ie ie 45 Nitin y, it eats ny 30 355 $22 i905 \ EXPANDED METAL? ) FIRE ea D. E. GARRISON, President. Date GARRISON, JT; Sec’y and Treas. A. L. JOHNSON, M. Am. Soe. C. E., Chief Engineer. St. Louis Expanded Metal Fireproofing Go; Suite 606 Century Building, ST. LOUIS, MO. SOLE AGENTS FOR THE SALE OF = CORRUGATED BARS. SUB-AGENCIES. H. C. MILLER & CoO., 1 Madison Av., New York City. HDWARD AW DUCK ER, Gr H:, 683 Atlantic Av., Boston, Mass. WALTER LORING WEBB, C. E., 2222 Land Title Bldg., Philadelphia. CHAS! EO WALTHBHERS, Cy EH. 507 House Bldg., Pittsburg, Pa. SYDNEY B. WILLIAMSON, C. E., Baltimore, Maryland. WOOLSEY CROWE SUPPLY CO., 252 Oak Street, Portland, Ore. OMAHA STRUCTURAL STEEL WORKS, Omaha, Nebraska. Ss. G SHAW & CoO., Boston Bldg., Denver, Colo. VON HAMM-YOUNG CoO., Ltd., Honolulu, T. H. SMITH & DAVIS, Aguiar 81, Havana, Cuba. EASTERN ENG. & CONTRACTING CO., 13 Canton Road, Shanghai, China. COLONIAL TRADING CO.(For Panama.) 26 Cortland St., New York City. BUFFALO EXPANDED METAL CO., D. S. Morgan Bldg., Buffalo, N. Y. Teele CONDRON CC! lE:, 1750 Monadnock Block, Chicago, IIl. JOHNAESCOWING.@. E. 423 Citizens Bldg., Cleveland, oO. CONVERSE BRIDGE CO., Chattanooga, Tenn. F. CODMAN FORD, 306 Baronne St., New Orleans, La. GUARANTEE CEMENT & STONE CO., N. Y. Life Bldg., Minneapolis, Minn. KANSAS CITY BRIDGE CO 1109-1111 McGee St., Kansas City, Mo. tape CROWE: & CO; 222-223 Globe Bldg., Seattle, Wash. JOHN B. LEONARD, @e.B 608 Crossley Bldg., San Francisco, Cal. EARNSHAW BRADLEY, ey. Jae, 3 Place D’Armes Hill, Montreal, Que. EXPANDED METAL ) FIRE PROOFING ‘TABEEREOHeECON TEN ES Page. PNET OCMUGETON sirens wc. 0.4 0-3slsiewe ais ate boners React asin a is.ca trate ene Toisvaten ote tecumelsfehip s sanre al sveneveaea ane raters 4-10 Gold Medal! PAW isco oc.c cescso cS eee eT Totes otecnirere Noctelte ray, cobssielia) ele\ choice evereatctone aieteten alte TL Old Style *Corrucated. Barge sc. cra epimers isle chai okeushatel eta crstanh tata eleteete) yc siloteconstal eae niane 12 Ne We Style COPrPUsated “Bars aerate peietete rete ee teres etarotsn foresee ele reicustans sen eee) treioteloge 13 Ploor” System “NOs osx sa. fis orto Ries tene alee eeiere tne eieie) cretion, 6 nya are comets enetere 14 Mioor System NO w Ais echoes creoreteaee tet ereie oe sucisaalaiete ke ee ebe Whereis ere cchoudivns ec sncencinatate nee 15 Bloor. ‘System eNO. bic wees aa tebe Te es SC Re tee ere eae orca ere sole eae eS 16 FNOOTRSYStenVeIN OFG wtp a esate ree ce Ree rane era tie tsa tee as eee 17-19 Carleton (BulldingyRetaininia Wigley e occ aire te oe once etait s.c ase, a oe 20-21 interborough “POWeEr UELOUSE facie Gers Meus sis ete cme meter eericcilieta se oiatiake) sieve, cious Semen ooerere 22 Wall Street Pixchamee > Buildin com a c-. << 2 scuateitebe enc titebctsaetectiene carstarcG che chute ainclene 23 Single FPOOtINES <.iiae eh staacdte e Sick a eee ce a a ade ARI OrE Re eee ean Male scas, @ sire Mayethe 24-25 DOUDILS WE OOTIMES we ora wie ti Rie roan e ae arene TE eee eae eo ees sha fers 26-27 Stock: Blovsem Walls tex sotepcetas fr cratame ectke se ieee oe ete ete arena ee De A EE 28-29 Rétainines. Wallss. snc ce caer ceeersts crem heures orca dearer Gress MTech Sielti CN ares ait os a Sina 30-33 ICI? > COyISERUCELON ie sic ene ace o cochs tote e oe ros (Clee chai arene RCE ENE TONG ane ea tas ts Shara atic lots Sales oe 34-35 Conduit, “Dells Rios, exes foc aa so rec crate Mieratetialbel oteteetentets toetetena nade fevers Sieratarciereas. s) Nicaea stele rare 36-37 New Orleans, Drainage 1 Ca rial. circiciclcretente ities RO Ie te ered Pee ean ts erent sits tomar ence 38-41 Merminal Railway” SSW. Neat elctcercry wieherere te onde lo Memo lonetsiee tee erataies Ren eL sefed oie afar rch anes 42-43 Brooklyaas SG WEPSy nares ie acne ascetic ers halaoteve eer oun 4i order shan c heme so mena ene nacho aloy oeatersnatete eMene oN 44-47 Main: Outlete Sewers Kansas. City: as c.cleyatorstns teen crores dcorst cue oisiemec mente ot ata by ee ieee foes ea euemn 48 River des se Gres® Sewers acnicaree eee cee eee ea eee Peis Sit etch hap avsne toha nite wioxcas aces 49 Metropolitar sliunimel seisconsnis Clive. cisentaarsctte cine ia ieee Ene ee ee 50-51 BOSTOME ‘SUP Wa yews atoveys lors Seo nie erotersc oho ele foe e viiens fle te eeeena aie a tt eee te 52-53 Grain: TINS sch ethan a headin ote mae tar cave aisrare tt cae Oates vets Sus: Scans SEER EE eee ae 54 Galveston sSGa SW. 5 aolteerahomiete sts eietaiets.a srevsys akeke Grice I tin tt. aie 55-57 Reservoir, ake Goneva Wisi ci wisars ct wcisde is ccleuseit erates ache ane eee 58-59 Ambursen Dan” ConsStrucioritrm ecco. «cision costes seen eee eee 60-61 Waiter ‘Tower, Hast Orange: Noe Joa) sae dencis.c a cece ee eee 62-63 Reser Vy Olas tee On Ty aN ape li peapene tone clic Sex ies outs’ o.lkas sus eo NP RCM CR GTI asta) wel as Arch with Hollow Abutments...... Highway Bridge EFloor Construction. .<...a.5.. «aos oes i OCS AS Ce POR Oe tec 68-69 Hishwayeoulverts,, NiariOn MGOUN UyeeeLD Cares ts aie torre ie eaielotene/ ese eteye esate 70-73 Ornamental Reinforced Concrete Balustrade for Plate Girder Bridge.......... 74-75 Puch way -Culyvery aol he Een d LIiGoes ststemeisdie nts osharegetatatoeedeliete tow total erelsiovel s.tlaianecs 76-77 Mekinicy™ Srideens HOTESt. Panic’ vanacie wnt! co ce Pate ci ctmenale ms tarethereca ereiere nin el eseldiers ene 78-79 Secleva Streche Bdge s DLOOKLY ii cre sclemttars «erates ct ahs 21 eR OIE eaters tae anette 80-83 SemiscircularyCulvertaevwabash: Railroad <.ck om... compete eine citar oihec da aie 84-85 Eolow cA DUutmentes Wabasha “Railroad aes wat tae al e.telembent eememeniore catate cpc.s aye cree talons 86-87 Mane rive: Bridzen WMOres te Pat hee sc clet clare we Ries ovat Renee meee ae ea coh orotic as Mee coees 88-89 iste LODs Culverts mVVial Das Lee EVeullT Onc. ce cule chereee nie terel cere menue seeded cienes a. a lenereraien atic aye 90-91 Sold BE 1OOrY COnsStriGeron: ain asics cis + one 9.5.1 shen RAMOS Cle NE Sieve cus e re Qieepesnihel s cusleretes ete 92-93 Clear Branch ulyertOrambe Oo Glen ER’ Y: «. tan ate mae veaenee aay 144-145 Photographs of Tests of Full-sized Beams at Rose Polytechnic.............. 146-157 Maest DNON .9-,S% Sid,8 SUVA HI ee A zg Eee PRR eh aiocy beat Sig. 78 a Nwaky7 \H pple bag ht a; suv +4 ” em Wows, ch Ni ed) mate a=. leone Vv a (ist yak HOVa NI ZS S129 Suva mI Suarvr Zz ' ¥ 0 ” Zz 4 iu A ° | 7 A : 0 i - | ¢ zt Z G re J oO ¢ ow is 9 or SLOALINDUY CLI ZI SUVS Y% iu 3 NaAaQuvD ¥ WNWASSNYy NVUNVW i f % S WANA) 2S be ONICTIAG NOLAN /0 7 ‘OW ILOOd qe ONY 0 TIVWM NOILYWANAOA Fe =a © {Z SAD Zi SUVE Bf Ht IGN Loe iS : ‘N 9 z 7 o =) fe Pa S) FIRE 20 Carleton Building—Completed Retaining Wall. 21 ST. LOUIS EXPANDED METAL ‘suOT]epUNOY sUISUG, UI pesn sive isu ‘jSuOD pue “oo, ‘MOOTA UPA “VY Sich lon AMOI etSPNC@R ach ile aS yYIOX MON “U “YW PsuvlL pidey ‘esnoy, JOMOd Ysno10q19j,Uy ph, PERL ARRAS RE ITY eA EO es See car een acen seer amen co. PROOFING ST. LOUIS ~@g EXPANDED METAL FIRE ‘oinssoid 19}e@M paieMdn jstse1 0} JOOY AB[[eo UI paesn sie ‘Ig9ULSUG JOIUD ‘ApDInNg “AK UopAION ‘s1]U0D “OD 3 1elINw “Vy “095 ‘STyoO1y ‘TTessny 32 uo TTD ‘yIOX MON ‘SUIP[ING oSsuBvYyOXM 39 TIPAA PU} ST SUIplINd [[e} oyL at mr) oo s ra co Be mm i) EIRENE 3 4 ST. EXPANDED METAL/| ) FIRE PROOFING 200 TONS. 200 TONS. SINGLE FOOTINGS. | BASEMENT FLOOR. : ge CORRUGATED BAR FOOTING. PLAIN CONCRETE FOOTING. , Comparison between Plain and Reinforced Single Footings. 24 Y_ ST.LOUIS EXPANDED METAL ) FIRE corre — COMPARISONS OPZCOS EO beshNGERE LOO LENGS PLAIN CONCRETE FOOTING PiseayatlOmel des cUuAyCS:. (Cs SOC te. WN tet PR ea os. 2 $ 5.75 Goncretes OCs Ciel aCe 2OCs re An «get nis Oe RO ols nea 07 41.00 ROSA oS Sn eae eC gS oe a An $46.75 CORRUGATED BAR FOOTING BxcavaliOnse 7yoeClis Wols.p (CD) SOC; oo. eee nt Ser eae et sh aenegile CGncretesn lO se Ciieeltme 20. cls id each, Seen ad Me Certs SNe ss cc 20.40 COE ieatedanatce 2520) DS57(0) 36a) cmmeueee see Ges ua es 11.46 Pert aecoliniiglenet uo ss DS: (@) 2. C-eemnan cars eo Someta ae 2.98 SE ba ee ened attest h ere os tte MME MS wns Ras Se 38s $38.59 This shows that even in single piers a distinct saving is made by the reinforced concrete design. The percentage of saving increases with the size of the footing. The chief recommendation of this construction, however, lies not so much in the decreased cost as in the greatly increased reliability. The plain footing depends upon the tensile strength of the concrete to give the required spread. No more unreliable factor of strength exists in the whole realm of building materials. In the corrugated bar design, even if the tensile strength of the concrete were zero, the strength of the footing would not be materially altered. 25 Heater Wire 24 Mee TTF C1. COL C ' ' ; ais: a oN: 4 ead rT ipt A i are ee eck W--- 4 -- + CORRUGATED: BAR DESIGN STEEL: I+ BEAM: DESIGN DOUBLE: FOQTING he ‘ ' - 1 k---5'2>--4 ie it {res SS oa SECTION. N.N. SECTION-N.N. Comparison between Corrugated Bar and I Beam Double Footings. Corrugated Bar Design used for the Norvell-Shapleigh Building, St. Louis. Weber & Groves, Archts. 26 YY ST.LOUIS EXPANDED METAL FIRE PROOFING (| Co. l DOUBLE OR COMBINED FOOTINGS On the foregoing page is shown a comparison between a Corrugated Bar and an I Beam footing, of equal strength, for two columns. The column to the left carries 358 tons, the other 222 tons. The area of the footing is 232 square feet, making an average pressure of 2.5 tons per square foot. The center of gravity of footing does not coincide with the resultant of the loads, resulting in a variation in soil pressure, which can be obtained by Hooke’s law for beams i where f is the increase or decrease in pressure in tons per square foot at the edge of the footing; y, the distance in feet from the edge in question to the center of gravity of footing; M is the revolving moment in foot tons around this center of gravity; and I is the moment of inertia of the footing plan in feet. In the case shown, I=7565. M=580x0.42—243.5 foot tons. From the small end to the center of gravity is 12.92, This gives f,=0.42 tons per square foot. In the same way fo: is found to be 0.27 tons per square foot. Hence under one edge we have a pressure of 2.77 tons per square foot and under the other 2.08. The maximum bending moment occurs at the point of zero shear and is 22,800,000 inch pounds for a width of 11.77 feet. Taking a factor of safety of four, we have an ultimate moment for a width of 1’ of 7,760,000 inch pounds. From formulae on page 88, for average concrete, this gives a_ thickness of concrete of 45”, and 34% square inches of metal per foot of width=6, %” corrugated bars. For the I-beam footing, the moment of 1,900,000 foot pounds requires 8, 24”—80-Ib. beams. COMPARISON OF COST. Corrugated Bar Footing. 1-Beam Footing. : ion. 3 . yds., @ 50c....$ 19.50 Excavation, 45 cu. yds., @ 50c....$ 22.50 EAE aed @ Ca Rea Conerete, 966 cu. ft., @ 20c........ 193.20 Bars, 4,106 Ibs., @ 3C.......00.00s 123.18 Steel beams, 16,660 lbs.. @ 2%4c.... 416.50 pz: a Bolts and sep’s, 1,120 lbs., @ 2c.. 22.40 AMO PM cacao 4 MohotmeoeOGoOCAbeOnE $316.68 AMOUEN Gooch taGagenann stonone aes $654.60 27 ‘ashotyyyooig jo site‘ Jo uonNoes oy: “taSCUL “AM IN ‘UOSUIqOY ‘OD “f£ “0D JUSWIOD puYvp4sog smno’y 1g “Suva SNONNILNOD 0 8% - eH, oe % ‘Nid'Wwwid %% aod SIABID HLIM "S42 NO OL AWIAI GOH WIC %|—T mM 2B, z ° a 3 o 2 > o a = > te < > 2» m =a" ae av z 2 x Min a wo a o o > o ie Not, > a ©5 a a o re J 2 4 1 |X 2 o. | a e, i 7 ~ _ eh Of, | Ss o o!l 2 Zo 3 °,* “31y9¢6 ~~ > { SS PE ee i a TT YT r i o,| } | | }w a =< I 3 | ie} : 2 Sale > @ » a > rw oO a x °, ey x < ae pS r = al x | a oe ty = ; Bie a im 2 ie} ed > oO! ri > zo 5 ieaalecs ~ oo | ay 2 jl iat 3 x Paha ity a | 1a ‘a a> on it of a = °. { : 9° tet 4 1 lew ‘L3SdQ SON] | Ks Y31LN32 01 9-01 saoy ie toed SHLON31 2 NI SONINIOP Lv SLNN BARRIS { H 434N39 01 9-01 “GHLONI7 9 ‘'H391N32 OL i | “STINNWHD'LNOD 21 Saou ‘Wrid AY 97,01 SQ0YU wWyid %O | x = 1 oath el tf a a ss a SE 28 Y__ ST.LOUIS “®g EXPANDED METAL FIRE PROOFING (| co. ) St. Louis Portland Cement Co. Stockhouse, During Construction. 29 ‘pepessu sjzurof uotTsuedx9 ON ‘uOISSaIdeqd JO UOI{BAS[A YORLL 1OJ [TRA SuLureyory } S1LD.Zl SUVA “UXOD % ' CLO,S Suva “Uxoo .% \ 12,@ GNV USIHL,el XY \ __ uy sasstutina-TON ipa ee : 1 ! ee x fa) py Salo er Make os 32 4A eg Sl a ag \ : G a XN > uU yA — UN Bf fe abe JH ! Ji! | aie { i) Ss, fay re) N A 8 y ------ 5) lu N, fa} 4 u ! ery. NOLLWAANS HOWL HO3 ive 40 USVA 30 CONTENU O Coe \Vauleles One of the great advantages of reinforced concrete is in our ability to dispense with expansion joints in long structures. These may be built with the material in one piece from end to end, a mile long if desired, and by a properly proportioned longitudinal metal reinforcement, shrink- age and temperature cracks can be entirely obviated. Most engineers have to be shown; and they will not believe it then unless they can see some scientific explanation of the matter. That ex- planation is as follows: It has been shown by Considére, Hatt, and others, that concrete, when reinforced with metal well disseminated in small areas, will ap- parently stretch about ten times as much as when no metal is present, and that it will submit to proportionate elongations of about .oors. The co-efficient of expansion of concrete being .0000055, we find that it would take a fall of 270° to develop a proportionate shortening equal to the wall’s ability to stretch. The wall will pull out in this manner at about three-fourths its full tensile strength, or say at 150 pounds per square inch. The quantity of metal needed is enough to equal the tensile strength of the wall at an elongation of .oor5, corresponding to a stress per square inch in the metal of 45,000 pounds. The area of metal would ‘M “H ‘pur ‘A]UNOg UOTE ‘TEAL Sutupeyoy Jo uoloog Cigar mn) = ‘“IoAVAING AjUNOD ‘UUGIUSNeLS 92.21SHVE YYO2,2/>, <— SURFACE OF GROUNO J REORR. BARS 2'0"CC WRCORR BARS 12°CC i me 2 a6, ayo ———— re wf ai ; ' pate ORR BARS 12°CC /2,C ORR. BARS ]2°CC. —- +e ew NA Y%'CORR BARS 12°CC. 32 ea ee Sa ees j : j ~ ST.LOUIS “@g \EXPANDED METAL FIRE PROOFING Ce Retaining Wall, Marion County, Ind. “| EXPANDED METAL/| ) FIRE PROOFING | \ 1 | Vitefar si. * r i Y LEE; | | 4 ~ és 4 Yi == L SS | eae fe — = 2 -— Le CQ Wy ELEVATION OF Pié Bi Ie ro ie ea tare phi PIER GENERAL SECTION OF RECEIVING CHAMBER SECTION B-B St. Louis Water Department—-Section of Weirs. B. C. Adkins, Water Commissioner. E. E. Wall, Prin. Asst. Engr. 34 St. Louis Water Department—Weirs 35 under Construction. ST. LOUIS “@; EXPANDED METAL} FIRE PROOFING (| ce. ST. LOUIS EXPANDED METAL/} FIRE PROOFING C9. \ | | * ' “ [itt | | | | | \ ' | | a5 aE. k—-——/+//— - ~-3€-—----— Cross Section of Conduit at Del Rio, Texas. J. W. Maxcy, Engineer. 36 37 ST. LOUIS “@j EXPANDED METAL FIRE PROOFING (| ce. Del Rio Conduit under Construction, ST. LOUIS EXPANDED METAL FIRE PROOFING Co. Section of New Orleans Drainage Canal. Maj. B. M. Harrod, Chief Engineer. 38 New Orleans Drainage Canal, Showing Test. inforcement 1%” oO 6 feet apart. ST. LOUIS “gy EXPANDED METAL FIRE PROOFING (| Co. Gravel Concrete 1:3:6; span 13’; slab 11%” thick; re- corrugated bars, 4%” ects.; load 51150 pounds on two 8”x8” supports in center, Deflection scarcely appreciable. 39 OES st. Louis { EXPANDED METAL ()) FIRE PROOFING \ C9. BATTER 6b" PER Foot “a - ed ee: eS ee Pisvere Sa ° ° os Be lot . P aS ee Sa, Se ee a = $< — Last Type of New Orleans Drainage Canal. 40 4 j a * ri Last Type of New Orleans Drainage Canal under Construction. 41 3 Eglo phy) Weenider 77 7777 ZZ a) SS Ss =e NAA OMOMHOOKONV SSS SEAN \ ». % aN x * \ 1 8 2 g\.\ ——— ys = is SA ASSBASS SAE en —— — = \ \ \ \ \ —————— —— Hi Al a | Wy | | A vb i nS Ole St. Louis Terminal Railway Association—Section of Sewer under Baggage Floor. J. L. Armstrong, Engr. M. of W. ne A. P. Greensfelder, Asst. Engr. AIRE PROOFING Ce. SEWER CONSTN EXPRESS BLDes : FEB-2-190uL- Louis Terminal Railroad Association—Meeting Point of Two Branches of Sewer. 43 CONCRETE Rig eens ay: N 2°, 9.0%, oa og2 ee 34 CORRUGATED STEEL RODS, 12° CTO CS = = AQVZGRIE Ao seal FieOAse fa tat SECTION MAIN OUTLET, SEWER BRO@KLYN NEW YoRH. H. Asserson, Chf. Engr. R. 44 y PROOFING EXPANDED META Co. | FIRE YY ST.LOUIS Main Outlet Sewer. Brooklyn, during Construction. 45 ON GRILLAGE. R. H. Asserson, Chf. Engr. 46 EXPANDED METALS ‘YY ST.LOUIS i Co. PROOFING FIRE JaMIg uUATYOOIG Jo sodA, z9ayJoUWy 47 C9 ‘Yof STAGGERED Ar fey 9. ca | ROWS|\2' LONG \ ~~ ~ Proposed Section of Main Outlet Sewer, Kansas City, Mo. D. W. Pike, City Engineer. 48 GRADE, 7@ 0 CORR. BARSX 4" Crs. ¥ o eS : iv c | oO re) Lo Ye Proposed River des Péres Sewer through Catlin Tract. 49 Julius Pitzman, Engineer. \ EXPANDED METAL? | FIRE PROOFING Ce. “S ST. LOUIS: EXPANDED METAL || !) FIRE PROOFING | R__ BARS 4’crs. es % CORR BARS 2'cTS. 1 : oe CORR BARS Sh'cTs ee ee A ee cs oe hb 4) oe beer esa > Wes 21%" O < % CORR BARS !2CTS. N + 2018 3°67 aati : Section of Tunnel and ‘Retaining Wall, Metropolitan Street Railway Co., Kansas City, Mo. Ford, Bacon & Davis, Engineers. 50 Metropolitan Street Railway Company Tunnel. il ST. LOUIS EXPANDED METAL} FIRE PROOFING ( CO. ‘yooulSug JoIuD ‘UosIeO “VW PABVMOTT ‘UOISS[wWItWOH Hstivig, pidey uojsog ‘[ouUns, “ARROW ANAS ASHES ww % ot Boston Rapid Transit Subway. Howard A. Carson, Chief Engineer. 53 [ ST. LOUIS “@g EXPANDED METAL FIRE PROOFING (} ce, Metcalf & Metcalf, Engrs. Missouri Pacific R. R. Grain Bins at Kansas City. 54 ST. LOUIS EXPANDED METAL» FIRE PROOFING ( ce. { =o UDO Galveston Sea Wall. Geo. W. Boschke, Engr. of Constr. « 5 Go ST. LOUIS: EXPANDED METAL/] FIRE PROOFING 9. ; aS a Sy Galveston Sea Wall during Construction. a6 ST. LOUIS EXPANDED META IRE PROOFING([} F Re F Gh RA Galveston Sea Wall—Bird’s-eye View. 57 cove Toe SAVE HOD H ri- —A CHW BOD E21 ye thy MN ——————E— EE es See | S«S«Cua caves go / | | wy ' Po | fia | | Coal | ‘ | ! t | / I ! / | ‘ ! 3 ! | | 5 / | f / ; ! - ! i & i a / i 1 | | “ f | / ' : | / ! 1 / | u | Uy z i} / t | i | ! 1 f 1 / 1 a oe Re gs eee Se (SSO 5 Selina Sen [San ee eee ee ees -t— poses Ee ee ee A. C. Warren, Engr. Reservoir at Lake Geneva, Wis. Photograph of Completed Lake Geneva Reservoir. 59 ST. Louis « EXPANDED META FIRE PROOFING (| ce. ) ~ ST. LOUIS \EXPANDED METAL ) FIRE PROOFING C9. 109.06 ~ yp USS SHY Sp Sf SS Reinforced Concrete Dam Across the Battenkill. Built for the American Wood Board Co., Schuylerville, N. Y. Patented by Ambursen Hydraulic Construction Co., Boston, Mass. 60 ST. LOUIS EXPANDED METAL FIRE PROOFING co, Ambursen Dam at Schuylerville under Construction. 61 ‘sajuopD “op suyooy Y[eVeOMUOWIUIO’Y) -ISUy “VISUOD ‘9TNEeUTIIA "OD “OD ‘fC CN ‘osuvioC ISA 7E SYIOM J9OJVM AOJ AOMOT, 19JVM | K Ae os ene -,9I--°- Sates - ~+e-*99.9 Sawa r/c / s+4/e Awotaan 29-L 5D ,0) .2h: 9 D «21.76 96.01 HHI. ———<—— vOOl# A Ty LaW a30NWdXd . avo. \ q 62 ST.LOUIS © EXPANDED METAI FIRE PROOFING (| co. y oe a ee ee Photograph of Completed Tower. 63 ST. LOUIS EXPANDED METAL FIRE PROOFING Co. co = =—— += ~ tpt = 8 BCCKT BARS ¥4"O" CCH EVA" BA Rol2 ©CC%*7 BARS 7, ' ! ‘ ' t ' ‘ ' ' ' t t t t : i] AS R ' ‘ ‘ ' ‘ 1 ‘ ‘ ‘ ' ' ‘ ' ‘ NBARSYB pisses eee Sut st RE 7% BARS 54% CC.9'LG. 4-1 BARS Section of Reservoir -—--- — >t - ~~) -— 5 = Ht --- —- Je = SSS SS SSS 6" THICK . 4-7/8 BARS 5'LG. S" THICK Fi td na ed lta ARNE A ded BSE are eee ' ' Pe eS ' ' ee ae ao = eI Ee =~: Se a rr eS Construction, East Orange, N. J. C. C. Vermeule, Conslt. Engr. Commonwealth Roofing Co., Contrs. 64 East Orange Reservoir under Construction. 65 : cae #. SN TRICE RT aa & fast Orange Reservoir under Construction. 66 ST, LOUIS EXPANDED META | FIRE PROOFING ( eee a eee a SRR BARS I2 cr] *%e) Ps ant ae ¥ ‘ roars a>} rs it rae : : a iy ei ie) 0 < roe xe Co) “ea “ 7 . x 3 G7 CORR BARS 6° cTa » 2 a HALF SECTION AT: CROWN < 40 2'0 PART SECTION: AS Arch with Hollow Abutments. 67 Cross Section of Highway Bridge Floor Construction. Designed for Cooper’s Class A specifications. Many floors like this have been built. 68 ee A | y | | a * fi 2) 2 : . > o Sf O Sea: VU 1 ' eee KK 3 -0 — — 10°-0 mals = 2 © Oo x ie) ° | bev w = 2 | 2 : w a r A 4 | ~ eos 16 4 E 2 : oy WG aS = Z 3% ng io ty | | AN Ya Ons as LONG : tei N S | . r& SI'le’SQ -25' LONG SPACED 4 CENTERS | fc) y oy TS P SMT SQ°BW 2G aL Bil a. 8 wee wee we ee HALF SECTION HALF END ELEVATION Section of Flat Top Culvert, 20’ Span, Wabash R. R., near St. Louis, Mo. W. S. Newhall, Chf. Engr.; A. O. Cunningham, Bridge Engr. 90 BASE OF RAIL - a Ee ee = 24" Completed 2 0’ Culvert, Wabash R. R. 91 ST. LOUIS EXPANDED METAI FIRE PROOFING ) ia EXPANDED METAL} }) FIRE PROOFING § (Ee . eae ae 3 : 8 t | * fF wo 4-184" ome at i ie" | ~ 2 , eretnerinton_, | — arom —-Sectione One Type of Solid Reinforced Concrete Bridge Floor, Wabash Railroad. W. S. Newhall, Chf. Engr.; A, O. Cunningham, Bridge Engr. 92 # square corrugared bers spaced 3c toe Filled mith concrete One Type of Solid Reinforced Concrete Bridge Floor on the C., B. & Q. R. R. W. L. Breckinridge, Chief Engineer; C. H. Cartlidge, Bridge Engineer. 93 ST. LOUIS “@g EXPANDED METAL FIRE PROOFING (} co. ) OS EXPANDED METAL FIRE 2 tellaaee > Lor Grotasseaeukaaeeres 20° 14-0" BATTER KTo 1 1 1 ee Lo” 5 foo one wo eo on =n --- esas 1 "OM ie oy, VERT i°% wars. 3%4'crs, J2Ny B pars 9'c.10¢. |WiNG WALL salve rok MATERIAL: REQUIRED RRUGATED - STEEL+ BARS - CONCRETE -1980.5 CU YD oe CU.YDS. STONE to" eal} CBO), INH Old Monroe to Mexico Branch BRIDGE N°. 77.22 BATTER ro] CLEAR: BRANCH CONGREREY Ober DOXe CVI Eas SECTION: AT+ END See = we- == 5° 3/2- 12-32". _ ------» SECTION: AT: CENTER EXPANDED META FIRE PROOFING (} co. y Clear Branch Culvert. Nearly 100 Culverts of this type built on the Burlington Road in the years 19038 and 1904. 95 t EXPANDED METAL} }) FIRE PROOFING Plano Arch, 75’ Span; C., B. & Q. R: R. W. L. Breckinridge, Chief Engineer; C. H. Cartlidge, Bridge Engineer. 96 Completed anate Arch. ¥ ST. LOUIS EXPANDED METAL ) A) FIRE PROOFING aA Culvert on C., M. & St. P. R. R. C. F. Loweth, Engineer Bridges and Buildings. 98 Culvert on C., M. & St. P. R. R. C. F. Loweth, Engineer Bridges and Buildings. Many Reinforced Concrete Culverts of all types have been built by this Road. 99 ST. LOUIS EXPANDED META\ FIRE PROOFING (| C9. ST. LOUIS EXPANDED METAL | FIRE PROOFING Co. Culvert of 20/ Span, P. S. & N. R. R. M. F. Bonzano, Chief Engineer. 160 —_—"= << == {ST.LOUIS EXPANDED METAL | FIRE PROOFING / Co. — Culvert of 6’ Span, P. S. & N. R. R. M. F. Bonzano, Chief Engineer. Many Culverts of both Arch and Box Sections built on this Road in the last two years. 101 6 ST. LOUIS 1 EXPANDED METAL/} FIRE PROOFING? Y (9. \ —— | Four-Track Reinforced Concrete Arch at Willoughby Run on lL. S. & M. S. R. R. Clear Span, 154’. E. A. Handy, Chf. Engr.; te Frank Beckwith, Engr. of Bridges. FIRE PROOFING Co. Willoughby Run Arch Completed. 103 rs ST. LOUIS EXPANDED METAL/) FIRE PROOFING C9. WSS Photograph of Lake Shore 30/ Arch during Construction. 104 Reinforced Concrete Arch, 30’ Span, L. S. & M. S. R. R. E. A. Handy, Chief Engineer; H. H. Ross, Assistant Engineer. 105 —— = — — ae a ST. LOUIS EXPANDED METAL ) FIRE PROOFING oO. > Angola Reinforced Concrete Arch, L. S. & M. S. R. R. hy. -A. Handy, Chi. bner., Frank Beckwith, Engr. of B. & S. 106 7ST. Louis “ag \EXPANDED METAL \| FIRE PROOFING | |} Co. : Appreach to Bridge Across Mississippi River at Thebes, Ill. Noble & Modjeski, Engineers. 107 Reinforced Concrete Arch, 60’ Span, on the Illinois Central Railway. H. U. Wallace, Chief Engineer; fan H. W. Parkhurst, Bridge Engineer. ST. LOUIS “ey {\EXPANDED METAL FIRE PROOFING (| co. Reinforced Concrete Arch, 75’ Span, on the Illinois Central Railway. H. U. Wallace, Chief Engineer; ne H. W. Parkhurst, Bridge Engineer. ee ST. LOUIS. CaEXPANDED METAL FIRE PROOFING C9. REINFORCED CONCRETE BEAMS The position of the neutral axis in a reinforced beam is almost constantly changing. At the beginning of the loading it is at the center of gravity of the section transformed into its equivalent in con- crete by building out wings on each side opposite the plane of reinforce- ment, having a depth equal to the thickness of the metal and a total area equal to the area of metal multiplied by the ratio of the modulus of elasticity of the steel to the original modulus of the concrete in ten- sion. The neutral axis stays practically at this position until the stress on the extreme fibre of the concrete in tension equals its tensile strength. It then rises, as the loading proceeds, until the stress on the extreme fibre of the concrete in compression amounts to about one-half its ulti- mate strength, at which point the modulus of elasticity of the concrete in compression begins to decrease. This checks the upward movement of the axis, finally stopping it altogether sometime before the maximum load capacity of the beam is reached. It is the peripatetic movement of the neutral axis which makes it impossible to give, in simple equations, a satisfactory scientific expression for the conditions at all stages. Fortunately this is not necessary. We are chiefly interested in knowing how to design the most economical beam for a given strength. Most formule for the strength of reinforced concrete beams are based upon a rectilinear relation between stress and strain, and the safe values inserted therein, instead of the w/timate values. In our judgment 110 YY ST.LOUIS “@g \EXPANDED METAL FIRE PROOFING (| ce. ay —s this is not wise, as it is impossible to know what factor of safety is ob- tained. Most of these formulz will take 16,000 pounds per square inch for the safe stress in the steel and say that there will be a factor of safety of four on the structure, because the ultimate strength of the steel is 64,000 pounds per square inch. But when the elastic limit of the metal is passed its modulus drops fromt 30,000,000 to 5,000,000 andes tie cracks in the concrete become so very large immediately that we do not consider as available any strength that can be obtained beyond this limit; though this excess is considerable if the quantity of reinforce- ment used is only one-half what it should be, as is the case in the method above described. With only one-third the quantity of metal necessary to develop the required ultimate strength at the elastic limit, it is possible to break the metal entirely in two. For example, in a six-inch slab of rock-concrete having expanded metal imbedded in its lower portion, the expanded metal will always be broken apart, though this is soft box-annealed material. But the factor of safety for such construction should be four on the elastic limit, which would be equiva- lent to about six on the maximum load. When, therefore, we give the beam credit for no more strength than it can develop at the elastic limit of the steel reinforcement, it is desirable that this limit should be fairly high. With an elastic limit of 30,000 pounds per square inch the most economical quantity of metal reinforcement is 1.5 per cent of the area of the concrete, while with a limit of 50,000, one per cent only is 1il ST. LOUIS CpEXPANDED METAL FIRE foe nes required, or a saving of approximately one-third in the cost of the metal. As has been stated in the introduction, page 5, there is still some discussion as to just when the first crack develops in reinforced con- crete; but as also there shown, a proper reinforcement will cause the beam to develop a large number of cracks very close together, in which case these cracks will be of no material consequence so long as the bars are stressed inside the elastic limit. Corrugated bars will accom- plish this result. The cracks will be close together, small in size, and will not be able to reach the bar itself. With plain bars, or bars of less positive form of bond, this is not true; and beams reinforced with such material cannot demonstrate immunity from injury so long as the stress in the bars is inside the elastic limit. Such beams exposed to the action of the atmosphere for a few months would be liable to have the re- inforcement much corroded in time. | In the following discussion it is assumed that a section plane be- fore bending is plane after bending up to an elastic limit in the metal reinforcement of 50,000 pounds per square inch, and up to the full compressive strength of the concrete, which condition will be practically true for corrugated bar reinforcement. The discussion further assumes that such a quantity of metal is used as will cause the elastic limit stress in the reinforcement and the full compressive strength of the concrete to be reached at the same time. ‘ST.LOUIS || EXPANDED FIRE PROOF ING i RECTANGULAR BEAMS mnf. 5 Ene Fig. 1 Fig. 2 Fig. 3 Fig. 1 is a cross section of a reinforced concrete beam. Fig. 2 represents the strain diagram at the ultimate load. Fig. 3 is the stress diagram corresponding to the above strain diagram. Let £,=Modulus of elasticity of steel in pounds per square inch. Zl of the concrete in compression in pounds per square inch. F=Elastic limit of steel in pounds per square inch. fe—=Compressive strength of concrete in pounds per square inch. 113 ‘ “LOUIS: ~~ EXPANDED METAL | ) FIRE cane f—Tensile strength of concrete in pounds per square inch. 6—Width of section in inches. a’—=Area of one bar in square inches. d—=Spacing of bars in inches. 2 a = . . . aime umber of square inches of metal per inch of width. € ab —7o Total area of metal in width b. M.=Moment of ultimate resistance of cross-section in inch pounds. M=Bending moment of external forces in 1 inch pounds. W-=Total load on beam in pounds. P.=Total stress on metal in width b in pounds. P.=Total compressive stress on concrete in width D. P.=Total tensile stress in concrete in width b. N= Unit elongation of extreme fibre in compression. A,= Unit elongation of steel. e=Distance in inches from extreme fibre on tension side to middle plane of metal reinforcement. This thickness is not figured into the strength of the beam. 114 ST. \ EXPAN FIRE Referring to Fig. 3, we assume that the shaded area above the neutral axis represents the complete compressive stress diagram of the concrete, 0 s being the axis of proportionate elongation, and the neutral axis the axis of stress per square inch. From an examination of a great many such diagrams we have found that the resultant modulus— represented by the tangent of the angle o s—is about two-thirds in rock concrete and one-half in cinder concrete as much as the original modulus—represented by the tangent of the angle m o s. Also that the total area for both kinds of concrete is about one-quarter larger than the triangular area n 0 s. ‘These assumptions seem crude at first, but as a matter of fact they are not more so than would be any formula intended to represent the compressive stress diagram for a class of concrete. The latter would give all points on the curve, whereas our method gives only the end of same; but our location of that point is as accurate as can be obtained by any method. We can then write the following equations: ROCK CONCRETE yaaa ee Rees eran eta: rt) oe a3 115 LOUIS DED METAL} PROOFING (| Co. Bute ean Vo F And arp fy, Then a rage . QFE. 4; And Se=3E y, 7 DV kis BB ———— Hi et Ue aia MES PRGR eae ay sc sctler cule Matha aie) | daealva stelle Shoe Tehie By Or Vo RFE" (2) For the steel, Fig? aE Re eH eI fo ey tr NE LAOS ae OE 4 P= (3) For the concrete in tension, 8FE, f,ov Ze. fy Re | Po) rel eet ey (4) The empirical constant 38; is derived from the results of M. Considére. SY ST.LOUIS “@; We then have, WEA ak Ly 2s VN Aen oe ET Pe Pc oe (5) Bf.by, Fab 8FE, fiby, be eee Vee eC ot cae (6) Lt Le 4. vb 15 f.by,—64 foy\\ FE. ) | From which cet (oe mh Ca) For the moment of resistance we have, __ farb 2y1\ , 8hbv2(i2 | 2 Be 7 (y.+ z)+ iG 5+ mp |eotetts Erk eee: (8) The size of beam needed to develop a required moment of resist- ance can now be readily obtained from equations (2), (7) and (8). From (2) we obtain a numerical ratio between y, and y». when the constants depending only upon the particular materials used are known. Equation (7) gives the quantity of metal required in terms of 4, all other factors being known constants for the given materials. Then (8) gives the value of the ultimate moment of resistance in terms of | y, only. As the moment of resistance is to equal the bending moment | of the external proof loads, WM, in equation (8) is known which at once gives the value of y, from which all other values may be determined. Wa, ST. LOUIS. EXPANDED METAL FIRE PROOFING co. \ AVERAGE ROCK CONCRETE We have found the best average values for the constants for 1:3:6 rock concrete to be the following: 4,=3,000,000, f.=2,000, and /f, =200. For the steel the value of E, varies but little for the different grades of rolled material, but F, or the elastic limit, varies greatly. As before stated in the introduction, we can not utilize any of the strength of the steel beyond the elastic limit, therefore it is desirable that this limit should be fairly high. Our corrugated bars have an elastic limit of between 50,000 and 60,000 pounds per square inch. We therefore use for the constants for the steel, 4,—29,000,000 and “50,000. With these values equations (2), (7) and (8) reduce to the following respectively : ¥o=1.72y, Lig=12- [pes OSL Lem tase se iene ni uiareisna gnc (9) ab ————. Dby 26 ad Denes and c= <7 =0.07TA=.64% Be ee (10) M,=27506y,’ A=y,+yo+e } we have, WT eH SC20R ao en eee tas CE) SPECIAL ROCK CONCRETE There are certain grades of rock that give a much more compres- sible concrete than the above and have at the same time a greater com- 118 pressive strength. Trap rock falls within this category as well as certain kinds of western limestone using a well proportioned aggregate and a mix of 2:1:5. For such concrete we may assume the following constants : £ =2,400,000, f,=2,400, A200. Using the same values for the steel our equations of design then become : Yoe=1s 1 Dy, | Tid == 12" Bias Whe Ake, aA oe ee (12) ab ———— } 2b amen and et —=0.1324=1.1% re: (13) M,=26206y2 ; h=y,+y.+e } we have, MV peat) ay epee? ee (14) CINDER CONCRETE For'a 1:2:5 mix of cinder concrete we have 4,—750,000, f= 750 and f,=80. For this material the equations become: ¥o=0.862y, If 6=12” eC A Oa /Dy a imsteerer vier dx tae he (15) ab oe Thy 25 d PN and =< <-=0.018h=.4% ax a (16) M,=6936y,? h=y,+y.+e we have, IW hes RI) ae en aes Ae (17) ST. LOUIS EXPANDED METAL ) FIRE PROOFING Co. TABLE FOR THE DESIGNING OF STEEL-CONCRETE BEAMS IN AVER- AGE ROCK CONCRETE 1:3°6. TABLE FOR THE DESIGNING OF STEEL-CONCRETE BEAMS IN SPE- CIAL ROCK CONCRETE, 1:2°5. M | k 7 M | &k q M\k q 100 5.27 | 0.408 1000 | 1668 | 1.289 100 4 27 0.562 150 6.45 500 1500 | 20.40 | 1.580 150 5 22 .689 200 7.45 .576 2000 | 28.50 | 1 812 200 6.02 .795 250 8 32 644 2500 | 26.30] 2.088 250 6.74 889 300 9.12 706 3000 | 28.80 | 2.280 300 7.38 975 350 9 85 . 762 3500 | 31.15} 2.410 350 7:95.) 1 050 400 10.52 816 4000 | 33.25 | 2.578 400 8 62 | 1.125 450 if Kel 864 4500 | 35.25 | 2.780 450 9.05 1.193 » 500 11 73 - 910 5000 | 37 20 | 2 880 500 9.53 | 1.258 550 12.38 956 5500 | 39.10 | 3.025 550 10.00 | 1.320 600 12 90 .998 6000 | 40.80 | 3.160 600 10.44 | 1.380 650 13.40 | 1.040 | 6500 | 42.50 | 3.285 650 10.84 | 1 4385 700 13.92 | 1.078 | 7000 ; 44.00 | 3.410 700 11.29 | 1.486 750 14.40 | 1.113 7500 | 45 60 | $.530 750 11.68 | 1.540 800 14.88 | 1.151 8000 | 4700} 3.640 800 12.02 | 1.588 850 15.3h 1.188 | 8590 | 48.55 | 3.760 850 12 41 | 1.640 900 15 80 | 1.222 | 9000 | 49.90 | 3 860 909 12.79 | 1 686 950 16 25 | 1.258 || 10000 | 52.70| 4.075 950 13 11} 1.735 M 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 85)) 9000 10009 h 13.49 16.50 19.05 21.30 23.35 25.20 26.90 28.59 30.10 31.60 33.05 34.39 35.65 36 90 38.10 39.30 40 40 42.60 M=Ultimate bending moment of external forces in thousands of inch pounds. h=Depth of beam in inches. q=Number of square inches oi metal re- quired in beam one foot wide. Depth to metal taken at 0.9h. M=UvUltimate bending moment of external h=Depth of beam in inches. q=Number of square inches of metal re- quired in beam one foot wide. Depth to metal taken at 0.9h. forces in thousands of inch pounds. ST. LOUIS “® EXPANDED METAL# | FIRE PROOFING ( Ce. | | TABLE OF SPACING REQUIRED FOR DIFFERENT SIZES OF CORRUGATED BARS | | FOR GIVEN AREA OF METAL IN RECTANGULAR BEAMS ONE FOOT WIDE. | ee Ee ee ee | | | | | OLD STYLE BAR | NEW STYLE BAR. 11 OCH Bee I) a7" WIP Ab, yw il we | age A NY ae ; | 4" | / Sr ear | BAR BAR ae Bae he || Bae | Bar | BaR | Se Gaye ma ve 2” 1.080”) 2.220”) 3.300”! 4 200”) 6.480”)| 0.860”) 1.5007] 2 340”] 3 360”! 4.6207} 6.000”! 9.3870” | 24%" 0.860”) 1.780”) 2.650”) 3.360”) 5.140”)| 0.290”) 1.200”) 1.870”) 2.690”) 3 700”| 4.800”| 7.500” | 3” 0.725”) 1.480”) 2 200”) 2.800’! 4.280”|| 0.240”) 1 000”! 1.5607] 2.245”) 8 C80”) 4.000”| 6.240” | 3” 0.620”) 1 270”) 1 890”) 2 400”) 3.670”|| 0.210”) 0.860”) 1.340”) 1.920”) 2.610”| 3.480”| 5.360” 4” 0 540”) 1 11a”) 1.655”) 2.100’! 3.210”|| 0.180”! 0.750”! 1 175”! 1.680”! 2.310”! 3.000”) 4.680” | 4\,” 0 480”) 0.990”) 1 470”) 1 860”) 2 850” 0 16 .) 0.670”) 1.040”! 1.490”) 2.050”) 2.670”) 4.160” 5” 0.430”) 0.890”) 1.320”) 1.680”) 2.570’) 0.140”) 0.600”) 0.940”) 1.340”) 1.850”| 2.400”) 3.750” 5M” 0 390”) 0.810”) 1.200”) 1.520”) 2.340”) 0.180”) 0.550”) 0.850”) 1 220”) 1.680”) 2.180”) 3.410” 6” 0.3607) 0 Tio”) 1.100”) 1.400”) 2.140”)| 0 120”) 0.500”) 0.780”) 1.110%] 1 5380”) 2 000”| 3.120” 614” 0.385”) 0.685”) 1.020” 1.290”| 1 970”|| 0.115”| 0.460”; 0.720] 1.080” 1.420] 1.8507] 2 880” ie 0.310”) 0.680”) 0 940”) 1.200”) 1.830”)! 0.100”! 0.480”! 0.670”| 0.960”| 1.320” 1.7207] 2.680” Ty," 0.2907) 0.590”) 0 §80”) 1.125”) 1.7Lo0”|| 0.100”) 0.400”} 0.620”) 0.890’ 1.280”) 1.600”! 2.500” 8” 0 270”) 0.550”) 0 820”) 1.050”) 1.600”)| 0.090”) 0.380”) 0.590”) 0 810”) 1.150”} 1 500”| 2 310” 84” 0.250%) 0 520”) 0.770”) 0.995”) 1.510” 0.080” 0.350”) 0.550”) 0.790”) 1.090”) 1.420”) 2.200” vi 0.240”) 0.500") 0.730”) 0.980”) 1.430” | 0.080”) 0.3830”) 0.520”) 0.750’) 1.020”) 1.380”) 2.080” 91,” 0 280”) 0.470") 0.698") 0 8850”) 1 355”|| 0 080”) 0 320”) 0,495”! 0.710”| 0.970”| 1.260”) 1.970” 10” 0.2207] 0 440”| 0.660”| 0.8407] 1.280”|| 0.070”! 0 300”| 0 2" OLoTm OOS cee 20 ewes te STi ALY 0.200”) 0.400”) 0.600”) 0.760”) 1.170” 0.075” 0.270” 0 430”| 0.610” 0.8409”| 1 090”] 1.700” | 12” 0.185”) 0.375”) 0.550”) 0.700”} 1 070”|| 0 060”) 0.255”| 0 395”| 0.560”| 0.770”| 1.000”| 1.560” | 121 S” ST. LOUI EXPANDED METAL /| !) FIRE PROOFING (9. TESTS OF THE UNIONSBE TW EENSCONCKETE ANIDSS GEE A recent issue of Beton and Hisen gave the results of a series of tests upon the holding power of different types of rods imbedded in concrete, made in the labora- tories of the Massachusetts Institute of Technology by Prof. C. W. Spofford. Portland cement concrete was used, made in the following proportions by weight: One part cement, three parts sand, six parts broken stone. This mixture was used in order that the results would correspond with tests upon beams and columns which were under way at the same time. The mixture, however, is very lean and would not again be used. The sand was clean, but rather coarse grained, containing approximately 47 per cent of voids. The broken stone was a mixture of two parts of 1” trap and one part of 4%” trap. The mixing was thoroughly done by hand, the concrete being wet enough when tamped into the moulds to flush water to the surface. The moulds were, in some cases, not as tight as they should have been and some water leaked cut, carrying with it some of the cement. It is not believed, however, that the loss thereby was sufficient to injure the results of the tests except possibly in a very few cases. The rods were all thoroughly cleaned by a sand blast, thus insuring uniformity in the surface conditions. A 100,000-pound Olsen vertical testing machine was used, rigged with short uprights, carrying the platform upen which the specimens were placed. The load upon the bearing end of the concrete block was distributed by the interposition of a sheet of 4%” felt between the concrete and an angular steel ring resting upon the platform of the machine. In all cases the rod projected a short distance at the upper end of the block (the pull being downward at the lower end) and this pro- jecting end was carefully watched in order to detect the first evidence of slipping. The rods used were round, square, flat, square but twisted through an angle of 20 degrees (Ransome rod), Thacher and Johnson. The table has been arranged from the original tabie in Reton and Eisen so that bars of the same size are together.—Reprinted from the Railroad Gazette, for September 18, 1903. PROOFING EXPANDED M FIRE paddtrs poy paddtis poy peddrs poy poddts poy paddis poy qds ajyo1ou0D ayorq poy qiyds ajatouo0+) peddrs poy poddt[s poy peddt[s poy peddt[s poy peddt[s poy peddi[s poy peddits poy peddits poy poddris poy peddt[s poy qjds ajyatouo0y yitds ajatou0—D qipds ajar 0d ‘QOO'FL 9B paddiys poy yitds ajarowo—y qItds ajarouwod ‘gen‘'6L 38 peddi[s poy yds ajarowod ‘Q00'RT 98 peddtis poy ayorq Poy axOId POY “UT Z-1 TT ysnorqy parrnd ‘OOF FL SSajs *xPUL Yonor4y por ‘ooo'er ge peddits poy pula WO paysndo ajatoW0,) yipds ajatowo:y qitds ajaromoo ‘pots 18 peddi[s poy “ut ¢ ysnosyy parpud poy = “yrds AIIOUOD ALI AM ‘YOO FL OF UTVTR osor ‘0008 0} paddozp ‘Qn0'aE 4B peddtyps poy A[[BUIPHJIDUOT FTAs aJorOUOD yids ajyatomwoy qttds ajarouoo ‘paddits poy ‘ul g Ysnorygy parpnd poy “yrds a}ILNTOD IAM “HOG‘'R OF WIRHR asor ‘000'9 07 peddozp ‘0090's 4 peddrts poy A[[Rurpnysuo; yITds ajatowo0y (p fur waurroads) DOT pend | 009° 9F 00¢°6E OOL'S8 | OOL GF O00 BF -00S°06 | OOF 6E | OUS*RS | 00%°98 | OOF OF | 006°GF 086°8 00898 OOS | 006'¢8 OOF 009'08 | 006'CF | o00'Le 00168 | 000'eS | 008° 9F | 00686 009°8¢ 000°09 | 00°29 | 002'£6 009° CF 000'9e | OOF GE 002‘28 | 006°9% 00z'ee *syIBUayy out arenbs oas Jou Jo T aad spunod ut pos wo ssarjg “UorL “uOL CFL FOL | ST 1a 616 £8b 16 6EE 966 61 ing 1G 19+ FFE Sa 619 8LF IeF $S¢ G13 886 S66 StS OFS s Surmvayg | out a1enbs I sso} yoas Jou Jo Y spunod u aad 92°0 | OOL‘9% 92°0 | O8TAa 92°0 | OOL TZ 920 006°8% FEO 009°ST 120 000'8¢ 62°0 | OOL'SS 92°0 | 009°98 920 ODE*Es 9¢°0 | OOLTS 9 0080 1 9°0 | 009° | FF'0 | 009'ST 1920) 000° 9¢°0 | 080% 1 9¢°0 | OOF‘ZL }92°0 | 00L°6 120 009" 68°0 | OSU'S 19e"0 | 006‘ 40 OSL°SL /8L°0 | O¢¢*0OL | | | ¢%'0 | 000‘¢T 130 | 008‘ 9T PLO OGL EL /8L°0. 0088 1 ¢3'0 | 000°FI /86'0 | OOL'S $10 | 006°CL |SL0 | 0&8" | /£%'0 | 008'8 £30 | OOL'SL | ty Se| 8 6B] & Be! 8 ab): rs Sl eS ae) 5 tee | S| 5 1Boel < Bo| 5 "wm _ w n f ‘ wn & [=A ° B pesca NN ANNs dur ‘ajJa19M09 “your pappequirt por so qyZuaT ul | | ‘YOO[q a}a10M09 Jo az aienbs $-¢ punod f-¢ | p-f uosuygor 8X8 F-G LOYORUL, 8X8 F-g suULOsuRY 8X8) F-T X F-1G 8X8 | 8-§ XZ-LT 8X8 @-L X8-LI 8X8 | arenbs --¢ RXR | punod f-¢ Qxg| FE X F-1G 8X8 8-@ X Z-L TL 8X8 | 6-1 X8-LT gx arenbs F-¢ punod F-¢ pf uosunygor F-G | TOYORYT, F- VULOSURY $2 uosuyor QXQ F-G AAYORUT, RXg | F-g oULOsURYy 9x9 |G-| wosuyor 9X9 | S-T AOYoRyL RX | Z-L auLOsuRyy 9X9 | G-[ aMoOsuRY 9x9 Z-| uosuyor 9X9} 6-T rOYoRyL Rx | Z-T auLOsuURy 9x9 Z-[ aulosuRy 9x9 | G-| uosuyor TayoRy I, Z-[ oulosuRy Z-[ ewosuRy | “yout ‘por jo addy, | out Y | | | “1aSaLS GNV 3ALSAYONOSO NS34SML5qa NOINN SHL NO SLSA3L 30 SLINSAY 123 ST. LOUIS. EXPANDED METAL d) FIRE PROOFING ( PRS emee eres a L 2 = + (THEORETICAL POINT FOR L JOHNSONS FORMULA FOR -~ ‘ 1}2-4 IROCK| CONCRETE|- ~ : is iva | Z es 40 P of Zea) Le me i) 2 W300 Ww 3 BEAM TESTS q JOHNSON CORRUGATED BARS P 200 UNIVERSITY OF ILLINOIS TESTS+ CONCRETE 1-3-6 18 ROSE POLYTECHNIC INSTITUTE = + " 13-6 G UNIVERSITY OF PENNSYLVANIA « 1-2-4 100 4 UNIVERSITY OF WISCONSIN 3 " 1-2°4 GMmMl& Sue RY: a " 2-4 : 1-2-3 BOSTON, TRA ae i 1.0 \. PERCENTAGE OF REINFORCING 124 POO ReZAIN Hes The foregoing discussion applies to beams on knife edge supports. Rectangular beams when incorporated in floor panels will have just about twice the capacity given by the formula, and the following tables, I to VI, are made up on this basis. To give a scientific discussion of this is almost impossible. It is a matter of actual practical experience. We can, however, see that it is reasonable to expect about such an increase. The haunches built down upon the lower flange of the supporting beams give a continuous girder action such as reduces the external bending moment one-third. Also the floor in adjacent panels produces an interior arching action, increasing the area of this compressive stress diagram about one-third, the effect of the two being to double the moment of resistance. If the beam does not have the haunches projecting below as de- scribed, but is itself the full depth throughout, then we would add one-third only to the value of the moment of resistance. Beams of Tee shape are not greatly strengthened by incorporation in floor panels inasmuch as most of the compressive strength comes from the flanges, too high up to be affected by the interior arching action. That is to say, P.” (see page 135) would remain practically the same and P.’ would be increased probably 50 per cent. But the latter is usually so small as to make this increase of little value. YY ST.LOUIS EXPANDED METAL FIRE PROOFING (| co. y ST. Louls. TABLE I. GIVING BREAKING LOADS FOR CINDER CONCRETE FLOOR SLABS WITH NO. 16GA. 2%" MESH EXPANDED METAL IMBEDDED. U=Uniformly distributed load in pounds per square foot, in addition to dead weight. C=Concentrated load in tons, in middle of slab 12” wide. | SPAN IN FEET. Thickness | Mo ”=Floor-Slab of Slab | 4 | 5 6 7 | 8 | a | 10 Moment of Resistance in inches. | l | l | =2Mo ujelulel v c||u|el/u]o, ujelule 2 6800 68 435 0.54 300 49)... Ebony facia aeraed ree Nae hee 16300 21% ‘1060 1.06 680 0.85)| 470)0 71|| S45 10c61 lee eer eee ote re at 25460 3 1360 1 36|| 870 1.09 605|0.91. 445/0.78|| 340)0.68]|....|.... ae | 32830 3% “1640 1.64 1050/1.31|| 725 1.09) 535/0.94!| 410)0.82}| 3250.73 | Sdoallsocs | 39210 4 1900 1 90, |1220/1.52)| 845 1.27] 620|1 09|) 475)0.95]) 8800.85), 305/0.76 45700 4, ove 18}|1390 1.74) 970 1.45 710}L 24)| 545/1.09 430/0.97 | 350 0.87 52200 5 AS 1560)1 96)| 1090 1.63, 795)\1.40}) 610/1.22 na ge | 390 oe 58750 5% | mile 1740 ae 1210)1 at 890|1 55|| 680/1 36 540 1.21 | 440|1 09) 65300 6 os 00) 1910 2.39) 1330 2 975|1.71)|| 750 1.49] pase ta | 480 1.20| 71900 | u="e 3 ae l=span in feet. 126 TABLE I GIVING BREAKING LOADS FOR CINDER CONCRETE FLOOR SLABS WITH No. 10GA. 3” MESH EXPANDED METAL IMBEDDED. U=Uniformly distributed load in pounds per square foot, in addition to dead weight. C=Concentrated load in tons, in middle of slab 12” wide. I. ST. LOUIS “®g EXPANDED METAL} FIRE PROOFING (| Co, ) | | SPAN IN FEET. | Thickness Mo”=Floor-Slab | of Slab Porn | eee 6 7 Sites 10 Moment of Resistance in inches. in l =2Mo | Cai CN sURi Ce OrieCe it) Way C: eUy Call Umi Can Cis i | | | 2 720'0.72)| 460,0.58)) 320/0.48 17350 24 1180|1.13)} 730.0 91}; 505)0.76)| 370/0.65)|.... 27200 3 1620,1.62)|10351 29 720 1.08)| 525/0.92)) 405)0.81 38300 | 3h, 2140/2. 14)/1370/1.71,) 950 1.42|| 700)1.22 | 535|1.07|| 425)0.95 51300 4 2490/2 49)/1595/1. 99 |1110)1 66, 815}1 42 | 620/1.24]| 490/1.11}} 400) 1.00 59800 41% 2850 2. 86 1920 2.28 1270 1.90 930)1. 62!) 710)1.42|| 565)1.26)| 455) 1.14 68300 5 3200/3. 20/2050 2.56) | 1430/2. 13//1050/1.83)| 800/1.60}} 6830/1 42}| 510)1.28 76900 5% 3560]3.56||2280|2.85!/ 1580/2. 37||1165/2.03)| 890)1.78|| 705!1 58)| 570}1 42 85500 6 3950/3 95 2520 3.14 |1750)2 62||1280/2.24|| 980/1.96]| 775/1.74/| 6301.57 94200 u="27 C nT l=span in feet. EXPANDED METAL !) FIRE PROOFING Co. TABLE III. GIVING BREAKING LOADS FOR CINDER CONCRETE FLOOR SLABS, USING %” SQUARE CORRUGATED STEEL BARS OF SUCH SPACING AS TO MAKE THE SLABS OF EQUAL STRENGTH IN TENSION AND COMPRESSION. pounds per square foot, in addition to dead weight. in middle of slab 12” wide. =Uniformly distributed load in C=Concentrated load in tons, Thickness of Slab in inches. SPAN IN FEET. Floor-Slab Spacing of Bars in inches. [oo] Mo” Moment of Resistance =2(Mo or Mo’] m oo = ~ ~ ro 8%|) 930/1.85 o| 7%||1170/2.34 7 |/1390|2.77 6| 6 |/1770)3 54) 51%| 2100/4 21 6} 5 | 2500 5 00) 3.37) 4 a 385.1 06 490 1.35 620 1.70 735 2.02 935 2.57 1110 3.06 1320 3.64 | 790 | 935/2.81 1110 3.34 37500 52400 70000 89000 112400 133000 170000 202000 240000 l=span in feet. ST. LOUIS {\EXPANDED METAL FIRE PROOFING (] ce. ) GIVING BREAKING LOADS FOR ROCK CONCRETE FLOOR SLABS WITH No. 16GA. 2%2” MESH EXPANDED METAL IMBEDDED. TABLE IV. U=Uniformly distributed load in pounds per square foot, in addition to dead weight. C=Concentrated load in tons, in middle of slab 12” wide. Thickness of Slab in inches. SPAN IN FEET. 10 wal Cele] hee | C lu | Cc U 930)0.93)| 595 0.75 0.97 1.20 1.43 1.66 1.89 2.12 (2.35 ) 2.57 415 540 665 790 920 1050 1180 1300 1430 OG 2 ererorel | etors 400)0.69]|....].... 0.81 1.00 1219 1 38 1.57 1.76 1.96 plats 490|0.86 580|1.02 675|1.18 770\1.35 865)1.51 960|1.67 1050/1.84 i=span in feet. 330 375 425 | 470 || 520 0.83 0.94 1.06 1.17 1.29 M o”=Floor-Slab Moment of Resistance =2Mo 22450 29200 36000 42850 49700 56600 63500 70400 77300 TABLE V. GIVING BREAKING LOADS FOR ROCK CONCRETE FLOOR SLABS WITH No. 10GA. 3” MESH EXPANDED METAL IMBEDDED. | U=Uniformly distributed load in pounds per square foot, in addition to dead weight. | C=Concentrated load in tons, in middle of slab 12” wide. SPAN IN FEET. | Thickness . M o”=Floor-Slab of Slab 4 5 6 as 8 | i) 10 Moment of Resistance | in inches. T 7 =2Mo | u/c] ulc|/ulcliuje}/ujciiu/cl|luj|c + F 2 1230 1.281] 785 0.98 545/0.82)| 400/0.70 Fe, el et BAe loor Bes || 29500 2% 1600)1.60)/1020)1.28)) 7101.06|) 520/0.91/) 400/0.80/|....|....|)..../.... 38400 | 3 ) 1970|1.97)/1260)1.58|| 875/1 32|| 645/1.13)| 495/0.99|) 3900.88||....|.... | 47400 | 3% | 2350/2.35 |1500/1.88| 1050)1.57)| 770/1.34)) 590/1.17|| 465/1.04)) 8375/0 94 | 56450 | 4 | 2730|2.73||1750 2 18] 1210/1 82) 990/1.56 680/1.36)| 540/1.21)) 435/1.09 | 65500 4% | 3110/3. 11 1990 2.49, 1380/2 07|/1010)1.78|) 775/1.55 | 615/1.38)| 495)1. 24 74700 5 | 3490/3. 49) |2230/2. 79) |1550/2.33//1140/1 99|) 875/1.74!| 6901.55 560)1.39 | 83850 5% | 3870|3.87 2480 3.10, 1720 2.58} |1265/2.21)/ 970/1.94)| 765)1.72)| 620/1.55)| 93000 6 | 4260 4.26, 2740 3.41 '1900 2.84) 1400 2.44)|1070)2. 14) 840 1.90 680)1.71 / 102200 | : es — ae 2 u=se if Gator l=span in feet. ST. LOUIS “@ EXPANDED METAL> FIRE PROOFING ( ce. TABLE VI. GIVING BREAKING LOADS FOR ROCK CONCRETE FLOOR SLABS, USING %” SQUARE | CORRUGATED STEEL BARS OF SUCH SPACING AS TO MAKE THE SLABS | OF EQUAL STRENGTH IN TENSION AND COMPRESSION. U=Uniformly distributed load in pounds per square foot, in addition to dead weight. C=Concentrated load in tons, in middle of slab 12” wide. Q 6 3\.8 SPAN IN FEET. B33 a = Heda 0 S| ee l Oa sk aT lso 8 9 | 10 11 12 13 14 15 16 Sere 2 Cale | | & Emo agin e ae | I322 Basil u| Cc vj c||u c|juje|ule|vje|ulecle CUTE Cail a osines | | | | = 3, 7 || 775(.55| 6011.38), 495/1.24|| 410/1.13/|..../.... GA | pe crete ae 74400 4 | 6 ||1070/2.14!| 840|1.90/! 685/4.71|| 565/1.56|| 4751.43/| 405|1.92||....].. .|]..-.].--.[]----[.--{] 102700 41%4| 5 ||1480/2.96||1165/2.63| 945|2.36| 780/2.15|) 660/1.97|| 560/1 82|| 480/1.69|| 420/1.58]|....|.... 142000 5 AY) 1860|3.73||1470|3 31||/1190)2.98/| 985)2.71)| 830)2.48|} 705)2.29)| 610.2.13)| 530)1.99)) 465/1.86 179000 5u4| 4 //2340 4.68 |1850/4.16|/1500/3. 75/1240 3.40||1040|3.12)| 885)2 88|| 765)2.68)| 665/2.50)| 585 225000 6 | 3% |2950/5.90) 2330/5.25 1890)4.74) 1560 4 30 1310 3.94) 1120 3.65)| 965/3.38 | 8403.15 | 740 2.96 284000 614| 3% |3250/6. 50 2560/5 .78) 2080 5.20) 1720 4.72) 1440 4.34) /1280 4.00|/1060/3.71)| 920/83. 46 810/3. 24) | 311000 7 | 3 |/4100|\8.24||3250/7 30) 2630/6. 58)/2170/5. 98) 1830/5.48)|1560)5. 05)/1340)/4.70)/1170/4 39 1030 4.12) 395000 7%| 3 ||4450/8.88//3500)7.88) 2850)7. 10) /2350/6.45) 1980/5 92) 1680)/5.46)/1450/5.08) 1260/4. 75) 1110 4.44 426000 | | | | | bo ow ou co l=span in feet. ST.LOUIS. \~ SS TABLE FOR DESIGNING HIGHWAY CULVERT COVERS Span 3’ 4’ 5! 6/ | Te 8’ 9/ 10’ il And D 6 | 9 Fill T 3 , 7 Tp a2 p ey sd p a p ae , a T a 1800 iL! 13, 20; 5.1) .27| 5.9} .34) 6.7 -40 7 4 47| 8 2 -54) 9.0) .60) 9.8] .67/ 10.6] .73 2100 2! 4.5) .22) 5.4) .29] 6.2). .36] -7.0 -43/ 7.8) .52) 8.7) .58) 9.5} .64/ 10.4] .72/ 41.2! .79 2400 3 4,7] 24 | 5.6} .81/ 65] .39) 7.4) .46| 8.3) .55| 9.2 »62/ 10.1) .68) 11.0) .77/ 11 8] .§3 700 4/ 4.9) .25] 5.8] .83) 6.7] .42] 7.7] .49| 8.6] .57 9.7) .65) 10.6; .73}/ 11.5) .82/ 12.4] .89 3000 bf 5.0] .26) 6.0] .35| 7.0] .44 8.0) .52} 9.0) .60/ 10.1) .69/ 11.1] .78] 12.0 87, 13.0) .96 ~ 3300 6’ 5.2 27] 6.2) .36) 7.3 46 8.3) 54) 9.4) -63/ 10.4) .72/) 11.5 “81 12.5 90) 13.5 1.00 3600 Ne 5.3| .28| 6.4) .38} 7.5] ..48] 8.6! .56] 9 7| .66 10.6; .75) 11.9} .84/ 13.0) .94/ 14.1] 1.04 3900 8’ 5.4] .29/ 65] .40| 7.7] .50] 8.9 58} 10.0} .69) 11.2] .78) 12.3 -88) 13.5 97) 14.6) 1.08 4200 9/ 5.6] .80] 6.7] .41 19) ..b2\) 9.2 61 10.3 - 72) 11.6} .82! 12.8 91 14.0 O41) 15.1) 1.12 4500 10’ 5.7) .32] 6 9] .42) 8.2] 53] 9.4! .63/10.6 74] 11.9] -85/ 13.2; .95] 14.4/ 1.05] 15.6] 1.15 4800 ili ke 5.8| .33| 7.1] .44] 8.4 -54) 9.6) .65) 10.9, . 76) 12.2| 88) 13.5! .98/ 14.8] 1.08) 16.0) 1.19 5100 12/ 5.9] 34) 7.3} .45] 8.6] .56] 9.9] .67/ 11.2! 78 12.5) .90) 13.8) 1 O01) 15.1] 1.12] 16.4] 1.24 5400 13’ 6.0} .35] 7.4] .47] 8.8 -57 10.1 69 11.5 -80/ 12.8) .93] 14.1] 1.04] 15.5 15) 16.8] 1.28 5700 14’ 6.1 .36] 7.5) .48] 9.0} .59/10.4 72} 11.7] -83) 13.1 -95) 14.5] 1.07/ 15.9] 1 19] 17.3) 1.32 6000 15’ 6.3) EST iG time. ole ord) 61 10.6 4 11.9 85 13.4 .98 14.9, 1.10 16.4 -23| 17.8) 1.36 T=Thickness concrete roof in inches. 2? —=Area (in ”) of steel required per foot width. 132 ST. LOUIS “@y |\EXPANDED METAL | FIRE PROOFING (| Ce. IN REINFORCED CONCRETE CONSTRUCTION WITH CORRUGATED BARS. Span 12/ GY 1c) L5f 16’ Lee 18’ 19° 20’ Ls ab | a2b | a2b | a2b | /a2b ab | a2b | ab ab Se licase seach lel g Wt | 4 dees dete tag ail ake t ed | 1800 VY |11.4) .81/12.1) .86) 12.9) .93/18.7] .99 14.5) 1.06 15.3) 1.13) 16.0) 1.20) 16.8] 1.27/ 17 6) 1.34 | 2100 2’ | 12.0) .86)12 8} .92' 13.7) .99] 14.5] 1.06] 15.3) 1.14 16 2) 1.21! 17.0] 1.29] 17.9] 1.36! 18 8| 1.45 2400 3’ | 12.7) .92) 18 6| .98 14.5] 1.06] 15.3) 1.13] 16.2) 1.22 17.1] 1 29] 18 0} 1.37] 18.9] 1.45] 20.0) 1 54 2700 4’ 13.3} .98) 14.4 nO 15.3} 1.13] 16.1] 1.21] 17 2 1.29| 18.1) 1.37) 19.0] 1.46] 20.0) 1.54) 21.1] 1.64 3000 Las 14.0] 1.04) 15.1) 1.12 16.1) 1.20] 17.0) 1.28] 18 1 1.32) 19 1 1.46) 20.1] 1.55) 21.1] 1.64] 22 1) 1.75 3300 6’ 14.6) 1.09] 15.7] 1.17] 16.7) 1.25] 17.7] 1.35] 18.9) 1.43] 19 9 1 52) 21.0) 1.62} 22.0] 1.71] 23 0) 1.82 3600 fi 15.2) 1.13) 16 3) 1.21) 17.4 1.80] 18.5] 1.41] 19.6] 1.49} 20.7| 1.58] 21.8] 1.69] 22 9] 1.78] 24 0] 1.89 3900 8’ 15.7} 1.17) 17.0] 1 27] 18.0) 1.36) 19.2] 1.47] 20.3] 1.55 21.4/ 1.64/ 22.5 1.76} 23.7) 1.85 24.8) 1 97 | 4200 9 | 16.3) 1.22/ 17.6] 1.32 18.6) 1.41/ 19.8) 1.53) 21.0) 1 61| 22.1) 1.72) 23.3) 1.83] 24.5] 1.95] 25.7/ 2.04 | 4500 10’ | 16.9] 1.26) 18 1| 1.36) 19.3) 1 47] 20 5) 1.58] 21.7) 1.68] 22.9] 1.78] 24.1] 1.90] 25.3] 2.01] 26.6) 2.12 4800 | 11’ | 17.4] 1.30] 18.5] 1.41} 19.8) 1.52) 21.1) 1.63) 22.3) 1.73] 28.6) 1.84) 24.8) 1.96] 26.0] 2.07] 27.4] 2.19 5100 12’ | 17 8| 1.34) 19.0/ 1.46) 20.3) 1.57) 21 7] 1.68) 23 0) 1.78! 24.3) 1.90) 25.5] 2.02} 26.8) 2.13] 28.1) 2.25 5400 | 18’ | 18.2] 1.38) 19.5! 1.51! 20.9) 1 62] 22.2] 1.73 23.6) 1.84} 25.0 1.95, 26.3] 2.08} 27.6] 2.19} 28.9} 2.31 | 5700 14’ | 18.7) 1 42) 20.1) 1 56, 21.6} 1.67] 23.0) 1.78] 24.5) 1.90] 25.9! 2 02) 27.3] 2.14] 28 7| 2 25] 29.8] 2.38 6000 15°* | 19° 3) 2 48 20.8) 1.60} 22.3] 1.72] 28 9] 1.85 25.4 1.96) 26.9 2.07 28.4! 2.20} 29.9) 2.32) 30.4) 2.44 W=Uniformly distributed breaking load in pounds per square foot (includes road roller, 24 tons, on 1201’). Note.—Factor of safety: 4 on live load, 2 on dead load. 183 LOCATION OF NEUTRAL AXIS In beams of Tee section y, is the same as for rectangular sections inasmuch as the position of the neutral axis is determined by the relative values of maximum compressibility of the concrete and exten- sibility of the steel inside the elastic limit or by the ratio of A, and d,. This is of course only true at the maximum load. We then have as before, wy) ees, 4:0 16) a) sk8) es 620.6 1a 6 6 wie) “on eugi'elle a aWeNele te. aif} sel ie) (shelenel eiels (18) Sy pee YY ST.LOUIS “@g EXPANDED METAL} FIRE PROOFING (| Co. VALUES OF b, AND t. Let S,— Total shear in pounds along the two vertical planes of attach- ment between the wings and beam; ‘S\\= Total shear in pounds along the horizontal plane of attach- ment between the rib and floor plate; s—= Maximum shearing strength of concrete in pounds per square inch: / [gees a4 ¢=Length of span in feet; P= Total compression in pounds at maximum load between neu- tral axis and underside of floor plate; P= Total compression in pounds in flange at maximum load. All other functions as shown on cut, and in inches. There are three methods of failure above the neutral axis: 1. By compression in the flange; 2. By deficiency in S, owing to smallness of t; 3. By deficiency in S, owing to smallness of D. ST. LOUIS EXPANDED METAL FIRE PROOFING (9. It would be desirable to have equal strength in all these directions, but this is not always possible owing to other considerations. Where it is possible we have, tte Oey CE NAYS Foe is Arye ete 2 Mee ee ene Er aroma AS) But 5,23 OS ee ee ee Seca een ee Poe eC) and SiS j==GLS72, tee eee eA aul ater A as oe se ene een be AOA) The shearing stress is a maximum at the ends and for uniformly loaded beam varies uniformly to zero at the center. The value S. may be increased about 50 per cent owing to the metal reinforcement in the underside of floor plate which is always present in these designs. If vertical shear bars were used the same increase could be made in ‘S;, but ordinarily these would not be used so we will not separately discuss this condition. Equation (21) then becomes So == OS) ee ROP rey goer ey se amy ree BE eT (22) Assuming the compression stress diagram to be a parabola P=", (A—K%) fy by, 02 os eee eae the eye brid aca ed @ oe This is on the assumption that the outer ends of the wings would be just as heavily stressed as the portion next to the beam. This would not be the case, the stress varying according to the ordinates to a parabola from zero at the outer ends to a maximum at the beam, and 136 \EXPANDED METAL IRE Pts IF we should, therefore, multiply the above value by 24. The portion of this width over the beam itself would not be subject to this modi- fication, but there are other influences tending to offset this so that the above is sufficiently correct. et ei ae ee lee EL Dri, overt ces Siclens eee ee ea ene es « (24) From (20) and (22) we see that if ¢ is not less than failure =f | will not occur along the vertical sides of beam where wings attach. Now we will assume at once that ft will not be allowed to have a value less than this. This leaves us to consider the relation between P,.” and S;, only. We then have from (20) and (24) 3bs1=—— (1K) fy 9, from which 27bst o— RO eee ES RE OTE 25 GES ay, aes The theoretical relation between s and f, is Se 9 29 6 Cena (see Johnson’s Materials of Construction, p. 29). . (26) where @ is the angle made by the plane of rupture on a compression specimen of moderate length with a plane at right angles to the direction of stress. 137 But this value is high in view of the liability of concrete to crack and we recommend that twice the strength be provided in the shearing values on this basis that is used in compression. We would then have S,—2P,” or 8 : arg Oe iS.) F.4,y; from which re 27bsl 80h) fay we have with sufficient accuracy, we bl Rey We will now insert this value in (24) and proceed to obtain the moment of resistance. At times the above value of b1 would be greater than the spacing of the beams, in which case the latter distance would be used for the value of b, in (24) and the other values worked over on this basis. and substituting the value of s Pra fal ee ti eo es aoe ae Sa, a ANSO MME MC t sf DY ei aa es. 55 «501 aes ae Meee mee tr Then Pra Pr+ Pr 52 / . + K%y, I 6 Toe PED E Fh ERS eee OE Ee eee COE (32) Fab ee ee ees ee enn ee a te (33) EO eam coed ical Lake et Ne oc ease ey “ho, wal ROR corals male (34) From which Zi we f.0 7 22 ear) | I= F (+ K sy) —8 fis | Sa eet ae oe (35) and M.=BP, Ae pres Hse Heyy el ase ees (36) Problem: Required the size of Tee-shaped beam necessary to carry a total ultimate load of 600 pounds per square foot on a span of 32 feet, ribs to be 9 feet apart. 139 ¥ ST. LOUIS. EXPANDED METAL FIRE epee 12x9x600x1024 : Then IY aed KS “3 = -==8,300,000 inch pounds. Let us assume a depth of beam h equal to 22”. Then y,+y,=20”. For this spacing of beams the thickness of floor plate should be 4”. Using special rock concrete we have from (12) 20 ur —— Pre MP aise fog and 3 ra KO ‘ Fi Se enna bai 9.3 Then Pi=/,K ef by;= /3 X.43X24009.36= 64006 Py =< fl =< 2400326 =341006 and Vee =405006 P= 87 O¥.=.8 200% 10,76 == 41/160 cheng se =387856 and a’b_ 887856. 7 — 50000. 766 140 TSE ee aan SLA Ap 2 —64004 x 2.65-+341008 x 7.38+17155%5.35+387855 x 10.7 = 6901306 8,300,000 _ 7 or, =—690130 7 12:98 Substituting in (28) we have 125632 ee ee OO’ a i ce wee As this value of b,, which we have used in determining the value of P."" above, is less than the spacing of the beams it is the proper one to have used. It will be noted that ¢ is just one-third of b. From the foregoing we derive the following relations for good grade of 1:2:5 Portland cement rock, concrete, where f,=2400; A= 200; 4 ,=2,400,000; 4,=29,000,000; “—50,000. P/=1600K %4y,; P=160dy,; P."=106687. ab_Pl-PAP." ee 50,000 number of square inches of metal required in rib. 141 ST. LOUIS EXPANDED METAL FIRE PROOFING C9. P22 =ultimate mo- M.= t 9 : t Lad t ae C3 tig ) +P, (yeh ¥ 2 ) ment of resistance in inch pounds. All measures of length in inches except /, the length of span, which isupateet: The value of t must not be less than one-third D. The value of b, represents the maximum width of flange that can be utilized in figuring the strength of the Tee, and its value is: anes: ~ Ay distance between the ribs, the above formule and the following table could not be used, and the value of P.’’ would have to be obtained from the general equation (24). The values in the following table are based upon the foregoing values for good rock concrete: b, Where this value of b, exceeds materially the 142 “ST.LOUIS TABLE FOR THE DESIGN OF TEE BEAMS. 34 Ultimate Panel e V1 Yo Kk K*‘/2 Area of Steel moment width by | 2.0 3.26 3.74 . 080 023 b(—.0096+4- 0213 1) b(— 654+ 5866 1) .314 bl. 2.0 3.72 4 28 .193 - 085 b(—.0036-+-.0213 1) b(+ 882+ 6982 1) .294 bl. 2.0 4.2 4.8 . 286 153 b(+.0052+-.0213 1) b( 3708+ 8000 1) .281 bl. 2.0 4.65 5.35 3855 212 b(+.0144+ .0213 1) b( 7448+ 9067 1) .272 dl. 2.2 5.0 5.8 400 . 253 b(+.0219-+-.0213 1) b( 11072+ 9920 1) .268 bl. 2.4 5.4 6.2 445 297 b(+-.0315+-.0213 1) b( 35917+-10773 1) .263 bl. | 2.5 5.8 6.7 .483 .336 b(+. 0409+.0213 1) b( 21667+-11734 1) .260 bl. | 2.7 6.2 iow! .516 Baye b(+-.0509+-.0213 1} b( 27983+-12587 1) .256 bl. 2.8 6.6 7.6 545 -400 b(+.0602+ .0213 1) b( 35085+-13547 1) .253 bl. 3.0 7.0 8.0 570 -430 b(+.0707+-.0213 1) b( 48040-+14400 1) .250 bl. 3.0 7.4 8.6 596 .460 b(+.0814+-.0213 1) b( 583822+-15474 1) .250 bl. 3.0 7.9 9.1 .620 .488 b(+. 0942+ .0213 1) b( 64609+-16533 1) .247 bl. 3.0 8.4 9.6 612 515 b(+ 1077-+-.0213 1) b( 77768+17596 1) .245 bl. | 3.0 8.8 10.2 660 -536 b(+.11838+.0213 1) | b( 90572418667 1) ~245 DLS | 2.0 4.2 4.8 047 -O10 b(—.0140-+-.0213 1) b(—1514+ 7467 1) .240 bl. 2.0 4.65 5.35 .140 052 b(—.0094+-.0213 1) b(— 938+ 85383 1) | .227 bl. 2.2 5.12 5.88 .218 102 b(—.0021-++.0213 1) b(+ 2616+ 9600 1) -217 bi: 2.4 5.6 6.4 . 286 . 153 b(+.0069-+-.0213 1) b( 6595-+-10667 1) spahigoylg | 2.5 6.05 6.95 339 .197 b(+.0158-+-.0213 1) b( 11320+-11733 1) .206 bl. | 2.6 6.5 iD 885 239 b(+.0257+-.0213 1) b( 17252+12800 1) -202 bl. | 2.8 7.0 8.0 429 281 b(+..0373+-.0213 1) Py 24777+-13867 1) | .199 bl. 3.2 7.4 8.6 .459 311 b(+.0461+-.0213 1) b( 32008+14933 1) .196 bl. 3.4 1.9 9.1 -493 346 b(+.0583--.0218 1) b( 416974-16000 1) | .194 bl. 3.5 84 9.6 524 379 b(+-.0712+.0218 1) b( 527386+-17067 1) .192 bl. 3.6 8.8 10.2 . 546 - 403 b(+.0808-++-.0213 1) b( 68169-+-181383 1) -190 bla) : 2.3 Dao 6.4 107 0385 b(—.0142+4- 0213 1) b(—1176+-101383 1) 185 bl. | ; 2.6 6.05 6.95 .174 .073 b(—.0081+-.0213 1) b(-+1421+-11200 1) .178 bl. : 30 6.5 1.5 243 120 b(+.0010+-.0213 1) b( 57964-12267 1) vii Jail. ; 3.0 UY 8.0 286 153 b(+.0087-+-.0213 1) b( 103806+-13333 1) .169 bl. | ; 32 7.4 8.6 .329 -185 b(+..0163-+-.0213 1) b( 15545414400 1) .166 bl. 20. 3.4 7.9 Gea 367 222 b(+.0270+-.0213 1) b( 22978415467 1) .163 bl. 21. 3.5 8.4 9.6 404 ara b(+.0884+-.0213 1) b( 31657+16533 1) .160 bl. 22. 3.7 88 10.2 432 . 284 b(+.0473-+-.0213 1) b( 40064+4-17600 1) .159 bl. 24. 4.0 9.3 10.7 . 463 315 b(+.0595-+-.0213 1) b( 51069+-18667 1) Sy Mok 74% 4.0 9.77 | 11.23 .489 342 b(+-.0710+.0213 1) b( 62696+-19733 1) .155 bl. ST. LOUIS: EXPANDED METAL FIRE PROOFING C9. SHEAR IN REINFORCED CONCRETE BEAMS Let J/,=moment of resistance in inch pounds at 12’’ from end of beam carry- ing its ultimate load. M,=ultimate moment of resistance in inch pounds at center. 7=span of beam in feet. A,=elongation per inch at the plane of the metal, at section 12”’ from end. 5=width of beam in inches. s=ultimate shearing strength of the concrete, about one-fourth the ulti- mate compressive strength. Other functions as shown on pages 113 and 114. 4/—4 Then 174 — pp Mo for uniformly loaded beam ................--. ee ee ee ees (1) M, A= Fr By? Bho By? Fog G2O Yq ceaceesecnecereneccennsceencesensterctenesnnannnncanatrnecerentren (25 By, el as ee (AV I, by, 7=byy*+ I I er ree) Sf eesene A iesa Ae TERE Pama i erate oe Tee eRe ens. eS MG Pg: sae a ote es cen econ ae en) a*b After designing the beam by the beam formule, pages (118) and (119) = y,+y72) Ec, Es, and 6 are known. From (1) we obtain 44, and from (3) and (4) | y, and yj. From (2) will be obtained A,, which inserted in (5) will give the pull \Y ST. LOUIS EXPANDED METAL} | FIRE oy in the bars which has to be absorbed by shearing stress in the concrete over an area—124. As it is desirable to take twice the factor of safety in shear that is taken in bending, P. ; should not exceed 6bs, where s is taken at one-fourth the compressive strength of the concrete. If beams are loaded at two points some distance apart the maximum shearing stress is likely to be of a very different character. The bending moment being uniform between the loading points, the first cracks on the tension flange are as apt to occur under one of the loads as in the middle and this will greatly reduce the strength of the anchorage of the ends of the bars represented by the shearing resistance of the concrete along the plane just above the metal between the crack and the end of the beam. This is especially true as the maximum shearing stress along this plane is likely to be double the average stress. In such cases, as also in cases of uniform load where the shear exceeds the limits above given, ’the bars should be bent up at the ends as shown in Figs. (1) and (2). 145 ST. LOUIS. EXPANDED METAL \ FIRE PROOFING C9. Rock Concrete, 1:2:5; Age 74 days. Depth, 5”; Width, 12”; Span, 10’; Two 1%” corrugated bars=.340”. Theoretical, Mo=80,600” pounds; Actual, M=94,200” pounds. No shear bars used. 146 SY st.Louis “ey (\EXPANDED METAL FIRE PROOFING| | Co, ——— =< h) Rock Concrete. 1:2:5; Age 72 days. Depth, 7”; Width, 12”; Span, 12’; Three 1%” corrugated bars=.510”. Theoretical, Mo=174,200” pounds; Actual, M—=212,160” pounds. No shear bars used. 147 ST. LOUIS. Rock Concrete, 1:2:5; Age 76 days. Theoretical, Mo each end. —999 9 ——J 44,4 00” pounds; Actual, M=—402,700” 148 pounds. Four vertical rods Depth, 914”; Width, 12”; Span, 15’; Four %” corrugated bars=.680”. inserted near Rock Concrete, 1:2:5; Age 73 days. ee Soe } Came & Depth, 14”; Width, 12”; Span, 15’; Theoretical, Mo=725,000” pounds; Actual, M=929,700” pounds. zontal rods bent up vertically at different subdivisions of span. 149 w" Six 1%4” corrugated bars=1.02 Each of the three pairs of hori- ST. Louis “ EXPANDED METAL | FIRE PROOFING o 2 ———— ee YS ST. Louis. EXPANDED METAL ) FIRE PROOFING \ C9. \ Rock Concrete, Age 71 days. Depth, 10”; Width, 12”; Span, 12’; Two %” corrugated bars=.620 Theoretical, M0283 000” pounds; Actual, M=314, 200” pounds. No shear bars used. 150 | ) FIRE PRO Oo, Rock Concrete, 1:2:5; Age 69 days. Depth, 1444”; Width, 12”; Span, 15’; Three %” corrugated bars=.930” . Theoretical, Mo—625,000” pounds; Actual, M=637,600” pounds. Two bars bent up at quarter point which was too close to center for method of testing. 151 ST. LOUIS EXPANDED METAL FIRE PROOFING Co. Rock Concrete, 1:2:5; Age 115 days. Depth, 1444”; Width, 12”; Span, 15’; Three %” corrugated bars=.930”. Theoretical, Mo=—625,000” pounds; Actual, M=655,000” pounds. Four vertical bars at each end. 152 Rock Concrete, 1:2:5; Age 78 days. Depth, 19”; Width, 12”; Span, 18’; Four Theoretical, Mo=1,121,000” pounds; Actual, M=1,190,900” pounds. ay TA. No shearing provision whatever. ” corrugated bars=1.24 \ EXPANDED METAL \| FIRE PROOFING | } co eee Pas ee ST ace uw” Rock Concrete, 1:2:5; Age 78 days. Depth, 19”; idth 12”; Span 18’; Four 34” corrugated bars=1.240”. Theoretical, Mo=1,121,000” pounds; Actual, M=1,151,800” pounds. Four vertical bars at each end. 154 = ST. LOUIS “ea EXPANDED METAL ¥ FIRE PROOFING( Co. Rock Concrete, 1:2:5; Age 70 days. Depth, 19”; Width, 12”; Span, 17’ 8”; Four %” corrugated bars=1.240”. Theoretical, Mo=1,121,000” pounds; Actual, M=1,142,500” pounds. Four vertical bars at each end. 155 | ST. LOUIS EXPANDED METAL ) FIRE PROOFING } °. \ Rock Concrete, 1:2:5; Age 77 days. Theoretical, Mo=725,000/” pounds; Depth, 14”; Width, 12”; Span, 15’; Two %” corrugated bars=1.10”.. Actual, M=755,500” pounds. Four vertical bars at each end. Rock Concrete. 1:2:5; Age 75 days. Depth, 18”; Width, 12”; Span, 18’; Two 1” corrugated bars=1.40”. Theoretical, Mo=1,177,800” pounds; Actual, M=1,149,300” pounds, Four vertical bars at each end. 157 FROOFING FIRE EXPANDED METAL C9. ‘doy, uo Surysnig Aq pole ‘paex AACN UATYOOIgG 9} 78 Ope 3SAL 158 BRIDGES, ABUTMENTS, CULVERTS. CHICAGO, BURLINGTON & QUINCY RAILROAD. WABASH RAILROAD. SOUTHERN RAILWAY. CHICAGO, MILWAUKEE & ST. PAUI RAILWAY. ILLINOIS CENTRAL RAILROAD. HANNIBAL & ST. JOSEPH RAILROAD. CHICAGO & EASTERN ILLINOIS RAILROAD. LOUISVILLE & NASHVILLE RAILROAD. LAKE SHORE & MICHIGAN SOUTHERN RAILWAY. CHICAGO & WESTERN INDIANA RAILROAD. ILLINOIS TERMINAL RAILROAD. PENNSYLVANIA RAILROAD SYSTEM, TERMINAL RAILROAD ASSOCIATION OF ST. LOUIS. NEW YORK RAPID TRANSIT COMMISSION, NEW YORK CITY. CHICAGO & MILWAUKEE ELECTRIC RAILWAY. PITTSBURG, SHAWMUT & NORTHERN RAILROAD. SOUTHERN PACIFIC LINES. KANSAS CITY, MEXICO & ORIENT RAILWAY, KANSAS CITY, MO. DANSVILLE & MOUNT MORRIS RAILROAD. CLEVELAND, CINCINNATI, CHICAGO & ST. LOUIS RAILWAY. GASCONADE RAILWAY CONSTRUCTION CO. KANSAS CITY OUTER BELT & ELECTRIC RAILWAY. BOSTON SUBWAY TUNNEL. INDIANAPOLIS NORTHERN TRACTION RAILWAY. MUSKOGEE UNION RAILWAY, MUSKOGEEH, IND. TER. INTERIOR CONSTRUCTION IMPROVEMENT CO., OLEAN, N. Y. MISSISSIPPI RIVER BRIDGE, THEBES, ILL. AMERICAN BRIDGE CO., NEW YORK. BLOCK BRIDGE & CULVERT CO., INDIANAPOLIS. OWEGO BRIDGE CO.. . ROME, N. Y. D. CUOZZO & BRO. (STREET BRIDGE), BROOKLYN. 159 EXPANDED META FIRE PROOFING (5 ce. y JNO. W. TOWLE, JOHN JACOB ASTOR, LOUISIANA PURCHASE EXPOSITION, CONCRETE ARCH (STANTON & SON, Engrs.), VANDALIA LINE, MISSOURI PACIFIC RAILWAY, ST. LOUIS & SAN FRANCISCO RAILWAY, INDIANA BRIDGE CO., BOX CULVERTS, ARCH BRIDGE, THEBES RAILROAD BRIDGE, ATLANTA, KNOXVILLE & NORTHERN RAILWAY, DENVER & RIO GRANDE RAILROAD, BURLINGTON & MISSOURI RIVER RAILWAY CO., WHEELING & LAKE ERIE RAILWAY, ARCH BRIDGE, CHICAGO, ROCK ISLAND & PACIFIC RAILWAY, ARCH BRIDGE, ARCH BRIDGE, ARCH BRIDGE, NINE ARCH BRIDGES, FLAT TOP CULVERT, 400’, ARCH BRIDGE, ARCH BRIDGE, NORFOLK & WESTERN RAILWAY, KNOXVILLE, LA FOLLETTE & JELLICO RAILWAY. Cor CHICAGO & GREAT LAKES D. & D. : MILWAUKEE ELECTRIC RAILWAY & LIGHT CO.; CHICAGO & MILWAUKEE ELECTRIC RAILWAY, R. Z. SNELL. WISCONSIN BRIDGE CO., LOGAN STREET BRIDGE, GOOSE CREEK BRIDGE, OMAHA, NEB. RHINECLIFF, N. Y. ST. LOUIS. VICKSBURG, MISS. INDIANAPOLIS, IND. KANSAS CITY, MO. ST. LOUIS. INDIANAPOLIS, IND. JACKSON, TENN. MANSFIELD, ILL. THEBES, ILL. ATLANTA, GA. SALT LAKE CITY. LINCOLN, NEB. CLEVELAND, OHIO. TRAVERSE, MICH. CHICAGO. MOORESVILLE, IND. HADLEY, IND. MORGANTOWN, IND. PLAINFIELD, ILL. IOWA CITY. IA. BROWNBERG, IND. AMO, IND ROANOKE, VA. CHICAGO, MILWAUKEE, WIS. CHICAGO. SOUTH BEND, IND. MILWAUKEE, WIS. LANSING, MICH. MARION CO., IND = 160 NORTHERN PACIFIC RAILWAY, GREAT NORTHERN RAILWAY, CENTRAL OF GEORGIA, ILLINOIS TERMINAL RAILRCAD, FONDA, JOHNSTOWN & GLOVERSVILLE RAILROAD, JOHN C. RODGERS, CONCRETE ARCHES, VOEPP & FRITZ, MALLOY, REXFORD & CO., GORDON PARK BRIDGE, ROCKEFELLER BRIDGE, EUCLID CREEK BRIDGE, HAYDEN AVENUE BRIDGE, HIGHLAND ROAD BRIDGE, BALKE & KRAUSS CO., NORTHERN OHIO PAVING CO., HANLON CONSTRUCTION CO., FLOORS, FOOTINGS, RETAINING WALLS. STAR BUILDING, CARLETON BUILDING, NORVELL-SHAPLEIGH BUILDING, WOMAN’S MAGAZINE BUILDING, MAPLE AVENUE M. E. CHURCH, BASEBALL PARK, ST. LOUIS TRANSFER CoO., J. L. WEES, ST. LOUIS PORTLAND CEMENT CO., LINCOLN CENTER BUILDING, FEDERAL LEAD COoO., V. JOBST & SONS, ST, PAUL, MINN. ST. PAUL, MINN. | ATLANTA, GA. | ALTON, ILL. | GLOVERSVILLH, N. Y. NEW YORK. MONASSEN, PA. MARION CoO., IND. CLEVELAND, OHIO. CLEVELAND, OHIO. CLEVELAND, OHIO. CLEVELAND, OHIO. CLEVELAND, OHIO. INDIANAPOLIS, IND. CLEVELAND, OHIO. CLEVELAND, OHIO. WILLIAMS BRIDGE, N. Y. | | | ST. LOUIS. “ec “e PY; | oe CHICAGO. FEDERAL, ILL. PEORIA, ILL. 161 aaa | ST. LOUIS EXPANDED METAL} FIRE PROOFING (] ce. AMERICAN CONCRETE STEEL CoO., NEWARK, N. J. YAMPA SMELTING CO., SALT LAKE CITY. ROCHEFORD & GOULD, ‘ OMAHA, NEB. GEHO. A. FULLER CoO., NEW YORK. HARVEY LAND & IMPROVEMENT CcO., HARVEY, LA. SCHLITZ BREWING CoO., MILWAUKEE. GREELY SUGAR CO., GREELY, COLO. COLORADO COLLEGE, COLORADO SPRINGS, COLO. WILSON OFFICE BUILDING, DALLAS, TEXAS. BUFFALO EXPANDED METAL CO., BUFFALO, N. Y. GALVESTON SEA WALL, GALVESTON, TEXAS. DWIGHT BUILDING, KANSAS CITY. METROPOLITAN STREET RAILWAY POWER HOUSE, KANSAS CITY. BUCKINGHAM HOTEL, ST. LOUIS. UNION MANUFACTURING & POWER CO., SANTUC, S.C. WESTERN EXP. METAL & F. P. CO., SAN FRANCISCO. OLIVER CHILLED PLOW WORKS, SOUTH BEND, IND. BARTLETT STEEL CoO., JOPLIN, MO. POE MUU, NEW ORLEANS. VAL. BLATZ BREWING CO., MILWAUKEE, WIS. Bi iS WAR De COr SlLOUX CIRY SLA. KANSAS CITY WATER DEPARTMENT, KANSAS CITY, MO. CONSOLIDATED GAS CO., BALTIMORE, MD. C. A. SICARD, NEW ORLEANS. HOEFFER & CO., CHICAGO. PENNSYLVANIA RAILWAY SHOPS, ALTOONA, PA. PUMPING STATION, CHICAGO. PENNSYLVANIA CEMENT CoO., BATH, PA. RUBEL INDUSTRIAL BUILDING, CHICAGO. RETAINING WALL, MARION CoO., IND. THOMPSON & NORRIS FACTORY, BROOKLYN. ECKENBURG MILK PRODUCT CO., CORTUAN DT Na Yi. AMERICAN BEET SUGAR CO., ROCKY FORD, COLO. RETAINING WALL, RIALTO BUILDING, SECURITY SAVINGS BANK BUILDING, J. A. FOLGER COMPANY’S WAREHOUSE, FAIRMONT HOTEL, FREE PUBLIC LIBRARY BUILDING, REDWOOD CITY COURT HOUSE, CALIFORNIA HALL, UNIVERSITY OF CALIFORNIA, JOHN HOPKINS’ ESTATE, A. L. WILLEY J. C. WHITE & CO., ROACH & KIENZLE SASH AND DOOR CO., AMERICAN COLD STORAGE BUILDING, ILLINOIS STEEL CO., MASONIC TEMPLE, BERWIND-WHITE COAL MINING INSANE ASYLUM, SEWAGE PUMPING STATION, SEWAGE PUMPING STATION, CO., MEMPHIS, TENN. SAN FRANCISCO. SAN FRANCISCO. SAN FRANCISCO SAN FRANCISCO. SAN JOSE, CAL. CAL. BERKELEY, CAL. BALTIMORE, MD. BINGHAMTON, N. Y. MANILA, P. I. KANSAS CITY, MO. CHICAGO. IND. TEXAS. PHILADELPHIA, PA. PHILADELPHIA, PA. NEW ORLEANS. ALGIERS, LA. REDWOOD CITY, BUFFINGTON, WACO, RESERVOIRS, TANKS, ETC. ACKER PROCESS CoO., A. ©. SHORTHILE & CO., PURIFICATION TANKS (Wyncoop Kiersted, Engr.), WATER RESERVOIR, MISSOURI PACIFIC RAILWAY (GRAIN TANKS), WATER RESERVOIRS, WATER RESERVOIRS, WATER RESERVOIRS, RESERVOIR BASIN, OIL TANKS, NIAGARA FALLS. MARSHALLTOWN, IA. RICHMOND, MO. PADUCAH, KY. KANSAS CITY, MO. EAST ORANGE, N. J. YAZOO, MISS. AMES, IOWA. EAST NORWOOD. OHIO. CONSTABLE HOOK, N. J. ST. LOUIS “@; {EXPANDED METAL FIRE PROOFING) 163 t EXPANDED METAL ) FIRE EROUHNG FOLSOM & McDARGH, DAYTON, OHIO. WATER RESERVOIR, EDDYVILLE, KY. WATER RESERVOIR, ELGIN, ILL. WATER TANKS, LOUISVILLE, KY. THE TERRE HAUTE WATER WORKS CO TERRE HAUTE, IND. YAZOO CITY LIGHT, WATER AND SEWERAGE PLANT, YAZOO, MISS. LOUISVILLE & NASHVILLE RAILROAD CoO., SOUTH LOUISVILLE. HOEFER & CO., LAKE GENEVA, ILL. TUNNELS, SUBWAYS, SEWERS. NEW YORK RAPID TRANSIT COMMISSION, NEW YORK. BOSTON RAPID TRANSIT COMMISSION, BOSTON. NEW ORLEANS DRAINAGE CANALS, NEW ORLEANS. BOROUGH CONSTRUCTION CO., ‘ BROOKLYN. J. B. McDONALD (N. Y. SUBWAY), NEW YORK. CITY OF MEMPHIS, TENNESSEE. MOBILE SEWERS, MOBILE, ALA. ABBOT GAMBLE CONSTRUCTION CoO., ; poh hy MESO OA ISG G. BEDELL MOORE, SAN ANTONIO, TEX. GENERAL CONSTRUCTION CO., R. R. TUNNEL, KANSAS CITY. HENRY HESTERBERG, = TR BROOKLYN. JOHN McNAMEEH, BROOKLYN. BACTERIAL SEWAGE PURIFYING CoO., NEW YORK. Mi nA DY ECO: BROOKLYN. LARGE SEWERS, ALTOONA, PA. LARGE SEWERS, GRAND RAPIDS, MICH. DRAINAGE CULVERT FOR ST. FRANCIS LEVEE DISTRICT, NEAR BREWER’S LAKE, MO. ING oY) gGc Li lake, vn @ Ox, NEW YORK. ELECTRICAL COMMISSION, BALTIMORE, MD. 164 \ EXPANDED META FIRE PROOFING (je 1 co. = a NEW ORLEANS TERMINAL CoO., NEW ORLEANS. BOROUGH OF BROOKLYN, BROOKE YN, wNiwes SAGINAW SEWERS, SAGINAW, MICH. ROBERT HIGGINS, PHILADELPHIA, PA. GOVERNMENT WORK. MAJ. GEO. W. GOETHALS, U. S. A., NEWPORT, R. I. CAPA Cork G Leno Briel Bre Un Sie Ac. NEWPORT, R. I. CART OG. ba LlLOW iia) Un on cA. CHARLESTON, S. C. AUGUSTUS SMITH, NAVY YARD, CHARLESTOWN, MASS. MAJ. W. L. MARSHALL, U. S. A., FORT HANCOCK, N. J. CHAS. LE VASSEUR, U. S. ASST. ENG., ' MEMPHIS, TENN. AUGUSTUS SMITH, COB DOCK, BROOKLYN NAVY YARD. U. S. NAVY YARD, NORFOLK, VA. CHARLESTOWN, MASS., NAVY YARD, — BOSTON, MASS. COMMANDING OFFICER, PORT ROYALE SAG. U. S. NAVY YARD, NEW ORLEANS. MAJ. J. H. WILLARD, NEWPORT, R.: I. LIGHTHOUSES, MANILA, P. I. MAJ. W. L. SIBERT, PITESBURGS PAG U.S: Nass ALGIERS, LA. MISCELLANEOUS. SOUTHERN STATES PORTLAND CEMENT CoO., ATLANTA, GA. CONSOLIDATED GAS CoO., BALTIMORE. GEO. B. LOW, HALIFAX, N. S. TIDE WATER OIL CoO., CONSTABLE HOOK, N. J. STATE OF NEW YORK, ROCHESTER, N. Y. UNION UTILITY CO., MORGANTOWN. W. VA. PADUCAH WATER CO., PADUCAH, KY. 165 ST. LOUIS. Y EXPANDED METAL FIRE PROOFING INTERNATIONAL STEAM PUMP CO., MUIR & STROMBERG, ELECTRICAL COMMISSION, CITY RESERVOIR, WEIRS, CRAMP & CO., HOUSTON & BLAND, BACTERIAL SEWAGH PURIFYING CO., W. J. OLIVER (RAILROAD WORK), BATES & ROGERS CONSTRUCTION CO., N. O. NELSON & CO., SEPTIC TANKS, J. K. CAMPON, L. W. ANDERSON, CITY ENGINEER, LOUIS LE SASSIER, PARKER-RUSSELL MANUFACTURING CO., ELLICOTT MACHINE CoO., WM. F. KOSS, BEN. G. VEITH, TUCKER & VINTON, Es .@. sRONDYS J. J. CREEM, P. N. ASHLEY, J. W. WILLIAMS STUBBS-FLICK-JOHNSON CO., WwW. W. LAW, UNION DEV. & CONSTR. CO., PEDEN IRON & STEEL CO., WESTINGHOUSE, CHURCH, KERR & CO., PAXON & VIERLING IRON WORKS, HANSEL-ELCOCK CoO., COMMONWEALTH ROOFING CO., MADISON COUNTY GOOD ROADS COM J. .G. WHITH & CO: (MANILA, P.. 1); G. A. JOHNSON & SONS, IMISSION, HARRISON, N. J. NEW ORLEANS, LA. BALTIMORE, MD. Sr LOULS: PHILADELPHIA. HANNIBAL, MO. NEW YORK CITY. KNOXVILLE, TENN. CHICAGO. SOULS: OLEAN, N. Y. GRAND RAPIDS, MICH. NEW ORLEANS, LA. ST. LOUIS. BALTIMORE. INDIANAPOLIS. JEEFERSON CITY, MO. ITHACA, N. Y¥. INDIANAPOLIS. BROOKLYN. Nae WOODLAND, CAL. CLEVELAND, O. KANSAS CITY, MO. OSSINING, N. Y. NEW ORLEANS. HOUSTON, TEX. NEW YORK. OMAHA, NEB. MILWAUKEE, WIS. NEW YORK. JACKSON, MISS. NEW YORK. CHICAGO. ST. LOUIS “® EXPANDED META FIRE PROOFING (| Ce. J. H. BURNHAM, NORTHERN OHIO PAVING & CONSTRUCTION CO. O. P. HERRICK, CINCINNATI GRANITOID CoO., JNO. McMENAMY, SOUTHERN ILLINOIS & MISSOURI BRIDGE CoO., GROCH COAL CoO., AMERICAN FALLS CANAL & POWER CO., DOWDLE & WINDETT, COOK & LAURIE, HEDGES-GOSNEY CONSTRUCTION CO., JACKSON & CORBETT, CROUSE CONSTRUCTION CoO., SIMONS-MAYRANT CO., COLLIER BRIDGE, CONVERSE BRIDGE CoO., AMERICAN CONSTRUCTION CO., LEVERSEDGE BRIDGE CoO., BARWICK CONSTRUCTION CoO., MOORE-MANSFIELD CONSTRUCTION CO., NEWCASTLE BRIDGE CoO., i ea teh ORBIT MAL Tele), W. H. HERR, FALLS CITY ARTIFICIAL STONE CoO., ELECTRIC COMMISSION, EJ. TOBIN & CO., PENNSYLVANIA RAILWAY TESTING PLANT, WILLAMETTE PULP & PAPER CO., ONTARIO POWER CO., SCHUYLERVILLE DAM, PEDEN IRON & STEEL CO.’S DAM, KANKAKEE ELECTRIC LIGHT CO.’S DAM, BARTLETT STEEL CoO., BLOOMINGTON, ILL. : CLEVELAND, 0. | DES MOINES, IA. CINCINNATI, 0. PHILADELPHIA, PA. CHICAGO. SANDUSKY, O. BLACK FOOT, IDAHO. NEW ORLEANS. NEW ORLEANS. | NEW ORLEANS. | CHICAGO. | PERTH AMBOY, N. J. | CHARLESTON, §. C. INDIANAPOLIS, IND. | CHATTANOOGA, TENN. | INDIANAPOLIS, IND. | FORT WORTH, TEX. ST. LOUIS. INDIANAPOLIS, IND. INDIANAPOLIS, IND. CHICAGO. ALTOONA, PA. LOUISVILLE, KY. BALTIMORE, MD. JACKSON, MICH. WORLD'S FAIR, ST.’ LOUIS. OREGON CITY, OREGON. ONTARIO. SCHUYLERVILLE, N. Y. WALLIS, TEX. KANKAKEE, ILL. JOPLIN, MO. 167 LAMBERT - DEACON - HULL PRINTING COMPANY ST. LOUIS AVERY LIBRARY COLUMBIA UNIVERSITY