Franklin Institute Library PHILADELPHIA Class... J 21: S Book EX @4- Uocdsston a), 04-6 5 REFERENCE Given Beery 077 Rey See ~~ — ; ri aM icieabyvien 2 C on ae he D. E. GARRISON, D. E. GARRISON, Jr., W. H. KENNEDY. President. Vice-Pres. and Treas. Secretary. A. L. JOHNSON, M. Am. Soc. C. E. A. E. LINDAU, Assoc. M. Am. Soc. C. E. Consulting Engineer. Company Engineer. R. L. MURPHY, Contracting Engineer EXPANDED METAL anp CORRUGATED BAR. CO. SUITE 925 TO 936 FRISCO BUILDING SIT. LOU: fs U,, G3 Ay SOLE AGENTS FOR CORRUGAPEDs BARS: JOHNSON AND UNIVERSAL TYPES. REPRESENTATIVES H. C. MILLER & CO.. ; KANSAS CITY BRIDGE CO., 1 Madison Ave., New York City. 1108 E. 15th St., Kansas City, Mo. EDWARD A. TUCKER, C. E., S. H. HANSON, 683 Atlantic Ave., Boston, Mass. Oklahoma City, Okla. WALTER LORING WEBB, C. 8. G, SHAW & CO.. cf Si 22¥2 Land Title Buildings Philedelphia, Pa. Boston Building, Denver, Colo. = WOOLSEY CROWE SUPPLY CO. SYDNEY B. WILLIAMSON, C. E., BAe Oi ‘ : 509 Equitable Building, Belimon e, Md. > ents ae Oregon. DENNISON FAIRCHILD, C. E., . 222-223 Globe Building, Seattle, Wash. 935 Ellicott Square, Buffalo. N. Y. JOHN B. LEONARD, C. EB, . 608 Crossley Building, San Francisco, Cal. E. P. MUSSELMAN, C. E., oa EC HEE LEON CDP.e tes 1129 Reibold Building, Day tara, Ohio, ae T. L. CONDRON, Gek.e £2 $ 2 ose: * Bo 329-198 Hellman Blée.. 1442 Monadnock Rlbclt, Gkicagos Tice? BU *Tios ‘Angele Spal. Welt b ORK Gi he, COLONIAL nosed CO. (For Panama,) 700 Empire Building, Knoxv idles J onyas EE *s11¢,Broad ‘New York City. O. G. JOSEPH, C. E., JOR Th yeu EAS S68 1601 First St., Louisville, Key: cae tS eeeeee Santiago, Cuba. F. CODMAN FORD, : VON HAMM-YOUNG CO., 306 Baronne St., New Orleans, La. Honolulu, T. H. GUARANTEE CEMENT & STONE CO., R. P. CAMDEN, 221 South 5th St., Minneapolis, Minn. Apartado 2391, Mexico, D. F. OMAHA STRUCTURAL STEEL WORKS, EASTERN ENG. & CONTRACTING, Omaha, Nebraska. 13 Canton Road, Shanghai, China. EA BEEAOESCONDTENTS LN CRO CUCTLONI See tet Orske PR RTT ce AS, Ota CEN GON esos Welire ic Gas a die 6 oles WaerehousealOOrmeh aim WlwGrillGe Ome Moris) ocyaie --otelis te ole c/a ol hereunes selene sie ctalele s GoldgMeda law array erst t tweens ote eee atortaron tats site axed hares eitrede OldeStylerCorruesatedebar see wes neha. oeerette i cieetceon seins odie suckers ING WHOL VOR COLTS ACCORD ars aetns meet at st cecmmmehe te eu utterer acon osleteh totanes where coals) cre erate Universal Dyno: Gorrie at CaP Oar sien +c slicers oltelsts creiere tis @ a0 as) opevensin ores Approval Corrugated Bar System, New York Building Bureau......... 20-21 Approval Corrugated Bar System, Philadelphia Building Bureau....... 22 HLOOLES YSLOMENOmonterekrerrcietee ts cistern cla onal oasis. + Mietena tater eels wus fu ores Dhetera ays 23 MLOOLESYSUTCIMEN Gwar cterccotel cco smetevereiions © slelsn ia oie) cielolenticls « cnahele, Supacdisl we bie ate ete 24 HUOOLES Y SCETMMN OO miseries te ett soil onsinte Cetera ahs eee Paiste ccbetaisbok aheice cavern 25 Floor System No. 6. Brac aust shatsshatanetc, @ cttbese la’ ctela'atekereheun aisrsetuel ss 26 Typical Floor and Roof Sections. PRET R CR Src Meteten ed Ye cna efiatst ovate’ oi; tote na ORY satel Mele 3 27 SVSteLIMNOMOMLeSbeaTIC eM etal lG emu etedes sc fnictsicte ice ctthe. fn sccta Gr siiti tise ciara e 28-29 Floor Construction, North American Cold Storage Building, Tests and WDStallS emt Mitek chalet sVatcksrsuckcs thea oteker che sje heer cuit Saar seers seme ee Gisatedas 30-31 VDA WaALrehOUSOwL Stalls saa Men Genes leelokty Boley he okctee a teas AeRebabieMer 6 6 n.d.0 32-33 Carleton's MOOtIN SS Ser actit posh coteMe ahs elo olepe a Mele) oheiie lake a" aud akameccte WEE Sutve nara’ isle 34-35 Creasouneege Aaniens SOMELVLLO vere eles Polte oie a He cheta acne ae paateeats crakcLe aiieahos ue cheb meta al baWeils cu sueaersheete 56’ Semicircular Arch, C. & E. I. Sears etal Men iets, See cree eis a evs a paxede = ip aeAC Hee TLELTNOT SECO Ciscl leementy, Sepen eens are ena id eee Meee ee ae Cue eee Cave Hollow ALE CS tLe C28 Exe Geol) pietense say oubapxccemtarievectrenen’| fiala eee cakes ca etecel ea. aeons Ne Gavesbur ses ubiwavencon boy Ore G). tid creole © ene aitairc sist trade CPenon eh dceuanase a Giese anoue cosaee Overhesdgerossine sy bie MOUrt EUVengs co oe eke oc uteu cde sue aticdeiccs orer wietec er sweienenons DO mela te OD eG ULY hia VV lara chee) eis siete aetuc a cscaiehen ws oes eR are reich se ere e ale alae 138-139 OBSS tae. Ka Ed CLS Cerne meme mie oie chit we tahun ae wae ante okeT oe irons au spend chai amalie an erties 140-141 EL GUL OM AeA DUC Ia Orit Gaels e Gem) ea custome sto) 5 coat choker ssc ar et anet au si. SNON .9:SZ Sid,.e Suva “1 ee + + +b ale + +l + ++ 7h + + Alas aglac gl Sates Se aaryr jHOVAINT Ob) Dolg) cuyd An! = we Ni od NeNWAI0D so WALNAD . SLOALIWOKY C13 21 Suwa % a NaQuvS # W1aSSAYy NVUNVW : f Z STUNeial iks be DNICTIAG PN OSE eal lie 5) 0 x aie eo =| Ale oawNy e TIWM NOLLWANAOH ris ; sated UVa 9 2 S42 Zt suv ane) ORES AIG: ; d 34 [<-ce Carleton Building—Completed Retaining Wall. 35 General View, Creosoting Plant, Somerville. 36 26x91 yaaHld Suva £-¢ _vEX,8 Ywadyl 6x24 EXTENDS OLGTsS ‘ CENTER PANELS EACH FACE TYPICAL WALL SLAB BOILER HOUSE "BARS 3 2 fe uo = ac u a -9I- 4 =) F Spon le < <3zt 2: F oy 236m 34 2 IH oe * cari ny E AT ws wqot-_ = rm SOBS ey wW o > > oe SS 20m = H it etre) aD soy 4 — ——_ Las “1 mig F = . ——--—08r--—4 os? BOILER HOUSE SECTION A-A Tex. Somerville, , Creosoting Plant Cylinder and Boiler House 37 Creosoting Plant, Showing Boiler House Under Construction. oJ $ } > é 1 g ri x Hcl * s Se a : gS 3 } : $83 $ 3 rs eas Er % ns g ry $3 Ate g CC one re St> 18S 3 Pee ees we as Se TRE Fz “Sy IS > gs ey 3 6 3 SY qa S Sots 2 x So tied $ ee eas Tee g r ‘ Se ee is Sig WS ra : ee NAN Py iS 8 y : z M ne t2e° iS s N ca ey 5 ty * Be = $4 = re Py | & 3 dinate : Too et eta ti i | = al t ! ' ' ae ts ee -=--5 i fey , f Tad : ; a cam oe ' += H ag ahi Sree 1 aie nal 4 dere -! Pere 1---t}4t-- J eatince pres 12 ' ' 1 ‘| f AE Ni " 4 zeal =H zafifteos eoihtees epic | [a Wet HS fa ei | ee ‘ ; ' 1 ' ‘ he eee, ee ae ee ee, | eas Seay an ' | Hoek tected top acteeceatatiachesaty | | \ oe. ate H. : == patie ae oe Ne \ F ! ' : ; : ; 1 ries i i , t--4-----++ -- -4----- --, -4-----'’- U i Saha a 1 are ee sts eerie ; i a i ; fe Nes ay L as S&S. Ee: AR ” Plant, A 40 Semerville Tie PLAN. Tank Support, Creosoting Plant, Somerville, Tex. Completed Tank Supports. 41 F Corr Bars-Foll Length of COR May SF Corr Bars - Fol length of Cat += # Corr Bars, 6-0 feng over cach interior Bracket 2-¢-Corr Bars Column- 4611/6 2-4 Carr Bars Q *¢ Corr Bars 2-4 Corr Bars 2-$ Corr Bars? Lower Hallet Cof Joep of Foundation . S| 4 NS st : . Ss AS) Ny ‘ z| a = { g .) > < —4 N a WN Deran of Awwine cor Gort Hose Seale-/+/ fn ee to ra Corr Bars- oie Treicat Poof Stag Sea/se-F rt DETAILS SOMERVILLE Tif PRESERVING PLANT AT Sf Rr St Lows Lapanded (felal Fireprooting Co Creosoting Plant Details. 42 Cross Sccrvion- VENTILATOR Scale-1es" SS ey po eo et Se ee # Bars- 3-0 ch in each face. o chin each face. tf Bars-3> Treicat Wate Stab Scale-$7/ - r ‘I9}JVM JO pRroy }OOJ-0T B SISAL 0} poeuUSIsep suolepunoy pur S100y jJusmaseg ‘S1]UOD ‘pUuIM puUe Yor1eporg ‘S}YOIV ‘“SUIZION puBe 17B4A MA ‘PIN ‘O10WIT}[eVeg ‘SUIP[ING 90WJO JISAD ST i al wat = em & aD ey Thompson and Norris Building, Brooklyn, N. Y. Thompson and Norris Co., Owners and Builders. Horace I. Moyer, Supt. in Charge Constr. H. C. Miller & Co., Engineers, 44 page Thompson and Norris Building, Brooklyn, N. Y. 45 Dayton Malleable Iron Works. Peters, Burns & Pretzinger, Architects. 46 Cog se Dayton Malleable Iron Works. Peters, Burns and Pretzinger, Architects. 47 3) 9 “TD REBAR TRADE MARK VANDEVENTER BUILDING.” SPECIFICATIONS, Net to Fait ane OFF 650 ths. tc Seuay AR Foe Vandeventer Building, Knoxville, Floor Test. 48 0: st cea ee eae at ie 49 Vandeventer Building, Under Construction, SPAVUEYCAFTUUY YD YJ @V4RL VMal ‘yoollgouy ‘taABvoq uUoV'y] ‘UudL ‘O[[IAKouyM ‘“SUIP[ING JA9}UVAVPUBA 50 Wood Worsted Mills, Lawrence, Mass. Dean and Main, Engineers. 51 Addition to McKinley High School, St. Louis. Wm. B. Ittner, Com. School Buildings. 52 Addition to McKinley High School, Under Construction. 53 200 TONS. 200 TONS. CORRUGATED BAR FO OTING PLAIN CONCRETE FOOTING. Comparison between Plain and Reinforced Single Footings. 54 COMPARISON OF COST OF SINGLE FOOTINGS PLAIN CONCRETE FOOTING Excavation, 113 cu. yds., @ 50e 5 Oro wade ORGEE au Ch GeO ro ORES COR PERE aS aie ore 5 D/O CONGTC tones U eC Ueel ees UCM pee atm et a ie eg "41:00 IVa a Niet ole ok 2 8 ea RS oe ee er $46.75 CORRUGATED BAR FOOTING Eixcerrations (ome eve (moc een us pals 4 net oiadicl te eS 3.15 Gonerevem Ojecu el ee OUGe ee Sy ele hes Sem ee le 20.40 COrcuO a GGR baraemooo ml De men Oe verre see aches oy ct 9.55 Extra column length, 85 fhe aT he Dia Ae ays NO bee ee Fels) TRL, , he coc tale ee a i IC ar This shows that even in single piers a distinct saving is made by the reinforced conerete design. The percentage of saving increases with the size of the footing. The chief recommendation of this construction, however, lies not so much in the decreased cost as in the greatly increased reliability. The plain footing depends upon the tensile strength of the conerete to give the required spread. No more unreliable factor of strength exists in the whole realm of building materials. In the corrugated bar design, even if the tensile strength of the conerete were zero, the strength of the footing would not be materially altered. 55 Yorcaecu = s'e-—~ === quae eeQleD, saeco =e ens nee 4 (8} 24°60" L570 HERE, 4:24:04 a . es i mEo i Habel : i ' .! aE ‘ j ° Oo oN= 1 ! i RES Et N / oy | he ; a fg : H ‘id j_- ATLTUL ke Paes -4-0--> CORRUGATED: BAR DESIGN STEEL: I- BEAM: DESIGN DOUBLE: FOOTING be Sta>--d SECTION. N.N. @ECTION-N.N. Comparison between Corrugated Bar and I Beam Double Footings. Corrugated Bar Design used for the Norvell-Shapleigh Building, St. Louis, Weber & Groves, Archts. 56 DOUBWESORRGOMBINEDSPOOTINGS On the foregoing page is shown a comparison between a Corrugated Bar and an I Beam footing, of equal strength, for two columns. The column to the left carries 358 tons, the other 222 tons. The area of the footing is 232 square feet, making an average pressure of 2.5 tons per square foot. The center of gravity of footing does not coincide with the resultant of the loads, resulting in a variation My 1 in soil pressure, which can be obtained by Hooke’s law for beams f= where f is the increase or decrease in pressure in tons per square foot at the edge of the footing; y, the distance in feet from the edge in question to the center of gravity of footing; M is the revolving moment in foot tons around this center of gravity; and I is the moment of inertia of the footing plan in feet. In the case shown, T=7565. M=—580x0.42—243.5 foot tons. From the small end to the center of gravity is 12.92’. This gives f,=—0.42 tons per square foot. In the same way fe is found to be 0.27 tons per square foot. Hence under one edge we have a pressure of 2.77 tons per square foot and under the other 2.08 tons. The maximum bending moment occurs at the point of zero shear and is 22,800,000 inch pounds for a width of 11.77 feet. Taking a factor of safety of four, we have an ultimate moment for a width of 1’ of 7,760,000 inch pounds. From the beam tables, for 1:3:6 rock concrete, we get a required thickness of concrete of foot=7, 0. s. corr. bars. For the I-beam footing, the moment of 1,900,000 foot pounds requires 8, 24”— 80Ilb. beams. COMPARISON OF COST. CORRUGATED BAR FOOTING. I-BEAM FOOTING. Excavation, 39 cu. yds., @ 50c...$ 19.50 Excavation, 45 cu. yds., @ 50c...$ 22.50 Concrete, 870 cu. ft., @ 20c...... 174.00 Concrete, 966 cu. ft., @ 20c...... 193.20 Bars e4 LOC Ss 254 'Ckc- ecerenssis 102.65 Steel Beams, 16,660 tbs., @ 2%c. 416.50 Bolts and sep’s, 1,120 tbs., @ 2c.. 22.40 TOTAL Sees eer tape ne $296.15 TT’ OCD ae creue tach cern oo. stave es eres $654.60 57 * = i= "COFTs b ors Fq2 eee ee c MG HSS SS SSS LN HY NN Ww SUSSSSSSSSY 5 £ Column ie Nl meee wenn lie P14af7 J5-8 Corr bars b-0 ‘long A Corr bars-$ cfs, aFCG line 0 4 oF oe NY Z =i pre Ul | b is — L Ae YUE. Wall Asb0% ocr tt ran sverse bars -¢ Cork R | LalS 2S SPO? eS 5 29+0* RYN . X < Secrion sk 28 ys QS ey Corr bars -LA Crs. ve lCorr bars-5 af L Corr bars-3b ct iS % Section ot § Typical Column Footings Installed in Blackstone Building, St. Louis. H. F. Roach, Architect. MISCELLANEOUS SRS G TURES ‘ivan A) ot Sn“) A 5 CORRDA TRADE MARK City Bridge, Reno, Nev., Two 65-foot Spans. Designed by J. B. Leonard, C. E. Built by Cotton Bros. & Co., Contrs. 60 T. K. Stewart, Engineer in Charge. Peueeenegseanaegenanstategestareneateasanan rstcerttecereeeeteetntetereeeeaserteee ee Dittrisits aciebety Completed Seeley Street Bridge, Brooklyn. 61 Present brade at Crown E/. 106.00 Proposed 0" 0" i." 106.75. or Waterpraoting, Go «4 «er of I. ep of Arch and l2 dre! Wall se? itr hk cart Seeley Street Bridge, Brooklyn, N. Y. G. W. Tillson, Chief Engineer. BE. J. Fort, Assistant Engineer. D. Cuozzo & Bro., Contractors. Seeley Street Bridge, Brooklyn, during Construction. 63 Sar 2 <8 “Bes sa “ey ————— Q “Sie SECTION THRO: Crown or ARGH fata aes 3” ------4 SSTTATT TTT T Yj Yang uh yf Section at Pier Section on M-N Evevation OF PuAsTER Reinforced Concrete Bridge, Pollasky, Cal., Ten 75-foot Spans. Built by Pacific Construction Co. Designed by J. B. Leonard. 64 Reinforced Concrete Bridge, Pollasky, Cal., Ten 75-foot Spans. Built by Pacific Construction Co. Designed by J. B. Leonard. 65 | CIN ! N UX TIN! Int Dry Creek Bridge, Stanislaus Co. Span, 112 feet. Designed by J. B. Leonard. 66 Elmwood Bridge, Memphis. Span, 100 feet. J. A. Omberg, Jr., City Engineer, Memphis. 67 Bridge Over the Charles River at Newton Upper Falls, Metropolitan Park Commission, Commonwealth of Massachusetts. J. R. Rablin, Engineer. 68 Ba ac RRBAPS gt AR £ NS Two-Tail Race Arches, American Writing Paper Co., Holyoke, Mass. Designed by Edward P. Butts, C. E. 69 Constructed by Caspar Ranger, Contractor. i sy HO a soood 4 NG = HOO WS: ) 2 n y EX7TRADOD GARS | (MEW STYLE 742 OC JATRADOS BARS 1s “ St oc TRAMIVERSE BARS 1 3% OLD = AS SHOWN we we de ao ee es we = ee ee eee ee = SYLAR BARS ve “ ae ALi BARS IN SPANDREL WALL -fe OLD STVLE aS 24 ce oc 88, —SE CTs OF1—OF-RLI POS CL Ls “COMCRETELY= ARCHED ies - -FAUW-CLAIRE -W1s— “HALF -SECTIOS-~AT-CROWH— 70 RBA M2 vase Bridge at Eau Claire, Two 82-foot Skew Spans. McClellan Dodge, City Engineer. yal Geo. Nelson, Contractor. ——$$—$—$— —SSSSSSSSSS— ——— nee ” is’ I BARS 4ACC. {ig LONG ee EVERY OTHER ONE BENT AS SHOWN: 72, BARS 6°CC 23 LONG RBARS 12°CC 13 LONG *PBARS 12°CC 17/2 LONG] °° - va" BARSG CC 13° LONG Ye BARS Z0°CC I7KLONG °° Op. S : ~ 'o 7 Cty a , ~~ | BARS 5'CC.25'LONG BARSS* CC 16’ LONG 4 . ° * a . . s . fe . 2 = o = = = = 5 > “ELE 4100 HALF SECTION Section of Highway Culvert Construction, Marion Comeind: 23 Ae H. W. Klausmann, County Engr. Completed Culvert, Marion, Co., Ind. 73 E y ler. TY Cross Section of Highway Bridge Floor Construction. tions. Many floors like this have been built. 74 Designed for Cooper’s Class A specifica- AAV AN AVAVANAY AV AN AV AVATAN: ave * Span 535 Feet. xpanded Metal Floor Construction on Highway Bridge at Waco, Texas. E 75 Section of Highway Culvert at South Bend, Ind. 76 Seer es Eo ry pee f-2: A. J. Hammond, City Engr. Completed Culvert, South Bend, Ind. 77 Highway Bridge, Anderson County, ~] oo Kansas, Kansas City Bridge Co. Boston Rapid Transit Subway. Howard A, Carson, Chief Engineer. 79 BARS 4 crs. 7 coRR BARS 2‘crs. 1 * |e CORR BARS Ske"crs -------2-----a) Se ee ey o Jo 0 =|% CORR BARS 12'CTS. «fe Section of Tunnel and Retaining Wall, Metropolitan Street Railway Co., Kansas City, Mo. Ford, Bacon & Davis, Engineers. $0 AI RA TRA “CORK Metropolitan Street Railway Company Tunnel. 81 Section of New Orleans Drainage Canal - Maj. B. M. Harrod, Chief Engineer. 1 782 New Orleans Drainage Canal. Showing Test. Gravel Concrete, 1:3:6: span, 13’; slab, 114” thick; reinforcement, %” corruga'tted bars, 4%” cts.; load, 51,150 pounds on two 8’”x8” supports in center, 6 feet apart. Deflection scarcely appreciable. 83 Last Type of New Orleans Drainage Canal. 84 Type of New Orleans Rey Canal under Construction. e—-—- - -—- ———————- .¢¢ — ; LF EL AP A LV A SAE, ———— —— ‘ GER LP LDF 3 LEG GT ET MPG ELE SUD SG LLG LT > \ \ VEE - Ze < cess ae ers S eS CESARE LEE GN Lea Vig 7 a 22 <— Lae /2' 6" ation—Section “oA ERS SS Sa se : y St. Louis Terminal Railway Associ ggage Floor. t. Engr. of Sewer under Ba reensfelder, Ass IN Jes hep k 86 “WwW. L. Armstrong, Engr. M. of J. Gp TRADE MARK “SEWER CONSTN EXPRESS BLDGS FEB-2-190u.- St. Louis Terminal Railway Association—Meeting Point of Two Branches of Sewer. 87 i hy %4 CORRUGATED STeeL RODS,I2 CTOC * a * 9% 6:6.5- 2.0 air toe aos ° VUVUUUEUUU Yeu wy SECTION MAIN OUTLET, SEWER BRO@KLYN NEW YorN. R. H. Asserson, Chf. Engr. 88 Main Outlet Sewer, Brooklyn, during Construction. 89 ON GRILLAGE BY) BED) LSS > 4 YG : ZY, LLM) A i) il » \\el2 VIT STONEWARE h SUB DRAIN R. H. Asserson, Chf. Engr. edAy, Joyjouy v1 <4 - | I i ” ' | | He Cross Section of Conduit at Del Rio, Texas. 92 J. W. Maxcy, Engineer. 93 Conduit under Construction. Del Rio Detail of Intake, Ontario Power Co., Niagara Falls, Can. 94 ua Intake, Ontario Power Co., Niagara Falls, Canada. L. L. Nunn, Pe. N. Nunn, Engineers. 95 6"THICK 4-7" BARS 5'LG. Ss" THICK Py PRA Ladd Lakh aA iy DLA he i bi teh dtd bb tet ht FI Ma Lk a bl do bd LL aes 1 PRED ene ieee cee 2 yi 4 Ban, > -12°6cr >> Ce BARSI2CG BAR SVB 6CC+7 BARS 7/8 BCC] BARS ¥4"O" CCH SYS" won oo tenn wenn son n===2I'4 a in| CS oo Oke, Oe CSR re a area yy = pak ta ga aes na oP ge aya + 4) %} BARS 5% CC 9'LG. SS rr ef 4-) BARS Section of Reservoir Construction, East Orange, N. J. C. C. Vermeule, Conslt. Engr. Commonwealth Roofing Co., Contrs. 96 East Orange Reservoir under Construction. 97 Top View of Reservoir Roof Under Constr uction, Indianapolis Water Co. 98 End View Dividing Wall, 350 feet long, Indianapolis Water Co., Reservoir. Designed by T. L. Condron. Built by Ind. Water Co. 99 Interior View, Reservoir, Indianapolis Water Co. 100 Ft. Meade Reservoir, Under Construction. Designed by St. Louis Ex. M. F. P. Co. Built by Dunnegan and Sykes. 101 RCORE BARD 2 CTS RACH WAY Engr. A. C, Warren, Reservoir at Lake Geneva, Wis. 102 cN Photograph of Completed Lake Geneva Reservoir. 103 Gasholder Tank, Key City Gas Co., Dubuque. Geo. McLean, Pres. and Gen. Mer Designed by St. Louis Ex. M. F. P. Go. Built by Key City Gas Co. J. E. Conzelman, Engr. in Charge Constr. 104 ‘UoTJOVIO JO pOYJoU puv YAOM OS[VJ SUIMOYS ‘MOIA IOTI9}UT ‘OD sexy AID AO ‘HURL J9ploysey 105 ‘SUIIOS, JOJSL[Iq PUP TITEM : ‘OD SBD AID AOM ‘YuRL, saploysey 106 FAGI0CIIUO, if) ACT “fF SEL sun ‘O[NAUIOA “DO ‘OD “IIMOT, JAIVM UMOIUIPIOG 107 108 Photograph of Completed Tower. Water Works, East Orange, N. J. ommonwealth Roofing Co., Contrs. Cc Vermeule, Conslt. Engr. Ce C; S1]U0D “OD ‘1}SU0D 93TUOSTID ‘UOTPBIOOSSW Suimolg smory 49 a07 uoTjONASUOD iapugQ yori 109 Galveston Sea Wall during Construction. 110 Galveston Sea Wall. Geo. W. Boschke, Engr. of Constr. alate ig Fes Se he ata Eerigis, Pes Coal Pockets for Pennsylvania Cement Co. H. C. Miller, Engineer. F. A. Little, Supt. of Construction. Missouri Pacific Grain Bins at Kansas City. Metcalf and Metcalf, Engineers. 113 Reinforced Concrete Dam Across the Battenkill, Built for the American Wood Board Co., Schuylerville, N. Y. Patented by Ambursen Hydraulic Construction Co., Boston, Mass. 114 Ambursen Dam at Schuylerville under Construction. 115 Palmer Lake Dam, Pueblo Div. D. & R.G Ry. Span 110 feet, height 43 feet above outlet. HK. J. Yard, Chief Engineer. W. A. Morey, Eng. B. and B. 116 \ ? he we CONTINUOUS WALLS | \ One of the great advantages of reinforced concrete is in our ability to dispense with expansion joints in long structures. These may be built with the material in one piece from end to end, a mile long if desired, and by a properly proportioned longitudinal metal reinforcement, shrink- age and temperature cracks can be entirely obviated. Most engineers have to be shown; and they will not believe it then unless they can see some scientific explanation of the matter. That ex- planation is as follows: It has been shown by Considére, Hatt, and others, that concrete, when reinforced with metal well disseminated in small areas, will ap- parently stretch about ten times as much as when no metal is present, and that it will submit to proportionate elongations of about .0015. The co-efficient of expansion of concrete being .0000055, we find that 7t would take a fall of 270° to develop a proportionate shortening equal to the wall’s ability to stretch. The wall will pull out in this manner at about three-fourths its full tensile strength, or say at 150 pounds per square inch. The quantity of metal needed is enough to equal the tensile strength of the wall at an elongation of .0015, corresponding to a stress per square inch in the metal of 45,000 pounds. The area of metal would therefore be 359 part of the area of the wall. aa “MH “IOADAAING AWUNOD ‘UUBUUISNVIST wn 0) co =} (o) Pe = ee) = ee) =} =) ug a = 1 ns ~ a —_ Pe is) re e. 2) 4 '@) ° = 5 an a ‘put ‘@-- ---->i + D9»2ISHVE BHO 2/5: K------.,0 Peon Gielen | Si a <— SURFACE OF GROUND J f20ORR. BARS 2'0°CC VeCORR BARS 12'CC /2CORR BARS 12"CC /2 CORR. BARS )2°CC. Steins ener UE Cea J j Ee << ae FORRBA Ind. Marion County, Wall, Retaining ‘pepecsu sjurof uotsuvdxe ON ‘uoIsseidod 10 UOTWVAZTH Yoei1y, JOJ [TPM SBururezsy K------ eee ee ----- PaaS ANOS OSGI OO GS SSSI See oat : | Eraa) F fens ae eae Oa Cte a Se ee -Oql-y 1 4 Goes sae Sees Clip as SESS Eee K, Zik---0 52-1 -4F-4.2 i ze - ' CL9,71 Suva UXO % ' S19, Suwa “wxoo % \ ; ; ‘ 1 ! ie see ee a (ae \ 13,8 ANY WOIHL.@l XY t se vies \ —auy sass duiinaSiONy: NoIcsaud43ad HOV. a a 1 ! 1 ' ry ' x i! a, pS es ; na! 9 ! re et eee ee eee ' ies ie j A tot a aoe ies | > i. IN = net oe} UN iat vy] — fay Tepe aN ; 1 hire a byt eel Tee lu! rt = —X- ee! 7 — WN ' © b 1 Feghtlac H Olen S rial fa) eo! oO at {) : i: — ee ee ee 1 ns B on peed te Le 4 ey aon» u aon ef aa | Loe N aa | 9°. Le | ' hay io) toa a oF 14 oo a ee 7S ) 4 ze 1 | eR 1 ey 25: ' eh Le erent ery a yp ! NOLLWASTS HoOwWuL finde eA OR uOd Tive AO USWA 120 Rev R @ AD) STRUCTURES (2124 Beam Ma 9-F Corr Bare *| Bars-2 Bars Bent at shew! fact in cath Beam 2129 Beam- *# Corr Nete: 12 Shear Bare j 12422 Beam S-F Corr Bars [| Columns: 19'c14* with +} Corr Bars, banded erry 2 with oh soft eH » Slab- 4 thick, = Beam- (4130 incenter~ 20 atends *7-# Corr Bars-9Benlas shown 3-¢ Corr Bars in each Bracket ——4I-@ appro, = 4 Corr Bars. 9 ch in beth direchems ‘elemas e460 Typical Round House Details. 122 Geascal Nate 4// Bars are Corrugated Bars BU € Bars are old style Others are new shyle Ateraate bars in Seep Slabs extend $f span Setmaen Reo/ Beams ints ned Bay Bars are tebe near /ep of Slab af Beams Canccrete. Rock or Crave! /. 2° 6 mis Gay R ¥ THADE MARK 6.0 S22, 000 ead Ja” thick 33-0" && | Hub Gvard el DY asides cc a¢y Sis Hitt wa achoeBol Ss. Rock or Hard SES CROSS SECTION OF SUSWAY x ‘ais 2 g Ly $03 Pes cB Ry. ee & TRACK £LEVAT/ON sr ee CYNAL ST. FO WESTERN AV. ! t = ee eee Geet) ies Section on Line A- TYPICAL SECTIONS AT. SUBWAY. Vor. XXXIX.. No 17. SECTION D-0. SECTION C-C. é & 2 2 g 6 5 § os S t < ¢ < eee | 2 § § ws iS a a 8 H o a °o ey G3 1 S 2 — ae 2 a: 3 : i| & S : 5 z : { E £ Posi eae £ (| « HRN eae | - g : rails a ' : SG the Ser | 8 § 2 Ta time H 2 -| ¢ ti gE : §| 3 11 PR PRO : e 3! « Ret 3 SS = fe 3, 3 Ris HA ‘7 z 2 ; 3 -f (se 2 S o 1) oR FRG ® | 3 H 4 =u a} 1 © ¥ 2 ne Sst A- as x = rey ar i: g s on = i 2 i 3 48 rm x Pond é > 4 x } t & i ; b Ss [mena & { AA —< ed eee ow 2y Bors, Uo (aah ! 1 Big Four Double Track R. R. Bridge near Danville, Ill. 124 ae ase : sg NH | LAIN AL Big Four Double Track R. R. Bridge., near Danville, Ill. Two 80-foot Spans, One 100-foot Span. W. M. Duane, Engineer of Construction. Bates and Rogers, Contractors. 125 Four-Track Reinforced Concrete Arch at Willoughby Run on L. S. & M. S. R. R. Clear Span, 154’. EK. A. Handy, Chief Engineer. Frank Beckwith, Engr; of Bridges. 126 Willoughby Run Arch Completed. Angola Reinforced Concrete Arch, L. S. & M.S. R. R. EK. A. Handy, Chief Engineer. Frank Beckwith, Engineer of B. & S. 128 Approach to Bridge Across Mississippi River at Thebes, [Il. 129 NS < deAE Weve) SN Tov ay, Css” Shomer, (Ch, 1h eee (@), Tey 18%, awe, dD, Breckenridge, Chief Engineer. C. H. Cartlidge, Bridge Engineer. 130 Reinforced Concrete Arch, CG. & E. I. R. R., 56-foot Span. W. S. Dawley, Chief Engineer, Hoeffer & Co., Contractors. S 132 Reinforced Concrete Arch, 75’ Span, on the Illinois Central Railway. H. U. Wallace Chf. Engr. H. W. Parkhurst, Bridge Engr. 133 BO "Face T0 FACE OF FARAPETS Re IE: XDSL OF FTAL ill it! i! ¢& Of GR106E | \\ HALF FLAN /4-O7 fe oo” : Pid a ip SS SPREES\@/-O=/$-O" x +, Le Conn Bans-l2trs vas lone Gans | = ——— ——=s : ») LS wi AER R EL a S SS SPRCES@ F"=/F-9™ uf” TFANSVERSL FECTION Reinforced Concrete Trestle, (., B. & Q. Ry., over Cave Hollow. W. L. Breckenridge, Chief Engineer. C. H. Cartlidge, Bridge Engineer. JECTION THAU¢ OF SPAN 134 Reinforced Concrete Trestle, C., B. & Q. Ry., over Cave Hollow. Ww. L. Breckenridge, Chief Engineer. C. H. Cartlidge, Bridge Engineer. Subway Under C., B. & Q. Tracks, at Galesburg, Ill. W. L. Breckenridge, Chief Engineer. C. H. Cartlidge, Bridge Engineer, 136 Overhead Crossings, Big Four Ry., Short Line Between Lomax and Hiilsboro. W. M. Duane, Supt. of Construction. 137 “g BASE OF RAIL - a a _”, ness | 9 a Pet, 2 [> z | | oe x w al. > , a nN =! ‘ 3 = 2) foe Se Ko} ‘set VU 1? 2 : i — — 10-0 —_ ake it £ o Oo a ge 2 es 2}, i ; s ad Z i o p= wi % a 5 5 o a W Vo U 3fa SO 21° LONG Ya sq. 2 Eup Min / Ce ee i a | tae ie iat ke t3°0 a a a c HALF SECTION Section of Flat Top Culvert, 20’ ob enane HALF END ELEVATION Span, Wabash R. R., near St. Louis, Mo. W. S. Newhall, Chief Engineer. A. O. Cunningham, Bridge Ener. 138 Sod ily Completed 20’ Cul vert, Wabash R. R. Wabash Plate Girder Bridge with Reinforced Concre Balustrade, in Forest Park, St. Louis. W. S. Newhall, Chief Engineer. A. O. Cunningham, Bridge Engr. te Floor, Hollow Abutments and Ornamental 140 Completed Wabash Bridge, Forest Park, St. Louis. 141 95°38" [ef of Farapels CEAaQ EA FILY. A 88 B 4 89 G aN CALESBULC LIVIS/OLY AS aS CLSLTERAL FLAT. IPE EN (L0G ~ Horr. Bors - K N Yert Bars - 24-0" 2ase of Hail \! HALF SECTIOSYAL Ft AY HALF FLAS OF BAP S It JOOTIIC. Reinforced Concrete Abutment, CoB ect W. L. Breckenridge, Chief Engineer. C. H. Cartlidge, Bridge Engineer. 142 a 40-Foot Abutments, Illinois Terminal Railway. T. C. Moorshead, Chief Engineer. Myers Construction Co., Contractors. 143 Abutment, N. O. & W. R. R. C. E. Knickerbocker, Engr. M. of W. 144 Three Track R. R. Arches, C. & E. I R. R. 20% 6” Spans. Ww. S. Dawley, Chief Engineer. Designed by T. L. Condron, 145 Built by Railroad Co. ) 3 Somrete protection , Por Gusset I Beams. ‘ S) | | - v 13-0" — ~Section~ One Type of Solid Reinforced Concrete Bridge Floor, Wabash Railroad. W. S. Newhall, Chief Engineer, A. O. Cunningham, Bridge Ener. 146 f'squere corrugared bars spacers Yeroe NoR/ag bolts 7006 ramores afrer Sack /sin place and heolas CLAM proce or f'sguare carrugated ber One Type of Solid Reinforced Concrete Bridge Floor on the CBee OF ra ese W. L. Breckenridge, Chief. Engineer; Cc. H. Cartlidge, Bridge Engineer. 147 REINFORCED CONCRETE BEAMS The number of variables entering into the discussion of the resisting moment of reinforced concrete beams makes it impracticable to develop a general formula that will correctly give the stress values at all stages of loading. However, by assuming a definite law of vari- ation between stress and the corresponding deformation of the con- crete, the resisting moment ean be evaluated for any given percentage of reinforcement by further assuming the stress in the steel. The principle of invariability of plane sections, together with the statical requirement, that the total tension must be equal to the total compres- sion, fixes the position of the neutral axis. The resisting moment is then determined by taking moments either about the neutral axis or about the centroids of compression and tension, A great variety of assumptions have been mace regarding the relation between stress and strain. The tendency at present is to consider this relation as represented either by a straight line or a parabola, and also to neglect the value of concrete in tension. In any case, the area of the stress strain curve must be found, and the position of its center of gravity located. It is evidently inconsistent to arbitrarily assume these values without any regard to the form of the compression area. It is equally inconsistent to assume a recti- linear stress strain diagram and then express the value of the total compression by anything but sf.by1. After due consideration 148 of experimental data’ regarding the form of the stress strain curve and the actual carrying capacity of reinforced beams, the most reason- able assumptions appear to be: That the compressive stresses vary as the ordinates to a parabola whose vertex is either at the top of the beam or above; and that the concrete is subjected to tensile stress from the neutral axis to a point in the section where the elongation is the same as that developed by a plain beam in cross bending. Most formule for the strength of reinforced concrete beams are based upon a rectilinear relation between stress and strain, and the safe values inserted therein, instead of the ultimate values. In our judg- ment this is not wise, as it is impossible to know what factor of safety is obtained. Most of these formule will take 16,000 pounds per square inch for the safe stress in the steel and say that there will be a factor of safety of four on the structure, because the ultimate strength of the steel is 64,000 pounds per square inch. But when the elastic limit of the metal is passed its modulus drops from 30,000,000 to 5,000,000 and the cracks in the conerete become so very large immediately that we do not consider as available any strength that can be obtained beyond this limit; though this excess is considerable if the quantity of rein- forcement used is only one-half what it should be, as is the case in the method above deseribed. With only one-third the quantity of metal necessary to develop the required ultimate strength at the elastic limit, it is possible to break the metal entirely in two. For example, in a 149 six-inch slab of rock-conerete having expanded metal embedded in its lower portion, the expanded metal will always be broken apart, though this is soft box-annealed material. But the factor of safety for such construction should be four on the elastic limit, which would be equiva- lent to about six on the maximum load. When, therefore, we give the beam credit for no more strength than it can develop at the elastic limit of the steel reinforcement, it is desirable that this limit should be fairly high. With an elastic limit of over 30,000 pounds per square inch the most economical quantity of metal reinforcement is 1.4 per cent of the area of the concrete, while with a limit of 50,000—0.7 per cent only is required, or a saving of approximately one-half in the cost of the metal. As has been stated in the introduction, there is still some diseus- sion as to just when the first crack develops in reinforced concrete: but as also there shown, a proper reinforcement will cause the beam to develop a large number of cracks very close together, in which case these cracks will be of no material consequence so long as the bars are stressed inside the elastic limit. Corrugated bars will accomplish this result. The cracks will be close together, small in size, and will not be able to reach the bar itself. With plain bars, or bars of less posi- tive form of bond, this is not true; and beams reinforced with such material cannot demonstrate immunity from injury even if the stress in the bars is inside the elastic limit. Sueh beams exposed to the 150 action of the atmosphere would be liable to have the reinforcement much corroded in time. In the following discussion it is assumed that a section plane before bending is plane after bending. It is further assumed that the modulus of elasticity of concrete varies, its value decreasing as the stress increases, and that its instantaneous value may be represented by the tangent to a parabola. To obtain an equation for a parabola that would represent the variations of the modulus, an inspection of a number of stress-strain diagrams was made, which led to the conclusion that if the modulus at rupture was taken as two-thirds of the initial modulus, the parabola so obtained would represent closely the actual stress-strain diagram. The tensile stresses in the concrete, between the neutral axis and that plane at which the unit elongation has the limiting value #f, are con- sidered in the discussion. We have, then, for Rectangular Beams, the following discussion: 151 a) eo D2 CORRDAR RECTANGULAR BEAMS. Fig. 1 Fig. re Fig. 1 is a cross section of a reinforced concrete beam. Fig. 2 represents the strain or deformation diagram at any in- stantaneous load. Fig. 3 is the stress diagram corresponding to the above strain diagram. Let Es—=Modulus of elasticity of steel in pounds per square inch. E-=Initial modulus of elasticity of concrete in compression in pounds per square inch. F=BFlastie limit of steel in pounds per square inch. f-—=Compressive strength of concrete in pounds per square inch. f=Compressive stress on extreme fiber in pounds per square inch. f may have any value less than fe. c’=Abscissa to stress diagram at vertex of parabola. s=Any assumed unit stress in steel, pounds per square inch. fx=Modulus of rupture of concrete in cross bending, in pounds per square inch. ’c=Unit deformation of extreme compression fiber correspond- ing to a stress f. ie’ =Unit deformation of extreme compression fiber at ultimate stress fo. 4¢.=Unit deformation corresponding to stress... Note that Mes and . deal with conditions after the ultimate strength of the concrete is passed, and have no value except in determining the curve, ete. 4+—=Unit elongation of concrete corresponding to stress ft. 4.=Unit elongation of steel corresponding to stress s. 153 b=Width of beam in inches. 2—=Distance from top fiber to center of gravity of compression area in inches. #1—= Distance from neutral axis to extreme fiber in compression in inches. Yy2—Distance from neutral axis to plane of reinforcement in inches. e=Distance in inches from plane of metal to extreme fiber on tension side. d= + yo = Effective depth of beam. p=RKatio of reinforcement in terms of bd = q = bd. a=Ratio of reinforcement in terms of bh = q + bh. M=Bending moment of external foree in inch pounds—resisting moment of beam. Mo=Ultimate moment of resistance of cross section in inch pounds. P;=Total stress in metal in width b. | P.=Total compressive stress in concrete in width b. | =Total tensile stress in conerete in width b. | q=Area of metal in width b, in square inches. Referring to Fig. 3, the shaded area above the neutral axis repre- sents the compressive stress diagram of the concrete, 0 y being the 154 axis of proportionate elongation, and o « the axis of stress per square \ inch. | f Before getting the area of the compression diagram, it will be necessary to get the equation of the parabola referred to the axis 0 # and oy. We have Ec, which is represented by the tangent to the parabola at the origin 0, and have also imposed the condition that the | fnal modulus at rupture is two-thirds the initial modulus. The equation for the parabola then becomes: 9 2 fa Behe a he ° » Ps aA f= Ee 7 : ” 5 Fe From which ?.¢ = ae WON NS PAIRS Pete We es oo ek (1) qe HG And Te ae ar oR pe A ae) Cerne es ee ee ee (2 Substituting in the general equation and solving for 7. we get | - = | | pene Ad ecivee i € Ae— “he lex of =i weer ewan aennce sorensas cena =aansam (3) We can now get a value for 7, : — From the strain diagram, Yi AG d—y As Ae s O1 n= the? but 4,= BE. Therefore, %1= fi cee Ra Meili iel erae sie bapeme yes lee ea CA (4) The expression for the area of the compressive stresses may be written in the form, eee Xe ce Ae ee f= Fe—=( 1-72, )B Yi DY eed eee (5) c For the area of the tensile stresses we may, without appreciable error, consider the parabolic area as a triangle (since the allowed stress is very small, the tangent and parabola practically coincide) , and can express the area by the equation, 1 ke ft a jaa EB. 2 WAS eis 5) ie Oh = Das n= Gn $answaeeadaed cess vonnce cess s semascscenessseceuessasas (6) 156 Since the sum of the compressive and tensile stresses must equal zero, we can write P,; = P. — Pt therefore p = oe ee, ot en (7) d s We have, taking moments about the center of gravity of the com- pressive stresses, the following expression for the moment of resist- ance of the section, 9 M=P, (d—z) + P; (ae y+ ym — :) 9 2 . = pbds (d — z) + dm 4 (wm += 7 Semi 2) Mees ee, (8) Piers mace UL where 7 = gg) ene (9) It is to be noted that the above discussion is perfectly general, and we may, by assuming any fiber stress /, and any stress in the steel, s, find the percentage of reinforcement required, and the resist- ing moment of the section. We are, however, mainly interested in the ultimate strength of the beam, reinforced with the critical percentage of metal (it being taken for granted that the designer will apply his factor of safety to the actual moments, designing the section for the ultimate moment so obtained), which condition obtains when the percentage of steel is so chosen that the beam is equally strong in tension and compression, or differently expressed, that the stress in the steel reaches the elastic lhmit at the same time that the compressive stress on the extreme fiber becomes the ultimate strength of the concrete. Putting these values in the general equation, No. 8, we get the following: Mo=pdb Fd ; — At ) 2) 1 Da (Yat, BY se ae ee ere eee (Sa) ce The size of beam needed to develop a required moment of resist - ance can be obtained from the above equations, when the constants dependent upon the particular materials used are known. AVERAGE ROCK CONCRETE. We have taken as the best average values for the constants for 1:3: 6 concrete the following: H.=2,600,000, f<=2000, and 74=.00015. For the steel the value of HF. is practically constant for all grades of 158 material, but Ff, or the elastic limit, varies greatly. Since we cannot utilize any of the strength of the steel beyond the elastic limit, it is desirable to have this limit fairly high. Our corrugated bars have an elastic limit of between 55,000 and 65,000 pounds per square inch. We therefore use for the constants for steel, H;=29,000,000 and F= 55,000. With these values we can derive the following equations: 70.0017 505: Ae =0.0011539 yi= .3782d | lf 0=12" ( TSS ee (10) | | G84 78heo a (11) IR 5-3-8 pee ae = A000) (7) OL eae (11a) g=.00785bd and ¢= 10 } cross section [BU abo ohi (12) M.=376ba2 =) wehave, \ h=0.01654~M............. (13) 159 GOOD ROCK CONCRETE. Using a1:2:5 mix, and good rock or gravel, we get a concrete of much greater compressive strength, but with a higher modulus of elasticity. For such concrete we may assume the following constants: E.=2,800,000, f.=2700, A= 00015 Usine the same values for the steel as before, our eq uations of é & oD E ? | design for ultimate load become, Ae =0.002169, Ae =0.0014464 yi==.4338d >) If b=12” Viz ORO hie ee (14) | die eee Pea (15) h ==] 101 eee (15a) oes °° ate eRe q=.01223bd and e= 10 } cross section | { M,=bbGO/ ae ieee (16) M.—=572b@ ) wehave, | A=01841VM (17) 160 CINDER CONCRETE. Hormaglaer cer mix of cinder concrete, we have E.=750,000, f.= 750 pounds We find, however, that the final modulus for cinder ete a pietitalt the initial, which modifies the previous | equations slightly. Substituting these values in the equations, we | get the following values for the ultimate moment of resistance of cinder concrete beams: Ie= he” =0.0020 i) ede y= 12" | tA O2 ee (18) | FAURE OE eS (19) ae = = 47.70) OL ieee (19a q=.00465bd angie ey eeeecaion Moe 000) meet ee ee. (20) Mo=207b# we have, A= 022364 Ma eee. (21) DESIGNING TABLES FOR AVERAGE AND GOOD ROCK CONCRETE. The following table gives the necessary depth and the amount of reinforcement required for a beam 12 inches wide, corresponding to the ultimate resisting moments given. 161 3) TABLE FOR USE IN DESIGNING REINFORCED CONCRETE BEAMS. 12” WIDE. 1:3:6 CONCRETE. | | | | | | | | | 1:2:5 CONCRETE. M h TN PIER ORE gon ih M Se ar cars| ia h q 50 3.70 | 0.314 | 1000 | 16.54 | 1.402 50 3.00 | 0.397 1000 | 13.41 | 1.772 100 | 5.28 443 || 1500 | 20.26 | 1.716 | 100 4.24 560 1500 | 16.42 | 2.170 150 | 6.41 543 2000 | 23.40 1.985 || 150 | 5.20 .687 2000 | 18.96 | 2.506 200 | 7.40 | .627 2500 | 26.16 | 2.218 | 200 |. 6.00 .798 2500 | 21.20 | 2.803 250 8,27 .701 3000 | 28.66 | 2.480 || || 250 6.71 886 || 3000 | 23.23 | 3.070 300 9.06 768 3500 30.90 2.620 | 300 7.35 971 3500 | 25.10 | 3.318 350 | 9.79 .830 4000 | 33.10 | 2.806 || 350 | 7.94 | 1.048 || 4000 | 26.88 | 3.545 400 | 10.47 .887 4500 | 35.10 | 2.975 || | 400 8.48 | 1.120 || 4500 | 2845 | 3.760 450 | 11.10 941 5000 | 37.00 3.185 || || 450 9.00 | 1.188 5000 | 30.00 | 3.965 500 11.70 .992 5500 | 38.80 | 3.290 || 500 9.48 | 1.252 5500 | 31.45 | 4.155 550 | 12.26 | 1.039 || 6000 | 40.55 | 3.438 || 600 | 1281 | 1.086 | 6500 | 42.20 | 3.578 || 650 | 13.34 | 1.131 || 7000 | 43.80 | 3.714 || 700 | 13.84 | 1.173 || 7500 | 45.30 | 3.840 || 750 | 14.33 | 1.215 | 8000 | 46.80 | 3.968 | 550 9.94 | 1.313 || 6000 | 32.85 | 4.340 |} 600 | 10.38 | 1.373 |} 6500 | 34.20 | 4.520 || 650 | 10.81 | 1.428 || 7000 | 35,45 | 4.685 | 700 | 11.22 | 1,482 7500 | 36.70 | 4.850 750 eel. OL 1.5385 || 8000 37.90 5.010 800 | 14.80 | 1.255 8500 48.23 4.090 | 800 | 12.00 1.585 || 8500 39.10 5.165 850 | 15.25 1.293 || 9000 49.63 | 4.208 || 850 12.36 1.633 9000 40.25 5.320 | 900) 15:70) 1) 1.331 9500 51.00 | 4.3825 | | 900 12.72 1.680 9500 41.35 5.465 950 16.12 | 1.367 || 10000 52.32 4.436 1 950) 13.07 1.726 || 10000 42.40 5.605 | { \ i The moments given in the table are the ultimate moments of resistance of the sections in thou- sands of inch pounds. To use table first apply desired factor of safety to actual moments. M=Ultimate bending moment of external forces in thousands of inch pounds=Mo. h=Depth of beam in inches: d=Depth to plane of metal, taken as 0.9 h. q=Number of square inches of metal required in beam, in width of 12 inches. 162 TABLE OF SPACING REQUIRED FOR DIFFERENT SIZES OF CORRUGATED BARS FOR GIVEN AREA OF METAL IN RECTANGULAR BEAMS ONE FOOT WIDE. OLD STYLE BAB. NEW STYLE BAR. x Cto CG yn 34” Yel 1” 434" yr VAL yu BYU EWA Ig | 1” 114” of Bar| BAR | BAR | BAR | BAR | BAR || BAR |} BAR | BAR | BAR | BAR | BAR| BAR| AR | 2” | 1.082”) 2.2220”! 3.3000”) 4.2000”) 6.4800”) | 0.8620” 0.6620”) 1.5021”) 2.3420”! 3.36.0”! 4.6200”) 6.0000”! 9.370” 244” | 0.860”| 1.7810”) 2.6520” 3.3620”! 5.1401” | 0.2920”| 0.5810”) 1.200”) 1.8720”) 2.6920”) 3.7000”) 4,800” 7.5001” 3” | 0.7220”| 1.4810”) 2.202”) 2.800)””| 4.28120”! | 0.2410”) 0.4400”) 1.0010”| 1.56020” 2.2401”) 3.080]”| 4.0020” 6.2400” 3%” | 0.620”) 1.27101”| 1.89100”) 2.4000”) 3.67200”) | 0.2100”| 0.380”) 0.8620”) 1.3400”) 1.9210”) 2.6420” 3.4820”! 5.3600” 4” | 0.540”) 1.1100”| 1.6500””| 2.1020”) 3.210” | 0.1810”) 0.380”) 0.7500”) 1.170” 1.68100” 2.310”| 3.000”! 4.6800” 4%" | 0.480)””| 0.99F0”| 1.472)” 1.8600”! 2.8501” | 0.1600”| 0.2900”) 0.67120”| 1.0400”| 1.49120”) 2.0520”) 2.6700”) 4.1620” 5” | 0.4820”! 0.8920”) 1.320)”) 1.6800”) 2.570” | 0.14120”) 0.2620”) 0.60020” 0.94020”) 1.3400”) 1.8500”) 2.4000” 3.750” 5%” | 0.3901”) 0.810”) 1.200”) 1.52120”) 2.3400” | 0.1800” 0.2400””| 0.5500”! 0,852” 1.2210””| 1.682)””| 2.1810”) 3.4100” 6” | 0.360”) 0.7420”; 1.100”! 1.40F0”| 2.14020”) | 0.1210”) 0.2210”! 0.5020” 0.78120”) 1.1100”| 1.5800”! 2.000”; 3.1200” 644” | 0.380”| 0.680”) 1.0200”) 1.29120”) 1.9720”! | 0.1100”| 0.2000” 0.4620”| 0.7200” 1.0300” 1.4220” 1.8520” 2.8807” aft 0.310” 0.630” 0.94120”) 1.2020”! 1.8800”| | 0.1020”; 0.1910”! 0.4800”| 0.6720”| 0.9600”) 1.32200”! 1.72120”) 2.6820” 1%" | 0.2912)” 0.5912”) 0.880”! 1.1200”) 1.7100”) | 0.1000”; 0.1800”) 0.4000””| 0.6200” 0.89120”) 1.280” 1.6020” 2.5000” 8” | 0.2711”! 0.550)” 0.8200”) 1.050”) 1.6020”) | 0.09120”! 0.17120”| 0.8800” 0.591)”| 0.8400”) 1.1501”| 1.500)”| 2.3420” 8%” | 0.250” 0.5200”) 0.770’”| 0.99120” 1.5100”! | 0.08C0”| 0.1620” 0.85L0””| 0.5500” 0.79120”) 1.0900”| 1.4210”| 2.2000” 9” | 0.2400”) 0.500”) 0.7301”! 0.9820”) 1.48100” | 0.08L0”| 0.1511’) 0.3300” 0.5200”) 0.7520””| 1.02120”) 1.3300”| 2.0801” 944” | 0.2300”) 0.4700” 0.6910” 0.88100” 1.3501”) | 0 0810”) 0.1410”! 0.8210”| 0.4910”) 0.7100”) 0.9700” 1.2600”) 1.970” 10” | 0.220” 0.44120” 0.6620” 0.8400”) 1.28120” | 0.0700””| 0.13 1”) 0.300” 0.4700”} 0.6720” 0.9220”) 1.2000” 1.8700” 11” | 0.200”) 0.4000” 0.6000”) 0.7600”| 1.1700” | 0.0700”) 0.1220”) 0.2720” 0.4820” 0.6120” 0.8420”) 1.0920”) 1.7000” 12” | 0.180”| 0.370” 0.550)” 0.700)” 1.0702)” pve 0.1120”|.0.2520” 0.3920” 0.5620”) 0.770”) 1.00200”| 1.5600” 163 The accompanying curves give a means of readily figuring the ultimate resisting moment of a beam reinforced with a certain ratio of reinforcement, and at the same time gives the unit stress on the extreme fiber in compression, and the unit stress in the steel. An example will illustrate: Find the ultimate strength of a beam, 1:2:5 conerete, when p = .0101. From the curve M,. = 480d’, s = 55000 and f = 2500. Should the beam be over reinforced, the unit stress in the steel will be less than 55000. Taking p = .01418, AM, = 597d’, while s = 50000. For convenience, tables have been prepared which give the ulti- mate moment of resistance of beams 12 inches wide, of varying heights, and reinforced as stated. 164 ROCK CONCRETE; 1:3:6 MIX. ULTIMATE RESISTING MOMENT OF REINFORCED CONCRETE BEAMS, 12” WIDE; VARIOUS PERCENTAGES OF METAL. ga| 624 | se5 | ga5 | 624 | ge4 | gags | €B3 | ges | gBS cll ses | see | ses oes s2e]/ ase | sez | tee | sea SG) 385 | MSh | 485 es mee); ess | Rae) eee | eg Bist. eed ee i Coe | ss | Sats 27 | SS || 2S || =F | Weep) Ee) = Io iat) S72 pecielae ello a yO pe eke) pai lhe) oe Fe re ne oe eS pet |) Relates, oS re 4” 18000 34000 50000 58000 61000 65000 70000 73000 76000 a 28 54 78 91 95 102 109 114 120 Gu 40 77 113 131 137 146 157 164 172 ts 55 105 154 179 186 200 214 24 234 ie! 72 137 201 234 244 260 278 292 306 ye 91 174 254 296 308 330 352 370 387 LOM 113 215 314 | 365 381 407 435 468 478 elk! 136 260 380 442 461 493 527 553 579 i PAE 162 309 452 526 548 586 627 658 689 13” 190 363 5381 618 644 688 736 T12 809 14” 221 421 615 716 | 746 798 854 895 938 15! 253 484 706 822 857 916 980 1028 1075 16” 288 550 804 935 | 975 1043 1114 1170 1225 17/ 325 621 907 1056 1101 1177 1258 1320 1382 18” 365 | 696 | 1018 | 1184 | 1235 1320 1410 1480 1550 19” 406 775 1135 1318 1375 1471 1571 1648 | 1725 20’ 451 | 860 1256 1462 1524 1629 1741 1827 1915 2277 545 1040 1520 1770 1844 | 1972 2108 2212 | 2316 24” 649 1238 | 1810 2103 | 2195 2347 2508 2630 2555 UNIT STRESS IN STEEL AT ULTIMATE LOAD. S= | 55000 | 55000 | = 55000 55000 || 51000 | 44000 | 385000 | 34000 30000 UNIT STRESS ON EXTREME FIBRE IN COMPRESSION AT ULTIMATE LOAD. t= | 41175 | 1580 | 1880 2000 || 2000 | 2000 | 2000 | 2000 2000 | 165 ROCK CONCRETE; 1:2:5 MIX. ULTIMATE RESISTING MOMENT OF REINFORCED CONCRETE BEAMS, 12” WIDE; VARIOUS PERCENTAGES OF METAL. re en ir pecs Ieee (ae ey een ee S¢| 225 | $32 | $23 | 223 | 228 || S28 | S22 | S22 | Ses Selma g | MSe | men aes Sas maeB lames | M58 | Hee asi eS | ser | sei |] sei 2 | Be a Se Se wll ae Agel = lol i .o | eros ss iio S70 3, Oe eo | Salon lis peo sus sos sos Bish ios a aoe aos aoe a 35000 51000 66000 81000 88000 || 93000 97000 109000 112000 Di 55 8 103 127 13 145 151 163 176 6” 78 114 149 183 200 210 218 235 254 Ue 107 155 203 249 272 285 297 320 345 Sz 140 203 265 325 355 373 388 418 451 Sa ee LT 257 335 412 450 472 491 530 571 10” 218 | 318 414 508 556 583 606 654 705 ible 265 | 385 501 615 672 705 734 791 852 elo lb | 458 596 732 799 840 873 942 1014 } seit 370 537 700 859 938 985 1025 1105 1192 14” 428 622 812 997 1088 1143 1188 1282 1382 15/ouaiee 492 715 932 1144 1249 1312 1365 1472 1586 16” 560 | 813 1060 1301 1421 1493 1553 1675 1805 17” | 632 ee oles 1196 1469 1604 1685 1752 1890 2035 18” | 1708 1029 1541 1646 1798 1890 1965 2120 2282 19” 790 ees: 1495 1835 2005 2105 2189 2360 2542 20) eae ScD 1271 1656 2037 2220 2332 2425 2615 2818 || * 22 1058 1537 2004 2460 2687 2823 2938 3165 3410 24” 1259 18380 2385 2922 3196 3360 3494 3765 4055 UNIT STRESS IN STEEL AT ULTIMATE LOAD. | Ssis 55000 55000 | 55000 | 55000 || 55000 || 49000 | 45000 37000 30000 UNIT STRESS ON EXTREME FIBRE IN COMPRESSION AT ULTIMATE LOAD. | f= | 1700 | 2080 | 2360 | 2600 || 2700 | 2700 | 2700 | 2700 | 2700 166 The formule as developed are not readily adapted to the solution of the general case, in which f and p are fixed, unless the correspond- ing sis known. Curves have accordingly been drawn from which the value of s may be obtained, and the value substituted in the formule for solution. Example: A beam of 1:3:6 conerete has a ratio of reinforce- ment of .01. What stress in the steel will be required to develop 1,400 pounds per square inch extreme fiber stress in the concrete? On table page 168 read from left to right until vertical marked 0.01 is reached, then upwards until curve, f=1400, is intersected, from which it is found that s=28750; similarly for any other case. It is to be noted that a .7% reinforcement of steel with an elastic limit of 30,000 pounds per square inch will develop less than 3 of the full strength of conerete in compression. 167 TRADE MARK a DAR AIN. E BEAM f bd. | RESSES TO PRODUCE CE FIBRE STRESSES IN CONCRET. JOR Webb, Habeten MS oT 3 8 8 ohew= $e aul nE3§ = oT qe i a ‘RATIO KEWFORCEMENT "Diba, 2 oe a a a QO coompinere paren 8 168 (THE curves on pages 168 and 169 are not intended for use in designing, but are merely incorporated ‘1 the discussion to make it more complete mathe- matically. A careful study of the foregoing discussion 1s absolutely necessary for the correct interpretation of these curves. a) 2 ia {e — GOwONITS PAPER 169 ‘ RA 110 Gr REMFORCEMENT | 0 bd-p. g5000 ets ae ea} [ees ee O00: THE FORMULA , Mo= eh FOR DIFFERENT RATIOS of REINFORCEMENT. ewer | TOF? yecniric RATIO PM ee ,, RATIO OF REINFORCEMENT To 38 bd “p. 170 eo Sat Satieernniea awit STRESS ‘IN i EXTREM i 'FIB “ cunve 51 a ULTIMATE LOAD , FoR DIFFERENT. aaa COMPRE SSION, "CURVE GIVING A Ko re he FORMULA, Mo= aaeee : FOR OMFFEREWT RATIOS OF Hogboulahe eo Daa 3 a : Is. 8 cal es Wes! Oye wal ICIENT OF EFF REINFORCED CONCRETE BEAMS OF CIRCULAR OR ANNULAR SECTIONS It is hoped that the following analysis and formule will be found useful in the design of chimneys, or to obtain the resisting moments of circular or annular sections. In order to simplify the equations, the value of concrete in ten- sion is neglected, and the modulus of elasticity of concrete is consid- ered constant; these assumptions are justified on the ground that the results are sufficiently accurate for all practical purposes. Since the formule are meant to be used for working values of the stresses, the parabola representing the stress strain diagram will practically coin- cide with the tangent representing the initial modulus. Also, had the tension in the conerete been considered, which has a high value at working stresses, the per cent of steel so determined would have been very small and entirely inadequate to develop the compressive strength of the concrete at ultimate loading, when the effect of the tension on the concrete in resisting flexure is practically nil. By neglecting the tension, the factor of safety is made somewhat proportional to the working values chosen. In addition to the above, the usual beam formule assumptions are made, such as invariability of plane sections, absence of initial stress, ete. CIRCULAR PLEATS S7G./. We VE TG. Section of Beam. Stress Diagram. Strain Diagram. 173 Let figure (1) represent a cireular section in which the steel is considered as a continuous shell of thickness ¢, and the neutral axis is at a distance A above the center of the section. Let R=Radial distance to outside of beam. r=Radial distance to center of reinforcement. /.=Extreme fibre stress in conerete. f,—=Maximum stress in steel in tension. yi=Distance from neutral axis to extreme fiber in compression. yo=2R—. ys—Distance from neutral axis to maximum stress in steel. Ys=21T— Ya. f=Stress at any point. 9—Are corresponding to ordinate y. $=Are corresponding to ordinate 4. Any elemental area parallel to the neutral axis can be expressed by ldy, where =V ey If modulus is constant it follows that Mad ipo tical gy Aitnds eee ee ee (22) 174 Elemental force = fldy = (y—A) (Ry?) ay, 1 (23) AY 9) R Ee al i y (Rey?) ?ay—a (R’—y’) iy| Yi A A Integrating and substituting limits __2fe Seth ies AY 2 22 Lie 1 5 P.= 7 Ee A*) 4 Asta 5 (R°—a°)" + 5 Sin” pI (24) If m=hky and m+y=2R deed 4 Balt peel k= UI 1k R+A Then y= ye 175 By substitution and reduction the total force in compression reduces to OWE PLease a ec $ 1— a ieaae 3 | emer s| Sahn) m+) aa atae9) a (4) As the expression inside the brackets is a constant for any value k, equation (A) reduces to the form P= Re | The moment of this foree P. about the neutral axis can be found by multiplying the elemental area by its lever arm (yA) and integrating: Elemental moment dm=tldy(y—4) = : (GEA ea?) ay ee (25) G1 176 By expansion >) R eee so ae : ed | y (R’—y’) Pay—23 fy (hy) bay + nly A A Integrating and substituting limits. Pf. R2 Es ve lbe wnt) Ea 20°-+13 €)| 32 2 AG cess a4 — rca ne Substituting Voy Rk, (Gt Aid We have for the value of the moment of the force P. about the neutral axis Memtetel [OBA POK (i RU ee ee Sma Cleer) 4 Ae) heme |e) 4 (1—k) k* F )]). =e 2 Oa Pay +2415") ‘ip Die Sa Mk tal ne (B) Which for a definite value of k reduces to the form ie Cepre To find similar expressions for the steel, it will be found con- venient to ‘express the area element by trdé. Referring again to the figure , y=R sin 6, and —_— Nits) Y4 A Element of forve=(4 )iatrav Y4 | Total foree __ 2ftr rae and substituting limits: P= rT reosp-a (5 | Ce Be ae oe (29) aD ~ I+hk from which it follows that the total force of tension in the steel is P.=fet ofan” ou (j-"h) n(5 +sin4 5) | ee Pg ae (C) or Cater: 179 To find the moment, multiply area element by its distance from neutral axis (y+4.) (y+)? dms=?f WA UG. tet oo ely A eae ieey ee ae ee (30) M2. 5 (ray ftrde z..a fo ee ee ee ee (31) —8 Integrating and substituting lmits— B sme) T itp ne (=+ : +2arcoss +a? oa Pr 6 3 (32) Ya At DP Substituting for 4 and rohenee terms fetr? Fines el —K ered asl Wea es ; 3k (1—k : arn ate aul p+ OB |) which for any given value of k reduces to the form Me= Oaftr? 180 Assigning values to f. and f, will determine the resisting moment, : Opies : s : , since ees will loeate the neutral axis and equating P to Fs will 4 “sg determine the thickness ¢ of the steel shell or the percentage of the reinforcement. The resisting moment is the sum of MM. and Ms; for the proper values of fk. Example: The resisting moment of a 20” circular beam is required. Allowable fiber stress in the conerete 700 lbs. per sq. in., assuming a class of concrete in which the corresponding deformation 7-=.00026; and that the modulus of the steel is 29,000,000, we have Meso mi olawe that 478 ys —.OO055 yA, ah. 73r ya rt a? 1+.473 R=10", r=8” A=4.21” ke= ne =.408 a= ae =31 181 From table 4.=.408, P.==.31l/.R’ and for k,=.31, Fs=2.81f.tr, P.=P, then .31f. R’=2.81f.tr, from which t=.06, or 4” corr. bars 4’ cts. may be used. Resisting Moment. From table for'k.=.408, M-=:106f.R’, for Ke==.31, Ms=3.05fstr’. M:=M.+ Mz, or, 0.106/,R?+3.05f.t7°=261700, or practically 262,000 in lbs. Resisting moment of an annular section is obtained by subtract- ing the values of P. and M, for the inner circle from those of the outer. Care being taken to use the proper values of k. ley Ad Example: The outside diam. of a chimney is 7-0, inside diam. 5'-0 ft., determine resisting moment and reinforcement for f-—=700 lbs. and f<=16,000 lbs. i410 30 182 As in the previous example ye from which Y4 42—.473 X40 eee : LT ” Teo wae 4215.7 Se 4915.7 .456; Corresponding P.=.347fa. Ry 30—15.7 po === : ny TO — 99Ef p2 kro 30415 7 .81; Corresponding P.=.228feRes 30 hoo= mo) < 700=500 Ibs. per square inch. Total foree in compression becomes 347 fakY— 228 fe2Rn® =8325,800 lbs. + — i, —9 4! : k= 404.15 7 OTe Total tension equals total compression .°. 325,800=2.43f;tr or t=.21, or &” bars 4” ets. may be used. Resisting moment. Ma=.128fak:*=6,630,000 in Ibs. Ma=.065f.2Re—=877,500 in lbs. M.=2.63f,tr°=14,180,000 in lbs. Mr=6,630,000—877 ,500-+14,130,000=19,882,000 in lbs. 183 This resisting moment is probably very much larger than would be required for such a stack, consequently the thickness of the con- crete and the amount of reinforcement should be reduced until the resisting moment so obtained equals the external bending moment. TABLE OF CONSTANTS FOR EQUATIONS A, B, C AND D FOR VARIOUS VALUES OF k. Ca 0.224 .265 Cy Pe ee Ge | 0.061 2.592 3.082 082 2.531 2.902 104 2.473 2.740 124 2.420 2.591 149 2.370 2.425 196 2.279 2.222 246 2.198 2.023 296 2.125 1.850 345 2.060 1.700 393 | 2.000 1.571. TEE-SHAPED BEAMS LOCATION OF NEUTRAL AXIS. Tee-shaped beams will be discussed only for the conditions existing at ultimate loading; the percentage of metal being such that the ultimate unit stresses in the concrete and steel are reached at the same time. The tensional value of the concrete has been neglected. In beams of Tee section y: is the same as for rectangular sections inas- much as the position of the neutral axis is determined by the relative values of maximum compressibility of the conerete and extensibility of the steel inside the elastic limit or by the ratio of 4<” and As. We then have as before, 4 ea UE s/o (33) i Ft Este Meiicaldaiin nieaa cle sie viele e sineie cals sislalsleeivivie vvicle dere) leavicsiseiasinns sie ebebesea\aia mie ™ seis e VALUES OF b; AND t. Let Sy=Total shear in pounds along the two vertical planes of attach- ment between the wings and beam; Sn=Total shear in pounds along the horizontal plane of attach- ment between the rib and floor plate; —=Maximum shearing strength of conerete in pounds per square inch: Y1 l=Lenegth of span in feet; P:=Total compression in pounds at maximum load between neu- tral axis and underside of floor plate; P-=Total compression in pounds in flange at maximum load. All other functions as shown on eut, and in inches. There are three methods of failure above the neutral axis: 1. By compression in the flange; 2. By deficiency in Sy owing to smallness of ¢; 3. By deficiency in Sp owing to smallness of 0. 186 ae It would be desirable to have equal strength in all these directions, but this is not always possible, owing to other considerations. Where it is possible we have, PO eS IN ee oars foc cae ccctetneerancnecoc tale c seen desea 4adeserers-sonacpuasbteskealssecsne=n: (34) MATES OL eee eee ea ede e ate ccna cs csusedesGescrensenetss snes -cronsessniaceractacsaeseasee (35) Sutil MMR eee OLO eae crate hecua tater at etotecnenspsaucndassieesnsvavermasos tenses vanecaetticreny veedeed (36) The shearing stress is a maximum at the ends and for uniformly loaded beam varies uniformly to zero at the center. The value Sy may be increased about 50 per cent, owing to the metal reinforcement in the underside of floor plate which is always present in these designs, and placed in a direction at right angles to the tee beam. If vertical shear bars were used the same increase could be made in Sn, but ordinarily these would not be used, so we will not separately dis- cuss this condition. Equation (36) then becomes Ba OEB Ecole cs cata eece cite saserasrmestes secoesecin erbenecaaceiepenaccsuaecerts reses nase SV) To get an expression for Pc”. We replace the stress strain diagram by a parabola with its vertex on the top of the beam, and coinciding with the stress strain diagram at this point and at the neutral axis; the area included by this parabola will closely approximate the actual stress strain area. By using this area we simplify the mathematics and get results sufficiently accurate for the tee beam discussion. We can then write i} Pex (24K 8—BR®) felriyevsecesescceee ssscssenssnssannns sannennnnnnsceseseeeeceees (38) 187 RS wo MS, a oh) This is on the assumption that the outer ends of the wings would be just as heavily stressed as the portion next to the beam. This would not be the ease. the stress varying according to the ordinates to a parabola from zero at the outer ends to a maximum at the beam, and we should, therefore, multiply the above value by 7g. The portion of this width over the beam itself would not be subject to this modification, but there are other influences tending to offset this, so that the above is sufficiently correct. . = Then tay (2 KFS) F601 set coevnacts Geeta en Cees tae en (39) aes Was Hed OU F From (35) and (37) we see that if ¢ is not less than 3” failure will not oceur v9 along the vertical sides of beam where wings attach. Now we will assume at once that ¢ will not be allowed to have a value less than this. This leaves us to consider the relation between Pe” and Sh only. We then have from (35) and (39) s Bbol=p (24+ K3—3K*) feb: from which 27bal i a1 GO Tal ab or ML Wh 7a tr ea OS DUN GooUa agp cauarnpooaGuncaboannaciacede mocden dasadensasr a OS (DA aees Raney, (40) The theoretical relation between o and fe is f ? , : rr Stang S&e Johnson’s Materials of Construction, [Ope a iceceebeerice (41) where @ is the angle made by the plane of rupture on a compression specimen of moderate length with a plane at right angles to the direction of stress. For concrete this angle is about 60°, hence But this value is high in view of the liability of concrete to crack, and we recommend that twice the strength be provided in the shearing values on this basis that is used in compression. We would then have Sn=2P” or ee LS 4(24+K*—8K’) fey we have with sufficient accuracy, 92 peta. SUL IER Ars eee eae (43) (2+ K°*—3K’) We will now insert this value in (39) and proceed to obtain the moment of resistance. At times the above value of 0: would be greater than the spacing of the beams, in which case the latter distance would be used for the value of }; in (39) and the other values worked over on this basis. and substituting the value of 189 From (39) and 43) then we have, Py'= = H,1 fae Scoot ce ee Tapa cad ee Re sac gem see (44) also Ps ==fogihc (1s Kk) Uae ee ee (45) Thettl.=—. ba = jebl-+ fot K2(1 SK) Diceert hs eRe ee (46) Pi Fok is eh (47) But iP Po hae ee ee ee (48) From which q= al 3 bl+fyK (1— 4x0 | ieee eee ee a (49) Mo=P.'3 Ky + Pe nT EM py ii Medea ate lioe (50) Problem: Required the size of Tee-shaped beam necessary to carry a total ultimate load of 600 pounds per square foot on a span of 32 feet, ribs to be 9 feet apart. 2x9x600x102 Then Me asd eee 022=8, 300,000 inch pounds. 190 rR 5S SS tS ey 2 3 For this spacing of beams the floor slab should be 4” thick. We will assume d=20"=y1+ y. Using good rock or gravel concrete, we have from (14) i—.433 X 20=8.66' ; and y=11.34 see 0Oey Deere = 8 66 Oo" and K*=.289 Po =teayK’ (1—4K) b=2700 X 8.66 X .289 X .82b—= 55000 P,'= # jcbl= =X 270032 =38400D P.=P,=Ps' + Pe" =43900b —43900__ ~ 55000 | uM © oa laa il K Mo=Pe X$ Kit Pe ( is Jn Pa | =5500 X 3X 4.66b-+38400 X .769 X 8.66b+43900 X 11.3845 =17200b+ 256000b+498000b =771200b Then 8b 191 from which __8,300,000__1,) gr Gabi Substituting in (43) we have 2b1 ty nf yt — Kew -==62 SS) —? . (2+ K°—3K’) 9 As this value of };, which we have used in determining the value of P.”, is less than the spacing of the beams, we may use the beam b 3° From the foregoing we derive the following relations for a good erade of rock or gravel, 1:2:5 Portland cement concrete, where f= 2700; H.=2,800,000; Hs==29,000,000; F=55000. P=2700 y:K?(1—4K) b Pe 12000) (aches 55000 Z t : < : Mo=Pé Cetin) + Pe! (a5 =ultimate moment of resistance 1n as determined. It will be noted that ¢ is greater than and q= —=number of square inches of metal required in rib. inch pounds. All measures of length in inches except 7, the length of span, which is in feet. The value of ¢ must be greater than one-third of 0. The value of }; represents the maximum width of flange that can be utilized in figuring the strength of the Tee, and its value is: 2b1 (2+ K°—3K’) x the distance between the ribs, the above formule and the tables cannot be used, and a value of d will have to be chosen that will keep th within its limit. b= Where this value of 1, exceeds materially 193 TABLE FOR THE DESIGN OF TEE BEAMS. Area of Steel d yl y2 K ke ks Ultimate Moment | bi 10 | 4.88 5.67 .076 .0058 -0005 b(.0012+-.0218 1) b( = 390+ 9600 1) 2338 bl. 11 4.76 | 6.24 .160 .0256 -0041 b(.0056+-.0218 1) b( 2100+10800 1) .218 bl. 12 5.200) 6.80 231 0534 .0128 b(.0126+.0218 1) b( 5270+12000 1) 208 bl. 13 5.63 7.37 .289 .0835 .0241 b(.0208+.0218 1) b( 9720+18200 1) -200 bl. 14 6.06 7.94 3840 1156 0898 b(.0805+.0218 1) b( 15600+14400 1) .195 bl. 15 6.50 8.50 3885 .1482 .0571 b(.0412+.0218 1) b( 23100415600 1) .191 bl. 17 7.37 9.63 .458 .2098 .0961 b (.0642+-.0218 1) b( 41900+18000 1) 185 bl. 19 8.23 10.77 .513 2631 .1350 b(.0881+-.0218 1) b( 65450+20400 1) 181 bl. 12 5.20 6.80 038 -0014 -0001 b(.0003+.0218 1) b( = 185+11400 1) .192 bl. 13 5.63 7.37 112 .0125 .0014 b(.0033+.0218 1) b( 1425+12600 1) .180 bl. 14 6.06 7.94 175 -0306 -0054 b(.0086+.0218 1) b( 4080+13800 1) 172 bl. 15 6.50 8.50 .231 .0534 -0128 b(.0157+.0218 1) b( 8230+15000 1) .167 bl. 16 6.93 9.07 219 .0778 .0217 b(.0240+.0218 1) b( 13680+16200 1) .162 bl. 18 7.80 10.20 359 1288 .0463 b(.04344-.0218 1) b( 28800+18600 1) .155 bl. 20 8.66 11.34 423 .1789 0757 b(.0653+.0218 1) b( 49500+21000 1) 150 bl. 22 | 9.53 12.47 475 .2256 1072 b(.0891+.0218 1) b( 76000-+-23400 1) 147 pl. 15 6.50 8.50 .077 -0059 .0005 b(.0018+.0218 1) b( —-885+14400 1) 155 bl. 16 6.93 9.07 184 .0179 -0024 b(.0058+-.0218 1) b( 3100415600 1) 148 bl. 18 7.80 10.20 .231 -0534 .0123 b(.0189+-.0218 1) b( 11850+18000 1) 139 bl. 20 | 8.66 11.34 807 .0943 .0289 b(.0360+-.0218 1) b( 25959+20400 1) Absa ol 22 | 9.58 12.47 3870 1369 -0506 b(.0561+-.0218 1) b( 45800+22800 1) 129 bl. 24 | 10.40 13.60 -423 .1789 .0757 b(.0785+.0218 1) b( 71400+25200 1) 125 bl. 26 | 11.26 14.74 467 .2180 .1018 b(.1015+.0218 1) b (102000+-27600 1) si23 DLs 28 | 12.15 15.85 507 -2570 13038 b(.1275+.0218 1) b(140000+80000 1) 121 bl. Note—The value of t must be greater than 3b and there must be metal reinforcement in slab at right angles to beam. 194 Gisiits: SHEAR IN REINFORCED CONCRETE BEAMS Let M,=moment of resistance in inch pounds at 12” from end of beam carrying its ultimate load. M,=ultimate moment of resistance in inch pounds at center. l=span of beam in feet. 4>=elongation per inch at the plane of the metal, at section 12” from end. b=width of beam in inches. o=—ultimate shearing strength of the conerete, about one-fourth the ultimate compressive strength. Other functions as shown on pages 153 and 154. Then M\= z My for WNnfoOrMly lOAdSA. DOAM.......-.c20ss.ceacegeeecnr-anoeroe ssssosses (1) M, PS NESE NORTE PREC 0 aes renee arcsec see (2) 3Y> 3 d ), Es ab : b 2—hy 2 Fr PYD ocecccrencvecccccccccccsccccseesecss seeesseccccces cocccscseresccocosces 3} y= bys? + jee (3) | YN Yoo nnnereereceens cennecenscecnscccnceccnseecencesenenes seeeeaaneceone seen seeeuacesees (4) | T Ay 2 jee Z TS Ek ad ed ce eo ee nee ee eee (5) After designing the beam by the beam formule, pages (159) and (160) - yityo, He, Es, and b are known. From (1) we obtain M, and from (3) and (4) y, and yo. From (2) will be obtained 42, which inserted in (5) will give the pull 195 in the bars which has to be absorbed by shearing stress in the concrete over an area=12b. As it is desirable to take twice the factor of safety in shear that is taken in bending, Ps should not exceed 6bc, where ¢ is taken at one-fourth the compressive strength of the concrete. If beams are loaded at two points some distance apart the maximum shear- ing stress is likely to be of a very different character. The bending moment being uniform between the loading points, the first cracks on the tension flange are as apt to occur under one of the loads as in the middle, and this will greatly reduce the strength of the anchorage of the ends of the bars repre- sented by the shearing resistance of the concrete along the plane just above the metal between the crack and the end of the beam. This is especially true, as the maximum shearing stress along this plane is likely to be double the average stress. In such cases, as also in cases of uniform load where the shear exceeds the limits above given, the bars should be bent up at the ends, as shown in Figs. (1) and (2). 196 FLOOR PANELS The foregoing discussion applies to beams on knife edge supports. Rectangular beams when incorporated in floor panels will have just about twice the capacity given by the formula, and the following tables, I to VI, are made on this basis. To give a scientific discussion of this is almost impossible. It is a matter of actual practical experience. We can, however, see that it is reasonable to expect about such an increase. The haunches built down upon the lower flange of the supporting beams give a continuous girder action such as reduces the external bending moment one-third. Also the floor in adjacent panels produces an interior arching action, increas- ing the area of this compressive stress diagram about one-third, the effect of the two being to double the moment of resistance. If the beam does not have the haunches projecting below as de- seribed, but is itself the full depth throughout, then we would add one- third only to the value of the moment of resistance. Beams of Tee shape are not greatly strengthened by incorporation in floor panels, inasmuch as most of the compressive strength comes from the flanges, too high up to be affected by the interior arching action. That is to say, P.” (see page 186) would remain practically the same and P.’ would be increased probably 50 per cent. But the latter is usually so small as to make this increase of little value. 197 TABLE I. | GIVING BREAKING LOADS FOR CINDER CONCRETE FLOOR SLABS WITH No. 16GA. | 2%)" MESH EXPANDED METAL IMBEDDED. | | U=Uniformly distributed load in pounds per square foot, in addition to dead weight. C=Concentrated load in tons, in middle of slab 12” wide. SPAN IN FEET. Thickness Mo”=Floor-Slab of Slab 4 | 5 | 6 7 | 8 | 9 | 10 Moment of Resistance | ininches. nl rT Tl ae =I Mo | jule|lujc| ujelu eljulc|ulc|ule| | 2 680 0 68 435/0.54|) 30010 45|/....|-...|/o.--|-+- Stal ee oa 16300 | 2 _|{106011.06!) 680,0.85]| 470)0.77)) 345|0.61|]... |....|/-...]-+-.]l. 25460 | 3 /1360 1 36)| 8701.09 | 605 0.91|| 44510.78|| g4ol0.¢8l/....|....||-..-[.--: 32830 | 3% 1640 1.64 1050 1.31,| 7251.09 535,0.94|| 410|0.82} 3250.73 a feet 39240 | 4 1900 90/1220 1.52| 845 1.27 620 1 09!) 475,0.95]| 380 0.85) 305 0.76 45700 4% 2180.2 18) 1390 1.74) 970|1.45| 710/L 24/| 545 1.09] 4300.97) 350)0.87 52200 | 5 2450) 2.45 1560 1.96||1090 1.63, 795) 1.40|) 610/122] 4511.09! 3900.98) 58750 | 5% 2740 2.74//1740 2.17/|1210|1 81) 890/1 55 | 680/1 361) 540 1.21] 440/11 09, 65300 | 6 (30003 00,1910 239 1880)1.99, 975|1.71|| 750 1.49 590 1.33 480 1.20) 71900 | u=e - canoe l=span in feet. 198 TaBLe II: GIVING BREAKING LOADS FOR CINDER CONCRETE FLOOR SLABS WITH No. 10GA. | 3” MESH EXPANDED METAL IMBEDDED. U=Uniformly distributed load in pounds per square foot, in addition to dead weight. C=Concentrated load in tons, in middle of slab 12” wide. SPAN IN FEET. Thickness : | Mo”=Floor-Slab of Slab 4 | 5 6 1 7 8 9 | 10 | Moment of Resistance | in inches. l i l l | =2 Mo u|c Jule} ule] ule] u c}lujcilu co] 2 720|0.72)| a60lo.58|| 32010.48| ...|....|)-.-.[.e-ffeee-feceeffeee| eee] 17350 2% 1130|1.13]| 730]0.91|! 505)0.76'| 370|0.65))....).--.|Jesee[eees{feeee [ees 27200 3 1620/1. 62)|1035/1 29. 720 1.08 525/0.92) 405 0.81 alte Kes Lie 38800 | 3% 2140/2. 14|/1370/1.71/| 950/1.42'| 700)1.22!| 535)1.07|| 425/0.95)|... | ..-- | 51300 4 2490/2 49}|1595 1.99 1110) 66|| 815/1 42) 620/1.24)| 490\1.11|| 400 1.00] 59800 41, 2860|2. 86||1820/2.28, 12701.90,| 930|1.62!) 710/1.42)) 565)1.26)| 455) 1.14), 68300 5 3200/3. 20 205012.56 /1430|2.13||1050)1.83) 800/1.60)| 630)1 42)| 510) 1. 28)) 76900 5% 3560|3.56||2280 2. 85| 1580/2. 37|/1165/2.03|| 890|1.78)) 705)1 58|| 570)1. 42 85500 6 3950|3. 95 |2520 3.14) 1750/2 62|/1280/2. 24 | 980|1.96|| 775|1.74|| 630)1.57 94200 U=—o" canoe l=span in feet. 199 GIVING BREAKINGLOADS FOR CINDERCONCRETE FLOOR SLABS, USING 42” SQUARE CORRUGATED STEEL BARS OF SUCH SPACING AS TO MAKE THE SLABS OF EQUAL STRENGTH IN TENSION AND COMPRESSION. TABLE III. U=Uniformly distributed load in pounds per square foot, in addition to dead weight. C=Concentrated load in tons, in middle of slab 12” wide. Thickness of =2[Mo or Mo’J ae || 2 abe SPAN IN FEET. | ae s\ss ; H ateetes CO} peo . —— ._—__—_ ||] fog ales || | os P| | i | 12 13 14 15 se | eget | gi | mS D Sloe|| _ Ig3 =| S| u || v | Puc su ule ulellule ° = 314/13 || 390 Peet Webs Sor Ace eh Ralls Re | a 37500 4 |11 || 550 > |an 52400 414| 914 730 85) L206H) Geedlst sell fee prens lence lta 70000 5 | 8'%4]| 930 490 ALO AS2E Soc lenns 89000 544] 71%4||1170'2. 620. 5201.56] 445/1.44/) 385]1. 34 112400 6 | 7 |/|1390/2 735 615/1.84)| 525/1.71)| 455|1.58)| 395 133000 644| 6. ||1770): 935) 790 2.36|| 670 2.18) 580/2 02)| 505 440 170000 7 | 514!/2100 1110 935|2.81)| 800|2.59|| 685/2.41/| 600 525/2 ZI 202000 74| 5 ||2500 1320 1110 3.34] 945/3.08|| 815|2.86 | 710 625|2 50, 240000 | N m4 . | U=pey l=span in feet. NOTE—Table is Based on Old Style Bars. 200 | | | } | TABLE IV. GIVING BREAKING LOADS FOR ROCK CONCRETE FLOOR SLABS WITH No. 16GA. 24%” MESH EXPANDED METAL IMBEDDED. U=Uniformly distributed load in pounds per square foot, in addition to dead weight. C=Concentrated load in tons, in middle of slab 12” wide. | SPAN IN FEET. Thickness Jee Mo”=Floor-Slab of Slab 4 5 6 | 7 | Seite <9 10 Moment of Resistance in inches. , : ] ] ] =2Mo | U| ey Uy oy uL,oy v c | U cj u)c Ure 2 | 930 0.93 595 0.75 415|0.62 Lege e}eain |] orators’ | = 22450 / 214 | 1210 1.21 780 0 97. 540/0.81|| 400/0.69||... a malt 29200 3 1500 1.50 960 1.20 665/1.00|| 490|0.86|) 375)0.75))... |... 5 36000 314 1780 1 78) |1140 1.43) 790|1.19|| 580|1.02)| 445|0.89|| 350/0.79]|....].. 42850 4 2070 2.07||1330/1.66 |. 920|1.38)| 675|1.18)| 520/1.03)/ 410)0.92 | 330 0.83 49700 41, 2360 2.36 1510 1.89 1050/1.57|| 770|1.35|| 590)1.18), 465 1.05 | 375)0.94 56600 5 | 2650 2. 64)| 1690 2.12) |1180/1.76)| 865)1.51 660 1.32)| 520 1.18 425/1.06 63500 5, 2930 2.93 1880 2.35 |1300/1.96|| 960)1.67|| 735|1.47|| 580 1.30 470/1.17 70400 | 6 | 3220 3.22 2060 2.57 1430|2. 15||1050/1.84)| 810)1.61|) 640 1.43. 520)1. 29 77300 We dle es I ee ee ee | u=Ne- c=ho— i=span in feet. 201 st TABLE V. GIVING BREAKING LOADS FOR ROCK CONCRETE FLOOR SLABS WITH No. 10GA. 3” MESH EXPANDED METAL !IMBEDDED. U=Uniformly distributed load in pounds per square foot, in addition to dead weight. C=Concentrated load in tons, in middle of slab 12” wide. SPAN IN FEET. Thickness 2 sais M Mo”=Floor-Slab ofSlab || 4 5 | 6 7 | 8 | 9 10 Moment of Resistance in inches. SVPCT i ‘ | i 7 mi jl | | | . | 2 Mo Lid (KOMilati buen faa Com liRinismeyl mRimite™ (iat ibLen | bm hte s ! | | | I| | 2 1230 1.23, 785.0.98 | 545,0.52, 400 0 70) ol 29500 2% 1001.60, 1020 1.28, 710 1.06, 5200.91 400 0.80 | 38100 3 1970 1.97, 1260 1.58 $751 32) 645 1.13 | 4950.99 | 3900.88)|....|.... 47400 3 2350 2.39 1500 88 1050 1.57 7701.34 590 1.17 | 4651.04 375.0 94 56450 4 (2780 2.73 1750 2 18, 1210 1.82 8901.56) 6801.36 540 1.21, 435)1.09 65500 4% /8410)3.14/}1990)2.49||1380}2 07, 1010 1.78, 15.1.5 6151.38 4951.24 74700 5 3490 3.49 2230 2.79, 1550 2.33 1140 1 99° 875 1.74) 6901.55 )| 560|1.39 83850 5M, 3870 8.87 2480 3.10) 1720 2.58 1265,2.21, 970 1 94) 765/1.72)) 620)1.55 93000 6 4260 4.26 2740 3.41, 1900 2 co) 1400 2.441070 2.14 840 1.90 | 680 1.71 102200 u="o- a t=span in feet. TaBLE VI. GIVING BREAKING LOADS FOR ROCK CONCRETE FLOOR SLABS, USING 1%" SQUARE CORRUGATED STEEL BARS OF SUCH SPACING AS TO MAKE THE SLABS OF EQUAL STRENGTH IN TENSION AND COMPRESSION. U=Uniformly distributed load in pounds per square foot, in addition to dead weight. C=Concentrated load in tons, in middle of slab 12” wide. 2 a 0 7) Ss ae 3 3|..$ SPAN IN FEET. B82 o ZO ° = oa) gH oe) 2s Tl | | oaag kh Qos c 8.1 9 10 meeai eee 12 13 14 15 16 on 2 4 Het als \| Ea 0 25\az -— 3 oes Saln& | | | | \| | | So a eg/?giu|ciule| v c |) u | ih gles Aue eas COU Cc iS * | | | | | 3'%4| 7 || 775/1.55|| 610|1.38)| 495/1.24|| 410]1.13]]....|....|].-.. eee We See wie Me 74400 | | | | | {| | 4 |6 |l1070|2.14||-g40l1. 901] 695/41:71|| 565/156!) 475/1.431| 405/1.32)/....1..0 fe. fee lfece feces] 102700 | | | || | | | | | | | | | | | | i| \| 44 5 ||1480.2.96 '1165/2.63 | 945|2.36)| 7802.15, 6601.97 5601 82) 480 1.69), 4201.58|........), 142000 {| | || | | | || || | | | | 5 | 4%)/1860/3.73 1470 3.31| 1190|2.98|| 985/2.71,| 830 2.48) 7052.29), 6102.13, 530 1.99 4651.86, 179000 } | | | | | | ; | | | 5Y% 4 |/2340 4.68 1850 4.16| 1500/3.75 1240 3.40 1040 3.12, 885 2 88 765 2.68 | 665,2.50| 585.2.35)| 225000 } \} | \| | | 1 | | | | 6 | 3%4||2950 5.90 2330 5.25) /1890|4.74 1560 4 30, 13103.94 1120 3.65) 9653.38 840 3.15 740 2.96 284000 \ | | | | | | | || | 614| 344) 3250/6. 50 |2560/5.78,|2080/5.20/ 1720 4.72, 1440 4.34 1230 4.00] 1060)3.71 9203.46 810 3.24 311000 7. | 3 |)4100/8.24 cee 30| 2630 6. 58||2170 5.98) 1830 5.48 |1560 5.05, 1340 4.70 1170/4 39 10304.12) 39500 | | . | | | \] \| 714| 3 ||4450 8.88} 9500/7.88 2850/7.10| 2350/6.45 1980.5 92 16805.46 1450 5.08 1260 4.75) 1110 4.44, 426000 } } | | 1] _Mo” “1512 °= 50007 l=span in feet. NOTE—Table Based on Old Style Bars. 2038 HIGHWAY CULVERTS The following tables, in connection with the reference drawings, are meant to cover highway culverts up to 20’-0” clear span, and with earth fill up to 12-0”. The eulverts have been arranged in three classes, according to the loadings for which they are intended. Class No. 1 is a light highway specification answering the purposes of ordinary county traffic where the heaviest load may be taken, as a 12- ton road roller. Class No. 2 isa heavy highway specification, designed for localities where heavy road rollers, up to 20 tons, and light electric ears, must be provided for. Class No. 3 is a city highway specifica- tion, designed for the heaviest interurban cars and should be used for all city work. These tables have been prepared especially for county engineers (and others interested in highway work), so that a design and a close estimate might be quickly made. The quantities of both 204 steel and concrete required per lineal foot of culvert are given in the tables, and the materials required for the wing walls may be obtained from the reference drawings. The stresses to which the culverts may be subjected have been carefully analyzed and the reinforcement so distributed that a permanent and satisfactory structure is insured. The conerete for this work should be of the best quality of rock or eravel concrete mixed in about the proportion 1:25:5. No crushed rock or gravel should be used for slabs less than 9” thick, that will not pass a #” sereen. The style of culvert to be used at a particular location, whether of the box or open type, will depend upon the con- ditions. For a soft ground, or one of uncertain character, the box type is desirable, but when a substantial foundation may be secured, with little danger from scour, the open culvert may be used. The conerete required for baffle walls is not included in tables. TRADE MAW . PP SOO WAr FP actlastbrllas la fbf) SO LQLPTH OF FILL CG LYCLLLY ATION i 1a AWD SECT/O I to Ne San=$ N ye! * y | LENDAULTER NATE BRP IM TOP ARNO BO7TTOlI SLAB AS SHOWN. OU TSE COVINWER PEINFORCEPIENT. Zi QC/TUPIONAL BARS LIP? BALE LA DIPMETERS =LLLAPA \+\HEIGH, OPNLE LIBRO ON ALS LLN67H=2t+ 14 Ye NOT OLR 9 FOR EARS iV TOP AWD BOTTO SLABS. THESE LARS ARE SPIE S/ZE AS WALL PLINFORCEMENT- t 4 one Bars y ‘ TOP VILW ANO HOAIZONTA, CTSGV SLTVON—-YIEN ELLE CW Till Details Standard Highway Culverts. 206 (er? NO Bewo aire nware BARS 95 SHOWS), TY! RA 8... Pe SNETCH SHOW) NE TWIN CULVERT CONSTRUCTION SLAB AND WALL REINFORCEMENT AS PER TRELES 207 CULVERT DATA FOR CLEAR SPAN OF 4’-0”. halal ee aa BOX CULVERTS. OPEN CULVERTS. Pe ee ne | Quantities ee o'/ Top and Bottom Outside Corner Side Walls ant Quantities per EAM ah AT of| Reinforcement. I Reinforcement. | Reinforcement. eh Sear Lineal Foot. concrete, | | a ee | | | | F Con- Steel C t te 1 ds) oh. t. lace Spac. REE eke Spac. | Length. et Spac. | Length.|| crete pounds yaare e Pons | | cu, ft +4} CLASS NO.1. LIGHT HIGHWAY SPECIFICATION. lies a 12-TON ROAD ROLLER. _ CLASS NO. OY | 9/ 5 ” | Ve" A 8 ” 4’-7 ada VA 16” 3/-9” yy" 16 7 os aytt 5.9 50 | Se 4 a ate 4’ Ab |Meat ee | DE Neha UAE a Mes a ae TG eh 3! aes eG eee es rie 6.8 52 8.8 48 6/ | 4’ 5 ” | ae 8 ” | 4’- yi ALS 16” | AO! | eit 16 A ghey” 7.6 54 9.6 50) 9’ 5/ 54” | AS q 4; | 4/-7 sll Bate 14” | 537 16! i 14 wt by pee 9.4 62 | | 11.3 58 10’ 6’ 6 ” yn" 6 ur ples 9” Itt 12” | 5/-9” ae 9 uM 6’-8” 11:2 78 13.1 74. 1M ATM 4" 16 a Se 1268 Nie? De NB Ne 15.60) 8a all ay tee TT CLASS NO. 2. HEAVY HIGHWAY SPECIFICATION. re ré ___20-TON ROLLER OR 40-TON CAR. 7 eS _ Pa} CLASS NO. 2. PP Na MS NE mae a VL | 14” | 37-97 ee ONG Noy ae Te 53 Oianne) nee) 4’ 3/ 6 4” | Tit 7 ” qeeqy A 14” 4237 | Ce! 14 4”; g/q! 8.5 56 | 10.1 53 Mae Pa ae |e ae al CA ae ie ae ie ae Ye Ne | coer BB 8516 "| de" | 1 | ato” || dey) aa” | B8Y || So” | aa | BT |! 10.2 | 62 | 421 58 10’ 6/ | 7 ” | vu | 6 Ld / 4/-9” || WALA | 12" 5/-9” | cau 9 ” 6/-8” | 13.3 78 | | 15.0 4 12/ vi | 74" KB 514” 4’/-9” BVA | 11” 6/-9” | VAG 84 u” 7-8" | 15.5 | 91 | 17.2 82 CLASS NO. 3. CITY HIGHWAY SPECIFICATION. eto 5 60-TON STREET CARS. Pee eS}. CLASS NO-s: 2! 9! 6 ” VAD 7 uy 4/-9” | yu 14” 3/-9” | iy" 14 wu" Vogt 7.2 i 54 | nae 941 ere 50 ai Weal Ys ae re ee (bee ee We | a ie dele Be leg (er ea bk 10.1 54 6’ 4’ 6 ” | SMe V7 iA 4’- 9” | Lit 14" 4'-9” / 360 14 ” Fey a | 9.2 60 tiat 56 8 |B | 634” || 6" 1 6” | a9” || 3" | aa” | Brgy || S20 | 49 | Bq | 472 | mo | | 43'0 65 10) | 6 | 174" || 44” | 5y6” | a'-9” || Mev | aa” | 6-2” || 3g” | gag” | Brg” | 443 | 86 | | 15.9 80 wy |v |x" || 32" 8 | aren | 32" | to” | Bo” | 34" | 6” | 7-8” Il16.7 | 98 | | 182 | 88 NOTE—AIll Bars are Corrugated Bars, New Style. 208 CULVERT DATA FOR CLEAR SPAN OF 6’-0”. = eee A BOX CULVERTS. a Senera. | hah ed Sets of!! Top and Botton pe Corner | Side Walls, a Quantities per t=thickness ot Reinforcement. | einforcement. | Reinforcement. | Root Lineal Foot. concrete. | | | ere ai 2 = ; A ; Con- | l d. | Leela be | Size. Spac. Length.|| Size.) Spac. Length. Size. Spac. Jean | crete ‘peunds conerae ‘Bounds | | | | es CLASS NO. |. LIGHT HIGHWAY SEGIEIONTION? 12-TON ROAD ROLLER. CLASS NO. I. Sa aM Gua ae ate LOO ate? lt deb! 081) 2 u” | 2-7) 95 | 70 ra 10.3 57 AAS ORM Syahi an eee, Wels, ba 97 ov | jar [3-710 | mw | | 13 60 | t Qf 5" , w\| IY 9" a ” | 7 6 4 id ” 4 3rp 6 ” | 6 8) vn 12" o- wis 42 | 12" | i" | 13.5 | 84 14.0 | 10 SACo ES % 5 -0 10 6'- 8 2 10 5’- 0 17.0 | 100 17.0 85 10’ 6’ 9 wy 54 // 6%” ry | ey" 13” Le on 54// 132 ne 0”|| 21,0 136 | 20.4 | 113 12 q 914’ 5g" q | 7-2" yA 42” 7/-10" 54! 12” 8/- 0”|| 23.6 | 148 it | 23.1 | 425 CLASS NO. 2. HEAVY HIGHWAY SPECIFICATION. 20:TON ROLLER OR 40 TON CAR. CLASS NO. 2. YF | 47 94716 7 | 68" || 347 |- 12” | 5-0") 4” | 12” | 2-8") 12.1 | 6 | 2.3 | 68 v | 3 | 7" || 4” 16 "| eB” || 34” | 12” | 5/- 6%] 24” | 12” | 3/- 8") 13.4 | 80 13.6 | 67 6’ a’ 1%” BALL 5 ” 6/-8” Ve 10” 6’- (i iy 10” ass 8” 14.6 95 | 14.8 ! 78 gla is "|| 47 |5 "| 7-0" || 34” | 10” | 6-8") 24” | 10% | 5/-10%)) 17.0 | 100 17.0 85 10’ | 6 | 9 ” || 8%” | 64” | 7-0" || 54” | 13” | 7-2") Be" | 138" | 7 0” 21.0 | 136 20.4 113 12’ at 10 ” 5p! 6 " qo" Se! Ac ” 7/40" gen 12” (els 0”\| 25.0 148 94,2 125 CLASS NO. 3. CITY HIGHWAY SPECIFICATION. 60-TON STREET CAR. | CLASS NO. 3 9/ | OF ” 5 Wald 7 7)’ vw 7 7_ a’) 127 7 740)/"\ 7 4’ 3/ : ” 2n : ” uy 0" | Lat 1 ZA , o, » WALL 0, ee ye a ne a 6’ 4’ He 7 ON Bl ee O Mane 0” 6 ON a" 10% 4} 4/10") 15.7 96 15.6 } 5 Mel || ogi ee Wal Gt 2 iG 14” 6’- 8) 54” 14” | 5/-10’|| 18.1 | 125 17.9 | 100 10 6 tel! 54! 6%” Yer ee Als 13% ke on 54" y | 7’-00” 22.0 | 136 21.5 113 12’ | 7 |1034” || 94” | 5%” | 7-2” se 11” | 7-10"|| 54” | 11” | 8'-00)| 26.3 | 165 25.3 | 1382 NOTE—AII Bars are Corrugated Bars, New Style. 209 CULVERT DATA FOR CLEAR SPAN OF 8’-0”. BOX CULVERTS. d=—depth of fill = _ OPEN CULVERTS. h=height of|} Top and Bottom Outside Corner Side Walls Quantities titi __,, culvert. Belitorcements Reinforcement. Reinforcement. per Lineal Cram eet t=thickness of Foot. concrete, ‘| | Con- a i Mea bee sy Ba as sy | 54.0 238 12’ |10" |17%4" || 34” 15” |14’- 6”! 84” | 10” |13’- 2”|| 56” | 10” |49"- 4”|| 7456 | 395 60.3 260 NOTE—AI! Bars are Corrugated Rars, New Style. 212 CULVERT DATA FOR CLEAR SPAN OF 14’- Urs = = = =| BOX CULVERTS. iy OPEN CULVERTS. _ , | d=cepe hot ail) || |} Guasieien| SES of Topand Bottom | Outside Corner Side Walls uantities | titi ESA RS oe Reinforcement. | Reinforcement. Reinforcement. Ic telat Sraneal Fodt.. concrete. | is 4 oie : ; || | | ] | Con- | | | | Gel are th Size. Spac.| Length. ! Size. papas: | Length. ee) Spac. Length. oe on Beenie Bee Leake : 1 1 | => im Ls el GLASS NO. 1. | LIGHT HIGHWAY SPECIFICATION. | 12-TON ROAD HORA ‘CLASS NO. 9/ Woh) BLT | , 5/1 € / a es / 9! « ] | 5 ra 2 8 i447 | 6 "BAT og" 1 12 7 Oe 7 34” | 1B” | a” || 9900 | 208 9) aa a | 6 112” || Be" | 5” (15-6 "1 26" | 10” |11/-0 "| 44” | 10” | 7.4” || 46.7 | 250 35.9 | 165 RH |e Sar bate ee ate age ee ge ge gee j16 ” || 8% ” 116/-2 “|| 847 [12/-8 “|| 54” | 11” |10' 0” || 68.5 | 372 | | 527 | 247 10’ 9/ 18 ” | %" 16’-6 my] ee 1044” 113’-6 ” 54" | 14” ba -4” i 80.7 | 397 | 62.4 | 260 12" 110% 1205" | 327 our 16’-107|| $4” | 984” |14’-4 || 84” | 13” |19"-8” || 94:0 | 440 | | 72:9 | 290 CLASS NO. 2. HEAVY HIGHWAY SPECIFICATION. | an _ 20-TON ROLLER OR 40-TON CAR. a | | CLASS NO. 2. | 2”) BY | 1844” || 34” | 64” |15’-107|| 84” | 18” |10’-107)| 4” | 18” | 6’-8 |) 50.5 | 269 37.9 | 178 a’ | 6’ | 1334” || 34” | 644” |15’-10"|| 34” | 138% (117-4 71) 44” | 13” | v8 \) 52.8 | 275 40.2 | 182 BB Ae wl san [Sm bed oll gr | Mace [tol gor | dem Gedo] Ox | 30s se | 38 ied I 7 116/-4 "|| 84” | 1014” | ea Ne 14 aNd 0-2 0 | 385 56.1 255 10" | 9 j19 7 |) 74" | 7 116-8 | $4” | 1044” |13’-8 ”| | 2 | 14” |11’-6 ”|| 85.5 | 400 | 65.8 | 262 12’ |10" |20_” 1194" | 6 ” |15/-20"|| 84” | 9°” |aa’-4 || 94” | 12” [22/8 “|| 94.0 | 473 _| 72.9 el) Si0w CLASS NO. 3. _ CITY HIGHWAY SPECIFICATION. | 60-TON STREET CAR. CLASS NO. 3. ar | BT 11434” || 34" 16 j16'-0 7 84” | 12 7 111’-0 |) 36” | 12” | 6'-10"|| 54.5 | 296 40.6 | 190 4”) G1 14%e" | 24" 16. % 116'-0.74) 84" | 12% 1117-6 mn ir | 49” | 7-40"|| 57.0 | 302 43.1 | 195 eel Ue ny 0 | 240, | 12% (12/-0 "|| 24” | 12” | 8/-10)) 61.5 | 309 | 47.0 200 8) 8 117" || 7" | 9 4 ”)) 4" | 1026” 112/-10"|| 54” | 14” |10/-2 "|| 73.0 | 385 | 56.1 | 255 LOH 9 (19) CN oe Meret tg ‘8 "| $4” | 1074” 13-8 | Se” | 14” |11’-6 Al 85.5 | 400 65.8 | 262 12’ |10’ 120” || %" | 6 ” |16'-10""|| 84” | 9” |14’-4 “1 56” | 12” (12-8 “|| 94.01 473 | | 729 | 310 NOTE—AI Bars Cae, Bars, New Style. | | ‘CULVERT DATA FOR CLEAR SPAN OF 16’-0”. is Som CULVERTS: _ OPEN CULVERTS. ve Gay. of all | | | | gaan —height of|| top and Bottom Outside Corner Side Walls | SAE Quantities per | pik, culvertayes Relatanvcmmente | Reinforcement. Reinforcement. | er Tinex! Lineal Foot. concrete. | : hx ee ea Places | | eres | Gon- | Steet | Concrete | Steet d. | h. t. | Size. Spac.) Length. ‘Size. Spac. | Length. |Size. Spac. | Length. re pounds ects Pounds | | || cu. ft. | CLASS NO. |. LIGHT HIGHWAY SPECIFICATION, oases NOLL | 27 | 6 }11%6” || 547 | 634” a7’- 67) 547 | 11 7 (117-971) 3%" | 117 | T- 4"! 49.5 | 255 36.9 165 | 4’ |v l13hg” |) $4" | ote” l17’-107|| $4” | 18” |12"- 8|| 34 | 13” | 8’- 8”l| 60.5 | 310 45.2 205 | C80 Abe ae) | TAGY N18l- SN SAN Tat Sle Gi Lei 15” |10’- 0”|| 72.5 | 365 54.2 230 ec 8! | QMS ee aT ata Ses 6”)| 34” | 1026” |14’- 5/|| 53” 14” |11’- "| 87.7 | 435 65.9 280 10601001 20 LS) eS LOM ES a 8 152 84% 16” |12/- 8” |101.5 530 | 76.6 340 12’ at’ 122” Ila” | 7” Ing’ ol] 84" | 7” Ine’ ol] Ser | 44” [a4’- 071 1116.0 |- 615 88.0 395 CLASS NO. 2. HEAVY HIGHWAY SPECIFICATION. 20-TON ROLLER OR 40-TON CAR. ect ene S 2G eel ae wm’ | & ” |18’- 0”|| 54” Sete a eee 16” 7’-10"|| 65.0 | 335 47.5 | 210 Perley 4 | 4 | 8% 118% 01) 647 Sot N eta LOM 8’-10”!| 67.5 | 340 50.0 | 220 6’ | 8/ }17 AAU | fae Nis heya 4”) aie el Oaen No 8 OL een 14” |10’- 2’) 79.7 | 390 59.2 | 250 8’ | 9 19 "|| 4" | 7” 148’ 8] 84" | 1084" |44’- 7] 62" | 44 117 6”|| 92.8 | 440 69.4 285 10’ 10’ 2d ed eee 19 OGIRS Ae Ae /15/- ESA AU aisle 12/-10”", 107.0 565 80.4 360 12’ |11’ |93” fla” | 7” [a9r- a7] 84” | 7" In6"- 2”|| 52” | 14” |14/- 2”711192:0 | 620 92.3 | 400 CLASS NO. 3. CITY HIGHWAY SPECIFICATION. CLASS NO 3. 2’ | 6 (1634” || 7%” | 7%” las'- 4) 84” | 11347 |12’- 8"|| 4” | 157 | 8'- 2” 71.7 | 355 | 522-5) 220 a’ | 7 11634” || 7" | 734” |18'- 4] 84" | 1134""-113"- a” tev | a5 | gf 2” 74.5 | 3604, | 55.0 | 225 6 8 117" || Br | 7” |B’ a|| $2” | s0%e" 113" gril de" | 44” |40'- 21] 797 | 390 59.2 250 s | 9/19” || "| 7” |18'- 8”|| 84" | 4006” |14’- 7” 64" | 14 |11"- 61] 92.8 | 440 69.4 285 | 10’ |10’ |21 ” |la ” | 734” |19'- 071) 84” | 734” |15'- 5”|| 82" | 15” |12/-10")|107.0 | 565 80.4 | 360 | 42’ [aa }23 "Wa 1 7” |a9'- a" 3g" | 7 fae’ 27] 52" | 14” Jat 2”11122.0 | 620 92.3 | 400 NOTE—AIl Bars are Corrugated Bars, New Style. 214 CULVERT DATA FOR CLEAR SPAN OF 18/-0”. . ___BOx CULVERTS. _ : ' | OPEN CULVERTS. | | | d=depth of fill. | | a | h=-h Sk ae of || Topand Bottom | Outside Corner Side Walls | etaaeal | Quantities per t=thickness of | Reinforcement. |; Reinforcement. Reinforcement. Foot. ineal Foot. concrete. | | | | g g | | | | E | . || Con- | Steel | Aone ] Steel d.|h.| t. || Size.| Spac. | Length. |Size. Spac. | Length.) Size.) Spac. Length. || crete | i | || ou. ft. | pounds : pate oa CLASS NO.!. LIGHT HIGHWAY SPECIFICATION. 12-TON ROAD ROLLER. en ee ae 2! | 6 112%” || 34” | Te” 19’- 8’\) 34” | 15” |12'-10 yy" 15” 7’- 6|| 59.0 | 290 42.5 180 LTD TENS ZEN 6 BE 20' 0”|| SARL a eee ee \13’- hi sal 12” | 8’-10"|| 73.1 | 360 53.0 230 6’ | 8 |1736” || 24” | 736” [20’- 6”|| $4” | 1134" |14'- 8 || 26” | 15% |10'- 4771) 89.0 | 200 64.4 250 8’ | 9’ 120 LAME 1G, t 20’-10”| | 34" ln 74 A || apa \11’- 8’\|105.5 | 545 77.0 340 40° 110° 22) Wa | Tee lie aiid al 14 LT Glau Moe e 14” |13/- 0”||120.5 | 625 88.7 390 Tepe \iee em 2 |i le (yA al PW Cah a ONT 5 Pee! 13” |14’- 4/\|186.5 | 685 100.8 430 CLASS NO, 2. HEAVY HIGHWAY SPECIFICATION. | 20-TON ROLLER OR 40-TON CAR. pL AS SINC 22 PAINS ak Wi gt | 4" 120'-2 ah 84" | 1134" |18'- 5! || 347 15” 8’- 0”|| 75.8 | 380 | 53.6 230 CU ate Nahe | Ab | 744" |20'-2 ” 4" | 11344” |13'-11'"|| 4%” 15” 9/- 0”|| 78.5 | 385 56.3 235 60) 80 19 ON) 4" lo0'-8 “\) 34" | 1124” 14/-11'|| 4%” 15” |10’- 6”|| 97.0 | 405 | 70.0 255 a’ | 9° |206" |x” | Ta” j2t'-0 71 ” | 15” \15’-10”|| 54” | 15” |11’-10’||108.5 | 565 78.8 350 AQ MTO (2S eile atid HM 21’-4 DN ea Se Yes 16’- 9/|| 54” 14 13/— 20) 126:5, 1 63biy) 92.7 395 feet ast PN 6 ang a Ike aie Yel NAY The 6”||143.0 | 740 | | 105.5 | 460 CLASS NO.3. CITY HIGHWAY SPECIFICATION. | iS 60-TON STREET CAR. CLASS se 2’ | 6! 17%" || %” | Te" 120'-6 "|| 34” | 1124” 13/= 8" 15” | 8’- 4’|| 83.0 | 390 58.6 | 235 vv live" || 2" | 746" \20" 6 "|| 84” | 1134” |14/- 2”|| 46” | 15” | 9'- 4""|| 85.9 | 395 61.5 | 240 6’ | 8’ /19 We NIN FAKe | 644” |20/-8 “||, $47 9384” |14’-11” Tpit 13” |10’- 6’’\| 97.0 | 460 70.0 | 285 SEO NBO 1e 27 | Ieee 21/-0 CN Sioa Tien 15’-10”| 56" 45” |11/-10’7||108.5 |- 565 78.8 350 1OM10. 12S et ee etc a Alli es | 14” |16/- 9!” 54// 14” |13/- 2’”||126.5 | 635 92.7 395 12’ av |25 ” |ia” le ” arg “lia” | 12” [av il $e" | 12” _[aa’- 671/143.0 | 740 | 105.5 | 460__ “NOTE—AIl Bars are Corrugated Bars, New Sty le. 215 CULVERT DATA FOR CLEAR SPAN OF 20’-0” : : BOX CULVERTS. OPEN CULVERTS, - = 7 Pes a s ‘= Eee 1 } | Quantiti | oi of|| Topand Bottom | Outside Corner Side Walls (eA uantities per Ae Aha hae " Reinforcement. | Reinforcement. | Reinforcement. Dee ner piinealioee concrete. | ew | \| dan | size.| Spac. Len th Size. Spac. vn th. aad Spac. | Length mae Steel Concrete | Steel , ease i letrcerl | 8 I | iter ft, Pounds cu. ft. | Pounds ‘CLASS NO. |. aT FRIGHWA SPECIFICATION. =" =e c 12- TON ROAD ROLLER. CLASS NO. | 2? | 6! [13%” || 34” | 64 21’-10")| 84” | 18” |13/- 9”7|| 24” | 13” | 7’- 8”)| 69.4 | 356 | 484 | 215 a’ |v |16%4" || 14" a9’. 4””|| $4 | song" Ita’. 9”|| 44” | a” | 9’. 2”l| 87-4 | 440 614 270 | gt |1984” |) 74” ne” 22/-10""|| 84” | 984” |15’- 9”|| 34” | 13” |10’- 8”//107.0 | 490 | | 75.6 300 Soa 225s \|1 4 23/- 2”\/1 Ate eI G LORE 14” |12’- 0”||125.5 | 650 89.0 400 10) N10 S24 ee B6 PENA Ue AI OTE" Tp eee) Pau 13” |18/- 4’||141.5 | 710 101.5 445 12’ |1a’ |2636” |l1_” 22’-10"||1_ ” | 12” |18"- 7”|| 54” | 12” |14’- 8”||162.0 | 790 116.5 490 mabe NO. 2. HEAVY HIGHWAY SPECIFICATION. 20-TON ROLLER OR 40-TON CAR. GLASS NO. 2. 2” | 6/19 ” || % | 64” |22/- 87) 947 | 9847 |14’- 87|| 24” | 138” | 8’- 6”)| 98.0 | 270 67.3. | 285 a’ |v \19. ” |I 36” | 684” [aa'- 8”\| $4" | 984 [15’- 2”) 32” | 13” | 9’ 6”l1101.5 | 475 70.5 290 60) So 120247 Nid e786 128/01 ee 16-0 ee” 15” |10’-10’||118.0 | 555 79.7 340 gs { 9 jas” iia” | 7” lear avila” | a4” 1177 0%|| 54” | 44” 19/- 277/131.5 | 655 93.3 405 10’ |10° 125 ” 11 “| 6 ” |23’- 871 ” | 12 ” |17’-107|| 54” | 12” |13’- 6”||148.0 | 770 105.5 480 12 jay’ jo7 ” |) “16 ” [ea-ovlla “| 12” lag’ 8”i| $6” | 12” |14’-10"11165.5 | 795 119.0 495 CLASS NO. 3. CITY HIGHWAY SPECIFICATION. > 60-TON STREET CAR. CLASS NO. 3. a” | 6 119 7 || 1%" | 6447 |22’- 87)! 34” | 984” |14’- 8”|| 34” | 18” | 8’. 6”l| 98.0 | 470 | 67.3 | 285 a |v j19 "|| %" | 686” j22’- 8”|| $4” | 984” |a5’- 2”|| 32” | 13” | 9” 67|101.5 | 475 70.5 | 290 6 | 8’ |20%” Ila” | 784” [a3’- ova” | 15” |46’- 07/1 34” | 15” |10’-107| 113.0 | 553 79.7 | 340 a Ot 2S CAA BAG STE ame |23’- 4 4”\|1 eal ae 17’- 0”|| 54” 14” |12/- 2||131.5 | 655 93.3 | 405 TCE BIUA eA 2 ¢ 6 ” |23/- 8771/1 Sah Oana gt Oat $n 12” |13’- 6”||148.0 | 770 105.5 480 1 fav jor” lla” | 6” aa’- olla” | 12” [a8"- 8”|| $4” |_ 42” |44’-10")1165.5 | 795 | | 119.0 495 NOTE—AI Bars are Conaaied Bars, New Style. 216 TESTS OF THE UNION BETWEEN CONCRETE AND STEEL A recent issue of Beton and Eisen gave the results of a series of tests upon the holding power of different types of rods imbedded in concrete, made in the laboratories of the Massachusetts Institute of Technology by Prot. C. W. Spofford. Portland cement concrete was used, made in the following proportions by weight: One part cement, three parts sand, six parts broken stone. This mixture was used in order that the results would correspond with tests upon beams and columns which were under way at the same time. The mixture, however, is very lean and would not again be used. The sand was clean, but rather coarse grained, containing approximately 47 per cent of voids. The broken stone was a mixture of two parts of 1” trap and one part of %” trap. The mixing was thoroughly done by hand, the concrete being wet enough when tamped into the moulds to flush water to the surface. The moulds were, in some cases, not as tight as they should have been and some water leaked out, carrying with it some of the cement. It is not believed, however, that the loss thereby was sufficient to injure the results of the tests, except possibly in a very few cases. The rods were all thorougly cleaned by a sand blast, thus insuring uniformity in the surface conditions. P A 100,000-pound Olsen vertical testing machine was used, rigged with short uprights, carrying the platform upon which the specimens were placed. The load upon the bearing end of the concrete block was distributed by the interposition of a sheet of %” felt between the conerete and an annular steel ring resting upon the platform of the machine. In all cases the rod projected a short distance at the upper end of the block (the pull being down- ward at the lower end), and this projecting end was carefully watched in order to detect the first evidence of slipping. The rods used were round, square, flat, square but twisted through an angle of 20 degrees (Ransome rod), Thacher and Johnson. The table has been arranged from the original table in Beton and Eisen so that bars of the same size are together.—Reprinted from the Railroad Gazette, for September 18, 1903. The following tables give the results of Prof. Spofford’s tests, and also of some recent tests made by Prof. F. H. Constant of the University of Minnesota. In these latter tests itis interesting to note the high unit stresses obtained with deformed bars, and particularly with the Corrugated Bar, for the short imbedment used. This length of imbedment appears to be the proper one for the 1: 2: 4 concrete but not large enough for the leaner mixtures, m aking the reported values for the 1: 3: 6: and 1: 4: 8 concrete somewhat erratic. 217 \ ta Bear Door Gs © , Py.) ) peddtis poy | 009‘9r | SFI (99°0 | OOT‘9a | 98 | 8x8 F-1 XF-13 peddits pow | 00c'6s | F9T | OGT'ZS | 96 | 8X8 8-8 X 3-11 paddits poy | 00L'88 | SST | 99°0 | 00L'TZ | 98 | 8X8 B-I X 8-11 paddtts poy | 00L'ZF | 122 | 99°0 | 006°SS | 98 | 8X8 aienbs F-g paddiis poy | 002'Zr | 6IZ | FO | OO9'ST | 98 | 8X8 punos f-8 yds ajarou0D | 0NS‘06 | 8b 000°82 | 92 | 8x8) b-£ uosagor aHo1q poy | OOF 6S | 162 OOL'SS | 98 | 8X8) F-G TEyoRyL yds aarou09 | 009'e9 | BEE 009'98 | 98 | 8X8] F-g euosuBy oos‘es | 1g | 8x8 b-1 X F-13 OOL'TZ | IG | 8X8 8-8 X 3-11 00g'0s | 18 | 8X8 Z-1 X 8-11 009'%2 | 18 | 8x8 erenbs F-¢ 009s | Tg | 8x8 puno. $-g. #3 | 8X8 F-I XF-13 peddrs poy | one'er | cot paddits poy | 0088s | 88T paddts poy | 00z'98 | 10% paddiys poy | OOF OF | EFs peddys poy | 00a'ab | 29a | (p,fay aautoeds) paddtis poy | 0g6'8 | ZF BBS SSRESRERHISRRS Sseccescscesssossssssosososescssss J paddtjs poy | oos'9e | 92% | 9¢°0 | 0080S | #B | 8X8 8-§ X Z-11 paddits poy | 00l'Zs | 6ST | 99°0 | OOF'ZT | FZ | 8X8 o-T X8-1T paddis poy | noses | #24 | 9¢°0 | OOL*6BI | FZ | 8X8 arenbs f-8 paddrjs poy | ooF'ge | 142 | FF'0 | OOE*EL | FB | 8X8 punod f-g yds ajerou0y | 009'08 | L9b | £0 | 000'SZ | $6 | 8X8) pL uodSsUgo” ds ajasou0y | 006°C | FFE | 680) OOS'SL | FS | 8X8) F-S eyouUL [ds ae15u09 ‘Qo0'FI 38 Paddys poy | NNO'LS | StF | 99°0 | OOB'TE | FZ | 8X8) F-g eMosuBy autds ayarom0D | OOL'68 | G19 | LEO | 00927 | OZ | 8X8 $-£ aoOSsagqor aids ajarm00 ‘ogo'6I 38 paddrs poy | QnN'SS | RLF | 6E'0 | OTIS | OB | 8X8) F-e sEqowUL [ds ajasouod ‘Q0'RT 38 paddys poy | oOs‘9F | TSF | 9e°0 | 006'Ss | 0G | 8XB| F-g eMosaBYy e701q poy | 0Ob'S6 | SE | bh osz'eL 9% |9x9|Z-L aosaqor axo1g poy | 0098? | Zz | 8I'0| O¢'OL | 93 | 9X9) S-L JEqOVqL UL Z-1 [ft qsnosgy payrnd POY OOF'FI Ssous *xBUI YsnOIyY paitnd por ‘ooo'st 38 paeddrs poy | 000'09 | 882 | & pud uo paysnid ajarou0g | 00z‘L9 | Eze | & ids ajaromo0y | OOL‘S6 | SS | + qitds ajarou0o ‘0oT'g 18 poddt[s poy | OOS'¢h | OFS |8 “at ¢ q3no14} parrnd poy “31[ds 9}910100 910M ‘000 FI 0} UlBBB asor ‘000'8 0) peddozp ‘ono'at 38 paddris poy | 000'9e | BEF |93'0 | OOO'FT | OT | 8X8) Z-T smMosmBy AT[BUIPH STO] Ids aarou0y | OOF'SE | EES | es'0 | OO’ | OT | 9xX9| Z-[ euosUBYy ads Hera) | 00G'28 | 849 | $10 | OOT'Zt | ZL 9x9|Z-| aosugor yids ajatouod ‘paddis poy | 0069S | 012 | 8L'0| OS8'F | ZI | 9X9) G-I AEYOBGL ‘ulg qsno1g) pajind poy “31, ds aja10U00 a1aqM ‘00g'g 0} ules osor 0 Z-[ emosuBy 0 Z-[ eumlosuNy 0) OZL'SL | OL | 9x9) o-- wosuqor 0 Z-[ ayoVyL ‘000'9 07 peddozp ‘og0'8 18 paddiis poy | 00s‘es | OFF 920 | 008'S | ZI | 8X8) Z-l eumosaEy Aywarpngzisug] yds aas0u0D | CORRE | FOS | e3'0| OO'SE | GI | 9X9 | G-[ emMosuKY D D [es] D 4 oc _ ad |g/Q5| 3 8 8/8 Be |€alge| & Ibe] S ing (= 7] | gees ° Bo |aB)ac| 5 |4o1o6 a op oq |- Ro '. me B 99 ao ° Bo |pSi3 — |S =] 2 of jas |se 2 pace tne a Se lic dle Ba a = “syIBUIIY e565 92 )\e “ z FE| & 8 atop epee cy ey | ER ee s aS |e Bo S @| 6 Se |SBieu)] § &| 6 a ne Bre a Qa| 62 |85/ ¥| 2 Else al 9 Oe S. iam") Do i=) os joe] @ 5 | @ Ba jos fxd > t eed IES : aa er x BS SROSRSSSSLFSSRRSFORABSSIS 218 =a -48a} JO “ON ‘Ta3S3LS GNV S3LSYONOO NAAML3AE NOINN SHL NO GHOsAAOdS ‘3O0Ud Ad SLSAL AO SLINSAY fos XX TRADE MARK WK ¢ RESULTS OF TESTS BY PROF. F. H. CONSTANT ON BOND BETWEEN STEEL AND CONCRETE. TABLE OF COMPARATIVE MEAN VALUES. Min. | No. Age | Super. Load Unit of | ‘Type of Bar. | size. | of | Net |Areaper| imbedded otal | er sq. in.| Stress REMARKS. Tests. Cone.|/Section. Lin. ft. | Length. Da ecnvtacen || bars i245 CONCRETE: 3 |Johnson...... 34 28 | 0.31 2.43 | 8.25 |31,620| 1,577 102,000|Conecrete split. Sn aGher ects. 34 28 | 0.39 2.21 | 8.25 | 22,100 | 1,112 | 56,600|Bar broke. 38 |Ransome...... $4 28 0.56 | 38.00 | 8.20 | 24,470 | 994 43,700 Concrete split. SLL TUSC OMe as $4 28 | 0.44 2.36 | 8.31 | 16,830 | 858 38,309 Rod slipped. Se UELCOUL Oise eee tre 34 28 0.44 2.36 8.23 | 16,600 | 854 37,800 Rod slipped. BY lavoro oso - 3B 2S Obl d. 1.18 | 8.48 | 4,580 | 454 41,600) Rod slipped. SPRL at tates estos 14x% sey || MUG ea! Bie 8.30 10,680 | 394 22,600) Rod slipped. SOME Gite eesevne ites 2x 28 0.50 | 4.50 8.29 | 12,550 | 336 25,000!| Rod slipped. = I: 3: 6 CONCRETE. : a2. = Se a 3 |Johnson...... 34 28 0.31 | 2.43 | 8.62 |12,360| 591 {39,900 Concrete split. 3 (Chachers.....- 34 28 0.39 | 2.21 8.37 | 10,380 | 559 | 26,600 |Concrete split. 8 |Ransome...... 34 28 0.56 | 3.00 8.67 | 13,470 519 | 24,000 Concrete split. See LLrUSconem sees 34 28 0.44 | 2.36 8.77 | 8,630 417 | 19,600 |Concrete split, rod slipped. Bi etoyeeGil Seba, 34 28 0.44 | 2.36 | 8.44 | 8,430 424 | 19,100 |Rod slipped. 3 ROU Ge secre oe 84 28 0.11 | 1.18 8.12 | 3,530 368 | 32,100 Rod slipped. SelM Se ceeaeee 14x% | 28 Ost Tamia: 25 8.10 | 6,070 230 | 12,900 |Rod slipped. Sen LaGee ra ceaes 2x4 28 0.50 | 4.50 8.25 | 10,080 272 ~~ 20,700 |Rod slipped. 1: 4: 8 CONCRETE. 3 |Johnson...... 34 28 | 0.3L | 2.43 8.21 |18,120| 908 58,500 Concrete split. Sen aAGherernsese 34 28 0.39 2.21 8.17 | 14,100 781 | 36,200 |Concrete split. 3 |Ransome...... 34 28 0.56 3.00 8.32 | 14,210 555 | 25,400 \Conerete split. 3 |Lruscon.....-: 34 28 0.44 2.36 8.18 | 10,290 534 23,400 |Rod slipped. Sue LeOUN Geer ana Y 28 0.44 | 2.36 8.01 6,860 | 363 | 15,600 Rod slipped. 3 Round rs mathe 3% 28 0.11 | 1.18 7.91 2,950 316 26,800 |Rod slipped. Sua Platine. teserteet 14x*% 28 0.47 | 3-25 8.06 6,480 247: 13,800 |Rod slipped. Se Platyeseacen 2x4 28 0.50 | 4.50 8.00 9,400 260 18,800 |Rod slipped. 219 M “bd® VALUES OF NS FORMUUA FOR 7) ROCK) CONdRETE|- JOHNSON CORRUGATED BARS UNIVERSITY OF ILLINOIS TESTS + CONCRETE 18& ROSE POLYTECHNIC INSTITUTE » — * " 6 UNIVERSITY OF PENNSYLVANIA" @ 4 UNIVERSITY OF WISCONSIN « a 1:36 13-6 I-2°:4 12°74 " (2-4 1-2 6 C.M.& 5r.P. Ry. BOSTON, TRANS.COMMISSION -3 2.0 Tests on Full Sized Beams by Prof. Howe at Rose Polytechnic Institute. ” Rock Concrete, 1:2:5; Age 115 days. Depth, 144%”; Width, 12”: Span, 15’; Three 34” corrugated bars=930)”. Theoretical, Mo=625,000” pounds; Actual, M=655,000” pounds. Four vertical bars at each end. 221 Tests on Full Sized Beams by Prof. Howe at Rose Polytechnic Institute. Rock Conerete, 1:2:5; Age 73 days. Depth, 14”; Width, 12”; Span, 15’; Six 4” corrugated bars=1.02 ”. Theoreti- ’ cal, Mo=725,000” pounds; Actual, M=929,700” pounds. Each of the three pairs of horizontal rods bent up vertically at different subdivisions of span. 222 BRIDGES, ABUTMENTS, CULVERTS. CHICAGO, BURLINGTON & QUINCY RAILROAD. WABASH RAILROAD. SOUTHERN RAILWAY. CHICAGO, MILWAUKEE & ST. PAUL RAILWAY. ILLINOIS CENTRAL RAILROAD. HANNIBAL & ST. JOSEPH RAILROAD. CHICAGO & EASTERN ILLINOIS RAILROAD. LOUISVILLE & NASHVILLE RAILROAD. LAKE SHORE & MICHIGAN SOUTHERN RAILWAY. CHICAGO & WESTERN INDIANA RAILROAD. ILLINOIS TERMINAL RAILROAD. PENNSYLVANIA RAILROAD SYSTEM. TERMINAL RAILROAD ASSOCIATION OF ST. LOUIS, NEW YORK RAPID TRANSIT COMMISSION, NEW YORK CITY. CHICAGO & MILWAUKEE ELECTRIC RAILWAY. SOUTHERN PACIFIC LINES. KANSAS CITY, MEXICO & ORIENT RAILWAY. KANSAS CITY, MO. CLEVELAND, CINCINNATI, CHICAGO & ST. LOUIS RAILWAY. KANSAS CITY OUTER BELT & BLECTRIC RAILWAY. BOSTON SUBWAY TUNNEL. MISSISSIPPI RIVER BRIDGE, THEBES, ILL. AMERICAN BRIDGE CO., NEW YORK. BLOCK BRIDGE & CULVERT CO., INDIANAPOLIS. D. CUOZZO & BRO. (STREET BRIDGE), BROOKLYN. ATCHISON, TOPEKA & SANTA FE RAILWAY. MOBILE & OHIO RAILWAY. NEW YORK, ONTARIO & WESTERN RAILWAY. UNION PACIFIC RAILWAY. NORFOLK & WESTERN RAILWAY. BANGOR & AROOSTOOK RAILWAY. PERE MARQUETTE RAILWAY. 223 CINCINNATI, HAMILTON & DAYTON RAILWAY. DENVER & RIO GRANDE RAILWAY. COUNTY OF DALLAS, TEXAS (F. UHL, City Engr.). PANAMA RAILROAD CO., KANSAS CITY VIADUCT & TERMINAL RAILWAY, JOHN JACOB ASTOR, LOUISIANA PURCHASE EXPOSITION, VANDALIA LINE, MISSOURI PACIFIC RAILWAY, ST. LOUIS & SAN FRANCISCO RAILWAY, INDIANA BRIDGE CO., BOX CULVERTS, THEBES RAILROAD BRIDGE, ATLANTA, KNOXVILLE & NORTHERN RAILWAY, DENVER & RIO GRANDE RAILROAD, BURLINGTON & MISSOURI RIVER RAILWAY CO., WHEELING & LAKE ERIE RAILWAY, CHICAGO, ROCK ISLAND & PACIFIC RAILWAY, NINE ARCH BRIDGES, FLAT TOP CULVERT, 400’, NORFOLK & WESTERN RAILWAY, KNOXVILLE, LA FOLLETTE & JELLICO RAILWAY. CHICAGO & GREAT LAKHS D. & D. Co., MILWAUKEE ELECTRIC RAILWAY & LIGHT CO CHICAGO & MILWAUKEE ELECTRIC RAILWAY, WISCONSIN BRIDGE CO., LOGAN STREET BRIDGE, CHICAGO SOUTHERN RAILWAY, THE OLIVER CO., ARCH BRIDGE (GEO. NELSON, Contr.), THN SPAN BRIDGE, BRIDGE FOR CITY OF MEMPHIS, GREAT NORTHERN RAILWAY, J. B. MULLEN, COLON, PANAMA. KANSAS CITY, MO. RHINECLIFF, N. Y. ST. LOUIS. INDIANAPOLIS, IND. KANSAS CITY, MO. ST. LOUIS. INDIANAPOLIS, IND. JACKSON, TENN. THEBES, ILL. ATLANTA, GA. SALT LAKE CITY. LINCOLN, NEB. CLEVELAND, OHIO. CHICAGO. PLAINFIELD, ILL. IOWA CITY, IA. ROANOKE, VA. CHICAGO. MILWAUKEE, WIS. CHICAGO. MILWAUKEE, WIS. LANSING, MICH. CHICAGO. KNOXVILLE, TENN. EAU CLAIRE, WIS. POLLASKY, CAL. MEMPHIS, TENN. ST. PAUL, MINN. BANGOR, ME. 224 NORTHERN PACIFIC RAILWAY, ST. PAUL, MINN. GREAT NORTHERN RAILWAY, ST. PAUL, MINN. CENTRAL OF GEORGIA, ATLANTA, GA. ILLINOIS TERMINAL RAILROAD, ALTON, ILL. GORDON PARK BRIDGE, CLEVELAND, OH1O. ROCKEFELLER BRIDGE, CLEVELAND, OHIO. EUCLID CREEK BRIDGE, CLEVELAND, OHIO. HAYDEN AVENUE BRIDGE, CLEVELAND, OHIO. HIGHLAND ROAD BRIDGE, CLEVELAND, OHIO. NORTHERN OHIO PAVING CO, CLEVELAND, OHIO. HANLON CONSTRUCTION CO., CLEVELAND, OHIO. FLOORS, FOOTINGS, RETAINING WALLS. STAR BUILDING, ST. LOUIS. CARLETON BUILDING, SPS LOULS: NORVELL-SHAPLEIGH BUILDING, ST. LOUIS. WOMAN’S MAGAZINE BUILDING, Si LOuULS: BASEBALL PARK, ST. LOUIS. ST. LOUIS TRANSFER CoO., ST. LOUIS. ST. LOUIS PORTLAND CEMENT CoO., ST. LOUIS. LINCOLN CENTER BUILDING, CHICAGO. ARMOUR & CO., EAST ST. LOUIS. FEDERAL LEAD CO., FEDERAL, ILL. SWIFT & CoO., FORT WORTH, TEXAS. BLACKSTONE BUILDING, ST. LOUIS. LEMP BREWERY. PASSUMPSIT FIBRE LEATHER CO., PASSUMPSIT, VA. DAYTON MALLEABLE IRON WORKS, DAYTON, OHIO LAW BUILDING, NORFOLK, VA. CLEVELAND HIPPODROME., CLEVELAND, OHIO. PIONEER PAPER STOCK CoO., CHICAGO. WATSON BUILDING, CHICAGO. bo bo Oo SOQ Sx sa be AMERICAN CONCRETE STEEL CoO., NEWARK, N. J YAMPA SMELTING CO., SALT LAKE CITY. GEO. A. FULLER CoO., NEW YORK. SCHLITZ BREWING CO., MILWAUKEE. GREELEY SUGAR CoO., GREELEY, COLO. COLORADO COLLEGE, COLORADO SPRINGS, COLO. WILSON OFFICE BUILDING, DALLAS, TEXAS. GALVESTON SHA WALL, GALVESTON, TEXAS. DWIGHT BUILDING, KANSAS CITY. METROPOLITAN STREET RAILWAY POWER HOUSE, KANSAS CITY. BUCKINGHAM HOTEL, ST. LOUIS. UNION MANUFACTURING & POWER CO., SANTUC, 5S. C. WESTERN EXP. METAL & F. P. CO., SAN FRANCISCO. OLIVER CHILLED PLOW WORKS, SOUTH BEND, IND. VAL. BLATZ BREWING. CO., MILWAUKEE, WIS. KANSAS CITY WATER DEPARTMENT, KANSAS CITY, MO. CONSOLIDATED GAS CO., BALTIMORE, MD. HOBFFER & CO., CHICAGO. PENNSYLVANIA RAILWAY SHOPS, ALTOONA, PA. PUMPING STATION, CHICAGO. PENNSYLVANIA CEMENT CO., BATH, PA. RETAINING WALL, MARION CO., IND. THOMPSON & NORRIS FACTORY, BROOKLYN. AMERICAN BEET SUGAR CO., ROCKY FORD, COLO. STATE PENITENTIARY ADDITION, JEFFERSON CITY, MO. HIRAM MUON Bacco; ST. LOUIS. McKINLEY HIGH SCHOOL BUILDING, ST. LOUIS. SHIELDS SCHOOL BUILDING, ST. LOUIS. SHEPPARD SCHOOL BUILDING, ST. LOUIS. ELLEARDVILLE SCHOOL BUILDING, ST LOUIS: HEMPSTEAD SCHOOL BUILDING, ST. LOUIS: WM. CLARK SCHOOL BUILDING, ST LOUIS HUNT ENGR. CO.. IOLA, KANSAS. KEYSER BUILDING, BALTIMORE. 226 BRODERICK & WIND, BALTIMORE. WILSON-LYONS CONTR. CO., SAN FRANCISCO, CAL. WOOD WORSTED MILLS, LAWRENCE, MASS. AMERICAN-HAWAIIAN ENGR. CO., SAN FRANCISCO, CAL. BALL-CARDEN CoO., DALLAS, TEXAS. GULF, COLORADO & SANTA FE RAILWAY, SOMERVILLE, TEXAS. BROWN SHOE Co., ST. LOUIS. WAREHOUSE FOR L. & N., ATLANTA, GA. RETAINING WALL, MEMPHIS, TENN. RIALTO BUILDING, SAN FRANCISCO. SECURITY SAVINGS BANK BUILDING, SAN FRANCISCO. J. A. FOLGER COMPANY’S WAREHOUSE, SAN FRANCISCO. FAIRMONT HOTEL, SAN FRANCISCO. FREE PUBLIC LIBRARY BUILDING, SAN JOSE, CAL, REDWOOD CITY COURT HOUSE, REDWOOD CITY, CAL. CALIFORNIA HALL, UNIVERSITY OF CALIFORNIA, BERKELEY, CAL. JOHNS HOPKINS’ ESTATE, BALTIMORE, MD. AMERICAN COLD STORAGE BUILDING CHICAGO. ILLINOIS STEEL CoO., BUFFINGTON, IND. MASONIC TEMPLE, WACO, TEX. INSANE ASYLUM, PHILADELPHIA, PA. SEWAGE PUMPING STATION, NEW ORLEANS, LA. SEWAGE PUMPING STATION, ALGIERS, LA. RESERVOIRS, TANKS, ETC. ACKER PROCESS CoO., NIAGARA FALLS. PURIFICATION TANKS (Wy ncoop Kiersted, Engr.), RICHMOND, MO. WATER RESERVOIR, PADUCAH, KY. MISSOURI PACIFIC RAILWAY (GRAIN TANKS), KANSAS CITY, MO. WATER RESERVOIRS, EAST ORANGE, N. J. WATER RESERVOIRS, YAZOO, MISS. WATER RESERVOIRS, AMES, IOWA 227 RESERVOIR BASIN, EAST NORWOOD, OHIO. OIL TANKS, CONSTABLE HOOK, N. J. BORDENTOWN WATER CO. BORDENTOWN, N. J. WATER RESERVOIR, FT. MEADE, S. D. CRESTON WATER WORKS, CRESTON, IOWA. INDIANAPOLIS WATER CO., INDIANAPOLIS, IND. CONCRETE CISTERNS, IONIA, MICH. PALMER LAKE DAM, PALMER LAKE, COLO. WATER RESERVOIR, ST. LOUIS, MO. LARIMER & WELD RESERVOIR, FT. COLLINS, COLO. WATER RESERVOIR, EDDYVILLE, KY. WATER RESERVOIR, ELGIN, ILL. WATER TANKS, LOUISVILLE, KY. THE TERRE HAUTE WATER WORKS CoO., TERRE HAUTE, IND. YAZOO CITY LIGHT, WATER AND SEWERAGE PLANT, YAZOO, MISS. LOUISVILLE & NASHVILLE RAILROAD CO., SOUTH LOUISVILLE. TUNNELS, SUBWAYS, SEWERS. NEW YORK RAPID TRANSIT COMMISSION, NEW YORK. BOSTON RAPID TRANSIT COMMISSION, BOSTON. NEW ORLEANS DRAINAGE CANALS, NEW ORLEANS. BOROUGH C@OSTRUCTION CO., + BROOKLYN. J. B. McDONALD (N. Y. SUBWAY), NEW YORK. CITY OF MEMPHIS, TENNESSEE. MOBILE SEWERS. MOBILE, ALA. GENERAL CONSTRUCTION CoO.. R. R. TUNNEL, KANSAS CITY. BACTERIAL SEWAGH PURIFYING CO., NEW YORK. LARGE SEWERS, ALTOONA, PA. LARGE SEWERS. GRAND RAPIDS, MICH. DRAINAGE CULVERT FOR ST. FRANCIS LEVER DISTRICT, NEAR BREWER’S LAKE, MO. NG oN Go elas wl keen Even On, NEW YORK. ELECTRICAL COMMISSION, BALTIMORE, MD. bo bo oo GILSONITE CONSTRUCTION CO., ROBT. HHIGGINS, LARGE SEWER (CRANFORD PAC. COD), CHURCH CONSTRUCTION CO., JAS. MALLOY, NEW ORLEANS TERMINAL CO., BOROUGH OF BROOKLYN, SAGINAW SEWERS, ST. LOUIS. PHILADELPHIA, PA. CINCINNATI, OHIO. NEW YORK. BROOKLYN. NEW ORLEANS. BROOKLYN, N. Y. SAGINAW, MICH. GOVERNMENT WORK. MAJ. JNO. MILLIS, MAJ. GEO. W. GOETHALS, U. S. 4», CAPT. §; BOGE LENE, ,U. S48. 3 > 3 ) CAPT. &. PNHOWEERY, U. Sp Arp > 39, 2? 3 AUGUSTUS SMITR NAVY VARD, 3, 5 3 : MAJ. W. L. MARSHALL, U. 8. A., CHAS. LE VASSHUR, U. 8. ASST. ENG., AUGUSTUS SMPTE? COB DOCK, 3 U. S. NAVY YARD ess 30 5 332 3 CHARLESTOWN, MASS; NAV COMMANDING OFFICER, U. S. NAVY YARD, MAJ. J. H. WILLARD, LIGHTHOUSES, MAJ. W. L. SIBERT, U8. N. S., MAJ. CG, S, RITCHIE: > o 4 is ) > ) ee a $ wi ) ZAR, Lie) ° ) ) »?) ) ) MISCELLANEOUS. SOUTHERN STATES PORTLAND CEMENT CoO., CONSOLIDATED GAS CO., TIDE WATER OIL CoO., STATE OF NEW YORK, PORTLAND, ORE. NEWPORT, R. I. Pee NIV 7 OR Wee rvenks > > >CHARLESTON, S.C. > CHARLESTOWN, MASS. FORT HANCOCK, N. J. MEMPHIS, TENN. , BROOKLYN NAVY YARD. : NEW ORLEANS. BOSTON, MASS. : PORT ROYAL, S. C. NORFOLK, VA. NEWPORT, R. I. MANILA, P. I. PITTSBURG, PA. ALGIBPRS, LA. CHICAGO. ATLANTA, GA. BALTIMORE. CONSTABLE HOOK, N. J. ROCHESTER, N. Y. 229 PADUCAH WATER CoO., PADUC AT ays NIAGARA CONSTRUCTION CO., NIAGARA FALLS, N. Y. AMBURSEN HYD. CONSTRUCTION CO., BOSTON. ABERTHAW CONSTRUCTION CO., SHELDON SPRINGS, VA NATIONAL PHONO. CO., ORANGE, N. J. FRUIN & COLNON, ST. LOUIS. R. S. BLOME CO., CHICAGO. E. TATTERSON, NORFOLK, VA. JNO. T. WILSON, RICHMOND, VA. BARNETT-HOPKINS CoO., BALTIMORE, MD. COWING ENGR. CO., CLEVELAND, OHIO. CONCR. STEEL CO., NEW YORK. INTERNATIONAL STRAM PUMP.CQ.. , «< HARRISON, N. J. BLECTRICAL COMMISSIGN; ¢ (73 o Oo (0° SBATDIMORE, MD. CITY RESERVOIR,-WEIRS,- 2 ¢ oege 6 eH ca Sake ST LOUIS. CRAMPY@1CO:. (8X: . PHILADELPHIA. BACTERIAL SEWAGE PURIFYING CO., NEW YORK CITY. W. J. OLIVER (RAILROAD, WORK), -- KNCXVILLE, TENN. BATES & ROGERS CONSTRYCTION CO,, ,, , CHICAGO. N. O. NELSON & CO., SEPTIC SPANKS, ST. LOUIS. L. W. ANDERSON, CITY ENGINEER; ''* GRAND RAPIDS, MICH. LOUIS LE SASSIER, NEW ORLEANS, LA. TUCKER & VINTON. ITHACA, N. Y. UNION DEV. & CONSTRUCTION CO., NEW ORLEANS. PEDEN IRON & STEEL CO., HOUSTON, TEX. WESTINGHOUSE, CHURCH, KERR & CO., NEW YORK. PAXON & VIERLING IRON WORKS, OMAHA, NEB. COMMONWEALTH ROOFING CO., NEW YORK. MADISON COUNTY GOOD ROADS COMMISSION, JACKSON, MISS. J. G. WHITE & CO. (MANILA, P. I.), NEW YORK. G. A. JOHNSON & SONS, CHICAGO. JAS. STEWART & CO., ST. LOUIS. W. R. MAHER, ATLANTA, GA. 230 PHILIP LOTZ, CURTICE-RUGGLES Co., NORTHERN OHIO PAVING & CONSTRUCTION CO. CINCINNATI GRANITOID Co., SOUTHERN ILLINOIS & MISSOURI BRIDGE Cco., AMERICAN FALLS CANAL & POWER CO., DOWDLE & WINDETT, COOK & LAURIRE, HEDGES-GOSNEY CONSTRUCTION CoO., CROUSE CONSTRUCTION CoO., COLLIER BRIDGE, CONVERSE BRIDGE CoO., AMERICAN CONSTRUCTION CoO., LEVERSEDGE BRIDGE Co., BARWICK CONSTRUCTION CO., MOORE-MANSFIELD CONSTRUCTION CO., NEWCASTLE BRIDGE CoO., FALLS CITY ARTIFICIAL STONE CoO., ELECTRICAL COMMISSION, PENNSYLVANIA RAILWAY TESTING PLANT, WILLAMETTE PULP & PAPER CO., ONTARIO POWER CO., SCHUYLERVILLE DAM, PEDEN IRON & STEEL CO.’S DAM, KANKAKEE ELECTRIC LIGHT CO.’S DAM, AMERICAN CONCR. STEEL CoO., PACIFIC CONSTRUCTION CO,, HUEHL & SCHMID, ALBERT GRAFF & CoO., COTTON BROS., SO. STATES REINFORCED CONCR. CO., CLEMENT & STRANGE, : MILLER-COLLINS Co., CHICAGO. NEW YORK. ; CLEVELAND, OHIO. CINCINNATI, OHIO. CHICAGO. BLACK FOOT, IDAHO. NEW ORLEANS. NEW ORLEANS. NEW ORLEANS. PHR TH AMBOY,, No J. INDIANAPOLIS, IND. CHATTANOOGA, TENN. INDIANAPOLIS, IND. FORT WORTH, TEX. SOULS: INDIANAPOLIS, IND. INDIANAPOLIS, IND. LOUISVILLE, KY. BALTIMORE, MD. WORLD’S FAIR, ST. LOUIS. OREGON CITY, OREGON. ONTARIO. SCHUYLERVILLE, N. Y. WALLIS, TEX. KANKAKEE, ILL. NEWARK, N. J. SAN FRANCISCO, CAL, CHICAGO. CHICAGO. SAN FRANCISCO. ATLANTA, GA, SALT LAKE CITY. NEW YORK. 231 WOODWARD & TIERNAN PRINTING COMPANY SAINT LOUIS 232 nie melita 4595) (