- :2 B RV 8c COLLEGE, CAMPUS. L} A A M E48-1132-9M-L180 TEXAS AGRICULTURAL EXPERIMENT STATIUN A. B. CONNER, DIRECTOR COLLEGE STATION, BRAZOS COUNTY, TEXAS BULLETIN NO. 461 NOVEMBER, 1932 SUPERSEDED BY“ N)L\lv,§v=\‘> i"; DIVISION OF CHEMISTRY i‘ The Composition and Utilization of Texas Feeding Stuffs AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS T. O. WALTON, President STATION STAFFT Administration: Veterinary Science: A. B. Conner, M. S., Director *M. Francis, D. V. M., Chief R. E. Karper, M. S., Vice-Director H. Schmidt, D. V. M., eterinarian Clarice Mixson, B. A., Secretary I. B. Boughton, D. V. M., Veterinarian M. P. Holleman, Chief Clerk **F. P. Mathews, D. V. M., M. S., Veterinarian J. K. Francklow, Asst. Chief Clerk W. T. Hardy, D. V. M., Veterinarian Chester Higgs, Executive Assistant R. A. Goodman, D. V. M., Veterinarian Howard Berry, B. S., Technical Asst. Plant Pathology and Physiology: Chemistry: J. J. Taubenuhaus, Ph. D., Chief G. S. Fraps, Ph. D., Chief; State Chemist W. N. Ezekiel, Ph. D., Plant Pathologist S. E. Asbury, M. S., Chemist W. J. Bach, M. S., Plant Pathologist J. F. Fudge, Ph. D., Chemist C. H. Rogers, Ph. D., Plant Pathologist E. C. Carlyle, M. S., Asst. Chemist Farm and Ranch Economics: T. L. Ogier, B. S., Asst. Chemist L. P. Gabbard, M. S., Chief A. J. Sterges, M. S., Asst. Chemist W. E. Paulson, Ph. D., Marketng Ray Treichler, M. S., Asst. Chemist C. A. Bonnen, M. S., Farm Management W. H. Walker, Asst. Chemist “W. R. Nisbet, B. S., Ranch Management Velma Graham, Asst. Chemist A. C. Magee, M. S., Farm Management Jeanne F. DeMottier, Asst. Chemist Rural Home Research: ‘ R. L. Schwartz, B. S., Asst. Chemist Jesse Whitacre, Ph. D., Chief C. M. Pounders, B. S., Asst. Chemist Mary Anna Grimes, M. S., Textiles Horticulture: Elizabeth D. Terrill, M. A., Nutrition S. H. Yarnell, Sc. D., Chief Soil Survey: "L. R. Hawthorn, M. S., Horticulturist **W. T. Carter, B. S., Chief H. M. Reed, B. S., Horticulturist E. H. Templin, B. S., Soil Surveyor J. F. Wood, B. S.,,Horticulturist A. H. Bean, B. S.,Soil Surveyor L. E. Brooks, B. S., Horticulturist R. M. Marshall, B. S., Soil Surveyor Range Animal Husbandry: Botany: J. M. Jones, A. M., Chief V. L. Cory, M. S., Acting Chief B. L. Warwick, Ph. D., Breeding Investa. S. E. Wolff, M. S., Botanist S. P. Davis, Wool Grader Swine Husbandry: Entomology: Fred Hale, M. S., Chief F. L. Thomas, Ph. D., Chief; State Dairy Husbandry: Entomologist O. C. Copeland, M. S., Dairy Husbandry H. J. Reinhard, B. S., Entomologist Poultry Husbandry: R. K. Fletcher, Ph. D., Entomologist R. M. Sherwood, M. S., Chief W. L. Owen, Jr., M. S., Entomologist J. R. Couch, B. S., Asst. Poultry Husbandman J. N. Roney, M. S., Entomologist Agricultural Engineering: J. C. Gaines, Jr., M. S., Entomologist H. P. Smith, M. S., Chief S. E. Jones, M. S., Entomologist Main Station Farm: F. F. Bibby, B. S., Entomologist G. T. McNess, Superintendent S. W. Clark, B. S., Entomologist Apiculture (San Antonio): "E. W. Dunnam, Ph. D., Entomologist H. B. Parks, B. S., Chief "R. W. Moreland, B. S., Asst. Entomologist A. H. Alex, B. S., Queen Breeder C. E. Heard, B. S., Chief Inspector Feed Control Service: C. Siddall, B. S., Foulbrood Inspector F. D. Fuller, M. S., Chief S. E. McGregor, B. S., Foulbrood Inspector James Sullivan. Asst. Chief Agronomy: S. D. Pearce, Secretary E. B. Reynolds, Ph. D., Chief J. H. Rodgers, Feed Inspector R. E. Karper, M. S., Agronomist K. L. Kirkland, B. S., Feed Inspector P. C. Mangelsdorf, Sc. D., Agronomist S. D. Reynolds, Jr., Feed Inspector D. T. Killough, M. S., Agronomist P. A. Moore, Feed Inspector H. E. Rea, B. S., Agronomist E. J. Wilson, B. S., Feed Inspector B. C. Langley, M. S., Agronomist H. G. Wickes, B. S., Feed Inspector Publications: A. D. Jackson, Chief SUBSTATIONS No. 1, Beeville County: No.‘ 9, Balmorhea, Reeves County: R. A. Hall, B. S., Superintendent J. J. Bayles, B. S., Superintendent No. 2, Lindale, Smith County: No. 10, College Station, Brazos County: P. R. Johnson, M. S., Superintendent R. M. Sherwood, M. S., In Charge "B. H. Hendrickson, B. S., Sci. in Soil Erosion L. J. McCall, Farm Superintendent "R. W. Baird, B. S., Assoc. Agr. Engineer No. 11, Nacogdoches, Nacogdoches County: No. 3, Angleton, Brazoria County: H. F. Morris, M. S., Superintendent R. H. Stansel, M. S., Superintendent **No. 12, Chillicothe, Hardeman County H. M. Reed, M. S., Horticulturist "J. R. Quinby, B. S., Superintendent No. 4, Beaumont, Jefferson County: *_J. C. Stephens, M. A., Asst. Agronomist R. H. Wyche, B. S., Superintendent No. 14, Sonora, Sutton-Edwards Counties: "H. M. Beachell, B. S., Jr., Agronomist W. H. Dameron, Superintendent No. 5, Temple, Bell County: I. B. Boughton. D. V. M., Veterinarian Henry Dunlavy, M. S., Superintendent W. T. Hardy, D. V. M., Veterinarian C. H. Rodgers, Ph. D., Plant Pathologist O. L. Carpenter, shepherd H. E. Rea, B. S., Agronomist "O. G. Babcock, B. S., Asst. Entomologist S. E. Wolff, M. S., Botanist No. 15, Weslaco, Hidalgo County: "ILV. Geib, M. S., Sci. in Soil Erosion W. H. Friend, B. S., Superintendent "H. O. Hill, B. S., Jr. Civil Engineer S. W. Clark, B. S., Entomologist No. 6, Denton, Denton County: W. J. Bach, M. S., Plant Pathologist P. B. Dunkle, B. S., Superintendent J. F. Wood, B. S.. Horticulturist "I. M. Atkins. B. S., Jr. Agronomist No. 16. Iowa Park, Wichita County: No. 7. Spur. Dickens County: C. H. McDowell. B. S., Superintendent R. E. Dickson, B. S., Superintendent ' L. E. Brooks. B. S., Horticulturist B. C. Langley, M. S., Agronomist No. 19. Winterhaven. Dimmit County: No. 8, Lubbock, Lubbock County: E. Mortensen, B. S., Superintendent D. L. Jones, Superintendent . "L. R. Hawthorn, M. S., Horticulturist Frank Gaines, Irrig. and Forest Nurs. Teachers in the School of Agriculture Carry'ng Cooperative Projects on the Station: G. W. Adriance. Ph. D., Horticulture J. Mogford, M. S., Agronomy S. W. Bilsing, Ph. D., Entomology F. ' V. P. Lee, Ph. D., Marketing and Finance W. _ i. Knox, M. S., Animal Husbandry A. K. Mackey, M. S., Animal Husbandry L. Darnell, M. A., Dairy Husbandry ‘Dean School of Veterinary Medicine. tAs of November 1, 1932. "In cooperation with U. S. Department of Agriculture. S. R. Brison, B. S.. Horticulture HR. Horlacher. Ph. D., Genetics This Bulletin contains a discussion of the constituents of feeding stuffs, their digestion, utilization, and compo- sition. Variations in composition of the feeds are dis- cussed. The averages of the composition of over 600 kinds or classes of feeding stulfs are given, based on , over 22,000 analyses, in turn taken from over 55,000 analy- ses made in this laboratory. The average productive ener- gy and digestible protein are also given for a large num- ber of feeds. Suggested standards for feeding are given, together with methods for calculating the cost of protein, productive energy, and bulk, for calculating constituents of a ration and for reducing the cost of a ration. CONTENTS Introduction What animals require in feeds .- Definitions of terms Composition of Texas feeding stuffs Digestion of feeds -_ Utilization of feeds Productive energy of feeds Calculating the productive energy of a feed ...................................... -- Variations in the composition of feeds Mathematical Expression of variation in composition of feeds ....... ._ Variations in the composition of Texas feeds as shown by the standard deviation Causes of the variations in the composition of feeds ....................... _- Effects of variation in composition of the feed upon its feeding value Differences due to variation in production coefficients .................... .. Cost of digestible protein, productive energy, and bulk in feeds .............. -. Prices of feeds as related to prices of digestible protein and productive energy, and to bulk ______________________________________ __ Mineral matter _. Maintenance ration -_ The fattening ration ____ n Working Animals Growing animals . . . . _ _ _ , . _ _ _ _ U Milk cows Feeding standards and feeding Exact calculation of a ration Improving a ration Reducing the cost of a ration ..... _. Discussion of feeding stuffs Moisture in corn chops U. S. Standard grades for hay, grain, etc ______________________________________ __ Observations on composition of feeds Summary and conclusions References 0000610101 1O 13 14 15 15 16 22 25 25 2'7 29 30 3] 33 33 34 35 37 38 39 40 40 40 40 61 62 BULLETIN NO. 461 NOVEMBER, 1932 THE COMPOSITION AND UTILIZATION OF TEXAS I FEEDING STUFFS G. S. FRAPS It is the purpose of this Bulletin to discuss the composition and utili- zation of Texas feeds, and to give the average composition of feeds used in Texas, based upon many analyses. Analyses of several thousand feeds of various kinds were made by this Division in the course of investigations of the composition and properties of feeds. Many of these have been published (5, '7, 9, 10, 11, 12, 13, 14, 16). Also analyses have been made for other Divisions of the Experiment Station, especially in connection with feeding experiments. Since the law controlling commercial feeding stuffs was passed in 1905, this Division of the Experiment Station has made analyses of over 53,000 samples of commercial feeds for the Division of Feed Control Service. It was of course not advisable to use all of the analyses referred to for the purposes of this Bulletin; manufacturing processes of commercial feeds have been improved or changed, making it necessary to disregard some older analyses, especially of commercial feeds. Many of the analyses were of feed mixtures, which are not dis- cussed in this Bulletin. However, the number averaged is large, being about 22,355. WHAT ANIMALS REQUIRE IN FEEDS Feeding stuffs, when combined to furnish a ration that keeps animals healthy and productive, must furnish sufficient protein, sufficient material to produce energy, sufficient minerals such as lime, phosphoric acid, magnesia and iron, and sufficient vitamins such as vitamins A, B, C, D, E, and G. If the ration provides only enough material and energy to sustain the body, without gain or loss of Weight, the animal is said to be on a maintenance ration. If the animal is expected to Work or to produce milk or eggs, or to put on flesh and fat, a productive ration must be furnished. The excess of the ration over maintenance require- ments may be used for productive purposes. This Bulletin deals only with the ordinary chemical constituents of feeds, namely, the protein, fat or ether extract, nitrogen-free extract, crude fiber, water, and ash. The fat, nitrogen-free extract, and crude fiber, as well as the protein, furnish energy. The minerals and vitamins will not be discussed here but are left to subsequent Bulletins. DEFINITIONS OF TERMS Proteins are the constituents of the feed which, when digested and assimilated, can be used to form flesh, muscle, hair, ligments, blood, 1nd other portions of the animal body. Protein furnishes material to re- place Wear and tear of the animal body, for additional flesh, and for 6 BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION other nitrogenous constituents. It is an important constituent of eggs and milk. Protein can also be burned in the body to produce heat or energy, or it may be used by the animal for the production of fat, but it is usually a more expensive source of heat or fat than some of the other constituents of feeds. When proteins are digested, they are split up into a number of chemical compounds, called amino acids, which are united again in the animal to produce animal protein or other needed substances. Some proteins are deficient in one or the other of the amino - acids necessary for the building of the animal proteids, and require supplementing by other proteins which supply these neces- sary constituents. Other proteins furnish more of one particular amino acid than is needed, and in such case the excess can be used only for heat or energy. For this reason, pure proteins differ in their feeding value, but as most of the proteins in feeds are mixtures of several proteins, and as different kinds of feeds are usually fed in mixtures, these differences in proteins tend to be equalized in the daily ration of the animal. The matter is one which still needs extensive study. Protein is usually the most expensive portion of a feed, so that feeds high in protein usually sell for a higher price than feed low in protein. However, there are times when cottonseed meal, which is high in protein, sells at such a low price that no money value can be assigned to the protein (17). When protein is high in price it is more economical to feed as little protein as is consistent with good results, but when protein feeds such as cottonseed meal are low in price, it is economical to feed as much protein as the animal can utilize without harmful results. Normally, protein costs more than energy, and the values of different lots of the same feeds high in protein are related to their protein content. Fats, or ether extract, are that group of constituents of the feed soluble in ether. The ether extract is ordinarily referred to as fats and oils, and this is substantially correct for concentrated feeding stuffs, such as cottonseed meal, corn, rice bran, etc. Although some other substances are present, the ether extract in these feeds is composed mainly of fats and oils. The ether extracts of hays and fodders, however, contain large proportions of waxes, coloring matters, and other substances (23, 24), so that it is not strictly correct to apply the names fats and oils to the ether extract of these roughages. Fat, after it is digested, is used by the animal as a source of body fat and to furnish heat and energy. It is a more concentrated source of energy than the other constituents of feeds, one pound of fat being approximately equal to 2.25 pounds of starch, sugar, or other carbohydrate. Feeds of the same kind containing high percentages of fats are thus likely to have a higher productive value for feeding than those containing lower per- centages of fat. An excess of fat is likely to impair digestion. Crude fiber is that portion of a feed which resistsjthewalctiophof hot 1.25 per cent sulphuric acid and hot 1.25 per cent caustic soda solution, a “purely arbitrary method of analysis. It consists chiefly of the cell Walls and woody material of the plants. Crude fiber is digested and utilized THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS 7 to some extent by ruminants, such as cows, sheep and goats, and also by horses. Crude fiber is poorly digested by pigs, chickens, and humans, and has little value to them. Crude fiber usually consists chiefly of cellulose, which, although a carbohydrate, is difficult to digest and utilize. Crude fiber not only has a low value in itself, but is usually ac- companied by other materials which also have low feeding values. Crude fiber in cottonseed meal above about 4 per cent (9) comes from cotton- seed hulls, which have a much lower feeding value than the kernel. Crude fiber, above a certain minimum, in rice bran or rice polish, comes from rice hulls (10). A high crude fiber content of a hay indicates the presence of a high percentage of woody material. A high crude fiber content of alfalfa hay indicates a high proportion of stems and a low percentage of leaves, and a low feeding value. A low con- tent of crude fiber indicates a high content of leaves, with consequently higher feeding value. Other feeds could be cited in which a high content of crude fiber indicates a high content of less valuable material. Thus, as was said above, the crude fiber not only has a low feeding value in itself, but is an indicator of the quality of the feed. Nitrogen-free extract is a group of substances consisting of starches, sugars, dextroses, pentosans, organic acids, phytin, lignin, and other sub- stances. Sugars, starches, and pentosans are carbohydrates. The nitro- gen-free extract of many concentrated feeding stuffs consists chiefly of carbohydrates, that is, of compounds which, in addition to carbon, contain hydrogen and oxygen -in the'proportions to form water. The nitrogen-free extract of hays, fodder, cottonseed hulls, oat hulls, and similar materials high in crude fiber, contains large percentages of lignin and other substances which are not carbohydrates. The nitro- gen-free extract when digested and assimilated, can be used by the animal to produce fat or carbohydrates, or it can be used for the pro- duction of heat or other forms of energy. Animals need large quanti- ties of materials which furnish energy, for the uses of the body or for productive purposes. Ash is the residue left when the feed is burned. It represents chief- ly the mineral part of the feed, though much of the sulphur and chlorin and part of the other constituents may have been volatilized and lost during the burning. The lime and phosphoric acid of the ash are used by the animal for production of bones and for other purposes. Salt is also required by animals. An excess of minerals, however, is of no advantage to the animal but it decreases the feeding value of the feed. An excessive amount of ash may indicate contamination with earth or sand or other useless material, but when the ash of tankage or other animal by-products is high, it is chiefly due to bone. Water is unavoidably present in all feeds, as moisture. The higher the water content, the lower the percentage of materials of feeding value. Thus, a feed containing 12 per cent water would contain about 4 per cent less feeding value than a similar feed containing 8 per cent. Over 12 per cent water in corn chops or similar feeds may cause heating 8 BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION and spoiling (6), especially in warm weather, unless special precautions are taken. Excess of Water in hay may cause spontaneous combustion, and burning of the hay, if precautions are not taken to avoid it. Feeds high in water may be preserved by special methods, such as those which are used for the production of silage. Texas feeds, as a rule, contain less water than those in some of the other sections of the country, probably on account of the somewhat drier climate. Nutritive ratio: The nutritive ratio is the proportion of digestible protein to digestible non-protein, chiefly carbohydrates. In calculating the nutritive ratio of a feed or a ration, the percentage of digestible fat (ether extract) is multiplied by 2.25, the product is added to the percentage of digestible nitrogen-free extract and digestible crude fiber, and the sum is divided by the percentage of digestible protein. The quotient is the nutritive ratio. If the nutritive ratio of a feed is said to be 1:8, it means that the feed contains one part digestible protein to eight parts digestible non-proteid organic matter. The fat is multiplied by 2.25, for the reason that it is a more con- centrated form of nourishment than nitrogen-free extract or crude fiber, and has 2.25 times as much value .to the animal. If the ration contains sufficient protein and sufficient energy, the nutritive ratio is automatically correct and need not be considered sepa- rately. COMPOSITION OF TEXAS FEEDING STUFFS Table 11, near the end of this Bulletin, gives the average compo- sition of about 625 Texas feeding stuffs, based upon our best present knowledge. The figures for the concentrated feeds are, to a large ex- tent, based upon the analyses made for the Texas Feed Control Service for several years past. The figures for hays, roughages, and all other materials are based upon Texas analyses of the Agricultural Experi- ment Station. The number of analyses averaged is about 22,355. DIGESTION OF FEEDS , Digestion converts food into forms which, dissolved or emulsified in water, pass through the walls of the digestive organs, and can be utilized by the animal body. Digestive organs of different animals have different sizes and capacities and are adapted to varied kinds of food. The digestive organs of cows, sheep, goats, and other ruminants are comparatively large and are suited for the utilization of large quantities of feeds containing comparatively small quantities of nourishment. The digestion organs of the dog, pig, chicken, and similar animals, are much smaller and are not suited to utilize bulky feeds, such as hays, fod- ders, or straws. The digestive organs of the horse, although of large capacity, do not have the capacity of that of the ruminants such as the cow; and, for this reason, the horse has a lower digestive power and is less well suited for the utilization of the coarser feeding stuffs. THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS 9 The horse is also unable to chew his food over again. The difference between the digestive power of the horse and ruminant is more marked for crude fiber, for which the horse has only a low digestive power. A number of losses occur in the process of digestion. In the first place, that part of the food that is not digested passes through the body and is eliminated in the solid excreta. In the second place, a portion of the food is\_cT)nverted into gases, such as marsh gas and carbon dioxide. Since the food converted into gases disappears during the process of digestion, it obviously has no value to the animal organism. Some energy is excreted in the liquid excrement. In the third place, there is a loss due to the work required for the digestion. The chewing of the food, movements of the body, secretion of the digestive juices, and the various operations involved in digestion, use up a portion of the energy of the food. After all these losses have been deducted, what remains is the net value of the food to the animals. As stated above, animals vary some- what in their ability to digest food. There are also difierences in indi- viduals, due to the conditions of the teeth, the condition of the digestive organs, etc. The composition of the ration also has some effect on the digestion. If the proportion of non-protein to protein is excessive, the digesti- bility of the ration is decreased. With pigs, the nutritive ratio may be 1:12 with no decrease in digestibility, but, with other animals, an increase in non-proteids which increases the nutritive ratio beyond 1:10, results in decreased digestibility of the ration. The addition of feed rich in digestible protein, increases the digestibility of such a ration, until the nutritive ratio becomes 1:10, or, in the case of pigs, 1:12, after which additional quantities of protein are of no advantage in in- creasing digestibility. Digestible protein is the protein which disappears during the passage of the feed through the animal. The animal is fed a known quantity of feed, and the solid excrement from this quantity of feed is collected. Both feed and excrement are analyzed. The difference between the quantity of protein fed and the quantity of protein in the excrement is defined as the quantity digested. It is less thanthe protein actually absorbed by the animal, for the reason that some of the protein in the excrement is waste body material. However, the digestible protein is a good measure of the protein which an animal can take from a feed. Coefficients of digestibility for protein by sheep (18), chickens (19), and pigs (22), have been published by the Texas Agricultural Experiment Station. Digestibility of other constituents. The digestibility of other consti- tuents of feeds is measured in the same way as that of protein, and tables giving the average coefficients of digestibility are available. A summary of digestion coefficients for ruminants is given in Bulletin 329 (18), and a supplement in Bulletin 402 (20), While a summary for chickens 10 BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION is given in Bulletin 372 (19), and for pigs in Bulletin 454 (22). Vari- ations occur in the coefficients of digestibility secured in various tests, so that there is some variation for the average digestibility shown in the tables, in individual cases. This is especially likely to be true when only a few experiments are averaged. - UTILIZATION OF FEEDS As stated above, when food is digested, there are considerable losses, due to undigested food, to gases, and to the work involved in digestion or metabolic processes consequent on the digestion. After these losses are deducted, the remainder of the food represents the net value of the food to the animal. The net food value may be defined as the nourish- ment that is secured from, the food after deducting all losses involved in the digestive processes of digestive metabolism, including the work of digestion. _ This net nutriment must, first pf all, be used for taking care of the bodily needs of the animal, and then the excess, if any, may be used for productive purposes. As already stated, the animal must have a certain amount of food with which to build up the muscular tissues which are wasted away through the processes of life. The animal must also have food supplies to keep the body warm and to maintain heat. The quantity of heat required will depend to some extent upon the temperature of the surroundings. In cool surroundings some of the energy liberated in digestion, may be used to heat the animal body. The animal must also have food to take care of the various bodily movements of the lungs and the beating of the heart, movements of other body organs, and movements of the body which are essential to the life and well-being of the animal. The needs of the animal may be grouped into two classes: First, tissue-building materials or food needed for the building of tissue or for the repair of tissue consumed during the life processes of the animal. ' Second, energy-forming materials, which may be used for heat or energy, or stored up as fat, or in thenon-protein constituents of milk, eggs, or other animal product's. The protein of food is its only constituent which can be used either for the repair of the animal tissue or for the building of lean meat. It is, however, required only in comparatively small amounts by full-grown animals. Growing animals, that are building tissues rapidly, require relatively large quantities of protein. Animals giving milk or fowls laying eggs, also require large quantities of protein, on account of the protein contained in these products. , The other constituents of the food provide energy for heating the animal, for digestion, for bodily movements,_or for the production of milk or fat. The nitrogen-free extract, the fat, and the crude fiber, THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS 11 may all be used for energy, fat, etc., in this way. If an excess of protein is fed beyond the needs of the body for the other purposes mentioned above, the protein may also be used for production of energy. Protein, including the tissues of the body, may also be used for energy when the ration fed does not supply a sufficient quantity of energy. The animal then loses flesh. It is usually not economical to feed protein to be used for energy purposes, since protein is ordinarily somewhat more expensive. than the other forms of feed. There are, however, conditions under which it is profitable to feed protein for energy purposes. This is particularly the case in some parts of the South, including Texas, where cottonseed meal may at times be cheap enough to be fed for its productive value or value for producing fat or energy, rather than for its content of protein. In fact, the price of cottonseed meal is at times so low that its protein value may be disregarded. PRODUCTIVE ENERGY OF FEEDS The value of a feed for building or repair of flesh, is measured to a certain extent by its content of digestible protein. However, the di- gestible protein of different feeds may have different biological values, and the biological value of the digestible protein of a ration depends upon the biological values of the constituents of the mixture and of their supplemental value. The value of a feed for heat, bodily movements, or energy, or for productive purposes, is not so easily measured. The best measure that we have at present is the quantity of fat that it will produce upon a fattening animal. This, expressed in terms of energy, we call the pro- ductive energy of the food, or its fat-producing value, and it indicates not only the quantity of a fat that the food may be able to produce, but the relative value of the food for other purposes, such as for work, for energy, for uses of the animal body, etc. The productive value of a food is experimentally ascertained by first feeding an animal a ration which should produce a little fat and estimating by respiration experiments exactly how much fat is produced with this ration. Then to this ration the food to be tested is added, and the quanti- ty of fat produced is again estimated exactly. This cannot be done by weighing the animal, as such a method is too crude for exact work. The difference between the first quantity of fat produced and the second quantity of fat produced, shows how much fat the food is capable of producing, when it is fed to an animal that is already receiving enough food to take care of its bodily needs. It is then a simple matter to calculate the fat-producing value or productive energy of the feed ‘tested. The productive energy of feeds has also been compared by means of feeding experiments (25). The productive value for work, for milk, or for other purposes, can also be measured. For practical purposes, it is convenient to use only one of these values. 12 BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION The productive energy, stated in terms of therms, is the most ad- vanced method of measuring the value of a feed stuff. In the calcu- lation of rations for animals, it was formerly assumed that the di- gestible nutrients of one food are equally as good as the digestible nutrients of any other food. As a matter of fact, this is not true. Different feeds vary considerably in the value 0f the digested nutrients contained in them, due to differences in losses and in the work involved in chewing and digestion. The use of the productive value is a decided step forward in the calculation of rations for feeding animals. According to Kellner, 100 pounds of ether extract of roughages will produce 47.4 pounds of fat on a fattening animal; 100 pounds of starch will produce 24.8 pounds of fat; 100 pounds of protein will produce 24.8 pounds of fat; 100 pounds of crude fiber will produce 24.8 pounds of fat. These, then, are measures of the productive values of the consti- tuents of feeds, and may be converted to therms, the measure used here. If we assume that the digestible nutrients of all feeds have an equal value, we can calculate, from the above figures, that 100 pounds of a certain wheat straw should produce 10.4 pounds of fat. But by ex- periment, it was found that 100 pounds of this particular wheat straw produced only 2.1 pounds of fat. Hence the value calculated merely from the productive value of the nutrients without correction is utterly in- correct. On the other hand, the fat produced from cottonseed meal was found to be equal to that calculated. For this reason, it is plain that the digested constituents of wheat straw are quite different in productive value from the digested constituents of cottonseed meal, and correction must be made for the nature of the feed. Other tests have given similar results, and proven conclusively that the digested nutrients of one feed may have a different value to the animal, pound for pound, from the digested nutrients of another feed. It is quite possible that different animals may have different powers of utilizing the digested net nutrients of feeds, and that some ani- mals may put on a different quantity of fat from that put on by the steers used by Kellner in ascertaining the productive values. This has indeed been found to be the case with pigs, which ‘produce a larger amount of fat than the steers from the same digested nutrients; but the quantities of fat produced were in proportion to the productive values as determined on steers. It is also possible that, for uses other than fattening, the value of a feed may not be the same as to its productive value, but the value would probably be in proportion to it. That is to say, the quantity of fat that the feed may produce on a fattening animal, may not repre- sent the absolute value of the feed to animals for all other purposes, but its value for other purposes may be in proportion to the productive energy, or fat formed. The productive value of a feed is the net energy for fattening ex- pressed in therms per 100 pounds of feed. A therm is 1000 large calories. The productive energy is the measure of the value of that feed for sup- THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS 13 plying energy for productive purposes, such as the production of work, flesh, milk,‘ eggs, or for maintenance of the animal body. After a feed is eaten, there are losses of energy in undigested food, and in fermentation. The process of digestion and assimilation also uses some energy, and there are some losses in the urine. The energy remaining after all these losses have been deducted, can be used by the animal for maintenance or for productive purposes if the amount fed is large enough. There are losses in utilizing the available energy, and these losses differ according to the use made of it. A larger proportion of the available energy can probably be used for maintenance than for fat- tening, so that the net energy of a feed for fattening is less than the net energy of the same feed for maintenance. It is desirable to adopt a single definite measure of the productive value of a feed, for use in comparing different feeds, for formulating feeding standards, and for other practical purposes. Kellner used as a measure the energy which is stored up in a fattening animal when the feed to be tested is added to a ration which exceeds slightly the maintenance require- ments. The productive energy is thus the available energy measured_ in terms of energy and fat and flesh stored up by a fattening animal. The net energy measured by maintenance, by work, by milk, or by other methods, may be different from the net energy (or productive energy) measured by fattening, but should be in proportion to it. The distinction is necessary on account of the confusion caused by different values for net energy for different uses of the animal body. The pro- ductive energy, then, is the net energy for fattening when the feed is fed in a balanced ration. Calculating the Productive Energy of a Feed Coefficients for calculating the productive energy of various feeds are given in various bulletins of this Experiment Station (18, 19, 20, 22, 25). A table for the most important feeds is also given in this Bulletin (Table 10). The calculation of the productive energy of a feed from its chemical composition and production coefficients is a simple matter. If percentage of each constituent of the feed is multiplied by the corresponding pro- duction coefficient, and the products totaled, the sum is approximately the productive energy in therms for 100 pounds of feed. The following is an example: Alfalfa hay (below 30% crude fiber) Analysis Coefficient Product Protein 14.8 .755 11.17 Fat 2.0 . 812 1.62 N itrogen-free extract ........................ -- 37.4 .7 76 29- 02 Total ______________________________________________ _. 41. 81 Fiber I 29.1 —.152 -—4.42 Productive value ________________________________ 37.39 The calculated productive energy of a number of feeds is given in Table 11. 14 BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION VARIATIONS -IN THE COMPOSITION OF FEEDS It is well known that feeding stuffs vary in their content of protein, crude fiber, water, and other constituents, due to a number of conditions. On account of the impossibility of making chemical analyses of samples of every lot of feeding stuffs, it is frequently necessary to use an assumed composition. The average composition is frequently used for this purpose. For the purpose of making guaranties under feed laws, figures lower than the average are used, so as to allow a margin for variation in a feed. These are termed minimum guaranties. Such mini- mum guaranties are also used in calculating the composition to be guaran- teed for mixtures, when the ingredients are of average quality and when chemical analyses are not frequently made of them. Average analyses are frequently used in discussing feeds or for formulating rations used in feeding experiments. In connection with all these uses of average analyses, it is important to keep in mind the fact that the composition of the feed may vary from the average, sometimes to a considerable extent. The difference between therms of productive value secured for alfalfa hay in one laboratory from that secured in another may be partly due to differences in the composition of the hay used. Variations in natural feeds may be due to the stage of growth at which they were gathered, the kind of seed planted, the soil, the season- al conditions, the method of preparation, the conditions under which the feeds were prepared, and other factors. Manufactured feeds, in- cluding by-products, are affected by the composition of the materials from which they are made, and by the details of the process by which they are secured. Many by-products are mixtures from several machines, and their composition may be modified not only by changes in the operation of the machine, but also by the proportions of the products of the various machines which are mixed by the person in charge of the operation. Some of the variations will be referred to in connection with the discussion of particular feeds. Variations in particular constituents may be brought out by grouping the feeds according to their content of the constituent in question. Thus, in Table 1, are given the grouping of 586 samples of cottonseed meal collected from Sept. 1, 1930 to Sept. 1, 1931. The middle point of each group is given; thus, the group designated as 43.0 includes meals con- taining 42.76 to 43.25 per cent protein. It is noted that the protein in the 586 samples varies from 36.8 to 48.8 per cent with an average of 48.4 per cent. The greatest number of samples is in the protein group 43.26——43.75 with the mean 43.5 From this point the number decreases both ways. The same kind of distribution is observed with the other constituents. The percentage of ‘samples in each group is also given. ’ Table 2 shows the grouping by various constituents of samples of wheat gray shorts, collected from Sept., 1930 to Sept., 1931. Only the THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS 15 middle points of these groups are given. A variation in the compo- sition of the samples is to be observed similar to that of cottonseed meal. The percentage of protein varies from 14.8 to 20.2 per cent, the fat from 3.2 to 5.8, the crude fiber from 3.6 to 7.6, the nitrogen-free extract from 53.6 to 65.1, the Water from 7.1 to 12.3, and the ash from 2.3 to 5.1. Wheat gray shorts containing more than 6.0 per cent crude fiber is considered to be misbranded, and t0 be really Wheat brown shorts, but each season some samples of this kind appear on the market under the name of wheat gray shorts and for this reason are here included. Similar tables could be prepared for other feeds but a mathematical expression of the variation is simpler and probably more accurate. Mathematical Expression of Variation in Composition of Feeds - Tables similar to No. 1 and No. 2 would show the actual grouping of feeds according to their constituents but would take up considerable space and apply only to the samples listed. A condensed mathematical expression for variation is the standard deviation of the mean and of the percentile variation. The standard deviation was calculated by sub- tracting the average from the analyses, squaring the differences, dividing by the number of samples, and extracting the square root. It is assumed that a large number of samples, when grouped and plotted, would fall into a certain type of curve, the area of which represents the number of samples. This seems to be actually the case in many instances, but not always. From the calculated standard deviation and the aver- age, or mean, of the analyses it is possible to calculate the proportion of samples which should fall into any part of the curve. In order to do this it is merely necessary to subtract the figure desired from the mean, divide the difference by the standard deviation, and read the desired proportion or percentage from a suitable table, giving the de- sired relative area of the portion of the curve. Table 3 shows the percentage of samples which could be calculated to be in various groups by the use of the standard deviation and the average or mean. For example, the standard deviation of protein of cottonseed meal for 1930-31 (Table 4) is 1.36, and the average protein is 43.49 (Table 11). One per cent of the samples would be above 1.36 times 2.34 (Table 3) plus 43.49, and one per cent would be below 43.49 minus this product. Five per cent of the samples would be above 1.65 times 1.36 plus 43.49 per cent protein and five per cent would be below 43.49 - (1.65 times 1.36). The calculated number of samples in each group as given in the next to the last column, can be compared with the actual number found in the distribution of cottonseed meal ac- cording to its protein content, as given in the last column, and calculated from Table 1. Variations in the Composition of Texas Feeds as Shown by the Standard Deviation The standard deviations for some of the constituents of a number of feeds are given in Table 4 and the corresponding coefficients of varia- 16 BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION tion in Table 5. No attempt was made to calculate the standard varia- tion for all the feeds or all the constituents, but it is believed that the figures will give an idea of the variation in the different types of feeds. As shown in Table 3, 67 per cent of the samples should come within the amount of the standard deviation of the average, while 33 per cent should come outside this limit. Thus, with the protein of alfalfa meal, 67 per cent of the samples should come within 1.50 per cent of the average (14.63%) per cent of protein and 33 per cent should contain either less than (14.63 - 1.50:13.13) per cent protein or more than (14.63+1.50:_-16.13) per cent protein. The crude fiber of alfalfa meal is more variable, as 33 per cent of the samples should deviate 3.76 above or below the average for crude fiber (29.38). The standard deviations in Table 4 for protein and crude fiber usually range between 1 and 2 per cent but are of course low with feed low in these particular ingredients. The nitrogen-free extract is somewhat more variable. In the period from 1924 to 1931, there is manifest a decided decrease in the standard deviation of the protein in cottonseed meal. from 2.28 to 1.36. This means that there is a decided decrease in the variation of the protein content of the samples on the market. This is evidently due to the success of the efforts of the manufacturers to make a more uniform product. The standard deviation, expressed in percentage of the total feed, is necessarily low if the percentage of the ingredient in the feed is low. Somewhat diflerent results are secured if the results are expressed in percentage of the ingredient present, as is done with the coefficients of variation in Table 5. From 1924 to 1931, the coefficient of variation of the protein in cottonseed meal is seen to decrease from 5.3 to 3.1 per cent. It is also much lower for protein in cottonseed meal in 1931 than for protein in any other feed. The protein content of corn bran, corn silage, sorghum silage, and sudan grass hay is quite variable. The ether extract is more variable than the protein, but this is largely due to the much smaller percentages of ether extract generally present. Crude fiber also has a high variability in many of the feeds. Nitro- gen-free extract is usually the least variable in most feed though its variability is high for corn silage and sorghum silage. Causes of the Variations in the Composition of Feeds Some of the causes of the variations in the composition of feeds are discussed below. Stage of growth. Young plants are soft and tender, and high in protein; as they become older, the fiber content of the stems and leaves increases and the content of protein decreases. Old plants have woody stems and leaves. There are thus great difierences between the feeding value of the same plant at different stages of growth. This is shown by the series of analyses of bur clover at different 17 THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS ..... n- $6 E6 mosw 3.2 mg n32. owwnw>< . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. vH. H is. MM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -- 5. N 3a. HM- H .............. .. NNNN .. . .................................................. .. z. H .5. ............ .. .. .. . .. s. H m: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. mm. w 95 H w ......... m ...................................................................... .. m: b i: ................ .. .. a. N Q2 :2 a Q2. . . . . . . . . . . . . . . . . . .. o o Q3 5a“ wH 93 w... H .......................................... .. 2. d. Q: .................. .. OS. a E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .- 5H w QmH . .26 S Q3. . . . . . . . . . . . . . . . . . . . . z . . . . . . . . . . .. vH. H 3m m?» um Q2 . . . . . . . . . . . . . . . . . . . .. 53 M; 3% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. vH. H m3 E; mu WNH wH. H ¢.HH Hmdw mHH w? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .- vH. H i.” $5 mm odH Hm. m mdH 3.2 2. Q3 . . . . . . . . . . . . . . . . . . . . : pH. H 3w 5H w W3 32 ow mHH o o odH .213 5.. ma“. vH. H m3 Hm. m Wm EH m o3. 32 2: o.HH £4 HH m5 mg S. 3H c o .22. mg mH 3w .22 mm gm HHXE N2 mdH 3N _ 2 o6 w: _ 3 9:. i: m 3w 33H E. m.» NHdH Hv 9mm 3.2 .2. odH Hg 2 Wm wwH HH o? N2 mH fie 3.3 oNH o.» 3.3 mmH 3N mm.» S m.» mm.» 3 3w NH: w m? $6 mm $3 mHimm 3H ma 3.3 3H 3N 5% m“ o5 8.2 m“. ms Ma. H. i; N3; 2H 2E 95m N2 3 23: 3 5a 3N mH 3 3mm m2 o6 o o m? 2.3 EH w?“ 3.2 5 ma m5: $ 0.3 5H w 3w 5.5 m: g pH. H H25 NwEw 3H mHh 32m om 9m wfiw w” EN mw. m 3. Si: NQH o6 S. H 2m 3.3 mm w? mm. m 3. $4 HH 9mm H». m o.» wmH m m6 o o 3a Sim om m3. pH. H 3 mm. w mi o o 3 o o 9m o Q ma” o o w? vH. H Qm S. _ w 3N Hm. m 3 PH. H we wH. H 9% moHQ Hanna E3 Arum mwHQ and mwHHHEww mmHQ hues? moHHHEww mo? L8 moHaEww mwHQ uonfi wwHQEww mwHQ Haw mflnfiuw $3 5.5 mo Alum wc ow.» we Liam we was we -53 09G mo -Emm mo oww mo -53 mo own mo -53 Ho 38o Ho .5: QSPHwnH pcwu 3m we awn écwoaom £60 mum Ho awn ICON “Emu 3m mo non écwuuwnH Hcoo nwnH mo non Hnooawm .250 pom Ho 3n own nwnH -552 1852 -552 Arum: 1852 E52 -552 AER. _ M... g -2 Hi4 55.35 _ weak-Mm wonmficwwopfiZ £53 3:50 Huh cHwfiZnH HmmH anew o» ommH dnwm .235 Héwmcofioo Ewfiln anon 3a mw mo mommHwca mo coHfiHnHnHwHnH .H wHnaH l8 BULLETIN NO. 461, TEXAST AGRICULTURAL EXPERIMENT STATION _ ...... .. g om om L; H5 8 HaBrH. ...... .. HH.H H £3 ...... z a o mHmww ...... .. HH.H H £12 w £3 HH.H H 2.3 ...... .. ,. : . w 2.2 HH.H H wHnww w 3.2 ...... .. w wwHH www w ma? HH.H H mwwH ...... .. w mwHH mg w 5% ...- N2 m 32 ...... .. ma.“ m wmHH 3N m 3% N2 a mHdH ...... 1 www w mHHH HH.H H 5.8 HH.H H mwH. Nmd a m3: ...... 1 N3 a 3.2 wmw w 3S . was ww.w w mwwH ...... .. ww.w w mwdH mWm m mHmww. Nmfi m mH.H. $3 w wmfi ...... 1 wHmH. H. £2 www w 32 ma.” m w? wwd m if ...... .. wwwH mH mHdH H.w.w w HZ... wHnH. H. mww H.w.w w $5 HH.H H mHb $2 NH w? mwa w 3% H.w.w w m3. HH.H H mwa 8.8 wH mw.H.H H.w.w w www ww.w w mwd HH.HH oH n53 wH..H. H. mHw HH.H. H 3m wHmH. H. $15 35 wH mww ww.wH mH mg 3a m 3mm 2Q: H.H $2.. ma.“ m mg H.w.w w mH.H.H 33 wH mmw ma...“ w mHd 3w w 5.5 3.2 wH 2E Q3: w mam om.» m wwwH wH_.H.H wH 2w HH.HH oH www HH.HH oH 35 8.2 a wfi. wHnH. H. www H.w.w w m}: H.w.wH mH ma.» ow... m 2m m5. H. 5% H.w.w w ma... .94? Hm www H.w.w w mi: wmw m www wHxH. H. mi 2:: a .33. ww.w w w? wmwm 3 m3. 3m w. mHwH 22: m mm...“ HH.H H m3 HH.H H 5m... H.w.w w mww wwwH 2 2w ma.” m £2 Sa m mam o o w? mg m mama NQN m wmw HH.HH oH ma.” HH.H H $3 Na.“ w wwa o o wwH. , o 3E mad a wHw .3.“ m 3m mg w 2.5 HH.H H mo.“ HH.H H was ...... : o _ 3E 2a m ma...“ o o 3m HH.H H 2...: HH.H H w? HH.H H HH.H. HH.H H __ 54$ HH.H H 3m ma..." w i.” HH.H H wwwH Hraiixo iofiw iHo» moHQ moHi LHma moHi moHi nova? moHi moHi ooflH-iom moHLH moHi owFHo moHQ moHi Haw moHi moHi -95 Liam Liam mo owa Liam Liam Ho owa Liam Liam LHHHHi Liam Liam mo owa Liam Liam Ho oma Liam Liam Ho omd Ho Ho Lioo Ho mo iioo Ho Ho we oma Ho mo bioo Ho Ho awioo mo Ho éioo uioo ion Jioi uioo ion Jioi uiou ion ..Hioo Hioo ion Jioi Hioo ion Jioi Hiov ion JHQQ nonH LisZ i530 iom Liiz Q5910 ionH -552 Lon ionH LiiZ i580 ionH Liiz Q5910 iom -552 macaw aHHLoiU LHmHw nowakw Hoafixo ooiwLiowoiHHH/H aonHH owPHO Hah iHoponnH .32 agom 8. QHSH ism mfiofi 52m wawis d oHLHaH. 19 THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS Qmm 3 3 .................. -€MqE§. Ewwimpm wwfis S. I wwfizwiw E8 confiiw wawwcwpm 88s S. + wwfiwké nwwkfim gm mm 5 .................. acomadm>mw wnmwflwpw .353 ooél mwnnmzw “Em fiomawmkwow Ukdmvififlvw @055 ooé+ mwwuoia flwmkfiwm NS 3 ow ................. éompgaw wbéafiw wwfiz wfil wwfifiwiw ES =o$fi>~w whfiifim $85 w§+ QQZQB» Gwwkwuwmm 2 3 2 .................. éosfiaw wfiwizfiw 35$ fill wwwkaiw ES comfité wflwwflwpw mwim.“ 34+ @332“ Gwmfiwuwm 3 m 2 .................. ..=o$2>% wSEEQu mwni 341 wmwazw E5 c0132.“. wnuwcnaw mafia‘ 23+ wmwuo?» flmo3aom kw N mm ................. l fisszvw “ZSEQ? wwafi iwwi wwwfifiw E8 nomafikz. wfiszzfim mwES §N+ wmwugc cwfifiwm NA H 3 ............ ., cochtéw wamwcfiw mwfit. vmd 25w: wmmpwi“ wax wwwfizé swwkéwm Nd Wm W3 ..... z cowfimmfivw wawwnmuw moEE wmA was?» uwwnwin via mwsnwim cmokfiuwm HQ m 3 \\\\\\\ z zomfiwT/ww wauwswaw mafia mwé mwfii mmwno?» ~25 09323 noozfiwm 3 2 3 comfiflkvw wuwwcwaw .353 wmA wsfifi owwuw?» was wwm~o>w cwgwuom v.5 2 “a compstrww wnwwcmaw 3E3 ooA mmfifi wmwuo?» was omsugm nwwBpom Q3 mm mm comvmfnww wamwnwpw mofifi vw. wscwfi owwpw?» wad omanwiw GomEQwN @352 Eon.» 3N mm 3 aofiafipov wnwwcnum mosh» pm. win omwao?» us.» mmwnw?» cwmBpom “.2 m: i“ c0325.“. wnnwcmam .355 ooA 2:2 wumaw?» wcw wmwnokw flwwBawm 2w 2 3. compwfivw wpmwamum @055 wmé win $328 wflw owafizww cwozfimm 3 m 3 compwt/ww wbwwnwpw $53 mwA ma? wwgw?» was owahzvm cwwzfiwm g Wm W5 coBagww wawwcwum mwEB wmé win wwunw?» was wmwnoiw swwEuom m; H $ comuwfmww wnwwnwéw wwEE wmd ma?“ wmmngn win mwwaw?» nmoBpom $383 3m £5: mix? 3E: E . 13E mfimfimw mo mBQEmw we wumflflwu uowmcowuoO wmmwcwonom wwwuimoawnm E cmwpoam .352 303a no £53 35am “Em Eoiwffivw waswiaum 3 wwusmwofi ma .325» Esfiz» woEEwm we wwwucwoaok .m “imam. 20 BVLLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION 00. 3. 00A Aw. Am. woA 00 AmiommA 003:0 50.0w .0005’? 00. 05A Aw.N 00. 00. 50A 000A ................ 1 vNmA A 000m 00 wNmA A 430w .0009? x0000 00055 . ; 0AA NNA 00. mNA mAA ................. 0. 0N3 A 000w 00 0N3 A 000w .0035 >000 000:3 .... .- 00.0 05A 00. 00. QNA ............... 1 mNaA A .0000 00 0N3 A 000m .00.8.A0 >000 000s? 00. 00A 5N NoA 0A. NoA m5 0901000000 A50 20.5 000:3 NwA wAA 00.0 ¢N.N 00. 2.0 mN >00 0030 cwwsm 00.0 00.0. 00$ No.N mA. 3. 00 0.0.200 AEAAJNAOW A8. 3. 00.0 Em 5A 00. 00 5020A 00AM AéA 5.0 3N 00A 3A Am. 0N A0002 50.5 000M Ab. 3A 000$ AAaN 3A 05A NNA 000.5 000M .... .. 5A Ab. 0m. 0A.. 00 000:0 A000: 20E .... 1 00A Ab. 0A. 0m. 000 0Q0£0 0Z2 3. 2.0 00A 5. Aw. AwA NN A005 0000005 , , . . . . . , ‘ , .. . .. 00. 00. w 020:0 A000: 0000M i. .... : 06A 00. 0m. omA 5 vNmA c0 000050 0000M .... .. No.N ‘‘‘‘ 1 00. wAA 00 003:0 3.00M .... .. ANA" 00.0 AwA 00. 0AA A0000 5550i .... 1 AéN 0N. 00. SA 3 090:0 .00A.A000r.A ... : \ ; : .. 0w. 00.0 ABA ..................................... .. E5 00x08 000BAA000Z .0073 00000000000 . ‘ A . . . . I , \ ‘ ‘ . . . ‘ z 00. 00.0 3N 0003.050 05am: A50 haw .505 00x09 035cm 6x00 00000000000 ‘ \ ‘ . . . ‘ ‘ ‘ ‘ . ‘ , ‘ ‘ z , z NAA EA ................ 15E 0008B 0003 .000>_w:0 300A. 0x00 0000050000 00. 5. 00. wNA S. 00A . , , . . . . . . . :53 A 000m 00 000A A 090m A0000 0000200000 5000.5 000A .... 1 0AA 3A AmA 00A 0N0 . $2 A .0000 00 0N2 A .0000 400E 0002000000 5000.5 $3 .... : 00A A5.N 00A >A.N AAA ‘ wNNA A .0000 00 000A A .030 400E 0000:3000 :A000.Aa 00$ ... .- 00A 00A mNA 00.0 N5 imNmA A .0000 00 £2 A .0000 A005 0000050000 5000.5 00$ z .. AmA 22A 00. 00.0 00A ...>NQA A .0000 00 0N2 A .0000 .3100 000000000000 5000.5 $.20 .... .. 00A NwA 00. 00.0 00A .- 0N2 A .0000 00 £3 A .300 .0500 00000000000 5000.5 $30 .... .. AwA 00.0 00A 00.0 00A FmNmA A .0000 00 £2 A .0000 .008 0000000000 5000.3 00.3 mN. El» AQN 00A 0A. 00. 0A 0.0300 CHOU ... : 00.0 00. 3. 00.0 NA A0000 c0003 CHOU $0 20A 22A w? Aw. QAN x0200 E EH00 00.5050 .... .. QQN 00A 3. pa. 00 p.00 .0Qo£0 FAoO ABA 00. S“. 0.... E. 000 090:0 CHOU :-- .... : N9»... 00.0 ANN 00.0 20 00.0.5 c000 .... z 2.0 NQN 00.0 NwA NAA 00000000000 00000093055 . . . . . . , ‘ , . . , , . A . . . . ‘ . . 1 00A 00 A005 00 00.00 :0 02000000 .... .- Am.N ANN A5. 00.0 wN 0500M 0000A. .0.A0B0.Am .:- 00.0 3.0 00.0 AQN. 05A mN . 0000A. .305 000m .... .. NmA ANA 00. .... .. NA .... .. A005 002m ---. .... .. 3A NcA 0A. wNA owN 050:0 zwAnwm 3. AwA EnN 00.0 00. omA NA. A005 afimfi< 00.000000 000G 00.000000 0035.00 n04 0000B 00.00 00:00 005M 5000mm .00 5000.50 Z 0353A 0.0000 0000000905 MO MHAAUHRZQQCOO MO 0000.00.00 Aiwwngw UAQNQ. 21 THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS N5 v6 66 Y: 6.5 66 6w $-32 $2.2m mwnw 6&5? WW5- mwfi- ma. 6.5 6.3 m6 S; ................................ :52 J snow 3 6N5 J aawm 56.8mm >3w paws? . . . . . . . . . . . . . . -- m6 66m N65 m6 m: J dawm 3 mama J 59mm 66.8mm §~w umwskw . 66 6.5 6.5 m.» o5 ............................... 6N5 J 53w op v65 J snow 665mm >95 6x255 “m5 x65 w.» 3: H65 m6 m3 wwsmflwonow was swan ammnkv 6.6m m6." .3 ...... .- mdfi mam mm ma: 52w nwwsw H S. .... .. 6.5 56m 66m J5 mm owafiw Efinwnom mdfi HS H6 can ~65 6.5. mm ........................... .. Amflca wumm ~15 Y5 H6 i: 6.2 m6 5 $665 .53 mam fiw gm H65 66 N5 S.» 5.95 3mm ma S“ i: m; ww .522 E2 22a . .3 wJm 6.5 66 3N ........ . 26% 2:2 m6 w.» H6 i. mm flaws wwwmfifl -.-.M~ . . . . . . . . . . . . . . .- 66H m6 w . . . . . . . . . . . . . . . . . . . . . . -. .305 E8: fiHwM . . . . . . . . . . . . . . .. ma v.3 v.5 W5 pm 55 E macaw nfiwvm ...... .- wd 6.5 5J5 6m . 89? fiHaM ...... .- m6 mam wJm w.w 5A 56$ mfifiofl ....... . mww. . 6.65 6.5 s6 5 36% wfipwpwh . . . . . . . .. wdfi 66 >5 5E mwxwe QmwBAQQoZ dxwo wwwwcofibo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .- m6 .3 3N ..-..-....-...EE wwxwm. 55cm awwfincw “Bu? was 3E5. din. wwwmcogboo . . . . . . . . . . . . . . .. m.” >5 ................................ =55 mfimfi. 6mm? dowfianm .62. dxmu 6.628663. Pm m I 6.5 H6 ...-.-.--..-....HmmH J fimm o» 32 J 63m Jaws“ wowwcoupoo c6698 “$3 . . . . . . . . . . . . . . .. w. m 6.: 66m m6 6&6. ...-.-..-.-:-~.um.n . 59mm ow 6N5 J 45mm 4x2: wwwmsopaoo cwwuonn Qemv . . . . . . . . . . . . . . .- m6 / ~65 6.65 J6 H? ...............§2 J gnaw o» £2 J 4.8m .185 wwwmispoo nwsofla “$3. .............. .- E 6.2 NS i. NS. ........-.-...m~2 A 6.6m B $2 A 68w .22: wwwmisaa =msfin §£ . . . . . . . . . . . . . . .. m4. H65 6.: ma» m2 --....-..:..-~_u6~ J snow o» wmmfi J 6.5m dado wowmcopuoo cmwaonn $3. .............. -- g #2 .3; S. w“: ...-.-..---...w~2 A fiww 8 £2 .5 68m .928 wwwwaopuou =§8Q $2. fin i: 5A ma. 2: ............ 4K2 A 3mm 8 £2 .5 évm .9?» 63.20.28 nmwfifi $2. MHW >6 w.5 v.5 66m 66m 5 .................................................................... ............................. .. 52% F80 . . . . . . . . . . . . . . .. 56 m6 66w o6 .5 “a8 =BBw 2.30 6.65 6.x 665 ma; m6 65m . . . . . . . . . . . . . .. 625m E F80 wmafiéo . . . . . . . . . . . . . . .- J6 66w 6.: w6H mm 8mm .3050 F50 ..... .. 66H oJ H65 5.: 66 2w .. £8.50 F80 mmmm m6 66m 66m 6.6.5 2m :85 F60 ...... -- 1------ HS 1w 66m v6 N: wwwwflopwou wwmmopn-mxoskw .... i. ms 6m 16E .8 823 mo psnwcéo ...... .. o6 645 N65 m6 3 miwaw EH. Mama/Em mmmm. m6 5.5 66m 6.5 m“ 1 56E. .350 68m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5 5x2: @005 66 5.5 66m n65 3N mnoso 35.5fm 3. 66m m.» Q5 6.5 66H up 1 18E x2554 aownfino Honfi puaafinw mofinfinm i4 .8635 09G 3:50 523mm cmwaonna we niwwpfifiz Hwfladz 635m 2:68.. mwxom. E comfifinw> we manwmommwmoO 6 “lawn. 22 BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION stages of growth given in Table 11, and also by the analyses of prairie grass from Harris county, also given in Table 11. Plants such as corn, milo, or kafir near maturity develop a large pro- portion of grain 10w in crude fiber. If the entire plant is considered, there would be a decrease in crude fiber near maturity. The crude fiber increases in the stalks and leaves if they are taken separately. Soil and Season. Soil and season affect the composition of feeding stuffs. As shown with corn (21), the protein content of the corn varies with different localities. There is a correlation coefficient of —.576i.072 between the percentage of protein in the grain and the rainfall, January to July. The composition of cottonseed varies with the locality in which it is grown, and also, apparently, with the variety(9). Different selec- tions of seed of the same variety of cotton also vary (19), so that it is possible to breed varieties of cotton seed high in fat. The soil and season cause variations in the composition of other plants. Method of preparation. The preparation or storage of feeds affects their chemical composition. The amount of water left in the feed decreases the constituents in direct proportion to the quantity of water. A decrease in water content increases the feeding value of the same feed. Loss of leaves of alfalfa or other plants in drying results in a lower content of protein and a higher content of crude fiber, with a lower feeding value, compared with the feed containing all the leaves. When a feed heats, some of the easily-digested materials are oxidized and partly lost. Expo- sure to rain may allow some of the soluble constituents of the feed to be washed out. Methods of manufacturing. Many commercial feeds are by-products from the manufacture of more valuable foods or feed. For example, wheat bran, wheat gray shorts, and wheat brown shorts are by-products from the manufacture of wheat flour. Cottonseed meal is a by-product from the manufacture of oil from cottonseed. Variations in the procedure followed by the manufacturer affect the composition of the by-product. Improvements in methods for the extraction of oil from cottonseed have decreased the average content of oil in Texas cottonseed meal from 9.73 per cent in 1907 to 7.5 per cent in 1931. Wheat millers who take out part of the floury material, or who increase the bran particles, will pro- duce wheat brown shorts instead of wheat gray shorts. The composition of the wheat brown shorts will also depend upon the proportion of the wheat which goes into flour. Other processes in the control of the manu- facturer affect the composition of the by-product. The composition of the raw material also affects the composition of the by-product. Effect of Variation in Composition of the Feed upon its Feeding Value The composition of feeds as discussed in this Bulletin is related more closely to productive energy and digestible protein than to the minerals or vitamins, which are not discussed. The digestible protein of a given feed is almost in direct proportion to the protein content, though the per- THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS 23 centage of protein digested is usually somewhat higher for the feed high in protein and somewhat lower for the feed 10w in protein. The diges- tion coefficients also vary from the average, as already shown (18,19). That is, the feed high in protein is likely to be of higher quality than the average. Consequently, a greater percentage of the protein is digested from it than from an average feed. On the other hand, a feed much lower than the average in protein is likely to be of inferior quality to the average; consequently the percentage of protein digested from it is less than the average. Increases in the water and in the ash of feeds tend to decrease both the digestible protein and the productive energy ‘of the feed. » A given con- centrate high in protein may or may not have a higher productive energy than another lot of the same feed low in protein. However, a roughage high in protein is likely also to have a higher productive energy than the same kind of feed low in protein. A feed high in crude fiber is likely to have a lower content of protein and to furnish less productive energy, than the same kind of feed low in crude fiber. In order to secure some information regarding variations in productive energy, the productive energy of a number of samples of feeds is calculated from the chemical composition and the average production coefficients. The analyses used for corn chop, wheat bran and screenings, and cotton- seed meal were selected at random from large numbers of recent analyses. The other analyses represent all the analyses of a group. ' The results of the calculations are given in Table 6. Decidedly wide variations are found to occur in the calculated productive energy of var- ious samples of alfalfa hay, corn silage, rice bran, and sorghum fodder. The poorest samples of alfalfa hay and the poorest sorghum fodder have less than two-thirds the productive energy of the best samples. The coefficients of variation is 22.0 per cent for the productive energy of corn silage, and about 12.5 for alfalfa hay and sorghum hay or fodder. The samples of Bermuda hay, cottonseed meal, corn chops, and wheat bran examined were much less variable in productive energy than alfalfa hay, corn silage, rice bran, and sorghum fodder. The coefficient of varia- tion varies from 1.2 for corn chops and wheat bran to 5.48 for rice bran. It is quite possible that the samples of Bermuda hay did not represent a sufficiently wide range of conditions and that Bermuda hay is much more variable than here shown. The standard deviations and coefficients of variation of some of the constituents which, it was thought, might be most closely related to the productive energy, are given in Table 6. The standard deviations of crude fiber and of productive energy are quite close together in alfalfa hay, Bermuda hay, and wheat bran, and are related in sorghum fodder, tho less closely than with the other feeds. The productive energy in corn chops has a higher standard deviation than the protein and a lower standard deviation than dry matter in corn silage. The coefficients of variation of the productive energy are less closely related to those of the other constituents, than are the standard deviations. 24 BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION . . . . . . , . . . . . . -- v4. Wm» Esfimmmg HwH w. ...... z v.5 . . , . , . \ . . , . , . . .. : Eflécnfia .- m; ...... -- Wm” ......................................................... 1 mwwnw>w.!cm$o.5 wfiwamwmmfl Nu S 5 fi om NH mm wwEEmw we HQQEBZ HmH m...“ . . . . , . . . . . , . \ 1 .. .......................................................... .. fiwbxw wwfiéwwobmz . . ..... .- v.3 . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . .- 1 .839: %.~Q Wm..- WWW W2 . , , , . . . . . . . . . -- 93 i. Z: Qmfiu 3.56 . . ............. ,- 3 .2 .............. .. =§2m mama 9w odm m?“ 9m m.” mdfi ........................ z zupocw o>waoswoan|iompsmnm> we azmmuflwwoO an“ 3d . . , . , \ . . . , \ , . . . . , . . . . . . . . . . . . . . . \ . 1 . \ ‘ = fisbxw wmificwmofimz ...... .- o6 awfiwfi ~mhQ m5 . . . , , \ . . , . . . . . .. 3A ZA 5n .305 wEEO . . A , . . . . . . . . . , .. wm. 3A . . . , . . . . , , . , , . .. cmwaobm , w. mm m E. m ma” we; mud 24 $4. .................................. .. >w$co u>mauswohmlcompwm>ww wnuwsfiw Pun m3. oém W: 3w oAv #3 ma“ 555255 Pam mfiv RE. o? 3w we? 5% w? 555C332 w 5 a wm Q Om i: d5 >3 mam #3 ........... dwfiwzw Nausea 2: #5 afimzr £323 wzfisézm :93 nowuow 39S. wuwmm mono 13E was E2 pawn? Esswuom oumm F30 F80 vwmw wvsciom nfiwwfiw éotbo aifiscunoo nonpo we gang. A33 uoywmfioo mwwmm mo >225 wiuoswonn mo comawiw> 6 mznwn. THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS 25 By using the standard deviations for similar feeds in Table 4, and comparing with Table 6, it is possible to make an estimate of the varia- bility of the productive energy of various feeds given in the table. The standard deviation of the crude fiber in alfalfa meal in Table 4 is less than that of the group of alfalfa hay used for calculating productive energy in Table 6. It may therefore be assumed that the productive energy of alfalfa meal is less variable than that of this particular group of alfalfa hays. The crude fiber (Table 4), of barley chops has a higher standard deviation than the crude fiber of wheat bran in Table 6; we assume that barley chops are more variable in productive energy than the group of wheat brans used in this table. Similar comparisons would make possible the statement that Wheat bran and screenings are more variable in pro- ductive energy than the wheat bran of Table 6; so also is corn chops. Difierences Due to Variation in Production Coelficients The foregoing discussion was based upon energy productive values calculated from the energy production coefficients. Since these are aver- ages based upon average digestion coefficients, and since the individual digestion coefficients also vary from this average, sometimes to a con- siderable extent (18, 19, 22), it is seen that the actual variations in pro- ductive energy are somewhat larger than was found in the preceding section. These variations are intimately connected with the chemical com- position of the feed. Thus chemical analyses, to show the exact chemical character of the feed used, are essential in any work dealing with the feeding values of feed stuffs. Cost of Digestible Protein, Productive Energy, and Bulk in Feeds The three most important things purchased in feed are the digestible protein, the productive energy, and the bulk, or volume. While minerals and vitamins in the feed are valuable and cannot be disregarded, it is not at the present time practical to calculate their price or money value. Digestible protein and productive energy are important in all feeds. Bulk is important only in bulky feeds; it acts to depress the price paid for nutrients in bulky feeds when purchased. This effect is due chiefly to the high cost of transportation per unit of feeding value in bulky feeds. A method sometimes used for calculating the cost of protein is simply to divide the price per ton by the number of pounds of protein in a ton. This procedure is incorrect, as it ignores the value of the productive energy contained in the constituents other than protein. The cost of the total digestible nutrients is sometimes calculated in the same way, the protein being ignored. If the cost of protein and of digestible nutrients in cotton- seed meal is calculated in this way, and then calculated back to the value of cottonseed meal, it naturally comes out twice the original cost. If 12 oranges and 20 apples cost $1.20, the oranges would not cost $1.20 divided by 12 or 10c each and the apples $1.20 divided by 20 or 6c each (which would be the method of calculation for the cost of protein mentioned J 26 BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION above), but the oranges might cost 5c each and the apples 3c each. With two equations, the cost of protein and of productive energy can be calcu- lated by elementary methods of algebra. In the case of concentrates, the cost ofdigestible protein and of pro- ductive energy can be calculated for pairs of feeds, one high in protein, the other low in protein, by the method given in Bulletin 323 of this Sta- tion (17). If the following are assumed: xzcost of digestible protein in cents per pound yzcost of productive energy in cents per therm azprice of concentrated feed (A) low in protein, in cents per 100 pounds bzprice of concentrated feed (B) high in protein, in cents per 100 pounds pzpounds digestible protein in 100 pounds of feed A nzpounds digestible protein in 100 pounds of feed B tztherms of productive energy in 100 pounds of feed A cztherms of productive energy in 100 pounds of feed B then - pX-I-tyza (Equation 1) nx-i-cyzb (Equation 2) Solving for x and y, we have tb -- ca x: -j-- (Equation 3) nt -—- pc na — pb y: ii (Equation 4) nt — pc 1 In the above equations, the fraction is a constant for any two nt-pc feeds of a given composition. It may be designated by k. 1 k: -?—-— (Equation 5) nt -— pc The calculation may be then simplified if it is calculated for these feeds. The equations for x and y then become x:(tb — ca)k (Equation 6) y:(na -- pb)k (Equation 7) Since corn and cottonseed meal are two of the most easily secured well-known feeds in the South, their prices may be used in calculating the cost of digestible protein and of productive energy. Similarly, corn and cottonseed meal or corn and linseed meal may be used in the North. Using the average composition given in Table 11 for Texas corn chops (p : 6.4, t —_- 85.8) and 43 per cent protein cottonseed meal (n _—_- 35.9, c : 74.9), the value of k would be .000384. With the composition given in Table 11 for corn chops and for 34 per cent protein linseed meal (n : 29.4, c -_: 77.6), the value of k would be .000494. THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS 27 If we assume corn chops to cost $23.00 a ton (or a z 115 cents a hundred) and 43 per cent protein cottonseed meal to cost $24.00 a ton (or b z 120 cents a hundred) and the average composition given in Table 11 be used, the average values of a, b, p, n, t, c would be as given above. Solving equations 5 and 6 with these values, x z (85.8 X 120 - 74.9 X 115) .000384 y z (35.9 X 120 - 6.4 X 120) 000384 we find the cost of digestible protein and productive energy for this pair of feeds to be x 0.646 cents a pound of digestible protein y 1.290 cents a therm of productive energy These prices could then be used in connection with the digestible protein and productive energy given in Table 11 for the purpose of calculating the comparative values of other feeds when corn chops and cottonseed meal are selling at the prices specified. (See Table 7.) Equation 1 would be used (px + ty z a), in which p would be the percentage of digestible protein in the feed, t the therms of energy in 100 pounds, X the price of digestible protein, and y the price of therms energy. For example, taking rice bran and using the average composition in Table 11, digestible protein p is equal to 8.9, and therms of productive energy t is equal to 69.9. - Equation 1 (8.9 X .646 + 69.9 X 1.290 z 95.92) gives the relative valu of rice bran in cents per hundred. Calculations for other feeds are given in Table 7. For other (prices of corn chops and cottonseed meal, the cost of digestible protein and productive energy would of course be different. When Protein Costs Nothing If protein is assumed to have no money cost, equation 1 becomes ty z a (Equation 8) a (Equation 9) y I — t With corn chops at $20.00 a ton, a z 100 and t z 85.8; y then becomes 100 + 85.8 z 1.166 cents a pound for productive energy. The energy value of cottonseed meal would be cy z b, and since c z 74.9, cottonseed meal would be worth 74.9 X 1.166 z 84.333 cents a hundred, or $17.47 a ton. Therefore if cottonseed meal sells for $0.87 a hundred or less when corn is $1.00 a hundred, no price is being secured for the digestible protein; it is thrown in free with the energy. Prices of Feeds as Related to Prices of Digestible Protein and Productive Energy, and to Bulk It was shown in Bulletin 323 that the selling prices of a number of concentrated feeds were closely related to the values calculated from the cost of digestible protein and of productive energy at any particuler 28 BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION 2.3 2x3 83 5w W: 32 $8.? .5252 $35.» 3E: “.25 31m Es Q3 24w mtoi 53w 32;» 23w 5.2. 3w W3 Q2 5.2 l can; 22.55 H32 2E: .56 Ea ed “Bi swzon 8E 8.8 2.8 3.» is g 2.2 5W3 33H .33 2.3. an.“ ma” v.» 5w wwwnwiw Juswoaa-zn 5E 13E 3O .32 $8 $6 odv odH 5.2 In .31.?» ipwO $43 92:: 3m mi 3w 3% mwmfiz/n .30.? 2S2 Q35 9:2: Q92 9E. w? NW? wmwhgw .135 wwwmfiq 5.123 £2 $4. 3:. HS 33 owwuo?» dnoso v8; “$3M 8.3 $2 3m 5;. m6 2.2 wwwhfiw anofi cnov nmfl 3&3 32: M32 3w Ea 3mm owwaw?» Awwfi 53m wwwfi 32w 3a T: m; 3x3 wmgwiw £99.? >2§m $3 32B g6 W? pd 8.: wmuamiw in: sfiwwiw muiou ommé hmamco ofiaouuonn “UGUOQ a mpflwo www. cmwuopa ofifiwommw mo $00 ll. ........ .. a ...... .- mi. Q3 2.3 Qwfiswmwv E2: vwwmnouboo ill ................. .. mam i. 3.3» Qwfiswmwv 30% =80 3.30 @250 mvnwv 3250a co." E 03.9» mwnboa Q3 3:26.» o3 muqnon o3 25o nwfi mnfiflow ofiponwoam 5 zmuwco E nmoponm E manofi. nmoaoaa no» wad flmmpoum ofiaonwoaa oflnmpmommu 5.6.6 ofimumommfi awn ofismommmmw mo m3w> mo 255w ofifiiuoam mEa> no 03E» . woEQEoO 503w mo.“ 73E wowmnofioo Ewpofi» 23o .25 mw wax cop a oodmw now wzmm snow H855 muumm c“ hmnono wfipuswoua wax 530a.» mimumwmmw mo nomawdfiakw u. v3.3“. THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS 29 time. Allowance must of course be made for variations due to local conditions and to fluctuations in prices. Feed such as oats, wheat bran, alfalfa meal, cottonseed hulls and prairie hay, and any hay or fodder had prices higher than the calculated values. This difference may be due partly to the bulk, or volume, partly to other values. The dif- ference between the price of the nutrients and the price of the feed may be taken as the price of the bulk or other items of feeding value. The purchaser can then decide whether or not the bulk is worth the difference, and which is the cheapest feed. In Bulletin 323, we take as a measure of the bulk, or volume, in 100 pounds, the difference between the sum of the productive energy (E) and moisture (M) in 100 pounds. Bulk d : 100 — (E + M) (Equation 10 If w is the cost of one pound of bulk, then ' wd : s — p (Equation 11) s — p w : (Equation 12) d s : price of the bulky feed in cents per hundred, and p —_- price of the digestible protein and productive energy in cents per hundred (Equation 1) calculated from concentrates. ~ An illustration of the method used for estimating the price of bulk is as follows: If alfalfa hay selling at $16.00 a ton, with corn at $23.00 and cotton- seed meal at $24.00, is assumed to have the average composition shown in Table 1'1, it would contain 11.0 per cent digestible protein and 37.4 therms productive energy in 100 pounds. Using the values for digestible protein and productive energy calculated above for cottonseed meal‘, the value of these in alfalfa hay would be p -_: ax + ty The bulk in 100 pounds would be d : 100 — 37.4 (productive energy) -— 8.4 (water) : 54.2 Using equation 10, s :: 80 (cents a hundred pounds) y:1.290 x: .646 p:ax+ty p:37.4X1.29+ 11.0 X .646 : 60 s—-p:80—-60_—_20 s -— p 20 w :-_ = i. : 0.369 cents a pound of bulk d 54.2 - The approximate cost of bulk in other bulky feeds could be calcu- lated in-the same way. Other values than bulk might, of course, be present. MINERAL MATTER The full grown animal does not need large amounts of mineral material, but growing animals require certain quantities of mineral matter for the production of bone, and also for storing away as part of the con- stituents of their flesh. Animals giving milk require mineral matter 30 BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION for the purpose of milk formation. The most important constituents of the ash or mineral of plants are phosphoric acid and lime. Growing animals which do not receive sufficient lime and phosphoric acid in their food, suffer from the deficiency. The bones become weak, the limbs and spinal column bend, and the animal does not develop properly or may have other troubles. Pigs may suffer in this way be- cause unless tankage is fed, the food ordinarily fed in many cases does not contain a sufiicient quantity of lime. In certain restricted localities, the food usually eaten by animals does not contain sufficient lime, and the bones of the animal are poorly developed. In addition, the animals suffer from various diseases, which diseases, on investigation, have been found due to the deficiency of lime or phosphoric acid in the feed fed. A deficiency of minerals is sometimes manifested by a tendency of the animals to gnaw bones, wood, leather, labels on tin cans, etc. A deficiency of lime only in the ration may be supplied by the use of limestone, oyster shell, or air-slaked lime. Lime and phosphoric acid together may be supplied by means of ground bone, or other phosphatic materials. Salt is found in digestive juices, and a certain quantity of salt ap- pears to be very necessary to the welfare of animals. A moderate amount of salt increases the retention of protein by the animal body: which results in an increased production of flesh. Steers of average weight require about one ounce of salt per day, and horses from one- half to one ounce. Steers on a fattening ration may require as much as two ounces of salt per day or even three ounces of salt per day. An excess of salt is undesirable. MAINTENANCE RATION The maintenance ration is a ration which provides for the bodily needs of the animal, without supplying any excess to be used for fat, milk, work, or other productive purposes. A ration which maintains the weight of a full-grown animal may be sufficient for maintenance, but an animal may maintain weight and be losing fat at the same time. A ration which maintains the weight of a growing animal is likely not to be sufficient for maintenance, and the animal is likely to be using some of its stored fat for maintenance purposes. Horses may be placed upon a maintenance ration during periods of idleness. Cattle may be placed upon a maintenance ration between the end of the fattening period and the time of sale; also during periods before the fattening period begins, if, for any reason, it is desirable to delay the fattening process. Breeding stock may at times be placed on a maintenance ration. The maintenance requirement is also a basis for the other rations, since that portion of the ration which may be used for productive purposes is the excess over maintenance. THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS 31 Young animals cannot normally be placed upon maintenance rations, since growth is a normal condition of the young, and the maintenance ration does not allow for growth. The amount of food required for maintenance depends, to a consider- able extent, upon the temperature. The maintenance ration is usually based upon a temperature of 64° F. At this temperature, a considerable portion of the needs of the animal is for heat to keep up the body temperature. As the temperature of the surroundings rises, less heat is required, until at 95° F. no heat from the food is needed to keep up the body temperature. As the temperature becomes lower than 64° F., on which the maintenance ration is based, the requirements of the animal increase, and a decided decrease in ‘the temperature of the surroundings may cause a great increase in maintenance requirements. This explains the great suffering which comes among the range ani- mals when snow decreases available forage, and at the same time in- creases the requirements of the animal. The temperature of the drinking water has the same eflect. Its tem- perature must be raised to that of the animal body. If an ox drinks his usual quantity of water, at a temperature of 41° F., the amount of feed required to heat this water to body temperature is equal to about 25 per cent of his maintenance ration. That is to say, the needs of the animal for maintenance are increased 25 per cent. Animals which are kept'at a comfortable temperature, but drink cold water, thus need additional food for maintenance, for the purpose of warming this water. A fat animal requires more food for maintenance, in proportion to its weight, than a thin animal. THE FATTENING RATION The gain in weight during the process of fattening is largely fat in the chemical sense. The nutritive ratio of the gain of full-grown animals is about 1:20; that is, there is almost 1 pound of protein gained for every 20 pounds of non-protein (including fat x 2.25). On an average, the gain in weight is two-thirds fat, the remainder being water, protein, ash, etc. Growing animals put on more protein (flesh) than full-grown animals, and have greater requirements for protein. Only the excess of food over the quantity necessary for maintenance can be used for the increase in fat of the fattening animal. Anything which increases or decreases the quantity of food required for maintenance will thus decrease or increase the quantity available for gain in fat. Animals use energy in the processes of digestion, which is finally liberated as heat. This heat may be used for warming the animal body, if needed for that purpose. Since fattening animals digest a larger ration than animals on maintenance, they have a larger excess of heat resulting from digestion 0f the larger ration, and may be kept in quarters having a lower temperature, without an increase in main- tenance requirements or need for extra food. 32 BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION In warm weather, fattening animals may have trouble in disposing of the excess of heat produced in the processes of digestion and assimi- lation. They then instinctively consume less food, which explains why the fattening process may not be successful, as a rule, during hot weather. The high energy ration produces an excess of heat, which makes the animal uncomfortable and decreases his appetite. On the other hand, if the fattening animal is exposed to too cold a temperature, or has too cold drinking water, his requirements for main- tenance will be increased, less food will be available for fattening and the result will show in a decrease in the gain of weight. In cold climates, it has been found desirable to warm the drinking water, es- pecially for hogs. The fatter the animal, the more food is required for maintenance, and the less the proportion of the ration that is available for fat. Hence the cost of the gain increases with the fatness of the animal. As has just been said, only the excess of food over that required for maintenance can be used for fattening. The larger this excess within the limit of the ability of the animal to utilize it, the larger is the proportion of the ration which may be used for fattening, and the less is the cost of the gain in weight per unit of food. Thus it is usually more economical to feed a heavy ration to a given animal than a light ration. The production of fat is proportionally greater. For example, if a steer whose maintenance requirements are 6.0 therms of productive energy, is fed a ration equal to 8 therms of productive energy, only 2 therms are available for production, and here only one-fourth of the ration can produce fat. But if this animal is fed and able to use 12 therms of productive value, the amount in excess of the maintenance requirement would be 6 therms and thus one- half of the ration is used in production of fat. Thus the gain in fat produced by the second ration would be three times the gain by the first, and the cost of the fat produced by the first ration would be nearly twice the cost of that produced by the second. In other words, the cost of fattening may be reduced by feeding a ration which is as heavy as the animal can profitably utilize. Too heavy a ration, on the other hand, reduces the production of fat, since the excess interferes with the normal processes of the animal and makes the fattening pro- cess less successful. The nutritive ratio is usually considered to be of considerable im- portance in calculating rations for feeding. This ratio may vary be- tween wide limits without affecting the process of fattening. The nutri- tive ratio should not be wider than 1 to 10 for cattle or 1 to 12 for swine, because in such a case the digestibility of the food is lowered. It should not be narrower than 1 to 4, because such excess of protein 1's not good for the Welfare of the body. Between these limits, the nutri- tive ratio is not of great nutritive importance, though it may be im- portant in affecting the cost of the feed. As protein is expensive, it is usually better to figure the ration for the lowest quantity of protein. In Texas, however, when the price of THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS 33 cottonseed meal is low, one should use narrow nutritive rations and more protein for cattle, sheep, and other ruminants. When the total quantity of protein fed is correct, the nutritive ratio is taken care of automatically. The quantity of fat fed is not of importance, provided that it does not exceed one pound of fat per thousand pounds of live weight per day. Any excess over this quantity is liable to cause digestive dis- turbances and so interfere with fattening. Pigs can use larger quan- tities of fat than this amount, but even with these animals the quantity of fat should not exceed one and a half pounds per 1000 pounds of live weight. This is the reason why it is advisable to feed only moder- ate quantities of feeds high in fat, such as cotton seed, soy beans, or peanuts. WORKING ANIMALS The energy used for work comes directly or indirectly from the food. Food or body material is oxidized in the animal whenever work is done, just as coal is burned in an engine. The working animal should be fed such quantity of food as will maintain the body, and, in addition, the quantity that will supply the necessary energy for the quantity of work required. The ration must, therefore, depend on the amount and kind of work. As already stated, only the excess of food over that required for main- tenance can be used for the production of fat. If insufficient food is furnished to working animals, they consume the substance of their bodies for the purpose of producing energy and become thin. Any animal when working, needs a heavier ration than during periods of idleness. Animals vary considerably in their capacities to do work. The con- formation of the animal determines how much energy he will have to use to do a particular kind of work. One type of animal is better adapted to a particular kind of work than another type. Those animals adapted to the work can use the energy of the food to better advantage than the other types not so well adapted. GROWING ANIMALS Growth is a normal condition for a young animal. It is not possible to put a young animal on such a maintenance diet that it will stop growing and will neither lose nor gain fat. The growing animal should secure enough food to provide for the proper growth of the flesh and enough mineral matter for the bony skeleton. A young animal gains more weight in proportion than an older animal, even on a fattening ration. Young animals do not require less food for maintenance, but they eat more in proportion to their weight, and they are thus able to store a greater proportion of the food eaten. It follows that the greatest gain in weight for the quantity of food eaten occurs with the younger ani- 34 BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION mal, and the gain requires more food as the animal grows older. This is shown by the following table, giving the quantity of food required for 100 pounds of gain at different Weights in certain experiments: Pigs Weight Pounds food eaten per 100 lbs. gain Below 100 lbs. 300 100 to 150 360 200 to 250 420 250 t0 300 450 Similar results could be given for other animals. The young animals intended to be fattened should be fed more liberally than those to be used for milk or work. Young animals are very sensi- tive to injurious influences and they require careful feeding, good food, and protection from injurious influences. The food should be furnished often and regularly, clean vessels should be used for drinking water, and stalls should be dry and well ventilated. The animal should be supplied with clean dry bedding. Cold, wet, and drafts should be avoided. MILK COWS Milk cows are fed for the purpose of producing milk or butter fat. As is the case with other animals, only the excess of feed over that required for maintenance can be used for productive purposes. There- fore, the greater the quantity of the excess, within the capacity of the animal to utilize it, the greater is the return per unit of feed stuff consumed. In other words, heavy rations, within the capacity of the animal, are more profitable than light rations. Furthermore, animals that can utilize heavy rations and can work them into milk, are more profitable than animals that can utilize only a small excess over the maintenance ration. There is a great difierence in the capacity of individual cows to utilize the productive values of feed stuffs. Some cows do not give sufficient milk or butter fat to pay for the feed which they consume. Other cows are highly profitable. Both kinds of cows may be found in the same herd. The composition and quantity of milk depend on the breed, the indi- vidual animal, the period of lactation, frequency of milking, and other conditions. Milk cows may be divided into two groups; the members of one group give relatively large quantities of milk with a moderate fat content, and the members of the other group give less milk but it contains a higher percentage of butter fat. The amount and compo- sition of milk given by the same cow varies to some extent from day to day. The amount of milk given decreases with the time that the animal has been giving milk. With some cows, the decrease is regular and gradual; while others give the same quantity for a long time and then fall off rapidly. The milk-secreting organs are closely related to the nervous system. Thus rough treatment, insufficient bedding, exposure to cold tempera- THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS 35 tures, and other unfavorable conditions, will decrease both the quantity and the quality of the milk. ' The quantity of milk and its composition depend on the individual capacity of the animal, but they also depend on the quantity and quality of the food fed. It is not possible to push the production beyond the limits conditioned by the nature of the animal, but a deficiency of food will decrease the quantity of milk, shorten the period of lactation, and may permanently injure the productiveness of the animal. When an animal is fed on a sufficient ration, and is changed to a ration containing insufficient food, there will be a reduction in the quantity and the quali- ty of the milk. Feeding standards for milk cows are based on the quantity of milk given and the maintenance requirements of the animal. The usual plan is to feed a certain amount of roughage, and then to feed a mixture of concentrates in proportion to the quantity of milk given. FEEDING STANDARDS AND FEEDING Table No. 8 gives the standards which seem advisable for use for various feeding purposes, based on 1,000 pounds of live weight. Standards are calculated: first, upon the basis of exact experiments to ascertain the needs of the animal; secondly, on feeding experiments with various rations, carried on in large number and in various parts of the world in which the effects of the rations were determined; and, thirdly, on the experience of practical feeders of large numbers of rations. In preparing the feeding standards here suggested, those of Armsby (1), and Henry and Morrison (28) have been consulted, as well as the work of Joseph (29), Kellner (30), Kriss (31), Savage (32), and Stiles and Morrison (33). The standards represent the rations which should, as a rule, give the best results. The ration may need to be changed or modified according to the individuality of the animal. The standards must not be re- garded as fixed rules but are merely intended to enable a feeder to start with a well-balanced average ration. He should then modify or change the ration to suit the requirement of his animals. This is par- ticularly necessary in view of the fact that the feeding stuff used may differ materially from the average given in the table of analyses, and used in the feeding standards. As already shown, there is a considerable variation in the composition and feeding values of different feeding stuffs of the same kind, and the feeder must take this fact most carefully into consideration. The suitability of the feed to the animal to which it is given must also be considered. Some animals are only able to utilize small quantities of certain feeding stuffs, but large quantities do not agree with them. The palatability of the feed is also to be considered. Every change in the food, whether it is a new food or a change in quantity, should be gradual, covering a period of four to seven days. 36 BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION The feeding standards and the tables of analyses may also be used to great advantage in studying the rations which are being fed to animals, and to ascertain whether they cannot be improved in feeding value, or lowered in cost. This is a very important and significant use of the Table 8. Tentative standards for feeding per day per 1000 lbs. live weight. Per day per 1000 lbs. live weight Animal Digestible Productive Dry matter crude protein value Pounds Pounds therms Growing dairy cattle Weight 100-200 pounds __ _____ .. 22.0-24.0 2.8 -3.1 15.6 —17.5 Weight 200-300 pounds __. ..... -. 23.0-25.0 2.5 -2.8 15.1 -17.0 Weight 300-400 pounds -_--_-___-- 24.0-26.0 2.2 -2.5 14.2 -16.0 Weight 400-500 pounds .___.._..--_ 22.0-25.0 1.9 -2.2 13.3 -15.0 Weight 500-600 pounds -----...._._ 21.5-24.5 1.7 -1.9 12.6 -14.5 Weight 600-700 pounds _._ ....... -. 21.0-24.0 1.6 -1.8 12.0 -13.8 Weight 700-800 pounds ----- 20.5-23.5 1.5 -1.7 11.0 -13.0 Weight 800-900 pounds _______ _.. 20.0-23.0 1.4 -1.6 10.4 '—12.3 Weight 900-1,000 pounds .... -__.._ 20.0-23.0 1.2 -1.9 9.7 -11.4 Growing steers with some fattening Weight 100-200 pounds __.._-1..._. 22.0-24.0 2.8 -3.1 15.8 -17.7 _ Weight 200-300 pounds 23.0-25.0 2.5 -2.8 15.6 -17.5 Weight 300-400 pounds 24.0-26.0 2.2 -2.5 14.5 -16.4 Weight 400-500 pounds _.._. 24.0-26.0 2.0 -2.2 14.0 -15.9 Weight 500-600 pounds 23.0-25.0 1.9 —2.1 13.7 -15.5 Weight 600-700 pounds ______ -_ 22.0-24.0 1.8 -2.0 13.3 -15'.2 Weight 700-800 pounds __________ ._ 21.0-—23.0 1.7 -1.9 13.0 -14.9 Weight 800-900 pounds --...___.__.. 20.5-22.5 1.6 -1.8 12.6 -14.5 Weight 900-1,000 pounds _____- 20.0-22.0 1.5 -1.7 12.3 -14.1 Weight 1,000-1,100 pounds __--. 19.5-21.5 1.4 —1.6 11.8 -13.7 Weight 1,100-1,200 pounds ..... -. 19.0-21.0 1.3 -1.5 11.4 -13.3 Fattening 2-year-old steers on full feed First 40-60 days .__.-_.__..._._.__.-___.... 22.0-28.0 1.7 -2.0 14.3 -16.2 Second 40-60 days .....__.__--..-_--__..__ 20.0-30.0 1.6 -1.9 13.2 -15.7 Third 40-60 days _- __---__..----...--- 18.0-28.0 1.5 -1.8 13.0 -15.3 0x at rest in stall __.__...--__-.......--.. 13.0—21.0 0.5 -0.7 6.8 - 7.8 Wintering beef cows and calves.-. 14.0-25.0 0.7 —-0.8 8.0 -10.0 Horses e _ 13.0-19.0 0.8 -1.0 6.5 - 8.4 At light work ___________________, 15.0-21.0 1.0 -1.2 8.4 -10.5 At medium work - __...._. 16.0-22.0 1.2 -1.5 10.0 -13.0 At heavy work ....... _.~__ _____ .. 18.0—24.0 1.5 -2.0 13.0 —16.0 Brood mares suckling foals, but not at work __ .................... .. 15.0-22.0 1.2 —1.4 8.4 -11.2 Growing colts, over 6 months .... __ 18.0—22.0 1.6 -1.8 10.0 -12.0 Fattening lambs Weight 50-'70 pounds ._ ......... -_ 27.0-30.0 2.6 -3.0 18.0 -20.5 Weight 70-90 pounds ______________ __ 28.0-31.0 2.4 -2.7 18.0 —21.4 Weight 90-110 pounds ___ ........ ._ 27.0-31.0 2.2 -2.4 18.0 -21.4 Fattening sheep ___._-._.__-_-.____..__.___._ 24.0-32.0 1.6 -2.0 15.0 -16.0 Dairy cows For maintenance of 1000-lb. cow .60 6.0 To allowance for maintenance add: For each pound of 3.0% milk --.- .045- .055 .25 For each pound of 4.0% milk .053- .065 .30 For each pound of 5.0% milk -.-. .060- .070 .35 For each pound of 6.0% milk __-. .065- .080 .40 For each pound of 7.0% milk __-_ .070- .085 .45 Sheep maintaining, mature Coarse wool 18.0—23.0 1.0 -1.3 9.5 -12.0 Fine wool 20.0-26.0 1.1 —1.4 10.5-13.0 Breeding ewes, with lambs 23.0-—27.0 2.5 -2.8 16.7 -18.6 table. As has been pointed out in other parts of this Bulletin, it is very often of advantage to feed higher quantities of protein than are called for in the standards on account of the comparatively low cost of cottonseed meal at various times in this State. That is to say, the pro- tein could be fed for its productive value, and not for its value as material for forming flesh only. THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS 37 EXACT CALCULATION OF A RATION Before beginning to calculate a ration, it is necessary to decide on the ration desired, the feeds available, and their probable composition. In calculating the ration we must consider: 1. The desired productive energy. 2. The desired bulk. 3. The desired protein content. All these vary somewhat, especially the bulk and the protein. We will term the method of calculation given below, the method of substitution. It is best given by an example. Suppose we desire a ration with a bulk of about 24 pounds 1.6 pounds of digestible protein, and productive value of 13.0 therms, and wish to use corn chop, 43 per cent protein cottonseed meal, and cottonseed hulls, having the average composition given in Table 11. As these feeds all contain about ten per cent water, for which allowance has been made in considering the total bulk to be fed, it is not necessary to calculate to dry matter. First, let us assume that the 24 pounds fed is entirely cottonseed hulls. This quantity of cottonseed hulls has a productive value of 24 X .179 —_- 4.30 therms. The value desired is 13.0 therms, leaving a deficiency of 8.7 therms. If now We replace cottonseed hulls having a productive value of .179 a pound by corn chop having a productive value of .858 therms per pound, for every pound of cottonseed hulls replaced, we gain .858 —— .179 : .679 therms of productive energy. Dividing 8.7 by .679 We have 12.8 pounds of corn chops, which should replace an equal amount of cottonseed hulls leaving 24.0 — 12.8 :-_ 11.2 pounds of cottonseed hulls. 11.2 pounds of cottonseed hulls and 12.8 pounds of corn chops contain 11.2><.004+12.8><.064:0.86 pounds protein While 1.6 pounds is desired, a deficiency of .74 pound protein. Since cottonseed meal has nearly the same productive value as corn chops, it can replace corn chop without materially altering the productive value of the ration. If one pound of average 43 per cent protein cottonseed meal containing 0.359 pounds of digestible protein replaces one pound of corn chops contain- ing 0.064 pound digestible protein, the digestible protein increases 0.359 — 0.064 —_— 0.295 pounds; hence to increase the ration .74 pound, we re- quire .74 divided by .295 : 2.5 pounds cottonseed meal in place of an equal quantity of corn chops. The ration would then consist of 11.2 pounds of cottonseed hulls, 10.3 pounds of corn chop, and 2.5 pounds of cottonseed meal. The substitution of 1 pound of cottonseed meal for 1 pound of corn- chops decreases the productive value .858 — .749 : .109 or 0.25 therm for the 2.5 pounds substituted; and this can be adjusted by adding .30 pound of corn chops, making a total of 10.6 pounds of corn chops in the ration“ This finally gives the ration desired, consisting of 10.3 pounds corn chops, 2.5 pounds cottonseed meal, and 10.9 pounds cottonseed hulls. 1 5 38 BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION The method of calculation used above may be stated as follows: 1. Assume that all the bulk desired is composed of the roughage to be used and calculate its productive energy. 2. Calculate the quantity of concentrate which would give the desired productive energy if it replaced a portion of the roughage. 3. Calculate the protein in the mixture having the compositionascer- tained above, and then calculate the quantity of a concentrate rich in protein which must replace a portion of the other concentrate in order to give the desired quantity of protein. The calculation is easier if the two concentrates have nearly the same productive energy. 4. Adjust the ration by increasing or decreasing the quantity of one of the concentrates slightly, so that the change in the productive energy caused by the change in the amount of the second concentrate may be allowed for. With three feeds, only one combination is possible to secure a given mixture, but if more than three feeds are used, a large number of combinations is possible. A fourth feed may be substituted for the feed which it most closely resembles in any proportion, and the excess or deficiency in digestible protein or productive energy may be ad- justed by changes in the amounts of the other feeds. Other feeds may be introduced in a similar way. The calculation can also be made by the aid of algebraic equations. IMPROVING A RATION Suppose a horse weighing 1,000 pounds is at hard work, plowing for example, and is receiving 4 pounds corn, 4 pounds wheat bran, and 14 pounds Bermuda hay. How does this ration compare with the standard and how can it be improved? First, calculate the digestible protein and productive energy of the ration, using the average values of Table 11. (See Table 9.) Table 9. Starting point for calculation of horse ration. Per cent Pounds Therms Feed digestible digestible productive Therms Feed pounds protein protein energy in in in feed in ration 100 pounds ration feed Corn chops .............................. 4 6.4 .26 85.8 3.43 Wheat bran ....................... -_ 4 12.9 .52 56.8 2.27 Bermuda hay ................. -- -.f 14 3.0 .42 31.3 4.38 Total ................................. -. 22 1.20 10.08 Horse at heavy work, stan- dard (18-24 lbs. dry matter) ._--- 1.5-2.0 13—16 Desired ration .......................... __ 22 1.70 ____ __ 14.00 Deficiency .................................. _- .... _- .50 ____ __ 3.92 the productive energy .858—.313:.545; so to gain the 3.92 pounds desired would take 3.92 -:— .545 —_—. 7.2 pounds of corn chops. Each pound The ration is lower than is desired in protein and in productive energy. Productive energy may be increased by substituting corn for part of the Bermuda hay. One pound of corn substituted for hay increases THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS 39 of corn chops substituted would increase the protein in the ration .064 — .030 : .034 pound, or 7.2 pounds would increase it .24 pound. This (would increase the total protein to 1.44, but would still leave a defici- ency of 0.26 pound protein. If we replace corn by wheat bran to sup- ply this protein, we require .26 + (.129 —— .064) z 4 pounds wheat bran. This, however, would cause a deficiency in productive energy of 4><.858— .58:1.11 therms. This deficiency could be made up by replacing Ber- muda hay by corn, 1.11+.545:2.0. The calculated ration would then be as follows: Pounds Corn 4 + 7.2 — 6 +2.1 : 7.3 Wheat bran d, 4 6 :. 10.0 Bermuda hay 14 ——7.2—2.1 :2 4.7 Total 22.0 REDUCING THE COST OF A RATION The commercial prices of feeding stuffs are often not in proportion to their feeding values, and rations may often be modified so as to reduce the cost of the ration. There are four things to be considered in reducing the cost of a ration: (1) the suitability of the feed to the animal; (2) the cost of the productive value; (3) the cost of the digestible protein per pound; (4) the cost of the bulk or volume of the feed. The three last factors can be calculated from the known selling price, the protein content, and productive energy, as already shown. The bulk of the feed may be measured by the total amount of dry matter. It often happens that some hays cost more per unit of feeding value than concentrated feeds. In such cases, the other cheaper bulky feeds should be used, and the difference in nutritive value compensated for by increasing the concentrates. i” Suppose a feeder who is using 6 pounds of wheat bran at a cost of $16.00‘ a ton, can secure corn at $23.00 and cottonseed meal at $24.00. Would it pay to substitute? Using average values of Table 11, six pounds of wheat bran contains 0.77 pound of protein and 3.48 pounds of productive energy. The weight of corn containing 3.48 pounds of pro- ductive energy would be 3.41 -:— .858 : 4.0 pounds of corn, which would contain 4 X .064 _—_ .256 pound of protein, or a deficiency of 0.51 pound of protein. Replacing sufficient corn by cottonseed meal to balance the protein, 0.51 -:— (.359 — .064) : 1.7 lpounds. That is, 1.7 pounds of cottonseed meal and 2.6 pounds of corn are equivalent to 6 pounds of wheat bran. The cost would be 6 X .8 : 4.8 cents for wheat bran; and for the mixture, 1.7 >< 1.2 : 1.93 for the cottonseed meal, and for the corn 2.6 >< 1.1 : 2.86 cents, a total of 4.79 cents for the mixture or practically the same thing. It does not always follow that a change like this should be made, as the use of the wheat bran may be preferable for other reasons. The preceding illustration shows the method which may-be followed in reducing the cost of a ration. In substituting for protein, a suitable 40 BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION feed providing the protein at the lowest cost per unit should» be used. In substituting for productive energy, a suitable feed providing the most productive energy for the money should be used, and the same remark applies to substituting for bulk. The calculations could also be made by the method of algebra. DISCUSSION OF FEEDING STUFFS The average composition of Texas feeding stuffs is given in Table No. 11. The feeding values of the various feeding stuffs are also given in Table No. 11. There is a considerable variation in the com- position of feeds, and it is necessary to recognize this fact in applying the tables to feeding conditions. Definitions of feeding stuffs have been adopted by the Association of American Feed Control Officials. They are published in Bulletins of the Division of Feed Control Service of this Experiment Station. Moisture in Corn Chops It has been pointed out in Bulletin No. 152 of this Station that corn chops may heat under Texas conditions and the consumption of such heated corn or corn chop is dangerous to horses or mules. If corn chop contains over 14 per cent moisture, it is almost certain to spoil in Texas during the warm months. All grades of corn lower than No. 1 may contain over 14 per cent water. Lower grades should be dried, or so stored that they will dry out before being manufactured into corn chops or exposed to warm temperatures. Corn chops containing over 10 per cent of moisture should be well ventilated, or handled, if in bulk, so that it can dry out, especially during warm periods; otherwise, it is likely to heat. U. S. Standard Grades for Hay, Grain, etc. Descriptions of the U. S. Standards for grain, hay, and straw» may be secured from the Bureau of Agricultural Economics, U. S. Department of Agriculture, Washington, D. C. Observations on Composition of Feeds Fodder and stover. The term “fodder” refers to the entire corn or grain sorghum with the grain. The term “stover” refers to the plant from which the heads or grain have been removed. Alfalfa hay. The feeding value depends to a considerable extent upon the percentage of leaves present. The leafy hay contains more digestible protein and has a higher productive value than the stemmy hay. The feeding value is not necessarily closely related to the grade. Bur clover. This series of analyses shows the relation of stage of growth to feeding value. The young bur clover has a high feeding value, which decreases as the clover becomes older. 41 THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS o.Hu www. o www. wHw. w 0x02? FHo0 H60 HHw. m3. 33 wow. oH 03a $5.8 $3 .H0>o .0026 F80 N? $4.. wHH. 25H wow. wH ............................................... .. 00.0mm 0350 Qwow o0 mu dmwmw F80 own oow. moH. oww.H www. NH 55G 0020 00mm ow ow fiwwmw F50 fix. oHw. Hww.| wwwH m3. H ...................... .. momma. PHH. £05m 00:00 $3 can» mmwH dmnmw F60 www www. 03.! wwwH 3w. w H.005 Q0053 F80 3w www. omw. S3 wHw. wH H0000 cwwHHHw FHo0 0.5 www. wwo. wHH.H wow. z . .................................................. .. 003.05 o0 HHMHEH. .0950 £0200“ F80 H.Hw wHo. oworl 30w Hww. 0.530 5.00 UHHQ F50 wow wow. o wwHw wow. H.585 £25m H28 n00 .FHo0 H.Hw www. o wwww Hmw. Awwwsfimwmwo Exam wHoHHww .FHo0 H.Hw www. o wwww Hww. wH ..... z 3on0 .Ho H005 F50 w.w oww. wworl wow. wwo. w HEHHPHM 305m .300 F80 .30 wow. owH. 21H www. w AHEPHBHHEQB swan FHo0 Htww owo. oow. £3 www. w Hmwfi :0 0553000 w? www. EN! Hww. www. H 033m 0H0: .H0>oH0 5m H.Hw. wworl wwoH wow. 3 H00» San .H0>oH0 5a 2a. wHH.I| www. www. o. cowira 52H ~0>2o i: www. oworl wwwH m3. w .300 mHvHfinHH .Ho 0350.00 fin H3. 0H5. 23. www. w ...................................... .. Hmwwwozsoww wmmoHamo 52H $50 01.00am H? mow. o wwwZH m3. N ........... .. flown .FHo0 Eooam S; oow. wwo. www. own. H. 52H dHzrHofi 3550M w.ow HHw. owH. wHwH oow. w HEHHH. dcHwHw .m.H0>>0.HmH 12. www. wwH. www. www. H .................................... .. 800.003 E H0mm0§HSo0 H85 >0: 330 02m 0.5 own. 30F www. oww. H. was wwH-Eaom 3:. owo.H 3.». o mow. w 003w .552 000m o.wH 2a.. owH. o wwH. w Awwwooanofi mmwfiw .300 www 02H wwo. wwHwH www. H 005a 5:000 www www. oww. HHw.H oww. oH ommuwiw Q0003 0.8a Ho £50m 0.3 www. 3:. www. www. H @0253 0o: mHwFHwx Sam 031mm www wow. wmof. ooo.H wow. H ................................................ 1 c030 $58.30 mowwm Q2060.“ moinm o.ow wHw. oHo. wowH www. w 0.00:3 5.0mm $2.5m m.w www. How. 3w. wwo. m smoHw .00wEoHH 0154 o mHw. wwH. Hww. o w H005. .00mEoHH 0154 3m 03.. www.»: Hmw. mmm. H ...... : 000mm @5324 wow www. o oow. How. .................................................. .. 003w 00:00 Qwww 00>o .9530 313?. w.ow www. wHo. wHw. oww. .................................................. .. Hwnfi 005.3 Qwww ow ow .1005 31x24 oéw www. o www. Hww. .650 0H0FH0 00o.» o0 wm .135 @282. w.ww www. wwo. H2. www. i. HQQEH 0H0FH0 00am 400E 0.2.0.34 wow www. 30F oww. H.Hw. H Hmnfi 2:50 ewHw .303 $.02 afiwwiw is www. wwH.| Sm. mow. mu 02mm 0H0FH0 00mm .H0>o S0: nfiwwjw H.Hw www. wwH.| www. www. wH .................................................. .. 00:0 0H5H0 wwww o» ow £0: 02x24 .3; www. 03.1 mHw. mmw. ow .................................................. .. HQQMM OUHHHU 0x0ow 330A in; dfiwfiwq HHHwuoHQ 009508 nonfi uudnuww H0000 l. 03H 00¢ 0HOFHO uwnwfl 5003M 1H0?» -3005 LHUWOHKZ dz .3: dimafih hOw 32358000 mo wwcfifiwumoo HE.» munfioflwooo noHwusvoaHH 080m .oH 03am. 42 BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION hvnHwHEEDQ: 653w Hvmwfi HwHmvH ..... -- wwmwn on 653w fiwwvH Amwfié :25 .635 zfim ,,,,,,,,,,,,,, ,. wwnaona 63w: bowm HvwnQo-Ho no UHHHHOHM niwnvw 94:53 has 35w nowEHoH. , Hawfi no Hvoow zfisom www~o>s 3.6.6» dEHHmwH Sam 5585a §HH B. w QQHH . ....... .. . 3.5 cow 52$ $2 Sum ............ 1 ouswoaia uanHa warm ........................... .. 525w wfihzwm ............. : onsonw .253: wflhflwm 5L. ................... -- cfifiw “Emzmm . 0.5 a dcdmkm mum BwHnH =§.....H@ $9» omfiw do...» wwwmsumm 5m ......... .. 3x296 £13m 3&5 .... wwwmm wwfisoo ............................ .. .23 fiuomzrov .................... .. 1.68 oafiaoo 82:2. .215 wwqéoppgw ............. .. smwoona Rwwdétw .H“ H. o» Hum a 2H5: cmmmmwooom imam“ mush. coon 533.5 woHm .H" QHH .HmH~HvHm@H HHQHWHW» Enwdflm mwwmnofiomoo imam $.53 $5 5E8.“ $2.. 8 fi %...w...wwm=muwamwmmwmw ............................. : awn-Hm owHrHo exiYwH £558 U56 Hdoa woomcopooO .3. Ho.wH .81.“. wwwmfizooo mHHEH wfldwxmu wwwmnoaoov ...................................... .- .8... .25 M? o. Hwom Mum Wwwmmwwwww %¢.m 0o o6 @315 wwwwcoopoO ................ .. 5a .25 w: s 8.2 ..H.M..W.... “Mm. Wmmmwww , SH 303D .135 wwomcofioO NH o» Ho.o.H .135 HvwwmcooooO 43E HvmwmcouboO w o» o6 .735 wwmmcopooo ...................... L: Ban dwomnopooU ................................ .. n55. c0300 ......... omswwu HHowH mnopomo 5v. v.2 cw £3 c» .253 2min QvQHHHHHHQ ..Ho>ow~w FHonOv N8 2a. ~31 owo.H mom. H mow. omo. $3 mow. Hdm m3. mHo. 5N4 3m. m In. wmo. owo. mwwH N3. 3:. woo.H o $2 5.. . Qmw woo. moo. mom. oww. w ....... ........................ .- AwHmcwQwHm: cwmon N? m5“. owHFl 25a moo. m 5:. 3». omofl wmoH wH». 9% owo. Q8. owoH ooo. ....................................... --... mmmnwiw Huhwzww wow owo. wmo. 3w. 2.... .................................... -- omwugm 12.5% .5 How How. Nix! ma. wow. w Hon we... ooH. $3 mom. H 9E. NS. 25.1 E3 ma». WE. owo. o m5; m5. m mHm 3w. oomfl $3 mow. u . Hdv ME. gwl HHo.H woo. o Qfi. 5m. oHm. N23 5.3.. H Hwm 2.... >HH.| ooo.H owm. w 3a ma». oHHrl 3w. 2a. u 9% 8m. 9mm. owoH mmw. H Z 2w. wHH. .32 o H -. Haw ma. 23.1 wooH wwo. 2 .... .. mow won. 2a.] £3 wow. m is woo. $3.1 8g How. H How 2:. HmH..| $5 wHw. m Q5. 2;. SN! £1 3w m. “.3 wow. wS. $3 mow. H 3w NE. woof! fig 5w. o? 2s. o Ema HHw. www 3w. o $3 2w. w 25.5 §NH 3a 3w. o wsfi 5w. 5w as. o Emd Nam. 9mm HE. S?! 3w.“ oww. .................................. -- .395 @053 Qe Hww Hmo. o m5.“ wmw. oéw‘. wfi. woo. M51 mww. mH ......................................... .- $£Q 35.3 o ooo. o mowé --mnw. HwnHw wwsno m» 3w m3. o 23 oow. ...................................... -- .33“ 0on3 fixwoH o . Em mfi» o oomd 3w. ...................................... .- ~85 woPS $9 o How 9.2. omo. woo. Cg 8;. w oém m2» wow.‘ mwmH wwm. H .3 wow. wwofl N34 HoH. H mow N5: mg. o2... wow. o .................................................. =wnww Havana Q3 oow. HoH. 53 SN. m cHooona Homnfinm nwfim ouwnpwo HEM.» 03H mwnw QHEHO uofifl sHmaonm 13>.» LHmowHQ éwwoflzz dz owgfip=ooolfip=wfiash .8“ Ezfimzummw Ho mpfisuwvoo H25 manasfiwow =2€=QQ~Q mfiow .2 v33. 43 THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS w.wv Hvo. 08.] Hwv.H wwv. w A020: f?» .0500 0:050» 003w v.2. vww. wvHvl mood vww. ............................ .. 005w 00:00 Qbow 00. HooH 0:0: H000 :00: 00E oww mwv. 02.1 mwHd ovw. ................................ .. 02E 000.8 00$ o: HowH i=0: H000 :00: 00$: o.vw vvv. Hwfil 0mg oow. ................................................ z 005w 000:0 0\0mH 00 HowH .00»: 00E 0.8 owv. 03.1 3Q oow. w 002$ 00:00 $2 E30: E00: 8E w.ov $0. Hoof: 3:6 vHv. ................................................ -- .68.: 00:00 $5.3 8. Hod .00»: 00E v.Hv mvw. 9s. HwHd 3v. .60: 005:0 Q2; ow o.v £00: 8E N9. £0. HmH. moo. $0.. m >0: @0000 0000: 0.3 fiw. wwo.|. 3N4 5.... w 35: 30m S0: wsflwwnH wwv 5v. 0.2.! mood ovv. w 35¢ >005 :0?» ma: 025$ 0.2.. owH. 2w! wvwd wwm. H 05:0 0559a $0 vow. $3. :30. moo. N G05 0250a v.3 wHw. $3.] vHv.H £0. w 020:0 no 05:: wczwom wow vwH. $0.1 .200 Haw. m 20:8 602.80% 00v 0%. 30.1 HHo.H wov. H .................. -- $00 0020:» 0000 :0?» >0: .3202. .803 80.3.». 00m $0 mooH Hwo.|| $3 $0. H Aawanwvo H005 00m 3w mow. $0.! wHo. HoH. H >0: $00M 000m 0% wow. owo. is; wow. m >0: 023m 00.2000 odH m0... oHo. oow. N2. m. 30.3w p00 3a $0. 02.! wwmH we... v >0: Q00 wow m3. Se. £3 mHw. w 0000009.»: 5E :02: 000 0.0m 30H vow. HHHiN Sm. H mafia JMEHEJE H0O mow 5.. o wow.H 02.. w 0.0.5.520 =5: 0.00 v.wH 5.. o oww. ooH. w .. 2H5: e00 o.Hv wvw. vwm. 2:0 Hmv. H ...... .. 09mm ewwH .H0cs0.~m:5 .300 o.ov vvw. wfi. £3 mow. w n0£w 005.00 gmH o» oH .0000 0.2 Hwo. o o HwH. wH .l-.m00ufl§ owv wwo. ovo. $0.0 Hwv. m cfifim 30:3 .052 Z0 0.03 E. $3 .5. - ......... .. 402mm £2 0.? mvo. $0.] HvoH wwv. m Q0:0 H000: 0=H>H NwH mow. NE... wwmH mwH. H c0900 5:000: 2H2 o v3. wwo. wwHH o H .......................................... .. $00: 000:0?» 00:00.0 .0005 .005? 0HHH>H 0% 0%. 3H. ~22 vww. H .0000: H000 0:30 00.50 .0025: 0:2 wow oww. owo. vwo. vHw. u 0500250: :30: 00:15 H.Hm 0.3. owo. v.24 wHm. H 002.03 @0_:0800:0 in: #212 v.0... woo. vwmrl 2.3 wow. w 010:3 .500» p055 0.00 ovo. o $2.2 wow. w 0:50am .5080 p052 N4. oom. owHfl ma: m3. H >0: 000.00 0030002 Z... Hvw. wHo. 3.3 oHo. w 0:00: 0018005 0.2. wmv. 03. m3; oww. m 00.00.50 0:05 $0 $5. womfl wHod vww. w 00000.5 30R JQQE 0035A $0 oww. oHo. 00$ $0. H. $000.5 3o 400E H000wnHA 5a $0. o wmoH $0. H 000mm nmudvm 0600.5 000.506 03G 000.506 H00m0 03H 00.0w 00500 00:0": flmowobm 1:03.. -0805 E0M0SHZ .0 Z Adoflfiwnonvolvmwcacmfisn now 0033300000 mo mwcfiomiooo UHHG mHGQmOm%MUOO HHOMHOUUOHQ OEOW ‘GM Qqadm-v 44 BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION omw mow. 3N. wmmH How ooo.H o wmmH 3w mmw. wmm. omoH w.ww m5. mow. owmH mow omm. wwm. omo. mww omwr omm. HwwH Q8 NooH owo. wmoH oHw owo. wmo. Hwm.H wdm oHw. wmo. owmH 3x. mmw. wHorl mwmH w.Hw mHw. 3a.! 2:4 w? ma. Hmo. omoH W8 HHw. wHm. oooH www owo. moH. oowH mww owo. 5...! mmoH H.ww wow. o mwoH i: mom. owHrl oww. N5 HHNH mwofl omwd moo mmo. o oomH omw HHm. mmo. wow. wHm mwm. owo. N2. w.mw wmw. woH. mmmH wHw mmw. N2. HumH o.wo wwo. w?! owHH moo wow. o wood wéw N8. wHH. wuHd w.Hw umw. o oww. mom $2. oom. $2 o.oH wow. o HomH owm www. o oom.H mHm mom. Hmo. wwHH o6 oow. o mww. mow oow. o ooo.H moo 2m. o HwmH www wwo. o wmwH wHm wow. mHo. wmw. oow moo. wmorl mwmd ma mwH. N3! wow. Q5 oHm. woof. mwHH nmuuoam uowafinw .55“ oofinoxw 2n: v.5 wHVFHO Q nm-HQH LHmwuHQ émmonfiZ Hom. H mwfiowwmfi ozwwnwfi pig wow. H wwnaw BoH ngofi 235$ oow. w . moaosw cBonn uwwsw? mwo. NH ca»: Haws? wmo. w uomw Howie» anon? wow. w .............................................. .. 3H2? 22w .8 wwfiHoES gem pawn? www. m H2595 Jmwwa? Nmw. m 22a wfiwm? mwm. H Howfiaoomcfi xwmmfiw sopw> ooo. w moHHHEwm Sm in: £ouw> mmw. H cwwuw éfivww 23> Qwwwow capo»? mww. H =83 iwfi.» flwmn 333/ moo. H 52H flaws ow>Ho> oow. m . Amwom H23 cwono Hvmom flaws pw>Ho> oww. mm has aspofiom. oww. H iooaw S5055. mow. m was wwwnw mmonom. mow. m oMwHHw nowwoficsw mow. H coEEou nflwmfioficnw wow. H 3m»? cnosm wmm. HH has cwwsm omw. m flwwam dwsuu 52.5w omo. w Exam .5550 .5 nfionm omw. m wwwmw cmwn mow wHo. o .................................................. .. 3.3m wow oHoszv HEw H35 :32 mom www. m Hmwfi Hmo cams mow omw. m 52H flaws how mwm. H wwwm EHHJMHOW m3. m omnmm EHHSMMOM mmm. m HHQQHM .335“ HHHHHSMMOW oum. o H.935 nmwwwom EHHSWAOW OS. N .................................... .. Hwfiofiaooo v3?“ ES .8 wmwawwn EHHSMHOW oom. H Hwwooofiooo wuwuom 52.2w wmo. H ovHsu mfinwwm wmw. H Hawfi mam omu. m 3.95m wommH omw. m Amflom 85H omo. m .... z mHHEH woHmH wwm. H -- was 83H flown zmwaogm 18>.» .02 ovwu=oa=¢oolio=wfifisk new >azmsuwwow m0 monfluflwwou HEw Bnflomwmuou nomauwwoua 050w .oH wHnfiH. 45 THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS 2.6m 662 H 2..m 66 H66 66 2.6 6.62 .................................................. : 2.00m 6222x526 5x02 0.0x 6.62 2 6.62 66 2.6m 66m m. 662 .............................. .. x5022... 022022022 225x252 5x02 xxx 6.62 H 2.6 H6 6.26 66 x. xxx ................................ .. x5222 005202202 22.008 5x022 xxx x.2x H 0.x xx 6.2.6 6.6 6.2 6.6m ................................ .. 22.002 02525 x255022xU 25x02 6.2m 2.62 m 6.6 xx 2.66 2.6 6.2 xxx . . 0650M 02x2 5x022 6.2M 6.6m m 2.6 66 2.66 0.x 6.2 6.6m 2x25 5x02 662. 6.6 m 2..m 66H 6.66 2.6 6.2 M22 02.22.2255 .225xm 6.62.. m.62 6 xx x0 6.22. m6 H.m w.m2 22x55 2202522 xxx 6.m . . . . . . . . . . . . . . . . . . .- 6.m2. m.m 6.m 6.62 ...................................... .. 255555252556 2.022552 $02.85 662. 6.62 m 2..2 6.6 6.22. 66 6.m 0x2 .......................................... .. 0x02122552 2.5505M c225xm2 2.62. xx 6 6.m 6.6 666 m6 2.x x.x2 . . . 2x055 2.00.2 2025.02 6.62. xx . . . . . . . . . . . . . . . . . . .. 2..2. 0.0 x2 0.52 22.5.2222 .............. .- 2508.506 0202B .3050 5.2.55 5...... xx xxx xx xx xxx xx 5.x 0x5 .2. in ............ -... ................. .. 22x50. x5020 525x25 xxx. 6.2m H 662 2.2. 2..6m 662 26 66m ......... .- 2.252. 5005M .250 .2252 022052 x c225xm2 66 6.m 2 6.m xxx 2.6 6.m 6. 0.x ......................... .. 5005M 050 .5222 022052 x .5025xm 6.66 xx x 6.62 H6 6.26 xxx 6.2 6.2. M ................................................. z 2.252. .mmx5M x222w254 6.2M 6.2 m 0.x 66 2.66 0.0x 2..2 _ 0.x ............................................... .- 2.252. .mmx5M 532M554 6.6m m6 . . . . . . . . . . . . . . . . . . . -. 0.0x 6.66 x. 66 .............................. .- 25555525255 2x255 55020 x2x24 xxx 66 xx 66 6.m 0.0x 2.2.x 6.2 6.22 2x055 55020 x2x24 xxx xx . . . . . . . . . . . . . . . . . . .. xxx xxx x2 0x2 .......................................... -- 285820.06 2x2: 2x226 m.26 6.62 xx 66 xxx 66m 6.2 6.62 2x25 x2x24 6.66 662 . . . . . . . . . . .- 6.66 662 6.m 6.6m .......................... .. 25555525256 2x25 2x02 x2x24 666 26H 6.22 2..2. 6.66 662 6.m 6.2m 2x055 2x2 x2x24 m66 6.62 6.m2 66 xxx 6.2m 6.2 0.2 .. . . 22x2 ...2x52 x2x24 xxx xx. x2 xx 2.x xxx x2 0.... x .25 05.20 .0 .5 .52. 2.22. 5.x. xx. 2.x. 5.x xxx xxx x5 x25 w.-- x dz 05.20 .0 .5 .52 x522 6.26 P6 2..2. 66 666 2.6m 6.x 6.62 ...................... z H .072 06x50 .0 ..D .222 x2x24 6.2.6 6.2.2 6.m xx 6.2% 2.6m 6.m 76.62 .................................................. .. 0Mx50>x 02x52 x2x24 xxx xx . . . . . . . . . . : 66m 66m 6.2 6.62 ................................ .. 25555525253 2.0550520 .x2x24 2.6m m.m .2 6.6 H6 6.2.6 6.66 6.m n62 ................................................. -- 2.0252. .0Mx220.2 0025M4 2.6m 6 6 xx x... 6.66 6.6 6.2.m 66 .................. .. 5505M 52.00-2005 .2022. 2055002 55004 666 6 6 6.m m6 6.62. m.m 6.2. H6 .................... .. 5505M 02x0-0>22 2.252. 62055002 55004 6.66 6 2. 2..2 66m 6.2.6 66 66m m6 .................. .- 5505M 02x0-605. 2005.2 62055002 55004 xxx 6 2. 2..2 6.66 6.2.6 m.m 6.6 6.6 .................. .- 5505M 0253-032 22005.2 62055052 55004 2.mm x. 62 6.m m6 6.26 M66 6.2 xx 2.0252. .2252 55004 2.2m m. 6 6.2 xxx xxx 2..2m 2.2 xx 52005.2 .2252 55004 6.66 6 2. xx 2.6 2.2.6 2.62 2.6m 26 ................................. n- 5505M v2xo-2.05 60252. £55004 6.66 6 2. 6.m 66 m.2.0 x.x2 66 66 .................................. -- 5505M 2.8-5.85 .2252. £55004 2.x... 6 2. m.2 0.0x 66m 6.6 2.62 xx .................................. .. 5505M 02x0-2.05 120055 655004 2.6m 6 2. 6.2 6.6m 66m m6 6.m 6.m .................................. ..5505M 2.3-0.80 520052 £55004 2.5505 662 52 255220. 0.500 505 2.0M... 00.055020 mM5050 520.2052 |50>x .204 502x226. 005m|50M 52222 2.0.0.5020 5202052 035 252 .0 Z 05222 02.550 50522.22 052.0552 |22m0M2n2 0550525555 50.2 >M5050 032052.055 2.5x 5200055 0222220022. 00.022.20.555... 2.5x 62.002 .20 5o22m0555000Mx5500505 0Mx50>4 .22 03x2. 46 BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION 000 0.00 00 0..HH 0.0 0.3. 0.. 0.0 0.00 .................................................... .- 000.00 .0=0E..0000m 000 0 0. H 0.0 H.» 0x00 0.00 0H 0.HH .............................................. .. $000000 00o 000050 . . . . 0>0HH 0.050. 050 00>00H 00 0005 ..H0>0H0 50m 0 00 0 HH H 0 0. 0 0 S; 0.00 00 EH ...... .... ........................... -. H0050 to 000.0080 05.0 . . . . 0E0 00>00H 0500 .005.Ho0 00000 =0 ..H0>0H0 50m 0 00. 0 0H H 0 w H0 0 0.3. 0.00 .00 10H ......................................................... .. H0053 05.020 H000 $5000 m0>00H m0 0.000 .5000? 55m 0.00 00H H 0.0 0.0 0.00. mHm 0.0 HHw ......................... .. 000.000 5003 E 2B0 ..~0>0H0 00m 0.00 00H H 00H 0.0 0.HH. 0H0 0.0 0.0m \\\\\\\\\\ .. $000000 005.80 #050 0o 0005 ..H0>0H0 50m 0.5. 0.5 H 00H 0Q 0.0m 0.5 0.0 0.0.0 ................... .. H0050 . 00550.0 00000 m0 050.» .5003 HHHG ..H0>oH0 55m H00 H H.HH 0.0 0.00 H.H.H N4. Hém ........................ 1 2000500 50000. 50 003. ..H0>0H0 50m .... 1 H 0.0 0.0 0.0H 0H0 0.0m 0.0m 000m 0H0b05 50m H00 0.0 0H 00H H.w 0.00 wém 0H us. ............................................................. 1 000.00 00.03am 0.00 0.0 0 0H 0.0 0.00 00H 0.0 0.HH ..................................................... .- $00000 000AB0H0H0m 000 0.0 ...... .. . 0.00 0.0H 0.0 00H ......................................... .. 25555050 000HH>5H00m 0.00 00H 0 00H 0.0 0.00 00H 0.0 00H .................................. .. 2.000500 500000000 335m 0.00 0.0 0 0.0 0.0. H100 0H0 Haw 00H ; 3000mm 0.0.H000HH0 .00H0fim:0n0 03005000 0030.5 0.00 0.0. 0 H.0 0.0. 0H0 00H 0.0 0.0 ..................................................... .. £00000 0.80 505m 000 00H . . . . . . . . . . . . . . . . . . -. 0.00 00H 0.0 0.0m ...................... .. 900055050 00000 £5000 .w.H0>>0.Hm w H0 05H 0H H.H. . 0.00. 00H 0.0 0H0 ............................................ .. 00000 050.00 .m.H0>>0.Hm 0.0. NH. . . . . . . . . . . . . .. .- 0.0 0.0 0 0.0 .............. .. 20055050 0050000 H0350 .H005 050m ~..HH Hi0 m 0.0m 0.0 0.0 Nam 0. 0.0 ...................................... .. 0050000 $00000 4005 050m N00 H.0H . . . . . . . . . . . . z 0 0.0 0.0 0.0m .................................. 1 H5050c050 B0» .0005 050m H.00 0H0 0N 0A0 0.0 0.0 NH 0.0 0.0m .......................................................... .- 30» A005 000m 0.00 N80 . . . . . . . . . . . . . . . , . . .. 0.0 0d 0.H 0.0m ............................................ .. H55505050 H005 000Hm 0.00 R00 0. 0.0 0.0 0.0 0.H NH 0.00. ................................................................... .- H005 002m 0.3 00 WH; 0.0 0.0. 0.00 0.00 0.H 0.0 ........................ .. >00 0008.05 0.0.0 0.0 . . . . . . . . . . . . . . .- 0.00 00m 0. 0.w ................................... .. A555H5050 00000 .35 000m H 0w 0.0 NH. 0.0 0.0 0.00 00H 0. 0.0 ....................................................... a 00000 .015 000m 0% m.H H NH 0.5 0.0 o.H H. Ham ...................................................... .. £0000 .3009 xuoum 0.00 w..0 H 0.0 v.0 0.00 0.0 0. 00H ...................................................... .. 00050 .3000 033m 0.0m 0 H H H.0 0.0 0.00. 0.00 m4. 0.0 .......................................... -- 00000 00000 000.00 000m 0.0 H0. H Hi0 0.4.0 00H 00H 0.H H0 .......................................... -. £00.00 000mm 00000 000m 0.00 0H H. 0.0 0.0 0.00 0.0m 0.0 H0. ...................................................... .. 200300 000.00 000m 00H 0m w 0.0. 00H. 0H0 0.0m H.H 0.0 500.00 .00HH0H0 000s? .0005. 000m 0 Hm 0 0w H. 0.0 0.0 H00 HA. 0H 00m ...................................................... .. 200000 055 500m 0.00 H.H.H H 0.0 0.0 0.00 0.HH m. 00H ....................................... .. H000 0:0 00000 505 500m 040 00H H 0.HH 0.0 0.0m 0.0m 0H 00H .......................................................... : 0000 50.05 500m 0 H00 00H H 0.0 HS 0.00 0.0 NH 0.Hm ........................................................... .. 00050000 500m 005005 00H 5 05505 0500 000 0000 000.300 055050 50000.5 |.H0>0 HHwHw 00000? 003-500 50:00 000.503 =000o~m 0Z0 03 .0 Z uohfiz 00:00 090m 6000mm 5000mm _ H.00H05.H0.:000i!.w..0:0:H50.H no“ 030050 03000095 050 0000.05 0000000000 000550.500 00.0 .0000“ m0 003300500 0M00H00000HH 0005030. .HH 030m. 47 THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS S; w.w ww w.H 6.: H.H.w H.H. H..w m.m 690:6 F86 Hui w.mH m. . . . . . . . . . . . . . . . . . . .. 9ww 9ww w. 9m .................................................. .. HEsSEHEw n66 FHOD 66H w. mH H.m 9H. 9ww 6.66 w. H.w 6.8 F80 w.ww w.w . . . . . . . . . . . . . . . . . . .. 9ww 9mH 9w 9w .............................................. .. HEHHEEHEV :65 F80 6.66 w.w wwm 9m H..w 6.6 9w 9w 9H.H :65 F80 9ww 9w . . , . . . . . . . . . . . . . . . .. 9wH. 9w w.w 9w .............................................. ,. ASsEHcHEV 8:6 :80 w w.w Hwwm w.H m.HH 9HH. w.m 9w 9H.H . 6.8.6 F80 .ww w.w wwH 9H H.w w.mH. 9m w.w wdH 5.66m F80 www H.w H w.mH w.w 9ww 6.66 w.H H..w .... .. 6666.6 666.860 9wHH mww H w.m 9H. H.wH 9 H.H.m H.mw ...................................................... .. 66.16648 83H H80 wwH. H..wH mH w.w 9w w.H.w 9wH w.m w.Hm .............................. .. 666693 86c .H66E-:o 666266600 www 9H.H mw 9w w.w 9ww m.HH 6.2 wwH H6818 6:26.660 H..ww H..H.H w 9w w.H. 66w 9mH 9wH m.wm 66166-36 62666660 H.wH. 6.5 . . . . . . . . . . . . . . . . . . z 9ww 9mH 9w 9wm .............................. .. ASHHSHEEV 66E mo 65:86.60 w.H.w H..H m w.w 9w 9ww 9wH H..w 9H.H 6:26 666w 66660 9wH w.w H w.w w.H. H.ww 9ww H.H 9w ................................................. .- 86.36 .6686 £6.85 w.mw w.wH H 9H. w.w wmw mdm w.m 9H.H ......................................... x v2.8 San $66.86 ..H6>oH0 w.mm 9H. H 9w H..w www m.ww H.H w.w .............................. .. H6326 6.60 >6: .6636 £9620 w.mwH w.H. H 9H 9w H..w Haww w.mw H.w .......................................... .. H666 66.5 B626» 6665.5 9H.w 6.2 H w.w 9w w.wH w.ww 9wm 9H.H . H666 666566 =65 9ww w.m H H.w 9w H.ww wmw m.H H.w ................................................. .- 2663 6666.6 66980 9wH H.w H m.H. w.ww H.oH 9HH H.. w.w ................................................. .- 6.66:6 H663 6626660 m.w m.H H H..w www 9w m.m w. w.w ........................... .. c6666 Q66? 6H5 H66? 6626.80 6.66 9H.H m 9mm H..H. Haww 9wH 9H w.wH ............................. z H63. £668 6H3 H66? 6666.80 . . . . . . . . . . .. w m.H H..wH. 96H H..H. w. w. H6666 6.6680 66>66H 6w 66:66 .666EE6H. .6560 . . . . . . . . . . .. m w. w.w» 9wH H.w m. w. H663 666.5 666.8669 .6666 6:60 . . . . . . . . . . .. m 9w 9Hw 9mm 9H.H H.H w.m 666w 66650 666.562. .6662 6:60 6.66 9H w H..w H..w 9H.w Hdm w..H H.w ....66>.w6H Him 6x136 A6662 HHHH; .666H§HH.6H. .6560 . . . . . . . . . . .. m w.w w.w w.Hw H..wm 9H w.m 66:36 A666: .23 666666969 .6560 . . . . . . . . . . .. m 66m w.w 95 w.wm w. Ham 683 666w .83 666.3369 .6560 w.ww 9m m w.w w.w w.ww H..ww H.m w.w ....................... .. 66>66H 666a .663 666666969 .6560 w.ww H.w H 6.2 9w 9ww 9H.H w.w w.w ................................................... .. H666 666mm 6:66.60 9w w H 9m wdw 9w H..H w. w. ................................................ .- £666“ .6926 636.60 9w w. m H.H 6.26 w.w w. H. H.H £63m JHFG 656.60 Haww m.w w m.wH 9mm w.Hw 93 9H w.w H666 JHFG 636.60 www w.m H w.H.m w.w 66w 9mH 9H w.w . H66H. .66>w6H 665660 w.wH w. H. H..w 9ww 9H.H H..w w. 9H = c6666 636.60 w.ww w.H H. 9H.H H..wH 9Hw w.w H.H w.w H66H. .6:66.60 w.wm 6.2 w m.m. w.m... H.HH w 9m 9wH ................................................ -- UIOwLF-Hwm JHHHQFHRBBMH 9ww Hww . . . . . . . . . . . . . . . . . . .. 96w 9H 9w 9mm ............................... .. HEHHEHEEV H628 JHHHEBfiEm mwqnofl 00H CH mHHHHmHHH 866a HoQ H.666 uodnfiao 698:6 5669a 18>.» n64 n36? ovum-HEM 666mm 66.6.3666 flmowoanH 6.5 63 67H 1653A 6350 636E -2695 .666666n fwwnzHuconvwllmwnwH-Hfisn now 666666 6363.666 was H5306» 6366666 363660.236 was .6H.66m we 6666666866 QMSHHQQHQQ 6M6u6>< .HH wHnwu... 48 BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION #3. Q5 ow Qm m.» QmN QN Qw Q5. ................................ .. “E385 $3. .318 Héwwsofioo .36 5a . . . . . . . . . . . . . . . . . . .- 9mm QNH Qw QNH. .......... .. Aisfimcmc: smfiopn 88$. .313 8889x580 ma» Ham NwNN 1m H.» fiwN Q3 >6 Q9. .................................. = E395 $3 .388 wwwmcefioo QB HwNN . . . . . . . . . . . . . . . . . . . -. QNN QmN Qw QwN HEEEEEEV wwwmouQ-QHQH?» imwaoan $3. fiwomcouboU N8 QoN . . . . . . . . . . . . .. QmN QmN Qo QmN ibiEcmfiv .............. .- uwmmwnméHoHHkr Emwaona QxQmN Axwwmcofionv QHw QNN Hm we w.» HNN QNN H6 QwN .......... .- cmwfivHn 88$ iwwwwEHAEoEB .H.www:o$o0 N.Hw H.NN mNm N.H. H; Q3 N.H.N H4. HéN .......... .- c8005 gmN .H.owww§H-w_o.HB .H.www:o3o0 mmwm. wwHwH N3 Wm 3. QwN QNN Q3 QcN . 83308.80 N. N.H. 3. :5 NHH. b. pd ................................................ .. Hwflhwv 823w nofloo H. H. N Hm N6 Q3 Q3. YH Qw ............................................. 1 H8823 $83 E580 HQH w. w 8.2 Him QmN QHN HxN Qm .............. .. HEM Baht d8 w~sm 53.3. Em aofico c 8 8 YH E HI. 8.3 w. QH pa: c380 Q3. QHH NH Q3 Nd QNE‘ .2... HQ. Q3 @952 c0580 8.3 H.N . . . . . . . . . . . . . . . . . . .. Q3. Q3 QN Qw .......................................... .. Hfisfiwmfiv 25 ccfioo HMN H.N NN >5 fiw w? N.H...“ QN Qw .......... .. P25 c380 m 3. Qw w. Nd 5 QHH. H.Hm QM H.HH ....................................... .. 26$ 5T5 mzon cofioo N.NH .3 ...... .. Qw W3 QHN >3 H.H w.» ...... ., .883 E ENE 6.5m mEamgnwHH uofiw $2 .823». EH00 Q3 H.H S H.N Q2. Q3 ms b. QN ......................................... .. Ewan 88E 68mm F80 QNm HQ 3 Qw HE. QHm QHN QN m.» v3.8 6min. n80 QHN w. N m.» ms Q3 Q3 p. N.H" @822 F80 Q2. H43 w fiN m; Q3 N.HH in QNN 18E @8888 F80 Q3 m6 ._.N N.H Q3 H42. N.H m..." H.3 H35 F80 Q2. Qmm . . . . . . . . . . . . .. Q3. QH. QH Q3. ................................ .. AEEEEEEV 13S 553w F80 Q2. 8.3 m QN HQ. 8.8. w.” QH N.H“. 13E .882»... F80 Q3 Q3 . . . . . . . . . . . . . . . . . . .- Q3 Q» md QmN .................................. .. AEEEEEEV H63 553m F80 Hi. QNN 3 H...“ H.w is 5 ~..N QwN H88“ nmzzw F80 N8 N.NH . . . . . . . . . . . . . . . . . . .- Q3 QN Q» o.wH .............................. .. Ainfimcmfiv E8848 8.8m F80 E8 Q3 HH Q» N4. mam QH. H; m.wH .................................................. .. QNwE-mo 5.8m F80 H33 H.3 H 2 Qw QB. >4. 3a Q3 88.8w F80 3N m.N ...... .. ~..N N.NH. 5.» Q3 w.H ma. .................. .. £83 8:28 69:6 30¢ .8388 =80 QHH N.H ...... .. N.H Q3 N.NH Qm m. N.H :33 Q83...“ F80 N8 m.» 3 N.H N.NH .023 w. QH. Qm .... .. 86G F80 m2. Ha . . . . . . . . . . . . . . . . . . .. Q5 QM Qm Qw .................................... .. Hissmcmfiv H.888 H63 F80 Qww i. wmN QH v.3 Q2. Qw 3. Qm E2: H63 :80 N8 N.H. . . . . . . . . . . . . . . . . . . .. QNw Q3 md w.» .............. .. HEHEEEEV Ems: EEB n33 dose F80 w? Nd 3m QH Qm 8.8 Q3 N.m w» . @888... HEB n28 =88 Hwm 8.8 N.H. . . . . . . . . . . . . . . . . . . .. 04$ Qw QN Qw Aisfimcmfi 8w .88 F80 3055A c3 E mfliofi acme 8a wows aownpxo >328 c8888 23>...“ "i4 nmuwg mwum-com uonfl #09583 cmwuonm o3» m3 dz 6E2 2:50 HwEQHH Avswonm Aamwwmfi A.H.w5n$=oOv||.m»=acmE:a now .685 ofiaonvoum HE.» cmoaoam wfinmawommw ouafimwonaga HE.» fiwwwu we cotmmomfioo QMBGUOMQQ omnuw>< .HH wEQH. 49 THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS Qvv QHH v Q3 Qv Qvv v.mH v.H QmH .................................................. -- @823 v88? 882mm ddflnn QH H QH. v.88 H88 8.3 v. v.8 8.88:8 328.88% Q88 8.8 . . . . . . . . . . . . . . . . . . -. 8.88 Q8 Qw QHH ........................................ -. AS08380: 8:8 888.88% 8.88 v.8 88 v.H v.3 8.88 Q8 H8 v.3 .............................................. .- 8.8.8 .8 v888 88888883 v.3 v.v . . . . . . . . . . . . . . . . . . .. 8.88 Q8 8.8 Q8H .............................. .. AEEEEEV 0on8 v88: wfi88p8h Havv H.w 8H Q8 QoH Q88 8v vd 86H ............................... ; 800:8 v88: .8 8v88s 88E8888H H48 H8 8 v.8 88H 8.88 H.vH 8H 8.8 ...................... .. H888£8£ 8888.: 888888 88888888 H88 Q8 . . . . . . . . . . . . . . . . . . -- Q88 QoH QH QHH ............................... .. Afiscacmfiv 8:8 8888M 8.88 QHH HH Q8 H6 Q88 Q8 QN Q3 8.8%. .8860 QH8 H.8H H v.H Q8 Q88 Q8 v.H QmH v888 i820 .8805. 8.0m QNH H v.2 8v Q88 QNH QH Q8H .................................................. .. 880v 58.8w 8388mm 8.88 QM m Q8 Q8 Q3 Q3 QH 8.8 .............................................. .- $02.88 88.888 808.385 .................................. .. A3138 888v 888:8 zfipnzwm Q88 Qv 8 8H v.8 Qwv 8.8 Q8 Q3 .............................................. .. 8.888 .8 388888 08.80 8.2. 8.8 H 8.8 Q8 Q88 8.8 8d Q8 8v88A 08.80 v.88 H8 H 88H v.8 Q88 H88 QH v.8 ............................................ -. E0 Av8€v0 88888 858D 8.88 8v H HdH v.8 Q88 Q8N Qm v.3 .................................. .. 8E8.» Av8ivv .8888 858D 8.88 Nd H H.H 8.8 Qmv 8. 8. v.3 UGHHOMM .8.~80H0.880 88w H8 N 8.3 Q8 8.8m 8.88 HxH 8.2 v8€v 85> 880800 . . . . . . . . ,- 8 Q8 Q8 Q3 Q88 v. Q8 v2.8 .8808 880800 H.wH. v.2 u QmH Qm Ham QHH Qw min .................................................. .. v8€v .88>.88H 880300 8&8 Q8 8 Q8 Q8 Q88 Q88 QN H.8H .3: 880.800 v.Hv Q8H 8 v.8 v.v Q88 wdH QH vHm .................................. .. v8Ev .8v00 v0.8 v888 880300 8.88 8.88 ...... .- 8.8 QHH 8.88 H8 QH 8.88 $8888 8880300 Q83 QN» vNH 3. Qv QmH Nd H88 8.88 8H8FH80H v888=088o0 Q3 Q . . . . . . . . . . . . . . . . . . -- 8.88 Q88 Q Q8 .................................. .. AEsSmsHEV 8:0: v88888800 QvH 8. 88H v.8 8.8 8.88 8.5. Q H8 8:0: v888nofio0 0.8m 8 88 Qm 8.8 v.88 8.88 Q Qm .......................................... .. 888H8nHH .820: v888:08800 Hdv v.88 . . . . . . . . . . . . . . . . . . -- Qvm QwH Qm 8.88 ...... z Afisfimcibv 0H88080 8888.83 6888 888008800 88v 8.88 3 Him Qv 8.8m 86H Qw QHH. .......... : vsuonm 6880.5 “$88.88 .v888 v8888£00 Q88 H88 . . . , . . . . . . . . . . . . . . .. Q88 Q88 Q8 Q88 .......... .. AS88882: c8888 8888 6888 v888Ez800 8H8 v.5 Q8 Qv 8.8m Q3 Q8 Qvm .................. .. 350.08 588.3 8088 888.8 v888=08800 Q88 8.3 . . . . . . . . . . -- 8.8m Q3 Q8 H.HH. ...... -. AS58828: 0880.8 8.83.3 6888 v888co880 18v v.3 .... -- Qmu 8.8m QvH 8.8m .................................... ,. AS08815 00:0 2888:0300 88v 0.8m 8 Qv 8.8m wdH 8v 8.88 ...................................... z 88508888 8x88 v888c08800 .- 8.8.81 v.88 . . . . . . . . . . . . .- Qmm RNIH Q8 8.88. .......... .. 8:88.088 888888 8888 .888 v888=8880 184v, 8.88 H85 8.8 Q88 88H 3 8.88 .................................. .. 5.888 88$ JNQE 88.888.08.888 8.88 8.5 ...... .. .... .. QNN Q8H Q8 8.88 .......... .. AS00050: 5880.3 8888 £608 888.8880 86v Qvm 88H Q8 Q8 Qmm mdH 3. 8.3 ................................ .. 088080 808v JGQHHH v888c0300 8.88 8.5 . . , . . . . . . . . . . . . . . . .. Qmm Q8H Q8 8.88 .......... .. 38888880 0888.8 8088 .8013 v88888800 8vE8n ooH cm 85.8.3 ammo .80 080.0 80.8.5880 88.8888 58880.5 |.H8>.w A84 .8883 8888-088 nofiw 808.583 flmouoam 838 01m .02 énfiz UUBMU 828E vosvoam 3883C TUQHfiHMHGOOvI-MQGQGMEHHH MOM >MHO§0 Q>~505UOHQ U5.“ CmOMOHQ 818388803 8885888230 UCN 5100M HO floflfimoflgoo ONNHHHUOHUQ QMGHQ>< .HH Qaflfia 50 BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION dad a.w a Yw a.a W3. a.ad d.d d.v ............................ .- ada.d Qwézoo a.aw vd w a.v a.v avd. a.aw d.d Ym iiw In ............ : wdad dwafiwdawm wva Yd w a.a a.a dam d.ad wd w.d . . . . . . . . . . . . . . . . . . . . . . . . . . £2 dwcwdjw a.vw v.d w a.v a.w wan wad a.d a.a £2 .55. v.2 a.w w w.v a.a Q5 d.ad a.d a.a wdad 25a N5 a.a 2 3 d.a v.8. mad a.d B. £2. 5W2 ma..." vd w a.v a.w awd. d.ad d.d Yv mdad. dia< v.2 a.d v d.v d.a mad. add a.d d.w . . wda.d audwsd m3 w.d a a.v a.a add. add a.d a.d ............................................. 1 wdad vQflHQHw-HQWM a2 a.d w a.v d.a is. ddw v.d a.d £2 Ewizfi. wad w.d dd v.v v.a Q8. ddw v.d ad ....5.Hm~m--m.mw--w.:-...iwm ...... .- ddad “Lsafiwowa waw Yd w a.v d.v wad. wdw w.d w.d ................................. .- ddad dwnEw>oZ flaw w.d w d.v v.a wad. Ydw w.d a.w .- ddad .3850 add d.d w w.v a.a Yww adw d.d d.w .............................................. a. ddad dwaiwdawm Em dd dd w.w a.a Ywd. daa w.d a.d. ddad Jmddwdiw a.a» w.d w a.w a.a d.wdd 3a w.d a.d. ddad .35. ................. .- Aaovddé wdddwfid Sdssoo mTu-ddm dmwdw d.w» Yw d d.dd d.w adv add d.d a.a ........................................ l. Esdwdoc Ssdwnwom .356 d3 a.d d d.a a.w dad. wad d.d d.w ..2:. doond: £926 v.dw w.d d d.v d.w ddd. vaa w. a.a ............................... .- Eswdsdddsa Esdwwdcnwm £3.10 add dd d a.a add dad. dwaw a.d Yd. .............................. a. >256» zofiwddwd. .555 .320 3a a.w d v.3 d.a Y3 add w.d a.v ................................ .. , ddwwcsdwn madman awfiw wad ad d Ya a.w aww a.va d.d a.d. 85.6 £22m Ydw a.d a a.vd v6 v.3 v.ad w.d a.d. .............................. :1 in: .8 amid; wizzzw .350 add dd d w.w a.w a.v.» aaw a.d dad. ................................ .. mdddadflflfl< aomoqodacdd $3.6 aaa wa d d.a d.w d.wa adw w.d a.a Adams; d.w?» flaw d.d.w d.dd d w.d v.a w.aa v.d ad add dsodd ewazw daaa a.v d v.3 a.v Ywd. a.dd a.d Yad ............................... .. vwmxnwd adonwmsos aufibww dad add d Ywd a.v dda a.w d.w a.v.” mmadw adoddfish v.3. Yvd d add a.a wad add a.w wad .............................. -.. ...... -- $623 panda vduodub dsom 3a a.d d a.w a.w wdw Ydd w.d 3. 52d daicm adw add . . . . . . . . . . . , . . . . -i aaa a.d. w.d 3: ..................................... ,. AEBEEEG wad. a2. award adw d.dd a.av a.d a.d a.d.d ................................. -- AEsEEdEV 252w 30d ndsodm w.vad wdd 3. a.v w.dd Ywd Yaw Ywd dawfi Haw 52rd a.ddd wad .... .. add a.v add add ........................... .. Afisfidcdfiv a3» VEE a.d a.d .... -. i} a.a» a.a» a.d. a.w .... .. dfisflida: fiuaofirda £53 ward a.v a.d d.a d.w w.d» “.3. d.d d.a .............................................. .. dusaoadka $33 52m d.va add. add Yv a.d. w. a.v v.3 33am fird d.da a.vw . . . . . . . . . . . . . . . | . .. a.d a.d a.w aaa ............................................. .. dfisfidndfia 18E fird vda add“ d. v.dd a.v d.a a.d d.a $5 dwwE fird mmvflddOfi aad ad mdndhwdfi. dame nan awww 395mm awpwnw ndododdd 28>: Hi4 pads? wand-now dondd doaudxo cdwdodm mid m3 dZ 639d 25.5 nwndmd éndxzm ddmoudfi AivddddmuddOUvll-muflddnmdddddh mom audono ofiduddwoudd Uddd 530.3 odfidaowdw oanidxouddma and" Juood mo codddmoafioo umwdaoudom owado>< .dd 03am. 51 THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS H m.H v.v H6H 666 m.mH 6.6 ....................................... .. 6:666 666B 66:: 65x65 6.66 m.m m 66 QHH v.66 66m QH 6.6 ...................................... ., 666w: o: .6625»... 6866M Q66 Qm H 6.mH Q6 6.66 66H v.m H.v A663; v.62? Emwwfl 66H v. H 6.6 m.v6 66H m6 m. 6.m . 662$ HHwwwHH .....vv H6 6 m.H. .3. mdv 66 Hm m6 EH9? 6mm: 6266mm H.66 v.m . . . . . . . . . . .. Q66 6.6m Qm Qv Hfisimcufi 6836 a. 66:36 .663: 6.39m Q66 66 6 m.H. v.2 H.m6 6.HH m.H 66 66$: i663» m.vH. Q6 6H 6v 66H 6.6.6 m.vH Qm Hnv .................................... .. 66w»: ca? £6266 636mm Hxvv Q6 . . . . . . . . . . . . , . . . . . .- Q¢v Q6 6.m 06H ....................................... .. AEEHHEMEV 662? HHawwwH v.66 66 w 6.H w.HH 66v Hnm H.m H..HH .................... .., ....................... .. 6956 .8 n83 Hfiwwfl 6.5 Qv H Qw 66 66H. Hdm v.H HwHH 62H EH3 52H ~66 m6 H 66 H.v v.66 m6m Qm H6 ........................................... -. ovHxwH>H BwZ 6mg Sam 666 6.6 H m6 m6 v.5 Qmm QH 66 .................. -- do comcsov. HEB 66.3w dmpflrHHH Sam m6m 6.m H Hav Qv 66H. 6.66 Qm Q6 ................................... .. 39H 6H 626666 3x69 58H 6.66 Qm m H6 m6 m.vH. vdm H.m QH. .......................................... .. 6266.5 68.89 630w c366 $wl H6 H Qv 66 6.66 6.66 . v..H. m6. ............................ ..».H.H....5W66o 5.2862. 695.2 $6M 6. v.m mH H6 Hxv QvH. H66 m.H 16.6 .................................... 6668B H536: @6365 63H m.vm H.m H v.6 6.v vMm 66 1m m.H. ............................. =muxwH :3 HwiwflH 3666.5 Sam 6.6.... Q6 H m.H; m6 .m.H.H. 46m m.H d..6\ .......... .. mnfisou cowssoH. 6:2 “H626 66:56 $6M 6.66 Qm H 6.6 m6 QvH. 6.6m H.» H.6 2.68.5 6806620 63m 66H. H.H. H m6 o6 m.m6 6.6m .6.m H6 ............................................ .- 25.255 6:256 Sam 6.66 H.m H m6 6v H6H~ 6.66 m.m mm .................. .. HMEHQH. fisowv 3E6» :¢9H3H....£w 6.66 Qm H v6 m6 666 H6m Him m6 .............................................. .. Enswnom HzHsopwbHnwH 6.6m H.m H H6 6.6 v.66 Q5 6.m m.H. .................................... .. 2:93 .356». 6626M 68m 6.66 H.m 6 6.v v.v 66H. 666 m.H m.H. .............................. .- 3:63 $65.3. nopmwfiww sHwwH H66 6.6 H v.HH 6.v 66H. 6.6m v.H H.v ................................... .. HooHwwHH 862V 666630 anwm 6.66 H.m m m6 H6 v.5 6.6m Qm m.H. ............................. .. 66.6.6.5 £6.58. 6660655 63m v6.6 H6 H 3. m6 6.5 v.3 mm m6 .......................................... .- wHHHNHHH roe 663E 56m . . . . . . . . . . . . . . -. 66 H6 6mm m.m.m m. v.mH 66:66.6 .5650 .... .. m m6 v.6 6.66 66H. H. Qv Boo... EH6 6.5. v.2 m 6.3 Qv v66 66H v.m v6m .......................................... ; AHEHHB Eco 6232 .820 HamH. H..HH m m.mH m6 HxmH. 6.Hm v.H 66H ...................................... -. ma: .8 .6663 Hswwnv H626 6.2. v.HH H m.v Qv m.H.6 66H m.H QHH ..................................... .. H63 HEw H.866 .53 .880 6.66 6.6 m 6.6 v.v 66H. 66m v.H 16 62$ 6662M 83w 6H6 H..H 6 66 m6 Q3. Qom QH. 66H ................................................. -- 63.3 .625 wHHHHnHHw v.66 66 H H6 6.v 66H. 66m 6.H v6 .30 .6368 .3956 6H6 m6 H 66H Q6 6.3 6.3 6H .66 EH36 £6.30 6.66 Qm H 66 m6 66w vdm H.H v.6 ............................. .- mncaofifiwm mHHHOQQHOQW dflfiw 6.6m 6.H H Qv m.v H66 QHm QH Qm ........................................ .. @666: m. cifismqH .6630 6mm QH H 66 H6 6.3. N66 m.H v.6 wmcfi .6696 mHzHHHoHH ocH 5 mHHHHoHfi ucou HoHH wows #09563 3.65 fiwuonn 132a A64 nous?» wwum-flmw .325 H3563 HHHwpounH o3» o3 dZ 6.562 2:50 Hmfifl 6:60am .3539 AéwflflmwHHOnvvllfiuHwdimsHH-H How $62.6 vfiuoswoun UHHG Hiowoua oHnHamwmHH. oowEHxouHHHHu was 660mm we HHoHHEoHHHHHoo muawawuuma oumnofiw .HH v3.68 52 BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION 90w 9Hw ww w.ww w.w w.w w.w 90H Hww .................. .- 0:00am 000w .2930 000w 000 0002 Hfi. 9ww ww w.ww w.w H.w w.w w.w w.ww ...................... .. 09000.5 900w H008 000w H50 000E w.ww 0.w w w.0H H.wH w.ww w.wH H.H w.w H0016 Q02 w000wH>H Hww w.wH H w.w 9w w.ww w.w w.H H.wH 3:025 wHwS w.ww H.w w w.HH 9w. H.ww w.0w w.H w.w ...................................... .. mwwww 300w .8 00.2w 0000A w.ww w.w H w.w 0w. 9:. w.w w. H.w R00: 000w 0260A H.w» w.ww w w.w w.w w.ww w.w. w.w H.ww ...................................... ,. c8003 909... .1008 000.65 w.ww w.ww . . . . . . . . . . . . . . . . . . .. 09w 0.0 0.0 0.ww .............. -- £20320 =_._000..0 w.ww N188 000005 w.ww 0.5 w w.w w.w w.ww w.w w.0H w.ww ...................................... ,. 5000.5 w.ww .1008 000005 w.ww 9ww . . . . , . . . . . . . , . . . . . .. w.ww 0.w 0.w 9ww .............. .. Afisficniw 0300.5 wwww 100E H000m=§ 9E. w.ww ww w.w H. 90w w.w w.w 9ww .............. .. 00000.5 E0 .5898 Qww 400E @0025 .... .. w 9w 9ww H.ww w.HH w. H.w 090E .0:Ewsw00.H w w.w w.w 9Hw Haw w.H 0w. ..................................... .. $003 00.5w. w=Ew=w00A w.ww H.w w 9w 9w w.ww w.ww 0.w w.wH H.016 0:03 520M 9ww w.» w w.H w.w 9:. w.w w.w w.0H 53w wifigm w.ww H.w w w.w w.w 9ww w.0w 9w w.w .................................................. .. H.000 0: .005? bwwvH w.ww w.w w w.w w.wH w.ww w.ww w.H 0... 290w wuwm w.ww 9w . . . . . . . . . . . . . . . . . . ,. w.ww 90w 9w 9N. ............ .. AQBEEEa @805 w 00:05 .0H.00.H wmwm w.ww w.H w w.w. w.w w.ww w.ww w.H 9w wiwww H200: Hmwm 9E. 9w ..... . . . . . . . . . . .- w.ww 9w w.w 9w .................................. .. AEEQMESHV E50 H000: bwwvH H.w» H.w ww w.w w.wH w.ww 9w w.w w.0H ........................................... 30:0 w00w 50M 9:. 0.0 wH w.w 90H w.ww w.0H w.w H.0H 0000; 0mwm w.ww w.w 5 0.w w.wH 0.ww 9wH w.w w.0H .......................................... .. 52w HEB .H00H.H.0w 50M w.ww w.w H w.w w.w w.ww 9 w.H w.w 5.0m 50M w.ww w.w w 9H w.HH w? w.w 9w w.HH H.005 wwwwm w.ww w.w wwH 9w 90H 9E. w.w 9w w.HH .................................................. .. 30:0 .8 013w 53H w.ww 9w , . . . . . , . . . . . . . . . . . .. 0.2. 9w 9w 0.0H .............................................. .. HEsSwEEw n20 wcwm w.ww 0.w H 9w w.w 9ww w.ww H.w H.w .................................... .. 32H. dwwmm mmwww 000.52. w.HH w.H H w.w 9ww w.wH 90H 9H 9w ...................................... .. 002w 0wwmw 022w c0952. w.ww H.w w w.w. w.w w.ww w.wH w. 9w ...................................... .. v05. .0000» wwwww c0253. w.ww w.w H 90 w.w w.Hw w.ww w.H 9w. .......................... .. 00.800 .m d. £0: 35w 0.00.52. 9ww 9w w H.0H w.» w.ww H.ww 9H H.w .22 58w 50.509 w.w w.H w. w.H w.ww H.w w.w w.H 9w ................................................ .. n000w .0095 000.22. w.ww w.wH H 9w H.w w.ww 9w w.H 0.Hw .................................................. ,. H008 000w 0000092. . . , . . . . . . . .. w w.w w.0H w.ww H.w w.w w.ww Aflfiéfimn... 22.0.00 =95 x03. w.ww 9wH H w.H w.w w.ww. w.H w.H w.wH 0:00 Ewofi. 00H w.ww w.w H w.w 9w w.ww w.0w H.w w.w ...................................... .. A323 B?» .0_w0=0w0=0H.H w.wH 0.w H w.w 9ww 0.5 w.HH w. w.w ...................................... .. 202.00 2E» .0_0H0=m>0a0m w.ww w.w . . . . . . . . . . . . . . . . . . 1 0.0w 0s 9w 0.0H ......................................... .- 9.2.0520 w00w wfififiH w.ww w.w. www w.w 9w w.ww 9w w.w. H.HH 000w wfiiofl 3:509 coH HS Shawna uHHou non down uowafiww mmuwcw Eowoam |H0>d £99 M9935 omnw-cwm .805 wowuwxo cmowonm 03w 03 .02 00:2 0350 wfifim Awzwofim Awwwwmfi Aéoncmpnonvvlhwwcaflmisa now hmnocw 03003008 was 530.3 ofinmwmommw owxwfixoafind wan iwmww mo nomfimomfioo owwwcvonoa 0Mdnw>< .3 wEwH. 53 wfi. m. . . . . . . . . . . . , . . . . . . .. Q3 H. H. I .2..HmwHMHHHWHEHHGEHEV 09.09020 Mmwwmsoz .. H ééééé , w a. mm H. . ........... HHMMHHHH . . .... .. . . . . ad o. . s H? H. N HSH Hww H9. mHm mH H3 .20: 2H2 W. 0.2. Wm N Wm 2H H30 Ha .0.” wHH mmfifimzom 00E U H.mH H. H 9m Ea QHN m0 m. QN 002E 2HH>H T mam 9H. H.H 9w cHH H16 Ham Qw ad ................... .. H005 0:2 S mdu 9H . . . . . . . . . . z 9mm 9mm 0H 9m ............. .- HEHHEHHHHEV wfiwpw HEQH 0:5 G EH 3 H ,,,, .. mm». HM. r3 w: 3 E HHHHM ...................................... .. mssw. HQNH NHHHH N Hnwm Qw o mm 0.0m 0H m0 ............. H m Hawm Wm m 9w Nd mam mdH QH HwH. .................... ..w.H.H.H.H.wHH.m....w.E0Hw H25 9:03 @000: 0:2 E Haw» Hé . . . . . . . . . . . . . . . , . . .. 9mm ow md o.w HEHHEHHHHSV 00:0 000s SHE E 9E. 9H. 0mm Wm 06H H.H.w m6 md HdH ................................ .. . £50: 0:2 F Hdm m.H m mdH Him 06v wtmw 9H md .............. .. mH:..2H..H...m 005$ 0E5 s w? Ham HH 1w i: 3H. 0.2 Z ma .6008 2H2 A\ aw i. H NH M» Q2. H. Ha 2 , Sow 2H2 X w H.w fimw a H H. oH Q3. QM qw 1H4 ............................................. .. 50:0 H0 50H 0HHH>H H Hm m W AAAA . a a a... m. m. H“. Q==...._HH..HMH.....HHHH F mHo m6 . . . . . . . . . . . . . . . . . . .- 08m 06H ed o.HH ............................................ .. AEHHEHHHHHHHV wowmwwHHHi 0 HA; H3 H m.” HZ 30 H3 w.“ mHH 08w H052 N Hnmm ad H Ham. Wm m.wH_ m. H. NNH .......................... .. H003 “Hausa... WEE 0 Wm“ “.2 . . . . . . . . . . . . . . . , . . .- 35 0 H. 3a ............................. ..H,ww.mHwHfiH. @0660: .820 .052 . . . , . . . . . . z H ma . . m. . . . H H20 m? oH w.» Hm» w...” wwwwwmvwmwoHhmHmwvHvmwHHHmH M“ Hamm ma... on Hm: 9H. mzmw mém m.H m6 ................ z mmsnm wasqmwi I odH. mHm H c6 w.HH wém 9H. wd 9mm ............................ .. 10a on mason. 00:50.35 E Qmw 9m H. mé m6 Qww o.H_m Nd wfiH .......................................... .. H009 5H3 9E2 00.3032 T N3 EN H 3. H; w? E 9H 0.3 H6: .5000 Q62 U mdw HnoH H Nd Haw Hnmw mdm w.H HiwH ................................................. -. $03.03 .500 w=0H>H D HM mm H m“ N8 m0. w»: mm. 0mm Hmwww Hiwwswvv N .......... ,- H .. M... i 6 H. w. H? 00...? 2% A m w mm m m m H. w. .............. .. 0H w :0 0 3. m. . m. mg 9m 9H m w mwwom mwHWLWoHB-H H5300 @000 v H H>H N wdoH Hzww m Him m6 9m 9m QHH N46 ............................ -. 58.0.5 00$ 30.8w 0x02 ..O1_ 9mm mdw .wm QmH N6 H_.H Nd wzHH mHw ................................... -- HHHQHPHHH $3 finwaow @005 H H.Hw 0.3. . . . . . . . . . . . . . . . . . . .. 0d 9w o6 0.0m ............................................. .. AEHHEHHHHEV H005 000E S H.Hw in Ha w.H_H H6 Wm Wm 3: 06w H005 H002 O H..HH. N3. H. Himw Wm Wm ad m6 mdm .................. .. mmHHHHvHowHu HSTH/Hwwfi 0000. H25 000E W mdw wdw m 04mm m...“ m. m.H mdH wdm ...................... -- Ewponn 00$ H005 0:0: E8 p.002 n00 mHmwHwHoQ ooH 0 HH 0w own o N E wmmw.%%u fiwponfiH |H..H0>M Hi4 Hwfiw? wHwHwwHwm 008m Houppxo HHHRHHZHH m 03H 0E .0 Z 05:2 02.50 HwHHHH éHHwoHm Awmmwmnn AfiwHHHHmwiOov|fiuidimHwHflh MOM 3.8.8 oZHQHHQPHQ Haw HHHHBQHHH oHnmumwmHw mawnnmouanw Ham fiwwom mo nomflmomiou 00800980 omaao>< .HH wHHHuH 54 BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION 0E .05.; H m5 M». v.5 N5 S. 0.3 .................. .. HE... 50E .5 0 .0020 .52.... .00 . . . . . . . . . . . . . . 0.0m 9E 0.0 90 ...................................... 0000059.»... 5.25:0 .55 m...“ m...“ m 0.2 w.v $4.4. m5 “.0 w... mwimflaflo 000 9E. 90H 0m w.” m.w v.9. NHH H4. wdH ............................................... : =0 .300 005B 035v? 5v 90H m 9w Fm v.00 9HH 9m 9NH ..................................... .. 00.8.0 0155mm .3E.$ .300 3.. N0 m w.” v.w 0.2. 9HH m... 9HH .................... .. 505.55 .80 15H vmifimm 3E8 .300 5v w 0H w. 9m w... 9% H.HH H... 0.2 .................... .. .555 .60 .8: £|H§H 3E3 .500 Nmv 90H m. 0.... 0.0 0.2. NE 9m 92 ...................... .. H0525 .60 .2: mmlfiHm 0.53 .300 90v 90H N w..." w... 90m WHH 9w 90H ...................... -- H0425 .60 59H $1.0m 3E8 .300 5.. f: H. 9m o0 9mm H.HH m.» QmH .......................... : H0595 awn 65H mmlwm 035B .300 9E. 06H m 9m H.w 0...... w.HH w... vdH ................................................. 1 H. .05 005B .300 NHE. w... w w...“ H.m w...” QHH HQ 0.5 m .0: 00153 .300 5v Hd m m.» m.w i... 0.2 9H. m.HH m 0i 3H5...’ £0.00 i... v.» H 0.... H.w 2.. udH 9H. H.HH H .05 3E3 .300 m... 9m 0H 9H. v.w 3... 93 9H. 9HH .................... .. Ami... 0:30 .300 E5 00:00-0» .300 9E. 9w a: v..." w.w 0.2 0.2 9H. HiHH ................................................ .. 335mm =0 .300 03H 2... w... u Ha. w.v Hdm H.H.H m0 9E .............................................. -. 300 03 005m 0H050m 9mv w.HH H v...“ Hflw 9mm 9w 9m H.mH ........................ -. E0555 ~05 fivmllfifimm .300 00M 5.. w... H. H4. Hww 9mm H.HH 9H. HimH ........................ -- H0555 non Emw|£fimm .300 00M 5.. S. 0H v.” Hww 0.0m mdH H...“ NHH ......................... .. H0855 .80 fimmlflfiHm .300 03H H.Hv 0mm mm v... Pm 9mm 0.5 Hd 9HH ........................ .. 505.005 .80 £Hm|BHdm .300 03H vdv 0w mu 9m m.w 9MB v.5 9H. HfiHH ........................ .. H0595 .80 Bmmlfifivw .300 03H 90o Haw w m.» NM m... 90H 9H. 90H ........................ .. H0525 .500 £v~|£fim~ £000 03H 90v w 0 w. 3. v.v YE NmH v... 9NH .......................... .. 0555 .30 Bmwlfimm .300 03H 9E. 9m 0H m... w v $3 m5 w... HtHH .- . . . . . . . . .- . .......... : 00.0.5 H. dZ .300 03H adv 90 0H w... Ww w... v.2 9m 9HH .............................. .. 005w m .02 .300 03H 0.2. v.w HH w...“ Wm 0.3 0...: H.m NHH ................................... .. 000mm u .02 .0000 HEM vdv m... 0H 9m 9w w... H.mH 0.... NNH ..................................... .. 000.5 H .02 .300 03H w... i. a. 2 m... m... 2. S. i. ................................................. .. ............=. .8. .0... 0.0.. 13 . . . . . . . . . . . . .- . 93 9H 0.0 90H ............................................. -. H5s5Em5v .3005 0.00 9Hv 90 2.. w... H m 9mm HiHH 9H. 90H ...................................... .. 60.00500 H5005 0H5? .000 0.2. mfiH H 9H v.2. 9w m6 0.3 > 500G ~00 9mm Hd . . . . . . . . . . . . . . . z 9mm 90H 9H. 9HH .................................. .. H5:5EH5v 30A? £0050 300 m...“ c m. m... H.v 9Hm ~50 9m 9w 5E... £0203 x00 a. o 2 w... Him H.vH. 5N 9m m6 03H 62,03 x00 gm Him 3 WHH v6 93. 0.3 HwH v.0 @230 02.002 ma” N6 m Nd w... 0...... 0.3 9H w... @920 5.03.02 5.0 m. m. 9v 9w 9% 2w 9H H4. .............................................. .. 5005M Asflcmam. wmoH>H wdH N. H. 9m 3E Hdw H.mH 9 9N ................................................ .. M003 55.50am. mw0H>H 9H0 m. mm m... 5N Hdw . . . . . . . . . . .- m..." 950000 53.00505 00.500 00H 5 05.65.. 05.0 .50 00w.» 00.0.5.3 .3300 55000.5 13>.» 50¢ n30?» 00.6-50 505G 300M050 500.55% 03p 0H5 .02.. |QHIZ 3.5.50 35m 03.05% .3350 H.00ncw.5000||.3505M5:.H now .585 02.2.00... H50 55000.3 05516050 30533.59» H50 .5003 mo 5050300500 omwpcgpun 0m50>< .HH 050m. 55 THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS 3x63 3.3mm WQQW 03303331333 fiNQE 33233.33 838mm .. 36mm 3.3330 3333333033333 3.30 _............_.=.... 8o .. .83 8o 3.333 v.3 3 Q3 Q3 Q3 Q33 3.3 3.33 ........................... .. c3283 :3 38883 c8. 3.38.8.1... v.33 Q33 3 v.3 Q3 Q33 Q3 Qv3 Qv3 ...................... .. 33333.3 =3 333.332 .83 833.385. v.333 v.33 3 3.3 v.3 3.33 3.33 3.33 Q3 .............................. .. .8333 E .8382 =3 333.83» Q33 Q33 3 v.3 3.3 v.33 Q3 3.3.3 3.3.3 .......................... .. .383 =3 3.8.3333 =8. 333.83.. Q33 Q33 3 3.3 v.3 Q33 Q33 Q33 Q3 ................................ = 83 E 339.83 E8. 333.83.. 3.3.33 3.3 3 3.3 Q3 v.3 Q3 Q33 3.3 ..................... ..... 1 33 E 383332 :3 333.833 3.333 Q3 v3 Q3 v.3 3.33 Qv3 Q3 3.33 .............................. .. 3838 353.32: .2833... 83283.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Q3 Q3 Q3 Q33 AE=E3EEV 33E 33332 .833 33.833 Q3 Q3 33 3.33 3.3 v.33 3.33 Q3 3.3 ..................................... 33E .3338 .83 32:83 3.33 3.v 3.3 Q3 3.3 Q33. 3.33 Q3 Q3 .............................................. .. 333E >63 .3333 33583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Q3. 3.3.3 Q3 Q3 38353535 .83 3335.83 3.v3 Q3 3 3.3 v.33 3.3 Q3 v. 3.v ......................................... < 3:33.33: 23B .238 $3 . . . . . . . . . . .. .3 3.3 Qw 3.3. 3.33 3.3 v.33 3.3.33; 3.333 65> 33m Q3 Q3 -.i& . . . . . . . . . . .. Q33 Q3 3.3 3.3.3 .................................... .. 3.3583535 33.333.33.30 .3393 . . . . . . . . . . -. 3 3.3 3.33 3.33 3.3 3.3 3.33 3.3... v.3 3 3.v 3.3 Q3. 3.33 3. 3.3 . $3.33 3.33m . . . . . . . . . . .. 3 Q3 3.3 Q3v 3.3.3 3.3 3.v .... -- l.-- 3 3.3. 3.v 3.33 Q3 Q3 3.3 Q3 Q3 .... .1 . . . . . . . . . . .. Q33. Q3 Q3 Q33 ............. .... .................... .. AEEEEEV .223 3E3 3338.3 3.33 3.v 3 3.33 3.3 3.33 3.33 3.3 v.33 333.33 3533.3 3333383 3.3 3.3 3 3.3 3.3 v.v3 3.3 Q3 3.3 .............................. .. 33883 83.3 3E3 .383 833.330 v.33 v3.3 3 3.3. Q3 3.33 3.33 3.33 3.33 3.33 3.33 .... .i . . . . . . . . . . -- 3.33 Q3 Q3 Q3 .................. .. AS88338: 333333.36 .8 .3838 8Q 3.33 Q 3 3.v 3.3 v.3 Q33 Q3 Q3 .................................................... = 3.33. 3.3 3 3.3 3.3 Q33 3.v3 Q3. Q33 ....................... .. 33:23 333E 3833.83-33 333E 338E 8o Q33 Q3 .... I . . . . . . . . . . -- Q3 Q3 Q3 Q3 ................. .. AE3EE3EV 38.33.833-333 333E 88E 8o Q33 v.3 33 Q3 v.3 3.3 3.33 Q3 3.3 ......................................... .. 383.38.33-33 333E 88E 8o 3.33 v.33 3 Q3 Q3 3.33 3.3 3.3 3.3.3 ............................................. .. 353833 3E3 .3323. 8o v.33 Q33 v3 Q3 3.3 v.33 3.3 Q3 3.3 .................. ....... .. 3.283 .3823 33.8 .8 333933 8o 3.33 3.3 3 3.3 3.3 Q33 Q3 3.3 3.3.3 ............................................... .. 333333 338 .8 35E 8o Q33 Q . . . . . . . . . . . . . . . . . . . .. Q33 Q3 Q3 Q3 ............................................... .. 383383583 33323 8o 3.33 Q m3 Q3 Q3 v.3 33 3.3 Q3. v3.3 Q3. 3 v.3 3.3 3.33. v.3 v.3 3.3 v.33 Q3 3 3.3. 3.33 3.33 3.3 Q3 Q3 .......................... .. 38E .3833: .533 3833.83 8o Q3 v.3 3 3.3 3.3v 3.33 Q3 3. 3.3 .................. .. 88E .3332 .5 3 532w v3.3.3.8 8o Q3 3.3 3 3.3 3.33 Q3 v.3 Q Q3 .................. .. 338E .3332 d3 v3 .523 383.383 8o Q3 Q3 3 3.3 Qv3 3.3 3.3 Q 3.3. .......... .- 88E .3332 3.23233 3. .5933 .8388 8o Qv3 Q3. 3 Q3 3.3 Qv3. Q3 Q3 v.v .......................... .. 383823 .3833. E333 3.83.8.3 8o Q33 Q3 3 Q3 3.v v.33. v.3 3.3 Q3 .................. .. 3883. .3335 .5 3 .3833 .8388 8o Q33 3.v 3 Q3 3.3 Q33. Q3 Q3. v.33 .......................... .. 333E 3232.33 v3 .3823 .333.3.o3 8o 333333033 o3 c3 33.835 ammo .333 3833 33.3.3336 .3325 33859333 1.33.3.3 3334 33.3.33 mam-cam 333$ 3333.383 333330.333 v33 3333 63,3 -9332 33.33.30 323333 -8385 8.83333 A.vo3333$coOv.|.m333d33i3333.3 HOH hN-AOGU 033033333533 3333a QWQHOHQ 3333:3633. BNEmNOHQQQ UCN .3363 HO 33033303333300 QWSQUOMQQ UNNHQ>< .33 2.3.8.3. 56 BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION 95m 5w H QNH o.» H.H.» Ndm H.N oNH NEH wbHnH 9E w.N N H.HN H.H. Haw... H.H“ H..H NH. HEEH. dpuwm Niuim QNN 9N H H.H: 9m wNN NHN Ne N.N .......................................... 1 H63. ..$.soHHE.w QEHEHH 9mm 9H. N H.H. 9w N.N.» H.H” o.» HNH .................................................. .. HEEH. £55m @255.» Him H..H H N.H 9mm Na 9N w. HtN ................................................ .. nwwpm 6mm...» minnow HNH. oNH H 9m 9H. 93. mdN 9N 93 ...................................................... r EH. dwwB Minnow .92. N.N H 9N 9... QNH. N.HN 93 93 ................. .. 352$ £52m AHEQCSHHHH HSEEEEHH 5:. o.NH H 9m 9m i: i; o.mN o.H.H Eco iwwm 553m a Q H. N.N H.N 9NN 93 9 9H 2:5 58mm 98H Nd NH 9H N.N mdH H..N NHH. wdH HwwE $5.3m H..H.N 9w m N.N 9H. 9E. HxNN H..N 9NH mEwHw $5.8m m.» o.» H N.m H...“ 3:. mdm N.N o.NH wEvHw HHEwwnH NHE 9N w H.H. 9H. 9mm HxmN N.N 9H; ...................................... .. 55.8% awficwfiow Hscwwm m3 93. H 9m 9H. N.NN HB 9w 9S ...................................... .- HHEHPHQ $8. .52: Hsnawm Hmmw 5a H NH. Na H.H._N H..¢H H..H. H..H.H. ...................................... .- 553.3 $2. .33: Hscwwm 9% mam wH w... 9m 9H.N N.N H6 93. cHwHofiH w»? .HH..@E $5.8m Nww o.NH. NH 9m N6 HamN 9H. 9a 95. . Human mo Hscwmm . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . .- QNN 9NH 9w 9.2. AS5555: HHEHPHQ N»? .32: HEEQHH . . . . . . . . . . -- o.mN 92 i. 92. AS5555 55.8.5 9.2. H85 HEERH H? 95 NH 9m H.H. m.H.N mHH m6 mNH. 3H8 no H.555 RHN N.HH w 9m 9m H..HHH 9H.N 9w 9.2 2:6 Hscmwm 92. 93. ...... -- .... .. 9NN 9QH 9w 9E. ................ .. HEHHEEHEV cHwHoHHH $2. 6x3 Hscwwm 1w H.H...“ H 9m 9H. HawN 9N 9w v.3. . ............................... -- aHwHofiH $3. s53 HHHHidwnH N43. Nwm . . . . . . . . . . . . . . . . . . .. QNN o.NH 9w 92. .......... .. HEHHEHEEV cHwHoHHH 9...“... 6x3 558m 9H.w us” N H.H. 9m NNN N.wH 9HH NNH. ..................................... .. HHHQHQE $3 .813 556m HdH. 1H. H 9H. 9... HNH. wdN 9m HflcH 25> mo: .m£5$m c .... .- H NH. 9m H..NH. 9H5 w. 9H. 2H2? mo: 528mm 3% mdH H H.” H.H. Ndw 9m S. H..H.H 35E mo: dHHEwPH 9cm w.H.N HH. 9H. 9H. m.NN NdN H.¢H H3 .............................. .- HximwHHHéHosB .9595 5555mm Ndm 9H.N . . . . . . . . . . . . . .. odN 3N 9w 9% HEHHEHHHHEV wwmMQHHHKQHoHHE HHEHPHQ 55H...“ dHHEwwnH 93. 9H.N NN 9H. H.w 9NN 9NN 9w odm .................... .. wwmwwfiizos? 563.5 Hxém iHHHcwwnH NHH. HNN . . . . . . . . . . . . .- odN o.NN 9w H99." AEHHEEHEV wwwmminéqzrs 5x395 $3 afiimwm NNm m...» NH H.H. 9w 95 9NH Haw HEN ................ .. wwwwwfivmzos? cHwHofiH $3 dHscwwm . . , . . . . . . . .. o.H.H 9N 93. oéN ...................................... .. AS5555 225i udnwwm NHBH 9NN .3 HwN H6 93 9N N.H.HH 9S ......................................... -. wpwwfi .8 22.5mm HHHHHHwonH c H.H. H.H H.w Haw H.NN 9Nm 9N 9m ...................... .. HEPHQEEQQ i=2? .8 21E 555mm Q .... -- oH 9m 9H. w.HN 9mm 9N 9H. .............................. .- H85 5 H382 58. wwwaw>< a cH 9N 9H. 93 95 9 9m .......................... .- 55G E 5.55: 58. $303.. c 9N w» NH. 9H. 93 93 H.H w... .......... .. 35H. 8.3 wmwhzé .5520 .215 Hsnwwm ii .... -- .... .. o.mN 9E H.H 9w ...................................... .. AS5555»: 2:5 Hscwwm £5509 60H HHH @555 viva MQQ cums HHowHfiHw >326 HHHoH-QHQ J3?» H~m< young oopwéwm nwfiw uownuxo Eouonm 9.5 o3 62 éHHHZ @576 HwHHHH éHHHxrHnH -H..HmwmHQ A.©0HHH.Hm@HHOUvI.mH~HH.NHHmEHHH no“ HHMHwHHw 3303.95 HE.» HHHQHQHHH wfimpmwmww wHNEHxoHHHHHw was fiwoww mo coflzmomfiou wwwpcoouom wmwno>4 .HH oHnwH. 57 THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS H23‘ 9H m 9m H..m m.mm 9HH m.m m.HH wmfifimfiw 9mm m6 H 9m m.m Hmm 9mm 9N H..HH wmwHw HHPEE Hfim 9HN H.. mH H..m N6 HNw m.mm m.N . 9m .............................................. .. HQQHHH. dwanm ufinswowm N.mm 66H H 9m N.m 9Hm H..m m.mH 9HH .......................... .. HHwHHo H55 63m .353 wamcmfiww Himm m.NH H m.m 9m 93H 9mH m.N H..mN 3H5 wisfisww N.mH. m.H.H H. 9H. m.m H..mm m6 H..m m6H 5.3.? HHQHM wmHH 9mH. H..: NH m.H“ m.m Hdm N6 9m 9H.H mMEHHGHE 93H mmm H.m H H.H H.6H N.mH. m.H 9N mdH HsoHH 93H H..»; H6H N N.m H..m 66m m6 9m 9oN n95 93H m.mH. N.HH N N.N m.oH 9mm m.N m.H mmH HEHHPHM 63H 9Hm H..m . \ \ . . 1 . . . . . . . K . . . . -. 9NH. 9N m.H 9oH N‘ ............................................. n AEHHEHEEV 3% 93H 9Hm N.NH N m.N mdH m.H.6 m.N m.H m.H.H 3% 93H m.HN m. H. 66H H.H. HdH. 9Hm m.H H..m 3.95m 33H NmH. m6 NN N.mH H..m H_6m mdN H..H. mm ca»... 25mm 3$H . . . . . . . . , . x H. m6H mdH mdm 96 9m 9m 3.3m HHBHQHHHQV mwcHcownow 3i HHMHSmH Htmm m6 . . , . . . . . . ‘ \ . . \ . . . . .. 9mm _ 96 9m _ 9m ................................... .. AEHHEHHHHEV fiwfinwwnum 3$H Nmm m6 H.H H.. HxHH H.H.H. m. 9H m.m @2520 am=i$bm 3$H 9Hm N.m mH N.m m.m mHm H.N H.m m.NH .......................................... .. mwiufi EPHH HHwHHoQ 33H m.mH. m.H. . . , . . . , . . . . . , . . . . . .. 9mm 9w 96 9HH ............................................. .. AEHHEHHHHEV HHmHHoQ 35H H..; 9m mHN N6 H..m m6m m.m HxHH H..NH ., HHwHHoQ 33H o H. , \ \ . . . , . . . . . . . . , . . .. 9mm 9mm m. 9m .............................................. .- AEHHEHHHHEV mHHHHHH 35H o H. 6N m.mH H.m m.mN HdH. m. H.m c mHHHHHH 3HmH 9NN N.N N H.mH 9H. m.mm 9Hm H.H H..m ma: 33H mwmzm m.m H H.. m.m N.Hm H.. m. m.H. 56G 35H .... .- m 6.H.N H.m 9Hm m.mN 9m N6 . .56 33H . . . . . . . , . , .- H. m.H. H.m m.mH. H.m 96H m.H..H HHaHHwH. :39, H215 35H m.mH. mm oH HwH. H..m mdw m.m m.mH m.mH .................................... 1 33H wsHm 69E. Hons: 33H m.mH. mdH m HQ. wdH m.mH. H.6 H.mH 9HH .................................... .. mszafim 53m H215 3H~H N.Hm 6.3 m H.H. mm m.mH. H..m 93 H..mH .............................. .. $55 32.525 89G =36 35H 9N6 9H. . . . . , , < . . . \ \ . . , \ , \ .. 9NHH 9mH 96H 9HH .......................................... .. AEHHEHHHHEV can: 35H 9mm 9m 6Hm H..oH 9m H..HH. H..NH H.mH m.NH n32 .3$H . . . . , . . . . . .- HH H.. H..NH m.mH. 6. m. mm HwHHHE EPHH 33H 6.H.6 m.m . . . . , . . . . , . . . . . \ , . .. 6mm 9oH m.H 9H. .......................................... .- AEHHEHEEV HHMHHPH .3H~H w? H6 H.H m.H. H..HH 9mm mm H.H 9m ................................................................ .. n32. 63m H.mm H..m . . . . . . . . , N \ N , . . . . . .. 9HH. 9H 9H H..m ........................................ m. QHHHHEHQHEV wwcwwHu 62m 3m N6 NH m. mNH m.H.H. H.. H.. mm .......................................... .. 8E 55¢ .8 H53 63m .... .. mH m. m.NH 96> m. m. 9m ................................ -. HBHHHHH vifim H533 EPHH 33H H.mm m6 6H H.H N.NH mi. H.H 9N H.m HHBPSH .3$H NdH. m.m HH 9m m.HH 9H6 N.m m.H m.H. .20.? 958w .3$H H6m m.N mH 9m H.m HmH. 9mm m.H 9m 52H mmaHw mwwafiH 355a ooH E mfiaosm ammo HwHH wwmw mosumxw >326 HHHwHoHHH 1.32m £m< Huang wwHH-iww HwnC 63.9333 HHHoHoHnH o3» o3 dZ AYSHZ wwFHO HwHHHmH AEuPHAH fiwwuHQ THVQHHHHHHHHQOVIIdfiHQHHHEHHH How mwawnw mZHuswoHQ was H3395 wifimmwwmw QHQHHHHXQHHHQQ was fiwwmm Ho ioflmmomiou owmbioopwm owwnw>< .HH QHHHQB 58 BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION w.w2 22.2w . . . . . . . . . . . . . . . . . . . .. 22.2N 22.2222 22.2N 22.w2 ................................... .. 22222222222252 2.2.2. 2232222225 2.222. 2.222 2. w.2. 2.22 w.Nw w.w 2w w.w2 ............................. .. 222222222 2222B .222... 22.2w 222.5 w.ww w.22 N .222 w.w 2..ww w.2 w.w 2.222 ............................... ...222222w 2.22 .2622 22.2w 22222.5 www 22.2. wN 2w w.w 2.52. 222w 22.2 w.w . .322 2222M 22222.25 22.2w 2..2 N N.22 w.w www 22.2w 2..2. 2..2N .................. .. 222222.22 .2222. .2623 226 52.2w 22222.5 2..w w.N N 22.2 22w w.w w.w 2.. 2..w ..................................... .. 222.222.. .2522 532w 22222.5 w.2w w.w N w.22 22.2. www w.22w w.N 22.N2 .......................................... .. 2.2.22. .223 232w 22222.25 w.2. w.2 w w.2 w.2.w w.w 22.w 2.. N.N ........................................... .. 223 .2282» 532w. 22222.25 2..ww 22.22 2 2.22 22.22 2.2.w w.NN 2.2 22.222 2.2222222 532w 22w 2.2. N.2.w . . . . . . . . . . . . . . . . . . .. 22.wN 22.w 22.w 22.22. .............................. .. 22222262222222 2222.222 222. 222222 .25 22.2w N.2.w N 22.22 22.2 NdN 2.22 N.2. 22.2.2. 222222 22o 222222 .25 Nww 2..N2 2 N.w N222 22.22N 2.222 w.w 2..2.2 222.222 2:22.22 225 2.2.22 www N 2..2. N.w w.NN N.2. w.2.2 22.22.22 2.2.22 522.822 225 22.N2 2.. N w.N 52.. 2.2.N 2..NN 2.2 N.w 1 22.2w 52.2.2 2S5 2.222 w. 2. 2..2. N.w w.22. 22.222. 22.N w.2. ............................. .. 2222222222220 2.222. .8222 22.25 22.22. w.N 2. w.2. N.2. N.2.w 2.wN 2..2 N.w . 2.2.22. 2222222 2B5 22.wN w.N w w.N www N.wN w.22 w. 2w ....................................................... .. 222.222.. .2225 22.25 22.222. 22. N 2.22 2.2. 2.2222 2..22N w.N w.w ......... .. 222222 2222.2 2.2222 222222.22 2.222.. 222.2295 w.wN w. 2 2.2. www www 22.w2 w.2 22.2. ....................................... .. 2.22222. 2228 2.222.. 222222295 w.22 w. wN w.N 222w w.22. Q2. w. 2.N 2.22222. 222222225 N.2.w 2.w w 22.w w.w w.2.w 22.222 w.w 2.222 ........................................... .. 2.2222222 52.22222 22222222225 2..N2. 22.2. . . . . . . . . . . .. 22.ww 22.w w.N 22.w ........................... .. 22222222222222 222.222 2.2.22 222222295 www 2..2 . . . . . . . . . . . . . . . . . . .. 22.w2. wwN w.N w.w ..................... .. 22.222222222222222 2.2222022. .2822 2222222925 2..ww w.2 2.N 22.w w.w2 w.w2. 22.222 N.N 2..w ............................................. .. 22.2.2.2 .8 .322 E2222w2ow N.Nw 2.2.2 2.. 22.22 w.2.N 2..w2. 2.222 22.N w.2. .......................................... .. 22B 2.2.2 .2238 2222.22.35 2..Nw 2..2 N2 22.2 wwN 22.222. 22.2.2 22.N 2..2 .......................................... .. 22.222222 .22.2.2.2.2 2222222225 2.w2 2.. w 2..N w.Nw wwN w.w 22.2 w.N ................................... .. 2.2222 2.222.222 2.2222 2222222225 . . . . . . . . . . . . . . . . . . . . . . . . .. 22.2222 22w w.N 22.22 28222222222222 222. 2222222225 2..wN N. N w.w w.w .2..ww wwN 2..2 22w 2.282222 2222222225 2.222 2.6 N2 N.w 2.22 22.2.22 w.2. w.N w.22 2.3m .2222.22w22.w 2..Nw N. N 22.2. N.w 2.222 22.222 2..2 2.2. 22.2.2 .262» 2E5 22.222 w. 2 22.2 2..ww w.w2 w.w 2.. N.N .............................. .. 222.22.222.28 2.222. 222222292922 wwwmw 22.2w w.22. 2 w.NN 22.2. N.w 22.2 2..N 22.2222 222225 222222225 w.2w .2..2.w 2 2..wN w.2. w.w w.w 2..w 22.w2. .............................................. .. 2.2.22.8 2.2.2.22. .22E2222w .2..22N w. N 22.2. 22.2. 2.222. www 2..2 w.N 52222.2 22222225 www N.w 2 w.N w.22 2..ww w.w N.w w.22 . 22.2.22 2222225 N.2.w w.w w w.2 22.22 22.222. w.N 2..w w.N2 ............................... .. 2222.222» 22222222522 22222.22 22222222w w.w2. www 2 2.w2 w.w 22.2.N 2..2. 2.22 2.222. 2222222222. 2.2222225 www 2..ww w 22.222 2.2. 22.222 2.22 22.222 2.222. 2.22.22. 22o 222222.25 22.2.2. N.222 N w.N 22.2.. www w.w w.w 2.22 ...................... .. 2.2.22 2292a 22222.5 2222.22 22222222225 222222022 2202 . 222 222.822.. 2222.220 .2022 22mm...“ 2222x2223 22920220 222250.222 12022.22 2.254 23d? 003-22922 20222.2 222x283 22230222 02%.“. 0222 .02 IOHQWZ 02.22.20 2023B 62.2.9222 -228w2a A.2.022222..222oO2|.w..222.w222222222.2 20w 22220220 02222022200222 2222.22 222020.222 0222350922 02.222222202222222 2.22.2.2 £233 m0 22022225022222.2222 2282225222 252220224 .22 0222mm. 59 THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS 5.53 Q55 5&5 Q5. Q55 5.55m Q5. Q5. Q55 . . . . . . . . . . . . . .. 5.88.5 5.8.5.55 58.53 Q5...“ 5..5 m .3 Q55 5.5.5. 5.55m 5..5 Q55 .................................. .- wmfim .5965. .585 58.53 Q55. 5.5.5 .55 Q5. Q55 5..5 Qm Q5. 5.5.5 ...................... .. 85.555503 5..5 @5258 .5855 5.58.53 5.5.5. Q55 m5 5..5. Q3 Q5.m 5.55 5..5. 5..5 ...................... .. wwficwwh... 5:6 352i 5.5.555 558.53 Q55. Q55 . . . . . . . . . . . . . . . . . . .. Q3 Q5. Q5. Q5 .............................. .. 5.5585585 m5.6.5m .88 588.53 5B5. Q55 $5.5 Q5. Q25 Q5 Q55 Q5. Qw5 @525... 58w 5.58.5.3 Q55. Q55 . . . . . . . . . . . . . . . . . . .. Q55. Q5 Q3 Q8 ..................................... .. ......e....s. M58... 58.53 5...... 5.55 .5 Q5. Qw 5..5. 5..5 5..5. 55.5.5 ......... .. .8888 5.8.53 55.5% 5..5 m5. Qm Q55 Q56 Qm Qu 5.555 ................................... .. wow 58.5 .5555 58553 Q8 Q55 55 Q5 Q55 Q2. Q5 Qm Q55 .......................................... 1 853.5... B05 .5525 5.8.53 5.55m Q5 5 5.5.5 Qw Q5. Q5 Q5 Q55 5.5958 558.53 5.5.5 5.5.5 55. Q5. Q8 Q3 Q5. Q5. Q5 ................. .. .8..5.8..8.. 5..5 85.6.58 =Bo...5 588.53 Q55. 5.5.5 . . . . . . . . . . . . . . . . . . . .. Q8 Q5. Q5. Q5 .......................... .. 82.5.52. 85.8.5. c805 588.53 5..5... Q55 £5 5..5. Q3 5....» Q5. 5..5. Q55 .................................................. = @558 ..BE.5 5.8.53 Q3 Q55 N Q5. Q5. 5.5.5 m... 5..5. 5.85 ...................................... .. 855.68 5:8 5.5.5 5.8.53 Q2. Q55 5.5.5. 5.55 5.... Q8 5.... 5.5. Q3 .......... .. 8.55.508 .8 mw=5=88m 5..5 :8... 588.53 Q3 5.55 . . . . . . . . . . . . . . . . . . -- Q3 Q2 Q... 5.5.5 .................................... .. 25855.5: =85 58253 55.3 .5555 $5. 5..5 5.6 Q8 Qw Q5. Q55 .5835 5.8.53 .5 5.5 Q5 . . . . . . . . . . . . . . . . . . -- Q2. Q55 Q5 Q55 .......................................... .. 585E585 825v 5.8.53 Qmw Q55 5.5.5 Q5 Qa 5..5 Qm QN Q55 8.5258 5.8.53 55.555. Q55 5.5 Q5 Q55 5x3 Qw 5..5 . Q55 .... .. 5.8.53 M45 5.. 5 Q5 5.8 Q55 Q5 Q Q5 .898 £85555 .5283 5..5 5..5" 5 5..5. Q5. Q3. Qg Q5 5..5. ............ .. 5.8.8.550 5..5... 88w $.63 n85 5855.3 5.555.. Q55 5 5.... Qw Q3 5..5; Q5 Q55 5.553 ..5..8> Qmm Q55 m Q55 Qw 5..5 Q55 Q5 Q5 .355 .5085 5..5 5.55 . . . . . . . . . . . . . . . . . . -- Q55. Q5 Q... Q5 ...................... .. 58885585 .895 .5558 @585 59.5.3 Q55. Q55 m» 5..5. 5.55 Q3 52.55 Q5. Q5 .............................................. .. @5655 5E... 558.5 583.3 55.5.55 Qw 5. Q5. 5.55 Q3. Qwm Q Q5. 856.5 :8... 583.5 5.5.5. Q5 . . . . . . . . . . . . . . . . . . .. QB Q5. Q5. Q55 ................................ .. 58:82:85 58E .585 58.55853 Q5 Q3 55 5..5 Q.» Q3 0.5. 5.... w...“ .................................... .- .825 .5.....555B 52.8.8.5 83.5 5...... Q5. 5 Q5.. Qw 55.5.” 5.8 Q» Q55 .. . 5.88 85.5.5595. 5.55 Qmm 55 Q8 5..5. Qw QN 5..5 Q3. ............................... .. 58%|? .....5.8.......5. 6885.585. 5..5... Q55. 5w Q3 Q5. 5..5 5.5 Q55 Q8 ............................................ .. .55.. 5.858855. awfizwk 5.5.5 5.55. . . . . . . . . . . . . . . . . . . .. .5 Q55 Q5 55.8 ............................ .. 582.5555 585.8855. 88.35.85. Q5 Q5. 5. 5.6m 5..5. 5.55. Q5 Q5 Q55 - 5.85.55. .5888 8.55.5.5. QM» Q5 m Qo5 Qw QR. Qwm Q5 QM .595 .8555 .8050? Q55 5..5 5 Q5 Q55. Q3 Q5 5.. 5.5 ................... .. wwwmm 05.5.5.5 58am . . . . . . . . . . .. w Q5. Q3. Qmm Q5. Q5 Qw 5.8555885 05.8.5 588m Q55 5..5 w Q5 5.5.5 5.5.5 Q5 Q 5.5 .................................. .. 85.8.5 5.385.... .8..5S...5 588w Q8 5..5 55 5.5 5..5. 5.3 Q5 Q 5..5. .............................................. .. 5.8555. 4.8.58.5 588m $555055 oo5 555 @5585. ammo .5855 wmud 550x533 55m5m55w 55530555 J5m>a 534 .5335 $355M 59.5.5 5505555550 555050.555 055.55. 2M3 dz 6.5.375 QUEQU 5855355 82.2.5 .558w5Q Qwwznmpconvvlhmvndimfisu 50w 555.8558 v>555o55wo555 5555a 55539555 25555355555 3555555055555.» v55.» .2556“ mo 55.555.55.580... mmwfimxiwa 858583.. z: 2.58.5. 60 BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION H w.» wdH Q3 NHH HQ NEH 29.8w 83w a? Hém H E HQ. 95 N.m w. W? wwfi. NEQQN NNN NNH w NN H.HH Ni Him N.N NH: ...................... .. wmcHawmzvw HEN mfiofi wit» 88:3 N2. mHH . , . , . . . , . K . , , ‘ . , . . .. is .3“ H; 5; .......................... .. Afisfimfiiv ~51?» .38.? axon? NNN wNH SN 9N NdH Q3 ad H.m wéH .................................................. .. 3.8% @533 paws? HEN N. H w.» HQ. 0.? mam HmN we 395m £65,? H.$ HdH QN N...” i“ W3 9m HxN 5H : ...................................... .. H.565 amnmnwwhum ~55,» Q3 Maw , , . . . , . . N \ \ \ 1 Q9. 9w QN QNH ................................ .. HEHHEHESV mwnHswfium 2.3a? Z3 wdH N NH“ H}: N? Ha. Him ma; .......................... .. Anufiw 2x23 mmfifimzum paws? Q3 H.mH H H6 wdH WE m.» H? HEH .......................... ,. wwfinwwhuw H25 wwEEES HQBFS HQ“ NNH m2 ma H; wan Hww H4» NH: .......................... .. mmfinwmium H28 H63 wwifi p542, H? NNH . V . . \ \ \ . ‘ . ‘ , . . . ‘ ‘ N .. QNm Wm Wm Q3 .......................... .. Hfisznfifiv Hwfi HEEE H856 mwcfiom ooH HG mflimfiv p.50 .5.» wmww uodfixw mwnwno cmwpoan J55» £m< Hang’? owumlflwm Nmnfi uowfixo 530mm 25 m3 dZ ébHZ 2:50 Nflrm Avnwonnm Aumwwmfl _ A.@w:=$coOv|l.mH¢acH€s.H MOM >326 wfiposwonn was cHwHoNQ oHnHpmowmw wpmsflxoaanm was fiwwww we comfimoafioo mmwucoouwm UMNQQ>< .HH wHnwH THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS 61 Grasses. The number of analyses and digestion experiments made with most of the grasses is not sufficient to overcome the variations in the samples due to soil, season, stage of growth and other conditions. The analyses cannot, therefore, be taken to represent accurately the composi- tion and feeding values of the different varieties of grasses. The analyses of grasses of Harris county show the composition at different periods of the year. It is noted that the protein content is very low during the winter months, probably insufficient for the animals. Hays. The number of samples of the different kinds of hay is not sufficient to compensate for differences due to stage of growth, soil, and season, and the analyses cannot be taken to represent accurately the differences in the various kinds of hays listed. The same applies to the digestible protein and productive energy. Oats. The average composition of red and white oats is given for U. S. Grades and for different bushel weights. With the red oats, there is a slight increase of crude fiber as the grade becomes poorer, and a decrease as the bushel weight becomes heavier. With the white oats, there is little relation betwen the grade and composition or the bushel weight and composition. S UMMARY AND CONCLUSIONS Animals require food that contains sufiicient protein, that produces sufficient energy, that contains sufficient minerals such as lime, mag- nesia, phosphoric acid and iron, and sufficient vitamines. Definitions are given of protein, fat, crude fiber, nitrogen-free extract, ash, nutritive ratio, and other terms used in connection with feeds. The digestion and utilization of feeds is discussed briefly. The productive energy of feed is defined and discussed. The calculated productive energy for ruminants, of a large number of feeds,_is given. The variations in the composition of a number of feeds are discussed and shown by the standard deviation. Some feeds are quite variable. The protein of cottonseed meal has decreased in variability from 1924 to 1931, and is less variable than many other feeds. Wide variations are found to occur in the feeding value, as measured by the calculated productive energy, of alfalfa hay, corn silage, and sorghum fodder. Bermuda hay, cottonseed meal, corn chops, and wheat bran are less variable than the feeds mentioned above. Methods of calculating the cost of digestible protein, productive energy, and bulk, are given. Requirements for maintenance, fattening, working animals, growing animals, and milk cows are briefly discussed, with feeding standards. Methods for calculating a ration and reducing the cost of a ration are outlined. 62 10. 11. 12. 13. 14. 15. 16. 17. 1s. 19. 20. BULLETIN NO. 461, TEXAS AGRICULTURAL EXPERIMENT STATION REFERENCES Armsby, H. P., 1917. The Nutrition of Farm Animals. The Mac- millan Company, New York. Christensen, F. W., 1932. The protein requirements of beef cattle. Amer. Soc. of Ani. Prod., 1931, 26. Fitch, J. B., and Lush, R. H., 1931. An interpretation of the feeding standards for growing cattle. Jour. Dairy Sci., 14:116. Forbes, E. B. and Kriss, M., 1932. The nutritive requirements of the dairy cow expressed in accord with a new method of application of the net energy conception. Amer. Soc. Ani. Prod., 1931, 113. Fraps, G. S., 1904. The composition of rice by-products. Texas Agr. Expt. Sta., Bul. 73. Fraps, G. S., 1912. The heating of corn chops. Sta., Bul. 152. Fraps, G. S., 1914. Texas feeding stuffs; their composition and utilization. Texas Agr. Expt. Sta., Bul. 170. Fraps, G. S., 1916. The production coefficients of feeds. Texas Agr. Expt. Sta., Bul. 185. Fraps, G. S., 1916. The composition of cottonseed meal and cotton seed. Texas Agr. Expt. Sta., Bul. 189. Fraps, G. S., 1916. The composition of rice and its by-products. Texas Agr. Expt. Sta., Bul. 191. Fraps, G. S., 1916. The productive values of some Texas feeding stuffs. Texas Agr. Expt. Sta., Bul. 203. Fraps, G. S., 1917. The composition of peanuts and peanut by- products. Texas Agr. Expt. Sta., Bul. 222. Fraps, G. S., 1919. Feeding values of certain feeding stuffs. Agr. Expt. Sta., Bul. 245. Fraps, G. S., 1919. The chemical composition of the cotton plant. Texas Agr. Expt. Sta., Bul. 247. Fraps, G. S., 1921. by-products. Texas Agr. Expt. Sta., Bul. 282. Fraps, G. S., 1924. Digestion experiments with oat by-products and other feeds. Texas Agr. Expt. Sta., Bul. 315. Fraps, G. S., 1924. The price of feed utilities. Sta., Bul. 323. Fraps, G. S., 1925. Energy-production coefficients of American feed- ing stuffs for ruminants. Texas Agr. Expt. Sta., Bul. 329. Fraps, G. S., 1928. Digestibility and production coefficients of poultry feeds. Texas Agr. Expt. Sta., Bul.. 372. Fraps, G. S., 1928. Supplementary energy-production coefficients of American feeding stuffs fed ruminants. Texas Agr. Expt. Sta., Bul. 402. Texas Agr. Expt. Texas Texas Agr. Expt. The composition and feeding value of wheat- 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. THE COMPOSITION AND UTILIZATION OF TEXAS FEEDING STUFFS I 63 Fraps, G. S., 1931. Variations in vitamin A and chemical composition of corn. Texas Agr. Expt. Sta., Bul. 422. Fraps, G. S., 1932. Digestibility and production coefficients of pig feeds. Texas Agr. Expt. Sta., Bul. 454. Fraps, G. S., and Rather, J. B., 1912. Composition and digestibility of ether extract of hays and fodders. Original communications, 8th International Cong. Applied Chem. 15:105. Fraps, G. S., and Rather, J. B., 1912. Composition and digestibility of ether extract of hays and fodders. Texas Agr. Expt. Sta., Bul. 150. Fraps, G. S., 1931. Productive energy of feeds calculated from feeding experiments with sheep. Tex. Agr. Expt. Sta., Bul. 436. Fuller, F. D. and Fraps, G. S., 1919. Cottonseed meal. Texas Agr. Expt. Sta., Bul. 241. Harrington, H. H. and Fraps, G. S., 1904. The composition of Texas cottonseed meal. Texas Agr. Expt. Sta., Bul. 70. Henry, W. A. and Morrison, F. B., 1923. Feeds and Feeding. The Henry-Morrison Co., Madison, Wis. Joseph, W. E., 1932. The protein requirements of sheep. American Society of Animal Production, 1931, 37. Kellner, D., 1924. Die Ernahrung der landwirtschaftlichen Nutztiere. Tenth Edition, 1924. Paul Parey, Berlin. Kriss, Max, 1931. A comparison of feeding standards for dairy cows, withespecial reference to energy requirements. J our. Nutrition, 4:141. Savage, E. S., 1932. The protein requirement of dairy cattle. Amer. Soc. Ani. Prod., 1931, 33. Stiles, W. C. and Morrison, F. B., 1932. Protein and other nutrients required by fattening cattle. Amer. Ani. Prod. 1931, 162. The