Its 1671 .S5 IIHIIIIIIIillllllinilllllltltlllllllllHIIilltllllMlllllllltlllllllllMllllllllllllii I Copy 1 Boiling Off Silk Conditioning Yarn Numbering Calculations Momme Standard Warp and Filling Tables Air Moistening Testing Raw and Thrown Silk Artificial Silks PUBLISHED BY TEXTILES BOSTON, MASS. r.lllllllllllllllllllllllllllllilllllllllilllllllllllilliilililllllllllllllllllllllllllllllliiiiiiiiiiiiiir; Silk Mill Men Find Much to Interest Them in A carefully edited, monthly technical journal devoted entirely to the interest of practical men in textile mills. Technical articles on silk processes are a reg- ular feature of "TEXTILES." Write for a sample copy, or. better still, send in your subscription; only $1 per year in the United States, $1.50 in other countries. Address TEXTILES 79 MILK STREET BOSTON, MASS. ©CI.A5703aO m !2 IS20 /y^y^^itr ^ Silk Mill Guide NUMBERING YARN. Tarn is numbered in two ways to indicate tlie size: (a) By tlie fixed weight system, the number indicating the length (hanlis or yards) of a fixed weight. (b) By the fixed length system, the number indicating the weight of a fixed length. The principal standards for numbering yarn are: FIXED WEIGHT SYSTEM. 1,600-yard lengths (runs) per pound 840-yard lengths per pound 5G0-yard lengths per pound 320-yard lengths per pound 300-yard lengths per pound 256-yard lengths per pound 1-yard lengths per ounce 1-yard lengths per pound 992-yard lengths per pound 496-yard lengths per pound FIXED LENGTH SYSTEM. deniers (grains per 038 yards) . drams per 1,000 yards 120 yards 100 yards 50 yards 25 yards 20 yards pounds per 14,400 yards Ply yarn is numbered to indicate the number of strands and the size of the single yarn. Thus 2/40s means that two strands of single 40s are placed together to form a ply yarn. Spun silk is an exception to this rule, the first number indicating the count or size of the ply yarn; and the second number, the number of strands. Thus, 20/2 spun silk indicates that 2 strands of single 40s have been doubled or twisted, making a 2-ply equal to a single 20s. MOISTURE STANDARDS FOR TEXTILES. Under ordinary conditions textile materials carry moisture of which the quantity varies with the material, the temperature and the relative hu- midity of the air. Standards of moisture based on the absolutely dry weight have been adopted for regulating trade in textile materials. For example, cotton contains the standard amount of moisture when lOS'/^ pounds of the material consists of 8% pounds of water and 100 pounds of absolutely dry cotton. Conditioning is the process of determining what the weight of a given lot of textile material would be if it contained the standard amount of [L'oii.vright, lyi'O, by Suuiiitl .'^. lMlc| 1 Woolen Cotton Worsted Woolen Linen Woolen Raw Silk All Materials French Cotton Metric Silk Silk Cotton Various Woolen Woolen Woolen Jute grains per grains - per grains per grains per grains per Anglo-American World Anglo-American West of England World Yorkshire England Anglo-American France Continent World Anglo-American Anglo-American Anglo-American Anglo-American Anglo-American Anglo-American World :2^o - 1-7 / 7 moisture. Following are tlie principal standards recognized by the textile 'rade : 8% per ( ent. for cotton. 11 per cent, tor silk. 12 per cent, for tlax and hemp. 18 per cent, for shoddy yarn. 13% per cent, for jute. 14 per cent, for noils. 16 per cent, for scoured wool. 1S% per cent, for tops combed without oil. I814 per cent, for worsted yarn. 19 per cent, for tops combed with oil. RESULTING COUNT OF PLY YARN. It is frequently necessary to determine the count of yarn composed oi two or more strands of the same or different sizes. Also to determine what size must be placed with one or more strands of different sizes to make the ply yarn a given size. Fixed Weight Count. — The resulting count of a 2-ply is equal to the product of the counts of the singles divided by the sum of the counts. (GO X 40) -i- (60 -I- 40) — 24s, count of GOs and 40s. Taking any convenient number of hanks as a basis, the following method can be used for 2 or more ply yarn: For 2-ply: 120 ^-60 = 2 lbs 120 -^40 = 3 " 120 --24 = 5 " 10 " 120 -f- 10 = 12s, resulting count of 60s, 40s and 24s. The method of finding the count to place with other counts to give a desired ply count is obvious from the above: For 2-ply: Divide the product of the known count and ply count by their difference. (60 X 24) -H (GO — 24)^ 40s, count to be placed with GOs to make a 2-ply equal to 24s. Taking any convenient number of hanks as a basis the following method can be used for 2 or more ply yarn: For 2-ply: 120 -f- 24 = 5 lbs., 2-ply yarn (24s) 120-;- 60 = 2 lbs. 60s. 5 — 2 = 3 lbs. for 120 hanks of desired count. 120 -H 3 = 40s, count to be placed with 60s to make a 2-ply equal to 24s. For 3-ply: 120 H- 12 = 10 lbs. 3-ply yarn (12s). 120 H- 40 = 3 lbs. 120 -H 24 = 5 lbs. 5-1- 3 = 8 lbs. 10 — 8= 2 lbs. for 120 hanks of desired count. 120 -;- 2 = 60s, count to be placed with 40s and 24s to make a 3-ply equal to 12s. Any convenient number of hanks may be used in these calculations. The counts must be based on the same system of numbering. The calculations for the fixed length system of numbering consist merely of addition and subtraction and require no explanation. 2 TESTS OF RAW AND THROWN SILK. Raw silk should be tested for conditioned weight, boil-oft, strength, ductility, size, uniformity, winding, cleanness and cohesion. Thrown silk should be tested for conditioned weight, boil-off, size, length of skein and strength. The conditioned weight of silk is the absolute dry weight plus 11 per cent., the standard allowance for moisture. To determine the conditioned weight of a lot of raw or thrown silk at least 40 i)er cent, of the lot should be conditioned and tne bal- ance shirt or net weighed by a Conditioning House. The conditioned weight is then calculated by proportion as follows: The shirt weight of the tested portion is to the conditioned tveiciht of the tested portion as the shirt iveight of the lot is to the conditioned weight of the lot. (Cond. wt. tested portion x net wt. of lot.) H- Net wt. tested portion = Cond. wt. of lot. Example, 5 bales Japan Raw. Mark and No. Shirt wt. Shirt wt. Cond. wt., F. P. tested bales tested bales 8010 138.82 138.82 133.20 8011 138.67 8012 138.S0 8013 138.65 8014 137.81 137.81 132.50 Total 692.75 276.63 265.70 (265.7 X 692.75) ^ 276.63 = 665.38 lbs., cond. wt. of lot. Raw silk should be bought on a conditioned weight basis with size and quality specified. Thrown silk should be purchased on condi- tioned weight basis with boil-off guaranteed and size specified. Calculating Invoices. An invoice for thrown silk contracted, conditioned, boil-off guar anteed, made upon throwsters' net weight can be calculated to show the conditioned weight by the method given above. When tlie invoice weight Is found it may be corrected by multiply- ing by the ratio of the clean fiber delivered, to the clean fiber guar- anteed, thus: Cond. wt. X clean fiber del. -; (clean fiber guarant'd) =r wt, to be paid for. The clean fiber expressed in percentage is found by subtracting the boil off percentage from 100 per cent. Ex. Upon a contract for thrown silk reading "at $12.00 per lb. conditioned weight, boil-off 23% to be adjusted reciprocally," the seller delivers 24 bundles, net weight 624 lbs. Ten bundles, net weight 242 lbs., are tested and are found to be . 239.4 lbs. conditioned weight and boil-off 25.6%. First find conditioned weight of lot as already explained: (239.4 X 624) ^242 = 617.3 lbs., Cond. wt. Clean fiber guaranteed is 100%— 23% = 77% Clean fiber delivered is 100% —25.6% =74.4% Therefore the invoice should be corrected in the ratio of 74.4% to 77%: (617.3 X 74.4) -^ 77 = $596.45 Throwsters' Clearances. When raw silk is purchased and sent to a commission throwster to be thrown the conditioned weight and boil- off of the lot should be known. The thrown silk should be returned to the Conditioning House for conditional weight and boil-off. Cond. wt, sent less raw boil-off =: clean fiber sent, Cond. wt. returned less thrown boil-off = clean fiber returned. Clean fiber sent less clean fiber returned ^ waste. Waste H- clean fiber sent = percentage of waste. Ex. Suppose the 5 bales of Japan listed above had a boil-oft of 19,5% and were sent to a commission throwster who returned 682,4 lbs. conditioned weight, boil-off 24.1"%,. 3 To find the amount of waste. 100 — 19.5=80.5% yield 665.38 X .805=535.63 lbs., cond. \vt. of clean fiber sent 100 — 24.1 = 75.9% yield 682.4 X. 759 = 517.94 lbs., cond. wt. clean fiber returned 535.63 — 517.94 = 17.69 lbs. waste 17.69 -¥- 535.63 = 3.30% waste Size. The size on fineness of raw silk is expressed by the limits within which the average of thirty test skeins taken from ten large skeins must come. For example. A 1?/15 denier raw silk is one whose average size is found to be between 13.5 denier and 14.5 denier, i.e., it may vary % denier either above or below 14. Winding. The winding quality of raw silk is found by winding 20 skeins for one hour at a standard speed and counting the number of breaks. From the number of breaks the number of swifts which an average winder can keeii uii is calculated. D. E. Doi'ty. WEIGHT OF WARP AND FILLING. Among the most frequent and important calculations are those to determine the amount of warp or filling yarn required for a given amount of cloth. These calculations are required for estimating the cost of a fabric, as well as for ordering raw material to cover orders for goods. They are found necessary in nearly every process of man- ufactuing textiles, and consist in finding the weight of a given length of silk of a given size, thus: Ex. Find the weight of 15,000 yards of 3.2-dram silk. 15 X 3.2 = 48 drams (3 ounces), weight of silk. Ex. Find the weight of 35,000 yards of 21 denier silk. 21 denier = 1.21 dram. 35 X 1.21^42.35 drams (2.65 ounces), weight of silk. In mill work, however, the operations are affected by various con- ditions, and as a result the calculations may be complicated by any or all of the following factors: (a) size of the silk; (ft) threads per inch; (c) take up in weaving; (d) waste in manufacturing processes. Ex. Find quantity of warp and filling (raw silk weight) required for 100 yards of a silk fabric made as follows: 6,900 ends 1.70-dram organzine, 36 inches wide in the loom. 88 picks 2.60-dram tram. Warii take-up, 110 yards warp for 100 yards of cloth. Waste, 4 per cent, for warp and 7 per cent, for filling. Warp 6.9 (1,000-yd. lengths) X 1.70 (drams)=11.73 drams per yd. 11.73-^256 (drams per lb.) =.046 lb. .046 X 110 (yds. warp) =.5.06 lbs. 5.04^.96 (100%— 4%)=5.25 lbs. warp per cut. Filling (36 X 88) =3,168 yards tram. 3,168 (1,000-yd. lengths) X 2.60 = 8.24 drams per yd. 8.24 -^ 2.56 (drams per lb.) =.032 lb. .032 X 100 (yds. cloth) =3.2 lb. 3.2 -;- .93 (100%— 7%) =3.44 lbs. filling per cut. Having obtained a clear understanding of the calculations illus- trated by the above example, the quantity of warp or filling for any given amount of cloth of known construction can be readily found when tables are not within reach or when they do not meet the jiar- ticular case presented. Tables, however, are valuable labor savers for these calculations of warp and filling. The accompanying "straight line" tables of silk weights are based on a warp take-up of 110 yards of warp to 100 yards of cloth, 4.51 per cent, for waste of warp, and 6% per cent, for waste of filling. The weights given are for 100 yards of cloth 20 inches wide in the loom. These particular allowances for waste are so near those 4 usually assumed that the differences are negligible, while they give certain convenient relations which cause the tables to visualize the calculations and thus become to the observer something more than a mass of arbitrary figures. Take, for example, 100 yards of 20-inch cloth made with 2,000 ends. With a warpi take-up of 110 to 100 there would be (2,000 X 110) 220,000 yards of silk in 100 yards of cloth. Allowing 10,400 yards (4.51 per cent.) for waste, the 100 yards of cloth will require 2.30,400 yards of orgaiizine. If the silk is 1-dram, the raw silk weight of this length is (230.4 -=- 256) .9 pound, the iceiglit of uari) in pounds per 100 yards of 2,000-("M(Z cloth heiiig 10 per cent, less than the dram mi.mber. Take for illustration a 20-inch cloth woven with 60 picks per inch. There would be (20 X 60) X 100 = 120,000 yards of tram in 100 yards of cloth. Allowing 6% per cent, for waste, 100 yards of cloth will re- quire (120,000 H- 93 3/4) 128,000 yards of silk. If the silk is 1-drani, the raw weight of this length is (128 h- 256) .5 pound, the weight of fUling in pounds per 100 yards of GO-piek cloth 20 in. wide Tieing one- half the dram number. The use of the tables is illustrated by the following examples: Find raw silk weight of warp and filling required for 100 yards of cloth made as follows: 6,800 ends 1.70-dram organzine, 36 inches wide in the loom, 8S picks 2.60 dram tram. Organzine for 100 yds. 6,S00-end cloth. 5.20 lbs. Tram for 100 yds. SS-pick cloth 20 in. wide 1.91 lbs. (1.91 X 36 in.) H- 20 = 3.44 lbs., tram for 100 yds. 36 in. wide. "STRAIGHT LINE" WARP AND FILLING TABLES The size of the silk is given in drams and deniers at the top of each column. The dram size is in bold face type. The denier equivalent is placed above it in Roman. Warp Tables. The number of ends is given in the first column in bold face type. The weight of silk in pounds (raw silk weight) required for 100 yards of cloth is found opposite the number of ends and under the respective size. For ex- ample, 100 yards of cloth with 4000 ends of 2.20 dram silk would require 3.96 pounds of warp. The weight is based on 110 yards of warp for 100 yards of cloth with an allowance of 4.51 per cent, for waste. Filling Tables. The number of picks per inch is given in the first column in bold face type. The weight of silk in pounds (raw silk weight) required for 100 yards of cloth 20 Inches wide is found opposite the number of picks and under the respective size. For example, 100 yards of 20-inch cloth woven with 90 picks of 2.S0-dram silk would require 2.10 pounds of tram. The weight is based on an allowance of G% per cent for waste. "STRAIGHT LINE" SILK WARP TABLE Denier 8.7 9.6 10.5 11.3 12.2 13.1 14. 14.8 15.7 16.6 Dram .50 .55 .60 .65 .70 .75 .80 .85 .90 .95 l.UOO 115,200 .22 .25 'Zt .29 .31 .34 .:» .38 .40 .43 1,100 126,720 .25 .27 .30 .32 .35 .37 .40 .42 .45 .47 1,300 138,240 .27 .30 .32 .35 .38 .40 .43 .40 .49 .51 1,300 149,760 .29 .32 .35 .38 .41 .44 .47 .50 .53 .56 1,400 161,280 .31 .35 .38 .41 .44 .47 .50 .54 .57 .60 1,500 172,800 .34 .37 .40 .44 .47 .51 .54 .57 .61 .64 1,600 184,320 .36 .40 .43 .47 .50 .54 .58 .61 .65 .68 1.700 195,840 .38 .42 .46 .50 .54 .57 .61 .65 .69 .73 1,800 207,360 .40 .45 .49 .53 .57 .61 .65 .69 .73 .77 1,900 218,880 .43 .47 .51 .56 .60 .64 .08 .73 .77 .81 2,000 230,400 .45 .49 .54 .58 .63 .67 .72 .76 .81 .85 2,100 241,920 .47 .52 .57 .61 .66 .71 .76 .80 .85 .90 2,200 253,440 .49 .54 .59 .64 .69 .74 .79 .84 .89 .94 2,300 204,960 .52 .57 .62 .67 .72 .78 .83 .88 .93 .98 2,400 2T0.480 .54 .59 .65 .70 .76 .81 .86 .92 .97 1.03 2..')0O 288.000 .56 .62 .67 .73 .79 .84 .90 .96 1.01 1.07 2,600 299,020 .58 .in .70 .76 .82 .88 , .94 .99 1.05 1.11 2,700 311,040 .01 .67 .73 .79 ' .85 .91 .97 1.03 1.09 1,15 2,800 322,560 .03 .69 ,76 .82 1 .88 .94 1.01 1.07 1.13 1,20 2,900 334,080 .65 .72 .78 .85 , .91 .98 1.04 1.11 1.17 1.24 8,000 345,600 .07 .74 .81 .88 .94 1.01 ' 1.08 1.15 1.21 1.28 3,100 3.'>7,120 ,70 .77 .84 .91 .98 1.05 1.12 1.19 1.26 1.33 3,200 3lW,040 .72 .79 .86 .94 i 1.01 1.08 1.15 J o.> 1.30 1.37 3,300 380.100 .74 .82 .89 .97 1.04 1.11 1.19 1.26 1.34 1.41 8,400 391.680 .76 .84 .92 .99 1.07 1.15 1.22 1.30 1.38 1,45 3,500 403.200 .79 .87 .94 1.02 1.10 1.18 1.26 1.34 1.42 1.50 3,600 414,720 .81 .89 .97 1.05 , 1.13 1.21 1.30 1.38 1.46 1.51 8,700 426,240 .83 .92 1.00 1.08 1.17 1.25 1.33 1.42 1.50 1.58 3,800 437,700 .85 .94 1.03 1.11 1.20 1.28 1.37 1.45 1.54 1.62 3,900 449,280 .88 .97 1.05 1.14 1.23 1.32 1.40 1.49 1.58 1.67 4.000 460,800 .90 .99 1.08 1.17 1.26 1.35 1.44 1.53 1.62 1.71 4,100 472.320 .92 1.01 1.11 1.20 1.29 1.38 1.48 1.57 1.66 1,75 4,200 483,840 .94 l.(M 1.13 1.23 1.32 1.42 1.51 1.01 1.70 1.8:) 4,300 495,300 .97 1.06 1.16 1.26 1.35 1.45 1.55 1.04 1.74 1.84 4,400 506.SS0 .99 1.09 1.19 1.29 1.39 1.48 1.58 1.68 1.78 1.88 4, BOO .'-.1 8,400 1.01 1.11 1.21 1.32 1.42 1.52 1.62 1.72 1.82 1.92 4.600 529,920 1.03 1.14 1.24 1.35 1.45 1.55 1,66 1.76 1.86 1,97 4.700 541.440 1.06 1.16 1.27 1.37 1.48 1.59 1.69 1.80 1.90 2.01 4,800 552,960 1.08 1.19 1.30 1.40 1.51 1,62 1.73 1..84 1.94 2.05 4,900 5n4.4.S0 1.10 1.21 1.32 1.41 1.54 1.65 1.76 1.87 1.98 2.09 5,000 576.000 1.12 1.24 1.35 1.46 1.57 1.69 1.80 1.91 2.02 2.14 5,100 .■187,520 1.15 1.26 1.38 1.49 1.61 1.72 1.84 1.95 2.07 2.18 5.200 .TOO.IMO 1.17 1.29 1.40 1.52 1.64 1.75 1.S7 1.99 2.11 2.22 5,300 fllO,.'j«0 1.19 1.31 1.43 1.55 1.67 1.79 1.91 2.03 2.15 9 07 5,400 022.0S0 1.21 1.34 1.46 1..58 1.70 1.82 1.94 2.07 2.19 2.31 5,500 633,600 1.24 1.36 1.48 1.61 1.73 1.86 1.98 2.10 2.23 2.35 5.600 645.120 1.26 1.39 1.51 1.64 1.76 1.89 2.02 2.14 2 27 2.3!) 5.700 656.040 1.28 1.41 IM 1.67 1.80 1.92 2.05 2.18 2.31 2.44 5.800 66S.160 1.30 1.44 1..57 1.70 1.83 1.96 2.09 OO 2.35 2.48 5.900 679,680 1..33 1.46 1.59 1.73 1.86 1.99 2.12 2.26 2.39 2.52 n.ooo 691.200 1.35 1.48 1.62 1.75 1.89 2.02 2.16 2.29 2.43 2.56 6,200 714,240 1.39 1.53 1.67 1.81 1.95 2.09 2.23 2,37 2.51 2.65 6.400 737,2.80 1.44 1.58 1,73. <1.87 2.02 2.16 2.30 2.45 2.59 2.74 fi.BOO 760,320 1.48 1.63 1,78 -^1.93 1 2.08 2.23 2.38 2..52 2.67 2.82 6.800 7.83,300 1.53 1.68 1.84 1.99 1 2.14 2.29 2.45 2.60 2.75 2.91 7,000 806.400 1.57 1.73 1.89 2.05 1 2.20 2.36 2.52 2.68 2.83 2.99 7.200 829,440 1.62 1.78 1.94 2.11 , 2.27 2.43 2.59 2.75 2.92 3.08 7.400 852.480 1.66 1.83 2.00 2.16 2.33 2.50 2.06 2.83 3.00 3.16 7.800 875,520 1.71 1.88 2.05 2 22 2.39 2.56 2.74 2.91 3.08 3.25 7.800 898,560 1.75 1.93 2.11 2.28 2.46 2.63 2.81 2.98 316 3.33 8.000 921.600 1.80 1.98 2.16 2.3 1 2.40 2.52 2:58 2.70 2.77 2.88 2.95 3.06 3.14 3.24 3.42 8,300 944.640 1.84 2.03 2.21 3.32 3.51 8,400 967,680 1.89 2.08 2 27 2.46 2.85 2.83 3.02 3.21 3.40 8.59 8,600 990,720 1.93 2.13 2.32 2.52 2.71 2.90 3.10 3.29 3.48 3.6S 8.800 1,013.760 1.98 2.18 2.38 2.57 2.77 2.97 3.17 3.37 3,56 3.76 9,000 1,036,800 2.02 2.07 2.23 2.28 2.43 2.48 2.63 2:69 2.83 2.90 3.04 3.10 3.24 3.44 3.64 3.a5 9.300 1,059.840 3.31 3.52 3.73 3.93 9.400 1 OS'"' sso 2.11 2.33 2.54 2.75 2.96 3.17 3.38 3 60 3,81 4.02 9,600 1,105.920 2.16 2.38 2.59 2.81 3.02 3.24 346 3.67 3 89 4.10 9,800 1 128.960 2.20 2.43 2.65 2 S7 3.09 3.31 3.53 375 3 97 4,19 10.000 1,152,000 2.25 2.47 2.70 2.92 3.15 3.37 3,00 3.82 4.05 4.27 "STRAIGHT LINE" SILK WARP TABLE I'eniur 17.4 18.J 19.2 20JI 20.9 21.8 22.7 23.5 24.4 25.3 Dram 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 l.CCO 115,200 .45 .47 .49 .52 .54 .56 .58 .61 .63 ^.65 I.IUU 126,720 .49 .52 .54 .57 .59 .62 .64 .67 .69 .72 i,;200 138,240 .54 .57 .59 .62 .65 .67 .70 .73 .76 .78 1,300 149,700 .58 .61 .64 .67 .70 .73 .76 .79 .82 .85 1,400 161,280 .63 .66 .69 .72 .76 .79 .82 .85 .88 .91 1,500 172,800 1S1,:J20 .67 .72 .71 .76 .74 .78 .81 .84 .90 .88 .94 .91 .97 .94 1.01 .98 l.fiOU .79 .S3 .86 1.04 1,700 193,810 .76 .80 .Si • .88 .92 .96 .99 1.03 1.07 1.11 1,800 207,360 .81 .85 .89 .93 .97 1.01 1.05 1.09 1.13 1.17 1,900 218,880 .85 .90 .94 .98 1.03 1.07 1.11 1.15 1.20 1.21 2.000 230,100 241,920 .90 .94 .99 1.03 1.08 1.12 1.17 1.21 1.26 1.3J 3,100 .94 .90 1.04 1.09 1.13 1.18 1.23 1.28 1.32 1.37 2,300 253,440 .99 1.04 1.09 1.14 1.19 1.24 1.29 1.34 1.39 1.44 2,300 264,900 i.o;! 1.09 1.14 1.19 1.24 1.29 1.35 1.40 1.45 1.50 2,400 276,480 1.08 1.13 1.19 1.24 1.30 1.35 1.40 1.46 1.51 1.57 2,500 288,000 299,520 1.12 1.17 1.18 1.24 1.29 1.35 1.41 1.46 1.52 1.57 1.63 2,600 1.23 1.29 1.35 1.40 1.46 1.52 1.58 1.64 1.70 2,700 311,040 1.21 1.28 1.34 1.40 1.46 1.52 1.58 1.04 1.70 1.76 2,800 322,560 1.26 1.32 1.39 1.45 1.51 1.57 1.64 1.70 1.76 1.83 2,900 334.080 1.30 1.37 1.44 1.50 1.57 1.63 1.70 1.76 1.S3 1.89 3,000 345,600 1.35 1.42 1.48 1.55 1.62 1.60 1.75 1.82 1.89 1.96 3,100 357.120 1.39 1.46 1.53 1.60 1.67 1.74 1.81 1.88 1.9,-) 2.02 3,200 368,640 1.44 1.51 1.58 1.66 1.73 l.SO 1.87 1.94 2.02 2.09 3,300 380.160 1.48 1.56 1.63 1.71 1.78 1.86 1.93 2.00 2.08 2.15 3,400 391,680 1.53 1.61 1.68 1.76 1.84 1.91 1.99 2.07 2.14 2.22 3,500 403,200 1.57 1.63 1.73 1.81 1.89 1.97 2.05 2.13 2.20 2.28 3,600 414,720 1.62 1.70 1.78 1.86 1.94 2.02 2.11 2.19 2727^ 2.35 3,700 426,240 1.66 1.75 1.83 1.91 2.00 2.08 2.16 2.25 2..a 2.41 3.800 437,760 1.71 1.80 1.88 1.97 2.05 2.14 *>*> 2.31 2.39 2.48 3,900 449,280 1.75 1.84 1,93 2.02 2.11 2.19 2.28 2.37 2.40 2.54 4.000 460,800 1.80 1..S9 1.98 2.07 2.16 2.25 2.34 2.43 2.52 2.58 2.61 4,100 472.320 1.84 1.94 2.03 2.12 2.21 2.31 2.40 2.49 2.68 4.200 483,840 1.89 1.98 2.08 2.17 2.27 2.36 2.46 2.55 2.65 2.74 4.300 495,360 1.93 2.03 2.13 2.23 2.32 2.42 2.52 2.61 ,2.71 2.81 4.400 506,.S.S0 1.98 2.08 2.18 2.28 2.38 2.47 2.57 2.67 2.77 2.87 4,500 518,400 2.07 2.13 2.23 2.33 2.43 2.53 2.63 2.69 2.73 2.79 283 2.90 2.94 4.600 529,920 2.17 2.28 2.38 2.48 2.59 3.00 4,700 541,440 2.11 2 22 2.33 2.43 2.54 2.64 2.75 2.86 2.96 3.07 4,800 552,960 2.16 o"oj 2.38 2.48 2.59 2.70 2.81 2.92 3.02 3.13 4,900 564,480 2.20 5:32 2.43 2.54 2.65 2.76 2.87 2.98 309 3,20 5,000 576,000 2.25 2.36 2.47 2.59 2.70 2.81 2.92 3.04 3.10 3.15 3.21 3.26 5,100 587,520 2.29 2.41 2.52 2.6 1 2.75 2.87 2.98 3.33 5.200 599,040 2.34 2.46 2.57 2.69 2.81 2.92 3.04 3.16 3.28 3.39 5.300 610,560 2.38 2.50 2.62 2.74 2.86 2.98 3.10 3.22 3.34 3.46 6.400 • 622,080 2.43 2.55 2.67 2.79 2.92 3.04 3.16 3.28 3.40 3.52 5.600 633,000 2.47 2.60 2.72 2.85 2.97 3.09 3.22 3.34 3.46 3.59 6.600 64.5,120 2.52 2.65 2.77 2.90 3.02 3.15 3.28 3.40 3.53 3.65 6.700 656.640 2.56 2.69 2.82 2.95 3.08 3.21 3..33 3.46 3.159 3.72 r^.soo 668,160 2,61 2.74 2.87 3.00 3.13 3.26 3.39 3.52 3.65 3.78 r,.9flo 679,680 2.85 2.79 2 92 3.05 3.19 3.32 3.45 3.58 3.72 3.85 fi.OOO 691,200 2.70 2.83 2.97 3.10 3.24 3.37 3..51 3.64 3.78 3.91 6.200 714,240 2.79 2.93 8.07 3.21 3.35 3.49 3.63 3.77 3.91 4.05 6,400 737,2.80 2.88 3.02 3.17 3.31 3.46 3.60 3.74 3.80 4.03 4.18 6.600 760,320 2.97 3.12 3.27 3.42 3.."i6 3.71 3.86 4.01 4.16 4.31 6.800 783..360 3.06 3,21 3.37 3.52 3.67 3.82 3.98 4.13 4.28 4.44 7.000 806,400 3.15 3.31 3.46 3.62 3.78 3.94 4.09 4.25 4.41 4.57 7.200 S29.440 3.24 3.40 3..56 3.73 3.89 4.05 4.21 4.37 4.54 4.70 7.400 .S52,4S0 3..33 3.50 3.06 3.83 4.00 4.16 4.33 4.50 4.66 4.83 7.600 875,520 3.42 3.59 3.76 3.93 4.10 4.27 4.45 4.62 4.79 4.96 7.800 898,560 3..51 3.69 3.86 4.04 4.21 4..39 4.56 4.74 4.91 5.09 8.000 921.690 3,60 3.78 3.96 4.14 4.32 4.50 4.6,8 4.86 5.04 5.22 8.200 944,640 3.69 3.87 4.06 4.24 4.43 4.61 4.80 4. OS 5.17 5.35 8.400 967,680 3.78 3.97 4.16 4..35 4.54 4.72 4.91 5.10 .5.29 5.48 8.600 990.720 3.87 4.06 4.26 4.45 4.64 4.84 5.03 5.22 5.42 5.61 8,800 1,013,760 3,96 4.16 4.36 4.55 4.75 4.93 5.13 5.35 5 54 5.74 9,000 1,030.800 4.05 4.25 4.45 4.66 4.,e6 5.06 3.26 5.47 5.67 5.87 9.200 1 .059.840 4.14 4.35 4..55 4.76 4.97 5.17 5.38 !>..59 5 SO 6.00 9.400 1 .082.880 4.23 4.44 4.65 4.86 5.08 5.29 5.50 5.71 5.92 6.13 nfiflO 1,105.920 4.32 4,54 4.75 4.97 5.18 5.40 5.62 5.83 6.05 6.26 !) 800 1 128,960 4.41 4.63 4.S5 5.07 .5.29 5.51 5.73 5.9" 6.17 6.39 loni-o 1,1.52,000 4.50 4.72 4.95 5.17 5.40 5.62 5.85 6.07 6.30 6.52 "STRAIGHT LINE" SILK WARP TABLE DeuiiT 26,2 27. 27,9 28.8 29.6 30.0 31.4 32.3 33.1 34, Dram 1.50 1.55 1.60 1.6,^ 1.70 1.75 1.80 1.85 1.90 1.95 1,000 ll.l.SOO .67 .70 .72 .74 .76 .79 .81 .83 .85 .88 1,10a 126,720 .74 .77 .79 .82 .84 .87 .89 .92 .04 .97 1,300 138.240 .81 .84 .86 .89 .92 .94 .97 1.00 1.03 1,05 1,SOO H'J,760 .88 .91 .94 .97 .99 1.02 1.05 1.08 1.11 1.14 1,400 161,280 .94 .98 1.01 l.W 1.07 1,10 1.13 1.17 1.20 1.23 1.500 172,800 184,320 1.01 1.05 1.08 1.11 1.15 I.IS 1.21 1.25 1.28 1.32 1,000 1.08 1,12 1.15 1.19 1.22 1.20 1.30 1.33 1.37 1.40 1,700 193..S40 1.13 1.19 : 1,22 1.26 1.30 1.34 1.38 1.42 1.45 1.49 1,800 207,360 1.21 1,26 1.30 1.34 1.38 1.42 1.46 1.50 1.54 1.58 1,900 218,880 1.28 1.33 1,37 1.41 1.45 1.50 1.54 1.5S 1.62 1.67 2,000 230,400 241,920 1.35 1.42 1.39 1.46 1.44 1.48 1.53 1.57 1.62 1.66 1.71 1.75 2,100 1.51 1.56 1.61 1.65 1.70 1.75 1.80 1.84 3,300 253,440 1.48 1.53 1.58 1.63 1.68 1.73 1.78 1.83 1.88 1.93 3,300 204,'.li;0 r.55 1.60 1.66 1.71 1.76 1.81 1.86 1.91 1.97 2.02 3,400 276.483 1.62 1.67 1.73 1.78 1.84 1..89 l.iH 2.00 2.05 2.11 2,500 288,000 2>J9..j20 1.69 1.75 1.74 1.80 1.81 , i.srr 1.86 1.93 1.91 1.99 1.97 2,05 2.02 2.08 2,14 2.19 3,600 2.11 2.16 .1 o.> 2.28 3,700 311.040 1.82 1.88 1.94 2.00 2.07 2.13 2.19 2.25 2!31 2.37 2,800 322..jli0 1.89 1.95 1 2.02 2.08 2.14 2.20 2.27 2.33 2,39 2.46 2,900 334.0,s0 1.96 2.02 2.09 2.15 2.22 2.28 2.35 2.41 2.48' 2.54 3.000 343,600 357,120 2.02 2.0U 2,09 2.16 2.16 2.23 2.29 2.36 2.43 2.50 2,36 2.63 3,100 2.23 2.30 2.37 2.44 2.51 2.58 2.65 2.72 3,300 368,640 2.16 2,23 2.30 2.38 2.45 2,52 2.59 2.66 2,74 2.81 8.300 " 380,160 2.23 2.30 2,38 2.45 2.52 2.60 2.67 2.75 2.82 2.90 3,400 391,6,N0 2.29 2.37 2.45 2.52 2.60 2.68 2.75 2.83 2.91 2.98 8,500 403,200 2.36 2.44 2.52 2.60 2,68 2.76 2.83 2.91 2.99 3.07 3.B00 414,720 2,43 2.51 2.39 2.67 2,75 2.83 2.92 3m 3.08 3.16 3.700 426.240 2.30 2..38 2.66 2.75 2,83 2.91 3.00 3.08 3.16 3.25 3.800 437,760 2.36 2.05 2.74 2.82 2,91 2.99 3.08 3.16 3.25 3.33 3.900 449,280 2.63 2.72 2.81 2.90 2.98 3.07 3.16 3.25 3.33 3.42 4,000 460.800 2.70 2.79 ' 2.88 2.97 3.06 3.15 3.24 3.33 3.42 3.51 4,100 472,:i20 '2.11 2.86 2.93 3.04 3,14 3.23 3.32 3.41 3, .31 3.60 4.300 4.S3,S40 2.83 2 93 3.02 3.12 3.21 3.31 3,40 3. .50 3,59 3.69 4.300 493.360 2.90 S.OO 3.10 3.19 3,29 3.39 3,48 3.58 3.68 3.77 4.400 . 50r,,.8.s0 2.97 3.07 3.17 3.27 3.37 3.46 3.56 3.(16 3,76 3.85 4..")00 318,400 3.04 3.14 3.24 3.34 3.44 3.54 3.64 3.75 3.85 3.95 4,600 529.920 3,10 3.21 3.31 3.42 3.52 3.62 3.73 3.83 3.93 4.04 4,700 341 .440 3,17 3.28 3..'!8 3,49 3.00 3.70 3.81 3.91 4,02 4.12 4.800 532.960 3.24 3.35 3.46 3.56 3,67 3.78 3.89 4.00 4.10 4.21 4.900 564.480 3.31 3.42 3.53 3.64 3.75 3.86 3.97 4.0s 4.19 4.30 ,1.000 576.000 3S7.,320 3.37 3.49 3.60 3.71 3.82 3.94 4.05 4.10 4.27 4.39 ft.lOO 3.44 3.56 3.67 3.79 3.90 4.02 4,13 4.25 4,3S 4.48 5.300 599,040 3.51 3.63 3.74 3.86 3.98 4.09 4.21 4.33 4,45 4.58 6,300 610,360 3.38 3.70 3.82 3.91 4,05 4.17 4.29 4.41 4.53 4.65 5.400 622,080 3.64 3.T7 3.89 4.01 4,13 4,25 4.37 4.,30 4,62 4.74 5.500 633,600 &45,120 3.71 3.84 3.98 4.08 4.21 4.33 4.45 4..38 4,70 4.83 5.600 3.78 3.91 4.03 4.1c 4.28 4.41 4.54 4,66 4.79 4.91 5,700 656,640 3,83 3.98 4.10 4.23 4.36 4.49 4.62 4.75 4,. 87 5.00 r.sflo 668,160 3,91 4.05 4.18 4.31 4.44 4.57 4.70 4,83 4.96 5.09 5.900 679,680 3.98 4.12 4.25 4.38 4,51 4.65 4.78 4.91 5.04 5.18 G.OOO 69] ,200 4.05 4.18 4.32 4.43 4.59 4.72 4.86 4,99 3.13 5.26 9,300 714,240 4.18 4.32 4.46 4.60 ' 4,74 4,88 5.02 5.16 5.30 5.44 6.400 737.280 4,32 4.46 4.61 4.75 4.90 5,04 5.18 5,33 5.47 5.62 6,600 760.320 4.45 4.60 4.75 4.90 5.05 5,20 5.35 5.49 5.64 5.79 fl.800 783.360 4..39 4.74 4.90 5.05 5.20 5,35 5.51 3,66 5,81 5.97 7.000 806.460 4.72 4.88 5.04 5.20 5,35 5.51 5.67 5,.83 5.98 6.14 7,200 .«29,440 4.8S 5.02 5.18 5.35 5.51 5,67 5.83 5,99 6,16 6.32 7.400 832,480 4.99 5.16 5,33 5.49 5.66 5.83 5.99 6.16 6,33 6.49 7.600 875..320 5.13 5.30 5,47 5.64 5,81 5.98 6.16 6,33 6,.30 6.67 7,800 8flS..560 5.26 5.44 5.62 ,5.79 5.97 6,14 6.32 6,49 6.67 6.84 8.000 921,600 5.40 5.58 5.76 5.94 6.12 6,30 6.48 6,66 6,.84 7.02 8.200 944,640 5.53 5.72 5.90 6.09 6,27 6.46 6.64 6.a3 7,01 7.20 8.400 967,680 .5.67 5.,86 6.05 6,24 6,43 6.61 6.80 6,99 7,18 7.37 8.600 990.720 5.80 6,00 6.19 e.^9 6,58 6.77 6.97 7.16 7.35 7.55 8.800 1,013,760 5.94 6.14 6.34 6.53 6.73 6.93 7.13 7.33 7..52 7.72 9,000 ],0,';6,S00 6.07 6,28 6.48 6,68 6.88 7.09 7.29 7.49 7,69 7.90 9.200 1,0.39,840 6.21 6,42 6.62 6.83 7.01 7.24 7.45 7.66 7,.87 8.07 9.400 1.082.880 6.34 6.56 6.77 6.98 7,19 7.40 7.61 7.83 R.M 8.25 9.600 1,103.920 6.48 6.70 6.91 7,13 7.34 7..56 7.78 7.99 8.21 8.42 9.800 1.128,960 6.61 6,84 7.06 7,2s 7,.30 7.72 7.94 8.16 8.38 8.60 10.000 1.1.52,000 6.75 6.97 7.20 7.42 7.65 7.87 8.10 8.32 8.55 8.77 'STRAIGHT LINE" SILK WARP TABLE Deuicr 34.9 35,8 36.6 37,5 3S.4 39.2 40.1 41. 41.9 42.7 Dram 2.00 2.05 2.10 2.15 2,20 2.25 2.30 2.35 2.40 2.45 1,000 110,200 .90 .92 .94 .97 .99 1.01 1.03 1.00 1.08 1.10 1,1 uo 120.720 .99 1.01 1.04 1.00 1.09 1.11 1.11 1.16 1.19 1.21 i,;;oo l;jS,240 l.ON 1.11 1.13 1,10 1.19 1.21 1,24 1.27 1.30 1.32 1,300 ll',),7U0 1.17 1.20 1.23 1.26 1.29 1.32 1.35 1.37 1.10 1.43 1,400 161,280 1.20 1.29 1.32 1.30 1.39 1.42 1.45 1.48 1.01 1.54 1,S00 172.S00 1,00 1.38 1.12 1.45 1.48 1.02 1.00 1.59 1.02 1.65 1,U0U lS4,a20 1.44 I.IS 1.01 1.55 1.08 1.62 1.66 1.69 1.73 1.76 1,700 lOo.MO 1.53 1.07 1.01 1.64 1.68 1.72 1.76 1.80 1.84 1.87 1,800 207,360 1.62 1.66 1.70 1,74 1.78 1.S2 1..S6 1.90 1.94 1.98 1,900 21S,SS0 1.71 1.75 1.80 l.Sl 1.88 1.92 1.97 2.01 2.05 2.09 2,000 230,100 1.80 l.fvl 1.88 1.93 1.9S 2.02 2.07 2.11 2,16 2.20 2,100 211,920 1.89 1.94 1,98 2.03 ' 2.08 2.13 2.17 2.22 2.27 2.32 2,aoo 253,440 1.98 2.03 2.08 2.13 2.18 2.23 2.28 2.33 2.38 2.43 2,300 264,960 2.07 2.12 2.17 2.23 2.28 2.33 2.38 2.43 2.48 2.54 2,400 276,480 2.16 2.21 2.27 2.32 2.38 2.43 2.48 2.54 2.59 2.65 2,500 288,000 2.25 2.31 2.36 2.42 2.47 2.03 2.59 2.65 2.75 2.70 2.81 2.70 2,«U0 299,020 2.34 2.40 2.46 2.02 2.57 2.63 2.69 2.87 2,700 311,040 2.43 2.49 2.55 2.61 2.67 2.73 2.79 2.86 2,92 2.98 2.800 822.560 2.52 2.58 2.65 2.71 2.77 2.83 2.90 2.96 3.02 3.09 3,900 334,080 2.61 2.68 2.74 2.81 2.87 2.94 3.00 3.07 3.13 3.20 3,000 345,000 2.70 2.77 2.83 2.90 2.97 3.04 3.10 3.17 3.24 3.31 3,100 357,120 2.79 2.86 2.93 3.00 3.U7 3.14 3.21 3.28 3.35 3.42 3,200 368,640 2.88 2.95 3.02 3.10 3.17 3.24 3.31 3.38 3.46 3.53 8,300 380,160 2.97 3.04 3.12 3.19 3.27 3.34 3.42 3.49 3.56 3.61 3,400 301,680 3.06 3.14 3.21 3.29 3.37 3.44 3.52 3.60 3.67 3.75 3.500 403.200 3.15 3.23 3.31 3.39 3.46 3.54 3.62 3.70 3.78 3.83 8,600 414,720 3.24 3,32 3.40 3.48 3.56 3.64 3.73 3.81 3.89 3.9,- 3,700 426,240 3.33 3,41 3.50 3,08 3,66 3.75 3.83 3.91 4.00 4.08 3.800 437,760 3.42 3.51 3.59 3.68 3.76 3.85 3.93 4.02 4.10 4.19 3,900 449,280 3.51 3.60 3.69 3.77 3..S6 3.95 i 4.04 4.12 4.21 4.30 4,000 460,800 3.60 3.69 3.78 3.87 3.96 4.05 4.14 4.23 4.32 4.41 4,100 472,320 3.69 3.78 3.87 3.97 4.06 4.15 4.24 4.34 4.43 4.02 4,200 483,840 3.78 3.87 3.97 4.06 4.16 4.25 4.::5 4.44 4.54 4.6,i 4,300 495,360 3.S7 3.97 4.06 4.16 4.28 4.35 4.45 4.55 4.(Vt 4.74 4,400 506,880 3.96 4.06 4.16 4.26 4.38 4.45 4.55 4.65 4.75 4.85 4,500 518.400 4.05 4.15 4,25 4.35 4.45 4.56 4.66 4.66 4.76 4.86 4.96 4,600 529,920 4.14 4.24 4.35 4.45 4.05 4.76 4.80 4.97 5.07 4,700 541,440 4.23 4.34 4.44 4.55 4.65 4.76 4.86 4.97 5.08 5.18 4.800 552,960 4.32 4.43 4.54 4.64 4.75 4.86 4.97 5.08 5.18 5.29 4,900 564,480 4,41 4.52 4.63 4.74 4,85 4.96 ■ 5.07 5.18 5.29 5.40 6,000 576,000 4.50 4.61 4.72 4.84 4,95 5.08 5.17 5.29 5.40 5.51 6.100 587,520 4.59 4.70 4.82 4.93 0.05 5.16 5.28 5.39 5,51 5.62 6,200 599,040 4.68 4,80 4.91 5.03 5.15 5.26 5.38 5.50 5.62 5.73 6,300 610,560 4.77 4,89 5.01 5.13 5.25 5.37 5.49 5,00 5.72 5.84 6,400 622,080 4.86 4.98 5.10 5.22 5..35 5.47 0.59 5.71 5.83 5.95 5.500 633,600 4.95 5.07 5.20 5,32 5.44 5.57 5.69 5.82 5.94 6.06 5,600 645,120 5.04 5.17 5.29 5,42 5.54 5.67 0..S0 5.92 6.05 6.17 6,700 056,640 5.13 5.26 ,5.39 5,51 5.64 5.77 5.90 6.03 6.16 6.28 5,800 668,160 5.22 5.35 5.48 5.61 5.74 5.87 6.00 6.13 6.20 6.30 6,900 679,680 5.31 5.44 5..58 0.71 5,.S4 5.97 • 6.11 6.24 6.37 6..50 6,000 691,200 5.40 5.53 5.67 5 8:i 5,94 6.07 6.21 6.34 6.18 6.61 6,200 714,240 5.5S 5,72 5.86 6.00 6,14 " 6.28 6.42 6.56 6.70 6.84 6,400 737,280 5.76 5.90 6.05 6.19 6,34 6.48 6.62 6.77 6.91 7.06 6,600 760.320 5.04 6.09 6,24 6.39 6,.03 6.68 6.a3 6.98 7.13 7.28 6,800 783.360 6.12 6.27 6.43 6.58 6.73 6..S8 7.04 7.19 7.31 7.50 7.000 806.400 6.30 6.46 6.01 6.77 6.93 7.09 7.24 7.40 7.."i6 7.72 7.200 829.440 6.48 6.64 6.80 6.97 ' 7.13 7.29 7.40 7.61 7.78 7.94 7.400 .ViS.lSO 6.66 6.,S3 6.99 7.16 7,33 7.49 7.66 7.S3 7.99 8.16 7,600 875,520 6.84 7.01 7.18 7.35 7,52 7.69 7.,S7 8.04 8.21 8.38 7.800 898, ."WO 7.02 7.20 7,37 7..55 7.72 7.90 8.07 8.25 8.42 8.60 8,000 921,600 7.20 7.38 7.56 7.74 7.92 8.10 8.28 8.46 S.M 8.82 8.200 944.640 7.38 7,56 7.75 7.93 8.12 S..'!0 8.49 8.67 8.80 9.04 8.400 967.680 7.56 7.75 7.94 8.13 8.32 8..50 8.69 8.88 9,07 9.26 8,nao 990.720 7.74 7,93 8.13 8,32 8,.51 8.71 8.90 9.09 9,29 9.48 8.800 3.01 3,760 7.92 8.12 8.32 8.51 8,71 8.91 9.11 9.31 9..50 9.70 9.000 1.036.800 1 8.10 8,30 8,50 8.71 S.91 9.11 9.31 Tj'^ 9.72 9.92 9.-,;oo l.n.-)!>,S40 8.28 8.49 8,69 8.90 9.11 9.31 9.52 9.73 9.94 10.14 9.400 1.0S2,SSO 8.46 s.trr 8,88 0.09 9,31 9..'i2 9,73 0.94 10.15 in.3R 9.600 1,105.920 8.64 8„S6 9,07 9.29 9..50 9.72 9,94 10.15 10.37 10.58 9.8(10 1 128,960 RS2 9,04 9,26 9 48 9 70 9 92 10,14 in.'!'; 10.58 10.80 10,000 l,l."i2.000 9no 9.22 9.45 9.67 9,90 10,12 10..35 10.57 10.80 11.02 "STRAIGHT LINE" SILK WARP TABLE IM'iiier 43.0 44.5 45.3 46.2 47.1 48. 4S.8 49.7 50.6 51.4 Dram 2.50 2,55 2.60 2.65 2,70 2.75 2.80 2.85 2.90 2.95 1,000 115,200 1.12 1.15 1.17 1.19 1.21 1.24 1.20 1.28 1.30 1.33 l,iuo lliO.Tl'U 1.24 1.20 1.29 1.31 1.34 l.o6 1.39 1.41 1.44 1.40 1,200 13S,::40 1.35 1.38 1.40 1.43 1.46 1.48 1.51 1.54 1.57 1.59 1,300 149,700 1.46 1.49 1.52 1.55 1.58 1.61 1.64 1.67 1.70 1.73 1,400 lUl.J.SO 1.57 1.61 1.64 1.6? 1.70 1.73 1.76 1.80 1.83 1.86 1 SUO 172.S(«) 1.69 1.80 1.72 1.84 1.75 1.79 1.82 1.94 1.86 1.98 1.89 2.02 1.92 2.05 1.96 2.00 1.99 1,600 l>M,;i20 1.87 1.91 2.12 1,700 195,840 1.91 1.95 1.99 2.03 2.07 2.10 2.14 2.18 2 22 2.26 1,800 207,360 2.02 2.07 2.11 2.15 2.19 2.23 2.27 2.31 2!35 2.39 1,900 218.880 2,14 2.18 2 22 2.27 2.31 2.35 2.3J 2.44 2.48 2.52 2,000 230.400 2,25 2.29 2.34 2.38 2.43 2.47 2.52 2.56 2.01 2.65 2,100 241,920 2.36 2.41 2.46 2.50 2.55 2.60 2.65 2.69 2.74 2.79 2,200 253,440 2.47 2.52 2.57 2.62 2.67 2.72 2.77 2.82 2.87 2.92 2,800 264,960 2.59 2.64 2.69 2.74 2.79 2.85 2.90 2.95 3.00 3.05 2,400 276,480 2.70 2.75 2.81 2.86 2.92 2.97 3.02 3.08 3.13 3.19 2,500 288.000 2.81 2.87 2.92 2.98 3.04 3.09 3.13 3.21 3.20 3.32 2,600 299.520 2.92 2.98 3.04 3.10 3.16 3.22 3.28 3.33 3.39 3.45 2,700 311,040 3.04 3.10 3.16 3.22 3.28 3.34 3.40 3.46 3.52 3.58 2,800 322,560 3.15 3.21 3.28 3.3 1 3.40 3.46 3..53 3.59 3.65 3.72 2,900 334,080 3.20 3.33 3.39 3.40 3.52 3.59 3.1 » 3.72 3.78 3.85 3,000 345,000 3.37 3.44 3.51 3.58 3.64 3.77 3.71 3.84 3.78 3.85 3.91 4.05 3.98 3,100 357.120 3.49 3.56 3.63 3 70 3.91 3.98 4.12 3,200 368,640 3.60 3.67 3.74 3.82 3.89 3.96 4.03 4.10 4.18 4.25 3,300 380,100 3.71 3.79 3.86 3.94 4.01 4.08 4.16 4.23 4.31 „ 4.38 3,400 391,680 3.82 3.90 3.98 4.05 4.13 4.21 4.28 4.30 4.44 4.51 S,BOO 403,200 3.94 4.02 4.09 4.17 4.25 4.33 4.41 4.49 4.57 4.65 3,009 414,720 4.05 4.13 4.21 4.29 4,37 4.45 4.54 4.02 4.70 4.78 3.700 426,240 4.16 4.25 4.33 4.41 4.50 4..58 4.66 4.75 4.83 4.91 3,800 437,760 4.27 4.36 4.45 4.53 4.62 4.70 4.79 4.87 4.96 5.04 3,900 449,280 4.39 4.48 4.56 4.05 4.74 4.83 4.91 5.00 5.09 5.18 4.000 460.800 4.50 4.59 4.68 4.77 4.89 4.86 4.95 5.04 5.13 5.22 5.31 4,100 472,320 4.«t 4.70 4.80 4.98 5.07 5.17 5.20 5.35 5.44 4,200 4,83,840 4.72 4.82 4.91 5.01 5.10 5.20 5.29 5.39 5.48 5..^8 4,.'<00 495.300 4.84 4.93 5.03 5.13 5.22 5.32 5.42 5.51 5.61 5.71 4,400 506,S,S0 4.95 5.05 5.15 5.25 5.35 5.44 5.54 5.04 5.74 5.84 4.500 518,400 5.06 .5.16 5.26 5.37 5.47 5.57 5.07 5.77 5.87 5.97 4,600 529.920 5.17 5.28 5.38 5.49 5.59 5.69 5.80 5.90 6.00 6.11 4,700 541,440 5.29 5.39 5.50 5.60 5.71 5.82 5.92 6.03 6.13 6.24 4,800 552.900 5.40 5.51 5.62 5.72 5.83 5.94 6.05 6.16 6.26 6,37 4.900 564,480 5,51 5.62 5.73 5.84 5.95 6.06 6.17 .6.28 6.39 0.50 5.000 576.000 5,62 5.74 5.85 5.97 5.96 6.08 6.07 6.19 6.31 6.30 6.41 6.52 6.64 5,100 587,520 5.74 5.85 6.20 6.43 6.54 6.06 6.77 5,200 599,040 5..S5 5.97 6.08 6.20 6.32 6.43 6.55 6.07 6.79 6.90 5,300 610,560 5.96 6.08 6.20 6.32 6.44 6.50 6.08 6.80 6.92 7.04 6,400 622,080 6.07 6.20 6.32 6,44 6.56 6.68 6.80 6.93 7.05 7.17 5.500 633,600 6.19 fi.31 6.43 6.56 6.68 6.0.8 6.81 6.93 7.0.-) 7.18 7.18 7.31 7.30 5,600 645,120 6.30 6.43 6.55 6.80 6.93 7.0() 7.43 6,700 650,640 6.41 6.54 6.67 6.80 6.03 7.05 7.18 7.31 7.44 7.57 5,800 - 66,8,160 6.52 . 6.66 6.79 0.92 7.05 7.18 7.31 7.44 7.57 7.70 5,900 679.680 6.64 6.77 6.90 7.04 7.17 7.30 7.43 7.57 7.70 7.83 0.000 091,200 6.75 0.88 7.02 7.15 7.39 7.29 7.53 7.42 7.67 7.156 7.09 7.83 7.96 6,200 714,240 6.97 7.11 7.25 7.81 7.95 8.09 8.23 0.400 737,280 7.20 7.34 7.49 7.63 7.78 ■ 7.92 8.06 8.21 8.35 8.50 0,000 760,320 7.42 7.57 7.72 7.87 8.02 8.17 8.32 8.46 8.61 8.70 0800 783.360 7.65 7.80 7.96 8.11 8.26 8.41 8.57 8.72 8.87 9.03 7.000 806,400 7.87 8.03 8.19 8.35 8.59 8..50 8.60 8.,'<2 9.07 8.98 9.13 -.1.29 7.200 829.440 8.10 8.26 8.42 8.75 8.91 9.23 9.40 9.,56 7.400 852.4,80 8.32 8.49 8.66 8.82 8.99 9.16 9.32 9.49 9.06 9.82 7,600 875,.520 8..55 8.72 8.89 9.06 9.23 9.40 9.58 9.75 9.92 10.09 7.f00 898,560 8.77 8.95 9.13 9.30 9.48 9.65 9.83 10.00 10.18 10.35 8.000 921.600 944,640 9.00 9.22 9.18 9.41 8.36 9.!59 9.54 9.7S 9.72 9.96 9.00 10.15 10.08 10.33 10.26 10.44 10.62 8,200 10..52 10.70 10.89 8.400 987,680 9.45 9.64 9.83 10.02 10.21 10.39 10..58 10.77 10.96 11.15 8.600 900,720 9.07 9.87 10.06 10.26 10.45 10.64 10.84 11.03 11.22 11.42 8.800 :, 013,760 9.90 10.10 10.30 10.49 10.69 10.8:1 11.09 11.20 11.48 1 1 .08 O.OOO 1.036..S00 10.12 10.33 ~10.56' 10..53 10.76 10.73 10.97 10.93 11.18 11.14 11.38 11.34 11.54 11.74 11.95 9.;!(HI 1.0.j9,,840 10,35 11.59 11.80 12.01 12.21 9.400 1.0.82,880 10.57 10.79 11.00 11.21 11.42 11.63 11.84 12.06 12.27 12.48 9,500 1.105.920 10..80 11.02 11.23 11.45 1 1 .60 11.88 12.10 12.31 12..-.3 12.74 9.801 1.1^«.9r,0 11.02 11. ?5 11.47 11.09 11.91 12.13 12..-!5 12..57 12.79 13.01 lO.O'^O 1,T12.000 11,25 11.47 11.70 11.92 12.15 12.37 12.60 12.82 13.05 13.27 10 "STRAIGHT LINE" SILK FILLING TABLE Denier 20.2 27.9 29.6 31.4 a.'S.i 34.9 36.0 3S.4 40.1 41 .9 Dram 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 60 ior,.nG7 .62 .67 .71 .75 .79 .83 .87 .92 .96 i.on 63 110.!)33 .65 .69 .74 .78 .82 .87 .91 .95 1.00 1.01 64 115,200 .67 .72 .76 .81 .85 .90 .94 .99 1.03 l.OS 66 ni>,467 .70 .75 .79 M .80 .93 .98 1.03 1.07 1.12 68 12»,733 .72 .77 .82 .87 .92 .97 1.01 1.00 1.11 1.16 60 128,000 .75 .80 .&5 .90 .05 1.00 1.0.-) 1.10 1.15 1.20 62 132,2t)7 .77 .83 .88 .93 .98 1.03 1.08 l!l4~ 1.19 1.24 64 136,533 .80 .85 .91 .96 1.01 1.07 1.12 1.17 1.23 1.28 66 140,800 .82 .88 .93 .90 1.04 1.10 1.15 1.21 1.26 1.32 68 145,067 .85 .91 .96 1.02 1.08 1.13 1.19 1.25 1.30 1.30 70 149,333 .87 .93 .99 1.05 1.11 1.17 1.22 1.28 1.34 140 n 153,600 .90 .96 1.02 1.08 1.14 1.20 1.26 1.32 1.38 l.U 74 157.867 .92 .99 1.05 1.11 1.17 1.23 1.29 1.30 1.42 1.48 70 162,133 .95 1.01 1.08 1.14 1.20 1.27 1.33 1.39 1.46 1.52 78 166,400 .97 1.04 1.10 1.17 1.23 1.30 1.36 1.43 1.49 1.50 80 170,667 1.00 1.07 1.13 1.20 1.27 1.33 1.40 1.47 1.53 1.63 83 174,933 1.02 1.09 1.16 1.23 1.30 1.37 1.43 1.50 1.57 1.64 84 179,200 1.05 1.12 1.19 1.26 1.33 1.40 1.47 1.54 1.61 1.68 86 183,467 1.07 1.15 1.22 1.29 1.36 1.43 1.50 1.58 1.65 1.72 88 187,733 1.10 1.17 1.25 1.32 1.39 1.47 1.54 1.01 1.69 1.70 90 192,000 1.12 1.20 1.27 1.35 1.42 1.50 1.57 1.05 1.72 1.80 9i 196,267 1.15 1.23 1.30 1.38 1.46 1.53 1.61 1.69 1.76 1.84 94 2(H),533 1.17 1.25 1.33 1.41 1.40 1.57 1.64 1.72 1.80 1.88 96 2(I4,SOO 1.20 1.28 1.36 1.44 1.52 1.60 1.68 1.76 1.84 1.92 98 2o;>,OU7 1.22 1.31 1.39 1.47 iMi 1.63 1.71 1.80 1.88 1.96 100 213,333 1.25 1.33 1.42 1.50 1.58 1.67 1.75 1.83 1.92 2.00 103 217,600 1.27 1.36 1.44 1.53 1.61 1.70 1.78 1.87 1.95 2.04 IM 221,867 1.30 1.39 1.47 1.56 1.65 1.73 1.82 1.91 1.99 2.08 106 226,133 1.32 1.41 1.50 1.59 1.68 1.77 1.85 1.94 2.03 2.12 108 230,400 1.35 1.44 1.53 1.62 1.71 1.80 1.89 1.98 2.07 2.10 110 234,667 1.37 1.47 1.56 1.65 1.74 1.83 1.92 2.02 2.11 2.20 112 23S,933 1.40 1.49 1.59 1.68 1.77 1.87 1.96 2.05 2.15 2.24 114 243,200 1.42 1.52 1.61 1.71 1.80 1.90 1.99 2.09 2.18 2.28 110 247,467 1.45 1.55 1.64 1.74 1.84 1.93 2.03 2.13 2.22 2.32 118 251,733 1.47 1.58 1.67 1.77 1.87 1.97 2.06 2.17 2.20 2.3e 120 256,000 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 122 260,267 1.52 1.63 1.73 1.83 1.93 2.03 2.13 2.24 2.34 2.44 124 264,533 1.55 1.65 1.76 1.86 1.96 2.07 2.17 2.27 2.38 2.4S 126 268,800 1.57 1.68 1.78 1.89 1.99 2.10 2.20 2.31 2.41 2.52 128 273,067 1.60 1.71 1.81 1.92 2.03 2.13 2.24 2.35 2.45 2.56 ISO 277,333 1.62 1.73 1.84 1.95 2.06 2.17 2.27 2.38 2.49 2.6 J 132 281,600 1.65 1.76 1.87 1.98 2.09 2.20 2.31 2.42 2.53 2.64 134 285,867 1.67 1.79 1.90 2.01 2.12 2.23 2.34 2.40 2.57 2.68 136 290,133 1.70 1.81 1.93 2.04 2.15 2.27 2.38 2.49 2.61 2 T'^ 138 294,400 1.72 1.84 1.95 2.07 2.18 2^.30 2.41 2.53 2.64 2!7G 140 298,667 1.75 1.87 1.98 2.10 o oo 2.33 2.45 2.57 2.08 2.80 142 302,933 1.77 1.89 2.01 2.13 2.25 2.37 2.48 2.60 2.72 2.84 144 307,200 1.80 1.92 2.04 2.16 2.28 2.40 2.52 2.64 2.76 2.88 146 311,467 1.82 1.95 2.07 2.19 2.31 2.43 2.55 2.68 2.80 2.92 148 315,733 1..S5 1.97 2.10 o 22 2.34 2.47 2.59 2.71 2.84 2.96 160 320,000 1.87 2.00 2.12 2.25 2.37 2.50 2.62 2.75 2.87 sm 152 324,267 1.90 2.03 2.15 2.28 2.41 2.53 2.66 2.79 2.91 3.04 154 328,533 1.92 2.05 2.18 2.31 2.44 2.57 2.69 2..S2 2.95 3.08 156 332,800 1.95 2.08 2.21 2.34 2.47 2.60 2.73 2..86 2.99 3.12 168 337,067 1.97 2.11 2.24 2.37 2..50 2.63 2.76 2.90 3.03 3.10 160 341.333 2.00 2.13 2.27 2.40 2..'J3 2.67 2.80 2.93 3.07 3.20 162 345,600 2.02 2.10 2.29 2.43 2.56 2.70 2.83 2.97 3.10 3.24 164 349,867 2.05 2.19 2.32 2.46 2.00 2.73 2.87 3.01 3.14 3.28 166 354.133 2.07 2 **1 2.35 2.49 2.63 2.77 2.90 3.04 3.18 3.32 168 358,400 2.10 2^24 2.38 2.52 2.66 2.80 2.94 3.08 3.22 3.30 170 302.667 2 12 2 27 2.41 2.55 2.69 2.83 2.97 3.12 3.26 3.40 172 306,933 2.15 2.29 2.44 2.58 o 22 2.87 3.01 3.15 3.30 3.44 174 371,200 2.17 2.32 2.46 2.61 2.75 2.90 3.04 3.19 3.33 3.48 176 375,407 2.20 2.35 2.49 2.64 2.79 2.93 3.08 3.23 3.37 3.52 178 379,733 2 22 2.37 2.52 2.67 2.82 2.97 3.11 3.26 3.41 3.56 180 384.000 2.25 2.40 2.55 2.70 2. So 3.00 3.15 3.30 3.45 3.00 11 "STRAIGHT LINE" SILK FILLING TABLE Dt-nier 43.6 4.-I.3 47.1 4S,.S 50,6 52.3 54,1 55.8 37,6 59,3 Dram 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 50 lOC.OGT 1.04 1.08 1.12 1,17 1.21 1.25 1.29 1.33 1.37 1.42 52 llU,il33 1.08 1.13 1.17 1.21 1.26 1.30 1.34 1.39 1.43 1.47 64 115,200 1.12 1.17 1.21 1.26 1.30 1.35 1.39 1.44 1.48 1.53 S6 119,407 1.17 1.21 1.26 1.31 1.35 1.40 1.45 1.49 1.54 1.59 S8 123,733 1.21 1.26 1.30 1.35 1.40 1.43 1.50 1.55 1.39 IM 60 128,000 1.25 1.30 1.35 1.40 1.45 1.30 1.55 1.60 1.05 1.70 63 132,267 1.29 1.35 1.39 1.45 1.50 1.55 1.60 1.65 1.70 1.70 64 136,333 1.33 1.39 1.44 1.49 1.55 1.60 1.65 1.71 1.76 1.81 . 66 140,800 1.37 1.43 1.48 1.54 1.59 1.65 1.70 1.70 1.81 1,87 68 145,067 1.42 1.47 1.53 1.59 1.64 1.70 1.76 1.81 1.87 1.93 ■JO 149.333 1.46 1,32 1.57 1.63 1.69 1.75 1,81 1.87 1.92 1.98 72 153,600 1.50 1.56 1.62 1.08 1.74 1.80 1,86 1.92 1.98 2.(M 74 157,867 1.54 1.60 1.66 1.73 1.79 1.85 1.91 1.97 2.03 2.10 76 162,133 1.58 1.65 1.71 1.77 1,84 1.90 1.96 2.03 2.09 2.15 78 166,400 1.62 1.60 1.73 1.82 1.88 1.95 2,01 2.08 2.14 2.21 80 170,067 1.07 1.73 1,80 1.87 1.93 2.00 2,07 2.13 2.20 2.27 82 174,933 1.71 1.78 1.84 1.91 1.98 2.05 2.12 2.19 2.25 2.32 84 179,200 1.75 1,82 1.89 1.9(i 2.03 2.10 2.17 2.24 2.31 2.38 86 183,467 1.79 1,86 1.93 2.01 2.08 2.15 2 22 2.29 2.36 2.44 88 187,733 1.83 1,91 1.98 2.05 2.13 2.20 2^27 2.35 2.42 2.50 90 192,000 1.87 1.95 2.02 2.10 2.17 2.25 2.32 2.40 2.47 2.55 82 196,267 1.92 1.99 2.07 2.15 2.22 2.30 2.38 2.45 2.53 2.B1 94 200,533 1.9G 2.04 2.11 2.19 o 07 2.35 2.43 2.51 2.58 2.66 96 204,800 2.00 2.08 2.16 2.24 2.32 2.40 2.48 2.56 2.(M 2.72 98 209.007 2.04 2.12 2.20 2.29 2.37 2,45 2.53 2.61 2.69 2.78 100 213.3,33 2.08 2.17 2.25 2.33 2.42 2.50 2.58 2.67 2.75 2.83 102 217,600 2.12 O OJ 2.29 2.38 2.46 2.55 2.63 2.72 2.80 2.89 104 221,867 2,17 255 2.34 2.43 2,.51 2.60 2.69 2.77 2.86 2.95 106 226,133 2.21 2.30 2,38 2.47 2.56 2.65 2.74 2.83 2.91 3.00 108 230,400 2,25 2.34 2.43 2.52 2.61 2.70 2.79 2.88 2.97 3.06 110 234.067 2,29 2.38 2.47 2.57 2.66 2.75 2,84 2.93 3.02 3.12 112 238.933 2.33 2.43 2.52 2.61 2.71 2.80 2,89 2.99 3.08 3.17 114 243.200 2.37 2.47 2.56 2.66 2.75 2.85 2.94 3.04 3.13 3.23 116 - 247.467 2.42 2.51 2.61 2.71 2,80 2.90 3.00 3.09 3.19 3.29 118 2.-11.733 2.46 2.56 2.65 2.75 2.85 2.95 3.05 3.15 3.24 3.34 120 250.000 2,50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 123 260.267 2.54 2.64 2.74 2.85 2.95 3.05 3,15 3.25 3.35 3.46 124 2P>»,533 2,58 2.69 2.79 2.89 3.00 3.10 3.20 3.31 3.41 3.51 12« 268.800 2,62 2.73 2.83 2.94 3.04 3.15 3,25 3.30 3.46 3.57 128 273.067 2.67 2,77 2.as 2.99 3.09 3.20 3,31 3.41 3.52 3.G3 130 277.3.33 2.71 2.S2 2.92 3.03 3.14 3.25 3.36 3.47 3.57 3,08 132 281.000 2.75 2,86 2.97 3.08 3.19 3.30 3.41 3.52 3.63 3,74 134 283.867 2.79 2,90 3.01 313 3.24 3..35 3,46 3.57 3.68 3,80 136 290.133 2,83 2.95 3.06 3.17 3.29 3.40 3.51 3.63 3.74 3.85 188 294.400 2.87 2.99 3.10 3.22 3.33 3.45 3,56 3.68 3.79 3.91 140 298.667 2.92 3.03 3.15 3.27 3.38 3.50 3.62 3.73 3.85 3.97 142 302.933 2.96 3.08 3.19 3.31 3.43 3.35 3.67 3.79 3.90 4.02 144 307.200 3.00 3.12 3.24 3.30 3.48 3.60 3,72 3.84 3.96 4.08 146 311,467 3.04 3.16 3.28 3,41 3.53 3,65 3,77 3.89 4.01 4.14 148 31.->.7.33 3.08 3.21 3.33 3.43 3.58 3.70 3„82 3.95 4.07 4.19 ISO .320.000 3.12 3.25 3.37 3.50 3.62 3.75 3,87 4.00 4.12 4.25 152 324.267 3.17 3.29 3.42 3..55 3,67 3.80 3,93 4.05 4.18 4.31 164 328.533 3.21 3.34 3.46 3.59 3,72 3.a5 3,98 4.11 4.23 4.36 ISG 332.800 3.25 3.38 3.51 3.64 3,77 3.90 4.03 4.16 4.29 4.42 1S8 337.067 3.29 3.42 3..'w 3,69 3.82 3.95 4,08 4.21 4.-34 4.48 160 341.3.33 3. .33 3.47 3,00 3.73 3.87 4.00 4,13 4.27 4.40 4.53 162 34.1.6^ 3.37 3.51 3.64 3.78 3,91 4.05 4.18 4.32 4.45 4.59 164 349.867 3.42 3.55 3.69 3.83 3.96 4.10 4.24 4.37 4.51 4.65 166 354.133 3.46 3.60 3.73 3,87 4.01 4.15 4,29 4.43 4.50 4.70 168 358.400 3,!50 3.64 3.78 3.92 4,06 4.20 4,34 4.48 4.62 4,76 170 362.667 3,54 3.68 3.82 3,97 4.11 4.25 4.39 4.53 4.67 4,82 172 306,933 3,.58 3.73 3.87 4,01 4.16 4.30 4,44 4.59 4.73 4,87 174 371.200 3,62 3.77 3.91 4,06 4,20 4,.^5 4.49 4,04 4.78 4,93 170 375.467 3,67 3,81 3.96 4,11 4,25 4,40 4..55 4.69 4.84 4.99 178 379.733 3.71 3.86 4.00 4,15 4,30 4,45 4.60 4.75 4.89 5,04 isn .3,'<4.000 3,75 3.90 4.05 4.20 4. 35 4.50 4-65 4. SO 4,95 5,10 12 "STRAIGHT LINE" SILK FILLING TABLE L»t'niiT 01. 02.8 64.5 66.3 o,s. 09.8 71.3 73.2 70-7 Dram 3,50 3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.40 50 106,007 1.10 1.00 1.54 1.58 1.02 1.07 1.71 1.70 1.79 1.83 52 110,933 1.52 1..50 1.0 J 1.65 1,09 1.73 1.78 1.82 1..80 1.91 oi ii5,:;oo 1.57 1.02 1,00 1.71 1.75 l.,SO 1..S4 1.89 1.93 1.98 56 119,487 1.63 l.l« 1.73 1.77 1..S2 1.,S7 1.91 1.96 2.01 2.05 68 IL'3,733 1.00 1.71 1.79 l.Sl 1.88 1.93 1.98 2.03 2.08 2.13 CO iL'S.niM) 1.75 1.80 1.85 1.90 1.96 1.95 2,00 2.05 2.10 2.15 2.20 03 13L',:;07 1.81 1..80 1.91 2.01 2.07 2.12 2.17 2 22 2.27 64 136,533 1..87 1.92 1.97 2.03 2.08 2.13 2.19 2.24 2.29 2.35 66 H0,SUO 1.92 1.98 2.03 2,09 2.14 2.20 2.25 2.31 2.36 2.42 68 145,067 a. 98 2.04 2.10 2.15 2.21 2.26 2.32 2.38 2.44 2.49 '•a l4n,:'.33 2.04 2.10 2.10 2.21 2.27 2.33 2.39 2.45 2.51 2.57 Vi 153.000 2.10 2.10 ■> oo 2.28 2.34 2.40 2.40 2.02 2.58 2.64 ■54 157,807 2.16 O •>7 2.28 2.34 2.40 2.46 2.53 2..59 2.65 2.71 76 162,133 o .!.> 2.28 2.34 2.40 2,47 2..53 2.00 2.06 2.72 2.79 78 166,400 2.27 2.34 2.40 2.47 2.53 2.00 2.66 2.73 2.79 2.86 80 170,607 2.33 2.40 2.47 2.53 2.60 2.00 2.73 2.80 2.87 2.03 8> 174,it:;3 2.39 2.46 2.53 2,59 2.()0 2.73 2.80 2.87 2.94 3.01 84 179,-JOO 2.45 2.52 2.59 2.B6 2.73 2.80 2.S7 2.94 3.01 3.08 86 18:3,4(;7 2.51 2..JS 2.05 2.72 2.79 2.S6 2.94 3.01 3.08 3.15 88 187,733 2..57 2.04 2.71 2.78 2..S6 2.93 3.01 3.08 3.15 3.23 90 192,000 2.(i2 2.70 2.77 2.85 2.92 3.00 3.07 3.15 3.22 3.30 92 190.267 2.68 2.76 2.84 2.91 2.99 3.06 3.14 3.22 3.30 3.37 94 200,5.33 2.74 2.82 2.90 2.97 3.05 3.13 8.21 3.29 3.37 3.45 96 204,800 2.80 2.88 2.96 3.04 3.12 3.20 3.28 3.36 3.44 3.52 98 209,007 2.86 2.94 3.02 3.10 3.18 3.26 3.35 3.43 3.51 3.59 100 213„333 2.92 3.00 3.08 3.16 3,25 3..33 3.42 3.50 3.58 3.67 103 217,1100 2.97 3.06 3.14 3.23 3..31 3.40 3.48 3..57 3.65 3.74 104 221,807 3.03 3.12 3.21 3.29 3.38 3.46 3.55 3.64 3.73 3.81 106 226,133 3.09 3.18 3.27 3.35 3.44 3.53 3.62 3.71 3.80 3.89 108 230,400 3.15 3.24 3.33 3.42 3..51 3.00 3.09 3.78 3.87 3.96 110 234,667 3.21 3.30 3.39 3.48 3.54 3.57 3.66 3.76 3.85 3.94 4.03 112 238.933 3.27 3.30 3.45 3.64 3.73 3. .83 3.92 4.01 4.11 114 243,200 3.32 3.42 3.51 3.61 3.70 3. .80 3.89 3.99 4.08 4.18 lie 217.467 3..38 3.48 3.58 3.67 3.77 3. .86 3.96 4.06 4.16 4.25 118 2.51.7,33 3.44 3.54 3.64 3.73 3.83 3.93 4.03 4.13 4.23 4.33 120 256,000 3.50 3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.40 123 260,207 3.50 3.00 3.70 3..S6 3.90 4.06 4.17 4.27 4.37 4.47 134 264,533 3.62 3.72 3.82 3.92 4.03 4.13 4.24 434 4.44 4.55 126 268,800 3.67 3.78 3.88 3.99 4.09 4.20 4.30 4.41 4.51 4.62 128 273,007 3.73 3.84 3.95 4.05 4.16 4.26 4.37 4.48 4..59 4.69 130 277,3.33 3.79 3.90 4.01 4.11 4.22 4.33 4.44 4.55 4.66 4.77 132 281.600 3.85 3.96 4.07 4.18 4.29 4.40 4.51 4.02 4.73 4.84 134 285,867 3.91 4.02 4.13 4.24 4.35 4.46 4.58 4,69 4.80 4.91 136 290.133 3.97 4.08 4.19 4.30 4.42 4,.53 4.65 4.76 4.87 4.99 138 294,400 4.02 4.14 4.25 4.37 4.48 4.00 4.71 4.83 4.94 5.06 140 298.607 4.08 4.20 4. .32 4.43 4.55 4.00 4.78 4.90 5.02 5.13 142 302.933 4.14 4.26 4.38 4.49 4.61 4.73 4.85 4,97 5.09 5.21 144 307,200 4.20 4.32 4.44 4..56 4.68 4. .80 4.92 5.04 5.16 5.28 i46 311.467 4.36 4.3,8 4.50 4.62 4.74 4.-86 4.99 5.11 5.23 5.35 148 .315.733 4.32 4.44 4.56 4.68 4.81 4.93 5.06 5.18 5.30 5.43 ISO 320 nno 4.37 4. .50 4.62 4.75 4..S7 5.00 5.12 5.25 5.37 5.50 152 324.2r,7 4.4.-! 4..50 4 69 4.S1 4.94 5.06 .5.19 5.32 5.45 5..57 154 32S..533 4.49 4.02 4.75 4.87 5.00 5.13 5.26 5.39 5.52 5.65 156 332.800 4. .-.5 4.08 4..'i1 4.94 5.07 5.20 5.33 5.46 5.59 5.72 158 337.007 4.61 4.74 4..87 5.00 5.13 5.26 5.40 5..53 5.66 5.79 160 341.333 4.67 4.80 4.93 5.06 5.20 5.33 5.47 5-60 5.73 5.87 163 345.600 4.72 4.,80 4.99 5.13 5.26 5.40 5.53 5.67 5.80 5.94 164 349.867 4.78 4.92 5.06 5.19 5.33 5 40 5.60 5.74 5-88 6.01 166 354,133 4.81 4 OS 5.12 5.25 5.39 5..53 5.67 5 .81 5.95 6.09 168 .358.400 4.90 5.M 5.18 5.32 5.46 5.60 5.74 5 88 6.02 6.16 170 302.667 4.0!! 5.10 5.24 5.30 5.38 5.44 5.52 5.06 5.S1 5.95 6.09 6.23 172 366,933 5.02 5.16 5..59 5,73 5 88 6.02 6-16 6.31 174 .371,200 5.07 5.22 5.36 5.51 5.65 5,80 5.94 6,09 6.23 6.38 176 375,467 5.13 5.28 5-43 5..57 5.72 5.86 6.01 6-16 6.31 6.45 178 379,733 5.19 5.34 5.49 5.63 5.78 5.93 6.08 6.23 6-38 6.53 180 3&i,000 5.25 5.40 5.55 5.70 5.85 6.00 6.15 6.30 6,45 6.60 13 "STRAIGHT LINE" SILK FILLING TABLE Denier 78.5 80.2 82. 83.7 85.5 87.2 88.9 90.7 02.4 94.2 Dram 4.50 4.60 4.70 4.80 4.90 5.00 5.10 5.20 5.30 5.40 50 106,607 1.87 1.92 1.96 2.00 2.04 2.08 2.12 2.17 2.21 2.25 68 110,933 1.95 1.99 2.04 2.08 2 12 2.17 2.21 2.25 Siio 2.34 54 115,200 2.02 2.07 2.11 2.16 2'20 2.25 2.29 2.34 2.38 2.43 56 119,407 2.10 2.15 2.19 2.24 2 '^9 2.33 2.38 2.43 2.47 2.52 58 123,733 2.17 2.22 2.27 2.32 2.37 2.42 2.46 2.51 2.56 2.61 60 128,000 2.25 2!30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 62 132,267 2.32 2.38 2.43 2.48 2.53 2.58 2.63 2.69 2.74 2,79 64 136,533 2.40 2.45 2.51 2.56 2.61 2.67 2.72 2.77 2.83 2.88 66 140,800 2.47 2.53 2.58 2.64 2.69 2.75 2.80 2.86 2.91 2.97 68 145,067 2.55 2.61 2.66 2.72 2.78 2.83 2.89 2.95 3.03 s.ut; TO 149,333 2.62 2.68 2.74 2.80 2.86 2.94 2.92 2.97 3.03 3.09 3.18 3.15 78 153,600 1 2.70 2.76 2.82 2.88 3.00 3.06 3.12 3.24 74 157,807 2.77 2.84 2.90 2.96 3.02 3.08 3.14 3.21 3.27 3.33 76 162,133 2.85 2.91 2.98 3.04 3,10 3.17 3.23 3.29 3.36 3.42 78 166,400 2.92 2.99 3.05 3.12 3.18 3.25 3.31 3.38 3.44 3.51 SO 170,667 3.00 3.07 3.13 3.20 3.27 3.33 3.40 3.47 3.53 3.60 83 174,933 3.07 3.14 3.21 3.28 3.35 3.42 3.48 3.55 3.62 3.69 84 179,200 3.15 3.22 3.29 3.36 3.43 3.50 3,57 3.64 3.71 3.78 86 183,467 3.22 3.30 3.37 3.44 3.51 3.58 3.65 3.73 3.80 3.87 88 187,733 3.30 3.37 3.45 3.52 3..59 3.67 3.74 3.81 3.89 3.96 90 192,000 3.37 3.45 3.52 3.60 3.67 3.75 3.82 3.90 3.97 4.05 92 196,207 3.45 3.53 3.60 3.68 3.76 3.83 3.91 3.99 4.06 4.14 94 200,533 3.52 3.60 3.68 3.76 3.84 3.92 3.99 4.07 4.15 4.23 96 204.800 3.G0 3.68 3.76 3.84 3.92 4,00 4.08 4.16 4.24 4.32 98 200,067 3.67 3.76 3..84 3.92 4.00 4.08 4.16 4.25 4.33 4.41 100 213,333 3.75 3.83 3.92 4.00 4.08 4.17 4.25 4.33 4.42 4.50 102 217,600 3.82 3.91 3.99 4.08 4.16 4.25 4.33 4.42 4.50 4.59 104 221,867 3.90 3.99 4.07 4.16 4.25 4.33 4.42 4..51 4.59 4.68 106 226,1.33 3.97 4.06 4.15 4.24 4.33 4.42 4. .50 4.,59 4.68 4.77 108 230.400 4.05 4.14 4.23 4.32 4.41 4.50 4..59 4,68 4.77 4.86 110 234,667 4.12 4.22 4.31 4.40 4.49 4.58 4.67 4.76 4.77 4.85 4.88 4.95 4.95 112 238.933 4.20 4.29 4.39 4.48 4.57 4.67 5.04 114 243.200 4.27 4.37 4.46 4.56 4.65 4.75 4.84 4.94 5.03 5.13 116 247,467 4.35 4.45 4.54 4.64 4.74 4.83 4.93 5.03 5.12 5.22 lis 251,733 4.42 4..52 4.62 4.72 4.82 4.92 5.01 5.11 5.21 5.31 120 256,000 4.50 4.60 4.70 4.80 4.90 5.00 5.10 5.20 5.30 5.40 122 260.267 4.57 4.68 4.78 4.S8 4.98 5.08 5.18 5.29 5.39 5.49 124 264..133 4.65 4.75 4.86 4.96 5.06 5.17 5.27 5.37 5.48 5..58 126 268,800 4.72 4.83 4.93 5.04 5.14 5.25 5.35 5.46 5..56 5.67 128 273,067 4.80 4.91 5.01 5.12 5.23 5.33 5.44 5.55 5.65 5.76 130 277,333 4.87 4.98 5.09 5'.20 5.31 5.42 5.52 5.63 5.74 5.85 182 281.600 4.95 5.06 5.17 5.28 5.39 5.50 5.61 5.72 5.83 5.94 134 285,867 5.02 5.14 5.25 5.36 5.47 5.58 5.69 5.81 5.92 6 03 136 290,133 5.10 5.21 5.33 5.44 5.55 5.67 5.78 5.89 6.01 6.12 138 294.400 5.17 5.29 5.40 5.52 5.63 5.75 5.80 5.98 6.09 6 21 140 298.667 5.25 5.37 5.48 5.60 5.72 5.83 5.95 6.07 6.18 6.27 6.30 142 302.933 5.32 5.44 5.56 5.68 5.80 5.92 6.03 6.15 6.39 144 307.200 5.40 5.52 5.64 5.76 5.88 6,00 6.12 6.24 6.36 6.48 146 311,467 5.47 5.60 5.72 5.84 5.96 6.08 6.20 6.33 6.45 6,57 148 315,733 5.55 5.67 5.80 5.92 6.04 6.17 6.29 6.41 6..54 666 1.50 320,000 5.62 5.75 5.87 6.00 6.12 6.25 6.37 6..'']0 6.62 6.75 152 324.267 5.70 5..83 5.95 6.08 6.21 6.33 6.40 6.59 6.71 6.84 154 32S,.533 5.77 5.90 6.03 6.16 6.29 6.42 6.54 6.67 6.80 6.93 156 332,800 5..85 5.98 6.11 6.24 6.37 6.50 6.63 6.76 689 7.02 158 337,067 592 6.06 6.19 6.32 6.45 6.58 6.71 6..S5 6.98 7.11 160 341,333 6.00 6.13 6.27 6.40 6..53 6.67 6.80 6.93 7.07 7.20 162 345,600 6.07 6 21 6.34 6.48 6.61 6.75 6.88 7.02 7.15 7.29 164 349,867 6.15 6.29 6.42 6..W 6.70 6.83 6.97 7.11 7.24 7.38 166 354.133 6.22 636 6.50 6.64 6.78 6.92 7.05 7.19 7.33 7.47 168 358.400 6.30 6.44 6.58 6.72 6..86 7.00 7.14 7.28 7.42 7.58 no 362,667 6.37 6.52 6.66 6.80 6.94 7.08 7.22 7..37 7.51 7.65 172 366.933 6.45 6..5n 6.74 6,88 7.02 7.17 7.31 7.45 760 7.74 174 371,200 6.52 6.67 6.81 6.96 7.10 7.25 7.-39 7..54 7.68 7.83 176 375,467 6.60 6.75 6.89 7.04 7.19 7.33 7.48 7.63 7.77 7.92 178 379,733 6.67 6.82 6.97 7.12 7.27 7.42 7.56 7,71 7.86 8.01 180 3,84.000 6.75 6.90 7.05 7.20 7.35 7.50 7.65 7.80 7.95 8.10 14 MOMME STANDARD FOR SILK. The momme is a Japanese unit of weight equal to 57.87 grains or .1323 ounce, there being 7.56 momme in an ounce and 121 momme in a pound. The weight of certain classes of Japanese silk cloths is expressed in. momme per 26 yards li^ inches wide. The equivalent of 1-morame cloth is 125 square yards per pound or 56 grains per square yard. The reduction of the momme weight to the English basis is illus- trated by the following examples: Ex. A piece of Japanese habutae is stamped as follows: L.ength 50 yds. Width 36 in. Weight 209 mme. Find momme weight of the fabric: 209-;- 7.56^27.6 ozs., required weight of piece. 36 -V- 1.5 =24 widths of H^ in. each. 50 -^ 25 =2 lengths of 25 yards each. 24 X 2 =48 standard areas in the ipiece. 209-^48 =: 4.35 momme. EJx. A piece of Japanese habutae is 50 yards long, 27 inches wide and weighs 24 ounces. Find momme weight of the fabric. 24 X 7.56 = 181 momme, total weight. 27 -^ li = 18 widths of li in. each. 50-5-25 =2 lengths of 25 yds. eacji. 18 X 2 =36 standard areas. 181^36 =5 momme. Hence: To find the momme weight of a fabric, divide the total viom/me weight of the piece ty the number of standard areas (25 yards X 1% inches) in the ■piece. Another method is as follows, taking the last example for Illustra- tion: 27 inches = % yard. 50 X % ^ 37.5 square yards in piece. 24 ozs. = 11/2 lbs. 37.5 -f- IVz =25 sq. yds. per lb. 1 momme cloth = 125 sq. yds. per lb. 125 ^ 25 = 5 momme. Hence: To find the momme weight of a fabric, divide 125 by the number of square yards per pound. Ex. Find the square yards per pound for a 5-momme habutae. 1-momme cloth = 125 sq. yds. per lb. 125 -^ 5 = 25 sq. yds. per lb. of 5-morame cloth. Hence: To find the square yards per pound, divide 125 by the momme weight of the cloth. Ex. A sample with an area of 1/10 sq. yd. weighs 45 grains. Find momme weight of the cloth. 45 X 10 ^ 450 gr. per sq. yd. 450-^56= 8 momme weight. Ex. A sample 10 inches square (100 sq. in.) weighs 42.5 grains. Find momme weight of cloth. 1 sq. yd. = 1296 sq. in. (1296 X 42.5) H- 100 = 550.8 gr. per sq. yd. 550.8 -:- 56 = 9.8 momme. Ex. A sample of Japanese habutae measuring IS in. by 24 in., with an area of % square yard, weighs 96 grains. Find momme weight of the cloth. 96 X 3 = 288 grains per sq. yd. 288 -V- 56 = 5.14 momme. Hence: To find momme weight of a cloth, divide the grains per square yard by 56. 15 Ex. Find total weight of a piece of 5-momme habutae 50 yards long and 27 inches wide. 27 H- 1.5 = 18 widths of 1% each. 50 ^ 25 = 2 lengths 25 yds. each. 18 -V- 2 =36 standard areas. 36 X 5 =180 momme. ISO -=- 7.56 = 23.8' ozs. weight of piece. Hence: To find the total weight of a piece of habutae multiply the number of standard areas (25 yds. X IV2 in.) by the momme standard. This ffives the total momme iveight, which is reduced to ounces by dividing by 7.56. The Japanese use two standards for linear measurements. One based on the short shaku (11.93 English inches), is called the metal measure and used iprincipally by artisans. The other based on the long shaku (14.91 English inches), is called literally the "whale" meas- ure and used exclusively for dry goods. The short shaku varies only Y2 per cent, from the English foot, from which it is said to have been derived when Japan was opened up to the world in 1S54. The long shaku is an equally close approximation of 15 English inches. The variation, y^ P^r cent., between the Japanese and English standards is so small as to be negligible for many purposes, including the momme calculation for silk. The Ja|)anese long and short measure and Japanese weights are divided decimally as follows: Japanese Linear Measure. Dry Goods Metal or or Long Measure Short Measure 1 shi — .00015 in. .0001193 in. 10 Shi = 1 mo — .00149 " .001193 " 10 mo = 1 rin = .01491 " .01193 10 rin = 1 bu — • .1491 " .1193 10 bu ^= 1 sun — 1.491 1.193 10 sun = 1 shaku = 14.91 11.93 10 shaku = 1 jo — 149.1 ■' 119.3 Japa nese Weights. 1 rin = .5787 grains 10 rin = 1 fun = 5.787 " 10 fun = 1 momme = 57.87 " 160 momme = 1 kin = 9259. (1% lbs.) 1000 momme =«1 kwan — 57870. (81/4 lbs.) 16 THE WEATHER AND THE WEIGHT OF SILK. The importance of moisture in textile materials is due to the ef- fect of moisture on the increase or decrease of the actual weight when the raw or manufactured products are bought and sold, and on the working of the stock in the processes of manufacture. S I « P n c s * a N ot « H ■H H r^ M oo CD ^ ot o < ^- -■ •y -^ , * \ - - — ■■ ' * -- -- » -- -- — -- -- -^ >• L * -- -- - - -- -- .- -- *i -1 ■' f' ' •■ \ -- -- Z 3 , - ... J * . -- ' 'l ♦ t -' ! -■ t . f' 1 *., 1 1 1 > 1 +jfl <; eg aH =!*i □ s* p. ^ ^ jn P "- „ s •^ fi . a sis o 5 1) ■-H 03-3 •o ■3 s ^ « „ S o) c r o " ac^ •-^ i:: 4^ a . 00 Owing to the variations in the relative humidity of the air the quantity of water in, and consequently the weight, of the materials varies widely. If the material is bought and sold by its actual weight it follows that when the stock is dry, that is, when it carries a small quantity of water, the seller delivers and the buyer receives more ac- 17 tual fiber than when the stock carries a larger quantity of water. If the material is sold at a price that takes no account of this variation in the water present, it follows that the seller loses and the buyer gaiiis when the quantity of moisture is small, while the seller gains and the buyer loses when the quantity of moisture is large. The ex- tent of these uncertain gains and losses to the sellers and buyers de- pends, not only on the actual variation in the moisture present in the stock, but also on the value of the material, the higher the price per pound the great being the gain or loss resulting from the variation of the moisture. In order to eliminate these variations, standards of moisture, known as standards of moisture regain, have been established for the various textile materials. The extent to which these standards have heen acceipted in the various branches of textile manufacturing has naturally been in proportion to the value of the material in question, being greatest in the silk trade, in which the first moisture standard was established, the worsted and cotton trades following in the order named. In basing purchases and sales on these standards of regain It Is not necessary to bring the total quantity of material to the standard condition. Instead of doing this, samples are drawn from the lot and weighed In the condition as found, then reduced to bone dry condition and weighed. The bone dry weight is then increased by the standard regain, the result being called the conditioned weight of the sample. The conditioned weight of the entire lot is then calculated from its actual weight on the assumption that the proportion between its actual and conditioned weights is the same as that between the actual and conditioned weights of the sample whose condition was determined. So far as buying and selling is concerned, the uncertainties result- ing from the variation of moisture In textile materials are thus cor- rected without controlling or even taking into consideration the rela- tive humidity of the air. Such, however, is not the case as regards the effect of moisture on the -working of the fiber in the processes of manufacture. During these processes, the material is exposed to the surrounding air either as separate fibers or as groups of fibers in the form of yarn. In either case the quantity of moisture in the silk, cotton or wool is instantly brought to a state of equilibrium with the moisture in the surrounding air. An increase of the relative humidity of the air causes a pro- nounced increase of the moisture content of the silk or other material, while an increase of the temperature causes a slight decrease. Not only the weight, but the strength and flexibility. In other words, the working qualities of silk, cotton or wool, depend ui)on the materials carrying the right quantity of moisture. Because of the effect of the relative humidity of the air on textile processes, it is important to know what the moisture content or regain Is for the different textile materials at different degrees of temperature and relative humidity. This information can be obtained only by ex- periments carried on by trained scientists under the most favorable conditions for determining results with scientific precision. The best work of this kind was done by Theophile Schloesing, a French scien- tist, the results of his experiments being given in a report to the Ftocicte d'Encouragement pour rindustric Rationale, Paris, a translation of which has been published in Thxtfles. In order that textile mill men might derive the full benefit from Schloesing's work it was necessary to reduce his charts to xaules which would give for each textile material the moisture regain cor- responding to each degree of temperature and relative humidity within certain practicable limits, and then from these tables to calculate and chart the moisture regain for each material for each day of a year in a workroom heated in winter to a comfortable temperature for the workers, say 70°, and in which no moisture was introduced by artificial moistening apparatus. In this way only can the variations of natural regain, and consequently the necessity for artificial moistening of the 18 air in the workrooms, be visualized so as to bring it unmistakably to the knowledge of textile mill men. The moisture regain for silk as determined by Schloesing is given In the accompanying table, which shows plainly the slight variation due to changes in temperature and the wide variation due to changes in relative humidity. a s t- a: < ( ■■ 1 . '-> 1- ,* • — * k -- 1 •■ -, ... ■ ■^ f- • us * ^ --I - 1 • L.. -- ', ■" >• 4f .^ 1 .- . f* 1--- . - / t - \ z s - -- ... t -J \ "1 ^ ,' — si. a u u a L ,' J f -. .- s * V t .- , t' .-' '"'V -- fc.S G , , -? o 00 hr u c _fc4 B 2 r1 N •1) ii> « t) j= H 0) > 5 0- Q c J3 A Ef OJ o H to " b ^ jj .^ H rt c: t^ •;3 H tj w a; -c *^ ?^ o ca " r? 4) » O^ cc*^ 13 *H n o ^*' ■si c M av) o O ?*j 1^ c iH OJ "; W.O ri-a m en C O rt ^ 0.0; 2S fc: ft d-o 3 O 2" A! W ^ ' u C3 ^ ^S S3 c: . O >. COD N o - c Ci u j3 O X ■a ci 11 Having reduced the Schloesing lines for silk regain to tables, the A. M. and P. M. observations by the U. S. Weather Bureau at New York for the year ending February. 191S, were reduced to workroom equivalents on the assumption that when the outside temperature fell below 70°, it was raised to that temperature artificially inside the mill. 19 Then the moisture regain for sillt was inserted tor each of these records of interior temperature and humidity, and the regain figures charted. The chart thus obtained shows the number of parts of water In 100 parts of bone dry sillv at S A. M. and 8 P. M. for each day of tho year under the weather conditions recorded at New Vorli during the year ending February, 1918. The two accompanying charts give the regain of silli in process for the summer and winter of the year. During the summer the air with a high relative humidity causes the moisture regain of the sills, to rise as high as 23.5 per cent., while the dally and hourly fluctuations are also pronounced, ranging from the high mark, 23.5 to the low mark 8.1 per cent. During the winter the cold air outside of the mill carries but a small quantity of vapor per cubic foot (absolute humidity), although the relative humidity may be high. When this outside air is brought Inside the mill and heated to a working temperature of say 70°, the relative humidity falls very low and the moisture content of silk or other material exposed to it is correspondingly decreased. This is shown plainly hy the winter chart on which the highest moisture re- gain is only 7.9 per cent., while the lowest is .8 per cent. These two charts show the extremes of moisture regain of silk in process of manufacture in a mill in which the air is not moistened artificially. During the spring months there is a gradual increase of the moisture regain, while the fall record shows a decrease. Those who desire to study this important subject further are referred to "Air Moistening in Textile Mills." In the October, 1919, issue of Textiles, Robert Dantzer makes the following reference to air moistening in silk mills: Silk is dielectric, which makes it a good insulating material for electricity. Its high degree of porosity enables it easily to absorb vapors and gases. In the raw silk preparatory operations the relative hu- midity of the workrooms should be 70 per cent, and the temperature 64°, the heat softening the silk gum. The rooms in silk throwing mills should be kept at a temperature of 72° with a relative humidity of 85 per cent. These atmospheric conditions are adapted for doubling organzlne, grenadine and silk twine, while for doubling tram and twisted silk a relative humidity of 65 per cent, is sufficient. Special care is necessary in handling silk, owing to the ease with which the silk fibers are electrified. Simply rubbing the silk fibers against each other generates positive electricity when the rubbing mo- tion is lengthways of the fiber, while negative electricity is generated when the motion is crossways. Owing to the dielectric property of silk this textile material is neutralized with great difficulty, the fibers repelling each other and the material forming into a quantity of kinks and snarls which cause imperfections and waste. To meet this diffi- culty it is the practice to leave about 5 per cent, of silk gum on the fiber. The silk gum becomes electrified more slowly than the silk, but the silk yarn thus produced is not so brilliant and loses weight during the dyeing process. The working of silk waste likewise calls for a definite degree of relative humidity and of temperature. In the combing rooms the temperature should be 72° with a relative humidity of 70 per cent., while for carding a relative humidity of 65 per cent, is sufficient. In the spinning room the temperature is usually 72° with a relative hu- midity of 65 per cent, for filling yarn and 70 per cent, for warp yarn. 20 ARTIFICIAL SILKS. The chief use of artificial silks in textile products is for decorative purposes, for which they are well suited because of their high luster. In examining textiles which are believed to consist in part of any one of the several kinds of artificial silk, a simple insipection under a magnifying glass will usually decide the presence or absence of such silk, because of the very high luster, exceeding that of natural silk. Should there be any doubt, however, a small clipping is ciiretully dis- sected with the steel needle and the lustrous portion of the sample is then subjected to several tests. The first test is made by placing a piece of the material In a small dry test tube, and heating carefully over a Bunsen burner, until fumes are seen to arise. If the odor of the fumes is like that of burn- ing hair or horn, the fiber may be either natural silk or an artificial silk made of gelatine. To supplement this test, a small piece of red litmus paper, pre- viously moistened with a drop of water, is placed in the open end of Tig. 1. Collodion Silk (Cliardonnet). Surface irregular, flat at times, often fluted. the test tube, and the heating repeated. Should the red litmus paper change to blue, the presence of either of the above mentioned silks is confirmed. On the other hand, if the fumes are odorless or nearly so, make a repeat of the litmus paper test, using blue litmus, and note carefully if it changes to red. If such change occurs, the fiber is certainly fiot natural or gelatine silk, but may be an artificial silk made either from collodion or cellulose. To determine definitely whether the silk is natural or made from gelatine, use is made of a solution of iodine dissolved in concentrated sulphuric acid, diluted with nine parts of water. Only a few drops of this solution is necessafy for a test which is easily made in a clean white butter dish or preferably in a small porcelain dish. Allow the test fibers to soak for a few minutes, drain off the excess of acid, wash the fibers with a small quantity of water, and note carefully the color of the fiber. Natural silk subjected to this test takes on a distinct yellovnuh- 21 brown color. Gelatine silk by the same test assumes a distinct reddish- hrown shade. To acquire slrics, mousseline, pongee, crepe-de-chine, etc. The piece is hung on loops or rings of cotton thread which are sewed at regular intervals on one or both selvages. These rings of cotton thread are then hung on sticks, and the piece takes the position shown at Fig. 1. B B shows the sticks in cross section; F, the loops or rings of cotton thread; P, the folds of the piece. This illustration shows the piece hung by both selvages, there being a ring or loop of cotton thread around each end of the stick, corresponding to the two selvages, which are thus suspended vertically in the bath. When the sticks rest on the sides of the tub the piece can be readily immersed completely in the liquor, and by moving the sticks so as alternately to separate and bring them together, the folds of the cloth are alternately separated and brought together, which facilitates the action of the liquor on both sid«s of the cloth. Another method of looping the pieces consists in attaching the rings or loops of cotton thread to one selvage only, sometimes passing the loop of thread through several folds of the piece at one time. If the loops are then hung on the sticks the piece assumes a position at a right angle to that shown at Fig. 1, one selvage being looped horizon- tally at the top of the tub, the other, which is not looped, being at the bottom. The manipulation of the pieces in the bath is the same, l>eing similar to the handling of skeins, except that it is not necessary to move the pieces from the top to the bottom, as they are completely immersed in the liquor. Larger tubs are required for handling the pieces in loop form than for skein dyeing, or piece dyeing in rope form. The dimensions of the tubs are made to suit the width of the goods. The details of 32 the boiling-off process arc naturally identical with those already described. Handling Pieces in the Open Width. This method of handling piece goods, which is accomplished me- chanically in a number of different ways, consists in keeping the piece spread out during the operation, preventing the possibility of its form- ing folds. It is used for both heavy and light goods in which folds are liable to form, and cause streaks that show after drying. It is also employed for fabrics in which the boiling-off bath causes a contraction or shrinkage of the yarn, for example, certain fabrics made of mixed wool and silk. In the last named case the piece is kept under tension on rolls to counteract the shrinkage as much as possible, this arrange- ment being known as boiling-off under tension. For heavy and delicate fabrics, firos satin for example, there is still used a very old arrangement formerly employed in blue-vat dyeing. B d B B B B 88B Fig. 1 — Dyeing Pieces in Loops. and which is known as the champagne or star. This arrangement consists of a vertical stem or shaft, on which are placed two hubs each carrying a set of horizontal spokes arranged in the form of a star, as shown in, the plan Fig. 2. These spokes each carry a row of hooks on the inside. The selvages are fastened to these hooks, and the piece is thus wound in spiral form between the two stars, as shown in the illustration. • The production with this device is small, and it requires a very large bath, but a perfect circulation of the liquor between the folds can be produced by moving vertically, the reel or star, which is sim- ply hung in the soap bath. No matter how delicate the goods are there is no danger of their becoming marked, as the pieces do not come In contact with any solid part of the device. With this arrangement •the pieces are given the two soap baths, degumming and boiling-off. rinsing and weighting, etc. The cloth is removed only when all of the operations are completed. Silk pieces are boiled off under tension in a machine similar to the jigger that is used extensively in the dyeing of cotton goods, but the silk machine is generally larger. It usually consists of a rectan- gular tub of metal. Fig. 3, and carrying a large roller at each end. The piece is rolled alternately on each of these two rollers, between which are a series of smaller rollers placed alternately at the bottom and top of the tub, and over, which the piece moves while completely im- mersed and under tension in the soap bath during the passage be- 33 tween the two rollers at the ends. The tension which occurs each time that the piece is wound on an end roller facilitates the removal of the dissolved gum. The Treatment of Special Fabrics. The methods of handling silk which have heen explained above are not suited for certain very delicate fabrics which are easily dis- arranged and frayed during the degumming operation. Among such fabrics are the Alencon tulle made of fine thread, the loose net called "Illusion," the silk lace known as "Islonde" and in general all the goods in which the threads have few points of contact or interlacing with each other and are liable to become disarranged and frayed by the slightest tension in the degumming bath at the moment when the gum becomes soft. Various methods of manipulating these fabrics have been tried with- out satisfactory results. Among these has been the use of the circulating system by which the goods remain stationary and the liquor is forced through them either by a pump or by a hydro-extractor moving at a slow speed. The difficulty with this method, however, is that as soon as the gum is softened the silk saturated with the soap solution be- comes so compact that the circulation of the liquor becomes impossible. Furthermore, by reason of the goods not being moved freely in the liquor, the cleaning action is completely paralyzed. In practice a method is used for handling these fabrics which is imperfect, but which gives fairly good results. It is called the cushion r'ip. 2. — .star for D.veinp Pie<*e fM»Ofls. process and is carried out as follows: It has been found that the "Illusion" fabric does not become displaced as easily when the tension is crossways of the fabric instead of lengthways, this being due to the hexagonal form of the aperture in the net. The object of the new method is to bring the tension crossways of the fabric. This is accoin- plished by winding the piece by a windlass, keeping it spread out in the open width which varies from SO to 120 in. and even more. When the piece is unwound from the roll and folded it forms a sort of cush- ion about 20 inches' wide, and from 40 to 120 inches long, the latter being the width of the goods. .The two ends of this cushion are then joined by fastening with strong cotton and twine, thus forming a sort of ring or skein of large size which can be hung on a stick and mani- pulated like a skein of yarn in the liquor. It is clear that the tension brought on the skein or ring of cloth will be crossways of the piece, producing the most favorable conditions 34 possible for preventing a displacement of the faliric structure. By an excess of precaution the cushions are often boiled off in a cloth sack, as has already been described in the case of skein yarn. This slightly retards the dissolving of the gum and the circulation of the liquor, but it effectively protects the fabrics. The difficulties with the latter method are partially remedied by using a stronger solution of soap for the bath and by rinsing thoroughly after the degumming operation. Rinsing the Silk Rinsing out the soap held by the boiled-off silk is one of the delicate operations of silk dyeing which, if carried out iaiproperly, give rise to many difficulties in subsequent operations. The complete removal of the soap is almost inijiossible in practice. If a neutral solution of fairly neutral soap is made 1 part of soap by weight to 1,000 parts of water, and diluted it with 10 volumes of distilled water to 1 of the Fig. 3 — Dyeing Silk Pie««s Under Tension. solution, giving a soap content of 1 part in 10,000, an alkaline reaction is disclosed by phenolyptaline. If this solution is then exactly neutral- ized and again diluted, the alkaline reaction reapiiears. This phe- nomenon shows clearly that diluted soap solutions set at liberty alkali and also a more acid soap or even fatty acid. When silk carrying soap is rinsed in a large volume of water this separation takes place and a small proportion of fatty acid remains fixed on the fiber. It is this fatty acid which gives to silk that special handle which is called craquant in the mill. The silk therefore is to be rinsed in such a way as to leave a trace of acid, enough to give the craquant and eliminate the remainder. To accomplish this result the following conditions are necessary: 1. Avoid first of all the formation of insoluble salts with an earthy base which become fixed on the silk. 2. Retard the separation of the soap so that the quantity of fixed fatty acid on the fiber may be sufficient and not too large. 3. Produce this separation at the right moment and complete it by the action of an acid. This is the process of aviragr, which com- pletes the rinsing. 35 American Raw Silk Company INCORPORATED Raw and Thrown Silk 25 MADISON AVENUE NEW YORK GEO. WALWORTH MIDDLETON Phones: Madison Sq. 6531-6532 36 K. Wilbur-Dolson Co. J, G. DOLSON, President MANUFACTURERS OF "Quality First" Thrown Silk Organzine— Tram Specialties Japan and Canton Crepes Hosiery Tram Cones or Skeins EXPORT — Exceptional facilities for handling export shipments of thrown and dyed silks. 17 MADISON AVENUE, NEW YORK = MILLS = SO. BETHLEHEM, PA. CORTLAND, N. Y. REG. ^L V. S. decAlso PATENT ^fc ^k OFFICE WATER SOFTENER Removing ALL HARDNESS from water, leaving it ideal for THROWSTERS SILK DYERS SILK FINISHERS American Water Softener Co. PHILADELPHIA PA. Parks & Woolson Machine Co Springfield Vermont PICKING SHEARS FOUR BLADES TWO PICKINGS TO A FACE IN ONE RUN SAVES ITS COST IN ONE YEAR RIBBON SHEARS TWELVE RIBBONS AT ONCE SILK DOUBLERS TRADEMARKERS MEASURERS INSPECTING WINDING ROLLING Silk ruwinders for N Y City Stores Representative in N Y City every week SEND FOR 30 CIRCULARS Model AR Silk Trademarker 39 A Machine Wins Preference Only by Performance THE FACT THAT THE KLAUDER-WELDON DYEING, BLEACHING AND SCOURING MACHINES have won unqualified preference in all the principal Textile Plants of the United States and Europe is convinc- ing evidence of their reliability and economy of operation. By doing more work for a longer time at a lower cost, they have proved their su- periority to thousands of satisfied users. Our engineers, without obligation, would be pleased to assi^ you in the selection of your new dyehouse equip- ment. The Klauder-Weldon Dyeing Machine Co. Dyeing • Bleaching - Scouring Machines JENKINTOWN, PENN., U. S. A. iiH 40 THINK ! of a YARN HOUSE dealing in THROWN SILK Tram and Novelty Twists Dyed — Cones — Skeins ARTIFICIAL SILK Twist and Floss Dyed — Cones — Skeins Mercerized — Bleached Dyed — Cones — Skeins — Tubes Backed up by a reputation of twenty years of honest — upright — square dealing — and you have our number MADISON SQUARE 44-94 prai)k.p] Pels (9. EXECUTIVE OFFICES 17 EAST 24TH STREET NEW YORK, N. Y. MILLS : New Durham, N. J., Beacon. N. J.. New York, N. Y. LIBRARY OF CONGRESS iiiilliiiliiilli iiiii 018 451 330 4 MARCUS FRIEDER, PrtsUJent GENERAL SILK IMPORTING CO. Inc. YOKOHAMA SHANGHAI SHAMEEN, CANTON MILAN LYONS Raw, Thrown, Spun and Dyed Silks Warps, Insulating Silk Prepared in any standard form of package MARCUS FRIEDER. Prrsulnit NATIONAL SPUN SILK COMPANY l.NCOUrORATED High-Grade Spun Silk Yarns For All Purposes Mills: NEW BEDFORD, MASS. MARCUS FRIEDER, Prcsidfiit KLOTS THROWING COMPANY IXCORPORATED SILK THROWSTERS MILLS . CARBONDALB, PA. SCRANTON, PA. FOREST CITY, PA. ARCHBAbD, PA, CUMBERLAND MD. MOOSIC, PA. LONACONING, MD. KEYSER, W. VA. ALEXANDRIA, VA. FREDERICKSBURG, VA. General Offices: TWENTY-FIVE MADISON AVENUE NEW YORK CITY