DEPOSITOR^ t/i/t/Jbts' Jttf- JAN 1 8 1991 VERSITY 0» ILLINOIS URBANA-CHAMPAIGN FLOODS IN WEST VIRGINIA, VIRGINIA, PENNSYLVANIA, AND MARYLAND, NOVEMBER 1985 U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 88-4213 NOTICE: Return or renew all Library Materials! The Minimum Fee for each Lost Book is $50.00. The person charging this material is responsible for its return to the library from which it was withdrawn on or before the Latest Date stamped below. Theft, mutilation, and underlining of books are reasons for discipli¬ nary action and may result in dismissal from the University. To renew call Telephone Center, 333-8400 FLOODS IN WEST VIRGINIA, VIRGINIA, PENNSYLVANIA, AND MARYLAND, NOVEMBER 1985 By D.H. Carpenter U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 88-4213 Towson, Maryland 1990 U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey 208 Carroll Building 8600 La Salle Road Towson, Maryland 21204 U.S. Geological Survey Books and Open-File Reports Section Federal Center, Bldg. 810 Box 25425 Denver, Colorado 80225 CONTENTS Page Abstract. 1 Introduction. 2 Purpose and scope. 6 Acknowledgments. 6 Description of storm. 6 History. 9 Distribution of precipitation. 10 General description of flood. 10 Flood frequency. 17 Description of flooding, by State. 18 West Virginia. 18 Virginia. 36 Pennsylvania. 53 Maryland. 61 Summary. 64 Selected references. 65 Glossary. 67 ILLUSTRATIONS Figures 1-3. Photographs showing: 1. The aftermath. 3 2. Tree on Cheat River bridge, State Highway 22, Albright, W. Va. 4 3. Cattle on temporary island, James River, Va... 5 4-6. Maps showing: 4. Location of streamflow-gaging stations in flood area. 7 5. Total storm rainfall, October 31-November 6, 1985. 8 6. Location of selected rain gages. 11 7. Rainfall mass curves for two gages in West Virginia, October 31-November 6, 1985. 13 8. Rainfall mass curves for two gages in Virginia, October 31-November 6, 1985. 14 9. Rainfall mass curves for gages in Pennsylvania and Maryland, October 31-November 6, 1985. 15 iii ILLUSTRATIONS--Continued Page Figures 10-12. Photographs showing Cheat River damage: 10. Pennsylvania Avenue, Parsons, W. Va. 21 11. Railroad truss bridge, Rowlesburg, W. Va. 22 12. Before and after flood at Albright, W. Va.... 23 13-18. Hydrographs showing discharge at gaging stations: 13. Shavers Fork at Parsons, W. Va., October 31-November 15, 1985. 24 14. South Fork South Branch Potomac River at Brandywine, W. Va., October 31-November 15, 1985. 26 15. Greenbrier River at Durbin, W. Va., October 31-November 15, 1985. 28 16. Greenbrier River at Buckeye, W. Va., October 31-November 15, 1985. 30 17. Greenbrier River at Alderson, W. Va., October 31-November 15, 1985. 32 18. Tygart Valley River at Belington, W. Va., November 1-15, 1985. 34 19-20. Photographs showing: 19. Williamson Road in Boxley Hills section, Roanoke, Va., metropolitan area. 38 20. Rescue operation on East Main Street, Salem, Va. 39 21-24. Hydrographs showing discharge at gaging stations: 21. Roanoke River at Niagara, Va., October 30-November 15, 1985. 40 22. Back Creek near Sunrise, Va., November 1-15, 1985. 42 23. Calfpasture River above Mill Creek at Goshen, Va., November 1-15, 1985. 44 24. James River at Holcombs Rock, Va., October 30-November 15, 1985. 46 25. Photograph showing confluence of Shenandoah and Potomac Rivers at Harpers Ferry, W. Va. 48 26-27. Hydrographs showing discharge at gaging stations: 26. Middle River near Grottoes, Va., November 1-15, 1985. 49 27. North Fork Shenandoah River at Mount Jackson, Va., October 31- November 15, 1985. 51 ILLUSTRATIONS--Continued Page Figures 28-29. Photographs showing: 28. Monongahela River at bridge on State Highway 88, Point Marion, Pa. 54 29. Pittsburgh's Three River Stadium on Ohio River at confluence of Monongahela and Allegeheny Rivers, Pa. 55 30-32. Hydrographs showing discharge at gaging stations: 30. Monongahela River at Greensboro, Pa., October 31-November 18, 1985. 56 31. Monongahela River at Elizabeth, Pa., October 31-November 18, 1985. 58 32. Potomac River at Paw Paw, W. Va., October 31-November 15, 1985. 62 TABLES Tables 1-9. Gage height and discharge for flood of November 1985 at gaging stations: 1. Shavers Fork at Parsons, W. Va. 25 2. South Fork South Branch Potomac River at Brandywine, W. Va. 27 3. Greenbrier River at Durbin, W. Va. 29 4. Greenbrier River at Buckeye, W. Va. 31 5. Greenbrier River at Alderson, W. Va. 33 6. Tygart Valley River at Belington, W. Va. 35 7. Roanoke River at Niagara, Va. 41 8. Back Creek near Sunrise, Va. 43 9. Calfpasture River above Mill Creek at Goshen, Va. 45 10. Daily mean discharge for flood of November 1985 at gaging station James River at Holcombs Rock, Va. 47 11-12. Gage height and discharge for flood of November 1985 at gaging stations: 11. Middle River near Grottoes, Va. 50 12. North Fork Shenandoah River at Mount Jackson, Va. 52 v TABLES - - Continued Table 13. Daily mean discharge for flood of November 1985 at gaging station Monongahela River at Greensboro, Pa. 14. Gage height and discharge for flood of November 1985 at gaging station Monongahela River at Elizabeth, Pa. 15. Daily mean discharge for flood of November 1985 at gaging station Potomac River at Paw Paw, W. Va... 16. Summary of flood stages and discharges. Page 57 59 63 69 FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM OF METRIC UNITS (SI) For those readers who may prefer to use metric (International System) units rather than the inch-pound units used in this report, the following conversion factors may be used: Multiply inch-pound unit inch (in.) foot (ft) mile (mi) square foot (ft 2 ) square mile (mi 2 ) foot per second (ft/s) million gallons (Mgal) cubic foot per second (ft 3 /s) cubic foot per second per square mile [(ft 3 /s)/mi 2 ] By Length 25.4 0.3048 1.609 Area 0.09294 2.590 Velocity 0.3048 Volume 3,785 Flow 0.02832 0.01093 To obtain metric unit millimeter (mm) meter (m) kilometer (km) square meter (m 2 ) square kilometer (km 2 ) meter per second (m/s) cubic meters (m 3 ) cubic meter per second (m 3 /s) cubic meter per second per square kilometer [(m 3 /s)/km 2 ] vi FLOODS IN WEST VIRGINIA, VIRGINIA, PENNSYLVANIA, AND MARYLAND, NOVEMBER 1985 By D. H. Carpenter ABSTRACT Heavy rainfall during the period October 31-November 6, 1985, caused record-breaking floods over a large region covering eastern West Virginia, western and northern Virginia, southwestern Pennsylvania, and western Maryland. The rainfall, most of which fell on November 4 and 5 and was indirectly related to Hurricane Juan, exceeded 10 inches over large areas. A maximum of 19.77 inches was recorded at the U.S. National Weather Service gage, Montebello 2 NE, in the Blue Ridge Mountains in Virginia. Record-breaking flood discharges occurred at many locations within the Potomac, James, Roanoke, Monongahela, and Kanawha River basins. Flood-peak data were obtained at 190 sites within the affected area. New maximum peak discharges were recorded at 63 streamflow gaging stations; peaks exceeded 100-year recurrence intervals at 63 sites. The new record peaks exceeded the previous maximum recorded discharges by more than 50 percent at 40 of the gaging stations and were, on the average, 89 percent greater than the previous maximums. A total of 62 lives were lost because of the flooding in the four-State region, and storm damage was estimated to be $1,400 million. Damage to the Roanoke-Salem, Virginia, area alone was estimated to be $440 million. Several small towns in West Virginia were almost totally destroyed. The U.S. Army Corps of Engineers reported that the operation of flood-control projects in several river basins, including North Branch Potomac, James, Tygart Valley, and Kanawha, reduced total damage substantially. Manuscript approved for publication November 29, 1988. 1 INTRODUCTION Multiple storms during the period from October 31 through November 6, 1985, caused extremely destructive flooding over large areas of West Virginia and Virginia. Pennsylvania and Maryland also experienced severe, but more localized, flooding. The flood in West Virginia was the worst in the State's history. It has been nicknamed the "Killer Flood of 1985" in that State. In Virginia, because of the extraordinary fury of earlier Hurricanes Camille (1969) and Agnes (1972), it is a matter of conjecture as to whether this storm was the most devastating. Although Maryland and Pennsylvania experienced some severe, localized flooding in their western regions from this storm, they were spared widespread devastation. Photographs (figs. 1-3) provide some insight into the overall effect of the flood. As much as 19 in. of rain fell over the affected region during the 7- day multiple-storm period. Virtually all the precipitation was related either directly or indirectly to an otherwise unimpressive hurricane named "Juan." The maximum rainfall recorded (at an official U.S. National Weather Service gage) was 19.77 in. at Montebello 2 NE, in the Blue Ridge Mountains of Virginia. More than 10 in. of rainfall (official) was recorded over a fairly widespread area in north-central Virginia and eastern West Virginia. Record-breaking floods occurred on many streams (including the main- stem rivers) in the Potomac, James, Roanoke, Monongahela, and Kanawha River basins. Many communities in West Virginia, such as Albright and Parsons along the Cheat River, and Petersburg along the South Branch Potomac River, were nearly destroyed. In Virginia, the cities of Roanoke and Lynchburg, along the Roanoke and James Rivers, respectively, experienced extremely severe damage. In the four-State affected area, 62 people lost their lives and property damage was estimated to be $1,400 million. Flood-discharge data were recorded at 190 streamflow-gaging stations operated in the affected area. The locations of the gaging stations, the pattern of which virtually delineates the affected area, are shown in figure 4. Peak stage and discharge figures are presented in this report for the 190 gaging stations. Recurrence-interval data and discharge hydrographs for selected sites also are included. This report is an outgrowth of U.S. Geological Survey Open-File Report 86-486, "Flood of November 1985 in West Virginia, Pennsylvania, Maryland, and Virginia," by Joseph B. Lescinsky. The original report presented only basic information to allow for its early release to the public. This report provides more detailed coverage of the flooding and damage with more complete confirmation of the data presented. 2 3 Figure 1.-- The aftermath. (Photograph by Aubrey Wiley, The News and Daily Advance, Lynchburg, Va.) 4 Dominion Post, Morgantown, W. Va.) Figure 3.-- Cattle on temporary island, James River, Va. (Photograph by Dan Doughtie, Roanoke Times and World News.) 5 Purpose and Scope The purpose of this report is to document the significant rainfall and streamflow data, along with general damage information including costs and fatalities, related to the flood of November 1985. The data provide a technical basis on which to make flood-plain management decisions. The report documents the flooding over a region covering eastern West Virginia, western and northern Virginia, southwestern Pennsylvania, and western Maryland. Flood data are evaluated for 190 streamflow-gaging stations within the flood-affected region. A description of the storm- related rainfall is provided in the report along with a map of its distribution (see fig. 5). Acknowledgments Precipitation data were provided by the National Weather Service of the National Oceanic and Atmospheric Administration (NOAA). Data from the Virginia State-operated streamflow-gaging network were compiled by the Charlottesville office of the Virginia Water Control Board. Flood data including peak stages and discharges, recurrence intervals, and hydrograph data were compiled by U.S. Geological Survey personnel as part of the cooperative programs with West Virginia, Virginia, Pennsylvania, and Maryland. The isohyetal map of the storm period was derived from a computer-generated map provided by Robert B. Jacobson, geomorphologist with the Geologic Division, U.S. Geological Survey. Thanks are given to the newspapers and individuals who provided photographs used in the report. DESCRIPTION OF STORM The flooding of November 1985 in the four-State area of West Virginia, Virginia, Pennsylvania, and Maryland resulted from a rather complex sequence of meteorological events (Virginia State Climatology Office, 1986). Three separate but related low-pressure systems contributed to the problem. The first event, which only set the stage for the record flood, received the most public notice. This event was Hurricane Juan and the publicity resulted because its associated windspeed gave it hurricane status, though barely. Hurricane Juan came ashore from the Gulf of Mexico over southern Mississippi and followed a generally northerly path until its remnants ultimately reached Michigan. During its northern passage, Juan spawned a small secondary low- pressure system which moved eastward across North Carolina and passed offshore. This system, together with Juan, produced primarily moderate rainfall in the study area. A third low-pressure system, which also was an outgrowth of the influence of Juan on the atmosphere, then transformed what would have been a very minor flood event into a major disaster. 6 7 Ba»a from u S Geological Survey 1 2 500 000 teal* 0 ” 76 °~ 50KIIOMFTEAS 83° 82° 81 ^ 79° 78 ° 77° Figure 4.-- Location of streamflow-gaging stations in flood area. 7 Figure 5.-- Total storm rainfall, October 31 - November 6, 1985. 8 8 Figure 6.-- Location of selected rain gages. 11 History Juan was a rather typical late-season hurricane which matured in the Gulf of Mexico and moved ashore over coastal Louisiana and Mississippi early on the morning of October 31, 1985. Some distinguishing characteristics of this hurricane were its large size (for a hurricane) and its relatively moderate winds which only slightly exceeded 73 miles per hour (hurricane force) and did so only for a short time, which was prior to landfall. This storm was also notable in that it moved rather aimlessly off the Louisiana coast for a couple of days (October 29 and 30) before it moved inland. This hesitation was particularly significant because it resulted in a strong flow of moisture and heat into the study area, creating the potential for the excessive rainfall which occurred later. After Hurricane Juan moved inland, it crossed southern Mississippi in a northeasterly direction and then continued on a more northerly path through northern Alabama, central Tennessee, Kentucky, and Indiana. The hurricane, in following this track, had sufficient energy to move the jetstream into a north-south orientation; as a result, even more moisture was carried northward, making the final storm even more intense and devastating. On November 2, the remnants of the hurricane moved from Indiana into Michigan where it no longer directly contributed any significant rainfall to the study area. In the course of Juan's passage, generally less than 2 in. of rain fell throughout the four-State region except for 2 to 3 in. in a substantial area of south and west-central Virginia, and as much as 5 in. in two small areas of the Blue Ridge Mountains. This rainfall, which was associated with the hurricane, includes the rainfall related to the small, secondary low-pressure system which developed in connection with Juan's passage. The secondary system developed on November 1 in the vicinity of the Tennessee-North Carolina State line (along the warm frontal temperature discontinuity associated with the passage of Juan). This smaller system moved rapidly across North Carolina and out to sea, but was responsible for many of the greater rainfall totals in southern and central Virginia. The third storm that developed moved inland from the Gulf of Mexico, and crossed the Florida panhandle on the morning of November 3. This system moved through central Georgia and South Carolina and then into southwestern North Carolina early on November 4. This third storm, an intense low- pressure system, was fed by excess moisture in the atmosphere brought in by the hurricane and by the associated secondary storm system. A massive rain shield developed to the north of this third low-pressure system as the abundant moist Gulf air overran the cooler air north of the system center. This intense low-pressure system tracked very slowly northward across southwestern Virginia to southeastern West Virginia on November 4. The storm then traveled in an east-northeasterly direction through the eastern panhandle of West Virginia and across northern Virginia and northern Maryland. This third system produced as much as 9 in. of rain in West Virginia and 12 in. in Virginia (official National Weather Services gages) on saturated ground. 9 Distribution of Precipitation Rainfall for the storm period (October 31-November 6) varied considerably over the four-State study area as shown on the isohyetal map in figure 5. This map was derived from a computer plot generated by an interpolating algorithm, MINC--a program widely used within the geophysical science community (Godson and Webring, 1982). The map was developed from rainfall data from the official network of U.S. National Weather Service precipitation gages in the four-State region. Because of orographic effects, somewhat more rainfall probably occurred in some areas than is reflected by the isohyetal map. Rainfall in West Virginia, recorded by National Weather Service stations, ranged from 3 in. in the western part of the State to greater than 11 in. in the northeastern part of the State; 14 in. was recorded at an unofficial site in the eastern panhandle (Federal Emergency Management Agency, 1985c). Rainfall in the affected area of Virginia ranged from 4 in. in the east-central part of the State to greater than 18 in. at two separate locations in the Blue Ridge Mountains in the west-central part of the State. In the affected regions of Maryland and Pennsylvania, amounts ranged from 2 in. at various locations up to 7 in. at one site in western Maryland. There is widespread belief within the technical community involved with the flood that actual rainfall in many ungaged areas exceeded the officially documented values by significant amounts, especially in West Virginia. Unfortunately, virtually no well-documented bucket survey data were available to augment the official National Weather Service network data. Graphs of accumulated rainfall values for the entire storm period (October 31-November 6) are presented in figures 7-9 for six representative sites (official recording rain gages) in the four-State area. The rain-gage locations are shown in figure 6. GENERAL DESCRIPTION OF FLOOD The October-November 1985 storm period caused extremely severe flooding over large areas of West Virginia and Virginia. Flooding in Pennsylvania and Maryland was somewhat less severe and widespread but very damaging. Exclusive of indirectly related coastal flooding resulting from unusually high tides (damage estimated to be $35 million), this storm was the fourth most costly hurricane - type storm (tropical cyclone) in United States history. Sixty-two lives were lost, and damage was estimated to be $1,400 million. The damage has been exceeded only by Hurricane Agnes (1972), 117 lives lost and $3,103 million damages; Camille (1969), 258 lives lost and $1,421 million damages; and Betsy (1965), 75 lives lost and $1,420 million damages (Bailey, Patterson, and Paulhus, 1975). The costs of these three previous storms would, of course, be substantially greater if translated into the 1985 dollars of the subject event. The most severe flooding of the November 1985 event occurred November 3-7 over an area encompassing eastern West Virginia, northern and west- central Virginia, the Maryland panhandle, and part of southwestern Pennsylvania. Peak stages and discharges for the flooding are presented in table 16 for selected gaging stations. Recurrence intervals also are 10 CUMULATIVE RAINFALL, IN INCHES CUMULATIVE RAINFALL, IN INCHES 31 1 2 3 4 5 6 OCTOBER - NOVEMBER 1985 Figure 7.-- Rainfall mass curves for two gages in West Virginia, October 31 - November 6, 1985. 13 CUMULATIVE RAINFALL, IN INCHES CUMULATIVE RAINFALL, IN INCHES OCTOBER - NOVEMBER 1985 Figure 8.-- Rainfall mass curves for two gages in Virginia, October 31 - November 6, 1985. 14 CUMULATIVE RAINFALL. IN INCHES CUMULATIVE RAINFALL IN INCHES 31 1 2 3 4 5 6 OCTOBER - NOVEMBER 1985 Figure 9.-- Rainfall mass curves for gages in Pennsylvania and Maryland, October 31 - November 6, 1985. 15 listed, along with previous maximum peaks of record at these stations. Recurrence intervals are described later in the section on Flood Frequency. Peak-discharge data for some miscellaneous sites also are given in table 16. New maximum peak discharges were recorded at 63 gaging stations; peaks exceeded 100-year recurrence intervals at 63 sites. The 63 new record peaks were, on the average, 89 percent greater than the previous maximum discharges, exceeding the previous maximums by more than 50 percent at 40 stations. In West Virginia, the Cheat River and South Branch Potomac River basins were particularly hard hit. For example, peak runoff of 170,000 ft 3 /s (cubic feet per second) from a 718-mi 2 (square mile) site was estimated in the Cheat River basin. Peaks up to 110,000 ft 3 /s from 283 mi 2 and 240,000 ft 3 /s from 1,471 mi 2 were recorded in the South Branch Potomac River basin. New maximum peak discharges occurred at 25 of the 50 gaging stations in the affected area of West Virginia. Peak flows equaling or exceeding 100-year recurrence intervals occurred at 27 of the 41 stations not affected by significant regulation. Damage was estimated to be $578 million and 38 people died as a result of the flooding in West Virginia (Federal Emergency Management Agency, 1985c). In Virginia, the James River and the Roanoke River basins were especially hard hit. Peak discharges as high as 13,000 ft 3 /s from 13.6 mi 2 , 25,200 ft 3 /s from 47.6 mi 2 , and 179,000 ft 3 /s from 2,075 mi were documented in the James River basin. Peaks of 10,400 ft 3 /s from 11.7 mi 2 and 20,000 ft 3 /s from 56.8 mi 2 were recorded in the Roanoke River basin. New maximum peak discharges occurred at 34 of the 109 gaging stations in the affected area of Virginia. Peak flows equaling or exceeding 100-year recurrence intervals occurred at 32 of the 102 gaging stations having minimal or no regulation. A total of 22 deaths were attributed to the flooding in Virginia, and damage was estimated to be $753 million (Federal Emergency Management Agency, 1985b), including approximately $19 million estimated to have been caused by tide-related flooding in coastal areas. In Pennsylvania, severe flooding occurred along the Monongahela River, with peak flow ranging up to 220,000 ft 3 /s from 4,407 mi 2 (gaging station at Greensboro). One fatality was attributed to the flooding in Pennsylvania, and damage was estimated to be $83 million (Federal Emergency Management Agency, 1985a). In Maryland, the upper Potomac River basin experienced severe flooding, with peak discharges ranging as high as 50,400 ft 3 /s from 225 mi 2 and 235,000 ft 3 /s from 3,109 mi 2 . One death resulted from the flooding in Maryland. Damage was estimated at $5 million, plus another $16 million related to tidal-coastal flooding (Maryland Emergency Management and Civil Defense Agency, written commun., 1986). 16 One extraordinary aspect of the November 1985 floods was the extremely high discharge rates that occurred in some of the larger drainage basins (in the 200- to 2,000-mi 2 range) in the South Branch Potomac and Cheat River basins. Peaks at these sites generally exceeded the largest peaks that resulted from Hurricane Agnes in similar size basins (Bailey, Patterson, and Paulhus, 1975). It is reasonable to infer, therefore, that the peaks of 170,000 ft 3 /s, Cheat River at Parsons, West Virginia, and 240,000 ft 3 /s, South Branch Potomac River near Springfield, West Virginia (sites 146 and 14, table 16), for example, were extremely rare events. FLOOD FREQUENCY Flood-frequency information is an important consideration in the design of a wide variety of water-related structures including bridges, culverts, and dams, and also in design and management of all structures located in flood plains. Flood frequency is a general term usually used to indicate how often a given flood discharge will be exceeded during a given period of time. Because the terminology is widely understood and accepted, flood frequencies in this report are expressed in terms of recurrence intervals. A recurrence interval is defined as the average interval of years during which a given flood peak can be expected to be exceeded once. The recurrence interval is inversely related to the probability of the peak being exceeded in any given year. Thus, a flood with a 25-year recurrence interval would have 1 chance in 25, or a 4-percent probability, of being exceeded in any given year. Though unlikely, such a flood could occur 2 or even several years in a row. Probability terminology is sometimes used in describing flood frequencies to avoid any inference of regularity of occurrence. Flood-frequency information is given in table 16 for gaging stations in this report. The flood-frequency data shown were determined using procedures recommended in U.S. Water Resources Council (1981). Flood- frequency information is not shown for a few stations because of insufficient length of record (nominally 10 years) at the sites. At some stations with short records, flood frequencies are given based on regional flood-frequency regression analyses. At sites where flood peaks are affected significantly by regulation, flood frequencies (recurrence intervals) are not shown because they generally are not meaningful and can be misleading. At many of the stations, recurrence intervals for the November 1985 flood peaks were greater than 100 years. Because of the relatively short lengths of long-term record available at streamflow-gaging stations, flood- frequency estimates are not considered reliable beyond the 100-year recurrence interval. Therefore, at stations where peak discharge exceeded 100-year values, recurrence intervals are shown in table 16 as >100. 17 DESCRIPTION OF FLOODING, BY STATE West Virginia The storm period of October 31 through November 6, 1985, caused major flooding throughout eastern West Virginia in what was described by the Governor of the State as the worst flood in West Virginia history. Record- breaking floods occurred on several rivers within the Potomac, Monongahela, and Kanawha River basins. The most severe flooding occurred in the Cheat River and South Branch Potomac River basins. However, major flooding with record peaks also occurred in the Tygart, Greenbrier, and Little Kanawha River basins. The flooding in the Cheat River basin was particularly devastating. Towns along the Cheat River suffered extremely heavy damage. Figures 10 and 11 reflect the aftermath of the flooding in Parsons and Rowlesburg, respectively. Figure 12 shows the town of Albright, W. Va., before and after much of it was destroyed. At five of the six streamflow-gaging stations operated in the Cheat River basin, the peak discharge exceeded the 100-year recurrence interval and also set a new record for magnitude (see table 16). The peak flow of 100,000 ft 3 /s at the gaging station Dry Fork at Hendricks was more than twice the previous maximum (47,000 ft 3 /s), from records available since 1940, and the peak stage of 20.74 ft was more than 5 ft higher. The peak discharge of the Cheat River at Parsons, 170,000 ft 3 /s, was more than double the previous maximum (82,000 ft 3 /s), from records available since 1913. The peak discharge of the Cheat River at Rowlesburg, 190,000 ft 3 /s, was 1.5 times the previous maximum of 125,000 ft 3 /s (in 1844). The 1985 peak at the gaging station Shavers Fork at Parsons, 43,000 ft 3 /s was 1.7 times the previous peaks of record (25,000 ft 3 /s in both 1888 and 1907). A discharge hydrograph of the flood at Shavers Fork at Parsons is shown in figure 13, with corresponding unit discharge values given in table 1. Flooding in the South Branch Potomac River basin was also devastating, with flood peaks of extraordinary magnitude. The towns of Petersburg and Moorefield were particularly hard hit. At five of the six gaging stations operating in the South Branch Potomac basin, new peak discharge records were set (by wide margins), and at those five stations (all without significant upstream regulation) the peaks exceeded 100-year recurrence intervals. For example, the peak discharge of 44,000 ft 3 /s at the gaging station South Branch Potomac River at Franklin was nearly 3 times the previous maximum (15,000 ft 3 /s), from records available since 1940, and the peak stage was 11 ft higher. The flood peak of 110,000 ft 3 /s at the gaging station South Fork South Branch Potomac River near Moorefield was 2.8 times the previous maximum discharge from records since 1928. The peak discharge at South Branch Potomac River near Springfield (240,000 ft 3 /s) was almost twice the previous peak (143,000 ft 3 /s), from records since 1894, and the peak stage was 10 ft higher. The peak discharge for the gage at South Fork South Branch Potomac River at Brandywine (40,500 ft 3 /s) almost equaled the previous maximum (41,200 ft 3 /s), from records since 1943. A discharge hydrograph for South Fork South Branch Potomac River at Brandywine is presented in figure 14, and the data are given in table 2. 18 Flooding on the Greenbrier River (in the Kanawha River basin) was very severe, causing extensive damage to the towns of Marlinton, Ronceverte, and Alderson. New peak-discharge records were set at all five gaging stations operated in the basin (by a wide margin at three stations). The peaks exceeded 100-year recurrence intervals at all five sites. The peak discharge of 37,100 ft 3 /s at the gaging station Greenbrier River at Durbin was over 3 times the previous maximum, 12,200 ft 3 /s, from records since 1943, and the peak on the Greenbrier at Buckeye (82,000 ft 3 /s) was twice the previous maximum (41,500 ft 3 /s), from records since 1929. The peak flow at Greenbrier River at Alderson, 90,600 ft 3 /s, was the largest peak from records since 1895, exceeding the previous maximum (1918) by 17 percent. Discharge hydrographs for the Greenbrier River gaging stations at Durbin, Buckeye, and Alderson are given in figures 15-17; unit discharge data are given in tables 3-5. Flooding in the Tygart Valley River basin (tributary to the Monongahela River) set new records for peak discharge at all five of the long-term unregulated gaging stations in the basin (see table 16). However, the peaks were not as extreme, relative to the previous peaks of record, as those in the Cheat River and South Branch Potomac River basins. Recurrence intervals for the peaks equaled or exceeded 50 years at all five of the aforementioned sites in the Tygart basin, and four were in excess of 100 years. Also, at one newly established gaging station, Three Forks Creek near Grafton, the peak discharge, 12,000 ft 3 /s, was estimated to exceed the 100-year recurrence interval. A discharge hydrograph for the flood at Tygart Valley River at Belington is shown in figure 18, and the corresponding unit discharge data are given in table 6. The November 1985 storm also caused new peak discharges of record at four gaging stations not discussed thus far, two in the Kanawha River basin and two in the headwaters of the Little Kanawha River basin. The new maximums in the Kanawha River basin were at Gauley River near Craigsville (61,800 ft 3 /s), operated since 1964, and at Elk River at Webster Springs (27,000 ft 3 /s), operated from 1908 to 1916. In the Little Kanawha River basin, the new maximums were on the Little Kanawha River near Wildcat (10,500 ft 3 /s), from records since 1973, and at Glenville (26,900 ft 3 /s), from records on and off since 1915 and regulated since 1979. One other gaged site, in the Potomac River basin, should receive special mention. The gaging station Stony River near Mount Storm, though highly regulated by two upstream reservoirs, still experienced a peak discharge of 14,000 ft 3 /s from only 48.8 mi 2 . This discharge was nearly double the previous peak of record (7,300 ft 3 /s), operated since 1961, and the peak stage was over 4 ft higher than the previous peak. The damage from the November 1985 flood in West Virginia was extremely extensive. However, given the situation, with the worst flood in recent history (if not the worst ever) striking a region where most of the really livable land lies in the flood plain, widespread severe damage was virtually inevitable. 19 In West Virginia, 38 people lost their lives and damage was estimated at $578 million (Federal Emergency Management Agency, 1985c). A total of 29 counties (essentially the entire eastern half of the State) were included in the declaration of disaster areas by the Federal Government. Nearly 9,000 homes were damaged by the flooding, of which more than 4,000 were completely destroyed. Thousands of acres of productive farmland were literally stripped of their topsoil, leaving broad expanses of boulders and rubble often over 3 ft thick. Agricultural losses alone were estimated to be $97 million. A total of 50 highway bridges were destroyed according to the West Virginia State Department of Highways, and damage to businesses was estimated at $118 million. As severe as the damage was in West Virginia, it would have been significantly worse if not for the presence of several flood-control projects. According to the U.S. Army Corps of Engineers (Federal Emergency Management Agency, 1985c), Tygart and Stonewall Jackson Lakes on the Tygart Valley and West Fork Rivers, respectively, functioned to reduce flood damage by an estimated $69 million. Bluestone, Summersville, and Sutton Lakes were reported to have prevented flood damages of $62 million in the Kanawha River basin, and Burnsville Lake was estimated to have prevented $3.9 million in damages in the Little Kanawha basin. 20 21 Figure 10.-- Cheat River damage, Pennsylvania Avenue, Parsons, W. Va. (Photograph by Nancy J. Isner, The Inter-Mountain, Elkins, W. Va.) Figure 11.- Cheat River damage, railroad truss bridge, Rowlesburg, VV. Va. (Photograph by Delbert Benson, Preston County Journal, and courtesy of McClain Printing Co., Parsons, VV. Va.) 22 Figure 12.-- Cheat River damage, before and after flood at Albright, W. Va. (Photograph by Bob Sigler, Skyhawk Aerial Photos, Albright, W. Va., and courtesy of McClain Printing Co., Parsons, W. Va.) 23 DISCHARGE, IN CUBIC FEET PER SECOND OCTOBER - NOVEMBER 1985 Figure 13.-- Discharge at gaging station Shavers Fork at Parsons, VV. Va. (Site No. 145), October 31 - November 15, 1985. 24 Table l.--Gage height and discharge for flood of November 1985 at gaging station Shavers Fork at Parsons, W. Va. (Site No. 145) [ft = feet; ft 3 /s cubic feet per second] Date Time Gage height (ft) Discharge (ft 3 /s) October 31 1200 1.28 189 2400 1.26 183 November 1-- 1200 1.23 174 2400 1.22 171 November 2 - 0600 1.23 174 0900 1.29 192 1200 1.26 183 2400 1.28 189 November 3- 1200 1.31 198 1900 1.34 208 2200 1.40 227 2400 1.71 353 November 4- 0400 1.87 436 0700 2.26 708 0800 2.32 756 0900 3.42 1,770 1000 3.53 1,880 1200 3.82 2,170 1300 3.96 2,310 1400 4.46 2,840 1500 5.47 4,130 1700 8.24 8,430 1900 11.55 15,800 2000 12.97 19,300 2100 13.96 22,300 2200 15.85 27,900 2400 19.56 41,600 November 5- 0100 19.85 43,000 0300 18.93 39,100 0500 17.53 33,800 0700 15.73 27,600 0900 14.08 22,600 1100 12.58 18,300 1300 11.18 14,800 1600 9.13 10,100 1900 7.68 7,460 2200 6.88 6,200 2400 6.66 5,860 November 6- 0200 6.63 5,820 0500 6.71 5,940 0800 6.53 5,660 1000 6.38 5,430 1200 6.15 5,080 1800 5.59 4,300 2400 5.04 3,570 November 7- 0600 4.52 2,910 1200 4.10 2,450 1800 3.78 2,130 2400 3.52 1,870 November 8- 1200 3.15 1,500 2400 2.87 1,220 November 9- 1200 2.63 1,010 2400 2.45 860 November 10- 1200 2.31 748 2400 2.19 653 November 11 1200 2.12 604 2400 2.05 555 November 12- 1200 2.02 534 2400 1.94 480 November 13- 1100 1.88 442 1400 1.98 507 1600 1.96 493 2400 1.98 507 November 14- 1200 2.15 625 2100 2.26 708 2400 2.25 700 November 15- 1200 2.09 583 2400 1.98 507 25 DISCHARGE, IN CUBIC FEET PER SECOND Figure 14.-- Discharge at gaging station South Fork South Branch Potomac River at Brandywine, VV. Va. (Site No. 12), October 31 - November 15, 1985. 26 Table 2.—Gage height and discharge for flood of November 1985 at gaging station South Fork South Branch Potomac River at Brandywine, W. Va. (Site No. 12) [ft = feet; ft /s = cubic feet per second) Date Time Gage height Discharge (ft) (ft 3 /s) October 31- 1200 1.50 23 2400 1.51 24 November 1 0600 1.56 29 1200 1.64 39 1800 2.06 128 2400 2.93 488 November 2 0600 3.38 786 1200 3.45 835 1800 3.53 894 2400 3.50 870 November 3 - 0600 3.38 786 1200 3.30 730 1800 3.91 1,210 2400 4.64 1,920 November 4 0300 5.28 2,640 0600 6.08 3,600 0900 6.00 3,500 1200 6.65 4,340 1500 8.55 7,080 1800 10.27 10,000 2100 13.00 16,000 2230 18.42 40,500 2400 16.85 31,200 November 5- 0300 13.35 17,000 0600 10.33 10,200 0900 8.25 6,600 1200 7.29 5,210 1500 6.55 4,220 1800 6.05 3,560 2100 5.71 3,150 2400 5.47 2,860 November 6- 0600 5.18 2,520 1200 4.95 2,260 1800 4.82 2,120 2400 4.75 2,040 November 7- 1200 4.64 1,920 2400 4.55 1,820 November 8- 1200 4.45 1,720 2400 4.28 1,550 November 9- 1200 4.04 1,330 2400 3.95 1,240 November 10- 1200 3.68 1,010 2400 3.40 800 November 11 1200 3.09 584 2400 3.00 530 November 12- 1200 2.94 494 2400 2.79 405 November 13 1200 2.73 375 2400 2.67 346 November 14 0600 2.64 333 1200 2.28 194 1800 2.12 146 2400 2.08 134 November 15 1200 2.01 113 2400 1.95 98 27 DISCHARGE, IN CUBIC FEET PER SECOND Figure 15.-- Discharge at gaging station Greenbriar River at Durbin, VV. Va. (Site No. 178), October 31 - November 15, 1985. 28 Table 3.--Gage height and discharge for flood of November 1985 at gaging station Greenbrier River at Durbin, W. Va. (Site No. 178) [ft = feet; ft 3 /s cubic feet per second] Date Time Gage height (ft) Discharge (ft 3 /s) October 31- 1200 1.35 68 2400 1.34 67 November 1- 1200 1.32 63 2400 1.34 67 November 2 -- -- 1200 1.43 83 2400 1.61 117 November 3- 0600 1.64 123 1200 1.71 137 1800 1.99 212 2400 2.48 392 November 4- 0300 2.91 606 0600 3.50 1,000 0900 3.68 1,140 1200 5.47 3,450 1500 9.56 13,400 1600 11.40 19,000 1800 14.36 30,400 1900 15.15 33,800 2000 a 15.50 b 35,500 2100 15.09 33,500 2400 13.49 27,000 November 5 - - - 0300 11.77 20,200 0600 10.27 15,500 0900 8.85 11,300 1200 7.54 7,900 1500 6.69 6,020 1800 6.11 4,740 2100 5.76 3,980 2400 5.47 3,450 November 6- 0600 4.99 2,680 1200 4.62 2,110 1800 4.29 1,690 2400 3.99 1,390 November 7- 0600 3.74 1,190 1200 3.53 1,020 1800 3.34 872 2400 3.17 762 November 8- 1200 2.85 575 2400 2.63 465 November 9- 1200 2.45 380 2400 2.32 328 November 10- 1200 2.21 284 2400 2.11 249 November 11- 1200 2.03 224 2400 1.99 212 November 12 - - 1200 1.90 185 2400 1.85 173 November 13- 0600 1.82 165 1200 1.82 165 1800 1.90 185 2400 1.95 200 November 14- - 1200 1.85 173 2400 1.81 163 November 15- 1200 1.78 155 2400 1.75 148 a Peak stage, 15.82 ft (probably between 1900 and 2000 hours); see table 16. y. o Peak discharge, 37,100 ft J /s; see table 16. 29 DISCHARGE, IN CUBIC FEET PER SECOND OCTOBER - NOVEMBER 1985 Figure 16.-- Discharge at gaging station Greenbriar River at Buckeye, VV. Va. (Site No. 180), October 31 - November 15, 1985. 30 Table 4.—Gage height and discharge for flood of November 1985 at gaging station Greenbrier River at Buckeye, W. Va. (Site No. 180) (ft = feet; 3 ft /s = cubic feet per second] Gage Date Time height Discharge (ft) (ft 3 /s) October 31 1200 2.09 122 2400 2.09 122 November 1 1200 2.09 122 2400 2.09 122 November 2 1200 2.12 131 2400 2.17 146 November 3- 0600 2.22 162 1200 2.34 206 1800 2.87 445 2400 3.26 646 November 4 0300 3.46 766 0600 3.87 1,040 0900 4.46 1,490 1100 5.51 2,540 1200 7.05 4,790 1400 9.52 10,100 1600 11.31 15,100 1800 14.45 25,700 2100 17.68 40,100 2400 21.31 64,500 November 5- 0200 22.83 78,300 0300 a 22.95 b 79,500 0500 22.31 73,100 0800 20.56 58,700 1000 19.21 49,400 1200 17.88 41,200 1500 15.86 31,800 1800 13.75 23,100 2000 12.29 18,200 2200 11.13 14,600 2400 10.31 12,100 November 6 0300 9.46 9,900 0600 8.85 8,380 0900 8.31 7,220 1200 7.90 6,400 1300 7.97 6,540 1800 7.44 5,490 2400 6.89 4,540 November 7- 0600 6.41 3,820 1200 5.98 3,170 1800 5.63 2,700 2400 5.32 2,320 November 8- 1200 4.84 1,840 2400 4.42 1,460 November 9- 1200 4.11 1,210 2400 3.87 1,040 November 10- 1200 3.68 907 2400 3.53 810 November 11- 1200 3.40 730 2400 3.28 658 November 12- 1200 3.19 605 2400 3.11 565 November 13- 1200 3.02 520 2400 2.99 505 November 14- 1200 3.00 510 2000 3.05 535 2400 3.02 520 November 15- 1200 2.93 475 2400 2.87 445 a Peak stage, 23.2 ft (probably between 0200 and 0300 hours); see table 16. Peak discharge, 82,000 ft J /s; see table 16. 31 DISCHARGE, IN CUBIC FEET PER SECOND OCTOBER - NOVEMBER 1985 Figure 17.-- Discharge at gaging station Greenbriar River at Alderson, VV. Va. (Site No. 181), October 31 - November 15, 1985. 32 Table 5.—Gage height and discharge for flood of November 1985 at gaging station Greenbrier River at Alderson, W. Va. (Site No. 181) 3 [ft = feet; ft /s * cubic feet per second; dash indicates that gage height was not determined] Date Time Gage height Discharge (ft) (ft 3 /s) October 31 1200 2.37 214 2400 2.36 209 November 1 1200 2.33 196 2400 2.33 196 November 2 1200 2.33 196 2400 2.34 201 November 3- - 1200 2.37 214 2400 2.45 254 November 4 - 0300 2.47 264 0600 2.53 298 0900 2.65 375 1200 2.71 418 1500 2.87 553 1700 3.34 1,090 1800 3.99 2,120 1900 5.56 5,610 2100 6.85 9,350 2300 8.58 14,700 2400 9.81 19,000 November 5- 0300 13.01 30,200 0400 13.98 33,600 0600 15.47 39,100 0900 17.16 46,600 1200 18.30 51,500 1300 18.67 53,400 1500 19.91 60,500 1800 22.41 77,300 1900 23.09 82,800 2000 - a 88,500 a 2100 23.95 90,600 2200 - a 89,400 2300 - a 87,400 2400 - a 84,500 November 6- 0100 22.87 81,000 0200 22.25 76,000 0400 20.74 65,400 0600 18.64 53,200 0900 13.78 32,900 1000 12.35 27,900 1100 11.29 24,200 1200 10.57 21,700 1500 9.36 17,500 1800 8.61 14,800 2100 8.05 13,000 2400 7.60 11,600 November 7- 0300 7.18 10,300 0600 6.83 9,290 1200 6.30 7,700 1800 5.90 6,530 2400 5.59 5,690 November 8- 1200 5.10 4,450 2400 4.74 3,630 November 9- 1200 4.46 3,020 2400 4.22 2,540 November 10 1200 4.03 2,190 2400 3.88 1,920 November 11 1200 3.75 1,690 2400 3.66 1,540 November 12 1200 3.56 1,380 2400 3.48 1,270 November 13- 1200 3.41 1,170 2400 3.36 1,110 November 14- 1200 3.30 1,040 2400 3.26 992 November 15 - 1200 3.23 956 2400 3.22 944 a Estimated. 33 DISCHARGE, IN CUBIC FEET PER SECOND NOVEMBER 1985 Figure 18.-- Discharge at gaging station Tygart Valley River at Belington, \V. Va. (Site No. 132), November 1-15, 1985. 34 Table 6.—Gage height and discharge for flood of November 1985 at gaging station Tygart Valley River at Belington, W. Va. (Site No. 132) 3 [ft = feet; ft /s = cubic feet per second; dash indicates that gage height was not determined] Date Time Gage height Discharge (ft) (ft 3 /s) November 1 1200 2.76 96 2A00 2.75 9A November 2 1200 2.75 9A 2A00 2.75 9A November 3 1200 2.8A 120 2A00 2.91 1AA November A 0300 2.91 1AA 0600 2.93 151 0900 2.98 170 1200 3.08 210 1500 A. 30 8A0 1800 10. A5 5,760 2100 17.00 1A.800 2A00 19.63 20,000 November 5- 0300 21.08 23,300 0600 22.50 26,700 0900 - a 28,600 1200 - a 29,200 1500 23.65 29,500 1800 - a 28,900 2100 - a 27,800 2A00 22.52 26,700 November 6 0300 21.78 25,000 0600 20.73 22,A00 0900 19. A2 19,500 1200 18.05 16,800 1500 16.70 1A,300 1800 15.00 11,700 2100 13.75 9,950 2A00 12.62 8, AA0 November 7- 0600 10.32 5,620 1200 8. A9 3,810 1800 7.5A 3,030 2A00 6.95 2,570 November 8 0600 6.5A 2,290 1200 6.15 2,010 1800 5.80 1,770 2A00 5.A9 1,550 November 9 1200 5.00 1,250 2A00 A. 60 1,010 November 10 1200 A. 32 851 2A00 A.08 719 November 11 - - - 1200 3.96 653 2A00 3.88 609 November 12 1200 3.80 565 2A00 3.71 515 November 13- 1200 3.65 A85 2A00 3.82 576 November 1A 0600 A.08 719 1200 A. 29 83A 1800 A.AA 917 2A00 A.A5 922 November 15 1200 A.31 8A5 2A00 A. 11 735 a Estimated. 35 Virginia The November 1985 storm produced severe flooding over a large part of Virginia. The worst flooding was in the west-central and north-central parts of the State, but major runoff- related damage occurred as far east as Richmond. New peaks of record occurred on several streams within the Roanoke, James, and Shenandoah River basins. The most severe damage was confined to the Roanoke and James River basins, though record-breaking peaks and widespread flooding did occur in the Shenandoah River basin. The most extensive damage in Virginia occurred in the Roanoke River basin, primarily in the Roanoke - Salem metropolitan area. Figures 19 and 20 illustrate to some extent the severity of the flooding there. New peak- discharge records were set at six gaging stations and 100-year recurrence intervals were exceeded at five of those stations (table 16). At the gaging station Roanoke River at Roanoke, the peak flow of 32,300 ft 3 /s exceeded the previous maximum (25,300 ft 3 /s) by over 25 percent, from records since 1899, and the peak stage was 3.7 ft higher. The peak flow of 52,300 ft 3 /s at Roanoke River at Niagara was over 75 percent greater than the previous maximum, from records since 1926, and the stage of 25.3 ft was over 6 ft higher. At another station, Tinker Creek near Daleville, a unit discharge of 890 (ft 3 /s)/mi 2 (cubic feet per second per square mile) was recorded from 11.7 mi 2 . At this station, the peak discharge of 10,400 ft 3 /s was 2.6 times the previous maximum, from records since 1956. A discharge hydrograph for the flood at Roanoke River at Niagara is shown in figure 21, and discharge data are given in table 7. Severe flooding was widespread in the James River basin. The city of Lynchburg was particularly hard hit, with stages 7 ft higher than the previous flood of record, in 1877. New peaks of record occurred at many locations from the headwaters of the James River downstream to the main-stem station at Bent Creek. Farther downstream, the November 1985 peaks, though still extremely large, generally were smaller than those from Hurricanes Agnes and Camille. At the gaging station James River at Scottsville, the recurrence interval exceeded 100 years, but the discharge, 243,000 ft 3 /s, was considerably less than the 301,000 ft 3 /s peak from Hurricane Agnes. Flooding in Richmond was extensive, but not nearly as severe as the flooding that resulted from Agnes in June 1972, the peak stage of which was 4 ft higher than that in November 1985. In the upper reaches of the James River basin, new records of peak discharge were set at 15 of the 24 essentially unregulated stations upstream from (and including) the gage at Bent Creek. Flood peaks exceeded 100-year recurrence intervals at 17 of those stations. At the gaging station Catawba Creek near Catawba, the discharge of 21,200 ft 3 /s (from 34.3 mi 2 ) was 2.7 times the previous maximum of 7,740 ft 3 /s (and the stage was 8.8 ft higher), from records since 1943. The peak at Maury River at Rockbridge Baths, 87,700 ft 3 /s, was 2.7 times the previous peak of record and the stage was 6.1 ft higher, from records since 1928. Peak discharges on the main-stem James River gaging stations at Buchanan, Holcombs Rock, and Bent Creek all exceeded the previous maximums by at least 25 percent and stages were from 3.6 to 6.6 ft higher than the previous peak stages. Discharge hydrographs for the James River basin gaging stations Back 36 Creek near Sunrise, Calfpasture River above Mill Creek at Goshen, and James River at Holcombs Rock are presented in figures 22 to 24, and corresponding discharge data are given in tables 8 to 10. Flooding in the Shenandoah River basin was not as severe as in the James River basin. Figure 25 shows the flooding at Harpers Ferry, W. Va., at the confluence of the Shenandoah and Potomac Rivers. Peak discharges set new records at 13 of the 24 streamflow measuring stations in the Shenandoah River basin and exceeded 100-year recurrence intervals at 9 stations. The peak discharge at the gaging station Middle River near Verona, 45,000 ft 3 /s, was greater than five times the previous maximum (8,650 ft 3 /s), from records since 1968, and the stage was 10 ft higher. The peak at South Fork Shenandoah River near Lynnwood, 95,100 ft 3 /s, was 19 percent greater than the previous maximum, and the stage was 2.2 ft higher, from records since 1930. Discharge hydrographs for the flood at Middle River near Grottoes and at North Fork Shenandoah River at Mount Jackson are shown in figures 26 and 27, and corresponding discharge data are given in tables 11 and 12. Flood damage in Virginia was extremely severe. Monetarily, Virginia's losses were the largest by far for any flood in the history of the State, including Hurricanes Camille and Agnes. Virginia's losses even exceeded those estimated for West Virginia for this flood, no doubt because more populated and otherwise developed areas were on the flood plains of the most severely flooded rivers in Virginia. The metropolitan areas of Richmond and Lynchburg along the James River, and Roanoke and Salem along the Roanoke River all sustained particularly heavy damage with flood stages being the worst ever recorded in the Roanoke, Salem, and Lynchburg areas. A total of 22 lives were lost in Virginia and damage was estimated at $753 million, including $19 million tide-related damage (Federal Emergency Management Agency, 1985b). The disaster-area declaration by the Federal Government included 40 counties and 12 independent cities. Damage to the Roanoke - Salem region alone was estimated at $440 million. Damage to one manufacturing facility exceeded $20 million, according to a Roanoke-based newspaper. Many people in Roanoke were rescued from rooftops by boats and helicopters. Residents of one apartment complex in Salem were rescued by boat from third-floor apartments. In Lynchburg, where the previous maximum stage known on the James River was exceeded by approximately 7 ft, the damage also was especially severe. For example, an estimated $8 million in tobacco stored in warehouses along the river was destroyed. The damage in Virginia no doubt would have been even worse if not for two flood-control projects in the affected region. According to the U.S. Army Corps of Engineers (Federal Emergency Management Agency, 1985b), Lake Moomaw functioned to prevent approximately $70 million additional flood damage in the James River basin. Also, Philpott Lake was credited with saving an estimated $1 million in damage along the Smith River in the Roanoke River basin. 37 38 Roanoke Times and World News.) 39 Figure 20.-- Rescue operation on East Main Street, Salem, Va. (Photograph by Wayne Scarberry, Roanoke Times and World News.) DISCHARGE, IN CUBIC FEET PER SECOND OCTOBER - NOVEMBER 1985 Figure 21.— Discharge at gaging station Roanoke River at Niagara, Va. (Site No. 120), October 30 - November 15, 1985. 40 Table 7.--Gage height and discharge for flood of November 1985 at gaging station Roanoke River at Niagara, Va. (Site No. 120) 3 [ft » feet; ft /s = cubic feet per second; dash indicates that gage height was not determined] Date Time Gage height (ft) Discharge (ft 3 /s) Date Time Gage height (ft) Discharge (ft 3 /s) October 30- 0100 1.72 150 November 5- 0300 _ a 22,900 1200 1.69 145 0700 - a 17,200 2400 1.72 150 1200 - a 12,200 October 31- 0900 1.82 168 1900 - a 7,870 1200 2.15 237 2400 - a 6,060 1600 2.81 417 November 6- 0500 - a 4,720 1900 2.86 433 1100 7.85 3,660 2400 2.79 411 1700 7.28 3,060 November 1- 0300 2.69 381 2400 6.74 2,550 0600 2.78 408 November 7- 0600 6.29 2,170 1200 4.14 931 1200 5.97 1,920 1800 5.27 1,560 2400 5.43 1,540 2400 7.21 3,040 November 8- 1200 5.09 1,330 November 2- 0600 8.85 4,840 2400 4.83 1,180 0900 9.36 5,510 November 9- 1200 4.57 1,050 1200 9.14 5,210 2400 4.38 952 1800 7.71 3,540 November 10- 1200 4.18 859 2400 6.71 2,610 2400 4.07 810 November 3- 0700 6.01 2,070 November 11 - 0800 3.95 759 0800 6.05 2,100 1000 3.45 564 0900 6.68 2,580 1400 3.76 681 1400 7.55 3,370 1700 4.28 905 2400 7.01 2,860 2400 3.83 709 November 4 - 0400 6.72 2,610 November 12- 1000 3.35 529 0800 7.21 3,040 1600 4.12 832 1000 7.83 3,660 2400 3.61 623 1100 8.50 4,410 November 13- 1000 3.48 575 1200 11.80 9,520 1300 3.25 495 1300 16.58 21,400 1800 3.49 578 1400 18.36 26,800 2400 3.49 578 1600 20.78 34,800 November 14- 0700 3.42 553 1700 22.81 42,200 0900 3.59 615 1800 23.96 46,700 1200 3.26 498 a 1900 25.30 52,300 1600 3.44 560 2000 - a 45,700 2400 3.36 532 2200 - a 39,500 November 15- 0900 3.28 505 2300 - a 32,100 1200 3.97 767 2400 - a 29,500 1500 3.45 564 1800 3.28 505 2400 3.20 478 a Estimated. 41 DISCHARGE, IN CUBIC FEET PER SECOND Figure 22.-- Discharge at gaging station Back Creek near Sunrise, Va. (Site No. 60), November 1-15, 1985. 42 Table 8.—Gage height and discharge for flood of November 1985 at gaging station Back Creek near Sunrise, Va. (Site No. 60) [ft = feet; ft 3 /s cubic feet per second) Date Time Gage height (ft) Discharge (ft 3 /s) November 1 0100 0.50 11 1000 0.50 11 2A00 0.58 1A November 2- 0500 0.62 17 1200 0.78 27 2A00 1.31 92 November 3 1200 1.A6 120 1900 2.20 301 2A00 2.39 355 November A 0200 2.56 A07 0600 3.32 731 0900 3.56 857 1000 3.77 977 1100 A. 26 1,310 1200 5.30 2, A70 1300 6.66 5,050 1A00 7.73 7,970 1500 9.15 13,300 1600 a 10.00 17,500 1700 9.79 16,A00 1800 9.67 15,800 1900 9.28 13,900 2000 9.1A 13,300 2200 8.51 10,700 2A00 8.01 8,880 November 5- 0100 7.6A 7,690 0500 7.02 5,950 0800 6.67 5,070 1100 6.15 3,900 1300 5.93 3.A70 1600 5. A9 2,7A0 2000 A.98 2,0A0 2A00 A. 58 1,520 November 6 0600 A.08 1,090 1200 3.66 81A 1800 3.35 639 2A00 3.10 529 November 7- 1200 2.7A 395 2A00 2. AA 307 November 8- 1200 2.18 239 2A00 2.03 201 November 9 1200 1.92 175 2A00 1.83 153 November 10- 1200 1.76 137 2A00 1.69 122 November 11 0900 1.65 11A 1000 3.20 283 1300 3.18 275 1600 2.80 155 2A00 2.72 137 November 12 0900 2.68 128 1200 2.5A 101 2A00 2.51 95 November 13 1200 2.A7 89 2A00 2.A6 87 November 1A 1200 2. A3 82 2A00 2.39 76 November 15- 0800 2.37 73 1100 2.23 5A 1200 2.50 82 1300 2. A1 69 2A00 2.35 61 Peak stage, 10.01 ft; see table 16. 43 DISCHARGE, IN CUBIC FEET PER SECOND NOVEMBER 1985 Figure 23.-- Discharge at gaging station Calfpasture River above Mill Creek at Goshen, Va. (Site No. 80), November 1-15, 1985. 44 Table 9.—Gage height and discharge for flood of November 1985 at gaging station Calfpasture River above Mill Creek at Goshen, Va. (Site No. 80) 3 (ft = feet; ft /s = cubic feet per second] Date Time Gage height (ft) Discharge (ft 3 /s) November 1- 0100 1.93 29 1200 1.9A 30 2A00 1.95 31 November 2 1000 2.02 A2 1100 3.01 325 1300 3.22 AA2 1800 3.35 523 2A00 3.63 706 November 3- 0600 3.68 7A1 1200 3.8A 855 1600 A.09 1,050 1800 A.35 1,270 2200 5.16 1,980 2A00 5. A3 2,230 November A- 0A00 5.72 2,520 0800 6. A A 3,2A0 1A00 8.20 5,790 1500 8.85 7,030 1600 9.88 9,160 1800 11.5A 1A,200 2000 13.10 20,200 2100 1A.58 26,900 2200 18.36 A6,000 2300 19.82 5A,000 2A00 20.23 56,300 November 5- 0100 20.09 55,500 0300 18.92 A9,100 0600 16.01 33,900 0800 1A.A8 26,500 1300 11.77 15,000 1500 10.27 10,100 1700 9.0A 7,390 1900 8.1A 5,680 2100 7.A9 A, 530 2A00 6.78 3,620 November 6- - 0300 6.22 3,020 0600 5.77 2,570 0900 5. A1 2,210 1200 5.12 1,950 1800 A. 68 1,550 2A00 A.35 1,270 November 7- 1200 3.90 900 2A00 3.61 692 November 8- 1200 3. A0 555 2A00 3.23 AA8 November 9- 1200 3.11 376 2A00 3.02 330 November 10- 1200 2.9A 293 2A00 2.87 262 November 11- 1200 2.81 236 2A00 2.76 217 November 12- 1200 2.72 202 2A00 2.67 185 November 13- 1200 2.63 173 2A00 2.59 160 November 1A- 1200 2.55 150 2A00 2.52 1A2 November 15- 1200 2.A9 135 2A00 2.A5 126 45 DISCHARGE. IN CUBIC FEET PER SECOND 1 , 000,000 100,000 10,000 1,000 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 OCTOBER - NOVEMBER 1985 Figure 24.-- Discharge at gaging station James River at Holcombs Rock, Va. (Site No. 86), October 30 - November 15, 1985. 46 Table 10.--Daily mean discharge for flood of November 1985 at gaging station James River at Holcombs Rock, Va. (Site No. 86) [ft = feet; ft 3 /s = cubic feet per second] Date Equivalent gage height (ft) Mean Discharge (ft 3 /s) October 30- 4.17 708 31- 4.16 776 November 1- 4.45 1,050 2- 6.99 4,590 3- 10.79 13,500 4. 20.72 51,600 November 5. a 39.17 a 180,000 6- 26.55 86,000 7.. 17.21 35,800 8.. 13.65 22,300 9- 10.27 12,000 November 10- 8.48 7,510 11.. 7.83 6,160 12- 7.24 5,040 13.. 6.78 4,240 14- 6.50 3,790 November 15- 6.27 3,430 Peak discharge (instantaneous maximum) November 5, 207,000 ft 3 /s; gage height occurred = 42.15 ft. 47 48 Figure 25.-- Confluence of Shenandoah and Potomac Rivers at Harpers Ferry, W. Va. (Photograph by Larry Morrris. the Washington Post, Washington, D.C.) DISCHARGE, IN CUBIC FEET PER SECOND NOVEMBER 1985 Figure 26.-- Discharge at gaging station Middle River near Grottoes, Va. (Site No. 30), November 1-15, 1985. 49 Table 11.—Gage height and discharge for flood of November 1985 at gaging station Middle River near Grottoes, Va. (Site No. 30) 3 [ft = feet; ft /s = cubic feet per second) Date Time Gage height (ft) Discharge (ft 3 /s) November 1-- - 0100 3.53 111 1200 3.69 1A2 1800 3.82 173 2A00 A.85 A50 November 2- 0600 5.38 617 1200 5.72 739 1800 6.72 1,130 2A00 7.10 1,290 November 3- 0300 7.28 1,370 0600 7.23 1,350 0900 7.16 1,310 1200 7.20 1,330 1500 7. A3 1,450 1800 8.05 1,780 2100 9.41 2,620 2A00 10.76 3,540 November 4 0300 12.05 4,570 0600 12.77 5,210 0900 13.22 5,630 1200 13.9A 6,350 1A00 1A.A5 6,870 1700 1A.9A 7,400 1800 15.26 7,760 2100 16. A6 9,160 2200 17.09 9,950 2A00 19.1A 12,700 November 5- 0200 21.90 16,800 0A00 25.7A 23,300 0600 29.93 31,500 0700 31.51 34,900 0800 32.58 37,300 0900 33.01 38,300 1000 a 33.03 b 38,400 1100 32.77 37,700 1200 32.07 36,100 1A00 30.17 32,000 1600 27.78 27,200 1800 25.28 22,500 2100 21.86 16,800 2A00 19.15 12,700 November 6 0300 17.07 9,920 0600 15.28 7,780 0900 13.5A 5,950 1200 11.82 4,410 1500 10.5A 3,450 1800 9.8A 3,000 2100 9.39 2,730 2A00 9.03 2,520 November 7- 0600 8.53 2,240 1200 8.15 2,030 1800 7.79 1,830 2A00 7.55 1,700 November 8- 1200 7.15 1,490 2A00 6.83 1,330 November 9 - - 1200 6.51 1,170 2A00 6.29 1,060 November 10 1200 6.10 971 2A00 5.97 912 November 11- 1200 5.81 840 1800 5.62 759 2A00 5.57 739 November 12- 1200 5. AA 687 2AO0 5.35 651 November 13- 1200 5.27 619 2A00 5.21 595 November 14 1200 5.13 566 2A00 5.07 545 November 15- 1200 5.00 522 2A00 A .93 501 3 Peak stage, 33.09 ft (probably between 0900 and 1000 hours); see table 16. Peak discharge, 38,500 ft /s; see table 16. 50 DISCHARGE, IN CUBIC FEET PER SECOND OCTOBER - NOVEMBER 1985 Figure 27.-- Discharge at gaging station North Fork Shenandoah River at Mount Jackson, Va. (Site No. 42), October 31 - November 15, 1985. 51 Table 12.--Gage height and discharge for flood of November 1985 at gaging station North Fork Shenandoah River at Mount Jackson, Va. (Site No. 42) 3 [ft “ feet; ft /s * cubic feet per second] Date Time Gage height (ft) Discharge (ft 3 /s) October 31 - 1200 2.67 134 2400 2.64 124 November 1- 0100 2.63 121 1200 2.65 128 2400 2.66 131 November 2- 1200 2.85 194 1800 4.14 824 2400 5.06 1,410 November 3- 0600 5.35 1,630 1200 5.22 1,530 1500 5.18 1,500 1800 5.31 1,600 2000 6.00 2,150 2200 7.55 3,740 2400 9.03 5,680 November 4- 0100 9.79 6,780 0300 10.81 8,520 0600 12.35 11,600 0800 13.24 13,600 1000 13.77 14,800 1200 14.07 15,500 1500 14.30 16,200 1800 14.06 15,500 2000 14.30 16,200 2400 16.13 26,700 November 5-- - 0200 17.39 41,800 0300 17.66 47,500 0400 17.79 50,800 0500 17.76 50,000 0700 17.50 44,000 0900 16.95 34,500 1200 15.98 25,500 1400 15.54 22,400 1600 15.07 19,600 2000 13.71 14,600 2400 12.22 11,300 November 6- 0300 11.08 9,060 0600 10.11 7,300 1200 8.76 5,300 1800 7.86 4,110 2400 7.21 3,350 November 7- 0600 6.72 2,830 1200 6.33 2,450 2400 5.76 1,960 November 8 - 1200 5.35 1,630 2400 5.03 1,390 November 9- 1200 4.80 1,230 2400 4.60 1,100 November 10- 1200 4.46 1,020 2400 4.32 932 November 11 1200 4.07 784 2400 3.94 712 November 12- 1200 3.83 652 2400 3.75 608 November 13- 1200 3.70 580 2400 3.64 550 November 14 - 1200 3.58 520 2400 3.53 495 November 15 1200 3.49 475 2400 3.42 442 52 Pennsylvania The November 1985 storm caused severe flooding in Pennsylvania, but flooding was much more localized than in West Virginia and Virginia. Record-breaking floods in Pennsylvania occurred only in the Monongahela River basin and only on the main stem above the confluence with the Youghiogheny River. However, the flooding along the Monongahela River was severe and the damage was very extensive. Many towns along the main stem were flooded from Point Marion (fig. 28), located just downstream from the West Virginia State line, to Pittsburgh (fig. 29). At two gaging stations, the peak discharges set new records for magnitude: the peak flow of 220,000 ft 3 /s at the Monongahela River at Greensboro was more than 60 percent greater than the previous maximum (134,000 ft 3 /s) from records since 1938, and the peak stage was more than 9 ft higher. The peak discharge farther downstream on the Monongahela River at Elizabeth, 178,000 ft 3 /s, obviously was attenuated but was still 12 percent greater than the previous maximum (158,000 ft 3 /s), from records since 1933. The recurrence interval of the flood peak at the downstream station was 85 years, and at the upstream station (at Greensboro) it was over 100 years. At a third station, Monongahela River at Braddock, still farther downstream (below the confluence with the Youghiogheny River), the peak discharge was 190,000 ft 3 /s (not a record) with a recurrence interval of 25 years. Flooding on the Youghiogheny River in Pennsylvania was minimal, largely because of flood-control storage provided by Youghiogheny River Lake which crosses the Pennsylvania-Maryland State line. Discharge hydrographs of the flood on the Monongahela River at Greensboro (daily- discharge) and at Elizabeth (instantaneous-discharge) are shown in figures 30 and 31, respectively, and discharge values are given in tables 13 and 14. Flood damage in Pennsylvania was extremely heavy along the Monongahela River, but was essentially limited to that river basin. There was one flood-related fatality in the State and damage was estimated at $83 million (Federal Emergency Management Agency, 1985a). A total of six counties in Pennsylvania were declared disaster areas by the Federal Government. Nearly 3,000 homes in the disaster-declared counties were damaged, with major damage to over 900 of them. Damage to the facilities of one of the steel companies along the river was estimated to be $3 million. Along the Monongahela River there is a network of nine locks and dams that normally make it navigable throughout its length. Commercial barge traffic is extensive and important to the economy. During the flood, 62 barges broke loose from their moorings. They smashed into bridges, got caught in dams and locks, and some sank, causing extremely hazardous conditions. Repairs to damaged facilities, clearing the channel, and the loss of commerce were estimated to be as much as $15 million. Flood-control projects at three locations upstream in the Monongahela River basin, two in West Virginia and one crossing the Maryland- Pennsylvania State line, no doubt materially reduced the flooding on the 53 fcV M Figure 28.-- Monongahela River at by Ron Rittenhouse, bridge on State highway 88, Point Marion, Pa. (Photograph Dominion Post, Morgantown, VV. Va.) 54 Figure 29.- Pittsburgh’s Three River Stadium on Ohio River at confluence of Monongahela and Allegheny Rivers, Pa. (Photograph by Dale Gleason, The Pittsburgh Press). 55 DISCHARGE. IN CUBIC FEET PER SECOND 1 , 000,000 100,000 10,000 1,000 OCTOBER - NOVEMBER 1985 Figure 30.-- Discharge at gaging station Monongahela River at Greensboro, Pa. (Site No. 150), October 31 - November 18, 1985. 56 Table 13.--Daily mean discharge for flood of November 1985 at gaging station Monongahela River at Greensboro, Pa. (Site No. 150) [ft = feet; ft 3 /s - cubic feet per second] Equivalent Mean Date gage height Discharge (ft) (ft 3 /s) October 31. 11.36 1,660 November 1. 11.76 2,680 2-. 11.83 2,900 3 . 11.38 1,710 4 . 15.42 25,500 November 5. a 33.16 a 154,000 6 . 23.14 100,000 7 . 18.24 55,600 8 . 16.54 35,900 9 . 15.74 28,300 November 10. 15.14 23,100 11 . 14.55 18,400 12 . 14.55 18,400 13 . 14.14 15,400 14 . 14.74 19,900 November 15. 14.94 21,500 16-. 14.94 21,500 17. 14.44 17,600 18. 13.24_9,440 Peak discharge (instantaneous maximum) occurred November 5, 220,000 ft 3 /s; gage height = 39.39 ft. main stem in Pennsylvania. Tygart Lake on the Tygart Valley River and Stonewall Jackson Lake on the West Fork River both functioned to prevent even more extensive damage in the upper Monongahela River valley. Youghiogheny River Lake on the Youghiogheny River effectively reduced the flooding on the lower Youghiogheny and lower Monongahela River valleys. 57 DISCHARGE, IN CUBIC FEET PER SECOND OCTOBER - NOVEMBER 1985 Figure 31.— Discharge at gaging station Monongahela River at Elizabeth, Pa. (Site No. 153), October 31 - November 18, 1985. 58 Table 14.--Gage height and discharge for flood of November 1985 at gaging station Monongahela River at Elizabeth, Pa. (Site No. 153) 3 [ft = feet; ft /s * cubic feet per second] Date October 31 November 1 November 2 November 3 November 4 November 5 November 6 November 7 November 8 Time Gage height (ft) Discharge (ft 3 /s) 0200 1.98 2,160 1100 1.90 1,950 1200 1.78 1,650 1600 1.82 1,750 2200 1.63 1,280 2400 1.90 1,950 0500 2.21 2,830 1200 1.72 1,505 1500 1.60 1,210 1800 1.92 2,010 2400 2.46 3,610 0400 2.62 4,170 1400 1.75 1,580 1500 1.89 1,930 2400 2.46 3,610 0300 3.10 6,070 0700 3.02 5,690 1200 2.18 2,740 1900 1.71 1,480 2000 1.91 1,980 2400 2.37 3,320 0700 3.08 5,980 0900 3.90 10,400 1200 4.67 15,400 1500 5.22 19,400 1800 5.54 21,700 2000 5.95 25,300 2300 7.40 38,400 2400 7.75 41,800 0200 8.60 49,900 0400 10.00 63,000 0500 10.50 67,500 0800 12.90 89,100 1100 15.20 110,000 1300 16.70 123,000 1400 17.73 131,000 1600 19.52 145,300 1800 21.07 158,000 2000 22.15 166,000 2200 22.89 172,000 2400 23.39 176,000 0100 23.52 177,000 0200 23.60 178,000 0300 23.59 178,000 0400 23.53 177,000 0500 23.34 176,000 0700 22.81 172,000 1000 21.61 162,000 1200 20.56 154,000 1400 19.42 146,000 1600 18.24 135,000 1800 17.06 126,000 2000 15.96 117,000 2200 14.97 108,000 2400 14.06 99,700 0400 12.48 85,300 0700 11.69 78,200 1200 10.78 70,000 1600 10.08 63,700 2000 9.28 56,300 2400 8.75 51,300 0400 8.57 49,600 0600 8.17 45,800 0700 8.24 46,500 0900 8.20 46,100 1100 7.90 43,200 1800 7.53 39,600 2400 7.17 36,200 59 Table 14.—Gage height and discharge for flood of November 1985 at gaging station Monongahela River at Elizabeth, Pa. (Site No. 153)--Continued (ft = feet; ft 3 /s cubic feet per second] Date Time Gage height (ft) Discharge (ft 3 /s) November 9 - 0200 6.98 34,600 1100 6.86 33,400 1300 6.71 32,100 2200 6.59 31,000 2300 6.07 26,400 2400 5.99 25,700 November 10- 0600 6.38 29,100 1100 6.38 29,100 1200 6.17 27,200 1500 6.34 28,700 2400 6.10 26,600 November 11- 0300 5.63 22,500 0600 5.76 23,600 0900 5.60 22,200 1300 5.60 22,200 1400 5.84 24,400 2300 5.74 23,500 2400 5.55 21,800 November 12- 0200 5.22 19,400 1200 5.86 24,500 1500 5.95 25,300 1900 5.76 23,600 2400 6.10 26,600 November 13- - 0200 6.10 26,600 0500 5.76 23,600 1200 5.55 21,800 1400 5.30 20,000 2200 4.85 16,600 2400 5.01 17,800 November 14 0300 5.34 20,300 0700 5.49 21,400 1000 5.39 20,600 1300 5.50 21,400 2200 5.55 21,800 2400 5.95 25,300 November 15 0300 6.20 27,500 1200 6.42 29,500 2000 5.91 25,000 2400 5.96 25,400 November 16- 1200 7.19 36,400 2400 7.37 38,100 November 17- 1200 6.84 33,200 2400 5.86 24,500 November 18- 1200 4.43 13,700 2000 4.10 11,600 2400 4.51 14,300 60 Maryland Flooding in Maryland was more widespread than in Pennsylvania, but generally less severe. Except for some incidental flooding caused by high tides in the coastal regions, flooding in Maryland was confined mainly to the Potomac River basin. This flooding, however, created some serious problems all the way from the headwaters of the Potomac, on the North Branch, to Washington, D.C. The most serious flooding occurred in the headwaters of the North Branch and on the mainstem Potomac River downstream from confluences with major tributaries from the south which drained the severely flooded regions of West Virginia and Virginia. The major flooding in the headwaters occurred upstream from Bloomington Lake, which was very effective in preventing more severe flooding downstream. Significant flooding did occur in the Youghiogheny River basin in Maryland, but it did not cause widespread damage. At three gaging stations in the Potomac River basin in Maryland, the peak discharges exceeded 100-year recurrence intervals, and at two of those stations the peaks set new records of magnitude. At the gaging station North Branch Potomac River at Steyer, the peak flow, 11,500 ft 3 /s, exceeded the previous maximum of 11,300 ft 3 /s, though barely, from records available since 1956. The peak flow farther downstream at North Branch Potomac River at Kitzmiller, 50,400 ft 3 /s, exceeded the previous maximum, 33,400 ft 3 /s (from records since 1949), by 51 percent. The peaks at both of these sites exceeded 100-year recurrence intervals. The peak discharge at Potomac River at Paw Paw also exceeded the 100-year recurrence interval with a discharge of 235,000 ft 3 /s, which approached the previous maximum of 240,000 ft 3 /s recorded in 1936. The gaging station at Paw Paw is downstream from the confluence of the North Branch and South Branch Potomac River. The flood peak at Paw Paw came primarily from the extreme flooding on the South Branch, in West Virginia, with relatively little contribution from the North Branch. The North Branch peak was effectively attenuated by Savage River Dam and Bloomington Lake downstream from the gaging station at Kitzmiller. A discharge hydrograph for the flood at Potomac River at Paw Paw is shown in figure 32, and daily discharge data are given in table 15. Only one extraordinary peak was recorded in Maryland in the Youghiogheny River basin. That peak, 11,700 ft 3 /s, at Youghiogheny River near Oakland, had a recurrence interval of 50 years and was exceeded, but only slightly, by the previous maximum, 11,800 ft 3 /s, from records since 1941. Considerable damage occurred in Maryland as a result of the flood of November 1985, particularly along the main stem Potomac River. However, the damage was relatively minor compared to that inflicted on the other three States. One fatality was attributed to the flooding in Maryland, and damage was estimated at $5 million, plus another $16 million from tide-related coastal flooding (Maryland Emergency Management and Civil Defense Agency, written commun., 1986). 61 DISCHARGE, IN CUBIC FEET PER SECOND 1,000,000 100,000 10,000 1,000 OCTOBER - NOVEMBER 1985 Figure 32.-- Discharge at gaging station Potomac River at Paw Paw, YV. Y^a. (Site No. 15), October 31 - November 15, 1985. 62 Table 15.--Daily mean discharge for flood of November 1985 at gaging station Potomac River at Paw Paw, W. Va. (Site No. 15) [Equivalent gage heights not given; stage affected by backwater; ft = feet; ft 3 /s = cubic feet per second] Date Mean discharge (ft 3 /s) October 31.. 1,260 November 1.. 1,210 2-. 1,220 3. 2,400 4. 13,400 November 5. a 113,000 6- 125,000 7. 28,900 8- 20,700 9- 15,100 November 10. 12,100 11---. 10,700 12- 9,400 13. 7,570 14- 6,100 November 15. 5,440 Peak discharge (instantaneous maximum) occurred November 5, 235,000 ft 3 /s; gage height = 53.6 ft. The towns of Hancock and Point of Rocks were partially inundated by the flooding along the Potomac River. Smaller communities along the North Branch in the headwaters, such as Gorman, experienced significant damage. A public school building in the town of Oldtown, near the confluence of the North and South branches, was severely damaged, with losses estimated at $1.5 million. In the upper reaches of the North Branch Potomac River, two reservoirs effectively reduced the flooding and related damage downstream, particularly in the vicinity of Cumberland. Bloomington Lake on the main stem North Branch and Savage River Dam on Savage River functioned to prevent damage to Maryland and West Virginia estimated at $142 million (combined) by the U.S. Army Corps of Engineers (Federal Emergency Management Agency, 1985c). 63 SUMMARY Heavy rains over the period October 31-November 6, 1985 (related to Hurricane Juan), caused major flooding over a large region of West Virginia, Virginia, Pennsylvania, and Maryland. Totals in excess of 10 in. of rain were recorded over much of the region. As a result, the greatest floods on record occurred at many locations in each of the following major river basins: Potomac, James, Roanoke, Monongahela, and Kanawha. A summary of flood-peak data from 190 sites, including previous maximums and recurrence intervals, is given in table 16. At 40 streamflow-gaging stations in the region, recorded peak discharges were more than 50 percent greater than the previous maximums. At 63 gaging stations, the peaks equaled or exceeded 100-year recurrence intervals. Extremely damaging floods occurred along the Cheat and South Branch Potomac Rivers. Some towns, such as Albright and Parsons, W. Va., were practically destroyed. The cities of Roanoke and Lynchburg, Va., on the Roanoke and James Rivers, respectively, were also extremely hard hit; property damage in the Roanoke - Salem area alone was estimated at $440 million. Property damage over the four-State affected region was estimated at $1,400 million, excluding tide-related coastal damage. There were 62 fatalities caused by the flooding. Countless homes, bridges, and other facilities were destroyed or badly damaged. The operation of flood-control projects in several river basins resulted in significant reductions in the damage that occurred. Reservoirs in the Potomac, James, Monongahela, and Kanawha River basins functioned to attenuate the downstream flood peaks materially. Damage was reported to have been reduced by $135 million in West Virginia alone. Regardless of how thorough a documentation is made of a disaster such as this flood, the impact cannot be adequately described in terms of deaths, monetary cost, and inconvenience. It needs also to be described in terms of the incredible power of nature and in terms of human endurance and damaged lives. To address these issues adequately is beyond the scope of this report. Nonetheless, there remains a valid need to document this flood disaster for posterity in hopes that the information will be used somehow to lessen the destruction more significantly the next time the forces of nature coalesce with such energy. 64 SELECTED REFERENCES Bailey, J. F., Patterson, J. L., and Paulhus, J. L. H., 1975, Hurricane Agnes rainfall and floods, June-July 1972: U.S. Geological Survey Professional Paper 924, 403 p. Brua, S. A., 1978, Floods of July 19-20, 1977, in the Johnstown area, western Pennsylvania: U.S. Geological Survey Open-File Report 78-963, 62 p. Camp, J. D., and Miller, E. M., 1970, Flood of August 1969 in Virginia: U.S. Geological Survey Open-File Report, 120 p. Carpenter, D. H., 1974, Floods of August and September 1971 in Maryland and Delaware: U.S. Geological Survey Open-File Report, 35 p. _ 1980, Technique for estimating magnitude and frequency of floods in Maryland: U.S. Geological Survey Water-Resources Investigations 80-1016, 79 p. Federal Emergency Management Agency, 1985a, Interagency flood hazard mitigation report, Pennsylvania: Federal Emergency Management Agency report FEMA-754-DR-PA, 35 p. _ 1985b, Interagency flood hazard mitigation report, Virginia: Federal Emergency Management Agency report FEMA-755-DR-VA, 59 p. _ 1985c, Interagency flood hazard mitigation report, West Virginia: Federal Emergency Management Agency report FEMA-753-DR-WV, 117 p. Flippo, H. N., Jr., 1977, Floods in Pennsylvania: Pennsylvania Department of Environmental Resources Bulletin 13, 59 p. Godson, R. H., and Webring, M. W., 1982, CONTOUR: a modification of G.I. Evenden's general purpose contouring program: U.S. Geological Survey Open-File Report 82-797, 73 p. Lescinsky, J. B., 1986, Flood of November 1985 in West Virginia, Pennsylvania, Maryland, and Virginia: U.S. Geological Survey Open-File Report 86-486, 33 p. Maryland Water Resources Administration, Flood Management Division, 1986, Flooding of November 1985 Garrett County Maryland: Water Resources Administration, Flood Management Division report, 10 p. Miller, E. M., 1978, Technique for estimating magnitude and frequency of floods in Virginia: U.S. Geological Survey Water-Resources Investigations 78-5, 83 p. Runner, G. S., 1980, Runoff studies on small drainage areas [Technique for estimating magnitude and frequency of floods in West Virginia]: U.S. Geological Survey Open-File Report 80-1218, 44 p. 65 SELECTED REFERENCES--Continued Runner, G. S., and Chin, E. H., 1980, Flood of April 1977 in the Appalachian region of Kentucky, Tennessee, Virginia, and West Virginia: U.S. Geological Survey Professional Paper 1098, 43 p. U.S. Army Corps of Engineers, Pittsburgh District, 1973, Flood plain information Ohio, Allegheny, Monongahela, and Youghiogheny Rivers Allegheny County Pennsylvania: U.S. Army Corps of Engineers report, 62 p. U.S. Water Resources Council, 1981, Guidelines for determining flood flow frequency: Water Resources Council Bulletin 17B, 28 p. Virginia State Climatology Office, 1986, Roundup of recent conditions: Virginia Climate Advisory, v. 9, no. 4, p. 20-26. 66 GLOSSARY Acre-foot (acre-ft). The volume of water required to cover 1 acre to a depth of 1 foot. It equals 43,560 ft 3 (cubic feet), 325,851 gal (gallons), or 1,233 m 3 (cubic meters). Contents. The volume of water in a reservoir or lake. Content is computed on the basis of a level pool or reservoir backwater profile and does not include bank storage. Convection cloud. A cloud which owes its vertical development, and possibly its origin, to convection. Cubic feet per second (ft 3 /s). A rate of discharge. One cubic foot per second is equal to the discharge of a stream of rectangular cross section 1 foot wide and 1 foot deep, flowing at an average velocity of 1 ft/s (foot per second). It equals 28.32 L/s (liters per second) or 0.02832 m 3 /s (cubic meters per second). Cubic feet per second per square mile [(ft 3 /s)/mi 2 ]. The average number of cubic feet per second flowing from each square mile of area drained by a stream, assuming that the runoff is distributed uniformly in time and area. One (ft 3 /s)/mi 2 is equivalent to 0.0733 (m 3 /s)/km 2 (cubic meters per second per square kilometer). Drainage area of a stream at a specific location. The area, measured in a horizontal plane, bounded by topographic divides. Drainage area is given in square miles (mi 2 ). One square mile is equivalent to 2.590 km 2 (square kilometers). Equivalent gage height. The water-surface elevation corresponding to a discharge given as a mean (as in daily mean discharge). Equivalent gage height is given in feet (ft), see gage height. Flood. Any high streamflow that overtops natural or artificial banks of a stream and overflows onto land not usually underwater, or ponding caused by precipitation at or near the point where it fell. Flood peak. The highest value of the stage or discharge attained by a flood. Flood profile. A graph of the elevation of water surface of a river in a flood--plotted as ordinate, against distance --plotted as abscissa. Flood stage. The approximate elevation of the stream when overbank-flooding begins. Front. The interface or transition zone between two airmasses of different density. Gage height. The water-surface elevation referred to some arbitrary gage datum. Gage height commonly is used interchangeably with the more general term "stage." Gage height is given in feet (ft). 67 GLOSSARY--Continued Gaging station. A particular site on a stream, canal, lake, or reservoir where systematic observations of gage height or discharge are made. Isohyet. A line drawn on a map connecting points receiving equal rainfall. Jet stream. High-velocity strong winds concentrated within a narrow stream high in the atmosphere. Miscellaneous site. A site where data pertaining only to a specific hydrologic event are obtained. National Geodetic Vertical Datum of 1929 (NGVD of 1929). A geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called "Sea Level Datum of 1929." Recurrence interval. As applied to flood events, recurrence interval is the average number of years within which a given flood peak will be exceeded once. Runoff. That part of the precipitation that appears in surface streams. Stage. Water-surface elevation referred to some arbitrary datum, see gage height. Time of day is expressed in 24-hour time. For example, 12:30 a.ra. is 0030 hours; 1:00 p.m. is 1300 hours. Water year. The period beginning October 1 and ending September 30 of the following calendar year, designated by the calendar year in which it ends. For example, the water year 1986 begins October 1, 1985, and ends September 30, 1986. 68 square miles; ft = feet; ft°/s = cubic feet per second; information was not determined; footnotes found at end of table] 4> O —* ■'’> C CD CO 4» > t- O jQ o UN UN UN UN UN UN l. L CD O o CNJ e— 00 C- 4> 4> r— O' D 4-» >. A A O C ^ 4> — L. i oc 8 > 01 O O) -"S O O O O O O O O z L. CO O O o CNJ o o CNJ CO "v in o >* m ro o UN CNJ ■g C K» > « % % « o O 4-» e— >t o st st oo UN 00 o CO *4— w— UN CNJ *— V H- O ? (_ 4-* e— UN 00 o UN fOs JJ 0J JC st 00 UN N- V— 00 w- c n o>4-* • • • • • a • a CD*— H- to >o sa¬ vO o O' oo v— g O 0) w— 3 -C 4-* CD > > > > > > > > O o o o o o o o o z x z Z z z z Z o o A O O O 3 00 UN Csj CNJ co st > o CNJ *i H- L. < 5 ►— 2 CD —* uo> 0) <0 —CNJ O) C 4-»<* <0 O «- «- »•— 0) 44 >H- ^ H- <0 O 4-* o z u n e o 4-» § 3 > 0) 4-» o-n co co.fi Oo Q <0 4> o o o o o o o st ro ro o in K o o in o o oo o o o c> 00 o o o in 00 in st s o’ o CNJ CNJ CNJ O O' CNJ CNJ CNJ e— CO CO st UN UN 00 st in st UN >o m a O' 3 UN - UN UN nT nT O *s» UN "s. O V* O ■— ro —. ro S 8 s 8 33 3 >o 8 1 O' st O' 00 UNO' O CNJ C^O' UN O' Q CNJ 0k O' fc O' O st UN o CNJ s >o O' O* 00 CNJ CNJ rS CNJ st in in e in 3 00 in O o 3 in oo in in in \ co T— 00 $ s o s st CNJ >o o 01 co CO ^ C 4> CNJ — l_ -r CD co E C_ Si o R 00 oo' >t in CNJ CNJ CNI r^ N- st CNJ o CNI O st «- ro OvO st m ro T— -- >o 0>0 >0 00 • i o o OO CNJ £ o CNJ 00 • "O a a CD a T> X ~o XJ > c «-73 c- X X L. X 4) L. o 0) X 0J ^ S 4) CD CD "Sh- z# r > i: > i_ a 4J C r > * c. i: > 3 o — s L- O— L- a> ■O O- CJ — o CD o — CD O CD c a: c- 0) E c oc X L. —* 41 C oc —* Ccc _ C co o > L. co —* O -X CD CD CD CD c CD C E 4>- <- O >s O L. O —» oc c L. —j C- O O • r— C- O — (6uE 00 CD 0J oc 4-» • oo s — c CO CD CJ C- oo 2 (- co > • oo 2 —* CD CO L. E 4-» CO CO E E 0) o 4) t- rt) P 4* c. CO CD E -X C.-W 0> ^ O CO >s L- > O N O) c_ 44 Ou_ CO l_ _Q ^ o t_ _Q 4) C-T3 > -C O C 4-* 0.44 4-* 4-» c CD • 4-4 4-* 4-» CD CD C_ t. —t CD E 44 44 CD E 44 CD (D 44 44 CO CO o> L- O 4-* o <1) 4-4 • L. O 44 — > CD •w— C C_) O Q. C c_) CD Ci 3 O Q- CD 14. Z CO Z CO O z Q. (O 4-4 c c o o o o o o o O o o >o SO >o 01 CO Q. O o o O O o o o o Site No. i- fNI ro st UN 'O oo O' 69 01606000 North Fork 314 1,051.13 1940-61 6/17/49 18.0 50,000 Nov. 5 Unknown 90,000 >100 South Branch Potomac River qj O -- C co CO QJ > <- o JO O o o o o CM CM CM m c_ c_ co o O o o CM in V V V co c- o> a> «— »— O 3 v >- A A A A T “ CJ C w QJ‘- i- (X > QJ o CD O o O O O O o O' O O z c— CO O o O o O O o o vO CM ■g CO >s O in o o O in o N- N- •4* z ro » « « <« « O 4-* o o o o in vj- 4_ o CO H- ro >* 4— ro >* o —* •- w 4” CM CM CM H- o a> c L. D 4-» 0) z CM & CM CM co in in O' O CM 8 CM O' vO >4- T3 CD O) 4-* 1 • • • • • CO •— H- co o >* ro 4— 4— vt vd O QJ in CM '4* g Z co CO X (0 0) z qj in in in in in >o in vt n 4-* • • • ■ • • • • # . (0 CO > > > > > > > > > > 4-* o o o o o o o o O O O z z z z z z z z z Z H- o s ■g? o QJ qj D o c O) o o o oo O oo o o o o C Qj 4-* 3 t- CO o o o o o o oo o >o o o (0 CD o co ^ o CM o o o o >0 in o V* >o 4-* c z ro « 1 « « « •» •. « 1 * c K -X U 4-* C\J t— o ro o o o CM CM o o CO H- 'O vt ro vj- >* oo in ro CJ >" *— 4““ CM ro 1 o “* o 1 4-* H- c/) c/> qj 2 qj QJ 4-» CO CM *— CM O 4-r^ >o oo in 4 00 CO o o 0) QJ Z ■g • • • • • • • -C - c L. O) 0)4-* CM »— 00 >o vj- >* O -4- oo’ vj- 00 CM o -O 4-» Q. CO •— »4- D CM CM T— ro ro in ro cm CM 3 O o aiv c CO u co O O P z *D H- 2 * 4-* II c £jf X o o o o >or^ ro S- >o 'OO' NO CM CM CM O CO <0 1 ro ro f''- >4 ro c z qj 1 \co \ \co — ■—. s \ z N» 00 00 4— 00 00 *~ oo CM ro o ro 01 H- E co T— v— v— 4— T— CM CM 4— 4— CT> c_ o CO \ \ CO • «. qj < >o vO >o ro ro ro ro >o vO 4“ 4-» 4-* 4-4 CO 4— C/> 0) 0) QJ -Q cx 3 H- 4-* UJ > o II O «k •» «, H- c 4-f ■g •O at SB S8 in>o ro co O 'O 'O o o co s8 s8 s8 3 'O 00 <0 H- CJ i • • i • I 1 • i i i • • H- co C- O o u < 00 ro 00 00 V* O'00 O O' CM oo CM CM o co ro O •*3 qj a> CM vt cm ro ro CM ro >o CM 4 cn CL *♦- c- O o O O oo oo O O' O' O' O' O' qj c ►— T™“ V” l_ — o O CD • «— a. | E 3 co o O 3 QJ E qj ro — r\i CO L. (_ o)Cvo 1 <0 O 03 O l_ 4“ 1 Dh- C7V- 0) O in T— CM 8 oo 3 o in 4 • O" c 4-* > '4— 4-> o fO in o r^ o oo CM >o (/)•— H- CD O 4-» • • ■ • • • • ■ 4— O Z CJ H— CM 00 4“ CM N- ro CO 4“ ro II II — E ^ vO in s8 NO 00 in co 3 O' 0 qj E qj 4-» d O in in ro ro in —* rsj 3 > QJ 4-* -Q CO E 4-# O "O «J <0 _U O O *— Q CO 01 CJ qj o >4 O) • • CO co CM CM ro 4— O FC in >* N- c qj c\j O oo N. o v— O' in c_ •— *— CM 4— nO o CO co E •> c_ ro o co > •o • • • • ro T3 C0 c c. l- QJ 1— QJ c_ > Z • • > o QJ -C QJ C .C QJ •— QJ L. lm u co QJ T3 X ■g -C > « CJ > — CJ > H— SI > T3 QJ - QJ QJ - > D Z QJ •4- 4-» u*— o> C— I C*- QJ CJ -- —* > 3 >^3 >-x -X CD QJ QJ CO O co C £X c_ X (0 OC >> ^ roa l C a QJ •- co •4- CO •— o QJ CO L_ —* c CO 5 c_ c_ -Q c- c- O co •— OC CL CX QJ * CL O QJ T3 QJ 4-» 3 CJ -4 E 0) •*“ (- u O GO o C O 00 U O L. CJ H- C- C CJ L. —* Z C0 QJ •4- co o E co 2 co u. ro (D • U. ro z • co ro cn • CJ 3 • u. i— ro o c CJ QJ CJ — g qj co c_ p l_ r t c co E ro E C co ro L. -- QJ J= o C— QJ £ 4^ 5m> -C *-* O L. > SZ. O L. > E a. > E z QJ l_ '4- U QJ c D c L 4-* Q-4-» 4-> 4-» CO 4-* 4-* D 4-» 4-* d 4-» ro 4-<4- O QJ •— O’ ro c. CO a» D O QJ QJ D O O 4-» • 3 0 0 0) • 3 O QJ Q. 1 4-» 4-> • o QJ ro 4-4 4-» CD qj ro C t- co Q> QJ QJ a C CO T3 O CL C CL o co cl ro 3 Oc/lQ. C3 O Q. C (/) 3 o ro 3 ro c o o ro o c z O CJ u- CO CO CO CO a. CJ CL z CJ O 4~» c c o o o o o o o o O O I o o o o o o o o o O O c •— • in £ o in o in o O' in O 3 4-» O >o 00 oo o 4— ro ro in E CO z o o o o w— V— 4“ T“ 4 — c_ 4-* >o o >o >o o >o o >o vO >0 €1 CO r— 4— 4“ 4“ 4” r- r- 4” 4“ a. > t- in 1 in o O o O o O o o UN un C_ l_ CD CNJ o O o O o o o ro CM oo <- a> CL> i A A A A A A A CJ C 0> — <- QC > 41 o CD o o o O O O O o O O o o z l_ <0 o O O o >4 o CNJ o o o CD "v in in o NO o o CNJ o in in UN X— “D x: ro « « « « O CJ 4J CNJ fN. fN> o in in v4 oo o O CO »4- oo CNJ O v4 ro *— r— •— s> *♦- □ o> c l_ 4-» R CNJ >4 in >0 O' 00 On o ro -8 4J -C ^ 00 «4 oo ro 00 On CNJ in o ro o CD CT) 4-> • • • ■ • • • • • ■ • • CD —H- ro o «— o CNJ in NO v4 ro ro UN v4 CJ 4J ro ro CNJ T““ ro t - X— x: H- n <0 4 in >4 in >4 in *4 >4 _* 4> A 4-> • • • • ■ • • ■ • • ■ • CO CD > > > > > > > > > > > > 4-* O o O o o O o O o O o O O z z z z z z z z z z z Z H- O "8 O <11 4) D u C CD CNJ CNJ o o o o o CNJ o o o o o o C <1) 4-> 3 L_ CO NO CO o o ro o o CNJ in in o o o o (0 CO O CD ^v oo o o in o NO *— NO oo in UN >4 o 4-* c n ro s 1 ■» 1 s Si « « •» S Si c H -X U 4-* o in o ro CNJ oo ro v4 >4 r^ CO o CO H- ro nO CNJ r— x— o >v ro 1 O o • 4-* *4- • r> O vt in 00 hw CM c. 4-* > 4-* «— ro >4 in >4 O in ro T“ O' in ro cnj o CD o o 4) 4>£^> H ■ • ■ • • • ■ • • ■ • • • ■ • • -C — c (_ CD CD 4-< no in r- CNJ 00 o o NO in >4 CNJ co v4 UN CM u -Q 4-* Ql CO —H- D 1— w— 4) *- *— ro w— CNJ X— *— co D O 0 4)^ C CD 4> O O p -C •O h- 3 * 4-* II c ■g X o CJ O >4^ CNJ O NO CNJ O CNJ o in ON CNJ nO CNJ O' UN CD <0 1 in oo ro ro >4 >4 *4 >4 hw Ns r^ ro s4 O ro c z 41 t "V N ^o \ Ns N, — NS ^s \ \ "v ^S 'Vs *v CO 4-* — 4-» z >4 >4 CNJ *- o O N- O 00 On NO in co o o O' < CNJ CNJ NO ro NO nO ro On o ro oo ro 4-» 4-» 4-» CO T““ v— CO O II O *4— c 4-» -g *D QC O NO nOCO NO NO o oO 28 28 NO CNJ vQ N- 00 28 28 28 28 28 nO co »4- 4> E O CNJ >4 *4 CNJ N >o CNJ UN Q. *4- L. OO OO O O O o o On O O' O' O o r— Q. | e 4-* f CD CJ o 3 4) 1= 4> <0 — rsj CO <_ t— D)C • <0 O <0 o i_*— i 3H- uy— 4) NO O O CNJ On ro 00 T— O v4 ■ cr c 4-# > H- >* oo O in >4 Nt in rN- in CM O vO CO — *4- <0 O *-> • • • • ■ ■ • • ■ • • o z CJ H— NO >4 nO ro CNJ o O T— NO 1^ ii n — E ^ ru in 00 in o o CNJ nO ro NO o v4 4-» d in PO CNJ o NO «— nO CNJ CNJ o CNJ CM —* C\J D > 4> 4-» « Si Si .D <0 •— i E 4-* o ■n <0 co _Q o o CNJ T “ *” *” CD * — *” »— •-j O ■ • • • fl CD ^ NO CNJ NO CNJ O' O CO o UN O c 4> CNJ fN- ro «— N- r^ CM v4 • *» C_ — CNJ O ro «— ro X— x— CD CD E l_ in Q C • • 3 CD * • CD O > • C— t CD CD c > 4-» CD -C CO CD • > > O -X - L- CO • > CJ 4) > 4) CD •g 4> CD 4) "O 4) CD C C C_ • c_ > Si c H- 4-> 4> L. 4) C_ > c- l_ —» > l_ Si CD 4> CD L_ —• 4) l— O l- CO —» >N 4J C <- VC > > CO CD — > Si — L- 4) - > 3 CD i- CD ■ r— C 4J > • r— CO > 2 > O E 4> — 4J CO — O CD — cm CD C CO cm 4> — O <0 U E 4> c c • O 4) • cm co > 3 O) cm 4-* O 4-» 4-* CD — U O cm co cm o 4J CD C_ (0 JZ O — CD (D SI CD C 4-*^ 4> 4) 4-» 4) L. E *- cj D c- 4-» > Ew> x: i- ^ cm cm-— SI t- -X —* l_ o CO 4) XI —f c_ 4-» x: t_ c SL L. 4-» 0.4-* CD CD C cr <0 c_ ^ CD O c_ V CD L H- — l_ CD — 4) CO • CD O 4-» CD >s 4-* CD CO 4> l_ 4) CD • O.CI3 4-» 4-» • c_ 4) 4-» >*4-* Q. c- 4 ) D L-SZ 4) 4> l_ l_ — CD 4J (_ D 4> CD D 4> "U X) C 3 O CD 3 O C OO l. CD CO O C 00 D -m O C > xuu-> c cj O C 3 O C < O Q_ z o z CD Z CJ Z CO CO 4-* c C O o O o o o O o o o o O QJ o o o O o o o o o o o o UN C • o in O in o o v4 ro 00 o o CO (Q 4-» o NO nG CO o *— CNJ CNJ >4 >4 UN NO nO £ CD Z T— «— CNJ CNJ CNJ CNJ CNI CNJ CNJ CM CM l_ 4-» 'O NO NO >o O nO nO >0 NO nO NO NO 4) CO Q_ O • 4-» O o o o o O o O o o o o o — Z «— CNJ ro >4 in NO r- CO On o T - CM CO CNJ CNJ CNJ CNJ CNJ CNJ CNJ CNJ CNJ ro ro ro 71 >o 4) A CD A CO CD O 3 CTC (/> — II II e 3 “O X CD 4> O —' C <0 (/) 4> > L U (D <- CD O C 4> — O D) C- (/> CD x r U 4-» 4>X 0)0) 4-* CD ■— H- CJ 4) CD O o: § 0) • 4-* O o >4 o o o >o o NO o o o fN- o o 00 rsj sf > o N- >0 > o o o in O' nO >4 o CM > o o o o CM >0 CM > o o o CM $ O'* > o o o o o CM ro >4 CM ro > o o CM O >4 in CM > o o in o o ro O >4 CM > O > o o o 00 o in > O 00 o > o s ?? O 4> CD 2 O c O) O in o o oo CM o o o o oo ro c CD *-* 2 L. C/> O in o o oo tc o o o o oo ^4* •— CO CO O CD \ CM CM o >oo o o nO NO oo in 4-* c x ro i i * « *1 — « « c s -X O 4-» ro o «-o o o o c\T oo o t_> >* CO H- CM 00 CO o ro in oo 0) 3 CD or co O O) H- 4) •— o NO oo o o o (_ 4-* > 4-» 00 00 CM O' CM ON CM oo ro ro O' CMr- ro CD O O or 4> x ^ 1 • • • i • • • • • x — C i_ 0)0)*-' 00 CON- ro ro in NO >4 in nO 00* o oo O'* o 3 0 o. CD*—H- 3 r- r- t— CM CM CM ro CM CM«- 0) O CD n^ C o o p X >»> T3 H- 4-» II t c Y • «. • w— o “"8 X C_) OSCM r— cm ro CM nOCM CM CM cm 00 CM CM CM CD CD • 00 00 *4 ro vj- >4 >4 N- N- ro c X CD i 00 00 ^ \ \ \ \ •Ns — \ Ns \ \ (/) 4-* • — 4-* z «— *— in ro oo in 00 NO N- nO in 'O O nO CM 4> h- e CD r— t— r— r— *— O r— T— o o •- o CM O) U O co -- \ '"v \ \ \ \ CD 4» < o nO ro o ro o T— o o o oo o NO 4-* 4-» 4-» CO r— CO CD 4) 4>T3 Q£ -g '4- 4-> LU > o II O *4- c 4-* ■g "O ■gfe Qd un eB 3 28 o«->o ro in oO 3 0*0 o c0 s s S s s 1 H— CO • — *4— CJ 1 1 i • * i i • 1 1 1 *4- CO i- O o o < in o O' O in oo O' O' O' o O' ro in o CM ro CM o • - 2 4) —* CD 5 CM >o r^ ro cm ro N- in CM NO r^ o in 00 O >4 in 4-* > H— /-> C0 o ro 00 in c0 in CM CO Ov • ■ • • • • • Z O n»- O O ro r- ro O'* *— CM oo •— P CM 00 «— CM CM NO in NO ro CM CD 4-» 3 o o o 55 O' oo o > 4> 4-» — 5"gs *" O) *“ *“ *” CD 4> (D NO O' 4) O' r“ CM >4 O) • • • • • CD CD CM T— ro CM o ro nO nO ro C CD CM r— oo r- O' o ■ •— L_ CM o ro 'O CM in CO CD e L. s_/ T— o (_ L. L_ # (_ CD L. # CD CD • • CD 4) CD ■ > > CO > > > CD > > > • c co • •p— • > > (- CD o > c CD QC CD a: c. • a: QL CD cc CD > -M — 3 > > CD CD 1. «• c C 4) C H- 4-» (_ % Q C -C -C >- 4) > -£= CD SI O 4-» c o X o C «* CO O CD CD c CD % ^ CD CD C ^ CD > J* CD 4-» CD 4) 3 (/) CD (/> -* c > o (0 t- O *o L. O (- u O O L. O to CD oc C- O -V c o 6 CD - *-> CD 4) °V o o-g 3 c >* °v oc °-g L. L_ u o-g o 3 O co o E QC O O U- C o u- c —i 3 CD 14- C u- c CJ CO T> CD u- c CD at: 4-* U CD L • 0 — *-> CD 2 CD QL — CD 4-* CD CD X CD CO C-- CD L_ 4) C_ *-* ^: C l_ C ^ c c_ c c c x C 4-* X L_ t- x c co -g 4-* Q. *-* 4-» L_ 4-» CD o *-* CD CD c 4-* CD CD A CD 4-s 4) o 4_» (U O 4-» CD 2 O CD • 4-* CD • x o to 4) 3 4-» CD CD L_ 3£ 4) 3 jC CD 3 *^ 3 x: *-* (_ t- X 4-* O <*- CD CD O 4) 4-* t- X 4-* 4-* O) o ■o O (OX -C c o O >■ o o o o in c— • o in in O' o o O' O' o nO (D *-» O 00 oo o O' V— CM CM CM ro ro E CD Z CM CM CM CM CM ro ro ro ro ro ro L_ 4-* 'O >o nO nO nO NO NO nO nO >o nO 4) CO *— t— T - r— «— r— •— T— Q. o o o o o o o o o o o ro ro >0 ro O' ro o >4 CM ro >4 72 -Q CD -- O i-M 03 E (_ L. CD c D T3 X CO a> y —• —' C 03 CD O > C— O in in o in in in o o in CsJ l l nj t_ a» O C ^ f\j CM CM CM V 03 — QC 03 CD O o o o o o o o o 00 C. CD o 00 o o o o o o >4 <0 "n >o O o o o >0 o in 4 in n ro — — « — * » «» o *-» CM co >4 f\J o in in O o CD **— vO >4 o *— CM CM 03 .C ' CD CD* CO —H cj a> n (0 o (0 —» U O' 0) CO — C\J CD C *-»0 ro N-’ CM > o in o > o in >4 o > o o o in r\j > o 00 cm s > o s N.* > o N- O >4 > o > o £ >4 CM > o R o > o o Cl >4 O > O z z z Z z z z z z z z IS ?? o 03 03 D o c CD o oo o ooo o o o o oo o oo C (D *-* 3 C_ CD o oo o ooo o o o CM oo o >4 >4 CD 03 O (0 o oo o ooo o o o T— in o o *4 O' 4~» c n ro % — - — « « — — — — — — — - — — c K -X o *-» o CM 00 T— o •— •— o cS CM o ro o o in in o CD H- o CM *— CM ro in in CO ro v4 'O O' (_> >* •— N_/ w— cm«-«- >4 >4 1 o Q 1 4-* M- CD CD 0) D 0) a> cd O CD H- CD •*- 'O'O ro o o o C_ *-» > *-> CM OO in >4 ro ro o *— in o >4 00 o O CM CO CJ O a> CD _C —' “8 • • • ■ • • ■ • • • • • • • • • -C — c u CD CD h- in in CM 'O 'O 00 ro ro CO •- o w— w— u -Q *-• a CO —H- D ro CM CM T— rOCMCM CM CM cm ro ro *— r— CD D O 0 03^ C JZ z •*— o o p -C • r- T3 H- 5 *-» CD II c < ? • «. o CO X u CM f\J O CM CM O O 'O O CM NO cm CM in o CO CO 1 >4 -4 ro vj- 4fON ro ro QC >4 ro ^4 V4 in in ro c X 03 1 \ \ V ^^00 \ '-s LU V. \ \ CD *-* — *-* z >o inN in 'O oo •— o o > in o >Oin 'O 00 s4 03 H- E CO •—> «— T— r— r— o CM*- V— *-o CD (_ o CD N \ N N \ \ '—. at N •v. N \ 0) •-CD < o o ro O o ro ro ro O o >40 o 00 CM *-» *-» *— 1 CO r— «— x v— V“ T— CD CD 0) u z O II O < H- c *-* ■g "O ■gfe ac 28 28 O VO O CO 0"0 OC0 28 28 z < 28 28 28 2 28 ^ CD — H- c_> 1 i i i 1 1 i 1 a. ■ i 1 1 i *4- CO c- o o o < in r^ in cm in co in O o. CM 00 CM CM O' O • o 03 —> 03 CM ro o ro O' CM O ro < >4 in >4 >4 >4 CD a. H- L. O' O' O'O' ooo co o oc O o O O' O' 0) C r- •— •— r— «— •— • • • • i D CD— 03 ro O' >4 o ro in CM O ro O • crc *-» > H- o o o >o O' in >0 ro in >4 O CD — '♦-CO O *-» • • • • • • • • O Z U >4 in ro o n! CM >4 § CM O' II II — E ^ O' CM O' o ro N- in 00 03 E 03 ♦-» 5 >4 in CM CM ro ro CM CM ro —* CM 3 > 0) *-» -Q co •— i E *-» O "O CO (OX) Oo i— O co 03 o 03 00 vO O' CD CO (0 —' 2 ro N-’ O o in N- O in C 03 CM o 00 >4 in 'O O' CM oo CM v— • L ■«— O >o in T— CM O CO CO E L_ ro O'' —• • L_ . L. • co (- CO ■ 03 CO 03 CO > 03 • L_ > C_3 > > • > > > • <0 03 • • *— • L. co 'r— — c •»— (0 > > • O QC co CO - ^ > QC - i— o CX > -X • l_ L. > 03 CD co c 03 ■ w— 03 CO oc 03 03 -X c—• — o c a c *-* -C L. 03 > *. > o • > c o — —* l_ 03 u *-* D a- CO O <0 CO CD 03 03 C. JZ 03 — XJ o o c c — 03 —> O CD QC Q. c L. O L- 03 *-* c_> % CO oc *-* x oc *-» c o D X c c — < E — o — - o c CO C —* QC > CO E • *- C_3 03 CO c- CO CD Jd CD *-> c > CO O CD CO • »— -C 03 03 03 S> -C 03 <0 —» 03 -C c l— CO l_ (— O CO 1— CO —a E Q. -X «- -C CO L_ L_ —» L. —• 03 CO QC *-< L. *-* Q.*-' *-* 03 CO <- CO (0 c CD CO u C o u o CO CD n co t- *-» D 03 X a c <0 CD 03 L. JZ 03 *-» T3 03 — CD 03 D 03 *-» — ♦-'*-' O 4-* 03 CO 03 CO *-» co IM — Q_ *-* D 03 ■o O CD C CD 03 C 3 CO C CO XI CO X O CO QC o C 3 co C 3 CO —1 CO QC co co o c Z o CL CD Q. Q. QC CO JO QC X *-* c c o o O O O O O o o O o 4 *4 in o CO o CM CM ro •>4 in £ CO z ro ro ro ro ro >4 O O O 'O o *-» VO nO O vO 'O vO 'O O sO O o o h- 00 O' o *— CM ro >4 CD >4 >4 >4 >4 >4 >4 in in in in in 73 -Q <0 I! u QJ *-» CO CD H- U C H 0 ) •— 0) O) <- CO <0 > c. ro u ♦ -> t_ CO CD C. u (/) l- o o u o —» o a. h- l. CD —* O O' 0) CD — PsJ 0IC**0> CD ~ £§ C - • <0 4-« O E <0 z 0) CO a. o o o o X) JD o s K >* > o o o N- O K) O o CM O O in co CM o o CM O in o o o o ro o o in o o CM oo ICS coo o 8 o CM > o o o o o o in >* V* V* CM > o o o CO in > o o o o o >* > o o >o in > o o o >st > o o o r^ >os > > o o o o o o' CM > o oo oo ON- o>* in cm < CL CL < Ot CM o o o fO o o o vt o >* o in o r o in CM o CD > vO CM CM ro in *— 00 o CM >* in ro CM o CM N- CM 'O CM CM CM o *— •sj-in CM 00 CM CM *— w— •“ r— *— > O 1C ro o 0.3 • o —* a 1 4-» H- C/) to 6 TJ CD L. H- 4) 4-* > 4-* 2 00 CM OO ro o § o 00 fc R o in CD O O 0) 4) .C >-> c • • ■ • • • • • • • • JZ — C c_ o> 0)4-* o ro o o >o ro >o o oo o>* o o ■ss a. CD •— h- 4-* CM CM CM ro CM CM *— oo O 0)^ c o O x: o T> »♦- u II 1 z ? •« • »—a 0 vt CD ^ X CD M >* vt < >o •-ro h- ro C z 0) CO \ N \ \ CD 1 —. — \ (/> 4-» •*- 4-» < in in cm >o >0 >o >o N- O rof*^ in 0) H- E CD CD r— «- CM «— DC CM CM O CM w— o o> C O V N — LU 1 —. '—, 'V* "v — 1 — CD • «. 4) DC O o o o o > CM «r— ro CM ro 4-» 4-* 4-* LU W— W— r— C/) 0)0) 4) _ 0 > DC "5 *4- DC CO o 4-» LU o II O x *♦- C 4-» od "D fr (J < 3 SB 86 s8 < ”3 S8 s8 S8 S8 S8 S8 3 o • 8-t O)*- 0) vt o >o 00 o CM in o O • 4-* > *4- Nt ro CM O o >* o >o (/)•— H- CD O *-* ■ • • t • • • • O Z (J H- o’ ro T— in o o r— o ro >o ll ll •— E ^ ro oo in ro o O o ro CM 0) E 0) 4-* 3 CM CM o CM ro o — < CM 3 > 0) 4-* JQ CD i E 4-* O *n CD <0.0 0 0 *” CM *“ *“ b- O CD > % CD > O) > L- CD c L. • Qt c_ C E co > o c_ 0) 0) (- CD 2 L. • • w— L. CD L. C0 4-* 72 •- 0) > 0) 0) > -X -O 4) • CD CD 4) O CO 4) C'*- *-> > • p— _« > u CD > 4-* • > o> > U) -X C CD •— 4-* c •- c > 4) 4-* c cx > O at C_ c u ot 4) 4) D > DC -C •p- OC — C_ l_ 4) c_ Q-4-* 3 4) ID UE C u o 4-» C Q. CD c. C CD l_ (/) i_ Z - C — a c — o> CO CO ^ D CO L CD 0) (0 <0 CD .c 4) o > C_) • r— C_) 4) 0 3 1- CO O CD C -X >- --* 0) T5 l— -X c u D T> c- Cl c_ X3 CO O .C (- (/) u. 4-» 4) C- —> 4-» Q.4-* CD U CD O CD a. CD 6 -X CD o - CD C -X CD O -X -' 4-< CO 4-* -X L. 4) 4) ao CM >o ro >o 74 square miles; ft = feet; ft°/s = cubic feet per second; information was not determined; footnotes found at end of table] .Q 43 i ' in co o > o a c_ -g X 4J 43 O—-» C (0(0 o O -O o m o o 43 > t- O .O o o o o o CJ c- o C_ l_ 43 o o o V— *— w— <- 43 43 «— A A A A 3 4-» > A A A J{.£ w DC 43 O O o O o o O o> ^> O o O O O o o o o O 1- 0) O o O 5) C* O' m >4 o w— m 03 ^ >4 ro *4 k5 -» « » c. ro CJ o N- v4 N* oo O 4-* K- *— m m CJ >4 00 CJ m <0 H- T— ro •— v Q O' m CJ m >o m >o 4-» CJ a— 'O m ro r— CJ in O' >4 n. 43 .C ^ n4 ro >4 >4 • a • • • • • 0)0)p • ■ "4 O' o O' ro >4 43 —H- ro ro ro NO ro a— CJ CD 43 CJ -X V CD D O > 43 X 03 <0 o 41 CD c_ CD 43 c. t O 4-* CD m 'O m o ro o m CJ 4-» o>o rooo omro m CJ co NO 43 ^ ■ • • ■ • • ■ ■ • • • CD 0)4-* 03 •-H- 3 oo m >4 0' CJ«- cj rj cj >o O' o oo CJ *- O 43 ^ 43 O — H- O O C. o o u 4) —4 43 Q. i_ <0 —» u o 43 43 *—CJ CD C 4-* O' 03 O I— «- CD— 43 H- <0 O *-> o z o h- E 43 £ § w 3 > 43 4-4 4-> O "O 03 03 -Q O O O i 03: L. 4-* 43 < D O. 43 • 4-» O D C C O CJ CO < CD OC UJ > QC CO UJ x > o > o > o > o > o > o > o > o > o > o o '4- r^ ro o co oo >* roos rorocj * OCJ O Kfc cnj o *— in CJO >0 4 8 8 00 CJ o o N- O CJ o 00 w ro \ CJ *- \ •- o oo moo com cjo O O O >t m o J8 S 8 S 8 S8 8 O o CJ >* 5 C <\J ro in m O m oo o o 5 O o o NO >4 £ O FC ro O' NO m '4- <\J o ro >4 m CM >4 O in o o o o O o o o o o o O o o o ■ o r— o NO o in o ro ro >4 in in vO 'O z o o O o o o o CJ CJ CJ CJ CJ CJ CJ o o O o o o o in 'O 8 >o 3 O' 'O o o o o CNJ O CNJ O o e o f\J o o o £ o CJ o >* N- > o oo O o o OO ooo o oo £ o oo o in ro oo ooo o oo o O CJ >4 nO >4 O CJ ooo in oo in CJ • i * >t ro CJ in O' in >4 o 00 o CJ0"0 o oo r^ o rocj >4 ro CJ O' CJ ro o «-ro Nroo K-*-ro CJ mcj ror^ £ \ N oo \ — ^*s rooo ^-rooo ro »- «— «- CJ CJ CJ CJ CJ \ S. 'Nh ro «- ro o e-O o o 8 o O in in o 3 in >4 O CJ CJ o CJ CJ O o o o o o O o CJ & O' CJ ■ 43 4J 43 • L. > > > c_ 43 43 C_ a a a • • 43 > > 43 43 43 C— 43 c 43 43 > • r— 43 > 43 44 • 4-*> 4-» > 43 > o > L. ^ C > DC — CD 43 43 43 43 43 a -n — -X 43 43 O DC CO DC (- > « C > 43 C H- 4-» 43 > 43 4-* (_ 43 ■r- O L. JX 43 -X 43 -X 43 -X > <0 O (0 43 C — t- CD 43 c 43 43 U > 43 U- 43 - 43—* 43—* 43 >-* 43 c t- O QC. (_) C 43 o L. 4-* D Lm > C 43 4-* 43 4-4 43 L. 4-4 43 ' E 43 - (_) 4-» 1— 4-* D 43 4-* E D C — D i_ CD l— CD *- 43 CD l— L. (DUE CD C CL> O CD 4-» 3 (/) 43 4-* O OC OC CJ 43 CJ 43 CJ 4-4 43 CJ L- 43 43 L. Q. C O 3 43 O C CO 5 • r— CD 4-* CJ CJ 2° 43 --*43 43 L — (0 O —• (_) <0 i_ — m (_ T3 Q. ra c_ »4- CD -X CD CD CD.S CDQ. 4-* Q.4-* —» 43 > c 4-» 43 > 0.43 43 Q. 4J •— 43 O •- 3 C 3 — — 3 CO 43 C 43 O O 43 D 4-» 4-* 43 O 3 43 43 4-* • — 3 43 —* P 43 43 43 I- 43 <0 4-» TJ 5 CU 43 -Q O 43 O C C_) O C z D 43 3 O CU 9 —i L. Z o z t- 4-» Z C- 43 Q “3 CL CJ CD CJ ”5 CJ “9 CJ CJ o o o 00 o CJ o 75 square miles; ft = feet; ft°/s = cubic feet per second; information was not determined; footnotes found at end of table] II II 03 —' CM n — . as e in co o > o 1 H- g L_ 3 X 03 43 C 0) w 0) > t- (_ (_ (T3 L. 01 0 ) D 4-* > 0) O) c. CO (0 jz r U CO H- 0) -C O) 0)4-* CO •— *4- L3 03 ^ 5 8 -X >- 03 X CD 03 4-* 03 03 O) L_ CO 03 c. ro O 4-* O 03 O (-«-* 03— 03 4-» > H- * H- 03 Oi O Z O V S 03 4-* § > 03 4-* 4-* O -g 03 * o X ro N- oo vj- O CM ro £ x> in N- 00 O' CM K fx O CM O O' St oo ro O h- rx ro O in w - ro 00 00 CM T— oo ro in ro o o 00 in o o o *— x> X) CM ro CM CM 'X- >* in in >* >* X in in • • • . • . s . , a > > > > > > > > > > > o O O o o o o o o O O z z z z z z z z z z z o o o o o o o o o o o oo ro o o o o o o o o oo N» CM o o CM o o ro o r^ o oo i * 1 * rx n — cm in <— o ro N- ro v* in coo >4- «- CM ro CM o «— in * r ~ X) n CO o oo rx o o ro o CMfO 00 O' O' rx o CM 00 CM ro in 7 300 O' «- O' CM ro «— ro 00 CM *— in 03 ? * w— ro ro *“ ro CMro roro 4-* c o O CM O' rx ro O' X) O o O' 'OO' ro O' o >* rx rx K w— X) rx ro X) in X) ro X) 'O 1 S N ■—, oo \ X* \ X \ x* X X X X X 1 00 «- N- o X) N- o o o coo oo o z CM CM X* CM CM o r— CM CM CM CM CM X, x* *- N x* \ 1 —. *x X X X 00 X) O' «- ro co o ro 00 O' 00 ro oo ro oo < CO oc UJ > ac $ 28 8 8 28 28 28 28 28 spa CO ro GO co fx 00 CO rx X) X) 00 OX) UJ X) O' X) ro CM X) CM ro ro O CM z o O' oo O o O O' O' O' O' O'O' < “S X) in o in ro CM CM 00 ro o X) O' oo oO ro CM ro in in <> 00 CM i-l o i-l o o x> co O' O X) 00 o N* oo o •x- CM CM 00 CM ro T— o O' X) oO in * * * » 0 — 0 — r— O) N- X) ro «“ o ro o fx vt vt vn CM X O' CM in in X) O' ro Fx CM 0 — ro T— sr in o ro 'O CM 03 03 C 03 co • > 03 • CO 03 * > c CD 4-* • • •— l- <0 4-* UTJ CD 4-* O -X > CD CD co ocu> CO CO — > (/) co "5 — 03 CD > > (_ 03 • CD C H- 4-* 03 > L. 03 —* * L. 03 • 03 JD • JX --* CD L. 4-4 (_ (0 O CD L. JX 03 03 * c «—• c 03 C7) CD > -^ CD 03 C 03 03 > 03 (/) 03 c O (_ > c D c D— 03 > T3 > o u > 03 o > 03 > — > C/3 <0 E 03 — O *-t •— CD oc CD ^ Z ^ • m- c- O L. 4-* — 4-* » •— > • n > (DUE u_ C/3 cx. c C C/) (J £ l- 1- -C C/3 l_ • f— x: c- 03 >*C- C C/3 O -X 4-* Q.4-* CO CD 4-* 4-* CD C 03 O 10 m CD U *♦- o L U 4-* CD CD 4-* l_ CD X 4-* CD > c- CO 03 03 “* U CO 03 4-* 03 CD (_ 03 — E O c 03 D — 25 D O CD •g 03 CD L. 03 03 D 03 CO D 03 3 E O O •o ID CU o C 14- CD CO 03 C CO CD CD <0 CD OC CD 03 C CO 03 C —i O C 3- CD C CD CD Z OC U z 0£ U Z o W (/> z C C O o o o O o o O o O O 03 O O o o o O o o O o o o c— • in 8 in in in rx in ro o in CO 4-* o co o o o *— w— CM ro X in E CD z CM CM CM CM CM CM CM CM L. 4-* o o o O o O O o O O O 03 C/3 CM CM CM CM CM CM CM CM CM CM CM O. o O O O o O O O O O o 03 • 4-* O •— Z C/3 76 f: 78 R 80 5 CM 00 83 2S 85 86 76 -O tO 0> O —* C tD (/) 5 > t- o o o o in o in o rv in L. L. (0 o O' ▼— o CM 00 c. 0> 0) «— *— o Dv> A A o c 4> — t- tt 1 > 0) o C7) O o o o o O o O o z L. o CM in Kl O' ro >o o O CA H- CM CM _» »— Nw/ CM CM Q ? 4-» vO >0 ro >o •4 N o oo r— o x: >o CM CM T“ *— ■o o> o>4-» • • • • • • • • • to-— H- o CM in ro T— >* oo c» O 0» w ro «— «— ro r~ CM 3 xr K to X in >* >* in -4 >0 in >4 in 0) 4-> to > > > > > > > > > O o o O o o o o O o z z z z z z z z z • • in o oo o o m in o O 3 r\j cm o cm nJ vf Nt > o > o > o o 3 11 0) D o C O) /-> ooo o o o oo OOO o oo oo oo o o C 0) 4-* 3 L. CA o oo o o o oo ooo o r^ oo oo in in •r— (A to O to ^ ooo o o o oo ooo CM NO o in *— m >o>o 4-> C n ro « « « « 1 * « « «• « ^ « « •> 1 « •> « » c t_ TJ O 4-» o^>o o 00 in oo inco *- CM o ro in o in in o o> c CA H- in^N co ro >4- ror^ -OOO -4 CM *- T - o q.3 >. — w r* r“ r- cm*- ro 1 o —* o 1 4-*H- CA CA 4> D 0) 01 (A O O) %4- 0> N-ro in O CM o °5 in ro ro (_ 4-* > 4-> o K *- o O'CO O CM h-O o ro in K- cm in ro ro to O O 0) a» ^ • • • • • • ■ • • t • • ■ • • • • • • • ■ x: — C L. O) CD4-» p O' O' ro h- ro r- OOst in O' o>* ro o *— COCO o -Q 4-» Q. to —»♦- o CM CM CM CM r— CM CMro ro ro ro CM ro cm CM tM a) D O o 0> W D •*> O O F .c C T3 H- 2 II 4-» o ■Q • « c N» C CA*0 X o CO O' CM O' OO' O CM O' O O' cm CM CM CM O' O' CM O' COO' to ^ $ CO u >or^ o ^ >o >o vj 'O N-'Ofv N- rv >4 r- r^ r-rv rs-N- ro c X 0) 1 \ w XV CO 'v'v 'v V V V V \ V \ N CA 4-» — 4-» 1 oo^- o NO o o in o -OfM CM *— in 'O CM *- o ro co 0) E to z ro CM CM CM CM CM CM \CM CM CM CM *- o CM CM O *-CM O) L. Q \ w \ \ \ \ O W s NN \ SS \ \ <0 Q> O' COvO CO CO CO o co *— 00 'O VO o OO' O' 'OO' in co 4-* 4~* 4-* < T“* T— CA CD o»-o 3 H- 4-» QC UJ O II o > H- c 4-» "8 "O "9 t 28 s 28 28 s 28 28 Ln 28 28 28 28 M- CA — *4- o o • 1 i • • • • i 1 • i • 1 <0 t- o o o CO 00 o O ro -4- >o CM O' N- O' N- O •«3 01 — 01 UJ CM ro >o >* CM CM vO 4S vO N. O (A Q. H- l_ X O' O' o o O' O' O' O' O'O' O' O' O' 0) C < c_ — O p 6v to OO' 3 0) ? 0 ) to — CM CO L. L. CD c 4-* O' 1 to o to o l_ «— 1 DH- o>— 0) O' O' CO o O' CO CO rv CO *— O' • crc +■> >H- ro ro in ro CM rv CM fv O T— rv >o CA — H- to O 4-» • • • ■ ■ • • • • T— o z O H- T— co ro o ro CO in O' 00 ro II II E ^ CO N- ro ro in ro ro CM CM o d) e a> 4-> d ro in >o in CM CM oo v* O' vt rv —i CM D > 0) 4-* -O to •— i E 32 »— u Q to 0) o o O >o 0) co O >0 co -4 rv >o ro o> • • • • • • • • <0 CO ro CM h- >* >0 CM in >o ro c 0> CM cn O' «st O' CO CM O' rv L. — T— in CM to CO E u w ro >4 o to • • to > • • co ■ to > ■ • • t CO to > ■ to > to to to to C 4-* > > 4-» to t- > 4-» * > > > 1- > 4> to * CO 0) c_ o ■Q • p— * (- CD > 0) • r— 0) - a> L_ « > c »4- 4-* l_ c l— — ~o L. —» t— c C- C > -- o — c >r— to O to — (_ at —* 0) — a> o u o > at O > c > 0> L. 4-> > — at a> — > > 4-* at to — tD • r— C CA E a> — — C- a* ca — OL > X — — > — L_ CH- JC at z CA C D T3 (0 O E OCL C_) > o> at o — CA '4- Q£ CA at < o < u) C ID at t- 0> CO C- — c >* —« at — c 4-» 4-* E CA 4-» QC L- > o tO L. h- i_ a> CA 4-» a> t_ t- " L*J O C_ 4-» § t_ o c 4-* 0-4-» 4) C to > a) c H- to 0 ) ^ to o 0 ) o 4-* to U to x: to — — ' to — t- to o ■g to to in 0) E 0) ooo c — h- o O 0) l- E o tO <1> O « o ^ o o c- -g 4-» T3 CO 00 >sC_l — Q. 3 Ch O CO to CO —» c 4-* C o C 3 O C 3 O C 14- 3 c co r- Q. 00 at ”D CO CO X O X X 4-» c C o o O o o o o o o o o o 0) o o o o o o o o o o o in o c • o o 00 in o in oo o CM CM ro 9 4-» o 'O S- co O' o o »— CM CM CM E to z CM CM CM CM CM CM ro ro ro ro ro ro t_ 4-» O O o o O o o o o o o o 0> CA CM CM CM CM CM CM CM CM CM CM CM CM Q. O O O o O O o o O o o o 0> • 4-* O — z O o CM ro vt in NO N- co c/> CO CO CO O' O' O O' O' o O' O' O' 77 -Q CD -Q CO in 8 > o i 3 X <0 0) o —' C co « 4> > c- • in in CM in in o o o in in l_ l_ CD C- 4> 4> O C w o ro of 4> O) o >* o O o o o o o o o «- co o in o O o o o fNJ fNJ o CO V* fO oo o O' oo >* o o 00 fNJ vt X to « « « % O 4-* ro o T— o in oo T— *— O^ CO H- Kl fNJ r- »• V fNJ CNJ Q 4-» 4> X ^ o >* ro o NO 3 ro in O' s fc to vO o oo ro o Ol OM-» • • • • • ■ CD— H- CsJ ro in oo >o C\J fNJ >* w— >d o 0 4)^ CNJ «- T” C\J CNJ ro fNJ T— fNJ x 4) in >* in in >o >o >* in 4-» . • , • • • • a . . # CD > > > > > > > > > > > O o o o o o o o O o o o z z z z z z z z z z z «-* 6 “O CD «JIJ Oq O CD 4> o 4> • 4-» O i M C 41 CD "•> o o oo o oo O ooo o OOO o O o c 4> 4-» 5 C- CO o fNJ oo o oo o oooo ooo ro 3 o • ^* CO CD o CD >s fNJ fNI oo 00 o>* O ooo o ooo O' w— V c x ro « «> « «l «. - 1 « « » « « » » « c -X O 4-* in coco sc 'O in o f\j *>0 ro in vO infNjro Kcnj t- in O' ro o 9 C CO T— ro fNJ ro o Q.D >- p— v> fNj ro •- cnj ro 1 O Q 1 4-4 CO C/) 4) 2 4) 4> co 5 o> H- 0) •»» o in O vO in >$■ N'linN oo fNJinfNj fNJ o u 4-» > 4-4 in 00 in v* oo ro 00 'TO"0 ro r*- CO o o 4) 4)T'-' • • • • • • • • • ■ • ■ • ■ ■ • • X - c i_ CD CD 4-4 1! ro ro 'O'O o o O' ocosros rosr oo in '4- O' o -O 4-* Q. <0*— H- fNJ w— «— *— ro roro fNJ ro fNj fNj ro ro fNJ fNJ fNJ T— «r- CNJ CO 3 2 O 4) v D • p— o o P -C C X> H- 3 II £ 4-4 ? c si X o O' in fNJ fNJ fNJ O'fNJ fNJ nO fNJ O' fNJ 'OO'fNJ O' CNJ CNJ CD CD l_> N- N- vor^ N-rO'l'ON rOvON N- N- to c X 4) 1 N \ N ■—, \ — co ww \ w \ \ (0 4^ 4-* • o O' in T— O fNJ fNJ <— O' 'O CNJ 0 ro T“ fNJ 41 h- e CD Z o *— fNJ O fNJ fNJ fNJ fNJ ■ r— fNJ fNJ «— fNJCNJ o fNJ fNJ O) u O "s \ N. "S \ \ '—. r- W W \N\ \ \ CD • - oj CO O' ro vO o o CO o o r-roooO'O ro co nO o 'O >o 4-» 4-» 4-» < 1— r— CO 0) »4- C 4-» ■g "O Of s a s S8 s s s S s s s H- (0 — H- ■ • i • 1 1 i • 1 1 »4- CD t- o o o CO R N- o ro 'O 00 Nt in s >o o •O CD —* 4» UJ >o 'O ro fNJ O' ro in fNJ CO Q. ^ i_ X O' O' O O' O' O' oo O' O' O' O' 4> C < T— *— *— T~ T— •” —■ r— u — 5 “3 i e ^ 2 . CD O O' 3 a) e 4) CD — fNJ CO U L C7) C 4-»0' • (D O CD O l_ «— • 34- o>— 4J o ro O' co o fNJ o N- ro • cr c 4-» > H- 4“> ro f^ ro O' O' 00 ro O O' vO (0 — H- CO O 4-4 • • • • • • • • • o z O o o ro o 00 ro 00 'O CNJ «— ii n — E ^ ro o fNJ h- >o 0 CNJ r^ oo 4> E 4J 4-* D ro 5 in ro fNJ *— *— fNJ in ro 4J vO 00 in CD • ■ • • CD CD o ro vO vt fNJ N- 00 CNJ co ro C o T— N- >0 vO in in ro o — L. fNJ «— vO CNJ fNJ N- ro CD CD i » (- • o nO CD • • • CD • > CD CD CD > CD 4) > ■ > > t- > —* CD CD c (_ 41 4 > 4-» * L. > 4-4 - • CD > * o 4> •p— 4) CD CD > (_ > CD CD * L- CD —• CD —4 Of —4 C *4- 4-» CO C_) •*— (_ —* > > CD 4JT3 > L. —' L. CD 4> CD — —4 CO O CD QC CD > CD — -V Of ■— (_ > — 4) — CD t- •r— L- > X — c (_ 4-4 c CO > > L. Of ^ — CO » > > > “Q O **- C_> C ° > E 41 — O CD 4-4 3 T> — CO O CD 4-* E Of 4) 4J •— CO • — C L. o 4-4 E (DUE u- C o O (_ Of c 14- C • r— CD— ' _3f o> Of t- Of o cn CD X CO 4-4 (_ U (D L C 4-» CD o C H- C CD CO CD CD 41 6 c 4-4 CD U 2 CD -- *4) JC CD L. 1— >- c- C -C 4-4 X CD L. >4- C Q. CO 4-* CO «- X l- CO T3 c- CD O CD OJ t- CD O —4 CD CD O CO 4J 3 — 4-4 ->« 44 -P— E CD E CD •- CD X -4 4J C Q. 4-4 T> O Of C O CD c co >^z O Of C CL •- CD — CD > <0 t_> O C < Q. CD to 3C —1 z Of 3 ”3 “3 U- z < C in o o O o o O o O O O o in 8 o o O o O in O in in in o in O £ O § m 4-4 O fNJ fNJ CNJ CNJ >*• >* in 00 O CD Z ro ro ro ro ro ro ro ro ro ro ro 4-4 o o o o o o o o o o o CO CNJ CNJ CNJ CNJ CNJ CNJ CNJ CNJ CNJ CNJ CNJ o O O O o O o O O O O & o o cm o ro o o in o *0 o o co o o o 78 square miles; ft = feet; ft°/s = cubic feet per second; information was not determined; footnotes found at end of table] -Q CO i E a o —' C CO co V > t- CM o o CM in in o o o o o L U CO V CM w— CM Nt o o o c- a> a> v— D 4-» > O C ^ a> — A A A DC CD CD /-> O o O § o o o o O O O C- CO CM o O o o h- o O O O CO 'v O CM 00 >o o in o e— ro >* ro a ro * « » « % O 4-* «— CM CM in h- N- CM o CM CO *4— v— *— T— ro w— in r— \»/ o 4-» CM ro CM CM oo in NO o >o vt CM o 5 ro ro ro ro CD CD 4-* • • • • • ■ • • • • CO — M- ro >o O in oo in oo ro ro ro in U CD ^ *- CM CM CM CM CM 0> C0 4> CT> /■> L. tfi CO ro in 5 o 00 4-» ^ ro 00 CM ro o in ro CD .c CD CD 4-* cm o ro ro coco CM CO — H- CM CM CM CM CM >$■ CM >4- ro cm CO o — H- O O u o o u Q. H- L. (0 —' O O' 0> <0*— CM cd c 4-»o co o «-«- cd— o 4-* >h- * H- co Of o z o v § 4JV •M O "O CO 03X1 O Q o CO 0) o CO co &_ o c o "2h- *3 CO O CD c E 4> — (DUE 0M0 L t —' a> 4-* Q.4-* CO o o o >4 ro' > o o o o o O O' o^> T- C\J > o o o r\j in CM > o o o >4 > o o o o > o oo oo o«- o «- Nj CM > o o o C\J > o > o > o o o oo o«- co ro CM o CM v* r- CO NO o o vt CO o «- **4 N* co ro CM o 00 «— DC o 3 £ >o Nt O' co in >4 in ro o in O' § ss c0 coco <3 O' >o^ oo J- CM >4" 00 CM in O' O' O' O' O' o OL 3 I o vO O' 8 S8 28 ro ^4 O' 8: co >o in O' a> >0 CD co co 00 O' O' in CM C <0 > 0) > — a> — co > o > DC —* >- — CO > 3 a> o t__* V (0 L 4-* O D O C CD X CD CO C 3 — O --- V (D 3 4-* a» co O C DC CO > a> * CO 3 > O t- C V <0 O 4-» O C CO <0 > co cd a> c 0) > 2 S t- c : a) c .— D ► Of . a> co -C 0) > a> o c • > co — > cl C co' CO L- > 0) > — a> ^ a L. —* O CD — u- > O CO -c c t_ 3 4-* co co co D O CD -C o a c o > * — a> DC 4-* *-> 0) O CO CH¬ ID (0 O (0 > L. a> * > o — CL O c 0) (0 -* O o oc c <0 4-* O co CO > CD O 0) L. — o «- > a> c_ a> co—' c o o o oo o O O O o in co ro o >4- oo ro 1 * O' -4- CM cm in CM CM >4- ^ 00 O' CM CM CM O in *— CM O O CM CM >0 CM vO O 00 in O *— cm in oo* Cb O'* O'* N* CO* O'* O CM < CM O CM O CM O CM O CM CO ^ N- CD N» ^4- r- >4 N» N- N \ \ NN N — N oo CL T— oo t- co*- '4’-S T- o IAJ CM CM CM CM *— CM CM \ \ > \ NS. NNN 00 o >o >o CO o >o 00 >0 v4 $ VO CM O' CM >0 N- r^ h- oS in N. in oo ^4" «“ 00* ro >0* s! vt vO n! o in ro ro o >o N- o r— CM ro r— ro O' CM oo in N- CM in O' T— T— CM ro in z z z z z Z CL CL r— CL 4-» c c o o o o o o o O O o O CD O o o o o o o o O o o O C — • o in in o in o CO in o O CO 4-* o ^4 >4 in CM ro >4 in in 'O E co z >* >4 >4 in in in in in in in in C- 4-* o o o o o o o o o o o 0) (/) CM CM CM CM CM CM CM CM CM CM CM a. o o o o o o o o o o o a> • 4-* o o CM ro >4 in >o N- co O' o — z T - T— r- CM CO *— «— *— *— *— *— *— CO > l_ co — L. CL CO O) a> co — o z c CO 4-* O CO 79 square miles; ft = feet; ft°/s = cubic feet per second; information was not determined; footnotes found at end of table] n tO E 0) > U C_ C_ tU «- 4) 4) D 4-» > o> o o o o o o o o o o o l— o «— ro ro ro in c. ro » « * « O 4-» o o ro in ro ro CO *♦— ro ro *— ro ro in ro 4> .C ' CT> 0)4 <0 —*4 G D' <0 Q U 4-* -H- 5 o i- o o u 4) —' 4) Q. H- <_ <0 —* u o 4) to — <\j a> c 4-* o 03 O t- *- o>— 4> >*♦- < 03 Oi o z o v § 01 4-» § 4-» O *D 03 OQ o cd 0) O) 03 03 c 4) •— L. 03 03 OL UJ > CL o < o o o o o m ru o ro rsj O' o in in ro > o > o o o in oo > o o o V* in CsJ in o ro CNJ > o o o ro o r\i s N-’ t\i > o o o o in o o o (M rsj > o o o in nT r\j > o o oo 00 in O rsj > o oo oo oo N-*0* O in o o ro ro > o o r\l o > o o 00 >*■ 8 8 vt N. O >o o 8 i ro <3 o oo >o o O' >ooo oroco • I t ONO orsjm O' O' O' 28 28 r^ o O' O' vt O' 00 >o in >o o ro o in ro § O' oo N- O ro ro oo O' O' 4-* c c o o o o o o o o o o ft) o in o o o o o o o o o c — • 2 O' oS in in in in o ro in 3 ^ o >o O' o in >o <3 E Q2 in in in in o 'O >o L 4-* o o o o o o o o o o 0) 10 ro ro ro ro ro ro ro ro ro ro a. o o o o o o o o o o 0) . 4-* o ro ro vf in >o <30 O' o •— z ro ro ro ro ro ro ro ro ro ro CO *— *— *— *— *“ o o oo ro ro <0 > O o o O 00 >o tc 00 vt ro o in 4-» o o ro in o ro >o in >o a> jo “8 • • ■ • • • • ■ • • • • O) CD4-» o in 'O in in o ro o ro 00 in <0 H- D ro ro ro >* ro ro r— T— CJ3 1 V N \ N \ s UJ 4-» z «- O' ro O' in O' ro *— 'O r— ro > T— <0 ro ro ro ro ro ro*— ro ro mm ro Q 1/3 —. s \ \ \ \ s \ ac \ < >0 in O' o 00 o >o ro oo vO O' ro 03 < *— < CD 28 •s* O' r^ in o «— o ro O' O' >4- in o o O' T ~ o in in O' ro 'O ro ro o N-’ o O'* ro ro O' o o ro ro O' oo oo o in in in ro ro O >o oo ro N- ro (- <0 <0 ■ 4-» 0 ) > > «0 to • (. • c > > to 0 ) • • <0 o t- > > <0 l_ to 0 ) • >< > -n • ac 0 ) > 4-» • 0 ) > o (0 0 ) * 4) C H- 4-» * DC to to > L- > 0 ) <0 —» l_ • <0 O <0 > i— D L. > 0 ) o •— to > CJ L. > -- <03 C 0 ) 0 ) O 0 ) 0 ) 0 ) 4-* OC. 4-* l_ c CL -C CJ to 4) 6 0 ) — 0 ) 4-» X > —J (_ <0 0 ) o 0 ) «• Q. c E > C * (DUE L. 0 ) D fl) L <_) 0 ) at > -* > 4-* cn L • — -X o J* jC 0 ) c 4-* t- C --- 0 ) <--n - l— JX <- *o 0 ) o. 32 O to o <- c CJ c o "2 (/) L_ 4-> cn <- *-» i_ 4) — *-< Q.4-* to c Jt 00 0 ) o 0 ) D to 0 ) O C7> 0) <0 o o 3 <0 —» cn X) X to 4-» to to 0 ) JC o 0 ) (_ cn-—- T3 <0 c O C QC •fB c co o C z o < • m- C UJ D CL o <0 DC 0 ) c cj ■* QC UJ CD CD CL C3 OL CO CJ CL CD CD r— o o in o in o ro o 80 square miles; ft = feet; ftvs = cubic feet per second; information was not determined; footnotes found at end of table] ! > O z 1 S CO (A > i- I- C- CO t— o o A O in o o A o o A o o A -X -Q in rsj o o in o o f\J PO O O O in o o o >o o o o CSJ o o po kT -Q o o JO o o o o o CO 3 I I 4> JZ o> 0)*-» <0 — O 4iv a s 3 2; fe CO CO CO «r o r\j o rsj in N- po o PO R fS X <0 41 4-» CD O in >* in in in in in in in in a , a a a a a a a a a > > > > > > > > > > > o o o o o o o o o o o z z z z z z z z z z z -Q CO II II CsJ ■g -g-E — H- O O t_ o o o 41 —* 41 Q- H- L. CD —» oo 4> CO —0 CO O t-e- O)— 41 4J > *4- < H- CO O < OZ O v § 4)^1' > 4> 4-* 4-» 0-0 CO C0.Q oo O CO 4) o CJ s I N» O O' O' R >o o o oo o o oo o o oo cm po pof'- «- >*PO o po C\J o O 'O in m>o <\JC\J T3 O cj in >o o*- \ vs in N- N- in CM O O f\J — \ >o po 3 s. CO O CO 00 I II I >0 N-in o vt or- >* o* o o o 3 a o po in in in d oo r\j o o o o o in CsJ <\j o o o » I CO o in s' 8 * I o o o 3 3 cS 3 Sg CO^J-'O orsjco 3 in r^rsj r^inrsj in o m C>*-PO o o o o o oo r— o 41 in O' O' O) • • • CO co ^ 00 r- >o 00 v O' in o C 41 f\J O e— S- —- O f\J 00 — (_ •— >* C\J o m Fw co CO E L. w o • CO co* CO > • % > > CO ■ 41 • > CO • l_ i_ « —* ■ c • 3 > co 41 •> 41 41 —* 4-» 3 o > 3 L. ■ >S >* > > 4) 41 > -X — CO 32 — 4) co - CO 4> 3 • 4) 41 > C H- 4-» —^ »* (O t_ 3 —j • oc —* —j oc u 41 -X ^ C <0 o co C c o c co —* 3 ■r> CL t- O 41 3 c CO 4-* o c O 4-1 • CO 4-* — l_ 4> * CO 4-* > -X 4-» > -X l_ CJ CO 41 O E 41 — > CD 4-* c c C CO 3 > co Q. O C C > co *• l_ L f0 t_ 1- 41 (_ C_ 4J <0 O E o> 3 co a u- O X o i— • O 4) • O 4-» • O C- • CJ c 4) CO C. 4-» t_ C OC JZ (0 L •* 4-» -X 4-» 4-* C_ CO u_ 4) CO u. c.^ co 14- c CO —* co CD <0 4) l_ 41 — .x -C 41 — C_ 4» —’ 4> 4/ H- l_ 4JH- -X > 41 U > LU > CO GO > C O) 4-» Ql •*-' CO >—» 32 u .X > — CO > — 41 4) CO co >-- 4-* *-• > *-* 4-# *4— 3 i_ to ai O)— 4) C D u— co OV-.C (-(_(- C7> <— O (/) 4 -* CO • CO— D • CD 4J • H- 4J • -Q O “D CO CO CO DttZ Xoc a. z: cj cj >^OC CJ 4) co 3 3 4) OC GO 3 41 CO 3 3 <03 O X »— to CO >— t— 3 3 3 CO CJ c c o O O o o o O o o o o 41 O o O O o in o o o o o o c— • o in in in CM o R in o in <2 4-* O T— r\j PO >* >o h* oo r— *— CM E co z in in in in in in in in o o >o L. 4J o o o o o o o o o o O 41 CA m PO PO PO PO PO PO PO PO PO PO Ol o o o o o o o o o o o 41 • 4^ o CsJ PO in o N. co O' o f\J — Z Kl PO PO PO PO PO PO PO >* «** Nt r - r— r— —* T— e - T - V— r— —■ r— 81 03065000 Dry Fork at 345 ' 1,698.76 1940-86 10/15/54 15.23 47,000 Nov. 5 a 20.74 100,000 >100 Hendricks, W. Va. square miles; ft = feet; ft°/s = cubic feet per second; information was not determined; footnotes found at end of table] 4) O —' few o o o o 1 CM o CM CM in o in V > C- o o o o o V oo in CM in (_ (_ co V— »“ T” 4-> 9 i- 43 4) A A A A A O' D ^ >1 c. 8 s > 43 O O o O o o o O O o o o O CT) o o o o Nf <5 o O o o o z (- CO IO o o o *— o >* o o CO ^ % "5 n ro CM ro o o N. o >o 00 «— ro 9 O 4-» T— s- cs CM N- 5 C/> H— W“* CM —* V CL Q. H- Q ? l_ 4-* r^ >o 8 ro 76 ro O' ro CM ro o in s r^ o O' in D 43 .C • • • 1 • • • • • *6 CD 0>4-» O' «— o O' *— in ro CM oo CO " H- w - CM «— ro CM P LD 4) n-> CO 5 <0 X 4> in in in in in in in in in >o in in • • • . . . . . . . • a CO > > > > > > > > > > > > o O O O O o o O O O o O O * z z z z z z z z z z z 4) O) O ooo o oo oo o o o o o 5 l— (/) r^ ooo o oo o o o o o 8 o Q <0 "> T— oo o o o oo ro o >o o oo o c n ro « « « «. i 1 •> - « *> « «. -* U 4-» 'O in in CM in oo «- o N- ro oo oo H- «— CM CM 00 CM *— cm ro ro in —- Vw^ »— —* Q N- in ro ro > *-» CM o in in o in vOh-CM o CM 'O oo vO 43 4) ^ 3 • • • • • • • ■ • • • • • u CD 0)4-> c ro CM CM CM O' o in 'O >0 oo o O'* 00 >* w— a f0 H- • f— t— t— r- CM r- »“ *“ CM CM e— *— O 4> w 4-» x: cr C. L_ * oSoO CM CO O N- v- CM o X 4) \ NW \ \ s w S N s 4-» to O' OON. in o 'OOO ^ O oo ro s- CO < CM CM «— *— *— w— O r- CM •- r— o O CM o o CD \ — \ N \ N'VN. \ — ■—. \ ro ror^N- OS OSS r^. 00 ro 'O >o ro o o 00 o 3 o rsj CM o <0 m o CM O' CM > -Q CD 8 ,8 1-000 43 — V a. h- c- co —» o O' 43 CD —CM CD C 4-»0' <0 O Oe- ov- 0) >»♦* < H- CD 0 4 O Z O v E 0) Z § ' 3 > 4-» O *g 03 CD .0 O Q O (D 4) (J UJ 3 : < *■ O £8 coo O V* 00 o 8 in oo oo CM CM oo O'* O CD 'O in ro 00 N» *— o o >o in ro ro oo » * ro w— *— O) in 00 o ro V— ro in in CM in ro vO ro CM ro in in ro >0 in oo 8 £FC in ro oo CD « CM *— 43 cd ® co c o •— L_ CO co CM 8 CM CO T— N- CM O' o o CM O' CM CM o o 00 FC CD CL CD ■ > C- CD 4> > • > a: 3t «* i— (A (_ « O C 4> (A u- O *-> • — CO CO > CO (- 3 <0 L. CD o o a. o > CD *-» CD 4-* —» CD £ CD CD to O o o o o o 8 O' >o o o ro ro o o CO (- ■ > 4> • CD • > CD > 4r • CD a. CD 4) -* Q- DC • L. 4) » L_ 3 u CT) o QJ « CD o 4> l- 41 (_ C —j u > C/) *8 . (_) a 4) 3= 8 DC c QC (A • c •#— •D o CD o 4) CD CD > t- c a> C L-» l_ 4-»—» > to CD c c C 03 CD L_ CO X u * CD o 4) 4) 4> CD 4) O • 0>»-' o C 4-* 31 c 4-J (_ JZ C CL •»— co at 5 CD (O o CD CJ o u 00 o X o o o o o o o o o o in CD in o in O' O o CM CM o N- N- o O O O o ro ro ro ro ro o o o o o ■ (- L_ ■ CD • L. 43 43 T5 a. CD 43 > > X a. > • DJ * CD CL ct « o c 43 DC a. • 43 ■O >> —* l_ C A l_ L. CD C X c —/ JC U L O 8 —j 3Z 43 43 L. 4) 43 £ > O 4> *4- 43 co 3= 8 CT) 8 C/) --- C i- CD O 8 •" 43 o 43 8 CD •r— CD ^ E -> 4-» 4-* N JZ (_ 31 43 4-» C CO O CD CD CD D 43 4-» 8 4-« CD c 4-» —' 41 - >- O o o o o o o N. o o o in O in in FC >* r^ tc c >o s- o o o o o ro ro ro ro ro o o o o o 43 • 4-* O — Z to >r >* io 'O s- >* oo o o >$■ in CM lT* ro lO in io to 82 square miles; ft = feet; ftvs = cubic feet per second; information was not determined; footnotes found at end of table] -Q <0 •*- • E in C ID (/) 5> > c- «_ C- 0J 00 t- 43 43 > O 1 H- ? C_ 3 X ID 41 O) ^ C- (/) to c r u 4-* ro 00 3 00 v _ o po o 4 }JZ^ in in in s o in 03 CJ3 4-» • • • • • • • • • ID*—*4- in CO O' ro o o >* O' o ID O CO 3 '£ L. a x ID 41-C ' 03 03 4 ID*— M a ai' 43 v ID ■g Tj-g •-H- O O c- o o o 43 —» 43 CL H- C- 10 —* o o 41 <0*— CM 03 C 4-* O' ID O t-*- 03-— 4) 4-» >H- 4 H- ID 0 4 OZ O n § 43 £ 1 ' > 4M-» 4-» o -g * 8 O m o o o o o o i\T IM O O IM im o o o in >o O' ID 28 28 3 O' ro in in 28 28 28 28 28 28 28 r^ d r^ O' 28 o o o o a o in . a a a a a a a a a > > > > > > > > > > o o o o o o o o o o z z z z z z z z z z o o o o o o o o o p o o 8 o o o o o S- o o o o o T— % ro 00 o o in ro 00 o IM T— in V 00 o o IM IM 00 o >o ro o IM o >0 >o O' in 00 o w— o >* o *— w— IM 00 ro r— T— IM IM ro ro v— 0J ID ID z CO 00 v* 'sj- >0 >* O < IM >* in in in ro in in ro CD '— 1 —. \ \ '•s \ in in in in 00 o >o oo O o *— ▼— *— Ui ro v* N UJ ro o o o ro o o ro oc IM 28 O' s- o 00 o 00 o oo 3 o ro >* IM T” o IM ro O' O' O' O' O' O' O' O' O' O' >o fc ro O O O' IM IM r_ ro «” in in in IM o ro N-’ N-* in >o ro ro O ro 28 R O N» 3 O' in 00 >o IM IM *— O' NO in K- IM IM >* ro >o 00 IM IM IM v— ro oo •*- >* ro *— O ro r^ ro IM E * * T - r^ • C. ID ■ ■O 4) • CL ■ 4-4 >* "O 43 • ID ID > •- C • l_ z U • 43 ID « CL C DC 4» ID 4) 43 ID U CL 43 • -V • o 4-* 4) -C CL > > Q- U «. ID 43 3 -n — ID—» >* CD • w- 43 • ^3 * >* —« >• 43 CL 43 Ch-v CO* oc —* DC « ID C O 43 C C — ID l_ « ID O ID 4>— E C CL 43 —* U 43 > 43 -4 _ ^ « CJ 43 a. „ C 4) > -C -C ID c • V— c o £ 0) C X 4-4 CO -C 4-» • — 43 4-» ^ > E 4> - 4) 1/) 03 0)0 m > (n 4 -J z cn_fl 03 ID —j 03 ID > £ ID U 03 O ID o E t-TJ O D £ CO £ 4) ID O D O —* O CO ID O C L. 4) ID C- o c — O (- 4-* C l__ •— L. 43 •— l_ L. 03 t- "O — o C--^ - o (0 ID C/3 l_ U CO 03 > C 03 > C 03 > L» O > ID 43 E CO o> ID C- 1/3 4-* t_ CO 4-* ID D 4-* c. D— O D •— O D— D C*- u 43 —^ “O 4) LL. O ID DC ID ID O DC CD X UJ CD >- U C_) >- >- >- z 3 c c o o o o o O o o o o 43 O o o o o o O o o o o c •*- • 5 o o o o in in o o g 4 -* o F* 00 R o T— IM ro in IM E ID z h* K. CO CO oo oo oo w— L- 4-4 o o o o o o o o o T—■ 43 CO ro ro ro ro ro ro ro ro ro ro CL o o o o o o o o o o 43 • 4-» O >o N» oo O' o IM ro in •— Z in in in in >0 5 O >o O CO «— e— T - *— *— *— 83 A CO 1 i'l 2 o C 43 4-» •— CO 03 Cl? • 4-» *4- (/) 43 - 43 C L. -- O E E 4-* § 43 § to L. L. 1 (D O 1 Dh- • crc >o CO — II II o z 1 H- 43 ^"5 ^ 43 > i- 1- C_ 03 c- 43 43 U 4-* > O in O o rsj V cm o in o o A o o A o o in o' o o m o o o o o' i.? 1-0 0 43 —' a. h- UJ _i rsj nQ rsj cO o i • o in oo «- rsj X o o c c0 —* oo 43 03 — C\J O) c *-• o <0 O t-«- o>— 43 4-< > H- H— O Z O ' S 43 4-> 5 > 43 4-* 4-» o*g o (Dll Oo Q <0 43 o 1M rO ro >o o o o in 00 A A A O OJ r\j o >* o o o o o o o § o rsj o o o o K 00 00 T— rvi >o ro o *4- rsi oo rsj ro ro rsj ro a ro ro rsj vt CO o 4 00 oo a >o rsj OsJ >* o «— ro 03 CM ro ro in m in o m in in • • • • • , > > > > > > > o o o o o o o z z z z z z z o o o oo o o o o o o oo o o o in rsj N-O o 00 * I % *— in o o ro in rsj rsj ro rsj in in ro oo rsj o >4 in O rsj o in A O ro «-rsj A ■4 4 vt ro ro o O rsj rsj ro ro roro H- >* ro roro D ro rsj a N- O r^o o o rsj 'Onj nO ro A ro in 4 \ \ \ \ \ \ \ \ \ r^>o N- o r^r^ a 4 o «— O o*- rsj rsj \ N \ s. \ \ \ '— \ ro*- ro 4 ro 4 a 00 A rsj >q nj co s ro 2 rsj >n rsj co rsj vQ rsjrooO S in co 00 oo in o in oo co o 00 «— rsj rsj rsj ro t- ro *— oo ro rsj ro OO o OO OO O O o o o o ro in «— ro A 4 r- oo oo in O ro O n! ro N-’ in N-* oo A o in in oo o 5 >o >o vO in >o 5 43 03 <0 <0 oo ro o ro 4 4 C 43 ro in r— ro ro — l_ co co i. . i 4 Q $ ro in in ro ro o o r— in o o ro o ro in 4 ro ro OJ CD CD 03 • ■ > > > 03 • CD CD > • 4^ c CD CD > CD • CO A • CD • 03 03 o Y > -C A X X A X • > Y • r— X ■ 4-* * 2 X 43 CD X 1- X 4-* l- *♦- 4-> CD CD i- X CD 43 CD « CO c « 03 43 03 * 43 co O <0 — 3 c CO C 43 c —i 03 43 c 43 > * 03 > c 4-* CD 43 * JU — L. CD 4-» —' CD 4-» •r— -* W 4-» —' 0 J *-< c — O l_ — E 03 — •—•CD » W C 4^ 43 •— o CD — CD > (_ 03 03 w 03 at o 43 C QC <0 u E 43 CD 43 > • o u. • •*- • O 43 ■O 4-» co > O 43 CO L. 43 — 43 t- O L W (D u. CD 43 l- > 43 C_ 4-» CD U. —' 1 - 10 43 (_ CO CO- — CO 43 l_ — 43 —• 43 4-» 43-Q o c > !s? > 43 C — » 43 c > 4-> 43 —* 43 43 43 c_> oc — — < 4-* Q.4-* Y 2- 4-* > — L. Y 4-* > 43 4-» > CD 4-> 4-> > O 4-» > A — 4-* to 43 4-» •— •»— — D • 43 CD • 4-* — — « 4-» •— 1 - • !/)• — - O 4^ •— 03 CD *-> X -- 4^ T3 •—O—i • »- QC 3 — CD 3 — J — J X X z -J c c O o co CO o o o o o o o 43 O O o • D • D o o o o o o o C — • in >* -- O — o o in o o in o o (D 4-* O 43 43 43 43 43 43 rsj ro >*• in m s o E CD z in (J C 4-» u C 4-> in m in in in N- L. 4-* w— CO 03 — CO 03 — v— *— r— w— «— *— 43 CO m ro — —' CO — — CO ro ro ro ro ro ro ro Q_ o o X X o o o o o o o o • 4-» O •— z to 2 r^ a 3 o >o o rsj •sj a 84 Graysonton, Va. square miles; ft * feet; ftvs = cubic feet per second; information was not determined; footnotes found at end of table] 4 > CO (/> 01 > «- 1 O 0 0 in (_ l_ CD O 0 0 co L 0) O e— «— V o A A A O C ^ 43 — K. DC 1 > 0) o CD O O O O z l_ CO >* O s O CO 'S. § s CM 03 0)4-* • • 1 • CO —H- >0 in to 13 t— CM JC CD X fD z 0) 4-» in >* in in . • . , (D > > > > O 0 O O O z z z z c 0) O) 0 0 0 0 5 c_ CO 0 0 0 o <0 v* to cm f^ in c c. to *• * -X O 4-» O' CsJ cn h- >* *— ^ 0 cn 2 o <\J in 'OO com *> 4-* 00 V— in 0) 03 .C • ■ ■ • t_ O) 0>4-» in O' fOs* N- Q. 03 — H- 13 4 - CM | .C z •*— CO X < h- >to CM <0 CD 0 in 00 to z 0> ■S N 4-» QC in in *— in CO LU 0 0 «-C\J O 0 > N \ \ N to r^N. CM DC < Z 3 < « * -S- z 2 2 2 co in 2 — H- 5 0 1 1 1 • c_ O O 0 0 to >00 O' in co CM CL H- L. 0 O' O'O' O' 4” CO OO' 01 (0 — CM cn c *->cy to 5 t_ e— ov- 0) in O' 4 -* > h- to 00 (0 0 4-» • • o z O H- ts-’ & in - E ^ cm 00 E 03 4-* D in vO 0 3 > 03 -M 4-» Q"0 03 CD _L) O O - CM CM Q (0 V C3 43 cn (0 CO vt to 00 O c 0) f\J O' to 0 >* (- *r- ro in 03 <0 E L_ O 03 CD <0 c- > > (_ L. > 0) 03 c 0) > • • > 0 > • — 3 3 ■O •*- 3 DC DC c DC * CO O CO « c- C & r. c 03 C/> 0 CM « 3 5 O' >o >$• p; st O 1 to in O'* >o* in O CM CM V— r— CM w— CD in >0 vO >* >* O a • • • . • • • > > > > > > > > O O O O O 0 O 0 z z z z z z Z z 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 O 0 in «-00 0 0 0 0 r^ in to fc 00 O >o CM COO' 0 co in 'O >* CM T— *— CM to in r^ in CM R St 0 0 4-00 O' (MO S* 0 CM to*- 00 00 CM t- CM to V— CM CM CM CM 00 to >o K-to 0 CM 22 v* to >0 'O *— "sN \ N \ \ 1 —, r^oo in vt O 4 - N» t^ O' CM*- 0 4-to O 0 CM \ W N \ N \ \ ro CM tO 00 N- 00 to to «— 2 2 2 2 4- CM vO in coco 2 2 >0 in O' 'O to >o to O' CM ^ vj vt v* in c6 2 2 00 0 co O' O' O' O' O' O' O' O' O' 0 CM 2 00 >o O >* •“ O O'* S in to 0 O O 0 CM in 0 0 O 0 in to to w— 00 CM in *> r— CM CM w— O) cn O) >t 2 O' 'O 00 O O' in «- in CM 00 CM 'O r^ to ^0 CM r— in to «— «— >o CD > «_ CD* «_ CD . CD* . • , 03 > 03 > • CD C— > 3 CD CD > > CD c- > 03 > > •*— • •p- • > 03 > DC 3 DC 3 4-» > • — 3 u 03 u • *-> • CO • — 3 DC 03 —* 03 3 CD 3 L. « L_ « 3 DC > —t > 0) C 03 03 L. • r— « l_ « ■p> O • r— —t 03 * V) t- DC > DC 4-* 4-» 03 i_ cn cn u CD > C E 03 L. 0 cn z D > 03 U) -D L- A ~D — O CD > X O) 3 O — 4-* c C 03 C -- OL 4-» — O 03 L. • r— O C- oc cn*»- 03 ■O 03 —* c C CD O —' CD CD T3 CD O -Q t_ 03 4-* 03 4-* • — 3 — — < 4-* CD 03 — D 03 l. CD 03 O -X 03 Q_ l- CD < L CD X 03 Z •- CD 1 - C a: (D CU 03 C _J ^ 3 00 O O Z 3 0 O Z LU O O O O 0 O O 0 O O O O 0 O O 0 in O in in K 00 st 0 to 00 2 2 2 O' 00 0 O' O' to ro to to to to to to 0 0 O O 0 0 0 0 CM to 184 in 186 00 00 00 00 00 00 CO r— CD > Dr oT 03 U D CD 85 square miles; ft = feet; ft J /s = cubic feet per second; information was not determined; footnotes found at end of table] -Q > c_ o o in L. L. CO in o CO c_ 4) 4) A r- O 3 44 > A O C ^ 6 — &_ □t: 1 > 4» o OI o o z L. (A o o co s o T> n ki 8 U 4-» CO H- —■ w *♦- Q ? L. 4-* CsJ 3 4> -C i • ■e CTI CT>4-» CO •— H- U 4> ^ CD 2 .C X a x >4- >4 4> 4-4 • • <0 > > o O O z z 4) c ct> o 5 C- CO o Q <0 ^ o c sz ki 1 • 1 -X U 4-» ki CO H- rvi Q CO 2 o > 4-» OKI 4» XJ i • • L- CT) CT>4-» 4> Kl >0 Q. < 0 *— H- 3 «-f\J cj a> w c 4-* c >e> o K O ^4- <0 X 4> • ^00 4-* Z • f\J e— CO « o ^ o co \o < o 00 oc Ui > •— ro 8 T3 "5 *- OL 00 i — H- o o < • O in u O 6 o z in oo o —' 4) 3 OO a. *4- U < •-*- z . CO uo> 0 ) <0 •-CNJ C7) C 44 O <0 o C_ *— CT>— 0 ) *4- <0 O 4-» • o z O H- O •- E ^ f\J E oi 4-* 3 o 3 > a> 44 1 *» 44 n -n ® ~ O <0 a> a 0 ) a <0 CO o >o c 4) CNJ O 'O • r— L. •— f\j «o co E L. w o CO <0 C > «- > o 41 ■Q 4 J • 4-* • C *4- 4-* <0 3 CO 3 CO O co h c JU « c. 4 ) » E 0 >- c. c_ CO O 3 CO 3 o E O 4> C7) > C7) 4> CO L_ u- 4- C — 3 C l_ —» 4> ^ •— oc o — 4-» 0.44 X) c- —> c_ CO 4> u 4 j a a> Q. T5 CU >4 E CO Z o c 4 -» a* (_ 4-» CO CO - 4- 0 ) CO --'CO Kl a. z o 4> • 4-» O o o •— z 00 o CO •“ 4— <\j C* co 3 ~o <0 E m o > L. <0 a> -Q C *-• O CO z s to o -- TJ 3 § g, (0 T3 C E 9 01 co 1 o TJ <0 4-* CTI 9 8 . a> 8 O' o (0 c o <0 TJ 8 <0 4 CL ■ O Q. CO • V- c o CO c *— 4-* O CO •r— 4-* — ' 4-* CO 4» <0 3 _/ CTI a> 3 ~4- c_ < o O V y 44 > c L. o l_ 3 3 E E o u cr a> CO CO c c 3 3 o o o - T3 T3 8 <- >K CL .Q QJ 0) CO CTI 3 C <0 CT> c 6 • 4-4 o o 4) CO 4) 3 CO *-> Q) 41 U 4-4 4-4 <0 44 c *4- '4- 4-» o 4-» 4> 2 • *— o <0 C. Of IfB *♦- P CO 4» CO o O T3 CL H- CO o O) Ol o o 1C >- L. CO CO CO o W— in 8 O m 4-« »4- 3 CTI 3 L. m — • 4-4 O c in O O •— Kl 8 <0 4i ? 4* *4- •*- c 8 4> CO 0) ? > o > o 4> O 44 44 4i 4> 44 44 JS 44 L. ■>- c_ •*— u 4-4 i— E i_ 8 • *— E • »— i_ CO a CO 4) • «- CL 5 Q. CO CO CO QJ *4- 44 4-4 co 44 4-4 4-* 4-» H- —^ 44 <0 44 86 At site 17.5 miles upstream. From U.S. Army Corps of Engineers, Pittsburgh District, 1973. From floodmark at old Lock A. Elevation from altimeters. UNIVERSITY OF ILLINOIS-URBAN A 3 0112 098719195