachen unfruchtbaren Landes zu culti viren. Das von Herrn Hope ausgearbeitete Project ist auf die neuesten Erfahrungen begriindet und so interessant und ein- gehend, dass wohl derTendenz dieses Werkchens nichts angemes- sener ware, als dieses Project insbesondere einen dariiberlautenden Bericht hier wiederzugeben. Dieser Bericht gipfelt namentlich darin, dass in demselben das Resume der Culturerfahrungen der Versuchsstation Lodge Farm enthalten ist. Ehe wir jedoch diesen Bericht mittheilen, sei noch eines dritten grosseren Pro- jectes erwahnt, ausgearbeitet vom Ingenieur Herrn Her von Her rtage, das unter dem Namen ,,Thames-Valley-Outfall 44 be- zweckt, das Kanalwasser der Stadte und Ortschaften Richmond^ Petersham, Twickenham, Ham, Teddington, Kingston, Surbiton, LongDitton, ThamesDitton,HamptonWick, Hampton Court, Hampton, Sun bury, Walton, Wey- bridge, Halliford, Shepperton, Chertsey, Addlestone, nach der Woodham Heat h (Woodham-Heide) zu fuhren, um dieselbe in Culturzustand zu versetzen. Es sind dies ca. 1200 preuss. Morgen dunkelsandigen Bodens (Bagshot sands ) im Londoner Tertiarbecken iiber Londonthon (London clay) lagernd. Anch bei diesem Project ist ebenfalls auf den Anschluss zu beiden Seiten des Haupt-Kanals liegender Privatgutsflachen Bedacht genommen worden. Der Totalanschlag dieses Werkes betragt in runder Summe 167,000 Lstr. Das erwahnte Project der ,, Essex Sewage Farming Associa- tion 44 in der Grafschaft Essex 7000 Acres (10,500 Morgen pr.) Land zu acquiriren, die fur ca. 250,000 Lstr. zu haben waren, wird aller Wahrscheinlichkeit nach in diesem Jahre zur Aus- fuhrung kommen. Das Terrain befindet sich noch vollig im Naturzustande, ist von leichter sandiger Beschaffenheit und die abwesenden Eigentliumer haben bis jetzt nicht das geringste fur die Cultivirung desselben gethan. Es ist 30 Meilen (6 deutsche Meilen) von London belegen und grenzt an das eine Ufer der 57 Themse. Jede beliebige Menge von Kanalwasser kann angewen- det werden, ohne dass zu befiirchten ware, dass sich die ab- warts liegenden Nachbarn in irgend einer Weise uber die An- wendung grosser Quantitaten Kanalwassers beschweren konnten, wie es leider noch gar zu haufig ohne Grund und Ueberlegung geschieht. Abgesehen davon, dass dies Terrain an einem grossen Flusse liegt, und noch von drei schiffbaren kleinen Gewassern und zwei Eisenbahnen durchschnitten , von einer dritten am Rande beriihrt wird, so werden im Verhaltnisse nicht allzugrosse Kosten nothig sein, um dieses Stuck Land in eine ungeheure Musterpachtung zu verwandeln. Da das Terrain hohenfrei ist, und man dasselbe zweckentsprechend eintheilen kann, so durfte dasselbe vermittelst der Dampfcultur in kiirzester Zeit einge- richtet werden konnen. Das Cultursystem, welches hier einge- schlagen werden miisste, wurde das sein, dasselbe in gleich grosse Theile (Parallelogramme) zu legen, die durch Fahr- und Pflugstrassen gebildet werden. Erstere wurden gleichzeitig die Linien fur die Hauptkanale der Kanalwasserbewasserung, letz- tere diejenigen fur die kleineren Vertheiler des Kanalwassers bezeichnen. Die Bewasserungssysteme, welche zur Anwendung kommen miissten, wiirden das Beet- und das Furchensystem sein. Auch diese Arbeit wurde vermittelst des Dampfkultivators aus- gefuhrt werden konnen, so dass schliesslich ein Minimum von Pla- nirungsarbeiten in Rechnung kame. Nimmt man an, dass der Dampfkultivator vier Meilen in der Stunde zu vollbringen im Stande ist, so wurde man pro Tag 25 Acres und proWoche 150 Acres fast zur Aufnahme des Kanalwassers herstellen konnen. Nach denErfahrungen der Lodge Farm- Culturen kann fast jede fur das Klima von England passende Fruchtart mit Kanalwasser erfolgreich behandelt werden , ein ungeheurer Gewinn gegen jede andere Diingungsart, da man weiss, dass man pro ton Londoner Kanalwasser nur 1 Penny zu rechnen braucht. In Hinsicht auf den Anbau der verschiedenen Gewachse, bedarf es beinahe schon keines Vorschlages mehr, indessen wur- den einige Bemerkungen beziiglich der gemachten Er fahrun gen hier wohlam Platze sein. Wenn man in erster Reihe das italie- nische Raygr as ins Auge fasst, welches hier vorzugsweise zur Milcherzeugung im grossen Massstabe angebant werden miisste, schliesslich sich aber auch als vortreffliches Futter fur Pferde 58 und Schafe erwiesen hat, so wiirde man einen unzweifelhaft sehr grossen Gewinn erzielen. Der Durchschnittswerth einer Shorthorn-Kuh , tragend gekauft, ist 22 Lstr. Hierfiir erhalt man den besten Stamm und mithin treffliche Milcherzeuger. Entweder konnte man die Kal- ber gleich nach der Geburt zu 30—50 Sh. verkaufen, und nur solche zur weiteren Zucht oder spaterem Racenverkauf stehen lassen, die sich durch gute Eigenschaften auszeiehnen, oder man wiirde dieselben circa 10 Wochen nahren und sie bei einem Futterverbrauch von hochstens 10 Sh., imWerthe zu 6— 8 Lstr. losschlagen konnen. Eine kraftige Shorthornkuh, im Stall gefiit- tert, verlangt taglich l l / 2 cwt. (150 $>) Raygras und kann wah- rend der 9 Monate ihres Milchgebens durchschnittlich 12 — 15 Quart Milch produciren. Nimmt man 12 Quart an, so ware dies eiu Totalertrag pr. Tag von 24 pence. Nun sind 1 x / 2 cwt. Gras zu 15 Shill, pr. ton gerechnet, gleich I3y 2 pence. Fur das Melken und Fiittern von 15 Kuhen ist ein Mann zu 3 Shill, pr. Tag noth- wendig, macht also auf die Kuh ca. 272 pence. Die Streu wiirde zu 1 Penny pro Tag zu veranschlagen sein, jedoch hiergegen den Dungwerth gesetzt, so gleicht sich diese Ausgabe aus. Es blieben nun noch zu berechnen die Zinsen auf Gebaude und Viehstamm und die Entwerthung des Viehstandes. Fur den Stall kann man iahrlich als sehr reichlich 10 Shill, annehmen, ‘ afao 5 Prozent Zinsen von*/ fiir die Kuh 1 Lstr. 2 Shill., fiir die Verminderung, resp. durch Krankheiten des Viehstandes geniigen 10 Prozent anzusetzen. Zusammengenommen wiirde dies eine Totalsumme von 72 Shill, jahrlich geben oder 1 / i pence pr. Tag, oder an Totalkosten der Milcherzeugung mit Einschluss des Graswerthes von 15 Shill, per ton von 18y 2 pence pr. Tag. Der Reingewinn betriige demnach 5% pence pr. Kuh u. pr. Tag. (4 Sgr. 7 Pf.) oder pr. Acre 30 Lstr. 10 Shill. liy 2 pence. (203 Rthlr. 19 Sgr. 7 Pf.) Auf der vorgeschlagenen Pachtung wiirden mindestens 2000 Kiihe aufzustellen sein, welche wahrend der Raygrassaison aus denErtragen von 412 Acres gefuttert werden konnten. Hier- bei bliebe ein Gewinn, zu 15 Shill, die ton Raygras gerechnet, von 30900 Lstr. (206000 Rthlr.) nach Abzug von 4 Lstr. pro Acre fiir Pacht und Steuern und den durchschnittlichen Markt- preis der Milch angenommen, welcher von der Dairy-Reform- 59 Company (Milchkammer-Reform- Gesellschaft), die den ganzen Ertrag der Pachtung kaufen wiirde, sehr gern gezahlt wiirde. Fur die Winterfiitterung der 2000 Kiihe mit Wurzeln, an- genommen, dass taglich 1 cwt. mit anderem Futter gemiseht, pr. Kuh verbrauclit wird, wiirden 120 Acres noting sein; das wiirde einen Reingewinn geben von 8499 Lstr. 10 Sbill. (56666 Thlr. 10 Sgr.) nach Abzug von 4 Lstr. pr. Acre fur Pacht und Steuern. Der Gesammtgewinn fur Winter und Sommer wiirde mithin von 2000 Kiihendurch den Yerkauf von Milch 39399 Lstr. (262660Thlr.) resultirend aus den Produkten von 541 Acres plus der Futterungs- kosten von 90 Tagen nach dem Satz von 4 J / 2 pence pro Tag betragen, dies unter der Voraussetzung, dass wahrend der andern 3 Monate die Kuh entweder aufderWeide oder auf dem Stroh- hofe gehalten werden kann. Hierauf wiirde man 10 Shill, pro Monat rechnen konnen, welche Kosten mehr wie gedeckt sind durch den Yerkauf des Kalbes. NachUmbruch derRaygrasfelder kann man Kartoffeln ohne Anwendung anderer Diingungsmittel folgen lassen, deren Ertrag mindestens auf 40 Lstr. pr. Acre geschatzt werden kann, mithin von 412 Acres 16,480 Lstr. Rechnet man nun 15 Schl. pr. Acre fiir die Kultivirung, 4 Lstr. fiir Samenknollen, 3 Lstr. fiir das Einernten und 4 Lstr. fiir Pacht und Steuern, zusammen 1 1 Lstr. 15 Shill., so bliebe ein Reingewinn von 21269 Lstr. 10 Shill. (141796 Rthl. 10Sgr.)fiir die 824Acres, dieabwechselndzu Raygras und Kartoffeln dienen, nach Abzug von 4 Lstr. fiir Pacht und Steuern macht25Lstr. 16 Shill. 4y 2 pence pr. Acre.(172Rthlr.3Sgr.9pf.) Der Ueberrest des Landes konnte nun zu Marktgemiisen, besonders zu Blumen- und Kopfkohl und zu Runkelriibe n, (Mangoldwurzeln) letztere vorzugsweise zur Bereitung von Man- goldkuchen in Concurrenz mit Leinkuchen benutzt werden. Die Operation zur Herstellnng von Mangoldkuchen ist eine sehr ein- fache und kostet nicht mehr als 30 Shill, die ton, 8 tons rohe Mangoldwurzeln gehoren zur Herstellung einer ton Kuchen. Professor Yolker hat diese Kuchen analysirt und folgende Bestandtheile festgestellt: Saft (Feuchtigkeit) 8,64 Zucker 41,70 Gummi, Extractivmasse und andere im Wasser auflos- liche Stoffe 10,33 Latus 60,67 60 Transport: 60,67 Eiweis (fleischbildende Masse) 8,81 Rohe vegetabilische Faser 21,74 Asche (mineral. Masse) . . . . 8,78 (Stickstoff 1,41) 1007)0 Nimmt man den Ertrag eines Acre Runkelruben zu 70 tons an, so wiirden 8 3 /4 tons Kuchen a 30 Shill, p. ton also 13 Lstr. 2 Shill. 6 pence pr. Acre kosten. Die andern Kulturausgaben durch anzuwendende Dampfcultur auf 2 Lstr. 8 Shill. 4 pence ermassigt, ergeben, dass die Totalkosten pr. Acre, um 8 3 /4 tons Kuchen zu erhalten, 30 Lstr. betragen wiirden; wenn die Kuchen zu 8 Lstr. verkauft wiirden, welches weniger mehr als 2 / 3 des Durchschnittspreises, und viel weniger als 2 /s des gegenwartigen Preises von Leinkuchen ist, so wiirde ein Gewinn nach Abzug der erwahnten 4 Lstr. Pacht und Steuern von 39 Lstr. 19 Shill. 2 pence (266 Thlr. 1 1 Sgr. 8 Pf.) ubrig bleiben. Man konnte hier nun einwenden, dass mehrere Ernten Runkelruben nicht auf ein und demselben Boden hinter einander wachsen konnten. Obgleich dies bei gewohnlichem Stalldung oder kiinstlicher Diingung wohl nicht gewagt werden konnte, so ist es doch bei dem vorziiglichen und mannigfaltigen Dunggehalt des Londoner Kanalwassers vollstandig moglich. In der That sind bei den Versuchen am Barking Creek sehr schone Riiben auf reinem Seesande mehrere Jahre hinter- einander mit keiner andern Diingung als Londoner Kanalwasser gewachsen, wahrend auf der Lodge Farm unter anderem in diesem Jahre (1869) die dritte voile Weizenernte auf ein und demselben Stiicke Land geschnitten werden wird. Ein anderes Gewachs, welches mit Kanalwasserbewasserung von grosser Wichtigkeit fur die Zukunft werden wird, ist die Zuckerrunkelriibe. Zuvorderst bleibt noch abzuwarten, ob dieseArt sich ebenso nutzbar fiirFiitterungszwecke erweisenwird, als die, welche unter dem Namen Mangoldwurzel bekannt ist. Wahrscheinlich wird man finden, dass sie sowohl im rohen Zu- stande, sowie auch als Kuchen verarbeitet besser ist, als die andere, doch sind weitere Erfahrungen noch abzuwarten. Vor- laufig ist es genugend sie fur ihren gewohnlichen Zweck namlich fiir die Zuckerfabrikation im grosseren Massstabe anzubauen. Der Preis, welcher gewohnlich von den Zuckerfabrikanten ge- zahlt wird, schwebt zwischen 16 — 20 Shill, pr. ton. Diese beiden 61 Ziffern schliessen hinsichtlich des Preises die Extreme in sich. Die Zuckerriibe steht in der Grosse der Mangoldriibe nach, es ist jedoch kein Grund vorhanden, weshalb man das Totalgewicht pr. Acre, da die Ruben in kleineren Zwischenraumen gesetzt werden konnen, mit Anwendung von Kanalwasser nicht auch erreichen konnte. Die Praxis spricht dafiir, denn auf der Lodge Farm verhielt sich die Ertragsdifferenz zwischen beiden Sorten Ruben nur noch im Jahre 1868 wie 7V 2 : 10. Ebenso ergab eine Reihenfolge von Analysen, die Professor Volker gemacht hat, hinsichtlich des Zuckergehaltes derselben folgende giinstige Resultate : In Holland gewachsene Zuckerriiben 9 Prozent, in Suf- folk gewachsene 9,61, in Schottland 9,73, letztere beiden auf zusagendem Boden in guter Cultur, auf der Lodge Farm mit Londoner Kanalwasser bewasserte 13,19. Wenn man den oben angenommenen niedrigsten Preis als realisirbaren Werth annimmt, und die Ausgaben dieselben sind, wie bei Runkelruben, so wiirde mit Abzug der Pacht und Steuern, immernoch ein Gewinn yon 39 Lstr. 1 Shill. 8 pence pr. Acre zu berechnen sein (260 Thlr. 20 Sgr. 8 Pf.) Konnte man nun durch Anlegung von Zuckerfabriken das Material selbst verarbeiten, so wiirde der Gewinn ein erheblich grosserer sein. Blumenkohl konnte jahrlich in grosser Ausdehnung ge- pflanzt werden, da er immer einen vortrefflichen Markt findet. Rechnet man auf 4 Quadrat-Fuss eine Pflanze oder 2y 4 Pflanzen auf die Quadratyard, so wiirden 10890 Pflanzen auf den Acre fallen. Bei gross und voll gewachsenen Stauden variirt der Preis zwischen 2 — 6 pence auch noch hoher das Stuck. Nimmt man den niedrigsten Preis an, so wiirde man im Grossen und Ganzen pr. Acre 90 Lstr. 15 Shill, erhalten. Hiervon waren abzuziehen 5 Lstr. fiir das Kanalwasser, 4 Lstr. fur Pacht und Steuern, 15 Shill, fiir die Kultivirung, 1 Lstr. fiir die Saat und die Verpflan- zung und 5 Lstr. fiir das Einernten und die Marktversendung, blieben netto 75 Lstr. p. Acre. (500 Thlr). Kohl und zwar Busch elkohl (Broccoli) kann auf einen Fuss Entfernung von einander gepflanzt werden, was 9 Pflanzen auf die Quadrat-Yard, mithin 43520 pr. Acre ausmacht. Zur geeigneten Zeit zu Markte gebracht, wiirde derselbe 1 Shill, fiir ein Dutzend Biindel, jedes Biindel zu 5 Pflanzen im Durchschnitt 62 bringen, dies macht eine Bruttoeinnahme von 36 Lstr. 5 Shill, pr. Acre und ca. einen Nettogewinn von 26 Lstr. pr. Acre (163 Thlr. 10 Sgr.) Andere Gemuse, wie Savoyer-Kohl Weiss- und Ro thkohl werden zu demselben Preise wie Blumenkobl ver- kauft, erfordern jedoch etwas mehr Platz, 2— 3 Fuss pro Pflanze, und bringen je nach der Zeit, in welcher sie zu Markt geschickt werden, einen ahnlichen Gewinn wie Blumenkobl. Im Gleichen verhalten sich Mo hr rub en, Pastinaken, Turnips, Wasser- riiben. Sellerie wachst, mit Kanalwasser behandelt, da sie an und fur sich eine Wasserpflanze ist, zu einer gewaltigen Grosse empor. Sie giebt einen Bruttogewinn wie Blumenkohl, erfor- dert jedoch etwas mehr Arbeit. Artischocken namentlich Jeru- salemer Artischocken, Spar gel und See kohl wachsen sammtlich, mit Kanalwasser behandelt, ausserordentlich uppig, jedoch lassen sich bestimmte Ertrage, in Geld ausgedriickt, im Verhaltniss auf die bedeutenden Auslagen fur ihre Cultur noch nicht genau an- geben. Zwiebeln gedeihen mit Kanalwasser besonders gut. Bei dieser Frucht sei erwahnt, dass man sie am vortheilhaftesten im Februar saet und im August ausnimmt. Sie geben eine Brutto- einnahme von 50—60 Lstr. pr. Acre; wenn man Buschelkohl oder Broccoli folgen lasst, so wiirde dieser noch zu einer Zeif, welclie vortheilhaft fur den Markt ware, namlich zwischen Weih- nachten und April, einzuernten sein. Lattig kann zu 12 Stuck Pflanzen auf die Quadrat-Yard gezogen werden und man wird in den meisten Fallen wahrend des ganzen Sommers V 2 , 3 A bis 1 penny fur das Stuck erhalten. Sie wachsen in kiirzester Zeit und erfordern nur wenig Arbeit. Spinat kann als irgend eine Vorfrucht behandelt werden, ist immer iiberall sehr begehrt und hinterlasst einen bedeutenden Reingewinn. Erdbeeren brin- gen nach den Versuchen auf der Lodge-Farm 100 Lstr. pr. Acre (600 Thlr. 20 Sgr.); auch fiir Stach elbeer en, Hi in b eeren, Johanisbeeren ist das Kanalwasser anwendbar, namentlich in einer Zeit der Diirre und anhaltenden trockenen Ostwindes. Welsche Bohnen konnen im trockensten Wetter zur grossten Ueppigkeit gebracht werden. Ihr Geschmack und ihr Aeusseres ist denen, welche auf gewohnliche Art gewonnen werden, weit iiberlegen, so dass diese Frucht am Markte bedeutenden Absatz fande. Sie erhalten eine lichtgriine Farbe und eine zarte von alien Fasern freie Struktur. Der Ertrag pr. Acre ist natiirlich schwankend, sowohl was das wirkliche Erzeugniss an- 63 betrifft, als auch hinsichtlich des Preises. Gewohnliche Bohnen so wie auch Erbsen sind noch hinsichtlich der Benutzung des Kanalwassers zweifelhaft. Es ist jedoch iiberhaupt fraglich, ob der Mehrgewinn fiir diese Friichte besonders gross ist. "'Mai s kommt vortrefflich zur Reife; es ist anzurathen, denselben mog- lichst friih auszulegen, und im Anfange seines Wachsthums mit Kanalwasser reichlich zu ernahren. Jede Pflanze verlangt vier Quadratfuss Raum, das giebt 2y 4 Pflanzen auf die Quadrat- Yard. Rechnet man drei Kolben zu 500 Stuck Samen auf jede Pflanze, oder 7 Kolben auf die Quadrat- Yard, so macht das auf dieselbe 3500 Samen. Ein Maiskorn wiegt ca. 7 Gran, mithin gehen 1000 Korner auf ein Pfuud oder drei Pfund auf die Quadrat - Yard. Ein Bushel wiegt ca. 60 Pfund, deshalb konnte man 1 Bushel auf je 20 Quadrat-Yard oder 30 Quarter 2 Bushel (160 Schffl.) pr. Acre rechnen. Zu 30 Shill, den Quar- ter giebt er das billigste Futter fiir Pferde, Rindvieh und Schweine, welches uberhaupt nur gekauft werden kann. Die Halmspitzen, welche vor dem Reifen der Korner mit der Sichel abgeschnitten und in kleine Biindel zusammengebunden werden, sind ebenfalls, namentlich im geschnittenen Zustande, ein ange- nehmes Futter fiir Pferde und Rindvieh, so dass der Werth dieser Frucht pr. Acre mehr als doppelt so gross ist, als der- jenige vonWeizen. Auch mit Flachs sind auf der Lodge-Farm Versuche gemacht und mit Kanalwasser eine vortreffliche Qua- litat erzeugt w r orden. Die Bruttoertrage schwanken zwischen 35 bis 40 Lstr. Dass sich nun nach diesen Erfahrungen eine ausserordent- lich hohe Rente fiir die Unternehmer herausstellen wird, unter- liegt wohl kaum dem geringsten Zweifel. — Gehen wir nun zur Beschreibung einiger vom Verfasser besuchter vorzuglicher An- lagen iiber. 1. Croydon, Beddington und Sud-Norwood. Das Kanalwasser der Stadt Croydon, unmittelbar an Lon- don gelegen, riihrt aus einer Einwohnerzahl von augenblicklich 60,000 Seelen her. Da die Stadt mit einer ausgezeichnetenWasser- leitung versehen ist, die sehr reichlich Wasser giebt, so kann man die Menge des taglichen Kanalwassers auf ca. 700000 Kubikfuss durchnittlich veranschlagen. Dasselbe tritt aus den Kothschleu- sen, in welchen die festen unloslichen Stoffe auf die schon be- 64 schriebene Art von den gelosten fliissigen getrennt werden, theils in einen offenen Kanal, theils in gemauerte runde Kanale in die Bewasserungsfelder ein. Diese Flachen bestehen erstens aus einem Areal von 33 Acres, das der Stadt gehort und von der- selben bewirthschaftet wird, zweitens aus einem Areal von 37 Acres, welches ini Jahre 1867 von der Stadt fur 10 Lstr. per Acre in Pacht genommen ist. Drittens hat die Stadt zu Bed- dington noch 315 Acres, augenblicklich wohl schon gegen 400 Acres, da in diesem Jahre noch bedeutende Landereien hinzu- kornmen sollten, zu einem Preise von 4 Lstr. pr. Acre gepachtet, diese Flache aber schon imJahr 1861 an einen Herrn Mar riage fur 5 Lstr. pr. Acre verpachtet. Da dieser Pachtcontract im nachsten Jahre ablauft, so wird jedenfalls die Stadt auch diese Landereien unter Leitung ihres ausgezeichneten Ingenieurs Herrn B. Latham in eigene Bewirthschaftung nehmen. Die Anlagen zu Siid-Norwood bestehen erst seitdem Jahre 1864. Der mit Croydon grenzende Ort steht unter dem Gesund- heits-Amte zu Croydon. Das Kanalwasser tritt unmittelbar an der Stadt aus dem Hauptrohr in eine nur kleine Kothschleuse (siehe Tafel II. Fig. 1.) eigentlich in eine Art von Filterhaus, wo es durch einen durchlocherten mit gebrannten Thonstucken bedeckten Boden aufwarts steigt, die festen Bestandtheile zuriick- lasst, und sofort danacli in die Berieselungsflache eintritt. Das Areal betragt im Ganzen ca. 45 pr. Mrg. und ist nur 18 pr. Ruthen von dem nachsten Hause und 100 Ruthen von dem dichtest bevolkerten Theil des Ortes entfernt. Die Menge des taglichen Kanal wassers kann auf 30000 Cubikfuss taglich geschatzt werden. Unterziehen wir nun zuerst die Bodenbeschaffenheit dieser Bewasserungsareale einer geognostischen Untersuchung, so finden wir dieselben bezuglich ihrer Durchlassigkeit bis auf einige Stellen in Siid-Norwood ganz wie fiir genannte Benutzung geschaffen. Als unmittelbare Umgebung Londons liegen die Areale im sogenannten Londoner Tertiarbecken (Eocan), dessen geognosti- sche Schichtenfolge mit geringer Abwechselung fast iiberall dieselbe ist. (Tafel IV. Fig. I.). Die oberen 2 — 3 Fuss bestehen aus einem lehmigen Menggebilde, dessen Gehalt an reiner Thon- masse sehr verschieden ist, je nachdem namlich der nun folgende von 3 — 20 Fuss machtige Sand ( Bagshotsand ) mit dunnen grau- griinen Mergellagern gemischt, sich der Oberflache nahert oder 65 nicht. Dieser Sand in England auch Gravel (Gerolle) geuannt, ruht in verschiedener genannter Machtigkeit auf Londontlion (London clay), einer zahen braunen oder auch blaugrauen Thon- masse, haufig durch Lager von ovalen oder unregelmassigen Massen mergeligen Kalksteines durchsprengt. (Septarien). Zu- weilen haufen sich diese Kalksteine so bedeutend an, dass sie vollstandige Schichten darstellen. Die Machtigkeit der London- thonschichten ist ebenfalls keine gleichmassige , und schwer wegen der grossen Verschiedenheit in Zahlen auszudrucken. An vielen Stellen durchragt nun dieser Londonthon die liber ihm liegenden Kiesschichten (Gravels), wie z. B. auf dem Be- wasserungsarealzu Siid-Norwood, bildet hier Ackerkrume und erzeugt sehr undurchlassige Feldpartien. Der Londonthon streicht nun entweder in machtige Lager eines dunkelblauen oder schwarzgrauen Thons ein (Plastic clay), welche mit weissen, bald starkeren, bald schwacheren Adern eines sehr feinen und reinen Quarzsandes durchzogen sind, oder liegt auf den letzten Schich- ten des Tertiarbeckens, auf dem sogenannten Thanetsande, einer sandigen Kiesmasse mit Conglomeraten durch griin und schwarz gefarbte Thonschichten zusammengehalten, welche auch mitunter in ganz reinem Zustande den Sand durchsetzen. Das Liegende ist Kreide. Es leuchtet nun ein dass die unter der Ackerkrume liegenden Kiesschichten ( Gravels ) eine iibermassige Wasseran- stauung im Untergrunde nicht leiden, sondern eine so vortreff- liche natiirliche Drainage bilden, dass trotz der Jahr aus Jahr ein sie iiberstromenden Wassermassen doch nirgend Spuren einer Verwasserung gefunden werden. In Sud - Norwood dagegen haben die oben erwahnten undurchlassigen Partien drainirt wer- den miissen, nur kam es mir so vor, als wenn diese Drainage mit der Zeit noch eine bedeutend grossere Ausdehnung erfahren musste. Uebrigens fliesst das Wasser aus den Drains, wenn sie die vorschriftsmassige Tiefe haben, vollkommen rein und klar ab. Trotzdem bei meinem Besuch dieser Anlagen in den Mo- naten Juli und August 1869 eine vierwochentliche Durre voran- gegangen war, ein Theil des Areals aber in der Bewasserung stand, so konnte ich keinen CJnterschied sowohl der Temperatur als Klarheit dieses Drainwassers gegen anderes aus einein nahen nicht bewasserten Drainageterrain herausfinden. Die Bewasserungsanlagen in Croydon und Beddington sind nach dem Furchensystem (pane and gutter) angelegt. Die 5 66 Hauptmasse des Kan alwassers wird vorlaufignoch durcheinen offe- nen Graben, obwohl diese Anordnung abgeandert werden soli, und fur Beddington durcheinen entsprechend grossen unterirdischen Kanal, nach den Bewasserungsfeldern hingeleitet. Diese Felder theilen sich in zwei Hauptabtheilungen. Die erste Abtheilung aus 6 Bewasserungsflachen bestehend, umfasst 70 Acres in eigener Bewirthschaftung durch die Stadt. Die zweite Abtheilung zu Beddington jetzt circa 350 Acres Land umfassend, in 12 Bewasse- rungsflachen eingetheilt, ist verpachtet. Die erste Abtheilung liegt 220 Ruthen von der Stadt Croydon und 490 Ruthen vom Rathhause derselben entfernt. Das Querprofil des offenen Zuleitungsgrabens enthalt im Durchschnitt 6 Quadrat-Fuss und fiihrt ungefiihr in der Secunde 8 Kubikfuss Wasser, mithin in 24 Stunden 691,200 Kubikfuss. Das wiirde ungefahrauf 100 Ruthen Lange nur 4y 2 ZollGefall bean- spruchen. Aus diesem offenen Zuleitungskanal tritt des Kanal- wasser in die erste Abtheilung ein. Der Rest, inclusive des ab- gerieseltcn Wassers dieser ersten Abtheilung wird durch einen 3 Fuss im Lichten haltenden, 3y 2 Fuss tief liegenden geraauerten runden Kanal eine weite Strecke, nach Schatzung circa 250 Ruthen, durch ein noch nicht fiir die Bewasserung eingerichtetes Stuck Land nach der zweiten Abtheilung hiniiber gefuhrt. Die fiir die regelmassige Vertheilung des Kanalwassers angelegten Ver- theilungsgraben haben durchschnittlich 2 Quadratfuss Querpro- fil und wechseln im Gefalle von 1: 156 bis fast zur horizontalen Lage. Die Bewasserungsrinnen haben eine Neigung je nach dem Terrain von 1: 42 bis zu 1:330. Sie liegen sammtlich im steilsten Gefalle; die durch die Rieselrinnengebildeten Bewasserungsflachen variiren zwischen 30 — 66 Fuss Breite (66 Fuss = 1 chain). Wie schon bekannt, wird die Bewasserung bei diesem System durch periodisch eingesetzte Staubrettchen geregelt. Das sammtliche abgerieselte klare Kanalwasser vereinigt sich schliesslich in einen Entwasserungsgraben, welcher in das Fluss- chen Wandle fliesst. Die Muller, deren Miihlen durch dieses Fllisschen getrieben werden, forderten in der ersten Zeit der An- lagen, und setzten es auch durch, dass dasselbe anderswo hinge- leitet wurde. Spater jedoch, als sie sich von der durchaus reinen Qualitat des abgerieselten Wassers genauer uberzeugt hatten, anderten sie ihre Ansichten und erbaten sich nicht allein das Wasser auf ihre Kosten wieder in den Bach zu leiten, sondern 67 waren aueh Willens, mit Riicksicht auf die vermehrte Wasser- menge, noch eine Pacht dafiir zu zahlen. Bei der sehr giinstigen natiirlichen Lage des Terrains, wo nur wenig Planirungs - Schwierigkeiten zu uberwinden waren, kosteten die Bewasserungseinrichtungen gegen andere Anlagen dieser Art verhaltnissmassig wenig. Sie betrugen nur pr. Mor- gen 40 — 50 Thaler. Ausser einem kleinen Felde Runkelriiben. und Gemiise waren fast sammtliche Flachen im Verhaltniss ihres Rotationswechsels mit italienischem Raygrase bestanden. Das Gras in verschiedenen Grossen stand durchweg iippig und ohne Tadel. Dasselbe wird 6 — 7 mal jahrlich geschnitten und zwar in einer Hohe von 3, 6 J / 2 — ; 4 Fuss, theils gleich nach dem Schnitt in frischem Zustande verkauft, theils, was unverkauflich, zu Heu gemacht. Der Ertrag pro Acre und Schnitt betragt 10 Lstr. also bei durchschnittlich 6 Schnitten 60 Lstr. (400 Thlr.) pr. Jahr und pr. Acre. Die Anlagen bei Siid-Norwood (Siehe Tafel II. Fig. I) sind theils nach demFurchen-, theils nach dem Beet- System gebaut. Die Vertheilungsgraben sind bier theil weise durch 1 Fuss im lichten haltende Rohren ersetzt, ebenso die Rieselrinnen zum Theil mit den Patent-Sewage- Vertheilungs- rohren*) des Herrn B. Latham (Siehe Tafel III, Fig. 7, 8, 9) belegt. Die Neigung der Felder betragt durchschnittlich 1 : 80 bis 1 : 1000; auch hier wurde nur italienisches Raygras angebaut. II. Die Lodge-Farm. Diese in vorliegendem Werkclien schon vielfacli erwahnte Versuchsstation unter Direktion des Herrn W. Hope zu Pars- loes-Castle, ] /4 Meile von der Lodge-Farm gelegen, ist aufKosten der „M etr op olis - S e wage- C o mp a n y a errichtet worden. Sie liegt 2y 4 deutsche Meilen von London und eine halbe Meile voin Bahnhofe Barking. Das Areal betragt 160 Acres (240 Morgen Magdeb.) Das zur Bewasserung verwendete Kanalwasser erhalt dieselbeaus dem Hauptcanal von der Pumpstation Abbey Mills bei London, zum Reservoir zu Barking. Es bildet den 300sten Theil des Kanalwassers von London nordlich der Themse. Bekanntlich wird seit Anfang dieses Jahrzehnts das aus den Kanalen Londons kommende Kanalwasser nichtwie friiher inner- halb der Stadt, sondern 3--3y 2 deutsche Meilen nnterhalb Lon- *) B. Latham’s patent pipes for the distribution of sewage , gefertigt von H. Doulton & Co., London, Lambeth. 5 * 68 don-Bridge in die Themse dureh sogenannte Intercepting Sewers langs des Flusses laufende Hauptcanale, bis zur Pumpstation ge- leitet. Ein Theil des gesammten Kanalwassers geht mit natiir- lichem Gefalle zur Themse, der andere wird dureh Maschinen in die Hohe gepumpt und dann ebenfalls nach der Themse ge- fiihrt. In Abbey Mills arbeiten in einem grossen Maschinen- raume 8 Maschinen von zusammen 1140 Pferdekraft mit 16 Kesseln und 16 Dampfpumpen bei einem taglichen Verbrauch von 120 Ctr. Kohlen. Das Reservoir fur das Kanalwasser liegt unter dem Maschinenhaus und enthalt 350000 Kubikfuss. Ehe das Kanalwasser zu den Pumpen gelangt, wird es uberRoste ge- fuhrt, in welchen alle darin befindlichen, verhaltnissmassig nur wenigen festen Stoffe aufgefangen werden. Diese festen Stoffe werden desinficirt und zu Composthaufen gelagert. Die Einrich- tung dieser Pumpstation kostet 1750000 Rtlilr. Das bei Barking-Creek abgezweigte eiserne Zuleitungsrohr fiihrt das Kanalwasser auf den hochsten Punkt der Farm, hateinenDurch- messer von ca. 1 Fuss und wird von Gerusten getragen. Eine Pumpe hebt dasselbe aus dem Hauptkanal, bevor es in das Hauptreservoir von Barking-Creek fallt, in das gusseiserneRohr auf eine Hohe von 34 Fuss. Friiher wurde das Kanalwasser, auf dem Bewasserungs- Areal angelangt, in ein Reservoir gefangen, in welchem sich noch die mitgefuhrten zu tragen Stoffe absetzen sollten, augenblicklich wird es aber, wie es aus demKanale kommt, in die Felder ebenfalls dureh offene gusseiserne Rinnen, auf Gerusten getragen, vertheilt. An einer jeden besonderen Bewasserungsflaehe befindet sich am Zuleiter eine Schiebevorrichtung, die das Kanalwasser dureh einen holzernen viereckigen 1 Fuss im Durchmesser haltenden Fasten in die Vertheilungsgraben fliessen lasst. Diese Einrichtung, das Kanalw r asser zu vertheilen , gehort nicht zu den besten, denn, abgesehen von der Kostspieligkeit der Einrichtung selbst, den fortwahrenden Reparaturen an den Gerusten, Fasten, Schie- bern etc., bedarf auch die Leitung desselben in den halbrun- den Rinnen einer ununterbrochenen Aufmerksamkeit, da zu leicht Storungen im Laufe desselben vorkommen konnen. In den Vertheilungsgraben von kleinerem Querschnitt sind anstatt der Schleusen und Staubrettchen, gusseiserne Vertheiler mit re- spective 2, 3, 4 Schiebern angebracht, (Tafel IV. Fig. 2) welche das Kanalwasser zweckentsprechend vertheilen. Diese Anordnung ist entschieden dauerhaft und sehr praktisch, da diese Vertheiler 69 transportabel sind und an passenden Orten wieder eingesetzt werden konnen. Was nun die Bodenbeschaffenheit des Bewas- serungsareals anbetrifft, so weicht dieselbe als im Londoner Tertiarbecken liegend, nicht von der bereits in Croydon beschrie- benen ab. Im Allgemeinen kann sie jedoch als bedeutend geringer angesprochen werden. In einigen Feldern treten die Gravel- schichten so intensiv zu Tage, dass eine Bewasserung beinahe unmoglich wird und grosse Massen Wasser ohne rechten Nutzen durch diesen mehr wie durchlassigen Boden verschlungen werden. Yon den beschriebenen Bewasserungssystemen kommen der Hangbau (catchwork), das Furchensystem (pane and gutter) und am ausgebreitetsten der Beetbau zur Ausfuhrung. Bei dem letzteren werden die Riicken sehr geschickt durch Pflugen her- gestellt, und, nachdem der Untergrundspflug vorgearbeitet hat, der Boden nach der Bewasserungsrinne hin in die betref- fende Form gebracht. Einige Arbeiter planiren dahinter die Riicken, nachdem das Terrain vorher nivellirt und abgesteckt war, und geben das nothige Gefalle. Die Breite der Riicken variirt sehr. Die schmalsten*), die ich antraf, enthielten 48 Fuss, die breitesten 100 Fuss. Ebenso verschieden waren auch die Gefalle. Sie wechselten von 1:24 bis 1 : 120. In neuerer Zeit hat man angefangen, die Beete durch den Dampfpflug aufzuwerfen. Diese Yersuche sind ausgezeichnet ge- gliickt, es wird dadurch viel Arbeit und Zeit gespart, der ganze Bau in den Kosten verringert, und man ist namentlich im Stande, grosse Flachen in kiirzester Zeit herzustellen, ein grosser Ge- winn bei der ofteren Umarbeitung, welche die Bewasserungs- flachen bei jedesmaligem Fruchtwechsel erleiden miissen. In Bezugnahme nun auf die Ertrage der Lodge-Farm, so war Herr W. Hope so freundlich, mir seine bisherigen Erfah- rungen in ausgedehntem Maasse mitzutheilen ; ich habe dieselben auch bei den verschiedenen Fragen der Kanalwasserbewasserung wiedergegeben, so dass es kaum mehr nothig sein wird, hierauf zuriickzukommen, indessen sei noch schliesslich, als zu dieser Beschreibung gehorig, eine kurze Skizzirung der Bewirthschaf- tung der Lodge-Farm gestattet. Den grossten Theil des Areals nehmen Felder mit ital. Raygras ein, welches theils in grunem Zustande in derUmgegend *) In Parsloes-Castle , wo Herr Hope ebenfalls ein Terrain zu Kanal- wasserbewasserung eingerichtet hat, waren dreiruthige Riicken mit Gefallen von I : 15 angeordnet. 70 verkauft oder an das Vieh derFarm verfiittert wird. Hierbei sei noch erwahnt, dass das grime Gras je nach seiner Beschaffen- beit in jungerem oder bereits alterem Zustande, d. b. knrz vor oder erst nach der Bluthe, ungescbnitten oder mit Strohhacksel vermischt gefiittert wird. Im Wesentlichen ist die Farm auf Milchgewinn basirt. Es wurden im Jahre 1869 90 Kuhe gebalten, sehr schbne Exemplare der Shorthorn-Ra\juA\Q (der praktische Riesel- wirth , Leipzig 1840 , S. 123 ) in Betreff der Frage nach der Wasser- menge, welche der Hauptzuleitungsgraben fuhren soil, Folgendes: ,,Diese Frage beschaftigt die Praxis sehr selten, denn alle Theorie iiber die Menge des zur Bewasserung nothigen Wassers scheitert an der Wirklichkeit; in dieser Beziehung aussern un- zahlig viele Umstande ihre Einwirkungen auf diesen Gegenstand. So viel Versuche ich auch angestellt habe, so bin ioh doch zu 7 98 keinem sicheren Resultate gelangt. Meine Erfahrungen hieruber werde ich § 139 naher mittheilen. u An der citirten Stelle fiihrt der Verfasser beispielsweise an, dass durch einen Graben, welcher P /4 Kubikfuss Wasser in der Secunde lieferte, 13 preussische Morgen nachhaltig berieselt worden sind. Der Tag hat 86400 Sekunden und der preussische Morgen 25920 Quadratfuss; die in einein Tage zugefuhrte Wassermasse betragt mithin 86400 mal l 1 /* Kubikfuss, welche sich auf 13 mal 25920 Kubikfuss ver- theilen; dividireri wir nun das erste Prodnkt durch das zweite, so enthalten wir die als Bruchtheil eines rheinischen Fusses ausgedriickte tagliche Irrigationshohe, welcher Bruchtheil dann noch schliesslich durch Multiplication mit 12 in Zoll verwandelt werden kann. Es ergiebt sich somit die gesuchte Stauhohe 5 . 86400 . 12 = V'/is Zoll. 4.13. 25920 Das ist in runden Zahlen 4 Zoll oder 10 Centimeter. L. Y T in cent ( der rationelle Wiesenbau , Berlin 1846, Seite 5, 16 u. ff.) bezeichnet zuvorderst als leitenden Gcsichtspunkt, dass das Material, was zur Production des Grases gedient hat, durch die mit dem Wasser herbeigefiihrten Stoffe ersetzt werden soil. Als geeignete Quantitaten bezeichnet er dann je nach der Breite der Riicken y 4 — 1 Kubikfuss Wasserzufluss in der Secunde auf den Magdeburger Morgen; der Verfasser nimmt fur 2 Ruthen breite Rucken 1 Kubikfuss an, fur 8 Ruthen breite Rucken da- gegen */, 4 Kubikfuss und setzt iiberhaupt den Wasserbedarf pro Morgen der Riickenbreite umgekehrt proportional; es geht dar- aus hervor, dass er auf Rucken von gleicher Lange, aber ver- schiedener Breite, wenigstens innerhalb der obigen Grenzen, dieselbe Wassermenge aufgebracht wissen will. Das angegebene Maximum entspricht einer taglichen Stauhohe von 86400 . 12 = 40 Zoll. 25920 oder 104,6 Centimeter; das Minimum betragt den 4ten Theil davon, das ist 10 Zoll oder 26,15 Centimeter. Hafener (der Wiesenbau in seinem ganzen Umfange . Reut- lingen und Leipzig 1847, S. 43) gicbt die/Irrigationshohe direkt an ; 3 — 5Zollnennter ein gutes, 6 — 8 Zoll ein sehr giinstigesVerhaltniss und 1 — 2 Zoll konnennuruntergewissenVoraussetzungenempfohlen werden, mithin also! Zoll gleich 2,86 und 8 Zoll gleich22,92 Centim. Fries (Lehrbuch des Wiesenbaus, Braunschweig 1850, Seite 99 136) rechnet als Minimum eine Stauhohe von 1,08 hessische Fuss oder 27 Centimeter. Welgener (prakt. Unterricht in Wiesenwasserungsanlagen } Glogau 1844) nimmt den Wasserbedarf so wold dem Gefalle als aucli der Riesellange proportional ein. Diese Riesellange ist beim Riickenbau der doppelten Gesammtlange der Rucken gleich, beim Hangbau gleich der einfachen Getammtlange der Hange; bei Wiesen gleicher Art stehen die auf den Morgen berechneten Riesellangen im umgekehrten Verhaltniss, wie die Breite der Rucken oder Hange. Der Wasserbedarf auf 1 Ruthe Riesellange soli bei 2 Zoll Gefalle auf die Ruthe V540 Kubikfuss betragen, bei 10 Zoll Gefalle aber Vios Kubikfuss. Denken wir nun in dem ersteren Falle 8 Ruthen breite Rucken, so ergiebt sich eine Rie- sellange von 45 Ruthen und ein Wasserbedarf von l /i2 Kubikfuss pr. Morgen. Dagegen wiirden 2 Ruthen breite Rucken bei 10 Zoll Gefalle eine Riesellange von 180 Ruthen und einen Wasser- bedarf von 1 2 /s Kubikfuss pr. Morgen in einer Sekunde liefern. Jenem Minimum entspricht eine tagliche Irrigationshohe von 3Ys Zoll oder 8,66 Centimeter; diesem Maximum aber eine Irri- gationshohe von 66 2 / 3 Zoll oder 173 Centimeter. Nehmenwir nun die englischen Erfahrungen iiber die anzu- wendende Menge des K anal was sers, so wiirden 5000 tons, wenn man den Kubikfuss Kanalwasser zu 70 Pfd. Zollgewicht rechnet, pr. preuss. Morgen 90135 Kubikfuss liefern, welches eine jabr- liche Stauhohe von 109,192 Centimeter oder eine tagliche Stau- hohe von 0,299, ausmachen wiirde. Jedenfalls vei schwindend klein gegen die so eben ermittelten Wassermengen. Hinsichtlich einiger Angaben iiber die Yerdunstung des Wassers bei Bewasserungen, so nimmt man fur unsere norddeut- schen Verhaltnisse im Allgemeinen an, dass fortwahrend feucht erhaltener Boden im Stande ist, 26 Zoll zu verdunsten und 13 Zoll durch dieFliisse abzufiihren, also zusammen 39 Zoll zu ver- brauchen. Nach Bidaut betragt die Jahresverdunstung 1,4 Meter oder beinahe4 1 / 2 Fuss also bedeutendmehr als die obige Annahme. Yi n c e n t bestimmt nach angestellten Messungen die W asser- menge ( Ann ale n der Landwirthsehaft Bd. XL.), welche durch Yerdunstung und Einsaugung des Bodens in 24 Stunden ver- loren geht, ein Mai gleich 114, das andere Mai gleich 126,8 Kubikfuss pr. Magdeb. Morgen. Auch der zweite grossere Yer- lust wiirde, auf ein ganzes Jahr berechnet, nicht mehr als 7* 21,4 Zoll 25920 betragen, mithin noch nicht den soeben genannten Verdunstungs- hohen gleichkommen. Das Verhaltniss, in dem die verschiedenen Bodenarten durch den Wasserlaufangegriffen werden, stellt sich nach Morins Untersuchungen fur die verschiedenen Geschwindigkeiten fol- gendermassen: feinster Topferthon bei gewohnl. Thon (Lehm) Sand Kies (kleine Gerolle) . Geschiebe Schiefer Geschichtete Felsen Ungeschichtete Felsen 7,6 Centimeter 15,2 30,5 60,9 122,0 152.0 183.0 305.0 ~ ca. 99 99 99 99 99 •» 99 — Fuss 3 „ 6 1 2 4 5 6 10 Zoll 99 99 99 99 99 99 99 Bringt man nun mit gehoriger Beachtung des Umstandes, dass sich diese so ungemein divergirenden Zahlen bezuglich der Wassermenge auf wesentlich verschiedene Grossen beziehen, die- selben in entsprechende Gruppen, so gelangt man zu folgenden Zusammenstellungen, welche zwar nicht mehr enorme, aber immer noch recht erhebliche Differenzen zeigen. Interessant ist der Ver- gleich mit den in England zur Verwendung kommenden Kanal- wassermengen, w elche in der dritten Tabelle berechnet sind. Differenz im Verhaltniss von 1 : 60. Autor^ Land, auf welches sich die Angabe bezieht. Effective tagliche Irrigations- hohe*) Bemerkungen. Jaubert Spanien 8 Centimeter Maximum. Burger Lombardei 60 Winterwiesen. 5 ) 11 Sommerwiesen. Regnault Frankreich 112 Ufer der Moselle. Keelhoff Belgien 26 Patzig Deutschland 10 Vincent 5J 26 Minimum. » J5 105 Maximum. Hafener 2,86 „ Minimum. Fries 9) 27 >» Welgener 95 9 » *) Wasserverbrauch in einem Tage, dividirt durch die Flache, welche gleichzeitig mit frischem, d. h. vorher noch nicht benutztem Wasser bewas- sert wird. I 101 n. Differenz im Verhaltniss von 1 : 40. Autor. I Land. Jahrliche Irrigations- hohe*). j Bemerkungen. Jaubert | Spanien — Centimeter — Russel Lombardei 109 Sommerwiesen. Regnanlt Frankreich 38 Roussillon. Keelhoff Patzig Vincent j Hafener Fries Welgener | Belgien Deutschland 53 33 33 33 138 600 1560 172 1620 540 jl 1 /2 Kbf. Wasserin |f d. Secunde60Tage > und 2-malige Be- l nutzung d.Wassers. ] Minimum. m. Kanalwassermenge n in England**). Kanalwasser pr. Acre tons Kubikfuss pr. Morgen. Jahrliche Irrigationshohe. Centimeter. Tagliche Irrigationshohe. Centimeter. 500 9013 10,919 0,029 800 14421 17,470 0,047 1000 18027 21,838 0,059 2000 36054 43,676 0,118 3000 54081 65,514 0,177 4000 72108 87,352 0,236 5000 90135 109,192 0,299 6000 108162 131,030 0,354 7000 126189 152,866 0,413 8000 144216 ' 174,706 0,472 9000 162243 196,542 0,531 10000 180270 218,384 0,598 Nimmt man fur Grasland (Ital. Raygras) 5000 tons jahr- lich, also •= 0,299 durchschnittliche tagliche Irrigationshohe an, so betragt incl. der Winterrieselung in 180 Tagen die effective tagliche Irrigationshohe 0,606 Centimeter. Es unterliegt nun keinem Zweifel, dass wir fur das nordliche Deutschland bei Grasland -Bewasserungen etwas hoher greifen rmissen, als in England, wo die jahrliche Regenmenge eine bei *) Jahrlicher Wasserverbrauch dividirt durch die Gesammtflache. **) Fur 1 Acre = 1,58494 Morg. Magdeb., 1 Kubikfuss Sewage gleich 70 Pfd. Zollgewicht. 102 weitem grossere ist, als bei uns. Sehen wir ferner ab von dem mit anderem Wasser nicht vergleichbaren Dunggehalt des Ka- nalwassers, so miisste man doch mindestens dem durchschnitt- lichen Minimum der angefiihrten Mengen nahe zu kommen suchen. Wir erhalten nun aus Vorstehendem zur Normirungder an wirkli- chen Wasserungstagen aufzubringenden Quantitaten Irrigations- hohenvon2,86 — 10,46 — 62,76Centimeter, das waren 0,027 — 0,1 — 0,6 Kubikfuss Wasserzufluss pr. Secunde und Magdeburger Morgen, also Spielraum genug, um den obwaltenden besonaeren Verhalt- nissen Rechnung zu tragen. Herr B, Latham spricht sich in seinem Gutachten uber die projectirte Kanalwasserbewasserung auf den Dunen in Weichsel- miinde bei Danzig dahin aus, dass er 50 Zoll Kanalwasser (bei trockenem Wetter) zur Verwendung pr. Jahr gelangen lassen will. Diese 50 Zoll entsprechen einer jahrlichen Irrigationshohe von 130,8 Centimeter. (6000tons Kanalwasser aber waren = 131,03 Centimeter Irrigationshohe pr. Jahr oder in 1 80 liieseltagen gleich einer effectiven taglichen Irrigationshohe von 0,727 Centimeter oder 0,00693 Kubikfuss Wasserzufluss pr. Secunde und Morgen. Auch bier muss uns fur die Zukunft die Erfahrung die lei- tende und allein richtige Autoritat sein, besonders aber, da sich diese Bewasserungen nicht allein auf Grasbau, sondern auch auf eine Reihe anderer Nutzpflanzen erstrecken sollen. Wir treten nun zu dem letztenPunkt unserer vergleichenden Besprechung: Welche Grraser und Fruchtarten eignen sich mit Rucksichtauf dieklimatischen Verhaltnisse zurKanal- wasserbewasserung im nordlichen Deutschland, und wie sind dergleichen B ewasserungswirthsch aften ein- z urichten? Es ist wohl kein Grund vorhanden, weshalb wir die engli- schen Erfahrungen, beziiglich der Anwendung von Kanalwasser, zur Berieselung naturlicher Wiesen in dem Sinne, wie wir uns eine Rieselwiese denken, nicht sehr beachten und uns diese Erfahrungen zu Nutze machen sollten. In diesen Erfahrungen liegt ein wichtiger Fingerzeig, da sie uns auf diejenigen Graser aufmerksam machen, welche durch die Anwendung des Kanal- wassers eine ungewohnliche Ueppigkeit und somit die Uebermacht uber die ubrigen Gewachse des naturlichen Wiesenbestandes er- langt haben. Hieraus geht hervor, dass wir dieselben fur den 103 kiinstlichen Futterbau vorzugsweise zu benutzen haben, da sie anerkanntermassen auch fur die hiesigen klimatischen Verhalt- nisse unbedingt passen. Die bereits mitgetheilten Veranderungen in den Bestanden der Wiesengraser und Pflanzen durch die wie- derholte Anwendting des Kanalwassers, das damit verbundene Yerlorengeben einer spateren gut bestandenen und nabrhaften Weide haben auch bereits in England von Seiten der Landwirthe so manchen Vorschlag in der Benutzung des Kanalwassers fur diesen Zweck hervorgerufen. Da, wo die Lage passend ist, ware naturlich das von den Feldern abgerieselte Kanalwasser seines grossten Dunggehaltes beraubt, noch mit grossem Vortheile fur die natiirlichen Wiesen zu benutzen. Anderseitig hat man gewisse Apparate vorgeschlagen, welche auf mechanischem Wege eine theilweise Reinigung des Kanalwassers von den grobsten Sink- stoffen zur Benutzung auf natiirliche Wiesen vornehmen sollen. Es ist mir in England nun nicht moglich gewesen, einen solchen Apparat in Thatigkeit zu sehen, jedoch versaume ich nicht, die Beschreibung ernes solchen, und zwar den, fur einen Herrn John H art patentirten, der Vollstandigkeit halber hier wiederzugeben. Derselbe ist nebst seiner Anwendungsmethode in Description of a new method of treating the sewage of Tewns , London: Simki?i Marshall & Co. 1869 a abgebildet und beschrieben. Von vorn herein stellt Herr Hart, um den Anfechtungen in sanitarer Beziehung entgegenzutreten , die Behauptung auf, dass die Atmosphare das beste Reinigungsmittel abgiebt und dass es entschieden wahr, aber im Ganzen genommen nicht allgemein bekannt ware, dass ubelriechende Fliissigkeiten uber hinreichend ausgedehnte Flachen der Wirkung der Luft aus- gesetzt, im Stande sind, alle ihre faulenden und ungesunden Stoffe abzugeben. (?) Dies vorausgesetzt, kommt er spater bei Besprechung der Anwendungsmethode des Kanalwassers darauf zuruck, dass man namentlich fur die Verwerthung dessclben fiir natiirliches Wiesenland (meadow land) und fur Gemiise- garten ein Mittel in der Hand haben musse, um das Kanal- wasser nach Belieben in verschiedener Starke in Betreff seines Gehaltes zur Verwendung zu bringen. Hierzu schlagt er folgen- den Apparat vor (Tafel IV. Fig. 3). Zunachst ist die Grosse dieses Apparates fur das Kanalwasser von 1000 Binwohnern berechnet. 104 Auf einem horizontalen Bette a kreisrund, von Ziegel- steinen mit Cementdecke oder Asphalt, 63 Fuss im Durchmesser, in dessen Mittelpunkt ein eisernes Zuleitungsrohr b das Kanal- wasser entweder mit naturliehem Gefalle oder durch Pumpwerke unterwarts heranbringt, werden drei concentrische Walle c d e 6 Zoll hoch und 2 Fuss 6 Zoll stark, ebenfalls von Ziegelsteinen mit Cementdecke, eonstruirt; die Oberflache dieser Walle ist genau horizontal, die Zwischenraume 9 Fuss breit. Die Kanalwassermasse, wie sie aus der Stadt fliesst , tritt nun, nachdem sie jedoch schon vorher von den unzersetzbaren Stoffen durch Siebvorrichtungen befreitist, durch das Zuleitungs- rohr b in den Apparat und fiillt den ersten Baum unmittelbar um das Ausflussrohr an. Ist derselbe angefullt, so tritt das Wasser fiber den Wall c in den Raum zwischen c und d , hier gelangt dasselbe wegen der grosseren Peripherie dieses Raumes zur Ruhe und wird die dickeren Stoffe absetzen, sodann tritt es liber d in den dritten Raum zwischen d. und e und wird hier abermals einen gewissen Absetzungsprozess durchmachen, bis es in den ausseren Kreis f gelangt, der beliebig gross gemacht werden kann, je nachdem man den Absetzungsprozess verlangern will, und welcher nur durch einen kleinen Wall von fettem Thon begrenzt wird. Aus diesem Kreise kann nun die Masse zum be- liebigen Verbrauch in die Felder gefuhrt werden, um den Rei- nigungsprozess zu vollenden. Um nun einzelne Theile des Apparates von den abgesetzten Sinkstoffen reinigen zu konnen, ohne den Betrieb ganz zu storen, werden ebenfalls durch Thonwalle g Abtheilungen gebildet, und durch Aufpacken von Thonrollen auf den circularen Wallen der Eintritt des Kanalwassers in diese Abtheilungen verhindert. Zum ganzlichen Ablassen des innerhalb der Zwischenraume befind- lichen Wassers beim Reinigen derselben befinden sich in den Wallen einige kleine Schleusen. Die abgesetzte Masse wird mit Erd- und Aschezwischenlager zu Compost verarbeitet und entsprechend verwendet. Herr Hart legt nun hauptsachlich Werth auf diesen Apparat bei Verwendung des Kanalwassers fur natufliches Wiesenland und demzufolge beschreibt derselbe noch eine angeblich eigenthumliche Bewasserungsmethode, aus der ich jedoch keine Eigenthiimlichkeit herausfinden kann und dieserhalb iibergehe. — 105 Was nun den kiinstlichen Grasbau anbetrifft, so wird man, wollte man sich genau nach den englischen Erfahrungen richten, das italienische Raygras (Lolium italicum) zuerst ins Auge zu fassenhaben. Horen wir nun zuvorderstaus demGutachtendesHerrn Ingenieur B. Latham (Gutachten iiber die Kanalisation von Danzig, erstattet vom Ingenieur Latham in der Commissions- sitzung des Kanalisationsausschusses am 25. Januar 1869 in Danzig, Berlin 1869, L. Burckhard) das hierauf Beziigliche : „Ich bin iiberzeugt, class jede Quadratruthe des mit Kanal- wasser behandelten Terrains (das Kanalwasser von einer Person auf 2,85 Quadratruthen Landes gerechnet), 1,75 Centner italieni- schen Raygrases pro Jahr produciren wird. Das Kanalwasser wird fur jeden Einwohner (im Durchschnitt von Mannern, Wei- bern und Kindern) in Danzig ungefahr 5 Centner Gras im Jahre hervorbringen. Diese sind aequivalent einein Centner Heu, wel- ches zu einem Thaler pro Centner gerechnet, den Werth des Kanalwassers proKopf betragt. Es ist demnach der reale Werth der Kanalisirung einer Stadt von der Grosse Danzigs mit 70000 Einwohnern auf 70000 Thlr. pro Jahr anzunehmen. Hiervon mussen natiirlich die Betriebskosten , die Kosten des Pumpens und das Capital, welches zur Vorbereitung des Landes, fur die Einrichtung der Viehstalle und zur Bestreitung anderer specieller Ausgaben erforderlich ist, abgerechnet werden, ebenso die Kosten fur die Umwandlung des Grasertrages in Heu, wenn es nicht auf andere Weise verwendet werden kann. Letz- tere allein konnen auf Ys des Totalbetrages der angenommenen Preise geschatzt werden. Sobald die Farm in vollig ordnungsmassigen Betrieb ge- setzt ist, werden die Betriebskosten verhaltnissmassig gering sein; um aber oben angegebenen Werth zu erzielen, muss die Bewirth- schaftung so eingerichtet sein, dass alle drei Jahre eine neue Ansaat von Raygras erfolgt; da die alte innerhalb dieser Periode ausartet und durch. werthlosere Graser verdrangt wird. Die von mir gegebene Schatzung der Hohe des voraussichtlich zu erlan- genden Ertrages ist viel niedriger, als bereits in England wirk- lich erzielt worden ist — so sind z. B. in in Norwood wahrend des Jahres 1868 gegen 8 Ctr. Gras pro Kopf der Bevolkerung gewachsen und gegen 2 Thaler pro Kopf als Werth der Ernten angenommen. Dies Norwood-Land war zu 6 Thlr. pro Acre (— 285 Quadrat-Ruthen) verpachtet, ehe die Berieselung mit 106 Kanalwasser eingerichtet wurde, dagegen haben die durch die Berieselung hervorgerufenen Ernten wahrend des Jahres 1868 200 Thlr. pro Acre eingebracht, wahrend die Ausgaben fur Aus- saat, Schneiden, Bewirthschaftung und Verwaltung 38 Thlr. pro Acre betragen. Es bleiben somit 162 Thlr. pro Acre iibrig, die als Pachtzins und Gewinn gelten konnen. Wird der Werth des Landes in seiner urspriinglichen Hohe von 6 Thlrn. pro Acre angenommen, so ist ein Reingewinn von 156 Thlrn. pro Acre durch die Verwerthung des Kanalwassers erreicht. Indem ich die Quantitat des voraussichtlich durch Verwer- thung des hiesigen Kanalwassers zu erzielenden Ertrages schatzte, habe ich wegen der Bodenbeschaffenheit und ebenso wegen der Dauer der strengeren Witte rung bedeutende Reductionen ge- rnacht; doch glaube ich mich in Bezug auf diese Punkte zu Gunsten der Verhaltnisse geirrt zu haben, da ich finde, dass auf Ihren Wiesen in gewohnlichen Jahren zwei Heuernten gezogen werden konnen. — Mehr erreichen wir in England auch nicht. Da wir aber in England gefunden haben, dass die Quantitat und das Gewicht der gewohnlichen Ernten durch die Kanalwasser- Anwendung iminer vervierfacht worden ist, so wird meiner Mei- nung nach auch hier dasselbe Resultat als erreichbar befunden werden u . Es unterliegt keinem Zweifel, dass das italienische Raygras auch bei uns mit zu den sich am schnellsten entwickelnden Gra- sern, wenn es passende Bodenverhaltnisse und Pflege findet, ge- hort und im Stande ist, bedeutende Ertrage abzuwerfen. Aus diesem Grunde setzte ich auch seine Monographic und seine Kulturanspriiche vor die im IV. Abschnitt mitgetheilten englischen Kulturerfahrungen. Ob sich dasselbe aber auch als mehrjahriges Gras bei uns dauernd halten wird, dariiber habe ich vorlaufig noch meine Bedenken, da die Erfahrungen dariiber ungiinstig lauten. Nach meinen 6 Jahre hintereinander zu Hohenstein bei Danzig gemachten vielfaltigen Anbauversuchen, namentlich mit Grasern (,, Erfahrungen und Mittheilungen auf dem Gebiete des rationellen Pflanzenbaues in Folge der Anbauversuche in den okonomischen Versuchsgarten zu Hohenstein und Stublau. Jahrgang 1859 — 1862. Danzig bei A. W. Kafemann, 1863 u .), bin ich zu folgenden Re- sultaten gekommen. 107 Ich habe das italienische Raygras vorzugsweise, theils allein, theils im Gemenge mit anderen hochwachsenden Grasern in gros- serem Massstabe an^ebaut und stets im ersten Jahre die befrie- digendsten Resultate erzielt (siehe Seite42), jedoch ist es mir nie- mals gelungen, dasselbe allein gebaut, trotz der sorgfaltigsten Pflege und Bedeekung, z. B. mit langem Pferdedung, so durch den Winter zu bringen, dass ich im nachsten Jahre im Stande war, dasselbe fur eine weitere Benutzung stehen zu lassen. Und doch ist das Gras, wie alle durch Kulturver- edelten Arten und Abarten des Lolium perenne, mehr- jahrig, aber sehr stark geneigt, je nach den gegebe- nen Vegetati onsbedin gungen, sowohl in der Ge- stalt, als auch in der Ausdauer abzuweichen. Aus diesen mir wohlbekannten Griinden will ich dessen Anbau und Kultur fur die Kanalbewasserung nicht unbedingt an- fechten, da man nicht wissen kann, in wiefern im Verhaltniss zu unseren langeren und kalteren Wintern diese Bewasserung im Stande ist, auf die Vegetation und die Lebensbediirfnisse dieses Grases erstarkend einzuwirken. Dagegen habe ich gefunden, dass dasselbe im Gemenge mit Knaulgras, Timothe und Klee sich auffallend besser gehal- ten hatte, ja sogar im zweiten Jahre uppiger und blattreicher er- schien, als im ersten Jahre, trotzdem zu beriicksichtigen ist, dass sich auch die genannten Pflanzen im zweiten Jahre in ihrer vollen Entfaltung befinden. Ueberhaupt glaube ich mich nicht zu irren, wenn ich zu behaupten wage, dass das Grasgemenge zusammen pas- sender hochwachsenderGraser fur unsere klimatischen Verhaltnisse beziiglich der Kanalbewasserung den Vor- zug haben wird. Schon die englischen Erfahrungen weisen uns auf diesen Umstand hin, wenn wir uns erinnern, dass der urspriingliche Graserbestand reicher natiirlicher Wiesen dnrch die wiederholte Bewasserung mit Kanalwasser verloren gegangen ist und nur einige hochwachsende Arten, wie z. B. das Knaulgras, der Wie- senschwingel, leider aber auch das Honiggras und die Quecke in reichlichen Bestanden iibrig geblieben sind. Da nun nament- lich die beiden ersteren Graser von grossem landwirthschaftlichen Wertli sind und mit dem italienischen Raygrase im Gemenge vortreffliches Futter liefern, sie auch stets unsere Winter ver- 108 tragen, so ware durch sie ein Ersatz gefunden, der die Unsicher- heit des italienischen Raygrases aufzuheben im Stande ware. Ganz besonders ist das Knaulgras (Dacty Us glomerata) (Taf. VI.) fur den kurz dauernden Futterbau, also fur die Wechselwirthschaft geeignet. Es ist streng feuchtigkeitsliebend, bestockt sich sehr voll und stark, treibt viel Blatter und Stengel und liefert unter unseren einheimischen Grasern das meiste Futter. Seine Triebkraft im Friihjahr ist bedeutend und gleichmassig. Nach der Bluthe dagegen lasst der Ertrag der Wurzelblatter nach, wenn man es nicht vorher schneidet, jedoch geht derNachwuchs schnell vor sich. Es wird sowohl im griinen Zustande, sowie auch als Heu vom Vieh gern gefressen und seine Nahrungskrafte sind betrachtlich. Man hat dem Knaulgrase hier und da vorge- worfen, dass es in Biischeln aufwachse und leicht grob werde. Allein diesen Vorwurf kann man jedem Grase machen, wenn es nicht dick genug angesaet ist, urn den Boden durchaus zu decken, und wenn man es nicht hinlanglich abschneidet oder auf Weiden abhiiten lasst, um immer jungen Nachwuchs zu erzielen. Der dtinnen Aussat und dem starken Tiebe dieses Grases muss man es daher zuschreiben, wenn es massig und hart wird. Nachst diesem eignet sich der Wiesenschwingel ( Festuca pratensis ) (Taf. VII.) am meisten fur unsere Zwecke, er ist ebenfalls feuchtigkeitsliebend, von hohem Wuchse und friihzeitigem Ertrage. Er macht einen betrachtlichen Theil im Bestande alter reichen naturlichen Wiesen aus und namentlich kann er als Hauptreprasentant der hochwachsenden Graser auf bewasserten Wiesen angesehen werden. Fur die Wechselwirthschaft eignet er sich im Gemenge mit Knaulgras vorzuglich, weil sich beide Graser erfahrungsmassig gleichzeitig entwickeln. Im Ertrage steht er ersterem nach, beinahe im Verhaltniss wie 2:1. Nimmt man nun zu diesen Grasern das italienische Raygras, so wird dasselbe vermoge seiner Schnellwuchsigkeit, da es beide im ersten Jahre (iberholt, auch im ersten Jahre dominiren, und den Haupttheil des Ertrages bilden, dagegen im zweiten Jahre von den andern beiden iiberflugelt werden und im dritten Jahre den- selben ganz den Vorrang lassen, wenn man nicht vorzieht, den kiinstlichen Grasbau wie gewohnlich nur auf 2 Jahre auszu- dehnen. Ob man nun noch zu diesem Gemenge andere hoch- wachsende Graser hinzuzieht, wie z. B. das englische Raygras (Lolium perenne ) , das Timothegras ( Phleum pratense ), bleibt 109 noch Versuchen iiberlassen, da man nicht wissen kann, wie sich diese Graser zur Kanalbewasserung verhalten. Nach meiner An- sicht kann man zusammenpassende gleichwachsende Graser zur Erzielung gesicherter Ertrage nicht genug vereinigen. Das Verhaltniss nun, in dem man die vorgeschlagene Misehung der Menge des Samens nach ansaen miisste, wiirde sich bei der bis jetzt constatirten Unsieherheit des italienischen Raygrases, wie 4 Raygras : 5 des Gemisches verhalten miissen. In einem Pfunde gut gereinigten Samens befinden sich vom italienischen Raygrase im Mittel 200000, vom Knaulgrase 350000, vom Wiesenschwingel ebenfalls 200000 Stuck Samenkorner. Ganz besonders aber empfiehlt sich fur die Ansaat der Graser fur die Kanalbewasserung von Hause aus ein dichter Stand, dass keine unbereclitigten Schmarotzer, wie namentlich in schwereren Bodenarten, die Quecke und in leichteren in Ge- meinschaft mit derselben auch noch vorzugsweise das Honiggras (Holcus lanatus ) und der gemeine Windhalm ( Agrostis vulgaris) Platz greifen. Diese Graser werden in England, und mit Recht, als die gef ahrlichsten Unkrauter angesehen, da sie im Stande sind, durch die grosse Dungkraft des Kanalwassers machtig im Wachsthura angeregt, in kurzer Zeit den edlen Grasbestand arg zu beschadigen. Ich.glaube nicht fehlzugreifen, wenn ich 50 — 60 Pfd. Aus- saat pr. Morgen recline, obwohl von den in Rede stehenden Grasern in den meisten Fallen der Samen zum grossten Theil gut keimfahig ist. Hiernach wiirde sich das Verhaltniss der Aus- saat folgendermassen stellen: O Die Menge Aussaat pro Morgen Misehung besteht aus: der Samen in 1 Pfund. 10 Pfund 50 Pfund 60 Pfund 90 Pfund Italienischem Raygras . . 200000 i h 22^ 27 40$ Knaulgras 350000 n m I 15 22$ Wiesenschwingel 200000 ii 15 -1 18 27 10 I 50 60 90 Italienisches Raygras allein miisste mit 80 Pfd. pr. Morgen an- gesaet werden. Was nun den Anbau anderer Friichte, wie Wurzelfriichte (Hackfriichte) und Gemiise aller Art u. s. w., also nicht iiber- winternder Pflanzen anbetrifft, so glaube ich, dass kein 110 Grund vorliegt, diese Friichte nicht mit ebenso gutem Erfolge zu bauen wie in England. Hierbei kann ich nicht unterlassen, auf die grossen Vortheile hinznweisen, welche die Gemiisegartner in der Nahe grosser kanalisirter Stadte haben wiirden, wenn sie fur ihre Kulturen das Kanalwasser benutzten. Naehst dem grossen Vortheil, welcher hier fur die Abnehmer selbst auf der Hand liegt, wiirden auch noch die Communen durch angemessenen Verkauf des Kanalwassers einen nicht zu unterschatzenden Ge- winn haben, der inoglicherweise die Unterhaltungskosten der Kanalisationswerke zum grossen Theil decken konnte. Ich glaube, die Zeit ist nicht mehr fern, in welcher man fur diesen kostbaren Stoff grosse Geldsummen bieten wird, um ihn nur haben zukonnen. Nach den englischen Erfahrungen hatte man von je 100 Einwohnern ca. iy 2 — 2 l / 4 Morgen Land fur die ununterbrochene Aufnahme des Kanalwassers zu beschaffen, das wiirde fur eine Stadt von 70,000 Einwohnern, zu2y 4 Morgen gerechnet, abgerundet 1600 Morgen Flache betragen. Nirnmt man nun den geringstenSatz bei ausreichender Wasserversorgung, inclusive Regen- und Spul- wassers der Kanale, zu 4y 4 Kubikfuss Kanalwasser pro Kopf durchschnittlich an, so wiirden taglich 297500 oder in runder Summe 300000 Kubikfuss und jahrlich also danach 109500000 Kubikfuss zur Verfugung stehen. Im ersten Augenblicke erscheint es sehr schwierig, diese Massen Jahr aus Jahr ein, ohne das Terrain einerseits mit der t Zeit in einen gewissen Zustand der Verwasserung zu bringen, anderseits dieselben auf stets zweckentsprechende Weise fiir die Pflanzen, ohne des Guten zu viel zu thun, verwenden zukonnen. Jedoch muss man annehmen, dass ca. 60Procent dieser Massen theils durch Verdunstung, Absorption durch die Pflanzen und durch Ablaufen in gereinigtem Zustande in die Fliisse etc. ihren j natiirlichen Gang gehen, die andern 40 Prozent in den Boden sinken, sich entweder bei geniigender Durchlassigkeit in dem- selben verlieren oder durch ordnungsmassige angelegte Entwas- serungen (Drainage) ebenfalls absorbirt werden. Wirthschaftlich tritt aber die Frage an uns heran, wie ist eine derartige Bewasserungswirthschaft einzurichten, umzu alien Jahreszeiten, die zustromende Menge des Kanalwassers richtig und folgerecht zu verwerthen? Ill Selbstredend spricht bei einer solchen Einrichtung in Be- treff des technischen Ausbaues der FI ache zurBewasse- rung der Fruchtfe 1 d e r, Rotation u. s. w. die Lage, das Terrain, Bo den giite und Klim a entscheidend mit. In rich- tiger Beurtheilung und Wiirdigung dieser Verhaltnisse wird man auch bei uns sehr bald jene grossen Resultate herausfinden , die sich in England in einer von Jahr zu Jahr grosseren Vollkom- menheit entwickelt haben. Halten wir uns zunachst an das so eben aufgestellte Bei- spiel der wirthschaftlichen Einrichtung eines Areals von 1600 Morgen, so wiirde sich etwa folgende Einrichtung empfehlen, wenn Lage und Bodenverhaltnisse nicht allzu ungiinstig sind. Nach den vorhergehenden Erorterungen mit Beriicksichti- gung der englischen Erfahrungen und unserer klimatischen Ver- haltnisse wiirden wir folgende Rotation wahlen. Das ganze Areal wird in 8 Schlage oder Hauptabtheilungen, jede Abtheilung zu 200 Morgen Grosse, eingetheilt (Unterabthei- lungen fur die Bewasserung je nach Lage des Terrains). Die Fruchtfolge wiirde mit Riicksicht auf die Bewasserung und Erzielung grosser Futtermassen etwa folgende sein miissen: 1. Grasgem enge (italienisches Raygras, Knaulgras, Wiesen- schwingel etc., im Herbst gesaet; zweijahrig; im zweiten Jahre von Ende August bis October Weide). 2. Hackfriichte (Kartoffeln; wahrend ihrer Vegetations- periode ohne Bewasserung). 3. Italienisches Raygras (einjahrig; im Friihjahr gesaet). 4. Getreide (Weizen, Roggen, Gerste, Hafer; wahrend ihrer Vegetationsperiode ohne Bewasserung). 5. Grasgemenge (zweijahrig wie No. 1). 6. Hackfriichte (Runkelriiben, Turnips und Gemiise aller Art). Hiernach wiirde sich mithin folgender Umlauf herausstellen: «\ J ahr x: CO 1871 1872 1873 1 1874 | 1875 1876 1877 1878 1 Grasgom. Grasgem, Kartoffeln. Ital. Raygr. Getreide. Grasgem. Grasgem. Hackfrcht. 2 Grasgem. Kartoffeln. Ital. Raygr. Getreide. Grasgem. Grasgem. Hackfrcht. Grasgem. 3 Kartoffeln. Ital. Raygr. j Getreide. j Grasgeir.. Grasgem. Hackfrcht.) Gra.sgcin. Grasgem. 4 [tal. Kaygr. Getreide. Grasgem. Grasgem. Hackfrcht. Grasgem. 1 Grasgem. Kartoffeln. 5 Getreide. Grasgem. Grasgem. Hackfrcht. Grasgem. Grasgem. Kartoffeln. Ital. Raygr. 6 Grasgem. Grasgem. Hackfrcht. Grasgem. Grasgem. Kartoffeln. Ital. Raygr. Getreide. 7 Grasgem. Hackfrcht. Grasgem. Grasgem. Kartoffeln. Ital. Raygr. Getreide, Grasgem. 8 Hackfrcht. Grasgem. j Grasgem. Kartoffeln. Ital. Raygr. Getreide. Grasgem, Grasgem. 112 Mit Beachtung nun unserer jahrlichen Regenmengen und mit Rucksicht auf den nicht imraer gleichmassigen Dunggehalt des Kanalwassers musste man 180270 Kubikfuss Kanalwasser pro Morgen und pro Jahr rechnen. Diese Menge ware gleich einer jahrlichen Irrigationshohe von 218,384 Centimeter, einer taglichen von 0,598 Centimeter und fur 180 Bewasserungstage einer taglich effectiven von 1,213 Centimeter, das macht einen Wasserzufluss von 0,0116 Kubikfuss pr. Secunde und Morgen. Die jahrlich zu erwartenden 109500000 Kubikfuss Kanal- wasser wiirden sich also in einem Jahre folgendermassen ver- theilen und sich diese Vertheilung entsprechend von Jahr zu Jahr wiederholen: No. des Schlages Grosse 1 des- selben. Morgen. | Benennung der Fruchte. Jahreszeit der Bewasserung. Bewas- serungs- tage. Ion Ganzen Kubisfusse. 1 Winter 90 8890027 1 200 Grasgemenge, 1. Jahr j Sommer u. Winter 180 17780054 2 200 desgl.,. 2. Jahr Sommer 60 5926685 3 200 Hackfruehte, Bewasserung vor der Bestellung Winter 120 11853370 ( Winter 120 11853370 4 200 Italien. Raygras, einjahrig Sommer 120 11853370 5 200 Getreide, Bewasserung vor der Bestellung Winter 30 2963342 ( Winter 90 8890027 6 200 Grasgemenge, 1. Jahr j Sommer u. Winter 180 17780054 7 200 desgl., 2. Jahr Sommer 60 5926685 8 200 Hackfruehte, Bewasserung wahrend derVegetationsperiode Sommer 42 5783016 1600 1 1092 | 109500000 Natiirlicherweise lasst sich diese vorgeschlagene Rotation nach Massgabe der obwaltenden Verhaltnisse noch mannigfach modificiren, namentlich wenn sich unser Klima unter anderem auch fur den mehrjahrigen Anbau des italienischen Raygrases eignen sollte. Ueberhaupt kann sich Verfasser nur augenblick- lich Vorschlage erlauben, da uns fur das nordliche Deutschland noch jede Erfahrung fehlt und wir nur auf die Parallele der englischen Erfahrungen mit den heimischen Verhaltnissen ange- wiesen sind. Jedoch das muss selbst dem Laien aus dem Mitgetheilten klar werden, dass wir uns mit Einfiih rung des so einfachen natur- gemassen Verfahrens — der Bewasserung an der Schwelle einer 113 Zeitepoche befinden, die nicht nur dem Ingenieurwesen, der Land wirthschaft, der Agriculturchemie, sondern aucli der National-Oeconomie eine dankbare und lohnende Auf- gabe zum Heile der Menschheit stellen wild. Und wie lange wird es noch wahren, ehe die Magistrate grosser deutscher Stadte in diesem Sinne vorgehen werden, wie lange werden noch grosse Summen £iir Experimente fortgegeben werden, deren schliessliche Anwendung ini Grossen doch immer auf unuberwindliche Schwierigkeiten stossen wird, da ihnen die natiirliche Einfachheit feblt? Welch eines gesegneten Andenkens wiirden jene Manner, die berufen sind, das Wohl ihrer Mitbiirger zu berathen und zu fordern, von der Nachwelt gewiss sein, wenn sie in Anerkennung einfacher Naturgesetze ode wiiste Landstriche in bluhende Fluren umwandelten — da sie damit nicht allein das korperliche Wohl ihrer Mitinenschen sicher zu stellen, sondern auch den National- wohlstand auf nicht geahnte Weise zu heben vermogen. Mit dem Wunsche nun, dass diese Zeit nicht rnehr feme sei, schliessen wir diese Arbeit und werden uns glucklicb schatzen, wenn sie von unseren geehrten Lesern ebenso aufgefasst wird, wie es im Sinne des Verfassers lag, nainlich der Menschheit im Allgemeinen zu niitzen. Druck von A. W. Kafemann in Danzig. ov . ;v. t v fHC H8MRT OF JHE UIMVSaiilVV ap ll l ihois Tafel I (WE I 18 M 8 Y Of SHE UKIVMSM'* ft Ilf UBBARY or m UWVI.RSITY of (UlMflls TafelE f Hf I.URMIT 8F ifil M MBR4RY OF THE Qfflmvt of fuiMis Details you Sctileiisen fin I Jug Latham's Patent- S ewa ge -Verth e i lu n f s Rohm Tafel IV. Fig-1- Londoner Tertiarbecken . I‘Ka 1 k steins chi rh ten g. PlnsticcJaij, Grenier jilastThon li. feiner meisser Ogiavssand i. Tha net sands thonige Conglomerate j frofil Jiekerhrieine a.MenggeMde l. Lelnn 1 bBagshotsands (h'aocl Kie / c * Merge! sc/i i ch ten d.Lon don ring, Londcntlion eJfalkstdne ( Septan at) Jfreide. Gr©> Oo Tafel Y. Jtalienisclies Raygras, Lolium i tali cum. fHE LIBRARY Of THE HHiwgissiTt OF II.LIROIS fHE LIBRARY or IHE H" IW FR$ITY OF ILLINOIS m LIBRARY Of THE UNlVEfttltf m fMJNOIS y Die Canalwasser- (Sewage) Bewasserung in Deutschland. Vorschlage zum rationellen Grossbetrieb. Nach vierjahrigen Erfahrungen und Beobachtungen auf der Canalwasser - Berieselnngs - Station zu Schwintsch bei Danzig AD. FEGEBEUTEL, Civil-Ingenieur in Danzig. Bremen. Verlag von M. Heins ills. Die Canalwasser- (Sewage) Bewasserung in Deutschland. Vorschlage zum rationellen Gross betrieb. Nach vierjahrigen Erfahrungen und Beobachtungen auf der Canalwasser - Berieselungs - Station Schwintsch bei Danzig von AD. FEGEBEUTEL, Civil-Ingenieur in Danzig. -wv/v\j®iAA/vv Danzig. Verlag und Druck von A. W. Kafemann. 18 - 74 . I n h a 1 1. Seite Einleitung 1 1. Die Canalwasser- (Sewage) Bewasserung zu Schwintsch irn Land- kreise Danzig 3 2. Die Canalwasser-Berieselungs-Praxis im grossen Maassstabe . 15 1. Das Terrain 16 2. Bodenverhaltnisse, Formation und geognostisch - agronomische Untersuclning 17 3. Reinigung des Canalwassers durch den Boden 20 4. Der specielle Bewasserungsbau 22 5. Die Wassermenge 23 6. Gefalle der Zuleiter 26 7. Hang- und Riickenbau 26 8. Das Furchen system 27 9. Lage, Breite, Lange der Hange 27 10. Gefalle derselben 28 11. Entwasserung und Drainage 29 12. Graseinsaat 33 13. Berieselung des Graslandes 33 14. Heuwerbung 34 15. Heuwege 34 16. Berieselung nacli dem Grassclmitt 34 17. Grasgemenge 35 18. Vertheilungsrinnen 36 19. Dauer des Graslandes 36 20. Hackfruclitbau mit Bewasserung; die Futterrunkel 36 21. Yersuelie mit der Zuckerrunkel 37 22. Versuche mit Kohlarten 39 23. Futterwerth des Canalwasser-Rieselgrases 39 24. Winterbewasserung 44 25. Fruchtwechsel 46 26. Hauptzuleiter in Bezugnahme auf die Winterbewasserung . . 47 27. Frukj ahrsbehandlung der Flachen nach der Winterbrach- bewasserung 49 28. Sonstige Pflege des Graslandes 49 3. Die Yerwertlmng der Producte und die Rentabilitiit der Anlagen 50 1. Yerkauf des griinen Grases 50 2. Heufabrikation 51 3. Butter- und Kasefactoreien 53 4. Verpachtung des Canalwassers 54 5. Verhalten der Communen bei Anlage von Rieselflachen ... 54 6. Schlusswort 55 Einleitung. Es sind beinahe nun fnnf Jahre verstrichen, als ich von England zuruckgekehrt meine dortigen Wabrnehmungenunter dem Titel: Die Canalwasser- (Sewage) Bewasserung oder die fliissige Diingung der Felder im Gefolge der Kanalisation der Stadte in England. Reisebericht. Im Hinblick auf deutsche Verbaltnisse bearbeitet. Mit sieben Tafeln, Planen und Zeichnungen. Danzig, Verlag von A. W. Kafemann. 1870. 8. 113 S. 1 Thlr. herausgab. In dieser Zeit haben sich meine Wiinsche und VoraUssetzun- gen, die ich am Schlusse des sechsten Kapitels dieses Werkchens hinstellte, bewahrheitet. Mehrere grosse Stadte, wie Berlin, Frankfurt a. M., Breslau haben das voile Canalisirungs- und Schwemmsystem nach dem Yorbilde Danzigs mit Berieselung angenommen, und sind schon theilweise damit in der Ausfiihrung begriffen. Wenn nun bis jetzt die sanitaren Folgen dieses Systems hier in Danzig anerkannt ausgezeichnete sind, klares frisches Trink- wasser und schnelle unterirdische A b full rung der Effluvien ihren unverkennbar giinstigen Einfluss auf den Gesundheitszustand der Bevolkerung ausiiben, so ist dagegen die Berieselung immer noch auf demWege des Versuchs geblieben. Die hiesigen Rieselfelder bei Heubude, so massenbaft und uppig auch die Vegetation der verscbiedenen Nutzpflanzen dort gefunden werden mag, sind bis jetzt nocb landwirthschaftlich unfertig, da man immer nocb nicbt recht weiss, welche Pflanzen unter den gegebenen Verbalt- nissen am besten anzubauen sind, und wie iiberhaupt der ganze Betrieb zum Nutzen der Unternehmer zu regeln ist. Da ein bestimmt erkennbares System nicht herausgefunden werden kann, so ist aucb zurZeit nochjede aus diesen Versuchen folgernde volkswirthschaftlicbe Betrachtung unmoglicb. Noch Niemand wird sagen konnen, was diese Anlagen bis zur Vollen- 1 2 dung kosten und welche Rente sie gewahren werden. Anderer- seits ist jedoch hervorzuheben, dass die Unternehmer auf recht bedeutende Schwierigkeiten stossen. Die sehr tbeuern Plani- rungsarbeiten im losen Diinensande, der hohe Grundwasserstand und schlechte Abflussgefalle erschweren die rationelle Durch- fiihrung der nothwendigen Arbeiten ungemein, und ware es ent- schieden im Interesse der Ausfubrung des allgemeinen Schwemm- und Rieselsystems zu wunschen, dass diese Anlagen in recht kurzer Zeit den Anforderungen der Technik und Landwirthschaft durch mittheilbare recht giinstige Resultate beziiglich der Renta- bilitat entsprechen mochten. Verfasser musste jedoch daran liegen, nach dem inEngland Gesehenen ebenfalls practische Versuche durch Anlage einer nach Yerhaltniss moglichst grossen Berieselungsflache dieser Art hier in’s Leben zu rufen. Es gelang einen intelligenten Landwirth in der Person des Herrn Gutsbesitzer Hepner in Schwintsch bei Praust im Land- kreise Danzig, hierfur zu interessiren, um auf dessen Terrain in sehr passender Lage eine derartige Versuchsstation anzulegen und practisch zu bewirthschaften. Ferner entstanden noch einige kleinere Anlagen dieser Art unter Anleitung des Verfassers, nainlich die Kanalwasserberieselung einer allerdings nur kleinen Flache beim Waisenhause zu Pelonkenund einer dergleichen etwas grosseren (von einem Hectar Grosse) beim Armenhause ebenda- selbst. Alle diese Anlagen auch im Vergleich mit den Berliner Yersuchen haben nun Veranlassung gegeben, einige Beobach- tungen und Erfahrungen in dieser so hochwichtigen Cultursache festzustellen und zu veroffentlichen. Sehr viel kann allerdings noch nicht geboten werden, wenn man streng an den wirklichen Erfahrungssatzen festhalten will, aber auch dies Wenige geniigt schon, um dem Techniker und Landwirth einige wichtige Anhalts- punkte zu gewahren. 3 1. Die Canalwasser- (Sewage) Bewasserung zu Scliwintsch im Landkreise Danzig. Schon im dritten Bande des „Cultur-Ingenieur“ von Dr. F. W. Diinkelberg, Braunschweig bei Friedrich Vieweg & Sohn, 1872, Seite 215 und 283, habe ich unter dem Titel „Die Canal- wasser- (Sewage) Bewasserung in ihrer Anwendung zur Anle- gung von Futterkoppeln und Gerniisefeldern bei grosseren Land- giitern, Zuckerfabriken etc.“ eine Beschreibung der obigen An- lagen veroflentlicht. Augenblicklicli sind diese Anlagen jedoch bedeutend vergrossert worden, so dass ich, auch im Interesse meiner jetzigen Mittheilungen, veranlasst bin, diese Beschreibung in Bezugnahme auf die Vervollkommnung des Versuchsfeldes zu wiederholen resp. zu erganzen. Die Absicht war, wie schon in der Einleitung gesagt, mit Benutzung 1. aller festen und fliissigen Excremente der Menschen, 2. der sammtlichen fliissigen Excremente der Thiere, 3. des Spiil- und Tagewassers der Wirthschaft, 4. in Verbindung mit gesammeltemDrainwasser mit einem den Effluvien der Stadte nahe kommenden Material das Ver- suchs-Berieseluugsfeld zu schaffen. Wie dies Project gelungen ist, werden folgende Mittheilun- gen lehren: Das Gut Schwintsch liegt im Danziger Landkreise % Meile vom Bahnhof Praust an der Ostbahn, auf einem Hochriicken als W T asserscheide zwischen den Fliissen Radaune und Kladau, welche beide ihren Ursprung aus jenen grossen Seen des westpreussisch- pommerschen Hohenzuges im Kreise Carthaus nehmen, die wohl als die hochst gelegenen in der norddeutschen Tiefebene zu be- trachten sind. In geognostischer Beziehung gehort der Boden des Gutsareals zu den vielverbreiteten Menggebilden der genann- 1 * 4 ten Tiefebene. Durch Erosion vielfach zerstort ist man kaum noch im Stande, den geognostischen Horizont, Lehm, Lehmmer- gel, Quartarsand wahrzunehmen, vielmehr scheinen diese Abla- gerungen nirgend mehr normal vorhanden zu sein, wenn man sie nicht bier und da an den Gehangen zu den tief in das Terrain eingeschnittenen Fliissen zwar nicht in grosser Ausdehnung, aber doch unverkennbar ausgepragt beobachten konnte. Durchgangig berrscht der sandigeLehmboden vor, aber auch auf weite Strecken hin ruht ein mehr oder weniger lehmiger Sand unmittelbar auf dem untern Diluvium, dem blaugrauen kalkreicben Thonmergel. Speciell nun besteht das gewahlte Bewasserungs-Areal — (20 Morgen) 5 Hectare umfassend — aus solchem lehmigen Sande in nicht grosser Tiefe den Thonmergel zeigend. Das Ganze re- prasentirt eine allmalig durch Alluvion ausgeglichene Thalsohle, jedenfalls in fruheren Zeiten der Rinnsal eines nicht unbedeu- tenden Gewassers. Den tiefsten Theil desselben bildet eine na- tiirliche Wiese von circa 7660dMeter (3 Morgen) Flacheninhalt. Vor diesem Terrain liegt der Gutshof an der linken Seite des Thales. Hieraus geht hervor, dass der Lage des Gutshofes nach an dem linken Gehange der Thalbildung und eines ehemaligen Wasserganges auch auf einen bestimmten unterirdischen Wasser- reichthum, der demselben zu Gute kommen wiirde, geschlossen werden kann; denn gemeinhin enthalten im Diluvium derartige Terrainfalten, die ihren Ursprung aus deutlich ausgesprochenen Plateaus nehmen, in nicht zu grosser Tiefe laufende Quellen, na- mentlich wenn man von den wasserfiihrenden Schichten wie hier die Driften iiber dem Thonmergel, in nicht allzugrosser Tiefe iiberzeugt ist. So sind demgemass an geeigneter Stelle zwei Brunnen eta- blirt, der eine in Mitte vor den Viehstallen, der zweite innerlialb eines grosseren Viehhauses, welche bei resp. 14 und 13 Meter Tiefe und 8 Meter AVassertiefe ein reichhaltiges und gutes Quell- wasser liefern. In fruheren Zeiten wurde das Trinkwasser fiir Menschen und Vieh aus am rechtseitigen Gehange des Thales befindlichen Quellen bezogen. Dieses Wasser wird nun aus den Brunnen taglich durch die Dampfmaschine (lOpferdige Locomobile) in sehr kurzem Zeit- aufwande in die iiber den Viehstallen und im Wohnhause befind- lichen Reservoire gepumpt und lauft aus diesen in eisernen Ver- theilungsrohren zur Trankung des Yiehes in die Stalle, speist gleichzeitig die Dampfmaschine, die Kiichen, Milchkeller, ver- sieht die Wohngebaude mit Trink-, Bade- und Spiilwasser und versorgt schliesslich die Closets. Das W as ser quantum in den Reservoiren reicht gewohnlich 36 Stunden aus und betragt ca. 46 Kubikmeter (1500 Kubikfuss). Die zweite grossere, namentlich fur die Bewasserung masgebende Wasserversorgung wird nun, abgesehen von dem unterirdischen Quellenzudrang zum Sammelteich 1) aus der systematischen Drainage eines Sammelgebietes von p. pr. (600 Morgen) 154 Hectare, 2) aus im Jahre 1872 aufgesehlossenen Quellen an der nord- lichen Gutsgrenze, welche in einem 2260 Meter langen Rohrenstrange von 15,69 Cm. (6 Zoll) Durcbmesser nach dem Sammelteich gefuhrt werden, gewonnen. Im „Cultur-Ingenieur w Band III. Seite 219, waren angegeben bei 400 Morgen Sammelgebiet in runder Summe 7,430,400 Kubik- fuss Wasser. Das Zusatzquantum von 298,800 Kubikfuss Ca- nalwasser gab 7,729,200 Kubikfuss Rieselwasser. Dieses Quan- tum erwies sich bei nocb so grosser Sparsamkeit fur die Berie- selung zur Erzielung von 4 bis 5 Schnitten auf 14 Morgen Flache fiir unzureichend. Es musste also durch Aufscbluss weiterer Quellen; Anschluss von noch 20 OMorgen Drainage und Yermeh- rung des Canalwassers auf dem Hofe fiir dienunmehr abgeschlos- senen 5 Hectare (20 Morgen) Rieselflache ein grosseres und aus- reichendes Quantum geschaffen werden. Dasselbe betragt jetzt an Drainwasser durchschnittlich . . . ; . 300,000 Kubikmeter. an Canalwasser aus den Rohren der Wohngebaude 12,000 „ an Canalwasser, Jauche, Spiil- u. Tage- wasser vom Hofe 18,000 „ zusammen 330,000 Kubikmeter pro Jahr. In Folge der Einrichtung der Wasserleitung in Verbindung mit der Canalisation werden nun die flussigen und festen Excre- mente der Menschen aus den Wohngebauden in das am Anfange der Rieselflache construirte Sammelreservoir geleitet. Die Clo- sets werden yon durchschnittlich 50 Personen benutzt. In gleicher Weise erhalt dasselbe die flussigen Excremente 6 von 100 Haupt Rindvieh*) und 40 Pferden vermittelst eines Jauch- reservoirs, wie von 60 — 80 Schweinen durch ein besonderes Re- servoir. Bei dem ersten Reservoir ist durch ein zweites Becken die Einrichtung getroffen, dass der permanente Abfluss gesperrt werden und sich das erste Reservoir ganz fullen kann, um nach Belieben und Bedarf zur Vermis chung mit dem Sammelteich- wasser benutzt zu werden. Diese Vorrichtung bezieht sich na- mentlich auf Ansammlung von Dungmaterial fur besondere Riese- lungsversuchszwecke. Ausserdem erhiilt das Hauptrohr sarnrnt- liches Spill- und Verbrauchswasser der Kuchen, Milchkeller und sonstigen Betriebsraume. Ferner wird ailes Tagewasser des Hofes in den Sammelteich geleitet. Was nun die Giite und den Dunggehalt dieses Canalwassers anbetrifft, so wird eine weiter unten bei Besprechung der Reini- gung des Canalwassers gegebene Analyse diese Werthe bekunden Beziiglich des Drainwassers als Vermischungswasser (im Friih- jahr 50 — 60fach, im Sommer 20 — 30fach), so haben uns viel- faltige wissenschaftliche Untersuchungen, z. B. vom Professor Thomas Way und auch vondeutschenChemikerngelehrt, dass das- selbeallerdings nur unbedeutendeMengen von Kali und Phosphor- saure dem Boden entzieht, ebenso auch die Ammoniakmenge nur gering ist, dass hingegen Stickstoff in Form von Salpetersaure in Drainwassern in sehr betrachtlicher Menge, namentlich in denen von stark gedungten Landereien, gefunden wird. Aller Wahrscheinlichkeit nach entsteht dieser Gehalt des Drainwassers an Salpetersaure durch Oxydirung der stickstoff- haltigen Diingerbestandtheile, die vorzugsweise gross in den Fal- len ist, wo dergleichen Dunger von einer Beschaffenheit sind, welche einer innigen Vermischung mit dem Boden hinderlich ist. Hieraus geht zur Geniige liervor, besonders noch, da im Friihjahr alle Drainwasser feinen Thonschlamm fuhren, der sich, in Ruhe gekommen, schlickartig absetzt, dass sich das Drain- wasser iiberhaupt vorziiglich zum Berieseln eignet. Das Hauptsammelreservoir ist von Mauersteinen, zwei Steine stark und in Cement gebaut mit einem kegelformigenBalkendache und Dachpappe gedeckt. An zwei Seiten des Daches befinden sich Oeffnungen mit Riihrapparaten, um die dicken Stoffe des Wassers bewegen zu konnen. Dasselbe kann 50 Kubikmeter Wasser fassen. Unterhalb des Sammelteichs von 700 □ Meter Grosse und *) Das ganze Jahr in Stallfiitterung. 7 2*4 Meter Tiefe unci des Reservoirs liegt nun die Bewasserungs- flache in 4 Bewasserungsabtheilungen zu 12766 □ Meter Grosse also im Ganzen 51064 □Meter(20 Morgen.) Es entstehen somit 4 Felder, von denen immer drei GraSeinsaat haben und das vierte zum Haekfrucbt- und Gemiisebau mit der nothigen Bewasserung benutzt werden kann. Augenblicklich liegen alle vier in Gras- narbe. Die Bewasserung wird auf die einfachste Weise be- werkstelligt. Aus dem Reservoir, das natiirlich mit dem Sam- melteiche durch ein Siel in unmittelbarer Verbindung steht, gehen die Zuleiter auf den Horizontalen mit einem sehr gering gege- benen Gefalle rings um die Bewasserungsflache. Ihr Profil be- tragt 0,62 m. mittlere Breite, 0,46 m. Tiefe und ebensoviel Sohle. Nach der Wasserungsseite sind diese Graben mit einer kleinen Verwaltung versehen, durch welche in bestimmten Entfernungen dreizollige Drainrohren den Abfluss des Wassers in eine eben- falls horizontal liegende Aufnahmerinne vermitteln. Aus diese Rinne fliesst das Wasser in die horizontalen Rieselrinnen liber die dadurch gebildeten 11 bis 15 Meter breiten kleineren Hangflachen und wird auf diese Weise gleichmassig vertheilt. Diese Rinnen sind bis auf einige breitere 0,20 m. breit und 0,15 m. tief. Jede Bewasserungsflache bildet einen grosseren Hang von 75 — 100 Meter Breite. Da bei dem vorliegenden Terrain die Horizontalen sehr hoch gegen den Berg laufen, so sind, um eine bestimmte Abtheilung abzugrenzen, Kastenschleusen an den Endpunkten der Flachen angebracht. Dieselben vermin- dern spater das Gefalle fur die weiteren Zuleiter. Die iibrigen nothwendigen Schleusen sind von gewohnlicher Construction. Das Bewasserungsterrain ist von einem Entwasserungsgraben inmitten durchschnitten; derselbe nimmt erstens das etwa abge- rieselte Wasser auf, um es zu eventueller weiterer Benutzung fur die andern Felder weiter zu fiihren, zweitens dient derselbe als Abzugsgraben bei iibermassigem Andrang des Wassers im Sam- melteich; die eigentliche Entwasserung des Terrains jedoch be- steht in Drainage. Wie bereits erwahnt, bestand der tiefste Theil derselben aus einer natiirlichen Wiese, die bisher nicht drainirt war, wahrend die angrenzenden Felder bereits seit 10 Jahren diese Wohlthat geniessen. Die Drainage dieser Wiese ist nachgeholt, indem die Seitenstrange mit Minimalgefallen dem im natiirlichen Gefalle liegenden Sammelstrange einverleibt sind Die Tiefe der Drains betragt 1,5 m. Die Wirkung derselben ist 8 eine solche, class nach dem Abstellen des Wassers das Terrain in kurzer Zeit trocken liegt. Die Graseinsaaten der Abtheilungen wurden in den verschie- denen Jahren stets bis auf das erste Jahr, (1870) wo im Juli gesat werden musste, immer Anfang des Monats Mai geraacht. Die Mischung war stets dieselbe und bestand aus 1 1 1 / 2 Pfund italienischem Raygras, 12y 2 Pfund Knaulgras, 15 Pfund Wiesen- schwingel und 1 1 Pfund englischem Raygras (schlesische Saat) pro Morgen ( 2 553 □ Meter) 50 Pfund gerechnet. Zu diesem Quantum wurden noeh bei Abtheilung IV. pro Morgen 3 Pfund weisser Klee zugesetzt. Diese Mischung hat sich vortrefflich , wie wir weiter unten sehen werden, bewahrt. Italienisches Raygras allein gesat, hat sich nicht gehalten, son- dern ist immer unter den verschiedensten Culturmethoden ausge- wintert. Im Allgemeinen entwickelte sich nach vorhergegangener Herbst — (Winterrieselung an frostfreien Tagen) und intensiver Friihjahrsrieselung die Vegetation stets Mitte April, so dass schon Mitte Mai ein Schossen der Raygraser vor sich ging, Ende des Monats aber sammtliche Raygraser, sowie auch das Knaul- gras in Bliithe standen, Wiesenschwingel dagegen nur sparlich zu finden war. Auf der natiirlichen Wiese an den tiefsten Punkten der Flache zeigte sich Wiesenfuchsschwanz vorherrschend, und zwar waren die Bluthenhalme von der Lange der Halme eines Roggenfeldes. Der Gesammtbestand war sehr dicht fast durchweg gleichmassig und im Durchsclmitt 0,94 m. hoch (3'). Im Jahrel87l wurde am 3. Juni mit dem M alien begonnen und das Gras grun verfiittert. Genaue Wagungen an Stellen mittleren Wuchses ergaben durchschnittlich 113 Pfund pro 14 □ Meter (1 □Ruthe,) mithin 203 Centner pro 2553 □ Meter, (preuss. Morgen), also fur die damalige Grosse der Flache von 29220 OM. (11 M. 80 aRth.) 2327 Centner grtine Masse. Herr General-Secretar Martiny in Danzig war so freundlich, eine Trocknungsprobe vorzunehmen, deren Resultat war, dass 203 Centner griinen Grases 50y 2 Centner lieu entsprachen. Das Verfahren der Untersuchung war Folgendes: Eine Probe frisches Gras im Gewicht von 182,5 Gramm wurde in einen leinenen Beutel eine Woche lang am Feuerheerde getrocknet; getrocknet wog dasselbe 45,35 Gramm. Zu feinem Haqksel geschnitten und gut gemischt wurde eine Probe davon im Gewichte von 22 Gramm bei 100 bis 110° C. weiter getrocknet, bis kein Gewichtsverlust mehr stattfand, der Gewichtsverlust betrug 0,32 Gramm =14,56 Prozent. Feuchtigkeit oder gleich dem gewohnlichen Heues. Es berechnete sich also 182,5 Gramm Gras: 45,35 Heu = 203,4 Ctr. Gras: 50,54 Heu. Am 14. Juni wurde der Schnitt beendet und wahrend dieser Zeit 58 Haupt Rindvieh und eine Herde von einigen 20 South- downschafen ausschliesslich damit gefuttert. Sowie eine Abtheilung der eingetheilten Kieselflache ge- maht war, erhielt sie nach 48 Stunden mit Dungstoffen reich gefulltes Wasser. Diese Rieselung dauerte 2 — 3 Tage, da die Vegetation in dieser Zeit bald wieder eine sehr iippige wurde. Der zweite Schnitt, beinahe eben so stark wie der erste, war am 10. Juli zur Ernte reif. In diesem sah man das Knaulgras schossend nur noch sehr vereinzelt, desto mehr Kraut hatte das- selbe getrieben. Der Hauptbestand war Wiesenschwingel mit hoch ausgetriebenen Bliithen, auch batten die Raygraser zum zweiten Male geschosst. Auf der tieferen natiirlichen Wiese waren auch die Rispengraser (Poa) in so dichtem Bestande vor- handen, dass sie sich lagerten und einen machtigen Schwad ab- gaben. Das Resultat der Wagungen ergab im Durchschnitt 83 Pfund pro 14 □Meter, mithin pro 2553 □Meter (preuss. Morgen), in runder Sutnme 150 Centner, im Ganzen pro Flache in runder Summe 1729 Centner grime Masse. Auch dieser Schnitt wurde verfiittert und reichte fur 52 Haupt Vieh bis zum 18. Juli. Nach diesem Schnitt konnte nur verhaltnissmassig wenig Wasser gegeben werden, da der Zufluss bei andauernder Diirre nur ein schwacher war. Trotzdem entwickelte sich das Gras innerhalb vier Wochen wieder so kraftig, dass am 14. August zum dritten Schnitt ge- schritten werden konnte, welcher 77 Pfund pro 14 □Meter also 139 Centner pro 2553 QMeter (preuss. Morgen) im Ganzen pro Flache in runder Summe 1586 Centner grime Masse gab. In diesem Schnitt schossten die Raygraser, und nur sehr vereinzelt andere Graser, dagegen war namentlich in den tieferen Partien ein sehr dichter Unterwuchs zubemerken, es fanden sich, wie auch schon theilweise im zweiten Schnitte, mehr Wiesen- pflanzen, hauptsachlich weisser Klee vor, welcher alle die Stellen, welche Liicken im Graserbestand zeigten, occupirt hatte. Auch 10 \ dieser Schnitt wurde verfiittert, nachdem derselbe am 19. August beendet war. Die nur schwache Wasservertheilimg in den Mo- naten Juli und August hatte zur Folge, dass die Hoffnung, fiinf Schnitte zu erzielen, eine eitle war, und nur noch im October ein lohnender Grummetschnitt gewonnen werden konnte. Derselbe brachte pro 14 [jMeter 30 Pfund also 54 Centner pro 2553 LlMeter (preuss. Morgen) im Ganzen 618 Centner grime Masse. Gleichzeitig wurden auch Anbau-Versuche mit Runkel- und Kohlruben, verschiedenen Kohlarten, als Blumen-, Weiss- und Wirsing-Kohl mit Berieselung gemacht. Im Ganzen waren an Flache im Jahre 1871 ausgebaut: fiir Grasland 29220 QMeter, zum Anbau fur Runkelruben 5106 □Meter und 1418 QMeter fiir die Gemiiseversuche, im Ganzen 35744 DMeter (14 Morgen preuss.) Das Land auf dem diese Versuche angestellt wurden, hatte im Winter eine Brachb^was- serung mit Canalwasser erbalten. In der Vegetationsperiode jeder einzelnen Frucht wurde nur einmal und zwar wahrend 8 Tage und zwar Tag um Tag mit sehr dungreicliem Wasser ge- wassert. Diese Methode bat sich namentlich bei den Runkel- riiben als unzureichend erwiesen. Von dieser Frucht wurden im Ganzen nur 450 Scbeffel a 85 Pfund also 382 1 / / 2 Centner gewonnen. Nur eineMittelernte. Die Pflanzen standen zu weitlaufig sowohl von einander, als auch in Entfernung der Bewasserungsfurchen ein zu grosser Zwischenraum lag. Da das Feld ein Gehange bildet, so waren dieselben in den Horizontalen gelegt und die Kerne auf dem sich zwischen zwei Furchen bildenden Riicken gelegt worden. Sammtliche Kohlarten und Gemiise gediehen vortrefflich, namentlich waren Blumenkohlkopfe von 50 Centimeter Durch- messer zu finden. Im Jahre 1872 waren 29220 QMeter alteres Grasland vor- handen und 6524 QMeter wurden im Mai angesamt, 15319 □ Meter in Ausbau genommen und noch mit Runkelruben be- pflanzt, sodass die Berieselungsflache nunmehr in Grosse von 51064 QMeter (20 Morgen) abgerundet war. Die Grasertrage dieses Sommers waren folgende: 1. Schnitt am 22. Mai mit 93 Pfd. pro 14 QMeter 2. „ „ 19. Juli . „ 90 „ „ 3. „ „ 21. August „ 75 „ „ 4. Schnitt am G. October mit 25Pfund pro 14 □ Meter, griine Masse. Das sehr rauhe und kalte Friihjahr im Jahre 1872 hatte den Graswuchs ungemein zuriickgehalten, sodass der erste Schnitt nichtganz voll bestanden war, sondern Lucken zeigte. Dagegen wurde nach diesem Schnitt in Folge griindlicher Bewasserung mit sehr dungreichem Wasser, im zweiten ein beinahedem ersten gleichkommendes Resultat erzielt. Die neu angesamten 6524 DMeter wurden ebenfalls noch zweimal geschnitten, die Ertrage jedoch nicht gewogen, da die voile Entwickelung des Graswuchses nur im zweiten Jahre stattfindet. Dagegen wurde dem Runkelrubenanbau eine grossere Auf- merksamkeit geschenkt. Dieselben waren zu 2 / 3 in Kernen aus- gelegt, zu 1 /s Theil gepflanzt. Die Karnrne erstreckten sich in graden Linien in der horizontalen Richtung des Gehanges und waren vermittelst eines besonders zum Aufwerfen derselben con- struirten Pfluges hergestellt. Die zwischen denselben entstan- denen Furchen wurden nach dem Pflanzen der Kerne regelrecht ausgeschaufelt; in Entfernung von 11 — 15 Meter gingen mit dem Gefalle des Hanges Bewasserungsfurchen von den Zuleitern aus in dieselben, so dass eine regelmassige Bewasserung durch Stau- schaufeln (siehe weiter unten) regulirt, stattfinden konnte. Die Entfernung von Kamm zu Kamm betrug 60 Centimeter. Nach dem Yerziehen der Pflanzen erhielten dieselben bis Anfang Sep- tember alle 14 Tage regelmassig einige Tage (4—6) eine mog- lichst starke Bewasserung. Die Ernte war eine befriedigende. Von 15319 aMeter (6 Morgen) wurden geerntet 1396 Centner, mithin pro Morgen 232 2 / 3 Centner. Es fanden sich wahre Riesen ihres Geschlechts unter denselben. Im Jahre 1873 erreichte der Graswuchs seine grosste Uep- pigkeit. Der erste Schnitt wurde am 3. Juni gewonnen, er be- trug 127 Pfd. pro 14 aMeter, der zweite Schnitt am 12. Juli mit 103 Pfd. pro 14 aMeter, der dritte Schnitt am 2. Septbr. mit 72 Pfd. pro 1 4 aMeter, der vierte Schnitt wurde nicht gewogen. Die Berieselungs - Grasflache betrug 35745 aMeter (14 Morgen) alteres Grasland. Das im Jahre 1872 benutzte Ruben- 12 land wurde ebenfalls angesamt und gab noch zweite starke Schnitte; diese wurden nicht gewogen. Das Gesammtresultat der Einschnitte war mithin folgender, O j die Centnerzahl (pro Morgen und Flache) in runden Summen: Grriine Masse Theo- Heuertrag pro Flache Ctr. Betriebs- Jahr. •3 ■*3 o OQ pro 14 []Meter (1 []Ru- the) Pfund. pro 2553 [] Meter (IMorg.) Ctr. Grosse der Beriese- lungsfl. []Meter. pro Flache Ctr. retisch be- rechneter Heuertrag Ctr. 1 Bemerkungen. 1871 1 113 203 29220 (11 M.80 []Rth.) 2327 50,54 579,33 203 Ctr. grune Masse. 2 83 150 y> 1709 37,31 425,08 501/2 Ctr. Heu. » 3 77 139 Ji 1586 34,57 394,44 » 4 30 54 9 618 13,43 154,05 1872 1 93 167 » 1915 41,54 476,34 2 90 162 9 1854 40,30 461,20 3 75 135 » 1545 33,58 1 1 384,30 4 25 45 9 515 11,19 1 1 128,04 1873 1 127 229 35745 (14 M.) 3200 56,96 795,94 2 103 185 9 2595 46,01 645,37 3 72 130 9 1814 32,33 451,12 888 1599 9 19678 397,76 | 1 4895,21 Wenn man nach diesen Resultaten eine Rentabilitats-Rech- nung anstellt, so kommen zur Berechnung: 1. die Kosten der Wasserleitung und Canalisation, des Wirth- schaftshofes etc. innerhalb derGebaude mit Einschluss sammt- licben Reservoire, Be- und Entwasserungsrohren belaufen sich auf 1969 dfy 29 6 ^ 2. Kosten des Sammel-Reservoirs an der Berieselungsflache 121 „ 17 „ 6 „ 3. Anlagekosten derselben incl. Schleusen und Uferbefestigungen des Sammeltei- ches pro Hectar 100 ^ 500 „ — „ — „ 4. Zinsen des ganzen Anlage-Capitals von 2591 17 Sfi a b% von 1871 bis 1873 388 „ 21 „ 9 „ 5. Kosten des 2260 Meter langen Quellen- leitungsrohres 710 „ 21 „ 3 „ 6. Zinsen dieses Anlage-Capitals fur ein Jahr, 1873, a b% 35 „ 16 „ — „ 3726 ^ 16 Sty — ^ 13 Dagegen : 1. 19,678 Centner Gras a Ctr. 5 . . . 3279 20 Sty (Verkaufspreis des Grases von den Berli- ner Versuchs-Anlagen.) *) 2. Werth der 1871 und 1872 gewonn.nen 1778 Ctr. Runkelriiben, a Ctr. 5 ^ . . 296 „ 10 „ 3. Werth des einjahrigen Grases 1872: 21843 □Meter in zwei Schnitten a 20 Pfd. griine Masse pro 14 LlMeter veran- schlagt zu 616 Ctr. 1873: 15319 QMeter 4. Schnitt a 25 Pfd, griine Masse pro 14 □Meter veranschlagt (wie 1872) zusammen 886 Ctr. a5^ 147 „ 20 „ 4. Fiir verkauften Blumen- u. Weisskohl. . 51 „ 20 „ 3775 10 Iiiervon ab die Einrichtungskosten 3726 „ 16 „ Bleibt ein Ueberschuss von 48 24 Sty Die Betriebskosten wahrend der drei Jahre betrugen: 1. Remuneration eines mit dem Betriebe der Berieselung betrauten Wirthschafts- Aufsehers pro Jahr mit 50 ... 150 — Vgv — ^ 2. Lohne bei der Grasernte 21 1 Fk •» 3. „ fur Raumung der Rieselgraben . 12 ,, 17 „ 6 ,, 4. „ fiir Reinigung des Sammelreser- voirs und zur Abrundung . . . 4 „ 21 „ 6 „ 188 % 24 ^ ^ Nach dieser Zusammenstellung, welche bis auf die Veran- schlagung des jungen Grases, auf genauenErmittelungen und Auf- zeichnungen beruht, hatte sich das Anlage-Capital in 3 Jahren beinahe amortisirt**) und die Rentabilitat wenigstens kleinerer Anlagen dieser Art ausser Frage gestellt. *) Konnte man den Heuwerth veranschlagen, so waren Laut Nachweisung: 4895 Ctr. Hen a 20 Sgr. 3263 Thlr. 10 Sgr. Einjahriges Gras 456 , „ a 20 „ 304 „ 5351 Ctr. 3567 Thlr. 10 Sgr. **) Rechnet man denHeuwerrh, so ist die Amortisation mit Hinzurechnung dor Betriebskosten rorhanden. 14 Man wird ferner zugeben miissen, dass namentlich die Was- serleitung so vortheilhaft in viele Wirthschaftsthatigkeiten ein- greift, dass die Abnutzungsprozente der Anlage sowie die Kosten der Kohlen fur den Locomobilenbetrieb zum Aufpumpen des Wassers etc. hierbei nicht in Rechnung kommen konnen. Will man aber den Werth des Landes mit in Rechnung bringen, so betragt derselbe im diesseitigen Falle pro Hectar 320 also 1600 Diese ab von 3726 16 5^ bleiben 2126 16 %r; in dieser Berechnung hatte sich die Anlage auf 54y 2 % verzinst. Noch vortheilhafter als diese so eben beschriebenen Resul- tate hat sich die kleine Kanalwasser-Berieselung auf einem Ter- rain von 1844 □Meter des Kinder- und Waisenhauses zu Pelon- ken bei Danzig bewahrt. Diese kleine Anlage mit dem Cloak - und Abgangswasser der Anstalt bewassert, wurde im Jahre 1871 im Hangbau angelegt und mit derselben Grasermischung wie in Schwintsch angesaet. Am 8. Juni 1872 wurde hier der erste Schnitt gewonnen und wahrend des Sommers noch 5 Schnitte gemacht. Dieses Gras, meistentheils Knaulgras, wurde theils an Pferde und Kiihe griin verfiittert, theils aber zu Heu gemacht. In beiden Gestalten wurde es vom Vieh mit grossem Appetit ge- fressen. Nach genauer Feststellung des Herrn Inspector Rux reprasentiren die 1872er Ertrage der Flache 90 Centner Heuwerth. Ueber die Canalwasser-Berieselungs- Anlage am stadtischen Armenhause zu Pelonken veroffentlicht der Vorstand in der Danziger Zeitung vom 30. September 1873 folgenden Bericht: „Wie das benachbarte Kinderhaus, so hatauch die Armenan- stalt jetzt eine Rieselwiese in Betrieb. Dieselbe ist 1 Hectar gross, im Jahre 1872 angelegt. Am 10. August wurde zuerst ein Theil mit Grassamen, Mischung von englischem und italie- nischem Raygrase (deutscher Ernte), Knaulgras, Wiesen- schwingel und eine kleine Beimischung von schwedischem Klee angesamt. Die ziemlich bedeutenden Planirungsarbeiten zogen sich bei der geringen Leistungsfahigkeit der der An- stalt zu Gebote stehenden Krafte bis zum Ende September hin, so dass die letzten Flachen erst im October zur Einsaat kamen, und somit im Herbste kaum noch aufgingen. Die zuerst besamten und seit dem 25. August gerieselten Flachen gaben bereits vom 15. September an einen recht diehten Grasschnitt, so dass mit dem gewonnenen Grase zwei Kiihe bis zum 30. 15 October genahrt werden konnten. Im Fruhjahr 1873 begann das Rieseln mit dem 1. April, da bei der Lage der Wiese, dicht am Waldrande, Schnee und Frost im Boden bei den noch jungen Pflanzen das friihere Wassergeben nicht rathlich erscheinen liess. Das zur Rieselung verwandte Wasser ent- springt aus Quellen 625 Meter oberhalb der Wiese, bildet un- mittelbar an den Quellen zwei Teiche und durchfliesst dann das Anstalts-Gehoft, woselbst es die fliissigen Auswurfstoffe yon 370 Menschen * — die festen Stofle werden abgefahren — das Haus- und Waschwasser und die Jauche aus den Stallen, in welchen 3 Kuhe, 3 Pferde und durchschnittlich 8 Schweine gehalten werden, aufnimmt. Die Flachen, circa 1 /$ der ganzen Anlage, welche im Herbste vorher erst spat zur Besamung kamen, entwickelten sich bei dem ungiinstigen Fruhjahr dieses Jahres so langsam, dass sie erst Ende Mai zur Rieselung her- angezogen werden konnten. Auf den bereits 1872 geschnit- tenen Flachen konnte schon am 25. Mai mit dem Schnitte be- gonnen werden, wahrend die anderen erst# Mitte Juni zum ersten Schnitt entwickelt waren. Auf ersteren sind bis jetzt acht auf letzteren sieben Schnitt Gras gewonnen. Vom 25. Mai ab wurden ununterbrochen drei Stiicke schwere Werderkuhe mit Gras gefuttert, ferner erhielten drei Pferde statt des Heues von demselben Tage ab Gras und wurden ausserdem 40 Ctr. gut gewonnenes Trockenheu zu Boden genommen. Nach dem heutigen Stande der Wiese wird sicher bis zum 20. October der Grasgewinn unausgesetzt fur die drei Kuhe und Pferde wie bisher ausreichen. Der Boden der zur Rieselung ver- wandten Flache ist ein leichter, wenig humoser durchlassi- ger Sand u . 2. Die Canalwasser-Berieselungs-Praxis in grossem Massstalbe. Wie ich im vorigen Abschnitt nachgewiesen habe, so ist die Rentabilitat kleinerer Anlagen dieses Systems wohl ausser Zwei- fel gestellt. Anders verhalt sich jedoch die Sache, wo es sich um tagliche Unterbringung grosser Massen Canalwassers handelt, 16 wie augenblicklich bei alien fur diese Anlagen in Aussicht ge- nommenen grossen Stadten. 1. Das Terrain. Hier treten hauptsachlich zwei Factoren in den Vordergrund: erstens die gewahlte Terrainlage (Configuration) und zweitens die Beschaffenheit des Bodens. Beide sind fur den spatern ra- tionellen Betrieb und die gehoffte Rentabilitat so unendlich wich- tig, dass sich hierin gemachte Fehler sehr schwer rachen, ja sogar die gauze Anlage in Frage stellen konnen, wenn nament- lich die Reinigung des Canalwassers bei Filtration durch den Boden mangelhaft ausfallt, mithin in hygienischer Beziehung Angriffspunkte zum Vorschein kommen. Was nun den ersten Punkt anbetrifft, die Wahl des Terrains beziiglich seiner Oberflachenverhaltnisse, so suche man womog- lich ein Terrain zu ermitteln, zu welchem das Canalwasser mit naturlichem Gefalle geschafft werden kann; dies wird leider bei den wenigsten Stadteanlagen zutreffen, vielmehr eine Aufpum- pung auf mehr oder weniger grosse Hohen erforderlich sein. Selbst dann aber, wenn auf Kosten eines auf weitere Entfernun- gen hin zu bauenden Kanals resp. eines eisernen Abzugsrohres diese Situation erreiclit werden kann, wahle man diesen Weg. Die spatere Rentabilitat des Rieselfeldes wird die Mehrkosten vollauf ersetzen. Es konnte allerdings bei Klarlegung dieser Frage der Stand- punkt festgehalten werden, dass die Kosten der Pumpstation nicht der Berieselung zur Last geschrieben werden diirfen, denn selbst- verstandlich muss den Stadtleitungen Vorflutli geschafft werden, gleichgiiltig, ob das Canalwasser in einen Fluss ablauft, oderob es zur Berieselung verwendet wird. Ferner darf das zu wahlende Terrain nicht zu stark coupirt sein, indem die Herstellung grosserer zusammenhangender Be- rieselungsflachen dadurch sehr erschwert wird und dieEinebnung dieser Flachen bedeutend mehr Anlagekosten erfordern als weni- ger coupirte Oertlichkeiten. Vor alien Dingen miissen jedoch die in Aussicht genomme- nen Rieselflachen ausreichende Abzugsgefalle entweder nur im ungiinstigsten Falle nach einer Seite, besser nach mehreren Sei- ten darbieten, denn die Entwasserung des Terrains nach den verse hiedenen Rieselperioden, die schnelle Fortschaffung des 17 gereinigten Abzugs- und etwaigen Grundwassers bedingt unzwei- felhaft das Gedeihen der ganzen Anlage. Wir werden in einem spateren Abschnitt dieser Abhandlung zur Genfige erfahren, wie wichtig dieses Erforderniss nicbt nur auf die hygienischen Fol- gen des Systems sondern auch auf die landwirthschaftlich zu er- strebenden Ziele einwirkt. Im Hinblick nun auf die Flachengrosse des zu wahlenden Terrains, so wird hierfiber der Abschnitt fiber die Wassermengen einigen Anhalt gewahren. 2. Boden ve rbaltnisse. Formation und geognostisch- agronomische Untersuchung. Ungleich wichtiger als die Configuration des Terrains sind jedoch die Bodenverhaltnisse selbst. Schon in meinem Bericht fiber die englischen Anlagen bei Gelegenheit der Besprechung fiber die Anwendbarkeit des Systems ffir deutsche Verhaltnisse (Kapitel VI., Seite 77) wies ich darauf hin, dass die genaueste Untersuchung des Bodens nach geognostisch - agronomischen Grundsatzen streng geboten ware. Heute, nachdem ich eine practische mehrjahrige Erfahrung hinter mir habe, behaupte ich, dass, wenn nicht der Wahl des Grund und Bodens die allerge- nausten Untersuchungen vorausgehen, als 1. fiber die geognostische Beschaffenheit desselben im Allge- meinen, Character (Lagerung der obern Schichten, Unter- grund), 2. fiber die petrographischen Eigenschaften der gefundenen Ge- bilde; (Fein- und Grobkornigkeit des Sandes, Procentsatz der Thonbeimischung, Bindigkeit), 3. Untergrund, ob durchlassend, ob undurchlassend ; Art des- selben, Lehm, Thon, Thonmergel etc., 4. hieraus sich ergebende allgemeine physikalische Eigenschaf- ten des Bodens, als seine wasserfassende und haltende, sowie seine warmehaltende Kraft, so ist die Anlage von vornherein schon in Frage gestellt. Man soli stets bedenken, dass nicht der landwirthschaftliche Zweck es allein ist, der im Auge behalten werden muss, sondern auch der bei weitem wichtigere, die sichere Unterbringung der Efflu- vien ohne spateren Schaden ffir die Gesundheit von Menschen und Vieh. Der Schwerpunkt der ganzen Frage liegt unbestreit- bar darin, dass man einen Boden wahle, dessen Absorptionskraft 2 18 derartig ist, dass die Filtration des Canalwassers, die Trennung der in demselben schwebenden Senkstoffe sehnell und sicher von Statten gebe. Die Gewinnung der gelosten Theile, sowie deren Verwendung zur Erzielung einer gesteigerten Vegetation kann erst in zweiter Linie zur Geltung kommen. Man konnte nun sagen, dass der sogenannte bindende Bo- den (Lehm, Thonboden) vermoge seiner guten absorbirenden Eigenschaften das Canalwasser am besten reinigen wiirde, dem steht jedoch ein Hinderniss entgegen, welches in den meisten Fallen wohl kaum zu uberwinden ist, namlich das finanzielle Interesse der betreffenden Stadtgerneinde. Die um grossere Stadte in nicht allzugrosser Entfernung liegenden sogenannten Weizenacker diirften wohl iiberall so hoch im Preise stehen, als dass sie kaum zu erschwingen waren, abgesehen davon, dass der- artige Bodenpartien selten in so bedeutendem Umfang zusammen liegen, um dem Bedvirfnisse grosserer Stadte betreffs der erfor- derlichen Fliichengrosse genugen zu konnen. Man wild mithin immer nur in der Lage sein, mehr leich- tere sandigere, also billigere Terrains zu acquiriren, und diesen Bodenarten miissen wir vorzugsweise unsere Aufmerksamkeit in ihrem Verhalten gegen die Reinigung des Canalwassers schenken. Zu denselben gehort in erster Reihe der sogenannte Allu- vial-Sandboden auf mehr oder minder durchlassigen Schich- ten, als Lehm, Lehmmergel, Thon, Thonmergel ruhend. Die Machtigkeit dieser Sandmassen ist mitunter eine sehr grosse, sie wechselt von 1 bis zu 50 Meter. (Seedunen, Landsee- und Flussdiinen.) Der Thongehalt in diesem Sande ist ein sehr geringer, die Grosse der Quarzkorner eine je nach dem Character der Diinenbil- dungverschiedene. Hiermit verwandtistderlehmigeSandboden,ein Menggebilde, dessen ursprungliche Abstammung nicht derLehm- formation zuzuschreiben ist, sondern nur in Vermengunglehmiger Ablagerung mit Sandmassen besteht; Abspulung und Wiederauf- lagerung derselben an glinstigen Stellen. Nicht zu verwechseln mit dem sandigen Lehme, dessen Mutterboden, Lehm und Lehm- mergel, stets unter ihm gefunden wird. Geognostisch kann auch nur dieses Lagerungsverhaltniss den Unterschied zwischen den beiden Begriffen feststellen. Wahrend der Thongehalt im leh- migen Sande sehr gering und sogar stets in der Abnahme be- griffen ist, so ist derselbe im sandigen Lehmboden, als alluviale 19 w Ueberlagerung normaler Schichten und von ihnen abstammend bei weitem gunstiger. Man kann deshalb diesen Boden als den vorzugsweise am meisten verbreiteten, namentlich in der deut- schen Tiefebene, als Getreideculturboden bezeichnen. Die Abstufungen des agronomischen Werthes dieses Bodens begriinden sich besonders auf die Procentsatze der Hauptgemeng- theile derselben, Lehm und Lehmmergel, auch auf klimatische und Untergrundsverhaltnisse der Lagerungsortlichkeiten. Der Schutt- oder Verwitterungsboden nicbt nur des gebir- gigen, sondern auch des flachen Felslandes ist meist durch seine Armuth an mannigfaltigen Mineralsubstanzen verschieden vom Verwitterungsboden des alluvialien Schwemmlandes und vondem der Quartarformation. Wahrend diese Bodenarten in ihren mine- ralischen Hauptgemengtheilen reicher sind, ist jener im Bereich der zu Tage liegenden Felsformationen entweder vorzugsweise kieselerdig, also sandig, oder auch thon- und kalkerdig, oder aber aus zusammengesetzten groberen Bruchstucken von solchen oder von Eruptivgesteinen (Granit, Gneus, Porphyr, Basalt u. s. w.) gebildet. Es liegt nun auf der Hand, dass diese soeben geognostisch geschilderten, sogenannten leichten Bodenarten, je nachdem sie tief oder flachgriindig sind, je mehr oder weniger Thongehalt in ihnen vorhanden ist, — der reine Sand allerdings am wenig- sten, — auch mehr oder minder die Fahigkeit besitzen in Be- ruhrung mit dem Kanalwasser aus demselben nicht nur die un- aufgelosten, suspendirten Theile mechanisch zuriickzuhalten, son- dern auch die in dem Wasser vollig aufgelosten Stoffe in ver- schiedenen Graden demselben zu entziehen, physikalisch und chemisch zu binden, also zu absorbiren. Diese Verhaltnisse mussen vor alien Dingen ein Gegenstand umfassender Unter- suchungen sein. Hierzu kommt noch, dass namentlich viele Sandboden, be- sonders die Categorien des sandigen Lehmbodens je nach ihrer Tiefe und Flachgriindigkeit quellig sind und auf den nicht tief unter dem oberen Menggebilde sich findenden undurchlassigen Lehm- undLehmmergelschichten, unter dem lehmigen Sandboden meist Thonmergel, Grundwasser halten. Selbst nun der absorb- tionsfahigste Boden ist nicht vollig im Stande einer Losung von in Zersetzung begriffenen thierischen oder menschlichen Faecalien sammtliche darin befindlichen Stoffe zu entziehen, sondern wird 2 * 20 immer Bruchtheile davon in dem abftiessenden oder sinkenden Wasser gelost behalten. Es wird mithin das Grundwasser ver- unreinigt und inficirt werden. 3. Reinigung des Canalwassers durch den Boden. Nicht nur das abfliessende und durch den losen Dtinen- sand gesickerte Rieselwasser der Anlagen zu Heubude bei Danzig, welches notorisch — man mag nun diese Angelegenheit zu ver- kleinern oder auch ganz in Abrede zu stellen suchen, sie bleibt dennoch nicht anzufechtende Wahrheit*) — die als Auf- nahmepunkte des Abflusswassers dienenden Festungsgraben zu Weiehselmunde verunreinigt , bestatigen erwahnten Umstand, sondern auch die vortrefflichen Untersuchungen Professor Alex. Muller’s auf der Berliner Berieselungs-Versuchsstation**) geben Zeugniss dieses ungiinstigen Yerhaltens. Durch diese Untersuchungen und Beobachtungen uber das Verhalten des alluvialen Decksandes zur Berieselung wird klarer Aufschluss ertheilt namentlich bei Einstauung grosserer Canal was- sermassen in hergestellte Staubassins. 1. Eine Yerunreinigung des Grundwassers bis auf 8 Meter Tiefe in vertikaler Richtung und auf das Yielfache in horizontaler Richtung ist beobachtet worden. 2. Bei dem Uebergang des Canalwassers in das Grundwasser werden zunachst die mechanischen Einmischungen, der Schlamm abfiltrirt. 3. Yon den gelosten Bestandtheilen verhalt sich das Chlor- natrium fast ganz indifferent gegen den unbewachsenen wie bewachsenen Boden, und geht demgemass in das Grundwas- ser uber. 4. Fast vollstandig auch bei lebhafter Einstauung wird dem Ca- nalwasser nur die Phosphorsaure entzogen. 5. Bei lebhafter Einstauung wird zufolge stattfindender Boden- sattigung das entstehende Grundwasser immer reicher an Kali-Aminoniak und organischer Substanz, welche letztere auf den Eisengehalt des Bodens stark reducirend und auflosend *) Die imAuftrage der Koniglichen Regierung in Danzig von Professor Sonnenschein in Berlin vom Abflusswasser sowohl wie vom Grundwasser gemaehten Analysen beweisen die Richtigkeit die- ses Ausspruchs. **) Ueber den gegenwartigen Stand der Stadte-Reinigungsfrage von Alexander Muller bei Aug. Hirschfeld in Berlin. 21 wirkt,- dem Wasser einen fauligen Geruch verleiht und an der Luft sich lebhaft oxydirt. 6. Bei intermittirender Einstauung, _beziiglich Berieselung des unbewachsenen Bodens geht ein verschieden grosser Theil des Jauchenstickstoff als Salpetersaure, verbunden mit Kalk, in das Grund wasser uber. Aehnlich verhalt es sich mit dem Gekalt des Canalwassers an Kohlenstoff, das Grundwasser ist reicher an kohlensauren Erdsalzen. Mit einiger Beschran- kung gilt dies auch fur den Schwefel. Da die Berliner Versuche auf lebmigem Boden nicht ausrei- chend ausgedehnt werden konnten, obgleich im Winter 1872 eine mehrwochentliche Einstauung stattfand, so hat sich jedoch in dieser kurzen Zeit eine uberraschende Anfnahmefahigkeit dieses Bodens herausgestellt. Es scheint hiernach die Lehmschicht so vielfach unterbrochen zu sein, dass das im uberlagernden lockern Boden gutfiltrirte Canalwasser wenig gehindert durch den Lehm hindurch seinen Weg in die darunter liegenden Sandschichten findet. Das Schwintscher Berieselungsfeld besteht, wie schon er- wahnt, aus einem mehrere Meter tiefgriindigen lehmigen Sande, einem Menggebilde, welches beinahe dem Lehm gleichkommt, wenn nicht augenscheinlich eine Aufspiilung anzunehmen ware, da unterhalb ziemlich undurchlassiger Thonmergel folgt. Nach mehreren Abschlammanalysen enthalt der Boden durchschnittlich 43 Procent Thon, 12 Procent groben und 45 Procent feineren Quarzsand und sollte man dieserhalb annehmen die Absorptions- f ahigkeit des Bodens ware bei dieser Zusammensetzung eine sehr giinstige und normale. Anscheinend ist sie es auch, da das den Drains selbst bei ununterbrochener Berieselung entstrbmende Wasser stets klar und filtrirt erscheint. Die jedoch ausgefuhrten cbemischen Analysen weisen aber nicht so giinstige Resultate nach. Nach der neuesten Analyse durch Herrn Chemiker Helm in Danzig vom Marz 1873 enthielt: 1. Das Sammelteichwasser in 1000 Theilen 0,154 organische Substanzen und 0,350 anorganische „ 2. Das mit Canalwasser 50- fach gemischte Reservoir- wasser in 1000 Theilen . 0,256 organische „ und 0,490 anorganische „ 3. Dasaus den Anlagen wah- xend der Berieselung ab- fliessende Drainwasser in 1000 Theilen . . . .0,116 organisohe Substanzen 0,344 anorganische w Das Teichwasser besass eine Harte von 16° Clerc, entspre- chend 0,128 Gramm Kalk und Magnesia in 1 Liter. Das Reservoirwasser besass eine Harte von 16° Clerc. desgl. Das Drainwasser besass eine Harte ven 21° Clerc, entspre- chend 0,168 Gramm Kalk und Magnesia in 1 Liter. Hieraus ist ersichtlich, dass noch uber die Halfte der orga- nischen Stoffe in dem wirklichen Rieselwasser durcb Boden und Drains filtrirt, gelost verbleiben. Auch einen praktischen Fingerzeig lieferte dies Argument. Jenseits der nicht fernen Gutsgrenze liegen kleine Wiesen, bauer- lichen Besitzern eines benachbarten Dorfes gehorig. Der die Anlagen durchschneidende Abzugsgraben, welcher unterhalb der- selben das Drainwasser aufnimmt, fiihrt durch diese Wiesen. In fruheren Zeiten lieferten dieselben einen sehr sparlichen Gras- ertrag; augenblicklich geben sie durch namentlich im Fruhjahr bewirkten Aufstau des Abwassers der Rieselwiesen einen mehr- fachen sehr reichlichen Schnitt vortrefflichen Futters. (Vergl. auch „Canalwasserbewasserung“ Seite 24.) Aus dem Gesagten geht nun hervor, dass die geognostische Untersuchung des Terrains nicht genug empfohlen werden kann. DieHerstellung einer genauen geognostisch-agronomischen Karte gehort unbedingt zu den wichtigsten Vorarbeiten des Systems. 4. Der specielle Bewasserungsbau. Nach den in England bereits in grosserem Masstabe und nach den in Deutschland an kleineren Anlagen gemachten Er- fahrungen weicht die Bewasserung, oder besser gesagt, Beriese- lung, obgleich dieses Wort eigentlich nur fur Grasland richtig ist, mit fliissigem Kloakwasser (Canalwasser), so vollstandig hin- sichtlich auch der Principien bei Berieselungswiesen mit Fluss- wasser, ab, dass man sie fiiglich mehr als eine Dungung des Ackers in flussiger Form gelten lassen kann. Die Aussicht, den bewasserten Boden nur voriibergehend in Grasland halten zu konnen, und spater durch den Bau anderer Friichte die durch den Grasbau nicht absorbirten Dungstoffe ausnutzen zu miissen, 23 erheischt namentlich fur den Ausbau und die Einrichtung der Berieselungsflachen eine diesen Anforderungen angepasste Tech- ink. Diese Technik muss nun hauptsachlich darauf basirt sein, dass die Form der Berieselungsflachen, die Wasserzufuhrung etc. keine Hindernisse fur die spatere Benutzung derselben als Acker- land fiir Getreide- und Hackfruchtbau bietet, aber auch die ur- sprungliche Form fur die Wasserbewegung beim Graslande nicht durcli diese Zwischenbenutzung so verlegt wird, dass bei spate- rer Wiedereinsaat der Graser verhaltnissmassig zu grosse Kosten entstehen, urn die Normalitat der Flache wieder herbeizufuhren. Es empfiehlt sich daher zuvorderst bei Einrichtung einer grosseren Flache das ganze zu iibersehende Areal theils nach seiner naturlichen Lage, namentlich in Bezugnahme auf die herr- schende Be- und Entwasserungs-Richtung, theils nach seiner Bodenbeschaffenheit in bestimmte Hauptabtheilungen (Schlage) zu theilen, welche spater auch den Ausschlag bei Einrich- tung des Fruchtwechsels zu geben haben. Diese Hauptabthei- lungen zerfallen wieder in gewisse Unterabtheilungen, welche sich je nach derLage des Terrains fur die Wasserzuleitung selbst- verstandlich bilden miissen. Zwischen und ausserhalb der Abtheilungen mussen je nach Bedarf und Grosse der Flache die erforderlichen Communica- tionswege (Heuwege) angelegt werden, die namentlich bei der Grasland-Berieselung, wie weiter unten nachgewiesen wird, eine grosse Rolle spielen. 5. Die Wassermenge. Wie ich schon fruher ausgefuhrt habe, (vergl. meinen Reise- bericlit Seite 94-— 102) muss bei unseren klimatischen Verhalt- nissen die Entfernung derNasse, des uberfliissig stauenden Was- sers, die erste Bedingung zur Erzielung befriedigender Ertrage sein; um so rnehr bedarf es meiner Meinung nach eines Anhaltes bei der Canalwasser-Berieselung, bei welcher das Land Winter und Sommer getrankt wird, annahernd zu wissen, wieviel man, wenn wir nur den Grasbau vorlaufig im Auge haben, fur eine bestimmte Flache Landes, ohne des Guten zu viel zu thun, ver- abfolgen kann. Dass man bedeutend geringere Mengen Canal- wasser zur Erzielung grosser Ernten braucht, als bei Riesel- wiesen mit gewohnlichem Flnsswasser, liegt schon selbstredend in der enormen Dungkraft des Canalwassers, Die gemachten 24 Erfahrungen zeigen nun deutlich, wie gering sich der Wasserver- brauch von Canalwasser gegen Berieselung mit gewohnlichem Wasser stellt. Ura jedoch in dieser Beziehung aus der Praxis zu sprechen, theile ich hier meine Erfahrungen auf der Riesel- flache zu Schwintsch mit. Die sehr sorgfaltig gemachten Beobachtungen fallen in die Zeit vom 4. Marz bis 4. September 1872. Die Grosse der Flache umfasste fur die Berieselung 35784 □Meter, also 14 Morgen Mag- deburgisch. Da die nachstehende Berechnung in Connex mit meinen Veroffentlichungen im Reisebericht Seite 93 — 101 steht, so behalte ich die urspriingliche Berechnung nach Morgen und Cubikfuss bei. Es wurde in dieser Zeit gerieselt: im Marz 25 Rieseltage mit 200,880 Cubikfuss Wasser. » April 22 „ „ 129,600 „ „ » Mai 7 „ „ 74,580 „ „ 22. Mai 1. Schnitt. im Juni 16 Rieseltage mit 197,640 „ „ „ Juli 4 „ „ 30,660 „ „ 19. Juli 2. Schnitt. im August 6 Rieseltage mit 60,400 „ „ 21. August 3. Schnitt. zusammen 693,760 Cubikfuss Wasser im Ganzen 80 Rieseltage mit einem Verbrauch pro Morgen (180 □Ruthen = 1 / i Hectar) von 49,554 Cubikfuss Rechnet man nun fur den Winter, October, November bis zum Frost und an frostfreien Tagen im Februar fur das Grasland in pr. pr. 60 — 70 Rieseltagen 40,546 „ so hat man pro Jahr und Morgen 90,100 Cubikfuss (140 Berieselungstage) oder nach englischem Maass 5000 Tons pro Acre. Das ist gleich 0,299 Centimeter durchschnittlich tag- liche Irrigationshohe undeiner jahrlichen von 109,192 Centimeter. Es hat sich jedoch herausgestellt, dass diese Wassermenge nicht ausreicht, da bei dem dichten Stand des Grases, das nach dem Mahen in 24 Stunden wieder mit grosser Ueppigkeit zu wachsen anfangt, in 8 Tagen schon einen dichten geschlossenen Stand zeigt, das regelmassige Ueberlaufen tiber die Flachen er- schwert wird, das Wasser nur langsam zwischen den Graspflan- zen durchfliesst, an vielen Stellen sogar staut, mithin durch 25 Versinken ein grosserer Wasserverlust eintritt. Bei sandigem Untergrunde wird diese Erscheinung noch mehr aufiallig sein, auch erfordert die Bewasserung von Hackfruchten, Kohlarten etc. ungleich mehr Wasser als die Graslandberieselung, so dass man das Doppelte an Wasserverbrauch, also 180200 Cubik- fuss pro Morgen und Jahr rechnen muss. Das macht pro V^iHectar pp. 5570 Cubikmeter, also pro Hectar 22280 Cubikmeter*). Diese Menge ware gleich einer jahrlichen Irrigationshohe von 218,430 Centimeter, einer taglichen von 0,598 und fur 140 Berieselungstage einer taglichen effectiven von 1,56 Centimeter. Nach den Messungen des verbrauchten Rieselwassers im Jahre 1873 sind vom Fruhjahr bis Herbst noch mehr wie 5000 Cubikmeter pro 1 /± Hectar berechnet worden. Die bedeutende Mehrproduction an Gras war eine unmittelbare Folge dieser reichlicheren Wasserabgabe. 1st man geneigt, hieraus einen Schluss auf die Grosse der Rieselfiache zu ziehen, die man fur eine bestimmte Einwohner- zahl acquiriren muss, um das Canalwasser taglich unterzubringen, so ergiebt sich hieraus, dass fur eine Stadt von 100000 Einwoh- nern bei 4 Cubikfuss = 0,123663 Cubikmeter taglicher Ab- fluss pro Kopf gerechnet und bei 5000 Cubikmeter pro Jahr fiir Y* Hectar, 900 Morgen = 229,79 Hectar Rieselfiache noth- wendig waren. Da aber jedoch bei dem rotationsmassigen Rie- selbetrieb ein Theil des Landes jahrlich ohne Berieselung zur Benutzung kommen muss, so diirfte diese Zahl sich pr. prt. um Vs vergrossern, also 1200 Morgen, gleich 306,38 Hectaren zu ver- anschlagen sein. Nach Mr. Hope, der bedeutendsten englischen Autoritat in diesem Fache, gehoren 40 Morgen Rieselgebiet fur 1000 Kopfe der Bevolkerung, das ware z. B. fur Berlin 32,000 Morgen oder D /2 GMeile. Nach obiger Rechnung kame die Stadt bei Rech- nung von 1 Million Einwohner mit 12,000 Morgen aus. Hier- nacli lasst sich nun, um in der Besprechung der technischen Anordnungen beim Bewasserungsbau weiter zu gehen, auch die Dimension der Zuleitungsgraben, Wasser- und Transportirgra- ben in Hinsicht auf die Grosse der zu berieselnden Flache be- stimmen. Da diese Graben in losem Sande fast sammtlich durch *) Auf der Lodge-Farm bei London empfingen 22,66 Hectare (88,25 Morgen) Raygrasfelder ron Januar bis November 1867 296000 Cubikmeter gleich 9,320472 Cubikfuss Canal wasser, also zwischen 5- und 6000 Tons oder der Morgen 105,582 Cubikfuss gleich 3273 Cubikmeter. 26 Bohlenverschalung resp. Bollwerk gesichert werden mussen ; so nahern sie sich mehr der rechtwinkligen Form, und lassen eine sichere Berechnung der Wassermengen zu. Ueber die zweck- massigste Ausfuhrung der Hauptzuleiter siehe weiter unten bei Besprechung der Winterbewasserung. 6. Gefalle der Zuleiter. Das Gefalle, welches den Zuleitern zu geben ist, richtet sich nach der Hohe des Wasserspiegels, von wo die Ableitung geschehen soil, iiber der hocbsten Stelle des zu bewassernden Terrains; es muss eines Theils die Wasserbewegung constant er- halten, andern Theils keine zu grosse und naclitheilige Geschwin- digkeit herbeigefiihrt werden. Als mittlere Geschwindigkeit darf dieselbe hochstens 0,628 m. per Secunde (2 Fuss) betragen. Dem entspricht je nach der Grosse der Quantitat ein Gefalle von 5 bis 10 Cm. (2—4 Zoll) auf 376 m. (lQORuthen) (0,014— 0,028 Proc.). Es durfte dies jedoch wegen sonstiger zu befurchtender Suspen- dirung der Sinkstoffe schon Minimalgefalle sein. Nach meiner Ueberzeugung wiirden 13 — 15 Cm. (5 — 6 Zoll) auf die genannte Lange das Richtige sein. O O r5 Die Zuleiter miissen an beiden der Flache zugekehrten Bordseiten durch eine kleine Verwallung geschiitzt sein und durch diese das Wasser vermittelst Durchlasse, am bequemsten durch Drain- oder Steingutrohren auf die Flache gelangen. Die Anzahl und der Durchmesser dieserRohren richtet sich nach dem Cubikinhalte des Grabens und der darin befindlichen Wassermenge. Hierdurch werden Schleusen gespart und der Wasserablauf ist ruhiger, mithin auch fur die zu gebenden Ge- falle der Rieselflachen bedeutend giinstiger. Eine sehr wichtige Frage fur die gesicherte Zukunft der ganzen Unternehmung ist nun die, welche Form ist erstens in Be- zugnahme auf die bequemste Weise der Bewasserung uberhaupt und zweitens im Hinblick auf das oftere Umlegen des Graslan- des zum Getreide- und Hackfruchtbau den Rieselflachen zu geben? 7. Hang- und Riickenbau. Sowohl die englischen als auch meine eigenen Erfahrungen lassen da nur eine Antwort zu, namlich den Hangbau, und in bestimmten Fallen, namentlich in so niedrigen Lagen, dass die Anordnung des Hangbaues zu viele Mittel erfordern wiirde, 27 den breiten Ruckenbau, dessen beide Gefallseiten also schon mehr als Hange gelten konnen. Andere Formen empfehlen sich wegen der kaum zu umge- henden Wechselwirthschaft auf den Rieselflachen nicht. 8. Furchen-Sy stem. Das in England besonders als Nachbildung der Rewasse- rungsbauten in Piemont und der Lombardei bevorzugte Furchen- system (Pane and gutter) hat die grossen Nachtheile, dass bei dem dabei wegen rnangelnder Gefalle berrschenden Stausystem und der allzuhaufig vorkommenden Dickfliissigkeit des Canal- wassers die Graspflanzen mit Sehlamm umsetzt werden und ein schlechtes Futter, ungeniessbar fur das Vieh, geben, ferner die richtige Vertheilung des Wassers durch die vielen Staubrettchen sebr erschwert wird. Es handelt sich also zunachst darum, den Hangbau fur diese Art von Rewasserung so herzustellen und auszubilden, dass er alien Anforderungen technisch sowohl wie wirthschaftlich voll- kommen entspricht. 9. Lage, Rreite, Lange der Hange. Hierbei kommen folgende Factoren zur Resprechung, die zulassige Lage, Rreite und Gefalle der Hange. Was den ersteren Punkt anbetrifft, so empfiehlt sich die Sud- und Westlage derselben am meisten, da dieselbe im Friihjahr zuerst Schnee und Eis verliert und der Eisbildung nicht so zu- ganglich ist, als Nord- und Ostlage. Die Rreite der Hangflache richtet sich nur nach dem Terrain, jedoch sind hierbei auch bestimmte Grenzen einzuhalten; die eigentliche Rreite eines Hanges bis zur Lage einer Wasserrinne diirfte nur 7 — 11 m. (24 — 36 Fuss) zu bemessen sein, jenachdem die Horizontalen dieselbe bestimmen. Die Rreite bis zur Lage eines grosseren Wassergrabens 15 — 18 m. (40 — 60 Fuss), die totale Rreite als Abschnitt einer Wasserungs-Abtheilung, d. li. vom Punkte des Zuleiters bis zur Entwasserung, hochstens 38 bis 45 m. (120 — 150 Fuss) betragen. Diese Dimensionen lassen mit Hiilfe der nothigen Verthei- lungs-Graben eine regelrechte Wasserleitung zu, und geben bei spaterer Nutzung des Terrains breite und bequeme Pflugflachen. Die Lange der Hange, d. h. der Terrain- Abschnitt, der mit einem grosseren Zuleiter zur Vertheilung des Wassers versehen. 28 richtet sich nach der Lage des Terrains und des Hauptzuleiters. Zweckmassig angebrachte Schleusen und Vertheilungsgraben, letztere in richtig berechneten Dimensionen regeln diesen Punkt von selbst. 10. Gefalle derselben. Schwieriger ist dagegen die richtige Bestimmung des Ge- falles, welches man den Hangflachen geben muss, um einen jeden Theil derselben mit Wasser zu versehen, andererseits, nament- lich im losen Sande kein Reissen und Wegspiilen desselben her- vorzubringen, schliesslieh aber auch nicht zu geringe Gefalle anzubringen, die spater, wenn sich der Boden durch mehrmaligen Anbau von Culturpflanzen gesetzthat, nachtheilig auf die Wasser- vertheilung bei dichtem Stand des Grases wirken. Nach meinen Beobachtungen der Anordnung auf der Schwint- scher Rieselflache kann man ohne Nachtheilezu befiirchten, beim ruhigen Uebertritt des Wassers auf 7,5 m. (24 Fuss) Hangflache 10,5 Cm. (4 Zoll) = 1,4 Procent Gefalle anlegen, mithin fur die ganze Hangflache auf 38 m. Lange ein Gefalle von 0,55 m. als Norm gelten lassen. Hat jedoch der Boden von Natur ein star- keres Gefalle, als das eben genannte, so wird man dem Hange dasselbe schon lassen mussen und nur in seltenen Fallen ge- zwungen oder im Stande sein, es zu ermassigen. Durch trans- portable Stauapparate und durch von Eisenblech mit Stiel von mir bei der Schwintscher Berieselung eingefuhrte Stauschaufeln in verschiedenen Grossen lassen sich Transporteure, Verthei- lungsgraben und Rieselrinnen nach Bedarf reguliren, ohne dass man zu haufig feste Schleusen nothig hat. Was nun iiberhaupt die Form der Schleusen anbetrifft, so weicht die Construction derselben von der bei gewohnlichen Be- wasserungen gebrauchlichen nicht so wesentlich ab, um hier eine besondere Berucksichtigung finden zu konnen. In solchen Terrainlagen nun, wo sich der Hangbau nicht herstellen lasst, tritt an dessen Stelle der breite Riickenbau, des- sen Breite mit 15,6 — 22,5 m. (4 — 6 Ruthen) zulassig ist. Breiter werden sie fiiglich nicht gut gemacht werden, da sonst der eigentliche Hangbau an ihre Stelle tritt, und die Erdbewegung sehr kostspielig wiirde. Die Lange derselben wird 18 — 34 m. (60 — 100 Fuss) betragen konnen. Die Gefalle analog dem Hang- baue. 29 Ein sehr wichtiger Punkt fur das Gedeihen der ganzen An- lage ist nun die Entwasserung. 11. Entwasserung und Drainage. Es ist natiirlich, dass bei dem ununterbrochenen Zufluss des Canalwassers, Winter und Sommer, wenigstens auf wiederkeh- renden bestimmten Abtheilungen des Bewasserungs- Areals hin- sichtlich der Entwasserung noch viel durchgreifendere Massregeln Platz greifen miissen, als bei Berieselungsarbeiten gewohnlicher Art, wo die Wasserung nur eine bestimmte Zeit im Jahre dauert, in der iibrigen Zeit die Wiesen jedoch trocken liegen. Eine solche griindliche Entw r asserung, die unfehlbar nun dauernd wir- ken soil, kann nur durch eine den Anlagen angepasste zweck- entsprechende Drainage herbeigefiihrt werden. Die Drainage ist meiner Ansicht nach in grosserer und kleinerer Ausdehnung je nach der Beschaffenheit des Grund und Bodens unerlasslicb, da sie nur als der einzig richtige Regulator fur die sonst nach und nach entstehende Verwasserung des Untergrundes betrach- tet werden kann, sowie sie auch zur beschleunigteren Reinigung des Canalwassers nicht unerheblich beitragt. Die bedeutendsten englischen Autoritaten in diesem Fache wie Hope, Rawlinson, Marriage sprechen sich unbedingt fur tiefe griindliche Drainirung zur Sewage-Berieselung bestimmter Lan- dereien aus. (Vergl. Bericht iiber den gegenwartigen Stand der Abfuhr- und Canalisationsfrage in Grossbritannien von W. Le- feldt, Civil-Ingenieur in Sclioningen, Bericht an den Herrn Mi- nister fiir die landwirthschaftl. Angelegenheiten). Bei Beschreibung der von Mr. Hope eingerichteten Riesel- farm, Breton-Farm bei Romford sagt genannter Autor: Fiir die ca 80,000,000 Gallons, pro Anno von ca. 7000 Einwohnern der Stadt Romford, wozu noch eine grosse Brauerei kommt, ca. 40,000 Tons Canalwasser, zahlt Mr. Hope E. 600, also pro Ton ca. y 3 d. und pro Acre E 5 und fiir die 121 Acres Land a E 2. 10 s. Pacht. Die ganze Vorbereitung fiir Aufnahme des Canalwassers selbst hat Mr. Hope besorgt und ca. 85 Acres oberhalb des Ni- veaus der Absatz-Bassins in einer Tiefe von 5 — 6' und in Zwi- schenraumen von ca. lORuthenso drainirt und eingerichtet, dass das Drain- und Abflusswasser, wenn bei trockenem Wetter be- nothigt, wieder in die Bassins kommen und so wieder auf das Land gepumpt oder auch gleicli direct in den Fluss abgelassen 30 werden kann. Auf dieser Abflussstelle uberzeugte ich mich durch Trinken des Abflusswassers von dessen Freisein von unangeneh- mem Beigeschmack, wie denn auch das aus directen und indi- recten Producten der Breton-Farm bestehende, in Gesellschaft des Mr. Hope verzehrte Friih stuck ebenso vorzuglich mundete, wie solches in Lodge-Farm bei Mr. Morgan (ebenfalls aus Rie- selfarm-Producten bestehend) der Fall gewesen war w . Ferner von der Sewage-Farm der Stadt Rugby, welche ich selbst im Sommer 1869 besucht habe, (vergl. Canalwasser-Be- wasserung S. 73 — 74) und nach Untersuchung der Bodenver- haltnisse fand, dass nur eine griindliche Drainage der immer mehr um sich greifenden Verwasserung Einhalt thun konnte, be- richtet Lefeld ebenfalls, dass nur ein grundliches TiehDrainage- System, den beregten Uebelstanden nach, hier am Platz ware. Mr. Hope sagt unter anderem in seinem Bericht iiber die Nutzbarmachung des Canalwassers der Stadt Birmingham, das Rieselland musste tief drainirt werden, mindestens 6 ', und beson- dert sehr dicht mit grossen, Rohren, und rechnet fiir diese Ar- beiten allein L. 20 fur den Acre. Hieraus ist ersichtlich, dass die Englander den grossen Nutzen einer grundlichen Tief-Drainage bei diesen Anlagen in neuerer Zeit sehr wohl eingesehen haben, denn noch bei meiner Anwesenheit in England im Jahre 1869 war man der Ansicht^ dass die Drainage das versinkende Canalwasser zu schnell und unrein absorbire, und sie deshalb nicht ausfiihrte. Ein grosser Theil der sonst vortrefflich angelegten Anlagen in Warwick war einfach versumpft und ging im Ertrage auffallend zurtick. Jetzt sind diese Flachen griindlich drainirt und leisten das ihrige. (Lefeldt, Beschreibung der Anlagen zu Warwick, im Anhange). Professor Dr. Diinkelberg dagegen aussert sich in einem Schreiben: „Zur Berieselungs - Frage w an den Redacteur des Vereinsblattes fur offentliche Gesundheitspflege, Separat- Abdruck ausNo. 18 — 19, Juli-August 1873, beziiglich der Drai- nage des Bodens in Rieselfeldern folgendermassen: „Es muss ausdriicklich betont werden, dass eine Drainirung den Boden zwar an und fur sich durchlassender, aber gleichzeitig eine normale Berieselung der ganzen Flache unmoglich macht; denn sobald das Rieselwasser auf die Linien gelangt, auf welchen die Rohren 3 y 2 — 4 Fuss tief im Boden liegen, sinkt es in der lockern Erde nach diesen hinab und ist fiir die Befruchtung anderer Stellen 31 des Feldes verloren. Aus diesem Grunde sind dann anch viele drainirte Rieselfelder in England in ihrer Anlage und Production yerfehlt undleisten nicbt, was man sich davon versprochen hatte w . Meinen Erfabrungen gemass kann ich diesen Standpunkt des genannten Autors nicbt theilen, obgleich ich zugebe, dass in dem ersten Jabre nach Einfuhrung der Drainage in den Bcden die Entwasserungslinien der Drains durch den noch nicbt festge- sackten Boden allerdings einen vielleicht nicht unbetrachtlichen Theil des uberrieselnden Wassers entfiihren, jedoch verringert sich diese bescbleunigte Filtration an genannten Stellen in kurzer Zeit, sobald namlich die dichte Grasnarbe einigemale geschnitten ist, welche sich namentlich auf den Entwasserungslinien ungleich starker zeigt als an andern, nicht beriihrten Stellen. Gleichzei- tig ist jedoch hervorzuheben, dass die Drainirung eines Canal- wasser-Rieselfeldes technisch anders angelegt werden muss, als die Drainirung eines Feldes. Wahrend bei letzterem durch ein systematisch angelegtes Rohrennetz der Grundwasserstand auf eineTiefe von 1,2 — l,5Meter(4 — 5') gewissermassen normalisirt wird, die Hohe des Grundwassers aber namentlich nur im Fruh- jahr die Drains zum Laufen bringt, wahrend sie das iibrige Jahr hindurch, wenn keine permanent laufenden Quellen mitgefasst sind, nur verhaltnissmassig wenig Wasser bringen, so hat die Drainage eines Rieselfeldes in unserem Sinne bei Ausiibung der gleichen Thatigkeit noch die Aufgabe, den Theil des fortwahrend in fast alien Bodenarten bei der Berieselung allmahlig sinkenden Wassers schnell und sicher abzufuhren, der sonst den Boden bei einigermassen undurchdringlichem Untergrunde mit der Zeit ganzlich versumpfen und verwassern wtirde. Sie wirkt also gewissermassen auch als Wasserleitung. Diesen Gesichtspunkt festgehalten ist die Drainage eines Rieselfeldes so einzurichten, dass vorzugsweise die regelmassig anzulegenden Heuwege an den tieferen Punkten der Anlage (unterhalb eines Hanges, zwi- schen zwei Riickenbreiten), je nach den Hauptgefallen, die tief, mindestens 1,8 m. (6') zu legenden Sammeldrains von 4 — 5 bis 6 — 8" lichter Weite aufzunehmen haben. An diese schliessen sich die nothigen Seitendrains, diese richten sich hauptsachlich nach den gefundenen geognostischen Resultaten. Die Machtig- keit der undurchlassigen Schichten (Thon, Lehm, in weiterer Tiefe Thonmergel, Sickerthon, thonsandige Drifft, Schluff) diese Trager und Ursachen dei\ verbreiteten Undurchlassigkeit des 32 . Untergrundes resp. des Grundwassers, werden durch die geog- nostischen Forschungen bekannt. Auch hier kann man etwaigen Befurchtungen des zu schnel- len Yersinkens des Rieselwassers wirksam entgegentreten, indem man die Seitendrains, z. B. beim Ruckenbau nur bis zur Halfte in die geneigten Rieselflachen hineinlegt, so dass die obere Halfte undrainirt bleibt oder nur an solchen Stellen weiter herauf geht, wo eine Drainage unumganglich nothwendig ist. In fast alleu Lagen ist eine Modification der Drainage moglich ohne zu grosse Wasserverluste, die Rentabilitat eines Rieselfeldes in Frage stel- lend, befurchten zu miissen, anderseitig aber auch den bosen Folgen einer Untergrundversumpfung entgegen zu arbeiten. Kann man die Sammeldrains in derWeise dirigiren, dass sie auf einem Punkt oder an mehreren verbindbaren Punkten zusammen- fliessen, so ist eine Wiederbenutzung des Wassers zur weitern Berieselung unterliegender Flachen moglich und wird von den besten Resultaten begleitet sein. Dass nach langerer Berieselung eines Feldes mit Canalwas- ser der organische Schlamm desselben allmahlig nicht nur die Erdoberflache sondern auch einen Theil des Unterbodens ver- dichtet, ist auf gut bestandener Grasnarbe im Sommer und bei rotationsmassiger Bewirthschaftung des Rieselfeldes, namentlich bei Durcharbeitung des Bodens mit dem Untergrundpflug nicht moglich. Wohl aber tritt bei Wintereinstauungen des Canal- wassers in Einstaubassins diese Erscheinung auf, wovon ich mich auf dem losen Sande der Ileubuder Rieselfelder genugend iiber- zeugt babe. Vergl. auch Prof. Al. Muller’s Stadtereinigungs- frage S. 13. Da nun aber auch bei der Brachbewasserung des Bodens im Winter dergleichen Stauungen unvermeidlich sind, so ist auch fur diesen Uebelstand die Drainage im Stande, entweder beim Versinken des Wassers im Friihjahr nach dem Entweichen des Frostes aus dem Boden auf naturlichem Wege, oder beim Ablassen dieser Stellen nach kiinstlich anzulegenden Filtrirstel- len dasselbe schnell und sicher zu beseitigen. Die Behauptung Professor Dr. Dunkelberg’s, dass die Drai- nage in England Rieselfelder unproductiv gemacht habe, wird durch meine bisherigen Ausfuhrungen der Massnahmen bewahr- ter engliscber Autoritaten in diesem Fache widerlegt. Im Hinblick auf die Reinigung des Cai^alwassers durch den Boden, so wird namentlich die Abklarung desselben durch die Drainage in hohem Grade befordert, indem dasselbe zu den Drains ge- langt, gegen die Stossfugen der Rohren stauend zur Ruhe kommt und nur allmalig in dieselben dringt, um noch von etwaigen Sink- stoffen befreit, abzufliessen. 12. Graseinsaat. Nach Fertigstellung einer Flache von bestimmter Grosse, einer Wasserungsabtheilung, kann man dieselbe vor der Gras- einsaat eine Zeit lang vorsichtig berieseln, um erstens bei sandiger Struktur derselben den durch die Planirung lose gewordenen Sand etwas zu binden und zweitens durch Suspendirung eines Theils von Dungstoffen den Boden fur die folgende Grassaat vor- zubereiten, Trotzdem njin die Erfahrung gelehrt hat, dass das italienie- nische Raygras (Lolium italicum) unsere Winter nicht vertragt, sondern ganz oder theilweise eingeht, so halte ich es doch zum ersten einjahrigen Anbau einer Rieselflache sehr geeignet, da es vermoge seiner grossen Triebkraft bald im Stande ist, die Flache zu decken. Nur muss man, um einen dichten Stand zu erreichen, das nothige Quantum Aussaat nicht scheuen, und dies ist pro 7* Hectar (einen Morgen Magdeb.) 40 — 50 Pfund. Nachdem die Flache gut eingenasst ist, wird der Samen gleichmassig ausgesat mit einer leichten stumpfen Egge eingeeggt und scharf abgewalzt. Die Aussaatzeit ist fur unser Klima Ende April. 13. Berieselung des Graslandes. Wenn das junge Gras eine Grosse von ca. 12 — 15 Centim. erreicht hat, kann dasselbe mit Vorsicht die erste Rieselun£ er- halten, welche manjedoch nur auf einige Tage ausdehnt und die Flache dann wieder trocken liegen lasst bis sich die ersten Bliithen zeigen. Eine zu starke Rieselung in der ersten Wachs- thumsperiode der Graser*giebt zu viel Krautwuchs, und ein bal- diges lastiges Lagern desselben, wodurch die Bluthenbildung vielfach gestort und somit der Futterwerth herabgedriickt wird. Sowie sich das Gras grosstentheils in Bluthenbildung zeigt, dem sogenannten Schossen, kann starker gerieselt werden, um nach eingetretener wirklicher Bliithe desselben den ersten Schnitt zu nehmen. Die grune Masse muss entweder zur Verfutterung oder 3 34 zu Heubereitung sofort von der Flache entfernt werden. Beim Mahen ist darauf zu halten, dass das Gras kurz und platt abge- schnitten wird und nicht langer wie hochstens 24 Stunden in den Schwaden liegen bleibt. Das Aufharken muss ebenfalls wegen der einige Tage darauf folgenden Berieselung sehr gut und rein ausgefiihrt werden. 14. Heuwerbung. Nach meinen Erfahrungen in den Schwintscher Anlagen macht das Heumachen auf der Rieselflache grosse Schwierigkei- ten, da erstens die starken Schwade des von Saft strotzenden Grases nicht schnell genug lufttrocken, sondern leicht gelb und dumpfig werden, zweitens der starke Nachwuclis die Heuberei- tung auf der Fache nicht zulasst, wenn man nicht fur den fol- genden Schnitt die grossten Nachtheile erwarten will. Es muss demnach das Gras sogleich nach dem Abmahen im frischen Zu- stande von der Flache gebracht und auf besonders etablirten Heutrockenplatzen, auf sogenannte Heureuter lufttrocken ge- macht werden. Das Herabbringen des griinen Grases von der Flache an die den nachsten Heuwegen zunachst gelegenen Ran- der geschieht am besten durch die englische Heuschleife.*) Zum Transport des Grases nach den Trockenplatzen bedient mansich kleiner von einem Pferde gezogener Kastenwagen mit eisernen Radern (Lowry) welche auf Schienengeleisen laufen, die entweder als Pferdebahn permanent festliegen, auch transportabel sein konnen. 15. Heuwege. Aus diesem Grunde istes streng erforderlich, dem Bau dieser Communikationswege die grosste Sorgfalt angedeihen zu lassen; sie miissen resp. 6 — 8 Meter Breite erhalten , sauber planirt und mit Kies beschuttet werden. An beiden Seiten dieser Wege be- fiden sich Ent- resp. Bewasserungsgraben, unter diesen die schon besprochenen Sammeldrains. 16. Berieselung nach dem Grasschnitt. Nach Entfernung des geschnittenen Grases erhalt die Flache 48 Stunden nach dem Schnitt, damitman den jungen emporstre- benden Grastrieben nicht in die Ohren riesele, eine mindestens 8 Tage wahrende Rieselung, die sich bis zum zweiten Schossen *) Patentirte Pferdeschleppharke von R. Garrett & Sons, Leiston Works, Suffolk. 35 je nach den Witterungsverhaltnissen von Zeit zu Zeit wieder- holen muss, Mit Eintritt anhaltenden Regenwetters wird die Rieselung eingestellt, und nur beitrockenem heissen Wetter fort- gesetzt. Auch zum 2. Schnitt tritt das Gras, namentlich alle Raygraser, in Bliithe, zum 3. und 4. Schnitt jedoch nur verein- zelt. Nach den ubrigen Schnitten treten regelmassige Riesel- perioden ein, deren Dauer, Witterung, der Stand, und das Aus- sehen des Grases bedingen, es lassen sich hier schwer Regeln vorschreiben. Im Allgemeinen werden 70 bis 80 Rieseltage pro Sommer nicht viel iiberschritten werden. Nach Aberntung des letzten Schnittes vom italienischen Ray- grase erhalt das Land im Herbst und Winter noch eine fort- dauernde Brachberieselung, bis es im nachsten Friihjahr so zeitig wie moglich gesturzt wird, um zur Aufnahme der mehrere Jahre dauernden Gemenggrassaat vorbereitet zu werden. 17. Grasgemenge. Nimmt man von der einjahrigen Benutzung des italienischen Raygrases Abstand, so kann man die neu anzulegende Flache auch gleich mit Gemeng-Grassaat besaen, die gegebenen Vor- schriften bleiben dieselben. Die Zeit der Aussaat derselben ist Anfangs des Monats Mai, fur mehr siidlich gelegene Orte der Monat April. Die Graser dieses Grasgemenges sind bereits im ersten Abschnitt genannt, jedoch habe ich neuerdings mit folgen- der Mischung Versuche gemacht, welche ich empfehlen mochte: 1 . Engl. Raygras, Lolium perenne . . 5 Pfund 2. „ „ (deutsche Saat) . . 15 „ 3. Knaulgras, Dactylis glomerata . . 10 „ 4. Wiesenschwingel, Festuca pratensis 9 „ 5. Italien. Raygras, Lolium italicum . 5 „ 6 . Thimotheum, Phleum pratense . . 2 „ 7. Wiesenrispengras, Poa pratensis . . 2 „ 8 . weisser Klee, Trifolium repens . . 1 „ 9. schwedischer Klee, Trifolium hybridum 1 „ zusammen 50 Pfund pro ! /4 Hectar. Anfanglich ist diese starke Aussaat pro 74 Hectar, um die Flachen zu deckem, dringend nothwendig, in spaterer Zeit, wenn das Land mehr in Cultur ist, kann man mit einem kleineren Quantum pro J / 4 Hectar auskommen. 3 * 36 18. Vertheilungs rinnen. Sowie die Flache eine gedrungene und feste Grasnarbe er- halten bat, ich spreche hier yon sehr leichtem Sandboden, ist es an der Zeit, die kleineren Bewasserungsgraben und Rieselrinnen zur Yertheilung des Wassers auf den breiten Hangen herzustel- len. In mehr gebundnerm Boden konnen diese Rinnen kurz vor der Graseinsaat gezogen werden. 19. Dauer des Graslandes. Wie lange man nun den Grasbau auf einer Flache betreiben will, hangt erstens von der Rotation des Rieselfeldes iiberhaupt ab, zweitens aber wohl, wie lange sich der Graswuchs kraftig und zutraglicli zeigt; bei meinen Yersuchen hat, wie ersichtlich, das 3. Jahr die grossten Ertrage gegeben. Hierin miissen ent- schieden noch mehr Erfahrungen gesammelt werden, denn warum eine Flache brechen, wenn sie jahrlich zufriedenstellende Ertrage liefert? 20. Hackfruchtbau mit Bewasserung; die Futterrunkel. Von den Hackfriichten steht nun in erster Reihe die Futter- runkelriibe. Sie hat sich ebensowohl hier in Deutschland wie in England als eine passende Bewasserungsfrucht gezeigt. Nur miissen, wie schon aus den Schwintscher Yersuchen ersichtlich, gewisse Vorsichtsmassregeln bei der Pflanzung fiir die Bewasserung zur Anwendung kommen, die ich in Kurzem zusammenstelle. 1. Die Flache, welche fur Runkelriiben bestimmt ist, erhalt im Herbst resp. Winter und ersten Friihjahrsmonaten Brach- bewasserung; 2. wird das Land vier Wochen vor dem Pflanzen tief gelockert. 3. Einige Tage vor dem Pflanzen werden die Kamme mit dem Haufelpflug (Double mould board plough*) aufgeworfen und mit einer kleinen Handwalze oben platt gedriickt. 4. Nach demLegen der Kerne werden die zwischen denRiicken befindlichen Bewasserungsrinnen abgeglichen und glatt ge- schaufelt, die Zuleitungsrinnen fiir die Parallelreihen hergestellt. 5. Die Kerne miissen mindestens in Entfernungen von 50 Centi- meter Zwischenraum gelegt werden. *) Auch Double mould & turn rest, Pfliige bei Ransomes & Sims, Ipswich, und James * F. Howard in Bedford. 37 6. Nach dern Yerziehen der Riibenpflanzen erhalten dieselben die erste Wasserung. Das Canalwasser darf die Pflanzen nicht beriihren; das Rieseln kann mehrere Tage fortgesetzt werden. 7. Nach der ersten Ausjatung des Unkrautes erhalten dieselben die zweite Wasserung. 8. Die Wasserungen werden nach Maassgabe der Witterungs- verhaltnisse fortgesetzt, bei trockenem Wetter erhalten die Pflanzen mehr, bei nassem Wetter kein Wasser. 9. Es empfiehlt sich, im Monat einige Male, aber in kurzen Zwischenraumen, zu wassern. 10. Ende August gebe man reichlich Wasser, da die feinen Saug- wurzeln der Ruben thatig werden. 11. Im September stelle man die Bewasserung ein. 12. Das Pflanzen der Ruben auf glatter Flache, so dass das Wasser die Pflanzen bespiilt, ist zu verwerfen, da danach die Riiben zu saftig, also wassrig und briichig werden, sich auch bei dickem Canalwasser beschmutzen. 13. Wahrend derganzen Cultur miissen Zuleitungs- undParallel- rinnen stets in gutem Zustande erhalten werden. 21. Yersuclie mit der Zuckerrunkel. Mit dem Anbau der Zuckerrunkel sind in Berlin und Danzig V ersuche gemacht worden ; an beiden Orten ist der erzielte Zucker- gehalt den Anforderungen der Zuckerfabrikation nicht nahe ge- kommen. In Berlin betrug derselbe nach 2jahrigen Yersuchen 8 Procent, in Danzig noch weniger. (Yergl. die Berie&elung mit Berliner Spiiljauche. Anbau -Versuche im Sommer 1872 von Prof. Alex. Muller.) Prof. Muller sagt dariiber: „Stellt man die mit Spiiljauche gediingten Zuckerrunkeln neben diejenigen, welche in der wohl jedem wissenschaftlich gebil- deten Landwirth bekannten Arbeit von E. v. Wolff, „Die Aschen- analysen der landwirthschaftlichen Producte, (bei Wiegandt, Hempel & Parey in Berlin), als Reprasentanten der gegenwar- tigen Grosscultur aufgefuhrt sind, so gewahrt man in der Zu- sammensetzung der Runkeln eine ebenso grosse Yerschiedenheit, wie in den Wachsthuinsbedingungen auf unserem Rieselfelde und auf den Aeckern der Zuckerfabriken statt hat. Unseren Runkeln sind bei starker Stickstoff-Dungung Alkali- salze und darunter Kochsalz sehr reichlich geboten und von 38 ihnen auch aufgenommen worden. No. II. besonders zeigt eine starke Luxus-Consumtion, wie solche in der gewohnlichen Land- wirthschaft nicht vorkommt, wohl aber bei Wasserculturen der agricultur-chemischen Versuchs-Anstalten mehrfach beobacntet worden ist. Zuckerrunkeln 1872. 1 I. II. II. III. Bestandtheile. b - 1 c. a. t>. aa. bb. 1 aa. bb. Procent Procent j Procent | Procent A. fr isch. Wasser .... 85,51 | 86,91 90,74 | 89,83 1 82,66 | 88,68 87,11 1 87,73 86,21 90,29 85,67 87,42 Protein .... 2,44(2,01 1,74 1 1,91 3,08 | 2,26 1,69 | 2,29 2,22 1,82 2,67 1,99 Zucker .... 8,00 | 8,00 4,05 | 4,80 5,90 1 5,30 7,51 5,63 8,00 4,42 5,60 6,57 Cellulose etc. . . 1 1 1 1 2,36 2,11 \ 6,06 \ 4,02 Asche .... 1 1 1 J j 1 1,21 1,36 j Summa 100,00 100,00 100,00 100,00 B. wasserfrei. Portein .... 16,8 15,4 18,7 18,7 17,7 j 20,0 13,1 18,6 (Stickstoff) . . . (2,69) (2,46) (3,00) (3,00) (2,84) (3,70) (2,10) 2,98 Zucker .... 55,2 61,1 43,7 47,2 34,0 46,8 58,3 45,9 Cellulose . . . 19,2 14,7 23,6 20,1 \ 48,3 33,2 28,6 | 35,5 Asche .... 8,8 14,0 1 1 Summa 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 Dieser Luxusconsumtion muss die geringe Zuckerbildung zugesehrieben werden. (Die Zuckerarmuth der Runkeln ist wahr- scheinlich durch den Kochsalzgehalt der Spuljauche bedingt.) In der Praxis hat starke Dtingung mit Chilisalpeter ahnliche Wirkung hervorgebracht, naturlich aber der aufgewendetenMenge entsprechend in weit niedrigerem Grade als unsere Spuljauchen- dungung. Es steht iiberdies zu erwarten, dass die langst in Aussicht genommene Einfuhrung der Fabriksteuer iu naher Zukunft ge- statten wird, die durch Jauchendiingung erzeugten Zuckerrunkeln vorerst fur Spiritusbrennereien zu verwenden. Bis dahin miisste unsere Zuckerrunkel freilich unmittelbar als Futter benutzt wer- den, doch wiirde auch in diesem Falle die Zuckerrunkel den 39 Vorzug vor der Futterrunkel verdienen, da sie in der Regel nicht nur besseres, sondern auch reichlicher Fritter produciren wird. Die heurigen Ertrage an Trockensubstanz stellen sich wie 40 Centner pro Morgen fiir Zuckerrunkeln, zu 37 Centner fur die Futterrunkeln. Nebenber aber wiirde man Gelegenheit haben, den Anbau der Zuckerrunkel unter den neuen Verhaltnissen zu studiren, um die giinstigsten Bedingungen fur das Gedeihen der zur Spiritusfabrikation geeignetsten Zuckerrunkeln ausfindig zu machen a . Auch Mais eignet sich zum grosseren Futterbau mit Canal- bewaseerung, obgleich mir uber diese Pflanze mittheilbare An- bauversuche nicht yorliegen. 22. Kohlarten. Alle Kohlarten sind nun fur die Bewasserung sehr zu em- pfehlen, obwohl der Anbau im grossen Massstabe auch seine Schwierigkeiten haben diirfte. In den Heubuder Rieselanlagen wurden im yorigen Sommer recht gute Resultate erzielt. Man hatte in kleineren Abtheilungen viele Sorten gepflanzt; Erfurter, Braunschweiger, Magdeburger Kopfkohl war mitunter in grossen festen Exemplaren vorhanden, ebenso die rothkopfigen Kohlarten, auch Savoyer- und Rosenkohl. Blumenkohl gedeiht vor allem vortrefflich, ebenso mit Vorsicht gewasserte Kohlrabi. Alle Kohlarten scheinen fur frische Diingung die dankbarsten Pflanzen zu sein, jedoch diirfte, wie gesagt, der massenhafte Anbau die- ser Gewachse wegen zu kostspieliger Cultur bezuglich z. B. des starken Unkrautwuchses auf mehrjahrigen Rieselanlagen etc. finanziell noch nicht klar zu legen sein. Erfahrungen uber die zweckmassigste Behandlung dieser Gewachse mit Canalbewasse- rung kann ich noch nicht beibringen, weil meine Versuche zu klein waren. 23. Futterwerth des Canalwasser-Rieselgrases. Von den Gegnern des Canalwasserberieselungssystems wird nun namentlich hervorgehoben, dass das gewonnene Futter vom Vieh entweder gar nicht oder doch ungern gefressen wiirde, dass ferner dasselbe im hochsten Grade ungesund ware, auch schliess- lich die vermittelst Berieselung gewonnene menschliche Nahrung als Gemiise, Friichte etc. allerhand Krankheiten im Gefolge hatte. Selbst in England ist diese Angelegenheit, wie wir weiter 40 unton horen werden, auch noch ein Gegenstand §rbitternden Streites. Meine Erfahrungen beweisen nun gerade das Gegentbeil; ich habe stets gefunden, dass das starke iippige, von Saft strotzende Rieselgras von allem Vieh mit Begierde angenommen wurde. Unter anderen sind 60 Stuck schwere hollandische Milchkiihe in Schwintsch 12 Wochen im Jahre ausschliesslich darnit gefiittert. Der Milchertrag war gegen Klee- und Luzerne-Futterung wah- rend der Fiitterungsperiode mit Rieselgras taglich ein bei weitem hoherer, auch kann kein einziger Erkrankungsfall, der dieser Futterung auch in entferntester Weise in die Scliuhe gescboben werden konnte, innerhalb von 3 Jahren constatirt werden* Ebenso verhalt es sich mit der Heufiitterung von Rieselgras, wenn dasselbe seinen von andern Wiesengrasern abweichenden Eigenschaften gemass gewonnen wurde. Es ist jedoch hieriiber festzustellen, dass das von nur italienischem Raygras, nament- lich im 3. und 4. Schnitte gemachte Heu dem Vieh weniger zusagt, ja sogar verschmaht wird gegen das der besprochenen Mischung. Heu vom 1. Schnitt italienischen Raygrases, wenn in der Bliithe geschnitten, macht keinen Unterschied gegen Ge- mengegras. Was Geschmack und Geruch der friscben Milch oder der zum Aussahnen aufgestellten Milch anbetrifft, so konnte auch hier kein Unterschied gegen das Erzeugniss von anderem Futter gefunden werden; es stimmen hier meine Versuche mit denen der Konigl. Thierarznei-Schule in Berlin, die mit auf dem dortigen Versuchsrieselfelde gewonnenen Grunfutter angestellt wurden, im Wesentlichen iiberein. Ein schnelles Ranzigwerden der Butter ist ebenfalls nie be- merkt und empfunden worden. Auch die gewonnenen Runkeln wurden sehr gut gefressen und waren im Fleisch fest und gesund ohne einen iibermassigen Saft- (Wasser-) Reichthum zu zeigen. Um jedoch noch einen Beitrag von dem in England nament- lich im vorigen Sommer in dieser Frage herrschenden Streit zu geben, so benutze ich hier einen aus dem Chamb. of Agr. Journ. No. 255 entnommenen Artikel, der in der Milchzeitung No. 49 1873, Organ fur das gesammte Molkereiwesen einschliesslich Viehhaltung, red. von Benno Martiny, Danzig, bei A. W. Kafe- mann, unter dem Titel ,,Sevage und Milch u deutsch wiederge- geben wird. Dieser Artikel beweist ferner noch, wie ungemein rentabel kleinere Anlagen dieses Systems z. B. aus Armen- und Waisenhausern und andern ahnlichen Anstalten sein konnen. Ein Herr Alfred Smee, Beamter an der Bank von England, schreibt der Times: „Wir halten in Wallington eine kleine Kuh- heerde, welche mein Haus in London mit Milch, Sahne und Blitter versorgt. Was wir nieht selbst verbrauchen, wird an andere Familienglieder abgegeben oder in der Nacli bar sell aft ver- kauft. Wahrend des letzten Friihjahrs ordnete mein Sohn ohne mein Vorwissen an, dass die Kiihe nebenbei mit einer kleinen Portion Gras von Wiesen, die mit Cloakenwasser (Sewage) be- rieselt worden, gefiittert wurden. Ohne die Ursache zu kennen, wurde die Butter so unangenehm, dass wir sie nicht auf dem Tisch dulden konnten; die andern Familienglieder wurden laut in ihren Klagen und unsere Butterkunden aus der Nachbarschaft blieben lange Zeit aus. Auf mein Nachforschen erfuhr ich von der Futterung mit Sewagegras. Ich liess dieselbe sofort ein- stellen, worauf Milch, Sahne und Butter ihre friihere Vorziig- lichkeit wieder gewann. Diese Wahrnehmung erschien mir zu bedeutungsvoll, um sie unverfolgt zu lassen. Mein Sohn musste den Versuch sorgfaltig wiederholen, worauf dieselben Erschei- nungen sich bemerklich machten. Die Kuhe mogen das Sewage- Gras gern und der Milchertrag steigert sich ein wenig danach; die Milch aber bekommt nach etwa 24 Stunden einen schwach ranzigen Geruch und erhalt diese Eigenschaft ein bis zwei Tage nach der Futterung. Die aus solcher Milch hergestellte Butter wird nach ein bis zwei Tagen ebenfalls ranzig und keine Sorg- falt bei der Bereitung kann dies verhindern u . Die Angaben des Herrn Smee haben indessen einen wahren Sturm von Entgegnungen hervorgerufen, insbesondere auch noch dadureh, dass derselbe daran die Meinung kniipfte, dass Milch von Kiihen genossen, die mit Sewage-Gras gefiittert wurden, wahrscheinlich beim Menschen Typhus zu verursachen im Stande sei. In beiden Beziehungen wird es nicht ohne Interesse sein, einige der gewichtigsten Gegenerklarungen kennen zu lernen. Dr. Williams, Oberarzt des Sussex Lunatic Asylum sagt: „In unse- rer Anstalt leben ungefahr 1000 Menschen und die gesammte Sewage dieser Bevolkerung, im Betrage von 35000 Gall. (159,000 Lit.) den Tag, wird zur Bewasserung von 8 Acres (3^4 Hect.) Land benutzt. Dieses Land ist in drei Theile getheilt; jeder 42 Theil tragt zwei Jahre lang ilalienisches Raygras und wird im dritten mit Wurzelgewachsen bestellt. Das Raygras wachst meist sehr iippig, oft 4 Fuss hoch, und wird vier- bis fiinfmal im Jahre geschnitten. Von Anfang April bis Ende October wer- den gegen dreissig Kiihe und zwolf Pferde fast ganzlich damit er- nahrt. Niemals istirgend eine ubleFolge dabei beobachtet worden. Im Gegentheil, unser Rahm ist so reich und gut, dass wir den- selben nach Devonshire-Art dick sieden konnen und niemals habe ich unsere Butter schlecht gefunden. Hinzufiigen mussich allerdings, dass alle Morgen in jedes Wasserkloset 1 Unze (31 Grm.) rohe Karbolsiiure gegossen und dass die gesammte Sewage, feste und fliissige Stoffe gemeinsam, unmittelbar, ohne vorher in irgend welchen Behaltern aufgesammelt zu werden, auf das Land gebracht wird. Dieses Verfahren wird nunmehr seit wenigstens zwolf Jahren befolgt“. Dr. Rees-Philipps vom Devon County Asylum zu Exminster schreibt: ,,Die gesammte Sewage von den 800 Leuten unserer Anstalt wird durchBewasserungs-Anlagen iibereinige Graslandereien ver- theilt, auf welchen unsere Kiihe weiden. Unsere Kiihe sind stets in vorziiglichem Zustande und geben eine grosse Menge Milch. Die Milch ist von vortrefflicher Beschaffenheit, ihr Rahmgehalt betrachtlich iiber den Durchschnitt. Die Butter ist ausgezeich- net und halt sich gut“. Thomas Hale von der South Metropolitan School, fiihrt an: „Die gesammte Personenzahl von unserer Schule betragt gegen 1600 Kopfe und unser taglicher Wasserverbrauch beziffert sich auf etwa 20,000 Gall. (91,000 Lit.J Wir halten eine grosse Menge Kiihe und Schweine und drei Pferde. Alle Sewage fliesst unmittelbar aus der Anstalt auf das zugehorige Land, und der Erfolg ist der beste. Vor einigen Jahren war letzteres nicht der Fall, weil man die Sewage sammelte und sichzersetzen liess, ehe man sie dem Felde zufiihrte. Dies ist jetzt anders; die festen Stoffe werden durch ein Gitter aufgefangen und jeden Morgen entfernt, die Fliissigkeit aber wird zur Bewasserung von 3 Acres (l'/ 4 Hect,) Land benutzt, das mit Raygras und Wurzelgewach- sen bebaut wird. Die Kiihe werden im Stalle gefiittert, sie fres- sen das Gras mit Begierde und nach einer Erfahrung von vier Jahren kann ich getreulich versichern, dass die Fiitterung dieses Grases keine iiblen Folgen gehabt hat. Wenn Milch von Kiihen, 43 die mit Sewage-Gras gefiittert werden, Typhus zu erzeugen ver- mochte, dann wiirden sicherlich unsere aus dicht besetzten und schlecht ventilirten Raumen aufgelesenen Kinder, deren viele bereits Krankheitsstoffe in ihrein Blute haben, die ersten Opfer sein, und wir wurden den uns zum Stolz ertheilten Namen nicht verdienen, die gesundeste Armenschule in England zu sein a . Dr. Alfr. Carpenter erklart: ,,Ich habe viele Jahre lang iiber etwanige nachtheilige Folgen gewacht, die sich aus Sewage-Farms ergeben mochten. Ich habe viel Milch von solchen Farms in meiner eigenen Haushaltung verbraucht und habe grosse Haushaltungen unter meiner Obhut, welche dasselbe thun; niemals aber bin ich im Stande gewesen, iible Folgen mit diesem Gebrauch in Verbindung bringen zu konnen. Dagegen habe ich wohl bemerkt, dass die Milch von Se- wage-Farms besser ist, als die von im Stalle gefiitterten Kuhen u . Endlich mogen noch die Ausfuhrungen W. Hope’s hier Platz finden. Derselbe sagt: ,,Dass Herrn Smee’s Kiihe bei gewissen Gelegenheiten Se- wage-Gras erhielten und gleichzeitig mit dessen Fiitterung an der Milch gewisse Erscheinungen auftraten, muss nach den An- gaben des genannten Herrn natiirlich als Thatsache angesehen werden. Allein ich mochte bemerken: 1. Dass die ranzige Milch und schlechte Butter in diesem Falle nicht nothwendig die Folge der Fiitterung und zwei ver- einzelte Versuche der angegebenen Art durchaus unzureichend sind, eine derartige Behauptung zu unterstiitzen, und 2. dass, wenn die Butter in Folge des gefiitterten Grases schlecht wurde, dies nicht nothwendig auch Folge der Sewage-Bewas- serung zu sein braucht. Mehrere Riicksichten sind bei dieser Frage in Betracht zu ziehen: 1. wie lange vorher wurde das Gras geschnitten, ehe es die Kiihe erhielten? 2. wie wurde dasselbe von der Sewage-Farm nach Herrn Smee’s Stalle gebracht und wie wahrend der Zeit zwischen Schneiden und Verfiitterung aufbewahrt? 3. wie wird das Land zur Aufnahme der Bewasserung vor- bereitet; etwa so, wie ich Herrn Smee habe beschreiben horen, dass die Rieselfliissigkeit in Pfiitzen auf dem Lande steht, mehrere Zoll tief uud viele Stunden oder selbst Tage lang? 44 4. wannwurde das Feld zum letzten Male vor dem Schneiden des Grases berieselt? Wohl moglich, dass bei unrichtiger in diesen Fragen ange- deuteter Behandlungsweise die Milch nach Futterung mit Sewage- Gras schlecht werden kann. Indessen stelle ich demgegeniiber meine ganze Sewage-Farm zu Romford Herrn Smee fur jede erdenkliche Untersuchung zur Yerfugung. Er kann das Ge- miise und alle andern auf Sewage gewachsenen Friichte kosten, er kann Milch und Kiise kosten und analysiren, er kann die Butter prtifen und ermitteln, wie lange Milch, Butter, Kase oder irgend ein anderes Erzeugniss der Farm sich halten will gegenuber den gleichnamigen Producten anderer Wirthschaften, oder kann, wie Dr. Spencer Cobbold that, einen, oder wenn er will, mehrere Thiere schlachten, sie seciren, mikroskopiseh und chemisch un- tersuchen nnd sie aufessen w . Herr Smee, der iibrigens bei dieser Gelegenheit als ein alter und eifriger Gegner der Sewage-Berieselung erkannt wird, hat auf diese Entgegnung bereits wteder durch Mittheilung einiger anderer, seine Beobachtung bestatigender Falle geantwortet. Der Streit ist daher noch nicht als geschlossen anzusehen. 24. Winterbewasserung. Eine noch immerhin schwer zu losende Frage bildet die Unterbringung der taglich erzeugten Canal-Wasser im Winter, besonders in den kalten schneereichen Wintern Norddeutsch- lands. Diese Unterbringung muss entschieden, wenn nicht die grossten Schwierigkeiten erwachsen sollen, dem Bewasserungs- System angepasst werden. Die Berieselung von Grasland in den Wintermonaten kann nur mit Vorsicht an frostfreien Tagen geschehen, bei Frost und Schnee ist sie unmoglich, denn sie zerstort die Grasnarbe. Meine Yersuche haben diese Behauptung zur Genuge bewiesen. Yon Anfang November bis zum 5. December wurde im Winter 1871 auf dem Schwintscher Rieselfelde* abtheilungsweise o-erieselt. Am 5. fielen bedeutende Schneemassen und das Ther- O mometer zeigte am 6. Morgens 8 Grad (Reaumur) unter Null. Da das Reservoir leer war, so wurde die Berieselung 8 Tage aus- gesetzt, die Zuleiter von Schnee gereinigt und sodann probe- weise bei einem Kaltegrade von 9 Graden das im Reservoir 45 7 Grad Warme zeigende Canalwasser auf die erste Abtheilung gelassen. Dasselbe floss aus der Vertheilungsrinne unter dem Schnee ziemlich regelmassig fort, thaute denselben an einigen Stellen, namentlich in der Nahe der Zuleiter. Abends wurden die Zu- leiter ganzlich abgelassen und wahrend derNacht nicht gerieselt. Auf diese Weise wurde das Reservoir wahrend des ganzen Win- ters regelmassig entleert. Die Eisbildung auf der Rieselflache war allerdings unter dem Schnee mit demselben zusammengefro- ren nicht sehr stark, dagegen in der Nahe der Zuleiter um so machtiger, da es nicht zu vermeiden ist, dass nicht Wasserreste im Zuleiter selbst und in der Nahe desselben durch fortwahren- des Frieren aufgehalten, zurlikbleiben. Die sehr starke Eisbil- dung unterhalb des Zuleiters erstreckte sich bis auf 8 bis 10 Meter Ausdehnung. Nach der im Februar eingetretenen Schneeschmelze, denn die Eismassen hielten sich, trotzdem sie zerstiickelt und ausein- andergeworfen wurden, ziemlich lange, sah die Grasnarbe sehr schlecht aus, an den meisten Stellen war sie ganzlich zerstort. Sie erholte sich auch nicht wieder, so dass die zerstorten Stellen Mitte April tief rajolt werden mussten, um die zu starke Dung- ablagerung zu vertheilen; sie wurden friscli mit zurHalfte italie- nischem Raygras wieder angesamt. Trotz dichter Saat und ununterbrochener Pflege sind diese Stellen heute noch im Graswuchs zu erkennen; derselbe ist dort am unregelmassigsten und erreicht nicht die Hohe des ubrigen Bestandes. In dem gelinden Winter 1872/73 wurde das ganze Grasland ofter berieselt, ohne dass sich, selbst bei 1 bis 2 Grad Kalte, Eismassen, welche dem Graswuchs schadlich werden konnten, gebildet hatten. Es konnen daher wahrend der Frostperiode nur solche Landereien bewassert werden, die keine Grasnarbe tragen, mit- hin nur fur den Anbau anderer Friickte bediingt werden. Man kann diese Winterwasserung mit dem Namen Brachberiese- lung bezeichnen. Aus den Berliner Versuchen erhellt zur Geniige, dass das von Prof. Alex. Muller vorgeschlagene Mittel, die Winterefflu- vien Behufs ihrer Filtrirung in sogenannte Winterpolder einzu- stauen, wegen ganzlicher Verunreinigung des Grundwassers und den daraus folgenden hygienischen Nachtlieilen im Grossen, selbst aueh landwirthschaftlich, unausfuhrbar ist. In kurzer Zeit versagen auch iibrigens diese Staubassins ihren Dienst, das Canalwasser perpetuirlich behufs Filtration desselben in den Untergrund durchsickern zu lassen, da sich anf dem Grunde der Bassins sehr schnell eine Schlammschicht absetzt, die vollig undurchlassig wird, also der Zweck, das Ca- nalwasser zu reinigen und fortzusehaffen verfehlt wird. Wahrend im Sommer die Reinigung des Canalwassers durch die dichte Grasnarbe recht befriedigend von Statten geht, ist die- selbe in den Wintermonaten nur auf den Grund und Boden, und die Filtration durch denselben angewiesen. Ist es nun moglich in Verbindung mit zweckmassiger Ein- theilung (Rotation) einer bestimmt abgegrenzten Rieselflache, sowie unsern klimatischen Verhaltnissen angepasster Leitung des Wassers nach und auf derselben, den Winterbewasserungs- betrieb auf solche Weise zu regeln, dass er einigermassen den Anforderuugen entspricht? 25. Fruchtwecbsel. Zur Beantwortung dieser Fragen muss vor Allem empfohlen werden, bei Einrichtung eines Rieselfeldes von Hause aus auf Bildung bestimmter Hauptbewasserungs-Abtheilungen zu sehen. Diese Hauptabtheilungen werden in bestimmten Fruchtwechsel- umlauf gelegt, so dass im Winter mindestens die Halfte des Landes zur Brachbewasserung bereit liegt. Ist z. B. eine solche Abtheilung 72 Hectar gross, so werden bei 6 Unterabtheilungen a 12 Hectar, 24 bis 36 Hectar fur mehrere Jahre liegendes Grasland projectirt werden konnen, das ubrige Land tragt im Sommer andere Friichte, theils mit, theils ohne Berieselung und nimmt in den Wintermonaten das Canalwasser auf. Es wiirde diese Eintheilung folgendermassen einzurich- ten sein: 1. Grasgemenge .... 12 Hectar Sommerberieselung. 2. Hack-Friichte (vielleicht Kartoffeln ohne Sommer- bewasSerung 12 „ Winterberieselung. 3. Italienisches Raygras ein- jahrig 12 „ 12 Sommer- u. Winterriesel. 47 4. Getreide (Weizen, Rog- gen, Gerste, Hafer olme Bewasserung) .... 12 Hectar Winterrieselung. 5. Grasgemenge .... 12 „ Sommerrieselung. 6. Hack-Fruchte (Runkelru- ben, Gemiise aller Art) .12 „ Winter- u. Sommerriesel. 72 Hectar. Es wlirden hiernack 24 Hectare Grasland nur im Sommer, 24 Hectare Grasland Sommer und Winter und 48 Hectare im Winter zur Bewasserung kommen. Mit dieser Eintheilung Hand in Hand gehen nun auch die von Hause aus anzuordnenden technischen Ausfuhrungen zur Aufleitung des Canalwassers. 26. Hauptzuleiter in Bezugnahme auf die Winter- be was se rung. Diese miissen beziiglich der Leitung desselben bei Frost- und Schneewetter darin bestehen, dass die Hauptzuleiter der Flachen mindestens V 2 Meter liber dieselben angelegt werden, aus Holz construirt und im Winter geschlossen werden konnen. Die Breite und Tiefe derselben richtet sich nach den Wassermengen, die sie im Verhaltniss zur Berieselungsflache aufzunehmen haben. Dass auch bei starkem Frost aus den Stadteanalen kommende Canalwasser hat stets einen Warmegrad von 7 bis 10 Grad Re- aumur, man kann sogar behaupten, die Temperatur desselben steige mit der Dauer des Frostes. Es mag diese Erscheinung wohl seinen Grund darin haben, dass im Winter mehr erwarm- teres Splilwasser die Leitung erreicht, als im Sommer. Die Ab- kuhlung, namentlich in den Tagesstunden ist im verdeckten Lei- tungskanal keine so grosse, als dass nicht dasselbe noch mit einem verhaltnissmassig grossen Warmegrad die Auslassschleusen er- reicht und hier mit starkem Gefall in die Vertheilungsgraben der Flache geleitet wird, aus denen es liber die Flache breit iiberlauft. Es kann nun nicht geleugnet werden, dass vielfaltig die Eis- bildung bei dieser Operation liinderlich sein wird, doch lassen sich auch hier Hiilfen geben, um das Ueberlaufen trotz der Hin- dernisse zu ermoglichen. 48 Die holzernen Hauptzuleiter miissen so gelegt werden, dass sie jede Bewasserungsabtheilung beriihren, sie konnen sich in ihren Dimensionen nach Massgabe der zu fiihrenden Wassermas- sen verkleinern. Ira Soramer sind sie geoffnet. Nicht nur in Riicksicht auf die Winterleitung miissen sie von Holz construirt sein, sondern auch urn sie bequem von der sich, trotz der Bewe- gung des Wassers fortwahrenden Ablagerung der Sinkstoffe reinigen zu konnen, ohne das Profil zu verletzen. Yor den Punkten der Ausfallschleusen miissen Reinigungsvorrichtungen (Siebe) angebracht sein, um die vielen mitkommenden unzersetz- lichen Stoffe, Papier, Hobelspane, Lumpen, Fetzen etc. abzu- fangen, damit dieselben — diese Anordnung gilt besonders im Sommer bei der Graslandberieselung — nicht mit auf die Flache gelangen und die Pflanzen durch Anhaften verunreinigen. Die Hiilfen, die man nun der Winterbrachbewasserung geben kann, bestehen namentlich darin, dass man vor Eintritt des Fros- tes das Brachland noch besonders zur Aufnahme des Canalwas- sers vorbereitet, indem man von den Yertheilungsgraben aus tie- fere horizontal gelegene Rieselrinnen auswirft, dieselben mog- lichst mit einander in Verbindung bringt, wahrend des Rieselbe- triebes von Eis und Schnee rein zu halten sucht, so dass sie Ende Januar und Februar bei starkerem Wirken der Sonne ab- gethaut werden. Eine grosse Hauptsache ist jedoch, um die Reinigung des Canalwassers ingefrorenem Boden, wo sie schwer von Statten geht, zur Hiilfe zu kommen, die Anlage sogenann- ter Filtrirstellen. Diese Yorrichtungen werden an den tiefsten Punkten der Gehange unterhalb der Entwasserungsgraben uber den grossen Drainsammelstrangen angelegt, die Zahl derselben richtet sich nach der Lange des Gehanges und den vorhandenen Abzugsgefallen. Sie bestehen aus 4 bis 8 Meter langen, oben 2 Meter breiten, unten aber schmalern, die Tiefe des Drainstranges umfassenden Kiesschiittungen von sehr grobem gewaschenem Kies. Inmitten dieser Schiittungen liegt eine 1 / 2 Meter starke Schicht von Holzkohle und Kokes-Grus, iiber dieser eine Schicht von Ziegelstucken und dann folgen grossere runde Steine. Diese Yorrichtung stets gut im Stande gehalten, reinigt in Yerbindung mit den Drains das Canalwasser mechanisch auf solche Weise, dass es fast klar die Drains verlasst. Sie kann entschieden als ein Hulfsmittel zur Reinigung des Canalwassers bei Frostwetter angesehen werden. 49 27. Friihjahrsbehandlung der Flachen nacb der Winterbrachbewasserung. Mit Eintritt des Friihjahrs mussen nun die im Winter be- wasserten Flachen, nachdem sie abgetrocknet sind, wozu die Drainage auf schnelle und sichere Weise beitragt, wieder einge- ebnet und mit dem Untergrundscultivator tief bearbeitet wer- den. Nach dieser Arbeit werden sie noch einmal gepfliigt und zurAufnahme der betreffenden Friichte, sei es ohne Bewasserung oder mit derselben, vorbereitet. Ich gebe nun vollstandig zu, dass die Winterbewasserung, die damit zusammenhangende Rei- nigung des Canalwassers etc. seine Schwierigkeiten hat, jedoch zu iiberwinden sind dieselhen entschieden, wenn man mit Ueber- legung und Sorgsamkeit den Umstanden Rechnung tragt. 28. Sonstige Pflege des Graslandes. Ehe ich nun diesen Abschnitt schliesse, gebe ich noch einige Regeln fiber die zweckmassige Erhaltung der Grasflachen fur die Berieselung. Dieselbe erfordert bei weitem mehr Aufmerksamkeit und Accuratesse als bei ahnlichen Anlagen mit Flusswasser. Vor alien Dingen mugs gegen die Correctheit der kleineren Zuleitungs- Transportirgraben, Rieselrinnen nichts einzuwenden sein. Nach jedem Grasschnitt mussen dieselben yom Schlamm gereinigt und entsprechend nachgeschaufelt werden. Durch die fette Diingung finden sich sehr viel Insecten und Larven ein, welche wieder massenhaft die Maulwfirfe nach sich ziehen, so dass jeden Morgen, so lange das Gras nicht sehr hoch ist und nicht gerieselt wird, eine grosse Zahl aufgeworfener Hfigel zu finden sind, welche sofort planirt resp. vermittelst kleiner Schubkarren entfernt wer- den mussen. Hauptsachlich wahlt der Maulwurf den Lauf der Rieselrinne zu seinen Wuhlereien, wirft die Erde zu beiden Seiten heraus und hindert dadurch den normalen Wasser- fluss im hochsten Grade. In den kleinen Verwallungen der Zu- Jeitungsgraben nisten sich Mause und Ratten ein, letztere durch die Riickstande des Canalwassers machtig angezogen, unterwiih- len dieselben und geben Veranlassung zu lastigen Ausrissen des Wassers und Zerstorung der Damme. Auch diese unsaubere Brut muss mit zweckentsprechenden Mitteln vertrieben werden. Ueber das auf der Rieselflache selbst sehr schadende Heu- machenhabe ich tnich sclion ausgesprochen, auch beim Verbrauch 4 des griinen Grases, der abtheilungsweisen Verfiitterung desselben darf man nie iiber Nacht dicke Schwade oder Haufen liegen lassen. Das saftige schwere Gras geht sogleich bei einiger Warme in Galirung iiber, wird heiss, welk und gelb und verdirbt die unter ihm befindliche Grasnarbe, dieselbe zeugt Spuren von Faulniss und giebt Flecken, die schwerwieder auszumarzen, der Flache ein schlechtes unregelmassiges Aussehen geben. 3. Die Yerwertlnmg der Producte und die Rentabilitat der Anlageu. Wenn man nach den im vorigen Abscbnitte beliandelten und angedeuteten Grundsatzen verfahrt, so unterliegt es keinem Zweifel, mit der Zeit einen namhaften Reingewinn aus den An- lagen zu erzielen, der sich bei rationeller Bewirthschaftung und richtiger Behandlung der Flache von Jahr zu Jahr steigern miisste. Im Allgemeinen ist jedoch die Frage aufzuwerfen, welche Verwerthung der Producte kann fur den Grossbetrieb des Canal- wasserberieselungssystems nach den bis jetzt gemachten Erfah- rungen empfohlen werden. Vor alien Dingen darf nicht ausser Acht gelassen werden, dass neben der landwirthschaftlichen Ausnutzung gewaltiger Diingermengen im fliissigen Zustande, auch die hygienischen Folgen des Systems zu beriicksichtigen sind. Gras land ist am meisten befahigt, das Canalwasser zu reinigen, mit- hin muss immer der Schwerpunkt gr os sstadtischer Anlagen in moglichster Ausdehnung derartigen Riesel- landes gelegt werden. 1. Yerkauf des griinen Grases. Die Verwerthung des griinen Grases durch sofortigen Ver- kauf an Ort und Stelle behufs Futterungszwecke ware nun der einfachste und naturlichste Weg. Dem steht jedoch entgegen, dass das tagliche Abholen dieser Futtermassen von der Flache durch die Consumenten seine Schwierigkeiten haben diirfte, da die meisten grossstadtischen Anlagen nicht in unmittelbarer Nahe der Stadt Platz finden werden, sondern immerhin eine ziemlich 51 weite Strecke davon. Es bleibt demnach nichts anderes ubrig, als die Verwerthung der Futtermassen dadurch zu einer lohnen- den zu machen, dass man die Heufabrikation irn Grossen betreibt. 2. Heufabrikation. Dies kann geschehen: 1. durch eine nach bestimmten Grundsatzen zu behandelnde grosse Heufabrikation oder 2. durch ausgedehnte Molkereien, Butter- und Kasefactoreien, die 3. noch mit Viehmastungsanstalten verbunden werden konnen. Alle anderen Ausnutzungen des Kiesellandes zum Gemuse-, Getreide- und Hackfruchtbau stehen in zweiter Linie, konnen aber bei geschickter Anwendung den Gewinn wesentlich ver- mehren. Wie ich schon im vorigen Abschnitt betonte, hat das Heu- machen auf der Rieselflache bei der Machtigkeit der Sehwade seine grossen Nachtheile, es mussen mithin Heutrockenplatze an- gelegt werden. auf denen die Heureuter zur Trockenmachung des Grases und die nothigen Gebaude (Heuschoppen) zur Auf- nahme des Heues sich befinden. Das lange, schwere und saftige Rieselgras auf diese Manier trocken zu machen, hat seine grossen Vortheile, besonders wenn man das Heu nachdem Herunternehmen vom Trockenplatze hauptsachlich um das Volumen desselben zu verringern und um Transport und Verkauf zu erleichtern, durch die Heupresse zusammenpresst. Auch abgesehen von derRaum- ersparung erhalt sich das gepresste Heu besser als das lose auf- gestnpelte. Es verstaubt im Innern des Ballen nicht, behalt sein Aroma, wird weich und vom Vieh lieber gefressen, vertragt besser feuchtes Wetter und feuchtere Aufbewahrungsorte ohne zu schim- meln. Frisches Heu, welches lufttrocken sogleich nach seiner Bereitung gepresst wird, vergahrt gleichmassiger und mit weni- ger Verlust als im losen Zustande, und ist zu jeder beliebigen Zeit Handelswaare, die an Gute und Masse selbst bei weitem Transporte nicht verliert. Die Dichtigkeit des Heues uberhaupt und das hiervon bedingte specifische Gewicht wechselt zwischen 0,06 bis 0,1. Frisches Heu hat eingrosseres specifisches Gewicht als alteres. Der Cubikmeter Grummet und das Heu, welches aus vor der Bluthe gemahtem Grase bereitet. ist, wiegt mehr als 1 Cubikmeter nach der Samenreife geworbenes Heu, wenn beide aus gleicher Schichten-Hohe mit einander verglichen werden. 4* 52 Man kann annehmen, dass fur 80 bis 90 Kilogramm loses Heu 1 Cubikmeter Raum erforderlich sind, oder fur 1 Z oil centner 23,14 bis 20,57 Cubikfuss, wonach ein Cubikfuss Heu 4,32 bis 4,86 Pfund wiegt und das Heu ein specifisches Gewicht von 0,08 bis 0,05 hatte. Nach dem Pressen jedoch, und zwar auf Schraubenpressen, womit man einen Druck von mindestens 200,000 Pfund auszu- iiben vermag, wird der Umfang des Heues etwa auf */6 vermin- dert, man kann also sechsmal mehr gepresstes Heu in denselben Raum bringen, oder der Cubikmeter gepresstes Heu kann fiber 800 Pfund, der Cubikfuss also 21,6 Pfund wiegen. Nach Dr. Fries, Lehrbuch des Wiesenbaus, bearbeitet von Dr. W. F. Dfinkelberg, Braunschweig bei Friedrich Vieweg & Sohn, 1866, S. 127, werden die von Wohl in Strassburg erfundenen beweglichen Packpressen, die sich durch leichte, sehr schnelle und billige Arbeit auszeichnen sollen, empfohlen. Ferner ver- treibt die Firma Wirth & Co. in Frankfurt am Main Heupressen, mit denen 2 Arheiter stiindlich 5 — 6 Centner Heu in l 1 /* — D /2 Centner schwere Ballen pressen (Preis 200 Auch amerika- nische Hebelpressen fiir Gopel- und Handbetrieb mit Ballen von 46 -f 25 + 25 Zoll und 49 + 27 + 28 Zoll. Mit der Wohl’schen Presse in Vincennes gemachte Versuche ergaben sehr befriedigende Resultate; die Ballen wiegen etwa 100 Kilogramm mit einer Dichtigkeit mit 200 Kilogramm im Cubikmeter. Das Volumen des Heues wird 11 m 1 / 4: vermindert. Die Kosten sollen 5 Centimes pro metrischen Centner (200 Zoll- pfund) betragen. Bei einer taglichen Pressung von 4500 — 5000 Kilogramm sind 5 Arbeiter beschaftigt. Die Maschine kann in jeder Grosse und Starke bezfiglich der Construction ge- fertigt werden. Versuche, welche das osterreichische Militiir- Aerar mit einer von dem Ingenieur Wittig in Wien construir- ten Heupresse durch eine Reihe von Tagen anordnete, ergaben die durchschnittliche Leistung pro Tag von 10 Arbeitsstunden zu 22 Ballen von je 2 Centner Gewicht oder 44 Centner gepress- tes Heu. Die Bedienung bestand aus 4 Mann und die Kosten des Bindematerials, der Arbeit, Schmiere belief sich auf 21 Kreuzer osterr. (4,2 fiir den Centner. Die 2 osterr. Centner (112 Kilogramm oder 224 Zollpfund) schwere Ballen hatten ein Volumen von 20 1 / 2 Cubikfuss osterr. (0,64575 Cubikmeter oder 21 Cubik- fuss) mithin ein specifisches Gewicht von 0,173 und wenn das 53 specifische Gewicht des lockeren Heues im Durchschnitt zu 0,08 angenommen wird, so hateine 2,1 fache Verdichtung stattgefunden. Der Heuhandel wird hierdurch wesentlich erleichtert, und die fur vorliegenden Zweck im grossen Massstabe in Aussicht genommene Heufabrikation wird selbstredend in der Nahe grosser Stadte, wo viele Pferde gehalten werden, hochst rentabel werden. 3. Butter- und Kasefac toreien. Ein anderer Vorschlag zur Consumtion grosser Futtermassen ware der: die Einrichtung amerikaniscber Butter- und Kase- factoreien. Das Wesen derselben besteht darin, dass die Besitzer von 100 — 1000 Kiihen, als die passendste Anzahl gelten 4 — 500 Kiilie, die Milch derselben nach einer gemeinschaftlich von ihnen zum Zweck fabrikmassiger Butter- oder Kasebereitung errichteten Anstalt liefern. Von derartigen Factoreien waren nach amtlichem Bericht vorhanden : 1869: 1066. 1870: 1234. 1871: 1283. Die erste Einrichtung dieser Art datirt aus dem Jahre 1852, die zweite Factorei wurde errichtet im Jahre 1859, die dritte im Jahre 1861. Die Kosten der Anlage einer solchen Factorei mit allem Zubehor werden in Nordamerika auf 12-1500 Dollars angegeben. Im Jahre 1869 wurden zwei Kasefactoreien nach amerikanischem System in Derbyshire in England errichtet. Die eine derselben zu Longford mit 450 Kiihen verwerthete im Jahre 1872 die Milch zu 15,8 Pfennig das Liter netto. Nahere Mittheilungen iiber Geschichte, Organisation, Ein- richtung und Ertrage solcher Factoreien. Benno Martiny, die Milch etc. II. S. 304. Milchzeitung Nr. 2. 10. 12. 29. 30. 32. 42. Willards Practical Dairy Husbandry New-York 1872. Bei der Kuhhaltungim Grossen in Verbindung mit grosstadtischen Riesel- anlagen ist noch zu beriicksichtigen, dass durch den Danger des Viehstandes eine Erweiterung der Rieselflache resp. Bewirth- schaftungsflache, hierdurch aber — bei ausschliesslichem Futter- bau wieder eine Vergrosserung des Viehstandes erforderlich wird. In Verbindung mit derartigen Anstalten ist auch eine um- fassende Viehmastung nicht ausgeschlossen, jedoch kann hierauf nur dann erst Riicksieht genommen werden, und dies gilt auch von dem vorigen Vorschlage, wenn man sich genaue Rechnung von den jahrlich wiederkehrenden Futtermassen machen, iiber- haupt die Anlage im grossen Ganzen als fertig und alien Anfor- dernissen entsprechend hingestellt werden kann. 4. Verpachtung des Kanalwassers. Von einigen Seiten ist der Vorschlag gemacht worden, die von Seiten der betreffenden Stadt angekaufte Rieselflache an Unternehmer in Parzellen verschiedener Grosse zu verpachten, gewissermassen das Kanalwasser zu verkaufen und den Unter- nehmern den Ausbau ihrer Parzellen, nachdem die Stadt nur die nothigen Zuleiter hingestellt hat, zu uberlassen. Diese Vorschlage sind nicht nur ganzlich zu verwerfen, son- dern auch von Seiten der staatlichen Behorde nie zu dulden, da sie die allergrossten Nachtheile im Gefolge haben, die einfach dadurch entstehen, dass der hygienische Zweck des Systems, die naturgemasse Fortschaffung der Effluvien auf moglichst dem Ge- sundheitszustande der Menschen unschadlichem Wege nie er- reicht werden kann. Die einheitliche Leitung dieser Anlagen nach bisher gemaehten practischen Erfahrungen, basirt auf na- turwissenschaftliche, culturtechnische und landwirthschaftliche Grundsatze, sowohl im Ausbau als auch in der spatern Direction derselben, fiihrt allein zum erwiinscliten Ziele. Jeder Unter- nehmer resp. Pachter einer solchen Anlage ist stets geneigt, nur seinen Vortheil im Auge zu behalten, moglichst primitiv zu bauen, dagegen den volkswirthschaftlichen Zweck, der doch eigentlich hier in erster Reihe stehen soil, zu ignoriren, ja ganz zu ver- gessen. Eine Unsumme von Unzutraglichkeiten, Klagen der Pachter gegenseitig und mit der Commune wiirde dieses System im Gefolge haben; ich erinnere nur an den Verkauf oder die Verpachtung des Wassers in der Lombardei, Spanien und in vielen andern siidlichen Landern, wo nur durch streng zu haltende selbstgegebene Gesetze der Bewasserungsgenossenschaften in sich, und im Uebertretungsfalle unter Androhung harter Strafen, Ruhe und Ordnung erzielt werden kann, die kleinste Vernach- lassigung derselben sofort heftigen Hader, ja Thatlichkeiten nach sich zieht. 5. Verhalten der Communen bei Anlage von Rieselflachen. Meiner Ansicht nach konnen die Stadte, welche die Absicht haben, das Canal-Schwemm-System mit Berieselung einzufiihren, nur den einen vorgeschriebenen Weg gehen, den Ausbau der Rieselanlagen selbst in die Hand zu nehmen, um denselben nach alien den Erfahrungen und Regeln, welcher hieriiber die auslan- 55 dische wie inlandische Praxis an die Hand gibt, auszufiihren. Nach der Herstellung der Rieselanlagen in moglichst fertigem Zustande, und wenn die Ueberzeugung gewonnen ist, dass der hygienische Zweck nach Lage der Umstande erfullt ist, werden sicli um so mehr Pachter nnd Unternehmer finden, die gegen eine hohe Pacht in nicht zu langer Zeit fur die Zinsen und Amorti- sation des Anlage-Capitals aufkommen. Will jedoch eine Com- mune mit der Herstellung der Rieselflachen aus irgend einem Grunde absolut nichts zu thun haben, so ist sie in sanitarer so- wohl als in volkswirthschaftlicher Hinsicht entschieden verpflich- tet, dem Unternehmer auf Grund entworfener Plane und Bau- vorschriften den Ausbau der Flachen vorzuschreiben und die Ausfuhrung durch einen sachverstandigen Beamten iiberwachen zu lassen. Geschieht dies nicht, so wird die Zukunft lehren, wie bald die staatlichen Aufsichtsbehorden Gelegenheit haben werden, in polizeisanitarer Beziehung einzuschreiten, um diesen oder jenen Uebelstand zu riigen oder auf Abhiilfe zu dringen, auch wird dadurch den Gegnern des Schwemmsystems fortwahrend Gele- genheit gegeben werden, ihre Angriffe zu erneuern, und die an sich bei sachgemasser Ausfiihrung so ungemein hochwichtige Sache herabzusetzen. Man vergleiche hierzu die September- kampfe in der „Times“ 1873 bezuglich der Croydon- Anlagen und der von Edinburg. 6. Schlusswort. Hiermit schliesse ich meine Mittheilungen ohne jedoch die Behauptung aufzustellen, dass jetzt schon die hygienische sowohl als die Culturfrage als gelost zu betrachten sei; im Gegentheil stehen wir Alle erst an der Schwelle dieses Systems, und es werden noch manche Jahre vergehen, ehe man im Stande sein wird, dasselbe durch unwiderlegbare Thatsachen als das einzige richtige hinzustellen. Bis dahin also Yorsicht und ununterbrochenes Studium.— Druck von A. \V. Kafemann in Danzig. SECOND EDITION. SEWAGE DISPOSAL. INTERMITTENT DOWNWARD FILTRATION PER SE, As the Best and Cheapest Means of Cleansing Sewage where Land cannot be readily obtained at a Moderate Price, and INTERMITTENT DOWNWARD FILTRATION IN COMBINATION WITH SURFACE IRRIGATION, AS The only Means of securing a Profitable Return from the Utilization of Sewage where Land is to be obtained at a Moderate Price. J. BAILEY DENTON, M. Inst. C.E., PRINCIPAL ENGINEER TO THE GENERAL LAftD DRAINAGE COMPANY, AND AUTHOR OF “ SANITARY ENGINEERING,” &C. &C. LONDON : E. & F. N. SPON, CHARING CROSS. 1880. PRICE ONE SHILLING. SEWAGE DISPOSAL INTERMITTENT DOWNWARD FILTRATION PER SE, As the Best and Cheapest Means of Cleansing Sewage where Land cannot be readily obtained at a Moderate Price, and INTERMITTENT DOWNWARD FILTRATION IN COMBINATION WITH SURFACE irrigation; AS The only Means of securing a Profitable Return from the Utilization of Sewage where Land is to be obtained at a Moderate Price. BY J. BAILEY DENTON, M. Inst. C.E., PRINCIPAL ENGINEER TO THE GENERAL LAND DRAINAGE COMPANY, AND AUTHOR OF “ SANITARY ENGINEERING,” &C. &C. SECOND EDITION. LONDON : E. Sc F. N. SPON, CHARING CROSS. 1880 , LONDON : WHITING AND COMPANY, LIMITED, SARDINIA STREET, LTNCOLN’S-INN-FIELDS. PREFACE TO SECOND EDITION. The following papers being now out of print, and there still being a demand for them, they have been reprinted with some cur- tailment, and here and there some additions. The practice of Intermittent Filtration, as adopted and recom- mended by the Author, having survived the passing prejudice created by erroneous statements, the Author takes the present opportunity of announcing that he purposes shortly to publish a full description with the precise cost, of several important works carried out by him, in which Intermittent Filtration has formed the principal feature, in the hope of completely removing any ad- verse influence those erroneous statements may have had. In the meantime he feels it to be a duty to impress upon those who may read the following pages that if proper regard be had to the conditions of success which the Author has laid down in the following preface to the first edition, the Engineer cannot fail to secure a satisfactory effluent from the filtered sewage with perfect freedom from all local nuisance. 22, Whitehall-place, London, January, 1880. PREFACE. The rapid advance in public favour of Intermittent Downward Filtration as a means of cleansing the filthy liquid refuse of towns and dwellings has suggested the republication of the greater part of the two following short papers. One entitled “ Sewage as a Fertiliser of Land, and Land as a Purifier of Sewage,” was pub- lished in 1872; and the other, entitled “Intermittent Downward Filtration and Irrigation,” in 1874. Experience gained by the Author within the last eight years, at Kendal and Abingdon, where the soil was free and open, — at Barnsley, where it was a clayey loam, — at Hitchin, where portions of the ground utilised was a bog peat, — and at Forfar (Scotland), Earlsdon, and other places, where the soil has varied between these extremes of condition, has proved that Intermittent Downward Filtration, which the Author had previously adopted at Merthyr Tydfil as a temporary means only, can, by proper adaptation to the circumstances of the case and the character of the soil, be made the most certain and economical of all permanent modes of sewage treatment wherever land to a greater or less extent can be obtained. The same experience has also completely satisfied the Author that the only chance of profitably using sewage in agri- culture, will be by combining with Surface Irrigation a propor- tionate area of properly prepared land to be used, when desirable, for Intermittent Filtration. 6 Where land is difficult to be got, or its cost is very great, and it therefore becomes necessary to make a small area suffice, Inter- mittent Filtration per se is pre-eminently the right process to adopt, and the more free the character of the soil, the less the area may be. Where, on the contrary, there is a wide area of land for selection, and the price is moderate, Intermittent Downward Fil- tration in combination with Surface Irrigation , is found to be even more advantageous and economical, inasmuch as the proportion of land prepared for filtration, affords a means of disposing of that excess of liquid which is always a cause of loss and trouble to the sewage farmer. It has been gratifying to the Author, who, as a farmer himself, has long advocated this combination of Intermittent Filtration with Surface Irrigation (as the only means of preventing loss) to find that in some of the largest sewage disposal works now in pro- gress or in contemplation in this country, viz., those proposed at Nottingham, and those for the Lower Thames Valley Joint Dis- trict, as well as those for Stoke-upon-Trent, Oxford, Cambridge, Dewsbury, and several more, this mode of treatment has been most favourably entertained. Viewed commercially, it is still more satisfactory to find that the Local Board of Croydon, whose farm at Beddington has been held up as a good example of Sewage Irrigation farming — but which has nevertheless failed in securing a profitable return — have taken steps for the introduction of Intermittent Downward Filtration as a means of relieving that farm of those excesses which have stood in the way of profit. Having been consulted by the Local Board on the subject, the Author is enabled to append a copy of his Report thereon, believing that the facts and figures he has given cannot fail to support the Rule he desires to establish, as a sine qua non, that no sewage irrigation farm, let its extent be what it may, should be without the relief which Intermittent Downward Filtra- tion affords. The Author takes advantage of the present opportunity to impress upon all those who are engaged in the sewerage of towns and districts, that the following conditions are essential to the successful (i.e. profitable ) disposal of sewage : — 1. That foreign waters — subsoil water, surface water, and liquid trade refuse — should be, as far as practicable, excluded from the sewers of all districts, inasmuch as it matters not what the precise treatment of the sewage may be — and in the case of irrigation or filtration, what the extent of land may be — it is certain that if the sewage proper be diluted to such an extent that the modus operandi is at times deranged, or the land will not absorb the sewage; failure or injury results. 2. That the preparation and formation of land to receive sewage, should be effected with precision , and not in the careless way in which it has been suggested sewage farms may be laid out. Irregular surfaces and steep slopes should be avoided even more carefully than clay and peat soils, for all liquids will run down sloping surfaces and collect in the lowest places, to the injury of crops and the creation of nuisance, and the more sewage is diluted with foreign waters, the greater will be these evils. There is no economy but certain disaster in carelessly executed land prepara- tions, and it is greatly to be regretted that such views have been inculcated by persons in responsible positions. 3. That intermittency of application and regulation of quantity should take the place of the slovenly hap-hazard distribution which prevails on most sewage farms, and is still frequently encouraged, for it is the want of these desiderata which brings discredit to the engineer and nuisance to a neighbourhood. With sewage in- termittently distributed in quantities apportioned to the extent of surface to which it is applied, the best results are obtained. The reverse when the ad captandum vulgus treatment prevails. Inter- mittency of application is positively essential to a continued good effluent. Where a bad effluent is found it is due to constant filtration through the same land. 8 4. That Intermittent Filtration areas when properly laid out on a perfect level, and intersected by furrows dug at different depths, should be made the means of conveying to the land, where it is most wanted, the solid floating portions of sewage which are not arrested by ordinary screening. The furrows being designedly dug at different depths and in selected courses, the deeper ones become tbe receptacles of the smaller solid ingredients called “ sludge,” which having passed through the screens deposits itself in them, while those at less depth serve to distribute the liquid evenly through the soil. It will be found that by resting the sewaged areas, one after another, as soon as this wet sludge has accumulated in the furrows, it will there solidify, and may then be removed and spread upon the land without any difficulty whatever. Being after- wards dug into the ground between the furrows, the dry sludge, which is so often made a difficulty by those who advocate chemical precipitation, and desire to show that it is injurious to land, mixes with the soil and renders it more percolative than before , and thus all necessity for separating the solid from the liquid portion of sewage is avoided, — except possibly in the case of certain trade refuse which may require special treatment. It is quite a mistake to suppose that land may be made too rich by sewage where plant growth is regarded as one means of rendering the soil a purifier. By J. Bailey Benton. Paper prepared for the Society of A rts Conference , May, 1878. Seeing that under the eighth division of the pro- gramme of the proceedings of the Confi remarks are invited ‘‘upon the costs of ey given in the last report of the Local Government Board,” by which is meant, I presume, the report of the committee appointed by Mr. Sclater-Booth to inquire into the different modes adopted for the disposal of sewage, and being aware that great land for intermit soil, owing to the very extraordinary figures given without explanation in that report, in relation to Merthyr Tydfil and Kendal — in both which cases I designed the works — I think it right to state that it could only be by mixing up with the pre- paration of the land utilised, other works which ought to have been excluded, that such extra- vagant figures could have been arrived at. In the interests of sanitapr science, as well as in my own justification, I desire to show that had the expenditure been fairly investigated, the figures to which I refer would not have reached half the cost per acre given in that report. This I propose to do by giving the precise cost of a similar work executed subsequently to those of Merthyr Tydfil and Kendal— that of Abingdon, which has now been completed and in operation nearly twelve months, and I append a statement prepared by my son, in which the details are given. Abingdon is a favourable instance of intermittent filtration combined with surface irrigation, and illustrates what may be done in many instances in the Thames Talley and other valleys where suit- able soils exist. At Abingdon, 34 acres of land have been pre- pared — 6 J for intermittent filtration, and 27 J for surface irrigation, and the total outlay, including delivering conduit (pipes) as well as chambers and distributing earth carriers, cart roads, barrow paths and fencing, wages of clerk of works, and charges of engineer, has not exceeded £2,550, or an average of £75 per acre. The cost of pi eparing the land for intermittent downward filtration did not reach £85 per acre, while that of preparing it for surface irrigation cost over £70 per Here, in- cluding in each case a proper proportion of attend- ant charges. The soil of Abingdon is not more suitable than that of Merthyr and Kendal, yet it will be seen that the actual cost is only about one- third of that represented in the report referred to as the case at Kendal. The deduction to be gained from the mode of disposing of sewage at Abingdon is that where intermittent filtration through suitable soil per se is adopted, one acre to a thousand people is ample to secure a perfect effluent. Description of Works and Outlay. By E. F. Bailey Benton, B. A. Oxon. Abingdon, the county town of Berkshire, is situated on the Thames, and is connected with the main line of the Gres* Western Railway by a branch. It has a population of a little above 6,000, and a rateable value of about £14,750. Geologically speaking, the town is situated on the Kimmeridge clay at its junction with the coral rag of the oolite. Its position is comparatively low, the surface of the lower portion of the town being very little above the level of the river, while the remainder rises so gradually as to render it necessary to lift the whole of the sewage. A complete system of water-tight sewers has been carried out for the whole of the town, and the surface waters are excluded from them as far as possible, with arrangements for flushing from the Thames, Ock, &c., at intervals. The sewage is conveyed from the town to the land to which it is applied, by an outfall sewer, which is sufficiently capacious to hold any liquid admitted into it during the night, when the lifting of the sewage is discontinued. The sewerage, including this outfall sewer, and engineer’s charges, but excluding private sewer- connections, has been executed for £8,750. At the mouth of the outfall sewer a pumping station is erected on the land purchased by the urban sanitary authority, fitted with two 8-horse- power engines, together with coal shed, &c., at a cost of £2,500. In this amount is included the fencing of the station yard and a weighing machine, which serves for the weighing of the coal consumed by the engines, as well as the pro- duce of the sewaged land as sold. Both these sums, amounting to £11,250, include engineer’s charges, clerk of works’ wages, and incidental expenses; and if repaid in 30 years at 5 per cent, would represent an annual charge of £562 10s., or less than 9}d. in the £ on the rateable value. The cost of the coals, and the wages of the engineman, with proper allowe&ce for sundries, amount to £150 a year, which is equal to 2jd. on the rateable value, "making the whole charge for sewerage rather less than llfd. in the £. The amount of sewage at present discharged is somewhat above 100,000 gallons daily, augmented on occasions of rainfall, and at those times when the flushing of the sewers takes place. At present, however, the water supply to Abingdon is obtained from the rivers Thames and Ock, ar,d from private wells, and the quantity of sewage proper is less than ordinary, but steps have Jbeen ta^(en, and plans are already made, to provide supply for the town at an estimated cost 50. When these works are executed a number of water-closets will be intro- nd the quantity of sewage will, doubtless, ised. land selected for the cleansing of the and purchased by the urban authority, is lalf-a-mile from the town. The soil is a drii t lying upon the clay in which the subsoil water is now kept down by under-drainage to a level wil h the water in the river. Until the under- ! effected the subsoil water would rise, 1 itinued wet weather, to within a foot or Ihe surface. The quantity of land pur- by the urban sanitary authority for sewage j reatment is between 48 and 49 acres, of which ily 34 i treatment. The rest, t as accommodation land, but it will be available to receive the sewage when experience has proved that its utilisation can be profitably effected. The cost of the 48 acres, including tenants’ compensation and all expenses, has been £7,260. The cost of preparing the 34 acres of land to cleanse the sewage has been £2,550, in- cluding the payments to engineer and clerk of works. This is equal to an average outlay of £75 per acre. Of the 34 acres composing the sewage 'arm, 6J acres were laid out for inter- mittent filtration, and 27£ for surface irrigation, and the j£2,550 covers not only the preparation of the land • but the making and metalling of cart- roads anj| barrow-paths for the removal of produce, &c., andjthe erection of iron fencing, together with pipe conlluits and sluice chambers to all parts of the land!, and the necessary distributing earth carriers. I The cost, per acre, in preparing the filtration land, which is divided into five equal horizontal areas, including under-drainage and a proportion of all other expenses, was a little under £85 an ajfcre, while the cost of laying out the land for surface irrigation, including its proportion of all other 'expenses, was as much over £70 an acre. Two arejis out of the five serve as “the safety valve,” qpd receive the whole of the sewage for a year whtip it is not wanted elsewhere. Beyoiiil the cost of proparing the land, the urban sanitary authority have erected a pair of cottages,!' one for the engineman, and the other for the farm'bailiff, together with a small set of farm buildings, at a cost of £1,075, including engineers charges, &c. Thus the land and its preparation, with the two cottages and farm buildings, have cost the urban -sanitary authority £10,885 ; but for this money they possess a small farm and steading, for which they could realise at any time about half the outlay if sold by auction. The farm is in the hands of the urban sanitary authority, but tenders for the .renting of it with the sewage are being sought, and ay ■ acres of the filtration areas alone suffice to cleans* * the sewage, and the occupier can utilise it as and when he wants it on other parts of the farm wit lout any trouble whatever, and without any dou )t as to purification, it may be fairly as- sumed th it the future rent of the 48 acres will not be less than £250 a-year, and may very likely be more. At Abingdon there is no separation of the “ sludge ’ from the liquid before it is applied to the land for purification. Whatever passes the screens, i nd is raised by the pumps, is distributed over the surface when the sewage is used for irri- gation, or by the furrows when it is used for filtra- tion, and no difficulty whatever is experienced in either ca« e, nor is any smell perceptible at a distance of 20 yar< Is. So far from any difficulty or objection having b ?en experienced from the retention of the “ sludge ’ in the sewage, the farm bailiff complains that he h as not sludge enough, but that the liquid is absorb id by the land too quickly. Two hours after the cessation of pumping, no sewage liquid is to be see i on the farm. During the period in which the sewage has been applied, i >ne area of land has sufficed to absorb for days together the whole of the 100,000 gallons lifted by the engines, and this has been the case without < he least sign of the land having too much, and with >ut producing any injurious effect upon the efflue tit. As already intimated, the arrange- ment no\ r made is, that two out of the five areas laid out 1 or intermittent filtration (or 2£ acres out of the 34 I shall be always in reserve to receive and dispose o : the sewage when it is not wanted on other pa ts of the farm. These two areas will continue to act as the safety valve during the year 1878, aft sr which period two other areas will take their pla e (for 1879), and so on. The e fiuent water discharged by the under drains fr >m the sewage land has been analysed by both Dr Tidy and Dr. Woodforde. Dr. Tidy says of it , that it “ was in every respect excellent. The quai tity of common salt was not more than four grai as per gallon, and it was perfectly clean and brij ht when run in large bulk;” and Dr. Woodfor le states, that his analyses showed that the quantity of alluminoid ammonia which the effluent contains l was not more than double that con- tained in London drinking water, while its con- dition go nerally was far superior to that of certain shallow veils at present used for domestic purposes in Abing don. INTERMITTENT DOWNWARD FILTRATION AND SURFACE IRRIGATION. 1874. INTERMITTENT DOWNWARD FILTRATION AND IRRIGATION. A description of the processes of Intermittent Downward Filtration and Irriga- tion, written by MR . BAILEY DENTON, C.E., F.G.S., at the request of the Secretary of the Society of Art s for the Conference upon the “ Pollution of Rivers ,” held at the Rooms of the Society on the 10 th December, 1874. 1. In compliance with the request contained in your circular of the 19th instant, desiring that I should transmit to you a brief statement of what I consider to be the best means of cleansing the sewage of towns, and of effecting its utilisation with economy to the contributing rate- payers, I hasten to state that under the conditions generally prevailing throughout this country I consider the passage of sewage through land to be the only certain means of purification, though whether the area of land to be taken for the purpose be large or small 'must necessarily depend upon the existence of local circumstances favouring or not the profitable use of sewage on the surface. 2. The results of experience in the application of sewage to land, as well as thirty years’ practice in the under-drainage of lands of varying character, lead me to the decided conclusion that wherever sewage is applied intermittently to the surface of land, and passes through the soil beneath, not only may all nuisance be avoided, and crops grown at the same time, but the effluent may be readily purified up to the standards re- commended by the Rivers Pollution Commissioners. 3. It is doubtless true that in many instances land cannot be obtained in sufficient quantity for “ wide surface irrigation,” for which one acre to 12 one hundred persons may be taken as a fair allowance, or, if obtainable, can only be purchased at such a ruinous price as to preclude all chance of profit ; but I am not aware of a single instance in which sufficient land may not be obtained for “ intermittent downward filtration,” if the purification of the sewage be alone aimed at, and the sewage be designedly made to pass through the soil as well as over the surface, as originally suggested by Dr. Frankland. One acre of free soil drained 6 ft. deep was declared by Dr. Frankland to be sufficient for three thousand persons, though for reasons hereafter stated, l have increased this quantity to one acre to one thousand persons. 4. The operations involved in “ intermittent downward filtration” and “ wide surface irrigation” are totally different. The preparation of land for intermittent downward filtration is essentially the work of a,n engineer, as the sewage which it has been determined the soil shall purify must be delivered to and distributed evenly throughout its surface in order that each cubic yard beneath shall receive and discharge the quantity it is intended to purify. When formed, the proper arrangement and manage- ment of the filtration areas, though very simple and easy, must be very carefully maintained in order to ensure the perfect action of the oxidising functions of the soil. With wide surface irrigation the soil will, when properly under-drained, absorb the sewage, and as the sewage farmer necessarily applies it to the land intermittently to suit his crops, it is in fact intermittent filtration on a wide scale, subject to the drawback due to the fact that the delivery of the sewage is effected without any regula- tion at all, and is often so copiously applied — when the desire of the farmer is to get rid of it — that the land cannot absorb it and the sewage therefore passes off the surface uncleansed into the streams . It should be understood that the object of intermittent downward filtration is to make the most of the cleansing powers of the soil, irrespective of profitable utilisation, while that of wide surface irrigation is to make the most of the sewage for the production of vegetation wherever land can be got at a reasonable cost. 5. The circumstances which render wide surface irrigation pre-eminently desirable are, first, the power of buying the required land at a moderate price ; and, next, the power of delivering the sewage to its surface with facility. Though the experience gained in sewage farming is not at present encouraging, it may be assumed that, if the cost of the land and distribution together does not involve an annual charge, to repay principal and interest of more than SI. an acre, then “ wide surface irrigation” may be resorted to, to any reasonable^ extent, without loss to the rate- payers, but it is' essential that the Art of sewage farming shall be un- derstood. 6. In the absence of land obtainable at a reasonable cost and reachable with facility, intermittent downward filtration through suitable soil forms the best means of “ preventing the pollution of our rivers, and at the same time of dealing with the sewage with economy to the ratepayers,” for (1) not only is the sewage as effectually cleansed as in the case of wide surface irrigation, but (2) vegetable garden crops may be grown on the reduced area, of equal bulk per acre as farm-root crops, even when the 1 3 sewage, passing through the soil, is diluted up to 250,000 gallons per acre; and (3) this may be done at a cost which, although comparatively heavy per acre, need in no case involve a charge on the ratepayers of more than one penny in the pound.* 7. To secure the greatest amount of benefit from wide surface irrigation, it is necessary to associate with it a comparatively small area of land designedly prepared for intermittent downward filtration, in order that the sanitary authority may hold in its own hands a means of securing purification, and of delivering the sewage to the farmers who are to take it in the precise quantity they want, and at such times only as they desire to have it. It is the obligation to take the sewage at all times and under all conditions that has been the principal, if not the only drawback to sewage farming up to the present time. With a part of the land prepared for intermittent downward filtration, and capable of cleansing the sewage under all circumstances, there will be no necessity for the farmer to take it at night, or on Sunday, or during a wet or frosty time, or when the sewage may be too dilute to be useful. It can then be„run into the filtration areas. 8. In balancing the advantages of wide surface irrigation against those of intermittent downward filtration, it must always be borne in mind that the reduced area required for filtration, though absorbing so much more sewage, will command a greater rent per acre than the wider space utilised in sewage farming. The land used for intermittent downward filtration, if the three-fold system be adopted in the manner hereafter explained, becomes market-garden ground of the most productive character, and may be let annually, to the highest bidder, in small plots, while the land used for wide surface irrigation must necessarily be treated as farming land, to be let to a farmer and rented accordingly. With village communities the cottage gardens of the poor form the proper field for the use of sewage. It should also be borne in mind that any objection, real or fancied, raised to the distribution of sewage over the surface of land, on the ground that malaria may arise from a surface saturated with sewage, is with proper care proportionally reduced by reduction of the area from which evaporation can take place. 9. It should be remembered when comparing either wide surface irrigation or intermittent downward filtration with other processes involving considerable outlay in tanks, machinery, &c., that the land which forms the material item of cost in both irrigation and intermittent filtration remains the property of the ratepayers, and may at any future time be converted into money without great loss, inasmuch as the value of landed property is certain to increase, and that such accretion of value will counterbalance any extra price that may have been paid for it by compulsory purchase ; whereas the same cannot be said in cases where the money is expended upon perishable materials and machinery, 10. In carrying intermittent downward filtration into practice, whether * The more the truth of this assertion is questioned and investigated the more certain will it be found to be the case wherever the disposal of sewage alone is considered. U it be adopted by itself or in combination with wide surface irrigation, I have recommended an arrangement by which the quantity of land suggested by the Rivers Pollution Commissioners as sufficient has been increased as three to one. Instead of one area I take three areas of an equal extent, each capable of cleansing the whole of the sewage, and of growing crops at the same time. This apportionment brings the quantity of land required to one acre to 1000 persons, as before stated, instead of 3300 persons, as sug- gested by the Commissioners. Each area is used daily for the purification of the sewage for one year only, so that two out of the three areas are de- voted for two years in succession to full plant growth, which at once gets rid of all doubts as to the overcharging of the soil with organic matter. In this way a considerable return per acre will be obtained from the two areas not in daily use, as they would receive only just as much sewage as would produce the most abundant yield ; while the occasional relief from sewage thus afforded to the area devoted to filtration would favour an in- creased production from that area also. Moreover, as the areas for inter- mittent downward filtration are laid out in ridges and furrows, and the liquid sewage is run down the furrows only, the suspended matter in the sewage can at any time be semi-dried, and dug or ploughed into the soil. The soil, by this mixture, is rendered more capable of filtration, the more frequently and more completely the organic and perishable matter is thus dispersed. 11. In many instances it occurs that a small area of land may be obtained and reached by gravitation, while a wide area may be com- manded at a higher level, involving pumping. In such instances, inter- mittent downward filtration may be most advantageously resorted to on the small area below, and may be there continued in use until sewage farming becomes more profitable than at present, when the sewage can be lifted to the upper land. The lower small plot would then be continued as the “ safety valve” to the larger one, and would take the sewage when not wanted there. This illustration will apply in a variety of shapes wherein economy to the ratepayers will be best secured by a limitation of area in the first instance. 12. The only practical difficulty that has yet been experienced in the use of land as a medium of purification arises from the adoption of clay soil for the purpose when free soils cannot be obtained. Unless properly prepared on the surface, all clay soils are liable to crack, and to allow of the discharge of the sewage through the cracks into the drains in an un- cleansed state. This is only to be avoided by digging, trenching, and mixing the top soil, to a depth of 16 in. or 18 in., with ashes, burnt clay, and sand, by hoeing and stirring the surface when under crop, and by keeping the ground moist with sewage during dry periods. In certain in- stances the effluent may be run with advantage a second time through a lower bed of soil, — which upon sloping ground can be readily done. 13. The floating matter of sewage, now technically called “ sludge,” differing in character according to circumstances, is causing much per- plexity. Sometimes the liquid refuse of towns and communities includes substances which are altogether foreign to sewage, such as the detritus of roads and the refuse of dye works, paper works, tanneries, and other special trades. These, of course, ought to be excluded altogether from the sewers, or at least as far as is practicable, and special arrangements should be made for dealing with such as cannot be excluded. The detritus of public roads ought to be intercepted by catchpits, and separated from such surface waters as cannot be excluded from the sewers before the latter is admitted. If this is not done, special means of separation becomes essential at the outfall. But, as already stated, all foreign waters — surface, subsoil, or trade — should be carefully excluded from the sewers. With this done, and the coarsest matters properly belonging to sewage screened out of the liquid before the latter is distributed down the furrows of the land (prepared for intermittent downward filtration), nearly all diffi- culty is removed. The “ sludge” is then reduced to perishable organic matter, which, being deposited evenly at the bottom of the furrows in- tended to receive and retain it, does not interfere with the infiltration of the liquid sewage as the sides of the ridges up which it naturally rises are always open to absorb it. When dug or ploughed in, this perishable “ sludge” actually increases the filtering capabilities of the soil, instead of clogging its pores as erroneously and persistently stated. 14. I will only add, that in dealing with the sewage of small towns and villages, where the outflow is comparatively small and very irregular, the process of intermittent downward filtration and surface irrigation may now be as readily carried out, as in the case of larger places with a con- stant outflow, by the use of the “ self-acting sewage regulator,” which has been successfully tried at several places. This invention has been designed to apportion and deliver the precise quantity of sewage which certain selected land is intended to utilise and cleanse, and being automatic in its action, this is done independently of all supervision and of irregularity of outflow, which may at one time be extremely copious _and at another little more than a dribble. Besides overcoming this evil, which has been found to be the great difficulty in dealing with small communities, the regulator secures that intermittency of application which is so essential to purification.* * The Author has the greatest satisfaction in recommending this simple contrivance to the attention of Rural Sanitary Authorities. It has stood the test of time with complete success where its properties have been understood. 22, Whitehall Place, London, Dec. 1874. SEWAGE AS A FERTILISER OF LAND, AND LAND AS A PURIFIER OF SEWAGE. 1872. B SEWAGE AS A FERTILISER OF LAND, AND LAND AS A PURIFIER OF SEWAGE. A Paper read before the Society of Arts. I will promise to condense the remarks I have to make as much as possible, in order that there may be sufficient time for the expression of opinions which I shall do my best to challenge. Though large figures have been put forth, by sundry writers and speakers, of the immense loss this country suffers by casting the sewage of its towns into the rivers, and everybody acknowledges, not only that such waste ought not to continue, but that our rivers should be restored to their orignal purity, we have not yet brought to practical test the value of sewage to the farmer and the market gardener. Chemists have done their best to rouse public attention to the loss we suffer, and it now re- mains with the country to adopt those measures which will best conduce to its recovery. Large as the intrinsic value of the fertilising matter has been shown to be by the chemist, the value of the water in which it is contained has been excluded from his consideration, though farmers and gardeners alike are prepared, after the experience of the recent years of drought, to put a high value on water for its own sake, irrespective of the fertilising elements it contains after sewage has been mixed with it, for they know how serviceable is timely moisture to the germination of seed, and for reviving and sustaining plant growth, independently of its special power of conducting to the roots of plants, in the most acceptable way, those fertilising ingredients which the chemist has valued so highly. Hitherto, the benefit to be gained by a command of water has been more than counterbalanced by the disadvantages of excess, and the ob- ligation of disposing of the liquid sewage at all times and under all con- B 2 20 ditions. In referring to water, therefore, I do so only to remark that, large as the theoretical value of the manurial properties of sewage’ has been declared to be, it may yet bear an increase when the practical mind of the agriculturist is brought to bear on its utilization, and the disadvan- tages under which a new branch of industry always suffers are overcome. A High Standard of Purity of Water .essential . — But so slow and so naturally sceptical, in respect of new appliances, is the agricultural mind, that we must not wait for the recognition of the cultivator as the only thing necessary for the development of the value of sewage. We must rather trust to the obligation which will before long be imposed on all sewer authorities, so to treat the liquid refuse of towns that the effluent liquid shall conform to a recognised standard of purity; for it will only be by the most stringent enforcement of the law in this respect, that all the manurial properties of sewage will be rendered available for reproduc- tion. Taking this view, I think it is much to be regretted that the Con- servators of the Thames have, without pledging themselves to any positive decision, recognised a standard of purity* in some degree inferior to that suggested by the present Rivers Pollution Commissioners in their first report, and that they have done so in the face of a statement by the Commissioners, that they made the suggestion with the “belief that, as science progresses, improved methods of purifying polluted liquids will be discovered, and that eventually standards of purity considerably higher than those recorded may if necessary, be enforced.” Without presuming to give any opinion upon the details of the standard suggested by the Com- missioners, which I know is regarded by some chemists as objectionable, I am content to record the fact that their anticipation has already been in a measure realised. This is not mere assertion ; it has been conclusively shown that when natural soil is so prepared, by properly designed deep drainage and deep surface cultivation, that the whole of the sewage dis- tributed upon its surface is absorbed and percolates evenly through the soil, the effluent liquid passes into the arterial outfalls from the under- drains purified in a very high degree, and unobjectionable in every respect. * The following notes to and from Captain Burstal, the Secretary of the Thames Conser- vancy, will explain the position of this particular question at the present moment. “Stevenage, 24th November, 1871. “Dear Sir,— I presume I am right in assuming that the standard of purification re- commended by Drs. Frankland and Letheby, and Professor Odling, is that which your Board of Conservators recognise as sufficient to regulate the influx of liquid sewage from towns on the banks of the Thames. When answering this question, would you kindly tell me whether the standard applies equally to the towns above Hampton as below. “ I am, dear Sir, yours faithfully, (Signed) “J. Bailey Denton. “ Captain Burstal, Thames Conservancy.” “Thames Conservancy Offices, 41, Trinity-square, Tower-hill, E.C., 1st December, 1871. “ Dear Sir, — In reply to your letter of the 24th ultimo, I beg to inform you that the Conservators do not recognise any standard of purity for effluent water from sewage from places on the banks of the river above Teddington. “I am, dear Sir, yours faithfully, “ E. Burstal, Secretary. “ J. Bailey Denton, Esq., Orchard Court, Stevenage, Herts.” 21 Such, in point of fact, appears to be the purification effected by oxidation, resulting from the aeration of drainage and the intermittent use of soil for filtration, that it is not at all a too sanguine view to take, that, with increased experience, we may arrive at a power of restoring water, with which sewage has been mixed, to its original potable condition. For the convenience of those interested in the matter, I here give the standard suggested by the Rivers Pollution Commissioners, and will add that which has been circulated by the Thames Conservators. The Com- missioners suggest that the following liquids be deemed polluting, and in- admissible into any stream : — (a.) Any liquid containing in suspension more than three parts by weight of dry mineral matter, or one part by weight of dry organic matter, in 100,000 parts by weight of the liquid. (^.) Any liquid containing in solution more than two parts by weight of organic carbon, or .3 part by weight of organic nitrogen in 100,000 parts by weight. (r.) Any liquid which shall exhibit by daylight a distinct colour when a stratum of it one inch deep is placed in a white porcelain or earthenware vessel. (d.) Any liquid which contains in solution, in 100,000 parts by weight, more than two parts by weight of any metal except calcium, magnesium, potassium, and sodium. (e.) Any liquid which, in 100,000 parts by weight, contains, whether in solution or suspension, in chemical combination or otherwise, more than .05 part by weight of metallic arsenic. (f.) Any liquid which, after acidification with sulphuric acid, contains in 100,000 parts by weight, more than one part by weight of free chlorine. (, g •) Any liquid which contains, in 100,000 parts by weight, more than one part by weight of sulphur, in the condition either of sulphuretted hydrogen or of a soluble sulphuret. (h.) Any liquid possessing an acidity greater than that which is pro- duced by adding two parts by weight of real muriatic acid to 1000 parts by weight of distilled water. (*■) Any liquid possessing an akalinity greater than that produced by adding one part by weight of dry caustic soda to 1000 parts by weight of distilled water.* The following standard of purity for defecated water is that recom- mended by the chemists consulted by the Thames Conservators, and it will be seen that it is, as I have stated, less stringent than that suggested by the Rivers Pollution Commissioners. They say: “ 1. It should be free from an offensive odour. 2. It should be free from suspended matters, or, in other words, be perfectly clear. 3. It should not be alka- line to tumeric-paper, nor acid to litmus-paper. 4. It should not con- 22 tain per gallon more than 60 grains of solid matter dried at 260 deg. Fahr. 5. It should not contain more than three-quarters of a grain of organic and ammoniacal nitrogen per gallon. 6. It should not contain more than two grains of organic carbon per gallon. 7. It should con- tain not less than one cubic inch of free oxygen in a gallon.” It should be observed, however, that one of the eminent chemists who signed this recommended standard. Dr. Frankland, being himself a member of the Rivers Pollution Commission, added these words : “The conditions under which fluid which has been contaminated with sewage may be admitted into the Thames, as prescribed in the foregoing report, will, I have every reason to believe, preserve the river from being offensive to the inhabi- tants upon its banks ; but, whilst thus far agreeing with my colleagues, I wish it to be distinctly understood that, in my opinion, such fluid can only be safely admissible into the Thames on condition that the water is not afterwards used for domestic purposes.” The Conservators of the River Lee, in the absence of any standard recognised by the Government, have hitherto abstained from issuing one of their own, and the consumers of water in the metropolis are to be congratulated that they have done so, for the publication, limited though it has been, of the lower standard recommended to the Thames Conser- vators, has already had the effect of encouraging results inferior to those which are to be desired. The Lee Board* reserves to itself judgment until the towns discharging into the river have completed their purifying works, for which they have extended the time, at the expiration of which it is to be hoped that some positive action towards the establishment of standards to fit different circumstances will have been taken by the central local goverment authority. Until such is the case, we shall pro- bably see, both on the Thames and on the Lee, the sewer authorities of towns disregarding, naturally enough, the higher standard of the Rivers Pollution Commissioners, and in spite of the protest of Dr. Frankland, and the general sense of the country, the inhabitants of London may be compelled to drink polluted water, and, as a natural consequence, the contamination of our streams will continue throughout the length and breadth of the land. This point, however, is not that upon which I desire to dwell. It is of sewage as a fertiliser of land that I must first speak, though it is right to repeat emphatically, what must be manifest to every practical mind, that so long as the pollution of rivers is permitted even in a modified degree, by the recognition of any standard of inferior character, the best result will not be gained. Sewage as a Fertilizer of Land. To show what is the intrinsic value of the fertilising ingredients of sewage, I will, in the shortest manner possible, state the conclusion to which Messrs. Lawes and Gilbert came in 1866, in their very complete * The failure to enforce proper regulations on the part of the River Lee Conservators is much to be regretted. The consumers of the water of the New River and East London Water Works Companies would do well to investigate the matter in its various bearings. *3 and careful paper on the “Composition, Value, and Utilisation of Town Sewage,” read before the Chemical Society, and which, I believe, ex- presses pretty accurately views in which the majority of those who are competent to deal with the subject concur. Having adopted Rugby as a fair sample of water-closet towns, the discharged sewage being equal to 36 gallons per diem, or 60 tons per head per annum, in- cluding surface and subsoil waters, they stated that, “ looking to the average results of 93 analyses,” they found “ that the sewage contained about 8/£ grains per gallon of total solid matter, of which about two- thirds was inorganic, and one-third organic. About half the total solid matter was in suspension, and half in solution ; of the half in suspension, about four-sevenths was inorganic, and three-sevenths organic, and of the half in solution about four-fifths was inorganic, and one-fifth organic. Lastly, of the nitrogen, reckoned as ammonia, about one-fourth was in suspension, and three-fourths in solution. The mean of the 93 analyses showed about 6 \ grains of ammonia per gallon, indicating a value of i|d. for the total constituents in 1 ton of sewage.” These figures, multiplied by the 60 tons of sewage per head per annum, resulted in showing “ that 12^ lb. of ammonia were contributed annually for each average individual of the mixed population of both sexes and all ages.” This quantity of ammonia, at 8d. per pound, gives 8s. qd., or lood., as the value of sewage per head from water-closet towns. Various other estimates have been made of the sewage of water-closet towns. Dr. Letheby took samples, at noon and at midnight, from a number of sewers in the metropolis, and arrived at the conclusion that 7.24 grains represented the mean quantity of ammonia per gallon. Messrs. Hoffman and Witt, having treated one particular sewer, considered that 8.21 grains represented the quantity of ammonia. These two quantities would, if taken at the same price of ammonia, result in larger figures than those of Messrs. Lawes and Gilbert. There have been several estimates made of the value of sewage, by modes of computation differing from that based on the whole sewage of towns as discharged by the sewers, and as they will assist us in consider- ing what proportion of the excrementitious matter of the closet may be kept out of the sewers, with benefit to agriculture, and profit to the rate- payers of sewered districts, I will shortly refer to them. Messrs, Hoff- mann and Witt, and Dr. Thudichum, having ascertained the amount of urine and faeces voided by individual persons, taking an average of both sexes of all ages, valued the urine at 7s. 3d., and the faecal matter at is. 2fd., which together, it will be observed, is very nearly the same amount as that put upon the whole sewage by Messrs. Lawes and Gilbert There is an anomaly in these estimates which has to be reconciled, inasmuch as it appears that the excrements of human beings alone, exclu- sive of the refuse from slaughter-houses, stables, cow-houses, and dog kennels, as well as that discharged from the kitchen, with its refuse of vegetable and animal food, is more valuable than the whole liquid refuse of a town, when the contents of the closet are discharged into the sewers as well as other liquid refuse. And the anomaly becomes more difficult of reconciliation when we have to consider a statement by the Rivers Pollu- 24 tion Commissioners to the effect that, comparing water-closet towns in which the whole of the sewage issues from the sewers, with “ midden” towns, in which a considerable portion of the human excreta is detained, and disposed of separately, there is a remarkable similarity of composition between the two. So much as been written and said on the practice of sewage irrigation, that I should be disposed to say very little on the subject, had not the special properties of the soil itself for appropriating the fertilising matter of sewage, and for cleansing the sewage itself, been, to a very great extent, omitted from consideration, and had not boards of health — the worst farmers in the world — been the principal cultivators of such form up to the present time. Believing that, with a recognition that the soil will perform the functions accredited to vegetation as effectually as vegetation itself, and that the two in combination will as a means of profit obtain the best results, I regard all calculations that have hitherto been made as to the number of persons contributing sewage per acre, and the rules that have been laid down on that score, as worth very little as a guide for the future. Already the principle is fully recognised that the surface of land must be rendered so absorbent that no sewage shall pass off it into the river courses. In the application of sewage to land, the local features will, in future, decide the question whether the purification of the sewage and its profit- able use should be treated as objects of equal importance, or whether the purification should be the paramount object, and utilisation a subsidiary one. If sufficient land for wide irrrigation is not to be obtained, or if obtainable only at a price that shall place the application of the sewage, by way of irrigation, beyond the possibility of profit, it is manifest that we must call to our aid the cleansing power of an aerated soil, and regard the land more in the character of a filter than we have hitherto been disposed to do ; and by adopting intermittent application, the effect of which has been so admirably explained by the Rivers Pollution Commissioners, realise as I have done all the advantages to be gained from it. The two processes of irrigation and filtration are already viewed so dif- ferently from the way in which they were regarded in their first introduc- tion, that it is necessary to state how we stand with regard to them at the present moment. It will be remembered that, up to very recently, an opinion prevailed with respect to irrigation that, “ the object of getting sewage on to the land was, not to percolate into the ground, but to keep it on the surface,” and that subsoil drainage should not be resorted to on sewage farms, because the sewage passed too rapidly to the roots of vegetation, and descended downwards. Under-Drainage Essential . — Some members of this Society may re- member that on the occasion of my reading a paper on “The Water Supply of the Metropolis, in Relation to the Thames and its Tribu- taries,” Mr. Robert Rawlinson (who has ever been the advocate of the application of sewage to land) stated in this room, without giving any opinion himself, that “some persons practically acquainted with sewage irrigation” would prefer, from their experience, to irrigate clay lands without under-drainage, if Italian rye-grass, which was the most profitable 2 5 crop, were to be sown ! I regarded this as a strange statement. The little difference of effect that was to be noticed between the Norwood farm, where the land was clay, and where the manager had actually plugged the drains, and so produced a state of supersaturation, and that of Beddington, where the land is free and naturally under-drained, has often been quoted, too, as a reason why sewage irrigated land should not be drained. I will not stop to question the allegation or to condemn such views, which are repugnant alike to the sanitarian and the agri- culturist, as it may be already observed that, with very few exceptions indeed, operators now disclaim the opinion that under-drainage is un- necessary. So decided in fact has the appreciation of drainage become with the majority of sewage irrigators, that in the eagerness to secure rapid absorption, sewage farms have become filter beds of too rapid action, and by the adoption of inappropriate drains the purifying powers of the soil have been jeopardised. Filtration Areas may be Cultivated as closely as Irrigated Surfaces. — Short as the interval has been since intermittent downward filtration was sug- gested by the Rivers Pollution Commissioners and first carried out by me, that process has, -like irrigation, undergone a change. The Rivers Pollu- tion Commissioners stated — evidently under the impression that sewage would only be applied to a barren or fallow surface — “That with a properly constituted soil, well and deeply drained, nothing more would be necessary than- to level the surface and divide it into four equal plots, each of which in succession would then receive the sewage for six hours. In this way the sewage of a water-closet town of 10,000 inhabitants could, at a very moderate estimate, be cleansed upon five acres of land, if the latter were well drained to a depth of 6 ft.” They then go on to state that, nevertheless, there are three formidable objections to the general adoption of the process : (1) “ It is entirely unremunerative.” (2) “ The whole of the manurial ingredients of the sewage would be absolutely wasted.” And (3) “ The collection of solid faecal matters upon the surface of the soil, with no vegetation to make use of them, would probably give rise to a formidable nuisance, especially in hot weather.” The change which in- termittent filtration has undergone is due to the proof which I have had the satisfaction myself of affording, that vegetation may be grown upon the surface of filtering areas when receiving sewage, thus adding, in the most apposite manner, to the cleansing powers of the soil the scavengering properties of vegetation. When speaking presently of land as a purifier of sewage, I shall give particulars which cannot fail to prove that each of the objections anticipated by the Rivers Pollution Commissioners may be avoided. Technical Description of Sewage Irrigation and Intermittent Filtration . — With the general admission that under-drainage is essential wherever sewage is applied to the surface of land, it must now be generally under- stood that irrigation means the distribution of sewage over as many acres as it will wet without supersaturation, having in view a maximum growth of vegetation from the amount of sewage applied, and that any departure from this, resulting in excessive application, is a waste of fertilising matter. I think it may also be taken as proved that filtration through soil should not necessarily mean its application to a fallow or barren surface (as contemplated by the commissioners), but the concentration of the 26 sewage, intermittently, on as few acres of land as will absorb and cleanse it, without excluding the production of vegetation at the same time. Irrigation. — Having given the interpretation of irrigation as the application of sewage to as many acres as it will wet without supersatura- tion, I should point out that, owing to the absence of a proper apportion- ment of the sewage at command to a certain quantity of land, considerable waste has resulted in most instances of sewage farming. The' Italian irrigators reckon that they lose half their water when carrying the other half forward for use ; and having the advantage of enormous quantities of water to deal with, and a power of regaining that which was absorbed by the soil, by tapping it at a lower level, they are indifferent to loss ; but in England, where we reckon the value of sewage by the ton, and have taken its intrinsic value at id. per ton, we cannot be content to follow such an example. We must, in fact, in this country reject the mode of distributing sewage which does not aim at the utmost economy, and which I may here state would not be attained, in my opinion, if the average quantity of sewage applied to each acre per annum exceeded 2000 tons, which represents the sewage (proper) of 62 persons, with a water supply of 20 gallons a head. \ Land may be too Porous in Irrigation for Profit. — To judge of the waste resulting from the present mode of applying sewage to the surface of land, we have only to look to the reports of the proceedings at the Lodge Farm, near Barking, published by Mr. Morgan, to whom the public are greatly indebted for the explicit way in which he has given the quantity of sewage applied and of vegetation grown, and we shall see that an average quantity of 4435 tons of sewage per acre was applied during the year ending the 31st of August, 1870, while the quantity used in 1871 up to the 31st of August was 3808 tons per acre. If we put |d. a ton — which I have said sewer authorities ought to receive for their sewage — on each of these quantities, we find that the payment in the first year would have been 9/. 4s. 9d., and in the last 7/. 18s. 8d. Turning again to Mr. Morgan’s report, it will be seen that as much as 21,488 tons of sewage have been applied per acre in one field of Italian rye grass. This at Jd. a ton would amount to 44/. 15s. 4d. This is the extreme of the year, but taking the whole of the Italian rye grass produced, it will be seen that the average quantity of sewage applied from the date of sowing was 288 tons for every ton of rye grass produced and cut. At -|d. a ton the tenant would have to pay 1 2s. for this, which is the value of the grass when cut, so that he would suffer a loss of all outgoings in the shape of rent, rates, labour, seed, &c. The waste exhibited by these figures is clearly due to the extreme porosity of the soil, and its unfitness for irriga- tion on that account. A Proportion of Clay in Irrigated Lands desirable. — I must not enlarge upon the advantages certain soils have over others for irrigation. It may be sufficient to state that, if we desire to make the most of sewage, it is necessary that a proportion of clay should exist in the soil, and that, although very stiff clays, from the difficulty attending their management, should be avoided, it is much more likely that soils may be too free for profit than too stiff; I am now, of course, speaking of the retention of the 27 fertilising matter of sewage by the soil for vegetation, and not of the process of filtration as a means of purification. That is quite another matter. That clayey land is more grateful for sewage is very distinctly shown by Mr. Morgan’s report, for the same quantity of Italian rye grass was produced from clay lands as from free soils, though Mr. Morgan in- forms me the former did not absorb more than 4000 tons per acre, which is a little more than one-third of the sewage applied to the Italian rye grass grown on the free soils. 1 need hardly point out that the rapidity with which land will absorb sewage must depend, not only upon the nature of the soil — its density and porosity — but equally upon the inclination of the surface over which the sewage travels, and the character of under-drainage beneath, and that, therefore, it is the duty of the engineer, when laying out land for absorption, to regulate the inclination of the surface, and the number, position, and size of the under drains upon which the effect mainly depends according to the degree of porosity of the soil. Filtration. — As I shall presently deal with filtration when considering “ land as a purifier of sewage,” I will only state that by adopting the process as technically described, the liquid refuse of from 1000 to 3000 persons — and possibly more — may be cleansed by the soil of a single acre of land. Separation of the Excretai Closet Matter from the Liquid Refuse , and dealing with each separately. — As already stated, the treatment of the ex- cremental contents of the closet separately from the liquid refuse of the kitchen, & c., is an object in which agriculturists must take a very great interest, though I have never yet met with any estimate of their value. Reverting, however, to the figure given as the value of the voidings of human beings, it would not be too much to take a fifth of the intrinsic value quoted (8s. 5fd), or is. 8^d. per head of the population, as the value of that which is retained in the closet, and which is capable of separate treatment, and is easy of removal to lands which cannot partake of the liquid sewage. As the subject of this paper is limited to the fertilising powers of sewage and the purifying powers of soil, it forms no part of my purpose to discuss the question whether town authorities act wisely in maintaining such a species of scavenging as is involved in the removal of the excretai refuse apart from the liquid sewage. I am, however, prepared to state that, having examined several dry processes now in use, there are some that may be adopted without objection, though it cannot be expected that the occupiers of superior houses who have once enjoyed the comfort of well- supplied and well-constructed water-closets should abandon the advantage and resort to dry closets of any description. At Rochdale, Alderman Taylor has patented a plan which is now in use there. Beneath each seat a receptacle containing a small quantity of a disinfecting fluid is placed, in which the feces and urine are collected. The receptacles are removed in a covered cart weekly, or more frequently if required, to a manufactory on„the outskirts of the town. There they are mixed with fine ash reduced from the cinders and dry refuse collected from the houses. The larger cinders, when separated from the ash, are sold for fuel. The average price realised for the manure mixture has been 17s. per ton. 28 affording a profit, after deducting all expenses, of 2s. 5d. per ton. At the price mentioned, the manure is readily sold, and I can well believe is of great value to the farmer, particularly for certain descriptions of grass lands. In large manufacturing towns, where water is much required in the trade that supports the population, and where it is desirable to economise as much as possible its use, and therefore to avoid water-closets, Alderman Taylor’s processs has much to recommend it, and from personal observa- tion I am able to declare that it is free from the many objections that attend badly-constructed and badly-managed water-closets. In fact, I examined many closets attached to cottages in Rochdale which were much more creditable than many of the water-closets attached to large establish- ments in the metropolis. But it should, be always understood that whatever may be done with the solid excretal matter of the closet by dry appliances , it will not be possible to avoid the proper disposal of the liquid sewage of the dwelling. This latter object can only be favourably effected by one of the two modes of treatment already explained, — i. e, recourse to land by filtration or irrigation. In small towns and villages it is still to be hoped that the dry-earth system, invented by the Rev. Henry Moule, may be more generally adopted. The experience gained, however, shows that the frequency with which the closets get out of order, and the difficulty of supplying and removing the earth is such that, unless a system of management is organised ' and enforced, they cannot gain much ground. Where there exists a proper officer, with assistants, if necessary, to supply the earth and remove the soil, and to keep the closets in working order, it is im- possible that anything can be more suitable for isolated establishments and country villages ; and when it is remembered that the difficulties of pro- viding a public supply of water to villages are such as to be insurmountable in many cases, and that the leaky condition of the privy and cesspit maintains the soil in close villages in an excrement-sodden condition, re- sulting in the pollution of tank or well water, it does appear almost in- comprehensible that the governing powers of this county should permit the continuance of the present state of things. Land as a Purifier of Sewage. Having spoken of the general purification of sewage by land, when treating of irrigation and filtration, it is only necessary to add a brief description of the process of intermittent filtration, as it has been carried out under my directions temporarily at Merthyr Tydfil, and permanently at several other places. At Merthyr 20 acres of land were laid out for the purification of the sewage of the district, of which the dry wea- ther flow at the time when the works were commenced amounted to 870,430 gallons per diem, the least flow during the day being 500 gallons ; and the greatest 663 gallons a minute. The population contributing this sewage exceeded 50,000, but less than half the houses were connected with the sewers, so that the sewage was taken as equivalent to the dis- charge of about 30,000 people. The number of water-closets being few. 2Q the sewage may be considered to have been weak. Upon occasions of rainfall (which is above the average), the flow of the sewers was much increased, the storm waters frequently raising the discharge at least 50 per cent, above the ordinary dry weather flow, and this excess found its way to the filtering areas. The 20 acres of land were divided into four equal parts, and before forming the surface to receive the sewage the whole was drained from 5^ ft. to y\ ft. deep, and deeply cultivated. By this means 2 cubic yards of soil for every square yard of surface became serviceable as filtering material, there being but very few rods of ground in which the full depth of 6 ft. was hot secured. The quantity of filtering material was fixed upon so that the maximum quantity of sewage which would at any time have to pass through each cubic yard of soil would not exceed gallons per diem, while the mean quantity of dry weather sewage would pass through at the rate of 5 gallons per cubic yard. The under-drainage was so designed that no sewage could travel over the surface, directly above the drain, which has been the case in instances of irrigation of free soils in which the results have not been so favourable. The effect at Merthyr was the most complete purification of the sewage, and the realisation of the fact that the effluent water from the under-drains was as pure when the whole of the sewage was passing through half the filtering areas, viz., 10 acres, as when it passed through 1 5 and 20 acres, showing clearly that a less number of acres than 20 acres would suffice for the purification of the quantity of sewage dealt with, and that therefore if the sewage had been double the strength, or double the quantity, there would be a certainty of complete purification of the whole. Instead of following the mode of distribution usually adopted in sewage irrigation when the fluid is either run over a regular surface, or along the ridge to flow over the slopes on either side, the surface of the Merthyr filtering areas was laid out in the ridge and furrow form, as before ex- plained,. the object being to allow of the use of- the horse and hand hoe, and while growing crops on the ridge to allow the sewage to flow in the furrows, and rise up to the ridge sides with a certainty of being absorbed, and of feeding vegetation at the same time. This treatment, as tem- porarily carried out at Merthyr, was so successful, that the effluent water from the under drains was pronounced by Dr. Benjamin Paul to be cleaner than the Thames water above the intakes of the metropolis water com- panies. In order that its condition may be compared with the standard suggested by the Rivers Pollution Commissioners, I here give the analyses of the discharge from the 10 and 15 acres, when the whole of the sewage was run through those quantities of soil : Results of Analyses in Parts per 1 00,000. Effluent Water Effluent Water from 10 acres. from 15 acres. Solid contents — Total . 39'oo 55 *°° Fixed 34-00 34-00 Volatile^ 5.00 21-00 Ammonia .082 ... -086 Organic matter 018 -on 30 Though it is a subject of personal satisfaction to me to have been the first to test, by designed operations, the process of intermittent down- ward filtration, suggested by the Rivers Pollution Commissioners, and to prove by direct evidence that the objections they anticipated can be avoided , I feel bound to say that the result might have been expected from the circumstance that in every case where sewage has been utilised on land, and allowed to pass through the soil y the effluent water has been per- fectly satisfactory. This w r ill be seen by the following analyses of 'effluent water discharged from lands which have absorbed the sewage without any overflow from the surfaee. Parts per ioo,coo. Date. Place. Total Solid Matter in Solution. Organic Carbon. Organic Nitrogen. Ammonia. Chemical Authority. 1868 Sept. 10 Bedford 76.8 '575 •163 •023 Rivers Pollution » 23 Carlise 28.8 '59 1 •204 •025 Commissioners. „ H Penrith 21.9 •320 •108 ‘001 1870 July 9 ) Convalescent Hos- $ pital, Walton O OO •002 •002 Dr. Odling. „ 24 Breton’s Farm, Rom- ford 70.60 •037 <003 Dr. Russell 1871 Sept. 4 Merthyr Tydvil 39.00 •018 •082 Dr. Benjamin Paul. » 4 Lodge Farm, Barking ... 9 I *3 •676 •1 98 •005 Dr. Frankland. „ 12 Tunbridge Wells 34-44 •090 •03 Dr. Voelcker. If the proportions of polluting matter indicated in these analyses are compared with those contained in the effluent liquid discharged from chemical processes, or with those of the effluents from the surface of lands over which sewage has been passed without passing through the soil, the superiority of the combined effect of filtration associated with irrigation must be acknowledged. And on a study of all the facts such comparisons will expose, it will be manifest that, not only is it possible for town au- thorities to conform to a high standard of purity, but that, with a com- paratively small quantity of land at command, it is a simple and inexpen- sive thing to do. If this be t v ue ought there to be any hesitation in adopting a standard so high as to remove all doubt on the subject, with compulsory powers to enforce it ? REPORT ON THE BEDDINGTON FARM, CROYDON. 1879. TO THE CROYDON LOCAL BOARD. BEDDINGTON FARM. Gentlemen, — Acting upon the resolution come to by your Board by which I was appointed to inspect the Beddington Farm, and advise you generally upon its arrangement,' and the advisability of draining the land, and of carrying out such means by downward filtration as would remove from the Farm its present objectionable condition, I have made the necessary examination, and after careful consideration of details, beg to place before you the following report. Before stating the recommendations I have to offer I desire to record the following data as those upon which they will be based. 1. — The area of the Farm, as stated in the printed notes of Mr. Grundy, the Chairman of the Beddington Farm Committee, is at present 465 acres, but this includes some lands which are sublet, as well as the site of buildings, and other lands not available for irrigation. The quantity stated by Mr. Parrott, the Farm Manager, to be served with sewage at the present time is limited to 370 acres or thereabouts. If the land it is intended to purchase of Mr. Goad, containing 75 acres, of which 65 acres are capable of receiving- sewage, be added to the present Farm its total contents will be 540 acres, and the quantity of land which may be sewaged, 435 acres. 2. — -On plan No. 1, accompanying this report, the land which can now be irrigated with the Croydon sewage is indicated by a marginal blue tint, while that part of the same land which can be served at a lower level by the sewage from Norwood is shown by a flat tint of the same colour. 3. — The soil and subsoil of the whole of the land which will form the Beddington Farm after it has been increased by the addition of Mr. Goad’s land, may be described as free in character. Over the whole a light loam covers a substratum of gravel and sand, some parts being somewhat deeper and heavier in their nature than others, while in certain parts of the Farm there exist, though in no instance to any great extent, bands or patches of clay, which slightly detract from the general extreme porosity of the whole. The covering soil being, as stated, loam of greater or less porosity which has been, for a long period of years, cultivated, or devoted to 2 the growth of herbage, absorbs the liquid distributed on its surface until checked by the undisturbed substratum, when that liquid gravitating with the slope of the surface travels laterally over the substratum (though naturally porous) instead of passing through it. 4. — The difference in height between the highest part of the land available for irrigation and the lowermost lands over which the sewage may pass before it ultimately reaches the outfall, is close upon 40 feet, while the length of surface slope taken from the top of the land to the bottom is about 6,000 feet. This gives a mean fall of 1 in 150, which is a gradient favourable to the absorption of a regulated quantity of liquid, but at the same time inductive of a rapid overflow of any excess. The surface, though remarkably regular, of course varies in configuration, some parts having more than the mean fall, while others have less. On the whole the farm, presenting as it does a surface inclination in no part too steep — if not overcharged — for that even absorption of liquid, which best promotes healthy plant growth, economy of liquid, and a pure effluent, possesses features as favourable for sewage utilization as can well be found. But it should he understood that as perfect sewage irrigation — unlike ordinary water irrigation — aims at arresting the whole of the polluting matter at the same time that it appropriates the fertilizing ingredients of the liquid, none should pass off the surface into the outfall streams ; all the liquid should be absorbed, and infiltrate the soil to be discharged by natural or artificial under - drainage after the polluting matter has been extracted or rendered harmless. In the present instance instead of the whole being absorbed, I believe I am correct in stating that only one third of the sewage in dry weather is detained by the land, while in wet weather, when the sewage is much diluted with rainfall, the proportion absorbed hardly reaches one fourth. No land can ever, even under the most favourable circumstances, appropriate, with benefit to the crops it grows, a greater quantity of surface distributed liquid than would be equal to an inch in depth, or 22,622 gallons per acre. Under these circumstances it is difficult to understand how when a depth of 4 or 5 inches, and sometimes more, have been distributed over parts of the Beddington Farm, so large a proportion as two-thirds or three- fourths can pass off in the unobjectionable condition in which it has been found to exist by chemical analysis. Such a favourable condition of the effluent could only be secured by a second distri- bution of the same sewage, and by a sacrifice of return from the growing crops, while it is equally certain that at those times of the year when the assimilative powers of vegetation are dormant or reduced, it can require only very slight inattention on the part of the distributing waterman to convert a good effluent into a bad one. The effect of running sewage over land in uncontrolled quantities is shown at Beddington by the fact that the effluent passing off a surface over which the sewage has been only once distributed is found to contain three times as much albuminoid ammonia — which truly indi- cates the degree of its purity — as that which characterises the effluent from a surface over which the sewage has been distributed a second 3 time. Mr. Bernard Dyer thus reports upon certain samples submitted by me to him for comparative analysis, on Saturday, the 12th April instant, when the sewage delivered to the Beddington Farm was in a very diluted state owing to the rising of the Bourne. “ It will be observed that the ammonia contained in No. 2 (sewage twice distri- buted) is little more than one half of that contained in No. 1 (sewage once distributed) and the ‘ albuminoid ’ ammonia contained in ‘ No. 2 ’ is only one-third of that in ‘ No. 1.’ As the ‘albuminoid’ ammonia (as well as the actual ammonia) is yielded from the putrescible matter of the sewage, it furnishes a comparative measure of the relative organic purity of the effluents.” 5. — The number of persons contributing sewage to be cleansed by the Beddington land is stated at the present moment to be about 55,000 namely — At Croydon about ... ... ... ... 40,000 At Norwood ,, ... ... ... ... 15,000 Total ... ... ... ... 55,000 • — The quantity of sewage which would ordinarily be discharged from 55,000 contributors in dry weather if taken at 50 gallons a head (which is 14 gallons a head in excess of the average quantity discharged from water- closeted towns in England) would reach 2,750,000 gallons per diem. Fifty gallons a head is a very liberal estimate of the discharge of sewers intended to be watertight, and in the present instance I believe it to be considerable in excess of the water supply of the district. 6. — The actual quantity of sewage discharged on to the Bedding- ton Farm, ascertained by the gaugings which have been supplied me by Mr. Walker, is very different. Those gaugings show that the outflow from the sewers instead of being constant in quantity during dry weather, as is the case with watertight sewers, varies with the seasons. In the spring, for instance, after the under- ground water has been replenished by the rainfall of autumn and winter the outflow far exceeds that of other times of the year, while at the present time — and for the last two months — the outflow from Croydon and Norwood instead of being limited to any such quantity as ordinarily prevails in suburban districts (and which for comparison I have assumed to be 50 gallons a head) or to the 60 gallons a head which was actually discharged on to the Farm in November last, has reached (under the influence of the Bourne flow) from 150 to 180 gallons a head, showing unmistakeably the great influx of subsoil water into the sewers. The daily dry weather outflow from Croydon in ordinary years may be taken to be about 3,000,000 gallons in autumn increasing to upwards of 4,000,000 gallons in spring, while that from Norwood will increase from 600,000 gallons in autumn to upwards of 1,000,000 gallons in the spring. Together the daily dry weather sewage in ordinary years may be taken to increase in quantity from 4 about 3,600,000 gallons in autumn to upwards 5,000,000 gallons in spring. But this does not represent the most formidable aspect of the case. In your district (as already stated to be the case at the present moment) the underground water rises “ with the flowing of the Bourne,” and it is then that the mean dry weather outflow from the sewers much exceeds even the maximum of ordinary years. The Bourne phenomenon recurs at irregular intervals, but may be looked for after the lapse of five or six years. From last November (1878), when the quantity of diluted sewage discharged from the Croydon sewers, not being affected by the Bourne, barely reached 3.000. 000 gallons, the outflow has gradually increased under the influence of the Bourne until it has exceeded 7,400,000 gallons (March, 1879). The outflow from the Norwood sewer has increased at even a greater rate. It was as low as 437,000 gallons on the 9th November, 1878, and is at the present moment 1,533,000 gallons. Thus the aggregate dry weather outflow from the sewers contributing sewage to the Beddington Farm may be taken, in those years when the Bourne rises, to approach 9,000,000 gallons daily, which is equal to rather more than 160 gallons a head on the population of 55,000. It would appear from the same gaugings that upon wet weather occurring during the flow of the Bourne the quantity of sewage diluted by the rainfall may be readily raised to upwards of 14.000. 000 gallons per day, which is equal to 255 gallons a head on the same population. When laying stress upon these figures, I should state that I have been informed by Mr. Walker that it is the intention of your Board to divert a part of the subsoil water from the sewers into the River, and as soon and as far as possible to separate the surface waters from the sewage. It is estimated that the contemplated diversion of the old sewer in Church-road will alone lessen the dilution of the sewage by subsoil water, when the Bourne rises, by at least 2.000. 000 gallons daily, and it need hardly be pointed out that as the difficulties attending the disposal of sewage are increased in pro- portion as the sewage is diluted, the more that is done in the way of separating foreign waters from the sewage the better. 7. — The sewage as it is delivered to the farm may be stated to be weak in character, compared with the sewage of many other districts. It is not only constantly increased by subsoil water, with extra augmentation when the Bourne rises, but it is much diluted by surface waters in times of rainfall. There is in the sewage a greater proportion of solid ingredients at one time than at another, in consequence of the extractors not always doing the same amount of duty. I understand that under favourable conditions the grosser particles of the sewage, as well as a considerable portion of road detritus are extracted by them, although there is necessarily always some portions of the lighter flocculent matter which pass with the liquid on to the surface of the land. When there, the solids — what- ever their quantity may be — much or little — collect in clotted masses 5 in depressions and hollows amongst the growing grass to destroy or deteriorate it. I should mention that I noticed during my inspec- tion of the farm that the sewage from Croydon contained much more solid matter than I expected to find. 8. — -The system of distribution adopted by Mr. Parrott, the Manager of the Farm, consists in applying the sewage in such away as will allow of its reapplication as far as possible to lower land before its ultimate discharge from the farm. The advantage of doing this with soil allowing of lateral percolation, is very manifest. But his power to act upon such a wholesome rule is necessarily governed (i) by the quantity of sewage delivered to the farm, (2) by the extent and nature of the crops which occupy the ground, (3) by the necessity of performing such acts of husbandry as are required for the crops which will follow, and (4) by the slightly variable height of the lower surfaces. It cannot be too well under- stood that in practice, if sewage is to do its share of duty in the production of crops from the land which is to cleanse it, only a portion of the farm can be sewaged at one time. The cursory view taken by those who are not farmers is that sewage may at any time be spread over the whole surface of a farm laid out for irrigation, but the practical man knows that during certain stages and growths — when seeds are being sown, and until they are up and have got hold of the ground, and later on, when his crops are reaching maturity or them are ready for cutting and gathering — he cannot run sewage over without injury. He knows too that in order to maintain a healthy condition, certain root and cereal plants, to which sewage cannot be advantageously applied, must be grown in rotation with those that are essentially sewage crops. He is obliged in fact to abstain from applying the sewage to certain parts and in order to get rid of it to apply it in large quantities to other parts, over and over again, for many days together. At Beddington, where the area served with sewage has varied from 50 acres to upwards of 200 acres Mr. Parrott has found it necessary to be always prepared with 60 or 70 acres to receive a day’s sewage when at its minimum amount, increasing the extent of land, — frequently to the prejudice of the growing crops — directly the quantity is augmented above the minimum. On occasions of heavy rainfall indeed the recipient area has to be increased very largely. Mr. Parrott has then been obliged to spread the sewage over as much as two thirds of the whole Farm, to the great injury of those crops which have been in the condition I have referred to when sewage does them harm. As an instance of the remarkable variations that occur I may state that on the 28th of December last (1878), the whole sewage from Croydon and Norwood was applied to 85 acres of land, while on the 10th of February following, when rain had more than doubled the quantity of sewage to be dealt with, the total area of land to receive it was 227 acres. As a further illustration of the evils attending these excesses, I should mention that since the beginning of the present year (1879), 22 acres of the farm have received sewage unlimited in quantity for 55 days out of the 59 days making up the months of January and February , and another field of 20 acres for 45 days in the same period ! In 6 midwinter the evil consequences of such continued saturation as this are necessarily less than at other periods of the year, but nevertheless the resultant injury is great. To provide in some measure against these evils, and to have at command land available in times of storms, Mr. Parrott has laid down as permanent pasture some land which would yield a better return if devoted to rye grass or used for roots or vegetables. This in itself is a disadvantage inasmuch as permanent grass is the least profitable of all crops to which sewage can be applied, a point of great consideration where the rental value of the sewaged land is as high as that at Beddington. Continued saturation soon converts good permanent herbage into profitless water grass. In some parts ofthe Farm the injurious effect of continued heavy dressings was apparent when I visited it during the past month, in the saturated condition not only of the lands to which the sewage was directly applied, but of other ground which was nearly equally wet by lateral soakage from adjacent lands receiving the sewage. The continued wetness of much of the lower land had soured the soil, and starved the herbage, destroying the rye grass altogether in some places, while converting good into bad herbage in others. That your Board may realize the evils resulting from the obligation to distribute all the sewage delivered to the farm, let its quantity, and let the condition of the crops, be what they may, I would point out that if the former should amount to 7,000,000 gallons per day as at present and the quantity of land over which it can be distributed should be limited to 100 acres, the quantity of sewage per acre would be 70,000 gallons and the depth of liquid above three inches, of which only about one-third would be absorbed by the ground. You will thus see that under such circumstances it would be quite impossible that any farmer or manager can turn both the lands and the sewage to aprofitable account, and at the same time maintain a safe effluent. Recommendations. 9. — From the facts set forth it must be manifest that the object now to be aimed at is to render the subsoil as well as the surface soil capable of ready absorption in order that the sewage may be applied in a way to gain the best return while securing a safe effluent. This is to be effected (1) by the formation of filtration areas to such a limited extent as will cleanse the sewage when not wanted on the remainder of the Farm ; (2) by under drainage, limited to such an amount of work as will keep the subsoil water under all conditions well below the surface and help to aerate the ground, whereby its absorptive powers will be increased ; and (3) by steam cultivation to disturb the subsoil and further promote infiltration. Intermittent Filtration. 10.— I recommend that the land devoted to intermittent filtration should be laid out in two areas of 20 acres each. The first area 7 should be formed in Dr. Shorthouse’s land on the east of Beddington Lane, which would be available for the Croydon sewage only, and the second on Mr. Quilter’s land immediately south of the New Road, which would serve to cleanse the Norwood sewage, with a part of that of Croydon when necessary. These two areas should be laid out in horizontal beds forming a series of steps, the formation level of which will slightly vary, the higher being from nine inches to twelve inches above the one next below it, so as to accommodate the natural fall of the surface and avoid outlay in earthworks as much as possible. There would be five beds in each area of 20 acres. The sites I have suggested for these two areas are shown on Plan 2 by a green colour. If my suggestions are adopted the depth of the drains in the upper area will approximate seven feet, while the depth of those in the lower area will be six feet. Special pains will be taken to prevent the passage of sewage direct from the surface down to the drains by placing them under divisional paths and roads over which sewage will not run. Special manipulation, too, in laying the drains and refilling the trenches will of course be adopted. The main drain for the discharge of the under-drainage water from both areas will be carried into the watercourse passing down to the Wandle between Mr. Quilter’s land and Mr. Goad’s land at the point C on plan No. 2. The mode of delivering the sewage to the several beds of each area and of distributing it will be alike. The sewage received at one end will flow along main furrows, traversing their whole length, to be distributed as it flows along by lateral branch furrows. The main furrows will be deeper than the branches and will be level from one end to the other so as to allow the flocculent matter to deposit itself in them before the liquid sewage flows out of them into the branches. The land between furrow and furrow will be laid out in subordinate beds or ridges to absorb the liquid each time the furrows are filled the will grow vegetables or roots at the same time. The portion of the sewage of Paris which is delivered to the plains of Gennevilliers is absorbed in this way. About 1,000 acres of land are now laid in wide ridges, like asparagus beds, and the sewage is distributed by furrows between them. Not a plant, nor a leaf, is touched by the liquid. It is absorbed by the soil (forming the ridges) without any overflow , precisely in the same way as is here proposed. The only difference in the two systems is that at Gennevilliers the land being sandy, very porous, and naturally flat is not at present artificially under-drained, while in the present instance, although the ground is also very free, it is intended, owing to the larger quantity of liquid to be dealt with per acre, to quicken its powers of percolation by draining the subsoil with pipes. The division of the areas into several beds will allow of the sewage being applied intermittently which will secure aeration and uniform infiltration to the depth of the under-drains between each application. 8 The special advantages of intermittent filtration in the present case will be found in the facts — First . — That the two areas laid out will absorb and cleanse when required the whole of the dry weather sewage of both Croydon and Norwood, and necessarily any lesser quantity that may be from time to time in excess of what is required for the crops grown on other parts of the Farm. Second . — That as land used for intermittent filtration is laid out in furrows, which are on a true level, the flocculent solid matter of the sewage to be cleansed will in a great measure deposit itself in those furrows, and allow the liquid not absorbed to pass onwards for use on the irrigated lands, free of the solid matter, if so desired. With these capabilities existing it will be obvious that relief can be afforded to the Farm in any way, and at any time, that may be advantageous for either crops or cultivation. For instance, if it be desirable in winter that land lying in a state of fallow should receive a good dressing of sewage, loaded with all its solid ingredients, every drop of liquid and every particle of floating matter may be distri- buted on such land, to be ploughed in, and mixed with the soil when the proper time arrives. Again, if a large extent of rye-grass wants watering in summer without the drawback of solid matters floating in the water to cling offensively to the leaves of the grass, such a service can be easily performed by using the furrows of the filtration area as receptacles of the solid matter as just explained. And again, if it be desirable to give certain advancing crops in a tender stage a light dressing of water to keep them in active growth without that excess of flooding which at present occurs at Beddington, the capability of turning what is not wanted into the filtration areas (while beneficially applying the remainder) cannot be over-estimated. There being an impression abroad that the solid matter, called “ sludge,” clogs the land and prevents infiltration, I desire to explain that such a result cannot possibly attend the cleansing of sewage by intermittent filtration , if it be properly conducted. The actual quantity of sludge or solid matter which in the present instance would pass the extractors (if acting as they are intended to act) into the furrows would not amount to any very large quantity. When wet, all sludge presents a formidable appearance, and is apt to lead to the impression that its bulk is great. When dry, however, the actual bulk and weight of the sludge which would be admitted into the furrows of the filtration areas would be comparatively very small, for the whole amount of solid matter extracted from the Croydon and Norwood sewage by the extractors, I am told, does not amount to one load and a half per day. With the power of abstaining from using any particular beds forming the filtration areas, after they have been some time in use, the liquid may be drained away and the solid matter left to consolidate and become dry, when it will be reduced to its 9 minimum quantity and can be readily removed, spread, and dug in. “ Sludge,” when mixed with the soil, not only does not impede absorption, but actually assists it , and promotes plant growth by conveying to the soil, where it is wanted, its fertilising elements. Under-Drainage, ii. — Being strongly impressed that, with the possession of filtration areas, you will have in them the power of cleansing the whole or any proportion of the sewage of Croydon and Norwood, and of relieving the rest of the Farm of excessive applications, I am of opinion that very little under-drainage (comparatively) will bring the land under perfect control. Having the invaluable power of limiting the quantity of sewage distributed to the land to that amount which it will absorb, without supersaturation, it is only necessary to render the subsoil capable of infiltrating the limited quantity of sewage which will then reach it, to put it in the best condition for encouraging plant growth. To render the subsoil as absorbent as it should be the water level in it must be kept down at such a depth from the surface as will secure aeration and afford plenty of intersticial space for a good dose of sewage. In the Beddington soil it will be an easy matter to keep down the water level by laying comparatively few under- drains with large pipes, 6 inches, 9 inches, and 12 inches in diameter, but the drains, except to the extent of about 45 acres, must be laid in roads and other courses which are never covered with sewage by irrigation. The main outfall drain from the filtration areas, discharging at C, will have already partly effected this object, and if subsidiary drains to the extent of 4,500 yards were laid at a ruling depth of 5 feet, there would be little chance of super-saturation. The only part of the Farm under irrigation which I should recommend to be under-drained by wide parallel drains is the freehold belonging to the Local Board, in extent about 45 acres, on the east side of the Beddington Lane, and this I only recommend because the effluent from the under-drains can be re-applied to lower land, if it should be found not quite so satis- factory as desired. The objection to under-draining land which is irrigated on the surface, is that the sewage will sometimes descend directly from the surface down to the pipes through the trenches dug for the purpose of laying them. Steam Cultivation. 12. — Upon this point I will only venture to speak generally. I have no intention of suggesting for a moment that any part of the cultivation of the Farm should be taken out of the hands of the Manager. I am, however, of opinion that the whole Farm should be subject to deep steam cultivation and that the work should be IO done by degrees, the Manager taking every opportunity which good husbandry will suggest of having portions done until the whole is completed. With the subsoil water-level lowered by occasional capacious under-drains, and the subsoil itself broken up by steam cultivation, the passage of the distributed sewage through the ground will be facilitated if the quantity be regulated by its absorbent powers. With such conditions prevailing, the roots of growing vegetation will have a wider field to penetrate for food, and in sewage farming, where the habits of the growing crops should be considered. Thus to disperse the liquid through the soil is the best if not the only means of turning the fertilising elements it contains to a profitable account. Estimated Cost of Proposed Works. I am of opinion that the whole of the works which I have suggested may be effected at an outlay of £6,000. Intermittent Filtration Areas — Under-draining and forming the two areas of 40 acres, with main outfall drain, partly 2-ft. in diameter and partly 21-in. in diameter, discharging at “ C.” ... ... £4,800. U nder-Drainage — Under-drains, in aggregate length, 4,500 yards, 5-ft. deep, with pipes varying in size — (one-third) 12-in., (one- third) 9-in., and (one-third) 6-in. ... ... ... £650 £5.45° Contingencies ... ... ... ... ... £545 Total £ 5.995 To meet this expenditure it may be desirable to dispose of a portion of the land already in the possession of your Board. I venture to make this suggestion because I feel assured that, with the capability of disposing of the sewage in the way pointed out, the present drawbacks will be removed, and a very different state of things will exist. I do not hesitate to say that although it will, doubtless, be advisuble that the Board should retain as much land as can possibly be required to meet all eventualities, one half of the Farm (including the 40 acres of filtration ground) will serve to cleanse the whole of the sewage of Croydon and Norwood for many years to come in a manner to leave the rest of the land to be treated in the way most profitable to the ratepayers, without the drawbacks which the obligation of cleansing the sewage always imposes. If I am right in this view, your Board would be able at once to let the remainder (one moiety) of the land in two or three dairy and vegetable farms, and give the tenants the option of taking as much sewage as II they require at those times only when it would be advantageous to them to take it. By this arrangement your Board would retain the power of resuming the land at any period, if found necessary. In the meantime you would secure the best attainable rent for the portions let, and it is difficult to anticipate what such rents would be when the prejudice against sewage farms — arising from the obligation of taking the sewage , whether it is wanted or not — is removed. I desire to add that if it should be determined to act upon the suggestions I have made, and retain in the hands of the Board one half of the Farm ; the return from that half will be equal, if not more than that realised from the whole in its present condition. The lands to which I have referred as being saleable are those mentioned in Mr. Grundy’s notes as the “ Carshalton Estate ” of the Board, and form no part of the Sewage Farm. The Board will do well to retain part of Lot 12 and Lots 30 and 31 to .protect the outfalls into the Wandle AA and BB, but I see no advantages in the retention of the remainder. At a future time you may be able to sell some other portions besides these, but I do not recom- mend this until the land has been put on a proper footing and got into good working order. Farm Buildings. To effect the most advantageous arrangement for the occupation by the Board of the land they will hold in their own hands, and for letting the remainder, it would be desirable to put in good condition the various existing farm buildings and to add some new ones. Having had considerable experience in agricultural improvements, including the erection of farm buildings, I am enabled, without going into any detailed estimate, to state that a sum of £2,500 may be made to cover the suggested outlay, exclusive of any cottages for workmen, which it may afterwards be found desirable to erect, and which, as they will command a good rental in return for the outlay, need not at this moment form an item of considera- tion. The sum of £2,500 at 5 per cent., to repay the amount with interest, involves an additional charge of £125, which on 500 acres means 5s. per acre, and I need not point out that the additional advantage to be gained from appropriate buildings will more than cover this extra charge, independently of other considerations. Concluding Remarks, I do not think there is the least doubt that, with the command of the sewage which the works and arrangements I have proposed will secure, the future return from the land, compared with the past, will be at least £3 per acre, or £1,500 a year, in advance of what it has been, exclusive of any consideration of outlay in buildings; and if from this £1,500 we deduct £300 to repay the cost, with interest, of works, you will arrive at what may fairly be anticipated as the pecuniary benefit to be gained from them in addition to the 12 removal of difficulties in management which are hardly to be measured by money. As some proof of the advanatge to be derived from the power of turning sewage into filtration areas, if not required for the crops growing on the rest of the land, I may mention that the Sewage Farm at Abingdon is now let at £4 105. an acre, the Sanitary Authority being relieved of the expense of distribution after the sewage is delivered to the land. J. BAILEY DENTON, (For Bailey Denton, Son, & North) 22, Whitehall Place, London, S.W. 24^ April , 1879. P.S. — I desire to append to this report the following gaugings of sewage delivered to the Beddington Farm from Croydon and from Norwood on the particular days mentioned. They suffice to show the great irregularity of flow, and while thus indicating the difficulties experienced in the management of the Farm, they cannot fail to convey to your Board the advantage which will be afforded by the power of regulating the delivery of sewage to cropped lands, not as it is discharged from the sewers, but as it is required to promote profitable growth : — Date. From Croydon. Quantity in 24 hours. GALLONS. From Norwood. Quantity in 24 hours. GALLONS. Total. 1878. Oct. ... 10 6,467,580 993, 6°o 7,461,180 5 J • x- • 17 3,094,200 770,400 3,864,600 Nov. ... 7 2,860,821 439, 200 3,300,021 >> ... 21 3,370,482 1,155,600 4,526,082 Dec. ... 5 3,918,690 1,033,200 4,951,890 J? ... 19 3,763,890 00 M Jan. ... 2 12,166,173 n • • • 16 4> 8 33> i62 Feb. ... 13 9, 2oi ,753 2,707,200 11,908,953 ,, 27 6,284,214 Mar. ... 6 7,142,607 D ... 2 7 7,287,300 I »533»°75 8,820,375 April ... 9 1,866,600 ,, 10 6,827,220 ,, 17 7*197*300 SEWAGE DISPOSAL. TEN YEARS’ EXPERIENCE IN WORKS OF INTERMITTENT DOWNWARD FILTRATION, Separately and in Combination with Surface Irrigation ; WITH NOTES ON THE PRACTICE AND RESULTS OF SEWAGE FARMING. J. BAILEY DENTON. E. & F. N. SPON, CHARING CROSS, LONDON. PRICE THREE SHILLINGS AND SIXPENCE. SEWAGE DISPOSAL. TEN YEARS’ EXPERIENCE IN WORKS OF INTERMITTENT DOWNWARD FILTRATION, Separately and in Combination with Surface Irrigation ; WITH NOTES ON THE PRACTICE AND RESULTS OF SEWAGE FARMING. BY J. BAILEY DENTON. E. & F. N. SPON, CHARING CROSS, LONDON, LONDON : HARRISON AND SONS, PRINTERS IN ORDINARY TO HER MAJESTY, SI. martin’s LANE. The following Treatise is dedicated by the Author to JAMES HOWARD, ESQ., M.P. for the County of Bedford, Who for many years has been a co-worker with him for the furtherance of Agriculture and Sanitary Progress. The Author, in taking advantage of a long friendship to connect the name of one of the most practical men of the day with his own, acts upon the conviction that by so doing he will gain attention to facts which might otherwise pass unnoticed, and that he will by such means help to remove the difficulties still standing in the way of the purifi- cation of our Rivers, and the profitable use of the liquid refuse of our Towns. A 2 WORKS BY MR. BAILEY DENTON, M. Inst. C.E. ; F.G.S. Land Drainage and Drainage Systems, 1854. Underdrainage of Land ; its progress and results, 1855. (Society of Arts Medal.) Road-making, 1857 ; Prize Essay. The effect of Underdrainage on Arterial Channels and Outfalls, 1858. The Discharge from Underdrainage, 1863. (Telford Medal, Inst. C.E.) The Farm Homesteads of England, 1864. The importance of Shelter and Covering at Homesteads in certain Districts of Great Britain, 1865. The Marshes of South Italy, 1865. The Water Question, 1866. Village Sanitary Economy. The Agricultural Labourer, 1868. Sanitary Works, 1869. Sewage Farming, 1870. „ Sewage the Fertilizer of Land, and Land the Purifier of Sewage, 1871. Underdrainage and the steps to be takei\_to develop and maintain its effects, 1872. Intermittent Downward Filtration and Irrigation, 1873. Sanitary Science applied to Towns and Rural Districts, 1874. Storage of Water, 1874. Sanitary Engineering (a Series of Lectures given before the School of Military Engineering at Chatham), 1876. Lectures on the Water Economy of Great Britain ; on the Storage of Water ; and on Land Drainage, given at Royal Agricultural College, Cirencester. Technical Teaching at Rural Elementary Schools, 1878. House Sanitation ; Water Supply and Domestic Filtration, 1879. INTRODUCTION. The following treatise, explanatory of what has been done by the author in the way of cleansing sewage by filtration through natural soil, is intended to satisfy sanitary authorities that wherever land is to be obtained, in a greater or less quantity, they have it in their power to prevent the pollution of rivers, at a comparatively moderate outlay, and that they may do so with advantage to the country generally by increasing our food production. At the same time he desires to impress his readers with the fact that he recognises in the dissimilar conditions affecting some towns and districts ample reason for difference in the treatment of the sewage discharged from them, and for a varying degree of purification of the effluent. With that view he ventures to reprint here from his lectures on “ Sanitary Engineering,” given before the School of Military Engineer- ing at Chatham (1876), the following passages on the classification of towns and villages according to the nature of their outfalls : — “ All towns in this country may be placed in one of three classes, viz. : (1) towns on the seaboard, (2) towns on estuaries and tidal rivers, and (3) towns on inland rivers and tributary streams. I will deal with them under these heads, and add a few special remarks upon the disposal of sewage from villages and hamlets. (T.) Sea-board Towns . — In the economy of discharging sewage directly into the sea, in the case of towns situated on the sea-board, a good and sufficient reason exists for the adoption of that means of disposal wherever it can be done without injuriously affecting the shore. The probability is, however, that the floating matters will return, and that the soluble matter will mix with the sea so as to pollute the shores, and in sea-bathing towns such a result should not be possible. The possf 6 bility of discharging sewage into the sea unobjectionably only exists where the shore is not used for bathing or for recreation, and where the town does not extend down to the water’s edge. Where it stands well above the sea level, and the outfall sewer may be carried far into the sea without converting such sewer into a sewage-reservoir, the arrange- ment may be effected advantageously, In cases where the sewage is impounded within the outfall sewer for a period of time during each tide, not only is the sea-shore too frequently affected in a manner to prejudice the interests of a sea-bathing town, but the inhabitants are injuriously affected by the generation and evolution of gases from the impounded sewage which find their way by the communicating sewers into the houses, and by the gullies and gratings into the streets during the time the sewer mouth is closed. Brighton may be taken as an illustration of this state of things. While the average death-rate of healthy districts is 17 per 1,000, that of Brighton frequently rises above 20, and this excess is only to be ex- plained by the character of its sewerage, the detention of the sewage in the outfall sewer, the mode of disposal, and the overcrowding of dwellings ; for the town possesses all the advantages due to a southern aspect, an open sea, and a wide reach of downs to shelter it from cold wind whilst affording to the inhabitants the means of healthful exercise. It will have been anticipated from these remarks that, even in sea-board towns, the sewage, before it is discharged, should not only be clarified, but that everything should be done within reasonable limits to secure a constant outflow independently of the tide One or other of the tried chemical precipitation processes will effect the required clarification of the sewage of this class of towns where land cannot be obtained. (2.) Towns discharging into Tidal Rivers and Estuaries . — A con- siderable number of towns in this country are situated on the shores of tidal waters, some of which reach far inland. The difficulty of satis- factorily dealing with sewage which can only be carried to the sea by the ebb of the tide, is very considerable. The banks or shores of these waters generally consist of mud, and are exposed to the atmosphere for a sufficient time during each tide to give off in extremely hot weather an intolerable stench, which is necessarily made worse by mixture with sewage. In dealing with towns on tidal rivers it becomes the duty of the engineer to treat the 7 liquid refuse differently from the way in which he would dispose of the sewage of either a town situated directly on the sea-board, or on an inland river. The most rational view of the matter is that while the sewage discharged from sea -board towns directly into the sea may be simply clarified ; that which is discharged into tidal rivers, the waters of which are not potable should be cleansed of its putrescible matters up to a certain standard, which though less stringent that that applied to inland rivers, shall be sufficiently high to prevent nuisance. The standards recognised by the Conservators of the River Thames, as applicable to districts below the intakes of the London Water Companies may be adopted for this class of towns. They say of the defaecated water to be discharged from these districts — (< i. It should be free from an offensive odour. “ 2. It should be free from suspended matters, or, in other words, be perfectly clear. “ 3. It should not be alkaline to turmeric-paper, nor acid to litmus paper. “ 4. It should not contain per gallon more than 60 grains of solid matter dried at 260 deg. Fahr. “ 5. It should not contain more than three-quarters of a grain of organic and ammoniacal nitrogen per gallon. “ 6. It should not contain more than two grains of organic carbon per gallon. “7. It should contain not less than one cubic inch of free oxygen in a gallon.” It should be observed, however, that one of the eminent chemists who signed this recommended standard, Dr. Frankland, — himself a member of the Rivers Pollution Commission, — added these words : “ The conditions under which fluid which has been contaminated with sewage may be admitted into the Thames, as prescribed in the fore- going report will, I have every reason to believe, preserve the river from being offensive to the inhabitants upon its banks ; but, whilst thus far agreeing with my colleagues, I wish it to be distinctly understood that, in my opinion, such fluid can only be safely admissible into the Thames on condition that the water is not afterwards used for domestic purposes.” These standards — which, as the Government do not recognise them, are only now useful as indicating the very reasonable view taken by the 8 Thames Conservancy Board— can, it is declared, be reached by several of the chemical processes now in existence. In the case of tidal rivers which reach far into the country, and the banks of which are exposed at every tide and give off effluvia of increased offensiveness when the tidal water is mixed with sewage, however it is not only desirable in many instances to separate the solid matters and clarify the liquid as chemical precipitation will suffice to do, but to purify it also.^ How far the Rivers pollution prevention Act may affect towns on tidal rivers remains yet to be seen. In Part II., section 3, it is laid down that “ every person who causes to fall or flow, or knowingly permits to fall or flow, or to be carried into any stream any solid or liquid sewage matter shall (subject as in this Act mentioned) be deemed to have com- mitted an offence against this Act. Where any sewage matter falls or flows, or is carried into any stream along a channel used, constructed, or in process of construction at the date of the passing of this Act, for the purpose of conveying such sewage matter, the person causing, or knowingly permitting the sewage matter, so to fall or flow, or to be carried, shall not be deemed to have committed an offence against this Act if he shows to the satisfaction of the Court having cognisance of the case that he is using the best practicable and available means to render harm- less the sewage matter so falling or flowing, or carried into the stream.” In Part IV. of the same Act it is stated that “ ‘ Stream ’ includes the sea to such extent and tidal waters to such point, as may, after local inquiry, and on sanitary grounds, be determined by the Local Govern- ment Board, by order published in the London Gazette. Save, as afore- said ” (the exceptions are the Lee and Thames, which are under special control, and the sea or tidal waters the use of which for the discharge of sewage has been sanctioned by Act of Parliament), a it includes rivers, streams, canals, lakes, and watercourses, other than watercourses at the passing of this Act, mainly used as sewers and emptying directly into the sea, or tidal waters which have not been determined to be streams within the meaning of this Act by such order as aforesaid.” (3.) Inland Towns . — It is not only reasonable but positively neces- sary that considerations altogether different from those ruling in the case of sea-board towns should determine the mode of disposing of the sewage of inland towns. The effluent water in such cases should indeed be freed of all foul or noxious matter (Public Health Act, 1875, clause 17), without compromise, and the law should be exercised without hesitation. The influence of the opposition of manufacturers has resulted in a temporary respite, and some ground has been lost by temporising which had been previously gained by slow and certain steps ; but when saying this it is impossible to evade the conclusion that the perfect and permanent cleansing of sewage will be sooner or later insisted upon by every voice in the country, and by no persons more decidedly than by the manufacturers themselves. The standards suggested by the Rivers Pollution Commissioners, at first adopted, then abandoned by the Government of the day, but which, nevertheless, afford a very good indication of what may satisfy future requirements, precluded the admission of the following liquids into any stream. (a.) Any liquid containing in suspension more than three parts by weight of dry mineral matter, or one part by weight of dry organic matter in 100,000 parts by weight of the liquid. (( b .) Any liquid containing in solution more than two parts by weight of organic carbon, or *3 part by weight of organic nitrogen in 100,000 parts by weight. ( c .) Any liquid which shall exhibit by daylight a distinct colour when a stratum of it one inch deep is placed in a white porcelain or earthenware vessel. (i d .) Any liquid which contains a solution, in 100,000 parts by weight, more than two parts by weight of any metal except calcium, magnesium, potassium, and sodium. (e.) Any liquid which, in 100,000 parts by weight, contains, whether in solution or suspension, in chemical combination or otherwise, more than '05 part by weight of metallic arsenic. (/.) Any liquid which, after acidification with sulphuric acid, contains, in 100,000 parts by weight, more than one part by weight of free chlorine. (g.) Any liquid which contains, in 100,000 parts by weight, more than one part by weight of sulphur, in the condition either of sulphuretted hydrogen or of a soluble sulphuret. (A) Any liquid possessing an acidity greater than that which is produced by adding two parts by weight of real muriatic acid to 1,000 parts by weight of distilled water. (/.) Any liquid possessing an alkalinity greater than that produced by adding one part by weight of dry caustic soda to 1,000 parts by weight of distilled water. Where these standards have been reached for a continuance by any IO single treatment of sewage it has been effected by recourse to land, either by way of wide surface irrigation, or intermittent downward filtration. When local circumstances forbid the acquisition of a sufficient area of land for either of these objects, then one of the chemical processes in association with intermittent downward filtration will have the desired effect. By this latter combination a very small area of natural soil, when properly prepared, will perfect that purification which chemical treatment has failed to reach by itself. It is much to be regretted that chemists do not base their analyses of water sewage on one fixed quantity of liquid. While some give the proportions in parts per 100,000, and in grains, per gallon of 70,000 grains, other chemists give certain ingredients in parts per million. TEN YEARS’ EXPERIENCE IN INTERMITTENT FILTRATION. Public discussion has been recently renewed on that irrepressible subject, the disposal of sewage , which, though frequently described as nasty and offensive, still retains its position as one of the most important problems in the social economy of all countries. That this is the case in England has been most abundantly proved by the facts that the inquiry made in the early part of the present year (1880), into the sewage disposal of the Lower Thames Valley sewerage district lasted for a period of 45 days, and that no decision acceptable to the joint Board has yet been arrived at. (December, 1880.) My motive for publishing the experiences I have gained in Inter- mittent Filtration, separately and in combination with surface irrigation in the last ten years arises from no desire to discuss the proceedings of the Lower Thames Valley Main Sewerage Board, but from the conviction that much misapprehension as to the efficacy of land as a purifier of sewage has resulted from the ex-parte statements made and the objections expressed at that inquiry, which, though only bearing on the special site unfortunately selected by the Joint Board at East Moulsey, on the Surrey side of the Thames, have been construed by some persons as applicable to the use of land generally. While abstaining from any remarks on the Lower Thames Valley sewage disposal scheme, the fact that other land at Harniondsworth on the Middlesex side of the river was selected by three different Engineers — two of whom received premiums of 200 guineas each* — will justify my drawing attention to the circumstance that no land within the Thames Valley, other than that of East Moulsey, * Mr. James Mansergh and Messrs. Bailey Denton & Co. The practice of intermittent downward filtration defined. 1 2 was made the subject of investigation, although 300 acres of the land selected at Harmondsworth — the level of which was forty feet higher than that of the Moulsey land, and therefore free from those physical drawbacks with respect to drainage which was made a special ground of opposition — were sold by public auction by Messrs. Baker and Son in the early part of last year, 1879, f° r ,£20,000 — not £70 per acre — a price which if it had been taken into consideration would have shown incontestably that land was to have been obtained on the Middlesex side at a moderate cost, free from those residential considerations which increased so largely the value of and the objections to the selected land on the Surrey side. With a view to remove as effectually as possible any false impres- sions that may in consequence prevail and which may prejudice the interests of Agriculture, I propose to describe in precise terms certain executed works in which Intermittent Filtration is the principal feature, for the accuracy of the details of which I can personally vouch, hoping to prove to the satisfaction of those who may prefer facts to opinions that the particular objections dwelt upon at Kingston, and so often reiterated by Counsel and witnesses at inquiries of the same character — and which must necessarily have some influence on the public mind — are not based on reliable data. In speaking of “ Intermittent Filtration,” I do not refer to the practice of crowding sewage continuously on porous land in the careless manner often adopted to get rid of sewage, and which results in its collection in hollows and low places to injure growing crops — to depreciate the effluent, if there be any — and to cause a nuisance on the surface of the land — (a proceeding which may deserve the term of “ intensive irrigation,” contemptuously given to intermittent filtration by its detractors,) but I refer to the concentration of sewage at regulated intervals on as few acres of land as will absorb and cleanse it without preventing the production of vegetation. It is by this means that the assimilative powers of growing plants are brought to bear on the fertilizing elements of the sewage at the same time that the percolation of the sewage through the soil brings it in contact with the atmospheric air pervading the soil, and renders it harmless by oxidation, as explained by the Rivers Pollution Commissioners.* * In contradistinction to intermittent downward filtration, “surface irrigation” means the distribution of sewage over as many acres as it will wet without super- saturation, having in view a maximum plant growth. To run sewage on to gravel or i3 The particular objections I refer to as those so often repeated by opponents are : — First. That soils become after a time so overloaded with sewage when subjected to intermittent filtration, that their powers of absorption and percolation cease. Second. That the concentration of sewage for filtration on a small area is attended with greater nuisance than other modes of treatment ; and — Third. That the cost of preparing land for intermittent filtration is so great as to preclude its adoption ; — this objection being generally based on the erroneous figures given in the report of Messrs. Rawlinson and Read, the Committee appointed by Mr. Sclater-Booth to inquire into the different modes of treating town sewage. In the interests both of sanitary science and agricultural progress, it is greatly to be regretted that these objections are so pertinaciously repeated without any real effort being made to arrive at facts. The omission to do so is due perhaps in some measure to the circumstance that the Rivers’ Pollution Commissioners themselves when they published the interesting results of the laboratory experiments of Dr. Frankland in 1870, hesitated to recommend the adoption of the process. After declaring that they deduced from the experiments, that “ an acre of suitably constituted soil, well and deeply drained, with its surface levelled, and divided into four equal plots, each of which in succession would receive the sewage of six hours, would cleanse the sewage of 3,300 persons,” they explained that — Such a filter was not a mere mechanical contrivance — it was a machine for oxidising and thus altogether transforming, as well as for merely separating the filth of dirty water. A field of porous soil irri- gated intermittently, virtually performs an act of respiration, copying on an enormous scale the lung action of a breathing animal, for it is alter- nately receiving and expiring air, and thus dealing as an oxidising agent with the filthy fluid which is trickling through it. To this chemical property must be added another cleansing agency — the actual appetite for certain dissolved impurities in filthy water — which soil owes both to general surface attraction, and to the chemical affinities which some of the ingredients possess. A sufficient extent and depth of porous soil having periodical in- tervals of rest during which the soil drains itself and becomes refilled with air, certainly must be the best possible strainer, oxidiser and filterer of water containing nauseous organic impurities both suspended chalk beds, to be soaked in and disappear ? as may be seen, not far from the Metro- polis, is an illustration of “ Intensive Irrigation ” in its worst shape. Objections of opponents to the process. The theory of intermittent downward filtration. Reasons of the River Pollution Commis- sioners for hesitating to recommend the adoption of the process. How the an- ticipations of the Commis- sioners were met and re- moved at Merthyr Tydfil. and dissolved, — but the adoption of intermittent filtration through land they declared would be open to three formidable objections, viz. : “(i) That it was entirely unremunerative; (2) That the whole of the manure ingredients of the sewage would be absolutely wasted ; and (3) That the collection of solid faecal matters on the surface of the soil with no vegetation to make use of them would probably give rise to a formidable nuisance, especially in hot weather.” It may be remembered by those who have traced the progress of Sewage Disposal, that I had it in my power in the very first work of Intermittent Filtration that was executed in this country — i.e., at Merthyr Tydfil in 1871 — to prove that these expectations of the Commissioners were groundless if the operations were modified by the lessons learnt in land-underdrainage. Though my long connection with underdrainage gave me the fullest confidence in the soundness of Dr. Frankland’s views, I determined at Merthyr, in the face of the competing processes which were then before the public, to avoid all chance of overcharging the land, and instead of looking to one acre of suitable soil drained 6 feet deep to cleanse the sewage of 3,300 persons, as the Rivers Pollution Commissioners had suggested, to extend the area designed to do this duty to three acres by only applying the sewage of 1,100 persons to an acre, and instead of covering the whole surface of the land so utilised with sewage, which would negative the power of crop production, I determined to distribute it by furrows , so as the liquid sewage should reach the roots of the plants growing on the ridges laterally, through the soil, without touching their edible parts. The result at Merthyr was (and subsequently has been at all other places), that heavier crops of vegetables, giving a better money return, have been grown upon the Intermittent Filtration areas, when cleansing the sewage of 1,100 persons to the acre, than upon surface irrigated land receiving and cleansing the sewage of one-tenth of that population. At Merthyr too (as at other places), the sewage applied being evenly dis- tributed by horizontal furrows, without allowing it to touch the growing crops, has caused no nuisance whatever, nor has any effluvium been recognisable at a distance of 50 yards from the areas. Thus the three objections anticipated by the Rivers Pollution Com- missioners were completely removed. The treatment adopted, instead of being entirely unremunerative, secured in every case large crops of vegetables. No collection of solid faecal matter took place upon the surface of the ground. The sewage being distributed by furrows of different depths so regulated as to feed the soil with the liquid and i5 keep back the solid matter in the furrows where it would afterwards be of special value for mixture with the soil, no waste occurs. I have quoted the very interesting description given by the Rivers Intermittency Pollution Commissioners of the principles or theory upon which Inter- indispensable, mittent Downward Filtration was based before describing the several illustrations of the practice itself which I am about to give, because it is desirable that it should be previously understood that intermittency of application is a sine qua non even in “ suitably constituted soils,” where- ever complete success is aimed at. No instance of failure can be ( pointed out where careful under-drainage and careful preparation of surface with proper periods of rest (regulated by the character of the soil), have been adopted* whereas the cases are unfortunately becoming numerous in which defective effluents are discharged from the under- drains, and considerable nuisance created on the surface of the sewaged ground where “ intensified irrigation ” without regulated periodical application has taken the place of Intermittent Filtration in the true meaning of the term, as explained by the Rivers Pollution Commissioners. It is equally desirable to remove from the minds of those who take Area of land interest in the subject, any impressions that may exist in consequence different 111 of adverse criticism that when I considered it advisable in the first descriptions of SOU. work of the kind (Merthyr Tydfil), to increase the area of land utilized in the proportion of three acres to one acre, there was any intention to discredit the conclusions come to by the Rivers Pollution Com- missioners, as to the cleansing capability of “ suitably constituted soil.” I aimed at such a modification as would certainly ensure success. In every case the extent of surface must necessarily depend (i) on the capability of the upper soil to absorb, and of the subsoil to infiltrate the liquid applied to the surface ; and (2) on the depth to which the land may be thoroughly drained in order to provide the necessary bulk of filtering material, and it was not only to remove all doubts on these points but to overcome the disturbing influences due to mixed soils of nominally the same character and the difficulties imposed by nature in keeping down subsoil water, that led me to recommend the increased area. No arbitrary law applicable to all soils was intended to be laid down at Merthyr. Every day’s experience since the execution of that work has served to prove that with the most suitable free soils it is hardly possible to overcharge them with liquid, or to overtax their cleansing powers, whereas, in the less suitable clayey and peaty soils, the limit of absorptive power is reached before one-fourth of the liquid that would be absorbed by gravelly and sandy land is applied. If we avoid the denser clays as altogether unsuitable (unless they are so altered in their condi- tion by mixing, burning, &c., as to lose their natural character) and regulate the application of the sewage to other soils within the limits of 1,000 persons to the acre of those most suitably constituted and 250 persons to the acre, to those least suitably constituted, all other descrip- tions of cultivatable land may be made capable of filtration ; and the advantage of being able permanently to cleanse the sewage of a district where any land more or less suitable is to be purchased or leased in sufficient quantity to meet these limits, cannot be over-estimated. When giving the details of the works I am about to describe, I trust I shall be able not only to remove the oft-repeated objections set forth, but to prove that the capability afforded by intermittent filtration, when adopted separately , of minimising the quantity of land required, will ensure the purification of sewage at the least cost to the ratepayer ; and when systematically adopted in combination with surface irrigation may be made the means of removing the greatest drawbacks experienced by the sewage farmer, and thus afford a tangible benefit to agriculture. Up to this time Agriculture, which it was stated by the highest authori- ties in Europe, would be immensely advantaged by the use of sewage on land, has realised no gain whatever beyond the benefit of learning what to avoid, and what may be looked forward to when the draw- backs incident to novelty give place to facilities which practice will supply. Before entering upon these descriptions it may be desirable to explain certain points which have a governing influence in the disposal of sewage when land is resorted to. They may be considered under the following heads : — I. Character, amount, and value of sewage constituting the outflow of different districts. II. The quantity and use of solid matters floating in the sewage discharged. III. The temperature of sewage. IV. Storm overflows and osier beds. V. The character of land, more or less suitable. 1 7 X. CHARACTER, AMOUNT, AND VALUE OF SEWAGE. The Rivers Pollution Commissioners showed with remarkable clearness in their report of the 16th February, 1870, that the sewage discharged from towns in which no special trades exist was the same in its distinguishing qualities, and this similarity has been found to exist whether the excrementitious refuse of dwellings be admitted into sewers or whether it be collected separately and removed by the scavenger. The Commissioners, after giving by numerous analyses the precise constituents of the sewage of water-closet towns and midden towns, stated that these analytical numbers show a remarkable similarity of composition. The proportion of putrescible organic matter in solution in midden towns is but slightly less than in water-closet towns, whilst the organic matter in suspension is somewhat greater in the former than in the latter. They add — “ For agricultural purposes 10 tons of average water-closet sewage may in round numbers be taken to be equal to 1 2 tons of average privy sewage. The average quantity of chlorine in 100,000 parts of water- closet sewage is io'66, while in midden sewage it is 11*54. This difference is very significant ; it shows that, assuming (which is probably approximately the case) all the urine to reach the sewers in both classes of towns, a larger number of individuals contribute to a given volume of sewage in midden than in water-closet towns. Chlorine, in these cases, represents common salt, and the latter again indicates the pro- portion of urine in the sewage. The proportion of chlorine, therefore, ought to give the proportion of average individuals (men, women and children) contributing to each kind of sewage ; and from this it would follow that the population producing equal volumes of sewage in midden and water-closet towns are as follows : — In water-closet towns . . . . 1,066 In midden towns .. .. .. 1,154 “ The cause of this difference in the volume of sewage per head of population in the two classes of towns is obviously to be sought for in the somewhat increased quantity of water needed by and supplied in the former.” The liquid refuse from manufacturing works, however, may alter the character and value of sewage, if admitted into sewers, to a great extent. It is therefore essential in designing works for the utilization of sewage on land that the details given by the Rivers Pollution Commissioners of the refuse liquid discharged from trades of different character should be B Character of sewage of water-closet towns, and midden towns. As to character of trade liquid refuse. i8 Rivers Pol- lution Preven- tion Act, 1876, Section 7, to be con- sidered. carefully considered, and that the facts with respect to the trades existing in districts under treatment should be ascertained with precision. By the wording of the 7 th section of the “ Rivers Pollution Prevention Act, 1876,” it will be seen that the Legislature contemplated the admission of trade liquids into sewers as far as possible, for it is declared that — “ Every Sanitary or other Local Authority having sewers under their control shall give facilities for enabling manufacturers within their district to carry the liquid proceeding from their factories or manu- facturing processes into such sewers, provided that this section shall not extend to compel any Sanitary or other Local Authority to admit into their sewers any liquid which would prejudicially affect such sewers or the disposal by sale, application to land, or otherwise of the sewage matter conveyed along such sewers, or which would from its temperature or otherwise be injurious in a sanitary point of view.” As to quantity of trade liquid. Of subsoil water ad- mitted into sewers. Sewage proper. [ It is therefore some satisfaction to know from the experience already gained that the ingredients used in trade when dissolved and mixed with sewage do not always injuriously affect vegetation. Some are found to be harmless and others beneficial. The quantity of water used in some trades, however, is so great as to be alone prohibitory to its admission into sewers, for instances are not rare in which as much water is used in a single mill as that consumed in a moderately sized town. The quantity of sewage forming the constant discharge from the sewers of any district depends very greatly upon the amount of dilution to which the “ sewage proper” is subject by mixture with subsoil water , and the amount necessarily affects in the highest degree the mode of sewage-proper disposal. The “ sewage proper ” of a district consists simply of the water supply made filthy by use when passing through habitations. It frequently happens that this is more than doubled by the water finding its way into the sewers from the ground in which they are laid. One of the greatest difficulties, in fact, with which an engineer has to contend is the existence of subsoil water, inasmuch as any joints which are not water-tight not only admit the subsoil water into the sewers to dilute the sewage, but they allow the sewage which should be confined to the sewer to escape under pressure into the surrounding soil through the same interstices that would admit the subsoil water. Sewers should therefore be invariably made watertight, and where underground water stands sufficiently near the surface to cause injury to the health of the locality it should be lowered by independent subsoil drains. All sewers jointed with clay are particularly subject to much variation of outflow. Nothing in truth has led more directly to unsatisfactory results than the use of *9 clay for jointing under the pretence of economy, for in wet soils the sewage-proper has from such causes been doubled and trebled in quantity while under other influences the discharge from the sewers has been so much reduced as entirely to defeat good management. It is now generally conceded by sanitary engineers that surface waters should be excluded as far as practicable from public sewers and that a separate system of surface-water drains should exist in all towns to take the rainfall to the natural streams of the watershed. Objection has been raised, however, to the exclusion of surface waters, on the ground that the sewers are not then so thoroughly flushed as when provision is made for the admission of the rainfall. Experience, however, has shown that, where separate systems are carried out, there still exists a consider- . able influx of rain water from the back roofs of buildings and from other impervious surfaces connected with dwellings, the off-flow from which cannot practically be excluded from the private sewers communi- cating with the public ones, which affords ample means of flushing the sewers in times of rainfall, without the addition of surface waters from public roads, front roofs, &c. Where separate systems do exist, and the necessary storm overflows are provided, the discharge from the sewers will still be found, in wet weather, to occasion great derangement. To meet this difficulty Osier Beds are provided in connection with Intermittent Filtration areas, through which the excess passes, and by which it is freed from solid floating matter before reaching the natural outfall. It is only in this supplemental way that Osier Beds can be safely used. The last ten years have taught us that the value first put upon liquid sewage by Chemists, (from id. to 2 per ton) though arrived at by the most careful analysis and computations, is quite irreconcilable with tangible results. The country was, indeed, led to expect that the sewage of 20 persons might be sufficient to produce heavy crops, and at the same time maintain the fertility of an acre of land, whilst the estimate, which gained general favour was, that with systematic distribution the sewage of 100 persons to the acre would be attended with certain profit ! At the same time the value of the solid materials existing in sewage was even more exaggerated by patentees and other persons. Instead of liquid sewage being worth even a penny a ton, and the solid materials worth ^3 a ton, as it was often asserted had been realized, we find, as will be shown when treating of sewage farming, that the utmost price given for the former has not reached one third of a Of surface waters ad- mitted into sewers. Osier Beds. Value of sewage. Value of Sludge. B 2 20 farthing a ton, while Dr. Voelcker, F.R.S., the Consulting Chemist of the Royal Agricultural Society, has incontestably shown that the money value of the dried sewage — “ sludge ” — offered for sale after treatment at Bolton, Bradford, and Leeds varies from £i is. id to i6i‘. 8 \d. a ton, and is often unsaleable at any price. The report of Messrs. Rawlinson and Read, the Committee appointed by the late President of the Local Government Board, contained the valuable report of Dr. Voelcker setting forth these figures. It exposed with singular force the almost worthless character of sludge when separated from sewage liquid. In order to ascertain the value of the fertilizing properties of sewage and excreta, and also of the manures manufactured therefrom, and of their commercial value to the farmer, the Committee collected samples at Bolton, Bradford, Leeds, Coventry, Rochdale, and Halifax, and caused them to be analysed and the following is the report referred to : — • Dr. Voelcker’s Report on the value of sewage as a manure. “ On the Fertilising and Commercial Value of Sewage and Night-soil Manures. — The fertilising and commercial value of sewage-sludge and of portable manures prepared from sewage, night-soil manures, and of common farm-yard manure, chiefly depends upon the proportions of phosphate of lime, potash, and nitrogen which these fertilisers contain. “These fertilising constituents of manures can be bought at the present time in the form of concentrated artificial manures, such as guano, bone dust, sulphate of ammonia, &c., at the following rates : — Phosphate of lime at . . . . . . id. per lb. Potash at . . . . . . . . . . 2 d. „ Nitrogen calculated as ammonia at . . 8d. „ I need hardly say that in such concentrated forms phosphate of lime, potash, and ammonia have a much greater value than they possess in the shape of manures, the bulk of which mainly consists of materials without value, and occurring in abundance in almost every kind of soil. “ I would, however, direct attention to the fact that according to my own experience and that of others, sewage manures, night-soil manures, and ordinary farm-yard manure contain but little ready-formed ammonia, and that by far the largest proportion of the nitrogen in these manures occurs in them in the shape of nitrogenous organic matters in which form nitrogen is less efficacious, and in consequence less valuable, than in the form of ready-formed ammonia or salts of ammonia. “ In estimating the theoretical value of manures, the nitrogen is gene- rally assumed to be present in sewage and similar bulky manures in the form of ammonia, or, at all events, to have the same value as the nitrogen in the salts of ammonia. This, in my opinion, is a mistake, and the nitro- genous constituents of sewage manures are valued at too high a rate if their nitrogen is calculated into ammonia, and 8d. allowed for each pound of the calculated amount of ammonia. In order to avoid the charge of having put too low an estimate upon the fertilising constituents of sewage-manures, I have allowed in the estimate 8 d. per pound for the cal- culated amount of ammonia which the nitrogenous matters in a ton of manure are capable of gradually producing under the most favourable circumstances on their final decomposition. “ The following Tabular Statement shows at a glance the theoretical or calculated money value of the different sewage manures which were submitted to me for analysis : — “Theoretical or estimated Money Value of one Ton of the treated Sewage Sludge. (i.) Bolton sludge — from the M. and C. sewage process* (2.) The same dried, leaving 15 per cent, of moisture in the sludge (3.) Solids drained from sewage before the liming process at Bradford. . (4.) The same with 15 per cent, of moisture . (5.) Bradford Corporation Sewage Outfall Works, sludge from drying pits, no artificial heat being used . . (6.) The same with 15 per cent, of moisture . . (7.) Deposit from the sewage of Leeds treated by the ABC process (8.) The same with 15 per cent, of moisture . . (9.) Manure produced by the General Sewage Manure Company at Coventry 10. Rochdale Manure .. (n.) Manure manufactured by the Goux Com- pany at Halifax £> s. d. 0 9 — i|c<» CO 1 1 I 0 1 1 °i 0 3 0 4 8 1 0 °2 0 8 4h 0 16 H 0 16 9 i 0 15 ni 0 i7 7 “According to the most reliable statements the separation of the suspended matters of sewage by precipitation and filtration, and the production of one ton of dried sewage deposits, apart from the costs of the precipitation agents which are used, entails an expense of about 30 s. for each ton of portable dried sewage manure. It is evident, therefore, that the cost of manufacture considerably exceeds the theo- retical or calculated money value of every one of the sewage deposit manures, the composition of which is given in the results of analysis in Appendices Nos. 1, 2, and 3. The estimated money value of sewage and night-soil manures, as has been stated already, does not fairly represent their real commercial value. The bulk of all the samples submitted to me for analysis consists of matters which occur in abundance in almost all soils, and which at any rate have no commercial value, or rather have a negative value, inasmuch as carriage has to be paid for them, and the application of bulky manures necessarily is more expensive than that of concentrated manures, such as guano or bone dust. It is, therefore, manifestly practically wrong to estimate the money value of such bulky and poor manures by the same standard of prices at which the commer- # M. and C. are the initials of the patentees. The ingredients used are Lime, carbon, house ashes, soda, and per-chloride of iron. 22 cial value of guano, bone dust, sulphate of ammonia, and similar con- centrated artificial manures are estimated. A more rational and correct estimate of the true value of sewage and night-soil manures is obtained by comparing them with ordinary farm-yard manure, and the price which is paid for the latter. “ Good farm-yard manure, I find, contains on an average in the ton lbs. of soluble phosphate of lime, 8-J lbs. of insoluble phosphate of lime, 13 lbs. of potash, and nitrogen equal to 17^ lbs. of ammonia. “ By allowing for soluble phosphate of lime 2 d. per lb., the same price for potash, id. per lb., for insoluble phosphate of lime, and Sd. per lb. for ammonia, the calculated money value of a ton of farm-yard manure amounts to 15^. 7 \d., as will be seen from the following figures : — Total calculated money value of a ton of farm-yard manure 15 7 J “ It thus appears that if we estimate the money value of good farm- yard manure, according to the same. rules at which the principal fertilis- ing constituents in the dung can be bought in concentrated manures, one ton of farm-yard manure would be worth in round numbers i5.y. However, good dung can be bought in many places at 5^. per ton, or one-third its estimated money value, and practically the highest price which a farmer can afford to pay for good dung, if he has to cart it even a few miles, would not exceed 7s. 6d. per ton, one half its estimated money value. The difference between the estimated money value of farm-yard manure (calculated at the market rate of the constituents when sold as concentrated artificial manures) and the actual market price may be fairly taken to represent the difference in practical value caused by the greater expense of the carriage and application of farm-yard manure, and the less vigorous action of organic nitrogenous compounds as com- pared with ammonia salts. “ In estimating the commercial value of sewage and night-soil manure the calculated value of which does not exceed £1 is. per ton, precisely the same circumstances have to be taken into account which affect so largely the market value of ordinary farm-yard manure. Accordingly the price which the farmer can afford to pay for the sewage and night- soil manures, analysed by me, or their real money value, will be only from one-third to one-half that of the calculated estimates given on the basis of their analyses. “ The following Table shows the market price or real money value of the various sewage and night-soil manures, samples of which were submitted to me for analysis. lb. of soluble phosphate of lime, worth at 2 d. per lb. 2>\ „ insoluble „ „ 13 „ . potash „ Nitrogen, equal to 17^ lbs. of ammonia, calculating am- monia at &d. per lb. o 1 1 2 2 23 “ Practical or Market Value of one Ton of the treated Sludge. d. s. d. (i.) Bolton sludge from the M. and C. sewage process .. .. .. 3 3 to 410 (2.) The same sludge, 15 per cent, of moisture .. .. .. .. 70 „ 10 6 (3.) Solids drained from sewage before the liming process at Bradford . . 38 „ 56 (4.) The same with 1 5 per cent, of mois- ture . . . . 6 5 „ 9 6 (5.) Bradford Corporation Sewage Outfall Works, sludge from drying pits with- out artificial heat . . . . . . 1 6 ,, 2 4 (6.) The same dried with 15 per cent, of moisture .. *. .. 6 8 „ 10 o (7.) Deposit from the sewage of Leeds treated by the ABC process . . 29 „ 42 (8.) The same sludge with 1 5 per cent, of moisture . . . . . . . . 5 6 „ 8 4 (9.) Manure produced • by the General Sewage Manure Company at Coven- try 5 6 „ 8 4 (10.) Rochdale manure .. .. .. 54 „ 80 (11.) Manure manufactured by the Goux Company at Halifax . . . . 510 ,, 89 “ In my judgment this tabular statement fairly represents the money value of eleven different samples sent to me for analysis at the place where the manures were produced. “ Some of the products are worth a good deal less than an equal weight of common dung, which fully explains the circumstances that most sewage manures find no ready sale even at a low price, and that in many works such manures accumulate to an inconvenient extent. “ Indeed, comparatively few farmers are so situated that they can afford the expense of carting semi-dried sewage sludge, containing from 60 to 70 per cent, of moisture, from the works to their fields. The refusal to accept such sludge as a gift in not a few instances rather shows sound discrimination than ignorance on the part of the farmers. “ (Signed) AUGUSTUS VOELCKER.” Liquid sewage will be found to have a value as an effluent which has not yet been reduced to figures nor considered by sanitary au- thorities. From the experience gained at Merthyr, Kendal, Abingdon, Malvern, Halstead, and other places, some of which may be charac- terised as manufacturing towns, it may be assumed with certainty that by Intermittent Filtration through “suitably constituted soil/’ some descriptions of liquid trade refuse may be purified at the rate of at least 100,000 gallons to an acre of land, and brought to a condition Other uses of liquid sewage. 24 Sewage effluent water used for trade pur- poses. Use and value of sewage liquid for watering. that will make the effluent capable of re-use for trade purposes. In- deed, the practice of Herr von Rath of Silesia, of concentrating the underdrainage water of the land to which the foul liquid of his factory had been applied, and then raising it for re-use, may in many cases be favourably adopted in the busy northern valleys of this country, and there is no doubt that at some future period we shall find that in districts whefe mills using large quantities of water are congregated, a combined treatment of trade liquids will be, adopted, in which this view of the subject will prevail. I cannot do better than reprint a translation of a letter I received from Baron von Liebig, very shortly before his death. He said : “ Receive my best thanks for your letter of the 3rd inst., and for the paper on Intermittent Filtration through natural soil. I have read this with great pleasure and real satisfaction .... Your plan for the purification of liquid sewage, and the removal of its injurious qualities, as well as the technical execution of the plan, and the use of sewage as manure, are alike excellent, and I only wish that it may be made use of in other places. In Silesia, for some years past, the best use has been made of your principles in the Beet-root Sugar Manufactory of Herr Von Rath. In the neighbourhood where this manufactory is situated there is a want of spring-water, and of water generally, and this want has called forth the following arrange- ment : — All water that has been used in the manufactory, and generally all waste or foul liquids, are discharged on to a well-drained piece of land close at hand, and the filtered effluent water is collected in a well. It is pure and clear and it is again raised by a pump, and used in the manufactory as fresh water.” This is a good practical illustration of the use of sewage water when purified ; and there is every probability that the power of so utilizing effluent water may be realized at Dewsbury, where the sewage, after passing through the filter beds laid out to cleanse it, may be seen flow- ing into the Calder, cleaner than the River water itself. But there is another use, which though acknowledged generally to be of value, has been so mixed up with the practice of Surface Irrigation as to lose its speciality. There are times in the year when all farmers would value highly the acquisition of water (apart from manure) to invigorate their growing crops, and it is one of the objects of this treatise to show that by a proper arrangement for distribution the use of sewage for watering may have its place. A farmer in a dry year would pay more for a timely watering with sewage than he would for any quantity of liquid manure in a wet one. 25 II. THE QUANTITY AND USE OF THE SOLID MATTERS FLOATING IN SEWAGE. The quantity of the solid portions present in sewage varies con- siderably, and it is increased in proportion as trade refuse is admitted into the sewers. The floating ingredients exist in three gradations of weight and size. In the first are included the bulky substances which would interfere with the valves of pumps if the sewage were raised and would be offen- sive and obstructive to plant growth if distributed on the surface of land. They consist of almost every imaginable thing that could be thxown into a sewer, and they are generally arrested and extracted by screening. Not being of any large aggregate quantity they are readily removed when screened out of the sewage. In the solids of the second gradation are included the smaller but heavy substances which, after passing through a screen, quickly sink by their weight to the bottom of any tank or receptacle while the sewage is in motion. They include road detritus or sand, which being valuable in itself may be separated from the lighter substances by mechanical deposition and utilized. The suspended substances of the third gradation, frequently called ie sludge,” comprise the organic matter and those minute inorganic sub- stances, including very fine sand, which float onwards and deposit them- selves very slowly even when the containing liquid is in a quiescent state. When the sewage is in motion the precipitation of these minute substances can only be readily affected by mixture with certain chemicals. At Birmingham, where the outflow of sewage is about 12,000,000 gallons daily in dry weather, and lime has been used as a precipitant mixed with the sewage at the rate of 23^ cwt. per million gallons, the road detritus and sludge, together with the lime, amount, on an average, we are told, to about 360 cubic yards daily. Such, however, is the worthless character of the “ sludge ” that no one will take it away at a gift, and it is therefore dug into land forming part of the Saltley Farm and buried out of sight, at the cost of ^12 per acre. Of sludge alone the quantity would seldom exceed 100 grains per Character and quantity of solid ingre- dients of sewage. Heavier portions. Road detritus. Sludge. 26 gallon, and it is the existence of this material in combination with more or less road detritus that has been made an objection to the use of land for the cleansing of sewage by representing it as “ clogging ” its pores. If properly distributed on carefully prepared surfaces sludge on land generally does good rather than harm ; in fact, it only has an objection- able effect when it is mixed with particular trade refuse. Dispassionate inquiry would satisfy all persons that the difficulties stated to exist on account of sludge are imaginary. Harm sometimes occurs in surface irrigation when the quantity of solid matter is large, — such as is occasionally the case when storms wash out the sewers after accumulation of solid matters during drought, — and when it is allowed to settle in hollows on the surface of carelessly formed land to kill growing vegetation, and, possibly, to give off effluvium. Injury to vegetation is most likely to occur, under such circumstances, when solid trade refuse is admitted into sewers. As the opinion now generally prevails that artificial treatments of sewage are only admissible when land cannot be obtained, it should be known that experience has shown that “ sludge ” is not a bar to the application of sewage to land. It is only necessary to remember that “ sludge ” consists of vegetable and animal substances which are perish^ able, mixed with earthy and mineral substances in very small particles which are not perishable, to realize the fact that they cannot possibly clog land when dry. The most minute particles consist of fine road sand which float on in the liquid after the heavier detritus has deposited itself. When these perishable and imperishable substances find their way into the interstices of the soil they must each, from their nature, obviously add to its porosity, inasmuch as the perishable substances leave open spaces as they decay, whilst the imperishable substances from their gritty nature necessarily help to increase its filtering capability. So long as the sludge is wet it impedes absorption to a certain extent, but when once dried and the land broken up by the plough, the scarifier, or the spade, it not only ceases to uphold the liquid, but naturally and per- manently helps to let it into and through the soil. In Intermittent Downward Filtration, the deposit of the sludge takes place in the furrows, which form an essential feature in the system, and we find in practice that when first used the furrows themselves absorb the sewage too quickly, but that as the deposit of sludge accumulates in them they resist infiltration and the sewage is driven into the ridges 2 7 on each side and so distributes itself more equally than if the furrows alone absorbed it. As soon as the deposit of sludge on the sides of the furrows is sufficient to prevent infiltration in any great degree, the sewage is withheld from the areas so affected. The sludge is then allowed to dry (partially) in the furrows, and when in a fit condition it is lifted and dug into the ridges, — as can be seen practised at Gennevilliers (Paris). The slimy matter which had appeared so considerable, and which puddled the bottom of the furrows, when in a wet state, shrinks to a skin of very insignificant thickness when dry, and is readily broken up and mixed with the soil. Experience has shown that sludge (with such fertilizing ingredients as it contains) cannot be more cheaply conveyed to places where it would be beneficial than by the liquid sewage itself. The very trifling value of the suspended ingredients renders it all the more desirable that they should be disposed of by the same means and at the same time as the liquid. The objection raised to the distribution of sewage, containing solid ingredients in suspension amongst growing plants because the solid matters will cling to their stalks and leaves, vanishes altogether when furrows are made the channels of distribution, and when no more sewage is distributed on the surface of land than the land will absorb and vegetation requires. It is only when the pernicious practice of flooding land is resorted to that sewage will rise up among the stalks and leaves growing upon it. At Gennevilliers the sewage never touches the vegetation growing in the irrigated ground. It is distributed through- out the entire breadth of the plains in furrows in precisely the same way as in Intermittent Filtration designedly practised as such in this country. III. THE TEMPERATURE OF SEWAGE. An objection is often raised, that frost acts as a bar to the distribu- tion of sewage on the surface of land in the winter seasons. Mr. William Haywood, the Engineer to the City of London, having carefully ascer- tained the temperature of the internal air of sewers, and compared it with that of the external air for a whole year, found the mean winter temperature of the former to be ii*6i degrees higher than the latter. In summer the sewer air was 3*12 degrees colder than the outer air. Sludge bene- ficial to land. Objection to the distribu- tion of solid matters among growing vege- tation. Temperature of sewage. 28 The following Table gives the comparative figures. Time of Year. Temperature in external atmosphere in shade. Temperature in sewer. Highest. Lowest. Mean. Highest. Lowest. M ean. O O 0 O 0 O Summer ... 72 55 65 *04 68 56 61 *92 Winter 34 30 32*37 52 40 43*98 Spring 61 46 52*46 59 48 52*52 Autumn 68 48 59*90 70 53 62*97 Average of the whole year 1 50*24 55*35 The Sewage Committee of the British Association ascertained at Merthyr that on the coldest day during the time the observations were made, the difference between the temperature of the sewage delivered to the filtration areas, and that of the air was 8 degrees, while the tempera- ture of the effluent water discharged from the under-drains was found to be i degree higher than sewage itself. The observations here given were made for eight days in January, and in July, 1872. They were recorded as follows : — Date. Temperature. Date. Temperature. At Noon. Average during day. At Noon. Average during day. }-4 < Ground. Sewage. Effluent water. < Ground. Sewage. Effluent water. 1872 . 0 F. °F. °F . 0 F. 1872 . 0 F. °F. 0 F. 0 F. Jan. 49 46 July 2 70 63 60 56 „ 10 50 49 49 46 >1 3 70 64 60 55 » 11 49 48 50 47 » 4 75 73 60 55 ,, 12 48 46 00 45 >t 5 69 7o 60 56 »» 13 49 47 47 45i „ 6 68 7o 55 68 „ 14 50 49 48 46 >, 7 68 64 60 55 „ 15 40 38 43 45i „ 8 68 44 60 55 ,, 16 37 39 45 46 » 9 68 50 60 55 29 These and the previous figures prove that the distribution of sewage on land is not likely to be much impeded by frost, and that when collected in furrows, as is the case in Intermittent Downward Filtration, the sewage will thaw the frozen condition of land with which it may be brought in contact. This is found to be particularly the case where the sewage is distributed by furrows in contradistinction to surface spreading. The Rivers Pollution Commissioners in their examination of the effluent water from the Croydon Sewage Farm, on the surface of which the sewage is spread by wide irrigation, found that during frost in winter it was slightly, but only slightly, less pure than at other times. IV. STORM OVERFLOWS. The outlets called storm overflows cannot be done without ; they are the safety valves essential to all systems of sewerage and sewage disposal. It is not sufficient, however, to declare that when the sewers of towns are overcharged by the dilution due to rainfall they should come into operation as a matter or course. It is true that the volume of rivers is at such times also increased by the off-flow from tributary ground surfaces and that their waters cannot be made much worse than they then are. Nevertheless there must be a limit to the frequency with which rivers may be thus occasionally polluted. Experience has not afforded any clue to that limit beyond establish- ing the fact that no mode of cleansing sewage by tank treatment or by irrigation over, or filtration through land, can be effective when the sewage is diluted by rainfall beyond a certain amount. One inch of rain thrown off ioo acres equals 2,262,200 gallons, and if one-tenth of this quantity suddenly reaches the outfall — say, in half an hour — no mode of treatment yet devised can deal with such a quantity without injury or defect. It is easy enough to deal with an outflow from sewers if the quantity be constant and is ascertained, but it is quite beyond the powers of any engineer to devise a means of treating liquids swollen by sudden and extraordinary dilution. If therefore the law refuses to recognise storm overflows from sewers because when called into action they cause some pollution, no national advantage would be gained, inasmuch as the incapability of cleansing sewage when swollen to the extent mentioned Frost. Storm over- flows. Osier beds for the cleansing of storm waters. 30 would involve an overflow of an equally injurious character from the land or works intended in ordinary times to cleanse it. Osier Beds may be usefully connected with Storm Overflows wher- ever the latter are necessary on Sewage Farms to discharge such waters as are suddenly thrown down upon them in excess of what the land has been intended to absorb. Several instances of this use of Osier Beds will be found in the following pages, but it should be clearly understood that they are not here proposed to do the service suggested in the Official Report already referred to in which it is stated that — “A portion of each farm should be specially deep-drained and prepared for land-filtering the sewage during the winter and wet weather. When these filters,” it is said, “ are laid out in ridged beds, some roots and vegetables can be raised with success, as the sewage generally flows down the channels. But in times of floods and storms the sewage may rise above the beds , so that perhaps osiers, which would not be damaged by being flooded for days, would be the safest and therefore the most profitable crops to grow upon them.” These words must have been inadvertently published, for it is hardly possible that the authors of the Report could really have supposed that filtration areas when growing roots and vegetables on ridges were liable, under proper management, to be flooded, or that underdrains, which are positively essential to filtration, would resist the ingrowth of Osier roots, which have a singular aptitude for filling underdrains, what- ever may be their depth. Filtration areas, properly constructed, are less subject to floods than other land designed for the reception of Sewage, and the surest way of rendering them useless would be to plant osiers over the underdrains to fill them with their roots. Underdrains should be kept free of all possible obstruction. Osier Beds, to be useful, on Sewage Farms, should be connected with Storm Overflows, so that excesses may run through them. The beds are formed in horizontal areas which serve to check the rapidity of flow of suddenly discharged rainfall. This check causes the deposit of the floating solid matters in the furrows, while the flood-water rises and overflows the ridges and the osiers growing on them. These Beds are not underdrained in any way; their simple purpose being to clarify those excess-waters which without the check afforded by them would be impetuously discharged, together with everything floating in them, into the natural streams of the watershed. V. THE CHARACTER OF LAND MORE OR LESS SUITABLE FOR SEWAGE CLEANSING. Speaking generally, the greater the natural fertility of land the more suitable it is for Surface Irrigation, inasmuch as the stimulation of plant growth, resulting from a covering of liquid, can only be maintained under varying conditions by natural productive power. This is evidenced on every Sewage Farm, even after it has been irrigated for years, by the superior growth of crop on one part compared with another receiving the same quantity of sewage. Poor land can be made productive slowly by the process of irrigation, but it is found that the best return from a given outlay is gained from a soil naturally fertile. The most suitable soil for both Irrigation and Filtration is a sandy loam with a small proportion of gritty gravel to quicken percolation. The soils most unsuitable are very dense clays, bog peat, and very coarse gravels. All soils which absorb and retain water, and which are therefore subject to expansion as they receive, and contraction as they part with it, will crack, and any liquid applied to the surface will descend by the cracks as far as they reach. In stiff clays these cracks extend to the drains and the liquid poured on the surface will pass away by the drains to the rivers and streams in a condition almost as foul as when it was applied. Loams with a small proportion of clay are not subject to the same drawback if the surface soil is mixed with burnt earth and is deeply cultivated. The superior properties of loamy land, pro- perly drained, consist in the affinity for ammonia which its clay consti- tuents possess, and the extreme comminution to which it is reducible by the action of air and water. Under proper treatment a loamy soil becomes, not only more productive of vegetation, and therefore a better purifier of sewage, but it constitutes a better filtering material (mechanical) than either gravel or coarse sand. Clay soils are not to be recommended for Surface Irrigation, and can only be used for Filtration by an outlay in draining, earth burning and mixing, which Sanitary Authorities are indisposed to expend. The best soils for Intermittent Filtration are those of a free character closely pulverized with such a proportion of alumina equally dis- persed through their bulk as does not exceed 7 per cent, of their con- Suitable and unsuitable soils. Loams. Clay soils. 32 Absorptive and retentive powers stituents. Sewage will pass but slowly through such description of soil, and they therefore require quickening by carefully designed under- drainage to overcome their natural retentiveness. Soils of this descrip- tion will probably contain from 80 to 90 per cent, of insoluble silicates and sand by the chemist’s analysis. The capacity of soils to absorb water is no criterion whatever of their cleansing capability, whilst their retentive powers exercise great influence on the rate of percolation and the quality of the effluent. A coarse gravelly soil thoroughly drained, for instance, will absorb and discharge liquid almost as quickly as it reaches its surface and will give out an effluent but imperfectly purified, whereas a loamy soil, having a sufficient pro- portion of sand to render it free and to fill it with close interstitial spaces for aeration, will discharge a satisfactory quantity of purified water by the underdrains and maintain a very superior effluent. Experience conclusively shows that while some soils, even in their natural unmoved condition, will let sewage pass through them too quickly, others have retentive powers — I speak of clay and peat soils — which not only retard in an unfavourable degree the passage of water through them, but in some degree injuriously affect the effluent itself by rendering it cloudy or discoloured, though not chemically objectionable. The effect of pouring liquid on soils when charged by attraction is to drive out by the fresh liquid that which is already in possession of their interstitial spaces, and as these spaces can hardly be said to be perfectly aerated (though it can only be by the influence of the atmosphere existing in the soil that the water is driven out), the action is not as per- fect as desirable. A peaty soil is the most retentive and at the same time the most absorbent of soils. It will hold water of greater weight than itself, but it readily yields when in this saturated condition to the gravitating force of liquids applied to its surface. Clays of the denser nature — such as the London Clay in situ , the Stiff Clay Beds of the New Red Sandstone, and the Boulder Clay overlying the Oxford Clay, and others absorbing water weighing as much as one- third to one-half of their own weight, according to their undisturbed or broken condition — will stubbornly resist its passage through them. It is this condition that renders them the most unsuitable of all soils for filtration, though by burning and mixing they may be rendered available at a cost which though comparatively great may yet be less than that of other treatments. 33 Closely related to the absorptive and retentive powers of soils is their evaporating property, the effect of which at certain times of the year is so great that in cases where there is no subsoil water to dilute the effluent the quantity discharged has been less than half the quantity of the sewage distributed over the surface. I make this statement having heard it often observed that the measure of the effluent in such cases will accord with the quantity of sewage cleansed. 1. MERTHYR TYDFIL, SOUTH WALES. Commencing the instances I desire to describe with that of Merthyr Tydfil, which has been so ingeniously misrepresented in Counsels’ speeches, witnesses’ evidence, published papers, and official reports, I trust to free the matter of much of the doubt with which it has been surrounded, by the relation of facts that have been established and which are still to be studied with advantage. They will fully establish both the soundness of Dr. Frankland’s theory of Intermittent Downward Filtration, as expressed in the report of the Rivers Pollution Commissioners, and the success of the works founded on that theory, which were carried out at Troedyrhiew on my report to the Lords Justices of Appeal in the following year (1871) at some risk to my repu- tation as a practical man, in consequence of the hesitation to recommend its adoption manifested by the Commissioners themselves. As early as April, 1869, Mr. Samuel Harpur, the Local Surveyor of the district, proposed to the Local Board a scheme which they approved for utilizing the sewage of the district by surface irrigation. The land intended to be taken consisted of 375 acres in the valley of the Taff ; of which one block, containing about 75 acres, was situated at Troedyrhiew within a quarter of mile of the village of that name, and about two miles from Merthyr Tydfil, and the remaining 300 acres, eight or ten miles lower down the valley, and to which the sewage was to be conducted by an outfall sewer of a very costly character. It was in consequence of the heavy character of the irrigation works and outfall sewer, and the time which would be taken to perfect them, that proceedings in Chancery were taken by certain riparian owners who desired that the pollution of the River under which they suffered should be prevented Evaporation. Works originally intended by Local Board. Proceedings in Chancery. C 34 Interim lemedy adopted. Cost of interim works misrepre- sented. during construction, and the appearance of the writer on the scene was in consequence of his being appointed by the Lords Justices to effect the remedy. The treatment suggested for this temporary relief was Inter- mittent Downward Filtration as propounded by the Rivers Pollution Commissioners. The writer selected for this purpose 20 acres of the free soil, of which he found the 75 acres at Troedyrhiew to consist. The population of the Merthyr district was stated, in 1871, to be about 50,000, of which the sewage equivalent to that from 25,000 persons found its way into the sewers discharging at Troedyrhiew. The total dry weather outflow at the same date varied from 700,000 to upwards of 1,000,000 gallons daily, increased in wet weather to 2,000,000 gallons. The selected 20 acres were divided into four areas of five acres each, which it was intended should be drained seven feet deep, but which depth, owing to the work being imperfectly done, was not quite gained. The mean depth, however, gave two cubic yards of drained, but not necessarily perfectly aerated, soil for every square yard of surface. Thus every plot of five acres contained 48,400 cubic yards of filtering material. To convey the sewage of Merthyr from the tanks which then existed to this land (the 20 acres) involved the construction of a delivering conduit of considerable length, available also for the remaining 55 acres of land forming the Troedyrhiew Farm. The drainage of the land and the preparation of the surface were undertaken by a contractor not specially acquainted with land operations and were therefore so unsuitably executed in the first instance that, upon complaints being made, the writer was called upon by the Lords Justices to take the work under his own immediate supervision and to rectify and complete it. It need hardly be said that a long length of delivery conduit designed for the service of the whole farm of 75 acres and the re-execution of a considerable part of the drainage and levelling increased considerably the cost of the works of preparation ; — and that the amount should hardly have been charged against the 20 acres only. Reference is made to this because the large outlay involved has been published and is often quoted by opponents as a reason why Intermittent Downward Filtration should be avoided. It is, consequently, necessary in the interests of sanitary science that the facts should be known, particularly as from some inexplicable cause no opportunity was given the writer by Messrs. Rawlinson and Read of explaining the facts when 35 in the course of their inquiry into the several modes of treating town sewage they visited Merthyr, and having obtained certain figures, sent them forth to the public without stating the attendant circumstances. For five months the sewage, equivalent to that of 25,000 persons, was put on the 20 acres, and it was so effectually cleansed, that when Dr. Frankland analysed the effluent on the 20th of October, 1871, the amount of organic nitrogen was found to be '012, and the amount of ammonia *025, of one part in 100,000 parts. In 1872 the same eminent chemist, confirmed by Drs. Benjamin Paul and Russell, found the amount of organic nitrogen to vary from *014 to ’033, and the ammonia from *060 to ’095. See Standards previously given The filtration areas, though laid out as a temporary expedient, did their work so completely that it soon became apparent that if the whole of the comparatively small farm of Troedyrhiew (75 acres) had been properly prepared it would have been ample in itself to have cleansed the whole sewage of Merthyr for the next 30 years without recourse to the 300 acres of distant land.* Effluent analysed. The Troedyrhiew Farm amply sufficient of itself for Merthyr alone * Extract froi?i Evidence given by Mr . Harpur , before the Rivers Pollution Commissioners, in 1872. * Q. What do you suppose to be the population draining out of your exit (at Troedyrhiew), what number of people? A. The number of people directly con- nected with the sewers is about 20,000, but they are increasing now, and we are just extending the drains. — Q. As regards the drainage from the other 30,000 or 40,000, what proportion of their drainage, under this unconnected system, also finds its way into the exit ? A. As far as the bulk or quantity of drainage goes, I believe it will be found, when the drains are connected, that the increase will be comparatively slight. — Q. What proportion of the personal waste of this unconnected population at present finds its way into the sewers, do you suppose ; I mean of the excrementitious matters ? A. I dare say a third of the excrementitious matters of the population not connected directly with the drains gets into the sewers. — Q, The excrementitious matter from 30,000 people? A. Yes. — Q. Do you agree with Mr. Bailey Denton, in supposing that the filtration works below Troedyrhiew are incapable of dealing with more than one-third of additional inhabitants ? A. I do not agree with that, I do not think that Mr. Bailey Denton puts it as a matter of course, but he merely gives that to keep himself within safe limits. — Q. How much additional waste do you think the whole of the land is capable of defecating? A. I do not think we can suppose that the 20 acres and the 50 acres are capable of taking more than they are taking now, I think they are sufficiently sewaged. — Q. You mean sufficiently in the interest of the crops ? A. Yes. — Q. Did you notice when the whole of the sewage was being passed on to the 20 acres, any tendency for the land to choke up ? A. No. — Q. You have said that you thought the 20 acres would not cleanse much more than C 2 The effect on the rate- payers of Merthyr. 36 In fact it is certain that had not the notice of purchase been already served on the Landowners, and the works themselves commenced, the Local Board of Merthyr would, as soon as the effect of the filtration works was seen, have limited their operations to the Troedyrhiew Farm alone. That I am justified in stating this will appear from the following figures : — From the best information I can collect I am led to believe that the actual outlay in preparing the Troedyrhiew farm (75 acres) was ^6,000, including the delivering conduit, the preparation of 20 acres for filtration (some of the work being done twice over) and the subsequent laying out of the 55 acres for irrigation. To repay this outlay, the annual charge would be ^300 a-year. It is quite certain that if the filtration work had not been subject to the disadvantages to which I have referred, the outlay might have been much less;— in fact the whole 75 acres might have been drained and laid out for intermittent filtration for no greater sum than was unfortunately expended in the combined arrangement. The rent (or annual charge) paid by the Board for the 75 acres, I was given to understand would not exceed ^375 t0 £$%° a-year. Putting the land and works together, the total annual charge upon the ratepayers of Merthyr if the expenditure had been confined to the 75 acres at Troedyrhiew would have been at this moment ^680 a-year, or nearly £9 an acre. The return of money from the crops raised from the whole of the Troedyrhiew farm, may be certainly taken to have reached an average income of £20 per acre, or ^1,500 a-year, owing to the local demand for grass and vegetables being quite equal to the supply produced by the farm. The net return, after payment of seeds and labour, which may be taken at ^10 an acre, would in such case certainly meet the outgoing of £68 o a-year, required to discharge the cost and preparation of the land. By this course of pro- ceedings the ratepayers of Merthyr Tydfil might have been saved the whole of the rates they have now to meet in consequence of possessing the quantity you put upon it as a maximum ; on what grounds do you say that ? A. I say that under the present arrangement it might be so, because if we put much more on than we are now using, we should damage the vegetation instead of improving it. — Q. But suppose you decided upon sacrificing the vegetation, what would your opinion then be ? A. Then I think that we might cleanse the whole of the sewage of the town. — Q. I think you have stated that you had not noticed any sign of the land being overdosed. A. No, not so far as the cleansing is concerned. 37 the distant land, and “ sewage farming ” would not have another instance of failure recorded against it, which, in the interests of agriculture, is so much to be regretted. It has been attempted to disparage the results arrived at by asserting that there exists in the Valley of the Taff a large quantity of subsoil water which dilutes the infiltered sewage and that the analyses do not therefore represent a condition of effluent which would generally be found issuing from the underdrains of intermittent filtration areas. There is no doubt that there is some truth in this statement, but inasmuch as there is very little valley land in Great Britain, by which sewage could be cleansed, which is not subject to subsoil water in a greater or less degree, the fact of its existence rather favours than disparages the adoption of the process, for the more the filtered sewage is diluted, the more nearly it approaches a condition admissible into rivers. That the success of the works at Merthyr is not to be set aside by disparagements of this sort has been very appositely proved by certain circumstances very recently communicated to me by Mr. T. J. Dyke, the Medical Officer of the district of Merthyr Tydfil, whose interest in sanitary science is only equalled by his earnest desire to represent the true facts of the case. He states in his letter, dated the 9th September, 1880, that “the filtration areas/’ which have been so persistently stated to have merged in the surface irrigated farm, in spite of the assertion of Mr. Jones, the Chairman, to the contrary, “are constantly used.” “ On more than one occasion during the last three years the 20 acres prepared by you have had to take the whole of the sewage of 40,000 people for two , three or more weeks together. The necessity for this has been on each occasion caused by the breakage of the sewage channels which were devised for the conveyance of the sewage to the lands below Navigation Junction. On each of these occasions the areas did their work thoroughly.” Upon my asking the writer, subsequent to the receipt of this letter, whether he did not mean that the sewage of the 40,000 people was filtered through the 7 5 acres constituting the Troedyrhiew Farm, he replied : “ I mean that the 20 acres virtually took the sewage in emergencies from the sewers above Troedyrhiew. Some portion might be sent over the other 55 acres, but this must have been small, as those portions of the land at Troedyrhiew are let out for grazing and for the growth of Remarkable proofs of the success achieved. Italian rye grass, so that virtually the bulk of the sewage had to be dealt with by the 20 acres.” But complete as this proof is of the value of Intermittent Filtration as a safety valve, the most unquestionable evidence of the efficacy of filtration through natural soil is to be gained from the circumstance that the Sanitary Authority of Merthyr Tydfil has admitted or has arranged to admit the sewage of the several neighbouring districts of Aberdare, Mountain Ash and Treharris (Quakers Yard) with a joint population equal to that of Merthyr itself (making the aggregate population amount to nearly 100,000) on to a less area of land than was designed in 1869 to take the sewage of Merthyr Tydfil alone ! I state this on the authority of Mr. Harpur, who, in the evidence he gave at the Lower Thames Valley Main Sewerage Inquiry, stated that the combined authorities of Merthyr Tydfil, Aberdare, Mountain Ash, &c., with the population already stated was being dealt with on 212 acres, including the 75 acres at Troedyrhiew. At the same time he showed that the whole of the 212 acres was not laid out for Intermittent Filtration, but was partly utilized for surface irrigation ! By this combination of districts and reduction of area (which would never have been attempted but for the experience gained in Intermittent Filtration at Troedyrhiew) the charge upon the rate- payers of Merthyr, though still great in comparison with what it would have been, had the Troedyrhiew land only been utilized, will be reduced to less than half what it would have been had the original intention of 1869 remained in force, thus affording the most tangible evidence that could be produced of the true value of Intermittent Filtration which in the first instance was regarded with derision and which is still held up by its opponents as an object for public distrust. “ Surely it is time that the Merthyr fallacy is stamped out, and yet the advocates of Intermittent Downward Filtration seem unwilling that it should die. The statements with regard to Merthyr are without foundation or justification.” How strangely will these words read side by side with the experiences just related ! Having commenced my apprenticeship to agriculture more than fifty years back, and having joined the Institution of Civil Engineers nearly forty years back, — during which term I have not been idle in engineering works of the kind criticized, — I shall be exonerated from unworthy egotism if I meet expressions aimed so directly at Treatment of the subject at the Institute of C.E. It is not long since Mr. Norman Bazalgette, in a paper he read at the Institution of Civil Engineers, made use of these extraordinary expressions : — 39 myself by declaring that I esteem the opportunity I have had at Merthyr Tydfil of giving substantial evidence of the soundness of Dr. Frankland’s views on Intermittent Filtration through natural soil as the most fortunate incident of my life. This satisfaction is based on the conviction that it will only be by the adoption of the process in one shape or other, that the reproductive value of human refuse will be realized for the benefit of the country. That the people of Merthyr do not partake in Mr. Bazalgette’s opinions is evident by the last words of Mr. Dyke’s recent letter. He says : — • “ The feeling in Merthyr” (after ten years’ observation) “is that the filtration areas at Troedyrhiew were an engineering success. They did the work designed for them perfectly. The process you devised is the right one, and I earnestly hope the authorities of towns will adopt it.” With these facts recorded it is unnecessary to ask whether they do not incontestably prove that the sewage of 1,000 persons may be permanently cleansed on an acre of suitable land properly laid out and properly drained 6 feet deep in spite of the opinion of Mr. Harpur, often quoted by detractors though unsupported by any proof whatever, that the capability of soil to cleanse sewage is limited to 500 persons to the acre. To enable the readers of this treatise to form their own opinion, I append an extract from a letter written by Mr. Harpur to me on the 9th of March, 1872, before he became committed to the opinion referred to, in which he says : — “ You know my objections to your Merthyr scheme were due chiefly to its interference in some measure to my plans, but all that is passed, and having carefully watched the process of Intermittent Filtration in operation here and observed its marked success, I should be fostering a prejudice if 1 hesitated to give evidence in its favour.” It is simply in the interests of Sanitary Science that I publish this extract, and refer my readers to the evidence of Mr. Harpur which I have previously given as a footnote. 2. KENDAL, WESTMORELAND. At Kendal, the Council of the borough running in the opposite course to that followed by the Local Board of Merthyr Tydfil instead of preparing a large farm for surface irrigation, as they had been advised to 40 Mode of disposal. Quantity of land recom- mended. Quantity actually pre- pared and used for fil- tration. Results. do, determined to cleanse their sewage by intermittent filtration through as small an area of land as possible. When the writer was called in by the Council in 1873, he found the population to be about 13,500, the number of houses 2,700 (having about 450 water-closets) the water supply about 400.000 gallons a day, and the quantity of sewage diluted with subsoil water (exclusive of surface waters) varying from 750,000 gallons to 1.800.000 gallons daily, the mean dry weather discharge being 975,000 gallons daily. In wet weather the outflow from the sewers reached 5,000,000 gallons in 24 hours. With these details before him he recommended the use by Intermittent Downward Filtration of 16 acres of “ suitably constituted soil ” which had already been purchased by the borough, and could be reached by gravitation, and which was capable of underdrainage to the full depth of seven feet. The writer did so in con- sonance with the view he had already adopted at Merthyr, i.e, f that in order to secure permanency of effect it would be well to limit the sewage of 1,000 persons to an acre. The Council bearing in mind the report of the Rivers Pollution Commissioners that the sewage of 3,300 persons might be cleansed by Intermittent Filtration through an acre of land, however, rejected his advice and determined to limit the area to be utilized to one-third of the 16 acres, and for seven years five and a half acres of land have served, though not very perfectly, the purpose. As if to reduce as much as possible the capability of so small an area to do such an extreme duty, the Council took the earliest opportunity of letting the land to a tenant who naturally considered the production of crops of primary importance. The result of limiting the area in the way mentioned and of letting the land to a tenant, who naturally regulates his management by self-interest, is that the intermittent rest which all land should have to prevent nuisance arising from the collection of solid matter upon the surface has been withheld. Nevertheless, Mr. Banks, the local Surveyor of the borough, wrote as recently as September 8th, 1880 (after seven years’ trial) that — “ The land at present is as you left it in regard to area, except that the lower part of the field in which the filtration - areas were formed has been levelled, and for the last two or three years has been used as rye grass plots, taking of course three or four times the sewage it formerly did. By such use of the 11 acres outside the areas, the latter have been relieved to the extent of one-fifth of the sewage.” Mr. Banks confirms in 1880 the views expressed by me in 1873 when he stated that — “ This outside land can be used as filtration areas with very little 4i expense, and if I can prevail upon the Corporation to keep it in their own hands we should free the areas for a year, and afterwards work the whole together. As far as the purification is concerned it is perfect , and I am convinced that with the 15 acres we have” (16 acres), “we shall always be able to deal successfully with the sewage as far as the purity of effluent and absence of nuisance is concerned. It was a great mistake to let the land ; no farmer can make any profit where you have such an enormous volume to deal with on such a small area of land. The tenant has not been applying the sewage intermittently, but running it on to the beds for days at a time, he only works it so as to make his crops pay if he can, never caring if the land becomes less capable of allowing the sewage to pass through it or not. Looking at the whole scheme I think it has worked even more favourably than you expected , .” It need hardly be said that although the required purification is so completely secured, and has incontestably proved the soundness of Dr. Frankland’s views and the practice I founded upon them, it will not be until the additional 1 r acres are properly laid out and used, as Mr. Banks says, in connection with the five and a half acres already prepared, that the treatment of the land at Kendal can be offered as an example to be copied by other authorities. Owing to the River Kent forming the boundary of the sewaged land on three of its sides, and the land being very porous, the discharge from the underdrains is not constant, and therefore no analysis is given. When the river is low the effluent finds its way through the subsoil into the river itself independently of the underdrains. The advantage derived from the underdrainage is to be found in the fact that the level of the water in the land is maintained at a level no higher than that of the water in the river under all meteorological conditions. Supersatu- ration, that might occur in times of continued rainfall, is thereby avoided. .It was with respect to the works at Kendal that the Committee Report of appointed by the President to the Local Government Board (December, Rawfinson 1876) went out of its way to represent the cost of Intermittent Filtration and Read, on the ratepayers of Kendal to be 4 d. in the pound ; and to compare it with the cost at Banbury and Bedford where Surface Irrigation had been adopted and which they showed to be id. in the pound ! At Rugby they stated the cost to be 1 \d. in the pound ! Such comparisons made in an official report must have had the effect on its readers of disparaging the results at Kendal while exalting those of the three other places referred to. In that Report the cost of the Kendal “ Sewage Farm ” is stated to have been ^16,371, and the cost of laying out the filter beds ^1,400; the charge of 4 d. in the pound being Inaccurate statements. 42 based on these figures. Now, what are the real facts? The land for which the £16,371 was paid consists of 66 acres in the immediate vicinity of the borough, and was bought by the Council at a price of £248 per acre. Fifty acres out of the 66 acres lying above the main sewer outlet, and costing upwards of ,£13,000 out of the ,£16,371, have never for a single day been used for sewage purposes . If, instead of charging the cost of the whole of the 66 acres against the disposal of the sewage the proportionate amount paid for the 16 acres which alone received the sewage had been made the basis of calculation the result would have been 1 \d. in the pound instead of 4 d. Turning to the facts relating to Banbury, Bedford, and Rugby, we find that no land whatever has been purchased in either case, but the land utilized has been leased at very moderate rents, viz. at Banbury, 130 acres has been obtained for less than £5 an acre = £622 a year; at Bedford, 181 acres at £5 an acre = £917 a year; and at Rugby, 57 acres at £6 10s. = £360 a-year. By reference to Messrs. Rawlinson and Read’s report it will be seen that Banbury, Bedford, and Rugby are only charged with these rents, while at Kendal it is made to appear that “the Sewage Farm” of 16 acres has cost the borough £17,761, including its preparation! In the same report it is stated that the cost of preparing the five acres and a-half laid out by me at Kendal for Intermittent Filtration was “£280 an acre.” Here again I may fairly ask, what were the facts? The sum of £1,400 was laid out not in preparing the five and a-half acres only,* but in paying for an expensive conduit for the delivery of the sewage to the whole of the 16 acres, and for the partial underdrainage of the outside 1 1 acres as well. An acreage calculation was therefore altogether inappropriate, inasmuch as the effect on the ratepayers of reducing the area of application is not to be measured by the cost per acre of the works executed on the 5J acres, but by the total outlay , and the rateable contribution of the inhabitants towards its repayment. At Kendal the current outlay in distributing the sewage and in managing the sewaged land is more than met by the produce ; the return for which in the shape of rent or profitf goes in reduction of the charge for land and preparation. * See description of works given in the “ Transactions ” of the Institution, C.E., Vols. xlviii, p. 205, and xlix, p. 197. f As an earnest believer in the benefit to be gained by the country at large by an accurate statement of facts relating to land filtration, I protest against the injurious influence of such official misstatements as are here exemplified. 43 As a proof of the prejudicial influence of official mis-statements it Official may be pointed out that in a publication entitled “Water Carried Station Sewage,” intended “ for the guidance of Corporations , Boards of of facts - Health and Sanitary Authorities ,” the authors, Messrs. Robinson and Melliss, basing their statement chiefly on this report, declare circum- stantially — “ That the farm to which the sewage of Kendal flows by gravitation is 65 acres in extent ; of a sandy loam upon a gravel bed. Eleven acres of this are used for Irrigation ; five for Filtering Beds ; and the remaining 49 acres are used for the disposal of the solid matter and sediment from the Tank. The amount paid for the land was ,£16,371 1 4>r. 3//., or about ,£252 an acre.” Upon these data Messrs. Robinson and Mellis point out that the charge on the population is iif d. per head. They add that which the opponents of Land Filtration will do well to study : “ The filtration areas are cultivated and the average annual working expenses during the years 1874 and 1875 have been £223, and the average annual return by sale of produce during the same periods have amounted to £512.” The facts in relation to the land, as already shown, are the very reverse of what is here declared ; the only land that is commanded by gravitation consists of 16 acres out of the 66 acres. No sewage touches the remaining 50 acres, and it is no more correct to charge as expenditure on Sewage disposal the cost of the 50 acres not utilized, than it would be to charge one district with the outlay made on another. If, instead of utilizing for filtration only 5 acres as here stated, the whole of the 16 acres were laid out for that purpose, no interception of the solid floating matter by tanks would be required. The same 16 acres that would cleanse the liquid might beneficially receive the floating matter. The only substantial objection I have yet heard made to the Kendal works has been that raised to the emptying of the Tanks which existed before the filtration areas were made. This emptying takes place probably twice a-year, which would not be necessary if the screening operations were confined to the removal of the coarser and heavier constituents only, and the remainder was allowed to flow to the land, and there dug or ploughed in. 44 Mode of Disposal. Population, 6,000. Extent of Land pur- chased, 48 acres (34 acres only sewaged). 3. ABINGDON, BERKSHIRE. At Abingdon, where the soil is very open and porous, the sewage is cleansed by Surface Irrigation in combination with Intermittent Fil- tration in the proportion of four acres of the former to one of the latter. The works have been completed four years. The population of the Borough is close upon 6,000, and the quantity of sewage discharged daily approximates to 200,000 gallons in dry weather, increased to double that quantity in wet weather, the excess being due to the fact that the private sewers communicating with the public sewers in the town receive the rain run off the back roofs and impervious surfaces connected with the houses. The number of acres constituting the farm is 48 acres, of which 27^ acres were actually laid out for Surface Irrigation, whilst the quantity devoted to Filtration was acres, but the ground is so extremely porous that the filtration areas are only resorted to when from some special reason the tenant finds that the sewage cannot be advantageously applied to any other part of the farm.* The capability of “getting rid” of the sewage on the filtration areas when it is not wanted on the irrigation land is, however, such an advantage that the Council of the Borough have been enabled to let the land, with the sewage, at jQ 4 10s. an acre, its agricultural value as ordinary farming land being about half that amount. Instead of finding the sewage too much for the land, the tenant has applied to the Council to allow him to discontinue the application of sewage to about eight acres out of the 27^ acres devoted to Surface Irrigation which he proposes to lay down to permanent pasture. The land laid out for filtration is divided into five beds containing nearly an acre and a quarter each, and such is the absorptive powers of the soil that the 200,000 gallons forming the daily outflow has been applied to one area only for several weeks together, without overfilling the furrows. A deputation from Salisbury, indeed, paid a visit to the farm in May last (1880) and reported that — * It is to be regretted that the tenant does not maintain more perfectly than he does the furrows of the filtration areas, and use them in the way intended, for he suffers from the injury done to his growing crops by “flooding” his other lands and by the accumulation of solid matters on their surface. 45 “ Half an acre will take the day’s sewage, and seven acres of rye grass will take the sewage during the summer.” ( — a fact which may be readily abused if intermittency is neglected). Experience at Abingdon indeed has incontrovertibly shown that, with the most favourable soils, the liquid refuse of 3,300 people maybe dealt with successfully on a single acre as suggested by Dr. Frankland, the only condition essential to success being that intermittency of application shall be adopted. The effluent from the sewaged land of Abingdon, which is mixed with a good deal of subsoil water, having been analysed by Doctors Tidy and Woodforde, and by Professor Attfield, has been declared “ equal in purity to some waters used for drinking.” The quantity of albuminoid matter (yielding 10 per cent, of nitrogen) was found by the last-named chemist to be *07 of a grain in a gallon and the ammoniacal matter (yielding 10 per cent, of nitrogen) ’02 of a grain in the same quantity. See Standards previously given. The absence of smell from the surface of the land is so perfect that, although a public footpath runs directly through the farm, the Town Clerk, Mr. Bromley Challoner, wrote me very recently t (after three years’ experience) that “ no complaint whatever of nuisance has ever been heard The cost of preparing the land for Irrigation has been a trifle over ^70 an acre, whilst that of preparing the filtration areas has been ^85 an acre. These figures include the delivering conduits, carriers, cham- bers, roads, iron fencing, quick fencing, and other incidental expenses, as well as engineering charges, and should be compared with the “ reported ” outlay at Merthyr and Kendal. The total outlay in preparing the 34 acres of land to receive the sewage, and in the building of a farmstead and cottage for Bailiff, has amounted to ,£3,470, making with the cost of the land (48 acres in the whole) a total outlay of ,£10,640. The farm (48 acres) being let on lease for ,£225 a year, yields an income equal to 2\ per cent, on the cost of land and preparation, which goes in reduction of the district rate ; and all expense in distribution is saved to the borough. It will be observed that, as the preparation of the land, including the erection of cottage and farm buildings , cost ,£3,470, the total acreage outlay only just exceeded ,£102 an acre, which is not half the amount stated to have been laid out at Merthyr Tydfil and Kendal, without any buildings whatever ! Daily Outflow of Sewage, diluted with subsoil water, absorbed by 1 4 acre. Effluent. Absence of smell on land. Cost of pre- paration per acre. Income from Land and Sewage, equal to 2 \ per cent, on total outlay. 46 Sludge. Population 12,500. Mode of dis- posal. Quantity of Sewage cleansed. At Abingdon there is no separation of the “sludge” from the liquid before it is applied to the land for purification. Whatever passes the screens, and is raised by the pumps, is distributed over the surface by contour grips when the sewage is used for irrigation, or by the furrows when it is used for filtration, and no difficulty whatever is experienced in either case, nor is any smell perceptible at a distance of 20 yards. So far from any difficulty or objection having been experienced from the retention of the ‘sludge’ in the sewage, the tenant has complained that he has not sludge enough, and that the liquid is absorbed by the land too quickly. Two hours after the cessation of pumping, no sewage liquid is to be seen on the farm. It has been observed in this case — as it has also been in the cases of Merthyr and Kendal — that the soil utilized is exceptionally free and percolative. This, however, is not the case, for in nine cases out of ten, the same rapidity of absorption, and the same results as to quality of effluent have attended the operations. It would be difficult to find in England a parallel instance where the rent obtained for land and sewage has been equivalent to 2\ per cent, on the total cost of land and its preparation. 4. FORFAR, SCOTLAND. This Burgh is the principal town of the County of Forfar in Scotland. It has a population of about 12,500. The mode of disposing of its sewage is that of Intermittent Filtration combined with Surface Irriga- tion in the proportion of one acre to three. It was the first operation of its kind in Scotland. Previous to the adoption of this treatment the sewage flowed into the Loch of Forfar, the property of the Earl of Strathmore, who, to protect his Estate from injury by the pollution of the Loch, took proceedings through the Court of Sessions and com- pelled the Sanitary Authority (the Commissioners of the Police) to adopt a means of cleansing its sewage. The quantity of sewage discharged in dry weather, varied from 400,000 to 600,000 gallons daily. In 1877, Mr. Willet, C.E., of Aberdeen, was employed to effect the sewerage of the town, whilst Messrs. Bailey Denton, and Co., of Whitehall Place, London, were called in to advise as to the disposal of the sewage, — which resulted in the adoption of the treatment me.*- 47 tioned. The Commissioners purchased for the purpose, at a cost, with expenses, of ^4,000, “ Orchard Bank Farm,” containing about 40 acres of land adjacent to other property belonging to the Burgh, which may ultimately, if required, be utilized for sewage purification. The disposal works were executed in 1878 and 1879, at a cost of ^1,450, or £60 an acre, and when accepted from the hands of the engineers, were described in the local paper in the following terms : — “ The quantity of land prepared at Forfar to receive and cleanse the present sewage is confined to about 24 acres only out of the 40 acres, and the mode of treatment adopted is Intermittent Downward Filtration, combined with Surface Irrigation. The area of land devoted to Inter- mittent Filtration is seven acres, leaving 1 7 acres for Surface Irrigation. The soil is of a free and open character, sandy and gravelly in parts, though occasionally partaking of a somewhat loamy character. The land may be described as admirably suited for the filtration of sewage, but in order to avoid all chance of supersaturation, a main under-drain with subordinate drains, has been laid, which will keep down the sub- soil water, and secure aeration, and so allow of perfect percolation of the liquid distributed over the surface of the ground. “ The filtration areas are laid out in a series of terraces, each terrace being on a perfect level, to be intersected by main furrows traversing their whole length, with branch furrows cut at right angles to the main ones. The main furrows are deeper than the branch furrows, in order that they may receive the solid matter floating in the sewage, which will deposit itself in them, and allow the liquid to be distributed by the branch furrows evenly through the soil. The intermediate ground between furrow and furrow is planted with vegetables, the roots of which help themselves to what they require of the sewage, and will yield abundant crops. “ The terraces forming the filtration areas, and the delivery of the sewage to them, are so arranged that each terrace can receive its quantum of sewage separately from the rest, or two or three can be served at the same time according to the quantity of sewage to be dis- posed of. After they have received “ their fill,” the sewage will be turned on to other terraces, which in their turn will receive their quantum. By this means that intermittency of application and consequent aeration, upon which the oxidation of the putrescible ingredients of sewage depends, will be effected. “The fields laid out for wide irrigation are prepared very differently from the filtration areas, inasmuch as the sewage is distributed over them on the “ catch water ” system, without any great alteration of surface configuration. The distributing carriers follow the natural contour of the land. When filled the sewage overflows their edge and runs down the natural slope of the land towards the next carrier, which is again filled to overflowing. The whole will be under the charge of the “waterman,” who controls and distributes the sewage in suitable quantities by means of “ stops,” which he places in the carriers when required to check the flow.” Extent of land purchased, 40 acres. Acreage Se waged, 24 out of the 40 acres. 48 Crops and return. The land was partially sown and planted in the year 1879. After more than 1 2 months’ experience the convener of the Water and Sewage Committee, Mr. Whyte (now Provost), i.e., on the 18th day of October, 1880, reported to the Police Commissioners that from the experience they had gained it was evident that the Sewage Farm would not only pay itself, but perhaps the charge for the pumping station besides. In support of this he laid before them the following tabulated statement of the years’ produce : — Sewaged Land. East Field— Rye Grass. Crop No. I 21 tons 14} cwts. £ 20 s. 5 d. 4 a a tO 1 to On >) S4 ii ... 19 13 4i >> a 3—34 if ii ii ... 26 12 8 »> i‘ 4—34 ii 3, a ... 25 1 2 3 if a 5— 9 it 52 a ... 6 19 5 acres 6 poles, 125 tons 15! cwts., ... ^99 2 9 or sC 1 9 I 3 S - 4^- P er acre. “ West Field — Rye Grass. Crop No. I — 21 tons 12} cwts. ... 19 7 oi a a 2 28 a i4i >> ... 24 14 5 a a 3—34 a 19 a 29 0 9 a a 4—25 a 92 a 19 2 4 5 J acres, no tons 1 5f cwts., ... ... 92 4 4 or £16 13^. 6d. per acre. “ Filtration Areas. Per Acre. £ s. d. Crop No. 1 — Cabbages ... 10 3 4 ... 13 3 11 a a 2 — Carrots 55 6 8 ... 29 2 9 a a 3 — Turnips 12 13 0 ... 6 12 10 a a 4— Mangolds . . . 21 0 0 ••• 43 17 10 a a 5 — Swedes 13 6 9 ... 18 5 9 hi 3 1 Outer Lands Sewaged , &°c. 2| acres of Turnips, per acre ... 22 2 n Potatoes, 5 tons Myall’s Kidneys, £ 4 per ton ... ... ... ... ... 20 o o Carried forward 42 2 n 302 10 2 49 Brought forwaid Potatoes, 5 tons Regents and Champions, ^3 Savoys — say ij, £ 20 ... Barley, 2 qrs., 25J. Rent — Mr. Mount, Farm House, &c. .. Rent — Mr. Graham, Land not sewaged £ *• d - 42 2 II 302 IO 2 15 O 3 ° 0 2 IO 30 O 20 2 89 12 II 5 ° 7 Total receipts from Farm ^442 5 8 Mr. Whyte, continuing, said “ they might reasonably look forward to even better results from the filtration areas. Coming to the debit side he took the cost of Orchardbank and the expenses, ^4,000, at 4 per cent. — and ,£160 was the rent of the farm. The expenditure for laying out the farm amounted to ^1,450, to which some little additional expense had had to be added, and he put the total at ,£1,500, or at 4 per cent., ,£60. All the expense of working did not apply to the crop, but he had put down ,£150, which he believed would cover the expense. There was then a total of £370 as the cost of the farm. There was thus a balance of £72 5^ 8 d. in favour of the farm on the season.” At the same meeting the Commissioners came to the following resolution, which was signed by the Provost of the Burgh and forwarded to the Engineers : — Forfar Sewage Disposal. “ After the experience we have now had of the sewaged land at Orchardbank, we have pleasure in expressing our entire satisfaction with the manner in which you have designed and carried out the works for the disposal and cleansing bf the sewage of this Burgh. With respect to the actual cost of the works we find that you have prepared seven acres for Intermittent Filtration, and 17 acres of hilly land for Surface Irrigation, and have distributed the sewage over the whole by glazed stoneware and iron pipes cohnected With chambers of masonry for the sum of £1,450. This amount includes the wages of Mr. Jonas Harris, the Clerk of Works, for more than a year, during which time he has attended not only to the cultivation of the farm, in addition to the work of preparation, but to sundry matters connected with the sewerage of the Burgh. It also includes the construction of roads, the alteration of fences, the purchase of weighing machine, and the payment for seeds for land, as well as other acts of husbandry. The filtration areas are capable of absorbing and cleansing the whole of the sewage of the Burgh when it is not distributed over the land laid out for Surface Irrigation. Vegetable crops of considerable weight are grown on the D Preparation cost £60 per acre, including Roads, Fencing, &c. 50 Effluent. Position and Rainfall. former, while rye grass occupies the 'latter, and a fair return is to be antici- pated. The effluent is always most satisfactory.” “ Passed at a meeting of the Local Authority of the Burgh of Forfar, held on the 18th day of October, 1880, and signed for and on behalf of the said Local Authority by me, “JOHN LAWSON Junr., Provost.” These particulars so thoroughly confirm the views already expressed that it is unnecessary to add any further explanation, but they may serve to show that with a combination of the two treatments — Inter- mittent Filtration and Surface Irrigation — not only may ratepayers be relieved of loss in the disposal of sewage, but that a profit may be gained after payment of interest on outlay. 5 .— GREAT MALVERN) WORCESTERSHIRE. Here Surface Irrigation had been in practice for some years before the present treatment was adopted. Up to the year 1874 the sewage was discharged from that portion of the district known as Great Malvern on to land in the Pool-Brook Valley, which was partly devoted to permanent pasture, and partly to the growth of Italian Rye Grass, without that careful preparation of the surface which is necessary if sewage is to be absorbed by the soil and those abuses avoided which are due to the overflow of sewage from the surface of the land into the outfall streams. At Malvern the overflow was greatly increased by the heavy and sudden downfalls of rain which characterize the locality. The land upon which the sewage was treated in the way mentioned was held by a tenant who found it impossible to avoid the collection of fcecal matter in slacks and hollows of the surface and the washing off of such solid substances into the brook on occasions of heavy rainfall. The consequence was that Sir Edmund Lechmere, Bart., M.P., living at the Rhydd, on the banks of the Severn, at the junction of the Pool-Brook With that river, found that the off-flow from the sewaged land polluted his water supply and brought down to his residence unmistakable signs of sewage. On his representation of the facts the Local Board decided to alter their mode of sewage disposal. The town of Great Malvern stands upon the somewhat precipitous LAND UTILIZED FOR SEWAGE CLEANSING Afinomt-BrtxikaBa - \ Sou Ltfll 5i slopes of the hills known as the Malvern Hills, and the locality being subject, as stated, to heavy falls of rain, a large quantity of water is thrown off the surface, the greater part of which had been admitted into the sewers to find its way by them to the sewaged land at the time when Sir Edmund Lechmere’s complaint was made. More than two inches of rain have not unfrequently fallen in 24 hours and as much as 8,000,000 gallons have been thrown off the area covered by Great Malvern. The Local Board having sought advice from the writer’s firm it was determined to separate, as far as practicable, the surface waters from the sewage-proper, and to exclude the former from the sewers. It was further determined that in lieu of Surface Irrigation alone as previously practised, the process of Intermittent Filtration in combination with, and as a safety valve to, Surface Irrigation should be adopted and that more pains than had hitherto been taken should be taken to prepare the surface over which the sewage was distributed in order that it might be absorbed rather than thrown off. The work of separation, however, could not well be extended to the whole of the surface tributary to Pool-Brook. The proportion to which a means of interception could be favourably applied was limited to about two-thirds of the whole tributary area, or about 230 acres, — leaving rather more than one-third still discharging its surface waters into the sewers. By this separation at least 5,500,000 gallons of surface water have been removed from the sewers in times of storms, and the land now used for the cleansing of the sewage has been relieved to that extent without depriving the outfall stream of the district of its natural supply for any length of its course. The resident population contributing sewage to the sewers of this portion of Malvern was estimated in 1874 at 4,000, increased in certain months constituting “the season,” to about 6,000, but as the popularity of the district as a place of health-resort is very great it was necessary to make a large provision for the future disposal of the sewage. The present quantity of sewage-proper measured by the water supply amounts to 150,000 gallons a day, but in looking to the dilution due to subsoil water which raises it to 350,000 gallons, and to the future increase of population, it was considered desirable to provide for four times the water supply, as the dry weather discharge, whilst it Surface Water thrown off. Quantity of Rainfall inter- cepted and excluded from Sewers. Population. Present dry weather out- flow. D 2 52 Quantity of land utilized in cleansing 40 acres. How divided. Character of soil. Intermittent Filtration areas. Further land can be sewaged by gravitation, if hereafter found desir- able. was assumed that in wet weather the discharge might exceed 2,000,000 gallons in 24 hours, after the separation referred to. To provide for such discharges the Local Board purchased 40 acres of land about a mile lower down the Pool Brook Valley than the land which had hitherto been utilized, at a cost of ^7,000. Of this quantity n-J acres have been laid out for Intermittent Filtration, 24 acres for Surface Irrigation, and 2 \ acres for the growth of Osiers, through which to pass the surplus water (beyond that which the land is intended to cleanse) in times of rainfall ; leaving the remainder (2 acres) to cover the space taken up in roads, barrow paths, tanks, &c. The land is of a mixed character on the New Red Sandstone formation, consisting of marl and clay intermixed with a free rubbly earth or gravel, of a sufficiently hard texture to supply the material for the roads on the farm. The filtration areas are n in number, and together form a square block in the centre of the 40 acres where the freest de- scription of its soil exists, each area approximating one acre in extent ; and such is the absorbent character of the soil now that it is thoroughly drained that the whole of the present dry weather sewage (350,000 gallons) has been disposed of for several days in succession on a single area only, and an effluent of a superior character obtained at the same time. With this fact established and the power of applying the sewage intermittently to any of the 1 1 areas it soon became manifest that the quantity of land devoted to filtration would be of itself sufficient to cleanse the sewage to be dealt with for many years to come. Having, however, the command of 24 acres of Surface Irrigation, which will take the sewage whenever it will be profitable so to apply it, the Board will be made doubly secure ; and if it should be desired here- after to concentrate sewage from other districts on the same land (as has been done at Merthyr Tydfil) this object can be accomplished with certainty also. Beyond this combined arrangement there exists the capability of applying the sewage to other land, outside the 40 acres, which exists at a level to receive it by gravitation. The main delivering conduit, in fact, has been laid at a height to command additional land if the Board should determine either to increase the size of their sewage-farm, or to sell the sewage for use on neighbouring farms. Moreover the great advantage of having filtering ground sufficient of itself to cleanse the whole of the sewage will be experienced t in the present case in the capability of withholding sewage from the irrigation land whenever it 53 is desired to grow cereal crops, hops, or any other plant or vegetable which would better answer the purpose. The cost of preparing the whole of the 40 acres for the reception of Cost ? f P re * . paration of the sewage has not exceeded ,£3,300. This includes the underdramage land, and the surface formation of the whole, as well as the construction of tanks, delivering conduits, and distributing chambers, the formation of roads, and osier beds, iron fencing, entrance gates, osier planting, the flushing arrangement of the underdrains, the charges of the Engineers, and wages of Clerk of Works. The total cost of land and preparation has not exceeded ^10,100. The difficulty of carting over land of which clay and marl are con- Roads, stituents in winter and spring, when heavy loads of savoys and other cabbages have to be removed to market, has rendered it neces- sary to form roads of a somewhat expensive character. A sample of the effluent from the underdrains was taken and Effluent, submitted for analysis — after the sewage had been on one area for several days, considering that such would be a very severe test of the character of the effluent. The following is the analysis of Professor Attfield : — Analysis of (c Effluent from Great Malvern 17, Bloomsbury Square, London, W.C., December 16 th , 1880. “ The appended data show that the amounts of impurities in this effluent are well within official limits, and hence, that it is admissible into any ordinary river. The first of the following two columns of figures shows parts per 100,000, the second column parts per 70,000 parts (grains per gallon) of the respective substances contained in the effluent. l^arts per 100,000 parts. Parts per 70,000 parts or grains per gal. Total solid matter, dried at 21 2° F. 37-2 26* Nitrogen (as ammoniacal matter) ... •33 ’23 Nitrogen (as organic matter) •024 '017 Nitrogen (as nitrates, and much nitrites) ... •24 •16 Chlorine (as chlorides) 3'3 2 3 Temporary hardness (as chalk grains or degrees) 8* Permanent hardness (as chalk grains or degrees) i 3 ‘ 9 ' ir Total hardness (as chalk grains o.r degrees) 24' Lead or copper none none The effluent is fairly clear and almost bright. (Signed) JOHN ATTFIELD.” 54 Storm water osier beds. Population 6,000. Mode of Disposal. Outflow from Sewers. It will be seen by the accompanying map that Osier Beds for the cleansing of such storm water as may be suddenly thrown down on the farm in excess of the quantity the land will absorb, are situated at the lowest margin of the land, next the outfall stream. They were formed out of ground of uneven surface. The object of these Osier Beds is not that of filtration through the soil , but simply to arrest the solid matter floating in the storm water on its way to the outfall stream, to effect which the osiers are planted on ridges in areas formed on several levels, descending by steps to the outlet. By this means the storm water passes from one level to another and deposits such solid matter as it may contain in the furrows. This example of Malvern is given to show that in a district where it cannot be said that the conditions are in any way exceptional, the combined treatmetit may be adopted with a certainty of success, and at no unreasonable charge on the ratepayers. The farm is, at present, in the hands of the Board, who intend to erect farm buildings upon it for the housing of milch cows, pigs, &c. Should the income after payment of current expenses of labour, seeds, &c., reach ^5 an acre only, the return on the cost will be jQ 2 per cent. There is every reason to believe that as the distribution is so arranged as to involve the least outlay in labour, the net income will be much greater. 6.— HALSTEAD, ESSEX. The Urban District of Halstead has- a population closely approach- ing 6,000, and therefore resembles in that respect the condition of Abingdon. The mode of disposing of its sewage is that of Intermittent Filtration combined with Surface Irrigation, and the use of Osier Beds as a means of cleansing storm waters in times of heavy rainfall when sudden excesses would overcharge the land. The daily dry-weather outflow from the town barely exceeds 70,000 gallons, but — although the sewerage was designed on what was termed the separate system to exclude surface waters — the discharge from the sewers in wet weather occasionally far exceeds 1,000,000 gallons in the 24 hours. The land to which the sewage is applied is of a mixed character, the Extent of CLEANSING LAND UTILIZED FOR SEWAGE CLEANSING the Delivering Sewage Conduits are shewn thus the Distributing Chambers „ BAILEY OENTON A C" Engineers 2Z Whitehall \ Flat ^ London Vincent Broolts Day &.Son irfh 55 soil consisting of clay, gravel, and sand. The extent is 15^ acres, of which rather more than 6 acres are devoted to Intermittent Filtration, he same quantity to Surface Irrigation, and acres to the growth of Osiers. The remainder covers roads, banks, paths, and a spoil-bank to be used for seed beds. The sewage discharged from the town flows by gravitation to the filtration areas, which are five in number, and vary in extent from an acre and a-half to less than one acre. They are laid out perfectly level, at heights differing from one. another according to the form of the natural surface; the highest area, as finished, being 4J feet above the lowest. The land laid out for Surface Irrigation occupies sloping ground rising gradually from the filtration areas, and a wind engine working a Noria has been erected to lift the sewage to the top of the slope which is 20 feet above the invert of the sewer mouth. This engine necessarily only comes into action when the force of the wind is sufficient to work it. Pains have been taken to make the most of the wind, and whenever it raises the sewage, or part of it, the filtration areas are correspondingly relieved. With a fair wind the whole of the sewage should be raised, and then the filtration areas will be freed from the sewage altogether. It is calculated that for at least 100 days in the year, the wind will relieve the areas of sewage, and if sq, it will be a cheap motor. Its use will accord with that intermitlency of application which is so essential to the purification of sewage, inasmuch as although it will only be when the wind is sufficient to lift the sewage that the filtration areas will be relieved, yet the aggregate number of days when that power will be called into play being at least equal to one day in four, a very material respite will be gained : — and such advan- tage will occur precisely in that way which will most economically conform to the process of Intermittent Filtration. The use of wind for the raising of sewage to land* is a feature * In spite of the fickle character of this power it may also be found of value as a motor in the supply of water to small communities wherever there exists a sufficient quantity which can be lifted from a water-bearing stratum beneath, and stored in reservoirs on the surface. It is seldom that a week passes at any time of the year without a recurrence of sufficient wind to raise some, though it may be but a little, quantity of water, and it is not too much to say that with an ample amount of storage, many a village now dependent on polluted ponds and shallow wells might be supplied with the best potable wafer at a comparatively small cost. land utilized, 15^ acres. Intermittent Filtration. Land reached by simple Gravitation, 6 acres. Surface Irrigation, 6 acres. Wind used as a motor for lifting the sewage for Surface Irrigation, Osier beds for clarifying storm waters. Cost of the preparation of the land. Cost of wind engine and tower. therefore, to which attention may well be given in all cases where a part of the land to be utilized may be reached by gravitation, whilst the remainder must be served, if reached at all, by pumping. The Osier beds, intended to clarify storm waters when they dilute the sewage beyond the quantity which the land is intended to cleanse, occupy a narrow strip of land running alongside the river from the lowest filtration areas to the main outlet. These Beds are severally laid out (see Map), as at Great Malvern, in levels, and so arranged that the storm water, having passed through them consecutively and deposited such solid matter as will be arrested in the furrows, will reach the outlet into the river in a clarified state — the intention being to check, as far as possible, by the successive levels, the onward rush of the water and so encourage deposition in the furrows whenever the beds come into use. The delivery of the sewage to. the filtration areas is so designed that when the full quantity they are intended to purify is exceeded by sudden storms the excess will pass onward to the river through the Osier Beds instead of into the Colne direct. From the experience already gained in the use of the combined system here adapted it would appear that the six acres of land devoted to Intermittent Filtration , might be found of themselves, if properly managed with strict regard to intermittency of application and the maintenance of the furrows at the different depths prescribed, sufficient to cleanse the whole of the dry-weather outflow. Relieved, as the filtration areas will be at times when the wind engine comes into action — equal in the aggregate to one quarter of the year — all doubt of their constant and future efficiency is removed. The purchase and the preparation of the land, including the under- drainage, the construction of screening tanks, delivering conduits, and distributing chambers, embanking the land against river floods, fencing, osier planting, road making, engineering, payment of the wages of the clerk of the works, and other incidentals, has cost on the whole ^3,5°°. When giving this cost it should be stated that the earth work in levelling the areas and osier ground has been very con- siderable. The outlay on the wind engine and tower with well, pumps, &c., has been ^275, but this should not be charged to the disposal works, but to the sewerage of the town. A sample of the effluent taken from the underdrains before the Effluen*. 57 ground was perfectly consolidated, and when it was considered to be in its worst condition, and affording the severest test, was analysed by Professor Attfield, F.R.S., and the following figures show in parts in 100,000 parts, the respective substances contained in the effluent : — Total solid matter dried at 21 2° F. . . 63* Nitrogen (as ammonia) .. . . .. *190 Nitrogen (as organic matter) . . . . *033 Nitrogen (as nitrites and nitrates) . . *49 Chlorine (as chlorides) . . . . . . 9*4 At present, the land is in the hands of the Board. Should the net income equal ^5 an acre, the return to the ratepayers will be £ 2 per cent, in the cost of land and its preparation. Having supported the cases of Merthyr and Kendal by four cases selected from my own practice taken from the north (Forfar), the south (Abingdon), the east (Halstead), and the west (Malvern), where the land operated upon has been of that character which would come within the definition of “ suitably constituted soil/’ I will now describe two cases which, though successful, the soil utilized cannot be considered equally suitable. The four instances, from 4 to 6 inclusive, if fairly considered, will not only have proved the soundness of Dr. Frankland’s views and have justified the works carried out at Merthyr Tydfil and Kendal, but will satisfy engineers that these latter works, which have been so often de- scribed as “ exceptional,” are in no way deserving that character, inas- much as the four cases by which they have been here supported are illustrations of what has been done in four of the widest surface for- mations known to exist in the geology of Great Britain, viz. : the super- ficial. soils or drifted matter covering (1) the primary formations (2) the oolitic beds (3) the London clay, and (4) the marl of the New Red Sandstone. 7. BARNSLEY, YORKSHIRE. The instance now about to be described — Barnsley — is one which character will be interesting to many because the land there utilized for Inter- of soil utilized, mittent Filtration would be commonly called “clay,” consisting as it 58 Population 25,000. Number of houses and trades. Quantity of sewage discharged. Land purchased to cleanse the sewage. How pre- pared. does of a loam, with a ceitain proportion of alumina in it, from the whole of which bricks, pipes, and pottery have been made. The population of Barnsley in 1811 (70 years back) was 5,000. It had increased from that time up to the time when the present mode of sewage disposal was decided upon to 25,000. As Barnsley is a manufacturing town it may be useful to state that the number of houses at the present moment probably amounts to 5,000, and that there exist in the Borough 25 factories, 8 collieries, besides Dye Works and Bleach Works, several founderies, and a tannery. A considerable quantity of trade refuse is discharged into the sewers. The quantity of sewage in dry weather issuing from the sewers was found, when gauged in 1874, preparatory to the works afterwards carried out, to vary from 600,000 to 700,000 gallons per diem, whilst on occa- sions of storms the quantity of water thrown off the impervious surfaces of the town into the watercourses traversing it amounted to several millions of gallons. In devising the sewage disposal works it was considered that if provision was made for the cleansing by Intermittent Filtration of 1,000,000 gallons as the dry weather outflow, increasing to 1,500,000 gallons in 30 years, it would be ample, assuming that steps were taken to exclude, as far as practicable, Surface Waters from the sewers, and that means were taken by overflows to discharge from the sewers into the River Dearn those excesses which the land could not absorb in times of heavy rainfall. This design has been carried out, and the quantity of sewage which has actually been delivered to the selected land in dry weather has been found to amount to rather less than 700,000 gallons, whilst the quantity which has passed the Storm Overflows in wet weather and reached the land, has been found to approach 2,000,000 gallons in 24 hours. The land purchased by the Corporation amounted to 78 acres, for which a very high price was paid, but as it was the only land that could be reached by gravitation, some compensation for the high price was gained by this advantage. Of the 78 acres, 30 were divided into 3 areas of 10 acres each, and laid out for Intermittent Filtration, — about 20 acres for Surface Irrigation, and rather more than 2\ acres for the growth of Osiers for cleansing those sudden excesses brought down to the farm, but which the land would not absorb in times of rainfall. The remainder of the property is made up of a water-mill and adjacent land. A con- 59 siderable portion of the last may be utilized for sewage cleansing here- after, if and when necessary, and the motive power of the mill may be applied to the lifting of a portion of the sewage to higher ground should it be found desirable so to relieve the farm. The sewage, as it is discharged from the town, passes through screen- Sludge, ing tanks which arrest coarser and heavy matters only, and allow the smaller particles to float on with the sewage to the land, where, after its . . ... How disposed collection m the furrows prepared to receive it, it may be thrown out on of. the surface of the ridged land and ploughed into the soil. When once dry it assists in improving its percolative powers. The soil was analysed by Dr. Voelcker at three different depths and Analysis of was found to contain the following ingredients : — Analysis of the soil used at Barnsley for intermittent Filtration. Analytical Laboratory, n, Salisbury Square, Fleet Street, November 2 6th, 1878. Soils dried at 212 0 F. Marked — London, E.C. At 2 feet. 4 feet. 6 feet. Organic matter and water of combination 6-85 6*41 5' 2 7 Oxide of Iron and Alumina 13 ' 3 1 r 3 ' 3 6 lyio Carbonate of Lime I ’29 74 44 Magnesia and Alkalies, etc. I'OI 1*40 *95 Insoluble Silicates and Sand . . 77*54 78-09 80*24 100*00 IOO’OO IOO’OO (Signed) AUGUSTUS VOELCKER. After the sewage had been on the land, and the soil had been As to the fully performing its filtering functions, a sample of it taken a foot the S foil S ° f below the surface was sent to the same eminent chemist, and he reported that — He “could not recognise any indication of clogging by sewage matter,” and added, “ there is no excess of sewage matter, or, I should rather say, there is no sewage matter, as such, in the two samples of earth you sent me, — there is not a trace of offensive matter in either sample.” In order to test the absorptive capability of the soil, a series of ex- Experiments testing the 6o absorptive powers of the land. Effluent analysed. Outlay. periments were made before the analysis last referred to was made : — the quantity of sewage delivered to the land was gauged daily for ten weeks and five days and a record kept of the extent of land to which the sewage was applied daily. The result is shown on the accompanying diagram, which distinguishes ( i ) the three different areas which received the sewage during the whole period; (2), the quantity of sewage discharged from the town each day; (3), the number of acres receiving it ; and (4), the proportion absorbed per acre. Crops were growing on the surface. At no time did the sewage overflow it. The effluent water from the underdrains during the period of time embraced by these experiments was analysed by both Professor Attfield, F.R.S., and Dr. Meynott Tidy; the former found the proportion of albumenoid organic matter yielding 10 per cent, of nitrogen to be *14 of a grain in a gallon, and the latter *12 of one part in 100,000 parts. By increasing the number of underdrains, so as more perfectly to aerate the subsoil, the percolative powers of any land may be in- creased ; and these experiments have served to prove that with additional drains in the filtration areas at Barnsley, a larger quantity of sewage may be passed through them than at present; great care being necessary when applying sewage to effect even distribution and to avoid, as far as possible, running it directly over the drains. At Barnsley, where the soil, though clayey, is not dense, having been found by analysis to contain in its natural condition about 80 per cent, of insoluble silicates the sewaged land was rendered more porous by mixing with the surface soil a large quantity of ashes made by burning a proportion of it when the filtration areas were laid out and levelled. It is therefore not so liable to crack when properly used as many loamy soils. The cost of preparing the 52J acres of land laid out for Filtration, Surface Irrigation, and Osier Beds, has been ^5,3 13 14*. including drainage, service conduits, and distributing chambers, roads, embank- ments, outfall cut, bridges, and incidental works. This sum covers money spent in clearing the River Dearne, as well as the construction of the screening tanks and the re-building of the Mill Weir. The out- lay in incidental works, independent of the actual preparation of the land, has, in fact, been almost as much as the land preparation itself. The land is at present in the hands of the Board. Since this treatise has been in the press, the following satisfactory analysis qf the effluent has been made by Prpfessor Attfield : — ITITY < FILTI VincentBrooks.Pcy&Son.Iith. . BAJLEY DENTON & C° Engineers 22 Whitehall Flax ^ London DIAGRAM SHOWING THE QUANTITY OF SEWAGE ABSORBED & CLEANSED BY THE FILTRATION AREAS RAINFALL ACRES USED It it it 11 it! If if . .. a :V=’ p p ii'HlI it iili il l ! 1 ITII it II II I li II II it AUGUST LM 20 21 22 23 24- SEPTEM BER illlllllllil »*ILEY OEHTON » 0? Eng/HUHS Whitehall. riuce, J.tmdon NOTE. The difference in the. shading indicates the. severed areas fthrve in murder J upon, which . the. Sewage is discharged. The figures, under the acreage, empress the total murder of gallons discharged upon the studies . The greater guantitg represen/s the total murder of gallons discharged, ea ch dag, and the lesser quantity the total minder of gallons absorbed bg each ctet'e. 6 “ The first of the following two columns of figures shows parts per 100,000 parts, the second column parts per 70,000 (grains per gallon) of the respective substances contained in the effluent : — Parts in 100,000 parts. Parts in 70,000 parts (or grains per gallon). Total solid matter, dried at 21 2° F. 44 ’ 3 1 ' Nitrogen (as ammoniacal matter) ... •017 •012 Nitrogen (as organic matter) •012 •008 Nitrogen (as nitrates — no nitrites) •83 •58 Chlorine (as Chlorides) 4 * 2-8 Temporary hardness (as chalk — grains or “degrees” 6* 4 ‘ Permanent hardness (as chalk — grains or “degrees”) 1 T 1 2 * Total hardness (as chalk — grains or “degrees”) 23- 16* Lead or copper none none The effluent is inodorous and fairly clear — almost bright.” (Signed) JOHN ATTFIELD. 8. HITCHIN, HERTFORDSHIRE. This case, which was attended with several drawbacks, resulting from the character of the sewerage of the district as well as from the nature of the land utilized, presents some important considerations, for it shows that in spite of the difficulties experienced, an effluent admissible into running streams may be secured with certainty from filtration through peat of a boggy nature. Hitchin is situated geologically at the base of the northern escarp- ment of the London basin, — at the junction of the chalk with the Green- sand formation. The River “ Hiz ” takes its rise in this escarpment, and runs through the town. The land on each side of this river consists for the most part of peat mixed, where shallow, with gravel, sand, and clunch, and the land selected for the cleansing of the sewage was situated on its banks. The sewage flows by gravitation to this land, which is about half a-mile below the lower end of the town. Hitchin was one of the earliest places sewered after the passing of the Public Health Act, 184 3, at a time when the ruling principles upon Effluent. Local circum- stances affecting Hitchin. 62 Report as to mode of sewage dis- posal, 1874. Population 8,000. Water supply. Land required for the cleans- ing of the sewage. which sewerage works should be conducted were not as well under- stood as now. The sewers of the whole town, consisting of glazed socket pipes of various sizes, were jointed with clay, whilst the main sewer, with no other sort of jointing, was laid for nearly the whole distance through the town under the river itself. The surface waters from roads, roofs, and paved surfaces were purposely admitted into the sewers, for flushing, and as the ground upon which the town stands was exceedingly wet, owing to the geological features to which reference has been made, it only required the pressure due to the sudden influx of surface waters into the sewers to disturb the jointing, and admit copiously the subsoil water. The streets and roads contri- buting surface waters have rapid inclinations, and the sewers laid in them necessarily partake of the same condition. The effect of this state of things upon the outfall sewer was to cause rupture at its joints and to admit water from the river into it. In 1874, when the Local Board sought advice on the disposal of the sewage, it was explained that this defective condition of the main outfall sewer would be rectified by the substitution of a new sewer following a course independent of the river. At the same time it was understood that the rain falling on impervious surfaces within the town, as well as other foreign waters (such as those from the public baths and private springs) would be excluded from the sewers, leaving tributary only such subsoil water as found its way into the branch sewers of the town, and which could not practically, be withdrawn. The present population of the town is between 7,000 and 8,000, and a somewhat rapid increase may be expected. Exclusive of the water consumed in one important trade, that of a fellmonger, who takes what he uses direct from the river, the general supply of the town by public service and from private sources amounted in 1874, to between 100,000 and 120,000 gallons a-day, and this con- stituted then, as it does now, the “ sewage proper ” of the district. It was with these considerations before him, and with a desire to make ample provision for the future, that the writer recommended the Local Board to acquire by purchase 30 acres of land, of which 27 acres might be used for the disposal of the sewage, which in dry weather, he considered, might amount, with the subsoil water, to 175,000 gallons, and be augmented by increased population to 350,000 gallons per day, at the end of 30 years ; in wet weather, the writer considered that the outflow might fairly be taken at 500,000 gallons per day. Of the ^3 27 acres, he proposed that 9 acres should be devoted to Intermittent Filtration, and the rest to Surface Irrigation. The Local Board rejected this advice, and determined not to prepare 30 acres, but to restrict the quantity to be utilized to certain lands bounded by the river, containing 22 acres, of which a portion which could not be reached by gravitation formed a part, leaving only about 19 acres available for use. And it is more than probable that if the expecta- tions formed at the outset as to quantity of sewage and character of soil could have been realized, this extent of land would have sufficed for the cleansing of the sewage of Hitchin for thirty years to come. The 22 acres of land cost, with legal expenses, nearly ^4,000. It turned out, however, when the time came for executing the works, that only two-thirds of the length of the main outfall sewer could be replaced by another sewer independent of the river, without derange- ments of a very serious character. It was therefore determined not to fulfil this part of the undertaking, and the water which found its way from the river into the remaining third of the length still remains to dilute the sewage discharged on to the land; The constant addition to the “ sewage proper ” from this source and from the subsoil in which the internal sewers of the town are laid amounts to more than the whole of the water supply of the town, and, therefore, to more than the “sewage proper” itself. The water ab- stracted from the river and turned into the sewers by the Fellmonger, under his legal rights, serves also to augment the outflow already increased by the subsoil water. The quantity of sewage, diluted with these subsoil and foreign waters, which actually finds its way on to the sewaged land in dry weather varies in some measure according to the season, but it is never less than 400,000 gallons in the 24 hours, which is 50,000 gallons more than the writer anticipated when he recommended 30 acres as the quantity of land to be provided for the disposal of the sewage 30 years hence. When the removal of the surface waters from the sewers came to be considered by the Board, it was found too that the work of separation was so difficult that it could only be partially effected. The result has been that so much tributary surface still remains to throw off the rainfall into the sewers that if only a quarter of an inch falls on the town, the outflow from the sewers is suddenly increased to an amount quite equal to that of the sewage-proper, and such is the rapidity with which this extra discharge is delivered to the land, owing to the great fall Diy weather outflow augmented - Actual outfl ow from sewers. Difficulties to be contended against. Outlay. Effluent analysed. 64 the sewers possess, that no arrangement for distribution can meet the difficulty. While these facts were being discovered and the decision of the Board to reduce the area of land from 30 acres to 22 acres was being acted upon, it was found that the extent of boggy peat, a soil which repels, in a measure, percolation, formed a much larger proportion of the land than previous examinations had led the writer to anticipate. Thus, whilst the quantity of diluted sewage to be cleansed amounted to more than it was expected would be the case 30 years hence, and it was found that the larger part of the land consisted of soil which could not be termed “ suitably constituted,” the total area utilized was very considerably reduced by the decision of the Board. At no very distant time, however, it may be assumed that the Board, following the example of Kendal, will extend the sewaged land from the 22 acres to the 30 acres originally recommended, and so bring into use eight acres of land of a more suitable character, when the difficulties which have now to be contended against will be completely overcome. The total expenditure on the land, with screening tanks, roads, and fencing, as well as the construction of a very expensive outfall underdrain to take the effluent water under the river to the tail of a mill below, has been ^2,300, including all incidental expenses. For this sum nearly the whole of the land has been laid out for Intermittent Filtration, instead of nine acres only, as originally intended. The land is let to the writer at ^55 per annum, and the charge on the Ratepayers is $d. in the £ to repay cost of Land and its prepa- ration. In spite of the difficulties that have been experienced in this case, owing to the excessive dilution of sewage and the existence of so large a proportion of peat in the land utilized, the effluent from the under- drains having been analysed by several chemists of eminence, has * Being a resident in the neighbourhood of Hitchin the writer holds this small farm with a view of testing the capabilities of a peaty soil to cleanse sewage when sub- jected to the extreme drawbacks of great dilution of sewage (by both subsoil and surface waters) and a reduced area of land. The result in relation to the cleansing of the sewage is given in the text. The capability of a soil consisting chiefly of a boggy peat to yield heavy crops of roots and vegetables while acting as a filter is proved by the facts that the gross returns amounted in 1879 to ^325 9-r. 10 d., and in 1880 are estimated at ^420. One of the disadvantages attending the use of peat is that it must be cultivated by spade husbandry, and that the tenant’s expenditure is thereby increased. {December, 1880.) 65 been declared by them to be well within the standard suggested by the Rivers Pollution Commissioners. Professor Attfield gave the following results : — “ Analysis of Effluent Water taken, April 1st, from Underdrain from 1878. Soil which is principally Bog Peat London, April 4I/1, 1878. One gallon contains the following number of grains and decimal parts of a grain of the respective substances Total solid matter, dried at 212° F. . . . . 40* Ammoniacal matter yielding 10 per cent, of nitrogen . . . . . * . . . . o'45 Albumenoid organic matter yielding 10 per cent, of nitrogen . . . . . . . . 0*03 Nitrites . . . . . . . . . . . . Traces. Nitrates containing 17 per cent, of nitrogen . . 3*4 Chlorides, containing 60 per cent, of chlorine 4*2 (Signed) JOHN ATTFIELD.” Professor Wanklyn gave the following results of an analysis made by him of a sample taken without knowledge of the writer by the Surveyor of the Croydon Local Board. The copy here printed was politely supplied by order of the Croydon Board. ANALYTICAL REPORT. Laboratory, 7, Westminster Chambers, S.W. Grains per Gallon Parts per Million Solids. Chlorine. Free Ammonia. Albumenoid Ammonia. 1879 8th Oct. Sample of water, ‘ ‘Effluent water from the Sewage 1 Farm at Hitchin,” sent by f the Croydon Local Board J 36-3 3*3 5'QO roo This is not drinking water ; but it may be discharged into a stream. (Signed) J. ALFRED WANKLYN. Having in the preceding Eight instances of Sewage Disposal shown what has been done with “ suitably constituted soils ” and with those of a less inviting character, the following cases are added to show what has been done in smaller cases of varying character. E 66 Oakham, 3,000. Mode of disposal. Cost and cur- rent outlay. Return.'* General Result. 9 . OAKHAM, RUTLAND. Oakham is the county town of Rutland, and has a population of 3,000. The town — which has been recently sewered by Mr. C. W. Whittaker, C.E., of Great George Street, Westminster, is for the most part, together with the land surrounding it, the property of Mr. G. H. Finch, of Burley on-the-Hill, M.P. for the county. In consideration of the improvement the sewerage of the town would be to his estate, Mr. Finch undertook at his own expense to dispose of the sewage (though much diluted by subsoil water) on his own land. Under the advice of the writer (given in 1878), the method of dis- posal adopted was Intermittent Filtration through land, three acres in extent, with Surface Irrigation over some adjacent land. The site selected is on the marlstone of the lias Formation. The rock of this stratum here comes to the surface, and the cost of forming the land, which has a rapid slope, into level terraces was, therefore, very con- siderable. Mr. Finch himself directs the mode of treating and cropping these filtration beds and employs to work them, one man whose wages amount to ^44 per annum. It has been found, after two years’ use, that the whole of the sewage of Oakham may be cleansed on the three acres of filtra- tion ground, though it has been found advantageous to apply some of the sewage in irrigating about five roods of land immediately below the beds. This year the money return from 2J acres of mangold and from half an acre of cabbages grown on the filtration areas, and the five roods of Rye Grass has been ^85 5^., leaving a balance, after payment of the water-man’s wages (£44 4J.), of ^41 is. This pays Mr. Finch his rent for the land and the current outlay in seeds, &c., as well as about 2% per cent, on his expenditure in preparation. If, at a future time, he desires to extend the use of the sewage on his estate, he has it in his power to do so at very little cost. Mr. Finch, writing to the author (December 1st, 1880), says : — “ The Oakham Beds work capitally, though they have occasionally been overburdened with Storm Water during some of the heavy rains this summer. The analysis of the effluent last year was everything that 67 could be desired: The great point I had in view when I undertook the construction of the Oakham Sewage Beds was the purification of the sewage, and this object I seem thoroughly to have obtained.” \l. RADFORD N } WARWICKSHIRE. These two cases, Earlsdon and Radford, are bracketed together Populations, because they are both Suburban Villages in the near neighbourhood of Coventry. They contain present populations of 1,000 and 600 respec- tively. The sewage is collected in each instance in a “ Self-acting Sewage Regulator” tank, discharging, when full, by means, in the one case “Regulator” of a “syphon” and in the other of a “float outlet.” The “Self-acting used * Sewage Regulator” is an invention to discharge, automatically, the quantity of sewage or other liquid which may be applied to land, either for the purpose of utilization or purification. One of the most prominent difficulties which presents itself in the utilization of sewage, is the very different quantity which is discharged from sewers at different times. In many towns and villages the flow will be diminished, at certain periods, to a mere dribble ; while at other times there will be a copious discharge, Hence, as it is essential to economy in sewage farming that the crops should receive only that quantity of sewage which will produce the most fruitful growth, and as it is equally essential to success in Intermittent Filtration that the soil used to purify the sewage should receive only the quantity which it is capable of purifying, it is very desirable, as already pointed out, to have a means of regulating the quantity of sewage to be dealt with. “ The Self-acting Sewage Regu- lator ” performs this service in the most simple and perfect manner, during the night, as well as during the day, and without any supervision. The sewage is made to flow into a tank of such capacity that when the liquid rises to a given level, the tank holds the precise quantity it is desired to deliver to a certain area of land at one time. This tank is provided with a syphon, or other self-acting outlet, w'hich is brought into action as soon as the liquid rises to the given level. When this is reached, the liquid flows out of the tank (“ automatically ”), and con- tinues flowing until the level of the liquid in the tank has fallen to its lowest limit. The sewage flowing into the tank then fills it again, — e 2 68 slowly or quickly, according to the rate of influx, — and, as soon as it is full, the automatic discharge will be repeated, and the liquid can be applied either to the same area of land, or to another, as desired. The coarser matters floating in the sewage are intercepted in a separate chamber, called “ the intercepting chamber,” the finer particles being carried forward with the liquid through the strainer into the tank. If it be desired to effect a precipitation of these finer particles, the space in the Meter-tank below the mouth of the outlet is increased in depth, so as to form a receptacle for any amount of deposit which it may be determined to precipitate. In such case the space above the mouth of the outlet will be occupied by clarified liquid, to be discharged on to land automatically as already described, while the space below will serve as a receptacle for the deposit, means, in some cases, being provided by a duplicate tank for draining off the liquid, so as to allow of the consolidation of the deposit for removal. These Regulator Tanks are duplicated or not, according to the quantity of sewage under treatment and the use to which the precipitated matter is to be applied. Where the quantity of deposit is trifling, it can be flushed out periodically without consolidation, and applied directly to the land. Earlsdon The quantity of land purchased by the Sanitary Authority for Earls- 1,000. don, which consists of clay of the New Red Sandstone intermixed with sand and gravel, was 3^ acres, of which rather less than two acres Acreage used, were prepared for Intermittent Filtration, while the rest remains in an unprepared condition for sewage appropriation as required. The two acres have been in use for sewage cleansing since 1875, discharging an effluent of a superior character during the whole of that time. The whole of the land (three and a-half acres) is let for ^ioa year, and although such a return in itself is insignificant the advantage is really considerable, inasmuch as the tenant relieves the Local Authority from all current outlay as well as all trouble in the matter. Radford 600. In the case of Radford, Intermittent Filtration on a less area was adopted by the same Authority in 1879, after the success at Earlsdon had been assured. Here 2\ acres were purchased, while 1 j acres were utilized for filtration. The land (2J acres) is now let for ^7 ioj-. a-year, the tenant taking upon himself the distribution of the sewage. In both instances the land utilized is not far from habitations, yet no objection has been raised on the ground of nuisance. 69 12. CONVALESCENT HOSPITAL, WALTON, SURREY. This case is given as one showing what may be done unobjection- ably with sewage in the case of Public Institutions and Isolated Dwellings. Here the land devoted to the cleansing of the sewage daily discharged from the hospital forms the vegetable garden attached to it. The number of inmates varies from 250 to 400 persons. The disposal works were executed in 1869. The tank in which the sewage is collected is discharged by means of a sluice which the attendant raises in the evening or early morning once in the 24 hours. The area of land devoted to the purpose of cleansing is rather more than an acre, and although it immediately adjoins the hospital and has been in use for more than 10 years, no nuisance has at any time been experienced. It will be observed that this in- stance of sewage treatment by filtration was executed before the pub- lication of the Report of the Rivers Pollution, in which “ intermittent downward filtration,” was first suggested, and it is somewhat remarkable that the effluent was analysed for the Managing Committee of the Hospital by an eminent chemist and declared to be excellent “ potable water,” which is in some measure to be explained by the fact that the effluent when discharged is diluted by the subsoil water drained out of the land. Standing Rules to be observed when adopting Intermittent Filtration. Having selected from works designed and executed by the writer’s firm, a dozen cases of Intermittent Filtration, varying in size and character, as illustrations of what may be done in different localities, it may be well to state, in the order of their importance, the govern- ing rules essential to the successful (ie., profitable) disposal of sewage when recourse is had to land as the cleansing medium. 1. Foreign waters — subsoil water, surface water, and liquid trade refuse — should be, as far as practicable, excluded from the sewers of Convalescent Hospital, Esher 70 all districts, inasmuch as it matters not what the precise treatment of the sewage be — irrigation or filtration in combination or otherwise, — it is certain that if the sewage-proper be diluted to such an extent that the modus operandi is at times deranged, failure or injury results. 2. The preparation and formation of land to receive sewage should be effected with precision, and not in the careless way in which it has been suggested sewage farms may be laid out. Irregular surfaces and steep slopes should be avoided even more carefully than clay soils, for all liquids will run down sloping surfaces and collect in the lowest places, to the injury of crops and the creation of nuisance, and the more sewage is diluted with foreign waters, the greater will be these evils. There is no economy in carelessly executed land-pre- parations, and it is greatly to be regretted that such views have been inculcated. 3. Intermittency of application and regulation of quantity should take the place of the hap-hazard distribution which prevails on most sewage farms, for it is the want of these desiderata which brings dis- credit to the engineer and loss to the farmer. With sewage intermit- tently distributed in quantities apportioned to the extent of surface to which it is applied, the best results are obtained. Intermittency of application is positively essential to a continued good effluent. Where an inferior effluent from under-drains is found it is invariably due to constant filtration through the same land. 4. When Intermittent Filtration areas are properly laid out on a perfect level, and intersected by furrows dug at different depths, the liquid sewage will convey to the land, where it is most wanted, those floating solid particles which are not arrested by ordinary screening. The furrows being designedly dug at different depths and in selected positions, the deeper ones become the receptacles of the solid in- gredients called “ sludge,” which having passed through the screens deposits itself in them, while those at less depth serve to distribute the liquid evenly through the soil. It will be found that by resting the sewaged areas, one after another, as soon as this wet sludge has accumulated in the furrows, it will there solidify and dry, and may then be removed and spread upon the land without any difficulty whatever. Being afterwards dug in it mixes with the soil and renders it more percolative than before , and thus all necessity for separating the solid from the liquid portion of sewage is avoided, — except possibly in the case of certain trade refuse which may require special treatment. 7 It is quite a mistake to suppose that land may be made too rich by sewage where plant growth is regarded as one means of rendering the soil a purifier. 5. Where Intermittent Filtration areas form part of an irrigation farm a sufficient proportion of the areas should be always ready to receive the sewage when it cannot be beneficially applied to the remainder, or to receive so much of it as may be in excess of what the remainder will absorb with advantage. 6. The under-drainage of both Filtration areas and surface-irri- gated land should be laid out as carefully as practical science will suggest so as to avoid drawing the liquid sewage down from the surface to the drain without passing through the undisturbed ground on each side of it. 7. Means should be taken in connection with the screening to intercept road detritus as far as possible, as it will be apt to fill up the furrows quickly, To arrive at the actual cost of disposing of Town Sewage , by recourse to land, or indeed -by any means, it is necessary that the calculations should be quite free of any outlay connected with the sewerage of the district or with the lifting or delivery of the sewage to the disposal works. The delivery of the sewage in some cases may involve pumping, whilst in others the sewage may flow to the works by direct gravitation. In the former instance, the cost of pumping forms a part of the cost of the system of sewerage, and not of the disposal of the sewage. Land Treatment compared with Chemical precipitation. With the foregoing particulars recorded, it may answer a useful purpose if the cost of the treatment by land is compared with that of chemical precipitation in tanks, taking for the purpose those instances of the latter mode of disposal as may be fairly put forth as examples of well received chemical processes. I will compare Aylesbury, where the Native Guano Company have relieved the Local Authority of treating the sewage of their district, and are exhibiting the ABC process (alum, blood, clay, and charcoal) in the best form to recommend its adoption, with Abingdon, the mode of dis- Fumpmg should be in- cluded in the cost of the Sewerage, and not in that of Sewage dis- posal. Aylesbury with Abingdon. 72 Hertford with Halstead. posing of the sewage of which has been described in these pages ; and I will further compare Hertford, where the Rivers Purification Company (sulphate of alumina) occupy the same position in relation to the Sanitary Authority of that borough as the Native Guano Company do with the Local Board of Aylesbury, with Halstead. The following results are arrived at — Aylesbury. Abingdon. Hertford. Halstead. Population. . 7,200 6,000 77250 6,000 Cost of tank arrangements Cost of land and prepara- .£7,265 — ;£3>3°o — tion — £10,640 — £ 375 °° Interest on outlay Add payment of subsidy to ^363 ^£532 .£165 .£175 the Companies after de^ ducting rent of premises ■£>oa — p£45° — Total annual charge ^563 p£S32 ^£615 £ i 75 Deduct rent or income from land — ^£225 — £ 5 ° Amount chargeable on the rates of the districts . . ^563 ^£307 ;£6is £ I2 5 From these figures it will be seen that in the two towns, Aylesbury and Hertford, where tank arrangements are used, the annual charge on the ratepayers is severally is. 7 d. and is. 8d. per head, while in the two towns, Abingdon and Halstead, where land treatment has been adopted, the charge on the ratepayers is severally is. o\d. and 5 d. per head of the populations. The comparison of Aylesbury with Abingdon is one that cannot be impeached on any ground of difference in conditions, though it is possible that the outlay of ,£7,265 expended by the Local Board in tank arrangements is in excess of what the Native Guano Company would themselves have laid out for the prosecution of their own process ; but against this proposition there stands the liability of the Aylesbury authority to repay the Native Guano Company any sum that they may have expended for their own purposes by valuation at the end of their present lease. It may be assumed, therefore, that so far as outlay in works or land goes the relative figures represent 73 fairly the facts in each case. On other grounds the cases demand consideration. Should anything occur to lead to an abandonment of the present works at Aylesbury, it will be found that the property belonging to the authority will have no renting value, but will consist of the materials of which the tanks and works consist with the com- paratively small area of land upon which they were constructed, for which but little money would be given if sold, whereas at Abingdon, if the present mode of disposal were given up, the borough would possess a property consisting of Cottage, Homestead, and 48 acres of land which would at any time let for ^170 a year, and if sold would realize ^5, 000. Moreover the present charge on the ratepayers at Aylesbury is 5^. in the pound, whereas that at Abingdon is 4^., in respect of the respective outlay for sewage cleansing. With regard to Hertford and Halstead the same observations will apply with a wider difference between the two. At Hertford the charge on the ratepayers (irrespective of the contribution of the New River Company) is 6d. in the pound, whereas the charge at Halstead is half that amount, or 3^. in the pound. It is true that at Hertford the sewage is diluted with subsoil water to an extraordinary extent, whereas at Halstead there is an absence of any sensible dilution, showing distinctly the effect of an influx of foreign water and the necessity of water-tight sewers, if economy is to be considered. It must not be supposed that the quantity of liquid regulates the quantity of land required for purification if the land is of a “ suitably constituted ” character. If reference is made to the descriptions given of the opera- tions at Merthyr, Kendal, Abingdon, and Malvern, it will be observed that the quantity of water absorbed per acre day after day has exceeded 200,000 gallons. Wherever detention on the surface takes place it is found to be due to the sludge deposited while wet , which forms a puddle to resist infiltration. This resistance is very trifling in suitably constituted soils. At Hertford the sewage of 7,250 people is daily mixed with upwards of 1,000,000 gallons of subsoil water. Still, if we have regard to every day’s experience in Intermittent Filtration, we shall be assured that 20 acres of the free soil surrounding Hertford would be amply sufficient for the perfect and constant purification of the sewage of 7,250 persons though it may be diluted by mixture with more than a million gallons of subsoil water. Should exception be taken to these comparisons it would be well for 74 the reader to examine the facts relating to the disposal of the sewage of Birmingham. There one-third of the sewage is cleansed by treat- ment on land, and two-thirds by chemical precipitation. The former showed in 1878 a balance of annual receipts over annual expenditure (exclusive of rent of the purchased land) of ^[,064 iSs. 7 d., whilst the cost of the latter process (the chemical treatment) was 11,987 15^. $d. (See Journal of the Royal Agricultural Society of England. Second Series , vol. xvi, part 1.) 75 SEWAGE FARMING. EXPERIENCES AND RESULTS. It is not many years since several of the leading chemists in Europe held out to the followers of the twin arts of agriculture and horticulture the prospect of enormous . returns from the use of human refuse in their occupations ; the farmer and the gardener, in fact, were alikd told that though it might call forth a new class of cultivators as ‘‘ sewage farmers,” they would each have it in their power by the use of Oxcretal matter to increase the production of food so rapidly and so largely that it was difficult to limit the profit they severally would gain..; The benefit that such increased production would be to the world at large was at the same time pointed out with equal force. Boussingault showed that an adult gives off in his excrements as much as 16 lbs. Of nitrogen yearly, which is a quantity sufficient to yield 800 lbs. of wheat and 900 lbs. of barley, while Baron Von Liebig went so far as to say that each unit of the population can, on an average, supply with nitrogen absorbed from the atmosphere, sufficient manurial matter to raise from an acre of ground “ the richest possible crop each year;” — and no doubt of the accuracy of these statements has ever been recorded on sufficient data to cause disbelief. Somewhat more appositely to the utilization of sewage, Messrs, Lawes and Gilbert, the eminent chemists, whose efforts in the cause of agriculture are so highly appreciated in this country, have shown that 8s. 4 d. represents the intrinsic value of sewage per head of the inhabitants of water-closet towns, whilst other equally well known authorities on the subject have arrived at figures, some above and some under this estimate. The consulting chemist of the Royal Agricultural Chemists’ value of sewage. 76 Society of England, Dr. Voelcker, by taking the value of ammonia at qd. per lb., and that of phosphates at 2 d. per lb. has declared the total value of human excreta per head to be 9X. per annum. These estimated values were doubtless well based on true analyses, and are abstractedly correct, but it has been found in the practical utilization of sewage that when the fertilizing elements are diluted with 61 tons of water per annum (the average quantity contributed by each individual to the outflow from towns, i.e . — 25 gallons of sewage proper + 50 per cent, of subsoil water x by 365 (days) -f- by 224 gallons =61 tons — ) not only does the productive value shrink to a very small amount, but that such a bulk of diluted sewage, if compulsorily applied (which too often means inappropriately), actually causes mischief rather than benefit. Instead of ifd. being the value, as it would appear to be by dividing Ss. 4 d., the chemist’s value of sewage per head, by 61, the number of tons which it has been already explained represents the diluted quantity of liquid per head to be dealt with, it is actually reduced by attendant drawbacks to the present mode of application to much less than one farthing per ton. Even with such a greatly diminished value as a farthing a ton, how- ever, the country has a valuable property which it is our duty to preserve. Yet such a difference between estimated chemical value and actual realizable value is a satire upon our practical character which we should do our best to remove, for it is certain that if d. is as much too high as a farthing per ton is too little. To appreciate the quantity of sewage at command, and to arrive at the true productive value of the property at stake, it should be remembered that in England alone there are 13 towns — excluding the Metropolis — which have populations above 100.000, 19 between 100,000 and 50,000, 178 between 50,000 and 10.000, and 549 between 10,000 and 2,000 ; and that if only half of these towns, with an aggregate population of 5,000,000, ultimately determine to utilize their liquid refuse by application to land, the annual quantity at disposal will be 305,000,000 tons. This quantity at a farthing a ton will amount to upwards of ^300,000 a-year which may be taken to re- present the annual value of upwards of 200,000 acres of unsewaged land, or that of the farmed land of Huntingdonshire. Setting on one side the chemist’s estimate of 1 \d. per ton, the liquid sewage of 100 persons seems to have been adopted by common consent as the average quantity that may be advantageously applied each year to an acre of land. Upon what data this conclusion has been come to 77 it is difficult to say, for the sewage of ioo persons would in quantity amount to 6,100 tons, which at the chemist’s value would be worth upwards of ^25. It can be readily understood that no tenant farmer if obliged to take 6,100 tons per acre, which is equivalent to a superincumbent depth of 5 feet, or 2 J times the average annual rainfall, would give even a farthing a ton for it, — which would amount to f~6 7 s. id. per acre — though he would gladly give a price calculated after the full rate of i§ d. per ton if he could have what he wanted just at such times as he wanted it. No single dressing of liquid, to be productive of benefit, should Depth of a exceed an inch in depth, and directly the quantity applied to an acre of dressing, land exceeds that depth, which is equal to 100 tons, the surplus is positive waste, which should not be paid for. All land laid out for irrigation has sloping surfaces which cause the liquid to run down to the lower portions of the surface and to rest there in slacks and hollows until it is absorbed or evaporated, doing mischief in the mean- time. The farmer paying rent for land with sewage soon finds this out. He knows that he cannot profitably apply more than 20,000 gallons at a dressing except to fallows, bare of vegetation, which no sewage farmer ought to have in the growing seasons. Experience, in fact, goes to prove that sewage, let its intrinsic value be what it may, directly it is delivered to land by way of Surface Irriga- tion, without that systematic arrangement which will secure regularity of distribution in the quantities that will be beneficial, ceases to be of any value at all. Without system the distribution of sewage on the surface becomes what has been termed “ intensive irrigation,” or in other words the “getting rid of the sewage in the quickest way,” with an indefinite chance of turning its fertilizing ingredients to some account at the same time, when harm rather than good is frequently done. If we turn to the best examples of sewage farming we shall find these statements exemplified in different degrees. The figures very accurately given by Mr. Morgan, when managing Lodge Farm, the Barking Farm for the Essex Reclamation Company in the last year Barkin S‘ in which he published a Return, showed that he expended as much as 21,488 tons of sewage per acre on one crop of Italian Rye Grass, which at id. a ton, the least amount at which sewage has been valued by chemists, would amount to ^89 10s. Sd., and at a farthing a ton to 22 7 s. Sd., which every practical farmer or gardener knows to be unreasonable, and quite inconsistent with profit, because a very large Leamington. Doncaster. 7? proportion of the liquid must necessarily be unproductive of any return whatever. Turning to what has been so patriotically done by the Earl of Warwick on the Heathcote Farm and on adjacent farms on the same estate (the largest illustration of sewage utilization in England) upon which the sewage of Leamington is applied, we find that whilst his Lordship pays the Corporation less than one-third of a farthing a ton, it has been retailed to his tenants at a much less price, an arrange- ment which is not surprising, seeing that the sewage was distributed among them (in 1878) after the rate of 11,583 tons per acre irrigated. On the Doncaster Farm, which has the advantage of excellent management, as much as 17,505 tons per acre was applied in the same year (1878) to Rye Grass, 6,455 tons to mangolds, and 4,505 tons to permanent pasture, which at a farthing a ton would amount to upwards of £iS 4 s. 8^/., £ 6 14s. 5^d., and £4 1 3s. IQ d- re- spectively. These figures are not quoted with the intention of prov- ing that the sewage was not worth the sums set forth; — they are given to show that so long as irrigation is conducted in the manner now followed, an estimate of even one farthing a ton cannot be justified, and if sewage is not worth a farthing a-ton it may be well asked, how can agriculture benefit by its use? In fact these figures prove incon- trovertibly the absurdity of placing any value at all on sewage distributed in irregular quantities, and show distinctly the necessity of a different treatment if the nation is to be advantaged in any sensible degree. There is no disguising the fact that the constantly repeated attempts to reconcile in one operation the two objects of cleansing and profitably applying sewage have brought the mind of the country into such a state of confusion and disbelief in the power of obtaining any profit from sewage utilization, that it will be almost impossible to re-establish a different view. This is greatly due to the fact that up to this time some of our most able men have been using the great influence of their voice and pen in advocating the application of sewage to “ ordinary farming,” with plough-made furrows and such like expedients, and have declared — “ That sewage farming should not be dealt with as a distinct branch of husbandry, but that in order to make it successful it must be engrafted on ordinary agriculture ! ” It is the object of the present treatise to show that if our fields are really to benefit by the liquid refuse of our towns we ought to do just the 79 reverse, assuming that by engrafting sewage farming on ordinary agriculture it is meant that the liquid should continue to be distributed, as at Leamington and Doncaster* in irregular quantities at times when it is not wanted. In neither of these cases has it been proved that a tenant farmer could afford to pay one farthing a ton for the sewage applied. All experiences tend to prove that the obligation to “ get rid ” of a large quantity of sewage under all circumstances and condi- tions, at night as well as day, on Sundays as well as week days, on cropped lands as well as fallows, and at all stages of growth, from seed- time to harvest, puts it beyond the reach of man to gain any real profit from it. Fortunately for the ratepayers of urban districts the last io years have conclusively shown, as I hope the instances given in this treatise will further confirm, that a comparatively small extent of land deeply drained and properly prepared, varying in extent, as already explained, from i acre to 1,000 to i acre to 250 people, according to the nature of the soil, will, if treated by Intermittent Filtration, under good management, suffice for sewage purification per se, and allow of the growth of heavy crops of grass, roots or vegetables at the same time. Fortunately, too, for agriculture, it has been made equally clear that it is quite practicable to prepare and use as a safety valve, a proportion of any sized farm for Intermittent Filtration whilst delivering to the remainder of the farm only so much sewage as the occupier would deem desirable, so that in fact, if he requires a large quantity as a dressing for Rye Grass or other artificial grasses, or a comparatively small quantity for roots or cabbages, he can have just what he wants and no more. It can only be by some such “ safety valve arrangement ” that the true value of sewage can be realized ; not that a sewage farmer may ever be able to pay if d. per ton for what may be delivered to him, though as already stated, it is certain that he will be better able to pay even that price for what he actually requires than a farthing per ton when the liquid is crowded upon him in such quantities and at such times as he cannot utilize it. In asserting this, the writer speaks from a lengthened experience, first as an ordinary farmer, and afterwards as a sewage farmer. * The experience at Cheltenham does not help to solve this question. There the sewage is cleansed by surface irrigation over land which is let by tender annually subject to the distribution of the sewage as the Sanitary Authority thinks well to apply it for its own purpose. The return for the sewage after the rent of the land is paid is reckoned to be I \d. per head per annum of the population. 8o Qualifications of a sewage Farmer. As sewage farming is now conducted, with irregular supplies of liquid, and surfaces ill-formed, — under the supposition that it is economical to adopt the rough-and-ready style of preparation and distribution amidst obligations and drawbacks of the formidable character already mentioned — it is found that the greater the width of land laid out to receive sewage by way of irrigation the greater is the loss to those who pay for the sewage used, showing distinctly that from an agricultural point of view the pre- sent mode of irrigation with sewage is the reverse of what it should be in the interests of the nation. In fact at the present time there are various sewage farms to be hired at rents less in a 7 nount than would be given for the same land without sewage. Can anything more con- clusively prove that the mode of distributing the sewage is at fault ? With the intrinsic value of sewage, if d. per ton, it could hardly have been supposed that we should be obliged to acknowledge this fact. Among the instances given in the preceding examples that of Great Malvern may best serve to show what may be done in the way of com- bination of Intermittent Filtration with Surface Irrigation in order to obtain from sewage a satisfactory return. At Malvern the daily dry weather outflow, amounting to 350,000 gallons, may be concentrated on any one of the 1 1 areas devoted to Intermittent Filtration, consisting of a little more than an acre, and the 35 remaining acres forming the cultivation of the farm relieved of sewage altogether. By judicious use of the filtration areas any part of the farm may receive that quantity of sewage for fertilizing or watering as may best conduce to the largest money return, and in this case provision is made for sewaging adjacent lands whenever it may be found profitable to do so. Special arrange- ments too, are made for dealing satisfactorily with surplus (storm) water. The same experiences that have made it manifest that to secure any chance of profit in sewage farming, the liquid must be distributed in regular quantities and at proper times, has also satisfied all practical men that the early expectations entertained as to the general applicability of sewage to ordinary farm crops cannot be realized and that a sewage farmer to qualify himself for success must serve a special apprenticeship to the occupation. Moreover it has been made clear that an ordinary farmer is no better qualified to deal with sewage without such apprentice- ship than a gardener, for not only is it necessary to know what grasses and vegetables can be best treated by sewage and to regulate the frequency of application and the quantity of liquid to gain the best 8i return, but it is absolutely essential that he should be able to effect the best and readiest sale of his crops when fit for market and so to conduct his operations with reference to the demands of local markets and of such other markets as he can best reach, as will conduce to the growth of only such crops as he can most readily sell. By this means he will reduce to a minimum the losses incidental to all food production, for it is quite certain that in the long run the man who sells the most at the right moment , and who aims at converting into milk or meat what he cannot sell , is the person who will make the most money. To do Buildings • • • • • essential this it is absolutely requisite that every sewage farm should have upon it sufficient buildings to house a proper number of milch cows and pigs to consume a portion of each season’s produce. It is essential, in fact, that a tenant of a sewage farm should combine in his own capabilities the practical qualities of a farmer, a gardener, and a market -salesman, which will induce him to avoid all treatment of a dilettante character and lead him to embrace in his management the growth of such crops only as will keep him most favourably before the markets he serves. Many of the ordinary farm crops are injured by the application of sewage to them. Cereal and pulse crops instead of being benefited by its direct application to them while in growth, are damaged by the increase of straw at the expense of the grain ; — potatoes and turnips are also injuriously affected in a like manner. Kohl Rabi seems to do better. It is equally true that heavy crops of both grass and vegetables may Ry e Grass, be produced without the capability of selling them. Not many years back the possibility of growing Italian Rye Grass without the certainty of sale or conversion was ridiculed as an absurdity, yet the last few years have satisfied all sewage farmers that it is not only possible to grow more Rye Grass than can be sold but that if retained for conversion either into milk or into hay, it is very problematical whether in one way or another, some loss does not attend the operation. Still there are crops which when advantageously selected cannot fail to yield a profit if the liquid is rightly applied. Up to a limited extent Rye Grass of all productions is that which best responds to the use of sewage unless it be prickly comfrey, which is an excellent forage plant for horses and may be profitably consumed with Rye Grass by cows. Moreover, it would appear that it can never be over-dosed with sewage. All the cabbage tribe are also greedy of sewage and although in Cabbages. f 82 Mangolds. Carrots and parsnips. certain seasons it is very easy to have too many for market, there is no doubt that in the long run they pay well, particularly if pigs are kept on the farm to consume any unsold surplus. The Enfield Market, Colewort, and Ox-heart cabbages, if they stand through the frost of winter, realize a good return in early summer, while savoys and drumheads — which latter though more frequently treated as the food of cattle, sell remarkably well to the inhabitants of the manufacturing and mining districts, — are generally very saleable in late autumn and winter. Under good management the two crops of cabbages of summer and winter are grown in the same year on the same land, — that is, the summer cabbages planted in October are cut in May or June, when the land is again prepared for savoy and drumhead cabbages which may be planted in sufficient time to be cut the following winter and the ground cleared in time for a succession of roots. But on the whole, mangolds (long red, tankard and globe) form the best crop for the sewage farmer if the selected seed is good and it is carefully sown, and advantage is taken of a command of sewage for timely watering to secure a plant. The weight of crop will always vary with the temperature of the summer, but under any circumstances the crop from a sewage farm will, compared with that from an ordinary farm, surpass it in both weight and quality. It would appear that if the land is well drained so that the liquid readily percolates, mangolds of all roots will flourish best with a superabundance of liquid. This year (1880) the writer has grown on 13 acres of land, forming part of the filtration areas at Hitchin, 400 tons of these roots, which is equal to 31 tons to an acre. These 13 acres have received, perhaps twice a week, 100,000 gallons per acre. These mangolds were raised, carried from the peaty soil, and clamped ready for sale at a cost of ^45, so that if they should sell in April or May at £ 1 a ton clear of carriage, they will realize ^27 6 s. an acre. Carrots and parsnips do equally well in a free sandy soil. At Forfar this year (1880) a price equal to ^56 an acre was gained by the growth of carrots on the filtration areas. On inferior free soils, the Intermediate Red Carrots are best, but on naturally deep sandy loams the Altringham Reds yield the greater weight. White Carrots for cattle pay well in suitable soils, but with them and all other sorts of carrots — as well as with parsnips — no amount of sewage will make an unsuitable soil productive of heavy crops. Sewage farmers as a rule should avoid the growth of crops which 83 have not been well tried. Much money is lost by experiments in refined vegetable gardening, such as the growth of Lettuces, Parsley, Vegetable Marrow, Sugar Beet, &c. Probably onions, if the soil is compact and suits them, and good Onions. judgment is used in watering them, pay better than any other crop, but there are few places where this root will succeed. They are altogether unfit for the superabundant watering of filtration ground. To a small extent rhubarb and celery may be advantageously Rhubarb, Celery. grown. CONCLUSIONS. This Treatise would fail in one of its purposes if it were brought to a close without an expression on the part of the Author, both as an Engineer and as a Farmer, of the conclusions to which he has been brought by the experiences of the last io years in relation to the different modes of sewage disposal now practised in this country, and the effect they have had in promoting the production of food for our rapidly increasing population. The conclusions are — First. — Excluding from consideration sea-board towns, the sewage of which it may be expedient on all grounds to discharge direct into the sea, the instances are few in which the liquid refuse discharged from human habitations may not be more econo- mically cleansed by recourse to land than by any chemical pre- cipitation. Second. — That the exceptions are only those where land cannot be obtained. Third. — That the more minute floating solid matters, generally called “ Sludge,” which cannot be separated from the liquid by screens designed to arrest the larger solids, form no bar to the use of land as a purifier. Such ingredients when con- veyed to land, where they are always wanted, instead of clogging it, help to make it more percolative and more pro- ductive than it would be if such materials were withheld. Fourth. — That if, instead of leaving sewage when applied to land to flow where it will over irregular surfaces in the varying quantities in which it is usually discharged from towns, proper 8 4 steps were taken to deliver for Surface Irrigation only such quantities as are wanted by the cultivator by taking advantage of the power we always possess of cleansing any quantity of sewage by Intermittent Filtration through a small area of land, not only would Sanitary Authorities conform to the requirements of the law in relation to the purification of their sewage with a less charge upon contributing ratepayers than is involved in any other treatment , but Agriculture would secure a benefit in its profitable utilization at present withheld ; and Fifth. — That by adopting properly-devised Intermittent Filtration areas, which allow of no overflow from the surface into rivers, nor any discharge but from the underdrains (except in times of excessive rainfall, and then only by regulated “Storm Overflows ”), the constantly recurring evils due to inattention on the part of those who have the care of the disposal works, are completely removed. INDEX Abingdon. Works described Cost of Works Intermittent Filtration... Wide Irrigation Character of Effluent Result on the Ratepayers No separation of Sludge Rent of Farm ... Absorptive powers of soils Agriculture, benefit to be derived by Analysis of Effluent at Abingdon . . Barnsley . . . Halstead ... Hitchin ... Malvern . . . Merthyr Tydfil Analysis of soil at Barnsley Attfield, Professor, Analyses Page 44 45 , 32 84 •• 45 .. 61 • • 57 .. 65 •• 53 •• 35 •• 59 53 , 57 , 61, 65 Barnsley. Works described Cost of Works ... Effluent, character of — — Analysis of soil ... Diagram of Sewage cleansed daily Buildings on Sewage Farms ” C Chemists’ value of sewage ... 19, Chemical precipitation compared with land treatment Clayey loam at Barnsley, analyses of Clay soils to be avoided or specially treated Clogging of soils by sludge refuted 26, Convalescent Hospital at Walton ... Cost of Sewage Disposal Works at Abingdon . . . Barnsley Forfar Halstead Hitchin Kendal Malvern Merthyr Tydfil 57 81 Page Crops for Sewage Farms 81 Crops at Hitchin, value of . . . ... 64 Cost of Intermittent Filtration, ex- aggerated 34, 41 D Detritus, Road 25 Distribution of Sewage 79 prevailing mode repugnant to profit 80 Doncaster Farm. Quantity of sewage used 78 E Earlsdon. Description of Works ... ) Sewage Regulator $ 7 Effluent, Analysis of, at Abingdon ... 45 Barnsley... ... 61 Halstead 57 Hitchin ... 65 Malvern, Great 53 Merthyr Tydfil 35 Forfar, Description of Works Cost of Works Intermittent Filtration ^46 Return from Crops Sewage Farm, Profit from H Halstead. Works described Cost of Works ... Intermittent Filtration... Surface Irrigation Effluent, character of ... Effect on Ratepayers . . . Wind Engine used Osiers Hitchin. Works described... Cost of Works Intermittent Filtration... Effluent, character of ... Charge on Ratepayers Tenants’ crops ; yield ... 54 \>6i 86 Hitchin, Subsoil Water Surface Water ... Peaty soil }62 I Intermittent Filtration at Abingdon 44 Barnsley ... ... ... 58 Forfar ... ... ... 47 Halstead ... 55 Hitchin ... ... ... 63 Kendal ... 40 Malvern ... 52 Merthyr Tydfil 34 Intermittent Filtration defined 12, 13 K Kendal. Works described ... Cost of Result of Intermittent Filtration on Ratepayers Character of Effluent ... Official misrepresentations 39 L Land treatment compared with chemical precipitation ... ... 71 suitable ... 31 unsuitable ... ... ... 31 always resaleable if treatment altered ... 73 extent required... ... ... 15 M Malvern, Great. Works described. Cost of Works Intermittent Filtration as Safety Valve Surface Irrigation Effluent, Analysis of . . . Osiers for Storm Water Mangolds as a sewage crop ... Merthyr Tydfil. Works described. Cost of Works ... Remarkable Result of Inter mittent Filtration Surface Irrigation Effluent, character of ... Official misrepresentations Midden Towns. Character of Sew age from ^5o 81 *33 17 O Oakham. Mode of disposal Return from crops Overflows, Storm, indispensable Osier Beds for cleansing Storm Waters Official misrepresentation at Kendal Merthyr Tydfil ... | 66 29 30 4i 34 P Page Prickley comfrey ... ... ... 81 Profit from Sewage Farming ; how to be gained 80, 81 Q Qualifications of a Sewage Farmer ... 80 R Radford. Sewage Regulator Tank ) Mode of Disposal at ) ' Regulator, Sewage, for Villages, De- scription of 67 Read and Rawlinson’s, Messrs., Re- port 13,20,34,41 Retentive powers of soils, Influence of Rivers Pollution Commissioners Suggestion of Intermittent Filtration 12, 13 Standards proposed by ... 9 anticipated Objections to Intermittent Filtration removed ... 14 Road detritus 52 Rules to be observed in Filtration W orks 69 Rye Grass, Italian, as a Sewage Crop 81 S ... 32 9 , 12, i 33, 35 Sewage Disposal Works necessary at sea-board towns 6 Towns on Tidal Rivers ... 7 Towns, Inland ... ... 9 at Abingdon ... ... ... 44 Barnsley 57 Convalescent Hospital, Walton 69 Forfar ... ... ... ... 46 Halstead... ... ... ... 54 Hitchin 61 Kendal 39 Malvern, Great... ... ... 50 Merthyr Tydfil ... ... ... 33 Oakham 66 Radford and Earlsdon 67 Sewage, character of ... ... 17 Temperature of ... ... 27 Quantity of 18 Actual value of 23, 76 Chemists’ value 19, 75 Sewage Farming ... ... ... 75 Experiences and Results of the Author 75 profit from 82 Intermittent Filtration the safety valve of ... ... ... ... 79 Present mode of distribution ir- reconcileable with profit ... ... 79 Effect on Agriculture 80 Sewage Farmer, Qualifications of ... 80 Sewage Farm at Abingdon ... Barnsley... Barking ... Doncaster Forfar ... Heathcote Farm, Leamington Halstead Hitchin ... Kendal Malvern... Merthyr Tydfil ... Oakham Sewage Farms, Cultivation of Saleable crops for Buildings indispensable to profit Sewage for watering crops ... Sewage Effluent when available for re-use in trade Soils suitable ... unsuitable Analysis of at Barnsley Standards of purity recommended by Rivers Pollution Commissioners ... adopted by the Thames Con- servators Subsoil Water Surface Waters Sludge beneficial to land no bar to Irrigation or Filtration value of . . . Page 44 57 77 78 46 78 54 61 39 50 33 66 81 81 81 2 4 24 31 31 59 Solid matters distributed amongst 1 growing vegetation ... ... ... ) ' Storm Overflows ... ... ... 29 with Osiers ... . . 30 Surface Irrigation combined with In- ) termittent Filtration at Halstead... f ^5 at Malvern 52 at Abingdon ... ... 44 Salesmen of Sewage produce ... 81 T Temperature of Sewage Thames Valley Sewage Disposal .. Tidal Rivers, Towns upon ... Towns classified Towns Inland... Trade liquids ... Trade, Sewage Effluent available for Page 27 5 8 17 24 V Value of Sewage, chemical and ac- tual at Abingdon Barking ... Cheltenham Doncaster Leamington Value of Sewage Farms. Letting ... How it may be increased Voelcker, Dr. A., F.R.S. Report on Sludge and Sewage Manures . . . Analyses of Soils at Barnsley . . . 78 78 44 81 20 59 W Walton Convalescent Flospital Wanklyn, Analysis of Effluent Hitchin, by Professor Water Closet Towns. Character Sewage from Watering by Sewage... Wind as a Motor Engine at Halstead at of 69 65 1 7 24 55 55 HARRISON AND SONS, PRINTERS IN ORDINARY TO HER MAJESTY, ST. MARTIN’S LANE, Sonderabdruck. ^TT . ^ _M tAs\ // ^ / CA^0-y^ x 7 Land wirth schaftliche 'U^yOi ydH JAHRBUCHER. Zeitschrift fur x wissenschaftliche Landwirthschaft •T und Archiy des KonigM Prenssischen Landes - OeRonomie - Kollogiums. Herausgegeben von Dr. H. Thiel, Konigl. Geheimer Regierungsrath und vortragender Rath im Konigl. Preuss. Ministerium fur Landwirthschaft, Domanen und Forsten. BERLIN Verlag von Paul Parey Vcrlagshandlung fur Landwirthschaft, (Jartenbau und Forstwesca. 1883. Preis pro Jahrgang von 6 Heften (in Sa. 6o Bogen mit lithographirten Tafeln) 20 Mark. Alle Buchhandlungen und Postanstalten nehmen Bestellungen an. Stadtische Reinhaltung und Rieselung. Yon Alexander Muller in Berlin. (Aus einem an den Deutschen Landwirthschaftsrath erstatteten Bericht, welcher bei Ph. Cohen in Hannover erscheinen wird.) I. Mailand. In den Schriften und Berichten iiber Stadtereinigung begegnet man nicht selten der Angabe, dass in Mailand das Liernur- System eingefuhrt sei oder dass es Schwemmkanalisation und Spiiljaucbenrieselung habe und dass letz- tere dort aufs beste sich bewahre. Auch in einer Sektionsverbandlung der diesjahrigen Naturforscher-Versammlung in Freiburg i. B. — wurde der Stadt Mailand mit ihrer Berieselung als eines nachahmungswerthen Beispiels und Yorbiids Erwahnung gethan. Da bekanntlicb die Lombardei von Alters ber durcb ihre Bewasserungsanlagen beriibmt ist und fortdauernd nacb weiterer Ausdebnung und Vervoilkommnung derartiger Meliorationen strebt, da ferner aus klimatiscben Griinden die Spiiljauchen- Rieselung und Verwerthung gegen- iiber dem nordlichen Deutschland und sogar im Yergleicb mit England wesentlich giinstiger gestellt ist, indem die Lombardei unter Mitbenutzung von Quellwasser auf ibren Winterwiesen oder Marziten selbst bei Frostwetter Gras zu produziren vermag, zu einer Zeit, wo auf den Berliner und Danziger Rieselfeldern die notbdiirftige Unterbringung der Spiiljauche grosse finanzielle Opfer beiscbt und die miibvoll gescbaffene Grasnarbe mit Yernicbtung bedrobt ist, aus diesen Griinden batten die Mittbeilungen iiber die Mailander Spiiljauchen wirtbscbaft nicbts befremdlicbes, aber immerbin erscbien eine Lokalbesicbtigung die damit verbundenen Opfer aufzuwagen, und so entscbloss icb micb im vergangenen Sep- tember meine Reise von Freiburg bis Mailand auszudebnen. Am Platze batte icb mich fiir meine Zwecke der freundlichen Unterstiitzung der kompetentesten Sachverstandigen zu erfreuen, der Herren Professoren Dr. Korner, Cantoni und Borea an der landwirtbscbaftlicben Akademie, des Professors Dr. Carnelutti, Yorstebers der neubegriindeten bygienischen Unter- sucbungs-Station, und des Stadt-Ingenieurs Emilio Bignami. Was die Reinbaltung in der Stadt betrifft, so scbreitet man nacb gefalliger Mittbeilung des Herrn Stadt-Ingenieurs auf der Bahn vorwarts, welcbe bereits yor mebreren Dezennien betreten worden ist. Prinzip und Entwicklungsgang sind von Herrn Bignami in einer Reibe von Yeroffentlichungen auseinander gesetzt, und gebe icb bieraus nacbstebenden Auszug. Unter den Fragen, welcbe auf der Tagesordnung des ersten Kongresses der italieniscben Ingenieure und Arcbitekten standen, bandelte die eine von der Strassenpolizei der Stadte und Marktflecken, von dem besten System der Kanali- sation fiir die Ableitung des Regen- und Scbmutzwassers, von der besten Kon- struktion der Abortgruben und von der besten Metbode ibrer Entleerung und 216 Alexander Muller: endlich von den Fallen, in welchen die Einleitung aucli der Fakalien in die Kanale statthaft erscheint. Berichterstatter hierfiir war der Stadt- Ingenieur Emilio Bignami aus Mailand und leitete er die Frage mit einer Uebersicht uber die allgemein von Einheimischen und Fremden als befriedigend anerkannten Verhaltnisse der lombardischen Hauptstadt ein, indem er ein Bild gab sowohl von der Polizei uber, wie unter dem Erdboden, mit den Unterabtheilungen — fur die erstgenannte Polizei: 1. Das Kehren und Saubern der Strassen, 2. Das Abfahren des Strassen- und Hauskekrichts, 3. Das Besprengen der Strassen, 4. Das Abraumen des Scknees — fur die zweitgenannte Polizei: 5. Die Ableitung des Regen- und Schmutzwassers von Strasse und Haus und 6. Die Unterbringung der Fakalien. Betreffs der ersteren Abtkeilung sei nur erwahnt, dass die Reinkaltung der Strassen durch Submission an einen oder mehrere Unternehmer mit der notin' gen Mannschaft, welche theils aus standi gen, theils aus Hiilfsarbeitern besteht, ver- geben und durch stadtische Beamte dauernd und streng iiberwacht wird. Aller gesammelter Unrath wird auf 2, einige Kilometer von der Stadt entfernte Ab- ladestellen gefakren und von dem Unternehmer als Hunger verkauft. Ueber die Wegsckaffung des Kekrickts aus den Hausern und Hofen kontrakiren die Be- sitzer mit den Hiilfsarbeitern der offentlichen Strassenreinigung oder mit Land- wirtken. Die Bekaltnisse fur die Hausabfalle miissen vorschriftsmassig beschaffen, namentlich geschlossen und mit Abzugsrokr bis uber das Dach hinaus verseken sein. Die Abfukr erfolgt taglich oder in Zwischenraumen von wenigen Tagen in den ersten Morgenstunden und wirft den Hausbesitzern jahrlich je 20 — 100 Frcs. ab; der Pferdediinger wird nock viel hoher bezaklt. Die Strassenreinigung kostete 1873 61 500 Frcs., ausser dem Werth des Strassenkehrichts, der auf 15 000 Frcs. geschatzt wurde, aber den Unternehmern zufiel. Wie in alien grosseren Stadten steigerten sick auch in Mailand die Ausgaben fur die Strassen- reinigung von Zeit zu Zeit. Die Wegraumung des Scknees wird von der Stadtverwaltung besonders verdungen und nach der besckneieten Flache bezahlt; die Kosten sind sehr versckieden, im Ganzen aber unbedeutend, zwischen 25 000 und 200 000 Frcs. jahrlich. Mailand ist von zahlreicken bedeckten Kanalen mit fliessendem Wasser durchzogen; in diese wird durch die vorhandenen Oeffn ungen der Schnee ge- stiirzt und auf solche Weise binnen weniger Stunden aus der Stadt hinaus- geschafft. Zur Entwasserung ist Mailand mit einem vollstandigen unterirdischen Kanal- netz, welches sich in alle regulierten Strassen verzweigt, versehen, welches alles Regen wasser von den Strassen und den Hofen sowie das Wasser von den Brunnen und aus den Hausern aufnimmt und je nach dem Gefalle der Strassen in einen der vorhandenen 45 Kanale mit rinnendem Fluss -Wasser einmundet. Diese Anordnung beruht darauf, dass Mailand auf einer ziemlick gleichmassig von^NO nach SW abfallenden Ebene erbaut ist; die Sckwelle der Porta Nuova in dem hochstgelegenen Theil der Stadt liegt 2f m iiber der Sckwelle der P. Magenta,^7^-m uber der P. Ticinese und dm uber der P. Romana. Fur dasplecht, die Hauswasser in die Strassenkanale einzuleiten zaklt jeder Stadtische Reinhaltung und Rieselung. 217 Hausbesitzer jahrlich 0,86 Frcs.; ausserdem aber haben sie einen gewissen Bei- trag zur baulichen Unterhaltung und Reinigung der gen. Flusswasserkanale zu zahlen, welche zum grossten Theil nicht im Besitz der Stadt sind, sondern von Genossenschaften verwaltet werden. Betreffs der Behandlung der Fakalien ist Mailand den entgegengesetzten Weg gegangen, der in der neusten Zeit von den Grossstadten beschritten worden ist. Als die Stadt auf den Raum zwischen dem Kanal Seveso und dem Innen- graben (Fossa interna) beschrankt war, liessen begreiflicherweise die Hausbe- sitzer die Gelegenheit nicht unbenutzt, alle lastigen Abfalle jenen Kanalen zu iibergeben, und andererseits erfassten die fleissigen und klugen Monclie von Cliiaravalle bereits im 12. Jahrhundert die Idee, die an dfingenden Substanzen reichen Gewasser des Canale Yettabbia, in welchen die vorgenannten Stadt- kanale einmiinden, auf den Feldern im SW von Mailand durch Berieselung auszunutzen. Also was in England gegenwartig mit grossem Aufwand ange- strebt wird, war in Mailand schon vor 600 Jahren in Ausfibung und findet tbeilweise jetzt noch statt. Gegen dieses System der Stadtereinigung aber erhoben sich in Mailand scbwere Bedenken, hauptsachlich weil die Kanale 2mal jahrlich wahrend einer langeren Zeit trocken gelegt werden, weil einer dieser Kanale, die Fossa Interna, unbedeckt ist, wie auch der Kanal Yettabbia, welcher die Seveso-Kanale auf- nimmt; ferner weil die genannten Kanale weder eine wasserdichte Sohle noch geniigendes Gefalle haben und weil die Hauser, welche von den Kanalen ent- fernter und ausserhalb ihres Bereichs stehen, mit denselben durch besondere Leitungen verbunden werden miissen, in denen wegen mangelnder Spiilung sich leicht Niederschlage bilden zum Schaden des Untergrundes und der Luft. Deshalb stellten die zum Studium dieser Fragen ernannten Kommissionen als Prinzip auf, dass alle Hauser mit Abortgruben oder Kiibeln, deren Undurch- lassigkeit nach bestimmten Yorschriften gesichert werden musste, zu versehen seien und dass deren Entleerung nach einer von den stadtischen Behorden gebilligten Method e zu erfolgen habe. Demgemass gab es bereits 1873 in 5 303 Hausern 9 223 Abortgruben und 15 Kubel, wahrend nur noch 449 Aborte mit der Fossa Interna und den andern stadtischen Kanalen in Verbindung standen. Die Abortgruben sind im allgemeinen unter dem Boden der Hofe, viereckig mit gewolbten Wanden und Boden in Cement gemauert, und 2 m fiber dem Boden iiberwolbt und mit einer durch eine Granitplatte verschliessbaren OefP- nung in der Decke, sowie mit einem bis fiber das Dach geleiteten Dunstrohr versehen. Die Abfuhr erfolgt durch sogenannte pneumatische Apparate und wird durch mehrere Gesellschaften besorgt, deren einige die Fakalien unmittelbar von der Grube ab an die Landwirthe verkaufen, wahrend andere dieses erst von ihren Depots aus thun, wann und wie es ihnen am vortheilhaftesten erscheint. Ausserdem giebt es eine Gesellschaft , die Societa Yespasiana, welche die offentlichen Pissoire gepachtet hat. Die Stadt bestreitet die Einrichtungen fiber dem Fussboden, die Gesellschaft sorgt fiir einen diehten Behalter unterhalb des Fussbodens und verarbeitet den Inhalt in einer Fabrikanlage ausserhalb der Stadt bei Fontana an der Strada Comasina. Nach einigen weiteren Ausfiihrungen gelangt Referent zu folgenden Schluss- satzen : 218 Alexander Muller: 1. Fur die Polizei fiber deni Erdhoden ist das gemischte System mit einem oder mehreren Unternehmern und mit einer standigen, von der stadtischen Yerwaltung bezalilten und abkangigen Arbeitermannschaft eins der besten. 2. Ffir die Polizei unter dem Boden lasst sicli a priori und absolut gleich- miissig ffir alle Bevolkerungszentren ein bestimmtes System nicht auf- stellen, sondern konnen, je nack den versckiedenen Yorbedingungen, ver- sekiedene Systeme angewendet werden und sick nfitzlick erweisen. In den meisten Fallen ist das System der Gruben oder Kfibel mit ge- regelter Abfukr vorzuzieken, namlick ffir die Stadte, welcke in der Ebene liegen, keinen Ueberfluss von Wasser und keine Wasserleitung in den Hausern kaben; eine Entleerung der flfissigen Unratkstoffe in die offentlichen Kanale wfirde gestattet werden konnen, wenn diese be- deckt und durch reicklicke Mengen fliessendes Wasser gut gespfilt sind und wenn ausserdem besondere Kanale ffir das Meteorwasser vorhanden sind. Dagegen wfirde dem System der gemeinsamen Absckwemmung aller Unratkstoffe einsckliesslick der Fakalien (der engliscken Sckwemm- kanalisation) der Vorzug zu geben sein, wo die natfirliche Lage der Stadt den Kanalen ein starkes Gefalle sichert, wo zur Spulung derselben grosse Wassermengen vorkanden sind, wo es besondere Strassenkanale ffir das Meteorwasser giebt, wo die Sckwemmkanale wasser- und luft- dicht kergestellt werden, und weit von der Stadt in das Meer, in einen \ See oder Fluss einmfinden, oder noch besser ikren Inkalt fiber Gefilde ergiessen, welcke damit okne Scliadigung der offentlichen Gesundkeit i gewassert und gedfingt werden konnen. Im Jakre 1879 widmete derselbe Verfasser der „Hygiene der Stadte “ einen besonderen Aufsatz, welcker durch das Giornale della Societa Italiana dTgiene, Numero III, 1879, veroffentlicht worden ist; wir entnehmen dieser Mittheilung j nachstehende Erganzungen und Erlauterungen. Die Riesellandereien im Sfiden von Mailand besteken zum grossten Tkeil j aus den frfiheren Besitzungen der Kloster von Ckiaravalle und Yiboldone, sind aber jetzt in den Handen vieler und versckiedener Eigenthfimer. Das Kanal- wasser wird 3 Mai ausgenutzt; die ganze Wassermasse, welche aus der Stadt herauskommt. wird zunachst fiber eine Flache von ungefakr 785 ha , die frukere Besitzung der Moncke von Ckiaravalle, geleitet und berieselt, hauptsachlich standige Wiesen, dagegen nur wenige Felder. Nack dieser ersten Ausnutzung gelangt das sogenannte Seihwasser (Co- latura) mit dem Quellwasser, welches sick ikm in den Kanalen zugesellt und ungefakr die doppelte Menge betragt, auf niedriger gelegenes Land, welches frfiher den Moncken von Yiboldone gekorte, ca. 325 ha\ das Seihwasser von diesem dient endlich mit den weiteren Zuflfissen zur Berieselung einer dritten Zone, welcke noch tiefer liegt und ungefahr 260 ha betragt; das sckliessliche Abflusswasser lauft augensckeinlick vfillig gereinigt in den Fluss Lambro. Ein anderer Tkeil der stadtischen Schrautz wasser lauft durch die aus dem Sckifffakrtskanal Martesana gebildete Fossa Interna in die Darsena di Porta Ticinese ab. Stadtische Reinhaltung und Rieselung. 219 Gemass dem Ortsstatut fiber die Abortgruben gelangen aus den neuen Hausern gar keine Fakalien mehr und nur noch aus sehr wenigen alten Hausern in jene Kanale, sondern sie werden abgefahren und hauptsachlich im Norden der Stadt als Diinger verwendet, wo es keine Berieselung, jedoch einen ausgedehnten Gartenbau giebt. Es erubrigt noch mehreren alten Kanalen namentlich der Vettabbia und Fossa Interna eine wasserdichte Sohle und Wandung zu geben, damit der Unter- grund und die Brunnen vor nachtheiliger Infiltration geschfitzt werden. Leider sind jene fur den Untergrund so wichtigen Kanale der Verwaltung der Stadt entzogen. Unter den anderen Italienischen Stadten hat Neapel lange Berathungen fiber seine Reinhaltung gehabt und scheint der Berieselung zuzuneigen. In Rom will man Alles in den Tiber abschwemmen, indem man dieses ffit das Biiligste halt und zugleich keine Gefahr daraus fur die Gesundheit furchtet. Ein solcher Beschluss wfirde schwer zu begreifen sein, da Rom von wusteii Landereien umgeben ist, welche der Kultur und Dungung harren, um ertrags- fahig und gesund zu werden. In Palermo soil aller Unrath in das Meer abgeschwemmt werden, da es angeblich aus den verschiedensten Grfinden ganz unmoglich ist, denselben land- wirthschaftlich auszunutzen. Ffir die kleineren Stadte schlagt Ingenieur G. Parovicini vor, den flussigen Unrath abzuleiten und die festen Stoffe abzufahren, ein Vorschlag, der schwerlich Beifall finden wird. Yerfasser ffihrt zum Schluss die vom Kongress der italienischen Ingenieure und Architekten 1872 gefassten Resolutionen an, welche sich theils mit den frfiher vom Yerfasser vorgelegten Satzen decken , theils dieselben erweitern, indem sie zunachst das Liernur- System empfehlen, wo neue Stadt viertel nach einem gemeinsamen Plan errichtet werden. Ffir die Einffihrung des Schwemm- systems setzen sie immer eine doppelte Kanalisation voraus, die eine hoher ge- legte zur Aufnahme des in die Stadt geleiteten Flusswassers, des Strassen- und Dachwassers und anderer wenig verunreinigter Abwasser, die andere tiefer ge- legte zur Aufnahme von allem flfissigen Unrath einschliesslick der Fakalien, aber vollstandig dicht vom Boden und der Luft abgeschlossen und nur mit der erstgenannten Kanalisation durch dicht verschliessbare Oeffnungen kommunizirend. Die Behorden der grossen und kleinen Stadte mogen mehr als bisher mit den hygienischen Fragen sich befassen und sie nicht dem Urtheil unfahiger Personen fiberlassen, sondern sich fiberzeugt halten, dass die Losung dieser schwierigen Fragen viel Erfahrung und Studium voraussetzt. Ueber Einffihrung des Liernur- Systems war berathschlagt worden^ als die grosse Galleria di Yittorio Emanuele gebaut wurde, aber ffir diesen Ge- baudekomplex allein lohnte der Betrieb der pneumatischen Entleerung zu wenig, und von einer allgemeinen Einffihrung in der ganzen Stadt sah man ab, weil man grosse Schwierigkeiten ffirchtete, theils wegen der Rohrlegung in den zahlreichen engen Strassen, theils wegen der Kosten, welche durch die dazu nothigen Hauseinrichtungen verursacht und von den Hausbesitzern schwerlich fibernommen werden wfirden. Uebrigens ist die jetzige Fakalabfuhr auf die Dauer unhaltbar und bei den hohen Preisen, welche die benachbarte Landwirth- 220 Alexander Muller: schaft fur Diinger bezahlt, verdient die Frage, ob das Liernur-System sich doch verzinsen wiirde, einer weiteren Erwagung. An Emfuhrung der englischen Schwemmkanalisation ist aber prinzipiell nicht zu denken, so lange es in Mailand keine systematische Wasser versorgung in alien Hausern und Etagen giebt. Wann die hierauf abzielenden Projekte einmal zur Ausfuhrung gelangen werden, ist noch nicht abzusehen. Die beabsichtigte Erwerbung eines ergiebigen Quellengebietes ist ganz neuerdings seitens der betreffenden Besitzer und Nutzniesser, wie des Staates, auf, wie es scheint, unfiberwindliche Hindernisse gestossen. Da Mailand am Fusse der Alpen auf einer ausgedehnten Gerollschickt liegt, sollte man meinen, dass nach Menge und Gute vollbefriedigendes Wasser aus dem Grundwasserstrom zur Yerfugung stande, wie solches seit Jahren mit bestem Erfolg bei Augsburg fur die Wasserleitung benutzt wird — jedenfalls ist das Grundwasser im Norden von Mailand besser, als das zur Zeit inner- lialb des Weichbildes durch die Hof- und Strassenbrunnen zu Tage geforderte! Yon der Berieselung mit Mailander Schmutz wasser hatte ich auf der Cascina dei fratelli Guzzelloni, wohin Herr Prof. Borea mich zu geleiten so gutig war, ein paar Kilometer siidlicli von der Stadt die beste Gelegenheit. Das ganz plangelegene Areal war in 2 — 3 ha grosse rektangulare Parzellen ausgelegt, welche durch 4 — 6 m hohe heckenartige Weidenpflanzungen, durch Wasser- graben und Wege von einander abgegrenzt waren. Trotz des unbedeutenden natiirlichen Gefalles ist man auf Grund genauer Nivellements durch geringen Ab- und Auftrag von Boden im Stande, der gesammten Oberilache eine etagen- i fbrmige Gestaltung zu geben, so dass das an die hocksten Punkte aufgeleitete Rieselwasser 4 — 5 Mai von der hochsten bis zur niedrigsten Etage benutzt ■ werden kann. Der grosste Theil des Landes dient als Rieselwiese; nach etwa 4 Jahren bricht man die Wiese um und bestellt sie mit Getreide, gewohnlich mit Mais zu Kornerbau. Reiskultur ist wegen gesundheitlicher Riicksichten in der Nachbarschaft der Stadte polizeilich verboten; ausserdem bedarf die Reis- pflanze mehr des Wassers, als des Diingers und ihr Anbau ist wegen der iiber- { seeischen Konkurrenz jetzt weniger lohnend als friiher. Nach dem nicht be- rieselten Getreide saet man Raygras und Rothklee ein ; nach den ersten Schnitten nehmen wilde Graser mit einigen krautartigen Futterpllanzen uberhand und liefern ein paar Jahre in geschlossener Grasnarbe vortrefflickes Griinfutter, welches grosstentheils als solches ausgenutzt, zum Theil aber auch in untadel- haftes Heu verwandelt wird. In 10 — 11 Schnitten sollen bis 200 000% Gras pro Hektar gewonnen werden. Das Wasser zum Rieseln entstammt dem Kanal Yettabbia, welcher das uberschiissige Wasser des Mailander Schifffahrtskanals im Sudwesten der inneren Stadt aufnimmt. Dass das Wasser der Yettabbia recht schmutzig ist, lehrt der Augenschein, aber es ist doch weit davon entfernt, stadtische Spiiljauche zu sein, wie sie von der englischen Schwemmkanalisation erzeugt wird. Analysen konnten rair nicht mitgetheilt werden; das Wasser ahnelte dem Wasser der Spree vor 10 Jahren unterhalb Berlins bei Charlottenburg oder im Spandauer Schifffahrtskanal; es enthalt zweifelsohne eine Menge dungender Bestandtheile, aber wichtiger als die Qualitat erscheint fur den Landwirth die Quantitat, welche fiir die verschiedenen Landgiiter ein fur allemal fest normirt ist. Das Wasser setzt nur wenig Schlamm ab; was es an diingenden Bestandtheilen fur die verlangten reichen Grasernten zu wenig enthalt, ergiinzt man durch kiinst- Stadtische Reirlhaltung uud Rieselung. 221 liche Dungerzufuhr. Alljahrlich werden die Rieselwiesen mit einem Kompost abgediingt, den man aus Grabenauswurf, Strassenkoth und Stallmist oder stadtischem D ung bereitet; schwacher begraste S telle n auf den Wiesen diingt man extra mit Jauche oder veidiinnter La- trine. Hiernach allein ist es ersichtlich, dass Mailand keine Spiiljaucben- rieselung besitzt, bei welcber man auf gegebener Flache mit einem Ueberschuss von Dunger kampft, sondern Bachwasserrieselung mit besonderer Dungerzufuhr! Die Grasproduktion wird zum weitaus grossten Theil im Stall an 30 bis 40 Schwytzer Kiihe und einiges Jungvieh verfiittert; zur Yerwerthung der Milch wird Parmesankase fabrizirt. Die ganze Wirthschaft machte einen sehr giinstigen Eindruck und zeugte von grosser Ordnung und Intelligenz im Betrieb, etwas an das siidliche England erinnernd. II. Bunzlau in Sohlesien. Auf der Hygiene-Ausstellung in Berlin 1883 war ein Plan der Stadt Bunzlau mit Darstellung der Wasserleitung, Kanale und Rieselflachen nebst kurzer Be- schreibung der dortigen Verhaltnisse vom Stadtbaurath Doerich daselbst aus- gestellt. Wir entnehmen der im Selbstverlag des Yerfassers erschienenen Schrift folgendes. Die Kreisstadt Bunzlau liegt am Bober im Regierungsbezirk Liegnitz; der Bahnhof hat 192 m Meereshohe; bei der Yolkszahlung am 1. Dezember 1880 betrug die Einwohnerzahl 10 667. Das Hauptgewerbe am Orte ist das Topfer- gewerbe und die Thonwaarenfabrikation. Aus der Chronik und dem Stadt-Urbarium, wie auch aus alten Gedichten, geht hervor, dass die Wasserleitung, die Kanale, welche als „verborgene Gange unter der Erden“ bezeichnet sind, und die Berieselung von Garten und Wiesen zusammen bereits im Jahre 1559 bestanden haben und daher diese Anlagen nachweisbar jedenfalls die altesten gewesen sind. Dieselben mogen allerdings sehr primitive!* Natur gewesen sein, doch sind sie im Allgemeinen praktisch angelegt worden, und wird kaum eine Stadt von ahnlicher Grosse anzutreffen Sein, welche Wasserversorgung, Kanalisation und Berieselung zusammenhangend mit solchen und in neuerer Zeit verbesserten und vervollstandigten Anlagen besitzt. A. Die Wasserversorgung. Die Wasserversorgung der Stadt erfolgt durch Quell wasserleitungen ; das Wasser wird von den Sammelbrunnen am Driisselberge im Osten der Stadt und aus dem Queckbrunnen, sowie aus 4 in der Nahe desselben befindlichen kleinen Quellbrunnen durch natiirliches Gefalle in die Stadt geleitet. Die Gesammtlange der von der stadtischen Bauverwaltung auf Kosten der Stadtgemeinde zu unterhaltenden Wasserleitung betragt 10 127 laufende Meter. Die Leitungen bestehen zum weitgrossten Theile aus gebohrten holzernen 222 Alexander Muller: Rohren von 65 — 90 mm lichter Weite. In einigen Strassen wurden Yersuche rait Thonrohren gemacht; die letzeren haben sich indessen nicht bewabrt, weil sehr oft Bruche vorkamen und die Muffenverbindungen undicht warden 1 ), sie wurden daber beseitigt und durcb eiserne Rohren ersetzt. Es wird darauf Be- dacbt genommen, die holzernen Rohren nacb und nacb durch stebend gegossene eiserne Rohren zu ersetzen und gescbieht dieses jedesmal auch bei Erneuerung nur kurzer Strecken. Bei grosser Trockenheit tritt in einem Tbeile des Quellen- gebietes Wassermangel ein. Oeffentlicbe Brunnen mit Pumpe sind nur 5 vorhanden, ausserdem jedoch 35 offentliche Wasserdruckstander (Laufstander). Auf den Privatgrundstiicken der Yorstadte befinden sich 160 Brunnen mit Pumpe, ebenso auf den Privatgrundstiicken besonders der inneren Stadt 160Druck- stander. Der haufige Missbraucb des Wassers veranlasste die stadtische Behorde im Jahre 1873 ein Regulativ fur Benutzung der stadtischen Wasserleitung auf- zustellen. Die Entnahme des Wassers ist eine unentgeltliche und nur fur die Yer- wendung desselben fur Fischhalter (jetzt auf 8 Privatgrundstiicken) ist fiir jeden ein jahrlicher Wasserzins von 6 Jt zu zahlen, wofiir die Entnahme des Wassers durcb einen immerwahrenden laufenden Strahl mit einer Ausflussoffnung von 2 mm Durcbmesser gestattet ist. Die Wasserversorgung in Hausleitungen ist nur in wenigen Fallen aus- gefiihrt und gescbieht dieselbe durch Befordern des Wassers durcb Handbetrieb (in einem Falle durch Gasmotor) in hoher stehende Reservoirs; es sind daber die Wasserklosets im Allgemeinen nicbt eingefiibrt und sind nur einige vorhanden. Privatwasserleitungen, welcbe aus Privatbrunnen versorgt werden, sind einige angelegt, die letzteren befinden sich ebenfalls in der Um- gebung der stadtischen Quellbrunnen. Die Qualitat des Quellbrunnenwassers ist eine vorziigliche und zugleicb die Versorgung eine so reicblicbe, dass, obne Wassermangel befiirchten zu diirfen, an den Endpunkten der Leitungen, sowie aus mehreren innerbalb der Leitungen vorhandenen Fontainen und Laufstandern ununterbrochen Wasser abfliessen kann, was auch wesentlich zur Spiilung der Kanale beitragt. Yon der Wasserleitung vom Drusselberge aus kann dieses jedoch nicbt gesagt werden. Die Qualitat des Wassers ist keine besondere, und ebenso tritt bei anhaltender Trockenheit Wassermangel ein. Auf verscbiedenen Stellen in den Strassen, ziemlicb gleichmassig vertbeilt, sind in der Wasserleitung Hydranten zum Anschrauben der Spritzenscblaucbe eingeschaltet. B. Die Kanalisation. Nacb der Cbronik sind in der inneren Stadt die Kanale bereits im Jahre 1559 angelegt gewesen und zwar gemauert und gewdlbt, und nur in den offen ge- legenen Stadtgraben floss das Kanalwasser in Graben ab. Wie aus dem Stadt- plan zu ersehen, sind diese Kanale an der Riickseite der Hauser angelegt worden, welcbe Anlage dadurch viele Yortbeile bietet, dass auch gleichzeitig die Grund- 1) Bei der Schwemwkanalisation stehen die Thonrohre allerdings nicht unter hohem Druck, aber Bruche komiuen wegen Bodenverschiebung auch vor, nur dass sie sich nicht so leicht ver- ratheu, wie bei den Wasserleituugen, A. M. Stadtische Reinhaltung und Rieselung. 223 stiicke an der Riickseite (auf den Hofen) mit Wasserleitung versehen sind and daher fiir den Abfluss des iiberfliissigen Wassers und die Spiilung der Kanale gesorgt ist. Die Kanale sind hauptsachlich fur Abfuhrung des Kuchen- und Hauswassers bestimmt, wie aus dem nachstehend abgedruckten Ortsstatut uber die Kanalisation zu erseben ist, und diirfen danach keine thierischen und menschlichen Exkremente in die Kanale geleitet werden. Es sind jedocli von alten Zeiten her auf ca. 60 Grundstiicken Aborte vorhanden, welche direkt auf den Kanalen stehen , und ist das Yerbleiben derselben vorlaufig erlaubt. Die Entleerung der Wasserklosets in die Kanale ist durch Ertheilung der Erlaubniss fur jeden einzelnen Fall gestattet. Ausserdem werden noch die Abgange von 10 konzessionirten gewerblichen Schlachtereien, welche auf Grundstiicken vor- handen sind, unter welchen sich Kanale befinden, von den letzteren aufgenommen. 1m iibrigen besteht das Senkgrubensystem. Vor dem Zufiillen der Stadtgraben warden in denselben, an Stelle der friiher zur Abfuhrung des Kanalwassers vor- handen gewesenen Graben, besteigbare, gemauerte, mit Stein platten abgedeckte Kanale hergestellt. Die Dimensionen der alten Kanale sind sehr verschieden und nur auf einigen Stellen von so geringem Querschnitt, dass beim Reinigen derselben ein Hineinkriechen stattlinden muss, und sind kier die Einsteigoffnungen in geringeren Entfernungen angebracht; im Allgemeinen sind sie begehbar. in neuerer Zeit wird darauf Bedacht genommen, vor Um- und Neupilastei ungen in den Strassen Tkonrohrkanale anzulegen, auch wenn dieselben nur zur Auf- nahme des Regenwassers dienen sollen, und ist gemass des Ortsstatuts jeder Grundstiickbesitzer verpflichtet, ausser den Haushaltungsrohren auch die Dach- t abfallrohren durch Zweigleitungen an den Strassenkanal anzuschliessen. In Folge der Lage der Stadt auf nach Westen zum Bober sich abdachenden Terrains ist das Gefalle ein sehr giinstiges und bereitet die Erweiterung des Kanalnetzes nach und nach und von Fall zu Fall keine Schwierigkeiten ; es ist daher auch nicht erforderlich, die Kanale zur etwaigen Erzielung grosseren Ge- falles etwa an einzelnen Stellen tiefer zu legen, als sonst etwa nothwendig ist, so dass das vorhandene Gefalle der Strassen auch fiir die Kanalanlage be- nutzt werden kann. Die Lange der massiven Kanale von Mauerwerk betragt 3718 laufende Meter, die der Thonrohrkanale 1436 laufende Meter. Auf die Erweiterung und Vervollstandigung, sowie Verbesserung des Kanalnetzes wird fast jahrlich Riicksicht genommen. Die gemauerten Kanale haben einen viereckigen Querschnitt, die alten Kanale sind mit Gewolbe von Sandstein versehen, die neueren werden mit Granitplatten abgedeckt. Die neugebauten massiven Kanale haben solche Dimensionen erhalten (1,20 m hoch, 0,80 m breit), dass ein bequemes Begehen derselben moglich ist. Die Grosse der Kanale ist im Allgemeinen eine derartig angemessene, dass sie bis jetzt bei den grossten Regengussen das Wasser vollstandig aufgenommen haben. Auch fur die neuen Kanale, welche massiv von Mauerwerk hergestellt werden, wird der viereckige Querschnitt beibehalten, weil sie bei dem dortigen Bau- material (Sandstein) die billigste Ausfuhrung gestattet; nur erhalten dieselben nicht, wie die alten Kanale, eine platte, sondern eine der Eiform ahnliche ab- gepflasterte Sohle, um ein Zusammendrangen des Wassers in derselben zu er- moglichen. Wo das Querprofil ausreichend ist, werden in neuerer Zeit von Innen und Aussen glasirte Thonrohren verwendet, mit einem kleinsten Durch- 224 Alexander Muller: niesser von 0,40 m bis zum grossten von 0,50 m. Die Yerdichtung der Muffen derselben geschieht durch Theerstricke und Thon. lm Allgemeinen ist die Abfiihrung der Unreinigkeiten eine ununterbrochene und bleiben keine Stoffe liegen; die Kanale halten sich vielmebr von selbst rein. Eine Hauptreinigung derselben geschieht jahrlich einmal durch Handarbeit, um die liegen gebliebenen Sinkstoffe, welche grosstentheils nur aus schlammigem Sande bestehen, zu beseitigen, und sind diese Ablagerungen nicht bedeutend. Diese Reinigung geschieht, soweit die Kanale auf den Privatgrundstiicken liegen, auf Kosten der Besitzer derselben durch die stadtische Bauverwaltung und im Uebrigen fur Rechnung der letzteren. Im Jahre 1881 haben die Kosten fur Reinigung der Kanale fur stadtische Rechnung 120 Ji und fur Rechnung der Besitzer der Privatgrundstiicke 130 JH betragen. Ebenso liegt den Besitzern dieser Grundstiicke die Yerpflichtung ob, die Kanale, soweit sie diese Grund- stiicke beriihren, auf eigene Kosten zu unterhalten. Wo, wie bei den alten Kanalanlagen, gleichzeitig die Wasserleitung ganz in der Nahe ist, ist eine Reinhaltung der Kanale sehr begiinstigt, auch erhalt ein Theil der Kanale immer- wabrende Spiilung durch das aus dem Promenadenteiche abfliessende Wasser, in welchem wieder das aus dem Queckbrunnen abfliessende Wasser geleitet wird. Die Tiefe der Kanale ist eine sehr verschiedene; der sehr tiefe Stand des Grundwassers bedingt nicht die Anlegung derselben in einer solchen Tiefe, um etwaiges Grundwasser aus Kellerraumen beseitigen zu konnen. Die Kanale haben daher auch nur eine solche Tiefe, als nothwendig ist, um ausreichenden Abfluss fur die anzuschliessenden Privatleitungen zu haben, oder bei den Thon- rohrkanalen, urn beim Befahren der Strassen durch Lastfuhrwerk den Druck ^ aushalten zu konnen. Die grosste Tiefe betragt bei den gemauerten Kanalen 3 m, bei den Thonrohrkanalen 2,80 m bis zur Sohle. Die von dem Strassenwasser mitgefiihrten Stoffe geben, da sie grossten- theils aus schwerem Sande bestehen, vorzugsweise zu Ablagerungen in den unter den Strassen belegenen Kanalen Anlass und ist daher unbedingt die An- lage von Schlammfangen, besonders fur die Thonrohrkanale, welche nicht mit der Hand gereinigt werden konnen, an den Einlaufen fur das Strassenwasser nothwendig. Dieselben werden mit Wasser verschluss versehen, um das Heraus- stromen des iiblen Geruchs aus den Kanalen nach der Strasse zu verhindern, und bestehen aus Klinkermauerwerk mit Cementmortel und Cementverputz, mit gusseisernen Kriimmen, welche an das Abfallrohr angesetzt sind, in das Wasser des Schlammfangs tauchen und beim Reinigen des letzteren entfernt werden konnen. Ebenso werden Wasserverschliisse durch Zungenmauerwerk hergestellt, welche den Schlammfang derart theilen, dass sie bis unter das Niveau des Ab- fallrohrs von oben hinabreichen. Bei den alteren Kanalen werden diese Schlammfange, da sie sich als zweckmassig erweisen, besonders zur Beseitigung des Herausstromens des iiblen Geruchs durch die Strassengitterroste, nach und nach angebracht; bei den neueren gleich bei der Anlage derselben. Die Verbindung der Hauser mit dem Kanalnetz, wo solches in den Strassen liegt, geschieht durch Thonrohren und erhalten die Schlammfange auf den Privatgrundstiicken ebenfalis Wasserverschliisse. Die Entwicklung vieler iibel- riechender und unter alien Umstanden schadlicher Gase in den Kanalen bleibt nicht aus, wenn auch alien gestellten Anforderungen in Beziehung des ununter- brochenen Ablaufes aller Fliissigkeiten Geniige geleistet ist und wird eine Venti- lation noch dazu durch die Anbringung yon Schlammfangen mit Wasser verschluss Stadtische Reinhaltung und Rieselung. 225 in den Strassen ausgeschlossen. Durch das Ortsstatut ist nun bestimmt, dass die Besitzer der Grundstiicke die Dachabfallrohren ibrer Hauser durch Thon- rohrleitungen mit dem Strassenkanal in Yeibindung bringen miissen, wodurch eine ausreichende Ventilation des Strassenkanals geschaffen und ebenso die Un- annekmlichkeit des Bespiilens des Trottoirs mit Regenwasser und das Auf- eisen des Rinnsteins im Winter bei Frost, sowie aucli das Zufrieren der Dach- abfallrohren beseitigt ist. Auch fur die Dachabfallrohren ist die Herstellung eines gemauerten Wasserfanges mit einem 20 cm tiefen Schlammfang vor- geschrieben, um Dachziegelstucke, Kalkbrocken u. s. w. nicht in die Thonrohr- leitungen gelangen zu lassen und Verstopfungen zu vermeiden. Wegen etwa vorzunehmender Reinigung und Besichtigung der Kanale in den Strassen sind an den Ecken derselben, resp. in gewissen grosseren Ent- fernungen Einsteigeschachte von Klinkermauerwerk in Cementmortel und mit Cementverputz und mit Abdeckung von in gefalzten Granitschwellen liegenden Bohlen hergestellt. Die Abdeckung mit solchen statt mit eisernen Deckplatten hat den Vorzug, dass bei Frostwetter die ersteren sich leichter entfernen lassen. Diese Einsteigeschachte sind bei den Thonrohrkanalen unten mit einer solchen Weite und Tiefe angelegt, dass man sich bequem bucken und in den Kanal kineinsehen kann. Das Hinabsteigen in den Einsteigeschachten geschieht mittelst eiserner Steigeisen, welche in die Wande eingemauert sind. Die Reinigung derselben geschieht in Zeitraumen von 2 Monaten und die Reinigung der Strassen- schlammfange vierwochentlich. Im Allgemeinen hat sich die Kanalisation bis jetzt bewahrt. Das Gefalle der Kanale ist ein sehr giinstiges, die Reinigung derselben, wegen der un- bedeutenden Schlammablagerung jahrlich nur einmal, macht keine grossen Schwierigkeiten und Kosten, und ebenso sind die Dimensionen derartig, dass noch nie Ueberschwemmungen der Strassen, Hofe oder Hauser stattgefunden haben. Es hat sich auch in Folge dessen ein grosseres Interesse fur die Er- weiterung des Kanalnetzes gezeigt, und werden die Annehmlichkeiten nicht ver- kannt, welche durch das Vorhandensein der Kanalisation fur die Reinlichkeit der Strassen und Hofe geschaffen werden, und ebenso wird anerkannt, welchen gunstigen Einfluss dieselbe auf den Gesundheitszustand der Einwouner ausiibt. Jedenfalls zeichnet sich die Stadt Bunzlau vor anderen gleich grossen und auch grosseren Stadten der Provinz Schlesien durch die grosse Reinlichkeit und Sauberkeit der Strassen aus, welche auch nur in Folge der Kanalisation zu er- zielen ist. Orts-Statut vom 6. April 1880, betreffend die Kanalisirung der Stadt Bunzlau. § 1. In denjenigen Stadttheilen und Strassen, welche seitens der stadtischen Verwaltung mit unterirdischen Entwasserungs-Anlagen (Strassenkanalen oder Strassenrohren) versehen sind oder kiinftig versehen werden, muss jedes bebaute Grund stuck durch ein in dasselbe einzufiihrendes Rohr — Hausableitungsrohr — an den Strassenkanal oder das Strassenrohr behufs Abfuhrung der Regen-, Haus- und Wirthschaftswasser, sowie des zu gewerblichen Zwecken benutzten Wassers angeschlossen werden. Die Ableitung von Abfliissen aus Stallen, Retiraden und Diingergruben, sowie von menschlichen und thierischen Exkrementen ist nicht gestattet, und Lsndw. Jahrbucher, XTIT, 15 226 Alexander Muller: werden derartige Anlagen nur in jedem einzelnen Falle nach geschehener Be- gutachtung seitens der stadtischen Verwaltung erlaubt. — - — Orts-Polizei-Verordnung vora 16. Marz 1880, betreffend die Herstellung von Entwasserungs-Anlagen auf Grund stricken. Feste Stoffe, wie Kiichenabfalle, Mull, Kehricht, Schutt, Sand, Asche und dergleichen, ferner menschliche und thierische Exkremente diirfen durch das Hausleitungsrohr nicht abgeleitet werden. — — — — — C. Die Berieselung. Dieselbe besteht so lange, als die Wasserleitung und die Kanale vor- handen sind. Durch das Kanalwasser werden in der Nieder-Vorstadt 14,75 ha Flache bewassert und zwar die sogenannten Lohgarten und ausserdem die zum stadtischen Dom. Tillendorf und dem Yorwerk Wilhelmshof gehorigen Wiesenflachen. Die sogenannten Lohgarten sind durchgehends mit Obstbaumen bepflanzt. Yon den berieselten Flachen sind 5 ha Gartenland Klasse I, 6f ha mit Kiesuntergrund Klasse II und 3 ha Sandboden Klasse III. Die einzelnen Berieselungsflachen variiren zwischen 25 — 75 a. Sammtliche bewasserte Flachen mit Ausnahme eines Lohgartens von 42 a Grosse sind mit Gras bewachsen. Auf der vorangegebenen Flache von 42 a wird seit mehreren Jahren Gemiise gebaut und ist der Ertrag ein sehr be- deutender, denn der Pachter zahlt pro Jahr 160 Jft Pacht an den Eigen th umer. Da uberhaupt die Bewasserung der qu. Flachen so vortheilhaft ist, achten die betreffenden Eigenthiimer im eigenen Interesse darauf, dass die Zeit, in welcher der Reihenfolge nach die Bewasserung geschehen kann, genau inne- gehalten wird. Die Berieselung durch die offenen Graben geschieht das ganze Jahr hin- durch, sowohl im Sommer als auch im Winter bei strengster Kalte, ohne der Graswurzel zu schaden. Klee ist jedoch nicht zu erzielen. Das Gras kann 4 — 5 Mai im Jahre geschnitten werden und ist daher der Ertrag der Wiesen ein sehr hoher. Der Durch schnittsertrag derselben ergiebt pro Jahr ein Quantum von 8 — 9000 kg Heuwerth pro Hektar. Nach den Wiesen des Dom. Tillendorf wird das Kanalwasser durch ein aus Bohlen bestehendes Gerinne geleitet. Die Besitzer der Lohgarten haben seit Menschengedenken Obst- und Grasnutzung gezogen und hat ihnen friiher die Obstnutzung den hochsten Ertrag gewahrt. Die Obstnutzung stand ihnen in erster Reihe und dieser war die Winter- bewasserung weniger zutraglich auf der angegebenen Bodenart. Dieses hat sich geandert. Die Futter- und Milchwerthe haben gegen die Obstnutzung das Uebergewicht erhalten und halten es die Lohgartenbesitzer fur rationell, den Graswuchs zu bevorzugen und deshalb auch das Rieselwasser mit seinen Fett- theilen(?) zu benutzen. Die Kultivirung von Obstbaumen auf den Rieselflachen, namentlich auf sandigem Boden, wird jedoch fur zweckmassig gehalten. Yersumpfungen haben bisher nicht stattgefunden , ebenso wenig besteht irgend welche Drainage. Beschwerden von Nachbarn des Rieselterrains iiber Yersumpfungen sind nicht bekannt ge worden, ebenso nicht gesundheitsschadliche Einflusse. Die in Beziehung auf die Berieselung gemachten Angaben beruhen auf den giitigen Mittheilungen des Herrn Dominialpachter Jungfer zu Tillendorf. Stadtische Reinhaltung uod Rieselung. 227 Auf die Kanalisation und Berieselung von Bunzlau ist bereits vor einigen Jabren in einer Zeitschrift als anf ein Vorbild fiir Schwemmkanalisation und Spuljauchenwirthschaft bingewiesen worden — jedocb mit Unrecbt, denn Bunzlau hat ja keine Fakalabschwemmung und desbalb auch keine ecbteSpiiljauche, sondern nur Haus- und Gewerbewasser, welches durch iiberschussiges Wasserleitungs- Wasser und durch meteorische Niederschlage in wechselndem Masse verdiinnt wird. Gesetzlich sollen „ keine thierischen und menschlicben Exkremente in die Kanale geleitet werden" und thatsachlich gelangen auch nur wenige liinein, speziell Wasserklosets sind nur in sehr geringer Anzahl vorhanden. Die Fakalien werden rneist in sog. dichten Gruben gesammelt und zeitweilig von den um- wohnenden Landwirthen abgefahren. Auch wenn man dieses nicht wiisste, so lehrt der Augenschein, dass das Bunzlauer Sielwasser keine englische Spiil- jauche ist, sondern einem schmutzigen Bachwasser ahnelt, wie man es haufig unterhalh dichtbevolkerter Dorfer zu beobachten Gelegenheit hat. Es mag etwa 30fach verdimnter Spiiljauche gleichgestellt werden. Chemische Analysen sind nicht bekannt; das Anerbieten, eine solche an einer eingesendeten Probe gratis auszufuhren, hat keinen Erfolg gehabt. Demgemass darf man bei Bunzlau auch nicht von Spiiljauchenrieselung sprechen, sondern nur von Rieselung mit dungreichem Bachwasser. Ueber die Vortheilhaftigkeit solcher Rieselanlagen ist kein Wort zu ver- lieren, sie ist allgemein anerkannt. Eine schadliche Yerschlickung oder ein Ausfaulen und Ausbrennen kann leicht vermieden werden, wiirde sogar ein sehr schlechtes Licht auf den Betrieb werfen. Auch war Ende Mai 1883 der Stand der Bunzlauer Rieselwiesen ein ebenso erfreulicher wie derjenige der Berliner ein trauriger. Der vom Stadtbaurath Doe rich angegebene jahrliche Ertrag an Heuwerth pro Hektar ist unter diesen Umstanden ein auffallend niedriger — es scheint danach wahrend des Sommers ofter an Wasser zum Rieseln zu fehlen! Ob im Winter auch bei strengstem Frost das Rieseln vortheilhaft ist, bleibe dahingestellt; ein Zwang liegt nicht vor; unbenutzbares Riesel wasser kann un- bedenklich in den Bober abgelassen werden. Bei dem geringen Gehalt des Bunzlauer Sielwassers an Fakalien und be- denklichen Industrie-Abgangen ist die Beobachtung nicht ohne Interesse, dass den dortigen Kanalen iible Geruche entstromen, zu deren Fernhaltung von der Strassenluft besondere Vorkehrungen sich nothwendig machen. Die chemische Beschaffenheit eines Wassers und dessen Gehalt an Dungstoffen kann eben nicht nach dem Geruch beurtheilt werden; bekanntlich verbreitet der stickstoffarme Weisskohl und Rettig, sowie das Ab wasser der Zuckerfabriken beim Faulen ab- scheulichen Gestank. Immerhin ist es wiins chens werth, dass auch das fakalfreie und relativ dung- arme Abwasser eines grosseren Gemeinwesens durch Berieselung gereinigt werde; es wirft dabei meist hoheren Reinertrag ab, als konzentrirte Spuljauche, weil es viel leichter zu hantiren ist und man nicht so angstlich vor zu starker Rieselung zu sein braucht. Es wurde seiner Zeit hierauf hinge wiesen, als man in Berlin iiber das zu wahlende Stadtereinigungsystem verhandelte. Unter den preussischen Stadten, welche ihre Abwasser durch Berieselung gut ausnutzen, ist Apenrade in Schleswig hervorzuheben. 15 * Centralblatt fur allgemeine Gesundheitspflege, Organ des Niederrheinischen Vereins fur offentliche Gesundheitspflege. Herausgegeben Dr. Finkelnburg, Prof, an der Universitat zu Bonn. Dr. Lent, Sanitatsrath in Coin. Dr. Wolff berg, Privatdocent in Bonn. Fiinfter Jahrgang. Erstes Heft. Mit 2 Tafeln und 2 Holzschnitten. i Bonn, Verlag von Emil Strauss. 1886. I n h a 1 1. Seite Die Reinigung stadtischer Abwasser zu Essen, insbesondere mittelst des Rockner-Rothe’schen Verfahrens. Yon Stadtbaumeister Wiebe. (Hierzu Tafel I und II und 1 Holzschnitt) 1 Mittheil ungen iiber bakteriologische Untersuchungen der Essener Ab- wasser. Yon Dr. M. Wahl 18 Zur Registrirung der neueren Pockenfalle. Von Dr. S. Wolffberg 23 Das Filter Pasteur-Chamberland. Yon Dr. Finkelnburg. (Hierzu 1 Holzschnitt) 24 Nachweisung iiber Krankenaufnahme [und Bestand in den Kranken- hausern aus 55 Stadten der Provinzen Westfalen, Rheinland und Hessen-Nassau pro Monat November 1885 29 Sterblichkeits-Statistik von 56 Stadten der Provinzen Westfalen, Rhein- land und Hessen-Nassau pro Monat November 1885 .... 30 Kleinere Mittheilungen. Cholera 31. — Ueber die Typhusepidemie in Wiesbaden 31. — Be- richt iiber die im Jahre 1884 auf Finnen und Trichinen unter- suchten Schweine 32. — Das gelbe Fieber in Rio de Janeiro 33. — Unterricht in der Hygiene an den Mittelschulen Ungarns 34. — Hauterkrankungen durch Arsenik 34. — Die grossh. hessische Verordnung des Ministeriums des Innern und der Justiz an die Standesbeamten, Mortalitatsstatistik betreffend 34. Literaturberichte. Neue Beitrage zur Aetiologie der Tuberkulose (Wolffberg) ... 35 Cheysson, La question de la population en France et a l’etranger. Annales d’hygiene publique 1884 decembre (Creutz) . . . . 44 C. A. Ewald, Die obligatorische Leichenschau (Wolffberg) ... 47 James Paget, Der national bkonomische Werth der Gesundheit (Schmidt) 48 Du Claux, Jouets d’enfants (Creutz) 50 Prof. J. Soyka, Experimentelles zur Theorie der Grundwasser- schwankungen 51 Ziegel-Pflug oder Ziegel-Flug ? Erwiderung von Prof. Dr. Leichten stern 52 Das Centralblatt fur allgemeine Gesundheitspflege erscheint monatlich einmal. Es bildet jahrlich einen Band von mindestens 27 — 30 Druckbogen mit lithographirten Tafeln, Holzschnitten im Text etc. Der Abonnementspreis betragt jahrlich M. 10.—. Die Herren Mitarbeiter erhalten fur den Druckbogen M. 50. — Honorar und von den Originalaufsatzen 20 Separat- abztige gratis. Die Verlagshandlung. Die Reinigung stadtischer Abwasser zu Essen, insfoesondere mittelst des Rockner-Rothe’schen Yerfahrens. Vortrag, gehalten auf der General -Versammlung des Niederrh. Vereins f. off. Gesundheitspfl. zu Essen am 31. October 1885. Von Stadtbaumeister Wiebe. Mit einer Figur im Text und 2 Tafeln. Meine Herren! Schon zur Zeit cler Erbauung des Essener Wasserwerkes, weiches im Jahre 1864 ausgefdhrt wurde, um Ruhr- wasser in die Stadt zu fordern, hat es die hiesige stadtische Ver- waltung nicht nur fur ihre Pflicht erachtet, durch Einfiihrung gesunden Trinkwassers die sanitaren Zustande der Stadt zu heben, sondern sie ist. zu diesem Zwecke gleichzeitig auch der unterirdischen Ableitung des verbrauchten Wassers naher getreten. Es wurde ein Project fur die gesammte Kanalisation des inneren Stadtgebietes aufgestellt und schon im Jahre 1866 ist mit dem Kanalbau begonnen worden. Seit dieser Zeit ist das Kanal- netz nun allmahlich ausgebaut. Alljahrlich sind in den stadtischen Etat gewisse Summen fur die Erweiterung der Kanalisation gesetzt worden, und jetzt sind wir so weit gekommen, dass im innern Stadtgebiet die Entwasserungsanlage als vollendet angesehen werden kann und im ausseren Gebiet die bebauten Strassen grosstentheils mit Kanalen versehen sind. Die Kan ale haben ausser den atmospharischen Niederschlagen, welche durch Rinnstein-Einfallschachte ihnen zugefiihrt werden, die Abwasser aus den Wohngebauden, Fabriken, Brauereien etc. auf- zunehmen. Die Einfiihrung von Fakalien ist jedoch nicht gestattet. Es findet eine scharfe polizeiliche Controlle statt, wodurch das widerrechtliche Einleiten von Fakalstoffen in die Kanale thunlichst verhindert wird. M. H. ! Die Stadt Essen wird allgemein zur naheren Bezeich- nung „Essen a. d. Ruhr“ genannt; in Wirklichkeit liegt sie aber nicht an diesem Flusse, nicht einmal im Ruhrgebiet, sondern an einem kleinen Bache, welcher den Namen ,, Berne 44 fuhrt, im Siiden der Stadt entspringt, das Stadtgebiet, die Gemeinden Altenessen und Borbeck in nordwestlicher Richtung durchfliesst und in die Emscher miindet. Centralblatt f. allg. Gesundheitspflege. V. Jahrg. 1 2 Diesem kleinen Bache ist nun die immer schwieriger sich ge- staltende Aufgabe zu Theil geworden, die Abwasser der Stadt Essen aufzunehmen und abzufiihren. Schon wenige Jahre nach Beginn der Kanalisation entstanden Klagen der unterhalb des Stadt- gebietes gelegenen Berne- Adjacenten iiber die Verunreinigung des Baches durch die Abwasser der Stadt. Bei der bestandig fort- schreitenden Erweiterung des Kanalnetzes wurden die Klagen lauter. Es liefen bei der Koniglichen Regierung zu Diisseldorf Beschwerden gegen die Stadt ein, und die Regierung verfiigte am 23. Juni 1875, dass die Stadt die Reinigung der Berne nebst den dazu gehorigen Teichen ungesaumt veranlassen und die Einrichtung definitiver Abhiilfemaassregeln zur Vermeidung der ferneren Verunreinigung der Berne in Erwagung nehmen und die dazu erforderlichen Schritte thun solle. In Folge dieser Verfiigung und deren ministerieller Bestatigung wurde im Stadtbauamt eine Denkschrift uber die Beseitigung der durch die Verunreinigung des Bernebaches verursachten Missstande ausgearbeitet. Die darin niedergelegten Vorschlage, die wesentlich in der Anlage einer grosseren Zahl von Sammel- bezw. Klarbecken im Bereiche des Kanalgebietes innerhalb der Stadt — also vor Einfluss in den Bernebach — gipfelten, stellten sich jedoch in technischer und sanitarer Beziehung als kaum durchfiihrbar und nicht zweckmassig heraus, sodass durch Verfiigung vom 14. Juli 1876 die Einreichung anderweiter Vorschlage verlangt wurde. Es ist dann ein neues Projekt aufgestellt, dem der Gedanke zu Grunde lag, eine rasche und unbehinderte Ableitung des Bernewassers in die Emscher durch Beseitigung der Miihlenstaue zu erzielen und hierdurch die Ablagerung der Sinkstoffe in dem Bernebette zu ver- meiden. Dieses Projekt wurde zur landespolizeilichen Priifung iiber- reicht. Die Konigliche Regierung gab es indessen mit dem Bemerken zuriick, dass als Ersatz der zu beseitigenden Miihlenteiche aus- reichende Klarbecken angelegt werden miissten und verlangte die Ausarbeitung eines neuen hiernach zu vervollstandigenden Projektes. Im Jahre 1878 fand alsdann eine commmissarische Verhandlung uber das von dem inzwischen in stadtische Dienste getretenen Stadtbaumeister Koch verfasste Projekt statt, und es verfiigte die Konigliche Regierung, mit der Ausarbeitung dieses Projektes sofort vorzugehen. Es konnte aber das mit Sorgfalt and Umsicht — wie es in den nachherigen beziiglichen Gutachten der Regierungs-Commis- sarien heisst — bearbeitete Projekt, welches in einer 10 Km. langen Kanalanlage bis zur Emscher und in Klarvorrichtungen vor der Miindung der Kanalwasser bestand, zur Priifung erst am 19. Marz 1879 vorgelegt werden. DieKosten dieser Anlage waren zu 600,000 Mk. veranschlagt. Der Stadtvertretung wurde nunmehr aufgetragen, wegen Bereitstellung der zur Ausfiihrung dieses Projektes erforder- 3 lichen Geldmittel das Weitere zu veranlassen. Ein Wechsel in der Person des Stadtbaumeisters verzogerte die Angelegenheit. Ausser- dem hatte die Gemeindevertretung beschlossen, vor Bewilligung der Geldmittel zunachst ein Gutachten der Oberbergamtsbehorde dariiber einzuholen, ob die bergbaulichen Verhaltnisse, insbesondere auch die Erdbewegungen eine Kanalanlage gestatteten. Der Inhalt dieses nach einigem Zogern abgegebenen Gutachtens war jedoch zweifelhaft, so dass die Stadt zum Bau einer so theuren Anlage sich danach nicht ohneWeiteres entschliessen konnte und zunachst noch durch zeitweise Controll-Hohenmessungen Untersuchungen iiber die Bau- sicherheit der Kanalstrecke anzustellen beschloss. Da hiernach die Zeit der Ausfiihrung des vorbeschriebenen Projektes nicht abgesehen werden konnte, so verfiigte Konigliche Regierung zur Beschleuni- gung der Angelegenheit unterm 18. August 1882, die schon friiher in Anregung gebrachte Errichtung von Klarbecken in der Nahe der Stadt Essen in Erwagung zu nehmen. Die Stadtgemeinde hatte unterdessen das im Norden der Stadt gelegene friiher S chafe r’- sche Miihlenbesitzthum erworben, und es konnte der Ausarbeitung einer solchen Klarbeckenanlage fur diesen Platz naher getreten werden. Referent hat ein beziigliches Projekt aufgestellt, welches der Koniglichen Regierung unterm 15. August 1883 zur Begut- achtung vorgelegt wurde. Bevor ich zur Beschreibung dieses Projektes iibergehe, moge Ihnen noch der weitere Verlauf des Vorgehens der untern Berne- Anlieger gegen die Stadt Essen kurz mitgetheilt werden. Meine Herren! Bis zum Jahr 1883 wurden die der Stadt- gemeinde in Anbetracht der Verunreinigung der Berne durch die Kanalisirung zuerkannten Auflagen, wie jahrliche Reinigung der Berne bis zur Emscher und der dazu gehorigen Miihlenteiche, Vor- arbeiten zu einer Abhiilfe der ferneren Verschlammung etc. auf dem Verwaltungswege durch regiminale bezw. ministerielle Ver- fiigungen zur Erledigung gebracht. Im gedachten Jahre aber traten die Gemeinde Altenessen und ein anderer dor tiger Grund- besitzer als Adjacenten der Berne gegen die Stadtgemeinde beim hiesigen Landgericht klagend auf. Die beklagte Stadtgemeinde wurde in Folge dessen durch das, am 25. November 1883 verkiin- dete, durch Erkenntnisse des Oberlandesgerichts und des Reichs- gerichts bestatigte Urtheil, folgendermassen verurtheilt: ,,Der Beklagten wird die Ableitung aller aus ihren stadtischen ,,Kanalen abfliessenden Wasser in den Bernebach, soweit er durch „die betreffenden Grundstiicke der Klager fliesst, untersagt, und ,,wird dieselbe verurtheilt, solche Anstalten zu treffen, dass die „gedachten Kanalwasser nicht mehr zu den oben gedachten Grund- „stiicken gelangen konnen.“ 4 Nach richterlichem Erkenntniss ist die Berne als nicht schiff- bares Gewasser Eigenthum der Anlieger und hat nur die in ihrem Gebiete sich sammeinden atmospharischen Niederschlage aufzu- nehmen, also nicht das aus dem Ruhrgebiete stammende Abwasser. Im Verfolg dieses Urtheiles beantragten die Klager am 2. Fe- bruar dieses Jahres beim Koniglichen Landgericht hierselbst ,,Straf- androhung an die Beklagte zu erlassen, sich der Ableitung aller aus ihren Kanalen abfliessenden Wasser in den Bernebach bei 1000 Mark Geldstrafe zu enthalten.“ Nachdem dieser Antrag unterm 31. Marz vom hiesigen Land- gerichte zuriickgewiesen war, wurde Beschwerde beim Oberlandes- gerichte zu Hamm erhoben. Letzteres verwarf den landgericht- lichen Beschluss und urtheilte laut Erkenntniss vom 11. Juli cr. wie folgt : „Der Beklagten wird die Ableitung aller aus ihren stadti- schen Kanalen abfliessenden Wasser in den Bernebach bei einer Geldstrafe von 1000 Mark fur jeden Tag, an welchem nach dem 1. September cr. eine weitere Zuleitung in der untersagten Art stattfindet, verboten.“ Gegen diese Entscheidung wurde seitens der Stadt Beschwerde bei dem Reichsgericht erhoben, sowie auch die einstweilige Aus- setzung der Vollziehung der angefochtenen Entscheidung beantragt. Es erfolgte hierauf unterm 28. August cr. ein fur die Stadt in so fern giinstiges Urtheil, als der angefochtene Beschluss, soweit durch denselben die landgerichtliche Entscheidung abgeandert ist, aufge- hoben wurde. Ausser den vorgedachten Prozessen sind unterdessen von an- deren Adjacenten noch mehrere gegen die Stadtgemeinde ange- strengt worden, welche aber zur Zeit noch schweben. Meine Herren! Wenn nun auch durch das bestatigte Ur- theil des Landgerichtes vom 25. November 1883 ausgesprochen ist, dass iiberhaupt keine Kanalwasser in die Berne geleitet werden sollen, dass also auch die Einleitung gereinigter Abwasser unzu- lassig ist, so hat es die stadtische Verwaltung doch fur ihre unab- weisbare Pflicht erachtet, nach den jetzt vorhandenen besten Mit- teln und Wegen zur Reimgung des Kanalwassers zu forschen in der Ploffnung, dass, wenn eine geniigende Klarung gelingen wurde, doch noch die Einleitung des gereinigten Wassers in den durch die Natur gegebenen Wasserlauf ermoglicht werden wird. Eine Tauschung haben wir indessen in dieser Beziehung schon erfahren miissen, indem der Gesetz-Entwurf, betreffend die Regulirung der Vorfluth und Reinhaltung der Wasserlaufe im Emschergebiet, welcher die fiir Essen so harte richterliche Entscheidung mildern sollte, allem Anschein nach dem Landtage nicht vorgelegt wer- den wird. 5 Das vorhin erwahnte vom Referenten aufgestellte Projekt zeigt die Anlage von Klarbecken, in welche das Kanalwasser zur Ablagerung der Sinkstoffe geleitet wird, nachdem vorher Chemi- kalien, welche durch Riihrwerke gemischt werden und die Abson- derung der chemisch gebundenen Theile bewirken sollen, zugesetzt sind. Nach der Ablagerung] muss das Wasser noch Filteranlagen durchdringen, wodurch auch die leichteren Stoffe zuriickgehalten werden sollen. Die Konigliche Regierung gab zur Ausfiihrung dieses Projektes ihre Zustimmung und verfugte, dass am 1. April 1885 die Klaranlage fertiggestellt sein solle. Ungefahr gleichzeitig mit dem Erlass dieser Verfugung wurde ein neues von den bekannten Systemen wesentlich abw^eichendes Verfahren zur Klarung von Abwassern bekannt und in Dortmund in kleinem Massstabe probeweise durchgefuhrt, welches die Auf- merksamkeit der hiesigen stadtischen Baudeputation auf sich zog. Es war dies das Rockner-Rothe’sche Reinigungsverfahren. Schon in der vorjahrigen Generalversammlung zu Grefeld sind von Herrn Dr. K a y s s e r Mittheilungen fiber den Reinigungsapparat gemacht worden. Ich gestatte mir jedoch das Verfahren zu wieder- holen, weil die heute hier anwesenden Herren nicht alle auch der Crefelder Versammlung beiwohnten. Das Rockner-Rothe’sche System ist ein combinirtes Rei- nigungsverfahren, es vereinigt eine mechanische und chemische Rei- nigung. Der von Rockner gedachte Apparat bewirkt nur eine mechanische Reinigung. Die chemische Reinigung ist durch die Firma Rothe-Sohne hinzugefiigt, und erst in dieser Vereinigung ist der Apparat fur praktische Zvvecke zu verwerthen. Es konnen also die verschiedensten Schmutz wasser, sobald ihnen nur jedesmal die richtigen Ghemikalien zugesetzt werden, durch den Rockner- Rothe’schen Apparat gereinigt werden. Das Rockner’ sche System besteht darin, dass die Schmutz- wasser in einen Brunnen geleitet werden, iiber welchem der Ap- parat aufgestellt ist. Letzterer ist ein eiserner Cylinder, oben ge- schlossen und unten offen, welcher mit seinem unteren Rande in das zu klarende Wasser eintaucht. Oben unter dem Boden des Cylinders ist ein seitliches Abfallrohr angebracht, welches in ein ausserhalb gelegenes Becken mundet , aus dem das gereinigte Wasser in die Abzugsrinne stromen soil. Auf dem Cylinder be- findet sich ein Aufsatzrohr, von dessen oberen Ende ein nach einer kleinen Luftpumpe fiihrendes Saugerohr abzweigt. Um nun die Reinigung des in den Brunnen fliessenden Schmutzwassers zu ver- anlassen, wird mittelst der Luftpumpe die Luft im Cylinder so sehr verdunnt, dass durch den Ueberdruck der ausseren Atmosphare ein allmahliches Ansteigen des Schmutzwassers im Cylinder bewirkt wird. Hat das Wasser die Hohe des seitlichen Ablaufrohres 6 erreicht, so stromt es durch letzteres hinab in das Becken, welches mit der Ablaufrinne in Verbindung steht. Das Niveau des ab- fliessenden Wassers im Becken muss etwas tiefer gelegt werden, als das des zufliessenden Schmutz wassers im Brunnen, so dass also nach dem Gesetze des Hebers das zufliessende Wasser un- unterbrochen im Cylinder emporsteigt und seitlich abfliesst. Die Luftpumpe hat dann nur das Vacuum constant zu halten und muss zu dem Zwecke taglich eine kurze Zeit arbeiten. Es darf nicht iibersehen werden, dass die eingetauchte Unter- kante des Cylinders eine etwas tiefere Lage als die Sohle der ausseren Ablaufrinne haben muss, damit bei etwaigem Ausgleich der Wasserstande das Wasser aus dem Heber nicht ablaufen kann. Die Hohe des Cylinders ist selbstverstandlich abhangig von der Hohe der Wassersaule, welche dem Atmospharendruck ent- Anmerkung: Figur 1 und 2 siehe auf Tafel I und II. 7 spricht, muss also geringer sein als 10,3 m. Es besitzt der Cy- linder gewohnlich eine Hohe von 7— 8 m. Dagegen muss die Stelle des Aufsatzstiickes, wo das Luftsaugerohr in dasselbe mundet, ho her als 10,3m fiber dem Wasserspiegel im Brunnen liegen, damit selbst bei einem vollstandigen Vacuum, das Wasser nicht durch das Luftsaugerohr in die Luftpumpe treten und den Betrieb storen kann. Die Geschwindigkeit des im Cylinder aufsteigenden Wassers richtet sich nach dem in der Zeiteinheit zufliessenden, grossten Wasserquantum und nach dem Cylinderquerschnitt. Das Abfall- rohr ist weiter angenommen, als die Rechnung ergibt, damit bei Regenwetter aussergewohnlich grosse, verdunnte Wassermassen mit grosserer aufsteigender Geschwindigkeit noch geklart werden konnen. Ein Schieber regulirt den Querschnitt des Abfallrohres. Nach den bisherigen Erfahrungen darf die Geschwindigkeit des aufsteigenden Wassers 2 bis 9 mm pro Secunde betragen. Sie ist abhangig vom Gewicht der abzusondernden Schmutztheile und muss um so geringer sein, je leichter dieselben sind. Zur Erzielung einer gleichmassigen, ruhigen Aufwartsbewegung des Wassers im Brunnen und Cylinder, also zur Vermeidung eines Stromstriches mit einer Maximalgeschwindigkeit, wird das Schmutz- wasser nicht direkt durch den Zulaufskanal in den Brunnen ge- fuhrt, sondern in ein Einlaufrohr geleitet, welches nahezu auf den Boden des Brunnens in die Mitte desselben fuhrt, so dass das Wasser gezwungen ist, von unten den Aufsteigeprocess zu beginnen. In dem Brunnen um das Einlaufrohr ist ein trichterformiger, jalousie- artig durchbrochener Stromvertheiler angebracht , so dass das Wasser aus dem Einlaufrohr durch mehrere Jalousiespalten fliessen muss und also schon im Brunnen - Querschnitt eine gleichmassige Bewegung erhalt. Die Ueberlauf - Construction im oberen Theile des Cylinders ist derartig ausgefiihrt, dass die gleichmassige Wasser- bewegung bis zum Ablauf gewahrt wird. Wahrend das Ab wasser nun im Cylinder langsam emporsteigt, scheiden sich die specifisch schwereren unreinen Stoffe aus, fallen auf den Boden des Brunnens und bilden in demselben Schlamm- schichten, welche fur das nachstromende Wasser als Filter dienen. Hat das Wasser die Miindung des Ablaufrohres erstiegen, so muss es frei von alien specifisch schwereren Stoffen sein. Die compacteren Massen, welche am tiefsten zu liegen kom- men, mussen regelmassig durch Paternosterwerke oder Schlamm- pumpen aus dem Brunnen entfernt und durch Rinnen in Schlamm- Ablagerungsbecken gefiihrt werden. Letztere sind drainirt, um das noch anhaftende Schmutzwasser in den Brunnen zurfickzu- leiten. , Zur periodischen Entfernung der im Wasser mitgefiihrten Stoffe, welche specifisch leichter als Wasser sind, also an der 8 Oberflache desselben sich befmden (Fette etc.), ist ein zweites engeres Ablaufrohr angebracht, dessen Anfang etwa 30 cm hoher als das H a u p t ablaufrohr liegt und welches in ein besonderes kleines Becken rnundet. Die im Aufsatzrohr sich sammelnden, iiblen Gase konnen durch die Luftpumpe abgesogen und durch Einleitung in eine Feuerung unschadlich gemacht werden. Soweit mir bekannt ist, gebuhrt der Firma Rothe Sohne das Verdienst. der Construction dieses Reinigungscylinders, also das Verdienst der praktischen Anwendung der Rockner’schen Idee. Ausserdem ist aber die Wasserreinigung durch genannte Firma, wie schon erwahnt, dadurch wesentlich vervollkommnet, dass sie dem zufliessenden Schmutzwasser, bevor es in den Brun- nen tritt, Chemikalien zusetzt, wodurch auch die organischen Sub- stanzen ausgeschieden und abgelagert werden sollen, um das ab- fliessende Wasser fiir eine geraume Zeit vor Faulniss zu bewahren. Nach eingehender Priifung des beschriebenen Reinigungsappa- rates konnte die hiesige stadtische Baudeputation nicht verkennen, dass derselbe Vorziige gegeniiber einer Klarbeckenanlage besitzt. Eine Vergleichung dieser beiden Systeme wird diese Vorziige ergeben. 1) Das Rockner- Rothe’ sche Verfahren erfordert zur Auf- stellung des Apparates und zum Betriebe desselben nur einen klei- nen Platz und fiir die Ablagerung der aus dem Brunnen entfernten Schlammmassen nur kleine Schlammbecken. Dagegen bedingt eine Klarbecken- Anlage, wenn das Schmutzwasser die erforderliche Ruhe zum Absetzen der Schlammtheilchen erhalten soil, eine aus- gedehnte Bodenflache. Es sind bei einer solchen Anlage stets 2 Beckensysteme erforderlich, welche abwechselnd functioniren. Wird aus dem einen der vorher zu trocknende Schlamm entfernt, so dient das andere zur Klarung. Die giinstige Schlammablagerung, welche beim Rockner’- schen Apparate durch die langsame gleichmassige Aufwartsbewe- gung des Wassers, welcher die hinabsinkenden Schlammtheilchen bestandig entgegenarbeiten, bewirkt wird, kann bei Klarbecken nur durch aussergewohnlich grosse Flachen erzielt werden. Es ist zu beachten, dass in einem Klarbecken die Ablageruug immer ungiin- stiger wird. je mehr Schlamm sich in demselben angesammelt hat, weil dadurch ein schnelleres Durchfliessen des zu klarenden Was- sers verursacht wird. 2) Eine Filtration des Abwassers, welche im Rockner- Rothe’schen Apparate auf natiirlichem Wege durch den Schlamm veranlasst wird, findet in Klarbecken nicht statt, wenn sie nicht kiinstlich hergestellt wird. 9 3) Die Chemikalien werden bei der Ro ckner-Rothe ’ schen Reinigung in bester Weise ausgenutzt, weil sie fur das nachdrin- dringende Wasser im Schlamm filter wieder zur Wirkung kommen. In grossen Klarbecken sinken die Chemikalien bald zu Boden und und werden wirkungslos. In Folge dessen miissen die beziig- lichen Betriebskosten beim ersten Verfahren sich billiger stellen als beim zweiten. 4) Das Rockner-Rothe’sche Reinigungs verfahren geht nahezu geruchlos von Statten. Aus dem geschlossenen Cylinder konnen keine iiblen Gase entweichen. Die Brunnen - Oberflache, welche nicht durch den Cylinder gedeckt wird, ist mit einem Holzbelage versehen, welcher ebenfalls keinen merkbaren Geruch durchlasst. Auch die ausgebaggerten Schlammmassen veranlassen, wenn sie nicht zu lange lagern, erfahrungsgemass keine schadlichen Aus- diinstungen. In den gewohnlichen grossen Klarbecken lagert da- gegen der Schlamm lange unter Wasser, gerath in Gahrung und verpestet das Wasser und die Luft. Das erste Reinigungsverfahren verdient dalier auch in hygieinischer Beziehung den Vorzug. Es werde noch bemerkt, dass die Abfuhr des abge- lagerten Schlammes bei beiden Verfahren erforder- lich ist. Sollte jedoch, was wohl zu erwarten ist, eine Einrieh- tung erfunden werden, mittelst welcher in nicht zu kostspieliger Weise aus dem ausgebaggerten Schlamm das noch vorhandene Wasser oder ein erheblicher Theil desselben schnell entfernt wer- den kann, wodurch also das Schlamm- Volumen wesentlich ermas- sigt wird, so wiirde das eine grosse Vervollkommung gerade des Ro ckner-Rothe- Apparates sein, indem dann der Schlamm aus dem Bagger oder der Pumpe direkt in diesen Compressionsapparat gefordert werden konnte und ein noch kleinerer Raum zur Lage- rung der Masse erforderlich ware, wahrend die Forderung des in grossen Becken lagernden Schlammes ungiinstiger sich gestalten und dieselbe grosse Ablagerungsflache immer nothwendig bleiben wiirde. Wenn ich mich endlich zur Vergleichung der Betriebskosten wende, so muss ich zunachst ausdriicklich betonen, dass Chemi- kalien bei keinem Klarverfahren entbehrlich sind und dass, wenn anderweitig Chemikalien erforscht werden sollten, welche Schmutzwasser auch geniigend rei- nigen und billiger als diejenigen der Firma Rothe Sohne sind, dieseChemik alien ohneWeiteres bei dem Rockner-Rothe’ schen Verfahren Verwendung finden konnen. Mit Riicksicht auf die gute Ausnutzung der Chemikalien werden daher die Kosten fur dieselben beim genannten Verfahren stels geringer sein als bei Klarbecken- Anlagen. Bei Verwendung von Chemikalien sind jaber Riihrwerke erforderlich, und diese be- dingen wieder einen Motor. Beim Rockner-Rothe’schen Ver- 10 fahren hat allerdings der Motor nicht nur die Riihrwerke, sondern auch die Luft- und Schlammpumpe in Bewegung zu setzen. Nach den hier in Essen gemachten Erfahrungen muss fur einen Klarcylinder die Luftpumpe taglich eine halbe Stunde, das Bagger- werk drei Stunden arbeiten. Diese Arbeiten erfordern keine we- sentlich grossere Kraft, als sie die Riihrwerke schon bedingen. Die Kosten fur den Betrieb der Dampfmaschine werden also bei der Ro ckner-Ro the’schen Reinigung nur unerheblich erhoht. Da die Kosten fur Ghemikalien aber etwa dreimal so hoch als die Kosten fur den Maschinenbetrieb sich stellen, so kann an- genommen werden, dass schon ein Theil der bei den Ghemikalien zu erzielenden Ersparung gegeniiber der Klarung in grossen Becken die Erhohung der Maschinenbetriebskosten decken wird. Wenn es sich aber ermoglichen lasst, statt des Dampfes das zufliessende Wasser als Motor zu benutzen, so gestalten sich die Betriebskosten fur den Ro ckner-Ro the’schen Apparat noch giinstiger. Es kann daher behauptet werden, dass die Betriebskosten des Rockner-Roth e’schen Reinigungs - V erfahrens mindestens nicht hoher, voraussichtlich geringer sein werden, als diejenigen, welche sich bei der Schlammablagerung in Klarbecken-Anlagen ergeben. M. H.! Die Reinigung der Abwasser ist fiir die Stadte mit bedeutenden Anlagekosten und schweren, dauernden Lasten ver- bunden. Wenn daher eine Stadt eine solche Anlage schaffen muss, so darf die Verwaltung mehr als bei manchen anderen Werken keine Vorarbeit scheuen, um das Giinstigste, was die Technik bietet, besonders bezuglich der Betriebskosten zu erforschen. Sie werden es daher erklarlich fmden, dass die Baudeputation, als sie Kenntniss von dem Rockner-Roth e’schen Reinigungs- Verfahren genommen hatte, Bedenken trug das von der Regierung genehmigte Project zur Ausfiihrung zu bringen. Es wurde be- schlossen mit dem neuen Reinigungs- Verfahren einen Versuch im grosseren Massstabe fiir die stadtischen Abwasser anzustellen. Die Konigliche Regierung gab dazu ihre Genehmigung. Die gesammte Kanalwassermasse der Stadt Essen betragt nach den angestellten Ermittelungen bei feuchtem Wetter, also bei ge- ringen atmospharischen Niederschlagen, welche noch mit zur Kla- rung gelangen sollen, reichlich bemessen pro Tag 18,000 cbm. Fiir grossere Regenmassen miissen unter alien Umstanden Um- fluthvorrichtungen vorgesehen werden. Auf Wunsch des Stadtbauamtes stellte die Firma Rothe Sohne ein Projekt zur Klarung dieser Wassermasse nach ihrem System auf. Nach diesem Project sind vier Cylinder von je 4,2 m Durchmesser und 7 m Hohe iiber dem Wasserspiegel zur Reini- gung unserer gesammten Abwasser erforderlich. Die Brunnen haben im Lichten einen Durchmesser von 5,8 m, und ihre Sohle liegt 11 5 m unter dem WasserspiegeL Es wurde nun mit den Herren Rothe So line ein Abkommen getroffen, wonach dieselben einen dieser Cylinder unentgeltlich zu liefern hatten. Die Stadt uber- nahm die Herstellung des Brunnens, die Zufuhrung des Schmutz- wassers und die Ableitung des gereinigten Wassers, die Montage des Cylinders und die Betriebskosten fur den Versuch. Das ganze Bauwerk sollte so ausgefuhrt werden, dass es bei etwaiger Wahl des Reinigungsverfahrens einen Theil der Gesammanlage bilden konnte. Die Verwaltung behielt sich jedoch beziiglich dieser Wahl voile Freiheit vor. Wird das System Rockner-Rothe nicht gewahlt, so bezahlt die Stadt die Demontage des Cylinders und Rothe Sohne miissen den Apparat ohne Entschadigung zuriick- nehmen. Diese Anlage, mittelst welcher also der vierte Theil unserer Abwasser (4500 cbm) geklart werden kann, wurde Ende Juli cr. vollendet und ist seit dieser Zeit im Betriebe. Ich gestatte mir die bisher gewonnenen Resultate Ihnen nun noch mitzutheilen. Bis zum 10. October ist der Apparat wahrend 56 Tages- und 2 Nacht- schichten in Betrieb gewesen. In dieser Zeit sind 71,000 cbm Wasser geklart worden, welche 240 cbm stichfesten Schlamm von circa 72 °/o Feuchtigkeitsgehalt ergaben. Es sind also pro 1 cbm Abwasser 3^2 Liter Schlamm ausgesondert worden. Weil jedoch Nachts das Abwasser reiner als am Tage ist, so wird als durch- schnittliche Schlammmasse nur 3 Liter pro cbm Wasser anzusetzen sein. Das durchschnittlich taglich zu klarende Wasserquantum kann auf 12,000 cbm angenommen werden. Es werden also im 3 000 365 Jahre — " " iqqq " ~ r °L 13,200 cbm Schlamm gewonnen werden. Ich bemerke bei dieser Gelegenheit, dass die Forderung des Schlammes aus dem Brunnen mittelst des Baggerwerkes in den ersten Monaten unserer Versuche sich nicht giinstig gestaltete, indem bei der Baggerung der Schlamm ungeniigend nachrutschte und zu wasserreiche Massen gehoben wurden. Die Flache des Kegels, welcher den Brunnen unten abschliesst, hatte eine zu flache Neigung. Es ist in den letzten Tagen provisorisch durch eine Bretterschalung eine steilere ellipsoidische Flache hergestellt, wo- durch der Uebelstand scheinbar wesentlich gehoben ist. Ueber die regelmassige Fortschaffung der abgelagerten Schlamm- massen konnten bislang noch keine Beschliisse gefasst werden. Die stadtische Verwaltung hofft jedoch, dass diese Fortschaf- fung wenigstens der Stadt keine Kosten verursachen wird, weil der Schlamm voraussichtlich mit Vortheil fur die Landwirthschaft wird verwendet werden konnen. 12 Nach einer Schlamm- Analyse des Herrn Dr. Kaysser hierselbst sind 65,45 o/o Wassergehalt gefunden und hat der Schlamm in die- sem Zustande einenWerth von 50 Pf. pro 100 kg., also pro 1000 kg. oder pro cbm Schlamm einen Wertli von 5 Mk. Eine jahr- liche Production von 1300 cbm Schlamm mtisste also mit einem Gewinn von 65000 Mk. verbunden sein. Wenn es jemals gelingen soilte, einen solchen Gewinn zu erzielen, so wiirde das fur die Stadt sehr erfreulich sein, vorlaufig wird derselbe nicht erwartet. Ein ahnliches Resultat hat eine Schlamm - Analyse des Herrn Prof. Dr. K 6 n i g zu Munster ergeben. Derselbe erklart jedoch, dass in dem stark wasserhaltigen Zustande der Schlamm schwer trans- portfahig sei und einer Austrocknung bediirfe. Er ist der Ansicht, dass der Schlamm ohne grosse Schwierigkeit an der Luft auf einen Wassergehalt von 25 o/ 0 abgetrocknet werden konne und dass der- selbe in diesem Zustande 0,5 bis 0,7 o/ 0 Stickstoff, 0,7 bis 1,0 o/ 0 Phosphorsaure, sowie 18 — 24 o/o kohlensauren Kalk enthalten werde; alsdann wiirde der Schlamm einen Geldwerth von 1,00 Mk. bis 1,20 Mk. pro 100 kg. besitzen, wobei der vorhandene kohlensaure Kalk noch nicht in Ansatz gebracht sei. Analy s en des Herrn Dr. Frz. Kaysser zu Essen. Wasser . . Stickstoff . . Phosphorsaure Kalk . . . Eisenoxyd u. Thonerde Sand und Silicate . . Die wasserfreie Substanz enthielt sonach: Stickstoff Phosphorsaure . . . Kalk Eisenoxyd u. Thonerde Sand und Silicate . . Es wird beabsichtigt , ein Schlamm zu diingen und dann 65,450 o/o 0,301 „ 0,400 „ 20,730 „ 2,550 „ 9,160 „ 0,874 o/o 1,160 „ 20,730 „ 7,400 „ 26,570 „ Analysen zu Munster. I. Probe: . . 72,65 o/o 7,03 „ 6,24 „ 20,32 „ Wasser . . . Organ. Stoffe . Darin Stickstoff Mineralstoff In letzteren: Phosphorsaure 0,399 Kalk . . Thonerde und Eisenoxyd Sand u. Thon 4,23 II. Probe: 76,74 o/o 5,36 „ 0,22 „ 17,90 „ 0,22 3,72 2,46 10,12 2,68 8,47 stadtisches Grundstuck mit dem zu bestellen. Hoffentlich werden die Fruchte so gut ausfallen, dass die umliegenden Landwirthe sich danach entschliessen werden, den Schlamm fur ihre Felder ebenfalls zu verwerthen. Die durchschnittlichen Betriebskosten w T ahrend 15 Tage haben pro cbm Wasser 1. fur Chemikalien 1,0 Pfg. 2. fur maschinellen Betrieb inch Kohlen, Schmiermaterial und Lohne . . . . 0,7 „ im Ganzen . 1,7 Pfg. betragen. 13 Diese Zahlen diirfen jedoch nicht ohne Weiteres fiir eine Kla- rung der gesammten Wassermassen iibernommen werden. Es ist bis zum 10. October mit 2 Ausnahmen nur am Tage geklart worden. Die in letzterer Zeit mehrfach angestellten Nacht- klarungen haben erwiesen, dass das zufliessende Wasser von Mitter- nacht bis 4 Uhr Morgens wesentlich reiner als das Tages wasser und von 4 bis 6 Uhr Morgens nahezu ganz rein ist. In Folge dessen ist der Verbrauch an Chemikalien Nachts wesentlich geringer, und es wurde festgestellt , dass die Kosten dafiir pro cbm Wasser durchschnittlich nur 0,5 bis 0,6 Pfg.- betragen. Ferner ist zu be- riicksichtigen , dass bislang absichtlich nur das Wasser aus dem westlichen Hauptkanale, welcher das schmutzigste Wasser fiihrt, geklart worden ist. Der ostliche Hauptkanal ist die kanalisirte Berne, und es enthalt derselbe ausser den Abwassern auch Quell- wasser. Ghemische Untersuchungen haben den geringeren Schmutz- gehalt dieses Kanalwassers ergeben. Es leuchtet hiernach ein, dass bei einer spateren Klarung aller Abwasser, welche ununterbrochen Tag und Nacht erfolgen muss, die Kosten fur Chemikalien gegen die bisherigen Erfahrungen sich ermassigen miissen, und ich bin iiberzeugt, dass sie die Hohe von 0,75 Pfg. pro cbm Abwasser nicht iiberschreiten werden. Dass diese Annahme keine zu giinstige ist, sondern voraussichtlich noch unterschritten werden wird, haben die Klarungen in den letzten Tagen, an denen ununterbrochen Tag und Nacht gereinigt wurde, erwiesen. Am 21. October cr. kosteten mit Beriicksichtigung der Nachtsklarung die Chemikalien durch- schnittlich pro cbm Wasser nur 0,73 Pfg., am 22. October pro cbm Wasser nur 0,66 Pfg., 93 O 77 n n n ii ii ii v/ , 1 1 ii (Sarastag: stark Q\ h rv Qfi) schmutzig) 75 11 n ?? U,0_i ,, 26 0 74 11 11 11 11 11 11 v - o irr 11 Der Zusatz von Chemikalien muss sich nach Qualitat und Quantitat des zufliessenden Schmutzwassers richten. Fiir Beriick- sichtigung der Qualitat konnen nur durch Versuche gewisse Normen gegeben werden. Was dagegen die Riicksicht auf die Quantitat anbetrifft, so wird hier beabsichtigt, durch Schwimmer, welche in das zufliessende Wasser gesetzt werden sollen, die Ausflussoffnungen der Chemikalien nach der Zu- oder Abnahme des zufliessenden Wassers selbstthatig mehr zu offnen oder zu schliessen. Die Kosten fiir den maschinellen Betrieb miissen sich bei voller Klarung ganz wesentlich giinstiger gestalten, als vorhin angegeben ist. Die Bewegung der Riihrwerke, der Luftpumpe und des Baggers wird jetzt durch eine Locomobile alterer Construction, welche un- verhaltnissmassig viele Kohlen gebraucht, bewirkt. Bei Klarung aller Abwasser wird eine Maschine besserer Construction von wenig grosserer Kraft erforderlich sein, weil die Luft- und Schlammpumpen 14 fur die 4 Cylinder abwechselnd arbeiten konnen und nur 2 Rulir- werke mehr zu treiben sind. Als Mehrausgabe ist der Lohn fur eine weitere Tag- und Nachtschicht zu verzeichnen. Da die ge- machte Angabe von 0,70 Pfg. pro cbm Wasser nur einer Reinigung von durchschnittlich 2600 cbm in 24 Stunden (Tag und Nacht) entspricht, demnachst aber pro Tag durchschnittlich nahezu das fiinffache Wasserquantum gereinigt werden wird, so mussen die Kosten fur maschinellen Betrieb auf die Einheit des zu klarenden Wassers sich weit niedriger stellen, als angegeben wurde, und ich glaube, dass sie die Hohe von 0,25 Pfg. kaum erreichen werden. Es kann also m. E. mit Sicherheit angenommen werden, dass die gesammten Betriebskosten bei Klarung des gesammten Abwassers hochstens 1 Pfg. pro cbm betragen werden. Es werden jedoch noch genaue Erhebungen dariiber veranlasst werden, ob es moglich sein wird, das Abwasser als Motor zu benutzen. Sollte das zu- lassig sein, so dass also stait einer Dampfmaschine ein Wasserrad aufgestellt werden kann, dann mussen die Betriebskosten noch giinstiger sich gestalten. Nach genereller Veranschlagung wird die ganze Klaranlage, also einschliesslich des schon ausgefuhrten Theiles, 240,000 M. kosten. Die Verzinsung und Amortisation dieses Ka- pitals und die Unterhaltung der Anlage wird bei 6 J /2 % 15,600 M. betragen. Fur die Berechnung der Betriebskosten kann ange- nommen werden, dass durchschnittlich taglich 12,000 cbm Wasser geklart werden mussen. Es erwachsen dadurch also im Jahre 12000 . 365 100 = 43,800 M. Kosten. Die dauernde Last, welche die Stadt Essen in Folge der Reini- gung ihrer Abwasser zu tragen haben wird, betragt also rot. 60,000 M. Da die Stadt 64,700 Einwohner hat, so kommt pro Kopf der Bevolkerung eine Last von nahezu 1 M. Wenn es jedoch gelingen sollte, den Schlamm so zu verwerthen, wie er es nach den wissenschaftlichen Untersuchungen verdient, so wurde diese Last sich um 65,000 M. ermassigen, also in einen Gewinn von 5000 M. im Jahr sich verwandeln. Es sind von den Herren Dr. Kaysser zu Dortmund, Dr. Fr. Kaysser zu Essen uud Dr. Brockhoff zu Magdeburg Analysen des ungereinigten und gereinigten Wassers ausgefiihrt worden, welche die folgenden Resultate ergeben haben: Die 6 Wasserproben vom 3. September 1885 enthalten im Liter: Uns ^ereinigtes VVasser Gereinigtes Wasser I. II. III. IV. V. VI. I. schwebende Stoffe 0,643 0,614 0,530 0,030 0,052 0,042 g. darin organische Stoffe 0,350 0,338 0,306 0,008 0,010 0,009 „ mineralische „ 0,293 0,276 0,224 0,022 0.042 0,033 „ geloste „ 0,665 0,735 0,695 0,754 0,815 0,801 „ darin organische „ 0,167 0,175 0,130 0,090 0,150 0,113 „ mineralische „ 0,498 0,560 0,565 0,664 0,665 0,688 , Gesammt-Trockenmenge : 1,308 1,349 1,225 0,784 0,867 0,843 g. darin organische Stoffe 0,517 0,513 0,436 0,098 0,160 0,122 „ mineralische „ 0,791 0,836 0,789 0,686 0,707 0,721 „ II. in d en ge 1 osten Stofft ;n a. Gesammt-Kalk 0,090 0,073 0,091 0,211 0,247 0,246 g. davon sich ausscheidend . . — — — 0,086 0,137 0,111 „ entspr. kohlensaurem Kalk — — — 0,154 0,245 0,198 „ und gelost bleibend 0,090 0,073 0,091 0,125 0,110 0,135 „ b. nach Ausscheidung des kohlensauren Kalks: organische Stoffe (0,167) (0,175) (0,130) 0,090 0,150 0,113 „ mineralische „ (0,498) (0,560) (0,565) 0,510 0,420 0,490 „ Gesammt-Trockenmenge : (0,665) (0,735) (0,695) 0,600 0,570 0,603 g. c. leichtzersetzbare Stoffe berechnet auf verbraucht.es ubermangansaures Kali, in frischem Zustande 0,496 0,382 0,401 0,244 0,146 0,171 „ nach vierwochigem Stehen im offenen Gefasse 0,170 0,146 0,146 0,240 0,140 0,164 „ III. Sti ickstoJ ff in den schwebenden Stoffen . . 0,0104 0,0098 0,0090 0,00030 0, 000361 10,00032 g. * „ gelosten „ . . 0,0385 0,0295 0,0196 0,0238 0,0200 0,0154 „ Gesammt-Stickstoff 0,0489 0,0393 0,0286 0,02410 0,02036 0,01572 g. Die miter II b. eingeklammerten Zahlen fur das ungereinigte Abwasser sind aus I. ubernommen. Magdeburg, den 20. October 1885. gez. Dr, Brocklioff. hatten sich an der Wandung der Flasche festgesetzt. 16 s W p cd CT3 ' CD j cd" ^ 3 5? » CD a t^ p s' i § ty C< S-c sr= oc w g 1 eg-*, tf CD 05 CO CD S3 CO CO M ►£» o - 3 © © & P t© 00 05 CD O’ > H- 3 ~ t© CO P =f CD to 00 U< CO to t© 00 © © oo co t© to to 00 o © to 00 ^3 *— o SfrSsI t-fj r-+-^ Q_, ^ §P® 2 *2. 3 P n 3 O BJ =fp> 2.C5ff ^ £L a- 8S-I s|> £P&'s" c 03 2 p p H B 7 g N » ,32 1 p: O .ESS/si i=.f Q „ » “,3 s: N CSC ^ S9 g o >-s X oe t-ej o' & =35 E. 23 2 E o 5 I-S a CL. « CD 5 g- sc o' CL CD i-J JS O: a 3 CD i-S I !* O c-+- cr CD^ o s-* e 4 CD CD ^ S g » £ B. & ^ 5* e§ cl CD *-i W P 3 2 L ps Cfi a> CD aq P 3 PL CD i-S CZ2 c-i- P CL W crq CD 17 5UD a a l-H © 5C a © a a ce QC a ESJ be 3 .be ‘a '© OP © 73 o cb a 73 33 O > Xfl © pc; a © S3 t - 1 © C/2 © © <72 C/2 a £ a a a © a: o 72 72 © 73 be a a as © a 72 © © *a © as © © 73 a © a a< a C a © 0 1 f-H © o :0 DP 72 © 73 ■p 72 © a © jO '© 72 72 © 73 kl © o -M o o o 03 a o k s ■§ & © a s a be :oS aa © 72 72 a © 3 02 bb o £ 02 t: & 02 O Tb US X Cfl O & I- T " 1 r-H u © SO GS 05 00 2406 GO ks 03 M k Pm k lO ZD ft l>* 00 (S3 02 J f4 10 o £ 72 ^ a u &rt© a-se 5 S3 ‘3 ^CC-Q sa 2 Cl g fl J In Jl{ 8 ® sa cvE*g CJ ^ Cfl .5 .2 a. 5 72 03 bo « £t .2 ° a be a a a -a o Centralblatt f. allg. Gesundheitspflege. V. Jahrg. Essen, den 29. October 1885. 18 Herr Dr. Brockhoff erklart in seinem Gutachten, dass das gereinigte Abwasser in hervorragender Weise der fauligen Gahrung gegeniiber widerstandsfahig sei und diese Widerstandskraft auch durch die allmahliche Abscheidung des iiberschiissigen Kalkes (als kohlensaurer Kalk) nicht einbiisse; durch die stattgehabte Reini- gung seien die zur fauligen Gahrung neigenden Stoffe also nicht nur der Menge nach zum grosseren Theile entfernt, sondern es seien auch gerade die besonders schadlichen Bestandtheile aus dem Abwasser entfernt; der Gehalt an Gesammt-Stickstoff betrage in dem gereinigten Wasser nur 51,5% desjenigen des ungereinigten Abwassers. M. H. ! Welche Entscheidung die Stadt Essen beziiglich der Reinigung ihrer Abwasser treffen wird, kann ich heute noch nicht sagen. Nur so viel diirfte als bestimmt anzunehmen sein, dass das System der Berieselung, wie es fur Berlin und andere Stadte aus- gefiihrt ist, nicht gewahlt werden wird, weil die obwaltenden Ver- haltnisse, auf welche ich hier nicht naher eingehen kann, dies System fur Essen nicht geeignet erscheinen lassen. Es wird also lediglich die Reinigung in Klarbecken, die anderweitig schon in sehr versehiedener Weise ausgefiihrt worden ist, in Goncurrenz treten. Dass das Rockner-Rothe’sche Reinigungsverfahren aber geeignet ist, gegeniiber dem bekannten Ablagerungssystem eine feste Stellung einzunehmen, werden Sie nach den Ihnen gegebenen Mittheilungen nicht verkennen konnen. Mittheilungen iiber bakteriologische Untersuchungen der Essener Abwasser. Yon Dr. M. Wahl in Essen. Es hat sich im Verlaufe der jiingsten Forschungen als eine unwiderlegliche Thatsache herausgestellt, dass zur hygieinischen Be- urtheilung von Wasser die bislang geiibte chemische Untersuchung allein nicht mehr ausreicht. Dieselbe gibt uns wolil genauen Auf- schluss iiber die vorhandenen Chlorverbindungen, iiber Ammoniak, Nitrite und dergieichen, allein diese Verbindungen sind zum Theil ofters nur das Produkt von kleinsten pflanzlichen Bildungen, von Bakterien , welche dieselben bei ihrer Arbeit der Gahrung und Faulniss organischer Substanzen entwickeln und so vielfach gesund- heitsschadlich wirken. Neben dem Mikroskop ist es nun nament- lich das Koch’sche Verfahren, vermittelst dessen wir im Stande 19 sind, diese kleinsten organischen Wesen nachzuweisen. Die Unter- suchung des Wassers geschieht in der Weise, dass man unter alien vorgeschriebenen Kautelen, welche geeignet sind, aussere Ver- unreinigungen zu verhiiten, eine Quantitat sterilisirter, d. h. keim- freigemachter sogenannter Nahrgelatine, in der die Bakterien sehr gut gedeihen, durch Erhitzen fliissig macht und mit einem kleinen Theile des zu untersuchenden Wassers (z. B. 1 cbcm == 25 Trop- fen) yorsichtig vermischt. Diese Miscbung wird dann auf eine ebenfalls vorher durcb Gluhhitze sterilisirte Glasplatte ausgegossen, mit einem vorher durchgluhten Glasstabe ausgebreitet und zur weiteren Entwickelung in einer sogenannten feuchten Kammer, in zwei aufeinander gestulpten Tellern, in denen man ein Stuck an- gefeuchtetes Fliespapier angebracht, aufbewahrt. Es fmdet bald eine Erstarrung der Nahrgelatine statt und die mit ihr vermischten Pilzkeime miissen nun genau an der Stelle, wo sie sich im Mo- mente der Erstarrung befinden, ihre Kolonien entwickeln. Schon nach 2—3 Tagen wachsen solche Kolonien, und da nun eine jede derselben einem besonderen Keime entspricht, so lassen sich die in einem Cubikcentimeter Wasser enthaltenen Bakterien annahernd numerisch bestimmen, wenn man die erstarrte Glasplatte iiber eine in Quadratcentimeter abgetheilte andere Glasplatte legt und dann die in einem Quadratcentimeter oder Millimeter befindlichen Bak- terien zahlt. Durch Multiplikation mit dem entsprechenden Flachen- inhalt der Platte erhalt man auf diese Weise annahernd die Summe der auf der ganzen Glasplatte befindlichen Bakterienkolonien oder der in einem Cubikcentimeter enthaltenen Bakterien. Nach dieser Methode ist nun zunachst das unger einigte Kanal wasser, wie es in den Apparat hineinfliesst, untersucht worden. Der Baktcrien- gehalt desselben ist ein verschiedener je nach den verschiedenen Tageszeiten. Gegen 9 Uhr des Morgens ist das Wasser am schmutzigsten, am reinsten in den Mittags- und ersten Nachmit- tagsstunden, gegen Abend wieder unreiner. Vielleicht ist der Ge- halt an Bakterien auch an besonderen Tagen und in einzelnen Jahreszeiten wiederum ein verschiedener. Die Untersuchung der ge- klarten Wasser geschah in der Art, dass jedesmal das Kanal wasser mit dem kurze Zeit nachher aus dem Apparate ausstromenden Klarwasser zur Untersuchung gelangte. Es wurden am 18., 19., 21., 27., 28. und 29. October Kanal- und Klarwasser entnommen und untersucht und stellten sich dabei folgende Resultate im Gan- zen heraus: Die Gelatineplalten, welche das ungereinigte Wasser enthielten, zeigten bei Zimmertemperatur (14 — 15° R.) schon zu Fnde oder bald nach Ablauf der ersten 24 Stunden eine deutliche Triibung und massenhafte punktformige Kolonieenentwickelung. Die Anzahl derselben war sehr verschieden , sie wurden zwischen 1,686,000 bis zu 5,245,000 pro Cubikmeter geschatzt und sind 20 dieselben in dem am meisten verunreinigten Wasser vermuthlich oft noch grosser. Am 2. Tage trat oft schon eine Verfliissigung der sich mehr ausbreitenden und wachsenden Kolonien ein, um einzelne derselben zeigten sich blasenformige Erhebungen von Luft, und dabei entwickelte sich ein penetranter Faulnissgeruch. So sind auch jedenfalls die aus einem Sumpfe aufsteigenden Luftblasen als Gasentwickelung der Bakterien aufzufassen. Wurden die Plat- ten in einer Temperatur von 12° und weniger aufbewahrt, dann konnte man die Verfliissigung wohl 1 bis 2 Tage aufhalten. Die gereinigten Wasser zeigten die ausgegoss enen Platten am 1. Tage rein, am zweiten ebenfalls klar und fest, nur hier und da waren einzelne Kolonien hervorgewachsen. Die Verfliissigung tritt viel spater ein, sie beschrankt sich bios auf die einzelne Kolonie, erst am 4. Tage und bei niederer Temperatur noch spater, dabei findet wegen der minimalen Pilzvegetation keine Entwickelung von iibel- riechenden Gasen statt. Die Anzahl der auf solchen Glasplatten ausgewachsenen Bakterien -Kolonien schwankte von 34 bis 178 pro Gubikmeter *). Es zeigte sich also, abgesehen von dem Ge- halt an Chemikalien, eine ahnliche, wenn nicht bessere Beschaffen- heit wie bei unserem aus der Ruhrleitung entnommenen Trink- wasser. Auf den mit solchem Wasser beschickten Platten habe ich auch Bakterienkolonien in der Anzahl von 70 bis 320 pro Cubikcenti- meter gef unden. Der Gehalt unseres Trinkwassers ist verschieden, je nachdem dasselbe triibe oder hell, rein oder mit erdigen Theilen vermischt ist, vielleicht ist auch in den verschiedenen Jahreszeiten eine Verschiedenheit bemerkbar und Leitungen, welche viel in Ge- brauch sind, liefern ein bakterienarmeres Wasser, als jene, die nur selten gebraucht werden. In ruhigem Wasser geht die Entwicke- lung der Bakterien rascher und gedeihlicher vor sich. Es sind ausserdem noch Versuche gemacht worden mit geklartem Wasser, welches kurze Zeit nach Beginn der Thatigkeit des Apparates aus demselben stromte, es wurden da einmal ca. 130,000, das andere Mai ca. 158,000 Bakterien pro Kubikcentimeter gezahlt. Die Ursache lag darin, dass sich noch kein Schlammfilter gebildet hatte, auf welchem die Bakterien massenhaft hangen bleiben. Die Unter- suchungen an jenen Tagen, wo das Schlammfilter wirkte, ergaben die giinstigsten, bereits angegebenen Resultate. Ueber die Dauer 1) Es fanden sich auf den Platten mit ungereinigtem Wasser und mit gereinigtem Wasser vom 18. Oct. 5,245,000 Kolonien pro Cbcm. 19. 21 . 27. 28. 29. 2.287.000 2.493.000 1 . 686.000 1.711.000 2.417.000 178 Kolonien pro Cbcm. 1&6 55 34 148 , 105 „ der Desinfectionskraft des Wassers lasst sich noch kein Urtheil abgeben wegen der noch nicht abgeschlossenen Versuche. Jeden- falls wird dabei der jeweilige Gehalt der Klarwasser an Ghemi- kalien in Betracht zu ziehen sein , der je nach der Qualitat des Wassers ein verschiedener ist. Zunachst geht aber aus den Ver- suchen als unzweifelhaft hervor, dass das Ro ckner-Rothe’sche Verfahren ein geklartes Wasser liefert, welches beziiglich des Bak- teriengehaltes dem Trinkwasser nicht nur gleichkommt, sondern dasselbe an Reinheit oftmals noch iibertrifft, und dass das Schlamm- filter des Apparates einen wesentlichen Antheil an der Desinfektion hat. In wesentlicher Uebereinstimmung mit diesem Resultate sind die Ergebnisse der Untersuchungen des Herrn Dr. Blasius in Braunschweig, welcher die mit dem Roc kn er - Roth e’sclien Apparat gereinigten Abwasser einer Brauerei untersuchte und in seinem Vortrage in der Generalversammlung des Vereins fur offent- liche Gesundheitspflege in Braunschweig im April d. J. angab, bei ca. 3 Millionen Bakterien im Gubikcentimeter ungereinigten Wasser, fand derselbe im gereinigten im Durchschnitt 100 bis 200 pro Gubikcentimeter. Nach einer brieflichen Mittheilung fand derselbe im Essener Abwasser bei 1,134,000 Bakterien im Gubikcentimeter ungereinigten Wasser nur 3 Kolonien pro Cubikcentimeter im ge- reinigten und in den mit dem Rockner-Rothe’schen Verfahren gereinigten Abwassern des Abwassers des Gefangnisses in Braun- schweig bei 2 — 3 Millionen Bakterien pro Gubikcentimeter im un- gereinigten Wasser bloss 0 und 18 Kolonien pro Gubikcentimeter im gereinigten. Auch Herr Dr. Kaysser in Dortmund fand laut brieflicher Mittheilung im ungereinigten Essener Wasser bei ca. 2,400,000 Bakterien pro Gubikcentimeter, im gereinigten bloss 168 Kolonien im Gubikcentimeter. Was die Beschaffenheit der vorgefundenen Bakterien anlangt, so scheinen dieselben zum weit grossten Theile Faulnissbakterien zu sein. Die iiberwiegende Form ist die Goccenform. Von Stabchen sind langliche und schmale vertreten, dem Bacillus sub- tilis ahnlich, dann auch kurze dicke Formen, etwa wie Bakterium termo oder kleinere, wie sieKoch von der Septicaemie der Mause beschreibt oder wie man sie bei griinemEiter findet. DieCoccen sind in verschiedener Grosse und Form vorhanden, rund, oval, meist in grossen Haufen vereinigt, in dem ungereinigten Wasser waren mehrfach kettenformig und sarcineartig aneinandergereihte Formen, Streptococcen, anzutreffen, dagegen wurden diese Formen in den geklarten Wassern nicht vorgefunden. Einige Goccen er- innern beziiglich ihres Aussehens und Verhaltens in der Nahrgela- tine an die von Rosenbach als traubenformige, goldgelbe eiter- bildende Goccen beschriebenen, andere sehen wieder aus wie die Goccen bei Rothlaufentziindungen. 22 Ob aber diese Bakterien mit jenen identisch sind, oder ob sie iiberhaupt einen pathogenen Gharakter haben, das lasst sich aus dem blossen Aussehen nicht erkennen, dazu sind Thierexperimente nothig und die konnen nur in einem hygieinischen oder patholo- gischen Institute mit Erfolg vorgenommen werden. Beilaufig ist es auch oft sehr schwer, den pathogenen Gharakter experimentell festzustellen; die Resultate sind oft negativer Natur. In der Ar- beiterkolonie der Maschinenbau-Aktien-Gesellschaft ,,Union“, welche unweit des Einflusses der Kanalwasser in den Bernebach liegt, wo das Schlammwasser sehr dicht ist, wird den Bewohnern der Aufent- halt in den an der Berne gelegenen kleinen Garten durch die iiblen Ausdiinstungen wohl sehr oft verleidet, aber Epidemieen oder sonstige Krankheiten, welche in Zusammenhang mit schadlichen Einfliissen jener iibelriechenden Wasser zu bringen waren, sind bisher nicht vorgekommen, und Kinder, welche im Laufc der Zeit ofters in den Bach gefallen sind und Schlammwasser verschluckt haben, sind, aussere Unbequemlichkeiten abgerechnet, nicht er- krankt. Freilich kann ja hier Mancherlei in Frage kommen, was die schadliche Einwirkung von Bakterien inhibirt, es soli das auch keineswegs als Beweis fur eine etwaige Unschadlichkeit jener Was- ser angefiihrt sein, sondern es soil nur andeuten, dass es oft sehr schwer ist, die schadlichen, wirklich gesundheitsgefahrdenden Ein- fliisse solcher Schlammwasser wissenschaftlich festzustellen. Auch muss andererseits noch darauf aufmerksam gemacht werden, dass Bakterien und Krankheitsursachen nicht immer identisch sind. Bak- terien sind ja zweifellos als Ursachen fur viele ansteckende und andere Krankheiten nachgewiesen und werden als solche noch immer mehr auf dem Wege weiterer Forschungen entdeckt, aber keineswegs sind alle Bakterien schadlich und krankheitserregend. Eine grosse Anzahl von Bakterien haben im Haushalte der Natur eine wichtige Rolle, iiberall wo Gahrung und Faulniss stattfindet, sind Bakterien die Ursache, mogen jene Processe nun die nothigen Folgen des Stoffwechsels in der organischen Welt bilden oder mogen sie im Dienste unserer Lebensgewohnheiten, in der Tech- nik, in Kiiche und Keller zur Bereitung von Annehmlichkeiten oder Geniissen dienen. Die Untersuchungen von Brieger und Bie- nenstock haben gezeigt, dass die Bakterien im Stoffwechsel des thierischen Lebens einen physiologischen Zweck erfullen und bei- spielsweise bei der Verdauung eine ge wichtige Rolle spielen. Schliesslich soil auch nicht unerwahnt bleiben, dass gewisse Bakterien die Eigenschaft besitzen, bei der weiteren Fortentwick- lung ihrer Kulturen andere Bakterienarten zu fiber wuchern und zu vernichten. Es kann so leicht der Fall eintreten, dass bakterien- reiche Wasser allmahlich wieder einen geringeren Bakteriengehalt aufweisen und auf diese Weise in gewissem Sinne eine Art von 23 Selbstreinigung eintritt, ein Umstand, der bei der Verunreinigung von Fliissen durch Kanalwasser gewiss nicht ohne praktische Be- deutung sein diirfte. Zur Registrirung der neueren Pockenfalle. Von Dr. S. Wolffberg. Im zweiten Heft des zweiten Bandes der Erganzungshefte zu diesem Centralblatt veroffentlichen vvir eine Untersuchung fiber die Va c- cinisation (der Belgier) sowie fiber die sog. Autorevaccination. Beide Methoden verfolgen den Zweck, den durch den eigentlichen Impfakt herbeigefuhrten Schutz wider die Pocken in geeig- neten Fallen kiirzere oder langere Zeit nach der Impfung zu ver- starken. Bei dieser Gelegenheit betonten wir, dass bisher kein anderer Umstand als so einflussreich auf Hohe und Vorhaltig- keit des Impfschutzes sich erwiesen hat wie die Zahl der durch die Impfung hervorgebrachten Schutzpocken. Indessen ist in den bisherigen Zusammenstellungen auf das Lebensalter der Patienten meist keine Riicksicht genommen, so dass dieselben nicht vollig befriedigen konnen. Auch ist eine neue und moglichst umfang- reiche Sammlung des Materials in Zukunft deshalb erforderlich, weil durch die epidemiologischen Erfahrungen allein das Schlussurtheil iiber die wichtige Frage gefestigt vverden kann, welcher Grad ortlicher Erfolge nothwendig ist, um durch die mit Recht immer mehr in Vordergrund tretende animal e Lymphe in moglichst zahlreichen Fallen den Pockenschutz herbeizufiihren, — bezw. wie die Falle beschafferi waren, in denen trotz der vorher- gegangenen Impfung Pocken beobachtet wurden. In dem citirten Aufsatze richteten wir daher an die deutschen Kollegen das Er- suchen, alle noch zur Beobachtung gelangenden Pockenfalle mit Riicksicht auf die Impfung soweit moglich genau zu untersuchen und zu registriren. Die Lehren, welche die ferneren nie vollig vermeidbaren Pockenfalle noch zu geben vermogen, mtissen wir nach wie vor beachten. Dieses Material sollte der wissenschaft- lichen Sammlung zum Zwecke der Sichtung und einstigen prak- tischen Verwerthung nicht verloren gehen. Ich brauche nicht zu betonen , dass wir h i e r m i t keine eigentliche Morbiditats- statistik wollen, welche auch die deutsche Impfkommission (vom Oktober, November 1884), als es sich darum handelte, ein Bild des Einflusses des deutschen Impfgesetzes zu erhalten, mit Recht ver- warf. Aber wir wollen nicht bloss ein Bild dieses Einflusses, son- dern zugleich moglichst exakte Erfahrungen sammeln, um even- — 24 tuell das Impfgesetz oder die Verordnungen zu dem- selben fortschreitend zu bessern. Mit Ruhe konnen wir es hinnehmen, dass das beobachtete und zumal das gemeldete Krankenmaterial nothwendigerweise unvollstandig sein muss. Aber es wurde grossen Gewinn bieten, wenn wir von einer relativ mog- lichst grossen Zahl von Pockenkranken erfuhren: 1. Alter; Geschlecht; 2. Zeit (Datum), Verlauf und Ausgang der Krankheit. 3. War eine Pockenerkrankung vorhergegangen ? Wann? War dieselbe von einem Arzte constatirt worden? 4. War Patient geimpft? Wann? Mit welchem Erfolge, i. e., wie viel Impfnarben sind zur Zeit der Erkrankung nach- weislich? Mit welcher Art von Lymphe war die Impfung geschehen ? 5. War Patient revaccinirt? Wann? Mit welchem Erfolge? Bestehen Spuren der Revaccination jetzt zur Zeit der Er- krankung? Mit welcher Art von Lymphe geschah die Revaccination? Sicherlich sind zahlreiche Aerzte geneigt, derartige Fragen, deren so hohe wissenschaftliche wie praktische Bedeutung ein- leuchtet, im gegebenen Falle sich zu beantworten, bezw. beant- worten zu lassen. Die Veroffentlichung einzelner Falle schien mit Recht bisher von allzu geringem Belang. Die Redaktion des C entr alblatts wird nun gem bereit sein, jede ein- zelne, von arztlicher Seite stammende Beobachtung zu unserer Frage in dieser Zeitschrift bekannt zu machen. So lebhaft wir wiinschen, dass uns Pockenepidemien noch recht lange, hoffentlich fur immer fern bleiben, so wird man, denke ich, zustimmen, wenn wir verlangen, dass in Zukunft kein Pockenfall, den ein Arzt beobachtet, voriibergehe, ohne dass die oben angegebenen Fragen zum Zwecke dereinstiger wissenschaft- licher und praktischer Verwerthung exakt beantwortet wiirden. Ueber alle Pockenfalle sollte von jetzt ab Buch gefiihrt werden. Das Filter Pasteur -Chamberland. Von Dr. Finkelnburg. Hierzu 1 Abbildung. Unter den auf der Weltausstellung zu Antwerpen im Sommer 1885 vorgefiihrten Gegenstanden hygieinischen Zweckes zogen be- sonders die zahlreich vertretenen Apparate zur Untersuchung und zur Verbesserung des Trinkwassers allgem einere Aufmerksamkeit 25 auf sich. Die auch in weitere als fachwissenschaftlicbe Kreise ge- drungenen klareren Anschauungen der jungsten Zeit uber die Natur der im Genusswasser zu furchtenden Scbadlichkeiten einerseits und das bestandig drauende Gholeragespenst anderseits mussten die Frage nach einem zuverlassig wirksamen Reinigungsverfahren ohne Beeintrachtigung der Genussfahigkeit des Wassers mehr als je auf die Tagesordnung bringen. Schon die hygieinische Ausstellung zu Berlin im Jahre 1883 wies denn auch eine grosse Reihe von Wasser- filtern auf, welche alle mit mehr oder weniger Reclame als sichere Losungen der fraglicben Aufgabe ausgegeben wurde, — bald be- stehencl aus gepresster Knochenkohle , bald aus Asbest, bald aus Eisenschwamm, bald aus porosen Steinarten u. dgl. m. Aber ge- geniiber der bei dem heutigen Stande unseres Wissens allein mass- gebenden Probe auf ihren Werth — d. b. gegeniiber der Prufung des von ihnen filtrirten Wassers auf seinen Gehalt an keimungs- fahigen organischen Wesen, vermochte keines dieser Filter ganz zu befriedigen. Wo die Leistung im Anfange vorzuglich schien, da liess sie nach kiirzerer oder langerer Arbeit nach; die Poren des Filtermaterials fullten sich mit keimenden Stoffen, welche das Wasser verunreinigt erhielten und deren Beseitigung nur durch umstand- liche und unsicher wirkende, haufig zu wiederholende Proceduren moglich war. Mit begriindetem Misstrauen ging daher auf der Ant- werpener Ausstellung die Jury der Klasse fur Hygieine und Medizin, als deren Vorsitzender Referent fungirte, an die Prufung der zahl- reichen, aber durchweg wenig neues bietenden Filter, und die Orientirungsversuche, welche darin bestanden, dass die (durch Bak- terien-Entwickelung) triibende Einwirkung der Wasserproben vor und nach der Filtration auf sterilisirte Losungen von Nahrgelatine verglichen wurde, ergaben denn auch bei der iiberwiegenden Mehr- zahl der Filter ein sehr unbefriedigendes Resultat, besonders bei alien schon eine Zeit lang arbeitenden Kohlen-, Eisenschwamm- und Asbest-Filtern. Bei einem der untersuchten Kohlenfilter erwies sich sogar das ablaufende Wasser bakterienreicher, die Gelatin elosung rascher in Faulniss versetzend als das unfiltrirte. Ein hervorragend giinstiges Ergebniss lieferte dagegen ein von Ghamb erland, einem Schuler Pasteur’s, unter Inspiration seines Lehrers hergestellter Apparat, welcher seinen Ursprung dem Laboratorium-Bedurfnisse bei Pasteur’s wissenschaftlichen Untersucliungen iiber dieFerment- wirkung der Spaltpilze verdankt. Um diese Fermentwirkung als Funk- tion der Organismen selbst festzustellen, bedurfte es eines sicheren Mit- tels, die Pilze von den sie enthaltenden Fliissigkeiten zu trennen, und diese Trennung der so ausserordentlich winzigen ,,Mikroben“ erwies sich durch Anwendung der bis dahin verfugbaren Filter nicht erreichbar. Pasteur erreichte seinen Zweck nach vielen vergeb- lichen Versuchen durch Herstellung kleiner Cylindergefassschen aus 26 reiner, sehr hart gebrannter Kaolinmasse von genau bestimmtei Porositat; in diese Porzellancylinder brachte er die Bakterier haltende Fliissigkeit und sog dann letztere mittels Luftverdunnung in einen den Cylinder umgebenden Behalter durch die Porzellan- schicht hindurch. Er gewann dadurch in dem ausseren Behaltei eine absolut bakterienfreie Fliissigkeit, welclie sich als frei vor alien gahrungserregenden Eigenschaften erwies. Chamber- land verwerthete dann diese Fahigkeit der Kaolinmasse, Wassei unter Zuriickhaltung aller , auch der winzigsten darin suspen- dirten Partikel durchzulassen , zur Construction des in nach- folgender Zeichnung veranschaulichten grosseren Filterapparats, ir welchem das zu reinigende Wasser durch Druck von aussen durct die Porzellanwand hindurch in das Innere der Porzellancylindei hineingetrieben wird, um dann in vollig reinem Zustande unter abzufliessen. A. Figur I. Durchschnitt des Fillers. Figur II. Umriss des eingesetzten Filters. Porzellancylinder, durch welchen das Wasser (von aussen nact innen) filtrirt. — 27 B. Oeffnung des Cylinders, durch welche das filtrirte Wasser ablauft. C. Schraubenmutter, durch welche der Porzellancylinder im Metall- mantel fixirt wird. D. Cylindrischer Metallmantel, welcher den Porzellancylinder um- schliesst. E. Zwischenraum, welchen das zu filtrirende Wasser ausfullt. Um den Grad von Keimfreiheit des im Chamber la nd’schen Apparat filtrirten Wassers genauer festzustellen, wurden nach vor- heriger Sterilisirung des Porzellancylinders Proben des ablaufenden Wassers unter den bekannten Vorsichtsmassregeln auf Platten mit erwarmter und frischsterilisirter Fleischwasser-Peplon-Gelatine und mit Blutserum- Gelatine ausgesat und gemischt, wahrend auf anderen Platten in gleicher Weise das unfiltrirte Wasser ausgesat wurde. Vormittags der Schelde entnommenes Wasser erzeugte auf diesen Platten, welche nach dem Erstarren der Gelatine in eine feuchte Glocke gebracht wurden, eine so massenhafte Pilzvegetation, dass behufs Ermoglichung einer Zahlung nach Koch’s Methode der Versuch unter Verdunnung mit der SOfachen Menge sterilisirten destillirten Wassers wiederholt werden musste und sich dann aus der Kulturkolonie der Gehalt auf 5 — 6000 Keime in 1 Kbcm des Scheldewassers berechnen liess. Dieses Wasser verlor, wie durch wiederholte Versuche sich ergab , wahrend seines Durchganges durch das Chamberland’sche Filter ganzlich seinen Gehalt an Keimen, und das Resultat blieb das gleiche, als anstatt neuer Por- zellancylinder solche verwandt wurden , die bereits monatelang Dienste gethan. Dass ein langerer Gebrauch keine Uebelstande nach sich zu ziehen vermag, erhellt schon aus dem Aussehen der Bruchflache lange benutzter Cylinder; — dieselbe lasst das ganze Gefuge der Porzellanwandung unverandert blendend weiss und rein erscheinen, wahrend alle zuriickgehaltenen Unreinigkeiteu auf der ausseren Flache des Cylinders abgelagert sind. Auf diesem Umstande beruht auch die Leichtigkeit der Reinigung, welche durch Abbiirsten unter einem Wasserstrahl, eventuell ausserdem — etwa bei herrschenden Epidemien — durch Erhitzung der Cylinder an einer Gas- oder Weingeistflamme binnen wenigen Minuten auszu- fuhren ist. Der Durchgang des Wassers durch die Porzellanschicht geschieht bei mangelndem Wasserdruck nur langsam und tropfenweise, bei 1 1 l 2 bis 2 l k Atmospharen Druck (unter solchen wurden vermittelst Anschlusses an eine Wasserleitung die vorstehend mitgetheilten Versuche angestellt) lieferte dagegen jeder Filtercylinder stundlich 2 bis 3 Liter Wasser, ein Apparat von 5 Cylindern somit in 24 Stunden 240 bis 360 Liter. Ob bei Anwendung noch starkeren Druck es das durchgetriebene Wasser noch die gleiche Keimfreiheit bewahren werde, bleibt zu ermitteln. Um auch an Orten ohne 28 Wasserleitung den zur Lieferung erheblicher Filtratsmengen er- forderlichen Druck zu beschaffen, hat die Firma Chamberland tragbare Druckpumpen hergestellt, welche mit dem Filterapparat zu verbinden sind. Solche mit Druckpumpen verbundene Apparate hat z. B. die belgische Regierung bereits bei den diesjahrigen Manovern ihren Truppenabtheilungen mitgegeben. Das Pasteur-Chamberland’sche Filter gewahrleistet nach diesen Versuchen eine zuverlassige Unschadlichmachung jedes irgendwie mit Krankheitskeimen inficirten Genusswassers und wird daher namentlich bei herrschenden Epidemien verdienen, an alien Orten, welche aufWasser von zweifelhafter Herkunft und Reinheit angewiesen sind, eine wichtige Rolle zu spielen. Ausserdem wird es sich vielleicht zu anderen Zwecken sogenannter Sterilisirung von Fliissigkeiten eignen, z. B. zur Conservirung des Weines, anstatt der bisherigen ,,Pasteurisirung“ (mittelst Erwarmung auf 55° R.) sowie zur Herstellung keimfreier Versuchsflussigkeiten im Laboratorium. Auf die gelosten chemischen Bestandtheile des Wassers iibt das Filter als solches keinerlei Einwirkung aus. Wenn solche bezweckt wird, — was bei den heutigen hygieinischen An- schauungen nur selten der Fall sein diirfte, — so muss das Wasser vor seinem Durchgange durch die Porzellanschicht der Einwirkung entsprechender anderer Stoffe, wie Knochenkohle, Kalkhydrat oder dergleichen unterworfen werden, mit welchen Stoffen alsdann der die Porzellancylinder umgebende Metallmantel-Raum auszufullen ist. Unter alien Umstanden aber ist die Pasteur-Chamber- land’sche Filter-Vorrichtung, der seitens der Jury auf der Ant- werpener Ausstellung das wohlverdiente Ehrendiplom zuerkannt wurde, als ein grosser Fortschritt in der hygieinischen Technik zu begriissen und verdient auch in Deutschland ihre geeignete Ver- werthung zu finden. jVacliweisiiiig- uber Krankenaulnahme und Bestanu in den Krankenhausern ans 55 Stadten der Provinzen Westfalen, Rheinland und Hessen-Nassau pro Monat November 1885. Stadte Hospitaler Bestand am Schlusse Summa der Aufgenommenen j Krankheitsformen der Aufgenommenen Zahl der Gestorbenen d V M O Oh Varicellen Maseru und 1 Rotheln Scharlach .2 a. d O) I Unterleibstyph. Epidemische 1 Genickstarre Sh .d d Oh I Brechdurchfall j I Kindbettfieber j | Wechselfieber O CO o PC des vorigen Monats dieses Monats Diphtherit und Crou A 1 -5 £ stadt. u. kath. Krankenhaus 60 54 34 4 stadtisches Krankenhaus 26 41 40 1 1 1 Landeshospital 39 39 1 8 5 stadtisches Krankenhaus 60 56 21 1 4 Louisen- u. Johanneshospital Augnstaa.nsta.lt 70 100 94 6 4 stadtisches Hospital 98 evangel und Marienhospital 134 151 106 1 l 7 stadtisches Krankenhaus 32 37 16 4 81 62 39 1 3 4 20 22 26 4 Mariastift. n ev. Krankenh. 145 197 195 •1 7 1 24 2 3 13' stadt.isp.hps Krankenhaus 97 22 4 2 Ludinghausen St. Marien-Hospital 23 28 14 2 1 Dusseldorf evangel. Hospital 78 90 65 2 1 1 4 Marienhospital 171 171 87 1 1 4 2 i 17 F,1 hprfel d st. Kr.-Anst.. u. St.. Jos.-Hosp. 296 335 288 1 4 4 1 2 23 138 134 130 1 3 1 7 Orefeld 124 122 88 1 1 1 1 15 Essen Huyssen-Stift, z. d. barmh. Schwestern u. Krupp’sches Krankenhaus 193 216 180 1 4 7 1 2 15 Duisburg stadt.. n. Diak. -Krankenhaus 56 58 21 1 1 2 2 M -Glad bach 121 141 67 1 2 2 1 5 Remscheid stadtisches Krankenhaus 39 30 26 2 Miilheim a. d. Ruhr 70 71 36 1 1 5 Viersen r> 10 16 12 1 i Wesel d t n • ^ Hospital 39 43 32 1 .. 1 1 2 iNeuss ^ Krankenhaus 43 39 13 4 ISolingen- 7) D 61 72 28 1 1 2 3 Styrum 7) Yl 12 16 5 Ruhrort Haniels-Stiftun g 23 26 19 1 jSiichteln stadtisches Krankenhaus 11 14 4 1 Odenkirchen 10 8 8 * # 1 1 1 Lennep 31 33 T 33 24 27 30 2 Aachen Louisen hospital 36 40 51 1 1 3 Eschweiler St. Antoniushospital 106 106 13 4 Eupen St. Nikolaushospital 34 32 11 1 2 Burtscheid Marienhospital 82 76 23 4 Stolberg Bethlehemshospital 54 54 11 1 3 Koln Biirgerhospital 515 586 538 1 21 13 7 1 • • 1 11 36 Bonn Fr.-Wilh.-Stift (ev. Hospital) 73 86 33 1 Miilheim a. Rh. stadt. u. Dreikonigen hospital 109 96 53 1 2 2 1 8 Beutz stadtisches Krankenhaus 59 61 22 4 4 £hrenfeld 24 23 6 2 Kalk 33 33 52 80 53 1 2 2 Trier 33 33 stadt. Hosp. u. Stadtlazareth 116 111 23 9 iaarbrucken Biirgerhospital 38 49 37 1 1 4 Xreuznach stadtisches Hospital 49 48 34 1 2 1 1 Jeuwied 41 32 17 ’i 1 3 Viesbaden 33 33 stadtisches Krankenhaus 107 112 103 10* 1 4 11 lettenhausen Landkrankenhaus 136 120 149 1 1 6 2 3 9 Isehwege 44 46 36 2 2 ’ulda ” 92 114 105 1 2 2 lanau 33 76 78 56 2 3 2 6 lersfeld 33 44 iinteln * 11 15 8 chmalkalden 33 33 18 14 16 3 Kr&tze und Ungeziefer. Stertoliclilteitss - Statistik yon 56 Stiidten der Provinzen Westfalen, Rheinland und Hessen-Nassan pro Monat November 1885. Stadte Einwohner- Zahl Zahl dei- Lebend- geborenen Verh.-Zahl d. Gebo- renen auf 1000 Einw. und auf 1 Jahr 0> £ -Q Todesursachen Gewaltsam. Tod durch Pocken Masern und Rolheln Scharlach Diphtheritis und Croup Stickhusten Unterleibstyph. gastr. Fieber Ruhr Kindbettfieber Acdere Infec- tionskrankheit. Darmkatarrh u. Brechdurchfall VeruuglUck. oder nicht niiher constat. Einwirkung Selbstmord j Bielefeld 34000 108 38,1 54 14 19,0 | 1 Minden 17856 34 22,8 33 9 22.2 9 2 i Paderborn 16300 40 29,4 33 6 24,3 2 2 Dortmund 76000 257 40,6 121 28 19,1 1 18 2 2 2 2 1 Bochum 40690 140 41,3 91 23 26,8 *2 4 6 1 1 Hagen 29000 91 37,7 77 23 31,9 15 *2 1 1 5 1 1 Hamm 21920 72 39,4 26 9 14,2 1 1 Witten 22363 74 39,7 34 10 18,2 1 1 Iserlohn 19709 62 37,7 31 8 18,9 1 1 1 2 1 Siegen 16450 53 38,7 18 2 13,2 1 Gelsenkirchen 18182 109 71,4 55 13 36.3 2 5 7 2 2 4 Schwelm 1 J ) 1 42 41,6 20 5 19,8 1 Lippstadt 10000 30 36.0 15 1 18,0 2 1 Diisseldorf 1 14703 357 37,3 198 47 20,7 2 3 8 1 1 1 7 2 Elberfeld 103200 314 36,5 156 29 18,1 1 1 4 5 1 1 2 11 2 3 Barmen 102000 303 35,6 152 43 17.9 1 3 8 6 2 12 3 Crefeld 91128 305 40,2 217 67 28,6' 1 25 2 1 4 5 2 Essen 64090 235 44,1 126 34 23,6 1 4 *2 1 5 1 Duisburg 44780 185 49,6 128 33 34,3 6 14 7 1 9 4 1 M.-Gladbach 45000 126 33,6 59 23 15,7 3 1 3 1 1 j Remscheid 34158 70 24,6 32 7 11,2 1 2 2 Miilheim a d. Ruhr 24170 83 41,2 39 11 19,4 1 3 1 7 Viersen 22500 81 43,2 47 18 25,1 2 1 Wesel 20603 46 26,8 27 8 15,7 1 Rheydt 22018 65 35,4 28 6 15,3 2 1 Neuss 20104 83 49,5 42 16 25,1 1 Solingen 18588 57 36,8 32 9 20,7 1 1 1 l #i Oberhausen 19380 68 42,1 35 7 21,7 1 1 Styrum 17809 71 47.8 31 12 20,9 1 3 3 i Ronsdorf 10100 35 41,6 13 3 15,4 2 Wermelskirchen 10500 31 35,4 14 4 16,0 1 Siichteln 9286 28 36,2 21 7 27,1 Odenkirchen 9228 31 40,3 20 6 26,0 3 2 1 1 Velbert 9922 40 48,4 22 10 26,6 3 Ruhrort 9087 30 39,6 50 23 66,0 29 1 1 1 Lennep 8617 16 22,3 18 5 25,1 1 2 i Aachen 90898 312 41,2 175 55 23,1 7 3 3 4 2 Eschweiler 15548 66 51,9 49 11 37,8 1 Eupen 15234 45 35 4 23 7 18,1 1 1 3 Burtscheid 10989 25 27,3 20 3 21,8 1 i Stolberg 10911 50 55,0 13 2 14,3 Koln 153500 511 39,9 269 82 21,0 1 12 4 2 4 6 4 Bonn 33800 95 33,7 74 9 26,3 3 1 Miilheim a. Rhein 23400 91 46,7 51 24 26,2 *3 3 3 1 5 1 Deutz 17086 55 38,6 32 9 22,5 1 1 Ehrenfeld 17528 61 41,8 30 11 20,5 1 3 i Kalk 10782 42 46,7 30 12 33,4 2 3 1 1 2 Trier 24201 61 30,2 63 14 31.2 1 2 1 1 1 ! 1 Malstadt-Burbach 13158 63 57,5 31 13 283 2 2 i St Johann 13062 46 42,3 25 6 23.0 i 1 1 Saarbriicken 9514 29 36,6 24 10 30,3 l *i 1 1 Coblenz 33388 67 24,1 60 14 21,6 2 4 3 2 2 Kreuznach 16100 29 21,6 24 3 17,9 1 1 Neuwied 9656 22 27,3 9 11,2 2 Wiesbaden 56000 122 26,1 77 9 16,5 2 l 1 1 t Kassel 66757 135 24,3 98 13 17,6 1 1 18 6 l 2 1 2 31 Kleiiiere Mittheiliingen. * Die Cholera hat wahrend des Dezember des abgelaufenen Jahres in keinem Theile Europa’s einen epidemischen Verbreitungsgrad gezeigt, fahrt aber fort, ihr Vorhandensein durch sporadische Falle sowohl in Spanien wie in Italien, seit Ende Dezember auch in Triest zu beweisen. Nach letzterer Stadt scheint sie auf dem Seewege von Venedig verschleppt worden zu sein. Die in Brest und Umgegend wahrend des November aufgetretene kleine Epidemie ist angeblich wieder erloschen. Die Gesammtbedeutung des Cholera-Auftretens in Italien wahrend des Jahres 1885 ergibt sich aus folgenden, nach amtlichen Quellen wiederge- gebenen Uebersichtszahlen: Yon den 69 Provinzen der italienischen Monarchic waren 27 ergriffen; von den 8200 Gemeinden 152. Die Gesammtzahl der Erkrankungen betrug 6400 (wovon 5535 auf die Provinz Palermo entfallen) ; die Gesammtzahl der Todesfalle 3460 (davon 2599 in der Provinz Palermo). Ein Vergleich der seit dem ersten Auftreten der Cholera in Europa be- obachteten Epidemien ergibt fur die meisten der zum wiederholtenmale heim- gesuchten Bevolkerungscentren im Ganzen die beruhigende Thatsache einer forts chreitenden Abnahme in der Heftigkeit der Seuche. So be- trug z. B. in Stadt und Provinz Palermo die Zahl der Todesfalle an Cholera im Jahre 1837 : 40642 1854 : 8262 1855:2998 1866/7 : 7867 1885:2599. Und beziiglich der Stadt Marseille veroffentlicht das Giornale della Beale societa italiana d’igiene folgende Statistik: Jahr der Epidemie Zahl der Todesfalle Bevolkerung Cholera-Sterblichkeit auf je 1000 Einwohner 1835 3335 148000 22,53 1837 1526 150000 10,17 1849 2252 195000 11,59 1854 3069 234000 13,12 1855 1328 . 240000 5,65 1865 2037 300000 6,79 1866 1097 305000 3,59 1884 1784 380000 4.69 F. * Ueber die Typhusepidemie in Wiesbaden wahrend des Jahres 1885, hat die durch den Gemeinderath der betroffenen Stadt einberufene Commission von Sachverstandigen (Baumeister, Fresenius, von Lange n- beck, von Pettenkofer, Seitz, Hueppe, Pagenstecher, Pfeiffer, 32 Wibel) ein Gutachten erstattet und in der Miinchener Medizinischen Wochen- schrift (Nro.’s 42 u. 43, Jahrgang '1885) veroffentlicht. Aus demselben geht zunachst hervor, dass der Unterleibstyphus in den ersten 5 Monaten des Jahres 1885 nur vereinzelt in Wiesbaden aufgetreten, von Mitte Juni an aber den Gharakter einer wirklichen Epidemie angenommen und bis zum 22. August 864 polizeilich angemeldete Erkrankungsfalle veranlasst hatte. Das Auftreten der Krankheit schien von Mitte Juni an fast gleich- massig iiber die ganze Stadt verbreitet zu sein, doch machten sich bald gewisse Lokalisationen als vorwiegend bemerklich. Yon 133 Strassen der Stadt wurden 99 mehr oder weniger befallen. Die Todesfalle betrugen ca. 5% der Erkrankungen. Beziiglich der Entstehungs-Ursachen legte der Bericht den Hauptnachdruck auf die Verunreinigung des Bodens ausser- halb und innerhalb der Hauser mit den Abfallen des menschlichen Haus- halts, den verschiedenen Schmutzwasserrn und den Fakalien, rugt die in Wiesbaden noch vorherrschenden zum Theil undichten Abtrittsgruben, an deren Stelle eine geregelte Kanalisation der Tonnenabfuhr empfohlen wird, ferner die zu dichte Bebauung, Mangel an Licht und Luft in manchen Stadttheilen. Dabei begiinstige eine Hauserlage in Terrainmulden, am Fusse von Steilrandern u. s. w. das zeitweise epidemische Auftreten der Krank- heit. Dagegen wird die von anderer, auch arztlicher Seite behauptete In- fektion der stadtischen Wasserleitung, welche man als Ursache der ganzen Epidemie zu deuten versucht hatte, als unerwiesen und unwahrscheinlich nachgewiesen. Bei einigen Krankheitsfallen imBeginne der Epidemie wurde sichergestellt , dass jede Betheiligung des Leitungswassers ausgeschlossen war, und als der neuangelegte Wasserzufluss , dessen verunreinigte Be- schaffenheit man behauptete, der stadtischen Wasserleitung zugefiihrt wurde, war bereits eine Anzahl von Erkrankungen vorgekommen. Auch ergaben die vorgenommenen Untersuchungen des Wassers keinen Anhalt dafiir, dass eine bakteriologische Verunreinigung thatsachlich von Seiten des be- argwbhnten Stollenwassers im Wasserleitungs-Reservoir stattgefunden habe. Die Vorschlage der Commission gingen dementsprechend im wesentlichen dahin, das eine besser eingerichtete und besser controllirte Haus- und Stadtreinigung gesichert werde, dass die Entwasserung der Grund- stiicke verbessert und eine den hygieinischen Anforderungen genugende Bauordnung Schutz schaffe gegen iibertriebene Dichtigkeit der Bebauung, gegen zu hohe Hauser, zu enge Hofraume u. s. w. Durch vollstandige Ausftihrung namentlich der erstgenannten Vorschlage wird es hoffentlich recht bald gelingen, der im iibrigen so gtinstige Gesundheits -Verhaltnisse besitzenden schonen Kurstadt eine Wiederholung ahnlicher Heimsuchungen fur die Folge fernzuhalten. F. * Dem Bericht iiber die im Jahre 1884 in Preussen auf Trichinen und Finnen untersuchten Schweine nach amtlichen Quellen von Dr. Eulenberg (Vierteljahrsschrift fur gerichtliche Medizin, XLIII B. 2. Heft), entnehmen wir folgende Statistik: 33 Uebersicht der vorgekommenen Falle. 1 Regierungs- bezirk 2 Zahl der unter- suchten Schweine 3 Zahl der trichinSs befundenen Schweine 4 Zahl der Gemeinden, i. denen sich trichinbse Schweine befanden 5 Zahl der trichi- n<5s befundenen amerikan. Speckseiten und Schweine- fleisch-Praparate 6 Zahl der fin nig befundenen Schweine Zahl d. amt- lich.Fleisch- beschauer Konigsberg 105,066 207 76 — 894 222 Gurnbinnen 48,616 81 36 8 55 189 Danzig 21,499 55 14 8 95 45 Marienwerder . . . 78,107 126 33 22 244 371 Berlin (Ctr.Viehh) 258,538 196 — — 1454 — Potsdam 286,306 203 41 — 1015 659 Frankfort a. 0. . 164,497 167 52 — 891 484 Stettin 106,209 74 89 41 211 256 Coslin 6,180 6 2 — 10 23 Stralsund 97,677 — — — — 100 Posen 154,004 794 213 — 725 864 Bromberg 43,345 161 35 — 121 124 Breslau 374,564 166 78 2 2193 1855 Liegnitz 248,813 164 86 — 1171 1490 Oppeln 291,162 40 23 — 2277 1159 Magdeburg 322,600 78 44 1 163 1515 Merseburg 361,851 67 42 — 179 1944 Erfurt 145,632 10 4 — 55 685 Hannover 151,952 10 6 5 577 701 Hildesheim 159,255 14 9 1 118 854 Liineburg 156,857 11 3 — 202 1188 Stade 67,944 — — — 44 438 Osnabriick 92,442 — — — 330 652 Aurich . 13,392 — — 3 4 55 Munster 36,404 — — 3 17 268 Minden 150,730 5 4 130 224 842 Arnsberg 234,873 19 11 6 167 1507 Gassel 241,356 91 38 — 792 1711 Wiesbaden 20,672 1 1 — 18 36 Koln 128,800 15 3 — 133 404 Diisseldorf 57,882 1 1 — 36 8 Koblenz 33,346 2 2 1 78 123 Trier 31,118 24 8 19 43 286 4611689 2624 904 250 13938 19521 F. * Am gelben Fieber starben in der Stadt Rio di Janeiro, wie wir der Gazetta das Noticias vom 17. Marz 1885 entnehmen, vom 1. Januar 1871 bis zum 31. Dezember 1884 15,338 Menschen, was eine Durch- schnittszahl von 1095 Todesfallen im Jahr ergibt. Das gelbe Fieber wurde im Jahre 1849 dort eingeschleppt und erlosch von da an nicht mehr; in einzelnen Jahren trat es sporadisch, in vielen anderen wirklich epidemisch auf. Im Jahre 1850 betrugen die Todesfalle der in Hospitalern behandelten Fieber-Kranken 26,3 °/o. 1870 fiel ihre Zahl 17,4 °/o und stieg 1873 auf 29,7 °/o. FiirFremde ist das erste Jahr ihres Aufenthaltes in Rio di Janeiro am gefahrlichsten ; wahrend der Epidemie von 1875 hatten die Auslander daher die Gewohnheit angenommen im Inneren des Continents zu leben Centralblatt f. allg. Gesundheitspflege. V. Jahrg. 3 34 und sich in Rio di Janeiro nur flfichtig aufzuhalten. In der That starben in jenem Jahre von 9747 Auswartigen, die den Staat betraten, nur 5 am gelben Fieber. Aus dem Vergleich der statistischen Daten von 1871—80 geht hervor, dass die Zunahme der Krankheit weder in Beziehung zur Hohe der all- gem einen Sterblichkeit, noch zur Zahl der Regentage steht. Indessen ist seit dem Jahre 1851 bis heute das Jahr 1854, welches das trockenste von alien war, von gelben Fieber-Epidemien ganz verschont geblieben und weist eine geringere allgemeine Sterblichkeit auf als die andern 36 Jahre. Aus einer vom 5. Juni datirten Mittheilung der Regierung von Rio di Janeiro an die deutsche Regierung geht hervor, dass das erste Quartal 1885 in sanitarer Hinsicht eir_ sehr gliickliches war, besonders in Bezug auf das gelbe Fieber, welches nur 138 Opfer forderte gegen 531 wahrend derselben Zeit im Jahre 1884 und 768 im Jahre 1883. F. *** Der ungarische Unterrichtsminister T r e f o r t beabsichtigt, in alien Mittelschulen Ungarns den Unterricht in der Hygiene als besonderen Lehrgegenstand einzufiihren. Als Lehrer sollen Aerzte angestellt werden, deren Aufgabe es sein wird, ausser dem Unterricht in der Gesundheitspflege die Schulen und die Schuler in sanitarer Beziehung zu iiberwachen. Die Schule erhielte dadurch einen hygienischen Sachver- standigen, der das Gebaude, die Einrichtungen und die Instandhaltung zu beobachten, fiber den korperlichen und geistigen Gesundheitszustand der Schfiler zu wachen und die Aufmerksamkeit der Schulbehorden auf Krank- heiten sowie auf sanitare Mangel hinzulenken hatte. Zur Ausbildung ge- eigneter Lehrkrafte wird an der Budapester und Klausenburger Universitat ein „hygienischer Professoren-Uebungs- und Qualifikations-Lehrkursus “ in’s Leben gerufen, der drei Monate dauern soli. Die Theilnehmer haben sich nach Beendigung des Kursus einer Prfifung zu unterziehen und erhalten im Falle des Erfolges ein „Professoren-Diplom ffir Hygiene an Mittelschulen". W. *** Ueber mehrere Falle von Hauterkrankungen durch Arsenik berichtet I. G. White (Harward) (s. Revue sanitaire de Bordeaux. 1885. Nr. 28). In dem einen Falle handelte es sich um eine Blascheneruption an den Handen, welche dadurch hervorgerufen war, dass der Patient Spiel- karten gebraucht hatte, die auf den Rfickseiten mit grtiner arsenhaltiger Farbe bemalt waren. — In einem zweiten Falle war die Hautaffection aus- gebreiteter; sie betraf Hande und Vorderarme, Hals und Gesicht. Der Patient hatte mehrere Tage mit Gegenstanden zu schaffen, die in grfines arsenhaltiges Papier gepackt waren. Im dritten Falle war die aussere Affektion von Er- krankung des Verdauungsapparats und des Nervensystems begleitet und durch die Beschaftigung mit altem arsenhaltigen Tapetenpapier veranlasst. W. *** Die grossherzoglich hessische Verordnung des Ministe- riums des Inner n und der Justiz an die Standesbeamten, Mor- talitatsstatistik betreffend, vom 23. Mai 1885 ist als wesentlicher 35 Fortschritt zu bezeichnen. Die Standesbeamten werden beauftragt, in jedem Falle, in welchem ein Todeszeugniss ohne arztliche B es cheinigung der Todesursache vorgelegt wird, durch Nachfrage bei den Angehorigen festzustellen , ob eine arztliche Behandlung des Yerlebten vorausgegangen war und bejahendenfalls das Todeszeugniss zum Zwecke sofortiger Einholung des vorgeschriebenen Eintrages der Todesursache zurfickzugeben, oder, so- fern hierdurch eine Verzogerung der Beerdigung wiirde veranlasst werden, auf der nachtraglichen Beschaffung des beziiglichen arztlichen Attestes fiber die Todesursache zu bestehen. Hatte eine arztliche Behandlung nicht statt- gefunden, so ist diese Thatsache auf dem Todeszeugnisse zu bestatigen und ferner nach dem Ergebniss einer Yernehmung der Angehorigen diejenige Begriindung aufzufuhren, aus welcher die Zuziehung arztlicher Hiilfe unter- blieben ist. — Bei den in Folge von Niederkunft Gestorbenen ist auf der Sterbefallszahlkarte zu vermerken, am wievielten Tage nach der Niederkunft der Tod erfolgte, und es soil hinsichtlich der mit und in Folge von Niederkunft und Wochenbett eingetretenen Todesfalle, welche wegen Nicht- berufung eines Arztes der Aufzeichnung entgehen wiirden, ein beziiglicher Vermerk auf den Sterbefallzahlkarten eingetragen werden. (Veroffentl. des kaiserlichen Gesundheitsamtes. 1885. IX. 2. Halfte S. 49. No. 5). W. Literaturberichte. Neue Beitrage zur Aetiologie der Tuberkulose. Durch B. Koch’s Entdeckung kennen wir den Infektionserreger der Tuberkulose; aber wir wissen wenig fiber die Art des Eindringens des Bacillus tuberculosis in den menschlichen Korper und wenig fiber die inneren Bedingungen, welche erfullt sein mfissen, damit der specifische Bacillus im menschlichen Organismus sich ansiedele und den Korper krank mache. Da der Tuberkel -Bacillus nur im kranken Menschen (undThier) und in den Ausscheidungen, vorzfiglich in den Sputis, gefunden wird, so entsteht die Frage, wie das Krankheitsgift auf andere Individuen sich fibertragt. Ent- halt die Ausathmungsluft der Phthisiker den Tuberkel- bacillus? Giboux 1 ) gab an, durch die Ausathmungsluft Schwindsfich- tiger Kaninchen krank gemacht zu haben. Vorher hatte Uherck 2 ) in einer unter Prof. B ol linger’s Leitung unternommenen Arbeit gefunden, dass die Exhalationsluft von Phthisikern , soweit sich nach Condensation ihres Wassergehalts die Frage prfifen lasst, keinen Infektionsstoff enthalte. Neue Versuche ffihrte wieder unter B o llinger’s Leitung L. vonYV'ehde aus 3 ), welcher Schalen mit Glycerin in Zimmern, die von Phthisikern bewohnt 1) Centralblatt f. d. mediz. Wiss. 1882, Nr. 40. 2) Inaugural-Dissertation, 1881. Mfinchen. 3) Ueber die Infektiositat der Luft in Raumen, welche von Phthisikern bewohnt werden. Aerztliches Intelligenzblatt, 1884. NN. 17, 18. 36 — waren, aufstellte und 24—48 Stunden bis zu 8 Tagen stehen Hess, so dass das Glycerin mit Staub stark bedeckt war. Niemals rief der Staub oder dasStaub fiihrende Glycerin nach Injektion in die Bauchhohle von empfang- lichen Thieren Tuberkulose hervor. Immerhin ist durch diese Versuche nicht widerlegt, dass durch Husten- stosse das Virus in die Luft gelangt und unter Umstanden aus den Aus- wurfsmassen die Tuberkelbacillen oder ihre Sporen sich loslosen — zumal nach der Austrocknung derselben, da Pilzkeime nach den Versuchen von v. Nageli von nassen Oberflachen durch die gewohnlichen Luftstro- mungen sich nicht erheben. Daher ist die Vorsicht zu beachten, in der Umgebung von Schwindsuchtigen die Mobel und Wande, den Fussboden mit nassen Tuchern zu reinigen; die Sputa stets in Fliissigkeiten (Karbol- saure) aufzufangen, bis sie endgultig beseitigt (verbrannt) werden, und das Ausstauben von Betten undWasche im Krankenzimmer ganz zu unterlassen. In den Sputis der Phthisiker sind die Bacillen auch in neuerer Zeit als ein fast niemals fehlender Bestandtheil erwiesen worden. Nach gegenwartig ziemlich allgemeiner Annahme spielt fur die Ver- breitung der Krankheit die unmittelbare Uebertragung vom Menschen zumMenschen keine sehr erhebliche Rolle. In denSpitalern soil es ausser- ordentlich selten sein, dassAerzte, Warter oder andereKranke nachweislich durch Ansteckung tuberkulos werden. Indessen fehlt es doch auch nicht an Beispielen evidenter Kontagion, worauf wir im vorigen Jahrgang mehrmals hingewiesen haben. Aus der Spitalspraxis der neueren Zeit sind die Be- obachtungen von Primararzt Dr. L. v. L anger 1 ) nicht ohne Interesse, welcher im Sechshauser Krankenhause wegen beschrankter Raumlichkeiten haufig genothigt war, Kranke aller Art mit Tuberkulosen zusammenzulegen. Wenn nun der Verf. Vergleiche anstellt zwischen dem Krankeitsverlauf bei solchen Patienten, welche sich in demselben Raum mit Tuberkulosen, und andern, welche ohne solche Nachbarschaft lagen, und fur die Letzteren durchgehends bessere Heilungsresultate constatirt hat, so ist es ja bekannt genug, dass derartige statistische Zusammenstellungen nur mit grossterVor- sicht und unter Berticksichtigung aller Einzelmomente, welche auf den Ab- lauf der beobachteten Krankheiten von Einfluss sein konnten, verwerthet werden diirfen. Insbesondere ist aus diesen Resultaten eine specifische Schadlichkeit der Tuberkulosen als solcher nicht zu erschliessen — etwa im Gegensatze zu andern chronischen fiebernden Kranken, welche relativ enge Raume mit andern Patienten theilen miissen, und nicht nachgewiesen, dass gerade die Uebertragung des Tuberkelbacillus schadlich gewirkt habe. Ueber die Kontagiositat der Tuberkulose handelt ausfiihrlicher eine unter Prof. Naunyn’s Leitung gearbeitete Dissertation von Dr. Behnke 2 ), 1) Beitrag zur Frage liber die Infectiositat der Tuberkulose in spital-hygienischer Beziehung. Wiener medizin. Wochenschr. 1885. NN. 15, 16. 2) Die Verbreitung der Lungentuberkulose (L ungen phth ise) durch Kontagion. Konigsberg, 1884. 37 welcher eine Uebersicht iiber 150 Falle von Schwindsucht gibt. Von diesen war etwa ein Drittel der Patienten (35,2 °/o) der direkten Ansteckung aus- gesetzt; rechnete der Verf. diejenigen Falle nicht mit, in welchen sicher erb- liche Belastung vorlag, und eben so wenig diejenigen, in denen wegen Erkran- kung von Geschwistern die Hereditat nicht auszuschliessen war, so blieben nur 6 Falle, in denen Kontagion als wahrscheinlich gait. Verf. sagt: # Wenn nur 4°/o aller von einer Krankheit Ergriffenen die Krankheit wahrscheinlich durch Kontagion acquirirten, so ist die Wahrscheinlichkeit, dass diese Krankheit durch Kontagion (im gewohnlichen Sinne genommen) sich verbreite, doch gewiss eine sehr geringe. “ Einen evidenten Fall von Kontagion theilte H. Bennet mit. Derselbe betraf einen jungen gesunden Offizier, welcher mit seiner phthisischen Frau von Neu-Seeland kam. Die Patientin hatte grosse Kavernen und warf immense Quantitaten eitriger Fliissigkeit aus. Sie lebten 4 Monate in einer kleinen Kajilte zusammen, welche nur einige Fuss Durchmesser hatte, wahrend sie das Fenster des schlechten Wetters wegen kaum je bffnen konnten. Unmittelbar nach der Landung in England verschied die Kranke, wahrend ihr Mann die ersten Erscheinungen von Phthisis darbot. In der Familie des Offiziers waren niemals Lungenerkrankungen vorgekommen 1 ). — Schon bei friiherer Gelegenheit berichteten wir iiber die Gefahren, welche durch die Milch tuberkuloser Kiihe drohen (cf. dieses Gbl. III. 1884. S. 112). Aus alteren Beobachtungen geht hervor, dass die Milch verdachtig ist, das Tuberkelgift zu enthalten, wenn das Euter der Kuh spe- cifisch erkrankt ist, sowie wenn die Tuberkulose nicht bloss auf die Organe der Brusthohle beschrankt ist; und ferner, dass durch Kochen der Milch das Tuberkelgift zerstort wird. Neuere wichtige Mittheilungen iiber die Eutertuberkulose der Milchkiihe und iiber ^tuberkulose Milch“ verdanken wir Dr. Bang 2 ), welcher nachweist, dass bei der Eutertuberkulose die Milch noch lange Zeit ihr normales gutes Aussehen zeigt, wenn sie selbst schon grosse Mengen von Tuberkelbacillen enthalt; die Bacillen sind sporenhaltig. Ist auch nur ein Theil des Euters tuberkulos, so .kann doch schon die aus den scheinbar noch intakten Eutertheilen gewonnene Milch inficirt sein. Bang hat mit der Milch aus kranken Eutern Impf- und Fiitterungsversuche an Thieren angestellt — mit positivem Resultate. Doch kann die Milch, auch ohne dass Eutertuberkulose besteht, die Bacillen enthalten und infektios wirken. Durch Gentrifugiren (zur Gewinnung des Rahms) wird die Milch nicht vollig von den Bacillen und der Infektiositat befreit; wohl aber, wie der Verf. bestatigte, durch einfaches Kochen der Milch. In der Milch phthisischer Wochnerinnen sind bisher die Tuberkelbacillen nicht nachgewiesen. Prof. R. Demme berichtete iiber einen Fall, in welchem ein Kind wahrscheinlich durch die Milch seiner 1) On the contagion of phthisis. The British med. Journal, Oct. 11. 1884. — Nach der Deutschen Mediz.-Ztg. 1885. Nr. 3. 2) Deutsche Zeitschr. f. Thiermedizin. Bd. XI. Heft 1/2. 38 tuberkulosen Mutter inficirt war. Das Kind starb fruhzeitig an Tuberkulose, welche ausschliesslich auf die Verdauungsorgane beschrankt geblieben war. — Zwei weitere, von demselben Autor *) veroffentlichte Beobachtungen lehren, dass das Tuberkelgift gelegentlich auch durch aussere Wunden in den Korper gelangen kann. Das Kind einer schwindsiichtigen Frau bekam bald nach der Geburt ein tuberkuloses Geschwiir des Nabels ; hieran schloss sich eine tuberkulose Entziindung des Bauchfells, welcher das Kind erlag: die iibrigen Organe erwiesen sich als intakt. — Bei einem dreijahrigen, sonst gesunden, hereditar nicht belasteten Knaben bestand ein iiber die Leisten- gegend verbreitetes Ekzem, welches, wie die Untersuchung wiederholt zeigte, von Tuberkelbacillen frei war. Nachdem aber der Knabe mit einem an Lungenschwindsucht leidenden Madchen einige Zeit in demselben Bette ge- schlafen, konnten die specifischen Bacillen nachgewiesen werden: biimen Kurzem entstand nun eine tuberkulose Entziindung des linken Hiiftgelenks. Hierher gehort ferner eine Beobachtung des Reservechirurgen E. A. Tscherning (Kopenhagen) a ). Eine vollstandig gesunde, 24jahrige Magd hatte sich an einem Splitter eines zerschlagenen Spuckbechers, welcher das sehr reichliche Tuberkelbacillen enthaltene Sputum ihres schwindsiichtigen Herrn barg, verletzt. An der verletzten Stelle entwickelte sich ein Knotchen im Unterhautgewebe, welches operativ entfernt wurde. Nach voriibergehen- der Besserung trat ein lokales Recidiv ein, und es schwollen die Lymph- driisen des Arms, so dass eine eingreifendere operative Behandlung erfor- derlich wurde, nach welcher das Madchen genas. In den operativ ent- fernten Theilen fand man deutliche Tuberkel und sporenhaltige Bacillen. Aus diesen Beobachtungen darf freilich nicht geschlossen werden, dass diese Art der Entwickelung der Tuberkulose haufig ware. In der iiber- wiegenden Mehrzahl der Falle wird ohne Zweifel das Gift eingeatmet. Die Tuberkulose ist meistens eine primar in denLungen lokalisirte Erkran- kung. Nur bei den Kindern zeigen sich in haufigeren Fallen primare Lokalisationen anderer Organe. Handelt es sich hier um primare Tuber- kulose der Verdauungsorgane, iiberhaupt der Baucheingeweide, so ist oft- mals der Genuss inficirter Milch oder des durch eine tuberkulose Mutter oder Warterin zubereiteten Speisebreies anzuschuldigen. Sehr viel schwie- riger gestaltet sich die Frage, wenn zuerst die Lymphdrusen oder Knochen und Gelenke tuberkulos erkrankt sind. Ob auch in solchen Fallen die Annahme gestattet ist, dass das Gift durch die Lungen aufgenommen wurde, muss vorlaufig dahingestellt bleiben. Einstweilen wird sich weder wider- legen noch beweisen lassen, dass inhalirte Bacillen oder deren Sporen, anstatt (wie bei Erwachsenen) im Lungengewebe sich anzusiedeln, unter den besonderen Verhaltnissen der kindlichen Organisation durch den Kreis- lauf leichter in innere Organe getragen und hier zur primaren Haftung gelangen konnten. Sicher ist, dass die Dispositionen der Lungen und der 1) R. Demme, 21. Jahresbericht des Berner Kinderspitals. 1884. 2) Inokulationstuberkulose beim Menschen. Gasuistische Mitthei- lung. Fortschritte der Medizin. Bd. III. 1885. Nr. 3. 39 — andern Organe bei Kindern andere Ansiedelungsbedingungen bieten als bei Erwachsenen. Auf der andern Seite spricht ohne Zweifel manches fur die Vermuthung, dass die eigenartigen Verhaltnisse der Tuberkulose im Kindes- alter in einer Reihe von Fallen dadurch bedingt sind, dass die Tuberkulose vom fotalen Zustande her bestanden, d. i. eine besondere Form der Ver- erbung vorliegt. Baumgarten will sogar die Mehrzahl aller Tuberkulosen und jeden- falls diejenigen, welche wir als hereditare Formen auffassen und von der Yererbung der Disposition ableiten, als kongenitale Affektionen angesehen wissen, und meint, dass die besonderen Verhaltnisse der stark wachsenden und in lebhaftem Stoffumsatz befmdlichen Gewebe der Kinder es bewirken, dass die Tuberkulose meist wahrend der ersten Jugendzeit latent bleibe und erst beim Erwachsenen sich entwickele 1 ). Beweise lassen sich einstweilen fur diese Auffassung nicht beibringen, wenn auch keineswegs geleugnet werden kann, dass kongenitale Tuberkulosen vor- kommen. Nach den bisherigen Erfahrungen ist aber die kongenitale Tuber- kulose wohl meist eine schnell todtliche Krankheit, welche unter dem Ein- flusse hochgradiger Tuberkulose der Mutter entsteht. Aus der Thier- Pathologie veroffentlichte Prof. Johne (Dresden) einen zweifellosen Fall von fotaler Tuberkulose 2 ); es handelte sich um einen 8 Mo- nate alten Kalbsfotus, dessen Mutter an hochgradiger Tuberkulose der Lungen gelitten hatte; in Lungen, Leber, Lymphdriisen des Kalbes konnten die Tuberkelbacillen nachgewiesen werden. Bleibt also die Genese der tuberkulosen Driisen-, Knochen- und Gelenk- ‘leiden der Kinder im Allgemeinen noch unaufgeklart, so kann doch einiges aus der Aetiologie derselben mit grosserer Bestimmtheit gefasst werden: zunachst die unzweifelhafte Bedeutung der Hereditat. Horen wir, was der erfahrene Ghirurg R. Volkmann hieriiber sagt 3 ): „Die Empfanglich- keit fur das tuberkulose Gift ist auch bei den Erkrankungsformen, mit denen der Ghirurg zu thun hat, gewohnlich durch hereditare Belastung iiberkommen. Der erfahrene altere Arzt, der grosse Familienkreise iiber- sieht , wird wohl immer constatiren , dass fungose Gelenkentziindungen, Caries, tuberkulose Lymphdriisengeschwulste und dgl. in gesunden Familien im allgemeinen nicht vorkommen“ (Thesis Nr. 39). In den meisten Fallen kommt sodann ausser der hereditaren Belastung fiir die Lokalisation der Krankheit ein ausserer Anlass in Betracht; nach Volkmann (1. c. Nr. 44) ist die grosse Mehrzahl aller tuberkulosen Knochen- und Gelenkleiden sicher aufWunden und Verletzungen, und zwar meistens leichteren Grades, welche bei Individuen aus gesunden Familien 1) Ueber die Wege der tuberkulosen Infektion. Zeitschrift fiir klin. Medizin. 1883. Heft VI. 1. 2) Fortschritte der Medizin. 1885. Nr. 7. — Vgl. aus der menschlichen Pathologie den von Merkel beschriebenen Fall, s. dies. Cbl. IV. 1885. S. 104. 3) Ghirurgische Erfahrungen tiber die Tuberkulose. Vierzehnter Congress der Deutschen Gesellschaft fiir Ghirurgie vom 8. bis 11. April 1885. — 40 spurlos voriibergehen oder leicht ausheilen, zuriickzufuhren. Dies entspricht vollig den Erfahrungen aus der Entwickelung anderer Infektionskrankheiten, welche lehren, dass durch Verletzungen die Lokalisationen in den Geweben erleichtert, bezw. intensiver gestaltet werden. — — In einer Untersuchung, die sich bemiihte, die Vererbungsfrage klarer zu pracisiren, sprach Referent u. a. sich dahin aus, dass die Ver- erbung der menschlichen Tuberkulose in den weitaus meisten Fallen als Hereditat der Disposition aufzufassen; die Disposition sei eine Eigenschaft bestimmter zelliger Elemente des Korpers; die Vererbung der Dis- position durch die Samen- oder Eizelle geschehe derart, dass bereits im befruchteten Ei gewisse Theile, aus welchen die eben gedachten zelligen Elemente des Korpers hervorgehen, als Trager der tuberkulosen Disposition zu betrachten seien *). Es entspricht langst nicht mehr dem Stande unserer anatomisch-physiologischen Kenntnisse, die Zellen und im besondern die Generationszellen als homogene Ernahrungseinheiten anzusehen. Zumal die befruchtete Eizelle ist ein Multiplum ausserst zahlreicher Ernah- rungseinheiten, die man nach dem Vorgange des Botanikers G. v. Nageli als Micellen, hier als Keimmicellen bezeichnen kann. Ohne auf den Ver- such, die Disposition bestimmter zu definiren, an dieser Stelle naher einzu- gehen, geniigt es sich vorzustellen, dass diejenigen Keimmicellen, aus welchen im wachsenden Individuum die Zellen des Lungengewebes, der Lymphdriisen und gewisser Membranen (z. B. der Gelenkhohlen) u. a. sich entwickeln, mit verringerter Widerstandskraft gegeniiber den Tuberkelbacillen ausgeriistet sind. Nicht der sog. schwindsiichtige Habitus ist, wie man meistens annimmt, die Ur s ache der leichteren Infektion; sondern diese mangelhafte Ausbildung und besondere Gestaltung des Brustkorbes, die geringe Ent- wickelung der Muskulatur, im besondern des Herzens, ferner die ungenii- gende Bildung von Blut u. s. f. : — alle diese inferioren Eigenschaften bestimmter Gewebe sind (wenn auch nicht immer) nur vergesell- schaftet mit der specifischen tuberkulosen Disposition der oben genannten Gewebszellen ; auch sie stammen von der Eizelle her als gleichzeitig ererbte Hemmungsbildungen oder Hypoplasien. Unter den die tuberkulose Disposition begleitenden Hypoplasien er- regte seit langerer Zeit das „schlechte“ Herz der Phthisiker die Aufmerksamkeit derAerzte. Besonders waren es die Pathologen Rokitansky, Virchow und B e n e k e , und unter den Praktikern war es Brehmer, der bekannte Arzt der ersten Kuranstalt zu Gorbersdorf, welcher von der Kleinheit und Schwache des Herzens die Disposition zur Lungenschwindsucht ableitete und hierauf einen wirksamen Kurplan griindete, von dem es nur zweifelhaft bleibt, ob die Erfolge wesentlich von der Beeinflussung des Herzens und nicht vielmehr von der allgemeinen Kraftigung der Constitution, insbesondere des Lungengewebes herriihren. In neuerer Zeit beschaftigte sich unter Prof. Bollinger’s Lei- 1) Wolffberg, Zur Theorie und Erforschung der Hereditat der Lungenschwindsucht. Deutsche mediz. Wochenschr. 1885. NN. 13/14. — 41 tung Reuter 1 ) mit dieser Frage, welcher in 261 Fallen von Schwindsucht, welche zur Sektion kamen, die Herzgrosse bestimmte und in der That Anhaltspunkte dafur fand, dass sehr haufig die Tuberkulosen ein abnorm kleines Herz haben. Eine Frage, welche fur die offentliche Gesundheitspflege schwerwie- gendes Interesse bietet, ist: wie haufig und unter welchen Bedin- gungen ist die Disposition zur Tuberkulose erblich? Kli- niker von so grosser Erfahrung wie R u h 1 e , Leyden u. A. finden den Einfluss der Erblichkeit sehr bedeutend, — Leyden legt sogar das Haupt- gewicht auf die Hereditat. Die Disposition spielt eben in der Aetiologie der Schwindsucht eine so bedeutende Rolle, dass (abgesehen von dem allzu intimen Umgange mit Phthisikern, den ebenso wie die Infektion durch .Nahrmittel [Milch, Fleisch], sowie die tuberkulose Infektion von Wunden durch grossere Mengen des Giftes [Impftuberkulose] auch Nicht - disponirte zu furchten und zu meiden haben) die Prophylaxis der Tu- berkulose in erster Linie in derProphylaxis der individuel- len Disposition bestehen soli. Der gelegentlichen Einatmung oder sonstigen Zufuhr kleinerer Mengen des tuberkulosen Virus kann sich in un- seren Gegenden wohl Niemand fur immer entziehen, aber die Disposi- tion entscheidet, ob das Virus sich ansiedelt oder nicht, bezw. mit welcher Intensitat die Krankheit sich entwickelt 2 ). Zwar wird sicher die Disposition in zahlreichen Fallen nicht ererbt, sondern erworben, und es gehort hie- her insbesondere ein Theil derjenigen phthisischen Krankheitsformen, welche nach langerer Schadigung der Atemorgane durch den fortgesetzten Aufent- halt in staubiger, zumal metallisch- oder mineralisch - staubiger Luft, oder welche nach andern Affektionen der Atemorgane (Keuchhusten, Masern) entstehen. Von beachtenswerther Seite ist sogar der Versuch gemacht worden, das Gebiet der ererbten Disposition zu gunsten der erworbenen wesentlich einzuschranken, und die anscheinenden Falle von Erblichkeit als durch die Gleichartigkeit der ausseren Lebensverhaltnisse bedingt hinzu- stellen 3 ). In der bereits citirten Arbeit hat Referent die Grunde angefiihrt, welche es unwahrscheinlich machen, dass dieser Pseudohereditat ein sehr grosser Einfluss auf die Verbreitung der Tuberkulose einzuraumen sei. Um aber iiber die Haufigkeit der Hereditat in’s Klare zu kommen, schlug Ref. vor, in geschlossenen Bevolkerungen durch Sach- verstandige Erhebungen von Familie zu Familie, in welcher 1) Ueber die Grossen verhaltnisse des Herzens bei Lungentuber- kulose. Dissertation. Miinchen, 1884. 2) So sagt neuestens auch Volkmann (1. c. Nr. 38): „Bei der Haufigkeit des Vorkommens von tuberkulosen Erkrankungen aller Art im nordlichen Europa mussen sich wohl alle Menschen oft genug einmal Tuberkelgift inkorporiren, vor alien Dingen solche, die unausgesetzt mit Tuberkulosen verkehren/ 3) Z. B. von M. Wahl, Ueber den gegen wartigen Stand der Erb- lichkeitsfrage in der Lehre von der Tuberkulose. Deutsche Mediz. Wochenschr. 1885. NN. 1 ff. — 42 die Tuberkulose vorgekommen, veranstalten zu lassen und, soweit moglich, die Schicksale der nachsten Angehorigen, insbesondere der Des- cendenz der Phthisiker, festzustellen. Wiirde man solche Erhebungen in industriellen Bezirken, wie z. B. in einigen Gegenden unserer west- lichen Provinzen, die leider durch eine so tibergrosse Anhaufung von Tu- berkulosen sich auszeichnen, zunachst vornehmen, so ware hier vortreffliche Gelegenheit gegeben, nicht nur erstlich die relative Haufigkeit der hereditaren Tuberkulose kennen zu lernen, sondern ferner einer Frage von grosser Bedeu- tung naher zu treten: ob namlich, wie ich einstweilen anzunehmen geneigt bin, die tuberkulose Disposition nur als Familiendisposition vererbt wird, nie- mals aber von solchen Individuen, welche, selbst aus gesunden Familien stammend, die Disposition zur Schwindsucht erst im Leben er war ben, — oder ob sich Anhaltspunkte dafiir ergeben sollten, dass auch die von Erwachsenen erworbene Disposition vererbbar sei. Man wiirde also zu untersuchen haben, wie oft bei den Nachkommen solcher Individuen, die aus gesunden Fa- milien stammend durch ihren Beruf (z. B. als Steinhauer, Schleifer) er- krankten, skrophulose und tuberkulose Affektionen vorkamen, und wie oft bei den Nachkommen anderer Phthisiker, die selbst kranken Familien an- gehoren. Gewiss sind hier noch manche Einzelfragen zu beriicksichtigen, manche Schwierigkeiten zu iiberwinden: man wird aber zugeben miissen, dass, ohne in die Erblichkeitsfrage mehr Licht gebracht zu haben, von einem vollstandigen Programm zur Verhiitung dieser wichtigsten Volks- krankheit, welcher in unsern Gegenden jeder sechste Mensch erliegt, nicht die Rede sein kann. Da das Thierexperiment zur Klarung dieser Angelegen- heit nur wenig beizutragen vermag, so bleibt eben nur die Statistik, die Erhebungen in einer grosseren Anzahl von Familien iibrig, um fiber die Haufigkeit und die Bedingungen der Hereditat der Tuberkulose besser orien- tirt zu werden. Diese vom Ref. geplanten Familien geschichten wiirden theilweise ahnlich werden den Stammbaumen, welche in Virchow’s Archiv Bd. 97 (cf. dieses Gbl. IV. 1885. pg. 36.) Prof. Langerhans veroffentlicht hat, und welche die Moglichkeit der 1 ate n ten Vererbung fur die tuberkulose Disposition bereits sehr wahrscheinlich gemacht haben. Die oben formulirte Vermuthung, dass die von Erwachsenen erworbene Disposition seiner Organe wahrscheinlich nicht vererbbar sei, wird vielleicht zur Klarung der mannigfachen Widersprfiche, die zur Zeit in der Frage nach der Erblichkeit der Tuberkulose bestehen, beizutragen geeignet sein. Schon heute lasst sich zur Sttitze dieser Vermuthung u. A. auf die Untersuchung von Olden- dor ff uber die Sterblichkeit der Schleifer (von Solingen und Remscheid) und deren Nachkommen verweisen [s. dieses Gbl. 1882. I. S. 238 ff. 242]. Schon Oldendorff stellt die Forderung, dass wegen des hohen hygienischen Inter- esses der Frage, ob und in wie weit eine gesundheitsschadliche Beschaftigung durch ihre Vererbung von Generation auf Generation im Lauf der Zeit die physische Beschaffenheit der Arbeiter zu depraviren im Stande sei, eine eingehende Unter- suchung veranstaltet werde, zu welcher die Industriebezirke der westlichen Pro- vinzen sich besonders eignen durften. — Wie wenig erworbene Eigenschaften 43 vererbbar sind, wird durch die millionenfache Erfahrung bestatigt, dass im vo- rigen Jahrhundert fast alle Kinder fur Pocken empfanglich waren, und doch hatten die Eltern fast regelmassig die Eigenschaft der Immunitat erworben — und zwar schon ais Kinder! Dasselbe gilt heutzutage wie auch frfiher fur die Masern u. a. Krankheiten. Ererbte Dispositionen aber, d. h. Familien- di spositionen, sind weiter vererbbar, wie sich aucli bei Pocken, Scharlach, Typhoid zeigt, welche in manchen Familien in besonderer Intensitat, ja in fiber- einstimmenden Formen auftreten. Man hat zwar behauptet, dass doch auch die vererbbaren Dispositionen einmal erworben wcrden mfissten. Die Beweis- mittel von Brehmer in seinem neuesten Werke (Die Aetiologie der chro- nischen Lungenschwindsucht. Berlin, 1885) halte ich nicht fur aus- reichend ; und ich kann die apriorische Berechtigung dieser „schlichten Logik“ nicht zugeben ; fur mich ist diese Logik dunkel, da ich nirgend den Beweis er- bracht sehe, da unsere Vorfahren insgesammt von der specifischen tuberku- losen Disposition frei waren. Vielleicht war die Tuberkulose selbst ihnen unbe- kannt: wir wissen es nicht; aber fehlte es ihnen etwa auch an der Disposition zu Pocken oder Masern u. s. f. zu der Zeit, als die specifischen Krankheitserreger ihnen noch nicht zugetragen waren? Eine solche Annahme wfirde gewiss schon Vielen allzu kiihn erscheinen. Wir wissen fiber die korperlichen Qualitaten der alten Menschengeschlechter zu wenig, urn behaupten zu dfirfen, dass alien Individuen dereinst insgesammt die Freiheit von alien specifischen Dispositionen zugekommen sei. Man verquickt zu sehr die Frage nach der Genese der specifischen tuber- kulosen Disposition, welche einstweilen, in so weit sie vererbbar ist, lediglich als auf einer specifischen Eigenschaft der Generationszelle sich aufbauend) ge- dacht werden kann, mit der Frage nach dem Ursprunge des phthisischen Ha- bitus. Man betrachtet wie den letzteren so auch die tuberkulose Disposition als eine Degenerationserscheinun g, d. i. als eine aus dem Vollendeten her- vorgegangene Veranderung zum Schlimmeren. Dies kann fur den phthisischen Habitus, dessen Symptome ich oben als haufige Begl eitersche inungen der tuberkulosen Disposition bezeichnete, vielleicht richtig sein. Es mag erlaubt sein, sich vorzustellen, dass die consumirende Krankheit degenerativ auf die Ge- nerationszelle einwirkt und die mit der tuberkulosen Disposition in vielen Fallen zugleich vererbbaren Eigenschaften erzeugt hat, welche wir als Hypoplasien mannigfachster Art so haufig die hereditare Tuberkulose begleiten sehen. So konnte also die Tuberkulose den phthisischen Habitus geschaffen haben, wahrend man bisher annimmt, dass die Wechselwirkung eine entgegengesetzte gewesen sei. Ffir den Beferenten ist die erbliche Disposition zur Tuberkulose eine speci- fische Eigenschaft der Generationszelle, von welcher — so lange keine Thatsachen zum Beweise des Gegentheils bekannt sind — wir nicht berechtigt sind anzunehmen, dass sie von dem Erwachsenen durch irgend welche Veranderungen seiner peripheren Organe (der Lungen) kfinnte er- worben werden. Absichtlich sind wir auf diese Angelegenheit etwas naher eingegangen, erstlich weil ffir diejenigen unserer Leser, welche sich ffir die Aetiologie der Tuberkulose fiberhaupt interessiren, auch diese specielleren Fragen und Zweifel Wichtigkeit besitzen werden: Fragen, welche ffir die Tuberkulosenforschung eine specielle Bedeutung besitzen, zugleich aber auch grosses Interesse bieten ffir das allgemeinere biologische Problem, ob fiberhaupt erworbene Eigenschaften vererbbar sind; — sodann weil die von mir und im allgemeineren Sinne schon 44 von A. Oldendorff geforderte Untersuchung sowohl der wissenschaftlichen wie der praktischen Hygiene sicherlich Nutzen bringen wurde, und eine auf die Erforschung der Haufigkeit (eventuell der Bedingungen) der Tuber- kulosenvererbung gerichtete Enquete nicht so unwerth der Bemuhungen der Behorden sein diirfte, die fur andere Zwecke von nicht grosserer Bedeutung den Weg der Enqueten schon oft mit Erfolg betreten haben. Wolff berg. Cheysson. La question de la population en France et k l’etranger. Annales d’hygiene publique 1884 decembre. Der Verfasser handelt in diesem Theile seiner Abhandlung zunachst iiber den Einfluss der geographischen Lage auf die Bevolkerungszahl, nach- dem er schon friiher dargethan, dass die gegenwartige geringe Bevolke- rungszunahme in Frankreich nicht einer iibermassigen Sterblichkeit oder der unzureichenden Zahl der Eheschliessungen, sondern der Abnahme an Geburten zuzuschreiben sei. Nach seinen Angaben gibt es von den 87 Departements von Frankreich 57, welche einen Fortschritt in der Bevolke- rungszahl aufweisen. Diese enthalten hauptsachlich die volkreichen Stadte und die Statten der Industrie. Die 30 Departements, welche einen Riickschritt zeigen, vertheilen sich auf Normandie, Garonne, Freigrafschaft und die alpinen Bezirke. In der Bretagne kommen auf 1000 Einwohner 31 bis 34 Geburten, in der Normandie nur 18 bis 20. In den Jahren 1856 bis 1881 vermehrte sich die Einwohnerzahl der Bretagne um 233,000 Einwohner, wahrend sie in der Normandie sich um 157,000 verminderte. Im Jahre 1846 betrug die landliche Bevolkerung Frankreichs drei Yiertel der Gesammtsumme, heute nur noch zwei Drittel. Die Abnahme der landlichen Bevolkerung um vier Millionen ist der stadtischen zu Gute gekommen. Von 1876 bis 1881 nahm die Gesammtzahl der Einwohner Frank- reichs um 766,260 zu. Davon kamen 501,239 allein auf die 28 Stadte von fiber 50,000 Einwohnem, der Rest von 265,021 auf das iibrige Frankreich. Diese Zunahmeziffer enthalt aber 200,000 Auslander, so dass auf je 37 Franzosen ein Auslander kommt. Der Auswanderungsstrom vom Lande in die Stadt ist besonders stark nach der Hauptstadt. Vor 50 Jahren hatte Paris 861,436, jetzt 2,269,023 Einwohner. Auf 100 Einwohner von Paris sind nur 36 im Seine-Departement ge- boren, der Rest in der Provinz (57 °/o) oder im Auslande (7 °/o). Von den 164,038 Auslandern in Paris sind 31,090 Deutsche. Auf je 13 Einwohner von Paris kommt ein Auslander. Paris hat eine verhaltnissmassig sehr geringe Zahl von Greisen und Kindern, dagegen eine unverhaltnissmassig grosse Zahl von Erwachsenen im Alter von 20 bis 50 Jahren aufzuweisen. 1000 verheirathete Pariserinnen haben nur 129 Kinder, wahrend 1000 Frauen aus der Provinz 181, also 40 °/o mehr haben. In Paris gibt es un- gefahr 80,000 wilde Ehen. 45 Die Epidemien fordern mehr Opfer in Paris als in der Provinz. Seit 1865 hat sich die Zahl der Typhus-Todesfalle verdreifacht. Paris ist der Zufluchtsort alles auswartigen Elends. Taglich nimmt dieser ungeheure Herd von Leiden, Elend und Lastern zu, verschlimmert die Volksunruhen nnd die Epidemien und zerstort ausserordentlich zahl- reiche Existenzen. Mehr als ein Zehntel der Pariser Bevolkerung, namlich 243,564 woh- nen in sehr ungesunden Miethswohnungen, in denen die Sterblichkeit mehr als doppelt so gross ist als in den gesunden Stadttheilen. Die Sterblichkeit der unehelichen Kinder in Paris ist zweimal so gross, als die der ehelichen. Die Zahl der unehelichen Geburten betragt in Paris 28 °/o, im Mittel fur ganz Frankreich 7,5 °/o. Demnach ist das Verhaltniss der ehelichen zu den unehelichen Geburten in Paris wie 4:1. Die Sterblichkeit der Pariser Kinder ist ausserordentlich. Nach einem Volksausdrucke pllastern sie die Kirchhofe der landlichen Ortschaften, wo man sie in Pflege gibt. Yon den Kindern bleibt bis zum 2. Jahre einschliess- lich ungefahr die Halfte iibrig. Die Geburtsziffer ist in den verschiedenen Stadttheilen sehr verschie- den; in den wohlhabenderen betragt sie 20, in den armeren 28 auf 1000 Einwohner. Haussonville bezeichnet den Wohlstand als unfruchtbar, das Elend als fruchtbar und nennt es schlimm fur ein Volk, wenn es seinen Zuwachs mehr von der armeren und ungebildeten Masse als aus den mittleren und hoheren Standen nimmt. Man darf dem Verfasser Recht geben, wenn er behauptet, dass der Einfluss, den die grossen Stadte auf die Bevolkerung eines Landes aus- iiben, kein guter ist. Zugegeben, dass sie das Volk aufklaren, erleuchten, sie verbrennen und verzehren es auch vorzeitig. Im Interesse der Bevolkerung liege es, den Zufluss vom Lande zu den grosseren Stadten zu beschranken, wenigstens nicht durch kiinstliche Mittel zu fordern, als da sind: Haufung grosser offentlicher Arbeiten, reichliche Unterstiitzungen, Anlage von hoheren Schulen, von Spitalern, Kasernen, gewerblichen Staatsanstalten, Beforderung industrieller Unternehmungen. Ebenso ungiinstig, wie die grossen Stadte, wirken grosse industrielle Anstalten mit ihren zusammengehauften Menschenmassen auf die Bevol- kerung. In dem Departement der Seine inferieure steigt die Kindersterblichkeit auf 27 °/o, in dem der Eure auf 26, in dem der Ardeche, wo die Seiden- industrie 15,000 Frauen beschaftigt, auf 24 °/o. Diesen traurigen Thatsachen ist nur abzuhelfen durch Schutzmassregeln, wie solche zuerst in den industriellen Anstalten von Dollfus in Miihl- hausen ins Werk gesetzt worden. Dort erhalten namlich die Arbeiterinnen solche Unterstiitzungen, die ihnen erlauben, drei Monate hindurch ihr Kind zu stillen, bevor sie zur Arbeit zurtickkehren. In Folge dieser Massregel 4G ist die Kindersterblichkeit, welche friiher 55 bis 70 °/o erreichte, auf die normale Ziffer von 15 °/o gefallen. Der Verfasser bespricht sodann den Einfluss der burgerlichen Gesetze auf die Bevolkerungsziffer. Als ungiinstig erweisen sich die indirekten und die stadtischen Steuern, weil sie Kopfsteuern sind, welche die zahlreichere Familie schwerer belasten, als die weniger zahlreiche. Ebenfalls ungiinstig sind die direkten Steuern, insofern sie nach der Bevolkerungsziffer von den Departements aufzubringen sind. Es hat nicht an Vorschlagen gefehlt, die zahlreichen Familien zu ent- lasten durch Mehrbelastung der Unverheiratheten , der kinderlosen und kinderarmen Familien. Doch der Einfluss der Ehen ist nicht die Grund- ursache der Abnahme der Bevolkerung, auch nicht die zunehmende Thei- lung der Grundstiicke. Die meisten okonomischen Forscher finden die Be- volkerungsabnahme in Frankreich begriindet in der geringen Geburtsziffer, in der Eigenthiimlichkeit des franzosischen Yolkes, besonders der wohl- habenden Stande desselben, sich in der Erzeugung ihrer Kinder einen mo- ralischen Zwang anzuthun. Der Franzose, welcher die Existenz des Wohl- standes so hoch schatzt, will diesen Wohlstand auch seinen Kindern ver- erben. Daher sein Streben, sein Besitzthum in moglichst wenige Theile zu zerstiickeln, daher das Ein- oder Zweikindersystem, welches auf die Be- volkerungsziffer so ungiinstig und niederdriickend wirkt. Gheysson fasst seine Resultate in folgenden Satzen zusammen: 1) Die Bevolkerung Frankreichs vermehrt sich mit einer Langsamkeit, die um so beunruhigender ist, als seine mitbewerbenden Nachbarn rings- herum einen viel rascheren Aufschwung nehmen. 2) Die offentliche Meinung begreift, wenn auch noch nicht ganz klar, die schwere Bedeutung dieser nationalen Gefahr. 3) Der Stillstand der Bevolkerungszunahme entsteht hauptsachlich durch die geringe Zahl der Geburten. 4) Unter den Ursachen sind besonders wirksam: die schadlichen Ein- fliisse der grossen Stadte mit ihren Ausschweifungen, ihren ungiinstigen Miethwohnungen, die Arbeiteranhaufungen, das Streben der wohlhabenden Klassen, ihren Besitz nicht zu zerstiickeln, darum moglichst wenige Kinder zu erzeugen. 5) Konnen auch die Gesetze nicht unmittelbar der Bevolkerung einen neuen Aufschwung geben, so vermogen sie es doch mittelbar. Von der Gesetzgebung ist wenigstens zu fordern, dass sie nicht selbst, wenn auch unfreiwillig, Hindernisse diesem Aufschwunge entgegensetze, dass sie nicht die Straflosigkeit der Verfiihrung sichere, dass sie die Verhaltnisse der Miethshauser besser gestalte, dass sie die Zunahme der Wirthshauser hemme, dass sie fiber die Waisen- und verlassenen Kinder wache, dass sie die Ar- beiterinnen, besonders die Mutter unter denselben schfitze und die Bestre- bungen, sie am hauslichen Herde zu halten, unterstfitze, dass sie nicht die kinderreichen Familien durch Steuern drficke, endlich dass sie nicht den Vater, der sein kleines Gut vor der Zerstfickelung retten will, durch 47 ungiinstige Erbgesetze zu den selbstsiichtigen und strafbaren Berechnungen einer grundsatzlich erstrebten Unfruchtbarkeit zwinge. 6) Das Uebel ist schwer und bedeutungsvoll ; bei gutem Willen kann es gelindert, vermindert, beseitigt werden. Das Mittel ist fur den Gesetz- geber zu suchen in der Umwandlung und Neuschaffung des Familienlebens, ohne welches es kein Gluck gibt weder fur die Einzelwesen noch fur den Staat. Greutz (Eupen). Prof. C. A. Ewald, Die obligatorische Leichenschau. Die Nation. 1885. Nr. 20. Eine grosse Reihe von Antragen und Petitionen, darunter die des Nieder- rheinischen Vereins fur offentl. Ges., um Einfiihrung der obligatorischen Leichenschau in Preussen, bezw. im ganzen Reiche, sind bisher fruchtlos geblieben. Im Reichstage ist zuletzt am 16. Februar 1878 von dem da- maligen Prasidenten des Reichskanzleramts, Minister Hoffmann, auf eine Interpellation der Abgeordneten Thilenius und Zinn versichert worden, „die Regierung werde alles was moglich thun, um den Wiinschen der Interpellanten baldigst zu geniigen“. Ausser in Preussen ist in noch vier andern deutschen Staaten die Leichenschau nicht geregelt. Die obligato- rische Leichenschau ist nothwendig: 1. Weil eine verlassliche Medizinalst atistik ohne dieselbe nicht denkbar. Von den Ungeheuerlichkeiten, welche bisher in den Angaben liber die Todesursachen mit unterlaufen, gibt Verf. nach Dr. Guttstadt ein eklatantes Beispiel, nach welchem 1876 sechzehn Frauen von iiber 50 Jahren im Kindbett gestorben sein sollten, wahrend genauere Nachfragen dreizehn von diesen sechzehn Fallen als falsch berichtet darstellten. — Die Todesursachen sollten von Aerzten (event, in gewissen Fallen geschulten Laien) angegeben werden. 2. Wird durch die Leichenschau die Verheimlichung gewalt- s a m e r (plotzlicher oder schleichender) Todesursachen in hohem Masse erschwert. Mit Recht zahlt der Verf. hierher die sog. Engelmacherei, die methodische Todtung von Haltekindern durch gewissenlose Pflege. 3. Hindert die obi. L. das Lebendigbegrabenwerden. 4. Eine ausserordentliche Bedeutung hat die obi. L., wenn sie in Ver- bindung mit einem Gesetz iiber die Anzeigepflicht ansteckender Krankheiten gesetzt wird. Ein Reichsseuchengesetz ist ohne die Grundlage einer obligatorischen Leichenschau nicht lebensfahig. Zwei weitere Momente, welche die obi. L. nothwendig machen, sind nicht arztlicher Natur: 1. Es existirt in Preussen im allgemeinen keine unantastbare Sterbeurkunde ; so konnte z. B. ein todtgeborenes Kind von den Angehorigen als gestorben, nachdem es gelebt, bezeichnet werden; in solchen und ahnlichen Fallen tritt die grosse civilrechtliche Bedeutung be- glaubigter Angaben zu Tage. — 2. Ein letztes Motiv urgiren die Lebens- versicherungsgesellschaften, welche ohne zuverlassige Ergebnisse der medizi- nischen Statistik, ferner ohne zuverlassige Angaben iiber die Todesursachen — 48 bei den Eltern der Versicherungskandidaten ihren Operationen nicht die erforderliche Sieherheit verleihen konnen. — Der Yerf. verkennt natiirlich nicht die grossen Schwierigkeiten der Organisation der Leichenschau, wenn sie in dem von ihm u. A. ge- wiinschten Sinne fungiren, d. h. wenn verlassliche arztliche Angaben fiber die Todesursachen gewonnen werden sollen. Fiir einen erheblichen Theil der landlichen und fiir einen kleineren Theil der stadtischen Bevolkerungen ist ja die arztliche Besichtigung der Gestorbenen nahezu unmoglich. Daher schlagt der Verf. vor, bei Todesfallen, welche durch einen gewaltsamen Akt, resp. als Folge von Verletzungen herbeigefiihrt sind, auf arztliche Todtenschau zu verzichten; hierher sollen auch die Todesfalle nach Ent- bindungen gehoren; ferner nach solchen Fallen innerer Krankheiten, in deren Verlauf die Patienten arztlich untersucht worden waren. In alien diesen Fallen geniige das Urtheil, bezw. die Ermittelung gepriifter und ver- eidigter Leichenschauer, welche womoglich aus Heilgehiilfen, Barbieren, Kiistern und ahnlichen qualificirten Personen zu entnehmen waren. — Freilich stirbt, wie die Dinge heute liegen, ein viel grosserer Theil der Bevolkerung, ohne je einen Arzt gesehen zu haben, als man gemeiniglich denkt; und es wird auch nach des Verf.’s Vorschlagen ein gewisser Pro- centsatz bleiben, bei dem die arztliche Todtenschau schlechterdings nicht durchzufiihren ist. Aber wir schliessen uns des Verf.’s Ansicht an, dass endlich die moglichst zuverlassige Durchffihrung der obligatorischen Leichenschau von massgebenden Faktoren in Angriff genommen werde, wenn man auch genothigt sein sollte, auf ideale Anforderungen zu ver- zichten. W. James Paget. Der nationalokonomische Werth der Gesundheit. — Ygl. Journal d’hygiene, 1884. No. 412. Das Ideal der Gesundheit ist' eine kraftige Korperconstitution, die ein langes Leben in Aussicht stellt, jedem eine moglichst grosse Summe an Arbeit zu leisten gestattet und eine riistige Nachkommenschaft gewahr- leistet. Diejenige Nation, welche eine im Verhaltniss zu ihren natiirlichen Einnahmequellen moglichst grosse Anzahl solcher gesunden Individuen auf- weist, wird die meiste und grosste, korperliche wie geistige Arbeit leisten, welche ihrerseits wieder den entsprechenden Zuwachs an Nationalvermogen herbeifiihrt. Soweit nun die Gesundheitspflege im Stande ist, die durch- schnittliche Gesundheit der Individuen eines Staates zu verbessern, wird sie direct zur Vermehrung des Nationalvermogens beitragen, und die fiir Zwecke der Gesundheitspflege aufgewendeten offentlichen Mittel werden sich als rentabel angelegt erweisen. Um fiber diese Frage Klarheit zu gewinnen, geniigt nicht eine Mortalitatsstatistik , sondern nur eine Morbiditatsstatistik kann eine Vorstellung geben, wie wichtig auch in oben besprochenem Sinne die offentliche Gesundheit ist. Sir James Paget hat nun die Zahl der Krankheitstage bei der eng- lischen Arbeiterbevolkerung aus den Biichern der Manchester Unity of old — 49 Fellows ermittelt, einer Krankheitsversicherungsgesellschaft auf Gegenseitig- keit mit 3—400,000 Mitgliedern, bei welcher aber Saufer, Kriippel, Schwach- linge, Idioten, korperlich Heruntergekommene nicht aufgenommen werden. Es gehoren also der Gesellschaft nur mittelgesunde , auf Erhaltung ihrer Gesundheit Bedacht nehmende Individuen an. Die hier in langerer Zeit ermittelten Zahlen konnten also sehr gut auf die gesammte im Arbeitsalter stehende Bevolkerung Englands umgerechnet werden. Hierbei ergab sich folgendes Resultat: 1 . Mannliche Bevolkerung : Alter Kopfzahl Krank- heits- wochen pro Jahr im Mittel fur jedes Indivi- duum oder jahr- lich Tage ca. 15-20 1268269 844428 0.666 n 20—25 1112354 820183 0,737 5 25-45 3239432 3224134 0,995 7 45-65 1755819 4803760 2,735 19 Insgesammt 16—65 7375874 9692505 1,314 9 . Weibliche Bevolkerung: 15-20 1278963 851701 0,666 4 1 /a 20—25 1215852 896685 0,737 5 25—45 3494782 3476146 0,995 7 45—65 1951713 5368229 2,751 19 V* Insgesammt 15-65 7941330 10592761 1,334 9 Somit ist die Zahl der Erkrankungstage im Mittel und pro Jahr 9 bei der mannlichen wie bei der weiblichen Bevolkerung , bei letzterer wegen der etwas grosseren Zahl alterer Personen ein geringer Bruchtheil mehr. Zum Yergleiche diene, dass bei der englischen Armee auf den Kopf jahrlich 17 Krankheitstage der „ Marine „ „ „ „ 16 der Londoner Polizei „ „ „ „ 9 „ kommen. Rechnet man nun die Zahl der Krankheitswochen bei der mannlichen und weiblichen Bevolkerung zusammen, so ergibt sich, dass jahrlich gegen 20,000,000 Arbeitswochen, resp. die Arbeit, welche 20,000,000 Arbeiter in einer Woche leisten wiirden, England verloren geht. Von diesem Verluste fall! die grossere Halfte auf die landlichen und Fabrikarbeiter. Sie zahlen etwa 7 1 h Millionen und verlieren gegen 11 Millionen Arbeitswochen jahr- lich. Den Verdienst der Arbeitswoche durchschnittlich mit ein Pfd. Ster- ling gerechnet, wurde also allein fur diese Bevolkerungsklassen einen jahr- lichen Verlust von 11 Millionen Pfund d. i. 220 Millionen Mark ergeben. Fur die andern Volksklassen, welche 9 Millionen Arbeitswochen verlieren, Kaufleute, Beamte, Richter, Lehrer, Aerzte u. s. w. lasst sich der Verlust nicht annahernd taxiren, ist aber ohne Zweifel ein grosserer. Centralblatt f. allg. Gesundheitspflege. V. Jahrg. & 4 — 50 Sterblichkeitstabellen geben eine ganz unvollkommene Vorstellung von der Grosse dieser Arbeitsverluste. Nimmt man eine Krankheit heraus z. B. den Typhus, so weiss man, dass jetzt an demselben etwa 4000 Arbeiter in England jahrlich sterben. Bei der heutigen durchschnittlichen Mortalitat von nicht ganz 15 °/o der an Typhus Erkrankten, waren also gegen 23000 Personen von den Erkrankten am Leben geblieben. Bei einer durchschnitt- lichen Krankheitsdauer von 10 Wochen kame zu jenen Todesfallen noch der Verlust von 230,000 Arbeitswochen. Und docb hat sich in England die Zahl der Typhustodesfalle um 11,000 in 20 Jahren vermindert. Diese Yerminderung der Todesfalle ist nicht ein alleiniges Resultat fortgeschrit- tener Therapie, sondern die inzwischen getroffenen hygienischen Massregeln haben die Schwere der Erkrankungen gemildert, die Zahl der Erkrankungen herabgesetzt. Dadurch aber hat sich die Zahl der Arbeitsstunden im Ver- haltniss zur Einwohnerzahl und damit das Nationalvermogen gesteigert. Sir James Paget glaubt, dass sich durch verbesserte hygienische Mass- regeln die Sterblichkeit resp. die Zahl der Erkrankungen weiter vermindern und der Arbeitsverlust des Landes durch Krankheiten sich um ein Viertel mindestens verringern lassen wird. Vor Allem sind es die Infectionskrank- heiten, dann aber auch die zahlreichen, oft durch Vernachlassigung ent- standenen Gewerbekrankheiten, ferner die auf mangelhafter Ernahrung be- ruhenden u. s. w., welche sich durch hygienische Massregeln vermindern lassen. M. Noel Humphrey hat berechnet, dass in Zukunft, wenn die Verminderung der Todesfalle in demselben Verhaltniss andauern wird wie in den Jahren 1876 — 1880, das menschliche Leben im Durchschnitt sich verlangern wiirde, und zwar um zwei Jahre fur die mannliche, und um drei bis vier fur die weibliche Bevolkerung. Diese Zunahme der Lebens- dauer wiirde im Verhaltniss von 65 Procent der im Alter von 20 — 60 Jahren stehenden mannlichen, von 70 Procent der in denselben Jahren stehenden weiblichen Bevolkerung zu Gute kommen. Dieser Zunahme wiirde eine jahrliche Yermehrung der Erzeugnisse und Leistungen der Industrie, der Kiinste u. s. w. um vier Procent entsprechen. Es ist gewiss von grossem Interesse, auch den materiellen Nutzen der Gesundheitspflege in solcher Weise zahlenmassig berechnet zu sehen. Dr. Schmidt-Bonn. du Claux. Jouets d'enfants (Annales d’hygiene publique, janvier 1885). Nach einer im Feuilletonstyl gehaltenen Einleitung, in welcher der Franzose sich iiber die Billigkeit der deutschen Spielsachen beklagt, die der franzosischen Industrie in Folge des Frankfurter Friedensvertrages und des darin vorgesehenen geringen Eingangszolles so erfolgreiche Concurrenz macht, kommt er schliess- lich auf den Kern der Sache, die Anwendung von giftigen Farben bei der Fabrikation der Spielsachen. Auch hier ist dem franzosischen Verfasser mehr darum zu thun, polemisirende Klagen gegen Deutschland zu fiihren, als die Frage wissenschaftlich zu erortern, welche zwischen der deutschen 0 51 und franzosischen Regierung eine Zeit lang in hygienischer Beziehung Gegen- stand von Verhandl ungen geworden ist. Als die deutsche Presse die aus Frankreich nach Deutschland einge- fiihrten Spielsachen , besonders die Balle aus vulcanisirtem Kautschuk wegen ihres hohen bis 50 °/o betragenden Zinkoxydgehaltes als fur Kinder schadlich bezeicbnete und diese Spielwaaren deshalb in Deutschland nicht mebr zugelassen wurden, wandten sich die franzosischen Handler mit ihren Beschwerden dariiber an den Handelsminister. Dieser ernannte eine hygie- nische Commission, welche ihr Gutachten dahin abgab, dass das Zinkoxyd in Verbindung mit Kautschuk vollstandig unschadlich ist, selbst fur Kinder in zartem Alter. Als schadliche Farben bei Spielsachen bezeichnete die Commission Zinnober, Chromgelb, Bleiweiss, Scheel’sches Griin, Kupfer- salze, deren Anwendung in Folge dessen verboten wurde, und schlug vor, die Spielwaaren aus dem Auslande an der Grenze einer Untersuchung auf solche giftige Farben zu unterwerfen und im Falle derartiger Befunde den Eingang der Waaren verbieten zu lassen. Diese Maassregel Frankreichs rief Gegenmassregeln in Deutschland hervor. Endlich verstandigten sich die beiden Regierungen dahin, dass die Anwendung von Chromblei, Blei- weiss und Zinnober, durch dicken Lack gebunden, fur die Spielwaaren in Eisenblech und fur Kautschukballe erlaubt sei. Creutz (Eupen). Prof. J. Soyka. — Experimentelles zur Tbeorie der Grundwasserschwan- kungen. Prager Medizin. Wochenschr. 1885. Nr. 28. In den Verhandlungen der letzten Cholera - Conferenz zu Berlin zeigte es sich, dass weder Koch noch Virchow den Einfluss des Bodens auf die Entstehung von Cholera - Epidemien durchaus bestreiten. Virchow findet, dass in dem was bisher fiber die Geschichte des Kommabacillus be- kannt sei, nichts liege, was die Moglichkeit ausschliesse, dass derselbe sich auch unter Umstanden im Boden erhalten und fortpflanzen konne; und Koch erklarte, dass er den Einfluss der Durchfeuchtung des Bodens, namentlich in seinen oberen Schichten, wo die Zersetzungen organischer Substanz vor sich gehen, auf die Entstehung einer Epidemie durchaus nicht leugne, nur sei dies eines von den vielen und nicht das einzige in Frage kommende Moment. — Der Verf. fasst die Grundanschauungen fiber den Einfluss des Bodens (besonders im Hinblick auf die Mitbetheiligung niederer Organismen) in folgenden vier Satzen zusammen: 1 . Es existirt eine Coincidenz zwischen der epidemischen Ausbreitung gewisser Krankheiten, wie Typhus und Cholera etc., und den Bodenverhalt- nissen, speciell den Schwankungen, die die Bodenfeuchtigkeit resp. der Grundwasserstand an den von diesen Krankheiten befallenen Orten darbietet. 2. Diese Coincidenz aussert sich darin, dass dem Ausbruch dieser Krankheiten ein Absinken des Grundwassers vorangeht, und umgekehrt, dass ein Ansteigen des Grundwassers die Krankheiten zum Erloschen bringt oder wenigstens herabmindert. 3. Das Grundwasser selbst ist hierbei nicht als atiologischer Faktor anzusehen, sondern nur als Massstab fur die Bodenfeuchtigkeit und zwar 52 fur die Feuchtigkeit der uber dem Grundwasser befindlichen Bodenschichten, und in dieser wechselnden Bodenfeuchtigkeit liegt das beeinflussende Moment. 4. Ausser diesen ausseren, mehr physikalisch-chemischen Krankheits- ursachen gehort aber zur Entwicklung solcher Krankheiten ein specifischer Keim, der in den durch diese Bodenverhaltnisse geschaffenen Bedingungen seine Gelegenheit zur Entwickelung oder Verbreitung findet. Diese Factoren der wechselnden Bodenfeuchtigkeit haben zuvorderst grossen Einfluss auf die Lebensthatigkeit niederer Organismen, auf ihre Lebensenergie , vielleicht auch auf Produkte ihres Stoffwechsels. Bei friiherer Gelegenheit (Prager Mediz. Wochenschr. No. 4. 1885) zeigte der Verf. experimented, dass es ein bestimmter Feuchtigkeitsgehalt des Bo- dens ist, der zur maximalen Entfaltung der Lebensenergie der Pilze beitragt, dass ein Ueber- oder Unterschreiten dieses Optimum die Pilzthatigkeit ein- schrankt ; mit dem Schwanken des Feuchtigkeitsgehalts gehen ferner Aende- rungen in der Concentration der im Boden enthaltenen organischen Nahr- stoffe einher, welche ebenfalls die Lebensthatigkeiten der Mikroorganismen beeinflussen. — Sodann fragt es sich, wie gelangen die Pilze aus dem Bo- den zur Oberflache und schliesslich zum Menschen? Falsch ist die An- nahme, dass durch Zuriickweichen des Grundwassers die Pilze leichter in die Bodenluft gelangten und mit dieser aufstiegen. Nageli sowie Benk und Verf. zeigten, dass der Boden bei aufsteigenden Luftstromungen die Pilze eher abfiltrire, zuriickhalte. — Nach dem Verf. hat das Austrocknen der oberen Bodenschichten durch Verdunstung zurFolge, dass eine ununte rbr o chene ka p illare Str omung von Wasser nach aufwarts eintritt; es war zu untersuchen, ob dieser Kapillar- strom machtig genug, um auch’suspendirte Bestandtheile, speciell Organismen zu transportiren. In der That gelang es dem Verf. experimentell zu zeigen, dass unter gewissen Bedingungen bestimmt charakterisirte Pilze in kapillaren Wasserstromen durch Bodenmaterial aufsteigen, zur Oberflache gelangen, hier sich ansammeln und weiter entwickeln ; Hohen von 30—60 cm wurden in des Verf.’s Versuchen von den Pilzen in wenigen Tagen zuruckgelegt. Die Schwankungen in der Bodendurchfeuchtung sind also nicht bloss auf die Lebensthatigkeit und die Entwicklung, sondern auch auf die Verbreitung, den Transport der Pilze von Einfluss. Wolff berg. Ziegel-Pflug oder Ziegel-Flug? Erwiderung von Otto Leichten stern. In einem Referate, welches Herr Schmidt (Bonn) fiber meine Arbeit „ Ankylostoma duodenale bei den Ziegelarbeitern etc." in diesem Central- blatte (4. Jahrg. 10. Hft. S. 379/80) veroffentlicht, bezeichnet derselbe die von mir gebrauchte Schreibart „ Ziegel-Pflug" („Pflugmeister, Pflugbaas") als eine „missverstandliche". Man bezeichne eine Genossenschaft 53 von Ziegelarbeitern nicht mit „ Pflug", sondern mit „Flug“, ahnlich, wie man w amRheine“ (ich glaube wohl iiberall in Deutschland) eine zusammen- gehorige Schaar von Tauben einen „Flug“ nenne. Hatte Herr Schmidt eben so haufig auf rheinisch-westfalischen Zie- geleien verkehrt, wie ich bei meinen Studien iiber die Verbreitung der Ankylostoma-Anaemie, ja hatte er nur e i n m a 1 einen Ziegelarbeiter, Pflug- meister oder Ziegeleibesitzer befragt, so wiirde er fiiglich unterlassen haben, mir ein „Missverstandniss“ zur Last zu legen. Ich habe die Worte Pflug, Pflugmeister, Pflugbaas, oder wie die meist platt redenden Arbeiter sagen: „Plug", die Hollander „ploeg“, seit Jahren so oft aus dem Munde von Arbeitern, Pflugmeistern und Ziegeleibesitzern gehort und im brieflichen Verkehr mit letzteren geschrieben gelesen, dass ich iiberrascht war, in einer solchen Sache eines Missverstandnisses geziehen zu werden. Nichtsdestoweniger und obwohl ich meines Rechtes sicher war, habe ich zum Ueberfluss sofort eine erneute Nachforschung angestellt. In meinem Hospitale befmden sich z. Z. sechs mit Ankylostomen be- haftete Ziegelarbeiter. Sie versicherten mir einstimmig auf meine Frage, dass man „Pflug“ ausspreche, und dass ihnen ein Wort: „Ziegelflug“, „Flugmeister“ ganzlich unbekannt sei. Die des Schreibens Kundigen schrie- ben auf mein Verlangen stets richtig „ Pflug" oder „Plog“. Noch nicht zufrieden wandte ich mich an zwei der bedeutendsten hiesigen Ziegeleibesitzer mit der Bitte um Aufschluss, der mir sofort bereit- willigst zu Theil wurde. Der Aelteste derselben, der seit mehr als vier Decennien die ausge- dehntesten Ziegeleien hiesiger Gegend besitzt, schrieb mir einen sehr aus- fuhrlichen Bericht, aus dem ich nur Folgendes kurz hervorhebe: „Ein Pflug oder „une compagnie" wie man in der Umgebung von Charleroi, oder „une table" (Formtisch) wie man in der Nahe von Liittich sagt, ist eine Genossenschaft von Ziegelarbeitern, welche gemeinschaftlich die Fabrikation von Ziegelsteinen betreibt. Den Mittelpunkt des Pfluges bildet der Pflugmeister oder Pflugbaas. Zu einem Pfluge gehoren 2 Former, 3 Lehmmacher, 3 Lehmtrager, 3 — 4 Steinabtrager, 1 Wasser- pumper und Jemand, der die Ktiche und die Instandhaltung der Woh- nung etc. etc. besorgt. Zu dem Pfluge gehoren aber auch eine Menge einzelner Gegenstande und Gerathschaften, welche zusammen mit den Ar- beitem und dem Arbeitsfelde den „Pflug“ bilden. Der Name muss wohl von einem Pfluge hergeleitet werden, mit welchem der Landmann das Feld bearbeitet. Das Wort „Flug“ hat, auf Ziegeleien angewandt, keinen Sinn und ist dort unerhort . . . .“ Mein anderer Gewahrsmann erwiderte mir fast in gereiztem Tone: „Ich verstehe nicht, wie man „Flug“ sprechen und schreiben sollte, da das Wort doch allgemein „ Pflug" heisst. Zu Hirer Belehrung erlaube ich mir, Ihnen das beiliegende gedruckte Gontraktbuch, wie es zwischen Ziegeleibesitzern und Pflugmeistern ublich ist, zu iiberreichen. “ Dieses 54 16 Seiten betragende Buchlein 1 ) enthalt auf jeder Seite die Worte „ Pflug, Pflugmeister* etc. Dass somit von einem „Missverstandnisse“ meinerseits nicht die Rede sein konnte, als ich das Wort „ Pflug “ so schrieb, wie ich es seit Jahren im Hospital und auf Ziegelfeldern gehort und im brieflichen Ver- kehr mit Pflugmeistern gelesen und geschrieben hatte, darf ich wohl als bewiesen ansehen. Die Frage nach der Abstammung des Wortes hat mich schon wieder- holt beschaftigt. Dass es eine zu gemeinsamer Thatigkeit verbundene Genossenschaft von Arbeitern bedeutet, war mir langst bekannt. Ich weiss aus der Unterhaltung mit Kranken meines Hospitales, dass auch die Kolner Sacktrager, Kvelche sich als Compagnie zusammengruppiren, um z. B. einen der Schleppdampfer auszuladen, sich einen „ Pflug “ resp. „Plog a nennen, eine Bezeichnung, welche auch in der Ruhrgegend allgemein iiblich 1st. Doch ist moglich, dass Letztere den Ausdruck von den Ziegeleien her adoptirten. Ich habe mich endlich auch an einen gelehrten Sprachforscher mit der Bitte um Aufklarung gewandt und ihm besonders auch die Frage vorgelegt, ob eine Umwandlung des „F“ in ein „Pf“ etymologisch haufig vorkomme, ob Analoga in dieser Hinsicht existirten. Aus dem dankbar acceptirten Antwortschreiben fiihre ich nur Folgendes an : „Flug oder Flucht wird von Vogeln gesagt = Rotte, Haufe. Ein Flug Tauben = Flucht von Tauben, Taubenflucht, holland. „een vlucht van vogelen“ = „volatura avium“. Dass man aber auf einen nicht fliegenden Haufen Arbeiter dies Wort nicht anwenden kann, ist unbestreitbar. Der Pflug, aratrum, mhd. phluoc, plluoc, niederd* plog, niederl. ploeg, altfries. ploch, altnord. ploge, dan. ploug, schwed. plog, engl. plough. Von einer Verwandlung des f oder v in p kann keine Rede sein. Das Wort „ Pflug “ in der von Ihnen erwahnten Bedeutung stammt aus dem Hollandischen. Vergl. das „Woordenboek der nederduitsche en hoogd. talen in zack-formaat. Leipzig, Tauchnitz. (s. a.) p. 295: „Ploeg, m. der Pflug, der Schreiner = Schnitthobel ; einHaufenArbeiter; ploegen v. a. pfliigen, in Bretter fugen, hobeln; schwer arbeiten. Ploegijzer, n. die Pflugschar etc. etc. . . Damit ist die Sache erledigt. Ich kann die fliegenden Ziegelarbeiter und Flugmeister, den „Ziegel-Flug“ des Herrn Schmidt nicht acceptiren. Ich habe das Wort, so wie es seit Decennien von Arbeitern, Pflugmeistern und Ziegeleibesitzern gesprochen und geschrieben wird, richtig aufgefasst und wiedergegeben. Von einem „Missverstandnisse“ meinerseits kann somit nicht die Rede sein. Koln, 14. December 1885. 1) Druck und Verlag von Franz Greven, K8ln, Comodienstrasse 16. Anzeigen '"tibeHSOCnhustr^ d ^ Soeben erscheint in ganzlich neuer Bearbeitung^i MEYERS Konversations - Lexikon VIERTE AUFLAGE. b Bibliographisches Institut in Leipzig. 'S [724 ^Dp.THie^aelis’ Eicljel Cacao Starkendes (tonisirendes) Nahrungsmittel fur jedes Alter. Zweckmassig als Ersatz fiir Thee und Kaffee. Zum rn edi c i nischen Gebrauch bei katarrhalischen Affectionen der Verdau- ungsorgane, selbst bei Sauglingen zeitweise als Ersatz flir Milch, besonders bei diar- rhoischen Zustanden mit bestern Erfolge anzuwenden. Zuerst im Augusta- Hospitale zu Berlin unter Leitung des Herrn Professor Dr. Senator mit ausserordentlichem Erfolge angewandt. (Siehe „ Deutsche Medicinische Wochenschrift“ Nr. 40.) In J /a Ko.-Biichsen Verkauf Mk. 2.50 In V* - - - 1.30 6 , l /» Ko.- oder 11, 7 * Ko.-Biichsen = 1 Postcollo von 5 Ko. Brutto. Alleinige Fabrikanten [914 Gebr. Stollwerck, K6ln a. Rh. Wissenschaftliche Abhandlungen iiber die Versuche und Erfolge auf Franco- Anfragen gratis. Aerztl. Maximal - Thermometer per Dtz. Mk. 16. — Httlsen dazu Mk. 2—8, liefert unter Garantie der Rich- tigkeit die Glasinstrumentenfabrik v. Schilling & Co. in Stutzerbach, Thiir. Aerztliches Padagogium ftir jugendliche Nerven- und Gemiithskranke zu GOrlitz. (Nicht ftir Idioten.) Fur reconvalescirende jugendliche Patienten, bei welchen haufig sittliche Mangel ein Hauptsymptom der Krankheit bilden, hat der Unterzeichnete in Folge vielfachen an ihn gestellten Verlangens im Anschluss an seine Heil-Anstalt fur Nerven- und Gemiithskranke ein arztliches Padagogium eingerichtet. In demselben sind eigene Lehrer fur die hauptsachlichsten Schulgegen- stande — Gymnasial- und Realschulfacher — , sowie Handfertigkeits-Instructoren fur mechanische und artistische Uebungen angestellt, um regelmassigen Unter- richt zu ertheilen und die geistige und sittliche Entwickelung der Zoglinge neben den Aerzten zu iiberwachen und zu fordern. [912 So wird Sinn fiir Arbeit und Freude am eigenen Schaffen , sowie vor Allem eine ethische Lebensauffassung bei diesen Kranken geweckt und gepflegt und der zu ihrer sicheren moralischen Eingewbhnung und geistigen Schulung er- forderliche langere Anstaltsaufenthalt nutzlich und auch mit Riicksicht auf einen bestimmten Lebensberuf passend verwendet. Prospecte sind von dem Unter- zeichneten zu erhalten. Dr. Kalllbaum. Maizenin, anerkannt besser wie die unter den Namen Maizena, Mondamin etc. in den Handel kommenden Maisstarkepraparate, offeriren Kellermann & Sander, Maisst&rkefabrik, Oppenhei m. Preis pr. Pfund-Packet 55 Pfg. — Zu haben in alien grosseren Colonial- und Delicatesswaaren-Handlungen. [888 Verlag von August Hirschwald in Berlin. Berliner Klinische Wochenschrift. Organ fur practische Aerzte. Mit besonderer Berucksichtigung der Medicinal -Verwaltung und Gesetzgebung nach amtlichen Mittheilungen. Redacteur: Prof. Dr. C. A. Ewald. Wdchentlich P/a — 2 Bogen. Gross 4-Format. Preis vierteljahrlich 6 Mark. Abonnemcnts bei alien Buclihandlungen und Postanstalten. [926 I >ie < jJasanalywe und ihre physiologiscbe Anwendung nach verbesserten Methoden. Yon Dr. J. Geppert. 1885. gr. 8. Mit 1 Tafel und 18 Holzschnitten. 4 Mark. Die krankhaften Erscheinungen des Geschlechtssinnes. Eine forensisch-psychiatrische Studie von Prof. Dr. B. Tamowsky 1886. gr. 8. Preis 3 Mark. Tafei 1. a 9 m A. Acts etitva^cl’iitte . B. £it|tjni/m{i* . C. ©oulftafa^ijiaiOLt J). -31airiWfi/ifc. E. 3'iatfimil-cfi -Jiufim F. diafltfoxfi-cfio tticlW oeckner-Rothe. Verlag von Emil Strauss in Bona- Centralblatt f. allgem. Gesundheitspflege. V. Jahrg. Tafel 1. Projekt zur Reinigungsanlage far die Abflusswasser der Stadt Essen a. d. R. System Roeckner-Rothe. Verlag von Emil Strauss in Bonn. Tafel Centralblatt f. allgem. G-esundheitspflege. V. Jahrg. Tafel 2. Projekt zur Reinigungsanlage fur die Abflusswasser der Stadt Essen a. d. R. System Roeckner-Rothe. Verlag ron Emil Strauss in 1 / / r Y v jr' SEWAGE DISPOSAL IN CITIES. I NTO every city there must be constant- ly brought water, food, fuel, and other matters sufficient in quantity for the needs of the people and animals in it. In the use of these things not a grain of the mat- ter of which they are composed is destroy- ed, but much of it undergoes a great change in form and in properties. The warning cry of a common game among children that ‘ ‘ what goes up must come down” may he changed in such case to “what goes in must come out.” A large part of the used material is disposed of by the atmosphere, into which it passes in the form of gases of various kinds, the prod- ucts of combustion, respiration, fermen- tation, etc., but there is still left a very large amount of liquid and solid refuse which is not only useless within the city, and in the way, but is, or is liable to be- come, offensive and dangerous. The question as to the best means of dis- posing of this refuse matter, including ashes, garbage, street sweepings, excreta, and water befouled by domestic or factory uses, is one of the most important problems with which a municipality has to deal. The ancient, uncivilized way of answer- ing the question is to leave it to each in- dividual householder to get rid of his waste products as best he can. In the cities of mediaeval times these were usually deposited in the streets, the excreta being collected during the day in jars which were emptied at night. The nuisances and pestilences which re- sulted from this method of sewage disposal gradually led to the adoption of other methods giving less offense to the senses, and chief among these was the formation of pits or special receptacles in the ground for the storage of filth, or what is known as the privy or cess-pool system. The term cess- or sess-pool, known also as “ sos-,” or “ sus-pool,” signifies literally a “ soak-pool,” and this is a good charac- terization of the majority of them. For a time this method gets rid of visible nui- sances, and seems to produce good results, but sooner or later it gives rise to the gravest danger to health, and to serious loss to the city which persists in it. In order to understand how and why it does this we must know something of the com- position of that form of refuse known as sewage. Sewage, in the sense in which the word is used in this paper, includes not only ex- creta, but all water rendered impure by domestic use or by waste products. It consists therefore of water holding in sus- pension and in solution very diverse sub- stances, but its most important peculiari- ties depend upon the fact that it contains a large amount of organic matter, part of which is alive in the form of myriads of extremely minute organisms, and a part of which is dead and in process of decompo- sition into simpler combinations of the carbon, nitrogen, oxygen, hydrogen, sul- phur, and phosphorus of which its mole- cules have been built up. This decomposition is for the most part effected by micro-organisms, and if these are killed, as may be done by heat or by certain chemicals, decomposition ceases. Each tiny microbe consumes in its- growth and multiplication a minute por- tion of dead matter, and excretes as prod- ucts certain substances which, while inju- rious or poisonous to itself, may be the food- necessary for another species. The changes thus produced are known as fermentation, nitrification, putrefaction, etc., the latter term being applied when offensive gases are produced. The chief function of dead organic matter is as a store of force in the shape of food for liv- ing beings, of which, until quite recently, little has been known, and the importance of which in the economy of nature we are only just beginning to discover. Life in this world is, as it were, a bal- ancing or seesaw between different or- ganisms, in which each helps the rest — a cycle of actions which are to a certain ex- tent dependent on each other. The molecules of the grain of wheat in part help to construct the muscle cells in a man’s arm, and in part furnish fuel or motive power to these cells, while the ex- creted products of these cells in the form of carbonic acid, urea, etc. , and finally the products of the decomposition of these cells,. may go to construct a new grain of wheat. But to enable the vegetable to make use of the animal cell as food, the latter must be split up into simpler combinations, and this is effected by micro-organisms of vari- ous kinds. The great majority of these minute beings are harmless to man so long as they are confined to his skin and ali- mentary canal ; in fact, every one carries, millions of them on and within himself,. 578 HARPER’S NEW MONTHLY MAGAZINE. .and it is doubtful whether he could prop- erly digest his food without their help. There are, however, some forms of these little granules and rods, or micrococci and bacteria, which are not so innocent and harmless, but which, on the contrary, pro- duce disease and death in many of those to whose systems they gain admittance. Some of these disease germs multiply only within the bodies of living animals, as, for instance, those which give rise to small-pox and scarlet fever; they retain their vitality for a time when thrown off in excretions ; but they do not increase in number until they gain access to living tissues, and hence the diseases which they cause are propagated by contagion only. Other disease germs multiply, so far as we know, almost exclusively outside the liv- ing body, and produce their effects on man not by growing within him, but by poison- ing him with their products, as common yeast may be said to be the cause of delir- ium tremens through the agency of the alcohol which it produces. Malaria is a type of this class. A third kind multiply both within and without the living body, and some of these appear to especially multiply and flourish in human excreta. As yet we know very little of the life history of these disease .germs, or as to how they produce their ef- fects ; we are not even certain as to wheth- er they are distinct separate species or whether they may not be some of the com- mon micro-organisms which by over-feed- ing or otherwise have become abnormal, microscopic monsters as it were, produ- cing evil instead of good. What we do know is that a very minute quantity of excreta from a case of cholera or of typhoid fever may, when introduced into the alimentary canal of a healthy person, produce in that person a disease similar to the one from which the germ originally came; and we also have good reason to believe that if a few such germs fall into a mass of excreta, as in a cess- pool, they may under certain conditions multiply very rapidly and render the whole mass of filth infectious, so that any portion of it will be capable of conveying the disease. Their action is closely analogous to that of yeast, and the diseases which are sup- posed to be due to such action are known -as the zymotic or ferment diseases. Hence comes one great danger of re- taining or storing in the vicinity of human habitations quantities of organic matter suitable for the nourishment of such or- ganisms, for the channels through which such collections may become dangerously inoculated are so numerous and, in the present state of our knowledge, so impos- sible to guard against, that casks of powder or cases of dynamite would be really safer neighbors. Sewage is not only a source of danger in this way, but also through the products of its decomposition. The most important of these in this connection are the gases and effluvia evolved in putrefaction, such as hydrogen sulphide, ammonium sul- phide, carbon dioxide, and certain organic vapors of very complex constitution, chief- ly characterized by unpleasant odors. When concentrated, as in old cess-pools or vaults, these may produce suffocation and almost immediate death, or great pros- tration, violent vomiting and purging, convulsions, and death in from one to two days. The circumstances are rare which pro- duce such effects as these; usually the gases are greatly diluted before being breathed, and the effects are less marked. Constant exposure to such air impairs health gradually, but distinctly, especially in infants and children, the symptoms produced being loss of appetite, languor, slight headache, etc. It may be said that the gases from de- composing sewage can not be very injuri- ous or their effects would be observed among scavengers, workers in sewers, and plumbers, all of whom are specially ex- posed to these exhalations. The fact is that a certain number of those employed in these occupations be- come sick soon after they engage in them, a few are forced to take to some other trade, a few die, and the survivors of this process of natural selection are those best able to resist the deleterious influences to which they are subjected, their power of resistance to which is strengthened by habit. Such men can breathe without ap- parent ill effect the air from a foul choked sewer, a few whiffs of which will sicken the unaccustomed by-standers, when the drain is opened. Unpleasant sights and smells are not necessarily injurious to health, although they may turn the scale in the case of a feeble invalid just hesitating between life and death, but they are to be avoided and averted as far as possible for the sake of SEWAGE DISPOSAL IN CITIES. 579 public comfort. One may become so ac- customed to them as hardly to perceive their presence, but that is no reason why those not so wonted should be compelled to suffer from them. The gaseous and other products of de- composition of sewage vary greatly ac- cording to the amount of free oxygen pre- sent, for upon this depends largely the character of the micro-organisms which are at work. Some of these can only exist in the presence of free oxygen, others only in its absence, and thus two very different kinds may be at work in the same cess- pool, the oxygen lovers at the top and the oxygen haters in the depths. What may be termed the normal and beneficient processes of decomposition go on most rapidly and efficiently where there is a free and constant supply of oxygen, and methods of sewage disposal which provide for this supply are, other things being equal, the best. It is for this reason that a porous soil, alternately moistened with sewage and then dried, so that each, particle of the soil becomes covered with a thin layer of organic matter, thus exposing an enormous area to the air when this again finds its way into the interstices of the soil, and so giving the aerobic organ- isms the most favorable conditions for their development, produces such excel- lent results; and in like manner the agi- tation of sewage with large quantities of water, or the forcing of air through it, so as to allow access of the dissolved oxygen to every particle, results in rapid decom- position and the ultimate purification of the mass, while at the same time the prod- ucts are compounds of nitrogen which are very valuable in many ways. On the other hand, a soil constantly saturated with sewage, as in the vicinity of a leaky cess-pool, can not thus purify itself, and the decomposition which goes on un- der such circumstances gives rise to prod- ucts which are specially offensive and dan- gerous, contaminating the ground water, and through this the wells and springs in the vicinity, and contaminating also the ground air, which in cold weather is drawn into all houses which have not air-tight cellar floors and walls. But, it may be asked, if the dangers and discomforts which arise from the storage of filth in or near human habitations are so great, why is it that in so many cities the people appear to prefer to make use of cess-pools even after sewers have been con- structed, that wells containing polluted water continue in use, and that proposals to do away with these evils meet with stubborn opposition, and sometimes give rise to bitter hostility against the proposers of such improvements? The answer to this is that the danger is in most cases not apparent to the great majority of people, and that sights and odors which to those unaccustomed to them are extremely of- fensive may be unnoticed or tolerated with complacency by those who are con- stantly in their presence. Cleanliness is a relative term ; the ideas of a Polish Jew of the lower classes, of a New England housewife, and of a chem- ist are very different with regard to this subject, and a glass which all these con- sidered clean would be at once rejected as impure by the experimenter who wishes to know whether the fluid which he places in it is free from living germs. Moreover, cleanliness is not to be secured without some cost and labor, and sanitary improvements almost always involve some immediate inconveniences which to the ignorant majority seem of much more im- portance than the possible future benefits to be derived from them. In attempting to teach the people that it is true economy to furnish this cost and labor we must recognize the fact that in many cases privy vaults and cess-pools cause no immediate and self-evident in- jury to the health of those living in the midst of, or over, them; that water con- taminated with the products of decompos- ing sewage is drunk with apparent impu- nity by many persons ; and that prior to the outbreak of an epidemic it is often difficult, if not impossible, to prove that the sick- ness and death rate of a community are increased by the presence of filth, especial- ly if this filth is not apparent on the sur- face of the streets and yards, but is con- cealed in the soil beneath. No one whose attention has not been specially directed to the subject, and who has had no practical experience in sanitary investigations, has any adequate idea of the many ways in which air, water, and food are rendered impure and unfit for use by sewage and its products. The soil of one of the largest cities in this country is honeycombed by over 70,000 vaults and cess-pools, and the general sat- uration of the soil with filth is such that no wells in the place are fit for use. Other large cities have sewers badly 580 HARPER’S NEW MONTHLY MAGAZINE. planned and worse constructed, leaky, clogged, so nearly level in some places as to be little more than long cess-pools, with outlets so placed as to silt up docks and befoul the sides of piers and shipping, or so that at times their contents mingle with the water supply — buried monuments of the ignorance of the men who planned them, of the rascality of those who constructed them, and of the blind folly of those who are responsible for their continuance. Yet those who urge improvement in these things are met by the objection that the death rate is only two or three per thou- sand in excess of what it ought to be, and that it is unwise to create alarm, because it will injure the commerce of the place. Physicians and sanitarians have con- cluded that stored filth, and air or water contaminated by sewage or its products, are dangerous, from observations of the course of certain epidemic diseases, and from comparisons of the death rates of dif- ferent localities, or of the same locality at different times, where different methods of sewage disposal and water supply have been made use of. The teachings of epi- demic cholera and typhoid are sometimes terribly plain, so plain that the wayfaring man, though a fool, need not err therein, but, unfortunately, they are soon forgotten. The memory of the Plymouth outbreak is still fresh in the minds of the news- paper-reading public, but how many now remember the lessons of the North Boston, the Guildford, the Over Darwen, or the Caterham outbreaks, all of which were due to the same cause ? In like manner the literature of cholera contains abundant evidence as to the influ- ence of polluted soil and water on the spread of this disease, but the details of this evidence are almost totally unknown to the public. Great as is the influence of sewage pol- lution in the presence of the specific germs of cholera or typhoid, the sum of the in- jury to health and loss of life produced by noteworthy epidemics of these diseases is really insignificant as compared with the results of continued slow poisoning pro- duced upon communities by the organisms and products of filth. To fully appreciate the loss of health and wealth which occurs in this way we must study the vital statistics of different localities for long periods, and we shall then find that in all towns in which a proper system of sewerage has been intro- duced the death rate has been reduced,, and especially that typhoid fever has been greatly diminished. For example, in Munich, from 1854 to 1859, when leaky cess-pools were in use, the mortality from fever was 24.2; from 1860 to 1865, when the cess-pools were ce- mented and made water-tight, it was 16.8; from 1866 to 1873, when there was partial sewerage, it was 13.3, and from 1876 to 1883, when sewerage was complete, it was 8.7. In Hamburg, from 1838 to 1844, when there was no sewerage, 48.5 out of every 1000 deaths were due to typhoid ; from 1871 to 1880, after the sewerage was completed, the proportion of deaths from typhoid fell to 13.3. It must be borne in mind that the im- provement to health from a system of sew- erage does not follow immediately; it re- quires a year or two for the filth-sodden soil to be relieved of its burden by nature’s little scavengers, but the result is none the less certain. The ideal system of disposal of the sew- age of a city is one which removes it promptly and completely beyond the city limits, which makes full use of its fertiliz- ing powers, which neither causes danger to health nor gives offense to the senses of sight or smell either within or without the city, which is to the least possible ex- tent dependent upon the care and skill of the ordinary municipal laborer, and which does not involve too great cost either in its construction or its management. This ideal is by no means an impossible one, but it is so for many cities. The ma- jority must make the best compromise they can, and must do this while hamper- ed with unfavorable conditions of soil, of badly planned and constructed works, and of debt, the heritage from ignorant, care- less, or corrupt governing bodies. No two cities present the same condi- tions. Each requires special study and treatment. The first question to be decided in each case is, What shall be the ultimate disposal of the sewage ? As stated above, it is de- sirable, if possible, to make use of its ferti- lizing powers. Among the most important sources of stored force in the world which are avail- able for the use of man are the com- pounds of nitrogen. They are essential to the growth and development of ani- mals and plants, are limited in quantity, SEWAGE DISPOSAL IN CITIES. 581 and at present it is uncertain whether there are any processes in either the or- ganic or the inorganic world by which, when wholly decomposed, they are renew- ed to any material extent, by which the free gaseous nitrogen of the atmosphere enters into such combinations as are ne- cessary for the higher forms of life. Yet we are constantly wasting and throwing away these compounds, burning them in explosives, sending them to the rivers and the sea in the form of sewage, or allowing them to decompose in such a way as to derive no benefit from the force thus pro- duced. We borrow and do not repay, our soil grows poorer, and the demand for ferti- lizers increases; from large areas of this country the most valuable constituents of the land have been, and are still being, extracted and sent to Europe to be ulti- mately run into the sea through the sew- ers of her great cities. It is true that what is lost in this way to one locality is in many cases gained by another: the sewage which goes into the rivers and the sea contributes directly or indirectly to the support of life of fish, etc., which are of use to man ; but the loss to a given state is none the less grievous, and none the less to be avoided, if possible, be- cause a distant land at some future time may derive some benefit from it. The advocates of the various storage sys- tems of disposal of excreta, including the dry-earth system, the Chinese and pail sys- tems, and the privy odorless excavating system, urge this as an argument against the system of water carriage, saying that we should not send to distant islands for fertilizers and at the same time waste the same materials at home. The reply to this is that the conversion of sewage into a fertilizer is not profitable in this country at the present time, and it involves more or less of the evils of storage. The comment of the Sanitary Engi- neer upon the statement that Boston has just paid four or five million dollars for a tube through which to throw eight hun- dred thousand dollars 1 worth of fertilizing matters into the sea yearly is as follows : “ Admitting the supposed value of the sewage — in the same sense that the value of some mines is estimated, viz. , by multi- plying the cubic contents of a vein so many feet thick by the value of one cubic foot obtained by an assay yielding so many ounces of gold to the ton — admitting that the $800,000 may all be there, the practical question before the Bostonians is, What will it cost to get that value out of the sewage ? We believe that it would cost from one and a half to two million dol- lars annually in interest and current ex- penditure to accomplish this result.” At present it is cheaper and easier to go West and get a new farm than it is to re- store an exhausted one, and fertilizers can be made from other materials much cheap- er than from sewage. This state of things will not continue indefinitely, and sewage will become more valuable; but until the time comes when it pays to collect it, it will be disposed of in the easiest and cheapest way which will prevent nuisance and danger to health. Where land suitable for sewage farming is available, it should be used for the pur- pose, if it does not materially increase the cost ; and even if it does increase the cost, if the alternative is the discharge of the sewage into fresh-water, unless the stream is very large. This system of sewage irrigation has now been fairly tested at a number of places, and where the circumstances are favorable it gives very satisfactory re- sults. The less dilute the sewage, and the less its dilution varies, the greater its value, and hence those systems of sewerage which separate the sewage from the rain- fall and soil water will hereafter have the advantage, and hence, other things being equal, it is desirable that the system of sewers of a city should be such that in the future the sewage can be utilized. For sewage farming, properly so called, a large amount of land is necessary, for if the fertilizing material be supplied in ex- cess of the needs of the growing crops, this excess is not stored up so as to increase the richness of the soil, but is dissolved out and passes off with the effluent water. It is most profitable when applied to green crops, and it is probable that the method of what is called ensilage, or storage of green crops so as to allow only a limited and special form of fermentation to occur in the mass, will be specially important in this connection. To dispose of the sew- age of a city by water carriage, a general and sufficient supply of water is necessary, and conversely, when a town has obtain- ed a general system of water supply a sys- tem of sewers should be provided for the removal of the water after it has been made 582 HARPER’S NEW MONTHLY MAGAZINE. foul by use. In the Liernur system the least possible quantity of water is admitted to the pipes designed to convey excreta, and a general water supply is not neces- sary ; but this point is of no practical im- portance to us, since all our cities have such a water supply. In a city which has a general water sup- ply, but no sewers, the greater part of the water fouled by household use, or by waste products from manufactories, is allowed to run off over the surface in gutters until it reaches a natural water-course. No more water is allowed to pass into the cess -pools than is necessary to work the water-closets, in order to diminish the fre- quency with which the pits must be emp- tied, and for the same reason those forms of closets are preferred which use the least water, which forms are, as a rule, the least desirable. The results are very unsatisfac- tory, and especially so in the lower por- tions of the town, and it may be laid down as a rule that, in a city which has a gener- al water supply, a system of sewers should be provided for the removal of the fouled water whether the excreta be removed in this way or not. But the addition of the excreta, with a sufficient amount of water to insure its carriage, does not require any material in- crease in the capacity or cost of the sewers, nor does it materially add to the offensive- ness of their contents, and hence, both for economical and for sanitary reasons, it is now generally admitted that all fouled water shall be removed by the sewers. In the preparation of plans for a system of sewerage for a city the following points must be considered, viz. , the ultimate dis- position of the sewage, position of the out- let, area to be sewered, proportion of rain- fall to be admitted to the sewers, nature and amount of water supply, population to be provided for, topography of the place, drainage, whether there is a necessity for pumping-works, means of flushing and cleansing the sewers, and provisions for their ventilation. The methods of disposal to be consider- ed may be : first, the discharge of the sew- age directly into a stream, lake, harbor, or sea ; second, to treat the sewage by some process designed to remove the greater part of the organic matter, allowing only a comparatively pure effluent to pass into the stream; third, to compel the sewage to flow over or through land prepared for the purpose, and thus to purify it. The first system is the one usually adopt- ed for the sake of cheapness, but the results are often very unsatisfactory. If the sewage be discharged into a run- ning stream, there is the risk of pollution of the water supply of the city itself, or of that of its neighbors lower down the stream, and of injury to the fish. It might be thought that at least the point from which the water supply of the city is taken would be located so far up the stream from the point or points at which sewage is discharged that there would be no risk of the contamination of the former by the latter, but this is not al- ways the case, and engineers know that, owing to the extension of a city above the point of in-take of its water supply, or to reflux currents at certain times, due to tides, or winds, or high water, there are several cities in this country which occa- sionally supply their inhabitants with wa- ter contaminated with their own sewage, while those whose water supply is more or less polluted by the sewage of other lo- calities are so numerous as to form the rule rather than the exception. As regards the destruction of fish by sewage, this is mainly due to chemical wastes rather than to excreta. Fresh ex- creta, not in a state of putrefaction, may be discharged into a stream in compara- tively large quantity without injury to its inhabitants ; on the contrary, such excreta furnish food to myriads of organisms which in their turn become food for fish. Putrefying sewage is injurious to fish, as it is to all the higher forms of animal life. The effect of the discharge of sewage into water which is turbid from minute particles of clay is to form a precipitate with these particles, and thus to clarify the water. Sooner or later many of our cities will be compelled by their neighbors to provide some means of purification of their sewage before allowing it to flow into streams. Such purification is best effected by apply- ing the sewage to land either by ordinary irrigation or by intermittent downward filtration. Where land is not available for this purpose, purification may be effect- ed by chemicals of various kinds, among the most important of which are lime, alumina, iron, etc. All of these processes involve the production of large amounts of precipitated matter or sludge, which must be dried and disposed of, and all of SEWAGE DISPOSAL IN CITIES. 583: them whicli are really efficacious in giv- ing an effluent which may be discharged into a stream without danger are expen- sive. One of the most important questions to be settled in connection with sewerage plans for a given locality is the method of disposal of storm water and of ground water which is to be adopted. One of the first urgent needs as a city grows is for channels to convey away the rain-fall in order to prevent the flooding of streets, cellars, etc. The open ditches or small natural water-courses at first used for this purpose are in the way of traffic, and are liable to become offensive, and the next step is to construct under-ground channels for the removal of the surface water and of soil drainage. These are not intended to convey sew- age, and in most cities, until within the last forty years, it was forbidden by law to dis- charge sewage into them. In St. Louis it was not permissible to drain a privy into a sewer prior to 1842 ; in London not until 1844, in Baltimore and in the greater part of Paris it is forbidden to this day. The prohibition was a wise one, for the older drain sewers are as a rule entirely unfit for conveying the waste of houses fitted up with the modern conveniences, and it is to attempts to use such channels for this purpose that many of the com- plaints made against sewers are due. In the older, closely built, and almost completely paved portions of a city, unless an unusually perfect system of street cleaning is carried out, the first washings of a street by a storm, after a dry season, or after the melting of the layers of snow and filth which accumulate in the winter, are practically sewage, and will pollute a wa- ter-course or harbor quite as effectually as the discharge from a sewer, but for a very short time only. The improvement in health which the construction of sewers has been found to produce in cities lias been in many cases, no doubt, due quite as much to the drain- age and removal of ground water thus produced as to the removal of filth, but it is in most cases not desirable to use sewers as drains, though all sewers, however im- pervious, produce some effect in this way, and would do so were they solid instead of hollow, since the ground water will find an easier route along their external surface than through the undisturbed and solid earth. The objection to the use of sewers as subsoil drains is that if water can pass, from without inward through their joints, sewage may in a dry season pass out and pollute the soil, leaving solid matters strand- ed within to obstruct the pipe. This ob- jection may be to a certain extent, and under some circumstances entirely, over- come by making the invert or lower part of the sewer water-tight, and leaving the upper part, or arch, pervious, so as to drain the surrounding soil, but this should only be done if the sewage is to be neither util- ized nor pumped, since under either of these conditions it should be diluted as lit- tle as possible. As a rule it is better to- keep the drainage channels entirely sepa- rate from those intended for conveying- sewage, although they should often follow the same lines, and even, for the sake of economy, be laid in the same trenches. The importance, from a sanitary point of view, of thorough and deep drainage in cities is by no means sufficiently appre- ciated. In speaking of the ultimate dispos- al of sewage, attention has been called to- the fact that a porous soil, by virtue of the oxygen which it contains, and the micro- organisms which develop in its interstices, has great power to decompose organic matter, and to starve out disease germs ; and this power is as important for the soil beneath a city as it is for that of a sewage- farm. It is not within the scope of this article to consider the relative merits of this or that particular system of sewerage, or to discuss details of construction. It is easy to see that what may be desirable in old and closely built streets, with high build- ings lining either side, and subject to heavy traffic, may be neither desirable nor possible, on account of expense, in a town where the houses are scattered, having- large yards, and where the traffic on the streets is light. In the first case it may be the truest economy to construct a subway sufficient- ly capacious to contain not only the chan- nels for sewage and for street wash, but all the water, gas, and steam pipes which form such a labyrinth in such localities, in order to prevent the expense and delay which excavation in such a street for ex- tension or repairs always causes ; while, in the second case, a comparatively simple and cheap system of earthen pipes for the conveyance of sewage only, combined with another still cheaper system for subsoil 584 HARPER’S NEW MONTHLY MAGAZINE. drainage, may be the only tiling which the value of the adjacent property will justify. No one system is best for all places. Although sewers are intended to carry foul water, they can, and should, be so con- structed and connected as not to be offens- ive, and a very important means of secur- ing this is to have the house drainage so -arranged that all foul water shall be at once delivered to the sewer. Fresh sew- age is not specially offensive or dangerous, but it is not possible to keep any system of sewers free from bad odors if putrefy- ing sewage is turned into them. The worst of all arrangements is that by which cess-pools are preserved and the -overflow allowed to drain into the sewers ; and where this is done the sewers will al- ways be offensive. Sewers cost money, but there is no bet- ter investment for property owners. The • cost of a system of sewers for a city varies from five to fifteen dollars per head of population, and the increase in value in real estate which they serve varies from ten to twenty-five per cent. It seems to be a common idea that any one who can run levels and plot contour lines can plan a system of sewerage, that the average contractor can be trusted to carry out the plans properly, and that when the work is completed anybody is fit to take care of it. All this is a great mistake. Properly constructed sewers are among the most permanent works of the engineer; they should last for hundreds of years, and be planned for the future as well as the present, and the employment of the best experts obtainable, both for the .preparation of the plans and the careful superintendence of the construction, is the only true economy. The supervision of the sewers after they are constructed should be also given to a skilled engineer, and it should include all house connections. In a system of sew- ers thus planned, constructed, and man- aged there will be no collection of danger- ous and offensive gases, and no risk of the causation and spread of disease through their agency. The greatest difficulty in the way of obtaining such a system in most of our large cities is the fact that they already have a number of under- ground channels, forming a dilapidated patchwork, which they are pleased to call a system of sewers, and which they are unwilling to abandon. The wisest course in such a case is often to begin entirely anew and carry out a proper plan. As such a plan is for the benefit of future generations, no less, and even more, than for the present one, it is eminently proper that a large part of the burden of the cost of its construction should be borne by the future population, and there are no objects of municipal ex- penditure for which it is more proper to defray the cost by borrowing money than for a pure water supply and for sewerage. As regards water supply this is now gen- erally admitted; but the public does not yet understand that sewers are equally important, that, in fact, the one necessi- tates the other ; and the sooner this lesson is learned and acted upon, the better it will be for all concerned, but especially for four classes, viz., owners of city real es- tate, merchants, the industrious poor, and young children. SUMMER COMPANIONS. ’It/TID the flowers and the brakes, 1YL In the sun, in the shower, One with insect and bird, Children born for an hour; They pitched their white tent On my wild blooming sward, Contented with summer And nature unbarred. One morning when storm- wind Swept over the land, And the fog-bell was tolling Blind ships from the strand, I sought my green pasture And sail-sheltered birds; ’There was silence for laughter, And sadness for words. Nor again with the season When soft waves return, God’s sweetness of sunshine, And lilies that burn, Do they pitch on my green-sward Their white-winged tent, Nor dance in cool sunshine When clover is bent. Then come, mighty storm-wind, Companion thou me, For in dark and in tempest My spirit is free! The summer may go, And the flowers they may die, On thy wing to my dearest Ever nearer I fly. li'dhing-room, sewing-room, ward work, outdoor exercise, etc. Library. — There are about 400 volumes in the library, which were saved from the lire ; the books are in great demand by those competent to use them. Amusements. — Consist of games, cards, checkers, etc., reading, stereop- tican, music, etc. Restraint and Coercion. — During the past year, the number of patients placed under mechanical restraint were as follows : Males — 4, for surgical reasons, respectively, eighteen hundred and seventy-two, one hundred and ninety-nine, sixty-three, and twenty-two hours ; excitement on bed, self- injury, 3, respectively, twenty -five hundred and eight, twelve hundred and State Hospital for tlie Insane, Norristown, South-Eastern District. Comprising the counties of Bucks , Chester , Delaware , Lehigh , Montgom- ery , Northampton , and Philadelphia. Official Management. — The board of trustees consists of John F. 'Hartranft, president, Philadelphia ; George W. Simons, treasurer, Phila- delphia ; Edwin G. Martin, M. D., secretary, Allentown ; Israel Fleishman, Philadelphia; Charles Hunsicker, Norristown; George F. Kern, M. D., ' SKETCH OF NEW WARD BUILDING FOR NORRISTOWN INSANE ASYLUM. Leg. Doc.] Committee on Lunacy. 21 Bath ; Addison May, West Chester; John B. Rhodes, Aston Mills ; George Ross, Doylestown ; W. D. It. Serrill, Darby; Charles H. Stinson, Norris- town ; George Biddle. Philadelphia, and Augustus Boyd, Philadelphia. Attorney, Howard A. Davis, Philadelphia. Trustees meet on the first Friday of each month ; the annual meeting is in October. There is an executive committee of three members, who meet at the hospital every Friday, the trustees being allotted to it alphabeti- cally, one retiring each month. Appropriations. — The State grant to this hospital, per act June 22, 1885: $15,000 for change of sewerage; by another of same date, $40,000 was ap- propriated to build two dining-halls, each to accommodate not less than 600 persons ; $50,000 to build two infirmaries, each to accommodate not less than 100 indigent patients; $7,500 to erect a store-house ; $5,000 for additional furniture; $15,000 to purchase additional land, straightening boundaries and exchanging; $3,500 for insurance upon buildings, equip- ments, and furniture, for five years from expiration of present insurance ; $15,000 for year 1886, for furnishing and equipping the two dining-halls, the two infirmaries, and the rooms vacated by the erection of said dining- halls, for the reception of 440 additional patients, to be paid whenever the Governor of the Commonwealth, the Board of Public Charities, and the Committe on Lunacy shall certify to the Auditor General and State Treas- urer that the said additional buildings and improvements are ready for oc- cupation. Capacity. — In the report of last year we alluded to the insufficient ac_ commodation of this hospital for the insane of the district, as follows : u The buildings are wholly inadequate to accommodate the insane residents of the district. The insufficiency of accommodation is becoming a very serious matter, which demands that immediate measures be taken to afford relief, either by the construction of additional ward buildings, or of another hospital for the district.” The estimated capacity of the buildings, com- pleted according to the original plan, was 804 ; this has been increased to 1,040, by the fitting up of two dining-rooms in the basement, one for each sex, sufficient to accommodate 200 males and an equal number of females ; also, by converting the ward dining-rooms into dormitories. Even with this increase, the hospital is inadequate to accommodate the insane of the district, as shown by the fact that, at the close of .the year, September 30, 1885, there was a resident population of 1,420. New Buildings. — In order to remedy, in part, tliis over-crowding, ar- rangements have been made to construct two infirmary buildings, each to hold 100 patients, it being proposed to place in these buildings a class of patients who are filthy in their habits, and to organize a special service for their care. Also two dining-room buildings are to be erected, in which all the inmates will be fed, excepting those in the infirmaries and violent wards. This will allow of connecting with dormitories the rooms attached to each ward, now used as dining-rooms. If all the ward dining-rooms 22 Board of Public Charities. [No. 5, could be estimated as available for additional dormitories, it would add about 240 beds to the capacity of the hospital ; but, as some of the old dining-rooms are now so used — temporary dining-rooms being fitted up in the basement of the ward buildings — the actual gain in number of beds will be less than the number above stated. It is probable that there will be economy of administration in concentrating the dining-room accommo- dations in one place, adjacent to the kitchen building, and there would seem to be no objection to having the patients walk a short distance, three times a day, to their meals. The hospital, as now arranged, has the female wards east of the supply-building, and the male wards on the west side, and there will be added one infirma^ and one dining-room on each side. The position of these buildings is shown on the general ground plan, here- with published. The dining-room buildings are situated close to, and on each side of, the kitchen buildings. Each dining-room building is 50 by 180 feet, and consists of a basement, the floor of which is level with the surface of the ground, while above the basement there is one dining-room, 156 by 48 feet ; a space of about 21 feet, at the north end of the building, being occupied by entrance lobby, stairway, dumb-waiter, and serving- room. This dining-room is open to the roof lines, and has a lantern along the middle of the roof for additional light and ventilation. A space in the basement, at the south end, is reserved for entrances, and room for handling and distributing food, storing and cleaning dishes, etc.; the remainder of the basement is utilized for store-rooms and work-shops. Covered corridors connect these buildings with the kitchen building, and with the system of corridors in the ward buildings, on their respective sides of the institution. Each dining-room is intended to accommodate 600 inmates. The infirmary buildings are located east and west of the group of present hospital buildings, and are connected by corridors with the present system of corridors. Each building is 173 by 110 feet, extreme dimensions. A basement, 8 feet high, is used for purposes of heating and ventilation, and for intro- ducing and handling food and other supplies. The main building, above the basement, is one-story high, and contains day-room, dining-room, 2 large dormitories, (with their necessary accompaniments of bath-rooms, lavatories, closets, etc.,) 6 single rooms for sick patients, 2 rooms for at- tendants, visitors’ parlor, office, etc. Immediately over the front entrance, there is a second story, which gives 2 rooms for the use of employes. The day-room and dormitories are open to the roof lines, and have lanterns on the roof, which give ridge light and ventilation. These buildings are to be used for a special class of patients, who will be fed in the building, and rarely leave it. Extensive porches have been provided. All the buildings will be heated by steam, furnished from the present boiler-house. A contract has been made with Esaias Gingrich for the con- struction of the four buildings, and their completion by November, 1886, for the sum of $91,150, which includes everything necessary to complete THE LIBRARY Of THE UHIVIEHSITY ef ILLINOIS DORMITORY. fHF IIBRSRY OF I HE OHiVlHSITV flf II.UK0IS Leg. Dec.] Committee on Lunacy. 23 the buildings, ready for use, excepting sewer pipes outside the buildings, and additional boilers, which may be needed in connection with the present boiler plant. There is also a provision in the contract for any foundation masonry and excavation (more than shown by the drawings) that may be found necessary. These buildings have been designed by Messrs. Wilson Brothers & Co., of Philadelphia, the architects who designed the Norris- town Hospital. Land. — The trustees, during the past year, leased the adjoining farm, of 149 acres, with privilege of purchasing, which they have since done, for $14,500. Receipts and Expenditures. — The receipts during the year were : From State, $100,908 57; indigent and private patients, $149,126 32; farm produce, $4,557 44; other sources, $625 12; total, $255,217 45. Expendi- tures for same period, $277,462 44 ; of which $243,903 60 were current ex- penditures. About the middle of the year, the institution declined to re- ceive any more private patients. Average Cost. — The average annual cost per patient, as per amount of current expenses, ($243,903 60,) is $198 89, or $3 82-| per week. Medical Officers. — Robert H. Chase, M. D., resident physician for male department; Alice Bennett, M. D., resident physician for female depart- ment; the assistant physicians are: Ewing Jordan, M. D., Henry C. Har- ris, M. D., for male department, and Susan J. Taber, M. D., Harriet M. Lewis, M. D., for female department. Other Officers. — Steward, John L. West ; matron* Mrs. Caroline H. Albertson. Attendants. — Number during the year, 122; employes, 24 ; proportion of attendants to average number of patients, 1 to 10.1 ; of all employes? 1 to 8.4. Admissions. — The admissions during the year ending September 30, 1885, were 301 males, 315 females; total, 616; of which number 572 were first, 38 second, 5 third, and 1 fourth admissions to this hospital. Re- admissions. — Of the 44 re-admitted, the period of absence between the discharge and re-admission was : Less than one year, 25 ; one to two years, 9 ; two to three years, 6 ; three to four years, 4. Population. — The whole number under treatment was 1,730, viz: 877 males, 853 females. The highest number at any one time, 1 ,420 ; lowest, 1,070. Average Number. — The daily average number was 622.6 males, 603.7 females; total, 1,226.3. Per cent, of average number restored, 7.99; died, 10.19 per cent. Discharges. — Number discharged was 166 males, 144 females; total, 310; of this number 98 were restored, 69 improved, 18 stationary, and 125 died. Employment. — About 375 of the female patients are employed in some way, say : 225 in the wards at house-work, sewing, etc., etc. ; (many of these do not work continuously ;) about 150 go out of the wards, more or less 24 Board of Public Charities. [No. 5, regularly, as follows : laundry, 26 ; kitchen, 8 ; sewing and mending rooms, 16; work-shops, 50; schools, 50. Basket-making and chair-caning have been added to the occupations for females with satisfactor} 7 results. The brush-shop has been removed to a larger and pleasanter room. Of the male patients, there has been no change in the general policy of employment ; the same occupations as noted in last year’s report are in healthy operation. Library. — In the male department there are about 1 ,000 volumes in the patients’ library. A large amount of reading matter, in the form of news- papers and periodicals, is constantly coming in ; there is a room called the “ News Depot,” where this material is received, assorted, arranged by two patients, who take much interest in their work, from which head-quarters it is regularly distributed throughout the Wards. There are quite num- ber of constant readers among the patients ; it may be truthfully said that about one fifth of them are inclined to use the library. In the female department there are 360 bound volumes of a miscellaneous character; also, 100 unbound volumes of periodicals of a good class. Dur- ing the year, the library has been placed in new cases in one of the conva- lescent wards, and under the charge of a librarian. The library has, in the past year, been much more used than formerly, as it has been made ac- cessible to the inmates. A large majority of the patients are not of the educated, reading-class ; for them, pictorial papers given through the wards are found to be very attractive. Amusements. — In the male department the usual amusements and means of recreation mentioned in the last report are in operation and main- tain their popularity among the patients. The summer picnics are becom- ing a marked feature in the life of this hospital. The brass band, during the past year, has added to the enjoyment of these occasions. In the female department a school has been organized with Kindergarten department, under the charge of skilled attendants ; the organization is as yet imperfect, but the results have been satisfactory. The money for fur- nishing, etc., etc., was donated for the purpose. Three pianos, and many pictures and games, have been added. The usual entertainments were given in the winter, picnics and out-door games in summer season. Restraint and Coercion. — In the male department, during the greater portion of the year, no mechanical restraint was used ; but since the hos- pital has become greatly crowded, it has been thought prudent to resort to restraint to a limited extent; hence, for the last few months, there has generally been 1 or 2 confined with leather wristlets during the day. Under former circumstances, Dr. Chase says, there is no difficulty in carrying out the principles of non-restraint ; but, in an over-crowded hospital, it cannot be safely done among male patients; and, in his opinion, it is in accord- ance with wisdom and humanity to adopt such measures as will protect life, rather than yield to the seductions of a popular hobby. In the female department, Dr. Bennett reports that no mechanical restraint was em- ployed during the year. On September 30, 1885, there were 3 males me- Committee on Lunacy. 25 Leg. Doc.] chanically restrained on account of violence. No females under mechan- ical restraint. At same date, 10 males and 1 female were in seclusion on account of excitement. Divine Worship. — There were 269 patients, viz : 158 males, 111 females, who attended divine worship at the last service held in September. Condition of Patients. — On September 30, 1885, there were in the hos- pital 711 males, 709 females; total, 1,420; of which number 42 were col- ored, 554 foreigners, 48 private patients ; 1 14 were epileptics, 42 paralytics, 19 homicidal, 26 suicidal; 42 were absent on parole at home, 221 were reg- ularly taking medicine, 284 on extra or sick diet, 31 sick in bed, 25 fed with spoon, and 101 were unclean in person and habits. Remarks. — The erection of work-shops is imperatively demanded, and would be of great value in the moral treatment of the patients, by taking them out of the wards and thus breaking into the monotony of their hos- pital lives. Insane Pair. — A novelty in hospital management was a fair, held in February, 24 to 27 inst., which was a great service in occupying the female patients for several months previously, as well as interesting many people outside of the hospital in the patients’ work. A little less than $1,000 was netted, and of this, there has been expended as follows : u Henry F. Mil- ler ” piano, $225 ; two ‘‘ Ivers & Pond ” pianos, $500 ; pictures for wards, $85 ; sundries for school, etc., etc., $50 ; leaving a balance in hand of about $149 for similar expenditures. Temporary Buildings. — As has already been stated, this institntion is greatty over-crowded. The new inlirmary buildings will not be completed before if in November, 1886, and before that time the excess of crowding will far exceed the capacity of the new structure, and as the only perma- nent relief to be obtained can be provided by the next Legislature by authorizing the erection of a hospital for Philadelphia county, which will involve a further delay of one to two years, we recommend to the trus- tees the erection of temporary wooden buildings, with such ample escape in case of fire that no danger can arise, for the care of the mild cases who can readily be provided for in them. We are informed, upon reliable authority, that a plain wooden building, 30 feet wide, 150 feet long, 1 story high, can be erected, having a capacity to accommodate 100 patients, for $1,500, including heating apparatus, bath-room and two tubs, water closets, wash-stand, &c. Also that a similar building, 30 feet wide, 75 feet long, to accommodate 50 patients, furnished with same conveniences as the other, can be constructed for $1,000. Several of these buildings could quickly be erected in different parts of the ground. This seems to us to be the only plan to relieve the present and increasing over-crowding, which will soon endanger the health of the inmates. It is only the constant vigilance and services of the able and efficient resident physicians that the mortality of the institution has not increased to a much higher rate. Sewerage and Drainage. — There has been completed in the past year a 26 Board of Public Charities. [Xo.5, system of sewerage and drainage for this hospital, planned by Col. George E. Waring, Jr., the eminent sanitary engineer. The work was done under his personal supervision, and we are enabled, through the courtesy of Col. Waring, to present a plan of the work ; also through the kindness of Gen. John F. Hartranft, the full and able report made to the trustees on the com- pletion of the work, which will amply repay a perusal. It is as follows : Report of Col. George E. Waring, Jr., on Sewerage and Drainage. Newport, R. I., October 8 , 1885. The Board of Trustees State Hospital for the Insane , South-Eastern Dis- trict of Pennsylvania : Gentlemen : As the work that was entrusted to my direction is now substantially completed, I beg to submit the following report: My first appearance before the Board was at its meeting in January, 1885. The preliminary engineering work occupied most of the time until the middle of March, when work in the field was begun. The greatest num- ber of outside laborers employed at any one time was on the 12th of May, when there were 148. As the work neared completion, these men were dis- charged gradually, until on the 27th of June all were discharged save some half dozen men, needed for final finishing up. Throughout the whole sea- son, a large number of patients have been employed, and they have ren- dered much better service than was expected. Indeed, during the last two months they have done nearly all of the actual work of grading, ditching, etc., that we have to do. The work was so far completed that sewerage was admitted to the flush- tank on the 12th of June. The first discharge of the tank, however, devel- oped a weakness in some of the joints of the pipe leading from the brook to the distributing well, and it was deemed best to take up and relay this whole line, securing the joints by laying the pipes in concrete. The appa- ratus was brought into regular operation on the 24th of June. During the first month or two after the distribution of sewage was be- gun, each discharge led to a considerable settling of the earth filling over the under-drains, a large amount of sewage flowing directly down and discoloring the outflow of the under-drainage system. This difficulty was gradually modified, but not until the very heavy storm of August 3 was the ground so completed that serious settlement did not follow each copious discharge of sewage. Since that time, although no considerable apparent settlement has occurred, there is still continued a tendency to open a pas- sage-way for sewage at different points along the lines of the under-drains. Whenever these are discovered they are carefully rammed, and. little by little, the ground is being brought into such condition as to prevent direct flow of sewage from the surface to the drains. Over a portion of the irrigation field a good growth of oats was secured, but over the remainder the work of grading was not finished in time for anything to be grown. The oats have been plowed in, the ground has been put into good condition, and the whole, except the level tract in the center of the field, is now sowed with rye and grass seed, — four different tracts of about one and a half acres each having been sown respectively with orchard grass, Blue grass, Italian rye grass, and Perennial rye grass. These are considered the best grasses to be grown with sewage irrigation, and the comparative trial between them will soon show which is best suited to the conditions here existing. The rest of the field outside of the level tract fHF LIBRARY Of THE CNIVCRSITY bf II UHW PLAN showing SEWERAGE AND DRAINAGE AT STATE HOSPITAL for the INSANE NORRISTOWN, PA. Scale ^ed indicates REFERENCE sewerage Single lines indicate pipes drainage Double and old open ditches sewerage PRO* FRO UPPER SI Horizon Vertical TMF LIBRARY OF THE University OF II I IROIS Leg. Doc.] Committee on Lunacy. 27 has been sown with timothy, — this to be followed with whichever one of the other kinds of grass experience may show to be best suited. The level tract will not be sown this season. It will be flooded to any extent that ma} T be necessary to avoid an undue flooding of the sown por- tions of the land, giving the best possible opportunity to the different grasses to establish themselves uniformly. As another means of relief, the extreme north-western end of the island has been roughly leveled and prepared to receive, from time to time, copious doses of sewage. Still another means of relief, for use while the grass is becoming estab- lished, has been provided in the truck patch, east and south of the flush tank. The arrangement here made will not only serve the temporary pur- pose of getting rid of a large amount of sewage, which it is desirable to keep off from the island for a time, but will be permanently useful in afford- ing good doses of sewage whenever needed for the irrigation of the vege- tables growing there, abundant means for the tertilation and for watering being always at the gardener’s hand. There is submitted, in connection with this report, a plan of the work, which will be sufficiently understood from the references that it bears. The general scheme may be thus stated : The institution numbers about 1,500 inmates. The total daily consump- tion of 150 gallons per head. Original^ 7 , the foul sewers and rainwater sewers of the whole establishment were connected with an outlet into the' brook south of the main entrance to the ground. The discharge at this point of kitchen grease and water-closets matters was so obviously offen- sive that the need for withholding what was supposed to be the worst ele- ment of the outflow was soon manifest. Then a separate set of drains was laid, connecting with the water-closets only, leaving urinals, baths, laundries, kitchen, and dining-room sinks still to flow with the rainwater. The water-closet matters were delivered into the large cess-pools under the buildings used for band practice, etc. These overflowed, as to the liquid portions only, into the drains leading to the brook above mentioned. This system failed to afford the relief that was hoped for, and naturally so. All that it really did was to withhold solid foecal matter and paper and to get rid of much apparent foulness. The real condition was worse rather than better, for fresh foecal matter delivered into a stream is much less objectionable than the putrid overflow of receptacles in which it lies rotting. Furthermore, foecal matter is neither the most considerable nor the most offensive of the drainage of this institution, or of any other ag- gregation of human buildings. There is more solid matter in the urine evacuated by a man than in his foecal discharges. While the latter gives off the more offensive odors in their fresh condition, the former is the more offensive after putrefaction. Then, again, it is probably true that the quantity of solid matter delivered during twenty-four hours through the sinks of the establishment is greater that that delivered through the water- closets. It is capable of becoming quite as offensive under putrefaction. Be the cause what it may, it is evident that the condition of the dis- charges into the brook was not ameliorated and that the condition of Stony creek was not improved. The purpose of the work that has now been done has been to withdraw from the drain delivering into this brook all organic matter of every kind, leaving nothing whatever to flow in that direction except the rainwater which falls on the roofs and on the ground. This purpose has been sub- stantially effected. 28 Board of Public Charities. [No. 5, Referring to the plan of the work it will be seen by following out the red lines, indicating sewage, and indicating in nearly ail cases work constructed under my direction, that branch sewers connected with the outlets of the eight different pavilions and with the laundry, kitchen, administration buildings, etc., deliver into a main sewer, which begins in the rear of num- ber five, and (to avoid making a new well cutting) follows the course of the original sewer, which passes between number two and number three, be- tween the kitchen and the chapel, and between number five and number six. It flows in the opposite direction, the original (shown by the blue line) flowing to the west, and the new sewer (shown by the red line) flow- ing to the east. After passing under the corridor connecting number two with number three, it turns in a southerly direction, passing under the corridor leading to the new building, then to the east, southerly of the new building, to the flush-tank. This flush-tank is 40 feet square. It is surrounded with brick walls 16 inches thick for one half of their height, and 12 inches thick above that, rnd rounded at the top. Its bottom is covered with six inches of con- crete. It is built of hard brick laid and faced with Portland cement. The same cement is used in the concrete bottom. Its discharging depth, that is, the distance between the bottom and top of the discharging siphon is 5 feet. Its contents within these limits equal about 60,000 gallons. Or- dinarily, about 15,000 gallons more flow into the tank during its discharge, so that at each discharge it delivers about 75,000 gallons. A vertical iron strainer incloses the corner of the tank at which the sewer delivers, retaining there, for removal by hand, the paper and other large objects entering from the institution. The tank is discharged by a vertical Rogers Field’s siphon, which is brought into action automatically when the overflow begins, and which is unsealed at the close of the discharge, so that no more sewage can escape until the tank is again filled to the overflow point. In addition to this siphon, and as a provision against accident, an iron overflow pipe passes through the side wall of the tank at a level a little above the top of the siphon. The main outlet from the flush- tank is through an 8-inch pipe, mainl}* of vitrified earthware, but of iron from where it passes under Stony creek. This pipe discharges on the far side of the irrigation field, at the bottom of a distributing well, which is about 7 feet deep and 6 feet in diameter, with 12-inch walls. This, like the flush-tank, is built of hard brick laid and placed with Portland cement. It has at its top three semi-circular depres- sions of the wall for the discharge of the sewage, one opening to the north, one to the south, and one to the west. From these three openings, start the carrier ditches, by which the sewage is led to the different parts of the irrigation field. That to the north ex- tends to the north end of the field, and that to the south to the south end. They are laid at about the grade at which the main discharge will barely escape overflowing until set back by the aid of the ditch, or a movable dam inserted to obstruct it. By changing the position of these dams it becomes easy to deliver sewage over such parts of the field as it may be desired to reach. The carrier leading from the westerly opening of the well delivers sew- age into a nearly level carrier, which discharges at both ends into a series of absorption ditches surrounding and crossing a level tract. Sewage can be delivered to one half or the other of this tract by a suitable arrangement of gates. The parallel ditches of this tract are separated by beds, which may be Leg. Doc.] Committee on Lunacy. 29 used for the cultivation of vegetables, or for the growth of willows or of grass. This level tract is intended partly as a relief area, having ample capacity to receive several consecutive discharges of the flush-tank when it may be desirable, for harvesting or for other reasons, to allow the grass-covered portion of the field to become dry. This tract should not be used so con- tinuously that the ditches will become foul. Present experience indicates that a whole discharge of the tank may safely be delivered into about one quarter of the grassed area, and that each may receive three or four discharges of the tank consecutively. The total production of sewage being between 200,000 and 300,000 gallons per day, each of these four tracts may be used throughout the day, and may be allowed three days for recuperation. If necessary, as stated above, fur- ther relief may be given by the use of the level tract. The supplementary field north of the main area is capable of receiving a tankfull of sewage from time to time, and in addition to this, there is a branch outlet from the discharge pipe near the flush-tank, by which a tank full of sewage may, whenever desired, be delivered on to the truck patch on boih sides of the railroad south of the discharge pipe. Another carrier leads from a small opening in the upper part of the flush- tank, through which a continuous flow may be delivered on to a higher land whenever desired. It was understood when the work was decided on, and when the ground was frozen, that the irrigation field consisted of gravel and sand that had been deposited by floods of Stony creek. It was found on examination, after the frost had left the ground, that the whole area is a hard, original formation, largely underlaid with rock within a few feet of the surface. This made it necessary, in order that the purified sewage might be removed with sufficient freedom, to under-drain the whole tract at a depth of from 5 to 8 feet with agricultural drain tiles. These under-drains are indicated on the plan by the herring-bone series of blue lines. The main drain, indicated by a heavier line, follows appar- ently an earlier course of Stony creek, through a natural depression of the area. The branch drains are so laid as to follow in a general way the steepest slope of the land. The outlet of the under-drains is all at one point, into Stony Creek at the southerly line of the field. The irrigation area is bordered on the east by a rnili-race, with imperfect banks and with a tendency to overflow and to break through during fresh- ets. As a protection to the field, a tlitch was dug inside of this race, fin- ished at the bottom with a wooden water-way and banked with roaded slopes. This ditch follows the course of the mill-race from the northerly to the southerly end of the property, and at its lower end is connected by a 10-inch pipe with a similar ditch leading its flow to Stony creek near the outlet of the under-drains. The irrigation field was very irregular in its surface ; was filled with stones ; largely under-laid with hardpan ; very swampy in parts, and largely occupied with trees, bushes, tussocks, Pollard willows, etc. It has, at considerable cost of labor, been brought to a uni- form grade suited to its uses, and all but a few of its larger trees have been removed. It is hoped that the supply of moisture at the surface will be sufficient to prevent the roots of these trees from obstructing the under- drains below ; it is, however, possible that the} 7, will have to be removed. The general arrangement of the system will be better understood by reference to the profile of the sewer from the flush-tank to the upper side of the irrigation field, the actual levels being distorted for a better under- 30 Board of Public Charities. [No. 5, standing of their relations. They are shown as being ten times as steep as they are. It will be seen that the main sewer enters the tank a little above its bot- tom. and that the discharge (the bottom of the siphon) is at the level of the bottom of the tank. The pipe descends rapidly to the bottom of Stony creek, whence it rises to the bottom of the well. When the well is full, the dead-water line is about 14 feet above the lowest point of the pipe, which acts as an inverted siphon. The position of the under drains under the irri- gation field is shown by the blue circles under the discharge pipe. It is proper to say that there is nothing novel in the principles of the system here adopted. The arrangement for securing an intermittent dis- charge is somewhat different in detail from what has hitherto been done, but all parts of the system have the support of ample successful experience. The theory of the operation is this : When foul water, such as sewage, is delivered on to land not already occupied by water, it descends by gravity. Its impurities are strained out and attached to the particles of the soil just as they would be attached to the particles of any other filter. Within a certain distance of the surface they are all removed, and the water descending below that point is pure. In land like that under consideration, this water descends to the level of the under-drains, and there raises the general level of the subsoil water, which rises through the joints into the under part of the drains and is carried away. It is safe to say that after the filling over the tile drains shall have become thoroughly compacted, forming with the original soil one homoge- nous mass, no water will reach the under-drains which has not been puri- fied by its gradual descent through the close mass of earth. The outflow will then be substantially pure, save for such soluble nitrates and other min- eral substances as it may dissolve from the soil or from the completely con- verted filth that has been deposited on its inner surfaces. Were the flow of sewage to be continuous on any one area, the filter would become clogged with impurities, and would fail to transmit the sew- age, establishing an unwholesome and offensive condition. This difficulty is obviated by delivering it intermittently. After the discharge, the water settles away ; air enters to take the place that it has occupied. The oxygen of this air is an important element in the destruction of the deposited filth. It was long supposed that this destruction was a simple process of oxida- tion similar to that which takes place in more rapid combustion. It is now known that an active agent in the combustion of oxygen with the organic matter deposited is a living organism ( bacterium termo — the bacterium of putrefaction). It is essential to the life and activity of this organism that it should have organic matter on which to feed, and oxygen with which to convert its food. These conditions are supplied in the most complete manner by the pro- cesses here adopted, and it makes substantially no difference whether the sewage is spread over the surface of the ground, as on the main grass area, or is delivered by lateral absorption from filled ditches, as on the level area. When a tankfull of sewage is discharged, it flows over and saturates a certain area of ground. The water that it contains, leaving its impurities by the way, descends to the under-drains and is carried to the outlet. As it descends air follows, and the active nourishment of bacteria takes place and continues until their pabulum is all consumed. Before the soil be- comes so clogged with waste matters that the air cannot penetrate with sufficient freedom, that particular tract must be withdrawn from use and allowed sufficient time for the consumption of all its impurities. After such Leg. Doc.] Committee on Lunacy. 31 time we may return to it again and again without its purifying power being lessened. Indeed, its purifying power will be increased. The more water we pass through any soil, the more freely it drains ; and the more food for bacteria we deliver into it, the more bacteria will be developed. Little by little, no doubt, the range of action of these organisms will be extended, and soil below that which is now suited for their growth will in time become also fit for them. It only remains to speak of the probable effect of frost on the working of this system. On this subject it can only be said that, even in colder cli- mates than this, practice has shown that nothing is to be apprehended on this score, the sewage being sufficiently warm as discharged from the drains to work its way into the ground. A somewhat similar system of irrigation has been in use for a number of years at the insane asylum at Worcester, Massachusetts, under a most rig- orous climate, and no serious difficulty is there encountered. The following statistics of the work done and the material used may be of interest : Of vitrified pipe, 150 feet of ten-inch, 1 ,200 feet of eight-inch, 3,250 feet six- inch ; 1,050 feet four inch; 380 feet six-inch iron soil pipes in ducts, 12 feet six-inch pressure pipe at the outlet of the tile drain ; 40 feet eight- inch pressure pipe at brook crossing; of draining tile, 520 feet six-inch, 340 feet five-inch, 390 feet four-inch, 19,355 feet three-inch. The drain tiles Were laid in rock bottom from a few inches to two feet deep, as follows : 400 feet six-inch, 240 feet five-inch, 390 feet four-inch, 10,250 feet of three- inch; and in hard-pan and clay, as follows: i20 feet six-inch, 100 feet five- inch, 9,095 feet three-inch. The open work is as follows: 1,360 feet of large drain ditches sodded, 1.900 feet of carrier ditches on the island, 6,540 feet of absorption ditches on the island not sodded. The accessory work consists of one large flush-tank described above ; five manholes, with iron covers, and one brick distributing well. In addition to the above, are the necessary siphons, branch pieces, stop- gates, and other accessories. The brook carrying the wastes of the slaughter-house was very much fouled by them. This difficulty has been remedied by the construction of a small hush-tank and sewage-carrier operating on the principle above de- scribed. It was at first intended to re-arrange and rfe-organize the plumbing work in the houses, largely with a view to an economy in the use of water, and especially to an economy in the use of the steam which is now employed to maintain a forced ventilation downward through the water-closets. An experiment in No. 5 demonstrated that, especially during the morn- ing hours when the closets were constantly in use, it was impossible, by any reasonably economical method, to avoid offensive odors by any other sys- tem so effectually as by that now in use. Doubtless the condition and arrangement of the plumbing works can be improved, but probably only at the cost of a considerable original outlay. Minor details of this work certainly demand attention ; but, in the ab- sence of a sufficient appropriation, I have been instructed 'to discontinue work in this direction. Respectfully submitted. George E. Waring, Jr. 32 Board of Public Charities. [No. 5, State Hospital for Insane, Warren, North-Western District. \!omprising\the counties of Cameron , Clarion , Crawford, Elk , Erie , forest, McKean , Mercer , Venango , and Warred Official M^agement^— The trustees are: George W. Starr, Vesident, Erie; G. N. Parolee, secretary and treasurer, Warren ; James D. TfWjock, Franklin ; W. H. 'Osterhout, Ridgwa 3 r ; R. B. Stone, Bradford ; Thomas J. Smiley, Titusville ; John 0. Sherred, Cambridge ; George W. Wright, Mer- cer ; L. D. Wetmore, Warren. The} T meet on the third Thursdays of De- cember, March, June, and September. Annual meeting on the third Thurs- day of December. Appropriation. — The State grant to this hospital, per act of June 22, 1885, was : for furniture for two years, $5,000 ; fencing and general improvement of grounds, $5,000 ; completion of barn, erection of slaughter-house, pig- pens, and ice-house, $10,000 ; for deficiency caused by inadequate appropri- ations for support of the Jiospital, $20,U00. Receipts and Expenditures. — The receipts during the year were : from State, $69, 144 34; indigent patients, $62,370 40; private patients,! 10,088 98; other sources, $276 04 — total, $141,879 76. Expenditures for same period, $136,137 62, of which the sum of $110,756 06 was for current expenditures, which include $20,000 of appropriations by the State to meet a deficency. Average Cost. — The average annual cost per patient, as per amount expended for current expenses ($110,756 06) is $190\69,or $3 84 per week ; excluding the appropriation of $20,000 for a deficiency it would be $3 14 per week. Medical Officers. — John Curwen, M. D., superintendent; M. S. Guth, M. D., A. B. Goulter, M. D., assistant physicians. Other Officers. — Steward, John H. Palmer; supervisor, R. Beatty. Attendants. — Number of attendants during the year, 63 ; employes, 37 ; proportion of attendants to average number of patients, 1 to 8.8 ; of all employes, 1 to 5.6. Admissions. — The admissions during the year ending September 30, 1885, were 165 males, 97 females ; total, 262 ; of which number 241 were first, 19 second, 2 third admissions to the hospital. Re- admissions. — Of the 21 re-admitted, the period of absence between the discharges and re-admission were : Less than one year, 11 ; one to two years, 3 ; two to three years, 5 ; three to four years, 2. Population. — The whole number under treatment was 745 ;/ viz: 389 males, 356 females. The highest number at any one time was 622 ; lowest. 481. Average Number. — The daily average number was 273.4 males, 281.8 females ; totah 555.2. Per cent, of average number restored, 4.50 : died, 9.37 per cent. Discharges. — The discharges were 79 males, 57 females; total, 136; of this number 25 we^e restored , 42 improved, 17 stationary, and 52 died. Extracted from the TRANSACTIONS OF THE COLLEGE OF PHYSICIANS OF PHILADELPHIA. THIRD SERIES, VOLUME VIII. THE DISPOSAL OF SEWAGE, AND THE PROTECTION OF STREAMS USED AS SOURCES OF WATER SUPPLY. By GEORGE E. WARING, JR., NEWPORT, R. I. [Read by invitation, January 6, 1886.] One of the most important questions now claiming attention, in connection with the sanitary condition of houses and towns, relates to the manner of getting rid of the foul constituents of the liquid effluent in such a way as to prevent annoyance from odors, danger from the development of infection, and the contamination of water-courses and harbors. The difficulties presented have always existed, and the ill effects of ordinary methods have always been known. It is only since attention has been called to the relation of the foul effluent of house and town drainage to the spread of diseases that the difficulty has been generally recog- nized, and only since the modern growth of the larger towns that its dangers have been fully apprehended. In a few fortunate cases, such as those of towns dis- charging their effluent into great rivers like the Missis- sippi, the remedy is provided by the volume of the stream to which the sewage is added. In London, the Thames has become so foul that the Royal Commission 232 WARING, which recently investigated the matter, pronounced the system of outflow there established to be “a disgrace to the metropolis and to civilization.’ 5 In Paris, the dis- charge of the great collecting sewers into the Seine has produced a condition that is no longer tolerable. Were the houses and streets of Philadelphia drained in accord- ance with modern ideas of decency and efficiency, the condition of the Delaware would perhaps become little better than that of the Schuylkill. The great addition to the tidal volume of the harbor of New York, due to the inpouring through the East Piver of the higher tide of Long Island Sound, mitigates, but does not remedy the foul condition due to the discharge of the city’s wastes along its whole border. In short, all consider- able communities in this country and in Europe are confronted to-day by a problem which it is absolutely necessary to solve. In one way or another, the waste organic matter of our domestic life and of our industries must be withheld from the waters into which our sewers discharge. I propose to notice, only in passing, what may be called the more artificial means for accomplishing this result ; that is, the chemical and mechanical methods of precipitation, decantation, and distillation. There are instances in Great Britain and on the Continent of Europe, where the difficulty of securing a sufficient area of land for what we may regard as the more natural treatment is so great, that there is no choice but to resort to these more costly and less efficient processes. It is possible, by an addition of the salts of iron and other salts, of milk of lime, of comminuted clay, etc., to cause the deposition of nearly or quite all of the sus- pended impurities of sewage. The deposit or sludge DISPOSAL OF SEWAGE. 233 thus formed is sometimes treated by filtration, drying, filter-pressing, etc., in such a .manner as to become available as manure for use on lands not too far removed. In connection with the Liernur system of pneumatic removal in Holland, an ingenious plan has been devised by which the solid parts of the slightly diluted effluent are recovered by evaporation in vacuo. In Germany, other more elaborate processes, including the distillation of the purified effluent, have been measurably successful in the production of the salts of ammonia for commercial use, and of a residuum of some manurial value. It seems hardly worth while, in the short space here at my disposal, to do more than to refer to these pro- cesses, which, however important under favoring cir- cumstances, are not suited to conditions prevailing almost universally in this country. There is probably no town in the United States where any treatment of sewage is desirable, where it will not be cheaper and more simple to overcome the difficulty by the aid of surface or subsurface irrigation or by more concentrated filtration — filtration, in greater or less degree, being an essential element of all irrigation. This application to the soil is not only cheaper and more simple, but is also more effective. N o chemical or mechanical treatment has thus far been devised which produces an effluent so entirely free from organic impurity and from the lower forms of life as that which is produced by properly regulated agricultural disposal. We have been, until recently, quite in the dark as to the processes by which organic wastes are destroyed after application to the ground. We seem now to have some positive knowledge on the subject — knowledge due largely to the investigations of Dr. Frankland in 234 WARING, England, and of Schloesing and Muntz in Paris — these investigations being an application of knowledge derived from the biological investigations of late years. It may now be accepted as a demonstrated fact, that the various processes of oxidation and nitrification by which organic impurities in the soil are reduced to their mineral elements or to elementary salts, are due to, or are largely aided by, the reproduction and growth of bacterial life. This was especially well demonstrated in the Paris experiments, by the fact that, while sewage filtered through a suitable soil confined in a cylinder two metres high, the liquid being applied with inter- vening periods for aeration, was deprived of its impuri- ties and allowed to pass out at the bottom of the column as pure water, the process being accompanied by a great increase of bacterial growth; the impregnation of the soil with the fumes of chloroform was sufficient, by arresting bacterial activity, to allow the sewage to be discharged as impure as it was received. Ample con- firmation of the obvious conclusion was found in the fact that after the chloroform had entirely escaped from the pores of the soil the purifying effect was fully restored. Roughly speaking, or rather practically speaking, the process is this : When sewage is applied to the soil its impurities are filtered out and are attached to, or in- volved with the particles of the soil. The water thus purified descends to the lower strata — to the under- drains or other means of outlet. As the water descends, fresh volumes of air enter and furnish oxygen, which it is the office and the means of life of the bacterium termo to combine with the retained impurities. The resultant product is fully decomposed matter available for the use DISPOSAL OF SEWAGE. 235 of plants or for innocuous removal in solution. There is much in the way of detail concerning the processes involved yet to be discovered, and investigation is active in this direction. Enough is now known to constitute the basis of a rational theory applicable to the practical processes we are considering. These processes have long been employed with more or less completeness and with corresponding perfect or imperfect results. It would be a fair summing up of the whole case to say that we now know, by well-established theory and by ample practice extending over more than twenty years, that we have in the soil a universally available agent for the safe, inoffensive, and complete destruction of everything in the way of organic waste that we may deliver to it in a proper manner. As we look over the field of practice, beginning with the Craigentinney Meadows at Edinburgh, which have been irrigated with sewage for more than a century, and ending with the most complete modern examples, we find the greatest conceivable variety of conditions and a great variety of results. There are more than one hun- dred sewage farms in England to which are applied the effluent of as many towns, large and small. Some of them have been carefully arranged and are fed by sewers which deliver the sewage to them in a very early stage of decomposition, and where the great bulk of the storm water is diverted to other outlets. On these the best results are obtained. In other cases the attempt is made to purify the whole outflow, storm water and all, with the natural result that floods of storm water deluge the land at those times when it is already drenched by the heavy downfall and is incapable of 236 WARING, absorbing more water. Here the result is far from satisfactory. In Germany, sewage irrigation farms connected with the city of Berlin, with Dantzic, and with Breslau, arranged in accordance with modern ideas on the sub- ject, are all instances of notable success. At Gennevilliers, where about one-fifth of the whole outflow of the sewers of Paris, about one-half of the dry- weather midsummer flow, is distributed over a very large area of thirsty and hitherto almost valueless sand and gravel, the result is excellent. In our own country, we have as yet no instance, save the recent one of Pullman, Illinois, of a general system of sewage irrigation. The result there, according to all reports, is as good as it has been elsewhere. I have recently had an opportunity of carrying out a rather complete system of sewage disposal in your near vicinity, in connection with the State Asylum for the Insane at Norristown. As I have endeavored there to work according to the best indications of modern experience, and as my efforts have been freely sustained by the Trustees of the Asylum, I know of no way in which I can better set forth what seems to me the best method for disposing of sewage than by describing, somewhat in detail, the work that has there been done and the result thus far achieved. The Asylum is situated on high land in the north- eastern suburbs of the city, on the water-shed of Stony Creek. The buildings include eight large pavilions, with the necessary administration buildings, kitchens, laundries, etc. The population of the institution is now not far from 1600. The consumption of water is not far from 150 gallons per head, daily, and all manner of DISPOSAL OF SEWAGE. 237 organic waste, except the garbage, which is fed to swine, must necessarily be disposed of through the sys- tem of house drains and sewers with which the institu- tion is amply supplied. As at first constructed, the system of drainage, delivering not only foul wastes but roof and surface water as well, discharged its contents through a large main sewer running in a southerly direction, entering a brook which delivers, in a short distance and with a steep incline, into Stony Creek near the hospital station of tlie railroad. Although the ample facilities for the drainage of such an institution afforded by Stony Creek had been a chief inducement offered by the city of Norristown for the location there of the Asylum, the buildings had not long been occupied before complaints were made of the gross fouling of the creek due to the hospital drainage. Following the erroneous idea which is so prevalent, that the chief source of defilement in sewage is fecal matter, two immense settling tanks were established in the grounds for the retention of these solids only, the effluent enriched by the products of their putrefaction, overflowing into the sewer and running into the creek. As urine and kitchen wastes are quite as bad in their ultimate condition as is fecal matter, and much more serious in amount, this process did not long satisfy the complainants and an injunction was threatened to pre- vent the discharge of any sewage from the hospital into the stream. In consequence of this threat, the authori- ties engaged me to devise and carry out some other system of relief. What has been done is as follows : The old system of drains and sewers has been left as it was, to carry off roof-water and surface-water from 238 WAKING, the courts, walks, etc., these finding their way into Stony Creek through the old channel. A separate system of sewers, six inches in diameter, has been con- structed in connection with all of the foul wastepipes of the building, so that they carry all kitchen and laundry waste, bath and toilet waste, closet discharges, and dining-room and pantry sink waste, everything, in short, which contains foul refuse. For lack of sufficient appropriation some changes that it was thought desir- able to make in the interior plumbing of the buildings were not made. It was attempted to substitute water- closets with traps for the untrapped closets already in use. These latter have their outlets connected with ventilation pipes in which a strong current of air is maintained by the use of steam — a very expensive pro- cess. They are also flushed by automatic cisterns in such a way as to consume a very large volume of water. The trapped closets with independent flushing cisterns, to be worked by the use of the seat, would have effected considerable economy; but it was found that the odor produced during their use, especially in the morning when used in rapid succession, could not be kept out of the wards without the introduction of a new system of apartment ventilation. This experiment was therefore abandoned as too costly in construction, and the old method of forced downward ventilation continues, in spite of the cost of its maintenance. The dining-room sinks were subject to the usual difficulty from the accumulation of grease. Such sinks as are to be retained were supplied with a flushing out- let, which is accomplishing a most satisfactory result. The same system was applied on a very large scale to the kitchen sink, which is so arranged that its outlet is DISPOSAL OF SEWAGE. 239 ordinarily kept plugged. When discharged, from 50 to 100 gallons are delivered at a time through a 4-inch pipe ; this sweeps all grease and other refuse rapidly for- ward and constitutes an effective flush for the kitchen drain, which formerly gave trouble even with a large grease trap and with the occasional introduction of a jet of steam. The system of sewers described is brought together to a single main outlet 6 inches in diameter, constructed like the branch sewers of vitrified earthenware pipe. This main sewer delivers into one corner of an open tank 40 feet scpiare and about 6 feet deep, built of brick laid in and coated with Portland cement, and having a Portland cement concrete floor. It is probably abso- lutely tight. Immediately in front of the inlet (the mouth of the main sewer) there is a vertical iron screen, with one-half inch openings, for holding back paper, rags, a small part of the fecal matter, and the miscel- laneous rubbish delivered from the buildings. In the corner of the tank, diagonally opposite the inlet, there is a vertical Rogers’ Field annular siphon, the overflow of its discharging limb, 8 inches in diameter, being 5 feet above the floor of the tank. About a foot below the overflow level, and through the south wall of the tank there is a 4-inch opening which is ordinarily kept plugged. At the bottom of the tank and connected with the main discharging chamber outside, there is a pipe through the wall closed by a screw-gate. This flushtank, the largest I believe that has ever been constructed, has a capacity between its floor and its overflow point of 60,000 gallons. It occupies about two hours in discharging, and during this time about 15,000 gallons more flow in from the main sewer, so 240 WARING, that the total amount discharged at each operation averages about 75,000 gallons. The discharging siphon is so arranged that when sewage begins to overflow at the top of its discharging limb its outlet becomes sealed, its contained air is soon withdrawn, and it discharges, full bore, until the tank becomes empty, when air is taken, first at the inner end and then at the outlet end; the siphon “ breaks” and nothing more can be discharged until the overflow begins again. The discharging chamber delivers into an 8-inch pipe which leads to the irrigation field. In the course of the main drain, above the tank, there is a gate by which the flow can be diverted from the tank and sent through a by-pass directly to the 8-inch pipe. Below the tank there is another gate by which its discharge may be diverted to a truck-patch near by whenever sewage is required for irrigation there. Higher up in the truck-patch there is a sewage carrier which is connected with the 4-inch hole near the top of the tank. By a proper adjustment of these different arrange- ments sewage can be sent from the buildings directly to the irrigation field without going through the flush- tank, or can in like manner be diverted to the lower carrier of the truck-patch. By opening the gate at the bottom of the tank sewage is allowed to flow out as it flows in, and can be sent in uniform moderate quantity to the irrigation field or to the truck-patch. By remov- ing the plug near the top of the flushtank, the upper carrier of the truck-patch can be made to receive sewage for four or five hours, but as the entering stream is too large to be completely removed at this point, it in time reaches the overflow and starts the siphon, and the whole accumulation is discharged through this. DISPOSAL OF SEWAGE. 241 These truck-patch carriers, the by-pass and the various gates, are incidents of the system and are intended only for occasional use; ordinarily, the dis- charge is in a strong How through the main 8-inch pipe connecting with the irrigation field. Around the whole interior of the tank, near its top, there is a perforated brass pipe connected with the main water supply by a float-coek at the bottom of the tank. This sends a spray over the walls of the tank during about an hour, partly before the discharge is complete and partly during the earlier filling of the tank. Its purpose is to wash down accumulations of slime which might in hot weather become offensive. This part of the apparatus is to be removed during the winter season. The irrigation field proper is about 1000 feet distant, and its upper side is 27 \ feet lower than the outlet of the flushtank. This field is separated from the hospital grounds by a public road and by Stony Creek. Its lowest side is nearest to the grounds, and its higher or further side is hounded by a mill-race a little above its highest level. The area of the field available for irrigation is about 12 acres. Lying to the north of it is a piece of waste land 2 or 3 acres in extent, which has been arranged for use as a relief area in emer- gencies. Along the upper side of the irrigation field bordering the mill-race, is a deep trench with sloping grassed sides and with a planked water-way at the bottom, for catching and carrying away the infiltration or overflow of the mill-race. Immediately inside of this ditch is the main sewage carrier, which extends from one end of the field to the other, and has a fall of 1 to Q00 from its highest point, which is in midway of the field. At this highest point there is a circular well, 6 16 * 242 WARING, feet in diameter and 7 feet deep, measuring from the top of its wall, which is a little higher than the surface of the ground. The 8-inch discharge pipe delivers into the bottom of this well, which thus serves to check the velocity due to the rapid fall of the connecting sewer. At its top there are three semicircular openings two feet wide and one foot deep. One opens into the north carrier and one into the south. The third opens into another carrier which leads directly toward the middle of the held. Ordinarily, only one of these openings is used at a time, and one is sufficient to deliver the whole how. The north and south carriers, the banks of which are lower toward the held than toward the mill-race, overflow with much uniformity and deliver the sewage at the top of a well -graded inclined surface over which it runs until absorbed. In no case does the sewage run quite the whole distance across the held. Movable gates being set at one point or another, the whole tank- ful of sewage may be delivered at pleasure over any area of from 2 to 4 acres, according to the inclination of the surface, and its condition of saturation by rain, or its dryness. The carrier which runs toward the centre of the held delivers into a level ditch which surrounds a level tract about 2 acres in area. This is crossed by a series of parallel ditches 3 feet wide and 2 feet deep, separated by beds or banks 8 feet wide. These beds are to be used for the cultivation of vegetables, forage, osiers, or whatever may be thought most advantageous. They receive their sewage solely by lateral absorption. This level tract constitutes a relief bed capable of receiving several tankfuls of sewage in succession, and DISPOSAL OF SEWAGE. 243 resembling somewhat the “intermittent filtration” beds © used in England. The whole of the field outside of the level tract is now sowed with rye and grass and is already well covered. It is intended to use it as grass land only, and with the relief that can at all times be afforded by the level tract, by the emergency field to the north, and by the truck- patch, it need never be overflooded, and the sewage may at any time be kept off from any part of it long enough for harvesting. Judging from the experience of similar fields in England, it will be necessary to crop it three or four times during the season. A considerable element of the cost of the work was due to the very unfavorable character of the ground, which, like that of the whole neighborhood, is a very heavy, stony, argillaceous deposit, underlaid by a strati- fied limestone sometimes at a depth of 2 feet or more, sometimes lower than it was necessary to excavate. A sort of swale ran through the field from end to end, the land being: higher at the bank of the creek than here. It was crossed with ditches, largely occupied by a tus- sock swamp due to a heavy underlying stratum of clay, and its old fence rows and ditch rows were overgrown with willows and other trees. The cost of the preparation of the land was not less than $8000, including underdraining, grading, uprooting trees, etc. ; that is to say, it cost this amount to put it into the condition of a reasonably well graded, cleared, and naturally well-drained field. That part of the cost would be avoided where land of proper character is available. One item of the preparation consisted in the laying of over 20,000 feet of draining tile at a depth of from 5 to 244 WARING, 8 feet, more than half of which required rock cutting from a few inches to 2 feet in depth. It should he said that the rock is so fractured that water easily finds its way down to the level of the tiles. The underdrains are generally 25 feet apart. The surplus water of the soil was substantially all removed by the digging of the ditches, so that when the tiles had been laid and covered, during dry weather, they discharged a very small stream. It took a long time to get the stony filling of the underdraining ditches so compacted and solidified as to prevent the direct flow of water from the surface to the tiles. Even now, there are some voids which have not been detected and filled, and some water flows directly from the surface to the tiles during the application of sewage. It soon ceases and the effluent is clear within half an hour after the tank ceases discharging. In a short time this difficulty will be corrected and it will always be clear. The above is a brief and rough description of the general arrangement of the work. Its operation, so far as observed, may be thus explained : All of the water-closets in the wards are flushed out at intervals of 4 or 5 minutes with a copious discharge from automatic tanks. This flow runs directly to the new sewers and is sufficient in amount to maintain, day and night, a constant cleansing flow. The water-closets in the administration buildings and officers’ quarters are operated by hand. They are all in direct communi- cation with the same sewers. So, also, are the urinals (automatically flushed) and the wash-sinks and baths of the whole establishment ; also, the sinks in the vari- ous dining halls. Such of these as are not to be abandoned on the completion of the new refectory build- DISPOSAL OF SEWAGE. 245 ings have been provided with flush-pots, by which their wastes are held back until accumulated to the amount of 6 or 7 gallons, and then they go forward, with a rush and in mass, to the sewers. The whole series of kitchen sinks are connected with a similar apparatus, by which, as above stated, from 50 to 100 gallons at a time are discharged into the sewers through a 4-inch outlet. The laundry apparatus from time to time contributes its very copious flood to the volume of the sewage. Probably, in no case, does more than 15 minutes elapse between the emptying of any vessel in the estab- lishment and the arrival of its discharge at the Hush- tank. Within certainly less than 12 hours and often less than 8 hours, the tank becoming full, discharges the whole accumulation into the main outlet-sewer leading to the irrigation field. The stream, running out through one or other of the carriers leading from the well, over- flows its banks and spreads over the land. This com- plete process may take two and a half hours, so that if we add together the extreme limits of time, we have less than 15 hours between the discarding of waste matter and its application to the surface of the irrigation field. It is safe to say that putrefaction exists nowhere, at any time, throughout the whole system, and there is never at any point the least suggestion of the putrid odor inseparable from common sewers and cesspools. The only element of the mass which, in its fresh condi- tion, is malodorous is the fecal matter; as this is dis- tributed through and drowned by not less than 2000 times its volume of water, it counts for nothing as a source of exhalation. The whole How might be dis- 246 WARING, charged on the lawn in front of the administration building without offence save to the eye. A few small coprolites withstand the rough usage of the current and are carried on to the ground, but they are so few and so very far between as not to be notice- able. Whatever solid matter passing through the screen is lodged on the surface of the field is destroyed by natural processes everywhere active. In no case is the amount of such matter or the effect from it worth noticing. The real filth of the sewage — its dissolved and finely divided suspended matters — is carried into the ground, is retained there, and is destroyed by oxidation, and, through the activity of bacteria, by nitrification. As filth, it cannot pass through the soil nor very far into it. If the products of its resolution are not consumed by plants, they pass off with the underdrainage, as soluble salts devoid of all organic character and unaccompanied by the lower forms of organic life. After a few days’ use of a single tract, the sewage is turned to another tract and again to another and another, being allowed nowhere to run long enough for the closing of the ground against infiltration by clog- ging, or for the gorging of its interior spaces with impurities. In short, the process of purification is com- plete and continuous. Experience elsewhere indicates that the soil will in time improve in its purifying po wer from year to year for a long time. There are larger examples of the purification of sewage by irrigation elsewhere in the world, and ex- amples of which the lesson is enforced by long experi- ence; there is, so far as I know, no example in existence more carefully arranged as to its details, involving the DISPOSAL OF SEWAGE. 247 overcoming of greater natural difficulties, or better illus- trating the more modern technical methods of the art. I may be excused for suggesting that this example, so near to your own doors, points out the way in which the sewage of the towns now draining into your own water supply may practically, and without too great cost, withhold their filth from their drainage, making the Schuylkill once again a fit source from which to draw household water. Another method of disposal by application to the land which is especially applicable to isolated houses and to establishments, where the discharge cannot be removed and must be concealed, is what is known as “ Sub- surface Irrigation,” a process invented by the Rev. Henry Moule, for use in connection with the earth- closet, and first applied systematically by Rogers Field, Esq., an English engineer, in connection with the drainage of some cottages at Shenfield, in Essex. Its use in England has never extended very much. In this country its first application was in connection with my own house at Newport, in 1869. After ample experience and observation of its efficiency, I began to use it in my private practice as an engineer, in dispos- ing of the sewage of isolated houses. In 1876 I had become so confident of its success that I applied it to the sewage of the whole village of Lenox, Mass. In 1879 it was applied on a still larger scale at the Woman’s Prison, at Sherburne, Mass., and in 1881 to the hotel at Bryn Mawr. The details of this system have been very materially perfected, and its use is now common in many parts of the country, there being hun- dreds of examples in New England and probably as many within a radius of ten miles about Orange, N. J. 248 WARING, The Lenox work being the oldest of the larger ones and the one longest in use, may be taken as an illustration of the system generally. Lenox was a scattering village with less than 1000 persons living in reach of the sewers. The fund avail- able for sewage was small, not enough to lay an outlet- sewer to the river, over two miles distant, to say nothing about work in the town. Indeed, a discharge into the river would not long have been tolerated. At that time (1876) much less was known than now as to the effi- ciency of sewage irrigation. As the most promising means for overcoming the difficulty, I decided on the adoption of subsurface irrigation, using 10,000 feet of dis- tribution pipes, underlying a well-graded area of about one and a half acres. The pipes were laid a little more than one foot below the surface. They were common 2-inch agricultural sole tiles laid directly on the earth. They were divided into 20 lines, with as many connec- tions with the main pipe leading from the flushtank. The manner of connection was never very satisfactory, and the general arrangement was never entirely suc- cessful from the point of view of an expert. However, although the field was but a few hundred feet distant from the village, there was never any serious complaint from it, and there was generally great satisfaction with it, although, as the flushtank had no settling basin for holding back solids — only a strainer — there was always more or less trouble from obstructions, and, as the pop- ulation increased, these obstructions increased, until now the whole affair is in such condition that it seems necessary to reconstruct parts of the work in accordance with methods since universally adopted. At the same time, with all its drawbacks, it has been essentially sue- DISPOSAL OP SEWAGE. 249 cessful and satisfactory, no nuisance having arisen from it that was perceptible at any distance from the field, and no attention having been called to it by reason of its condition. It has been much quoted and visited, as an instance of a great advance in the disposal of the sewage of a village, and it only needs slight improvements to make it available for perfect work for years to come, provision being made for distribution over the surface of the field, at times, during the short period when the village is full of visitors. At the Woman’s Prison the system was much more correctly constructed and has been correspondingly more successful, though it is seriously overtaxed with an effluent of about 30,000 gallons per day ; the more especially as the contributing pipes lie in a bed of muck and heavy silt, one of the least successful materials for this use. At the Bryn Mawr Hotel the same system has always worked satisfactorily since it has been sufficiently ex- tended to deal with the large volume of sewage ; but, mechanically considered, this is not a test case, for all of the sewage is received and retained in large cesspools, the absorption drains taking care only of the putrid liquid discharged from them. After large experience with this method of distribu- tion, I should not hesitate to use it for a community of any size if it were a mere question of mechanical ar- rangement and of purification. I should hesitate to use it except where the distribution ground is in the imme- diate vicinity of houses, simply because it is much more costly and much less simple than a discharge over the surface which, as has been amply proven before and is 250 WARING, amply proven now at Norristown, answers every re- quirement of simplicity, safety, and decency. I cannot better close this paper than with extracts from a report made on the 25th day of July, 1885, to the Chamber of Deputies of France by M. Bourneville, a deputy, submitted in the name of the committee ap- pointed to examine the proposed law having for its object the agricultural utilization of the sewage of Paris and the purification of the Seine. I adhere as closely as possible to the original text, thinking that, as former statements about this work have been disputed, a close translation is more impor- tant than a freer rendering in English. M. Bourneville says : “ The vast experiment at Gennevilliers. comes in its turn to confirm the great laws of natural purification and agricultural restitution, attested by the numerous examples that we have collated. “ It was in May, 1869, that is, sixteen years ago, that the sewage first reached the land of the plain of Genne- villiers. There had already been for two years (1867 to 1869) several thousand cubic metres distributed by irri- gation or treated by chemical reagents at Clichy on an experimental field, where the pumps now stand ; a cer- tain number of vegetable products had been obtained on about two-thirds of an acre. The experiment trans- ported to the other side of the Seine, at the beginning of the plain of Gennevilliers, began in 1869 on six hectares (fifteen acres) bought by the city of Paris and retro- ceded by it to several well-disposed cultivators. The disasters of the war came and destroyed the first instal- lations ; they were put into condition again at the com- mencement of 1872 and since then the service has been DISPOSAL OF SEWAGE. 251 regularly performed. On the 3d of J une your commis- sion visited in detail the pumping station of the city of Paris and the plain of Gennevilliers. W e have gathered together, on the ground and in the documents placed at our disposal, the most circumstantial information on the results obtained.” The report then describes the character and arrange- ment of the pumps, connecting pipes, distribution pipes, etc., and continues : “ The volume of sewage sent into the plain of Genne- villiers, which was only 1,765,621 cubic metres in 1876, was 15,000,000 in 1880, and finally 22,493,992 cubic metres in 1884. From 1872 to 1885 there have been spread on the plain of Gennevilliers 157,000,000 cubic metres. “ The irrigated surface has undergone a corresponding development. Beginning with 57 hectares in 1872, it reached 121 hectares in 1874, 200 hectares in 1875, 450 hectares in 1880, and finally 616 hectares on the 1st of January, 1885. The sewage is distributed over the tracts by about 20 laborers, each of whom is charged with the supply of from 25 to 30 hectares and with the management of about 30 outlets. In view of the ex- treme division of the property and the diversity of culture, the volume of sewage delivered into the plain is distributed so uniformly as to require no reservoir and no 4 regulator;’ simple standpipes placed near the steam pumps and at different points along the pipes regulate the pressure. “During the season of active vegetation, the cultiva- tors are present on the fields during nearly the whole day to the number of about 1500 men, women, and chil- dren ; they lead the water into the ditches from the 252 WARING, distribution outlets with a care and a skill which would leave nothing to be desired in the best irrigations of the south of France. During the three or four months of winter, vegetation is only partial ; the laborers then in- terfere more directly ; they cause the sewage to flow in the gutters and trenches in such a way as to insure puri- fication by oxidizing action ; the solid portions remain in the gutters and form a paste which the peasants afterward incorporate with the earth in the first plowing of spring. This is the case especially for cereals ; the vegetable products utilize the winter deposits in the form of a top-dressing of the beds. “ At Paris, as at Berlin, this formation of the deposits and the irrigation continue during the greatest cold, sewage water having always a temperature Qf at least 5° or 6° (40° to 44° Fahr.) This was realized in the severe winter of 1879 and during the three weeks of con- tinuous frost of last winter. During great floods of the Seine the pumps are generally stopped, leaving to its flow the removal of the entire discharge of the main sewers.” Then follows a table, showing that in 1884 the volume of sewage used in irrigating, per month, varied from 1,205,358 cubic metres in February, to 2,766,782 cubic metres in July. The monthly average for* the year was 1,874,491 cubic metres. “At the time of the visit of your Committee, the volume delivered to the cultivators each day reached from 130,000 to 140,000 cubic metres for every twenty- four hours. More than one-half of the sewage of Paris was purified and utilized by the plain of Gennevilliers during the heated term and during low water of the DISPOSAL OF SEWAGE. 253 Seine. That is to say, at the time when the discharge of sewage into the Seine is specially objectionable. “The results obtained in the plain, from the point of view of cultivation, are most remarkable. Your Com- mission traversed, during more than two hours, fields covered with products of the greatest variety and abun- dance; vegetables of all sorts, cereals, grass, and nur- series. “They obtain generally 20,000 to 40,000 head of cabbage per hectare, 60,000 heads of artichokes, 10,000 kilogrammes (over 100 tons) of feeding beets, and five or six cuts, yielding from 80 to 100 tons of green forage. The gross product obtained per hectare varies from 3000 to 10,000 francs ($600 to $2000) and even more for crops. “It has been said, in the presence of the Commission, that the horticultural products of Gennevilliers were of bad quality. It has been written that the vegetables pro- duced by this soil , surcharged with infected water , are bad to the taste , and the forage offered to live stock is not nutritive , and is , besides , rejected by them . On this point here is the opinion formulated in a special report to the Agricultural Society of France by M. Michelin.” Then follows a table showing that the 616 hectares were occupied for the growth of cabbage, artichokes, potatoes, asparagus, salads of various sorts, peas, carrots, beans, parsley, onions, beets, luzerne, grass, sundry vege- tables, nursery stock, trees, and cereals. M. Michelin says: “The Society has, through its committees, always observed the results obtained in the horticultural experi- ments which have shed light on this question, which we in the horticultural world of Paris regard as solved from the practical point of view, with reference to the beauty 254 WAKING, of the products, their quality as to taste, the success of the production and the certainty of sale. In affirming the quality of the vegetables to be proper for the nutri- tion of men as well as of animals, it should be explained that the liquid ought not to be put in contact with those parts of the plant which are above ground, but only with their roots.” The Committee asserts that “all the vegetables of Geimevilliers are advantageously sold in the Hedies , as well as in the markets of the Environs. They carry off the first prizes at the horticultural exhibitions of Paris, and even of Seine-et-Oise. About 800 cows are fed with the aid of the irrigated grass and plants. The average dose of sewage used by a hectare, divided over the whole surface dedicated to irrigation, is about 40,000 cubic metres a year. It is really, if we include what is not used directly, about 50,000 cubic metres. Certain parcels, specially treated, under an arrangement with the cultivators and by way of experiment, with high doses, have been receiving for three years 80,000 cubic metres by regular irrigation summer and winter. They are covered with a luxuriant vegetation. 1 “The rental value of land which was formerly from 90 to 150 francs a hectare ($7.20 to $12 per acre) — we speak, of course, of the cultivated land — is now from 450 to 500 francs ($36 to $40 per acre) in all the irri- gated area. As to the selling value, it is from 10,000 to 12,000 francs ($800 to $960 per acre). All leases now accepted by the cultivators carry the provision that the high rent is not consented to, except on the condition of sewage being disposable for the’ leased land. 1 At this rate, one acre would purify the sewage of over 500 persons (at 40 gallons per day). DISPOSAL OF SEWAGE. 255 “The commune of Gennevilliers asked and obtained, by the treaty of 1881, that for a period of twelve years the sewage should remain at the disposition of its inhab- itants as freely as they should desire, whatever might be the projects and works of the city of Paris for the ex- tension of irrigation (elsewhere). “ Irrigation with sewage has, therefore, brought wealth to Gennevilliers. Notwithstanding the evidence of these results, there is among the adversaries of the present project one who maintains that this wealth is an illusion, and that in reality the irrigation has caused to Genne- villiers an irreparable wrong, because no one seeks this locality for the construction of villas. The answer is simple; we take it from M. Francisque Sarcey: ‘The population, which was not dense/ says he, ‘cultivated more or less well a rebellious soil. They had only to scratch the ground to meet the sterile sand and the arid gravel. A few country houses had pushed in here and there around Gennevilliers itself; but it was by excep- tion, for the emigration of the Parisian Bourgeoisie in search of villas passed to one side and pushed generally further on. Those who had stopped there could have been seduced only by the cheapness of the land. It seemed that this country, struck with a sort of maledic- tion, was never to lift itself from this condition, when, in 1869, the sewer commission of Paris selected it as the theatre of an experiment which was to produce a happy change in its appearance.’ “ The purity of the subsoil water, which receives all of the water tiltering from the irrigated land is perfect. M. Pasteur has testified to this with his high authority before the Committee. “ All may judge of this as your Committee has done 256 WAK1JSG, by the examination and the tasting of the water that flows ont of the 5 lines of drains 18 inches in diameter which surround the village of Gennevilliers and dis- charge into the Seine about 1 kilometre from each other. These drains, having a total length of about 8 kilo- metres (5 miles) have been established at a depth of 4 metres (12 feet) at the normal level to which it was de- sired to reduce the subsoil water ; in the case of floods, or of very heavy irrigation, these drains facilitate the outflow of the water and prevent the invasion of quar- ries and cellars. “As M. Marie-Davy, Director of the Observatory of Montsouris, testified before the Committee, the water of the drains is chemically pure. It contains barely 0.001 of a gramme of organic nitrogen to the cubic metre even at those points, as in the experimental basins of the gardens belonging to the city of Paris, where the annual or continuous dose reaches and passes 80,000 cubic metres per annum. With Liebig’s boullion which shows 62 micro-germs in a cubic centimetre of water of the Vanne, 1410 for the Seine at Bercy and 20,000 for the sewage, there are found only a dozen inoffensive micro-germs in the water of the drains, which thus sus- tains the opinion of M. Pasteur. At the same time, the large content of chlorine, 0.07 of a gramme per litre, indicates the presence in the subsoil water of a large proportion of purified sewage which has passed through the ground. “ The sanitary condition of the commune of Genne- villiers leaves nothing to be desired ; the Mayor and his Adjuncts, Doctors Thobois and Cornilleau, testified before the Committee at its visit to Gennevilliers, and it is enough to walk about in the plain and sete the DISPOSAL OF SEWAGE. 257 vigor and good health of the hundreds of men, women, and children who are working eagerly [avec ardeur] in the midst of the irrigated fields to understand the true state of the case. The general mortality in 1865 was 32 per 1000. In 1876 and 1881 it was only 25 and 22. No epidemic of typhoid fever has existed for long years, although the irrigations were continued on a large scale during the cruel epidemic which attacked Paris in 1882. Not a single case of cholera occurred in 1884. Never from 1869 to this day, although the inhabitants eat their own vegetables, even uncooked, has there been observed a single case of anthrax or septicaemia. In fact, all of the information that we have gathered from most of the physicians who have had occasion to be called to Gennevilliers proves that intermittent fever shows itself very rarely, and that the number of cases does not exceed that of localities more or less remote, and of which the fields are not subjected to irrigation. Still another argument pleads in favor of the excellent sanitary condition of Gennevilliers: that is, the increas- ing growth of population as shown by the following table : 1st of January, (« U it u u u u u u 1869 . 1872 . 1880 . 1885 . 2186 inhabitants. 2218 “ 2389 3245 “ “Such are the facts that your committee has estab- lished in the plain of Gennevilliers ; it has been con- stantly accompanied by the authorized representatives of the population of the plain and its suburbs : MM. Pommier, Mayor, and Petrou, Adjunct, of Gennevilliers, Berthou, Mayor of Saint Ouen. Hennape, Mayor of Puteaux, our friend M. Bailly, Mayor of Courbevoie, 17 258 WARING, DISPOSAL OF SEWAGE. Honorary Inspector-General of Public Assistance. A deputation of the cultivators of the plain gave the com- mittee all the information as to details that it needed. Ao discordance was developed; the unanimity was com- plete concerning the excellence of the results obtained and the absolute innocuity of the system. The major- ity of your commission cannot refrain from expressing to you the confidence that these demonstrations give it in proposing to you the continuation and extension of sewage irrigation . ’ ’ The publication of this report must have been most gratifying to M. Durand-Claye, the champion, and the wise and eager director of the work at Gennevilliers, who has fought its battles against prejudice, ignorance, and malice from the days of its struggling infancy to this hour of its complete triumph, and his own. At Gennevilliers as at Croyden, Berlin, Dantzic, Breslau, and the Aorristown Asylum, complete evi- dence is set before us of the absolute efficiency of the system of purification by application to the soil, which, it seems to me, on the score of economy and of completeness, as Avell as by reason of the conditions generally prevailing in this country, has such advantages over the best of the chemical systems that it is, in at least a very large majority of cases, better suited to our needs. Aor can it be doubted that this system will enable us to restore and to maintain the purity of our water- courses, especially when these are used as the source of water for domestic use. VOL, Ho. 1,743. -I XXXIV. J APRIL 16, 1886. [ trice 6d. To Non-Member*. JOURNAL OF THE SOCIETY OF ARTS AND 4PfFrial iUrtuti of tlje Entrritattmtal JEnSmtttmts sub Colonial anb Jtnbtan Crfjtfiitfonei. PUBLISHED EVERY FRTDAY. CONTENTS. Notices : — Electric Lighting Act ( 1 882) Amend- ment (No. 3) Bill. — Cantor Lectures. — Westgarth Essays .. 581 Applied Chemistry and Physics Section : — Asbestos and its Applications, by James Boyd. — Discussion . . 582 Foreign and Colonial Section : — Progress of the British Possessions in the last Quarter of a Century, by P. L. Simmonds. — Discussson. . 595 Nineteenth Ordinary Meeting : — The Treatment, of Sewage, by Dr. C. Meymott Tidy .. . . 612 Colonial and Indian Exhibition . . . . . . . . 625 Telephones in Europe .. ,, ..627 Correspondence: — Statue of Columbus at the Colonial and Indian Exhibition 627 General Notes : — Technical Instruction. — Exhi- bition at Salzburg. — Musical Pitch. — Machine for Sheep- shearing 628 Meetings of the Society 628 Meetings for the Ensuing Week 628 LONDON: PUBLISHED FOR THE SOCIETY BY GEORGE BELL AND SONS, YORK STREET, COVENT GARDEN. 1886 . JOURNAL OP THE SOCIETY OF ARTS, Apbil 16, 1886. HATHORH, DAVEY & Co., LEEDS. THE DAVEY SAFETY MOTOR. (DAVEY’S PATENT.) The most economical small motor for pumping water and driving small machinery. Cost of fuel one farthing per horse-power per hour. CATALOGUES ON APPLICATION. Manufacturers of PUMPING MACHINERY FOR Mines, Water Supply, Irrigation, Graving Decks, Drainage ot Fens, and General Pumping Purposes, ALSO HYDRAULIC MACHINERY OF ALL KINDS. CATALOGUES ON APPLICATION GOLD MEDAL, INVENTIONS EXHIBITION, and SPECIAL GOLD MEDAL, SOCIETY OF ARTS. 10, ADAM-ST. . W.O. SCHWEITZER’S COCOATIWA, Anti-Dyspeptic Cocoa or Chocolate Powder . Guaranteed Pure Soluble Cocoa of the Finest Quality without Sugar or any Admixture. The Faculty pronounces it “the most nutritious, perfectly digestible Beverage for BREAKFAST, LUNCHEON, or SUPPER, and invaluable for Invalids and Children.” A teaspoonful to a breakfast cup, costs less than a Halfpenny. Keeps in all climates ; made instantaneously with boiling water, palatable without milk. In air-tight canisters at Is. 6c?., 3s., 5s. 6c?., fyc., by Chemists 8f Grocers. Samples free by post Electric Lighting. Thomson-Houston System of Arc Lighting. \ G- O Jl. X> MEDALS Edison - Swan System of Incandescent 1 Awarded both systems at the Lighting International Inventions Exhibition, 1885, ESTIMATES FREE ON APPLICATION TO LAIN Gr, WHARTON, & DOWN, 8 and 9 , H OLBORK VIADUCT, and 110 & 111, SAFFRON HILL, LONDON, ENGLAND. BAILEY’S PATENT HOT-AIR ENGINES Are the Safest and Cheapest for Pumping, Domestic Water Supplies, Chaff Cutting, Grinding Corn, Crushing Oats, and for Stable Power generally. Two Prize Medals, Calcutta Exhibition, 1883-4. NEW CATALOGUE NOW READY. No Eciler No Skilled Labour! No Danger! No Smoke! No Smell No Noise ! No Great Cost of Working ! A farm labourer can manage these engines as easily as the skilled mechanic. PUMP-v CUTT--/' GRIND"' FOR STABLE AMD COACH HOUSE PARTICULARS, ILLUSTRATED CATALOGUES, &C., FROM The abundance of testimony to hand satisfactorily proves the fact that Bailky s Hot-Air Engines are absolutely the safest and cheapest t > w^rk of any motor in existence, while the minimum amount of attention (which may be unskilled) and the convenient forms in which they are made, recommend this motor for the above and like purposes. ./J ~ The Hcn. C. H. WYNN, Rug., Cowen, North Wales, who purchased one of these Engines over three years ago, has been good enough to say, June 20th, 1834 : “The Hot-Air Engine is an excellent invention for small power, and saves a great amount of manual labour. It is well and strongly made, and although mine has been running over three years it has needed no repair except the brick-stove lining. I am sure that the success of these Engines is not generally know'll. They are far cheaper than the be^t Gas Engine, and much safer and cheaper than small Steam Engines. April 1 6, 1886.] JOURNAL OF THE SOCIETY OF ARTS. 611 'ept in mind, the development of railways and tele- graphs. In this country one saw first a turnpike roady and then a railway, and lastly a telegraph, but ih\ Australia it was just the reverse ; very often you saw a line of telegraph where there was no road, merely a bush track, the railways followed after- wards, and sometimes in certain parts a road was made. Many a poor wanderer in the bush had found his way to a town by following the telegraph line. Mr. Simmonds had spoken of the wheat which came from India ; formerly it could not be brought here at ariy price below 42s. a quarter, but now it could be\delivered here 10s. a quarter cheaper, and one must not suppose that the ryot was a loser by the difference,; he really got quite as much as he used to do when it was sold at 42s., because the transit facilities had been so much increased by railways in India, Wd by cheap steam communication, and the sweeping away of inter- mediary charges, that the grower got quite as much as he did before, whilst the consumer in England was benefited by the lower .price. The same thing applied to Australia; by cheap transit facilities they were able to send to this country pro- ducts which could not be exported before. Sugar had been imported from Queensland simply from this reason ; Mauritius had formerly sent her sugar to Australia, but it was now coming to the mother country, because the Australian colonies were able to draw their supplies from Queensland and Fiji. The great thing wanted in the colonies was in- creased population. In 1861 it was 1,300,000, and it was now something like 3,300,000, but as Mr. Henty had said what those colonies wanted was population of the real kind. This was a ques- tion which would have to come up for consideration, for there was many difficulties arising in England 4 the Irish difficulty and the Crofter difficulty ; but emigration would be a panacea for both. I14 the Australian Colonies people would find a home and means of providing for their families, and the over- crowded crofts of Scotland and farms : Of Ireland would be relieved. The Chairman said one of the best illustrations of the progress of the Colonies, was the presence of Mr. Henty, the first native citizen of Victoria, and the eloquent part he had taken in the discussion. This subject was very vajrf, and Mr. Simmonds might well have extended it, even if he had confined his attention to the new products which had been brought forward during the last twenty-five years. Another remarkable circumstance was the change which had taken/place in the geographical relations of this country with the Colonies. The Suez Canal had created an immense change in the mode of communication, but now there was the Canadian Pacific Railway, and the new route which was referred to at the last meeting of the Section, the Hudson’s Bay routes so that instead of being confined to the intercourse by. the Atlantic or by the Red Sea, we should find a new route, and doubtless a new development of trade in connection with it. Something also might have been said about the spread of the English language the establishment of the great English community,, not only in speech but in institutions and literature, which had risen in Australia almost in the time of Mr. Henty himself. Now, the improved well-being, of the people of India— the remarkable political advancement referred to by Mr. Saunders and other speakers — was not to be forgotten. There seemed a. desire on the part of some perspns to discourage emigration, because they said there was no field for untrained labour ; but he had been much struck with the figures showing the large amount derived from gold-mining and the diamond fields,, and the greater part of/ this was derived from unskilled labour. With regard to over-production,, there was no doubt overproduction in one sense, but there was something /besides that, which at the present moment was affecting the whole relations of society — it was production under cheaper industrial conditions. What /\lr. Moncrieff Paul had said with regard to India anff Australia had a much wider appli- cation. If cheap transit were established into the interior of Australia or India, the articles were pro- duced under cheaper industrial conditions. Medals had been given in the room to Sir Henry Bessemer and Sir William Siemens, and they all looked with pride on their achievments, but what were the results ?/ He could remember when steel was ten times the price it was now, and what was the con- sequence ? When an important material like that was reduced in price, it enabled the successors and imitators of those inventors to run cheap railways /into\every part of the world, which, under the best conditions of soil and climate, were able to produce wheat, maize, sugar, and coffee. It was not simply a question of over-production, because instead of wool b6ing brought down by waggon from the interior of 'Australia by a long and painful journey, it was carrie ARTS. 6*5 and an alkaline effluent is not a good effluent. Thirdly, that on the addition of a grain of sul - phate of alumina, or say, one grain of alum, dissolved in ioo grains of water, added to the pint bottle, it shall not produce appreciable turbidity after standing thirty minutes — you can get that. Fourthly, that if you take that white cylindrical bottle half filled with sewage, and shake it up, it shall not leave foam or much froth after standing ten minutes. These are practical tests. I do hope the day is not so far off when we shall have some means by which we can persuade local authorities to purify and deal with their sewage. But I say again that if we are to do it, we must not act as the creators of a hobby, we must be prepared to sink the hobby ; we must not go as violent irrigationists, because it is clear that that will not do ; we must not go as violent precipitationists, it is clear that will not do. We must be prepared to consider what is the best method to treat the sewage of the place for which we are called upon to advise. I cannot help feeling strongly on one other subject. I know we cannot alter it ; we have this water-carried sewage to deal with ; but one cannot help asking the question, if one were called upon to advise for another London, or in another planet, should we advise the water-carriage system ? I have thought this subject over very earnestly lately. The advocates of the water-closet system urge that water, as a vehicle to carry the refuse, commends itself to us on the ground of cleanliness and cheapness. They would compare, and do compare, the natural power of gravitation, such as is made use of in the water-closets, with an organisa- tion of men and carts, such as is required, for instance, by the midden system. I confess the advantages at first sight are all on one side, but I must say there are some facts which point in the opposite direction. Diluting with water is the very best known method of rendering whatever is valuable in sewage practically worthless, and sometimes an ungovernable nuisance. The excreta of animals are no doubt intended for the food of plants, and, again, for us through their intervention. Of course, do what we like, do what we please, nature will assert herself and assert her plans, although it is certain we do our very best to embarrass nature by meddlesomeness, but the nutritive food of the plant we drown with water, and then our ingenuity fails to deal with the filthy mixture. We cannot utilise it unless we abandon all sanitary precautions. It pollutes our air; it may render our ground a simple stinking morass, and defile our watercourses. Let me put it to you ; here in London 30 gallons of water per head is brought from pure sources, let me say, at great cost, with vast engineer- ing skill, filtered, and perhaps refiltered with extraordinary care, stored with scrupulous anxiety, analysed by one chemist after another, and what for? About one-ninetieth part of the water is used for drinking purposes, and a large quantity is destined to be the mere diluent of our sewage, to perplex us by its use- lessness, and to steal our health with the per- petual nuisance it creates. The Chairman said, although Dr. Tidy, in his spirited and thorough treatment of this subject, had said much to which everyone who heard him must agree, there were, no doubt, other points on which many would desire to answer him. He therefore anticipated much benefit from the discussion which would follow, and of which due notice would be given. The present time was peculiarly appropriate for dealing with the subject, as it was now awakening that attention on the part of the public which it ought to have received long ago. He would now simply move a vote of thanks to Dr. Tidy for his admirable address. The resolution was carried unanimously, and the proceedings terminated. + COLONIAL AND INDIAN EXHIBITION. Last week, on the expiration of his Agent-General - ship for Victoria, Mr. Murray Smith, C.M.G., sailed for Australia. Pending the arrival of the Honourable Graham Berry, who will succeed him both as Agent- General and as Executive Commissioner for the Exhibition, Mr. Joseph Bosisto is Acting Executive Commissioner for Victoria. Reception Committee. On Monday, April 12 th, a meeting of the recep- tion committee was held at the Society of Arts. There were present the Duke of Abercorn, C.B., in the chair; the Lord Mayor; Major- Gen. Sir Henry Rawlinson, K.C.B. ; Sir John Coode ; General Sir Selby Smyth, K.C.M.G. ; Sir Daniel Cooper, K.C.M.G. ; Major-General Sir Peter Lumsden. 62b JOURNAL OF THE SOCIETY OF ARTS . [April 16, 1886. G. C.B. ; Sir Gharles Tupper, G.C.M.G. ; Lieut., General Sir Harry Lumsden, K.C.S.I. ; Lieut. -Gen. Sir Samuel Browne, K.C.B., K.C.S.I., V.C. ; Lieut.-Gen. Sir Henry Daly, K.C.B. ; the Duke of Manchester, K.P. ; Sir George Birdwood ; Colonel Sir Owen Tudor Burne, K.C.S.I. ; Lieut. -General Sir Charles Brownlow, K.C.B. ; Major-Gen. Sir Richard Pollock, K.C.S.I.; Sir Charles Hutton-Gregory, K.C.M.G. ; Mr. Arthur Hodgson, C.M.G., general secretary to the committee; Lieut. -General Henry Burne, C.B., and Mr. H. Trueman Wood, secretaries. Mr. Edward Cunliffe-Owen, assistant- secretary to the Royal Commission, also attended. The committee considered a report from the sub-committee as to the arrangements which could be made for excur- sions for Colonial and Indian visitors. Mr. Somers Vine, the official agent of the Exhibition, attended, and reported to the committee the arrange- ments which had been made with the railway companies with the view of affording extended facilities for railway travelling to all Colonial and Indian visitors coming to the Exhibition. The Chairman reported that, in accordance with the wishes of the committee, and with the approval of H. R.H. the Prince of Wales, he had communicated with the mayors of some of the chief provincial cities, asking if they would arrange for visits of parties of distinguished visitors. It was resolved that a subscription list should be opened ; and the hope was expressed that those who have enjoyed the benefit of Colonial hospitality will avail themselves of this opportunity of contributing to the entertainment of those who come to England from the Colonies and from India, for the purpose of visiting the Exhibition. Conferences and Lectures. The first meeting of the Conference Committee, appointed by H.R.H. the Prince of Wales, was held on Tuesday, the 13th April, at the Society of Arts. There were present the Duke of Manchester, K.P., Chairman; Sir Frederick Abel, C.B.,D.C.L., F.R.S., Vice-Chairman ; the Hon. Sir C. Tupper, G.C.M.G., C.B. ; Sir Saul Samuel, K.C.M.G. ; Joseph Bosisto, Esq., J.P. ; Sir A. Blyth, K.C.M.G. ; the Hon. J. F. Garrick, C.M.G., Q:C. ; Sir F. Dillon Bell, K. C.M.G. ; the Hon. James E. Mason, M.L.C. ; Sir C. Mills, K C.M.G. ; Lieut. -Col. Edmund Palmer ; A. N. Birch, Esq., C.M.G. ; J. A. Despeissis, Esq. ; Sir Rutherford Alcock, K.C.B. ; G.H.Hawtayne, Esq. ; A. J. Adderley,Esq., C.M.G. ; Sir James Marshall ; Sir V. Houlton, G.C.M.G. ; Hamilton Lang, Esq. ; H. Trueman Wood, Esq., M.A., Secretary. Mr. Edward Cunliffe-Owen, Assistant Secretary to the Royal Commission, also attended. The Committee considered the question of holding conferences and lectures at the Exhibition, and appointed a small sub-committee to prepare a scheme. The Committee hope to arrange for a series Of lectures or papers on the different classes of products illustrated in the Exhibition, and they hope to be able to secure the assistance of qualified experts to deal with such subjects as food resources, timber supply, agricultural resources, and textile fibres. It is also proposed to arrange for the reading of papers on the resources of the Colonies individually. Ceylon. The Executive Commissioner for Ceylon is Mr. Arthur N. Birch, C.M.G. ; and Mr. W. E. David- son, the Honorary Secretary, is busily engaged super- intending the installation of the exhibits. The General Committee at Colombo is presided over by the Hon. Sir Arthur Hamilton Gordon, G.C.M.G., and includes amongst its members the Government Agents for the various provinces of the island, the Director of the Botanical Gardens, and the Chairmen of the Chamber of Commerce, the Planters’ Associa- tion and the Agricultural Association. Sub- Com- mittees also represent the different provinces. Of the exhibits from the “ Spicy Island,” the most important will undoubtedly be the representation of the planting industry, to which Ceylon owes much of its past prosperity and to which it will, it is hoped, be much indebted in the future. The collection of the exhibits has been placed in the hands of the Planters’ Association of Ceylon ; and tea and coffee will here be more adequately represented than at any previous exhibition. A handsome building, designed by Mr. J. G. Smither, to be known as the Ceylon tea house, has been erected in the gardens between the court and “ Old London.” It will be devoted to the sale, ex- clusively, of these Ceylon products. The entrance to the court will be through a Kandyan porch in carved woods, flanked on either side by a dwarf wall, pierced and ornamented in the fashion of the ancient decoration of Kandy. The porch and wall are faithful representations of portions of the Dalada Maligawa, the Buddhist Temple of the Sacred Tooth. On either side of the porch, the first exhibits to catch the eye will be, appropriately enough, trophies of the chase, for Ceylon is perhaps the most accessible country for sportsmen in search of big game. On the right hand, charging out of a jungle with unlifted trunk, will be a notorious rogue elephant, shot expressly for exhibition here. On the left will be represented the leopard, elk and varieties of deer, grouped with the gaudy birds of the tropics. The decorations of the court have been faithfully copied, both in colour and design, from the Buddhistic art of Ceylon. Facing the entrance will be a colossal gilt figure of Buddha, sitting in the attitude of contem- plation, the representation being especially appropriate as coming from a country where the doctrines and the learning of Buddhism have been maintained in their highest purity ; and a special case will be devoted to a series of Buddhistic figures and orna- ments. Below this figure stands a gateway, elabo- rately carved in ornamental wood, an exact repro- duction of the principal gateway at Ycipahu , an 1884.] CITY DOCUMENT. [No. 25. PROPOSED PLAN SEWERAGE SYSTEM, AND FOR THE DISPOSAL OF THE SEWAGE OF THE CITY OF PROVIDENCE. APPENDIX B. STATISTICS RELATIVE TO TIIE TREATMENT AND DISPOSAL OF SEWAGE. BY SAMUEL M. GRAY, CITY ENGINEER. . MADE BY ORDER OF THE CITY COUNCIL OF THE CITY OF PROVIDENCE, PROVIDENCE : PROVIDENCE PRESS COMPANY, PRINTERS TO THE CITY. 1884 . Oil 9'lfl fJTlrft 'lo aohofoclmtacn ohuJfn’JKMi ^ur, .rfsifidnibffit i:i .BHiow ^uitnh‘1 iDtia .s-inwrjd .ojlil tlou* .89 Y -arm flloilw ortT .H«i I « 8 000,005 f f. b /1 , ran to Jo-' .8floI •anted r.u: oh i | • 1 1 <11 88 I)9f[«ifoi | 'llarf orio JirodA .7918?.' »9i:t-fU8 .aaollro. 000,008 -oatq 91fl 919 fCI ; /{ •.>?', 0 IlOO!*# .onoo vIJardf ' A i HJ» U »«••-»* « >«8 fic , e'toor has i"Ta To 'O o ^ In *>• ' tnoi3 .01 074 - ! 079187 / £>/(J II A • -n rm orii HA moil snibooooiq < iiorba ei tostctr -ni }Q9lot!if i Off 1 ! ,8197/98 od) o) hoi • ' -nib 918 891 M.lruft -ualfio II99lf 97Cii i } 9 tf) olni jbegisrio 9719991 o) belli! j -,00S 0.1 000, OSS 80h»Jia 000 ai 9 l 9 f» oidno 000 j f.oJJonH) .sioorf 19 q A *' 1 J « 9 r v a 9 1 | odj I odT . 8 i 9 77 o <1 8 •"9a 8ntJ in ova li noil ,agrf£ 78 ri 8 [on ova it o ft 1 edl ofai 9 noZ isq enoJiBy 08 | . 9 f»oZ lull >t-j , 8 $utifi 1 8 S H « W d 908 .0197798 q 9 »b . i;liq «9 j > tq 9 y a a»a lud goaf ion .l 0989 iq a bs el leqotq 93 a ew jdt oi beiJhn if 0 d a U\ blJK ,8797798 Q 99 b 9 dl Of 79 lHW-riifl 1 .8797798 99 «haa i v' oid vlnO .HA o'fo.uoo,! ,IiA oiilateg bn« 89 i , 8 ihKW -olOBfnncrn oZ .oZ tarfl lo | luodA 79 q aaolica 82 i ■HIOZ -eldtniW ai «en •) 1 f n 0 '^nilbft j . bao if : . nob , boisvyos fjiilaib | .89798 005 , l no 70 j >g 7 Bl y;i 9 v 8 gniob .ybaif F-A-IRT l.-IHBiaATION (HE HBftABY OF , e UHIVIRSITV Of M-IWW* {! > f f t 1 F-A-R-T 1 -- IK,Jr^XC3-^TXO^T. -aontiiiu-eci. (B., i. >b ' > i • /!*.•, Vi •* I IJooItj ! on bn* .Hum* on bm i\ >, rfl •bo 00 .ouoK ,i«o!D M ia-.ini -}ii') 9i»aT H^SS.O .sinU | ; • • • !: • " '.‘I ,'i (■ . •I£9f0 I JoaIi{>0X3 iBonft ;» if t h. / rg Bls^Jr.ru, !»oir>iIi! • i-w jn«wma // ■ ; •• lolaW ' T«f horary O f THE cawiBiiiy of midois Jon wnH ' Lr t j „• j i t « uijj Had {liui zJuitolj bun minis toJe// bnofovsih 'on j ( * 1 Wilwho lofoo moil l. - IRBIG ATIOlsr. - Continued. (C.) BEE m — M to general *»" “= « ’^tfssttaaas- « Ip 44 45 — — Pure. MsssS fSSfifjjr *“• 13 to 24 feet. ^fca-a-jg::*a ’S i £ur-“ 20 meter.. “ irs The river tllltlP 4W* S isisa m " k - — cro t:;.n. Good. Bright. None. m Sj'Si: 1,10 errand - ms OHB Eleven year.. Two. Very clear. Very little If lill§§^ i "1- 7 Uyear.. -sssar- JSStiT -war Perfectly clear and no smell. |KfB£;SSS^ orf ~- - Very good. See paper (£36.000 to £38,OCO purclmee). B .SriSiSr m | j ,i T “- slis igSt-FS™ SEFiS’-'asr. ilMH pH P 'iuTs A gs« i Tw. m JJSU-jKr** US ^^S£W&33Rf£firjSatf s| ,to *r’IS! •4srffflr2 IlSf .i&rAffis. °"’ I “ r ° l '“ a “ "" k '‘ prt “’ i ’ si ~" ? “ r ' ,r— “ s “ About £11 per acre. “ 3 . Good. iHP ... 3Ma»* 20 feet. £1,200. 1 Good. g| i_ --• I s.-preoipitation. j POP.,,,0.. }3» Number of wot rl“«S 7 A "rr£' “J” 8 [•SSM? Ills What is the low sHir* 10 r- is 14 47 SSSSKiST 80 -assr* rte" 1 *T r ‘- moapbere ,0 [ordinary depth 46 48 V) 8,000 j All. Hnvo no ala sjtics, but all hous 250,000 gallon. All. Yes. We hav We „*J' c - P™*“ ° f u >“ N “ u - G ““"° c °- isisISe *** *00.000 Most of It. Yes. isl 1 t 18 Inches to 2 feet. 8eeNo.SSS”mp,„ y .d, ... Musa pig pi, S' Not known. of S„,d.o farmer. Mf not .o'dltupnedapont ss ,+wiS. Qum mm m 35 per cent of sewage _ matter In eludge. 13., 3d. per ton. Sw MM sStiT 1 IP B=»' 000,n iii IS 11 Yes. p=: than'afew Inches. Both precipitation and irrigation. Note. — For irrigation notes see Part 1. 1 1! iiP iSal 45,000 The whole. The whole. | I£§® J) rnmion go,. c£|IE{£ Yes. pi Not known. V dl 3 to 6 Inches. What 1, known as the Coventry prove.,. tor meet: Sul. gpi depth. ' p-s -tu The whole. £H£* Igl up “ ifca. tpIH dS',, y ° rdl "' 117 mm fM. m | Yes. S,” 1 10 Falir. noV.frl’r'' 1 " Lime precipitation. 13 s. 6(1. s>r f Thu whole. The whole. 1 Nil. SiS “ ,oTe " n ° iSr sHB? Mechanical straining and precipitation. ■Iff mrn pis iSSS ass* 4 . - 20,000 3,000 I / - 1 4,600 bead g *“ 0 " , PCr iM No. 18 Inches. Note. — For irrigation notes see Part 1. oSSalS** ^ “ f sp?5 dTwenty yard. 3P_A_3=LT 2. — PRECI PITATION. — Continued. (E.) bar" As to color? 1 |^54S3S3SJ»" 54 d Ifls§ 50 ■Hiss sss 59 ^aasffjrtbii 61 W|sss|w= 62 63 1 64 Per annum. | HEM ARKS. 65 Aylesbury, 1 The price of the khF- mmmmm ^SJLSUSST S ■ 61 | 68 SEAS im saSrlj 0vorcl “ htyc “ r ‘' “ n(i up--: a?’** Hral 1 ■« Bradford SpS *&sk I™ Dried In the air. Ipi ,« £4 ’ 000 p- ,r;«r ,d Yellow and ps 1 a. 3. -2.fi No revenue what- £££ pi si 11 Hi gsyS pfoy^ 46 '" P ~ iP SI &1" The income IP P S?oMV°.' fc§ 111 ipi j|ll m to A K. £,0 ° not yet examined. mmmmmrnm 18 P Very good. Quite colorless. «SE* s twenty of stream. fiM m SSE ■ £3- psH £6,000, about. ts A ^Bright and Not yet examined. -2.T5? ° f !K>.2* ikSS? means *00° Johm ^53?“ “ IP |p m tf^gfiUPas V. I-?- *”1 jrflSK- *88£»“ B^AMSSSL* p . •• ; V/>V , • - r » t ■■ ■ 3 0112 083210796 pi WkSm