THJJLDOOK IS A PART OF THE LIBRARY OF ~ ujkVE ViMVIttOu n 1? E5 A ©®LLI€T!!©1NI ©IF l©@M. carlyie Woman’s College Library DUKE UNIVERSITY DURHAM, N. C. Rec’d_ Wcv^TnVjP y _ I V^ ^'VKe-n^BL-4-ics Fgg _ Digitized by the Internet Archive in 2020 with funding from Duke University Libraries https://archive.org/details/elementarymathem1938bate ELEMENTARY MATHEMATICAL STATISTICS ELEMENTARY MATHEMATICAL STATISTICS BY WILLIAM DOWELL BATEN, Ph.D. ASSOCIATE PROFESSOR OF MATHEMATICS AND RESEARCH ASSOCIATE IN STATISTICS OF THE MICHIGAN AGRICULTURAL EXPERIMENT STATION MICHIGAN STATE COLLEGE NEW YORK JOHN WILEY & SONS, Inc. London: CHAPMAN & HALL, Limited 1938 311.2 232SZ Copyright, 1938 BY William Dowell Baten All Rights Reserved This book or any part thereof must not be reproduced in any form without the written permission of the publisher. PRINTED IN U. S. A. PRESS OF BRAUNWORTH & CO.. INC. BUILDERS OF BOOKS BRIDGEPORT. CONN. Dedicated to My Wife ALLIE WHO HAS ENCOURAGED ME TO PRESS FORWARD TOWARD HIGHER GOALS 36695 PREFACE This book was written primarily for students interested in statistics who have not studied differential and integral calculus. It attempts to develop formulas and fundamental relations by the use of very simple algebra, trigonometry, and analytical geometry. Each bit of theory is illustrated by an example. The book contains many problems for students to solve, because the author believes that one learns statistics to a great extent by solving problems designed to bring out the meaning of theory. Where theory requires advanced mathematics, examples are given to point out the plausibleness of the theory and to furnish information which should make the theory more acceptable. These examples should help students bridge difficult gaps between theory and application. , Comparisons are presented for distinguishing differences be¬ tween the concepts of linear correlation, non-linear correlation, and correlation based on the correlation ratio. Details have not been spared in the presentation of partial, multiple, and tetra- choric correlation. Ideas concerning sampling are developed by sampling from a finite parent population before going to the infinite; this method of approach should clarify a great deal of the theory with regard to the characteristics of distributions of averages, variances, and other statistics. This manner of introducing the most important concepts in this field should make them easier to understand and apply. This book can be used by those interested in business and economic statistics, for it contains, in addition to needed subject matter in these fields, chapters on index numbers, trend analysis, analysis of time series, analysis of variance, and the methods of presenting data by graphs and charts. Significance between statistics is introduced in the material pertaining to sampling and later discussed in an entire chapter. Near the end of the book is a short chapter on the analysis of variance, which is the most recent development in applied statis¬ tics, and which is being used extensively throughout the world in vU 36695 Vlll PREFACE the various experimental stations and laboratories. The intro¬ duction of this rapidly developing subject should stimulate desires to do further study concerning this valuable technique for analyzing experimental data. It is hoped that answers to the problems will make the book more usable as a textbook and as a reference book. William Dowell Baten. Michigan State College March, 1938. CONTENTS CHAPTER PAGE 1 Summations, Charts, and Graphs. 1 Summation symbols, line charts, bar diagrams, pie charts, three-dimensional graphs, Zee charts, belt charts, geographic charts, logarithmic charts. 2 Statistical Averages. 20 Arithmetic mean, arithmetic mean of frequency distributions, indirect method of computing the mean, the mean for the com¬ bination of sets, the mean of grouped data, frequency polygons, histograms, ogive, the median, the mode, geometric mean, har¬ monic mean. 3 Measures of Dispersion . 53 Mean deviation, indirect method of calculating the mean devia¬ tion, standard deviation, moments of a distribution, standard deviation of grouped data, standard deviation for the com¬ bination of sets, quartiles, coefficient of variation. 4 The Normal Curve. 83 Properties of the normal curve, graduation by areas and ordi¬ nates of the normal curve. 5 Skewness and Kurtosis. 96 Skewness, kurtosis. 6 Permutations, Combinations, and Probability. 108 Permutations, combinations, probability, probability in re¬ peated trials. 7 Bernoulli Distribution. 120 Fraction frequencies, moments of the Bernoulli distribution, application. 8 Index Numbers. 130 Relatives, aggregative index numbers, various index numbers, the time reversal test, the factor reversal test, splicing. 9 Observational Equations. 145 How observational equations arise, least squares method, observational equations with unknown constants, solution of the normal equations and standard error of prediction in terms of fundamental summations, predicting equations in terms of deviations from the mean, computations shortened by use of a provisional mean, predicting equations in more than two unknowns, solution of simultaneous equations. IX CONTENTS x CHAPTER PAGE 10 Correlation Coefficient. 168 Linear correlation, rank correlation, graphic meaning of the correlation coefficient, a method for computing the correlation coefficient when there is a large number of items, the value of the correlation coefficient in predicting, multiple correlation, partial correlation coefficient, tetrachoric correlation. 11 Sampling. 201 Average of sample averages, standard deviation of the dis¬ tribution of sample averages, sampling from an unknown popu¬ lation, standard deviation of a sum, significance between two means. 12 Non-linear Regression. 223 Predicting equations, non-linear correlation, correlation ratio. 13 The Analysis of Time Series. 233 Secular trend, seasonal variations, link relative method of find¬ ing seasonals, the moving average method of finding seasonals, indexes of seasonal variations from trend line, cycle fluctua¬ tions. 14 Analysis of Variance. 249 Sums of squares, randomized blocks, the Latin square. 15 Standard Errors of Certain Statistics. 263 The standard error of the mean, standard error of a percentage, the standard error of a product, the standard error of a quotient, the standard error of certain other statistics, tests of significance between means of small samples, significance of a correlation coefficient. 16 Tables. 282 The area under the normal curve, ordinates of the normal curve, values of F and t, squares and square roots of numbers, reciprocals of numbers, logarithms of numbers. Answers. 325 Index. 333 ELEMENTARY MATHEMATICAL STATISTICS CHAPTER 1 SUMMATIONS, CHARTS AND GRAPHS In the study of statistics, symbols are used which enable one to shorten the writing of long expressions, certain series and sum¬ mations. The following example will illustrate the meaning of a much-used symbol. (1.1) The sum of the first nine positive integers = 1 + 2+3 + 44-5 + 6 + 7 + 8-1-9. The left-hand member of the above equation may be designated by a symbol which will shorten the writing of this summation. This sum may be expressed by the symbol 9 where it is understood that v takes on integral values from 1 to 9 inclusive. This is read “the sum of the v’s from 1 to 9 inclusive,” or “the sum of the positive integers from 1 to 9 inclusive.” The letter v is called the variable of summation and takes values as indicated. Equation (1.1) may be written as: 9 y^ v = l-f-2 + 3 + 4 + 5 + 6 + 7 + 8 + 9, or 9 ^ \ = 45. The symbol 2 is the Greek letter, capital sigma, and will be used to represent a sum or summation. It is sometimes read 2 SUMMATIONS, CHARTS AND GRAPHS “the sigma of the v’s,” or “the summation of the v’s,” or “the sum of the r’s.” The equation v = 1 below the symbol 2 designates where the summation begins, and the number above sigma indicates where the summation stops. In the above example the sum begins with 1 and ends with 9. The sum of the squares of the integers from 4 to 11 may be written as: n ^2 v 2 = 4 2 + 5 2 + 6 2 + 7 2 + 8 2 + 9 2 + 10 2 + ll 2 . V = 4 Numbers in the column below represent heights of 10 men Heights of Men v ri = 68.2 in. t’2 = 67.4 t’3 = 69.3 Vi = 72.0 Vi = 71.2 Ve = 66.9 Vl = 68.8 t'a = 69.0 1’9 = 70.2 t’lO = 67.6 Zv = 690.6 in. The sum of the heights in this column may be represented as a summation as follows: ( 1 . 2 ) 10 i= 1 = v ! + V2 + 1'3 + V 4 + V5 + V 6 + V 1 + Vg + 1'9 + ^10 = 68.2 in. + 67.4 in. + 69.3 in. + . . . + 70.2 in. or + 67.6 in. = 690.6 in., 690.6 in. The first item in the column, 68.2 inches, is represented by Vi ; the seventh item is represented by vj, etc. In this case the SUMMATIONS, CHARTS AND GRAPHS 3 variable of summation is i; it runs from 1 to 10. The left-hand member of equation (1.2) is read “the sum of the v’s from v\ to v\q inclusive,” or “the sum of the v’s” or “the sum of the heights of the 10 men.” Many times the numbers below and above sigma are omitted; the above summation may be written as: - 690.6 in. Summations which follow also point out the use of 2. 1 JL 1 1 1 A. 1 = 2 D =/(l) +/(2) +/(3) +/(4) +/(5). P = 1 The variable of summation in the first sum is k; the variable of summation in the next is p. To expand a sigma means to write out the summation in full; for 7 example, ^ ^ u 4 expanded is u= 2 2>=' 2 4 + 3 4 + 4 4 + 5 4 + 6 4 + 7 4 . Let it be required to write the following series by use of sigma: 4-6 + 5-7 + 6-8 + 7-9 + 8-10 + 9-11 -f 10-12. The first numbers in the terms of this series begin with 4 and increase by unity up to and including 10. The second numbers in the terms begin with 6, increase from term to term by unity, and run to 12 inclusive. The series can be written as a sigma thus: 10 Y. x(x + 2) = 4-6 + 5-7 + . . . + 10-12. x = 4 The following two theorems are indispensable. Theorem 1.1. The summation or the sigma of a constant times a function involving a variable of summation is equal to the constant times the sigma of the function, or n n Y a '/( x ») = a-Yj( x i)> 4-1 4-1 where a is a constant and /(x) is a function of x. 4 SUMMATIONS, CHARTS AND GRAPHS Pkoof: 7* ^ af{Xi) = a-f{x. i) + a-f(x 2 ) + . . . + a-f(x n ) 1 = 1 « = a- i) + fix 2 ) + . . . +/(x»)] = q T> 0. <= 1 As an illustration ^ 3(xi 3 + a\ 2 - 2x0 = 3^^ (a:, 3 + aq 2 - 2x0. 1=1 <=i Theorem 1.2. The summation or the sigma of the sum of two functions involving a variable of summation is equal to the sum of the sigmas of the functions, or n n T [f(Xi) + g(xt )] = yy f(xi) + y^gixi), 1=1 1=1 1=1 where f(x ) and g{x) are functions of x. Proof: n ^ [/(a:.) + g(x x )] = fix 1 ) + gixi) + /(x 2 ) + g(x 2 ) + . . . + /(*») + gix n ) = [fix 1 ) + fix 2 )'+ . . . + /(*„)] + [^(a-i) + gix 2 ) + . . . + 5 f(x„)] = ^3 1 = 1 1 = 1 PROBLEMS Expand the following summations. , £,. 1 «• tr r = 0 24 9- £><>. i= 17 9 2. » +1). 3 d= -11 6 10. y>. s = 3 11 3. ^VifiVi). i=5 62 7. ][>«. 1=51 13 11. J2 v ^ vi) - i= 1 16 4. £log (3x + 4). x = 11 6 8. ^iv + 3)fiv). v= -4 12 12 . ^ ^vjWj. j=5 CHARTS AND GRAPHS 5 n Given that ^ ^ v = ”(» + !); 7> = n(n + l)(2n+l) 6 ’ v= 1 n 2 (n -4- l) 2 V=1 V =1 , find the following: n - D- n 14. ^2 ](6y 2 — 2v). n 15. ^~\(r+l)(y+2). !/=l v= 1 v= l n 20 22 ( 8k 3 - 12« 2 + 4»). »=i 17. £>. V= 11 Write the following summations by use of sigma: 18. 7-10 + 8-11 + 9-12 + 10-13 + . . . + 15-18. 19. 15/(15) + 16/(16) + . . . + 42/(42). 20. 4 3 -5 + 5 3 -6 + . . . + 12 3 -13. 21 . 22 . 23. 2 >io v n Vu Vu v 6 f(v e ) + ^ 7 /(^ 7 ) + . . . + v 3 of(v 3 o). 3• 7 3 + 5-7 2 - 4-7 + 3-8 3 + 5-8 2 - 4-8 + 3-9 3 + 5-9 2 - 4-9 + . . . . . . + 3-11 3 + 5-11 2 - 4-11. CHARTS AND GRAPHS In analyzing statistical data it is often beneficial to exhibit results by means of graphs and charts, which enable one to grasp quickly the information contained in a mass of measurements, computations, and long columns of figures. Several types of charts and graphs which are used in many leading newspapers, scientific journals, and important reports will be explained in the remainder of this chapter. Chart 1.1 contains 3 line charts pertaining to prices of wheat, corn, and oats since 1919. These broken lines allow the eye to see at once trends of prices of these essential commodities before, during, and after the depression. It is interesting to note that decreases in the price of one often accompanied decreases in the other two. Wheat prices were relatively higher in 1920 than prices of corn and oats. On examining these line diagrams it will be seen that prices for these grains started to drop as early as 1924. A marked increase began in 1933. 6 SUMMATIONS, CHARTS AND GRAPHS 1920 1925 1930 1935 Chakt 1.1.—Line charts showing average prices of wheat, corn and oats from 1920 to 1935. (Agriculture Statistics of U. S. A., 1937.) Bar diagrams often furnish adequate methods of presenting facts which enable one to make comparisons immediately. Charts 1.2 and 1.3 show production of cars and trucks and potatoes since 1928 and 1927 respectively. There was a drop in production of cars and trucks from 1929 to 1932 and an increase from 1932 to 1936. Production of potatoes (as chart 1.3 shows) did not have such great decreases and increases, as the heights of the bars show. The depression did not affect the number of bushels of potatoes grown as much as the number of cars and trucks manufactured. The peak for the automobile industry was in 1929; that for pota- CHARTS AND GRAPHS 7 toes was in 1928. The space between bars should be about one- half the width of the bar. 1.000,000 Chart 1.2.—Production of cars and trucks in United States and Canada. (28th Annual Report of General Motors Corporation.) Chart 1.3. — Bar diagram showing average production of potatoes for U. S. A. from 1927 to 1936. ( Agriculture Statistics of U. S. A., 1937.) Pie charts are useful for comparing percentages and the differ¬ ent parts of a whole. Chart 1.4 exhibits percentages of cotton production for 1935-36 and enables one to make rapid compari¬ sons. Egypt and Brazil produced that year the same amount of cotton; China ranked third. The United States of America pro¬ duced 44.3 per cent of all cotton grown in that period. Chart 1.5 presents percentages of the divisions of the student body at one of the large agricultural colleges in America. This type of chart is easy to construct and can be interpreted readily. Three-dimensional graphs can be used effectively to portray contrasts. Charts 1.0 and 1.7 are self-explanatory. Often pic- 8 SUMMATIONS, CHARTS AND GRAPHS Chart 1.4.—Pie chart showing percentages of production of cotton during 1935-36. Chart 1.5.—Percentages of students in Michigan State College in 1935-36. CHARTS AND GRAPHS 9 tures of objects will catch the eye where other types of charts will not. Many interesting bits of information have been given to the public through three-dimensional diagrams. $4,320,000 Chart 1.6. —Three-dimensional chart showing amount of building in a certain city. AZ 1 1 7 (~7\ 7 r~. / ) j 1934 1935 1936 1937 Chart 1.7. —Relative amounts of ice sold by all ice companies in a certain city from 1934 to 1937. Zee charts set out in graphic form as a rule 3 phases of a busi¬ ness or project. This type is shown in chart 1.8; it contains monthly sales, cumulative sales, and 12-month moving total sales. The three lines look like the letter Z. The cumulative line is formed by plotting sales for January; January and February; Jan¬ uary, February, and March; etc. The moving 12-month total sales line is formed by plotting the sales for the past 12 months. The managers can see three important phases of their business for the year. In this chart the moving 12-month total sales increased from December to June. The graph of cumulative sales is nearly a straight line. Monthly sales fell off considerably during July, August, and September. Belt or strip charts can be employed when it is desirous to pre¬ sent several phases of a business or project. Chart 1.9 shows relief cases in Michigan for 1936 and part of 1937. The various belts or strips make vivid the relief program in Michigan. Aid to depen- 10 SUMMATIONS, CHARTS AND GRAPHS dent children and the blind started in October, as is seen in the chart. Sometimes different colors are used for the different strips. There are many kinds of geographic charts. One is shown in chart 1.10, which indicates the percentages of the population of 2,000,000 in 1,875,000 ^ 1,750,000 £ 1,625,000 o z 1,500,000 « 1,375,000 $ 1,250,000 .1 4 -* 1,125,000 "5 E 1,000,000 3 875,000 'g 750,000 4 -* 625,000 ° 00 500,000 c > o 250,000 125,000 c (0 n 0 ) a. < 00 a > o D 0) o o a> < c/) O Z a Chart 1.8.—Zee chart showing total unit sales of General Motors cars and trucks in 1936. ( 28th Annual Report of General Motors Corporation.) Michigan by counties on relief. Well-constructed maps showing routes and all towns in which deliveries are made can be of much help to the superintendent of a business firm in assisting him to visualize his territory and the extent of his business. Sales for different districts can be shown on such maps. This type of chart is difficult to construct but when well drawn reveals a great deal of information. TOTAL RELIEF CASES IN MICHIGAN STATE AND FEDERAL PROGRAMS CHARTS AND GRAPHS 11 a ci tc IS o CO o hJO P e ■ as fO As £ o 3 CQ rS 5 £ o p c3 bJO c3 o tJD a $■ o rP CQ t-i c3 rP ,-— n\M — 2i\— 2i> — (jii — 712) • M n n where n\ is the number of variates greater than the mean and ri 2 is the number of variates less than the mean. The number n is not always equal to nj + 712 because some of the deviations from the mean may be zero. Formula (3.4) enables one to find the mean deviation without finding deviations from the mean, for it is in terms of the original variates, the number ni of variates greater than the mean, n-i the number less than the mean, M the mean, and n the number of 56 MEASURES OF DISPERSION variates. According to the above formula the mean deviation of the first set of feet lengths of page 54 is M.D. 72.8 - 44.8 - (6 - 4)11.76 10 28.0 - 23.52 10 0.448 in. When the variates are in a frequency distribution the formula for the mean deviation is (3.5) M.D. Zvjfivi) ~ - [2/(t>Q - mv,)]-M v 2 /(») + where the summation 2 i; ! /(j> 1 ) denotes the sum of all variates greater than the mean and 2 vjiy,) denotes the sum of those less than the mean. If a computing machine is available, it is easy to find the mean deviation, for one turns the crank forward for variates greater than the mean and backward for those less than the mean; this gives the difference of the first two terms in (3.4) and (3.5). By noticing the counter in the upper dial of numbers on the machine, the value of the quantity in parentheses or brackets in these formulas is at once obtained. From these values one can readily find M.D. This is by far the easiest method, for it is not necessary to use paper and pencil for any of the computations. In all these examples the algebraic sum of the deviations of the items from the mean is zero. This is always true, as the next theorem will show. Theorem 3.1. The algebraic sum of the deviations of the variates from the mean of the set of variates is zero. Proof: By definition the deviations from the mean are: vi = v\ — M v V2 = V2 — M v Vs = 1'3 — M v Vn V n •! I V Adding: 2w — Zv — nM v - 2r — n(2r/n) = Sv — 2v = 0. If one finds M.D. by calculating the deviations from the mean, a check on the computations is that the sum of these deviations INDIRECT METHOD OF CALCULATING M.D. 57 should be zero, or approximately zero, if deviations are correct to certain decimal places. INDIRECT METHOD OF CALCULATING M.D. Suppose h (= 11.5 inches) is subtracted from each item of the first set on page 54. Results from these subtractions are listed in the next table. Column d contains a set of items much smaller than the original items. It has been shown that the mean of the Fs can be found by using the d’s. It will now be shown that the M.D. of the v’s can be found by using the d’s. Set up the d — Md Length of Feet v — h V d v — M v d - M d 11.8 +0.3 +0.04 +0.04 11.3 -0.2 -0.46 -0.46 11.9 +0.4 +0.14 +0.14 12.4 +0.9 +0.64 +0.64 11.1 -0.4 -0.66 -0.66 12.6 + 1.1 +0.84 +0.84 10.9 -0.6 -0.86 -0.86 11.5 0.0 -0.26 -0.26 12.0 +0.5 +0.24 +0.24 12.1 +0.6 +0.34 +0.34 M v = 11.76 in.; M d = 0.26. column, or the set of deviations of the d’s from the mean of the d’s. By comparing columns v — M v and d — M d it is seen that the deviations of the v’s from the mean of the v’s are identically equal to the corresponding deviations of the d’s from the mean of the d’s. This example shows that for this case M.D.„ = M.D. d . Theorem 3.2. From each variate of a set of variates subtract a constant h, thus forming a new set of variates. The deviation of the fth variate in the original set from the mean of the original variates is equal to the deviation of the fth variate in the new set from the mean of the new set of variates, or Vi — M v = di — M d , or i)i = di. Proof: By definition di = Vi — h. 58 MEASURES OF DISPERSION By formula (2.2), h = M v — M d . Substituting this value for h in the above equation gives 3. = Vi — M v + M d , or di — M d = v { - M v , or 3, = Vi, which proves the theorem. This theorem enables one to set up a new set of variates which are smaller than the original set and enables one to find the mean deviation of the original set by finding the mean deviation of the new set of smaller variates. The mean deviation of a grouped distribution is approximately equal to the mean deviation of the distribution made up of class marks. PROBLEMS 1. Find the mean deviation of the following set of items by finding each deviation from the mean. No. of Auto Tires Sold per Day No. of Auto Tires Sold per Day 21 23 19 20 18 26 17 24 22 16 How many items are within 1 M.D. of the mean? 2. Find the mean deviation by use of a provisional mean and the number of variates within 1 M.D. of the mean of the distribution of rows of kernels on ears of corn: No. of Rows of Kernels on Ears of Corn No. of Ears of Corn, Frequency 10 12 14 16 18 20 22 24 2 32 218 482 470 232 82 20 1,538 THE STANDARD DEVIATION 59 3 . Find the mean deviation, the percentage of items within 1 M.D. of the mean, and the percentage within 2 M.D. of the mean, of the follow¬ ing distribution: No. of Alpha Particles Radiates From a Disk in Minute * Frequency 0 57 1 203 2 382 3 525 4 532 5 408 6 273 7 139 8 45 9 27 10 10 11 4 12 0 13 1 14 1 2,607 THE STANDARD DEVIATION Square roots of the averages of the squares of deviations of shots from line CE in Figs. 3.1 and 3.2 also measure the amount of scat¬ tering or dispersion of the shots about CE. The square root of the average of the squares of the deviations for marksman A is about 9.1 mm.; that for marksman B is about 4.4 mm. The larger value indicates the greater scattering of shots about CE and hence reveals the poorer marksman. In the same way the square root of the average of the squares of deviations of variates from the mean of the variates is a measure of dispersion or a measure of the scattering of the items about the mean. The smaller this quantity is, the less amount of scatter¬ ing; if there is little scattering then the mean is a good representa¬ tive of the central tendency of the items. The standard deviation of a set of variates is the square root of * Rutherford and Geiger, “The Probability Variation in the Distribution of Alpha Particles,” Phil. Mag., Scries 6, Vol. 20 (1910), pp. 698-701. 60 MEASURES OF DISPERSION the average of the squares of the deviations of the variates from the mean of the variates, or (3-6) S.D. — M v . When variates form a frequency distribution the standard deviation is (3.7) S.D. = c v 0 ,- ~ MYfipj) 2/OO Consider again the length of feet given on page 54. The sum of the squares of the deviations of the lengths from the means are given on page 54. From these values the standard deviations are respectively + 1 ) 2 f(v) = 2(w 2 + 2v + l)/(t;) = 2 v 2 f(v) + 22 vf(v) + n. This means that the sum of the quantities in the last column should be equal to the sum of the fourth column plus twice the 62 MEASURES OF DISPERSION sum of the third column plus the sum of the second. For the above table these values are 124,580 = 102,406 + 2(10,522) + 1,130 = 124,580, which check the computations. It is of great importance to know the number of items within 1, 2, 3, and 4 standard deviations of the mean. For the distribution of petals these values are as follows: Number of items within 1 a of the mean is 761 or 67.3%, “ “ “ “ 2 - MMv) = 2j?"/(t>) n 2 f(v) 2 f(v) According to these definitions the mean of a set of variates is the first moment, the average of the squares is the second moment, etc. The first two moments in both cases are 2(r — a) n * The moment about a fixed point a is n' n ■ v -- PROBLEMS 65 First moment 2»/(») , 2 v 2 f{v) n'i. v = M v = M = ; second moment / 2 :,= 2 / 0 ) First moment about the mean is 20 - M)/0) 2D-/0) Ml = 2 / 0 ) ' 2 / 0 ) Second moment about the mean — = 0. m) 20 - M) 2 /0) 2D 2 -/0) 2/0) “ 2/0) The second moment about the mean may be written as follows: v 0 - M) 2 f(v) 20 2 - 2vAf + M 2 )f(v) M2 : p 2 / 0 ) 2 / 0 ) 2» 2 /0) 22f(v)v-M 2/0) -M 2 ~^ 0 ) 2/(0 + 2 / 0 ) = M2:. - 2M 2 + M 2 = m' 2:0 - Tf 2 , or (3.16) M2:< t „ = M'2:»-M 2 . PROBLEMS 1. A stem of a certain water plant was broken off and inverted in water. Tiny bubbles passed out of the end that was cut. Layers of waxed paper were held between the sun and the plant. The following table gives the distribution of the number of bubbles per minute. Layers No. OF Layers No. OF Layers No. of of Bubbles of Bubbles of Bubbles Wax per Wax per Wax per Paper Minute Paper Minute Paper Minute 0 36 9 56 18 32 1 38 10 58 19 26 2 39 11 57 20 21 3 41 12 55 21 16 4 43 13 54 22 9 5 46 14 51 23 5 6 47 15 47 24 2 7 49 16 44 25 1 8 53 17 38 964 66 MEASURES OF DISPERSION Find the number of layers or the light intensity which produced the most bubbles and the standard deviation of the distribution. 2. Find the number of items within 1, 2, and 3 standard deviations of the mean of the distribution in problem 2 on page 28 and express in percentages. 3. Find the percentage of the items within 1, 2, and 3 a w , prove that QUARTILES 77 4. The following data give means and standard deviations of scores made on a certain test for seventh-grade students in wards of a certain city. Ward Mean S. D. No. of Students 1 69.8 4.2 42 2 70.4 4.7 65 3 73.4 4.4 24 4 71.6 3.9 54 5 74.3 4.0 93 6 72.0 5.1 17 These results were turned in at the superintendent’ s office. Find the mean and standard deviation for the entire city. Discuss the records for each ward in comparison with results for the city. 5. The following data pertain to weights of freshmen in three large universities. No. OF University Mean S.D. Freshmen 1 138.6 lb. 16.7 lb. 907 2 139.2 “ 16.4 “ 1,102 3 138.9 “ 17.3 “ 841 2,850 Find the average weight of freshmen and the standard deviation of all these weights. 6. The mean and standard deviation of 83 measurements are respec¬ tively 17.3 gallons and 1.3 gallons. It is found that one of the measure¬ ments, 22.3 gallons, was incorrectly made. Omit this item and find M and a for the others. QUARTILES Quartiles of a distribution of variates are quantities which divide the distribution into 4 equal parts. The median is some¬ times spoken of as the second quartile, Q 2 . The first or lower quartile of a grouped frequency distribution is found by a formula similar to that for the median. This formula for the first or lower quartile is n 4 ni (3.25) Qi — Ci -f- h w, 78 MEASURES OF DISPERSION where Ci is the lower limit of the class in which the (n/4)th item falls when the items are arranged in order; n\ is the sum of the frequencies of the classes below Ci;/i is the frequency of the class in which the (n/4)th item falls; n is the sum of the frequencies in all classes; and w is the width of the class in which the (n/4)th item falls. The third quartile is found by the formula (7- (3.26) Q 3 = C 3 + where C 3 , fz, and w are respectively the lower limit, the frequency and the width of the class in which the (fn)th item falls, 713 is the sum of all frequencies below this class, and n is the total frequency. One-half of the items of a frequency distribution falls between the first and third quartiles. Another measure of dispersion is (3.27) Q = Q:i — Qi 2 and is called the quartile deviation or the semi-interquartile range. The following example will illustrate the steps in finding the semi- interquartile range. Lung Capacity No. OF of Women Women 79.5- 99.5 2 99.5-119.5 14 119.5-139.5 78 139.5-159.5 122 159.5-179.5 158 179.5-199.5 114 199.5-219.5 53 219.5-239.5 30 239.5-259.5 9 580 Qi = 139.5 + Q 3 = 179.5 + ( 580 ^ 2 ~ 94 ) 20 / 3 • 580/4 -374 \ V 114 ) = 139.5 + 8.36 = 147.86 cu. in. 20 = 179.5 + 10.70 = 190.20 cu. in. THE COEFFICIENT OF VARIATION 79 from which Q = Q 3 ~ Q i 2 190.20 - 147.86 2 21.17 cu. in. Fifty per cent of the distribution lies between Qz and Qi, and about 50 per cent lies within a distance of Q from the median. For symmetrical distributions there is exactly 25 per cent of the distribution within a distance of Q to the right of the median and 25 per cent within a distance of Q to the left. The above distri- 50 % /-*-s Fig. 3.3. — Distribution of lung capacities of women students, showing the quartiles. bution is exhibited in Fig. 3.3 by a histogram, together with the quartiles. THE COEFFICIENT OF VARIATION The coefficient of variation is equal to the ratio of the standard deviation to the mean multiplied by 100 and is (3.28) 100cr„ This is an abstract number and shows the variability of the items in the distribution. It is a very good quantity for comparing two distributions. If the mean and standard deviations of one set of variates are respectively 37 inches and 2 inches, and the mean and standard deviations of another set of variates are respectively 80 MEASURES OF DISPERSION 37 inches and 3.2 inches, the coefficient of variation enables one to compare the variabilities of the two sets. These coefficients are Vi = 100(2/37) = 5.4 and V 2 = 8.6, which show that there is much more variability in the second set than in the first.* If standard deviations of two distributions are equal and the means are not the same, the coefficients of variation may not give any information concerning the variabilities of the distributions. Let both e GRADUATION 87 since M t = 0 and a t = 1. The following illustration wall show how a distribution can be compared with a normal distribution, or how a distribution can be graduated by a normal curve. The first two columns in the following table contain the distribution which is to be graduated. To be able to compare frequencies of this set of variates with those of the normal, it is necessary to change the units from inches to standard units by use of formula (4.3). Heights of Adult Males Born in England, Ireland, Scotland and Wales (The Anthropometric Committee to the British Association, Report 18,893, p. 256. Original measurements made to the nearest ■§• inch.) Classes 56^ to 57*, 57* to 58*, etc. Differ- Expected Fre- Area ence Fre- Heights QUENCY t Below t of Areas QUENCIES 57* 2 -4.09 0.00002 0.00009 1 58* 4 -3.70 .00011 .00036 3 59* 14 -3.31 .00047 .00128 11 60* 41 -2.92 .00175 .00379 33 61* 83 -2.54 .00554 .01024 88 62* 169 -2.15 .01578 .02342 201 63* 394 -1.76 .03920 .04614 396 64* 669 -1.37 .08534 .07820 671 65* 990 - .98 .16354 .11405 979 66* 1,223 - .59 .27759 .14315 1,229 67* 1,329 - .20 .42074 .15460 1,327 68* 1,230 + .19 .57534 .14360 1,234 69* 1,063 + .58 .71904 .11243 965 70* 646 + .96 .83147 .08002 687 71* 392 + 1.35 .91149 .04758 409 72* 202 + 1.74 .95907 .02434 209 73* 79 2.13 .98341 .01072 92 74* 32 2.52 .99413 .00406 35 75* 16 2.91 .99819 .00132 11 76* 5 3.30 .99951 .00038 3 77* 2 3.69 .99989 .00009 1 78* 0 4.07 .99998 .000016 0 79* 0 4.46 .999996 8,585 8,585 M v = 67.4584 in.; 3 _ 3 M-Zv 2 + 3M 2 Zt’ nAP n n n n ’ Al 3:v = n' 3:v -3M-/ 2:v + 2M 3 . Hence skewness is (5.2) a 3: . m ' 3: „ —3MV 2: , + 2M 3 which enables one to find a 3:r without finding deviations from the mean. Since skewness is defined in terms of deviations of the variates from the mean it can be secured from the distribution obtained by subtracting a provisional mean from each variate; see Theorem 3.2. In other words, (5.3) a 3;5 = a 3:d = , which is easier to calculate since variates in the (/-distribution are smaller than those in the original set. The next table contains a set of grouped variates for which skewness has been found, together with all necessary computations. SKEWNESS 101 Weights of Freshmen at the University of Michigan Weights f(v) d dm dW) dW) 89.5- 99.5 1 -4 - 4 16 - 64 99.5-109.5 13 -3 - 39 117 -351 109.5-119.5 64 -2 -128 256 -512 119.5-129.5 128 -1 -128 128 -128 129.5-139.5 175 0 000 000 000 139.5-149.5 155 + 1 155 155 + 155 149.5-159.5 97 +2 194 388 776 159.5-169.5 37 3 111 333 999 169.5-179.5 27 4 108 432 1,728 179.5-189.5 9 5 45 225 1,125 189.5-199.5 7 6 42 252 1,512 199.5-209.5 2 7 14 98 686 715 +370 2,400 5,926 M v = 134.5 + (0.51748)10 = 139.6748 lb., a v = (V3.35664 - 0.267786 - 0.083333)10 = 17.3364 lb., t*3 : d = M 3 : d ~ 3.M • fx 2 : d + 2M 3 = 8.28811 - 3(0.51748) (3.35664) + 2(.51748) 3 = 3.35417, « 3:e M3:d-10 3 (0"aUJ.) 3 3.35417 5.21047 = 0.6437. Class marks of the distribution in the above table are exhibited graphically in Fig. 5.3. The part of the range to the right of the mean is larger than the part to the left. Notice that the maximum is to the left of the mean. About 69 per cent of this distribution lies within 1 a of the mean. 102 SKEWNESS AND KURTOSIS Grade curves are not normal, as was assumed in Chapter 4, for on examining a large number of grades one will soon discover no little amount of skewness. Percentages of grades at a large uni¬ versity for the year 1933-34 are given in Fig. 5.4. The frequency curve for this distribution is not normal; it possesses a rather large skewness. There are more A and B grades than D and E grades. Of course university students form a special population. One is not justified in using the normal distribution for university grades. Fig. 5.4.— Distribution of grades of college students. The only adjustment necessary in finding the skewness of a grouped distribution is to use the adjusted standard deviation in the formula for « 3 . The formula is the third moment about the mean of the distribution of class marks divided by the adjusted standard deviation, or (5.4) <*3 : adj. M.3 : class marks _ M3 : d ’ ( ff adj.) 3 (°adj.) 3 PROBLEMS 1. Using the percentages for grades given in Fig. 5.4, find the number of students in each grade group for 7,486 university students. 2. If a 3 . „ = 0.67 and g 3 : „ = 5.36 cu. cm., find K can be obtained. When data are grouped into classes it is necessary to use the following adjustments in calculating kurtosis. 106 SKEWNESS AND KURTOSIS For discrete variates* * (5.7) K = M4:<*-(^)(l-l/fc 2 )M2: d + (1 — l/k 2 )(7 — 3/k 2 ) 240 \k* (o'adj .)' 1 3, where k is the number of variates that can be put in a class, and d is the deviation from some provisional mean. For continuous variates (5.8) 2 M 2 : il 2 1 ()]^’ 4 (•^adj .) 4 The following example will illustrate computations necessary for obtaining skewness and kurtosis for grouped data. Hip Measurements of Freshmen at the University of Michigan. Measurements Made to the Nearest 0.1 Inch Hip Fre- Measurement quency d 25.95-27.95 2 -4 27.95-29.95 3 -3 29.95-31.95 7 -2 31.95-33.95 92 -1 33.95-35.95 222 0 35.95-37.95 171 + 1 37.95-39.75 65 2 39.95-41.96 13 3 41.95-43.95 3 4 43.95-45.95 2 580 5 dm dW) d 3 M am +239 825 + 1,127 5,241 M v = h + M a -w = 34.95 + (0.412068)2 = 35.7741 in., = M3 :d-2 3 (1.94310 - 1.75839 + 0.13994)8 (tfadi.) 3 _ (2.16266) 3 = + 0.25677, — (^4:d ~ §M2 :d 4~ gIo)16 _ ^ _ (o'adj.) 4 [(9.03621-3.20275+1.44915-0.086496) - 0.5(1.25261)+ 0.029167]16 (2.16266) 4 - 3 = + 1.85316. * H. C. Carver, “Editorial,” Annals of Mathematical Statistics, Vol. I, No. 1, 1930, page 111, and J. R. Abemethy, “On the Elimination of Systematic Errors Due to Grouping,” ibid., Vol. IV, 1933, pages 263-277. PROBLEMS 107 PROBLEMS 1. Find the skewness and kurtosis of the following distribution of weights of female babies at birth. Measurements made to nearest gram. Weight No. OF Weight No. OF at Birth Babies at Birth Babies 1,095-1,324 3 3,395-3,624 82 1,325-1,554 5 3,625-3,854 44 1,555-1,784 5 3,855-4,084 15 1,785-2,014 6 4,085-4,314 13 2,015-2,244 13 4,315-4,544 5 2,245-2,474 20 4,545-4,774 2 2,475-2,704 43 4,775-5,004 1 2,705-2,934 60 500 2,935-3,164 91 3,165-3,394 92 2. Find the kurtosis of the following distribution of stamens of flowers of May apples {Podophyllum peltatum) near Ann Arbor, Michigan. No. OF No. OF No. OF No. OF Stamens Flowers Stamens Flowers 9 3 15 90 10 30 16 41 11 95 17 8 12 369 18 3 13 246 1,000 14 115 = - 0.12, find «4 4. Find K for the distribution on page 97. CHAPTER 6 PERMUTATIONS, COMBINATIONS, AND PROBABILITY INTRODUCTION Theorem 6.1. If a task can be done in m ways, and if after it has been done a second task can be done in n ways, then both tasks can be done, in this order, in mn ways. Proof: After the first task has been done the second task can be done in any one of the n ways. Since there are m ways of doing the first, there are mn ways of doing both tasks. The meaning of this theorem will be illustrated by several examples. Example. 1. If there are 3 roads leading up the east side of a moun¬ tain and 5 down the west side, a person can cross the mountain on 3 X 5 = 15 different routes. Example 2. A coin and a 6-sided die can fall in 12 different ways, for after the coin has fallen the die might fall in 6 different ways. Theorem 6.1 is very important, for it is used in much of the theory and in many of the problems to follow. The fundamentals of permutations, combinations, and probability are based upon this theorem. Example 3. A combination lock has 3 concentric rings of numbers. The lock is opened when 3 particular numbers, 1 on each ring, are in line; how many different combinations can be formed if the first ring contains the numbers 1, 2, 3, and 4, the second ring contains the numbers 3, 4, 5, 6, and 7 and the third ring contains the numbers 1 and 2? According to the above theorem there will be 4 X 5 X 2 = 40 different combinations. PROBLEMS 1. In a classroom where boys and girls sit on opposite sides of the room there are 3 vacant seats on the girls’ side and 5 on the boys’ side. A boy and a girl enter the class late. In how many ways can they take seats? 108 PERMUTATIONS 109 2. In how many different ways can 3 ordinary dice fall? 3. In how many ways can an ordinary die and a 4-sided die fall? 4. In how many ways can a student post two letters if there are 5 mail boxes? 5. John Tol enters 4 track events and Ted Tol his brother enters 5 other events. How many first places may the Tol boys win? How many first and second places may they w r in? 6. There are 7 fraternities on a university campus. In how many ways may John and Ted choose fraternities? 7. There are 4 roads from A to B, 3 roads from B to C, and 5 from C to D. In how many different ways can a person go from A to D by way of B and C? 8. A student has 3 coats, 5 pairs of trousers, 3 hats, and 2 pairs of shoes. In how many ways can he dress? 9. A key has 5 teeth of 5 different lengths. How many different keys of 5 teeth can be made? PERMUTATIONS The different arrangements that can be formed from the letters a, b, and c taken all at a time are abc, acb, bac, bca, cab, and cba. The arrangement acb is different from the arrangement bca. Order of the letters is important, for different orders give different arrangements. Each of the arrangements that can be formed by taking some or all of a group of objects is called a permutation. The arrange¬ ment cab is also a permutation. The permutations that can be formed from the letters a, b, and c taken 2 at a time are ab, ba, ac, ca, be, cb. According to Theorem 6.1, the number of permutations that can be formed from 3 things taken 2 at a time is 3 X 2, since the first place can be filled in 3 ways and after it is filled the second place can be filled in 2 ways. Hence the number of permutations that can be formed from the letters a, b, and c taken 2 at a time is 3P2 = 3X2 = 6 permutations. Theorem 6.2. The number of permutations that can be formed from n different things taken r at a time is (6.1) n P r = n(n — l)(n — 2){n — 3) . . . (n — r + 1). 110 PERMUTATIONS, COMBINATIONS, AND PROBABILITY Proof: The first thing can be taken from any one of the n things; after the first has been chosen the second can be taken from any of the n — 1 remaining things; after the second has been chosen the third can be taken from any of the n — 2 remaining things, . . . , after the (r — l)th has been chosen the rth thing may be chosen from any of the n — r + 1 remaining. Hence Theorem (6.2) follows from Theorem (6.1). Example 4. How many different 4-letter words can be formed from the letters in the word thing, where the same letter cannot be used twice in the same word? This can be obtained from (6.1); the number is the number of permutations that can be formed from 5 letters taken 4 at a time, and is s P 4 = 5X4X3X2 = 120 different ways. PROBLEMS 1. How many 3-digit numbers can be formed from the digits 1, 2, 3, 4, 5, 6, 7, 8, 9 if the same digit is not used twice in the number? 2. How many 3-digit numbers can be formed from the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, if the same digit is not used twice in the number? 3. In how many ways can 6 people take seats in a coach with 9 vacant seats? 4. In how many ways may 10 different books be placed on a shelf? 5. How many different signals can be made with 5 different colored flags if there are 4 places for the flags and no color is to be used twice in the same signal? 6. How many different baseball teams can be formed from 10 men who can play in any position? 7. How many different baseball teams can be formed from 13 men, 2 of whom can only pitch, 3 of whom can only catch, 5 of whom can play infield, and 3 of whom can play outfield? 8. In how many ways can a man string 10 different colored beads? 9. A person is allowed to shoot 5 ducks, 3 rabbits, 2 pheasants, and 1 deer. How many ways can a person bring home 4 different kinds of game, where the limit was reached for each kind? COMBINATIONS In permutations, order was taken into consideration. The arrangement or permutation ab was different from the permutation ba. When order is not considered, the number of ways of selecting r things from n different things is called the number of combina¬ tions of n things taken r at a time. The selection or combination COMBINATIONS 111 ab is the same as ba. Permutations of the letters a, b, c taken 2 at a time are ab, ba, ac, ca, be, cb; The combinations of these letters taken 2 at a time are ab, ac, be. Since order does not enter into the number of combinations, the number of combinations can always be found from the number of permutations by dividing by the number of ways the letters can be interchanged in each arrangement. In the above example the number of combinations of the letters taken 2 at a time is equal to the number of permutations divided by 2!, or 3C2 = 3 P 2 3X2 2 ! 1 X 2 = 3. Theorem (6.3). The number of combinations of n different things taken rata time is equal to the number of permutations of n things taken r at a time divided by factorial r, or Proof: Since order is not considered in finding the number of combinations the number of permutations divided by r! will be equal to the number of combinations since there are r! permuta¬ tions of r things taken rata time. In other words, for each way of selecting r things from n things there are r! ways of arranging these r things. Hence the number of permutations is always r! times as large as the number of combinations. Example 5. How many different handshakes can 8 people make with each other? This is a combination problem, for when A shakes hands with B, B also shakes hands with A, and this is only 1 handshake. The answer to the question is the number of ways of taking 2 things from 8 different things, or the number of combinations that can be formed from 8 things taken 2 at a time; according to Theorem (6.3) it is equal to t,Ci = S —" = - - - 28 handshakes. 2! 1X2 Example 6. How many different committees of 4 can be chosen from 7 people? 112 PERMUTATIONS, COMBINATIONS, AND PROBABILITY Here, again, order does not enter into the problem, for a committee of 4 is only 1 committee, regardless of how they sit in the committee room. The number of committees is the number of combinations that can be formed from 7 things taken 4 at a time, or vC 4 = 7-6-5-4 1-2-3-4 35 committees. Some of the committees will contain 3 men which were on other com¬ mittees, but no 2 of the committees will contain the same 4 men. Example 7. How many triangles can be formed from 9 points, no three of which are in a straight line? This is a combination problem, for the triangle ABC is the same as the triangles ACB, CAB, BCA, etc. The answer is the number of combinations of 9 things taken 3 at a time, and is 9C3 9-8-7 1-2-3 84 different triangles. Sometimes a problem will involve permutations and combina¬ tions, as the following example illustrates. Example 8 . How many words of 4 letters can be formed from 8 different letters so that the word does not have 2 letters alike? There are 8 C 4 8-7-G-5 1-2-3-4 = 70 ways of choosing groups of 4 letters from the 8 letters. After the 4 letters are chosen there are 4! = 24 dif¬ ferent words that can be formed from each group of 4 letters; hence the number of different words that can be formed from 70 groups of 4 letters is 70 X 24 = 1,680 different words, or 8 C 4 -4 ! = 1,680 different words. This example might have been solved by finding the number of permu¬ tations of 8 things taken 4 at a time. Example 8 a. There are 6 different consonants and 5 different vowels. How many words of 4 letters can be formed if the word is to have 2 con¬ sonants and 2 vowels and the same letter cannot be used twice in the same word? There are e C 2 ways of getting the 2 consonants and 5 C 2 ways of getting the 2 vowels, hence there are eCV&Cb ways of getting the consonants and vowels for the words. After the 2 consonants and the 2 vowels have been chosen one can form 4! different words with them. Hence the number of 4-letter words is equal to $C 2 - t>C 2 * 4 ! = —1-2-3-4 = 3,600 different words. 1-2 1-2 PROBABILITY 113 Experience will enable one to know whether problems can be solved by formulas for permutations, combinations, or both. PROBLEMS 1. How many straight lines can be formed from 11 points, no three of which are on a straight line? 2 . How many ways can 3 white balls be drawn at random from a bag containing 5 white balls and 4 red balls if 3 balls are drawn at random? 3 . How many committees of 7 students can be formed from 8 sopho¬ mores and 5 freshmen if the committee is to consist of 4 sophomores and 3 freshmen? 4 . How many basketball teams can be formed from 6 men if each can play in any position? 5. How many different examinations of 6 questions can be formed from 10 different questions? How many of these will contain the first 3 questions? 6 . A bag contains 4 white balls, 5 red balls, and 7 blue balls. A person draws at random 5 balls. How many ways can he draw? (а) 2 white and 3 red balls? (б) 5 blue balls? (c) 1 white, 2 red, and 2 blue balls? (d) 5 red balls? (e) 2 white, 1 red, and 2 blue balls? 7 . How many different services can be held with 3 preachers, 6 singers, 7 deacons and 2 organists if a service requires 1 preacher, 4 singers, 3 deacons, and 1 organist? 8. How many parallelograms can be formed from 7 vertical parallel lines and 5 horizontal parallel lines? 9 . How many ways may 13 cards be drawn from a deck of 52 cards? 10 . A railway line has 12 stations. How many different tickets must be made so that each station can sell a ticket to any other station? 11 . How many different sums of money can be formed with a penny, a nickel, a dime, a quarter, a half dollar, and a dollar? 12 . How many of the sums in problem 11 do not contain the dime and half dollar? PROBABILITY If an event can happen in m different ways and fail in n differ¬ ent ways and all of the ways are equally likely, then the prob¬ ability of the event happening on any trial is m m + n ’ (6.3) 114 PERMUTATIONS, COMBINATIONS, AND PROBABILITY the probability of the event not happening is (6.4) Q = n m + n ’ According to this definition the probability of an event happen¬ ing on any trial is the number of favorable ways to its occurrence divided by the total number of ways in which it can happen and fail. Example 9. A man draws at random a ball from a bag containing 6 red balls and 4 purple balls, all of which are of the same size. According to the above definition the probability of drawing a purple ball is 4 _ P ~ 4 + 6 “ 10’ since the purple ball can be drawn in 4 ways out of 10 possible ways of drawing the ball. PROBLEMS 1. What is the chance of getting the sum of the spots to turn up on 2 dice to equal 5? To equal 11? 10? 7? 2. Out of a bag containing 5 red balls and 4 black balls there are drawn at random 3 balls. What is the probability that: (а) All will be red? (б) 2 will be red and 1 black? (c) 2 will be green? (d) 2 will be black? (e) 1 will be red and 2 black? 3 . What is the probability of getting a 4-spot on a 4-sided die and a 5-spot on a 6-sided die if both are thrown? What is the probability of getting the sum of the spots to be equal to 7? 5? 10? 4 . The probability of house A burning is 0.08, and the probability of house B burning is 0.04. What is the probability of: (а) both houses burning? (б) A not burning and B burning? (c) A and B not burning? 5. At a party there are 24 people and 5 prizes. Out of a bag containing slips of paper with the names of the people present 1 slip is drawn at random and is put back in the bag before the next drawing. What is the probability that: PROBABILITY IN REPEATED TRIALS 115 (а) Mr. Jones will get a prize? (б) Mr. Jones will receive all the prizes? (c) Mr. and Mrs. Jones will receive no prize? (d) Mr. and Mrs. Jones will each get a prize? (e) Mr. and Mrs. Jones will receive all the prizes? 6 . The following histogram of a distribution containing 1,000 items is given. Fig. 6.0.—Histogram of a distribution of weights of 1,000 men. If an item is drawn at random, what is the probability that it will lie between 139.95 and 159.95? between 99.95 and 119.95? between 142 and 154? between 163.6 and 170.3? 7 . On a slot machine there are 3 disks with the 10 digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, on each. When a coin is inserted the 3 disks revolve several times and come to rest. What is the probability of getting 3 particular numbers, one on each disk, to appear? PROBABILITY IN REPEATED TRIALS If the probability of success in 1 trial is f and the probability of failure is \, then the probability of 2 successes in 3 trials may be analyzed as follows: 1. A success on the first and second trials and a failure on the third; the probability of such is (f)(f)(i) = fa. 2. Successes on the first and third trials and failure on the second; the probability of such is (f)(^)(f) = fa. 3. Failure on the first trial and success on the last two trials; the probability of such is (i)(f)(f) = - 6 9 y. - Hence the probability of 2 successes in 3 trials is the sum of these probabilities, or fa + fa + fa = f-f-. This might have been found by taking the third term in the expansion of the binomial (| + f) 3 , for (t + !) 3 - (1 + M + M + i), (6.5) (i + I) 3 = (I) 3 + 3(i) 2 (f) + 3 (i)(- 3 -) 2 + (I) 3 . 116 PERMUTATIONS, COMBINATIONS, AND PROBABILITY The right-hand side of (6.5) was obtained by multiplying the 3 factors in the above line together. The third term in the right- hand member of (6.5) was obtained by adding the following 3 products of 3 factors: f in the first factor by f in the second factor by \ in the third factor; f in the first factor, by f in the second factor by f in the third factor; f in the first factor, by f in the sec¬ ond factor by f in the third factor. The last term in (6.5) is the product of (§)(§)(§) and is the probability that there will be a success on the first, second, and third trials. The second term in (6.5) is the probability that there will be 1 success and 2 failures in the 3 trials, while the first term is the product (j)(^)(^), which is the probability of a failure on each of the 3 trials. Suppose that a die is thrown 4 times and a success is considered getting an ace to turn up. The terms in the expansion of (^ + -§-) 4 give the probabilities of the various numbers of successes. They may be exhibited as follows: Probability of (6-6) (f + |) 4 = Successes and failures (t) 4 + 4c l( t) 3 a)+4 c 2 (t) 2 (D 2 + 4 c 3 (t) i a) 3 + 4 c 4 (!) 4 0 12 3 4 4 3 2 1 0 The first term in the right member of (6.6) is the probability of no successes and 4 failures in the 4 trials, the second term is the probability of 1 success and 3 failures, the third term is the prob¬ ability of 2 successes and 2 failures, the fourth term is the prob¬ ability of 3 successes and 1 failure, and the last term is the prob¬ ability of 4 successes in the 4 trials. The reason the terms of the binomial expansion can be used for the probabilities is that the coefficients of the terms give the number of ways the various successes and failures may occur in the 4 trials. For example, consider the probability of getting 1 success in 4 trials; there may be 1 success on the first trial and failure on the other trials, or 1 success on the second trial and failure on the others, or a success on the third trial and failure on the others, or a success on the last trial and failure on the others; this gives 4 C 1 different ways for 1 success in the 4 trials. The sum of probabilities for these 4 will give the probability of getting 1 success in the 4 trials. This (£)(f) 3 + (!)(t) 3 + (!)(t) 3 + (M) 3 = 4(£)(f) 3 , sum is PROBABILITY IN REPEATED TRIALS 117 which is the second term in (6.6). Other terms of (6.6) may also be explained. In general, if the probability of occurrence of an event in each trial is p and the probability of its non-occurrence is q and the trials are independent, then the probabilities of the various num¬ bers of successes in n trials are given by the terms in the expansion of the binomial ( q + p) n , or (6.7) (q + p) n = n C 0 q n + nCiq n - l p + n C 2 q n ~ 2 p 2 + nCsq n ~ 3 p 3 + • • • + nC r q n r p T + . . . + nC n -\q-p n 1 + n C n p n , where the first term is the probability of no successes, the second term is the probability of 1 success and n — 1 failures, the third term is the probability of 2 successes and n — 2 failures, etc. The (r + l)th term is the probability of r successes and n — r failures in n trials; for the r successes might happen in n C r different ways, that is, there are n C r trials among the n trials in which there may be r success and the rest failures. Example 9a. An ordinary die is thrown 5 times, or 5 ordinary dice are thrown once. The probabilities for the various successes are given by terms in the expansion of (f + g-) 6 , since the probability of getting an ace on each trial is g- and the probability of not getting an ace is -f. This expansion is (-1 + i) 6 i (I) 5 + 5(tm) + I0(t) 3 (i) 2 + I0($8i(i)* + 5(f) (i) 4 + (i) B . The probability of getting 3 aces in the 5 trials is given by the fourth term 250 7,776 in the expansion and is 10[ - The probability of getting exactly 1 ace in 5 throws is given by the second 3,125 7,776 term in the expansion and is 5( - The probability of getting at least 4 aces is given by adding the last 2 terms _ 1_ = 26 16 7,776 7,776 i uc lUUDauiiiij yji at itaot ^ andis5 («)® , + ©’’^ The probability of getting at least 2 and no more than 3 aces is given by adding the third and fourth terms and is 118 PERMUTATIONS, COMBINATIONS, AND PROBABILITY PROBLEMS 1. A 4-sided die is thrown 6 times. Find the probability of getting: (a) exactly 4 aces; ( b ) at least 3 aces; (c) exactly 6 aces; (d) at most 2 aces; (e) at least 3 and at most 5 aces. 2. The probability of an event happening in 1 trial is f. Find the probability, in 7 trials, of getting: (а) exactly 4 successes; (б) at least 5 and no more than 6 successes; (c) less than 3 successes; (d) 5 failures; (e) all failures; (f) not 5 successes. 3. A coin is tossed 10 times. Find the probability of getting: (а) exactly 2 heads; (б) exactly 6 tails; (c) more than 7 tails. (d) 9 heads and 1 tail. 4. The probability of any ship of a company being destroyed on a certain voyage is 0.02. The company owns 6 ships for this voyage. What is the probability of: (a) losing 1 ship? (6) losing at most 2 ships? (c) losing none? 5. The probability of its raining \ inches on any of the 3 days before Christmas is 0.08 for a certain town. A merchant takes out rain insurance for these 3 days. Find the probability that (a) it will not rain during the 3 days; ( b ) \ inch of ram will fall during 1 of the 3 days; (c) it will rain \ inch only on the last day; (d) it will rain \ inch every day. 6 . If a man hits a traget 3 times out of 5, find the probability that he will, on 4 shots, hit the target; (a) exactly 3 times; ( b) 1 time only; (c) no time; (d) at least twice. 7. The mean and standard deviation of a normal distribution of heights of boys are respectively 47.8 inches and 2.1 inches. A boy is picked at random from the distribution of 3,489 heights. (Original measurement made to the nearest 0.25 inch.) Find the probability that his height is (a) greater than 51.5 inches; ( b ) at least 49 inches; (c) between 45.25 inches and 50.75 inches and not including either; ( d ) less than 44 inches; (e) either between 44.75 inches and 46 inches inclusively or PROBLEMS 119 between 52 inches and 54.5 inches, not to include 52 and 54.5; (/) exactly 50 inches—use ordinate table here. 8 . The mean and standard deviation of a normal distribution of 2,484 measurements are respectively 20.6 centimeters and 1.2 centimeters. A measurement is picked at random. The probability of this measurement being between 21 centimeters and w centimeters inclusive is 0.2268. Find the number w if measurements were made to the nearest unit. 9. For a normal distribution find the probability that an item that is picked at random is within 1 a of the mean. Between +2 o-’s and +3 e a £ e. Cl a ^- N 1 CM ^ 8 t“H o o | • • 1 7 i 1 £ CM CO xi Cl 8. Cl 5> 8 1 ^ e 8 r 7 l e 1 (N N —' 8 8 CM CO Cl eo ft % *T Cl 1 C o Jft O CM e 8. O' 8 * . • X a — 8 1 5> 5> o c O 8 1 8 CM I ^e. • du *-h i— co 8 1 8 CM e CO o CM CO • I 8 8 c3 ■*-' O H MOMENTS OF BERNOULLI DISTRIBUTION 125 number of trials, n, multiplied by p, the probability of the occur¬ rence of the event in each trial. The second moment of this distribution is found from column 4. The sum of the quantities in this column is hv{v — 1 )f(v) = ’Zv 2 f{v) — 2v/(i>) =n(n— l)p 2 (n-2)(n-3) „ + 2! q n ~ 2 -\-(n — 2)q n ~ 3 p 1 q n - 4 p 2 + . . . +(n —2)gp”- 3 +p”- 2 = n{n — 1 )p 2 (?+p)" -2 = n(n — 1 )p 2 = n 2 p 2 — np 2 . 2 v 2 -f(v) = n 2 p 2 — np 2 + 2 vf(v). Hence P 2 -.v = Sv 2 /(y) = n 2 p 2 — np 2 +'2,vf(v) =n 2 p 2 — np 2 -\-np, since ~Zvf(v) = np as found for the mean. Therefore M2 : t.= P2-.v ~ M v 2 = n 2 p 2 — np 2 + np — n 2 p 2 = np(l — p) = npq, since q + p = 1. The standard deviation is = y/ npq, which shows that the standard deviation is the square root of the product of n, the number of independent trials; p, the probability of the occurrence of the event in each trial; and q, the probability of failure in each trial. The third moment can be obtained from column 5, for the sum of the numbers in this column is 2i>(» - l)(i> - 2 )f(v) = 2 v 3 f(v) - 32 v 2 f(v) + 22vf{v) = n{n — l)(n — 2)p 3 [g n_3 + (n — 3 )q n ~ 4 p (n — 3 ){n — 4) + ^n-5-,2 2! V + •. • + (n — 3 )qp n ~ A + p n-3 ] = n(n — l)(n — 2 )p 2 (q + p) n_3 = n 3 p 3 — 3 n 2 p 3 + 2 np 3 . 126 BERNOULLI DISTRIBUTION Hence p' 3:c = 2i> 3 /( v) = n 3 p 3 — 3 n 2 p 3 + 2 np 3 + 32?> 2 /(p) — 22 vf(v) _ n 3p3 _ 3n 2 p 3 +2np 3 +3n 2 p 2 — 3np 2 +3np — 2np — n 3p3 _ 3 n 2 p 3 _j_ 2np 3 + 3n 2 p 2 — 3 np 2 + np. The third moment about the mean is M3 : v = P 3 ; p — 3M» • ^2 : p + 2ilf„ 3 = n 3 p 3 — 3 n 2 p 3 + 2np 3 + 3n 2 p 2 — 3 np 2 + np — 3 np(n 2 p 2 — np 2 + np) + 2 n 3 p 3 = np(2p 2 - 3p + 1) = np[2p(p - 1) + (1 - p)], or M 3 : v = np(-2pq + q) = npq{q - p). The skewness is a 3:t = M3 q - p vnpq a 3 :|1 = 0 according as q = p. The mean, standard deviation, and skewness of a Bernoulli dis¬ tribution are respectively M v = np, «3 Q ~ P 'Vnpq APPLICATION Example. If 720 ordinary dice are thrown on the table, what is the expected number of aces? The probability of an ace for each die or trial is £ = p, while q = Hence the expected number of aces or mean number of aces is np = 720(g) = 120. This means that on the average 120 aces will be found among the faces to turn up. This does not mean that exactly 120 aces will turn up every time 720 dice are thrown on the table, but that in a long series of throws with 720 dice the average number of aces will be 120. When 720 dice are thrown the possible numbers of aces to turn up range from 0 to 720. The frequencies or probabilities of these various numbers of aces are given by the terms in the expansion of the binomial (I + I) 720 - The standard deviation of this Bernoulli distribution is 5 _ 1 o' = Vtmm = 10 aces, and the skewness is b 6 = 0.067, which is not far from the skewness of a normal distribution. APPLICATION 127 Example. Let it be required to find the probability of getting more than 140 aces in 1 throw of 720 dice, also the probability of getting at least 112 aces and no more than 133 aces. The probability for the first part is the sum of the 580 terms in the expansion of the binomial (£ + £) 720 beyond the term that gives the probability of exactly 140 aces, or is the sum of the terms 72oC 14 l(t) 679 (i) 141 + 72oC 14 2(-t) 578 (!) 142 + . . . + (f) 72 °. It would be very difficult to find this sum by arithmetic or by means of logarithms. An approximation to it can be found by employing the normal curve in Table I, since the skewness of this Bernoulli distribution differs very little from zero. We want to find the area under the normal curve beyond the t that corresponds to 140.5 (we are dealing with discrete variates). The corresponding t is 140.5 - 120 , „ t = - = +2.0o standard units. 10 The area to the left of this value of t is found from Table I to be 0.97982; hence the area to the right of this t is 0.02018, which is the approximate probability of getting more than 140 aces on 1 throw of 720 dice. This means that if one threw the 720 dice down 100 times one could expect more than 140 aces to appear 2 times. The t's that correspond to the second part of the above example are 111.5 - 120 10 = -0.85, tl — 133 .5 - 120 10 = 1.35. The area between these two f’s under the normal curve is found from Table I to be 0.71383; hence the probability of getting at least 112 and no more than 133 aces is 0.71383, which means that 71 times out of 100 throws with 720 dice one can expect between 112 and 133 aces to turn up. Example. The probability of a man of age A dying within a year is 0.02. An insurance company has 10,000 men of this age insured with it. Find the probability of having to pay less than 180 death claims; also the probability of having to pay exactly 217 death claims. This is solved by means of a Bernoulli distribution, for the event, a man dying within a year, has probability of 0.02 in each “trial and 0.98 for failure. The mean, standard deviation, and skewness of the distribution made up of the possible numbers of men dying within the year are: M v - 200 men, a v = 14 men, a v = 0.07; call it zero. 128 BERNOULLI DISTRIBUTION The t that corresponds to the lower limit of the rectangle in the histo¬ gram which con tarns the 180th item is t = 179.5 - 200 14 = — 1.46 standard units. The area under the normal curve to the left of this t is 0.07215, hence the probability of having to pay less than 180 death claims is 0.07215. This means that if the company had 100 groups of 10,000 men it would expect to have less than 180 death claims to pay in 7 of these groups, or if 100 companies each had 10,000 men of age A, 7 of these companies would on the average pay less than 180 death claims during the year. The second part of the above example will be solved by means of the ordinate table for a normal curve. The t corresponds to the class mark of the group that contains 217 is 217 - 200 „ , , . t =- =1.21 standard umts. 14 The ordinate of the normal curve with unity frequency is found from Table II to be 0.19186; hence according to formula (4.5) the ordinate of this Bernoulli distribution for the v that corresponds to this t is f(v) = -/(f) = — (0.19186) = 0.01370, a 14 which is the probability of having to pay exactly 217 claims during the year. This may also be found by the area Table I for t\ — 216 .5 - 200 14 = 1.18, t 2 = 217.5 - 200 14 = 1.25. The area between these f’s under this normal curve is 0.01335, which is the probability of there being exactly 217 deaths during the year. The result is nearly the same as found by the ordinate table. For finding the proba¬ bility for an exact number of events the ordinate table is preferred; how¬ ever, there is very little difference between them in many cases. PROBLEMS 1. If the probability of an event happening in each trial is f, find the probability of the event happening 3 tunes in 8 trials. If v repre¬ sents the numbers of possible occurrences in 8 trials, plot the histogram and frequency polygon of this distribution. 2. A coin is thrown 10 tunes. Find the probability of getting: PROBLEMS 129 (a) 5 heads to turn up; ( b ) 7 tails; (c) Plot the frequency polygon and histogram of the distribution. 3. Twelve hundred 4-sided dice are thrown on the table. Find the expected number of aces to turn down. Find the probability of getting: (a) more than 324 aces; ( b ) less than 281 aces; (c) at least 281 aces and at most 324 aces; ( d ) exactly 300 aces. (e) express the answer for (d) as a term in a binomial expansion and try to find its value. 4. Forty-nine men of a certain age, out of 1,000 men of this age, died during the last year. An insurance company has 3,482 men of this age insured with it. Find the number of death claims the company expects to pay during the year. Find the probability of paying: (a) more than 175 death claims; ( b ) less than 166 claims; (c) exactly 170 death claims. 5. If a new distribution is formed by multiplying each variate of a given distribution by a constant H, how are the characteristics of the new distribution related to those of the given distribution? 6 . Find the kurtosis of the general Bernoulli distribution. What does this approach when n —> cc ? CHAPTER 8 INDEX NUMBERS RELATIVES Consider prices of tobacco from 1924 to 1934 given in Table 8.1. The third column contains relative prices with the price of 1924 as TABLE 8.1 Prices of Tobacco, 1924-34; Relative Prices Year Price per Pound on Dec. 1, Cents Relative Prices Price of 1924 = 100 Relative Prices Price of 1934 = 100 1924 19.0 100 86.36 1925 16.8 88 1926 17.9 94 1927 20.7 109 1928 20.0 105 1929 18.4 97 1930 12.8 67 1931 8.2 43 1932 10.5 55 1933 13.0 68 1934 22.0 116 100 the base. The relative price for 1925 is 88, which means that the price per pound of tobacco in 1925 was 88 per cent of the price of tobacco in 1924. The relative price for 1928 was 105, which means that the 1928 price per pound of tobacco was 105 per cent of the price per pound of tobacco in 1924. The relative price is 100 where po is the price in the year whose price is the base and p i is the price in any other year; in other words, the relative price is the quotient of the price of the commodity in year “1”, and the price of the same commodity in the base year “0” multiplied by 100. These 130 AGGREGATE INDEX NUMBERS 131 relative prices are simple index numbers and enable one readily to compare prices of tobacco for the various years. The simple index number of price for 1930 is 67; the price index number for 1934 is 116. These relatives show the relative changes of prices of tobacco as time passes and hence form a time series. In its simplest form an index number is a name given to a term in a time series expressed as a percentage of some base, or expressed as a relative. On examining the above relatives of prices it is seen that prices of tobacco rose from 1925 to 1927, decreased from 1927 to 1931, and increased from 1931 to 1934. These relatives or simple index numbers point out general trends of tobacco prices for these 11 years. AGGREGATE INDEX NUMBERS Suppose that one desires to know the relation between the level of prices in 1930 and 1934 of 10 commodities. A simple relative price as was given for each year in the last table is not adequate, as there are 10 prices for each year. The object of an index num¬ ber of prices in this case is to indicate the relation of the level of the prices of these 10 commodities for the two 12-month periods. Many index numbers have been used by economists for exhibit¬ ing this relation; several index numbers will be introduced in this chapter. Table 8 2 contains prices of 10 important commodities for depression years. TABLE 8.2 Prices of Ten Commodities for 1930 to 1934; Dollars Crop Unit 1930 1931 1932 1933 1934 Wheat. Bu. $0,670 $0,390 $0,379 $0,741 $0,880 Corn. Bu. .594 .321 .318 .522 .847 Oats. Bu. .322 .213 .157 .334 .491 Cotton. Lb. .095 .057 .065 .097 .126 Sugar, B. Lb. .0036 .0030 .0026 .0025 .0025 Tobacco . Lb. .128 .082 .105 .130 .220 Potatoes . Bu. .915 .464 .395 .823 .517 Barley . Bu. .404 .325 .220 .433 .710 Rye. Bu. .440 .336 .276 .618 . 746 Rice. Bu. .784 .494 .419 .778 .775 Totals . $4.3556 $2.6850 $2.3366 $4.4785 $5.3145 132 INDEX NUMBERS Price levels may be measured by comparing the aggregates of prices for various years with the sum of the prices, or the aggregate of the prices for 1930 as base. These index numbers are given in Table 8.3 for prices listed in Table 8.2; they are found by dividing the sum of the prices of a particular year by the sum of the prices of the same commodities in 1930, and multiplying by 100. The TABLE 8.3 Aggregate Index Numbers for Prices of Tobacco From 1930 to 1934 Year Index Numbers Aggregates of Prices Index Numbers Relative Aggregates 1930 = 100 Index Numbers Relative Aggregates 1934 = 100 1930 $4.3556 100 81.96 1931 2.6850 62 1932 2.3366 54 1933 4.4785 103 1934 5.3145 122 100 last number in the third column of Table 8.3, 122, is a price index number for 1934 and indicates the level of prices of 1934 compared with the level of prices of 1930. This, 122, means that the sum, or aggregate, of the prices of the 10 commodities in 1934 was 122 per cent of the aggregate of the prices for these 10 commodities in 1930. The level of prices for 1934 was much higher than that for 1930. Let po (,) represent the price of the fth commodity for the year which is used as base and pi (i) the price of this same commodity in some year “1”, whose price index number is desired. The aggrega¬ tive index number of prices is represented symbolically as ( 8 . 1 ) I ag. = ( 100 ) Spi (<> 2po (i) Pi (1) + Pi (2) + Pi (3> + . . . + Pi (n) Po a) + Po <2) + Po (3) +. . . + po in) which is the sum of the prices for year “1” divided by the sum of the prices of the same commodities for year “0”, the base year, multi¬ plied by 100. VARIOUS INDEX NUMBERS 133 For example, the aggregative index number of prices for 1932 is 54, which is the sum of the prices of the 10 commodities men¬ tioned above divided by the aggregate of the prices of these same commodities in 1930 multiplied by 100. This type of index num¬ ber is called aggregative since it is the quotient of aggregates. The index numbers in Table 8.3 reveal a decided drop in the level of prices from 1930 to 1932 and a rapid rise from 1932 to 1934. VARIOUS INDEX NUMBERS Other index numbers of prices are obtained from relatives of prices of the commodities for various years with prices of 1930 as bases. These relatives are recorded in Table 8.4. TABLE 8.4 Relative Prices. Prices of 1930 as Bases Crop Unit 1930 1931 1932 1933 1934 Wheat. Bu. 100 58.21 56.57 110.60 131.34 Corn. Bu. 100 54.04 53.54 87.88 142.59 Oats. Bu. 100 66.15 48.76 103.73 152.48 Cotton. Lb. 100 60.00 68.42 102.11 132.63 Sugar, B. Lb. 100 83.33 72.22 69.44 69.44 Tobacco. Lb. 100 64.06 82.03 101.56 171.88 Potatoes. Bu. 100 50.71 43.17 89.95- 56.50 Rice . Bu. 100 63.01 53.44 99.23 98.85+ Barley . Bu. 100 80.45- 54.46 107.18 175.74 Rye. Bu. 100 76.36 62.73 140.45+ 169.55 Totals. 1,000 656.32 595.34 1,012.13 1,301.00 The arithmetic average, the median, and the geometric mean of relative prices for various years have been used as index num¬ bers of prices. These arc given in Table 8.5 for data in Table 8.4. Any one of the columns of index numbers in Table 8.5 gives a good idea of the levels of prices during these depression years. Each set of indexes reveals a decrease of the levels of prices from 1930 to 1932 and an increase from 1932 to 1934. The purpose of index numbers is to show relative changes with respect to some base. 134 INDEX NUMBERS TABLE 8.5 Mean, Median, and Geometric Mean as Index Numbers of Prices. Prices of 1930 as Bases Year Arithmetic Average of Relative Prices Median of Relative Prices Geometric Mean of Relative Prices Prices of 1934 = 100 Mean Median Geometric Mean 1930 100 100 100 88.35 72.72 81.76 1931 65.63 63.53 64.81 1932 59.53 55.51 58.53 1933 101.21 101.84 99.75 1934 130.10 137.52 122.3 100 100 100 The arithmetic average of relative prices is (8.2) V - (100) , , = ^ mean n which was used in finding arithmetic averages in column 2 of Table 8.5. Since there is an even number (10) of commodity prices the medians of relative prices were found by taking the geometric mean of the two middle relative prices for each year. The reason for taking the geometric mean of the two middle relatives instead of the arithmetic average will be given later. These medians appear in column 3 of Table 8.5. The geometric mean of relative prices is written symbolically as (8.3) »/ pi (1) ^po (1) Pi (1) x Pi t2) P o ( 2 ) X Pi (3) Vo (3) x ... X Pi (n) PO (n) ( 100 ). The logarithm of I 0 can be written in terms of the logarithms of the relatives as (8.4) lOg Ig =~ n pi (l> pi (2) pi (3) l°g — 7U + ^ + log —TV, po (1) po 1 -’ po W) + • •. + log Pl (n) po (n) - 4 VARIOUS INDEX NUMBERS 135 which is often used in finding I g . The necessary computations for securing the geometric mean of the relative prices given in Table 8.5 for 1934 are given in Table 8.6. TABLE 8.6 Logarithms of Relative Prices Logarithms of Relative Prices Logarithms of Relative Prices for Given in Column 7 of Table 8.4 1930 with Prices of 1934 as Bases 2.118 4079 1.881 5921 2.154 0970 1.845 9030 2.183 2256 1.816 7744 2.122 6469 1.877 3531 1.839 6375 2.160 3625 2.235 2127 1.764 7873 1.752 0694 1.247 9306 1.244 8768 1.755 1231 2.229 2861 1.770 7139 2.994 9956 1.005 0044 10)20.874 4555, 10)19.125 5444, log = 2.087 4456, -Slog = 1.912 5544, n antilog = I g , antilog = Ig, CO + . . . + p 0 M -qo M Since any year “1” may be taken as the base year, formula (8.5) becomes, if the year “1” is the base year, (8.6) I wt = (100) 2piSi Table 8.7 contains the quantities of commodities whose prices are recorded in Table 8.2. TABLE 8.7 Production of Commodities, 1,000 Units Crop Unit 1930 1931 1932 1933 1934 Wheat. Bu. 889,702 932,221 745,788 528,975 469,496 Com. Bu. 1,733,429 2,229,088 2,514,613 2,038,706 1,107,887 Oats. Bu. 1,277,379 1,126,913 1,246,548 731,500 528,815 Cotton. Lb. 6,966,000 8,548,000 6,501,000 6,523,500 4,865,500 Sugar B. Lb. 18,398,000 15,806,000 18,140,000 22,060,000 14,962,000 Tobacco... . Lb. 1,647,377 1,583,567 1,106,091 1,377,639 1,095,662 Potatoes... . Bu. 332,693 372,994 357,871 320,203 385,287 Rice . Bu. 44,923 44,873 41,250 37,058 38,296 Barley. Bu. 303,752 198,543 302,042 155,825 118,929 Rye . Bu. 46,275 32,290 40,639 21,150 16,040 Totals . 31,639,530 30,874,489 30,915,842 33,794,556 23,614,885 The weighted index numbers of prices of these farm crops appear in Table 8.8 together with Fisher’s* ideal index number, which is written in formula (8.7) (8.7) /ideal = (100) * “The Making of Index Numbers,” by Irving Fisher. TIME REVERSAL TEST 137 TABLE 8.8 Weighted Index Numbers of Prices * Year Aggregative Index Num¬ bers. Prices Weighted by Base Year Quantities 1930 = Base Year Aggregative Index Numbers. Prices Weighted by Quanti¬ ties of Base Year 1934 Fisher’s Ideal Index Numbers 1930 100 77.51 100 1931 61.54 60.57 1932 61.03 59.70 1933 101.60 99.44 1934 138.88 100 133.86 * Prices used to the nearest penny except for sugar b. and its price was used to the nearest nj mill. The numbers given in Table 8.8 reveal a decrease in the level of prices from 1930 to 1932 and an increase in the level from 1932 to 1934. TIME REVERSAL TEST For a number to be a good index number it should meet or satisfy the time reversal test and the factor reversal test. The time reversal test is merely a test to determine whether a given method for finding an index number will work both ways in time, backward and forward. For example, if the price level of 1934 is 150 per cent of the 1930 level, then the 1930 level of 1934 should be 66§ per cent of the 1934 level, or 1.50 per cent times 0.66§ per cent should be equal to unity. In other words, when price data for two years are treated by the same method and the bases are interchanged the first index number of prices should be the recip¬ rocal of the second, and vice versa. The simple index numbers given in Table 8.1 meet the time reversal test. The aggregative index numbers of prices also meet this test, for the index 122, for 1934, with the aggregate of prices of 1930 as bases, multiplied by the index 81.96, for 1930, with the aggregate of prices of 1934 as bases, is equal to 122 X 81.9 6 = (9 g9g) / 10;000 = unity . 138 INDEX NUMBERS In this case the base years were reversed, and the product of the index numbers expressed in percentages is unity. The arithmetic average of relative prices does not meet this time reversal test, for / \ / x £©. 2 © X n n is not always equal to unity. In (Table 8.5) the arithmetic aver¬ age of the relative prices for 1934 with the prices of 1930 as bases is 130.1 and the arithmetic average of relative prices for 1930 with prices of 1934 as bases is 88.35. Their product divided by 10,000 is (130.10 -88.35)/10,000 = 1.149, which shows that the arithmetic average of relative prices does not always meet the time reversal test. The median of relative prices does meet this test when there is an odd number of commodity prices; when there is an even num¬ ber of commodity prices the median also meets this test if the median is considered to be the geometric mean of the two middle relative prices. This is why the geometric mean of the two mid¬ dle relative prices was used for the median of relative prices instead of the arithmetic mean of the two middle relative prices in Table 8.5. The median price index, 137.52, for 1934 with respect to 1930, multiplied by the median price index, 72.72, with respect to 1934, is unity when divided by 10,000, or 137.52 X 72.72/10,000 = 1. Let pi (i) /Po (i) be the middle relative price with regard to the base year “0”; this is the median of the relative prices. The ratio Po U) /Pi U) will be the median of the relative prices with respect to the base year “1”. Their product is of course unity. Let there be an even number of commodity prices and let Pi U) /po U) and pi (i+1) /po pi (i+1) _ * p ^ ' po (i+1) ' this was used as the median of the relative prices. The two mid¬ dle relative prices with regard to year “l” are Po (i) /pi (i) and p 0 (i+1, /pi (i+1) , THE FACTOR REVERSAL TEST 139 and their geometric mean is Po (i) p 0 n+n . pi (i) pi ti4 ' 1) ’ this is used as the median of the relatives with respect to year “1”. The product of the two medians when there is an even number of commodities is unity. The geometric mean of relative prices as an index number always meets the time reversal test for ”/ pi (1) x Pi^ x Pi^ x *7 V 0 (i) Po (2) Po ( 3 ) X V 1 (n) VO (n) x njP0 a) x PO^ x P0 (3) Pi ( 2 ) Pi ( 2 ) Pi ( 3 ) X . . . X Po (») Pi (n) = 1. The product of these for 1934 with respect to 1930 and for 1930 with respect to 1934 is 122.3 X 81.76/10,000 = .9999 =1, approxi¬ mately. The weighted aggregative index numbers of prices do not always meet the first test, for the product X does not Zpoqo Zpiqi always equal unity. For data in Tables 8.2 and 8.7 this product is 138.88 X 77.51/10,000 = 1.08. Example. Prove that Fisher’s ideal index number meets the time reversal test. THE FACTOR REVERSAL TEST To determine whether the factor reversal test is met another index number is formed by interchanging the factors in an index number. The q’s are changed to p’s and the p’s are changed to q’s; the product of the two index numbers then should give the value ratio ._ Zpigi 2pc//o . The weighted aggregative index number of prices ■ -JPiqo Spotfo 2 ^ ^ becomes —- when the factors are interchanged or reversed. The 2ry 0 po price index number I p has been changed to the quantity index number I q . Their product should be equal to the value ratio if the price index meets the factor reversal test. 140 INDEX NUMBERS The index numbers given in this chapter so far which do meet the time reversal test will be examined to determine whether or not they meet the factor reversal test. The “ideal” index number meets this test, for l lpigo ^ / Zqipo SgiPi _ Spigi * Ipoqo Zpoqi ' Zqopo ZqoPi Zpoqo ’ that is, the index of price times the index of quantity should give the value ratio, and it does in the case of the “ideal” index num¬ ber. For data in Tables 8.2 and 8.7 the “ideal” index number is 133.88 when the prices are weighted by the respective quantities and year “0” is 1930; when the factors are reversed the “ideal” index of quantities is 64.16. Their product divided by 10,000 is 133.86 X 64.16/10,000 = .86, which is equal to —- , the value ratio. Fisher’s “ideal” index 2p 0 qo number of prices meets both tests and is considered a good index number. Consider the median of relative prices. To determine whether or not it meets the factor reversal test an index of quantities must be found by changing the p’s to q’s and then finding the median of the relative quantities. Let the median of the relative quanti- q i U) ties with respect to 1930 be and the median of relative prices q o pi (,) be —— . Their product Po (,) P i (i) x Po (i) qo U) should be equal to the value ratio, , if the index number here considered meets this test. The median relative price in Table 8.5 for 1934 with regard to 1930 is 137.52, and the median relative quantity of production for 1934 with regard to 1930 is , . 137.52 X 65.197 65.197. Their product divided by 10 4 is- ^ ^ - = .8966 which is not equal to the value ratio .86. Hence the median of relative prices as an index number does not meet the factor reversal test. THE FACTOR REVERSAL TEST 141 When the p’s are changed to q’s in the geometric mean of rela¬ tive prices the index becomes the geometric mean of relative quan- n /gi (i) (2) g^n) tities of production, \— — X — — X ... X —. If the geometric x g , o Q) qo L ’ qo M mean of relative prices, as an index number, meets the factor reversal test the product # ™ Pi^ Pi ™ x Pi^ P 0 (1) Po (2) Po (3> Po (n) X \go a) Qi ( 2 ) 20 (2) X 21 ( 3 ) 2o ( 3 ) X . . . X 2i (n) 2o (n) should be equal to the value ratio. The geometric mean of rela¬ tive prices for 1934 with respect to 1930 is 122.3, and the geometric mean of relative quantities for 1934 with regard to 1930 is 61.284. Their product divided by 10,000 is not equal to the value ratio .86; hence the geometric mean of relative prices, as an index number, does not always meet the second test. The index number ( 8 . 8 ) I = S(go + qi)pi S(2o + 2i)Po ( 100 ) meets the time reversal test but does not meet the factor reversal test. Fisher recommends it as being the most practicable index number. For data in Tables 8.2 and 8.7 it is 133.86. This index nearly meets the second test. Table 8.9 allows one to compare the “ideal” index numbers of prices and the index number given by (8.8). TABLE 8.9 Ideal Index Compared With Index (8.8) Year “Ideal” Index Number of Prices; 1930 Equals Base Index Number Given by Formula (8.8); 1930 Equals Base 1930 100 100 1931 60.57 60.52 1932 59.70 59.66 1933 99.44 99.57 1934 133.86 134.94 142 INDEX NUMBERS Values in the above table show that there is not a great differ¬ ence between the “ideal” index number and that given by formula (8.8). In the light of the above discussion it seems best to use the “ideal” index number or that given by (8.8). It would prove very helpful to have different index numbers presented in class by different members. For example the Bureau of Labor index numbers, the Federal Reserve Board Index of Fac¬ tory Payrolls. Dow-Jones Stock Price Indexes, Bradstreet Monthly Commodity Index, Export Prices and Import Prices, and others. PROBLEMS 1. Complete column 4 in Table 8.1. 2. Complete column 4 in Table 8.3. 3. Complete Table 8.5. 4. The following table gives prices of maple sirup and numbers of gallons sold from 1924 to 1934. Find the relative quantities and relative prices with the base year equal to 1924. Discuss the trends of quantities and the trends of prices. Quantity and Price of Maple Sirup from 1924 to 1934* Year Quantity Sold, 1,000 Gallons Price per Gallon 1924 3,574 $2.00 1925 2,817 2.08 1926 3,504 2.12 1927 3,429 2.05 1928 2,782 2.02 1929 2,361 2.03 1930 3,641 2.03 1931 2,213 1.72 1932 2,412 1.51 1933 2,186 1.18 1934 2,395 1.13 * These data were taken from the XJ. S. Agricultural Year Book, 1935. 5. The following table gives prices and quantities sold for 10 fruits and vegetables. SPLICING 143 Quantity and Price of 10 Fruits and Vegetables From 1930 to 1934 Crop Unit 1930 1931 1932 1933 1934 Quantity Oranges 1,000 box 55,270 50,166 51,368 47,289 58,351 Price Box *1.64 *1.33 *1.09 *1.59 *1.72 Quantity Apples 1,000 bu. 102,058 106,025 85,575 74,962 75,160 Price Bu. *1.02 $.65 *.62 *.78 *.91 Quantity Peaches 1,000 bu. 54,186 76,689 42,443 44,692 45,404 Price Bu. *.88 $.56 *.53 *.76 *.80 Quantity Pears 1,000 bu. 25,664 23,357 22,050 21,192 23,474 Price Bu. l.i D *.60 *.39 $.55 *.70 Quantity G. Fruit 1,000 box 18,934 15,147 15,149 14,243 18,248 Price Box *1.21 *1.06 *.S4 *1.12 *.92 Quantity Grapes Short ton 2,443,042 1,621,315 2,203,752 1,909,581 1,775,168 Price Ton *19.33 *22.39 *13.16 $17.75 *20.01 Quantity Lemons 1,000 box 7,950 7,800 6,704 7,295 7,500 Price Box *2.35 *1.95 *2.10 *2.35 *2.30 Quantity Tomatoes 1,000 lb. 900,046 897,343 954,159 855,049 958,240 Price Bu. *1.61 *1.10 *1.03 *1.03 *1.30 Quantity S. Pot. 1,000 bu. 53,117 63,043 78,431 65,134 67,400 Price Bu. *1.082 *.725 *.537 *.697 *.807 Quantity Beans 1,000 bag3 13,900 12,843 10,440 12,338 10,159 Price 100-lb. bag *4.19 *2.14 *2.01 *2.79 *3.65 Find the “ideal - ’ index numbers for these data, with 1930 as base, and discuss the result. 6. Find the index numbers given in (8.8) for the data in problem 5. SPLICING Consider the following index numbers of two series. Year Index Number Year Index Number 1930 100 (base) 1934 100 (base) 1931 90 1935 103 1932 82 1936 115 1933 87 1937 120 1934 94 If all indexes in the first series are divided by 94, the index for 1934 in the first series, we will get one series of index numbers for the entire time 1930 to 1937 with 1934 as base. These index numbers are Year Index Numbers 1930 106.1 1931 95.7 1932 87.2 1933 92.6 1934 100.0 1935 103.0 1936 115.0 1937 120.0 This is known as linking, or sometimes as splicing. 144 INDEX NUMBERS PROBLEMS 1. Given the following index numbers: Year Index Number Year Index Number 1926 100 1930 100 1927 104 1931 93 1928 105 1932 78 1929 124 1933 84 1930 198 1934 89 1935 95 1936 97 1937 102 Combine these two series of index numbers with 1926 as base. Combine these two series of index numbers with 1930 as base. 2. Given the following index numbers of prices: Year Index 1930 100 1931 90 1932 76 1933 80 1934 89 1935 95 1936 98 1937 104 Write the indexes with 1934 as base. 3. Notice index numbers in the daily or weekly newspapers. CHAPTER 9 OBSERVATIONAL EQUATIONS HOW OBSERVATIONAL EQUATIONS ARISE Equations which arise from observations or direct measure¬ ments are called observational equations. Let x represent the length of an eraser and y the length of a book. Mark off on the blackboard the length of the eraser twice and the length of the book three times and then measure the entire length. This gives for the first observational equation 2x + 3 y — 38.75 in. Cn the blackboard again lay off the length of the eraser and to the left of this mark lay off the length of the book twice. Measure the distance between the starting line and the finishing line; this gives another observational equation x — 2y — — 10.25 in. Lay the eraser on the board five times and the book once. Mea¬ sure this length. This gives a third observational equation 5x + y = 41.50 in. From direct observation these three equations in two unknowns arose (1) 2x + 3 y = 38.75, (2) x - 2 y = - 10.25, (3) 5x + y = 41.50. The question arises concerning the method of solving these equa¬ tions for x and y. Three methods will be given. First Method. Solve for x and y by using the first two equa¬ tions, then by using the first and third equations, and finally by 145 146 OBSERVATIONAL EQUATIONS using the second and third. Take the average of these solutions. These values are from (1) and (2) x\ = 6.68 in., y\ = 8.46 in., from (1) and (3) xo = 6.60 in., yz = 8.52 in., from (2) and (3) xs = 6.61 in., y% = 8.43 in., the average is x — 6.63 in., y = 8.47 in. The average of these three values may be considered a solution. When these values are substituted in the observational equa¬ tions the following residual errors are obtained: 0.08, 0.06, —0.12. These errors are called residual errors because the real or true errors are not known. The sum of the squares of these residual errors is 0.0244. Secoxd Method. Consider that the first two observational equations are as reliable as any other two. Solving these for x and y gives x = 6.68 inches and y = 8.46 inches. When these values are used for x and y the residual errors are 0.01, 0.01, —0.36, and the sum of the squares is 0.1298. The first two residual errors would be smaller if the numbers were not rounded off to two deci¬ mal places. The sum of the squares of the residual errors for the second method is larger than that obtained from the first method. Third Method, the Least Squares Method. Multiply the first observational equation by the coefficient of x, the second by the coefficient of x in it, and the third equation by the coefficient of x in it, and add. Do the same with the coefficients of y. These calculations give 4x + 6 y = 77.50, x — 2 y = —10.25, 25x + 5y = 207.50, 6x + 9 y -2x+ 4 y 5x + 5 y 116.25, 20.50, 41.50, 30Z + 9y = 274.75, 9 y + 14 y = 178.25. T his gives two equations in two unknowns: 30x +9 y = 274.75, 9x + 14 y = 178.25, which are called normal equations. The following values are obtained by solving the normal equations for x and y, x = 6.61 inches, y = 8.48 inches. The residual errors are: 0.09, +0.10, 0.03, and the sum of the squares of the residual errors is 0.0190, LEAST SQUARES METHOD 147 which is smaller than each of the results given by the first two methods. The third method will be considered the “best” method for solving observational equations. By definition the “best set of values” for the unknowns will be those which make the sum of the squares of the residual error a minimum. Lemma. The quadratic expression ax 2 + 2 bx + c is a mini¬ mum if ax + b = 0, provided a > 0, and b and c are fixed real numbers. Proof: Multiply the quadratic by a and add and subtract b 2 ; this becomes (9.1) a 2 x 2 + 2 abx + b 2 + ac — b 2 = (ax + b) 2 + ac — b 2 . This last expression is a minimum when ax + b = 0, for the per¬ fect square of a real number cannot be a negative number. When (9.1) is a minimum, so is the original quadratic expression. Hence, ax 2 + 2 bx + c is a minimum when ax + b = 0. PROBLEMS 1. Find the minimum of the following quadratic expressions and verify your results by graphs: (a) 3x 2 — 24x + 11; ( b ) 2x 2 + lx — 5; (c) 7x 2 + 42x + 69. 2. Find the “best” values for x and y, the residual error, and the sum of the squares of the residual error, if the observational equations are: 3x + 2y = 23.0, x - y = - 0.8, -2x + 4y = 12.3. LEAST SQUARES METHOD Proof will be given showing that the third method will give the “best” values for the unknowns, or will give values for the unknowns which make the sum of the squares of the residual errors a minimum. Let the following be a set of observational equations: (9.2) a\x + biy = hi, a 2 ]. This is a quadratic expression in x if y is held constant. By the lemma this quadratic expression is a minimum when Za 2 -x + Zab-y — Z ah = 0, or when Za 2 -x + Zab-y = Zah] this is the first normal equation in (9.3). Write the sum of the squares of the errors as a quadratic expres¬ sion in y\ this becomes Ze? = Zb?y + 2(2 abx - 2 bh)y + [( 2 o 2 ) 3: 2 - 2(2 ah)x + 2/i 2 ]. PROBLEMS 149 By the lemma this quadratic expression in y is a minimum, if x is held constant, when 2 b 2 -y + 2 ab-x — 'Zbh = 0 , or when 2 b 2 -y + 2 ab-x = 2 bh, which is the second normal equation in (9.3). The question arises as to what the constants are, that is, what is the constant for y when y is held constant in the quadratic expres¬ sion for x and what is the constant for x when x is held constant in the quadratic expression in y. These are obtained by solving the two normal equations: (9.4) 2 a 2 -x + 2 ab-y = 2 ah, 2 a 6 -x + 2 b 2 -y = hbh, which are the conditions which make the two quadratic expressions minimums. The solution gives values of x and y which make the sum of the squares of the residual errors a minimum, and these values by definition are the “best values” for x and y. PROBLEMS 1. Find the best values for x and y, the residual errors, and the sum of the squares of the errors, if the observational equations are: x + y = 11.45 cm., 3x — y = 3.40 cm., — x + 2y = 11.70 cm. 2. Find the best values for x, y, and z, the residual errors, and the sum of the squares of the errors, if 2x + y + 2 = 19.2, — 2x + y + 2z = 7.2, — x — y — z = 0.1, 3x + 2 y — z = 11.2. 3. Find the best values of x and y if the observational equations are: 2x — y = 0 . 1 , x + 2 y = 4.9, 150 OBSERVATIONAL EQUATIONS -7x- y =+1.1, 3x — y = 1.2, — 5x + 2 y = —0.9. 4. If problem 3 were solved by the first method on page 145, how many pairs of simultaneous equations would have to be solved? 5. How would the lemma on page 147 be affected if a < 0? 6. A surveying crew measures the distance from A to B three times and the distance from B to C once. Another crew measures the distance from A to B twice and the distance from B to C three times. A third crew measures the first distance once and the second distance twice. The following observational equations were obtained: 3x + y = 33.1 miles; 2x + 3 y = 48.3 miles; x + 2y = 29.5 miles. Set up the normal equations, and find the best values for the distance from A to B and the distance from B to C. OBSERVATIONAL EQUATIONS WITH UNKNOWN CONSTANTS In the observational equations of the preceding section the con¬ stants were known, that is, the coefficients of x, y, and z were known. In the example the eraser was laid down twice and the book three times, giving 2x + 3 y = 38.75 for the first observa¬ tional equation. These coefficients arose from observations. Often problems arise which lead to observational equations in which the coefficients are unknown, while certain values of the variables or “unknowns” are given from observation. It has been found by experience that, for fixed ages, weights and heights of men are connected by a linear relation. Let y and x represent respectively -weights and heights of men of a certain age. Let the linear relation which connects weights and heights be: (9.5) y = a + bx. The weights and heights of 10 men are found by direct measure¬ ments. When these 10 values are substituted in (9.5), 10 equa¬ tions arise which will also be called observational equations. The least squares method can be used to find values of a and b, such that the sum of the squares of the residual errors shall be a mini¬ mum. The following data give the corresponding measurements of weights and heights of 10 men of a certain age: 151 EQUATIONS WITH UNKNOWN CONSTANTS Heights Weights Heights Weights in Inches in Pounds in Inches in Pounds X V X y 66.8 139 62.9 119 66.0 117 67.6 146 70.1 150 68.6 137 68.1 166 68.4 174 64.2 122 72.3 141 The observational equations are obtained by substituting these values of x and y in the linear relation between x and y,y = a + bx, which will be called the predicting equation. This equation enables one to predict the weight of a man of this age when his height is known. These observational equations are: (9.6) x y a + 66.8 b = 139, a + 66.0 b = 117, a + 70.1 b = 150, a + 68.1 b = 166, a + 64.2 b = 122, a + 62.9 b = 119, a + 67.6 b = 146, a + 68.6 b = 137, a + 68.4 b = 174, a + 72.3 b = 141. The normal equations are (9.7) Na + 2ari& = 2 yi 2xiO + 2xj 2 6 = 2x; ?/i, where i runs from 1 to iV and where N is the number of measure¬ ments. In the case here considered these equations are: 10a + 675.005 = 1,411, 675.0a + 45,629.485 = 95,508, from which a = — 126.460 and 5 = 3.96385. Hence the predict¬ ing equation is y = - 126.460 + 3.96385x, which enables one to predict weights when heights arc known. 152 OBSERVATIONAL EQUATIONS The quantity y = a + bx = — 126.46 + 3.96385a; is the theo¬ retical weight ; the quantity yo is the observed value. The differ¬ ence between the observed and the theoretical is called the residual error; hence residual error = e = yo — y = yo — (a + bx) = yo — ( — 126.46 + 3.96385x). Substituting the weight and height of the first man in the predicting equation gives the first residual error: ci = 139 - (-126.46 + 3.96385(66.8)) = + 0.675. The residual errors are: ci = 139 + 126.46 - 3.96385(66.8) =+ 0.675 lb. e 2 = 117 + 126.46 - 3.96385(66.0) =-18.154 “ e 3 = 150 + 126.46 - 3.96385(70.1) = - 1.406 “ c 4 = 166 + 126.46 - 3.96385(68.1) =+22.522 “ e 5 = 122 + 126.46 - 3.96385(64.2) = - 6.019 “ e 6 = 119 + 126.46 - 3.96385(62.9) = - 3.866 “ e 7 = 146 + 126.46 - 3.96385(67.6) = + 4.504 “ e 8 = 137 + 126.46 - 3.96385(68.6) = - 8.460 “ e 9 = 174 + 126.46 - 3.96385(68.4) =+29.333 “ do = 141 + 126.46 - 3.96385(72.3) =-19.126 “ The sum and sum of the squares of these errors are respectively: 2ei = + 0.003 lb., Ze; 2 = 2,208.501 The standard error of prediction is by definition the square root of the average of the squares of the residual errors and is Ce = = \/220.8501 = 14.861 lb. Examine each of the above errors as to its size in standard errors of prediction. The symbol h y — {Mx> -j- h x )b, where h y is the provisional mean taken from each y and h x is the provisional mean taken from each x measurement. The standard error of prediction can now be written in terms of the new set of data as follows: (9.19) (2xy) 2 n2x 2 (Sxy ) 2 n2x' 2 (2 y') 2 /n n [2 x'y' - (2xQ(2 y')/nY n[2x' 2 - (2x') 2 /«] These formulas appear to be more complicated than the others, but they are not so complicated as they appear. In analyzing a problem of this nature the following 6 summations must be computed: n, 2x', 2x' 2 , 2 y', 2 y'\ 2 x'y' The values of a, b, and a e can be immediately obtained. It is best to calculate the following (9.20) (2 y ') 2 y ,-/2 _ y ,/2 _ "y — n 2x' 2 = 2x' 2 - (2x') 2 9 n 2 x'y' = 2 x'y' (2xQ(2yQ n and then substitute them in (9.19) and the formulas for a and b. Example. Given the following weights and corresponding right thigh measurements of the 10 men of the example at the beginning of this chapter. Assume that weights and right thigh measurements are related linearly; find the predicting equation and cr e . COMPUTATIONS BY USE OF PROVISIONAL MEAN 161 y x y X Weights Right Weights Right in Pounds Thigh Meas. in Inches in Pounds Thigh Meas. in Inches 139 20.0 119 19.5 117 19.0 146 22.2 150 20.4 137 21.5 166 24.0 174 24.2 122 19.5 141 21.2 Let 140 be h v and 21 = h x . After these have been subtracted from the above data we get the following y' Xc 2/ x' - l -1.0 -21 -1.5 -23 -2.0 + 6 + 1.2 + 10 -0.6 - 3 +0.5 +26 +3.0 +34 +3.2 -18 -1.5 + 1 +0.2 From these the fundamental summations are found to be 2*' = 1.5, 22/1= 11, = 30.83, Zy' 2 = 3,273 Zx'y’ = 292.2, Zx' 2 = 30.605, Zy' 2 = 3,260.9, Zx'y' = 290.55, from which a =—59.689, b = 9.49355, a c = 7.0887. The predicting equation is y =-59.6885 + 9.4935 x. The standard deviation, a e = 7.089 pounds, is much smaller than that found when predicting weights from heights and weights from chest measurements. Hence right thigh measurements, for these 10 men, are better for predicting weights than heights or chest measurements. Theorem 9.1. The sum of the residual errors is equal to zero. Proof: Let us use the predicting line in the form y = bx. The residual errors are now ei = yi — bx i, 62 = 2/2 — bx 2 , 63 = #3 — bx 3, 6n ]] n bx n Add 2e = Zy — bZx = 0 + b-0 = 0. 162 OBSERVATIONAL EQUATIONS This shows that the predicting line is similar to a real mean, since the sum of the deviations from it is zero. The standard error of prediction is very similar to a standard deviation. Sometimes the predicting line is spoken of as a “moving average.” PROBLEMS 1. The following table contains the average length of intestines of birds in centimeters and the average weight of the body in grams. Find the (linear) predicting equation for predicting intestine length from body weight and the standard error of prediction.* Average Length of Intestines of Several Birds, Centimeters 4.3 5.8 6.5 7.3 8.4 9.0 9.7 10.2 11.0 11.6 12.4 12.6 Average Weight of Several Birds, Grams 1.5 2.7 3.6 4.2 5.4 5.9 6.5 7.3 8.1 8.8 9.7 9.8 2. The following data give the ages in years and heights in inches for a group of girls, where x represents ages and y represents heights: X y X y X y X y X y X y 4 40 7 50 9 56 11 50 13 60 16 60 4 42 7 50 9 58 11 54 13 60 16 64 5 42 7 52 9 58 11 54 13 58 16 62 5 44 8 54 10 48 11 58 13 64 16 62 5 46 8 54 10 46 11 60 14 58 17 64 6 44 8 56 10 50 11 60 14 66 17 66 6 46 8 56 10 50 12 56 14 64 17 64 6 50 8 58 10 54 12 58 14 60 18 64 6 48 9 50 10 56 12 58 15 66 18 66 7 48 9 52 10 60 12 64 15 64 18 62 7 48 9 54 11 48 12 62 15 62 19 68 * Taken from “Experiments and the Digestion of Food by Birds,” by James Stevenson, Wilson Bulletin, Vol. XLV., No. 4, 1935, pages 155-167. EQUATIONS IN MORE THAN TWO UNKNOWNS 163 Find the predicting equation for predicting heights from ages. Find the average height for each group, and plot these points on the same graph with the predicting line. What does the predicting line actually give for a predicted value? PREDICTING EQUATIONS IN MORE THAN TWO UNKNOWNS Assume that 3 variables x, y and z are connected linearly as (9.21) y = a + bx + cz, where y is predicted from the values of x and z. Here there will be n observational equations and three normal equations in three unknowns. The number of normal equations can be reduced to two if the predicting equation is written in terms of the deviations from the means, viz.: y — a' + bx + cz. There are still 3 unknowns, a', b, and c, and it does not appear as though there will be a reduction of normal equations. Examine the normal equations na' + 2 xb + 2zc = 2 y, 2 x-a' + 2 x 2 -b + 2 xz-c = 2 xy, 2 z-a' + 2 xz-b + 2 z 2 -c -- ~Ezy, The sum of the deviations from the mean is zero; hence 2x, = 2 y = 2z = 0, and the first normal equation reduces to na' = 0; hence a' = 0. The above three normal equations become: 2 x 2 -b + 2 xz-c = 2 xy, Hxz-b + 2i 2 -c = 2 zy. The predicting equation becomes (9.22) y = bx + cz. To be able to use this predicting equation for predicting, the deviations from the mean of the x’s and the deviations from the mean of the z’s must be known; this then gives for the predicted value of the y a deviation from the mean of the y’s. Measure¬ ments, as a rule, are not given in terms of deviations from the mean; hence the last predicting equation is impracticable. Pre¬ dicting equation (9.21) should be used for predicting after the 164 OBSERVATIONAL EQUATIONS constants are found by using (9.22). The quantities b and c in (9.22) are the same as in (9.21), for y = bx + cz can be written as y-M v = b(x-M x )+c(z-M 2 ), or y= (M v —bM x —cMJ+bx+cz, which is (9.21) if (9.23) a = M v - bM x - cM z . Equation (9.22) is used to reduce the number of normal equa¬ tions by one. This enables one to find b and c much more quickly. When b and c are found, a can be found easily by using (9.23). Equation (9.22) can be obtained from (9.21), as was done on page 158. The standard error of prediction is for this case: (9.24) G e — b • 2x?/ — c ■ ~Zzy n Consider the problem of finding the predicting equation for predicting weights from heights and thigh measurements by using the data on pages 151 and 161. Let the linear relation be y = a + bx + cz, or y = bx + cz, where y represents weights, x represents heights, and z right thigh measure¬ ments. The normal equations, if the second equation is used, are 2x 2 -5 + 2xz-c = 2 xy , 2 zx-b + 2 z 2 -c = 2 zy. or 2 x' 2 b + 2x'z'c = 2 x'y\ Zx'z'b + 2z' 2 c = 2 z’y'. Using hy = 140, h x = 67, h 2 = 21, the data reduce to the following: y' x' z! y' x' z' - l -0.2 -1.0 -21 -4.1 -1.5 -23 -1.0 -2.0 + 6 +0.6 + 1.2 + 10 +3.1 -0.6 - 3 + 1.6 +0.5 +26 + 1.1 +3.0 +34 + 1.4 +3.2 -18 -2.8 -1.5 + 1 +5.3 +0.2 2 y' = 11, 2x' = 5.0, 2 z' = 1.5, 2 y' 2 = 3,273, 2x' 2 = 69.48, 2z' 2 = 30.83, PROBLEMS 165 2y' 2 = 3,260.9, 2x' 2 = 66.98, 2 z' 2 = 30.605, 2 x'y' = 271.0, 2 x'z' = 21.05, 2 z'y' = 292.2, 2*y = 265.5, 2x'r = 20.30, 2 z'y' = 290.55. The normal equations are 66.986 + 20.3c = 265.5, 20.306 + 30.605c = 290.5. from which 6 = 1.362, c = 8.586. From (9.23) a =-132.429. The predicting equation is y = -132.429 + 1.362x + 8.586z, and the standard error of prediction is a e = 6.361 pounds. The size of the standard error of prediction shows that weights are better predicted from heights and right thigh measurements together than from either one. Compare the 1 , the standard error of prediction which is positive or zero would be imaginary, as is seen by exam¬ ining (10.3). If r =± 1, then 2x 2 - (2x) 2 ][n2y 2 - (2y) 2 ] ' If values of x and y are large it will shorten calculations by subtracting provisional means, and then using the new set of data. The value of r, obtained from (10.8), is Hxy Zx'y' (10.9) r vz = - - = ■ . . ■ V2x 2 -2y 2 V2x' 2 -2y' 2 nSxV - (Sx'XSyQ V[n2x' 2 - (2x') 2 ][nZy' 2 - (2 y') 2 ] ’ where the primes represent values after provisional means have been subtracted from the variates. Example. Find the coefficient of correlation between weights and right thigh measurements of men if the following measurements are given. Weight in Pounds y Right Thigh, Inches X y — 140 y’ x — 21 x' x'y’ 139 20.0 - 1 -1.0 + 1.0 117 19.0 -23 -2.0 + 46.0 150 20.4 + 10 -0.6 - 6.0 166 24.0 +26 +3.0 + 78.0 122 19.5 -18 -1.5 + 27.0 119 19.5 -21 -1.5 + 31.5 146 22.2 + 6 + 1.2 + 7.2 137 21.5 - 3 +0.5 - 1.5 174 24.2 +34 +3.2 + 108.8 141 21.2 + 1 +0.2 + 0.2 + 11 + 1.5 +292.2 30.83 3,273 PROBLEMS 171 Using (10.9) _ _ 10(292,2) - (1.5)(11) _ "\/[10(30.83) - (1.5)*] [10(3,273) - (ll) 2 ] r vx = 0.9197. OTHER FORMS OF 1 UX The correlation coefficient can be written as 2 xy — nM x M v 2x'?/ — nM x 'M v > T yx = * Tiff xffy Tiff xfff The standard error of prediction is 2 _ 2?/ 2 — a'Zy — bZxy 2 ~ ' = a y y / 1 — r 2 ; hence r 2 = 1- — = 1 — 2£ 2 which gives r in terms of the summations 2 y, 2 y 2 , 2 y 2 , 2 xy, and the constants a and b. G X -v ~ 2 x — y 2 2(x — y — M x _ v ) 2 2(x — M x — y + M y ) 2 n n n 2 (s - y) 2 2x 2 22xy 2 y 2 22xy , , d - = a* 2 -b 1 - vT 0.1 0.99 0.995 0.005 .2 .96 .980 .020 .3 .91 .954 .046 .4 .84 .947 .053 .5 .75 .886 .134 .6 .64 .800 .200 .7 .51 .714 .286 .8 .36 .600 .400 .9 .19 .436 .564 .92 .15 .392 .608 .94 .12 .341 .659 .96 .08 .280 .820 .98 .04 .198 .811 1.00 0.00 0.000 1.000 The question arises as to the importance of r yx in predicting values of one variable when values of the others are known. If the correlation coefficient r yx = 0 , the predicting equation reduces to y = M y , which means that for each value of x the predicted value of y is always equal to M y . This will be considered a mere guess for the value of y. In this case the standard error of predic¬ tion is a e = a y . If r yx = 0.5, then a e = 0 . 8660 -^; this value of a e is 0.134 of what it was when y was predicted by a mere guess. If all the y ’s had been multiplied by 0 . 866 , then *7 2 — —- 2x 2 2 Z 2 -(2xz) 2 W?[> 2z 2 (2xy) 2 + 2x 2 (2zy) 2 — 22xz2xy2zy [2x 2 2z 2 — (2xz) 2 ]2?/ 2 — (Xy A/ 1 Ry.xJ^j where /2z 2 (2xy) 2 — 22xy2xz2zy + 2x 2 (2zy) 2 (10.14) R u .„ =\ [2x 2 2z 2 — (2xz) 2 ]2y 2 which is called the multiple correlation coefficient. The standard error of estimate may be written as I (2 xy) 2 (2zy) 2 2IxzZzy2xy I 2x 2 2 y 2 + 2z 2 2?/ 2 2z 2 2y 2 2x 2 X 2x 2 2z 2 or r 2 TyxT xz r zy T~ Ty? (10.15) — O'y'V 1 — 1 _ 2 > -*■ ' xz hence the multiple correlation coefficient is equal to _ ~ C 2‘ r yx r vz r xz ~t~ r zd (10.16) Ry.xi — "Y 1 _ r 2 The multiple correlation coefficient is given in (10.14) in terms of the fundamental summations; it is given in terms of the Pearson linear correlation coefficients in (10.16). Formula (10.14) is the most practical one to use. As in the Pearson linear correlation coefficient, the multiple correlation coefficient cannot be greater than 1 or less than — 1. It is always considered to be positive. The symbol Ry. xl means the multiple correlation coefficient between y and x and z. It arose from a linear relation connecting y with x and z. The points are scattered about a plane in three dimensions. 1S8 CORRELATION COEFFICIENT Example. The multiple correlation coefficient between weight, and heights, and right thigh measurements, by using data on page 165, and formula (10.14), is R icl. ht ch / ( 30.605) (265.5) 2 - 2(265.5) (20.3) (290.6) + 66.98(290.6) 2 ” \ [(66.98) (30.605) - (20.3) 2 ] (3,260.9) = 0.947. PROBLEMS 1. If the multiple correlation coefficient is 1, and r vx = 0.1, r s „ = 0.2, find r xz , and discuss your results. 2. (a) If r IV = r 2v = 0, what does R u . xz equal? Discuss this situation. (5) If r xv = R v . X z — 0, what does r zv equal? Discuss this situation. 3. Discuss the situation when r xv = ?•*„ = 1 in formula (10.15). Make a drawing to illustrate. 4. Find the multiple correlation coefficients between weights, heights, and chest measurements, if it is assumed that y = a + bx + cz, where y represents weights, x heights, and z chest measurements. Use the data on pages 151 and 157. 5. Assume that the four-year average grade is linearly connected with freshman mathematics grades and freshman English grades. Find the multiple correlation coefficient between four-year average and freshman mathematics and English grades if the following data are given for men. These data were taken from records at the University of Texas. Mathe¬ English 4-Year Mathe¬ English 4-Year matics Averages Averages matics Averages Averages Averages Averages 68 75 74 79 68 72 75 82 74 68 72 68 78 82 84 85 75 79 95 88 90 72 82 78 82 72 79 88 68 77 65 68 67 85 86 84 78 92 80 85 85 85 75 68 76 90 88 90 85 81 80 79 82 79 72 75 76 78 68 70 82 82 78 50 65 72 72 60 72 82 75 85 82 78 80 MULTIPLE CORRELATION—OVER THREE VARIABLES 189 6. Discuss the situation when r xz = 1, in formula (10.16). 7. When will r xy = r xz = r zy = R y xz l 8. Given that r vx = 0.62, r vz — 0.94, r zz = 0.34; find R v _ xz . 9. Express the predicting equation y = bx + cz in terms of standard deviations, and correlation coefficients. 10. Find Ry.xz when r xy = r xz = r zy — 0.999. MULTIPLE CORRELATION WHEN THERE ARE MORE THAN THREE VARIABLES Assume that the variables y, x\, X 2 , . . . , x a are connected by the linear relation y = cixi + c 2 x 2 + . . . + c a x a . The normal equations are ciZxi 2 + c 2 2 xiX 2 + . . . + c s 2* \x a = 2a hy, Ci2xjX 2 + C22X2 2 + . . . + C s 2*2*8 = 2x2 y, Cl 2*1*3 + C22x2X3 + . . . + C 3 2x3X s = 2x3 y, Ci2xix s + c 2 ^x 2 x a + . . . + c s 2x a 2 = 2 x s y, from which 2*i y 2*2 y 2 x 3 y 2xiX2 2* 2 2 2*2*3 2*1*3 2*2*3 2x 3 2 2*1*8 2*2*8 2*3*8 S x a y 2X2* 8 2*3*8 2 2xixi 2*1*2 2*1*3 2*1*8 2xix 2 2*2*2 2*2*3 2*2*8 2*1*3 2*2*3 2*3*3 2*3*, 2*i*, 2*2*8 2*3*, 2*,*8 190 CORRELATION COEFFICIENT Remembering that 2xiX,- = no H ■ o Xj ■ r XjXj . the quantity ci becomes Cl n a i fx a y no X2 ) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 9 28 66 121 175 197 175 121 66 28 9 2 1 The mean, standard deviation and skew¬ ness are as follows: M v = 7.0000, cr„ = 2.002, a 3 -.v = 0.0000. 1,001 201 202 SAMPLING From this parent distribution 400 samples, each of 200 variates, were drawn at random. Cards with the variates written thereon were put in a bag, from which drawings were made. The average of each sample of 200 was obtained, giving 400 values. These 400 values formed the frequency distribution given below, which is the distribution of the means of these 400 samples. Classes z M 6.625-6.674 0 6.675-6.724 2 6.725-6.774 12 6.775-6.824 20 6.825-6.874 22 The mean, standard deviation, 6.875-6.924 46 and skewness of the distribution of 6.925-6.974 57 the means are as follows: 6.975-7.024 66 7.025-7.074 55 M z = 7.0055, 7.075-7.124 50 = 0.121, 7.125-7.174 40 a 3 : 2 = 0.0001. 7.175-7.224 15 7.225-7.274 11 7.275-7.324 3 7.325-7.374 1 400 The mean of the parent is 7.0000, and the mean of the distribution of sample means is 7.0055. These values are nearly the same. The standard deviation of the parent distribution is 2.002; the standard devia¬ tion of the distribution of sample averages is 0.121. (These distributions were taken from “An Application of Thiele’s Semi-Invariants to the Sampling Problem,” by C. C. Craig, Metron, Yol. 7, No. 4, 1928, pages 3-75.) The smallness of the standard deviation of the distribution of the sample averages shows that all the sample averages are very near their mean and the mean of the parent. The range of the variates in the parent is 15, while the range of the distribution of sample means is only 0.75, which again shows how near the variates in the distribution of sample averages lie with reference to the mean of the sample averages and to the mean of the parent. Compare the s — r r where i ^ j. The sum of the square terms was found by adding the squares of the variates in each row. Since there are r squares in each row and a C r rows, there are r- S C T variates squared in all the rows. The average of these square terms is S where the summation runs from 1 to s. Since each variate squared appears as often as any other and since there are s variates, then putting an s in the denominator gives the number of times each variate squared appears. The sum of the product terms is found in a similar manner. There are £2 product terms in each row and s C r rows, hence there are r C 2 - s C r product terms in all rows. Each product term like V 3 V 7 appears as often as any other product term. As there are S C 2 possible product terms the average of the product terms is equal to 2- T C2- a Cr'2ViV j Dividing by a C 2 gives the number of times each product term is repeated. S The summation, 25,-5,-, i 7 ^ j; can be expressed in terms of 2iq 2 . The sum of the deviations of the variates from the mean of the variates is zero as was proven in an earlier chapter, hence 0 = (h + v 2 + ... + v a ) 2 = 'Lv? + 225,1), • , i 9 * j, or ( 11 . 3 ) 22 vj)j = — 25 2 . 208 SAMPLING Substituting this in the expression for n 2 -.z, gives Therefore (11.4) M2:z 1 r — 1 ~ M2 : v r M2 : v r L s — 1 Gz s — r r(s - 1) ov This formula shows that the standard deviation of all possible sample averages is equal to v(s — r)/r(s — 1) times the standard deviation of the parent. This gives the standard deviation of the distribution of sample averages in terms of s, the number of variates in the parent; r, the number of variates in each sample; and a v , the standard deviation of the parent. When the mean and standard deviation of the parent are known, the mean and standard devia¬ tion of the distribution of sample averages can be obtained. PROBLEMS 1. Given a parent population of 5 variates, v h v 2 , v 3 , v t , v 3 . Set up all possible sample averages of 3 variates, find the z’s and the standard deviation of all possible sample averages, where repetitions are not allowed. 2. Given a parent population consisting of the heights of 1,000 men, with mean 67.6 inches, and standard deviation equal to 2.5 inches. Find the standard deviation of all possible sample averages if each sample contains 200 men. If each sample contains 500 men. If each sample contains 800 men. _ 3. Plot i i = 1 s( 8 C r ) GC 2 )GC r ) ,*^ i [mG :, - tY T (*V 2 i : • “ s mG :.)] J (2^) 2 = S 2 M V 2 r— 1 s(s-l) s(mG :* — M ,2 1 :«) r L s — 1 s(r — 1) r(s — 1) M2 Thus the average of all possible second moments about the means of the respective sample means is , s(r — 1) (11-8) Mh2:z = - — M2 :v) r(s — 1) which is not the same as the second moment about the mean of the parent. The quantity Mm 2 : z is the average of all second moments of the samples about the respective means of the samples. Take at random a sample of r variates from a parent population and find the second moment of this sample about its mean; this may be a value which is not far from Mm 2 ■. z, and again it may not be. Take several samples, and find the average of their second moments about their respective means. This average will be a better estimate of Mu 2 : * than the second moment about the mean of just one sample. The quantity Mm 2 -. z will be considered to be the best value for the second moment about the mean of any par¬ ticular sample or the average of the second moments about the means of several samples. Since Mm 2 : z is never known, an esti¬ mate of it will be considered to be the second moment about the mean of a good-sized sample. We shall call the second moment about the mean of a sample the square root of Mm 2 :2 , or ^sample ^ ^ M2 : z ^parent s(r - 1) r(s - 1) As a rule, the parent population is not known, and hence oo formula (11.9) reduces to ( 11 . 10 ) or Oz = S V V~r’ which is the standard deviation of the sample means when the parent population is not known, and is considered to be the most plausible value. The numerator s. I 2v 2 . - = V-7,1 v r — 1 in the right-hand member of (11.10) is considered to be the best estimate of the stand¬ ard deviation of the parent population from which the sample came. / / 2D 2 vis a v = yj - the best The standard deviation of a set of r items estimate of the standard deviation of the parent from which a It is not the exact value sample of r items came is s, 'v = J- * 1 hv 2 1 and may not be the best that can be obtained, yet it is used as an estimate of the true value. Formula (11.9) is not an exact formula because we do not know how near the standard deviation, 2 , V 3 , ■ ■ ■ , v n , the errors from the mean of measurements of w be w\, ijbo, w 3 , . . . , w n , and the errors for the sum be di + w,-. Then ]2vi 2 i 2 Wj 2 | 2'EviWj it is found to be the standard deviation of the means of the y arrays divided by the standard deviation of the y’s for the entire distribution; it can be found from a correlation surface table similar to that on page 178. In a similar way it can be shown that ( 12 . 11 ) X where T > is the sum of the x values in the zth x array on y, Ti/f Zi is the mean of the zth x array; M x is the mean of the x’s for the entire distribution. The following example will show the difference between r, r, Vyij and rjiy. Table 12.1 gives data pertaining to observed tree radii at breast height and areas of cross sections at this height. The radius of a tree at breast height is the average of the maximum and minimum radii. Areas of cross sections are obtained by a planimeter. Values in row S in the above table are found by summing the y' values, which are multi¬ plied by the particular x' in finding the sum of the products, Sx'z/'. The first value in row S, —16, is found by multiplying y’ = —4 by its fre¬ quency 4. The third number, —41, in this row is found by summing the values of y' which are multiplied by x' = — 2 in finding the sum of the products ~2x'y'. There are 3 values of x’ = —2 and y' = —4, 9 values of x’ = — 2 and y' — — 3, and 1 value of a;' = — 2 and y' = — 2; hence the sum of these y' values which are to be multiplied by x = — 2 is 3( —4) + 9(— 3) + 1 ( — 2) = —41; and so on for the other values in row S. The sum of the quantities in the row designated by S-x r is the sum of the product terms, or 'Zx'y'. Values in column T are obtained in a similar way. The second value, 27, in this column is found by finding the sum of the x' values which are multiplied by y' = 2 in finding the sum of the product terms. There are 3 values of y' = 2 and x = 4 and 5 values of y' = 2 and x' — 3; hence the sum of these x' values which are multiplied by y = 2 in finding the sum of the product terms is 3(4) + 5(3) = 27. The sum of the values in the column represented by Ty' is the sum of the product terms or Z.t y. The sum of the Ty ' column should equal the sum of the Sx' row. The rows S 2 and S 2 /f are used in finding y yx . The quantities rj yx and t] xu are not always equal. The sum of the values in the row designated Correlation Surface Table for the Radii of Trees and the Areas of the Cross Sections at Breast Height x radius CORRELATION RATIO 229 ci Si 128.000 91.125 146.260 49.846 14.205 8.036 76.409 93.091 606.972 C-4 Si 1,024 729 3,364 1,296 625 225 1,681 1,024 Si 96 54 58 o -25 30 CO CM 128 464 &■« 32 27 58 36 25 iO T i—i l -32 d 72 32 23 o 44 112 198 176 657 24 CD l-H 23 o 1 -56 99- -44 — 7 *?> CO o 7 1 CO 1 Tf< 1 00 00 23 26 44 28 22 - 170 90 688 594.681 -52 816 6,820 5.25 — 00 CO Ol 48 192 CO * 3 2x' 3 + 6/i 2 u> 2 2x' 2 + 4/i 3 ie2x' + nh 4 . * In Table 12.1 frequencies of y-arrays are f z - f Formulas (12.10) and (12.11) hold for deviations from provisional means, as can be seen by examining formula (12.7). CORRELATION RATIO 231 From the sums of the last two rows in the table and the other computed values this sum according to (12.13) is 2x 4 = 67,879.39; hence a = 3.1556. The non-linear correlation coefficient r is r = V8,757 = 0.9358. The values of r and y yx are nearly the same because the means of the y arrays lie close to the predicting line y = 3.1556a; 2 . The above example shows that it is much easier to obtain y yx than r. If the predicting equation is a straight line the linear correla¬ tion coefficient is r xy = 0.9295+. Linear regression should not be used here for the data fit a curved line much better than a straight fine. The example shows the meaning of r yx , r yx , rj yx , and rj xy . The correlation ratio should be used for non-linear correlation, for it gives a measure of dependence based upon the means of the y arrays as the predicted values. 1. For the following data find the linear correlation coefficient and the two correlation ratios. No. of bracts per inflorescence of Daucus carota (wild carrot) for first branch terminal inflorescence O t-i o a, o c3 S-H X5 O 7 8 9 10 11 12 13 13 1 12 2 11 10 4 10 0 1 10 13 7 9 1 12 23 14 6 8 3 9 11 7 2 232 NON-LINEAR REGRESSION 2. Rats were fed on a diet containing fixed amounts of vitamin G with the following data pertaining to gains in grams for a certain period. Amount of Vitamin G Gain .5. +2 .5. - 3 .5. +8 .5. +15 .5. +3 .5. 5 .5. 10 .5. 6 Amount of Vitamin G Gain 1.5. 20 1.5. 28 1.5. 33 1.5. +30 1.5. 25 1.5. 30 Amount of Vitamin G Gain 1. 14 1. 20 1. 8 1 . 17 1. 26 1. 18 1. 16 Amount of Vitamin G Gain 2 . 31 2. 35 2. 36 2. 28 2. 29 2. 38 2. 36 Find the correlation ratio between amount of vitamin G and gain in weight. Wholesale Prices per Pound of Butter CHAPTER 13 THE ANALYSIS OF TIME SERIES SECULAR TREND Time series arise when one considers prices, yields, rates, etc., for a period of time intervals. During each time interval there is a price of a certain commodity, a yield of a certain crop, a rate of exchange of money for a certain country, etc. These values, respectively, form time series. The object of this chapter is to point out some of the ways of analyzing times series. Three char¬ acteristics of such series, namely, secular trend, seasonal varia¬ tions, and cycles, will be introduced together with methods for obtaining them. Fia. 13.1. — Average monthly wholesale prices of butter and the straight line trend for yearly averages. Consider prices of butter for each month from 1928 to 1934 as given in Table 13.1. These prices, plotted in Fig. 13.1, show a downward trend for this period of 7 years including depression years. This trend appears to be linear for most of the data; hence 233 234 THE ANALYSIS OF TIME SERIES a straight line was fitted by the method of least squares to the yearly averages given in Table 13.1. This straight line is (13.1) y = 8,818.28 - 4.55x, where x represents years and y represents expected yearly averages. This fine, shown in Fig. 13.1, inchoates the general downward trend of these prices of butter. Equation (13.1) will be used as the trend fine for this time series. A second-degree curve might have been used instead of a straight line, for there is an upward trend in prices of butter from 1932 on. A smooth curve may be drawn in freehand which with care will give a very good trend curve. The slope of the trend line (13.1) is —4.55, meaning that during 1 year the price of butter dropped 4.55 cents. The drop per month is 1/12 of this, or 0.38 cent. TABLE 13.1 Average Wholesale Prices per Pound of Butter, 92-Score Creamery at Chicago* Year Jan. Feb. Mar. Apr. May Jun. July Aug. Sep. Oct. Nov. Dec. Ave. 1928 48.76 46.62 49.44 45.49 44.93 44.13 44.93 46.94 48.75 47.79 50.57 50.46 47.40 1929 47.94 49.89 48.45 45.35 43.54 43.54 42.42 43.45 46.22 45.56 42.70 41.1C 45.01 1930 36.63 35.70 37.27 38.53 34.85 32.93 35.31 38.92 39.77 39.98 36.09 32.18 36.51 1931 28.50 28.40 28.88 26.10 23.70 23.33 24.95 28.12 32.50 33.76 30.93 30.55 28.31 1932 23.59 22.46 22.61 20.08 18.84 16.99 18.18 20.31 20.76 20.72 23.30 24.11 21.00 1933 18.85 18.65 18.17 20.66 22.54 22.84 24.53 21.31 23.60 24.04 23.60 20.08 21.66 1934 19.84 25.35 25.35 23.66 24.49 24.8S 24.49 27.3S 25.78 26.93 29.36 30.95 25.71 Ave. 32.16 32.44 32.88 31.41 30.41 29.81 30.69 32.35 33.91 34.11 33.79 32.78 * Center at middle of month. SEASONAL VARIATIONS The average of the January prices is 32.16; the average of the February prices is 32.44. These averages, listed in Table 13.2, contain the effect of the trend. To find the seasonal variations of prices it is necessary to remove the effect of trend from these averages for the monthly prices. To remove trend from the prices it is necessary to add 0.38 cent to the average February prices (since the trend is downward) and 0.76 cent to the average March prices, etc. These averages with the effect of trend removed are given in the second column of Table 13.2. These values are now written as percentages of the average of the values in column 3; SEASONAL VARIATIONS 235 TABLE 13.2 Construction of Indexes of Seasonal Variations From Arithmetic Averages of Actual Prices Month Average Monthly Prices per Pound Average Corrected for Secular Trend Indexes of Seasonal Variations Jan. 32.16 32.16 93.71 Feb. 32.44 32.82 95.63 Mar. 32.88 33.64 98.02 Apr. 31.41 32.55 94.84 May 30.41 31.93 93.04 June 29.81 31.71 92.40 Jul. 30.69 32.97 96.07 Aug. 32.35 35.01 102.10 Sep. 33.91 36.95 107.66 Oct. 34.11 37.53 109.35 Nov. 33.79 35.59 109.53 Dec. 32.78 36.96 107.69 Ave. 34.32 100.00 these are called the indexes of seasonal variation and indicate how the seasons of the years affect prices, or how prices fluctuate for Fid. 13.2. — Seasonal indexes pertaining to prices of butter based on averages of actual prices and chain relatives. the different periods of the year. These indexes show a decrease from March to June, an increase from June to November, and a decrease from November to January. These indexes of seasonal variation are plotted in Fig. 13.2. 236 THE ANALYSIS OF TIME SERIES PROBLEMS 1. The following table contains the average price in dollars per 100 pounds of milk received by producers in the United States 1930-1934. Year Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec. 1930 2.53 2.44 2.38 2.35 2.28 2.22 2.15 2.18 2.25 2.30 2.31 2.20 1931 2.04 1.96 1.92 1.85 1.73 1.66 1.62 1.64 1.70 1.72 1.73 1.67 1932 1.56 1.49 1.43 1.39 1.29 1.17 1.20 1.21 1.25 1.28 1.26 1.26 1933 1.25 1.16 1.10 1.08 1.14 1.21 1.33 1.39 1.47 1.51 1.51 1.49 1934 1.44 1.48 1.50 1.46 1.45 1.47 1.50 1.52 1.57 1.60 1.65 1.69 Find the linear trend line for the yearly averages. Plot this with the data. 2. Find the seasonal variations and plot them. LINK RELATIVE METHOD OF FINDING SEASONALS Another method of finding indexes of seasonal variations is by using link relatives. A link relative of prices is the ratio of the price for 1 month to the price of the preceding month. The price of each month must be expressed as a percentage of the price of the preceding month; that is, the January price is expressed as a percentage of the December price, the February price as a percent¬ age of the January price, etc. Table 13.3 contains the link rela¬ tives of prices given in Table 13.1. The medians of the link rela¬ tives of prices for the various months are recorded in the first col¬ umn in Table 13.5. These median link relatives measure monthly fluctuations in terms of a shifting base, each monthly price being the base for the next monthly price. Chain relatives are constructed for the purpose of giving one base monthly price. The median for the link relatives of prices for Januaries will be considered 100. The February median is 97.46 and the February chain relative is also 97.46; the March chain relative is 100.67 X 97.46, or the median for the March link relatives times the February chain relative. The April chain rela¬ tive is equal to the April median times the [March chain relative, or 93.33 X 98.11 = 91.57.* These chain relatives are listed in column 2 of Table 13.5. The December chain relative times the January median should give 100 if no trend were present. The December chain relative times the January median gives 103.29 X 89.12*= 92.05 instead of 100, * Divided by 100. TABLE 13.3 —Link Relatives of Prices of Butter Given in Table 13.1 LINK RELATIVE METHOD OF FINDING SEASONALS 237 Dec. + 00 iO l> t>- C30 00 Ol ninhn-^o^ 03 CO 03 00 CO LO 1C 03 03 00 C3 o 00 o 96.85 98.77 + -+- 03 1> Ol iD I'- 03 id r- > co 03 co tjh t-h o r-T T-H A \D CO O — ' 03 00 03 o cd O 03 03 03 I— 1 1 03 O O 03 t-H t-H T-H 1—1 CO N CO 00 ^ o o 03 CO O lO »o 00 00 GO-t O iO O 00 00 O CO C5 —< H — o o 03 03 O O 03 o o o o 1—H T— ( hH i—I T-H T-H 1 CO 00 00 00 co io 00 00 CO d 00 CO t-h iQ Cl I> io o co 02 wdNiONO^ co CO OOO—O—O o o 1—1 T-H 1—1 1—1 1—1 T-H T "H ’" H N CO Cl >h Ol N O 1 iO 03 bb ^ Tji 03 I> 00 GO t"- 03 > CO ^ Cl 03 O CO't L- 03 o '—' N N o' N N CO CO CO *""3 O 03 o O O O 03 o o t-H t-H t-H t-H t-H T-H T-H 03 fl -h O 03 Tf oo CO 03 1 IO Tf C^O^^rHCOlO O COO^COO ^ d cd 03 o 03 03 03 © © 03 O 1 NHIOOWO^ 03 t-h £ O 00 00 T-H IQ ^ o § 00 co O O CO 03 CO L'- d 03 03 03 03 03 <0 <© 03 03 HO00NHOM r-4 CO o co co oo co io CO a 03 CO CO O CO CO CO co co <3 03 03 O 03 00 T—1 03 03 03 1 IOH003NCOO OrH^ocOrf o io D- c3 O CO HH CON^HQNO o © o o o 03 o H o o o i-H t-H t-H t-H t-H 1 H N CO lO H 1C N CO CO d O O ^ co C) 03 N 03 Tt< io d 03 io 03 d -H td 03 O 03 03 03 03 Cl O 03 T-H T-H •—' CO H M co Cl CO O O 03 HOHICCICOOO CO T"H cj co io co oo 03 oo d 03 03 CO O 03 03 00 00 03 t- CO 03 O 'H ci co ^ Ol Ol CO CO CO CO CO a aj g’S a a a g a o a a « < E-i >- o a a a a a a CO W Dec. ; ; ; ;hcici ;03 \ ; Nov. ! * * t-h 03 t-h | co * * \ Oct. * ; • • • id 2 . 6 , V(5.1) 2 + (4.6) 2 V47.17 which shows that there is a significant difference between the average weight of the first and third brood at 9 weeks of age. STANDARD ERROR OF A PERCENTAGE In Chapter 7 it was shown that the standard deviation of a Bernoulli distribution is cr = V npq, (15.2) where n is the number of independent trials, p the probability of a success in each trial, and q the probability of a failure. This will be used to derive the standard error of a percentage. Let N items be divided into classes with frequencies, /i", fa", / 3 ", . . . , f k " , and let n items be drawn at random from the popu¬ lation of N items. The probability of getting an item from the class with frequency//' is f/'/N — p, and the probability of get¬ ting no item from this class is 1 — fi'/N = q. The probabilities of getting the various numbers from 0 to n from this class are given by terms of (q + p) n . The standard deviation of this distribution according to (15.2) is (15.3) STANDARD ERROR OF A PERCENTAGE 265 expect to come from the class with frequency //' in n random drawings. Substituting this in (15.3) gives In practice N and //' are never known and hence// is not known. If a drawing of n is made from the population the number of items, fi , coming from the 1th class will usually lie within /, ± 3 50 / 25-25 2.461, which is the same as was obtained in the second test.* The degrees of freedom at which to enter the /-table equal n — 1, since this test is the same as that where si is used. If the correlation coefficient is negative the quantity -22(z - M x )(y - M y ) becomes a positive quantity, and the numerator in the value of S 2 is increased, and hence the value of t is decreased. The last two tests do not apply if the values of x and y are not corresponding values, that is, the x for patron 2 cannot be placed opposite the y value of patron 6. When there is independence between the sets of variates or measurements the first test is the one to use. The first test can be used to test significance between several sets of independent measurements. The following example concerning length of heads of wheat grown on three different soils, A, B, and C, will illustrate this. * This last test is the same as the following test: Let Si — X ffj. "" f" G y~ 2r jyO'jO'y j $4 the standard deviation of the difference between the means M z and M v is — - M x - M v _ v 71 where n is the number of pairs. The 1-value is t = --- V n - 04 SIGNIFICANCE BETWEEN MEANS OF SMALL SAMPLES 277 Soil A Length of Head cm. 7.1 7.3 7.0 6.7 6.8 7.1 6.8 7.0 6.9 6.9 7.4 7.0 7.2 7.1 6.8 6.9 Soil B Length of Head CM. 6.6 6.7 6.4 6.1 6.2 6.7 6.0 5.8 5.9 6.3 6.0 6.7 6.2 6.6 Soil C Length of Head cm. 7.2 7.2 6.9 7.4 7.1 7.6 7.1 7.5 6.7 7.3 7.2 -4 Let S 3 , similar to the s in (15.9), be S3 2(x - M x ) 2 + 2 (y - M y ) 2 + 2 (z - M z ) 2 ni + ri2 + «3 — 3 0.56 + 1.32 + 0.1056 38 = 0.229. The standard deviations of the means are °m x S.3 Vl6 0.057; 3.99 4.00 4.50 .00014 .00013 .00002 Degrees of Freedom for Greater Mean Square 290 TABLES o 12.706 63 667 4.303 9.926 3.182 6.841 2.776 4 604 2.571 4 032 2.447 3.707 2.365 3 499 2.306 3 356 2.262 3 250 2.228 3 169 2.201 3 106 8 ci oo CO t* © © 1-0 lO CO CM © iH CO © © ^ © CM CO © OO © co CO © CM © X © © CO •— 1 iH X Tt- tH © © © © Tf © CD © CD Cl CO CD C5 05 r- C5 X © CM © CO i-H ^ © CO © co © CM t* CM CM X CM X t* CD © LO CD © © © D- CO t- © co t> IO T* ^ iH x co ■— t— rr © CM CO CM O X © t- ^ X r- x — CM © © CM © ^ CO CM CM CD 05 05 i-h 05 X © CM © CO iH rf © CO c- CO © X © CM t* CM Ttt CM t* Cl — CO 05 00 »-H CM vt< Tf lO r- © T-H t- © co X © © OO © CM © c- © ^ X t— CM © th O iH ^ H © c— ©© T* CO © -r o Cl tH © 05 05 i-H 05 x t- CM © H Tf © t- CO © X © X © CM t* CM Til CO 05 ^ X CO t - CD CO CO a x Tf © © 00 01 t- X CM LO © ■— i—l X ^ t- CO rt< X Tj< O X tr- CM t}< D- © © © © Til © t- X -rH CO 00 Cl 05 © 05 05 — 05 X t- CM © ^ H © iH Tf co CO © X © X © X © CM Til o 233.97 6859 39 19.33 99 33 8.94 27 91 6.16 16.21 LO tr— © © r?- O tH 4.28 8 47 3.87 7.19 3.58 6 37 3.37 5 80 3.22 6 39 3.09 6 07 © I - 00 — o © © CO CO — T* © CM © CM CM © LO C— © © © © CO c— L— © © t* © X © © X © TT o X X © © CM CM X O t* CO CD Cl tr¬ io © 05 r- 05 © © CM © © H LO o H rf CO X t- X © X © X © X © 224.57 5625.14 19.25 99 25 9.12 28 71 6.39 15 98 5.19 11 39 4.53 9 15 4.12 7 85 3.84 7.01 3.63 6 42 3.48 5.99 3.36 6 67 CO Cl 05 r- ^ © t— r- y—i X © CM t* © © © © — © -r o © OO t- c— © © X ^ © o © © © X © lO © ©CM © CM © CO — o Cl ^ © © 05 — © © CM © © iH LO CM tH TT © Tt oo ^ c- X © X © X © CM O CO © © © rH © © © © 00 -r © © © © t'- t- CM CM — © ■rf © © © © -r © © CM CM O © © lO X © © CM 05 05 C5 05 — 05 T* © 05 i-h 05 © © CO © oo H LO CO H LO © H Tf © co tt co t- X t- - 161.45 4052.10 18.51 98 49 10.13 34 12 7.71 21 20 6.61 16 26 5.99 13 74 5.59 12 25 5.32 11.26 5 12 10.66 4.96 10 04 4.84 9.65 - CM CO Tt< LO X © © T-* aj-snbg uB3j\[ .laqeuig joj uiopaajj jo saajSaQ TABLES 291 05 lO lq t—i o O 05 CD rH rH O lO t- TP C*> 1-H CO tP Ol tP 05 tP 05 -

05 Hf t— b- rH rH O t'r rH CO tP CD O CD 05 CD 05 rp tP CD 05 CO lO CO hP 05 ^P 05 tP 05 tP 05 tP 05 tP 05 "

C5 CD CO 00 C5 LO o o C5 LO CO 00 ^ rP 00 CO 05 rH CO co O CD 00 05 CO LO CO lO CO io CO -

C CD C5 CO Tp LO LO O Tp Tp r-H 00 tP 05 CO oo CO rH LO O CO rH Ol 05 CO o O TP CO 05 CO oo 05 00 05 tP 05 rt« 00 rp oo Tp 00 Tp 00 rf 00 TP 00 ^ 00 oo rp rp t> 05 rH CO H TP »—1 »o CD 2 05 o Ol Ol 22 23 Oil] nby iajI-BUIg .IOJ Ui0p39J w I jo soajSaQ This table was taken from “Calculation and Interpretation of Analysis of Variance and Covariance,” by G. W. Snedecor, 1934, by permission of the author and the publisher, Collegiate Press, Inc., Ames, Iowa. TABLE III —( Continued ) Degrees of Freedom for Greater Mean Square 292 TABLES r Jl M 4 b- O b- CD Cl Cl rH 00 CO to CD CM O O Hi rH H* CM O H 1 O co oo CD Cl CD 00 tO b- tO b- H CD H tO H tO CO CM rr Cl O b- © b- O b- o b- O b- O b- O b- O b- O b- O b- o CD O CD > CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CO rH rH b- © CO b- O to CD H CO CM rH b~ O CM CM 00 to H 4 00 8 r ^ cm rH CD rH CD rH CD O CD O CD O to Cl to oo H< b- H 4 CD —• CM rH CM rH CM h CM rH CM rH CM rH CM rH rH rH rH rH rH rH rH CO CD CD CM to 00 CO to rH CM O ci Cl b- CO b- Cl Cl CD CO H 4 00 © cd © CD © to © to © to Cl Hi 00 Hi cc co cm 1> CM b- rH CM rH CM rH CM h CM rH CM rH CM rH CM rH CM rH CM rH CM h CM rH CM 00 CO CD Cl to CD CO co Cl O O b- Cl HI Hi H< O CD ^ rH tO CD CM rH O H Cl rr Cl rH O rH Cl r 00 o oo o b- O CD Cl CD Cl to CM CO CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM rH CM rH CM o cd cm ci ci O CD ci co 00 o b- CM b- 00 Cl to Hi CO Ol 00 CO CO co co CO CM CO CM Cl CM Cl CM CM rH Cl O T-H Cl r - tH C5 CO CD 05 tH o CD CO 03 rH tn O C5 CO 00 03 CD 05 05 m CD oo CD 00 cd m m co CD 00 cd m 03 rH CD 00 05 m O CD CD 0- cd m 03 03 T-H 03 rH 03 t-H 03 rH 03 t-h 03 t-h 03 rH 03 H 03 t-h 03 tH 03 tH 03 rH 03 o o CO CO ID CO CO ^ 03 05 CO TP O CO Ttf co co 03 tP ID Eh 03 CO 03 CO 03 CO CD CO rH 03 in 03 rH 03 CO 05 i—i rH rH CO tH tH CO rH O rH o o o o H rH T —1 rH T—1 rH rH tH t-H tH t-h rH H iH rH rH rH rH rH rH rH rH tH rH rH rH O 03 N rH in o- CO O ID CO o o tP O CD O CO 00 CD 05 O TP CD 05 05 03 IO 05 1> C30 in co in m m co tP tP m oo tP CO m oo CO rH m oo 03 00 m t>. T—1 N T-H 03 T-H 03 rH 03 T-H tH rH rH rH rH rH rH rH rH rH rH rH rH rH rH rH rH 03 O 05 IO CD iO 00 tP CO 03 CO tP CD 05 CO CO in O- oo co co co co co 03 rH oo co o co 00 03 CD rp tn 03 00 co tH 03 tn 03 Ih 03 CD O tn 03 m oo tn rH rH 03 rH 03 t-h 03 t-h 03 TH 03 tH 03 TH 03 tH 03 rH 03 rH 03 tH 03 t-h 03 tH 03 O 03 rH 00 r- oo o o- CD rp o o- tP 03 o o- CO 05 o CO rH CO O CO o co o CO oo o C5 CO tH |H cd m CD CO cd m cd m cd m m co cd m rp rH 05 m 03 Cl 03 03 03 03 03 03 03 03 03 03 03 03 TH 03 TH 03 TH 03 rH 03 rH 03 TH 03 ID 03 03 rH CO 0- 03 O t-H tP Ol O O tH 03 O CD 05 TH 05 i> m tH 05 CD 03 rH 05 TP 05 rH OO CO co rH 00 03 m TH 00 rH ^ TH 00 O 03 TH C0 05 O G 00 03 CO 03 CO 03 CO 03 CO 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 tn-^P CO CO ID 05 CO 03 CO co CO 03 03 CO CO 03 O rH CO 03 05 tH 03 tH in tp 03 rH CD tH Ol rH in co Ol o rp CO Ol o co m Ol o 03 tP Ol O rH 03 Ol o 03 CO 03 CO 03 CO 03 CO 03 CO 03 CO 03 CO 03 CO 03 CO 03 CO 03 CO 03 CO 03 CO 03 ID iO CO o o ID CO CD CO tp m CO TP IO CD rH rp m TP t> TP tP CO ID TP tP 03 rH TP tP TH 00 rp CO O tH rp CO 05 CO CO co CO tP CO CO tn 03 CO CO 03 CO 03 CO 03 CO 03 CO 03 CO Ol CO 03 CO oi co 03 CO 03 CO 03 CO 03 CO 03 CO CO CO Ih rH tP 0- tn O 03 tP t> o rH t-H t- O o 00 t - 05 CO tP CD 05 CD rH CD 05 in oo CD oo rp in CD 00 CO co CD 00 03 03 CD 00 TH o CD 00 o oo CD IT- 03 tP 03 tP 03 tP 03 tP 03 CO 03 CO 03 CO Ol co 03 CO 03 CO Ol CO Ol CO 03 CO ID 00 r-i CD CO 03 t~h 05 rH 00 H 00 o iO I-H 00 CD 03 o oo In 00 O !> CD ID O C- rp rH O t- CO oo O CO 03 CO O co rH in o co O CO o CD o o O CD CO tP CO tP CO rp CO tH CO Tp co tp CO rp CO TP CO 03 CO TP CO tP CO rP CO rp o oo o o CO rH CD O CD CO C5 05 IO 03 CD 05 r* O CD 05 03 tP CD 00 O rH CD 00 CD CO 00 tn tH C>q 00 tH CD O CO |H CD 05 CO co IO CD CO CD tP tP 00 CD TPt> CO t* CO CO CO CO CO CO CO co CO CO CO CO CO co CO co CO co CO CD CO CD 09 70 o 00 06 o o rH 125 o »o rH o o 03 300 400 500 O o CD 8 OJTjnby urcaj^ ja[p3uiy joj mopaajy[ jo saajSoQ rH 294 TABLES TABLE IV Squares, Square Roots, and Reciprocals to 1000* No. Square Square Root Reciprocal X 100 No. Square Square Root Reciprocal X 100 1 1 1.0000000 100.0000000 51 26 01 7.1414284 1.9607843 2 4 1.4142136 50.0000000 52 27 04 7.2111026 1.9230769 3 9 1.7320508 33.3333333 53 28 09 7.2801099 1.8867925 4 16 2.0000000 25.0000000 54 29 16 7.3484692 1.8518519 5 25 2.2360680 20.0000000 55 30 25 7.4161985 1.8181818 6 36 2.4494897 16.6666667 56 31 36 7.4833148 1.7857143 7 49 2.0457513 14.2S57143 57 32 49 7.5498344 1.7543860 8 64 2.8284271 12.5000000 58 33 64 7.6157731 1.7241379 9 81 3.0000000 11.1111111 59 34 81 7.6811457 1.6949153 10 1 00 3.1622777 10.0000000 60 36 00 7.7459667 1.6666667 11 1 21 3 3166248 9.0909091 61 37 21 7.8102497 1.6393443 12 1 44 3.4641016 8.3333333 62 38 44 7.8740079 1.6129032 13 1 69 3.6055513 7.6923077 63 39 69 7.9372539 1.5873016 14 1 96 3 7416574 7.142S571 64 40 96 8.0000000 1.5625000 15 2 25 3.8729833 6.6666667 65 42 25 8.0622577 1.5384615 16 2 56 4 0000000 6.2500000 66 43 56 8.1240384 1.5151515 17 2 89 4 1231056 5.8823529 67 44 89 8.1853528 1.4925373 18 3 24 4.2426407 5.5555556 68 46 24 8.2462113 1.4705882 19 3 61 4.3588989 5.2631579 69 47 61 8.3066239 1.4492754 20 4 00 4.4721360 5.0000000 70 49 00 8.3666003 1.4285714 21 4 41 4.5825757 4.761904S 71 50 41 8.4261498 1.4084507 22 4 84 4.6904158 4.5454545 72 51 84 8.4852814 1.3888889 23 5 29 4.7958315 4.3478261 73 53 29 8.5440037 1.3698630 24 5 76 4.8989795 4.1666667 74 54 76 8.6023253 1.3513514 25 6 25 5.0000000 4.0000000 <0 56 25 8.6602540 1.3333333 26 6 76 5.0990195 3.8461538 76 57 76 8.7177979 1.3157895 27 7 29 5.1961524 3.7037037 77 59 29 8.7749644 1.2987013 28 7 84 5.2915026 3.5714286 78 60 84 8.8317609 1.2820513 29 8 41 5.3851648 3.4482759 79 62 41 8.8881944 1.2658228 30 9 00 5.4772256 3.3333333 80 64 00 8.9442719 1.2500000 31 9 61 5.5677644 3.2258065 81 65 61 9.0000000 1.2345679 32 10 24 5.6568542 3.1250000 82 67 24 9.0553851 1 2195122 33 10 89 5.7445626 3.0303030 S3 68 89 9.1104336 1.2048193 34 11 56 5.8309519 2.9411765 84 70 56 9.1651514 1.1904762 35 12 25 5.9160798 2.8571429 85 72 25 9.2195445 1.1764706 36 12 96 6.0000000 2.7777778 86 73 96 9.2736185 1.1627907 37 13 69 6 0S27625 2.7027027 87 75 69 9.3273791 1 1494253 38 14 44 6.1644140 2.6315789 S8 77 44 9.3S08315 1 1363636 39 15 21 6 2449980 2.5641026 89 79 21 9.4339811 1 1235955 40 16 00 0.3245553 2.5000000 90 81 00 9.4868330 1.1111111 41 16 81 6.4031242 2.4390244 91 82 81 9.5393920 1.0989011 42 17 64 6.4807407 2.3809524 92 84 64 9.5916630 1.0869565 43 18 49 6.55743S5 2.3255814 93 86 49 9.6436508 1.0752688 44 19 36 6 6332496 2.2727273 94 88 36 9.6953597 1.0638298 45 20 25 6.7082039 2.2222222 95 90 25 9.7467943 1.0526316 46 21 16 6 7823300 2 1739130 96 92 16 9.7979590 1.0416667 47 22 09 6 8556546 2.1276596 97 94 09 9.8488578 1 0309278 48 23 04 6.9282032 2.0833333 98 96 04 9.8994949 1.0204082 49 24 01 7 0000000 2.0408163 99 98 01 9.9498744 1.0101010 50 25 00 7 0710678 2 0000000 100 1 00 00 10.0000000 1 0000000 * This table was taken from "Business Statistics,” by G. R. Davies and D. Yoder by permission of the authors and John Wiley & Sons, Inc., the publisher. TABLES 295 TABLE IV —Continued Squares, Square Roots, and Reciprocals to 1000 No. Square Square Root Recipro¬ cal X 10’ No. Square Square Root Recipro¬ cal X 10° 101 1 02 01 10 0498756 9900990 151 2 28 01 12.2882057 6622517 102 1 04 04 10.0995049 9803922 152 2 31 04 12.3288280 6578947 103 1 06 09 10.1488916 9708738 153 2 34 09 12.3693169 6535948 104 1 08 16 10.1980390 9615385 154 2 37 16 12.4096736 6493506 105 1 10 25 10.2469508 9523810 155 2 40 25 12.4498996 6451613 10G 1 12 36 10.2950301 9433962 156 2 43 36 12.4899960 6410256 107 1 14 49 10.3440804 9345794 157 2 46 49 12.5299641 6369427 108 1 16 64 10.3923048 9259259 158 2 49 64 12.5698051 6329114 109 1 18 81 10.4403065 9174312 159 2 52 81 12.6095202 62S9308 110 1 21 00 10.4880885 9090909 160 2 56 00 12.6491106 6250000 111 1 23 21 10.5356538 9009009 161 2 59 21 12.6885775 6211180 112 1 25 44 10.5830052 8928571 162 2 62 44 12.7279221 6172840 113 1 27 69 10.6301458 8849558 103 2 65 69 12.7671453 6134969 114 1 29 96 10.6770783 8771930 164 2 68 96 12.8062485 6097561 115 1 32 25 10.7238053 8695652 165 2 72 25 12.8452326 6060606 116 1 34 56 10.7703296 8620690 166 2 75 56 12.8840987 6024096 117 1 36 89 10.8166538 8547009 167 2 78 89 12.9228480 5988024 118 1 39 24 10.8627805 8474576 168 2 82 24 12.9614814 5952381 119 1 41 61 10.9087121 8403361 169 2 85 61 13.0000000 5917160 120 1 44 00 10.9544512 8333333 170 2 89 00 13.0384048 5882353 121 1 46 41 11.0000000 8264463 171 2 92 41 13.0766968 5847953 122 1 48 84 11.0453610 8196721 172 2 95 84 13.1148770 5813953 123 1 51 29 11.0905365 8130081 173 2 99 29 13.1529464 57S0347 124 1 53 76 11.1355287 8064516 174 3 02 76 13.1909060 5747126 125 1 56 25 11.1803399 8000000 175 3 06 25 13.2287566 5714286 126 1 58 76 11.2249722 7936508 176 3 09 76 13 2664992 5681818 127 1 61 29 11.2694277 7874016 177 3 13 29 13.3041347 5649718 128 1 63 84 11 3137085 7812500 178 3 16 84 13 3416641 5617978 129 1 66 41 11 3578167 7751938 179 3 20 41 13 3790882 5586592 130 1 69 00 11.4017543 7692308 180 3 24 00 13.4164079 5555556 131 1 71 61 11 4455231 7633588 181 3 27 61 13.4536240 5524862 132 1 74 24 11.4891253 7575758 182 3 31 24 13.4907376 5494505 133 1 76 89 11.5325626 7518797 183 3 34 89 13.5277493 5464481 134 1 79 56 11 5758369 7462687 184 3 38 56 13 5646000 5434783 135 1 82 25 11.6189500 7407407 185 3 42 25 13.6014705 5405405 136 1 84 96 11 6019038 7352941 186 3 45 96 13.6381817 5376344 137 1 87 69 11 7046999 7299270 187 3 49 69 13 6747943 5347594 138 1 90 44 11 7473401 7246377 188 3 53 44 13 7113092 5319149 139 1 93 21 11 7898261 7194245 189 3 57 21 13.7477271 5291005 140 1 96 00 11 8321596 7142857 190 3 61 00 13.7840488 5263158 141 1 98 81 11 8743421 7092199 191 3 64 81 13 8202750 5235602 142 2 01 64 11 9163753 7042254 192 3 68 64 13 8564065 5208333 143 2 04 49 11 9582607 6993007 193 3 72 49 13 8924440 5181347 144 2 07 30 12.0000000 6944444 194 3 76 36 13 9283883 5154639 145 2 10 25 12 0415946 6896552 195 3 80 25 13.9642400 5128205 146 2 13 16 12 0830160 6849315 196 3 84 16 14.0000000 5102041 147 2 16 09 12 1243557 6802721 197 3 88 09 14.0356688 5076142 148 2 19 04 12.1655251 0756757 198 3 92 04 14 0712473 5050505 149 2 22 01 12 2065556 6711409 199 3 96 01 14.1067360 5025126 150 2 25 00 12.2474487 6666667 200 4 00 00 14.1421356 5000000 296 TABLES TABLE IV—( Continued ) Squares, Square Roots, and Reciprocals to 1000 No. Square Square Root Reciprocal X 10* No. Square Square Root Reciprocal X 10 9 201 4 04 01 14.1774469 4975124 251 6 30 01 15.8429795 3984064 202 4 OS 04 14.2126704 4950495 252 6 35 04 15 8745079 3968254 203 4 12 09 14.2478068 4926108 253 6 40 09 15.9059737 3952569 204 4 16 16 14.2828569 4901961 254 6 45 16 15.9373775 3937008 205 4 20 25 14 3178211 4S7S049 255 6 50 25 15.9687194 3921569 200 4 24 36 14 3527001 4S54369 256 6 55 36 16.0000000 3906250 207 4 28 49 14 3S74946 4S30918 257 6 60 49 16.0312195 3891051 20S 4 32 64 14.4222051 4S07692 25S 6 65 64 16.0023784 3875969 209 4 36 81 14.4568323 4784689 259 6 70 81 16.0934769 3861004 210 4 41 00 14.4913767 4761905 260 6 76 00 16.1245155 3846154 211 4 45 21 14 5258390 4739336 261 6 81 21 16.1554944 3S31418 212 4 49 44 14.5602198 4710981 262 6 86 44 16.1864141 3816794 213 4 53 69 14.5945195 4694836 263 6 91 69 16.2172747 3802281 214 4 57 96 14 6287388 4672897 264 6 96 96 10.2480768 3787879 215 4 62 25 14.6628783 4651163 265 7 02 25 16.2788206 3773585 216 4 66 56 14.6969385 4629630 266 7 07 56 16.3095064 375939S 217 4 70 89 14.7309199 4608295 267 7 12 89 16.3401346 3745318 218 4 75 24 14.764S231 4587156 208 7 18 24 16.3707055 3731343 219 4 79 61 14.79S64S6 4566210 269 7 23 61 16.4012195 3717472 220 4 84 00 14.8323970 4545455 270 7 29 00 16.4316767 3703704 221 4 S8 41 14.8660687 4524887 271 7 34 41 16.4620776 3690037 222 4 92 84 14.8996644 4504505 272 7 39 84 16.4924225 3676471 223 4 97 29 14.9331845 4484305 273 7 45 29 16.5227116 3663004 224 5 01 76 14.9666295 4464286 274 7 50 76 16.5529454 3649635 225 5 06 25 15.0000000 4444444 275 7 56 25 16.5S31240 3636364 226 5 10 76 15.0332964 4424779 276 7 61 76 16.0132477 362318S 227 5 15 29 15.0665192 44052S6 277 7 67 29 10.6433170 3610108 228 5 19 84 15.09966S9 4385965 278 7 72 84 16.6733320 3597122 229 5 24 41 15.1327460 4366S12 279 7 78 41 16.7032931 3584229 230 5 29 00 15.1657509 4347826 280 7 84 00 16.7332005 3571429 231 5 33 61 15.19S6842 4329004 2S1 7 89 61 16.7630546 3558719 232 5 38 24 15.2315462 4310345 282 7 95 24 16.7928556 3546099 233 5 42 89 15.2643375 4291845 283 8 00 89 16.8226038 3533569 234 5 47 56 15.2970585 4273504 2S4 8 06 56 16.8522995 3521127 235 5 52 25 15.3297097 4255319 285 8 12 25 16.8819430 3508772 236 5 56 96 15.3622915 42372S8 286 8 17 96 16 9115345 3496503 237 5 61 69 15.3948043 4219409 287 8 23 69 16.9410743 3484321 238 5 66 44 15.42724S6 4201681 288 8 29 44 16.9705627 3472222 239 5 71 21 15.4596248 4184100 289 8 35 21 17.0000000 3460208 240 5 76 00 15.4919334 4166667 290 8 41 00 17.0293864 3448276 241 5 80 81 15.5241747 4149378 291 8 46 81 17.0587221 3436426 242 5 S5 64 15.5563492 4132231 292 8 52 64 17.0880075 3424658 243 5 90 49 15.5S84573 4115226 293 8 58 49 17.1172428 3412969 244 5 95 36 15.6204994 4098361 294 8 64 36 17.1464282 3401361 245 6 00 25 15.6524758 4081633 295 8 70 25 17.1755640 3389831 246 6 05 16 15.6843871 4065041 296 8 76 16 17.2046505 3378378 247 6 10 09 15.7162336 404S583 297 8 82 09 17.2336879 3367003 248 6 15 04 15.7480157 4032258 298 8 88 04 17.2626765 3355705 249 6 20 01 15.7797338 4016064 299 8 94 01 17 2916165 3344482 250 6 25 00 15.8113883 4000000 300 9 00 00 17.32050S1 3333333 TABLES 297 TABLE IV—( Continued ) Squares, Square Roots, and Reciprocals to 1000 No. Square Square Root Recipro¬ cal X 10 9 No. Square Square Root Recipro¬ cal X 10 9 301 9 06 01 17.3493516 3322259 351 12 32 01 18.7349940 2849003 302 9 12 04 17.3781472 3311258 352 12 39 04 18.7616630 2840909 303 9 18 09 17.4068952 3300330 353 12 46 09 18.7882942 2832861 304 9 24 16 17.4355958 3289474 354 12 53 16 18.8148877 2824859 305 9 30 25 17.4642492 3278689 355 12 60 25 18.8414437 2816901 306 9 36 36 17.4928557 3267974 356 12 67 36 18.8679623 2808989 307 9 42 49 17.5214155 3257329 357 12 74 49 18.8944436 2801120 308 9 48 64 17.5499288 3246753 358 12 81 64 18.9208879 2793296 309 9 54 81 17.5783958 3236246 359 12 88 81 18.9472953 2785515 310 9 61 00 17.6068169 3225806 360 12 96 00 18.9736660 2777778 311 9 67 21 17.6351921 3215434 361 13 03 21 19 0000000 2770083 312 9 73 44 17.6635217 3205128 362 13 10 44 19.0262976 2762431 313 9 79 69 17.6918060 3194888 363 13 17 69 19.0525589 2754821 314 9 85 96 17.7200451 3184713 364 13 24 96 19 0787840 2747253 315 9 92 25 17.7482393 3174603 365 13 32 25 19.1049732 2739726 316 9 98 56 17.7763888 3164557 366 13 39 56 19.1311265 2732240 317 10 04 89 17.8044938 3154574 367 13 46 89 19.1572441 2724796 318 10 11 24 17.8325545 3144654 368 13 54 24 19.1833261 2717391 319 10 17 61 17.8605711 3134796 369 13 61 61 19.2093727 2710027 320 10 24 00 17.8885438 3125000 370 13 69 00 19.2353841 2702703 321 10 30 41 17.9164729 3115265 371 13 76 41 19.2613603 2695418 322 10 36 84 17.9443584 3105590 372 13 83 84 19.2873015 268S172 323 10 43 29 17.9722008 3095975 373 13 91 29 19.3132079 2680965 324 10 49 76 18.0000000 3086420 374 13 98 76 19.3390796 2673797 325 10 56 25 18.0277564 3076923 375 14 06 25 19.3649167 2666667 326 10 62 76 18.0554701 3067485 376 14 13 76 19.3907194 2659574 327 10 69 29 18.0831413 3058104 377 14 21 29 19.4164878 2652520 328 10 75 84 18.1107703 30487S0 378 14 28 84 19.4422221 2645503 329 10 82 41 18.1383571 3039514 379 14 36 41 19.4679223 2638522 330 10 89 00 18.1659021 3030303 380 14 44 00 19.4935887 2631579 331 10 95 61 18.1934054 3021148 381 14 51 61 19.5192213 2624672 332 11 02 24 18.2208672 3012048 382 14 59 24 19.5448203 2617801 333 11 08 89 18.2482S76 3003003 383 14 66 89 19.5703858 2610966 334 11 15 56 18.2756669 2994012 384 14 74 56 19 5959179 2604167 335 11 22 25 18.3030052 2985075 385 14 82 25 19.6214169 2597403 33G 11 28 96 18.3303028 2976190 386 14 89 96 19.6468827 2590674 337 11 35 69 18.3575598 2967359 387 14 97 69 19.6723156 2583979 338 11 42 44 18.3847763 2958580 388 15 05 44 19.6977156 2577320 339 11 49 21 18 4119526 2949853 3S9 15 13 21 19.7230829 2570694 340 11 56 00 18.4390889 2941176 390 15 21 00 19.7484177 2564103 341 11 62 81 18.4661853 2932551 391 15 28 81 19.7737199 2557545 342 11 69 64 18.4932420 2923977 392 15 36 64 19.7989899 2551020 343 11 76 49 18.5202592 2915452 393 15 44 49 19.8242276 2.544529 344 11 83 36 18.5472370 2906977 394 15 52 36 19 8494332 2538071 345 11 90 25 18.5741756 2898551 395 15 60 25 19.8746069 2531646 346 11 97 16 18.6010752 2890173 396 15 68 16 19.8997487 2525253 347 12 04 09 18.6279360 2881844 397 15 76 09 19.9248588 2518892 348 12 11 04 18.6547581 2873563 398 15 84 04 19 9499373 2512563 349 12 18 01 18 6815417 2865330 399 15 92 01 19.9749844 2506266 350 12 25 00 18.7082869 2857143 400 16 00 00 20.0000000 2500000 298 TABLES TABLE IV—( Continued ) Squares, Square Roots, and Reciprocals to 1000 No. Square Square Root Recipro¬ cal X 10* No. Square Square Root Recipro¬ cal X 10 9 401 16 08 01 20.0249844 2493766 451 20 34 01 21.2367606 2217295 402 16 16 04 20.0499377 2487562 452 20 43 04 21.2602916 2212389 403 16 24 09 20 0748599 24S1390 453 20 52 09 21.2837967 2207506 404 16 32 16 20 0997512 2475248 454 20 61 16 21.3072758 2202643 405 16 40 25 20.1246118 2469136 455 20 70 25 21.3307290 2197802 406 16 48 36 20.1494417 2463054 456 20 79 36 21.3541565 2192982 407 16 56 49 20.1742410 2457002 457 20 88 49 21.3775583 2188184 408 16 64 64 20.1990099 2450980 458 20 97 64 21.4009346 2183406 409 16 72 81 20.2237484 2444988 459 21 06 81 21.4242853 2178649 410 16 81 00 20.2484567 2439024 460 21 16 00 21.4476106 2173913 411 16 89 21 20.2731349 2433090 461 21 25 21 21.4709106 2169197 412 16 97 44 20 2977831 2427184 462 21 34 44 21.4941853 2164502 413 17 05 69 20.3224014 242130S 463 21 43 69 21.5174348 2159827 414 17 13 96 20.3469899 2415459 464 21 52 96 21.5406592 2155172 415 17 22 25 20.3715488 2409639 465 21 62 25 21.5638587 2150538 416 17 30 56 20.3960781 2403S46 466 21 71 56 21.5870331 2145923 417 17 38 89 20.4205779 2398082 467 21 80 89 21 610182S 2141328 418 17 47 24 20.4450483 2392344 468 21 90 24 21.6333077 2136752 419 17 55 61 20.4694895 2386635 469 21 99 61 21.6564078 2132196 420 17 64 00 20.4939015 2380952 470 22 09 00 21.6794834 2127660 421 17 72 41 20.5182845 2375297 471 22 18 41 21.7025344 2123142 422 17 80 84 20.5426386 2369668 472 22 27 84 21.7255610 2118644 423 17 89 29 20.566963S 2364066 473 22 37 29 21.7485632 2114165 424 17 97 76 20.5912603 2358491 474 22 46 76 21.7715411 2109705 425 18 06 25 20.6155281 2352941 475 22 56 25 21.7944947 2105263 426 18 14 76 20.6397674 2347418 476 22 65 76 21.8174242 2100840 427 18 23 29 20.6639783 2341920 477 22 75 29 21.8403297 2096436 428 18 31 84 20.6881609 2336449 478 22 84 84 21.8632111 2092050 429 18 40 41 20.7123152 2331002 479 22 94 41 21.8860686 2087683 430 18 49 00 20.7364414 2325581 4S0 23 04 00 21.9089023 2083333 431 18 57 61 20.7605395 2320186 4S1 23 13 61 21.9317122 2079002 432 IS 66 24 20.7846097 2314815 482 23 23 24 21.9544984 2074689 433 18 74 89 20.8086520 2309469 4S3 23 32 89 21.9772610 2070393 434 18 83 56 20.8326667 2304147 484 23 42 56 22.0000000 2066116 435 18 92 25 20.8566536 2298851 485 23 52 25 22.0227155 2061856 436 19 00 96 20.8806130 2293578 4S6 23 61 96 22.0454077 2057613 437 19 09 69 20.9045450 22SS330 487 23 71 69 22.0080765 2053388 438 19 18 44 20.9284495 22S3105 488 23 81 44 22.0907220 2049180 439 19 27 21 20.952326S 2277904 489 23 91 21 22.1133444 2044990 440 19 36 00 20.9761770 2272727 490 24 01 00 22.1359436 2040S16 441 19 44 81 21.0000000 2267574 491 24 10 81 22.1585198 2036660 442 19 53 64 21.0237960 2262443 492 24 20 64 22.1S10730 2032520 443 19 62 49 21.0475652 2257336 493 24 30 49 22.2030033 2028398 444 19 71 36 21.0713075 2252252 494 24 40 36 22.2261108 2024291 445 19 80 25 21.0950231 2247191 495 24 50 25 22.24S5955 2020202 446 19 89 16 21.1187121 2242152 496 24 60 16 22 2710575 2016129 447 19 98 09 21 1423745 2237136 497 24 70 09 22.2934968 2012072 448 20 07 04 21.1660105 2232143 498 24 80 04 22.3159136 2008032 449 20 16 01 21.1896201 2227171 499 24 90 01 22 3383079 2004008 450 20 25 00 21 2132034 2222222 500 25 00 00 22.3006798 2000000 TABLES 299 TABLE IV—( Continued ) Squares, Square Roots, and Reciprocals to 1000 No. Square Square Root Recipro¬ cal X 10 9 No. Square Square Root Recipro¬ cal X 10 9 501 25 10 01 22.3830293 1996008 551 30 36 01 23.4733892 1814882 502 25 20 04 22.4053565 1992032 552 30 47 04 23.4946802 1811594 503 25 30 09 22.4276615 1988072 553 30 58 09 23.5159520 1808318 504 25 40 16 22.4499443 1984127 554 30 69 16 23.5372046 1805054 505 25 50 25 22.4722051 1980198 555 30 80 25 23.5584380 1801802 506 25 60 36 22.4944438 1976285 556 30 91 36 23.5796522 1798561 507 25 70 49 22.5166605 1972387 557 31 02 49 23.6008474 1795332 508 25 80 64 22.5388553 1968504 558 31 13 64 23.6220236 1792115 509 25 90 81 22.5610283 1964637 559 31 24 81 23.6431808 1788909 510 26 01 00 22.5831796 1960784 560 31 36 00 23.6643191 1785714 511 26 11 21 22.6053091 1956947 561 31 47 21 23.6854386 1782531 512 26 21 44 22.6274170 1953125 562 31 58 44 23.7065392 1779359 513 26 31 69 22.6495033 1949318 563 31 69 69 23.7276210 1776199 514 26 41 96 22.6715681 1945525 564 31 80 96 23.7486842 1773050 515 26 52 25 22.6936114 1941748 565 31 92 25 23.7697286 1769912 516 26 62 56 22.7156334 1937984 566 32 03 56 23.7907545 1766784 517 26 72 89 22.7376340 1934236 567 32 14 89 23.8117618 1763668 518 26 83 24 22.7596134 1930502 568 32 26 24 23.8327506 1760563 519 26 93 61 22.7815715 1926782 569 32 37 61 23.8537209 1757469 520 27 04 00 22.8035085 1923077 570 32 49 00 23.8746728 1754386 521 27 14 41 22.8254244 1919386 571 32 60 41 23.8956063 1751313 522 27 24 84 22.8473193 1915709 572 32 71 84 23.9165215 1748252 523 27 35 29 22.8691933 1912046 573 32 83 29 23.9374184 1745201 524 27 45 76 22.8910463 1908397 574 32 94 76 23.9582971 1742160 525 27 56 25 22.9128785 1904762 575 33 06 25 23.9791576 1739130 526 27 66 76 22.9346899 1901141 576 33 17 76 24.0000000 1736111 527 27 77 29 22.9564806 1897533 577 33 29 29 24.020S243 1733102 528 27 87 84 22.9782506 1893939 578 33 40 84 24.0416306 1730104 529 27 98 41 23.0000000 1890359 579 33 52 41 24.0624188 1727116 530 28 09 00 23.0217289 1886792 5S0 33 64 00 24.0831892 1724138 531 28 19 61 23.0434372 1883239 581 33 75 61 24.1039416 1721170 532 28 30 24 23.0651252 1879699 582 33 87 24 24.1246762 1718213 533 28 40 89 23.0867928 1876173 583 33 98 89 24.1453929 1715266 534 28 51 56 23.1084400 1872659 584 34 10 56 24.1660919 1712329 535 28 62 25 23.1300670 1869159 585 34 22 25 24.1867732 1709402 536 28 72 96 23.1516738 1865072 586 34 33 96 24.2074369 1706485 537 28 83 69 23.1732605 1862197 587 34 45 69 24 2280829 1703578 538 28 94 44 23.1948270 1858730 588 34 57 44 24.2487113 1700680 539 29 05 21 23.2163735 1855288 5S9 34 09 21 24.2693222 1697793 540 29 16 00 23.2379001 1S51852 590 34 81 00 24.2S99156 1694915 541 29 26 81 23.2594007 1848429 591 34 92 81 24.3104916 1692047 542 29 37 04 23.2808935 1845018 592 35 04 64 24.3310501 1689189 543 29 48 49 23.3023604 1841621 593 35 10 49 24.3515913 1686341 544 29 59 36 23.323S070 1838235 594 35 28 30 24.3721152 1683502 545 29 70 25 23.3452351 1834802 595 35 40 25 24.39262IS 1680672 546 29 81 16 23.3600429 1831502 596 35 52 16 24.4131112 1677852 547 29 92 09 23.3880311 1828154 597 35 64 09 24.4335834 1675042 548 30 03 04 23.4093998 1824818 598 35 76 04 24.4540385 1672241 549 30 14 01 23.4307490 1821494 599 35 8S 01 24.4744765 1669449 550 30 25 00 23.4520788 1818182 000 36 00 00 24.4948974 1066667 300 TABLES TABLE IV—( Continued) Squares, Square Roots, and Reciprocals to 1000 No. Square Square Root Recipro¬ cal X 10 s No. Square Square Root Recipro¬ cal X 10 9 601 36 12 01 24 5153013 1663894 651 42 3S 01 25.5147016 1536098 602 36 24 04 24.53568S3 1661130 652 42 51 04 25.5342907 1533742 603 36 36 09 24.5560583 1658375 653 42 64 09 25.5538647 1531394 604 36 48 16 24.5764115 1655629 654 42 77 16 25.5734237 1529052 605 36 60 25 24.5967478 1652S93 655 42 90 25 25.5929678 1526718 606 36 72 36 24.6170673 1650165 656 43 03 30 25.6124969 1524390 607 36 84 49 24.6373700 1647446 657 43 16 49 25.6320112 1522070 608 36 96 64 24.6576560 1644737 658 43 29 64 25.6515107 1519757 609 37 08 81 24.6779254 1642036 659 43 42 81 25.6709953 1517451 610 37 21 00 24.69S1781 1639344 660 43 50 00 25.0904652 1515152 611 37 33 21 24.7184142 1636661 661 43 69 21 25.7099203 1512S59 612 37 45 44 24.73S6338 1633987 662 43 82 44 25.7293607 1510574 613 37 57 69 24.758S368 1631321 663 43 95 09 25.7487864 1508296 614 37 69 96 24.7790234 162S664 664 44 OS 96 25.7681975 1506024 615 37 82 25 24.7991935 1626016 665 44 22 25 25.7875939 1503759 616 37 94 56 24.8193473 1623377 666 44 35 56 25.8069758 1501502 617 3S 06 89 24.8394S47 1620746 667 44 48 89 25.8263431 1499250 618 38 19 24 24.8596058 1618123 668 44 62 24 25.8456960 1497006 619 38 31 61 24.8797106 1615509 669 44 75 61 25.8650343 1494768 620 38 44 00 24.8997992 1612903 670 44 89 00 25.8843582 1492537 621 38 56 41 24.9198716 1610306 671 45 02 41 25.9036677 1490313 622 38 68 84 24.9399278 1607717 672 45 15 84 25.9229628 148S095 623 38 81 29 24 9599679 1605136 673 45 29 29 25.9422435 1485884 624 38 93 76 24 9799920 1602564 674 45 42 76 25.9615100 14S3680 625 39 06 25 25.0000000 1600000 675 45 56 25 25.9S07621 1481481 626 39 18 76 25.0199920 1597444 676 45 69 76 26.0000000 1479290 627 39 31 29 25.0399681 1594896 677 45 83 29 26.0192237 1477105 628 39 43 84 25.0599282 1592357 678 45 96 84 26.0384331 1474926 629 39 56 41 25.0798724 1589S25 679 46 10 41 26.0576284 1472754 630 39 69 00 25.099800S 15S7302 680 46 24 00 26.0768096 14705S8 631 39 81 61 25.1197134 15S47S6 681 40 37 61 26.0959767 1468429 632 39 94 24 25.1396102 158227S 682 46 51 24 26.1151297 1466276 633 40 06 89 25.1594913 1579779 683 46 64 89 26.1342687 1464129 634 40 19 56 25.1793566 15772S7 684 46 78 56 26.1533937 1461988 635 40 32 25 25.1992063 1574S03 685 46 92 25 26.1725047 1459S54 636 40 44 96 25.2190404 1572327 686 47 05 96 26.1916017 1457726 637 40 57 69 25.238S5S9 1569859 687 47 19 69 26.2106848 1455604 638 40 70 44 25 2586619 1567398 6S8 47 33 44 26.2297541 1453488 639 40 S3 21 25 2784493 1564945 6S9 47 47 21 26.24SS095 1451379 640 40 90 00 25.2982213 1562500 690 47 61 00 26.267S511 1449275 641 41 OS 81 25.3179778 1560062 691 47 74 81 26.2S687S9 1447178 642 41 21 64 25 33771S9 1557632 692 47 88 64 26.3058929 1445087 643 41 34 49 25.3574447 1555210 693 4S 02 49 26.3248932 1443001 644 41 47 36 25.3771551 1552795 694 48 16 36 26.343S797 1440922 645 41 60 25 25.3968502 1550388 695 48 30 25 26.3628527 143SS49 640 41 73 16 25.4165301 1547988 696 48 44 16 26 3818119 1436782 647 41 86 09 25.4361947 1545595 697 4S 58 09 26.4007576 1434720 648 41 99 04 25.455S441 1543210 698 48 72 04 26.4196896 1432665 649 42 12 01 25.4754784 1540832 699 48 86 01 26 43S60S1 1430615 650 42 25 00 25.4950976 153S462 700 49 00 00 26.4575131 142S571 TABLES 301 TABLE IV—( Continued ) Squares, Square Roots, and Reciprocals to 1000 No. Square Square Root Recipro¬ cal X 10 9 No. Square Square Root Recipro¬ cal X 10 9 701 49 14 01 26.4764046 1426534 751 56 40 01 27.4043792 1331558 702 49 28 04 26.4952826 1424501 752 56 55 04 27.4226184 1329787 703 49 42 09 26.5141472 1422475 753 56 70 09 27.4408455 1328021 704 49 56 16 26.5329983 1420455 754 56 85 16 27.4590604 1326260 705 49 70 25 26.5518361 1418440 755 57 00 25 27.4772633 1324503 706 49 84 36 26.5706605 1416431 756 57 15 36 27.4954542 1322751 707 49 98 49 26.5894716 1414427 757 57 30 49 27.5136330 1321004 708 50 12 64 26.6082694 1412429 758 57 45 64 27.5317998 1319261 709 50 26 81 26.6270539 1410437 759 57 60 SI 27.5499546 1317523 710 50 41 00 26.6458252 1408451 760 57 76 00 27.5680975 1315789 711 50 55 21 26.6645833 1406470 761 57 91 21 27.5862284 1314060 712 50 69 44 26.6833281 1404494 762 58 06 44 27.6043475 1312336 713 50 83 69 26.7020598 1402525 763 58 21 69 27.6224546 1310616 714 50 97 96 26.7207784 1400560 764 58 36 96 27.6405499 1308901 715 51 12 25 26.7394839 1398601 765 58 52 25 27.6586334 1307190 716 51 26 56 26.7581763 1396648 766 58 67 56 27.6767050 1305483 717 51 40 89 26.7768557 1394700 767 58 82 89 27.6947648 1303781 718 51 55 24 26.7955220 1392758 768 58 98 24 27.7128129 1302083 719 51 69 61 26.8141754 1390821 769 59 13 61 27.7308492 1300390 720 51 84 00 26.8328157 1388889 770 59 29 00 27.7488739 1298701 721 51 98 41 26.8514432 1386963 771 59 44 41 27.7668868 1297017 722 52 12 84 26.8700577 1385042 772 59 59 84 27.7848880 1295337 723 52 27 29 26.8886593 1383126 773 59 75 29 27.8028775 1293661 724 52 41 76 26.9072481 1381215 774 59 90 70 27.8208555 1291990 725 52 56 25 26.9258240 1379310 775 60 06 25 27.8388218 1290323 726 52 70 76 26.9443872 1377410 776 60 21 76 27.8567766 1288660 727 52 85 29 26.9629375 1375516 777 60 37 29 27.8747197 1287001 728 52 99 84 26.9814751 1373626 778 60 52 84 27.8926514 1285347 729 53 14 41 27.0000000 1371742 779 60 68 41 27.9105715 1283697 730 53 29 00 27.0185122 1369863 780 60 84 00 27.9284801 1282051 731 53 43 61 27.0370117 1367989 781 60 99 61 27.9463772 1280410 732 53 58 24 27.0554985 1366120 782 61 15 24 27.9642629 1278772 733 53 72 89 27.0739727 1364256 783 61 30 89 27.9821372 1277139 734 53 87 56 27.0924344 136239S 7S4 61 46 50 28.0000000 1275510 735 54 02 25 27.1108834 1360544 785 61 62 25 28.0178515 1273885 736 54 16 96 27.1293199 1358696 780 61 77 96 28.0350915 1272265 737 54 31 69 27.1477439 1356852 787 61 93 69 28.0535203 1270648 738 54 46 44 27.1661554 1355014 788 62 09 44 28.0713377 1269036 739 54 61 21 27.1845544 1353180 789 62 25 21 28.0891438 1267427 740 54 76 00 27.2029410 1351351 790 62 41 00 28.1069386 1265823 741 54 90 81 27.2213152 1349528 791 62 56 81 28.1247222 1264223 742 55 05 64 27.2396709 1347709 792 02 72 64 28.1424946 1262626 743 55 20 49 27.2580263 1345895 793 62 88 49 28.1602557 1261034 744 55 35 30 27.2763034 1344086 794 63 04 36 28.1780056 1259446 745 55 50 25 27.2946881 1342282 795 63 20 25 28.1957444 1257862 746 55 65 16 27.3130006 1340483 796 63 36 16 28.2134720 1256281 747 55 80 09 27.3313007 1338088 797 63 52 09 28.2311884 1254705 748 55 95 04 27.3495887 1336898 798 63 68 04 28.2488938 1253133 749 56 10 01 27.3678644 1335113 799 63 84 01 28.2665881 1251564 750 56 25 00 27.3861279 1333333 800 64 00 00 28.2842712 1250000 302 TABLES TABLE IV—( Continued ) Squares, Square Roots, and Reciprocals to 1000 No. Square Square Root Recipro¬ cal X 10 9 No. Square Square Root Recipro¬ cal X 10 9 801 64 16 01 28.3019434 1248439 851 72 42 01 29.1719043 1175088 802 64 32 04 28.3196045 12468S3 852 72 59 04 29.1890390 1173709 803 64 4S 09 28.3372546 1245330 853 72 76 09 29 2061637 1172333 804 64 64 16 28.3548938 12437S1 854 72 93 16 29.2232784 1170960 805 64 80 25 2S.3725219 1242236 855 73 10 25 29.2403830 1169591 806 64 96 36 28.3901391 1240695 856 73 27 36 29.2574777 116S224 807 65 12 49 28.4077454 1239157 857 73 44 49 29.2745623 1166861 SOS 65 28 64 28.4253408 1237624 858 73 61 64 29.2916370 1165501 809 65 44 81 28.4429253 1236094 859 73 78 81 29.30S7018 1164144 810 65 61 00 28.46049S9 1234568 860 73 96 00 29.3257566 1162791 811 65 77 21 28.4780617 1233046 861 74 13 21 29.3428015 1161440 S12 65 93 44 28.4956137 1231527 862 74 30 44 20.3598365 1160093 813 66 09 69 28 5131549 1230012 863 74 47 69 29.3768616 1158749 814 66 25 96 28.5306852 1228501 864 74 64 96 29.3938769 1157407 815 66 42 25 28.54S2048 1226994 S65 74 82 25 29.4108823 1156069 816 66 58 56 28 5657137 1225490 866 74 99 56 29.4278779 1154734 817 66 74 89 28.5S32119 1223990 867 75 16 89 29.4448637 1153403 818 66 91 24 28 6006993 1222494 868 75 34 24 29.4618397 1152074 819 67 07 61 28 6181760 1221001 S69 75 51 61 29.4788059 1150748 820 67 24 00 28.6356421 1219512 870 75 69 00 29.4957624 114942.' 821 67 40 41 28 6530976 1218027 871 75 86 41 29.5127091 1148106 822 67 56 84 28 6705424 1216545 872 76 03 84 29.5296461 1146789 823 67 73 29 28.6879766 1215067 873 76 21 29 29.5465734 1145475 824 67 89 76 28.7054002 1213592 874 76 38 76 29 5634910 1144165 825 68 06 25 28.7228132 1212121 875 76 56 25 29.5803989 1142857 826 68 22 76 28 7402157 1210654 876 76 73 76 29 5972972 1141553 827 68 39 29 28.7576077 1209190 877 76 91 29 20.6141858 1140251 828 6S 55 84 28.7749S91 1207729 878 77 08 84 29.6310648 1138952 829 68 72 41 28 792360! 1206273 879 77 26 41 29 6479342 1137656 830 68 89 00 28.8097206 1204819 880 77 44 00 29.6647939 1136364 831 69 05 61 28 8270706 1203369 881 77 61 61 29 6816442 1135074 832 69 22 24 28 8444102 1201923 882 77 79 24 29.6984848 1133787 833 69 38 89 28.8617394 1200480 883 77 96 89 29.7153159 1132503 834 69 55 56 28.8790582 1199041 884 78 14 56 29.7321375 1131222 835 69 72 25 28.8963666 1197605 885 78 32 25 29.7489496 1129944 836 69 88 96 28 9136646 1196172 886 78 49 96 29 7657521 1128668 837 70 05 69 28.9309523 1194743 887 7S 67 69 29.7825452 1127396 838 70 22 44 28 9482297 1193317 888 78 85 44 29.7993289 1126126 839 70 39 21 28 9654967 1191S95 889 79 03 21 29.8161030 1124859 840 70 56 00 28 9S27535 1190476 890 79 21 00 29.8328678 1123596 841 70 72 81 29.0000000 1189061 891 79 38 81 29 8496231 1122334 842 70 89 64 29.0172363 1187648 892 79 56 64 29.8663690 1121076 843 71 06 49 29 0344623 1186240 893 79 74 49 29 8831056 1119821 844 71 23 36 29 0516781 U84834 894 79 92 36 29.8998328 1118568 845 71 40 25 29.06S8S37 1183432 895 80 10 25 29.9165506 1117318 846 71 57 16 29 0860791 1182033 896 80 28 16 29 9332591 1116071 847 71 74 09 29.1032644 1180638 897 80 46 09 29.9499583 1114827 848 71 91 04 29.1204396 1179245 89S 80 64 04 29 9666481 1113586 849 72 08 01 29 1376046 1177856 899 SO 82 01 29 98332S7 1112347 850 72 25 00 29.1547595 1176471 900 81 00 00 30 0000000 1111111 TABLES 303 TABLE IV—( Continued ) Squares, Square Roots, and Reciprocals to 1000 No. Square Square Root Recipro¬ cal X 10 3 No. Square Square Root Recipro¬ cal X 10 9 901 81 18 01 30.0166620 1109878 951 90 44 01 30.8382879 1051525 902 81 36 04 30.0333148 1108647 952 90 63 04 30.8544972 1050420 903 81 54 09 30.0499584 1107420 953 90 82 09 30.8706981 1049318 904 81 72 16 30.0665928 1106195 954 91 01 16 30.8868904 1048218 905 81 90 25 30.0832179 1104972 955 91 20 25 30.9030743 1047120 906 82 08 36 30.0998339 1103753 956 91 39 36 30.9192497 1046025 907 82 26 49 30.1164407 1102536 957 91 58 49 30.9354166 1044932 908 82 44 64 30.1330383 1101322 958 91 77 64 30.9515751 1043841 909 82 62 81 30.1496269 1100110 959 91 96 81 30.9677251 1042753 910 82 81 00 30.1662063 1098901 960 92 16 00 30.9838668 1041667 911 82 99 21 30.1827765 1097695 961 92 35 21 31.0000000 1040583 912 83 17 44 30.1993377 1096491 962 92 54 44 31 0161248 1039501 913 83 35 69 30.2158899 1095290 963 92 73 69 31.0322413 1038422 914 83 53 96 30.2324329 1094092 964 92 92 96 31.0483494 1037344 915 83 72 25 30.2489609 1092896 965 93 12 25 31.0644491 1036269 916 83 90 56 30.2654919 1091703 966 93 31 56 31.0805405 1035197 917 84 08 89 30.2820079 1090513 967 93 50 89 31.0966236 1034126 918 84 27 24 30.2985148 1089325 968 93 70 24 31.1126984 1033058 919 84 45 61 30.3150128 1088139 969 93 89 61 31.1287648 1031992 920 84 64 00 30.3315018 1086957 970 94 09 00 31.1448230 1030928 921 84 82 41 30.3479818 1085776 971 94 28 41 31.1608729 1029866 922 85 00 84 30.3644529 1084599 972 94 47 84 31.1769145 1028807 923 85 19 29 30.3809151 1083424 973 94 67 29 31.1929479 1027749 924 85 37 76 30.3973683 1082251 974 94 86 70 31.2089731 1026694 925 85 56 25 30.4138127 1081081 975 95 06 25 31.2249900 1025641 926 85 74 76 30.4302481 1079914 976 95 25 76 31.2409987 1024590 927 85 93 29 30.4466747 1078749 977 95 45 29 31.2569992 1023541 928 86 11 84 30.4030924 1077586 978 95 64 84 31.2729915 1022495 929 86 30 41 30.4795013 1076426 979 95 84 41 31.2889757 1021450 930 86 49 00 30.4959014 1075269 980 96 04 00 31.3049517 1020408 931 86 67 61 30.5122926 1074114 981 96 23 61 31.3209195 1019368 932 86 86 24 30.5286750 1072961 982 90 43 24 31.3368792 1018330 933 87 04 89 30.5450487 1071811 983 96 62 89 31.3528308 1017294 934 87 23 56 30.5614136 1070664 984 96 82 50 31.3687743 1016200 935 87 42 25 30.5777097 1069519 985 97 02 25 31.3847097 1015228 936 87 60 96 30.5941171 1068376 980 97 21 96 31.4006369 1014199 937 87 79 69 30.6104557 1067236 987 97 41 69 31.4165561 1013171 938 87 98 44 30.6267857 1066098 988 97 01 44 31.4324673 1012146 939 88 17 21 30.6431069 1064963 989 97 81 21 31.4483704 1011122 940 88 36 00 30.0594194 1003830 990 98 01 00 31.4642054 1010101 941 88 54 81 30.6757233 1062699 991 98 20 81 31.4801525 1009082 942 88 73 64 30.6920185 1061571 992 98 40 64 31.4960315 1008065 943 88 92 49 30.7083051 1060445 993 98 60 49 31.5119025 1007049 944 89 11 36 30.7245830 1059322 994 98 80 30 31.5277655 1006036 945 89 30 25 30.7408523 1058201 995 99 00 25 31.5436206 1005025 946 89 49 16 30.7571130 1057082 996 99 20 16 31.5594677 1004016 947 89 68 09 30.7733651 1055966 997 99 40 09 31.5753068 1003009 948 89 87 04 30 7896086 1054852 998 99 60 04 31.5911380 1002004 949 90 06 01 30.8058436 1053741 999 99 80 01 31.6069613 1001001 950 90 25 00 30.8220700 1052632 1000 1 00 00 00 31.6227766 1000000 304' TABLES TABLE V* Five-place Logarithms: 100-150* N O 1 2 3 4 5 6 7 8 9 Prop. Parts 100 00 000 043 087 130 173 217 260 303 346 389 01 432 475 518 561 604 647 689 732 775 817 02 00 860 903 945 988 *030 *072 *115 *157 *199 *242 05 01 284 326 368 410 452 494 536 578 620 662 1 2 4.4 4.3 4.2 8.8 8.6 8.4 04 01 703 745 787 828 870 912 953 995 *036 *078 3 13.2 12.9 12.6 05 02 119 160 202 243 284 325 366 407 449 490 5 22 o 21 z 9 i n 06 531 572 612 655 694 735 776 816 857 898 G 26.4 25.8 25.2 07 02 938 979 *019 *060 *100 *141 *181 *222 *262 *302 7 8 30.8 30.1 29.4 35.2 34.4 33.6 08 03 342 383 423 463 503 543 583 623 663 703 9 39.6 38.7 37.8 09 03 743 782 822 862 902 941 981 *021 *060 *100 110 04 159 179 218 258 297 336 376 415 454 493 11 532 571 610 650 689 727 766 805 844 883 12 04 922 961 999 *058 *077 *115 *154 *192 *231 *269 41 40 39 15 05 308 346 385 423 461 500 538 576 614 652 1 4.1 4 3.9 2 8.2 8 7.8 14 05 690 729 767 805 843 881 918 956 994 *032 3 12.3 12 11.7 15 06 070 108 145 183 221 258 296 333 371 408 4 16.4 16 15.6 16 446 483 521 658 595 633 670 707 744 781 5 20.5 20 19.5 6 24.6 24 23.4 17 06 819 856 893 930 967 *004 *041 *078 *115 *151 7 28.7 28 27.3 18 07 188 225 262 298 335 372 408 445 482 518 9 32.8 32 31.2 19 555 591 628 664 700 737 773 809 846 882 120 07 918 954 990 *027 *063 *099 *135 *171 *207 *243 21 08 279 314 350 386 422 458 493 529 565 600 22 636 672 707 743 778 814 849 884 920 955 38 37 36 25 08 991 *026 *061 *096 *132 *167 *202 *237 *272 *307 i 3.8 3.7 3.6 2 7.6 7.4 7.2 24 09 342 377 412 447 482 517 552 587 621 656 3 11.4 11.1 10.8 25 09 691 726 760 795 830 864 899 934 968 *003 4 15.2 14.8 14.4 26 10 037 072 106 140 175 209 243 278 312 346 6 22.8 22.2 21.6 27 380 415 449 483 517 551 585 619 653 687 7 8 26.6 25.9 25.2 50 4 29 6 28 ft 28 10 721 755 789 823 857 890 924 958 992 *025 9 34.2 33.3 32.4 29 11 059 093 126 160 193 227 261 294 327 361 130 394 428 461 494 528 561 594 628 661 694 31 11 727 760 793 826 860 893 926 959 992 *024 as aj. aa 52 12 057 090 123 156 189 222 254 287 520 352 35 385 418 450 483 516 548 581 613 646 678 2 3.5 3.4 3.3 7.0 6.8 6.6 34 12 710 743 775 808 840 872 905 937 969 *001 3 4 10.5 10.2 9.9 14 0 15 6 15 2 35 13 033 066 098 130 162 194 226 258 290 322 5 17.5 17.0 16.5 36 354 386 418 450 481 513 545 577 609 640 6 21.0 20.4 19.8 7 24.5 23.8 23.1 37 672 704 735 767 799 830 862 893 925 956 8 28.0 27.2 26.4 38 13 988 *019 *051 *082 *114 *145 *176 *208 *239 *270 9 31.5 30.6 29.7 39 14 301 333 364 395 426 457 489 520 551 582 140 613 644 675 706 737 768 799 829 860 891 41 14 922 953 983 *014 *045 *076 *106 *137 *168 *198 42 15 229 259 290 320 351 381 412 442 473 503 43 534 564 594 625 655 685 715 746 776 806 2 3.2 3.1 3 6.4 6.2 6 44 15 836 866 897 927 957 987 *017 *047 *077 *107 3 4 9.6 9.3 9 12 8 12 4 12 45 16 137 167 197 227 256 286 316 346 376 406 5 16.0 15.5 15 46 435 465 495 524 554 584 613 643 673 702 6 19.2 18.6 18 7 22.4 21.7 21 47 16 732 761 791 820 850 879 909 938 967 997 8 25.6 24.8 24 48 17 026 056 085 114 143 173 202 231 260 289 9 28.8 27.9 27 49 319 348 377 406 435 464 493 522 551 580 150 17 609 638 667 696 725 754 782 811 840 869 N O 1 2 3 4 5 6 7 8 9 Prop. Parts ♦This table was taken from "Plane Trigonometry with Five-place Tables” by H. A. 1 Simmons and G. D. Gore by permission of the authors and the publisher, John Wiley & Sons, Ine. TABLES 305 TABLE V—( Continued ) Five-place Logarithms: 150-200 Prop Parts N 0 1 2 3 4 5 6 7 8 9 150 17 609 638 667 696 725 754 782 811 840 869 51 17 898 926 955 984 *013 *041 *070 *099 *127 *156 29 28 52 18 184 213 241 270 298 327 355 384 412 441 I 2.9 2.8 53 469 498 526 554 583 611 639 667 696 724 2 5.8 5.6 3 8.7 8.4 54 18 752 780 808 837 865 893 921 949 977 *005 4 11.6 11.2 55 19 033 061 089 117 145 173 201 229 257 285 6 17.4 16.8 56 312 340 368 396 424 451 479 507 535 562 7 20.3 19.6 57 590 618 645 673 700 728 756 783 811 838 9 26.1 25.2 58 19 866 893 921 948 976 *003 *030 *058 *085 *112 59 20 140 167 194 222 249 276 303 330 358 385 160 412 439 466 493 520 548 575 602 629 656 61 683 710 737 763 790 817 844 871 898 925 27 21! 62 20 952 978 *005 *032 *059 *085 *112 *139 *165 *192 i 2.7 2.6 63 21 219 245 272 299 325 352 378 405 431 458 2 5.4 5.2 3 8.1 7.8 64 484 511 537 564 590 617 643 669 696 722 4 10.8 10.4 65 21 748 775 801 827 854 880 906 932 958 985 5 G 13.6 13.0 16.2 15.6 66 22 011 037 063 089 115 141 167 194 220 246 7 18.9 18.2 67 272 298 324 350 376 401 427 453 479 505 9 24.3 23 4 68 531 557 583 608 634 660 686 712 737 763 69 22 789 814 840 866 891 917 943 968 994 *019 170 23 045 070 096 121 147 172 198 223 249 274 71 300 325 350 376 401 426 452 477 502 528 25 72 553 578 603 629 654 679 704 729 754 779 i 2.5 73 23 805 830 855 880 905 930 955 980 *005 *030 2 5.0 3 7.5 74 24 055 080 105 130 155 180 204 229 254 279 4 10.0 75 304 329 353 378 403 428 452 477 502 527 5 6 12.5 15.0 76 551 576 601 625 650 674 699 724 748 773 7 17.5 77 24 797 822 846 871 895 920 944 969 993 *018 9 22.5 78 25 042 066 091 115 139 164 188 212 237 261 79 285 310 334 358 382 406 431 455 479 503 180 527 551 575 600 624 648 672 696 720 744 81 25 768 792 816 840 864 888 912 935 959 983 24 23 82 26 007 031 055 079 102 126 150 174 198 221 i 2.4 2.3 83 245 269 293 516 340 364 387 411 435 458 2 4.8 4.6 3 7.2 6.9 84 482 505 529 553 576 600 623 647 670 694 4 9.6 9.2 85 717 741 764 788 811 834 858 881 905 928 5 G 12.0 11.5 14.4 13.8 86 26 951 975 998 *021 *045 *068 *091 *114 *138 *161 7 16.8 16.1 87 27 184 207 231 254 277 300 323 346 370 393 9 21 6 20 7 88 416 439 462 485 508 531 554 577 600 623 89 646 669 692 715 738 761 784 807 830 852 190 27 875 898 921 944 967 989 *012 *035 *058 *081 91 28 103 126 149 171 194 217 240 262 285 507 22 21 92 330 353 375 398 421 443 466 488 511 533 i 2.2 2.1 93 556 578 601 623 646 668 691 713 755 758 2 4.4 4.2 3 6.6 6.3 94 28 780 805 825 847 870 892 914 937 959 981 4 8.8 8.4 95 29 003 026 048 070 092 115 137 159 181 203 G 11.0 10.5 13.2 12.6 96 226 248 270 292 314 336 358 380 403 425 7 8 15.4 14.7 17 5 1 ft R 97 447 469 491 513 535 557 579 601 623 645 9 19 8 IK 9 98 667 688 710 732 754 776 798 820 842 863 99 29 885 907 929 951 973 994 *016 *038 *060 *081 200 30 103 125 146 168 190 211 233 255 276 298 Prop. Parts N 0 1 2 3 4 5 G 7 8 9 306 TABLES TABLE V—( Continued ) Five-place Logarithms: 200-250 N 0 1 2 3 4 5 6 7 8 9 Prop. Parts 200 30 103 125 146 168 190 211 233 255 276 298 01 320 341 363 384 406 428 449 471 492 514 02 535 557 578 600 621 643 664 685 707 728 22 21 03 750 771 792 814 835 856 878 899 920 942 1 2.2 2,1 2 4.4 4.2 04 30 963 984 *006 *027 *048 *069 *091 *112 *133 *154 3 6.6 6.3 05 31 175 197 218 259 260 281 502 323 345 566 4 8.8 8.4 06 387 408 429 450 471 492 513 534 555 576 5 11.0 10.5 0 13.2 12.6 07 597 618 639 660 681 702 723 744 765 785 7 15.4 14.7 08 31 806 827 848 869 890 911 931 952 973 994 8 17.6 16.8 09 32 015 035 056 077 098 118 139 160 181 201 210 222 243 263 284 305 325 346 366 387 408 11 428 449 469 490 510 531 552 572 593 613 12 634 654 675 695 715 756 756 777 797 818 20 13 32 838 858 879 899 919 940 960 980 *001 *021 i 2 14 33 041 062 082 102 122 143 163 183 203 224 3 6 15 244 264 284 304 325 345 365 585 405 425 4 8 16 445 465 486 506 526 546 566 586 606 626 5 6 10 12 17 646 666 686 706 726 746 766 786 806 826 7 14 18 33 846 866 885 905 925 945 965 985 *005 *025 8 16 19 34 044 064 084 104 124 143 163 183 203 223 220 242 262 282 301 321 541 361 380 400 420 21 439 459 479 498 518 537 557 577 596 616 22 635 655 674 694 713 733 753 772 792 811 19 23 34 830 850 869 889 908 928 947 967 986 *005 1 1.9 2 3.8 24 35 025 044 064 083 102 1 22 141 160 180 199 3 5.7 25 218 258 257 276 295 315 334 353 372 392 4 7.6 26 411 450 449 468 4S8 507 526 545 564 583 5 9.5 6 11.4 27 603 622 641 660 679 698 717 736 755 774 7 13.3 28 793 813 832 851 870 889 908 927 946 965 8 15.2 29 35 984 *003 *021 *040 *059 *078 *097 *116 *135 *154 230 36 173 192 211 229 248 267 286 305 324 342 51 561 380 399 418 456 455 474 493 511 530 32 549 568 586 605 624 642 661 6S0 698 717 18 33 756 754 773 791 810 829 847 866 884 903 i 1.8 2 3.6 34 36 922 940 959 977 996 *014 *033 *051 *070 *088 3 5.4 35 37 107 125 144 162 181 199 218 236 254 273 4 7.2 56 291 310 328 346 565 383 401 420 438 457 5 G 9.0 10.8 37 475 493 511 530 548 566 585 603 621 639 7 12.6 38 658 676 694 712 751 749 767 785 803 822 16 2 39 37 840 858 876 894 912 951 949 967 985 *003 240 38 021 059 057 075 093 112 130 148 166 184 41 202 220 238 256 274 292 310 328 546 364 42 382 399 417 435 453 471 489 507 525 543 17 43 561 578 596 614 652 650 668 686 705 721 1 1.7 2 3.4 44 739 757 775 792 810 828 846 863 881 899 3 5.1 45 38 917 934 952 970 987 *005 *023 *041 *058 *076 4 6.8 46 39 094 111 129 146 164 182 199 217 235 252 5 6 8.5 10.2 47 270 287 305 322 540 358 375 393 410 428 7 11.9 48 445 463 480 498 515 550 568 585 602 9 1 j.U IS 3 49 620 657 6 55 672 690 707 724 742 759 777 250 39 794 811 829 846 863 881 898 915 933 950 N 0 1 2 3 4 5 6 7 8 9 Prop. Parts TABLES 307 TABLE V —( Continued ) Five-place Logarithms: 250-300 Prop. Parts N 0 1 2 3 4 5 6 7 8 9 250 39 794 811 829 846 863 881 898 915 933 950 51 39 967 985 *002 *019 *037 *054 *071 *088 *106 *123 18 52 40 140 157 175 192 209 226 243 261 278 295 1 1.8 53 312 329 346 364 381 398 415 432 449 466 2 3.6 3 5.4 54 483 500 518 535 552 569 586 603 620 637 i 7.2 55 654 671 688 705 722 739 756 773 790 807 5 9.0 56 824 841 858 875 892 909 926 943 960 976 C 10.8 7 12.6 57 40 993 *010 *027 *044 *061 *078 *095 *111 *128 *145 8 14.4 58 41 162 179 196 212 229 246 263 280 296 513 59 330 347 363 380 397 414 430 447 464 481 260 497 514 531 547 564 581 597 614 631 647 61 664 681 697 714 731 747 764 780 797 814 17 62 830 847 863 880 896 913 929 946 963 979 i 1.7 63 41 996 *012 *029 *045 *062 *078 *095 *111 *127 *144 2 3.4 3 5.1 64 42 160 177 193 210 226 243 259 275 292 308 4 6.8 65 325 341 357 374 390 406 423 439 455 472 5 8.5 66 488 504 521 537 553 570 586 602 619 635 6 10.2 7 11.9 67 651 667 684 700 716 732 749 765 781 797 8 13.6 68 813 830 846 862 878 894 911 927 943 959 69 42 975 991 *008 *024 *040 *056 *072 *088 *104 *120 270 43 136 152 169 185 201 217 233 249 265 281 71 297 313 329 345 361 377 393 409 425 441 16 72 457 473 489 505 521 537 553 569 584 600 i 1.6 73 616 632 648 664 680 696 712 727 743 759 2 3.2 3 4.8 74 775 791 807 823 838 854 870 886 902 917 4 6.4 75 43 933 949 965 981 996 *012 *028 *044 *059 *075 5 6 8.0 9.6 76 44 091 107 122 138 154 170 185 201 217 232 7 11.2 77 248 264 279 295 311 326 342 358 373 389 J) 14 4 78 404 420 436 451 467 483 498 514 529 545 79 560 576 592 607 623 638 654 669 685 700 280 716 731 747 762 778 793 809 824 840 855 81 44 871 886 902 917 932 948 963 979 994 *010 15 82 45 025 040 056 071 086 102 117 133 148 163 1 1.5 83 179 194 209 225 240 255 271 286 301 317 2 3.0 3 4.5 84 332 347 362 378 393 408 423 439 454 469 4 6.0 85 484 500 515 530 545 561 576 591 606 621 5 6 7.5 9.0 86 637 652 667 682 697 712 728 743 758 773 7 10.5 87 788 803 818 834 849 864 879 894 909 924 13 5 88 45 939 954 969 984 *000 *015 *030 *045 *060 *075 89 46 090 105 120 135 150 165 180 195 21C 225 290 240 255 270 285 300 315 330 345 359 374 91 389 404 419 434 449 464 479 494 509 523 14 92 538 553 568 583 598 613 627 642 657 672 1 1.4 93 687 702 716 731 746 761 776 790 805 820 2 2.8 3 4.2 94 835 850 864 879 894 909 923 938 953 967 4 6.6 95 46 982 997 *012 *026 *041 *056 *070 *085 *100 *1 14 5 6 7.0 8.4 96 47 129 144 159 173 188 202 217 232 246 261 7 9.8 97 276 290 305 319 334 349 363 378 392 407 0 12.6 98 422 436 451 465 480 494 509 524 538 553 99 567 582 596 611 625 640 654 669 683 698 300 47 712 727 741 756 770 784 799 813 828 842 Prop. Parts N 0 1 •> 3 4 5 (> 7 8 9 308 TABLES TABLE V—( Continued) Five-place Logarithms: 300-350 N 0 1 2 3 4 5 6 7 8 9 Prop. Parts 300 47 712 727 741 756 770 784 799 813 828 842 01 47 857 871 885 900 914 929 943 958 972 986 02 48 001 015 029 044 058 075 087 101 116 130 03 144 159 173 187 202 216 230 244 259 273 15 04 287 302 316 330 344 359 373 387 401 416 1 1.5 05 430 444 458 473 487 501 515 530 544 558 2 3.0 4.5 6.0 06 572 586 601 615 629 643 657 671 686 700 4 07 714 728 742 756 770 785 799 813 827 841 5 6 7.5 Q 0 08 855 869 883 897 911 926 940 954 968 982 10.5 12.0 09 48 996 *010 *024 *058 *052 *066 *080 *094 *108 *122 8 310 49 156 150 164 178 192 206 220 234 248 262 9 13.5 11 276 290 304 318 332 346 360 374 588 402 12 415 429 443 457 471 485 499 515 527 541 13 554 568 582 596 610 624 658 651 665 679 14 693 707 721 734 748 762 776 790 803 817 15 831 845 859 872 886 900 914 927 941 955 16 49 969 982 996 *010 *024 *057 *051 *065 *079 *092 14 i 1.4 17 50 106 120 133 147 161 174 188 202 215 229 2 2.8 18 243 256 270 284 297 311 325 338 352 365 3 4.2 19 379 393 406 420 433 447 461 474 488 501 4 5 6 5 7.0 8.4 320 515 529 542 556 569 583 596 610 623 637 6 7 9.8 21 651 6b4 678 691 705 718 732 745 759 772 8 11.2 22 786 799 813 826 840 853 866 880 893 907 9 12.6 23 50 920 934 947 961 974 987 *001 *014 *028 *041 24 51 055 068 081 095 108 121 135 148 162 175 25 188 202 215 228 242 255 268 282 295 308 26 322 335 348 362 575 388 402 415 428 441 27 455 468 481 495 508 521 534 548 561 574 28 587 601 614 627 640 654 667 680 693 706 13 29 720 733 746 759 772 786 799 812 825 858 1 1.3 330 851 865 878 891 904 917 930 943 957 970 2 3 2.6 3.9 31 51 983 996 *009 *022 *035 *048 *061 *075 *088 *101 4 5.2 6 5 32 52 114 127 140 153 166 179 192 205 218 251 o 53 244 257 270 284 297 310 323 356 349 362 7 9.1 34 375 388 401 414 427 440 453 466 479 492 8 9 10.4 11.7 55 504 517 550 543 556 569 582 595 608 621 36 654 647 660 675 6S6 699 711 724 737 750 37 763 776 789 802 815 827 840 853 866 879 38 52 892 905 917 950 943 956 969 9S2 994 *007 39 53 020 035 046 058 071 084 097 110 122 135 340 148 161 173 186 199 212 224 237 250 263 12 1.2 41 275 288 301 314 326 339 352 364 377 390 i 42 403 415 428 441 453 466 479 491 504 517 2 2.4 45 529 542 ODD 567 580 593 605 618 651 643 3 3.6 4 4.8 44 656 668 681 694 706 719 732 744 757 769 5 6.0 45 782 794 807 820 832 845 857 870 882 895 6 7.2 46 53 908 920 933 945 958 970 983 995 *008 *020 7 8.4 8 9.6 47 54 033 045 058 070 083 095 108 120 133 145 9 10.8 48 158 170 183 195 208 220 233 245 258 270 49 283 295 307 320 332 345 357 370 382 394 350 54 407 419 432 444 456 469 481 494 506 518 N 0 1 2 3 4 5 6 7 8 9 Prop. Parts TABLES 309 TABLE V—( Continued ) Five-place Logarithms: 350-400 Prop. Parts N 0 1 2 3 4 5 6 7 8 9 350 54 407 419 432 444 456 469 481 494 506 518 51 531 543 555 568 580 593 605 617 630 642 52 654 667 679 691 704 716 728 741 753 765 13 53 777 790 802 814 827 839 851 864 876 888 1 1.3 54 54 900 913 925 937 949 962 974 986 998 *011 2 2.6 55 55 023 035 047 060 072 084 096 108 121 153 3 56 145 157 169 182 194 206 218 230 242 255 4 5.2 5 a 6.5 7 8 57 267 279 291 303 315 328 340 352 364 376 9.1 10.4 58 388 400 413 425 457 449 461 473 485 497 8 59 509 522 534 546 558 570 582 594 606 618 9 11.7 360 630 642 654 666 678 691 703 715 727 739 61 751 763 775 787 799 811 823 835 847 859 62 871 883 895 907 919 931 943 955 967 979 63 55 991 *003 *015 *027 *038 *050 *062 *074 *086 *098 64 56 110 122 134 146 158 170 182 194 205 217 65 229 241 253 265 277 289 301 312 324 336 12 66 348 360 372 384 396 407 419 431 443 455 1 2 1.2 2.4 67 467 478 490 502 514 526 538 549 561 573 3 3.6 68 585 597 608 620 632 644 656 667 679 691 4 5 6 4.8 6.0 7.2 8.4 69 703 714 726 758 750 761 773 785 797 808 370 820 832 844 855 867 879 891 902 914 926 8 9.6 71 56 937 949 961 972 984 996 *008 *019 *031 *043 9 10.8 72 57 054 066 078 089 101 115 124 136 148 159 73 171 183 194 206 217 229 241 252 264 276 74 287 299 310 322 334 345 357 368 380 392 75 403 415 426 438 449 461 473 484 496 507 76 519 530 542 553 565 576 588 600 611 623 77 634 646 657 669 680 692 703 715 726 738 11 78 749 761 772 784 795 807 818 850 841 852 79 864 875 887 898 910 921 933 944 955 967 1 1.1 2 3 2.2 3.3 380 57 978 990 *001 *013 *024 *035 *047 *058 *070 *081 4 4.4 81 58 092 104 115 127 138 149 161 172 184 195 5 5.5 6.6 82 206 218 229 240 252 263 274 286 297 309 83 320 331 343 354 365 377 388 399 410 422 7 7.7 8 9 8.8 9.9 84 433 444 456 467 478 490 501 512 524 535 85 546 557 569 580 591 602 614 625 636 647 86 659 670 681 692 704 715 726 757 749 760 87 771 782 794 805 816 827 838 850 861 872 88 883 894 906 917 928 959 950 961 973 984 89 58 995 *006 *017 *028 *040 *051 *062 *073 *084 *095 10 1 0 390 59 106 118 129 140 151 162 173 184 195 207 1 91 218 229 240 251 262 273 284 295 306 318 2 2.0 92 329 340 351 362 373 384 395 406 417 428 3 3.0 93 439 450 461 472 483 494 506 517 528 539 4 4.0 5 6.0 94 550 561 572 583 594 605 616 627 638 649 6 6.0 95 660 671 682 693 704 715 726 757 748 759 7 7.0 96 770 780 791 802 813 824 835 846 857 868 8 8.0 9 9.0 97 879 890 901 912 923 934 945 956 966 977 98 59 988 999 *010 *021 *032 *043 *054 *065 *076 *086 99 60 097 108 119 130 141 152 163 173 184 195 400 60 206 217 228 239 249 260 271 282 293 304 Prop. Parts N 0 1 2 3 4 5 <> 7 8 9 310 TABLES TABLE V—( Continued ) Five-place Logarithms: 400-450 N 0 1 o 3 4 5 6 7 8 9 Prop . Parts 400 60 206 217 228 239 249 260 271 282 293 304 01 314 325 336 547 358 369 379 390 401 412 02 423 433 444 455 466 477 487 498 509 520 03 531 541 552 563 574 584 595 606 617 627 04 658 649 660 670 681 692 703 713 724 735 05 746 756 767 778 788 799 810 821 831 842 06 853 863 874 885 895 906 917 927 938 949 11 1.1 07 60 959 970 981 991 *002 *013 *023 *034 *045 *055 1 08 61 066 077 087 098 109 119 130 140 151 162 2 2.2 09 172 183 194 204 215 225 236 247 257 268 3 3.3 4 4.4 5.5 410 278 289 300 310 321 331 342 352 363 374 5 6 6.6 11 384 595 405 416 426 437 448 458 469 479 7 7.7 12 490 500 511 521 532 542 553 563 574 584 8 8.8 13 595 606 616 627 637 648 658 669 679 690 9 9.9 14 700 711 721 731 742 752 763 773 784 794 15 805 815 826 836 847 857 868 878 888 899 16 61 909 920 930 941 951 962 972 982 993 *003 17 62 014 024 034 045 055 066 076 086 097 107 18 118 128 138 149 159 170 ISO 190 201 211 19 221 232 242 252 26J 273 284 294 304 315 420 325 335 346 356 366 377 387 397 408 418 21 428 439 449 459 469 4S0 490 500 511 521 22 531 542 552 562 572 583 593 603 613 624 10 23 634 644 655 665 675 685 696 706 716 726 1 1.0 2 2.0 24 737 747 757 767 778 788 798 808 818 829 3 3.0 25 839 849 859 870 880 890 900 910 921 931 4 4.0 26 62 941 951 961 972 982 992 *002 *012 *022 *055 5 6 5.0 6.0 27 63 043 053 063 073 083 094 104 114 124 134 7 8 9 7.0 8.0 9.0 28 144 155 165 175 185 195 205 215 225 236 29 246 256 266 276 286 296 306 317 327 337 430 347 357 367 377 387 397 407 417 428 438 31 448 458 468 478 488 498 50S 518 528 538 32 548 558 568 579 589 599 609 619 629 659 33 649 659 669 679 689 699 709 719 729 739 34 749 759 769 779 789 799 809 819 829 839 55 849 859 869 879 889 899 909 919 929 959 56 63 949 959 969 979 988 998 *008 *018 *028 *058 37 64 048 058 068 078 088 098 108 118 128 137 38 147 157 167 177 187 197 207 217 227 257 59 246 256 266 276 286 296 306 516 326 335 1 2 0.9 1.8 440 345 555 565 575 385 395 404 414 424 434 3 4 2.7 3.6 41 444 454 464 473 483 493 503 513 523 552 5 6 4.5 5.4 42 542 552 562 572 582 591 601 611 621 651 43 640 650 660 670 680 689 699 709 719 729 7 8 6.3 7.2 44 738 748 758 768 777 787 797 807 816 826 9 8.1 45 856 846 856 865 875 885 895 904 914 924 46 64 933 943 953 963 972 982 992 *002 *011 *021 47 65 031 040 050 060 070 079 089 099 108 118 48 128 137 147 157 167 176 186 196 205 215 49 225 234 244 254 263 273 283 292 302 312 450 65 321 331 341 350 360 369 379 389 398 408 N 0 1 2 j 3 4 5 1 6 7 8 9 Prop . Parts TABLES 311 TABLE V — ( Continued ) Five-place Logarithms: 450-500 Prop. Parts N 0 1 2 3 4 5 6 7 8 9 450 65 321 331 341 350 360 369 379 389 398 408 51 418 427 437 447 456 466 475 485 495 504 52 514 523 533 543 552 562 571 581 591 600 53 610 619 629 639 648 658 667 677 686 696 54 706 715 725 734 744 753 763 772 782 792 55 801 811 820 830 839 849 858 868 877 887 in 56 896 906 916 925 935 944 954 963 973 982 1 1.0 57 65 992 *001 *011 *020 *030 *039 *049 *058 *068 *077 2 2.0 58 66 087 096 106 115 124 134 143 153 162 172 3 3.0 59 181 191 200 210 219 229 238 247 257 266 4 4 0 5 5.0 460 276 285 295 304 314 323 332 342 351 361 6 6.0 7 7.0 61 370 380 389 398 408 417 427 436 445 455 8 8.0 62 464 474 483 492 502 511 521 530 539 549 9 9.0 63 558 567 577 586 596 605 614 624 633 642 64 652 661 671 680 689 699 708 717 727 736 65 745 755 764 773 783 792 801 811 820 829 66 839 848 857 867 876 885 894 904 913 922 67 66 932 941 950 960 969 978 987 997 *006 *015 68 67 025 034 043 052 062 071 080 089 099 108 69 117 127 136 145 154 164 173 182 191 201 470 210 219 228 237 247 256 265 274 284 293 71 302 311 321 330 339 348 357 367 376 385 9 72 394 403 413 422 431 440 449 459 468 477 i 0.9 73 486 495 504 514 523 532 541 550 560 569 2 1.8 3 2.7 74 578 587 596 605 614 624 633 642 651 660 4 3.6 75 669 679 688 697 706 715 724 733 742 752 5 6 4.5 5.4 76 761 770 779 788 797 806 815 825 834 843 7 6.3 77 852 861 870 879 888 897 906 916 925 934 9 ft 1 78 67 943 952 961 970 979 988 997 *006 *015 *024 79 68 034 043 052 061 070 079 088 097 106 115 480 124 133 142 151 160 169 178 187 196 205 81 215 224 233 242 251 260 269 278 287 296 82 305 314 323 332 341 350 359 368 377 386 83 395 404 413 422 431 440 449 458 467 476 84 485 494 502 511 520 529 538 547 556 565 85 574 583 592 601 610 619 628 637 646 655 86 664 673 681 690 699 708 717 726 735 744 87 753 762 771 780 789 797 806 815 824 833 88 842 851 860 869 878 886 895 904 913 922 1 3 0.8 1.6 89 68 931 940 949 958 966 975 984 993 *002 *011 3 2.4 400 69 020 028 037 046 055 064 073 082 090 099 4 3.2 5 4.0 91 108 117 126 135 144 152 161 170 179 188 92 197 205 214 223 232 241 249 258 267 276 7 8 5.6 6.4 93 285 294 302 311 320 329 338 346 355 564 9 7.2 94 373 381 390 399 408 417 425 434 443 452 95 461 469 478 487 496 504 513 522 531 539 96 548 557 566 574 583 592 601 609 618 627 97 636 644 653 662 671 679 688 697 705 714 98 723 732 740 749 758 767 775 784 793 801 99 810 819 827 836 845 854 862 871 880 888 500 69 897 906 914 923 932 940 949 958 966 975 Prop. Parts N 0 1 2 3 4 5 6 7 8 9 312 TABLES TABLE V—( Continued ) Five-place Logarithms: 500-550 N 0 1 2 3 4 5 6 7 8 9 Prop Parts 500 69 897 906 914 923 932 940 949 958 966 975 01 69 984 992 *001 *010 *018 *027 *036 *044 *053 *062 02 70 070 079 088 096 105 114 122 131 140 148 03 157 165 174 183 191 200 209 217 226 234 04 243 252 260 269 278 286 295 303 312 321 05 329 338 546 355 364 372 381 389 398 406 06 415 424 432 441 449 458 467 475 484 492 07 501 509 518 526 535 544 552 561 569 578 1 0.9 08 586 595 605 612 621 629 638 646 655 665 2 1.8 09 672 680 689 697 706 714 7 23 731 740 749 3 2.7 510 757 766 774 783 791 800 808 817 825 834 o 4.5 6 5 4 11 842 851 859 868 876 885 893 902 910 919 7 6.3 12 70 927 035 944 952 961 969 978 986 995 *003 8 7.2 13 71 012 020 029 037 046 054 063 071 079 088 9 8.1 14 096 105 113 122 150 139 147 155 164 172 15 181 189 198 206 214 223 231 240 248 257 16 265 273 282 290 299 307 315 324 332 341 17 349 357 566 374 383 391 399 408 416 425 18 433 441 450 458 466 475 483 492 500 508 19 517 525 533 542 550 559 567 575 584 592 520 600 609 617 625 634 642 650 659 667 675 21 684 692 700 709 717 725 734 742 750 759 22 767 775 784 792 800 809 817 825 834 842 8 23 850 858 867 875 883 892 900 908 917 925 1 0.8 2 1.6 24 71 933 941 950 958 966 975 983 991 999 *008 3 2.4 25 72 016 024 032 041 049 057 066 074 082 090 4 3.2 26 099 107 115 123 132 140 148 156 165 173 5 6 4.0 4.8 27 181 189 198 206 214 222 230 239 247 255 7 5.6 28 263 272 280 288 296 504 313 321 329 337 9 7.2 29 346 354 362 570 378 587 395 403 411 419 530 428 436 444 452 460 469 477 485 493 501 31 509 518 526 534 542 550 558 567 575 583 32 591 599 607 616 624 632 640 648 656 665 33 673 681 689 697 705 713 722 730 738 746 34 754 762 770 779 787 795 803 811 819 827 55 835 843 852 860 868 876 884 892 900 908 56 916 925 933 941 949 957 965 973 981 989 37 72 997 *006 *014 *022 *030 *058 *046 *054 *062 *070 38 73 078 086 094 102 111 119 127 135 143 151 39 159 167 175 183 191 199 207 215 223 231 1 2 0.7 1.4 540 259 247 255 263 272 280 288 296 504 312 3 2.1 4 2.8 41 320 328 336 344 352 360 368 376 384 392 5 3.5 42 400 408 416 424 452 440 448 456 464 472 43 480 488 496 504 512 520 528 536 544 552 7 8 4.9 5.6 44 560 568 576 584 592 600 608 616 624 632 9 6.3 45 640 648 656 664 672 679 687 695 703 711 46 719 727 735 743 751 759 767 775 785 791 47 799 807 815 823 830 838 846 854 862 870 48 878 886 894 902 910 918 926 953 941 949 49 73 957 965 975 981 989 997 *005 *013 *020 *028 550 74 036 044 052 060 068 076 084 092 099 107 N 0 1 2 3 4 5 6 7 8 9 Prop. Parts TABLES 313 TABLE V—( Continued ) Five-place Logarithms: 550-600 Prop . Parts N 0 1 2 3 4 5 6 7 8 9 550 74 036 044 052 060 068 076 084 092 099 107 51 115 123 131 139 147 155 162 170 178 186 52 194 202 210 218 225 233 241 249 257 265 53 273 280 288 296 304 312 320 327 335 343 54 351 359 367 374 382 390 398 406 414 421 55 429 437 445 453 461 468 476 484 492 500 56 507 515 523 531 539 547 554 562 570 578 57 586 593 601 609 617 624 632 640 648 656 58 663 671 679 687 695 702 710 718 726 733 59 741 749 757 764 772 780 788 796 803 811 560 819 827 834 842 850 858 865 873 881 889 61 896 904 912 920 927 935 943 950 958 966 8 62 74 974 981 989 997 *005 *012 *020 *028 *035 *043 1 0.8 63 75 051 059 066 074 082 089 097 105 113 120 2 1.6 3 2.4 64 128 136 143 151 159 166 174 182 189 197 4 3.2 65 205 213 220 228 236 243 251 259 266 274 5 4.0 66 282 289 297 305 312 320 328 335 343 351 6 4.8 7 5.6 67 358 366 374 381 389 397 404 412 420 427 8 6.4 68 435 442 450 458 465 473 481 488 496 504 9 7.2 69 511 519 526 534 542 549 557 565 572 580 570 587 595 603 610 618 626 633 641 648 656 71 664 671 679 686 694 702 709 717 724 732 72 740 747 755 762 770 778 785 793 800 808 73 815 823 831 838 846 853 861 868 876 884 74 891 899 906 914 921 929 937 944 952 959 75 75 967 974 982 989 997 *005 *012 *020 *027 *035 76 76 042 050 057 065 072 080 087 095 103 110 77 118 125 133 140 148 155 163 170 178 185 78 193 200 208 215 223 230 238 245 253 260 79 268 275 283 290 298 305 313 320 328 335 580 343 350 358 365 373 380 388 395 403 410 7 81 418 425 433 440 448 455 462 470 477 485 1 0.7 82 492 500 507 515 522 530 537 545 552 559 2 1.4 83 567 574 582 589 597 604 612 619 626 634 3 2.1 4 2.8 84 641 649 656 664 671 678 686 693 701 708 5 3.5 85 716 723 730 738 745 753 760 768 775 782 V 4.2 86 790 797 805 812 819 827 834 842 849 856 7 4.9 8 5.6 87 864 871 879 886 893 901 908 916 923 930 9 6.3 88 76 938 945 953 960 967 975 982 989 997 *004 89 77 012 019 026 034 041 048 056 063 070 078 590 085 093 100 107 115 122 129 137 144 151 91 159 166 173 181 188 195 203 210 217 225 92 232 240 247 254 262 269 276 283 291 298 93 305 313 320 327 335 342 349 357 364 371 94 379 386 393 401 408 415 422 430 437 444 95 452 459 466 474 481 488 495 503 510 517 96 525 532 539 546 554 561 568 576 583 590 97 597 605 612 619 627 634 641 648 656 663 98 670 677 685 692 699 706 714 721 728 735 99 743 750 757 764 772 779 786 793 801 808 600 77 815 822 830 837 844 851 859 866 873 880 Prop. Parts N 0 1 2 :t 4 5 « 7 8 9 314 TABLES TABLE V—( Continued) Five-place Logarithms: 600-650 N 0 1 o 3 4 5 6 7 8 9 Prop. Parts GOO 77 815 822 830 837 844 851 859 866 873 880 01 887 895 902 909 916 924 931 938 945 952 02 77 960 967 974 981 988 996 *003 *010 *017 *025 03 78 032 039 046 05 o 061 068 075 082 089 097 04 104 111 118 125 132 140 147 154 161 168 05 176 183 190 197 204 211 219 226 233 240 06 247 254 262 269 276 283 290 297 305 312 07 319 326 333 340 347 355 362 369 376 383 1 0.8 08 390 398 405 412 419 426 433 440 447 455 2 1.6 09 462 469 476 483 490 497 504 512 519 526 3 2.4 G 10 533 540 547 554 561 569 576 583 590 597 5 4.0 0 11 604 611 618 625 653 640 647 654 661 668 7 5.6 12 675 682 689 696 704 711 718 725 732 739 8 6.4 13 746 753 760 767 774 781 789 796 805 810 9 7.2 14 817 824 831 838 845 852 859 866 873 880 15 888 895 902 909 916 923 950 937 944 951 16 78 958 965 972 979 986 993 *000 *007 *014 *021 17 79 029 036 043 050 057 064 071 078 085 092 18 099 106 113 120 127 134 141 148 155 162 19 169 176 183 190 197 204 211 218 225 232 620 239 246 253 260 267 274 281 288 295 302 21 309 316 323 330 337 344 351 358 365 372 22 379 386 393 400 407 414 421 428 435 442 7 23 449 456 463 470 477 484 491 498 505 511 1 0.7 2 1.4 24 518 525 532 539 546 553 560 567 574 581 3 2.1 25 588 595 602 609 616 623 630 637 644 650 4 2.8 26 657 664 671 678 685 692 699 706 713 720 5 3.5 6 4.2 27 727 734 741 748 754 761 768 775 782 789 7 4.9 28 796 803 810 817 824 831 857 844 851 858 8 5.6 29 865 872 879 886 893 900 906 913 920 927 9 6.3 630 79 934 941 948 955 962 969 975 982 989 996 31 80 003 010 017 024 050 037 044 051 058 065 32 072 079 085 092 099 106 113 120 127 134 33 140 147 154 161 168 175 182 188 195 202 34 209 216 223 229 236 243 250 257 264 271 JO 277 284 291 298 305 312 318 325 332 339 36 346 353 559 366 573 380 387 393 400 407 37 414 421 428 454 441 448 455 462 468 475 38 482 489 496 502 509 516 525 550 536 543 6 39 550 557 564 570 577 584 591 598 604 611 i 0.6 2 1.2 640 618 625 632 658 645 652 659 665 672 679 3 1.8 4 ? 4 41 686 693 699 706 713 720 726 733 740 747 5 3.0 42 754 760 767 774 781 7 S 7 794 801 808 814 6 3.6 43 821 828 835 841 848 855 862 868 875 882 7 4.2 8 4.8 44 889 895 902 909 916 922 929 936 943 949 9 5.4 45 80 956 963 969 976 983 990 996 *003 *010 *017 46 81 023 030 037 043 050 057 064 070 077 084 47 090 097 104 111 117 124 131 137 144 151 48 158 164 171 178 184 191 198 204 211 218 49 224 231 238 245 251 258 265 271 278 285 650 81 291 298 305 311 318 325 331 338 345 351 N O 1 2 3 4 5 6 7 8 9 Prop. Parts TABLES 315 TABLE V —( Continued ) Five-place Logarithms: 650-700 Prop. Parts N 0 1 2 3 4 5 6 7 8 9 650 81 291 298 305 311 318 325 331 338 345 351 51 358 365 371 378 385 391 398 405 411 418 52 425 451 438 445 451 458 465 471 478 485 53 491 498 505 511 518 525 531 538 544 551 54 558 564 571 578 584 591 598 604 611 617 55 624 631 637 644 651 657 664 671 677 684 56 690 697 704 710 717 723 730 737 743 750 57 757 763 770 776 783 790 796 803 809 816 58 823 829 856 842 849 856 862 869 875 882 59 889 895 902 908 915 921 928 935 941 948 660 81 954 961 968 974 981 987 994 *000 *007 *014 61 82 020 027 033 040 046 053 060 066 073 079 7 62 086 092 099 105 112 119 125 132 138 145 1 0.7 63 151 158 164 171 178 184 191 197 204 210 2 3 1.4 2.1 64 217 223 230 236 243 249 256 263 269 276 4 2.8 65 282 289 295 302 308 315 321 328 334 341 5 3.5 66 347 354 360 367 373 380 387 393 400 406 6 4.2 7 4.9 67 413 419 426 432 439 445 452 458 465 471 8 5.6 68 478 484 491 497 504 510 517 523 530 536 9 6.3 69 543 549 556 562 569 575 582 588 595 601 670 607 614 620 627 633 640 646 653 659 666 71 672 679 685 692 698 705 711 718 724 730 72 737 743 750 756 763 769 776 782 789 795 73 802 808 814 821 827 834 840 847 853 860 74 866 872 879 885 892 898 905 911 918 924 75 930 937 943 950 956 963 969 975 982 988 76 82 995 *001 *008 *014 *020 *027 *033 *040 *046 *052 77 83 059 065 072 078 085 091 097 104 110 117 78 123 129 136 142 149 155 161 168 174 181 79 187 193 200 206 213 219 225 232 238 245 680 251 257 264 270 276 283 289 296 302 308 6 81 315 321 327 334 340 347 353 359 366 372 1 0 6 82 378 385 391 398 404 410 417 423 429 436 2 1.2 83 442 448 455 461 467 474 480 487 493 499 3 1.8 4 2.4 84 506 512 518 525 531 537 544 550 556 563 5 3.0 85 569 575 582 588 594 601 607 613 620 626 (i 3.6 86 632 639 645 651 658 664 670 677 683 689 7 4.2 8 4.8 87 696 702 70 S 715 721 727 734 740 746 753 9 5.4 88 759 765 771 778 784 790 797 803 809 816 89 822 828 835 841 847 853 860 866 872 879 600 885 891 897 904 910 916 923 929 935 942 91 83 948 954 960 967 973 979 985 992 998 *004 92 84 011 017 023 029 036 042 048 055 061 067 93 073 080 086 092 098 105 111 117 123 130 94 136 142 148 155 161 167 173 180 186 192 95 198 205 211 217 223 230 236 242 248 255 96 261 267 273 280 286 292 298 305 311 317 97 323 330 336 342 348 354 361 367 373 379 98 386 392 398 404 410 417 423 429 435 442 99 448 454 460 466 473 479 485 491 497 504 700 84 510 516 522 528 535 541 547 553 559 566 Prop. Parts --- N 0 1 *> 3 4 5 6 7 8 9 316 TABLES TABLE V—( Continued ) Five-place Logarithms: 700-750 N 0 1 2 3 4 5 6 7 8 9 Prop Parts 700 84 510 516 522 528 555 541 547 553 559 566 01 572 578 584 590 597 603 609 615 621 628 02 634 640 646 652 658 665 671 677 683 689 03 696 702 708 714 720 726 73 3 739 745 751 04 757 763 770 776 782 788 794 800 807 813 05 819 825 831 837 844 850 856 862 868 874 06 880 887 893 899 905 911 917 924 930 936 7 07 84 942 948 954 960 967 973 979 985 991 997 1 0.7 08 85 003 009 016 022 028 034 040 046 052 058 2 3 1.4 2.1 09 065 071 077 085 089 095 101 107 114 120 4 2.8 710 126 132 138 144 150 156 163 169 175 181 5 6 3.5 4.2 11 187 193 199 205 211 217 224 230 236 242 7 4.9 12 248 254 260 266 272 278 285 291 297 303 8 9 5.6 6.3 13 309 515 321 327 333 339 345 352 358 364 14 370 376 382 388 394 400 406 412 418 425 15 431 437 443 449 455 461 467 473 479 485 16 491 497 505 509 516 522 528 534 540 546 17 552 558 564 570 576 582 588 594 600 606 18 612 618 625 631 637 643 649 655 661 667 19 673 679 685 691 697 703 709 715 721 727 720 735 739 745 751 757 763 769 775 781 788 21 794 800 806 812 818 824 830 836 842 848 6 22 854 860 866 872 878 884 890 896 902 908 23 914 920 926 932 938 944 950 956 962 968 i 0.6 2 1.2 24 85 974 980 986 992 998 *004 *010 *016 *022 *028 3 1.8 25 86 034 040 046 052 058 064 070 076 082 088 4 5 6 2.4 26 094 100 106 112 118 124 130 136 141 147 3.6 27 153 159 165 171 177 185 189 195 201 207 7 8 9 4.2 4.8 5.4 28 215 219 225 231 237 243 249 255 261 267 29 273 279 285 291 297 303 308 514 320 326 730 332 338 544 350 356 362 568 374 380 386 31 392 398 404 410 415 421 427 433 439 445 32 451 457 465 469 475 481 487 493 499 504 33 510 516 522 528 534 540 546 552 558 564 34 570 576 581 587 593 599 605 611 617 623 35 629 635 641 646 652 658 664 670 676 682 36 688 694 700 705 711 717 723 729 735 741 57 747 753 759 764 770 776 782 788 794 800 5 58 806 812 817 825 829 855 841 847 853 859 59 864 870 876 882 888 894 900 906 911 917 1 2 0.5 1.0 740 923 929 935 941 947 953 958 964 970 976 3 4 1.5 2.0 41 86 982 988 994 999 *005 *011 *017 *023 *029 *035 5 2.5 3.0 42 87 040 046 052 058 064 070 075 081 087 093 43 099 105 111 116 122 128 134 140 146 151 7 8 3.5 4.0 44 157 163 169 175 181 186 192 198 204 210 9 4.5 45 216 221 227 233 259 245 251 256 262 268 46 274 280 286 291 297 303 309 315 320 326 47 332 338 344 349 355 361 367 373 379 384 48 590 396 402 408 413 419 425 431 437 442 49 448 454 460 466 471 477 483 489 495 500 750 87 506 512 518 523 529 535 541 547 552 558 N 0 1 2 3 4 5 6 7 8 9 Prop. Parts TABLES 317 TABLE V —( Continued ) Five-place Logarithms: 750-800 Prop. Parts N 0 1 2 3 4 5 6 7 8 9 750 87 506 512 518 523 529 535 541 547 552 558 51 564 570 576 581 587 593 599 604 610 616 52 622 628 633 639 645 651 656 662 668 674 53 679 685 691 697 703 708 714 720 726 731 54 737 743 749 754 760 766 772 777 783 789 55 795 800 806 812 818 823 829 835 841 846 56 852 858 864 869 875 881 887 892 898 904 57 910 915 921 927 933 938 944 950 955 961 58 87 967 973 978 984 990 996 *001 *007 *013 *018 59 88 024 030 036 041 047 053 058 064 070 076 760 081 087 093 098 104 110 116 121 127 133 61 138 144 150 156 161 167 173 178 184 190 6 62 195 201 207 213 218 224 230 235 241 247 1 0.6 63 252 258 264 270 275 281 287 292 298 304 2 3 1.2 1.8 64 309 315 321 326 332 338 343 349 355 360 4 2.4 65 366 372 377 383 389 395 400 406 412 417 5 3.0 66 423 429 434 440 446 451 457 463 468 474 6 3.6 7 4.2 67 480 485 491 497 502 508 513 519 525 530 8 4.8 68 536 542 547 553 559 564 570 5/6 581 587 9 5.4 69 593 598 604 610 615 621 627 632 638 643 770 649 655 660 666 672 677 683 689 694 700 71 705 711 717 722 728 734 739 745 750 756 72 762 767 773 779 784 790 795 801 807 812 73 818 824 829 835 840 846 852 857 863 868 74 874 880 885 891 897 902 908 913 919 925 75 930 936 941 947 953 958 964 969 975 981 76 88 986 992 997 *003 *009 *014 *020 *025 *031 *037 77 89 042 048 053 059 064 070 076 081 087 092 78 098 104 109 115 120 126 131 137 143 148 79 154 159 165 170 176 182 187 193 198 204 780 209 215 221 226 232 237 243 248 254 260 5 81 265 271 276 282 287 293 298 304 310 315 1 0 5 82 321 326 332 337 343 348 354 360 365 371 2 1.0 83 376 382 387 393 398 404 409 415 421 426 3 1.5 4 2.0 84 432 437 443 448 454 459 465 470 476 481 5 2.5 85 487 492 498 504 509 515 520 526 531 537 G 3.0 86 542 548 553 559 564 570 575 581 586 592 7 3.5 8 4.0 87 597 603 609 614 620 625 631 636 642 647 9 4.5 88 653 658 664 669 675 680 686 691 697 702 89 708 713 719 724 730 735 741 746 752 757 790 763 768 774 779 785 790 796 801 807 812 91 818 823 829 834 840 845 851 856 862 867 92 873 878 883 889 894 900 905 911 916 922 93 927 933 938 944 949 955 960 966 971 977 94 89 982 988 993 998 *004 *009 *015 *020 *026 *031 95 90 037 042 048 053 059 064 069 075 080 086 96 091 097 102 108 113 119 124 129 155 140 97 146 151 157 162 168 173 179 184 189 195 98 200 206 211 217 222 227 255 238 244 249 99 255 260 266 271 276 282 287 293 298 304 800 90 309 314 320 325 331 336 342 347 352 358 Prop. Parts N 0 1 2 3 4 5 0 7 8 9 318 TABLES TABLE V—( Continued) Five-place Logarithms: 800-850 N 0 1 2 3 4 5 6 7 8 9 Prop . Parts 800 90 309 314 320 325 331 336 342 347 352 358 01 363 369 374 380 385 390 396 401 407 412 02 417 423 428 434 439 445 450 455 461 466 03 472 477 482 488 493 499 504 509 515 520 04 526 531 536 542 547 553 558 563 569 574 05 580 585 590 596 601 607 612 617 623 628 06 634 639 644 650 655 660 666 671 677 682 07 68 7 693 698 703 709 714 720 725 730 736 08 741 747 752 757 763 768 773 779 784 789 09 795 800 806 811 816 822 827 832 838 843 810 849 854 859 865 870 875 881 886 891 897 11 902 907 913 918 924 929 934 940 945 950 12 90 956 961 966 972 977 982 988 993 998 *004 6 13 91 009 014 020 025 030 036 041 046 052 057 1 0.6 2 1.2 14 062 068 073 078 084 089 094 100 105 110 3 1.8 15 116 121 126 132 157 142 148 153 158 164 4 2 4 16 169 174 180 185 190 196 201 206 212 217 5 3.0 G 3.6 17 222 228 233 238 243 249 254 259 265 270 7 4.2 18 275 281 286 291 297 502 307 312 318 323 8 4.8 19 328 334 339 344 350 355 360 365 371 376 9 5.4 820 381 387 392 397 403 408 413 418 424 429 21 434 440 445 450 455 461 466 471 477 482 22 487 492 498 503 508 514 519 524 529 535 23 540 545 551 556 561 566 572 577 582 587 24 593 598 603 609 614 619 624 630 635 640 25 645 651 656 661 666 672 677 682 687 693 26 698 703 709 714 719 724 730 735 740 745 27 751 756 761 766 772 777 782 787 793 798 28 803 808 814 819 824 829 834 840 845 850 29 855 861 866 871 876 882 887 892 897 903 830 908 913 918 924 929 934 939 944 950 955 31 91 960 965 971 976 981 986 991 997 *002 *007 5 32 92 012 018 023 028 033 038 044 049 054 059 1 0 5 33 065 070 075 080 085 091 096 101 106 111 2 1.0 3 1.5 34 117 122 127 132 137 143 148 153 158 163 4 2.0 35 169 174 179 184 189 195 200 205 210 215 5 2.0 36 221 226 231 236 241 247 252 257 262 267 6 3.0 7 3.5 37 273 278 283 288 293 298 304 309 314 319 8 4.0 38 324 330 535 340 345 350 355 361 366 371 9 4.5 39 376 381 387 392 397 402 407 412 418 423 840 428 433 438 443 449 454 459 464 469 474 41 480 485 490 495 500 505 511 516 521 526 42 531 536 542 547 552 557 562 567 572 578 43 583 588 593 598 603 609 614 619 624 629 44 634 639 645 650 655 660 665 670 675 681 45 686 691 696 701 706 711 716 722 727 732 46 737 742 747 752 758 763 768 773 778 783 47 788 793 799 804 809 814 819 824 829 834 48 840 845 850 855 860 865 870 875 881 886 49 891 896 901 906 911 916 921 927 932 937 850 92 942 947 952 957 962 967 973 978 983 988 N 0 1 2 3 4 5 6 7 8 9 Prop . Parts TABLES 319 TABLE V — ( Continued) Five-place Logarithms: 850-900 Prop. Parts N 0 1 2 3 4 5 6 7 8 9 850 92 942 947 952 957 962 967 973 978 983 988 51 92 993 998 *003 *008 *013 *018 *024 *029 *034 *039 52 93 044 049 054 059 064 069 075 080 085 090 53 095 100 105 no 115 120 125 131 136 141 54 146 151 156 161 166 171 176 181 186 192 55 197 202 207 212 217 222 227 232 237 242 6 56 247 252 258 263 268 273 278 283 288 293 1 0.6 57 298 303 308 313 318 323 328 334 339 344 2 1.2 58 349 354 359 364 369 374 379 384 389 394 3 1.8 59 399 404 409 414 420 425 430 435 440 445 4 2.4 5 6 3.0 3.6 860 450 455 460 465 470 475 480 485 490 495 7 4.2 61 500 505 510 515 520 526 531 536 541 546 8 4.8 62 551 556 561 566 571 576 581 586 591 596 9 5.4 63 601 606 611 616 621 626 631 636 641 646 64 651 656 661 666 671 676 682 687 692 697 65 702 707 712 717 722 727 732 737 742 747 66 752 757 762 767 772 777 782 787 792 797 67 802 807 812 817 822 827 832 837 842 847 68 852 857 862 867 872 877 882 887 892 897 69 902 907 912 917 922 927 932 937 942 947 870 93 952 957 962 967 972 977 982 987 992 997 71 94 002 007 012 017 022 027 032 037 042 047 5 72 052 057 062 067 072 077 082 086 091 096 i 0.5 73 101 106 111 116 121 126 131 136 141 146 2 1.0 3 1.5 74 151 156 161 166 171 176 181 186 191 196 4 2.0 75 201 206 211 216 221 226 231 236 240 245 5 6 2.5 3.0 76 250 255 260 265 270 275 280 285 290 295 7 8 9 3.5 4.0 4.5 77 300 305 310 315 320 325 330 335 340 345 78 349 354 359 364 369 374 379 384 389 394 79 399 404 409 414 419 424 429 433 438 443 880 448 453 458 463 468 473 478 483 488 493 81 498 503 507 512 517 522 527 532 537 542 82 547 552 557 562 567 571 576 581 586 591 83 596 601 606 611 616 621 626 630 635 640 84 645 650 655 660 665 670 675 680 685 689 85 694 699 704 709 714 719 724 729 734 738 86 743 748 753 758 763 768 773 778 783 787 87 792 797 802 807 812 817 822 827 832 836 88 841 846 851 856 861 866 871 876 880 885 1 2 0.4 0.8 89 890 895 900 905 910 915 919 924 929 934 3 1.2 890 939 944 949 954 959 963 968 973 978 983 5 2.0 2.4 91 94 988 993 998 *002 *007 *012 *017 *022 *027 *032 92 95 036 041 046 05 1 056 061 066 071 075 080 7 8 2.8 3.2 93 085 090 095 100 105 109 114 119 124 129 9 3.6 94 134 139 143 148 153 158 163 168 173 177 95 182 187 192 197 202 207 21 1 216 221 226 96 231 236 240 245 250 255 260 265 270 274 97 279 284 289 294 299 303 308 313 318 323 98 328 332 337 342 347 352 357 361 366 371 99 376 381 386 390 395 400 405 410 415 419 900 95 424 429 434 439 444 448 453 458 463 468 Prop. Parts N 0 1 2 3 4 5 « 7 8 9 320 TABLES TABLE V— {Continued) Five-place Logarithms: 900-950 N 0 1 2 3 4 5 6 7 8 9 Prop . Parts 900 95 424 429 434 439 444 448 453 458 463 468 01 472 477 482 487 492 497 501 506 511 516 02 521 525 550 535 540 545 550 554 559 564 03 569 574 578 583 588 593 598 602 607 612 04 617 622 626 631 636 641 646 650 655 660 05 665 670 674 679 684 689 694 698 703 708 06 713 718 722 727 732 737 742 746 751 756 07 761 766 770 775 780 785 789 794 799 804 OS 809 813 818 823 828 832 837 842 847 852 09 856 861 866 871 875 880 885 890 895 899 910 904 909 914 918 923 928 933 938 942 947 11 952 957 961 966 971 976 980 985 990 995 12 95 999 *004 *009 *014 *019 *023 *028 *033 *038 *042 5 13 96 047 052 057 061 066 071 076 080 085 090 1 0.5 14 095 099 104 109 114 118 123 128 133 137 2 3 1.0 1.5 15 142 147 152 156 161 166 171 175 180 185 4 2 0 16 190 194 199 204 209 213 218 223 227 232 a 2.5 6 3.0 17 237 242 246 251 256 261 265 270 275 280 7 3.5 18 284 289 294 298 503 508 313 317 322 327 8 4.0 19 332 336 541 346 550 355 360 365 369 374 9 4.5 920 379 384 388 393 398 402 407 412 417 421 21 426 431 435 440 445 450 454 459 464 468 22 473 478 483 487 492 497 501 506 511 515 23 520 525 530 534 539 544 548 553 558 562 24 567 572 577 581 586 591 595 600 605 609 25 614 619 624 628 633 638 642 647 652 656 26 661 666 670 675 680 685 689 694 699 703 27 708 713 717 722 727 731 736 741 745 750 28 755 759 764 769 774 778 783 788 792 797 29 802 806 811 816 820 825 830 834 839 844 9 SO 848 853 858 862 867 872 876 881 886 890 31 895 900 904 909 914 918 923 928 932 937 4 32 942 946 951 956 960 965 970 974 979 984 1 n 4 33 96 988 993 997 *002 *007 *011 *016 *021 *025 *030 2 0.8 3 1.2 34 97 035 039 044 049 053 058 063 067 072 077 4 1.6 35 081 086 090 095 100 104 109 114 118 123 5 2.0 56 128 132 157 142 146 151 155 160 165 169 6 2.4 7 2.8 37 174 179 183 188 192 197 202 206 211 216 8 3.2 38 220 225 230 254 239 243 248 253 257 262 9 5.6 59 267 271 276 280 285 290 294 299 304 308 940 313 317 322 327 331 336 340 345 350 354 41 359 364 368 373 377 382 387 391 396 400 42 405 410 414 419 424 428 433 437 442 447 43 451 456 460 465 470 474 479 483 488 493 44 497 502 506 511 516 520 525 529 534 539 45 543 548 552 557 562 566 571 575 580 585 46 589 594 598 603 607 612 617 621 626 630 47 635 640 644 649 655 658 663 667 672 676 48 681 685 690 695 699 704 708 713 717 722 49 727 731 756 740 745 749 754 759 763 768 950 97 772 777 782 786 791 795 800 804 809 813 N 0 1 2 3 4 5 6 7 8 9 Prop . Parts TABLES 321 TABLE V — {Continued) Five-place Logarithms: 950-1000 Prop . Parts N 0 1 2 3 4 5 6 7 8 9 950 97 772 777 782 786 791 795 800 804 809 813 51 818 823 827 832 836 841 845 850 855 859 52 864 868 873 877 882 886 891 896 900 905 53 909 914 918 923 928 932 937 941 946 950 54 97 955 959 964 968 973 978 982 987 991 996 55 98 000 005 009 014 019 023 028 032 037 041 56 046 050 055 059 064 068 073 078 082 087 57 091 096 100 105 109 114 118 123 127 132 58 137 141 146 150 155 159 164 168 173 177 59 182 186 191 195 200 204 209 214 218 223 960 227 232 236 241 245 250 254 259 263 268 61 272 277 281 286 290 295 299 304 308 313 5 62 318 322 327 331 336 340 345 349 354 358 1 0.5 63 363 367 372 376 381 385 390 394 399 403 2 1.0 3 1.5 64 408 412 417 421 426 430 435 439 444 448 4 2.0 65 453 457 462 466 471 475 480 484 489 493 5 2.5 66 498 502 507 511 516 520 525 529 534 538 6 3.0 7 3.5 67 543 547 552 556 561 565 570 574 579 583 8 4.0 68 588 592 597 601 605 610 614 619 623 628 9 4.5 69 632 637 641 646 650 655 659 664 668 673 970 677 682 686 691 695 700 704 709 713 717 71 722 726 731 735 740 744 749 753 758 762 72 767 771 776 780 784 789 793 798 802 S07 73 811 816 820 825 829 834 838 843 847 851 74 856 860 865 869 874 878 883 887 892 896 75 900 905 909 914 918 923 927 932 936 941 76 945 949 954 958 963 967 972 976 981 985 77 98 989 994 998 *003 *007 *012 *016 *021 *025 *029 78 99 034 038 043 047 052 056 061 065 069 074 79 078 083 087 092 096 100 105 109 114 118 980 123 127 131 136 140 145 149 154 158 162 4 81 167 171 176 180 185 189 193 198 202 207 1 0.4 82 211 216 220 224 229 233 238 242 247 251 2 0.8 83 255 260 264 269 273 277 282 286 291 295 3 1.2 4 1.6 84 300 304 308 313 317 322 326 330 335 339 5 2.0 85 344 348 352 35 7 361 366 370 374 379 383 6 2.4 86 388 392 396 401 405 410 414 419 423 427 7 2.8 8 3.2 87 432 436 441 445 449 454 458 463 467 471 9 3.6 88 476 480 484 489 493 498 502 506 511 515 89 520 524 528 533 537 542 546 550 555 559 990 564 568 572 577 581 585 590 594 599 603 91 607 612 616 621 625 629 634 638 642 647 92 651 656 660 664 669 673 677 682 686 691 93 695 699 704 708 712 717 721 726 730 734 94 739 743 747 752 756 760 765 769 774 778 95 782 787 791 795 800 804 808 813 817 822 96 826 830 835 839 845 848 852 856 861 865 97 870 874 878 883 887 891 896 900 904 909 98 915 917 922 926 930 935 939 944 948 952 99 99 957 961 965 970 974 978 983 987 991 996 1000 00 000 004 009 013 017 022 026 030 035 039 Prop . Parts N 0 1 2 S 4 1 5 6 7 8 9 322 TABLES TABLE VI* Natural Logarithms of Numbers Note. ■ Base e loge 10 N ^ N loge 10 loge 10 Examples: loge 35 loge .35 = 2.71828... loge N + loge 10 loge N — loge 10 2.30259 loge 3.5 + loge 10 1.25276 + 2.30259 = 3.55535 loge 3.5 — loge 10 1.25276 — 2.30259 = 8.95017 — 10 N 0 1 2 3 4 5 6 7 8 9 1.0 0.0 0000 0995 1980 2956 3922 4879 5827 6766 7696 8618 1.1 9531 *0436 *1333 *2222 *3103 *3976 *4842 *5700 *6551 *7595 1.2 0.1 8232 9062 9885 *0701 *1511 *2314 *5111 *3902 *4686 *5464 1.3 0.2 6236 7003 7763 8518 9267 *0010 *0748 *1481 *2208 *2950 1.4 0.3 3647 4359 5066 5767 6464 7156 7844 8526 9204 9878 1.5 0.4 0547 1211 1871 2527 3178 3825 4469 5108 5742 6373 1.6 7000 7623 8243 8858 9470 *0078 *0682 *1282 *1879 *2473 1.7 0.5 3063 3649 4232 4812 5389 5962 6531 7098 7661 8222 1.8 8779 9333 9884 *0432 *0977 *1519 *2058 *2594 *3127 *5658 1.9 0.6 4185 4710 5253 5752 6269 6783 7294 7803 8310 8813 2.0 9315 9813 *0510 *0804 *1295 *1784 *2271 *2755 *3237 *5716 2.1 0.7 4194 4669 5142 5612 6081 6547 7011 7473 7932 8390 2.2 8846 9299 9751 *0200 *0648 *1093 *1536 *1978 *2418 *2855 2.3 0.8 3291 3725 4157 4587 5015 5442 5866 6289 6710 7129 2.4 7547 7963 8377 8789 9200 9609 *0016 *0422 *0826 *1228 2.5 0.9 1629 2028 2426 2822 3216 3609 4001 4591 4779 5166 2.6 5551 5935 6317 6698 7078 7456 7833 8208 8582 8954 2.7 9325 9695 *0063 *0430 *0796 *1160 *1523 *1885 *2245 *2604 2.8 1.0 2962 3318 3674 4028 4380 4732 5082 5431 5779 6126 2.9 6471 6815 7158 7500 7841 8181 8519 8856 9192 9527 3.0 9861 *0194 *0526 *0856 *1186 *1514 *1841 *2168 *2493 *2817 3.1 1.1 3140 3462 3783 4103 4422 4740 5057 5373 5688 6002 3.2 6315 6627 6938 7248 7557 7865 8173 8479 8784 9089 3.3 9392 9695 9996 *0297 *0597 *0896 *1194 *1491 *1788 *2083 3.4 1.2 2378 2671 2964 3256 3547 3837 4127 4415 4703 4990 3.5 5276 5562 5846 6130 6413 6695 6976 7257 7556 7815 3.6 8093 8371 8647 8923 9198 9473 9746 *0019 *0291 *0563 3.7 1.3 0833 1103 1372 1641 1909 2176 2442 2708 2972 3237 3.8 3500 3763 4025 4286 4547 4807 5067 5325 5584 5841 3.9 6098 6354 6609 6864 7118 7572 7624 7877 8128 8379 4.0 8629 8879 9128 9377 9624 9872 *0118 *0564 *0610 *0854 4.1 1.4 1099 1342 1585 1828 2070 2311 2552 2792 3031 3270 4.2 3508 3746 3984 4220 4456 4692 4927 5161 5395 5629 4.3 5862 6094 6326 6557 6787 7018 7247 7476 7705 7933 4.4 8160 8387 8614 8840 9065 9290 9515 9739 9962 *0185 4.5 1.5 0408 0650 0851 1072 1293 1513 1732 1951 2170 2388 4.6 2606 2823 3039 3256 3471 3687 3902 4116 4330 4543 4.7 4756 4969 5181 5393 5604 5814 6025 6235 6444 6653 4.8 6862 7070 7277 7485 7691 7898 8104 8309 8515 8719 4.9 8924 9127 9331 9534 9737 9939 *0141 *0342 *0543 *0744 5.0 1.6 0944 1144 1343 1542 1741 1959 2137 2334 2531 2728 N 0 1 2 3 4 5 6 7 8 9 * This table was taken from "Plane Trigonometry with Five-place Tables" by H. A. Simmons and G. D. Gore by permission of the authors and the publisher, John Wiley & Sons, Inc. TABLES 323 TABLE VI—( Continued ) Five-place Natural Logarithms N 0 1 2 3 4 5 6 7 8 9 5.0 1.6 0944 1144 1343 1542 1741 1939 2137 2334 2531 2728 5.1 2924 3120 3315 3511 3705 3900 4094 4287 4481 4673 5.2 4866 5058 5250 5441 5632 5823 6013 6203 6393 6582 5.3 6771 6959 7147 7335 7523 7710 7896 8083 8269 8455 5.4 8640 8825 9010 9194 9378 9562 9745 9928 *0111 *0293 5.5 1.7 0475 0656 0838 1019 1199 1580 1560 1740 1919 2098 5.6 2277 2455 2633 2811 2988 3166 3342 3519 3695 3871 5.7 4047 4222 4397 4572 4746 4920 5094 5267 5440 5613 5.8 5786 5958 6130 6502 6473 6644 6815 6985 7156 7326 5.9 7495 7665 7834 8002 8171 8339 8507 8675 8842 9009 6.0 9176 9342 9509 9675 9840 *0006 *0171 *0336 *0500 *0665 6.1 1.8 0829 0993 1156 1319 1482 1645 1808 1970 2132 2294 6.2 2455 2616 2777 2938 3098 3258 3418 3578 3737 3896 6.3 4055 4214 4372 4530 4688 4845 5003 5160 5317 5473 6.4 5630 5786 5942 6097 6253 6408 6563 6718 6872 7026 6.5 7180 7334 7487 7641 7794 7947 8099 8251 8403 8555 6.6 8707 8858 9010 9160 9311 9462 9612 9762 9912 *0061 6.7 1.9 0211 0360 0509 0658 0806 0954 1102 1250 1398 1545 6.8 1692 1839 1986 2132 2279 2425 2571 2716 2862 3007 6.9 3152 3297 3442 3586 3730 3874 4018 4162 4305 4448 7.0 4591 4734 4876 5019 5161 5303 5445 5586 5727 5869 7.1 6009 6150 6291 6431 6571 6711 6851 6991 7130 7269 7.2 7408 7547 7685 7824 7962 8100 8238 8376 8513 8650 7.3 8787 8924 9061 9198 9334 9470 9606 9742 9877 *0013 7.4 2.0 0148 0283 0418 0553 0687 0821 0956 1089 1223 1357 7.5 1490 1624 1757 1890 2022 2155 2287 2419 2551 2683 7.6 2815 2946 3078 3209 3340 3471 5601 3732 3862 3992 7.7 4122 4252 4381 4511 4640 4769 4898 5027 5156 5284 7.8 5412 5540 5668 5796 5924 6051 6179 6506 6433 6560 7.9 6686 6813 6939 7065 7191 7317 7443 7568 7694 7819 8.0 7944 8069 8194 8318 8443 8567 8691 8815 8939 9063 8.1 9186 9310 9433 9556 9679 9802 9924 *0047 *0169 *0291 8.2 2.1 0413 0535 0657 0779 0900 1021 1142 1263 1384 1505 8.3 1626 1746 1866 1986 2106 2226 2346 2465 2585 2704 8.4 2823 2942 3061 3180 3298 3417 3535 3653 3771 3889 8.5 4007 4124 4242 4359 4476 4593 4710 4827 4943 5060 8.6 5176 5292 5409 5524 5640 5756 5871 5987 6102 6217 8.7 6332 6447 6562 6677 6791 6905 7020 7134 7248 7361 8.8 7475 7589 7702 7816 7929 8042 8155 8267 8380 8493 8.9 8605 8717 8830 8942 9054 9165 9277 9389 9500 9611 9.0 9722 9834 9944 *0055 *0166 *0276 *0387 *0497 *0607 *0717 9.1 2.2 0827 0937 1047 1157 1266 1375 1485 1594 1703 1812 9.2 1920 2029 2138 2246 2354 2462 2570 2678 2786 2894 9.3 3001 3109 3216 3324 3431 3538 3645 3751 3858 3965 9.4 4071 4177 4284 4390 4496 4601 4707 4813 4918 5024 9.5 5129 5234 5339 5444 5549 5654 5759 5863 5968 6072 9.6 6176 6280 6384 6488 6592 669<> 6799 6903 7006 7109 9.7 7213 7316 7419 7521 7624 7727 7829 7932 8034 8136 9.8 8238 8340 8442 8544 8646 8747 8849 8950 9051 9152 9.9 9253 9354 9455 9556 9657 9757 9858 9958 *0058 *0158 10.0 2.3 0259 0358 0458 0558 0658 0757 0857 0956 1055 1154 N 0 1 3 4 5 0 7 8 9 ANSWERS Pages 4 and 5 2 56- 13. n(n + 1) (4 n - l)/6. 14. 2n 2 (n + 1). 15. n(n + 1) (n + 2) (n + 3)/4. x = 15 _ V- 1=10 y 1 16. 2n 2 (n 2 - 1). 17. 2,485. 18. X x(x + 3). x = 7 12 18 ^ 30 20. 2 v\v + 1). 21. X —. 22. Vif(vi). 4 11 23. x; XC3X 2 + 5x — 4a:). « = 6 Pages 22 and 23 1. 11 seeds. 2. (a) 2.16 in. (6) 2.17 in. 4. (a) 204.35 eggs. (6) 5.11 eggs. 42 19. X */(»)■ 15 3. 461.2 gal. Pages 24 and 25 1. 17.32 ligulate flowers. 2. 200.27 loaves. 3. (a) 73.62. ( b ) Per cent d.’s = 0.93, per cent of C’s = 47.56. Page 27 1. 146 students. Pages 28 and 29 1. 9.312 petals. 2. 88.45 strokes. 3. 24,755.7 lb. 4. 25 pupils. 6. 40.075 qt. 6. 12.76 rays. Pages 29 and 30 1. 75.7. 2. 139.51 lb. 3. (a) 4,804 gal. per day. ( b ) 148,924. 6. $199.70. Pages 35 and 36 1. 79.33. 2. 17.088 rays. 3. 171.82 cu. in. 4. 120.02 lb. 6. (a) 53.51. ( b) 53.26. 6. $5.75. Page 38 4. 0.119. Page 40 4. (a) 53. (b) 20. 6. (a) 215. Page 41 1. 79 grade pt. 2. 22.5 years. 325 326 ANSWERS Pages 44 and 45 1. 74.08. Area to right of median is 497. 2. 25.96 years of age. 3. $4.80. Page 46 1. 11.06. 2. 17.14 ft. 3. 2.92 mice. Pages 48 and 49 1. 0.0047. 2. (a) rate = 0.01425. ( 6 ) r = 0.00509. 3. (a) 0.1767. ( b ) 0.1042. 4. 0.1946. 5. (a) 0.0291. ( 6 ) 0.2419. 6 . 1.710. 7. 10. Pages 51 and 52 1. 121.78 mi. per hr. 2. (a) 12 cents per lb. ( b ) 85 . 3. (a) 9.92. ( b ) 49.68. 4. $1.75. 5. (a) 0.65. ( b ) about 2 men. 7. 4. 8 . 0.04. Pages 58 and 59 1. (a) 20.6 tires. ( b ) 8 including 18. 2. 1.96 ker. 3. (a) 1.77 Al. Part. ( 6 ) 47 per cent, (c) 88 per cent. Pages 65 and 66 1. (a) M = 10.108 sheets, ( 6 ) S. D. = 5.804 sheets. 2. 69, 98, 100. 3. 573 or 69.4 per cent, 947 or 98.24 per cent, 964 or 100 per cent. 4. 101.26. 6 . 4.94. 7. 635,104. 8 . 5.07. 9. n = 500. Pages 72 and 73 1. M = 17.52, S. D. = 2.65, 63 per cent, 98.7 per cent, 99.6 per cent. 2. M = 74.2, S. D. = 11.067. 3. M = 74.05, S. D. = 11.074. 4. M = 170.121, S. D. = 29.74, 67.2 per cent., 94.7 per cent, 99.8 per cent. ( b ) Prob. = 0.116. Pages 76 and 77 1. M = 66.53, S. D. = 2.96. 2. M = 66.67, S. D. = 3.02. 4. M =72.1, S. D. = 4.6. 5. M = 138.92, S. D. = 16.8. 6. M = 17.24, S. D. = 1.17. Pages 80 and 81 1. 178. 2. S. D. = 12. 3. M = 132.86, S. D. = 14.17 lb., V = 10.7 (6) M = 228.66 lb., S. D. = 16.88 lb., V = 7.4. 4. Q = 8.05; 395. 5. V = 15.00, V = 14.97. 7. P 83 = Cg3 + (rffo n - w 83 ) f &3 W 83- 9. Z) 7 = Ci + (to n - m) h Wj. Pages 89 and 90 1. Exp. freq. 3, 8, 16, 29, 45, 59, 65, 61, 48, 33, 19, 9, 4, 1; sum = 400. 2 . A’s = 11, B’s = D’s = 71, C’s = 136, E’s = 11; sum = 300. 3. A’s = E’s = 1.77, B’s = = D’s = 22.41, C’s = 51.60; sum = 99.96. 4. A+ = E_ = 0.33, A = E = = 0.92, A_ = E + = 2.20, B+ = D_ = = 4.48, B = D = 7.79. B. _ = D+ = = 11.56, c 4 . = C_ = 14.65, C = 15.85, sum = 99.71. 5. Exp. freq. 4, 11, 27, 52, 84 , 109, 123, 112, 85, 53, 27, 12, 4; sum = 703; 2 without this range. 7. V = 98.28. 9. 216.56 gal. = M. 1C 1. 4.44 cc. ANSWERS 327 Page 95 1. Exp. freq. 1, 3, 7, 13, 18, 20, 18, 12, 6, 2, 1; sum = 101. 2. t\ = 0.80, ti = 1.32; area between = 0.118437, N = 2,930. 3. N = 5,561. 4. N = 3,897. 5. h = 101. 6. 7’s = ll’s = 48, l\ = 10j = 404, 8’s = 10’s = 1,846, 8| = 9| = 4,590, 9’s = 6,217. Pages 102 and 103 1. 1,010.6 = A, B = 2,642.6, C = 2,886.60, D = 719.4, E = 225.0. 2. S. D. = 2 cm. 3. 1,721.6. 4. N = 500. 5. 53.67 rays. S. D. = 2.131 rays. Skew. = —.079. 6. M = 24.87 yr., S. D. = 7.8 yr. Skew. = 1.8. „ 1 | n\[a x Z ( e ) tt- 3- fa, fa, fa, fa- 4. (a) 0.0032, ( b ) 0.0368, (c) 0.8832, (d) 1 - (H) 5 , (e) (fa) b - 5. 1 — (f-f-) 5 , ( b ) (fa) & , (c) (y-jr) 5 , ( d ) 1 — (y^-) 5 . 6. (a) 0.374 ( (b) 0.047, (c) 0.2299, (d) 0.08199. 7. 0.001. Pages 118 and 119 ToVff- (&) -fafa, (c) ToVff- (d) yog-f, (e) fa fa 2 - («) if 1 ST’ (&) 2TTT- ( c ) fafa’ (d) fa fa, (e ) t nVf- (/) axW 3- (a) T 6 §T- (5) yV^T- ( c ) t 6 "§T> (d) fafa 4. (a) 6(0.98 ) b (0.02), (6)(0.98) 6 +6(0.98) 5 (0.02)+15(0.98) 4 (0.02) 2 , (c) (0.98) 6 . 6 . (a) (0.92) 3 , ( 6 ) 0.203136, (c) 0.067712, (cl) 0.000512. 6 . (a) (5) (c) (cl) £££. 7. (a) 0.0446, (6) 0.3050. (c) 0.78642, (cl) 0.0307, (e) 0.02951, (/) 0.1095- 8. w = 20.23. 9. (a) 0.6828, (5) 0.0214. 10. (a) 0.50, ( b ) 0.25. 328 ANSWERS Pages 128 and 129 1. V = 0.02076. 2. (a) §f§ ( b) 3. (a) 0.051551, ( b ) 0.09680, (c) 0.851649, (d) 0.026594, (e) 1200 C 300 • (|) 300 (f) 900 . 4. (a) 0.351973, (b) 0.344578, (c) 0.03128. 5. Af new = H M 0 id, S.D. new = H( S.D. oW ), Skew. new = Skew.aid. 6. K = (1 — Qpq)/npq. (a) Zero. Pages 142 and 143 6. Ideal index for 1934 = 0.734. Page 144 1. ( b ) 1926, 1927, 1928, 1929, 1930. 51, 52, 53, 63, 100. 2. (a) 1930, 1931, 1932, 1933, 1934, 1935, 1936, 1937. 112, 101, 85, 90, 100, 107, 110, 117. Page 147 1. (6) min. = -Ilf. 2. x = 4.2, y = 5.2, 2e 2 = 0.05. Pages 149 and 150 1. x = 3.71, y = 7.72, 2e 2 = 0.0014. 2. x = 4.8, y = 2.2, 2 = 7.3, ei = 0.1, e 3 = — 0.2. 3. x = 1, y = 2. 4. 10. 6. AB = 7.3 mi., BC = 11.3 mi. Pages 153 and 154 1. y = —1.695 + + 1.646 x, a e = 7.30 in. 2. Between 11.5 and 15.7, may be between 10 and 16. 3. Zero. Page 155 1. y = 11.122 + 0.732 x, 4,375. 10. iooCs, 100 ^ 25 . 11. (a) r > 14, ( 6 ) r > 54, (c) r > 214. 12. (a) r = 4, ( 6 ) r = 16, (c) r = 64, (d) r =256, (e) r = 25600. 13. r = 121. Page 216 2. n = 100. 3. 0.56. 4. (a) 2, ( b ) 2/V37, (c) V 144/37. Pages 218 and 219 1. (a) AF = 37.8 ± 0.44, ( b ) S.D. = 0.12. 2. 2.53. 3. AB = 1.44±04. 330 ANSWERS Pages 221 and 222 1. t > 6, sign. 2. t > 2.6, sign. 3. n > 78 trees. 4. No danger. 6. t = 1.718/0.218 > 2.6; sign. 6. t > 2.6; sign. Pages 225 and 226 3. y = -22.595 + 10.2944 x + 0.1342 x 2 .