jkchL-:i^U NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WARTIME REPORT ORIGINALLY ISSUED November l9'<-0 as Advance Confidential Report TBE EFFECT OF INITIAL DISPLACEMENT OF THE CMTER SUPPOET ON THE BUCKLING OF A COIXJNK CCRTINUOUS OVER THREE SUPPORTS By Eugene E. Limdqulst and Joseph N. Kotanchlk Langley Memorial Aeronautical LaTaoratory Langley Field, Va. « WASHINGTON NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were pre- viously held under a security status but are now unclassified. Some of these reports were not tech- nically edited. vAU have been reproduced without change in order to expedite general distribution. L - 256 -;, u THE ZJ?ZGT or INITIAL D ISPLACI^iZIIT C7 T^HE C^IT^IH SUPPOIl? OIJ TEZ 3UCXLi:^G 0? ^ OjLUMIT C01'TI2TU0US C'.^E]x jKHSZ SUPFOIi^rS 3;- E-a.^;e::.G 3. L-undcuis t and Joscpli 1'. Zo'':anchik A 1. :;,^ cc1l".t.;i c on'c ir.uous cvor throo suppci-t^ '..-as tostud to d J t >..rT.ir;c its criticr-.l iof.d vhen thu GonGer 5"ap- port WLis given var^'ing einounts of initi.?.! d icplac ^mcnt . Duri::g oc.ch tost thic Zuiddlc si.-.pp::'t v;r.s hing-ici- so <"2 to Do frse to :aove parallel to the cclumn axis during; "buckl in;r;. rr. o c r 1 t Z. c B. 1 1 3. s r ea U. in,' c: 1, r (= I' e ^ 1 I f e r e n t T lie lar CJ e r •v» fi d 1 c "t 3 c' c r." i J. he s 'p a i\ t h a i J ) .1 L' -^■' C k J_ T_ i ni t ial ce J- n :; c t i f~ 11 c ^ r ve ^1 ic + ed r> ri t ^ c cl .1 1 oa d i n ■n uch 1 in e 9 ,1 e f _L. ec t e d O t ho i '.1 i ^ i P. 1 r; f 1 c t ■4 G n c t io il s h c -1 T r c hi ■ rt 7^ ^J_ c- s of T* ■I- ho c en ■(; r^ 17 S U'O "JO 1" t w a prsdicte^i froin Icad-def lee t i oj for the MpT^er ana l0'\rei' spars, tical load in each t;St -vas ni'-, doflected -; o £.s to deepen of the span and the smaller eech test v-£,5 for the span th as to straighten o'lt and re urvG of the ST3an. Thoco odeg c t i wno' r. e r t n e T. 1- ,-. .nit ial dcflo tho loft for t h e pre- at , verse rva- on c r c n c "t- e t w e o n t h e c r i • loadE predicted for the iippcr and icv.'jr spans is lorcpor t i onal to the in- itial deflection of the center sin;'Port. The o.ifforoncc .on hose tests 1 3 n c t J .». '_j. ^ .n ;orm£ o;; errors -oor— miisiol::; in -orac tical dcsiisn. predicted c r i t mdi scr irr. inato sini^le a",2p: fact that a difference .cal loads si^ggosts that an the So"at]:woll method . c a t i c n o ; as presented in reference 2, or as modified in reference 1, can result in definite and measurahlc errors. The average of the predicted critica-l loads for the upper and lov/er spans is more correct than either pre- dicted critici-l lo£id. This observation su^-gests that v/natever i: hi,;h in on, to be lev; in caus in^ s- ;nc sredictod cri^ ;al loaa an also causer: the ■or-edicted critical . o a 1 :n; otner span. The avorai,e of the predicted critical loads for the upper and lo\;er spans i .^ reduced oy initial displacement of the center support and thi" reduction t. nC:'. to i n c r v; i t h ahsolutc value of the initial displacement. In t he re due t i on i avera,:-e critical load tncGCoOG ca'':.sed oy inibial displ.;icen':3ut. of the csiiter sv.ppoi-t is Ter7 sna?,l. [This fact ir.dicates th9,t the effect of cur- -atiire dixe to "tendiii^ on the criticr.l load for the co~- pretision flan,:;8 .-material of a dos oeani is prohahlj sjrall aiad can "be ne^;lected in engineGrin§- design. IHTROEUGSICK 1 n th e c :■ V. 3r 5 e of Greene » "-■ r Cor rs L i a effect of curve tu re d for th e c c: nprcE si on f decide d to test a Ion ports ••;ith the r. i d -^.i e m J n t t re pre 3 nt t he 3 h i n -if in./. In th t c as to DC f r c t nove huckli ilo. It v; a. 3 con liTOUld h a 2? C 0. S onaljlc pro V i d Gd \ 7 the r i^E a 0. i s c MS 5 i n v; i t h L t . Col. ison Officer -fith the ITaCA, no to D ending; on tliu critica lan,_;e material of c, lox hcaii V?, coliiran c cnt iniioiis OTor thr sn.pT. o: cur rat lire c giyen an initial di l:if: in a s st the aiddle support v/^-s hi parallel to the coiv.mn ar.is sidorod that this t7po of su approxiij-.r. t ion to the t:-'pc o 01 1 1 » ~ e - spl tre n i: c p;oo 1 F. the r... d. t v/a; s up— ace- s 3 :] ■ a 30 rinr::: roort 01 Zi-C J o :■; 'AHATU AIT! .10 -COGt PO t -up is s dia graramat ic 3ket c h of t h T h.; long c on t inuou3 3 / 4 -in ch— dian e t e r steel kni f e edges . The n:idile por tod latera 117 b;- a st i end of th is 5 trut vr as pi >i at its riiddlo h c ax i s int r 3 c c t the a:-: i 3 of '-.h c 3 i'i le advers o off e c t s of loc " t i on. Ta e ot: her end. v/as pi n-joine d to a rigi d nan r.cr that t he n iddle o f dof Ice t Lorna 1 to the i n i D' uring c: rch test do 1 of cac! h span V.' c r taken X shovrn in figures 1, t .■> p she V,' n 1 n : , and ' i t^ur o it olunn used in the tests -.ifas r 67-7/5 i n c h c s bet vr e e n the f the continuous cclun.n --.'as f strut 12-7/ S inches long. Joined to the ccntinticus ccl f this pin joint ■^ras riadc to colT.-in 3:; as to re:r:cve :\r.y p n eccentric p in Joint '^. t t h i f the lateral supporting str supporting structure in such the continuous colunn could i a i deflection. a n d 3 Up"^ One unn ut; not iction readings at the nid:'.lc ).- a fixed reference point on the slotted tension rod of the testing nachine v;ith an inside "licroneter caliiocr roadir.;; to thousandths of an m he micr oir.et er caliper and its extension bar are .0 -c Fliovni in figures 1, ana In each test the specimen vfas loaded through the same ran^e of leads. Therefore the sr.all errors in the loaf-s indicated "by the testing machine cancel ;rhen com- paring the results of one test ivith the r.-Rr.lt3 of an- o t >- r tost. HIS'iJLTS ti..;; .^ -^r t ' the enc« In : cc-1 the lo i ploi porl ■Z'ha load-deflection readings taken duri . t i n are given in t at 1 a s I to 711 i n cl u s . o,r3 plotted ir. fif^iires 5 to 11 inclusiv prodict2d loads are ohtainGd"" in the raann : 1, xhcso predicted lo'ids are listed in 'i:,-urc 12 the difference bctv;aen the pred load for the upper o,nd lov/er spans is plo initial deflection of the center support, ho avcra^AC value of the predicted critic ted a^-ainst the initial r.rflection of th. iv e , er t 1 c tt this e. T f r n of r ahle t e d c ed ag In f load c en te mves- h e 3 e v.'hich ef er- VT T T t X — ^ • riti- igurc G is r s up— In each test "buckling- occurred --/ith deflection to the right in the upper span o,nd deflection to the loft in the lov;cr span. Hhe test for vrhich the initial deflection of the center support v/as C.749 inch -ras the last test per- for::;ed. In this test the column was loaded to '.cstruction and a:ciinum , oad o un to 5 810 pounds. i}:3c;ussio:t loads c n t f critic huckli curve in eac s a s curve v.-hothe to the nsp pre r t ,-.1 " £ » of .10 lo: ; 'G 1 1 . c t e 1 up 01 ,t)l to C I r t r i s-c th he A'h efl C 3 r a i c s in t o per in c oc tc pan as f gntc pan. it ir r t h om and ach d S an:l or n o' ■t: 1 d o vii: that the critical loaa- :i iecti . :■! ;e s ? o so le ■C vr ■ to S;n( Sp.i n d CD spans . "or i'pe on readinj^s v;cro differ— The larf^er predicted + d Ml n th rcve r, .-> T" -.r zao Fpan that, on the initial deflection er predict el critical load hat, on buckling, deflected erse tiic initial deflection ;ions held regardless of the center support v;as Pi£:urG 12 shows vh."t tho .".if f oronc d "oot--;oon tin crit- ic vo Tn. of ge So f i er th dc c iz cc. lcc:l r^rodict; or up"oc: ar.d lov/er 3 '•:: an E is '0- lo: e c. 1 X I :; r c r. C2 no the initial cTcf 1 jr^ t ion .jf the center support. . these tests iz not lo,r-?c in toriris ~ oX! "pcraiE s i ol> ,sts : m prrcct icr-,1 : E 1 e:n , ! r r o r G _ - :f f ■ e r c ii c G o 'c i s t s i r. t h e p r o cl i c t e d critic r . 1 1 ;r; that .'.n indiscrir.iinnt c single r:.pT'li cr.t ion . + Vi - '"• n :-. ■;, r e 3 e n t e d in i' o f e r i"- ■- r: a. P. n i fact thf.t rds sug- t n e c. a; or 1^ .- o ti lite herGforc dosirr.ole to stuav the cause of n the pre dieted critical loads in order to . in refcro-.co 1, can result in definite and ir.easurab rs. It is the difference -Zn to o n s . or. Ui- V L 1 lU )or-:ance in ncme er : aTjpl i- foi; m "■:ne one v;in.:: va.lue; v; e r .: ■■/as ■ c h t a i n c d :arri:d to do ; rue t ion, the ritic-'l load, upper cpan oS9? ITd Predicted critical ioa.', lovror span 5757 lb Avcrair:e preoicteif' critical load ?827 It m strnctior. t. 3310 11) j!r or . e s e re s i.\ ts rredictec-. cri-;ica. ioa.C- : er up'oer and lovrer s'oaus is Eore correct tnan ei CD s e rvat ion s U::;go s t :-; ed critical load to he h predicted critica,l lop.d, "n: 13. s one sps.n aj-so cautes tr.c pre . c t c d c r i t i c c , 1 CO u e .'- " the ot: rpan, of t: plac tc i plac p red the indi tho a h fine It is iT G "ore d .■ncnt .1 c r 3 a ri e e Ik o n t . i G t e d c center cates X 3 r i t i c a :: D .3 a.u J r i n t"' d ;on -ct • t ■>/ i In ■it ;up' lat . 1 .s i-ded fron fi-'u; -■;u. cri lI loads ; that the average Talue reduced ty initial dis- po :al rt he d oh ;enter support and this reduction tonds ;he ah solute -trc iuj of the initial dib- se test!? tlie ■ redact ion in the avsra,;;^8 load caused hy initial displacerrieut of is, ho-./ever, very siiall. This fact ect of curvature duo to hendini^ on - -p. the c orijjrcs s ion flange material of ^Ol:r s n a and can oe nei-'lectod in en- ■ pcn , _ fact tJ-.at ne,:ative initial di splCvCesent of the center .^uxjport gave lov;or averajo predicted critical loads iter than corros ■adin;i- poGiti" initial displacenients indi- cates that • and contrc.l p G r £. p an a ], ', to -;;he loft hero ma;' h ?.'/•: loading. Tho f ac i ay^ doflcctou to t' soers to sappn-t. z] syrr.v.ctry ^1.r..:^. central load .Hi \f u ; ^ lac!: of perfect synmetr^ : 1: at, o n ''o v.c k 1 i ii ^^ , t h e up- ) rii^lit and th.o lower span ; 3uj£i;e3t icp- that pcirfsct 'e not achiovod. I J. X !r po £ r X cl t n a z d it i on c in th 3 t v; c P a ^1 s ia T ly dof lee t w I. r* a 'C s c s t ha tv; ans tc a :'. X f ■** • e ::i J tc \l'.l n d fl oc J- i v- n » d of X ec "G ion cv. -■» re z n 3 y or 2 c c the i"a 1 "■-' 1 al .-> e f 1g I ns p c c t ion Ox ta cl c Li T "7 t ho sa "u c i ncr C r.-.e nt f 1 f (I ef 1 o?z : oa — t.'" 1 i s t io 11 5 n b ■ucic J. in £■:. d •J e ';- ^l Of i> ho spa n. ?h e ;r i <5 t e ef i cc t ior. f r ■I, V- ^ ::. Z if •P or c 11 cc in th (^ c . d i i-> a d i f 1 e r o n c c vrh on 1 1" ^ ^ ■h in the Icadm. center cupport is c on- i v: T — he predicted critical loads for on "b-achlin- suan anc Certainly a difference in loading n-5, deepens the initial strai-^htens cv.t and re- cti o n c v.r T c f the to YIZ incln.iiv ad ?-?3^ , the largoi" increncnt a 1 w ays o 1 1 a i n c d - ' h c n other 3 70 an. e h G v/ s that for i n c r ' t h d e f 1 e c - ns the initial defl-^ction zv.vve nee of different increnients of increnent of load can only r.ecn ■^; ccnditious for the tv;o spans. Lan^-ley Memorial Aeronautical Labora^t or^/ , iTaticnal Advisor;'' Comirittoe for Aeror.a-at i; L angle y ild, 1. L'undgnist, 3Uii;eno S.: G-on-iral iz :!d Analysis of Expori- nontal Ob?, ervat icns in Proble^is of Elastic Stability T.ll. tc. 558, ITACA, 1S38. 2. Southv;ell, P.. T Observations Froc . , P.or-al : On the An:',ly3ij cf Z::7- er imcnt al .n Froble:;.? of Elastic Stability, j'ic.. A, vol. 135, 1952, pp. 6C1-S16. o HACA TABLE I TaMes 1,S,3 Load-Def leotlon Data Initial Deflection at Center Support Inches. P (lb) Upper Span Pi = 3000 lb, yi = 18.191 In. Lower Span Pi = 3000 lb. yi = 18.114 in. y (in.) y-yi (in.) P-Pl (IbO y-yi P-Pi (in/lb) y (in.) y-yi (in.) P-Pl (lb) y-yi P-Pi (in/lb) 3000 3200 3400 3500 3600 3700 3750 18.191 18.204 18.224 18.244 18.275 18. 350 18.451 .013 .033 .053 .084 .159 .260 200 400 500 600 700 750 0.0000650 . 0000825 .0001060 .0001400 .0002271 .0003467 18.114 18.104 18.083 18.064 18. 031 17.954 17.854 -.010 -.031 -.050 -.083 -.160 -.260 200 400 500 600 700 750 -0.0000500 - .0000775 - .0001000 - .0001383 - .0002286 - .0003467 TABLE II Load-Deflection Data Initial Deflection at Center Support 0.453 inches. p (lb) Upper Span Pi = 5000 lb. yi = 18.556 in. Lower Span Pi = 3000 lb. yi = 18.470 in. y (in.) y-yi (in.) P-Pl (lb) y-yi P-h (in/lb) y (in.) y-yi (in.) P-Pl (lb) y-yi f-Pi (in/lb) 3000 3200 3400 3500 3600 3700 18.556 18.576 18.605 18.635 18.677 18.796 .020 .049 .079 .121 .240 200 400 500 600 700 0.0001000 .0001225 .0001580 .0002017 . 0003429 18.470 18.461 18.444 18.424 18.585 18.269 -.009 -.026 -.046 -.085 -.201 200 400 500 600 700 -0.0000450 -.0000650 -.0000920 -.0001417 -.0002871 TABLE III Load-Deflection Data Initial Deflection at Center Support -0.447 inches. Upper Span Lower Span p Pi = 3000 lb. Pi = 3000 Lb. yi = 17.833 i n. yi = 17.741 in. 1 (lb) y y-yi p-Pi y-yi (in/lb) y y-yi P-Pl y-yi (in.) (m.) (lb) (in.) (in.) (lb) P-Pl (in/lb) 3000 17.853 17.741 3200 17.843 .010 200 0.0000500 17.724 -.017 200 -0.0000850 3400 17.863 .030 400 .0000750 17.691 -.050 400 -.0001250 3500 17.885 .052 500 . 0001040 17.660 -.081 500 -.0001620 3600 17.933 .100 600 .0001667 17.607 -.134 600 -.0002233 3650 17.985 .152 650 .0002338 17.547 -.194 650 -.0002985 i I KAOA Tables 4,5,6 TABLE IV Load-Defleotlon Data Initial Deflection at Center Support 0.749 inches. p ( lb) Upper Span Pi = 5000 lb. yi = 18.742 in. Lower Span "l = 3000 lb. yi = 18.662 in. y (In.) y-yi (m.) P-Pl (lb) y-yi p-Pi (in/lb) y (In.) y-yi (in.) P-Pl (lb) y-yi P-Pi (in/lb) 3000 3200 3400 3500 3700 18 . 742 18.757 18.782 18.811 18.901 .015 .040 .069 .159 200 400 500 700 0.0000750 . 0001000 .0001580 .0002271 18.662 18.663 18.656 18 . 647 18.575 + .001 -.006 -.015 -.087 200 400 500 700 +0 . 0000050 -.0000150 -.0000500 -.0001245 TABLE V Load-Defleotion Data Initial Deflection at Center Support -0.747 inches. p (lb) Upper Span Pi = 5000 lb. yi = 17.605 in. Lower Spa.T Pi = 3000 lb. yi = 17.490 in. y (in.) y-yi (m.) P-Pl (lb) y-yi p-Pi ( in/lb) y (in.) y-yi (in.) P-Pl (lb) y-yi (in/lb) 3000 3200 3400 3500 3600 5650 17.605 17.614 17.635 17.662 17.719 17.818 .009 .03,0 • 057 .114 •213 200 400 500 600 650 0.0000450 .0000750 .0001140 .0001900 . 0003277 17.490 17.463 17.422 17.381 17.309 17.226 -.027 -.063 -.109 -.181 -.264 200 400 500 600 650 -0.0001550 -.0001700 -.0002180 -.0003017 -.0004062 TABLE VI Load-Defleotlon Data Initial Deflection at Center Support I.OI3 inches. Upper Span Lower Span Pi = 5000 lb. Pi = 3000 lb. j p (lb) yi = 19.010 i n. yi = 18.902 in. y (in.) y-yi (in.) P-Pl (lb) y-yi f-Pi (in/lb) y (in.) y-yi (in.) P-Pl (lb) y-yi prpl (in/lb) 3000 19.010 18.902 3200 19.037 .027 200 0.0001550 18.897 -.005 200 -0 . 0000250 3400 19.080 .070 400 .0001750 18.880 -.022 400 -.0000550 3500 19.111 .101 500 .0002020 18. 856 -.046 500 -.0000920 3600 19.169 .159 600 .0002650 18.804 -.098 600 -.0001633 3650 1 19.254 .244 650 . 0003754 18.739 -.163 650 -.0002508 fv I HACA Tables 7,8 TABLE VII Load-Defleotlon Data Initial Deflection at Center Support -1.020 inches. p (lb) Upper Span Pi = 3000 lb. yi = 17.393 in. Lower Span P]^ = 3000 lb. yi = 17.274 in. y (in.) y-yi (in.) P-Pl (lb) y-yi P-Pi (in/lb) y (in.) y-yi (in.) P-Pl (lb) y-yi P-P, (la/lb) 3000 3200 3400 3500 3600 3650 17.393 17.396 17.416 17.450 17.499 17.566 .003 .023 .057 .106 •173 200 400 500 600 650 0.0000150 .0000575 .0001140 .0001767 .0002662 17.274 17.241 17.193 17.150 17 . 075 16.996 -.033 -.081 -.124 -.199 -.278 200 400 500 600 650 -0.0001650 -.0002025 - . 0002480 -.0003317 -.0004277 TABLE VIII Summary of Critical Loads Predicted From Load-Deflection Data. Initial Deflection at Center Support (in.) Per Upper Span (lb) ^r Lower Span (lb) ^cr Average (lb) ^cr - ^cr Upper Lower Span Span (lb) .453 -.447 .749 -.747 1.013 -1.020 3858 3868* 3773'* 3897* 3727" 3890* 3737" 3850 3789*' 3830* 3757'* 3831* 5733*' 3872* 3854 3829 3802 3827 3779 3812 3805 8 79 -57 140 -104 157 -135 •Deflected on buckling so as to deepen the initial deflection curve of the span. ••Deflected on buc.-.llng so as to straishten out and reverse the initial deflection curve of the span. HACA rig.i Pigura 1.- Tett ■9t- up ihowing col- umn with ini- tial deflection at center sup- port of 0.749 inch before loading. 300,000 -POUND HYDRAULIC COMPRESSION TESTING MAC MINE NACA rigur« 2.- Test set- up showing col- umn with ini- tial deflection at center sup- port of 0.749 inch approach" ing critical load. Pig. 2 3OO.000 -POUND HYDRAULIC COMPRESSION TESTING MACHINE VACA Figure 3.- Test eet- up •howlog col- umn with ini- tial deflection at center sup- port of 0.749 inch at, or past, maximum load. Fig. 3 300,000 -POUND HYDRAULIC COMPRESSION TESTING MACHINE IJACA Fif'.4. CM t k1 Positive deflection Eef ersnce line l\ Deflection readings | taken at thid point in upper span | I I l/'-i h Pin joints Initial deflec- tion at center support - Rigid supporting structure Upper sup-Dort ! / Deflection readings taken at thii point in lov/er span -it - y stiff strut 1/2 h i I Center support 3/4 h r-V- h ~ 67 7/8 ii ..-V Position with no deflection LovvTir support Figure 4,- Diagraminatic sketch of test specimen. CM I NACA Figs. 5, 7, 11, 1 J> c •k .-1 C • o -p • • nj a> tlD-rH V^ ' d .M O •M 4J O t:) -i^ -4J Pm O P4 1 cd ixi •M -P (D Ph • o t3 C cri ••> i-H r! • c- r-H • H -4J Cm w^ c C Vs (D o If^ Cm o o o O Ti }h c O -.H C -M fX Q) -M w -p -p Ph.-h -P CO t) " o :=! cti c c- }-, Xi 0) uO W .M ^ P^r— 1 • i-H -p o -g* cd Cm hO<+-i ^ -M • •i—T ^ CD •H (D 0) C -P o M-. O TZi Ph -1=! -P -M CCl 1 ti 4J Jh CCf 0) t:! -P C C (D o o ■ rH -P -P o cd 0) r-H C Cm O ni .M t3 -P 1 O t:! CD erf r-H O Cm • I-H CD KJ t3 CD Cm ^ O 1— t C) Ki C! ^ -M • M Ph-P rci -M o Jh C (>3 O I-H o CD U -P o K) ^ oi Q Q^ o o NACA Figs. 6, 8, 9, 10. • ction data, at center • « ction data at center \ <^ CD Cn O CD tH t3 -P (Q 1 O "~: T3 ccf ■— 1 O - • 1 o 00 5- ^ "=! CD U U O ^ ft •M Ctl -P Sh C CD O O •M -P -P CM " 1^ -^ CD -H C ^ \ > o\ V Ci, \ \ S \ \. di \ \ w <5 \\ \] \ • cti \ \ \ \ .16 on dat center \\ \ \ \ \ \ \\ .12 flecti on at \\ \ \ \\ X t \ .\ CD -M ■n -p CD ' " ;\ \ \ S -ri CD d r-H Cm \^ X ' .^ \ I— 1 (D • v^ "M \ \ .\ \ I-H C d -H \\ \ \ ft-P c^ Cti -M -^ 1