Hate OloUege of Agnculture At (dornell IntnetaitB Sltbratrg Cornell University Library QD 73.J6 The analyst's laboratory companionia col 3 1924 002 980 518 ™„ The original of tliis book is in tine Cornell University Library. There are no known copyright restrictions in the United States on the use of the text. http://www.archive.org/details/cu31924002980518 il^ALYST'S LABORATORY COMPANION THE ANALYST'S LABOKATOKY COMPANION: A COLLECTION OF TABLES AND DATA FOR TSE USE OF PUBLIC AND GENERAL ANALYSTS, AGRICULTURAL, BREWERS, AND WORKS' CHEMISTS, AND STUDENTS; TOGETHER WITH NUMEROUS EXAMPLES OF CHEMICAL CALCULATIONS AND CONCISE DESCRIPTIONS OF SEVERAL ANALYTICAL PROCESSES BY ALFRED E. JOHNSON, B.Sc. Lond. F.I.C, A.R.C.SO.I. FOURTH EDITION {THOROUGHLY B.ETISED, WITH ADDITIONS') LONDON J. & A. CHURCHILL 7 GREAT MARLBOROUGH STREET 1912 PREFACE TO THE FOURTH EDITION. In this Edition I have adopted the International Atomic Weights for 1912, and have accordingly entirely re-calculated the gravimetric and volumetric factors, percentage compositions of commonly occurring compounds, etc. In all cases the full molecular weights, without any reduction, and seven-figure logarithms were used, the logarithms being finally reduced to five figures, which are sufficient for all practical purposes. The above-mentioned tables have been considerably amplified ; and the gravimetric and volumetric factors have been printed in larger type than heretofore, so as to secure greater ease and certainty in reference. The section devoted to Weights and Measures has been entirely re-written in accordance with the most recent legislation on the subject. It should be noted that the legal Imperial Weights and Measures and the Imperial equivalents of Metric Weights and Measures are authorized, from time to time, by various " Orders in Council." Several useful approximations have been added. I have pleasure in recording my thanks to Major P. A. MacMahon, F.E.S., the Deputy Warden of the Standards, for assistance kindly rendered in this section. In the Water and Sewage section 1 have given a much fuller account of the determination of nitrates by the phenol- disulphonic acid method, which I have had in use for the past twenty-eight years ; also an epitome of Chamot, Pratt, and Kedfield's method of procedure. I made some comments on the latter in The Chemical News, 1911, 104, 235. The section dealing with sj^ecific rotatory power and cupric reducing power of the carbohydrates has again been thoroughly revised, and, I believe, brought up to date. I am indebted to Dr. E. Frankland Armstrong for kindly examining my revise of this portion of the book. The Kjeldahl table has been re-calculated and extended. VI PEEPAOE. The tables of constants of oils, fats, and waxes have been thoroughly revised. Several new tables have been added, amongst which may be mentioned the following : — The melting points of metals, the coefficients of absorption of gases in water, standards for sewage effluents, amounts of dis- solved oxygen in distilled water, tables showing the deficiencies both in non-fatty solids and in fat in milks in which these are below the minima allowed, the principal provisions of the recently issued Draft of " The Public Health (Milk and Cream) Regulations, 1912," etc. It should be stated that in all cases where a factor does not exactly correspond to a seven-figure logarithm, the logarithm should be used where the highest accuracy is desired. A. E. JOHNSON. 24 Parkdalb, Wolvebhampton, May 1912. CONTENTS Atomic Weights for 1912, Logarithmic Tables, Densities of Gases, Melting Points of Metals, Crravimetric Factors, Volumetric Factors, Nitrometer Analysis, .... Correction of Standard Solutions for Temperature, Coefficients of Absorption of Gases in Water, Table of Reciprocals, Various Useful Factors and Data, Kotes on Logarithms, . Computation, Approximations, •Indirgct Analysis, Percentage Composition of commonly occurring Compounds, Notes on Indicators, . . ... Precipitating Powers of a few Common Reagents, Weights and Measures, . . . Foreign Weights and their English Equivalents, Foreign Moneys and their English Equivalents, Densities of commonly occurring Substances, Table of Freezing Mixtures, . . . ■ ■ Percentage into cwts., qrs., and lb. per ton, etc., . Drams per lb. into Percentage, etc., .... vii FA6B 1 2 7 7 8 22 28 29 29 30 31 32 35 36 40 42 52 54 55 62 62 63 64 64 65 CONTEKIS. Barometric Tables, ..... Correction of Gaseous Volumes for Temperature, Tension of Mercury Vapour, .... Volume and Density of Water at Different Temperatures, Baum^'s Hydrometer, ..... Specific Gravity Tables (Acids, etc.), . Strength of Saturated Solutions, Glycerine Table, .... Preparation of Reagents for Water Analysis, Water Analysis Tables, . Determination of Nitrates in Water, , Water and Sewage Examination Results, Standards for Sewage Effluents, Dissolved Oxygen in Distilled Water, Tables for Beer Analysis, .... Original Gravity of Beer, Specific Rotatory Power, .... Cupric Reducing Powers of the Carbohydrates, Alcohol Tables, . . ... Diluted Spirits, .... Correction of Alcohol for Temperature, Alcohol Calculations, Phosphate Tables, Mtrogen, Ammonia and Albuminoids Table, Kjeldahl Table Factors for Calculating Nitrogenous Substances, Oils, Fats, and Waxes, .... Constants of Oils, Fats, and Waxes, . Reiohert-MeissI Values, Butter Analysis, Sale of Butter Regulations (1902j, Milk Analyses, .... Sale of Milk Regulations, 1901, FAQB 66 67 70 71 72 7S 77 78 7» 81 88 9& 96 97 98 10» 101 109 112 117 118 119 120* 128 130 131 132 134 137 13» 141 142 143: CONTBNTS. IX FAQB Preservatives in Milk and Cream, ... . 146 Quinine, ....... 146 Coffee and Chicory, U7 Lead in Tartaric and Citric Acids and in Cream of Tartar, . 147 Food Preservatives, . . . . . .14* Arsenic in Food, .... .149^ Data in Heat and Thermo-Chemistry, . . 150 Thompson's Calorimeter, ..... 151 Electrical Units, . . . . 153 Electro-Chemical Equivalents, . . . ' . 153 Thermometrio Tables, ...... 155 Index, ......... 161 CORRIGENDUM. Page 23, line 13 from bottom, /o?- 2-92436, read 2-92432. THE AMLYST'S LABORATORY COMPANION. THE INTERNATIOTTAL ATOMIC WEIGHTS FOR 1912 (USED THKOUQHOUT THIS WORK). = 16. = 16. Aluminium Al 271 Molybdenum . . Mo 96 Antimony . Sb 120-2 Neodv mium . .Nd 144-3 Argon . A 39-88' N-on . . Ne 20-2 Arsenic . As 74-96 N' ickel . Ni 58-68 Barium . Ba 137-37 Niton (radium emanation) Nt 222-4 Bi.smuth Bi 208 Nitrogen . . N 14-01 Boron . B 11 Osmium . .Os 190 9 Bromine . Br 79 92 Oxygen . . 16 Cadmium . Cd 112-4 . Palladium . Pd 106-7 Cse-iium . Cs 13-2-81 Pnosphorus . P 31-04 Calcium Ca 40-07 Platinum . Pt 195-2 Curlion . C 12 Potassium . K 39-1 Cerium . Ce 140-25 Praseodymium . . Pr 140 6 Olilorine . CI 35-46 Radium . .Ra2-26-4 Chromium . Cr 62 Rhodium . Rh 102-9 Cobalt . Co 58-97 Rubidium . Rb 85-45 Coluuiblum . Cb 93-5 Ruthenium . Ru 101-7 Copper . Cu 63-57 Samarium . Sa 160-4 Dysprosium • Dy 162-5 Scandium . Sc 44-1 Erbium . Er 167-7 Selenium . . Se 79-2 Knropium . En 152 Silicon , . Si 28-3 Fluorine . F 19 Silver . .Ag 107-88 Gadolinium . Gd 157-3 Sodium . . Na 23 Gallium . Ga 69-9 Strontium . Sr 87-63 Germanium . Ge 72-5 Sulphur . . S 32 07 Glucinum . Gl 9-1 Tantalum .Ta 181-5 Gold . . Au 197-2 Tellurium . Te 127-5 Helium . He 3-99 Terbium . . Tb 159-2 Hydrogen . H 1-008 Thallium , Tl 204 Indium . In 114-8 Thorium . . Th 232-4 loiiine . I 1-26-92 Thulium . . Tml68-5 Iridium . Ir 193-1 Tin. . Sn 119 Iron . . Fe '55 -'84 Titanium . Ti 48-1 Krypton . Kr 82-92 Tungsten . W 184 Lanthanum . La 139 Uranium . . U 238-5 Lead . . Pb 207 1 Vanadium , V 51 Lithium . Li 6-94 Xenon . . Xe 130-2 Lutecium . Lu 174 Ytterbium (Neoytterbium) Yb 172 Magnesium . . Mg 24-32 Yttrium . .yt 89 Manganese Mercury A . Mn 54-93 Zinc . Zn 65-37 . . Hg 200-6 Zarconium . Zr 90-8 LOGARITHMIC TABLES. COMMON LOGARITHMS. 10 1 2 i 4 5 6 7 8 9 1 2 3 4 6 6 7 8 9 110432 nOR60 01284 01703 02119 02631 02938 0,3342 03743 n 04139 04632 04922 06308 06690 06070 0644« 06819 07188 076bb Vi 0791S flR27!) 06636 0S991 09342 09691 10037 10380 10721 11069 13 11394 11727 121167 12386 12710 13033 13364 13672 13988 14301 li 14613 14922 16229 16534 15836 16137 16435 16732 17026 1V319 16 17609 1789S 18184 18469 18762 19033 19312 19590 19866 2014C le 20412 2068S 209i)2 21219 21484 21748 22011 22272 22631 227a9 JV 23045 2330f 23563 23806 2*066 24304 24661 24797 26042 2528t 18 26627 25768 26007 2624S 264R2 26717 26961 27184 27616 2764e 19 27876 28103 28330 2a656 28780 29003 29226 29447 29667 2988b 20 30103 30320 30536 30760 30963 81 175 31387 31697 31806 32016 2142 61 86106127 148 170 191 n 32222 32428 '(2634 32838 33041 33244 33446 3364B 3.3846 3404< 20 40 61 81 101 121 141 162 182 22 34242 34439 34635 34830 35026 352 18 36411 366113 35793 3698< 19 39 58 77 97116 136 164 174 23 36173 36361 36649 3673f 36922 37117 37291 37476 37658 3784( 18 37 55 74 92111 129148168 24 3S021 38202 38382 38661 38739 38917 39094 R9270 39445 3962( 18 35 63 71 89106 124142160 25 39794 39967 40140 40312 10483 40664 40824 40993 41162 4133C 17 34 61 68 85102 119136163 'it 41497 41664 41830 41996 42160 42325 42488 42651 42813 4297E 16 33 49 66 82 98 116 131 148 27 43136 48297 43467 43616 4377S 43933 44091 44248 44404 4466( 16 32 47 63 79 96 III 126 142 2t 44716 44871 46n?5 46179 45S32 46484 45637 46788 459,39 4609( 16 30 4C 61 76 91 107122137 29 46240 46389 46538 46687 46835 46982 47129 47276 47422 47667 15 29 44 59 74 88 103118132 COMMON Logarithms -fcojiKjiuedj. 1 2 3 43144 4 6 6 7 8 9 123 4 6 8 7 8 9 30 47712 478.57 48001 '48287 48430 48672 48714 48865 48996 14 28 43 57 7185 100 114 128 31 49136 49276 49415 49654 49693 49831 49969 60106 .50243 60379 14 28 41 55 69 83 97110124 32 1 50615 60661 50786 60920 61065 51188 61322 61465 61687 61720 13 27.40 63 6780 94 107 120 33 61851 61983 52114 52244 62376 52504 62634 52763 52892 53020 13 26 39 52 65 78 91 104 117 34 63148 63276 63403 53629 53656 53782 63908 54033 54158 54283 13 26 38 60 63 76 88101113 36 64407 .54.531 64664 54777 64900 66028, 65146' 66267 56.388 65609 12 24 37 49 6173 86 98110 36 66630 66761 65871 55991 66110 68229 66348 68467 66886 66703 12 24 36 48 6971 83 96107 37 56820 .56937 67054 57171 57287 .57403 57519 67634 57749 67864 12 23 36 46 58 69 81 93104 38 67978 68092 58206 68320 58433 58548 68659 .58771 6S8Si 58995 U 23 34 46 66 68 79 90102 39 69106 59218 59329 59439 59660 69660 69770 69879 69988 60097 11 22 33] 44 65 66 77 88 99 40 60206 60314 60423 60531 60638 60746 60863 609.59 61066 61172 112"l32 43 6484 7B 86 97 41 61278 R13R4 61490 61.596 61700 61805 61900 62014 62118; 62221 102131 42 52 63 73 84 94 42 62326 62428 62.531 62634 62737 82839 62941 63043 63144 63246 10 20 31 41 51 61 72 82 92 43 63347 63448 63648 63649 63749 63849 63949 64048 64147, 64246 10 20 30 40 60 80 70 80 9(1 44 64345 64444 64542 64640 64738 64836 64933 65031 65128 66226 10 2029 39 49 59 68 78 88 46 65321 66418 66614 66610 65706 66801 65896 86992 66087 66181 10 19 29! 38 48 67 87 76 86 46 66276 6637f 66464 6666! 66652 66746' 66839 66932 67025 67117 9 19 28] 37 47 66 65 75 84 47 67210 67302 67394 6748f 67678 67689, 677811 67862 67943 68034 918 271374665 64 73 82 48 68124 68216! 68305 68396 68486 6857< 68864 68765 68842 88931 91827i36 46 54 63 72 81 49 69020 69108| 69197 69286 69373 69461 69648 696361 89723' 69810 1 9 18 26! 85 44 63 1 1 1 1 1 61 70 79 Note.— The tabular logs, of numbera 1 to 10 are the same as those' of 10, 20, 30, etc. LOGARITHMIC TABLES. Common Loqarithms— fcontmuedj. 50 ( ' i 2 70070 3 4 5 6 7 8 9 12 3 4 5 6 1 7 8 9 69897 69984 70157 70243 70329 70416 70501 70B86 70672 917 26 34 4352 60 69 77 Bl 70757 70842 70927 71012 71096 71181 71266 71349 71433 71617 817 25 34 42 51 6967 78 B2 71600 71684 71767 71850 71933 72016 72099 72181 72263 72346 817 25 33 4150 68 6674 SS 72428 7250S 72591 72673 72754 72836 72916 72907 73078 73159 816 24 32 41 49 57 66 73 64 73239 73320 73400 73480 73560 73640 73719 73799 73878 73967 816 24 32 40 48 5664 72 SB 74036 7411B 74194 74273 74361 74429 74507 74686 74663 74741 816 23 313947 66 63 70 56 74819 74896 74974 75051 75128 76205 76282 75358 75435 76611 815 23 31 38 46 54 61 69 B7 7B587 75664 75740 75815 75891 75967 76042 76118 76193 76268 816 23 30 3845 68 60 68 58 76343 76418 70492 76567 70641 76716 76790 76864 7693f 77012 716 22 30 3745 52 59 67 59 77085 77169 77232 77305 77379, 77462 77525 77597 77670 77743 715 22 29 36 44 5168 66 fin 77815 77887 77960 78032 78104 78176 78247 78319 78390 78462 714 22 29 3643 50 67 66 61 78533 78604 78675 7874f 78817 78888 78958 7902!; 79099 79169 714 21 28 3 i 42 49 56 64 62 79239 7930S 7937S 7944S 79518 795S8 79667 79721 79796 79865 714 21 2835 42 49 56 63 6R 79934 Ronof 80072 8014( 80209 80277 80346 80414 80482 80560 714 21 27 34 41 48 66 62 61 80618 80686 80754 80821 80889 80956 81023 81090 81168 81224 713 20 27 34 40 47 64 61 65 81291 81358 81426 81491 81558 81624 81690 81757 81823 81889 713 20 27 33 40 46 53 60 66 81954 820201 8208f 8215; 82217 82282 82347 8241! 8247S 82543 713 20 2633 89 4652 59 67 82607 8267? 82731 82802 82866 8293C 82995 8306! 88123 83187 61319 2632 39 45 51 58 fiR 83261 83315 83378 83442 83606 8356E 83632 8369f 8375(: 83822 61319 26 82 38 44B167 69 83885 83948 84011 84073 84136 84198 842C1 84323 84386 84448 61219 253137 44 50 56 COMMON JjOajLRiiHiis -(eontmuea). 70 1 2 S 4 6 6 84830 7 8 9 12 3 4 6 6 7 8 9 84610 84572 84634 84696 84767 84819 84942 85003 86065 61218 25 3137 4349 55 71 85126 85187 85248 85309 86370 85431 854911 85652 85612 85673 61218 24 30 36 43 49 55 72 85733 85794 '85864 86914 85974 86034, 86094 86163 86213 86273 61218 24 30 36 42 48 64 73 86332 86392 86451 86510 86670 86629 H6688 86747 86806 86864 61218 24 30 35 4147 63 74 86923 86982 87040 87099 87167 87216 87274 87332 87390 87448 61217 2829 36 414752 75 87606 87564 87622 87679 87737 87795 87862 87910 87967 88024 61217 2329 85 404652 76 88081 88138 88196 88252 88309 88366 88423 88480 88686 88593 61117 23 28 34 40 45 51 77 88649 88705 88762 88818 88874 88930 88986 89042 89098 89164 61117 22 2834 3945 60 78 89209 89266 89321 89376 89432 89487 89642 89597 89:i63 89708 61117 22 28 33 39 44 60 79 89763 89818 89873 89927 89982 90037 90091 90146 90200 90265 5 1116 22 27 38 3844 49 80 90309 90863 90417 90472 90626 90580 90634 90687 90741 90796 61116 22 27 32 38 43 49 81 90849 90902 90956 91009 91062 91116 9116!) 91222 91276 91328 61116 2127 32 37 43 48 82 91381 91434 91487 91640 91693 91646 91698 91751 91803 91855 61116 212632 37 42 47 83 91908 91960 92012 92065 92117 92169 92221 92273 92324 92376 51016 2126 31 86 42 47 84 92428 92480 92531 92683 92634 92086 92737 92788 92840 92891 51015 2126 31 36 4146 86 92942 92993 93044 93095 93146 93197 93247 93298 93349 98399 61016 20 25 30 364146 86 93450 93500 93661 93601 93651 93702 93752 93802 93852 93902 61015 20 26 80 35 4045 87 93962 94002 94052 94101 94151 94201 94260 943O0 9434!! 94399 51016 2026 30 36 40 45 88 94448 94498 94647 94596 94645 94694 94743 94792 94841 94890 61015 2026 29 34 39 44 89 94939 94988 96036 95085 95134 96182 95231 95279 95328 95376 BIO 15 192*29 34 39 44 MGARITHMIO TABLI Common Looakithms— fcontMiuedJ. 90 1 2 3 4 6 6 7 8 95809 9 95856 12 3 61014 4 5 6 7 8 9 95424 95472 95521 95669 95617 96B65 95713 95761 19 24 29 34 38 43 91 95904 95952 95999 96047 96096 96142 9619(1 96237 96284 96332 a 914 19 24 28 33 38 43 92 9(i37S 96426 96473 96520 96567 96614 96661 96708 96756 96802 6 914 1923 28 33 3842 93 9684S 96895 96942 9698S 97035 97081 97128 97174 97220 97267 5 914 1923 28 33 37 42 94 97313 97369 97405 97461 97497 97643 97689 97636 97681 97727 5 914 1823 28 323741 95 97772 97818 97864 97909 97955 98000 98046 98091 98137 98182 6 914 182327 323641 m 98227 98272 98318 98363 98408 98463 98498 98543 98688 98632 5 914 18 23 27 32 3641 97 98677 98722 98767 9SS11 98856 9890(1 98946 98989 99034 99078 913 18 22 27 31 36 40 98 99123 99167 99211 99255 99300 99344 993Sf 99432 99476 99520 913 182226 3135 40 99 99564 99807 99661 99695 99739 99782 99826 99870 99913 99967 913 17 22 26 31 35 39 100 00043 00087 00130 00173 00217 00260 00303 00346 00389 913 1722 26 3036 39 101 00432 00475 00618 00661 00604 00647 0068S 00732 00776 00817 913 17 2126 30 34 39 102 00860 00903 00945 0098S 01030 01072 01116 01157 01199 01242 813 172125 3034 38 103 01284 01326 01368 0141C 01452 01494 01636 0167f 0162(1 01662 813 17 21 25 29 34 38 104 01703 01745 01787i 01828 01870 01912 01953 01995 02036 02078 812 17 21 25 29 33 37 105 02119 02160 02202 02243 02284 02325 02366 02407 02449 02490 812 162125 2933 37 106 02531 02572 02612 02663 02694 02735 02776 0281 « 02857 02898 812 16 20 24 2933 37 107 0293E 02979 03019 0306C 03100 03141 03181 03222 03262 03302 812 16 20 24 2832 36 108 03342 03383 03423 03463 03503 03543 03583 03623 03663 03703 812 16 20 24 28'32 36 109 03743 03782 03822, 03862 03902 03941 03981 04021 04060 04100 812 16 20 24 28 32 36 Common Loqarithms —(contynued). 1 2 3 4 6 6 7 8 9 12 3 4 6 6 7 S 9 110 04139 04179 04218 04258 04297 04336 04376 04415 04464 04493 4812 16 20 24 283136 111 04532 04571 0461(1 04650 04689 04727 04766 04806 04844 04883 4812 1619 23 27 31 35 112 04922 04961 0499fl 06038 05077 05116 06164 06192 05231 06269 4812 16 19 23 273135 113 05308 05346 05385 05423 05461 05500 05638 05676 05614 05662 4811 161923 273134 114 05690 06729 06767 06805 05843 05881 06918 05956 05994 06032 4 811 151923 273034 116 06070 06108 06145 06183 06221 06268 08298' 06333 06371 06408 4 811 1619 23 2630 34 116 06446 06483 06521 06568 06595 06833 06670 06707 06744 067S1 4 711 15 19 22 2630 84 117 06819 06836 06893 06930 06967 07004 07041 07078 07115 07151 4 711 1518 22 2630 33 118 07188 07226 07262 07298 07336 07372 07408 07446 07482 07518 4 71,1 161822 2629 33 119 07§65 07591 07628 07664 07700 07737 07773 07809 07846 07882 4711 161822 25 29 33 120 07918 07954 07990 08027 08063 08099 08135 08171 08207 08243 4711 141822 25 29 32 121 08279 08314 O8360 08386 08422 08468 08493 08629 08565 08600 4711 14 18 21 2629 32 122 08636 08672 08707 08743 08778 08814 08849, 08884 0S92n 08955 4711 1418 21 26 2832 123 08991 09026 09061 09096 09132 09167 09202, 09237 09272 09307 4711 141821 26 2832 124 09342 09377 09412 09447 09482 09517 09662 09687 09621 09856 3710 14 17 21 24 2831 125 09691 09726 09760 09795 09830 09864 09899 09934 10243 10278 09968 10003 3710 14 17 21 2428 31 126 10037 10072 101061 10140' 10175 10209 10312 10348 3 710 141721 24 27 31 127 10380 10415 10449 10483, 10617 10551 10585! 10619 10653 10687 3 710 1417 20 24 27 31 128 10721 10756 1078S 10823, 10867 1O890 10924 10968 10992 11026 3 710 1417 20 24 2730 129 1 11059 ■ 11093 11126 11160 11193 11227 11261 11294 11327 11361 3710 IS 17 20 2327 30 Logarithmic tables. Common jOaAB ITHMS —(continued). 11394 1 2 11461 3 4 6 6 7 8 9 12 3 4 6 6 7 8 9 ISO 11428 11494 11628 11661 11694 11628 11661 11694 3710 131720 232780 131 11727 met 11793 11826 11860 11893 11926 11959 11992 12024 3710 131720 23 2630 1S2 12057 12091 12123 12166 12189 12222 12254 12287 12320 12362 3710 1316 20 23 2629 183 12385 12418 1246G 12433 12516 12648 12681 12613 12646 12678 3710 181620 23 2639 134 12710 12743 12775 12808 12840 12872 12906 12937 12969 13001 3610 131619 23 2629 135 13033 13066 13098 13130 13162 13194 13226 13268 1S290 13322 3610 131619 22 26 29 ISfi 13354 13386 1341t 13460 13481 1351S 13645 13577 13609 13640 3 610 131619 22 25 29 137 13672 13704 13736 13767 13799 13830 13862 13893 13926 13956 36 9 131619 22 26 28 13« 13988 140ia 14051 14082 14114 14145 14176 14208 14239 14270 36 9 181619 22 26 28 189 14301 14333 14364 14395 14426 14467 14489 14620 14661 14582 36 9 121619 222528 14n 14613 14644 14675 14706 14737 14768 14799 14829 14860 14891 86 9 121619 22 26 28 141 14922 14968 14983 16014 16045 1607« 16106 16137 16168 16198 36 9 121518 2126 28 142 16229 16268 1629r 16320 16351 16381 16412 15442 1647S 15503 36 9 12 1518 2124 27 143 16634 16664 16594 16626 16666 16686 15716 16746 15776 16806 36 9 121618 212427 144 16836 15866 15897 15927 16967 16987 16017 16047 16077 16107 36 9 12 16 18 2124 27 14!) 16137 16167 16197 16227 16266 16286 16316 16346 16376 16406 36 9 121618 212427 14fi 16436 16466 16495 16624 16564 16684 16613 16643, 16673 16702 36 9 121518 212427 147 16732 16761 16791 16820 16850 1687fl 16900 1693fl 16967 16997 36 9 121618 2124 26 148 17026 1705( 1708517114 17143 1717S 17202 17231 17260 17289 36 9 121618 2023 26 149 1»319 17348 17377, 17406 17436 17464 17493 17622 17661 17680 36 9 121617 202326 COMMON U>aAiiTmTsa—(o(mUnued). 160 1 2 3 * 6 6 7 8 9 123 4 6 6 1 7 89 17609 17638 17667 17696 17725 17764 17782 17611 17840 17869 369 121417 2028 26 161 1789S 17926 17956 17984 18013 18041 18070 18099 18127 18156 369 111417 202326 152 18184 18213 18241 18270 18298 18327 18355 18384 18412 18441 369 111417 2023 26 163 18469 18498 18626 18564 18683 18611 18639 18667 18696 18724 868 111417 202826 164 18762 18780 18808 18837 18866 18893 18921 18949 18977 19005 368 111417 2022 25 165 19033 19061 19089 19117 19145 19173 19201 19229 19267 19286 368 111417 20 22 25 156 19312 19340' 19368 19396 19424 19461 19479 19607 19635 19662 368 111417 19 22 26 167 1959G 19618 19645 19673 19700 1972f 19766 19788 19811 19838 368 111417 19 22 25 153 19866 19893 19921 19948 19976 20008 20030| 20058 20086 20112 368 111416 19 22 26 169 20140 20167 20194 20222 20249 20276 20303 20330 20368 20885 368 111416 19 22 25 160 20412 20439 20466 20493 20620 20648 20576 20602 20629 20666 868 111416 1922 24 161 20683 20710, 20787 20763 20790 20817 20844 20871 20898 20926 868 111316 19 22 24 162 20962 20978 21005 21032 21059 21085 21112 21139 21166 21192 868 111316 19 21 24 163 21219 21246' 21272 21299 21326 21362 21378 21406 21431 21468 868 111316 192124 164 21484 21611 21637 21664 21590 21617 21643 21669 21696 21722 368 111316 182124 166 21748 21775 21801 21827 21854 21880 21906 21932 21968 21986 868 101316 1821 24 166 22011 22037 22063 22089 22116 22141 221671 22194 22220 22246 868 101318 18 2123 167 22272 22298 22324 22360 22376 22401 22427: 22463 22479 22605 358 101316 18 2123 168 22531 22667 22583 22608 22634 22660 22686, 22712 22737 22763 368 101316 182123 169 22789 22814 22840 22866 22891 22917 22943 22968 22994 23019 368 101316 1820 23 LOGARITflMtO TABLKS. Common Looawthms —(contimud). 1 2 3 4 6 6 7 8 9 L2S 4 6 6 7 8 9 170 23046 2S070 23096 23121 23147 23172 23198 23223 23249 23274 368 101316 182023. 171 23300' 23325 23360 23376 23401 23426 23462 23477 23602 23628 368 101316 182023 175! 23553 23578 23603 23629 23664 23679 23704 23729 23754 23779 358 101316 18 2023 173 23805 23830 23866 23880 23906 23930 23966 23980 24006 24030 358 101315 182023 174 24066' 24080 24105 24130 24166 24180 24204 24229 24264 24279 267 101216 17 2022 176 24304 24329 24353 24378 24403 24428 24462 24477 24502 24627 257 101216 17 2022 17fi 24661 24676 24601 24625 24660 24674 24699 24724 24748 24773 257 10 12 15 17 20 22 177 24797 2482? 24846 24871 24896 24920 24944 2496S 24993 26018 267 101216 1720 22 178 26042 2S066 26091 26116 26139 25164 251 8fi 25212 26287 25261 267 101216 171922 179 26286 26310 25334 25368 26382 25406 26431 25455 25479 25603 257 10 12 15 1719 22 180 26527 26768 26661 26676 25600 25624 26648 26672 25696 25720 25744 257 101214 1719 22 181 26799 2581 f 25840' 26864 26888 25912 26935 26aB9 25983 267 91214 171922 182 26007 26031 26056 26079 26102 26126 261 6C 26174 26196 26221 267 91214 1719 21 183 26246 26269 26298 26316 26340 26364 26387 2641] 26436 26468 267 91214 1719 21 184 26482 26606 26629 26663 26676 26600 26623 26647 26670 26694 257 91214 1619 21 185 26717 26741 26764 26788 26811 26834 26868 26881 26906 26928 267 91214 161921 186 26951 2R976 2699S 27021 27045 27068 27091 27114 2713t 27161 267 91214 16 19 21 187 27184 27207 27231 27264 27277 273O0 2732S 27346 2737C 27393 267 91214 1619 21 188 27416, 27439 27462 27486 27608 27631 27564 27677 2760C 27623 267 91214 1618 21 189 27646 27669 27692 27716, 27738 27761 27784 27807 27830 27852 267 91114 161821 COMMON LOOARITHMS —(continued). 1 2 27921 28149 28376 28601 28826 3 4 > 5 6 7 8 9 123 4 6 6 7 8 9 190 191 192 193 194 27875 28103 28330 28666 28780 27898 28126 28353 28578 28803 27944 28171 28398 28623 28847 27967 28194 28421 28646 28870 27989 28217 28443 28668 28892 28012 28240 28466 28691 28914 28035 28068 28262 28285 28488 28611 28713 28736 28937 28969 28081 28307 28533 28768 28981 257 267 267 247 247 91114 91114 91114 91113 91113 161821 1618 20 161820 161820 161820 195 196 197 198 199 29003 29226 29447 29667 29886 29026 29248 29469 29688 29907 29048 29270 29491 29710 29929 29070 29292 29513 29732 29951 29092 20314 29636 29754 29973 29115 29336 29667 29776 29994 29137 29363 29679 29798 30016 29159 29181 29380 29403 29601 29623 29820 29842 30038' 30060 29203 29426 29646 29863 30081 247 247 247 247 247 9 11 IS 91113 91113 91113 91113 161820 1618 20 161820 1618 20 1617 20 Base o£ Common Logarithms = 10. Hyp. Log. ' = ^ Co». Log. I. Base of Hyperbolic Logarithms=€=2-71828. Com. Log. « = M Hyp. Log. z. Number. . Com. Log. Number. Com. Log. e=2-71828 0-434 2946 7r=3-14159 0-497 1499 2=2-30269 0-362 2167 -J =0-786398 T-896 0899 M=0-434294 T-637 7843 ■|'=0-62359 T -718 9986 V^=l-77245 0-248 6749 DENSITIES OF GASES. Densities of Gases. (The observed Densities are given in this Table.) Weight • 1 Mole- of 1 litre Name of Gas. cular at 0° C. Logarithme, Observer. ■Weight. and 760 S mm. Bar. Acetylene, . C,H„ 26-016 (grama.) 1-189 0-075 1819 Berthelot Ammonia, JSH, 17034 0-7708 1-886 9417 Perman & Davies Atmospheric siir, . *•• 1-2928 0-1115313 Rayleigh Carbon monoxide, . uo 28 1-2504 0-097 0490 ,, dioxide, . co„ 44 1-9769 0-295 9847 Chlorine, Cl„ 70-92 3-2191 0-507 7345 Treadwell Ethylene, C,H, 28-032 1-2737 0-105 0671 Saussure Hydrogen, . H, 2-016 0-0899 2-953 7597 Rayleigh Hydrogen cliloride , HCI 36-468 1-6392 0-214 6319 Gray and Burt ,, sulphide, H„S 34-086 1-5378 0-186 8999 Leduc Methane, CH^ 16-032 0-7209 1-857 8750 Thomson Nitrogen, N„' 28-02 1-2507 0-0971531 Kayleigh, Gray Nitrous oxide, N„0 44-02 1-9777 0-296 1604 Rayleigh - Nitric oxide, . NO 30-01 1-3402 0-1271696 Gray ,, peroxide, . NOo 4601 2-0530* 0-312 3889 Oxygen, 0, 32 1'4290 0-155 0322 Rayleigh Sulphur dioxide, . SO3 64-07 2-9266 0-466 3634 Leduc and others Note. — 1-0D8 gram of hydrogen occupies 11-2126 litres at N.T.P. 1000 cubic feet of air at 62° F. weigh 76-08 lb. * Calculated- l^ELTiNG Points of Metals. {The Values marked * are by Prof. W. C. Roberts- Austen.) Metal. Melting Point. Metal. Melting Point. •c. °C. Aluminium, . 625* Manganese, . 1900 Antimony, 632 Mercury (B. P. 358°C.), -39 Bismuth, 270 Nickel, 1427 Cadmium, 320 Osmium, 2500 Cobalt, . 1500 Palladium, 1500* Cooper, . 1054* Platinum, t 1775* God, . 1045* Potassium, 621 Iridium, . 1950 Silver, . 954* Iron (pig), 1100-1200 Sodium, 97-6 ,, (wrought). 1600-1600 Steel, . 1300-1400 Lead, . . . 326* Tin, . 232 Lithium, 180 Zinc, . 415* Magnesium, . 750 t Dr Barker, T.R.S., of the National Physical Laboratory, gives 1710°. Factors and their Logarithms required in Gravimetric Analysis. Ele- To convert Factor." Logarithm ment. (to be added). Aluminium (A1=27"1) Al ALOg iuto Alg 0-53033 T-724 55 )) 24H2O 8-87425 0-948 13 )J AljKsCSO,),, 24H2O 9-28634 ,0-967 84 ii Alj(P0,)2 „ Al,()3 0-41837 T-621 56 >» 24H2O 3-71274 0-569 69 h Ammonia-alum into Potash-alum Ammonium (see under Nitrogen) Antimony (Sb= 120-2) 1-04644 0-019 71 Sb SbjO^ into S\ 0-78975 T-897 49 1) SbjSg „ Sb^ 0-71418 T-853 81 )) Arsenic (As = 74-96) 0-90431 T-956 32 As 2NH^MgAs04, H2O into As^ 0-39384 T-595 32 JJ )> » ASjOg 0-51994 1-715 95 )» » „ AsgOg 0-60400 T-781 04 )) MgjAsjOy „ Asg 0-48274 T-683 71 » 11 )) -^Sj^s 0-63730 T-804 34 it >i 11 ASgUg 0-74034 1-869 43 ») AsjOg „ Asj 0-75748 T-879 37 )» AsjSg „ Asj 0-60911 T-784 70 M »> ) > ASgUg 0-80413 1-905 33 )} >i )> ASgOg 0-93414 r-970 41 BbaVimb*eic PACtOftS. Factors and thbir Logarithms required in Gravimetric Analysis — continued. Ele- To convert — Factor. . Logarithm ment. (to bo added). Barium (Ba= 137-37) Ba BaSO^ into Ba 0-58846 T-769 72 )) ) ) )) BaO 0-65700 1-817 57 )) ji }) BaCOg 0-84548 1-92711 )) )) J) BaOlj 0-89226 T-950 49 )> J) U BaClg, 2H2O 1-04662 0-019 79 Jj J) )) S 0-13738 T-137 92 1} 1) )) SO3 0-34300 1-535 29 }) ») JJ SO^ 0-41154 T-614 41 n )» )) H2S04 0-42018 T-623 43 )) 1) )) CaSO^ 0-58319 T-765 81 11 5) )) CaSO^, 2H2O 0-73754 T-867 79 jf J) ] J FeSO^, 7H2O 1-19100 0-075 90 ij )J 99 PbSO^ 1-29871 0-113 51 ij JJ J) MgSO^ 0-51572 1-712 42 J) If K2SO, ^0-74653 r-873 05 }) TJ J) NajSO^ 0-60859 T-784 33 }) Na^SO^, lOHjO 1-38035 0139 99 ji )) J) (NH,),80, 0-56612 1-752 91 2BaS0, )) FeS, 0-25698 1-409 90 >> 4BaS04 )) Al,(NH,),(^SO,)g 0-97129 T-987 35 BaCOg Ba 0-69600 T-842 61 ') BaO 0-77707 T-890 46 )) » )f CO3 . 0-30400 1-482 87 Bismuth (Bi = 208) Bi Bi.Og BijSg into Big 0-89655 T-952 58 71 Bij 0-81217 T-909 65 10 GRAVIMBTEIC PAOTOES. Factors and their Logarithms required in Gravimetric Analysis — continued. Ele- ment. B Cd To convert Ca Boron (B=11) into B2O3 B2O3 2H,B0, Cadmium (Cd = CdO into CdS B, 2H3BO3 B,0, 112-4) Cd Cd CdO Calcium (Ca = 40 -07) CaO into Ca CaCOg CaSO, 3CaO CaClj CaCO, CaSO^ CaSO,, 2H2O CaClj CaHjOj CagPsOg CaO Ca CaO CO2 CO, CaSO^ CaSO^, 2H2O Ca CaO CaCO, Factor. 0-31428 1-77212 0-56430 0-87539 0-77801 0-88877 0-71464 1-78473 2-42804 3-07066 1-97949 1-32131 1-84466 0-50518 .0-63897 0-40042 0-56031 0-43969 0-59958 1-36045 1-72052 0-29433 0-41186 0-73505 Logarithm (to be added). T-497 32 0-248 49 1-751 51 1-942 20 1-890 99 1-948 79 r-854 09 0-251 57 0-385 26 0-487 23 0-296 55 0121 01 0-265 92 1-703 45 1-805 48 T-602 52 1-748 43 1-643 15 1-777 85 0-133 68 0-235 66 T-468 83 T-614 74 1-866 32 GEAVIMBTEIC FAOTOKS. 11 Factors and their Logarithms required in Geavimbteio Analysis — continued. Ele- ment. Ca CI Calcium (Ca= 40-07) CaSO^ into To convert Cr Co CagPgOg -continued. CaSO^, 2H2O CaPjjOg CaH.P^Os P2O5 CaH.PgOg CagP^Og CO, Carbon (C = 12) into C CaCOg Na^COg NaHCOg 2CO2 CAO PbCOg MnOg CI CL Chlorine (CI = 35 -46) into HCl NaCl KCl MgCl^ CaCl, Chromium (Cr=52) Cr„0» into Gr^ K^Cr^O, Cobalt (Co = 58-97) CoO into Co Factor. 1-26467 0-58814 0-63860 0-75472 0-45789 0-20007 1-32500 0-27273 2-27432 2-40910 1-90927 6 07045 0-98784 1-30368 1-02843 1-64862 2-10265 1-34292 1-56500 0-22560 0-68421 1-93553 0-78658 Logarithm (to be added). 0101 98 T-769 48 T-805 23 1-877 79 T-660 77 T-301 18 0-122 21 T-435 73 0-356 85 0-381 85 0-280 87 0-783 22 1-994 69 0-115 17 0-012 17 0-217 12 0-322 77 0-128 05 0-194 52 T-353 35 T-835 19 0-286 80 T-895 74 12 GBAViMBTBIO FA0TOE8. Factors and thetr Logarithms required in GRAViMBfRic Analysis — contintied. Ele- ment. Cu To convert H Fe Copper (Cu = 63-57) Cu into CuO CuO ,, Cu 2CuO „ Cu,0 CugO CuSCN 2CuO Cu CaF, Fluorine (F= 19) into Fa 2HF Htdroqen (H= 1-008) HCl into CI HNO3 2HN0g H,SO, 2C,H,02 N NaNOg (NH,)2S0, 2 HCl SO3 CaCC^HgOa);, Iron (Fe = 55-84) Fe into FeO FeCOg „ ,, FeSj ;, FeS0„7H,0 Fej „ FejOg „ FejOa-HgO „ re,0„.3H„0 Factor. 1-25170 0-79892 0-89946 1-11178 0-52256 0-48674 0-51256 0-9^7236 0-22232 1-34898 0-85705 1-34743 0-74359 0-81633 1-31695 1-28653 207450 2-14864 4-97890 1-42980 1-59112 1-91375 Logarithm (to he added). 0-097 50 1-902 50 r-953 98 0-046 02 T-718 14 1-687 30 1-709 75 T-987 83 T-346 97 0-130 01 1-933 01 0-129 47 1-871 33 1-91186 0-119 57 0-109 42 0-31691 0-332 16 0-697 13 0-155 28 0-201 70 0-281 89 6HAVIMETEI0 FACTORS. 13 Factors and thbir Logarithms required in Gravimetric Analysis — cuntiiiued. Ele- ment. To convert Factor. L^°"*''i,*^, , (to be added) Fe Iron (F( i = 55-84)- into ■continued. Fe^CPO,), MnOg 2-70200 077838 0-431 69 T-'891 19 3Fe,03 )3 Fe, Fe,(PO,), SFe^O, 0-69940 1-88978 0-96660 T-844 72 0-276 41 1-985 25 FeS 2FeS 3) Fe Fe,03 0-63520 0-90820 T-802 91 1-958 18 2{Fe(NH,)j(SO,)j,6H20} into M11O2 0-53459 0-11083 T-728 02 T-044 68 Pb J) Lead (Pb= 207-1) Pb into PbO PbS „ Pb PbO 1-07726 0-86591 0-93281 0-032 32 T-937 47 1-969 79 3PbO PbOa „ 2PbC0 J) 3,Pb(0H), Pb 1-15840 0-86617 0-063 86 1-937 60 9i . fi PbSO, )» Pb PbO PbS 0-68312 0-73589 0-78890 'T-834 49 1-866 81 T-897 02 PbCrO, J) Pb PbO PbSO^ 0-64098 0-69050 0-93832 T-806 84 1-839 16 1-972 35 2PbCr04 3PbCr04 ,',' 2PbC0 Cr^Og KgCr^Oy „ Pb(OH), 0-23522 0-45528 0.79987 T-371 48 1-658 28 1-903 02 14 GRAVIMETRIC FACTORS. Factors and their Logarithms required in Gravimetric Analysis — continued. Ele- ment. Mg Mn To convert Magnesium (Mg = MgClg into = 24-32) MgO CI, MgO M&PoO, MgSO, jsrgOOg MgCU MgSO^ MgSO^, THjO Mg(N03), 2MgO 2MgC03 SMgClj 2.N[gS04 2(MgS0„ 7H,0) . P2O5 2H3PO, CaH,(P0,)2 CafPOg)^ Ca3(P0,), Mg MgO Manganese (Mn = 54-93) Mn into MnO MnO „ Mil MnO, Mn Factor. 0-42335 0-74464 2-09127 2-36210 2-98586 6-11364 3-67907 0-21839 *0-36207 0-75718 0-85524 1-08109 2-21356 0-27874 0-63793 0-88060 1-05146 0-88968 1-39318 0-20201 0-33491 1-29128 0-77442 63189 Logarithm (to be added). 1-626 70 1-871 95 0-3-20 41 0-373 30 0-475 07 0-786 30 0-565 74 T-339 23 T-558 79 1-879 20 1-932 09 0033 86 0-345 09 T-445 19 1-804 77 1-944 78 0-021 79 1-949 23 0-144 01 1-305 37 1-524 93 0-11102 1-888 98 1-800 64 * Or use the Plio-])hale Table, pi). 121-128, subtracting from the U-g^V^Oi, found the PjOj in it. GRAVIMETRIC FACTORS. 15 Factors and their Logarithms required in GsAVi METRIC Analysis — continued. Ele- ment. Mn Hg Mo m N To convert Manganese (Mn = 54'93) — contd. SMn 3MnO into » MngO^ MnS n Meboury (Hg = 200-6) Mn MnO Mn MnO HgS HgjCla into Hg HgO 2Hg Hg,0 Molybdenum Ammonium phospho-molybdate (dried at 100° C.) into P P2O5 NiO „ into Ca3(P04)2 Nickel (M = 58-68) into m Nitrogen (14-01) and Ammonium (18 042) N into NH3 HNO3 NHNO3 KNO3 t J, ,, Albuminoids Caffeine Factor. L,^rt]"S^ (to be added). 0-72027 0-93007 0-63138 0-81529 0-36377 0-46974 0-86217 0-93093 0-84978 0-88367 0-0163 0-0373 0-08147 0-78575 1-21585 4-49807 6-06780 7-21700 6-25 3-46395 1-857 49 1-968 51 1-800 29 1-91131 T-560 83 1-671 85 1-935 59 1-968 92 T-929 31 1-946 29 2-212 19 2-571 77 2-91100 1-895 29 0-084 88 0-653 03 0-783 03 0-858 36 0-795 88 0-539 67 16 GRAVIMBTEIO PACTOES. Factors and thbir Logarithms required in Gravimetric Analysis — continued. Ele- ment. )) J) To convert Factor. Logaritlim (to be added). Nitrogen (14-01) and Ammonium {\9i-Qi1)— continued. ISTa into (NH,),SO^ 4-71642 3-85510 0-25940 0-673 61 0-586 04 1-413 96 J1 ]} 2NaN03 2KNO3 „ . „ Ca(N03)2 Mg(N03)2 1-57397 1-87206 1-51907 1-37326 0-197 00 0-272 32 0-18158 0-137 75 11 NH3 „ N NH.Cl 2NH3 „ (NHJ2SO, 0-82247 3-14090 3-87912 T-915 12 0-497 05 0-588 73 NH.CI „ N ITH3 0-26186 0-31838 r-4I8 07 T-502 95 (NH,),SO, „ N, 2NH3 0-21202 0-25779 0-74221 T-326 39 T 411 27 T-870 53 P Phosphorus (P = 31-04) Pg into PjOe 2-28866 0-359 58 ^2^5 » ^2 Ca3(P04)2 „ CaH4(PO,)2 0-43694 2-18391 1-64824 T-640 42 0-339 23 0-217 02 Pt it Platinum (Pt = 195-2) (NH4)2PtCl6 into Njj 2NH3 2NH,C1 „ (NH,),SO, J . 0-06310 0-07672 0-24098 0-29761 5-800 04 2-884 92 1-38197 T'473 65 SRAVIMKTRIC FACTORS. 17 Factors and their Logarithms required in Gravimetric Analysis — continued. Ele- nient. To convert Factor. Logaritlim (to be added). Pt Platinum KgPtClfi* 3J (Pt- 195-2) conic?. into Kg 2KC1 0-16085 0-30673 T-206 43 T-486 76 )» KgO ■K2SO4 0-19376 0-35«46 T-287 27 1-554 44 Pt 2NH,C1 „ (NH,)2S0, 0-54818 0-67702 T-738 92 1-830 60 K 9} Potassium (K = 39-1) K into KCl 1-90690 1-20460 0-280 33 0-080 84 33 KCl CI 0-47559 T-677 23 2KC1 „ KHC,H,Oe K^O KgSO, 2-52320 0-63171 1-16866 0-401 95 1-800 52 0067 69 7J KCIO, 2KCIO4 » KCl K^O K2SO, 05381t 0-3400t 0-62887t r-730 87 1-53144 1-798 56 * International methods of determining potash were adopted at the International Congress of Applied Chemistry held at Berlin, 1903 (see Chemical News, No. 2619,| Feb. 4, 1910). The platinochloride pp. is to be dried at 120-130° C, weighed warm, and the following factors (which are based on Berzelius's atomic weight Pt— - 197-2) used : — KaPtClg X 0-3056 = KCl (log. T-48515) „ x0-19305 = K2O (log. 1-28567) „ X 0-35714 = K2SO^ (log. T-55284) ■f- These are the factors used in oonnection with the International perchloric acid method for determining potash (see note above), % Also reprinted in pamphlet form. B 18 GBAVIMBTRIO FACTOES. Factors and their Logarithms required in Gravimetric Analysis — continued. Ele- ment. K Si Ag Na To convert Potassium (K = 39 1)- K2O into -contd. 2KC1 2KNO3 K,CO, into 'i{KEa.G^B.fi^,m.^O] into iKRCfifi^ 2K0H Factor. 2K0H KjCOg K^SO, KNO, KjO 2KC1 Silicon SiO, (Si = into 28-3) Silver (Ag = 107-88) AgBr into Si Br AgCl Agl Ag CI HCl AgNOg N"a Nag Na„0 Sodium (Na; into :23) NaCI JSTa^O 2NaCl Logarithm (to be added). 1-58301 1-85000 2-14671 1-46709 5-99138 3-99427 1-19125 0-83945 0-68162 0-54054 0-85568 0-13856 0-46932 0-42556 0-75262 0-24738 0-25442 1-18522 0-54055 2-54174 1 34783 1-88580 0-199 49 0-267 17 0-331 77 0-166 46 0-777 53 0-601 44 0-076 00 T-924 00 T-833 54 1-732 83 1-932 31 T-141 64 1-671 47 1-628 96 1-876 57 1-393 37 1-405 54 0-073 80 T-732 83 0-405 13 0-1-29 63 0-275 50 QEAVIMBTRIO PA0TOE8. 19 Factors and their Loqamthms rbquieed in Gbavimbtric AjifAhYsm— continued. Ele- ment. To convert Factor. Logarithm (to be added). Na Sodium NagO (Na = into »j J) 23) — continued. Na^SO^ Na^COg 2]SraN03 2-29145 1-70968 2-74226 0-36011 0-232 91 0-438 11 Na^B^O, » J) 2NaOH NaaB^O^, lOH^O 1-29058 1-89109 0-110 79 0-276 71 NaCl JJ JJ CI NaHCOg 0-60657 1-43702 T-7S2 88 0-157 46 2NaCl Naj'cOg JJ JJ JJ Na^O Na,CO, Na^O 0-53028 0-90660 0-58491 T-724 50 1-957 42 1-767 09 NaNOg 2NaOH JJ JJ Na^O 0-16480 0-77484 T-216 97 T-889 21 Na^COg )j J) JJ NasCOj, lOHjO Nag Na^O 2-69811 0-32378 0-43640 0-431 06 T-510 26 1-639 89 Sr Strontium (Sr = 87-63) SrCOg into Sr SrSO, „ Sr 0-59358 0-47703- T-773 48 T-678 54 S 19 Sulphur SO3 into (S = 32-07) S CaSO^ CaSOi, 2H2O 0-40052 1-70026 2-15027 T-602 63 0-230 52 0-332 49 J) JJ H2SO, (NH,),SO, 1-22500 1-65048 0-088 14 0-217 61 20 GRAVIMETRIC PACTOES. Factors and thbib Logarithms required in Gbavimbteio Analysis — continued. Ele- ment. To convert Factor. Logarithm (to be added). S )» Sulphur {^ = 2>'i-Q1)— continued. SO3 into KgSO^ Na^SO, MgSO, 2-17647 1-77432 1-50356 0-337 75 0-249 03 017712 Sn Sn SnOj TiN(Sn=119) into Sn02 Sn 1-26891 0-78808 0-103 43 1-896 57 Zn it Zn J) ZiN0(Zn = 65-37) into ZnO ZnS ZnCl^ 1-24476 1-49059 2-08490 0-095 09 0-173 36 0-319 09 ZnO ZnS » Zn » Zn 0-80337 0-67087 T-904 91 1-826 64 Example. — 1-327 grams of a substance gave 0-8470 gram BaSO^: to find the percentages of SO3 and S present re- spectively. Since 1-327 grams give 0-847 gram BaSO. 100 grams vrill . -847 X 100 84-70 give 1-327 Taking logs. 1-327 Log. 84-70 =1-92788 „ 1-327 = 0-12287. (subtracting) 1-80501 Add log. (BaSO^ into SO3) 1-53529 Add log. (SO3 into S) 1-34030 = 21-89 per cent. SO,. 1-60263 94293 = 8-77 per cent. S. Rule. — First find the weight of the pp. that 100 parts of substance -would give, then add the log. of the factor to get percentage of substance sought. Sravimeteio factoes. 21 Ele- ment. To convert Factor. Logarithm (to be added). VOLtJMfiTRtO VA0tOE8. VoLUMETBic Factors. Definition. — A Normal Solution of a reagent is one that contains in a litre that proportion of its molecular weight in grams which corresponds to one gram of available hydrogen or its equivalent. TJp till recent years the atomic weights of elements were referred to hydrogen as unity. Now, however, oxygen =16 is the standard of reference, and the present atomic weight of hydrogen is taken as 1 "008. Hence, " one gram " in the above definition must actually be taken as 1-008 gram. Thus, a normal solution of hydrochloric acid contains 36'468 grams HCl per litre ; and normal sulphuric acid 98-086 — s — = 49-043 grams HjSO^ per litre. Potassium perman- ganate, KjMngOg, in acid solution, yields 5 atoms of oxygen, equivalent to 10 atoms of hydrogen ; hence a normal solution 316-06 of permanganate contains — r^r— = 31-606 grams per litre. Normal alkali solutions are such that a given volume requires for neutralization an equal volume of a normal acid solution. Normal H,SO. Normal HCl grams. 1 CO. = 0-04^043 HjSO^ „ = 0-048035 SO^ . „ = 0-040035 SO3 . lc.c.= 0-036^68 HCl . „ =0-03546 CI . Normal HNO3 1 c.c. = 0-063018 HNO3 „ =0-06201 NO3 . „ =0-05401 NgO,, . Normal 'B.^Gf)^ 1 c.c. = 0063024 H^CgO^, 2H2O . „ = 0-045008 HjCjO^ Normal acid 1 c.c. = 0-017034 NHg . „ =0-03505 NH^OH . „ =0-101 NajB^Oy . „ =0-19108 Na^Bp,, lOHjO Logarithms. 2-690 58 2-681 56 2-602 44 2-561 91 2-549 74 2-799 46 2-792 46 2-732 47 2-799 51 2-653 29 2-231 32 2-544 69 r-004 32 T-281 22 VOLUMBTBIO EACTOES. 23 VoLTJMETEic Factobs — continued. Normal acid {continv^d). Normal KOH grams. c.c. = 0-028035 CaO . „ = 0-037043 Cii(0H)2 „ =0-050035 CaCOg „ = 0-085693 Ba(0H)2 „ =0-157757 Ba(0H)2, „ =0-098685 BaCO, 8H,0 = 0-02016 = 0-04216 MgO . MgCOg = 0-056108 KOH = 0-0691 KjCOg = 0-18814 KHC^H^Oj = 0-108119 KgCgHjOy, = 098124 KaH,0, H,0 = 0-141098 KNaC^H.Oe, 4H2O = 040008 NaOH = 0-053 NajCOg . = 014308 NajCOg, lOHgO = 0-084008 NaHCO, . Ice. =0-056108 KOH. „ =0-0471 KgO . Normal NaOH 1 c.c. = 0-040008 NaOH Normal NagCOg Normal alkali „ =0-031 1 c.c. = 0-053 „ =0 030 „ =0-022 NajO Na^COg COg . CO, . 1 c.c. = 0-060032 HC2H3O2 BjO, . = 0-035 = 0-062024 H„BO, = 0-0505 NajB^O^ .0-09554 NagB^Oj, lOHgO Logarithitis. 2-447 70 2-568 71 2-699 27 2-932 95 1-197 99 2-994 25 5-304 49 2-624 90 2-749 02 2-839 48 T-274 48 1-033 90 2-991 78 1-149 52 2-602 15 2-724 28 1-155 58 2-924 36 2-749 02 2-673 02 2-602 15 2-49L36 2-724 28 2-477 12 2-342 42 2-778 38 2-544 07 2-792 56 2-703 29 2-980 19 24 VOLUMBTRIO PA0TOB9. Volumetric Factors — continued. grams. Logarithms. Normal alkali 1 c.c = 0-070027 HgCgHA-HjO . 2-845 27 (eontimied). )) = 122048 benzoic acid T-086 53 J) = 0-088064 butyric „ . 2-944 80 )j = 0-410432 cerotic „ . T-613 24 a = 0-090048 lactic „ . 2-954 47 jj = 0-067024 malic „ . 2-826 23 )), = 0-282272 oleic „ . 1-450 67 )j = 0-256256 palmitic,, T-408 67 3) = 0-284288 stearic „ . 1-453 76 J) = 0-075024 tartaric „ . ' . 2-875 20 )3 = 0-18814 KHC^H^Oa 1-274 48 ^^gl^03 1 C.C = 0-010788 Ag . 2-032 94 a = 0-016989 AgNOg 2-230 17 - )} = 0-003546 CI . . . 3-549 74 J5 = 0-005846 NaCl S-766 86 )) = 0-005*3502 NH4CI 3-728 37 )) = 0-011902 KBr . 2-075 62 )J = 0-007456 KCl . 3-872 51 JJ = 0016602 KI . 5-220 16 )) = 0010292 NaBr. 2-012 50 >' = 0-006199 NajHAsO^ . 3-792 32 ~ Iodine 1 0.0 = 0-0032035 SO, . 3-505 62 10 )) = 0-0041043 H2SO3 . 3-613 24 J) = 0-0126091 Na2S03,7H„0 . 5-100 68 » = 0-0097151 K2SOg,2H50 . 3-987 45 )3 = 0-024822 Na2S2O3,5H„0 . 2-394 84 J) = 0-004948 As^Og. 3-694 43 -— Dichromate 1 C.C. = 0-005584 Fe . . 3-746 95 10 )' = 0-007184 FeO . 5-856 37 5) = 0-01] 584 FeCOg 5-063 86 >) = 0-015191 FeSO^ . 5-181 59 )J = 00278022 FeSO^, 7H„0 . 5-444 08 VOLUMEITBIO FACTOBS. 25 Volumetric Factors — corttinued. vr grams. -. ThioBulphate 1 c.c. = 0-024822 NajSgOg, SH^O „ =0-012692 1 „ =0003546 01 „ =0-007992 Br . Logarithms. 2-394 84 2-103 53 5-549 74 3-902 66 Calcium (Ca = 40-07) N 1 c.c. Yj; permanganate = 0-0028035 gram CaO „ „ =0-0050035 gram CaCOg . „ „ =0-0086086 gram CaSO^, 2OH2. . . . „ normal oxalic acid =0-028035 gram CaO . Cryst. oxalic acid X 0-444 = CaO . . . . Ferrous ammonium sulphate x 0-07143 = CaO Chlokinb (01 = 35-46) N. 1 c.c. Yj^ silver solution = 0*003546 gram CI . = 005846 gram NaCl 1 C.C. j^ arsenious or thiosulphate solution = 0003546 gram CI . 3-447 70 5-699 27 3-934 93 2-447 70 1-647 38 2-853 88 5-549 74 3-766 86 3-549 74 Chromium (Or = 52) Metallic iron X 0-31 04 = Cr 1-49194 „ X 0-5968 = Cr03 .... 1-77586 X 0-8780 = K2Cr20^. . . . 1-943 47 X 1-928 =PbCr04 , . . . 0-285 19 Ferrous ammonium sulphate x 0-0443 = Or . . 2646 40 X 0-0853 = Cr03 . 2-930 95 „ x0-1253 = K2Cr2O7 . 1-097 95 X 0-2754 = PbCr04 . 1-439 96 N 1 C.c. yq solution = 0-003333 gram CrOg . . 3-522 84 „ „ = 0-004903 gram KaCrjOf. . 3-690 45 26 VOLUMBTEIC FACT0E8. VoLTJMETBic Factobs — continued. Coppeh(Cu = 63-57) N 1 c.c. tt; solution = 0'006357 gram Cu . Iron X 1"138 = copper ..... Ferrous ammonium sulphate x 0"1622 = copper Ctanoqbn (C]Sr = 26-01) 1 c.c. yq silver solution = 0005202 gram CN = 0-005404 gram HON . = 0013022 gram KCN . N „ tq iodine =0003255 gram KCN . Potassium Fehrooyanidb (K^FeCyg, 3OH2 = 422-348) Metallic iron x 7-563 = cryst. potassium ferrocyanide Ferrous ammonium sulphate x 1 -080 = cryst. potas- sium ferrocyanide ...... PoTASsiiTM Febriotanide (KeFe^Cyij = 658'4) Metallic iron x'5-895 = potassium ferricyanide Ferrous ammonium sulphate x 1-684 = potassium ferricyanide ....... Yq. thiosulphate x 0-03292 = potassium ferricyanide Gold(Au=197-2) 1 c.c. normal oxalic acid = 0-0657 gram gold ' Iodine (1=126-92) N 1 c.c, Tjj thiosulphate = 0-012692 gram iodine Iron (Fe = 55-84) N 1 c, c. =-j^ permanganate, dichromate, or thiosulphate =0-005584 Fe . „ „ =0-007184 FeO . „ „ =0007984 FejOj Logiirithtns. 3-803 25 0056 14 1-210 05 3-7I6 17 3-732 72 2-114 68 3-512 55 0-878 69 0033 42 0-770 48 0-226 34 2-517 46 2-817 57 2-103 53 3-746 95 3-856 37 5-902 22 volumetbio factors. VoLUMBTBio Factors — continued. Lead (Pb = 207-1) 1 c.c. jq permanganate = 0-010355 gram lead 1 c.c. normal oxalic acid = 0-10355 gram lead Metallic iron x 1-854= lead Ferrous ammonium sulphate x 0'265 = lead 27 Logarithms. 2-015 15 T-015 15 0-268 20 1423 25 Manganese (Mn = 54-93) M:nO = 70-93. Mn02 = 86-93. Metallic iron X 0-4918 = Mn .... 1-69179 „ x0-6350 = MnO .... 1-80277 „. X 0-7783 = Mu02 .... 1-89115 Ferrous ammonium sulphate X 0-0907 = MnO . 5-957 61 x0-1112 = MnO2 . T-046 10 Cryst. oxalic acid x 0-6896 = MnO„ . 1-838 60 N 1 c.c. yq solution = 0-003547 gram MnO . . H-549 86 „ .„ =0-004347 gram MnOg . . H-638 19 MHECUBT(Hg= 200-6) Ferrous ammonium sulphate x 0-5115 = Hg . . 1 708 86 X 0-6924 = HgCl2 . r-840 33 N 1 c.c. jq solution = 0-02006 gram Hg . . . 2-302 33 „ =0-02086 gram Hg^O . . 2 319 31 = 0-027152 gram HgClg . . 2-433 80 Nitrogen as Nitrates and Nitrites N,05 = 108-02 N20„ = 76-02 Normal acid x 0-0540 = NgOj X 0-1011 = KN03 Metallic iron x 0-3761 =HN03 „ X 0-6035 = KN03 x 0-3224 = NA 2-732 39 T-004 75 1-575 30 1-780 68 1-508 40 Silver (Ag= 107-88) 1 CO. ^ NaCl = 0-010788 gram Ag . = 0016989 „ AgNOg 2-032 94 2-230 17 26 VOLUMBTRIC PAOO^ORS. Volumetric Factors — continued. Sulphuretted Hydrogen (H2S = 34-086) 1 c.c. Y?\ arsenious solution = 0'002556 gram HjS TiN(Sn = 119) Metallic iron x 10654 = tin . Ferrous ammonium sulphate x 0" 1522 = tin . N Factor for j^ iodine or permanganate solution 000595 Zinc (Zn = 65-37) Metallic iron x 0-5852 = Zn . 0-7285 = ZnO Ferrous ammonium sulphate x 0-0836 = Zn . 0-1041 = ZnO N 1 c.c. jq solution = 0.-003268 gram Zn . NITEOMETEE ANALYSIS. 1 c.c. NO at N.T.P = 0-6257 mgm .N . . . T-796 34 J, = 1-3402 ,ji NO . . . 0-127 17 i) = 1-6975 )j N.Og . . . 0-229 81 = 2-4121 )) N,Og . . . 0-382 40 )) = 2-8144 31 HNO3 . . 0-449 39 )) = 3-8009 KNO2 . . 0-579 88 J) = 4-5154 J» KNO3 . . 0-654 70 )) = 3-0819 >J NaNOg . 0-188 82 )) = 3-7986 )) NaNOj . 0-579 62 )) = 5-2294 )J CsHiiNG, . . 0-718 45 )) = 3-3516 J» CaHgNO^ . . 0-525 25 Logarithms. 3-407 56 0-027 49 T-182 41 3-774 52 1-767 33 1-862 41 2-922 21 1-017 45 3-514 28 COREKCTION FOB TEMPS RATTJEB. 29 For use in Calibrating Instruments. For use with Standard Solutions. Tempera- ture • C. Weight of 1 Litre of Water. Volume of 1 Gram of Water. Volume corres- ponding with 1 Litre at 15° C. Volume of 1 CO. reduced to 16° C. grams. c.c. 0.0. CO. 5 998-6 1 0014 998-3 1-0017 6 ■ -4 1-0016 7 -5 1-0014 8 ■7 1-0013 9 •9 1-0011 10 998-5 1-0015 999 1-0010 11 ,j ■2 1-0008 12 998-4 1-0016 ■4 1-0006 13 •3 1-0017 -6 1-0004 14 ■2 1-0018 ■8 1-0002 15 ■1 1-0019 1000-0 1-0000 16 997-9 1-0021 -2 09998 17 ■8 1-0022 •4 0-9996 18 ■7 1-0023 •6 0-9994 19 ■5 1 -0025 -8 0-.1992 20 ■3 1-0027 1001-1 0-9989 21 ■2 1-0028 •3 0-9987 22 997-0 1-0030 -6 0-9984 23 996-8 1-0032 •8 0-9982 24 •6 1-0034 1002-0 0-9980 25 •3 1-0037 -3 0-9977 Coefficients of Absorption of Gases in Watek. 1 volume of Water dissolves at 780 mm. Pressure. 0°C. 1°C. 10° 0. 15° c. 20° C. Acetylene, . 1-73 1-63 1-31 1-15 1-03 Winkler Ah-*, . 0-02882 0-02606 0-02265 0-02046 0-01870 „ " Ammonia, . 1158-08 1048-23 898-67 770'29t 696-17 Koscoe and \ Dittmar Winkler Carbon monoxide. 0-03537 0-03219 0-02816 0-02543 0-02319 ,, dioxide, . 1-713 1-473 1-194 1-019 0-878 Bohr and \ Bock Sohonfeld Chlorine, 3-0362 '2-5852 2-3681 2-1565 Hydrogen, . 0-02148 0-02064 0-01955 0-01883 0-01819 Winkler ,, sulphide. 4-3706 4-0442 3-5858 3-232B 2-9053 Schonfeld Methane, . 0-05473 0-05002 0-04366 0-03902 0-03498 Hinrichs Nitric oxide, 0-07381 0-06628 0-05709 0-05147 0-04706 Winkler Nitrous ,, . 1-3052 1-1346 0-9196 0-7778 0-6700 Carius Nitrogen, 0-02348 0-02130 0-01867 0-01682 0-01542 Winkler Oxygen, Sulphur dioxide, . 0:04890 0-04397 0-03802 0-03416 0-03102 79-789 69-828 56-647 47-276 39-374 Schonfeld t At 16° 0. 30 RECIPROCALS OP NUMBERS. Table of Reciprocals, No. Reciprocal. No. Reclpiocal. No. Reciprocal. No. Reciprocal. 1 1 31 •03226 61 •01639 91 •01099 2 •5 32 •03125 62 ■01613 92 •01087 3 •33333 33 ■03030 63 ■01687 93 •01075 4 •25 34 •02941 '64 , •OlSOS 94 •01064 6 •2 35 ■02857 65 ■01539 96 •01053 6 •16667 36 •02778 66 •01515 96 •01042 7 •14286 37 •02703 67 ■01493 97 ■01031 8 •125 38 •02632 68 •01471 98 •01020 9 •11111 39 ■02564 69 •01449 99 •01010 10 •1 40 •025 70 •01429 100 •01 11 •09091 41 ■02439 71 •01409 101 •00990 12 ■08333 42 •02381 72 •01389 102 •00980 13 •07692 43 •02326 73 ■01370 ' 103 •00971 14 •07143 44 •02273 74 •01361 104 ■00962 15 •06667 45 ■02-222 75 ■01333 105 •00952 16 •0625 46 •02174 76 •01316 106 00943 17 •05882 47 •02128 77 •01299 107 •00935 18 •05556 48 ■02083 78 •01282 108 ■00926 19 •05263 49 •02041 .79 ■01266 109 •00917 20 ■05 50 •02 80 •0126 110 ■00909 21 ■04762 51 •01961 81 •01235 111 ■00901 22 •04545 52 •01923 82 •01220 112 ■00893 23 •04348 53 •01887 83 ■01205 113 ■00885 24 •04167 54 •01852 84 ■01191 114 ■00877 25 •04 55 •01818 85 •01177 115 ■00870 26 ■03846 56 ■01786 86 ■01163 116 ■00862 27 •03704 57 •01754 87 ■01149 117 •00855 28 •03571 68 •01724 88 •01136 118 •00847 29 •03448 59 ■01695 89 •01124 119 •00840 30 •03333 60 •01667 90 •01111 120 ■00833 Ex.1, ^^''x •01 = 4 = 0-05882. 17 17 Ex. 2. -"i^x 02=1x2= ■02326 x2 = 0^04652. 43 43 Ex.3. l-52x005=ixi=°-:ill?-2=0^0061. 82 82 2 2 USEFUL FACTORS AISTD DATA. 31 VARIOUS USEFUL FACTORS. To convert : — Grams per litre into grains per cubic foot, ,, ,, ounces (av.) ,, >• >i lb- „ „ „ grains per fluid oz. „ ,, grains per gallon Grains per gallon into cwts. per million gallons ,, , , grams per litre* Percentage into grains per fluid oz. , Percentage into grains per lb. . . . Litres into cubic feet . ... Multiplier. 437 00 0-99884 0-06243 0-43847 70 l-27,'i5 0-014286 4-375 70 0-035321 Cubic inches into gallons 0-003604 ,, feet . . 6-2279 „ yards „ „ 168-152 15-68 grains per gallon = l ton per million gallons, * Or divide by 70. Logarithm. 2-640 4754 1-999 4973 2-795 3773 1-641 9391 1-845 0980 0-105 6839 2-154 9020 0-640 9781 1-845 0980 2-548 0345 3-556 7949 0-794 3386 2-225 7026 Useful Data. I. Areas and Volumes of Bodies. Area of a circle =Trr'' 4 Volume of a sphere , = -^irr^ o Volume of a cylinder = 7rr^A. Surface of sphere =iirr'' r= radius 7r = 3-1415926 -g-7r = 4-1888 ?■= radius of base h = height 4ir = 12-5664 II. Specific Gravity. To convert : — (1) Degrees of Twaddell's hydrometer into sp. gr. (water = 1000)— multiply by 5 and add 1000 (2) Sp. gr. (water=1000) into degrees of Twaddell's hydrometer — subtract 1000 and divide by 5 (3) The sp. gr. of gases referred to atmospheric air as 34-52 X mol. wt. mol. wt. unity = 1000 2897 1 kilogrammetre =7-2330 foot-pounds, 1 foot-pound = 0-13825 kilogrammetres, Logarithms. 0-497 1499 0-622 0886 1099 2099 0-859 3196 1-140 6804 32 USB OF LOGARITHMS. Notes on Logarithms. Definition. — The logarithm of a number N is the value of x which satisfies the equation a*=N, where a is some given number. Thus if a be 10 (which is the base of Briggs' or the ordinary logarithms), the logarithm of 100 is 2, that of 1000 is 3 ; and that of any number between 100 and 1000 will be greater than 2 and less than 3, so that it may be represented by 2 followed by places of decimals. By means of a table of logarithms two numbers may be multiplied together by adding their logarithms and divided by subtracting their logarithms, the result in each case being the number corresponding to the logarithm thus obtained. Also Involution, or raising of powers, is performed by multiplication of the logarithm of the number by the index of the power ; and Evolution, or extraction of roots, by division of the logarithm of the number by the index of the root. The integral part of a logarithm is called the characteristic, the decimal part the mantissa. The characteristic may be either positive or negative (e.g., 2, 2),* but the mantissa is always positive. The niantissse only are registered in the tables, the characteristics always being found by the following simple rules : — (1) For numbers greater than unity, the characteristic is one less than the number of digits, and is positive. (2) For numbers less than unity, the characteristic is one greater than the number of ciphers which precede the iirst significant figure, and is negative.* Ex. Log. 437-58 =2-6410575 Log. 43-758 =1-6410575 Log. 4-3758 =0-6410575 Log. -43758 =1-6410575 Log. -043758 = 2-6410575 Negative cha/racteristics are calculated according to the ordinary rules of algebraic addition and subtraction. A few examples will show the methods employed. (1) Addition- Add 5-3468541 Add 6-3874654 3-2685427 2-9245636 2-6153968 5-3120290 + 5 added to 3 gives + 2. + 6 is increased to + 7 by the 1 carried over from the mantlssse, and + 7 added to 2 gives + 5. *The negative sign is placed over the characteristic to indicate that it alone is negative. If placed in front, like an ordinary negative sign, both characteristic and mantissa would become negative. USE OP LOG^RITBMS. 33 Notes on LoaARiTHMS — eontmued. (1) Addition — continued. Add 2-5632874 3-2465281 Add 3-3010300 2-9020029 5-8098155 4-2030329 Here Ihe + 1 carried over from the mantissp is added_to 3 giving 2, and 2 added to 2 gives 4. (2) Subtraction- Rule. — Change the sign of the characteristic in the lower line, and add as above. From 2-6847658 Subtract 3-2468543 From 2-3468537 Subtract 5-7654626 5-4379115 2-5813911 3 becomes, on changing its sign, + 3, and this added to + 2 gives + 5. From 6-6843252 Subtract 3-7856310 Here 1 is carried over from the mautissse, and has to be sub- tracted from 2, giving 3 : then changing the 5^ into + 5, and adding this to 3, we have + 2. 3-8986942 Here the 1 carried over subtracted from 5 gives 6 ; then changing 3 into + 3 and adding it to 6, we have 3. Proportional Parts. — When the logarithm of a nnmber consisting of five figures or less is required, it can b« ibund immediately in the tables ; but if the numbers consist of more than five figures, a little calculation is required in order to find its correct logarithm. This calculation is greatly facilitated by the use of a table of proportional parts. It will be seen, on reference to the tables, that the differ- ences between the logarithms of numbers differing by 1 in the fifth figure remain remarkably constant for a great many successive numbers, except at the beginning of the tables, where the changes are rather rapid. Thus, from 66500 to 67500 the difference between any two consecutive logarithms is uniformly 65: e.g., log. 66511 (=4-8228935) subtracted from log. 66512 (=4-8229000) gives 65. Suppose, then, we require the logarithm of a number consisting of six or seven figures, as for instance 66511-37, how do we proceed to ftndit? 34 rSB OP LOGARITHMS. Notes on Logarithms — contirmed. This is done as follows : — First write down the next lower logarithm. Log. 66511 = 4-8228935, then, since the difference of 1 in the fifth figure makes a difference of 65 in the logarithm, a difference of '37 will make a difference of 65 X -37 = 24. .-. Log. 66511-37 = 4-8228935 + 24 = 4-8228959. In the table of proportional parts, however, the amount to be added for every tenth of a unit is recorded, and by this table the above result may be easily found thus : — Log. 66511 =4-8228035 Proportional part for "3 = 20 Proportional part for -07= 46 4-82289596 Conversely, the number to six, seven, or more figures correspond- ing to a given logarithm, is found by a method exactly the converse of that given above. Exa/mpU. — Find the number whose log. is 2-9324547. 2*9324547 2 -9324535 -log. 865-96 12 10= -002 20= -0004 855-9624 the number required. In the above example the difference between the given log. and the next lower in the tables being 12, the required number will evidently lie between 855'962 and 855-963, since the proportional part for 2 is 10 and that for 3 is 15. Subtracting that for 2, namely 10, we have 2 left. Annex a cipher to the 2, since the figure to be found will occupy the next decimal place, and the number 20 thus obtained is the proportional part for the figure 4. COMPUTATION. Computation. 35 The following examples -will show some of the methods that may- be used with great advantage for reducing labour in working out the results of analytical and other chemical work :— Ea;. 1. Multiply 237-2 by. 0-9889 •9889 = 1 --0111 Hence 237-2 less the sum of 2-372 -2372 •02372 234-56708. Ex. 2. Multiply 578-643 by 2-987 2-987 =3- -013 578-643 3 1735-929 less the \ 5-78643 sum of J 1-735929 1728-406641. Ex. 3. Multiply 182 76 by 5 =182-76xlf=H?^=913-8. Ex. 4. Multiply 32-8 by 15. = 32-8x10=328 +half of 32-8x10 = 164 492 Ex. 5. Multiply 0-07964 by 25 = .07964x?:22 = 7:964^,.991 4 4 Similarly to multiply by 2^ use the fraction i^. 36 COMPUTATION. Ex.Q. 247-68xl25=247-68xl20?=?l^ 8 8 =30960. Similarly to multiply by 12 '5 use ^^, and to multiply by '125, simply divide by 8. Ex. 7. In like manner, to divide by 25, X' io~ = 230-72. e.g. 5768 ^his equals ^^^Sx 4 ^ ^^.gg ^ ^ Appboximations. In many cases tbe results of clicniical investigations may be regarded as accurate to the second or third decimal place only : hence it is simply misleading (not to say deceptive) to calculate such results to the fourth or fifth place of decimals. In these cases the following methods of obtaining approximate results, correct to the first or second place of decimals, will be found invaluable. Ruh for multiplication. — Write the multiplier backwards under the multiplicand, and multiply in the usual way, each digit of the multiplier being multiplied into the figure immediately above it, those to the right being ignored, except that next to it, from which we get the amount to carry forward. The amount to be carried forward is taken as the nearest multiple of ten. Thus any number from 1 to 4 counts zero. 5 to 10 „ ] 10 to 14 „ 1 „ „ 15 to 20 „ 2 and so on. Omit all decimal points at first, the position of the decimal point in the answer being fixed afterwards,* as shown in the examples below. Ex. 8. Multiply 47'26 by 12'43, giving four figures in the answer. 4726 In the second line 2 x 6 = 12 3421 .•. carry 1 „ third line 4x2 = 8 4726 .-. carry 1 945 „ fourth line 3x7 = 21 189 . '. carry 2 14 5874 * ' ' When I calculate 1 seldom trouble my head about the position of the decimal point in my answer until everything else is finished. There are many cleverly- contrived rules about the position of the decimal point, but we forget them in practical work. Better never learn them." — Prof. John Perry, F.K.S. APPE0XIMATI0N8. 37 To find where to put the decimal point, we notice that as 47 is nearly 50, the resiilt will be rather less than 50 x 12=600. Hence the answer is obviously 587'4. If greater accuracy had been required, we should have proceeded thus : — 47260 3421 47260 9452 1890 142 58744 Result 587-44. Ex. 9. Multiply 3-72 by -0005962. Here we make 3-72 the multiplier as it shortens the work. 5962 As 3-72 is nearly 4, the answer will be rather 273 less than -0006 x 4= -0024. 17886 4173 119 Hence the result is -0022178, or -00222 correct to the fifth decimal place. 22178 Ex. 10. To find the number of feet in 726-422 metres, given that 1 metre = 3-2808 feet, 726422 80823 726x3 = 2178, hence the answer is clearly 2383-245. 2179266 145284 58114 581 2383245 Evle for division. — Proceed as in the ordinary way, but instead of adding zeros to the dividend cut off digits from the divisor, carrying forward a figure from the digit rejected, just as in multiplication. 38 APPROXIMATIONS. Ex. 11. Divide 2-71828 ' 8,1,4,1,6)271828 251328 by 3-1416. (86525 20500 18850 1650 1571 Since ?^ = 0-9, the 3 evidently 0-86525. 79 16 15 Ex. 12. How many cubic feet would be occupied by 1897-6 gallons of water 1 (6-228 gallons occupy 1 cubic foot.) 6,2,2,8)18976 (3047 18684 Note that as 292 is not divisible by 622, we put zero in the 292 quotient and then divide by 249 62. The result is 304-7. 43 42 Ex. 13. How many litres correspond to 6279864 cubic inches ? (1 litre = 61 -035 cubic inches.) 6,1,0,3,5)6279864 61035 176364 122070 (1028896 54294 48828 5466 4882 584 549 Here, and in similar oases, pro- ceed exactly as in ordinary division until all the figures in the dividend have been brought down, then begin to abbreviate. The result is seen at once to be 102889-6. 35 LOGARITHMIC COMPUTATION. 39 Exam/ples requiring the use of Logarithms. Ex. 14. To find a factor to multiply the number of c.o. of normal sulphuric acid required to saturate 20 c.c. of gas-liquor so as to give ounces of H2SO4 required per gallon Let X be the number of c.c. of normal sulphuric acid used. Then x c.c. contain "049 x grams of H2SO4 •049 X grams for 20 c.c. will be •049 X 4545-96 „ „n n - X grams H2SO4 per gallon 20 •049x4545-96 ■X ounces H2SO4 per gallon. 20 X 28-3495 To find the value of the fraction : — log. -049 =2-6901961 log. 20 =1-3010300 „ 4545-96 = 3-6576260 „ 28-3495 = 1-4525459 2-3478221 2-75 35759 2-7535759 ~~"^~" 1-5942462 = 0-39287. The log thus obtained may now be abbreviated to r59425. Suppose that 32^8 c.c. of normal H2SO4 were required, then log. 32^8 = V51587 1-59425 1-11012= 12-89 ounces H2SO4 per gallon. Logarithms should not always be used in similar cases, since by cancelling out common factors in numerator and denominator some fractions reduce to very simple forms. Thus in a certain calcula- tion the following factor was required : — Ex. 15. 480x20x30 ^j^.^.^^ ^^^^ reduces to |, 144 X 7000 ^ 7 40 INDIBECr ANALYSIS. Indikbot Analysis. The methods used are best shown by examples. Ex. 1. A mixture of chlorides of potassium and sodium weighs 0'9800 gram, and it contains 0'5633 gram of chlorine : to find the amount of each chloride present. Let K = weight of NaOl present 2/= „ KCl „ 1 part by weight of NaCl contains 0-6066 01 1 „ „ KCl „ 0-4756 01 (See Table of Percentage Compositions.) a;+ J/ = 0-9800 (i) -6066X+ -4756?/ =0-5633 (ii) (ii) -6066a + -47561/ = 0-5633 (i) X -4756 -4756a+ -4756i/ = 0-4661 •1310a; =0-0972 *0972 ai=:j3Y =0-7420 gram NaOl From (i) y = 0-9800 - -7420 = 0-2380 gram KCl. Hence the mixture contains •742x100^75-71% NaCl and 24-29% KCL The general rule in this case is found as follows : — Let M)= weight of mixed chlorides of sodium and potassium i!;=weight of chlorine and a; = weight of NaCl present. Then -60660; + -4756 {w-x)=ti •131a;+-4756M)=si •131 « •4756 -4756 or •27544a;=2-1026i8-ic a;=3-6305(2-1026«-w). Hence the rule : — Multiply the weight of chlorine present by 2-1026, and svhtract from the product the weight of the mixed chlorides. The remainder multi- plied by 3-6305 imll give the weight of sodium chloride present in the m/ixture. log. 2-1026 = 0-32276 log. 3-6305 = 0^55997 INDIEBCT ANALYSIS. 41 The above rule gives the best results when the chlorides present are in approximately equal amounts. Ex. 2. 0'9000 gram of a mixture of calcium and strontium carbonates yields 1"1892 grams of sulphates of calcium and strontium. What is the percentage composition of the mixture of carbonates ? Since CaCOa =100 and CaSOj = 1 36 1 gram of CaOOj will yield 1-36 grams CaSO^. Similarly 1 „ SrCOj „ 1-244 „ SrSOi. (See p. 51.) Then if the mixture contains x grama of CaCOg and y „ „ SrCOj X grams OaCOg become 1'36 x grams CaS04 and y „ SrCOg „ 1-244 y „ SrSO^ x + y =0-9000 (i) l-36a;+ 1-2442/= 1-1892 (ii) (i) X 1 -36 1 -36a; + 1 -SQOy = 1-2240 (ii) 1-36:!;+ 1-244j/ = 1-1892 •116j/= -0348 y= :0348^Q.3oo -116 a5=-9--3 = -6 Hence the mixture consisted of -3 X 100 — ;5 — = 33-33% calcium carbonate and 66-67% strontium carbonate. 42 PBRCKNTAGB COMPOSITIONS. n |zi t) o o o S O >. A) " S <1 o o w . g la H h-t o Hi - Pi o 1 OO i-H CO CO o" ?- CO CO I-H i-H 1 CO •>* to •* o (N 2 CN 34-17; 1 CO p CO 1^^ CO •g CO • I-H °0 <€ CO •* (M o OS offlo CO o" CO OS q. M aw "c B ? us *^ CO to '"oo «.^ h CO (N t*l-^ lO 0> CM ^ t^ c^ 00 OO Jo 55 -«> • ■* ■ ■* •"CO m OO '?' ^* «..'?•' .^ F^ OQ ■**( p i-H HSro^ ?5^S 1—1 I-H CO IM K 1^ T-( -^ CO CO QO CO CD rH O »0 O OO CO iO (M ^*^ oi cq C>1 eo .^ O) lA O CO p OS ^i >A O iH p rH nH I-H 5D -'— -" q. w q & 9 * O ■3 w" ^ q, ta § 04 +2 w S <<< 00 o m < i w' o' PL, 22 iH • • • ■ • • ?> OO • oT II • oT • . II • aT , ?r ■s §1 •3 3 - - 1 1 :a .3.2 c a . 1-1 M 00 Ai » ^ ^ H'o>:o: » cf c5" ^,0 0" RO" 5 -s P4 S-a P3 '^'^' 44 PBROBNTAGB COMPOSITIONS. . OS .g CO "s O o d e CO Pf 1 .2 00 rH )— 1 CO ■« lira O 00 ••^ 1 ia o ►^ w CO i 00 t^ OS t3 00 OS 1^ -^ o ^ lO p t^ 03O »b °c ^C* 'T cq CO fe" ■fSM O ■*£? 1 w 6 t^ CO .- C-l OS 5 p OS o ■* o ip 00 o CO CO 6 CO •-^00 ? CO "P CO M la rH CO 1 — 0^ o CO (N s6k ^ -(T i-H .-» OO CO J^ 00 94 cq ^- S SS 2 add 2 6g ^ 6c36 00 >• 'A o ,—'— ,— *— _>_ CO o (CO CO ■* o CN O (M 8 ti CO CN t^ ooon>-i>-ooxoasi>^j>- ■^ 00 OS ^ CO o It M CO pOSpppr-lpprH aiOO00'<3i50"^«0CN 03 T* ^^ T* 4i4 o (iq 00 -* ^ O00(M Td »-( 1-H O l>- !>. CO CD lO 1^ CO CO t-( t^ (M "* 'S. 1^ (N .-H 1-i T-t (N --1 i-H w »-l T-H (N CO 'n t^t o II 2-i O;^ S:^ O < a: ■A O "f H <1 M 01 O b 1 cS 1 1 I 1 II O 3 a o B CM n O02 d' 8^"l ^ o O 03 — ^ T3 'C T3 « tg d cS "«■ rt ed « cT rt 00 t o OO o OOO o o o OOO 00 S 1 9*^ -1 ■ • ■ p o II • • • • • - 4 ■ II • • p <6 T3 » T" /a ^' J ^ - o g g O "73 2 O 3 o 1 GQ a 3 a ^ ° i " o^ .2 flT 1 t? 3 p •< o '2 ^ 1 '3 1 15-6 . 9 o3 S « <^ as o s 1 o *o fl o 3 -a " o 3 3 sSa 1; PERCENTAGE COMPOSITIONS. 45 CO (N OO oo -^ CO cq CO « CO coO ^ t. (? OOO o "^ II; CO CO i-H ^ 7^ irs ^:^i o - oo Til CO 00 I— 1 ■rH CO Oi ?D 00 l^ OS (O t^- to 00 o <3c3c5 i 88 3 OS 0> OS opai-i; W W tN »-l O o « ^03 «o CM cq I— I lo oa CO r-l CO (M O cocooo-^OiuraOiO} oiTtiior^cot--ai"<#vo i-H I— t-H i-H i-H (M i-H CO OO OO CO CO (O n 1— I t^ 10 -oo«pcDmco ■^ P r^ OS CD © CO O 00 CO ■^ Oi (N i) « CO CO t^ ■'1' 0, D oo^coco^eoocb*^ O'^OO^'^^^^^O l>- 03 CD m CD © © 2" ^^Xir^^-^^Xl^ SiS^ E^ 6 1=, Pm fc, P4 I=H Pm Pi Pu. Ph p^ p., Ph Ph pu, pL, fU , , eo CO (MOO'* F-i «0 tH "^ tN iH to CO rH ■^ 00 (M 00 01 CF3 ^ « /^aico 1^ (M T— 1 1--. t^ uTS CS OO 00 (N lO CO »-t 01 <.* (N COt^CNCOCQ'rOOOCOO rH i-H (N rH 00 (N 'M I-H (N p-1 CO COCO(M(NCO« II ^i" • oT © II JO ' • ■ • • ■ 0- 1 • • ll CQ :2 cT © -i^ T3 © 1.2 It .11 Si m $ SS|-^.S 3-3-3 Ei & = = 1 .1 El i 1 ^S-'i - P4 HlJ PEROBNTAQB COMPOSITIONS 47 CO cq 1^ ■?* W 03 lO (N & w CO 00 50 00 CO 00 to oo 6o CO CO in CO o .m cT 00 00 '^ OS EfflOOO -n o CO 00 OS <>! <0 CO CO l^ OS 00 4tl rH 00 to CO OS i>- -^-^ aoac 2 60 M a 2 fl --^ s P!-n a 60 s bobo -^ !^S a a a ^ i ;^^^^ tn w- ffinq , , , ', . , CD O CO o (N O to -^ ■ctl o [M CO -«»< CqcMOTTfiOOiOiOCQ CO rH lO CO oo o CO CD OS - (N CM i-l ^ , ' :::x. °. w (N iH q, ^ °. 1 CO o So o" 52; s 1 o" o s- o o O at ^ooA s cq 0" q.3 bO CiD ClO bo 60 w 60 d n a a a = a a UD S 60 60 s sa a a s s a a S S ssi^a w a WW • • • • ■ .... • p< ■ • • o o" IK) OS • • .... • ■ • vK II • ' — ^ 4' 1 i' 1 1 -a § -a II 1 o 'h 5 C3 o 60 CI ;; ; - i - eT CQ clj 1 g a a S ^ 1^ 48 PBRCBNTAGB COMPOSITIONS. O J3 O II §6 PL, IM O =» r-l (M P O ""O tu bo&o&o w CO T-l Sim 00 CSJ 00 ti 3S lO r/3 00 00 02 (M Oi ..s CO 00 00 CO (Zi?5 tzi |Zi 52; ■^ J>. t^ .•« (N OS Cb Oa J>- 00 *^ . 01 <0 (N CO CD -^ iH CO oa CD CO GS (N (M ojr2 va OS o CO CO 00 t^ t^* r^ ^ OS ■* O 4j< O O CI iM i,-^ 00 ka o a> 00 t-H (N T-( ■ t^CO i-H .-■..-II OS OS .

4a CL|P-|9-I ^* .* — ,^ CO OOoo w « i lo o tC OS 00 b.US 00 O -* « 00 •~ •- --co o in as OO CD ift '^ CJS ^ ^ (^ (MiQ CO • q,oq,S O 03 » o5 O S CO ^ tN p=o 60 bo 00 00 O 00 (N O o«o Tt*o CO cot^t^t^or^oo liHirseOr-l Wcoco(NOCMr-<,-((MoC^t-l.: M O) O ;j O "Tl DO U t^ d '^ ^ o.g III! ili^llll^it SOU'S <£i iSrJ:4.^l=ll=lop. CQ be . . p< 3 ,4 O VBE mid orid S 05 ^3li •S > = 50 PERCENTAGE COMPOSITIONS. CO 7~t rH 00 OS ^ co •^ So o ■« 03 CD s s ■s CO in O ^ q o »- 1 c o "2 o" I-H CO o" w k 'So g CO rry O !-(*■* CO fvi CO OO CO 00 ?"o _ V. IQ 00 •A i o »r3 q 0.M ;h 1, CO lia O IN „ tc a to lO """;^o"So"o"5 OS IN osr" wOn '^'m ■- CN to '"' A. o "^^ At u^ O t- 00 *^ CM 1-H OS ^(N B CO i>. CO (M OS "05 ■* -^ a> *" CO rH^ 00 1 (S O «3 urs o CO ^^Ssj:g^3 I-H oq>n . g } 00 00 00 O C<1 (N I-H o -jn o o O CO^HOOCJOOObCN (>1 O Ol o o CO (M (M (M O o ti 1 «5 -* CO «D OO C OO ocokoeOTiiooeocoia-^ira^iM o i« f-H (N CQ r-l i-H g CO o go rH rH CO I-H CO I-H iH g ^^ ^ II o P4 i rd o -S H ^ i o O o I-H 1 9, 1 o II Q 5 1 CO O tlf o rH o o" d" » =. O s- MOO W o ■* " g 0202 W CO o oo a a coco ^9§ o •- •• OS to ■* .^ OS CO Q ■* 00 a PI , O CO CD O CO ^i^ in la CO vo to \a to to to N t«» t^ CO m ca oo (N ec 00 00 l>- KO CN ■^ IQ (M ,_l *M ^ l>- «D 00 rH CO -S< to lO i-< o i-i G^ ri or 3 ij- 2 grains . gr. ii, or gr. ij. 3 „ . 3 111, or 3 Hj 24 ., • . gr. ilss. 34 „ . 3 iiiss. i „ . • gr. iv. 74 „ • 3 viiss. 8 „ . . gr. viii, or gr. viij. J ounce 1 ss. 4 scruple . 9ss. 1 § i, or § j. 1 . 9i, or9j. 14 >. § iss. 14 ,. . 9 iss. 4 pint Oss. 2 scruples . 9 ii, or 9 ij. 1 ., 0. 62 FOREIGN WEIGHTS AND MONET. FoBBiON Weights and thbik English Eqititalbnts. The Metric System is compulsory in Austria, Belgium, France, Germany, Greece, Italy, Luxemburg, the Netherlands, Portugal, Eoumania, Spain, Switzerland, Turkey, and most of the South American Republics ; optional in Great Britain, the United States, and Russia. 1 quintal 1 metric ton Austria-Hungary Belgium Egypt . Germnny Russia . Sweden Switzerland . China . Japan . = 100 kg. =1-968 owts. = 1000 kg. =0-9842 ton. = 1-1023 American short tons (2000 lb.) . Ipfimd = 1-2346 lb. . 1 iivre = 1102 ,, 1 cantar = 99 045 „ . 1 pfund = 500 grams. . 1 pound = 0-9028 lb. 1 pood * (40 pounds) = 36 -113 lb. . 1 pound = 0-9377 lb. . 1 zollpfund = 500 grams. . 1 tael = 1-333 oz.av. 1 chin = 16 tael = 1-333 lb. . 1 kin ( = 160momme) =1-3227 ,, 1 kwan = 8-2672 lb. [1 koku ( = 100 sho)= 39-674 gallons.] Foreign Moneys and their English Equivalents (IN 1912). Austria-Hungary China Denmark, Norway and Sweden . Egypt France Germany . Holland . India . Italy . Japan . Mexico Rus:jia Spain Turkey United States 1 krone ( = 100 heller) 1 silyer yuan or dollar ( = 100 cents) 1 krone ( = 100 ore) £E1 ( = 100 piastres) . 1 franc ( = 100 centimes) 1 mark ( = 100 pfennige) 1 florin ( = 100 cents) . 1 rupee ( = 16 annas) . 1 lira ( = 100 centesimi) 1 yen ( = 100 sen) 1 peso ( = 100 centavos) 1 rouble (100 kopecks) 1 peseta ( = 100 centimes) £T1 ( = 100 piastres) . 1 dollar ( = 100 cents) . s. d. . 10 . 2 1 H . 20 3| 94 . 111 1 8 1 4 H 2 Oi 2 0* . 2 n . 94 . 18 . 4 1* i poods = 2276 lb. = l English ton nearly. DENSITIES OP COMMON SUBSTANCES. 63 DENSITIBS of COMMONIiY OCOTTKRING SUBSTANCES (AT 15° C.) Agate 2-6 Graphite . . 2-2 Aliuninium . 2-7 Gutta-percha . 0-97 Aluminium bronze . 8 Gypsum . . 2-3 Amber . 1-1 Heavy spar . 4-5 Amphibole 2-9-3-4 Haema1;ite . . 5 Anhydrite . 2-98 Iceland Spar . 2-7 Anthiacite 1-27-1 -75 India-rubber . 0-99 Antimony . 6-7 Iodine . 5 Apatite . 3-3 Iron (cast) . 7 -2-7 -5 Arragonite . 3 „ (wrought) . 7-8 Arsenic . 5-7 Ivory . 1-92 Bamboo . 0'4 Lead . . 11-4 Basalt . 2-8 Lime . . . . . 3-2 Beech- wood 0-69- -8 Lithium . 0-69 Beeswax . . 0-96 Magnesium . 1-74 Bismuth . . 9-8 Mahogany . ■56--85 Bitumen . 0-8-1 -2 Marble . 2-7 Box-wood . . 0'96 Mercury . . 13-6 Bone . 1-8-2 Mica . 2-7-3-1 Brass . 8 Milk (cows') . 1 03 Brick . 21 Nickel . 8-3 Bromine . . 3 Oak (English) . . 0-93 Bronze coinage . . 8-66 Phosphorus (yellow) . 1-84 Cadmium . . 86 (red) . 2-2 Calamine . . 3-4 Pine-wood . . 0-56 Calc-spar . . 2-7 Platinum , . 21-5 Chalk (mean) . . 2-3 Potassium . . 0-88 Charcoal . . 1-5 Pyrites (iron) . . 5 Chloroform . 1-5 Pyrolusite . . 4-9 Chrome alum . 1-83 Pumice-stone 2-2-2-5 Cinnabar . . 8-1 Sand (dry) . 1 4 Coal . 1-25-1-33 Sea-water . . 1-026 Cobalt . 8-9 Selenite . 2-3 Copper . 8-9 Serpentine . . 2-6 Cork . . 0-24 Silver . 10 5 Diamond . 3-5 ,, coinage (British 10-35-10-38* Dolomite . . 2-9 Slate . 2-1-2-8 Ebony . 1-2 Sodium , 0-97 Elm (dry) . 0-59 Spermaceti . 0-94 Emery . 4 Strontianite 3-6 Felspar 2-4-2-6 Sugar (cane) . 1-6 Fir (Riga) -dry . . 0-75 Sulphur . . 2-07 Fluor-spar . . 3-2 Talc . . 2-5 Galena . 76 Teak (Indian) . . 0-66 Glass (crown) . 2-5 Tiu . . . . 7-24-7-3 „ (flint) 2-9-3-25 Tinstone . . 6-9 ,, (Bohemian) . 2-4 Turpentine . 0-87 Glyceriije . . 1-26 Willow-wood . 0-4 Gold . . 19-3 Witherite . . 4-3 ,, (18 carat) . . 1488 Wool . 1-6 „ coinage (British) . 17-48* Zinc . 6-9-7-2 Granite . 2-7 Zinc blende . 4-16 » These values were kindly supplied to the author by Dr. T. K. Eose, Chemist to the Eoyal Mint. 64 FEBEZING MIXTUBBS. Table of Freezing Mixtckes. A. mixture of (parts by weight). Temperature produced. Snow or broken ice, 2 ; common salt, 1 . . . - 18° C. „ ,, 3 ; calcium chloride (cryst.) 4 - 48° C. Sodium sulphate (cryst.), 8 ; muriatic acid, 5 . -18° C. ,, phosphate (cryat. ), 9 ; nitric acid, 4 -29°0. Ammonium nitrate, 1 ; water, 1 .... - 16° C. Ammonium chloride, 5 ; saltpetre, 5 ; sodium sulphate, 8 ; water, 16 -20°C. Sole. — The solids used should be finely powdered. Table foe the Conversion of Pbeobntage into owts., qrs., and lb. per ton, and into qrs. and lb. per flwt. Per ceiit. Per ton. Per owt. Per cent. Per ton. Per cwt. owt. qrs. lb. qrs. lb. cwt. qra. lb. qrs. lb. 1 22-4 1-12 29 6 3 6-6 4-48 2 1 16-8 2-24 30 6 6-60 3 2 11-2 3-36 31 6 22-4 6-72 i 3 5 6 4-48 32 6 1 16-8 7-84 6 1 5-60 33 6 2 11-2 8-96 6 1 22-4 6-72 34 6 3 5-6 10-08 7 1 1 16-8 7-84 35 7 11-20 8 1 2 11-2 8-96 36 7 22-4 12-32 9 1 3 6-6 10-08 37 7 1 16-8 13-44 10 2 11-20 38 7 2 11-2 14-56 H 2 22-4 12-32 39 7 3 5-6 15-68 12 2 1 16-8 13-44 40 8 16-8 13 2 2 11-2 14-66 41 8 22-4 17-92 14 2 3 6-6 15-68 42 8 1 16-8 19-04 15 3 16-8 43 8 2 11-2 20-16 16 3 22-4 17-92 44 8 3 5-6 21-28 17 3 1 16-8 19-04 46 9 22-40 18 S 2 11-2 20-16 46 9 22-4 23-62 19 3 8 5-6 21-28 47 9 1 16-8 24-64 20 4 22-40 48 9 2 11-2 26-76 21 4 22-4 23-62 49 9 3 6-6 26-88 22 4 1 16-8 24-64 60 10 2 23 4 2 11-2 25-76 51 10 22-4 9. 1-12 24 4 3 5-6 26-88 62 10 1 16-8 2 2-24 26 6 1 63 10 2 11-2 2 3-36 26 6 22-4 1 1-12 54 10 S 5-6 ?. 4-48 27 5 1 16-8 1 2-24 65 11 2 6-60 28 5 2 11-2 1 3-36 66 11 22-4 2 6-72 Per cent, lb. per cwt. lb. per ton •1 ■112 •2 -2-!4 4-48 •3 -336 6-72 ■4 •448 8-96 . •6 •56 11-2 -6 -672 13-44 -7 ■784 16-68 ■8 ■896 17^92 ■9 l^OOS 20-16 PEROENTAGBS INTO CWTS., ETC., PER TON. 65 Table por the Conveesion of Peeoentagb into owts., qes., and LB. PEK TON, AND INTO QES. AND LB. PER OWT. — Continued. Per cent. Per ton. Per cwt. Per cent. Per ton. Per cwt. cwt. qra. Ib. qrs. lb. cwt. qrs. lb. qrs. lb. 57 11 1 16-8 2 7-84 79 15 ^ 5-6 .S 4-43 68 11 2 11-2 2 8-96 80 IS 3 5-60 59 11 3 6-6 2 10-08 81 16 22-4 8 6-72 60 12 2 11-20 82 16 1 16-8 R 7-84 61 12 ,22-4 2 12-32 83 16 2 11-2 8 8-96 62 12 1 16-8 2 13-44 84 1« 3 5-6 8 10-08 63 12 2 11-2 2 14-56 85 17 8 11-20 64 12 3 5-6 2 15-68 86 17 22-4 8 12-33 65 13 2 16-8 87 17 1 16-8 3 13-44 66 IS 22-4 2 17-92 88 17 2 11-2 3 14-66 67 13 1 16-8 2 19-04 89 17 3 6-6 3 15-68 68 13 2 11-2 2 2016 90 18 8 16-8 69 13 3 5-6 2 21-28 91 18 22-4 3 17-92 70 14 2 22-40 92 18 1 16-8 3 19-04 71 14 22:4 2 23-62 93 18 2 11-2 8 20-16 72 14 1 16-8 2 24-64 94 18 3 5-6 8 21-28 73 14- 2 11-2 2 25-76 95 19 3 22-40 74 14 3 6 6 2 26-88 96 19 22-4 3 23-52 75 15 3 97 19 1 16-8 3 24-64 76 15 22-4 3 1-12 98 19 2 11-2 3 25-76 77 16 1 16-8 3 2-24 99 19 3 5-6 8 26-88 78 15 2- 11-2 3 8-36 100 20 ■• 4 •• Per cent, lb. per cwt. lb. per ton ■1 -2 ■8 -4 -6 •6 •7 •8 -9 -112 •224 -336 -448 -66 -672 -784 -896 1-008 2-24 4-48 6-72 8-96 11-2 13-44 16-68 17-92 20-16 Table foe the Conversion of Drams per lb. into Percentage and into lb. per ton. Drams per lb. (av.) 1 li li IS 2 2i 2i 2| 3 3i 3J Per cent. 0-097666 (or 0-1 nearly) •196 •293 -390825 • •488 -686 -683 •781 •879 •976 1-074 1-172 1-269 1'367 Lb. per ton 12240 lb.). 2-187494 4-37 6-66 8-76 t 10-94 18-12 16-31 17-60 19-68 21-87 24-06 26-26 28-43 30-62 Drama per lb. (av.) Per cent. Lb. per ton (2240 lb.). 31 1-466 32-81 4 1-662 35-00 a 1-660 37-19 4 1-768 39-38 ii 1-866 41-66 6 1-953 43-75 10 3-906 87-60 15 6-859 131-25 20 7-812 175-00 25 9-766 218-75 30 11-719 262-60 36 13-672 306-26 40 16 025 860-00 46 17-578 393-76 50 19-631 437-60 • Log. 1-69176. t Log. 0-94200, 66 THE BAEOMBTER. The Barometbu. I. iTiches into Millimetres. Inches. Milli- metres. Inches, Milli- metres. Inciies. Milli- metres. Inches. Milli- metres. 27-5 -6 •7 -8 ■9 28-0 -1 •2 -3 698-49 701-03 703-57 706-11 708-65 711-19 713-73 716-27 718-81 28-4 -5 -6 -7 -8 -9 29-0 ■1 -2 721 -35 723-89 726-43 728-97 731-51 734-05 736-59 739-13 741-67 29-3 -4 -5 •6 ■7 -8 -9 30 -1 744-21 746-76 749-29 751-83 754-37 756-91 759-45 761-99 764-53 30-2 •3 •4 •5 •6 •7 •8 •9 -767-07 769-61 772-15 774^69 777-23 779^77 782-31 784-85 Inches, Millimetres, •01 •25 -02 -51 -03 -76 ■04 1-02 -05 1-27 -06 1-52 •07 1^78 •08 2 •OS -09 2-29 II. Millimetres into Inches. Mm. Inches. Mm. Inches. Mm. Inches. Mm. Inches. Sim. Inches. 700 27-56 718 28-27 735 28^94 752 29-61 769 30-28 701 -60 719 -31 736 / ^98 753 -65 /70 -32 702 •64 720 -35 737 29^02 754 -69 771 -36 703 -68 721 -39 738 ■06 755 -73 772 -39 704 -72 722 -43 739 -10 756 -76 773 •43 705 -76 723 -47 740 -13 757 -80 774 -47 706 -80 724 -50 741 •17 758 -84 775 ■51 707 ■84 725 -54 742 •21 759 -88 776 -55 708 •88 726 -58 743 •25 760 ■92 777 •59 709 •91 727 -62 744 ■29 761 -96. 778 •63 710 •95 728 •66 745 •33 762 30-00 779 •67 711 •99 729 ■70 746 •37 763 ■04 780 •71 712 28-03 730 •74 747 •41 764 ■08 781 •75 713 -07 731 ■78 748 ■45 765 ■12 782 •79 714 -11 732 •82 749 •49 766 •16 783 ■83 715 -15 733 •86 750 •53 767 -20 784 •87 716 -19 734 •90 751 •57 768 •24 78S •91 717 -23 COEEBCTION OP GASBOITS VOLtTMBS. 67 Table for Correotion or Volumes op Gases for Temperature, GIVING THE Divisor for the Formula. Vi= V X B 760x(l + 8«) S= -003665 ( 760 X Log. [7G0x ( 760 X Log. [760 x (1+S<)- (1+60]. (l+«0- (1+80]. °c. 0-0 760-0000 2-8808136 "C. 4-0 771-1416 2-8871341 •1 760-2785 9727 -1 771-4201 2909 ■2 760-5571 2-8811318 ■2 771-6987 4477 •3 760-8356 2908 -3 771-9772 6045 ■4 761-1142 4498 -4 772-2558 7612 0-5 761-3927 6087 4-5 772-5343 9178 •6 761-6712 7675 -6 772-8128 2-8880743 •7 761-9498 9263 •7 773-0914 2308 •8 762-2283 2-8820850 ■8 773-3699 3872 ■9 762-5069 2437 -9 773-6485 5436 1-0 762-7854 2-8824024 5-0 773-9270 2-8887000 •1' 763-0639 5610 -1 774-2055 8563 •2 763-3425 7195 -2 774-4841 2-8890125 •3 763-6210 8779 -3 774-7626 1687 •4 763-8996 2-8830363 •4 775-0412 3248 1-5 764-1781 1946 5-5 775-3197 4808 •6 764-4566 3528 -6 775-5982 6368 •7 764-7352 5111 -7 775-8768 7927 •8 765-0137 6692 -8 776-1553 9486 ■9 766-2923 8273 -9 776-4339 2-8901044 2-0 765-5708 2-8839854 6-0 776-7124 2-8902602 ■1 765-8493 2-8841434 •1 776-9909 4159 •2 766-1279 3013 -2 777-2695 6716 •3 766-4064 4591 •3 777-5480 7272 ■4 766-6850 6169 -4 777-8266 8828 2-5 766-9635 7747 6-5 778-1051 2-8910383 ■6 767-2420 2-8849324 -6 778-3836 1938 •7 767-5206 2-8850901 •7 778-6622 3492 •8 767-7991 2477 •8 778-9407 5045 ■9 768-0777 4052 -9 779-2193 6597 3-0 768-3562 2-8855626 7-0 779-4978 2-8918149 •1 768-6347 7199 •1 779-7763 9701 •2 768-9133 8772 -2 780-0549 2-8921252 ■3 769-1918 2-8860345 ■3 780-3334 2802 ■4 769-4704 1918 -4 780-6120 4352 3-5^ 769-7489 3490 7-5 780-8905 5901 •6 770-0274 5062 -6 781-1690 7450 •7 770-3060 6638 •7 781-4476 8998 •8 770-5845 8203 •8 781-7261 2-8930546 9 770-8631 9772 •9 782-0047 2093 COREBCTION OP GASEOUS VOLTJMBS. Table foe Coekection of Volumes of Gases — continued. 760 X Log. [760 X 760 X Log. [760 X t (i+«0. (i+soi. t (1+60. (i+SO). °c. 8-0 782-2832 2-8933640 °C. 12-5 794-8175 2-9002674 ■1 782-6617 5186 -6 795-0960 4196 •2 782-8403 6732 -7 795-3746 5717 •3 783-1188 8277 •8 795-6531 7238 ■4 783-3974 9821 -9 795-9317 8758 8-5 783-6959 2-8941365 13-0 796-2102 2-9010277 ■6 783-9544 2908 •1 796-4887 1796 ■7 784-2330 4451 -2 796-7673 3315 •8 784-5115 5993 •3 797-0458 4833 ■9 784-7901 7535 -4 797-3244 6350 9-0 785 0686 2-8949076 13-5 797-6029 7867 ■1 785-3471 2-8950617 -6 797-8814 9384 ■2 785-6257 2157 •7 798-1600 2-9020900 •3 785-9042 3697 -8 798-4385 2415 •4 786 1828 5236 -9 798-7171 3930 9-5 786-4613 6774 14 798-9956 2-9025444 ■6 786-7398 8311 •1 799-2741 6957 ■7 787-0184 9848 -2 799-5527 8470 •8 787-2969 2-8961385 -3 799-8312 9983 •9 787-5755 2921 •4 800-1098 2-9031495 10-0 787-8540 2-8964457 14-5 800-3883 2-9033007 •1 788-1325 5993 -6 800-6668 4518 •2 788-4111 7528 •7 800-9454 6029 •3 788-6896 9062 -8 801-2239 7539 ■4 788-9682 2-8970595 -9 801-5025 9049 10-5 789-2467 2128 15 801-7810 2-9040558 •6 789-5252 3660 -1 802-0595 2066 ■7 789-8038 5192 -2 802-3381 3574 •8 790-0823 6723 ■3 802-6166 5081 •9 790-3609 8254 -4 802-8952 6588 11-0 790-6394 2-8979784 15-5 803-1737 8095 •1 790-9179 2-8981314 -6 803-4522 9601 •2 791-1965 2843 -7 803-7308 2-9051106 ■3 791-4750 4372 •8 804-0093 2611 ■i 791-7536 2-8985900 -9 804-2879 4115 11-5 792-0321 ■ 7428 16-0 804-5664 2-9055619 •6 792-3106 8955 -1 804-8449 7122 •7 792-5892 2-8990482 •2 805-1235 8625 •8 792-S677 2008 ■3 805-4020 2-9060127 •9 793-1463 3533 -4 805-6806 1628 12-0 793-4248 2-8995058 16-5 805-9691 2-9063129 •1 793-7033 6682 -6 806-2376 4630 •2 793-9819 8106 -7 806-5162 6130 •3 794-2604 9629 -8 806-7947 7630 ■4 794-5390 2-9001152 •9 807-0733 9129 COERBOTION OP GASEOrS VOLUMES. 69 Table foe Correction op Volumes of Gases — continued. 760 X 1 Los. [760 X 760 X Lob. [760 X t (1+60. (l+«)]- t (1+SO- (l+Si)]. 17-0 807-3518 2-9070628 °C. 21-5 819-8861 2-9137535 •1 807-6303 2126 -6 820-1646 9010 •2 807-9089 3624 •7 820-4432 2-9140485 •3 808-1874 6121 •8 820-7217 1960 ■4 808-4660 6618 -9 821-0003 3434 17-5 808-7445 8114 22-0 821-2788 2-9144907 ■6 809-0230 2-9079609 •1 821-5573 6380 ■7 809-3016 2-9081104 -2 82] -8859 7852 ■8 809-5801 2598 -3 822-1144 9323 •9 809-8587 4092 -4 822-3930 2-9160794 18-0 810-1372 2-9085586 ■22-5 822-6715 2265 •1 810-4176 7079 -6 822-9500 3735 •2 810-6943 8571 -7 823-2286 5205 •3 810-9728 2-9090063 ■8 823-5071 6674 •4 811 -2514 1554 -9 823-7857 8143 18-5 811-5299 3045 23-0 824-0642 2-9159611 •6 811-8084 4535 -1 824-3427 2-9161079 •7 812-0870 6025 -2 824-6213 2546 ■8 812-3655 7515 -3 824-8998 4013 •9 812 -.6441 9004 •4 825-1784 5479 19 812-9226 2-9100492 23-5 825-4569 6945 •1 813-2011 1980 •-6 825-7354 8410 •2 813-4797 3467 •7 8260140 9876 •3 813-7582 4954 -8 826-2925 2-9171339 •4 814-0368 6440 -9 826-5711 2802 19-5 814-3153 7926 24-0 826-8496 2-9174265 ■6 814-5938 9411 •1 827-1281 5728 ■7 814-8724 2-9110896 -2 827-4067 7190 •8 815-1500 2380 -3 827-6852 8652 •9 815-4925 3864 -4 827-9638 2-9180114 20-0 815-7080 2-9115347 24-5 828-2423 1575 •1 815-9865 6830 -6 828-5208 3035 •2 816-2651 8312 -7 828-7994 4495 ■3 816-5436 9794 •8 829-0779 6954 •4 816-8222 i2-9121275 -9 829-3566 7412 20-5 817-1007 2766 25-0 829-6350 2-9188870 ■6 817-3792 4236 -1 829-9135 2-9190328 •7 817-6578 2-9125716 •2 830-1921 1785 •8 817-9363 7195 -3 830-4706 3242 •9 818-2149 8674 -4 830-7492 4699 21-0 818-4934 2-9130152 25-5 831-0277 2-9196155 •1 818-7719 1630 -6 831-3062 7610 ■2 819-0505 3107 •7 831-5848 9065 •3 819-3290 4683 -8 831-8633 2-9200520 •4 -819-6076 6059 -9 831-1419 1974 70 TENSION OF MBROUET-VAPOUB. Table fok Coukiiction of Volumes op (iASEn—coiUmued. t 760 X Log. [760 X f 760 X Lor. [760 X (1+SO. (l+SOl. (1+50. (1+Sl)]. °c. °C. 26 832-4204 2-9203427 28-1 838-2697 2-9233838 ■1 832-6989 4880 •2 838-5483 5281 •2 832-9775 6333 •3 838-8268 6723 •3 833-2560 7785 •4 839-1054 8165 ■4 833-5346 9237 28-5 839-3839 2-9239606 26-5 833-8131 2-9210688 •6 839-6624 2-9241047 •6 834-0916 2139 •7 839-9410 2488 ■7 834-3702 3589 •8 840-2195 3928 •8 834-6487 5038 •9 840-4981 5368 •9 834-9273 6487 29-0 840-7766 2-9246807 27-0 835-2058 2-9217936 -1 841-0551 8246 •1 835-4843 9384 ■2 841-3337 9684- ■2 835 •76-29 2-9220832 ■3 841-6122 2-9251122 •3 836-0414 2279 •4 841-8908 2559 •4 836-3200 3725 29-5 842-1693 3995 27-5 836 -5985 5171 ■6 842-4478 5431 •6 836-8770 6617 ■7 842-7264 6866 •7 837-1556 8062 •8 843-0049 8301 •8 837-4341 9507 •9 843-2835 9736 •9 837-7127 2-9230951 30-0 843-5620 2-9261171 28-0 837-9912 2-9232395 i Tension of Mercukt Vapour (Ramsay and Young). •c. mm. •c. 190 mm. °C mm. 5Q 0-015 12-14 290 198-98 100 0-27 200 17-02 300 246-70 110 0-45 210 23-48 310 304-79 120 0-72 2-20. 31-96 320 373-53 130 1-14 230 42-92 330 454-28 140 1-76 240 56-92 340 546-72 150 2-68 250 74-59 350 658-52 160 4-01 260 96 66 360 785-11 170 5-90 270 123-91 180 8-54 280 157 -38 DENSITY OF WATEE. 71 Volume and Density of Watub at different Temperatures.* Temp. Sp. gr. of Water Vol. of Water Sp. gr. of Water Vol. of Water (atO° = l). (at 0''=1). (at 4''=1). (at4- = l). 0° 1-000000 1-000000 -999871 1-000129 1 1 '000057 0-999943 -999928 1-000072 2 1-000098 ■999902 ■999969 1-000031 3 1000120 -999880 •999991 1-000009 4 1 -000129 -999871 1^000000 1-000000 5 1-000119 -999881 0^999990 1-000010 6 1-000099 -999901 •999970 1 -000030 f 1-000062 -999938 •999933 1-000067 8 1-000015 ■999985 •999886 1-000114 9 0-999953 1-000047 ■999824 1-000176 10 •999876 1-000124 •999747 1-000253 11 -999784 1 -000216 •999655 1-000345 12 •999678 1 -000322 •999549 1-000451 13 •999559 1-000441 •999430 1-000570 14 -999429 1-000572 •999299 1-000701 15 •999289 1-000712 •999160 1-000841 16 •999131 1 -000870 ■999002 1-000999 17 -998970 1-001031 •998841 1-001160 18 •998782 1-001219 •998654 1-001348 19 •998588 1^001413 •998460 1-001542 20 •998388 1^001615 •998259 1-001744 21 •998176 1^001828 •998047 1-001957 22 •997953 1^002049 •997826 1-002177 23 •997730 1-002276 •997601 1-002405 24 •997495 1-002511 •997367 1-002641 25 •997249 1-002759 •997120 1 -002888 26 ■996994 1-003014 •996866 1-003144 27 •996732 1-003278 •996603 1-003408 28 •996460 1-003553 ■996331 1 -003682 29 996179 1-003835 •996051 1-003965 30 •995894 1-004123 •995765 1-004253 35 0^99431 1-00572 0^99418 1 -00593 40 0^99248 1-00757 0^99235 1-00773 45 0-99050 1-00958 0-99037 1-00974 50 0^98832 1-01182 0^98819 1-01201 55 0^98594 1 -01426 0^98581 1-01442 60 0-98350 1-01678 •98338 1-01697 65 0^98086 1-01951 0-98074 1-01971 70 0-97807 1-02243 ©•97794 1-02260 75 0-97511 1-02553 0^97498 1-02569 80 0-97206 1-02874 0-97194 1 02890 85 0-96892 1-03207 0-96879 1-03224 90 0-96568 1-03554 0-96556 1-03574 95 0-96231 1-03918 0-96219 1-03938 100 0-95879 1-04299 0-95866 1'04315 This table may be utilized to reduce a sp. gr. taken with reference to water at one temperature to water at 4° C. Thus, let Sis bs W'^ sp. gr. of a substance referred to water at 15° C. as unity, then the sp. gr. (84) referred to water at 4° as unity will be S4=Si6X -99916=Si6(l- -00084). * Eosetti. 72 BAUME S HYDBOMBTER. BAUMi's Hydrombiek. — Table for Liqwids heavier than Water. •B. •Tw. Sp.gr. ■B. •Tw. Sp. gr. •B. •Tw. Sp. gr. 1 1-4 1-007 23 38 1-190 45 90-6 1-453 2 2-8 1-014 24 40 1-200 46 93-6 1-468 3 4-4 1-022 25 42 1-210 47 96-6 1-483 4 5-8 1-0-29 26 44 1-220 48 99-6 1-498 5 7-4 1-037 27 46-2 1-231 49 103 1-515 6 & 1-045 28 48-2 1-241 50 106 l-.f;30 7 10-2 1-052 29 50-4 1-262 51 109-2 1-546 8 12 1-060 30 52-6 1-263 62 112-6 1-563 9 13-4 1-067 31 54-8 1-274 63 116 1-580 10 15 1-075 32 67 1-285 54 119-4 1-597 11 16-6 1-083 33 59-4 1-297 55 123 1-615 12 18-2 1-091 34 61-6 1-308 56 1-27 1-635 13 20 1-100 35 64 1-3-20 57 130-4 1-652 14 21-6 1-108 36 66-4 1-332 58 134-2 1-671 15 23-2 1-116 37 69 1-345 ^9 138-2 1-691 16 25 1-125 38 71-4 1-367 60 142 1-710 17 26-8 1-134 39 74 1-370 61 146-4 1-732 18 28-4 1-142 40 76-6 1-383 62 150-6 1-753 19 30-4 1-152 41 79-4 1-397 63 155 1-775 20 32-4 1-162 42 82 1-410 64 159 1-795 21 34-2 1-171 43 84-8 1-424 65 164 1-820 22 36 1-180 44 87-6 1-438 66 168-4 1-842 * This is the Baum^'s hydrometer mostly used on the Continent of Europe; but othoi* scales are in use there as well, and quite another srnle for Baum^s hydrometer is used In Ameilca (Lunge & Hurter, Alkali Makers' Handbook'^. Table for Liquids lighter than Water. •B. Sp. gi-. •B. Sp.gr. •B. Sp. gr. 10 1-000 27 0-896 44 0-811 11 0-993 28 0-890 46 0-807 12 0-986 29 0-885 46 0-802 13 0-980 30 ' 0-880 47 0-798 14 0-973 31 0-874 48 0-794 15 0-967 32 0-869 49 0-789 16 0-960 33 0-864 50 6-786 17 0-954 34 0-869 51 0-781 18 0-948 35 0-854 62 0-777 19 0-942 86 0-849 53 0-773 20 0-936 37 0-844 54 0-768 21 0-930 38 0-839 55 0-764 22 0-924 39 0-834 56 0-760 23 0-918 40 0-830 57 0-757 24 0-913 41 0-826 58 0-753 25 0-907 42 0-820 69 0-749 26 0-901 43 0-816 60 0-745 Twaddeirt Hydrometer. — ^To conveit degrees Twaddell into specific gravity (waters 100i>): multiply the numbt-r by 5, and ad •4-4 ■319 J} 1-4 ■148 7-4 •448 ,9 4^3 ■315 t1 1^3 ■142 7-3 ■444 ,, 4-2 ■310 Jt 1-2 ■136 7-2 •440 ,, 4^1 ■305 it 1^1 ■129 7-1 ■435 ,, 4^0 •301 1-0 ■123 7-0 ■431 3^9 ■296 •9 •117 6-9 ■427 )> 3-8 ■291 ft •8 •111 6-8 •423 ,> 3^7 •286 250 cc •7 ■088 6-7 ■419 ,, 3^6 ■281 ]} ■6 •073 6-8 •414 ,, 3-5 •277 ■5 ■061 6-5 ■410 3^4 ■272 500 CO. ■4 ■049 6-4 ■406 J, 3-3 ■267 ,, ■3 •036 6-3 •402 ,, 3-2 •261 1000 c.c •2 •024 6-2 ■398 ,, 3^1 •255 ,, ■1 •012 6-1 •394 J, 3^0 •249 ), •09 ■Oil 6 ■389 2-9 •242 )l •08 ■010 5-9 ■385 J. 2^8 ■236 it ■07 ■008 5-8 ■381 ,, 2^7 •230 tt ■06 •007 5-7 •377 ,, 2^6 ■223 ,, ■05 ■006 5-6 •373 2^5 ■217 ), ■04 ■005 5-5 ■368 ,j 2-4 ■211 ,, ■03 •004 . 5-4 ■364 jj 2-3 ■205 ■02 ■002 5-3 ■360 J 2^2 •198 JJ ■01 ■001 5 '2 •356 VII. Table of Sardness. (60 CO. of water used.) Volume of Soap solu- tion. CaCO, ioo,'ooo Degrees of Hard- ness.* Volume of Soap solu- tion. CaCOj per 100,000 Degi-ees of Hard- ness. Volume of Soap solu- tion. CaCOs lOO.MO Degrees of Hard- ness. CO. 0-7 0^8 0-9 1^0 •1 ■2 0^00 0-16 0-32 ©■48 0^63 0-79 0^00 ©•11 22 0-34 0-44 0^55 CO. 13 •4 •5 ■6 •7 •8 0^95 Ml 1^27 1-43 1-56 1^69 0^67 0^78 0^89 1^00 1^09 1^18 0.0. 1-9 2^0 •1 •2 •3 ■4 1^82 1-95 2^08 2^21 2-34 2^47 1-2.1 1-37 1^46 1^64 1-73 Each degree of hardness Indicates one grain of CaCOj per gallon. Water analysis tables. 87 Tables kequiebd in Water Analysis. Table YU.— continued. Volume of Soap solu* CaCOa per Degrees ol H»rd- Volume of Suap solu- CaCOa per DeETses of Hard- Volume of Soap CaCOj per Decrees of Hard. tion. 100,000 ness.* tion. 100,000 ness. tion. 100,000 ness. 0.0. CO. o.c. 2-5 2-60 1-82 7-1 9-00 6-30 11-7 15-95 11-17 •6 2-73 1-91 ■2 9-14 6-40 •8 16-11 11-28 •7 2-86 2-00 •3 9-29 6-50 -9 16-27 11-39 •8 2-99 2-09 •4 9-43 6-60 12-0 16-43 11-60 •9 3-12 2-18 ■5 9-67 6-70 ■1 16-69 11-61 3-0 3-25 2-28 •6 9-71 6-80 •2 16-75 11-73 •1 3-38 2-37 •7 9-86 6-90 •3 16-90 11-83 ■2 3-51 2-46 ■8 10-00 7-00 •4 17-06 11-94 •3 3-64 2-55 •9 10-15 7-11 -5 17-22 1205 ■4 3-77 2-64 8-0 10-30 7-21 -6 17-38 12-17 •5 3-90 2-73 ■1 10-45 7-32 ■7 17-54 12-28 •6 4-03 2-82 ■2 10-60 7-42 -8 17-70 12-39 •7 4-16 2-91 ■3 10-75 7-53 -9 17-86 12-50 ■8 4-29 3-00 •4 10-90 7-63 13 18-02 12-61 •9 4-43 3-10 •5 11-05 7-74 ■1 18-17 12-72 4-0 4-57 3-20 ■6 11-20 7-84 ■2 18-33 12-83 •1 4-71 3-30 ■7 11-35 7-95 -3 18-49 12-94 ■2 4-86 3-40 •8 11-50 8-05 •4 18-65 13-06 •3 5-00 3 '50 ■9 11-65 8-16 -5 18-81 13-17 ■i 5-14 3-60 9-0 11-80 8-26 •6 18-97 13-28 ■5 5-29 3-70 •1 11-95 8-37 ■7 19-13 13-39 •6 5-43 3-80 •2 12-11 8-48 -8 19-29 13-60 •7 5-67 3-90 •3 12-26 8-58 -9 19-44 13-61 ■8 5-71 4-00 •4 12-41 8-69 14-0 19-60 13-72 •9 5-86 4-10 ■5 12-56 8-79 ■1 19-76 13-83 5'0 6-00 4-20 •6 12-71 8-90 •2 19-92 13-94 •1 6 14 4-30 •7 12-86 9-00 •3 20-08 14-06 •2 6-29 4-40 •8 13-01 9-11 ■4 20-24 14-17 •3 6-43 4-50 ■9 13 16 9-21 •5 20-40 14-28 •4 6-67 4-60 10-0 13-31 9-32 -6 20-66 14-39 •5 6-71 4-70 ■1 13-46 9-42 •7 20-71 14-50 •6 6-86 4-80 •2 13-61 9-53 •8 20-87 14-61 •7 7-00 4-90 ■3 13-76 9-63 •9 21-03 14-72 •8 7-14 5-00 •4 13-91 9-74 15-0 21-19 14-83 •9 7-29 5-10 •5 14-06 9-84 -1 21-35 14-95 6-0 7-43. 5-20 •6 14-21 9-95 ■2 21-51 15-06 •1 7-57 5-30 •7 14-37 10-06 •3 21-68 15-18 •2 7-71 5-40 •8 14-52 10-16 •4 21-85 15-30 •3 7-86 6-50 •9 14-68 10-28 •5 22-02 15-41 •4 8-00 5-60 11-0 14-84 10-39 •6 22-18 15-53 •5 8-14 5-70 •1 15-00 10-50 ■7 22-85 15-65 •6 8-29 5-80 •2 15-16 10-61 ■8 22-52 15-76 •7 8-43 5-90 •3 15-32 10-72 -9 22-69 15-88 •8 8-57 6-00 •4 15-48 10-84 16-0 22-86 16-00 •9 8-71 6-10 •5 15-63 10-94 7-C 8-86 6-20 •6 15-79 11-05 * Each degree of hardness Indicates one grain of CaCOs per gallon. NITRATES IN WATER. Tables required in Water Analysis — continued, VIII. Clark's Table of Hardness of Water. Degrees of Hai-dneBS, Measures of Soap solution. Differences £oi- the next 1° of Hm-dness. Degiees of Hardness. Measures of .Soap solution. Differences for tile next 1" of Hardness. (distilled water) 1 2 3 4 6 6 7 1-4 3-2 5-4 7-6 9-6 11-6 13-6 15-6 1-8 2-2 2-2 2-0 2-0 2-0 2-0 1-9 8 9 10 11 12 13 14 15 16 17-5 19-4 21-3 23-1 24-9 26-7 28-5 30-3 32-0 1-9 1-9 1-8 1-8 1-8 1-8 1-8 1-7 Each measure equals 10 grains, the quantity of water operated upon equnls 1000 grains, and each " degree of hardness " indicates 1 grain of calcic carbonate per gallon. The Determination of Nitrates in Water by Phenol-disulphonic Acid. (Sprengel's method modified.) Solutions required. (1) Phenol-disulphonic Acid. — Mix together 3 parts by measure of phenol * liquefied by heat, and 5 parts of pure concentrated siilphiirio acid, and heat in a porcelain basin on the watei-bath for about 8 hours, with occasional stirring. When cool, add 1^ volumes of water and i volume strong hydrochloric acid to each volume of the phenol-disulphonic acid. Convenient quantities are 80 o.c. phenol, 200 c.c. HjSOj ; 420 o.c. water and 140 c.c. HCl, ])roducing 840 c.c. of a light brown solution, which is ready for immediate use. (2) Standard Potassium A Urate. — 0'0722 gram KNOg crystals are dissolved in a litre of water.t 10 c.c. = 0-0001 gram N, or 1 part of N in 100,000 of water when 10 c.c. are evaporated. (3) 10% ammonia (1 vol. •880 + 2 vols, water); or potash solution, made by dissolving 330 grams stick potash in one litre of water. About 15 C.C. of either of the above to be used for each residue. The determination is made as follows : — 10 c.c. of the water under examination and 10 c.c. standard KNO3 are pipetted into 15 c.c. beakers and evaporated nearly to dryness on a hot iron plate, the * Calvert's No. 2 medical carbolic acid answers well. t Or dissolve 0-7Z17 giam KNO3 iu a litre of distilled water. 1 c.c. of this may be used for a standard, but it is better to dilute 50 c,c. to 500 c.c. and measure out 10 C.C. of the latter for each set of determinatioiiB. NITRATES IN 'WATER. 89 Operation being completed on the top of the water-oven. To each residue 1 c.c. of the phenol disulphonic acid solution is added, and the latter brought into contact with the whole of the residue in each beaker. This is done simply by rotating the beaker, held in an inclined position, until the entire residue has been moistened : no stirring rod is required. The beakers are then left on the top of the water-oven for 15 minutes and at the end of that time are at once filled up with cold water and removed to the working- bench, if a number of residues are being treated simultaneously. The standard solution is then rinsed into a 100 c.c. graduated cylinder, a slight excess (about 15 c.c.) of 10% ammonia or of caustic potash solution added, the 100 c.c. made up by the addition of water, and the yellow liquid transferred to a Nessler glass (6 x 1^ ins.). Each of the other beakers is then successively treated in the same way and comparison made with the standard as in Nesslerizing. The colours are best compared when the Nessler glasses are held side by side at a short distance above a thick white filter paper. The results obtained with the aid of Table IX. are only approxi- mate when more than about 1'5 parts of nitric nitrogen per 100,000 of water are present. In all cases where the nitric nitrogen exceeds r5 parts per 100,000, it is necessary to make a second determination, using such a volume of water as to give a colour very nearly equal tn that of the standard.* Thus, if a water showed 2 parts of nitric nitrogen per 100,000, 5 o.c. should be evaporated to dryness and treated as before ; one giving 4 parts would' really contain decidedly more, and 20 c.c. of the sample should be trans- ferred to a 100 c.c. measuring flatk, diluted to the mark with water, and 10 c.c. nf the thoroughly mixed solution (=2 c.c. original water) evaporated down for a fresh determination. In the case of very good waters, the solution and washings should be kept as small as possible, since a portion of the standard 100 c.c. will have to be poured into the cylinder in order to match the colours. Suppose that 0'25 part of nitric nitrogen is thus shown, then 40 c.c. of the water are measured into a larger beaker, evaporated to a small bulk, rinsed into a small beaker and evaporated to dryness, etc., as above ; or 20 c.c. of the water may be taken and compared with a standard made by using only 5 c.c. of the KNO3 solution. (This method is inap])licable in the presence of thiocyanates t). Chamot, Pratt and Red field | have recently made a study of this method, and tlieir results may briefly be summarized as follows : — A modified phenol-sulphoiiic acid method.— Preparation of reagents required. Phenol-disulphonic acid. — Dissolve 25 gm. of pure white phenol in 150 c.c. of pure concentrated sulphuric acid, add 75 c.c. of fuming sulphuric acid(13%S03), stir well, and heat for 2 hours at about 100° C. * If the second experiment is to be made the same day, tlie same standard, if covered with a beaker, can be used again. t See H. Siivester, Jimm. Soe. Chem. Ind., 1912, SI. 95. i The ChemiaU Newt, 1011, 104, p. 146, et teq. 90 NITRATES IN WATKIt. Standard silver sulphate. — 4'3969 gm. of silver sulpliate (free from nitrate) to the litre. 1 c.c. = l j;.o. of standard AgNOj (1'6486 gm. per litre) equivalent to O'OOl gram chlorine. Method of procedure. — First determine the alkalinity, the chlorine and nitrite content, and the colour of the sample. Should the colour he high, decolorize with "aluminium cream." Measure out such a volume of the water (100 c.c. or less) as will contain ahout 1 part of nitric nitrogen per 100,000, fairly low colorimeter readings having heen found most reliahle. Add sufficient N/25 or N/50 sulphuric acid barely to neutralize the alkalinity, then enough standard silver sulphate solution to pre- cipitate all but 0'5 mgm. of the chlorine. Heat to boiling, add a little aluminium cream, filter, and wash with small amounts of hot water. Evaporate the filtrates to dryness, add 2 c.c. of the disulphonic acid reagent, rubbing with a glass rod to ensure intimate contact. Should the residue be compact or vitreous in appearance from the presence of much magnesium or iron, place the evaporator on the water-bath for a few minutes. Dilute with water and add slowly KOH solution (10-12 normal) until the maximum colour is developed. Transfer to a colorimeter cylinder, filtering if necessary, and compare with a potassium nitrate or tripotassium nitrophenol disulphonate standard. Should nitrites be present in excess of O'l part of nitrous nitrogen per 100,000, a slight error will be introduced. They should, there- fore, be removed by heating the sample a few moments with a few drops of hydrogen peroxide (free from nitrates), repeatedly added, or dilute potassium permanganate may be added in the cold until a trace of pink appears and a correction applied to the final nitrate nitrogen reading due to the conversion of the nitrites to nitrates. Directions for making permanent standards are given. NITRATES IN WATER. Tables kequirbd in Watbe Analysis — continued. IX. Eslimation of Nitrogen as Nitrates by SprengeVs Method (for waters containing more than one pa/rt of N in 100,000). No. of CO. of Nitrogen as Nitrates. No. of c.e. of Nitrogen as Nitrates. yellow solu- tion eqiiul to yellow solu- tion equal to 1 the standard Parts per Grains per the standard Parts pep Grains per 100 CO. 100,000. gallon. 100 0.0. 100,000. gallon. 100 1-00 0-70 50 2 '00 1-40 95 1-05 0-74 48 2 -OS 1-46 90 1-11 0-78 46 2-17 1-52 85 1-18 0-83 45 2-22 1-55 80 1-25 0-88 44 2-27 1-59 78 1-28 0-90 42 2-38 1-67 76 1-32 0-92 40. 2-50 1-75 . 75 1-33 0'93 38 2-63 1-84 74 1-35 0-95 36 2-78 1-95 72 1-39 0-97 35 2-86 2-00 70 1-43 1-00 34 2-94 2-06 68 1-47 1-03 32 3-13 2-19 66 1-51 1-06 30 3-33 2-33 65 1-54 1-08 28 3-57 2-50 64 1-55 1-09 26 3-85 2-70 62 1-61 1-13 25 4-00 2-80 60 1-67 1-17 24 4-17 2-92 58 1-72 1-20 22 4-55 3-19 56 1-78 1-25 20 5-00 3-50 55 1-82 1-27 18 5-55 3-89 54 1-85 1-30 16 6-25 4-38 52 1-92 1-34 15 6-67- 4 67 X. Table for the Conversion of Farts per 100,000 into Grains per Gallon. Parts per Grains per Pai-ts per Grains per Parts per Grains per Parts per Grains per 100,000. gHllon. 100,000. gallon. 100,000. gallon. 100,000. gallon. 1 0-7 9 6-3 17 11-9 25 17-5 2 1-4 10 7-0 18 12-6 26 18-2 3 2-1 11 7-7 19 13-3 27 18-9 4 2-8 12 8-4 20 140 28 19-6 5 3-5 13 9-1 21 14-7 29 20-3 6 4-2 14 9-8 22 15-4 30 21-0 7 4-9 15 10-5 23 16 1 31 21-7 8 5-6 16 11-2 24 16-8 32 22-4 92 PARTS PER 100,000 INTO GRAINS PER GALLON Tables required in Water Analysis. Table X.— continued. Parts per Grains per Parts per Grains per Parts per Grains per Parts per Grains per 100,000. gallon. 100,000. gallon. 100,000. gallon. 100,000. gallon. 33 23-1 78 54-6 123 86-1 168 117-6 34 23-8 79 55-3 124 86-8 169 118-3 35 24-5 80 56-0 125 87-5 170 119-0 36 25-2 81 56-7 126 88-2 171 119-7 37 25-9 82 57-4 127 88-9 172 120-4 38 26-6 83 58-1 128 89-6 173 121-1 39 27-3 84 58-8 129 90-3 174 121-8 40 28 85 59-5 130 910 175 122-5 41 28-7 86 60-2 131 91-7 176 123-2 42 29-4 87 60-9 132 92-4 177 123-9 43 30-1 88 61-6 133 93-1 178 124-6 44 30-8 89 62-3 134 93-8 179 125-3 45 31-5 90 63-0 135 94-5 180 126-0 46 32-2 91 63-7 136 95-2 181 126-7 47 32-9 92 64-4 137 95-9 182 127-4 48 33-6 93 65-1 138 96-6 183 128-1 49 34-3 94 65-8 139 97-3 184 128-8 50 35 95 66-5 140 98-0 185 129-5 51 35-7 96 67-2 141 98-7 186 130-2 52 36 '4 97 67-9 142 99-4 187 130-9 53 37 l 98 68-6 143 1001 188 131-6 54 37 '8 99 69-3 144 100-8 189 132-3 55 38-5 100 70-0 145 101-5 190 133-0 56 39-2 101 70-7 146 102-2 191 133-7 57 39-9 102 71-4 147 102-9 192 134-4 58 40-6 103 72-1 148 103-6 193 135-1 69 41-3 104 72-8 149 104-3 194 135-8 60 42-0 105 73-5 150 105-0 195 136-5 61 42-7 106 74-2 151 105-7 196 137-2 62 43-4 107 74-9 162 .06-4 197 137-9 63 44-1 108 75-6 153 107-1 198 138-6 64 44-8 109 76-3 154 107-8 199 139-3 65 45-5 110 77-0 155 108-5 200 140 66 46-2 111 77-7 156 109-2 201 140-7 67 46-9 112 78-4 157 109-9 202 141-4 68 47-6 113 79-1 158 110-6 203 142-1 69 48-3 114 79-8 169 111-3 204 142-8 70 49 115 80-5 160 112-0 205 143-5 71 49-7 116 81-2 161 112-7 206 144-2 72 50-4 117 81-9 162 113-4 207 144-9 73 51-1 118 82-6 163 114-1 208 145-6 74 51-8 119 83-3 164 114-8 209 146-3 75 52-5 120 84-0 165 115-5 210 147-0 76 53-2 121 84-7 166 116-2 211 147-7 77 53-9 122 • 85-4 167 116-9 212 148-4 PASTS PER 100,000 INTO GRAINS PER GALLON. 93 Tables required in Water Analysis. Table X.— continued. Farts per Grains per Parts per Grains per Parts per Grains per Parts per Grains per 100,000. gallon. 100,000. gallon. 100,000. gallon. 100,000. gallon. 213 149-1 223 156-1 233 163-1 243 170-1 214 149-8 224 156-8 234 163-8 244 170-8 , 215 150-5 : 225 157-5 235 164-5 245 171-5 216 151-2 1 226 158-2 236 165-2 246 172-2 217 151-9 227 158-9 237 165-9 247 172-9 218 152-6 228 159-6 238 166-6 248 173-6 219 153-3 229 160-3 239 167-3 249 174-3 220 154-0 230 161-0 240 168-0 250 175-0 221 154-7 231 161-7 241 168-7 222 155-4 232 162-4 242 169-4 Calculation of the Results of Water ANALysis. Substance estimated. Quantity of Water taken. To get Grains per gallon. Logarithms. NasHNOaCCrum) NHs (copper zinc) „ (aluminium) absorbed Total solids 250 C.C. 100 CO. 60 CO. 250 o.c.-i-lO cc KaMnaOj 260 c.c+16 cc KaMnaOs 250 CO. »c.c ol NO at N.T.P. X ■1751= N grams of NHsX 676-73 = N xll6r46=N 0-28f-^)t 0-28(l-«S^-^)t grams X 280 i-243 2861 2-760 2200 3 061 2600 2-447 1580 * Or tbns. Let v=vol. of NO obtained from 260 cc. of the water. &=height of Bar. «i=tension of aqueous vapour at the observed temperature (see Table I.). Then N in grains per gallon =vx -„„/°?^.^^°I., ^ ^X(b-w)x 140. For logs, of - •0012507 760(1 + -00367 . -for different values of ( see Table II. 760(1+00367 Log. UO=-i-ue 1-280. t S=c.c. of NaaSjOs corresponding to 10 cc KaMnaOB. W= „ „ required by the water under examination. 94 thrbsh's solution of starch and potassium iodide. Thresh's Solution of Starch and Potassium Iodide. This solution is used by Dr Thresh in his method for the determination of nitrites in potable waters.* It is made as follows :— Starch in powder .... 0'2 gram. Caustic potash . 1 „ Potassium iodide . . 2 grams. Water ... . . 200 c.c. Add the starch to 10 c.c. of water, and when uniformly diffused add the caustic potash. Dissolve without the aid of heat and add the remainder of the water and the potassium iodide. Strain or filter. This solution keeps for^months without appreciable change. A useful test may be carried out as follows : — Shake the sample of water vigorously in a bottle only partially filled, to saturate with air : pour 50 c.c. into a Nessler cylinder and add 1 c.c. of the above solution and then 1 c.c. of dilute sulphuric acid (1 vol. acid to 3 vols, water). Stir. Assuming the temperature to be about 60° F., if a dark blue tint develops instantaneously the water contains more than Q-l part per 100,000 of nitrous nitrogen. If it becomes blue in a few seconds it contains about O'Ol per 100,000. If it requires more than ten seconds to develop it con- tains less than this amount. Example of the Determination of Nitrates by Crum's Method. 0'5 gram of a substance containing nitrate of soda treated by Crum's method gave 13'6 c.c. of NO measured at 8° C. and 737 mm. Bar. To find the percentages of nitrogen and of sodium nitrate present. Bar. 737 mm. Tension of aqueous vapour at 8° C. = 8 mm. by Table I. Pressure on the dry gas 729 mm. NO contains half its volume of nitrogen. „, .,,,., V ,, , -0012507 Weight of nitrogen = - (&- ^) x ^go (1 + -003670 = 6-8 X 729 X. -"012507 760(1 + -00367x8) log. 6-8=0-83251 „ 729 = 286273 log. fraction— by Table II. =5-20379 3-89903 = 0-007926 gram Nitrogen in 0-5 gram -007926 X 200= 1-59% nitrogen and by logs. 1-59 nitrogen =9 -65% sodium nitrate. * Chemical JHewa, 1890, vol. 62, p. 204. water and sewage analyses, 95 Water and Sewage Examination Results. (British Association Report, 1899.) The Committee appointed by the British Association to devise a uniform system of recording the results of the chemical and bacteriological examination of water and sewage reported as follows : — It is desirable that results of analysis should be expressed in parts per 100,000, except in the case of dissolved gases, when these should be stated as c.c. of gas at 0° C. and 760 mm. in 1 litre of water. This method of recording results is in accordance with that suggested by the Committee appointed in 1887 to confer with the Committee of the American Association for the advancement of science, with a view to forming a uniform system of recording the results of water analysis. It is suggested that in the case of all nitrogen compounds the results be expressed as parts of nitrogen per 100,000, including the ammonia expelled on boiling with alkaline permanganate, which should be termed albv/minoid nitrogen. The nitrogen will therefore be returned as : (1) Ammoniacal nitrogen from free and saline ammonia. (2) Nitrous nitrogen from nitrites. (3) Nitric nitrogen from nitrates. (4) Organic nitrogen (either by Kjeldahl or by combustion, but the process used should be stated). (5) Albuminoid nitrogen. The total nitrogen of all kinds will be the sum of the ftrst four determinations. The Committee are of opinion that the percentage of nitrogen oxidized — that is, the ratio of (2) and (3) to (1) and (4) — gives sometimes a useful measure of the stage of purification of a particular sample. The purification effected by a process will be measured by the amount of oxidized nitrogen as compared with the total amount of nitrogen existing in the crude sewage. In raw sewage and in effluents containing suspended matter, it is also desirable to determine how much of the organic nitrogen is present in the suspended matter. In sampling, the Committee suggest that the bottles should be filled nearly completely with the liquid, only a small air-bubble being allowed to remain in the neck of the bottle. The time at which a sample is drawn, as well as the time at which its analysis is begun, should be noted. An effluent should be drawn to correspond as nearly as possible with the original sewage, and both it and the sewage should be taken in quantities proportional to the rate of flow when that varies (e.g. in the emptying of a filter-bed). In order to avoid the multiplication of analyses, the attendant at a sewage works (or any other person who draws the samples) might be provided with sets of twelve or twenty-four stoppered 96 WATER AND SEWAGE ANALYSES. quarter-Winchester bottles, one of which should be filled every Sour or every two hours, and on the label of each bottle the rate of flow at the time should be written. When the bottles reach the laboratory, quantities would be taken from each proportional to these rates of flow and mixed together, by which means a fair average sample for the twenty-four hours would be obtained. The Committee were unable to suggest a method of reporting bacterial results, including incubator tests, that would be likely to be acceptable to all workers. The Committee consisted of Professor W. Kamsay (chairman), Sir W. Crookes, Professors P. Clowes, P. F. Frankland, and E. Boyce, and Dr Rideal (secretary). Standards for Sewage Epplubnts. Various standards of purity or limits of impurity of sewage effluents have from time to time been put forward. These, however, have been superseded by the recommendations given in the Fifth Keport of the Royal Commission on Sewage Disposal.* In this the Commissioners report that : — " The experiments which we have already made show that the mere estimation of the amount of organic matter in an effluent does not, by itself, afford a sufficiently reliable index as to the effect which that effluent will have on any stream into which it may be discharged " (par. 320). Further on we read : " According to our present knowledge, an effluent can best be judged by ascertaining, first, the amount of suspended matter which it contains, and, second, the rate at which the effluent, after the removal of the suspended solids, takes up oxygen from water." The recommendations given are as follows : — " For the guidance of local authorities, we may provisionally state that an effluent would generally be satisfactory if it complied with the following conditions : — (1) That it should not contain more than 3 parts per 100,000 of suspended matter ; and (2) That, after being filtered through paper, it should not absorb more than (a) 0"5 part by weight per 100,000 of dissolved or atmospheric oxygen in 24 hours. (i) 1-0 part by weight per 100,000 of dissolved or atmospheric oxygen in 48 hours ; or (c)'l-5 part by weight per 100,000 of dissolved or atmospheric oxygen in 5 days." * Cd. 4278. Issued in 1908, DISSOLVED OXYGEN IN DISTILLED WATER. 97 Table oiving the Amounts of Dissolved Oxygen in Distilled Watke at Various Tempebatukes (Bae. 760 mm.).* Temperature •c. Oxygen (parts per 100,000). Temperature •c. Oxygen (parts per 100,000). Temperature Oxygen (parts per 100,000). 1-42 11 1'09 21 0-88 1 1-39 12 1-07 22 0-87 2 1-36 13 1-04 23 0-85 3 1-32 14 1-02 24 0-84 4 1-28 15 1-00 25 0-82 5 1-24 16 0-98 26 0-81 6 1-22 17 0'96 27 0-80 7 1-19 18 0-94 28 0-80 8 1-17 19 0-92 29 0-79 9 114 20 0-90 30 0-78 10 1-11 * Calculated from Eoscoe and Lunt's table (Tram. Chem. Soe., 1889, 669) for temperatures from 6°-30° 0. The values given for 0"-4* are based on determina. tions by Winkler's process. 98 TABLES FOB BEER ANALYSIS. Tables reqtjiebd in the Analysis op Beer. Spirit Indication, with corresponding Vegrms of Oravity lost in Malt Worts, by the " Distillation Process." Degrees of Spirit Indi- cation. ■0 •1 ■2 •3 •4 •6 •6 •7 •8 •« 0-0 0-3 0-6 0-9 1-2 1-5 1-8 2-1 2-4 2-7 1 3 3-3 3-7 4-1 4-4 4-8 5-1 5-5 5-9 6-2 2 6-6 7-0 7-4 . 7-8 8-2 8-6 9 9-4 9-8 10-2 3 10-7 11-1 11-5 12-0 12-4 12-9 13-3 13-8 14-2 14-7 i 15-1 15-5 16-0 16-4 16 '8 17-3 17 '7 18-2 18-6 19-1 5 19-5 19-9 20-4 20 '9 21-3 21-8 22-2 22-7 23-1 23-6 6 24-1 24-6 25-0 25-5 26 26-4 26-9 27-4 27-8 28-3 7 28-8 29-2 29-7 30-2 30-7 31-2 31-7 32-2 32-7 33-2 8 33-7 34-3 34-8 35-4 35-9 36-5 37-0 37-5 38-0 38-6 9 39-1 397 40-2 40-7 41-2 41-7 42-2 42-7 43-2 43-7 10 44-2 44-7 45-1 46-6 46-0 46-5 47-0 47-5 48-0 48-5 11 49-0 49-6 50-1 50-6 51-2 51-7 52-2 52-7 .53-3 S3 -8 12 54-3 54-9 55-4 55-9 56-4 56-9 57-4 S7'9 58-4 59-9 13 59-4 60-0 60-6 61-1 61-6 62-2 62-7 63-3 63-8 64-3 14 64-8 65-4 65-9 66-5 67-1 67-6 68-2 68-7 69-3 69-9 15 70-6 71-1 71-7 72-3 72-9 73-5 74-1 74-7 75-3 75-9 Spirit Indication, with corresponding Degrees of Gravity lost in Malt Worts, by the "Evaporation Process." Degrees of Spirit Indi- •1 •2 ■3 ■4 ■s •6 •7 •8 ■9 cation. •3 •7 1-0 1-4 1-7 2-1 2-4 2-8 3 1 1 3-5 3-8 4-2 4-6 5-0 5-4 5-8 6-2 6-6 7-0 2 7-4 7-8 8-2 8-7 9-1 9-5 9-9 10-3 10-7 11-1 3 11-5 11-9 12-4 12-8 13-2 13-6 14-0 14-4 14-8 15-3 4 15-8 16-2 16-6 17-0 17-4 17-9 18-4 18-8 19-3 19-8 5 20-3 20-7 21-2 21-6 22-1 22-5 23-0 23-4 23-9 24-3 6 24-8 25-2 25-6 26-1 26-6 27-0 27-5 28-0 28-5 29-0 7 29-5 30-0 30-4 30-9 31-3 31-8 32-3 32-8 33-3 33-8 8 34-3 34-9 35-5 36-0 36-6 37-1 37-7 38-3 38-8 39 '4 9 40-0 40-5 41-0 41-5 42-0 42-5 43-0 43 5 44 44 '4 10 44-9 45-4 46-0 46-5 47-1 47-6 48-2 48-7 49-3 49-8 11 50'3 50-9 .51-4 51-9 52-5 53-0 53-5 54 '0 54-5 55-0 12 55-6 66'2 56-7 57-3 57-8 58-3 58-9 59-4 59-9 60-5 13 61-0 61-6 62-1 62-7 63-2 63-8 64-3 64-9 65-4 66-0 14 66-5 67 67-6 68-1 68-7 69-2 69-8 70-4 70-9 71-4 15 72-0 TABLES FOR BBHR ANALYSIS. 99 Table for ascertaining the Value of the Acetic Acid. Corresponding Degrees of "Spirit Indication.'' Excess per cent. of Acetic Acid ■00 •01 ■02 ■OS •04 ■06 •06 ■07 '08 •09 in the Beer. ■02 •09 •0 •04 ■06 •07 •08 ■11 ■12 •13 •1 •14 •15 •17 •18 •19 •21 ■22 ■23 ■24 ■26 •2 •27 •28 ■29 ■31 •32 •33 •34 ■35 ■37 ■38 •3 •39 ■40 ■42 ■43 ■44 •46 •47 ■48 ■49 ■51 ■4 ■52 ■53 ■55 •56 •57 ■59 •60 ■61 ■62 ■64 •5 •65 •66 ■67 •69 •70 ■71 ■72 ■73 •75 ■76 •6 •77 ■78 •80 ■81 •82 ■84 ■85 •86 •87 •89 ■7 •90 •91 •93 •94 •95 ■97 •98 ■99 MO 1^02 •8 1^03 1-04 1-05 1-07 108 1^09 i-io i^n 1^13 1^14 •9 1-15 i^ie 1-18 1^19 1-21 1^22 1-23 1-25 1^26 1^28 1-0 r29 1-31 1^33 1^35 1-36 1^37 1-38 1^40 1^41 1^42 Table foe Salt in Bbek. Salt in Grains per Gallon, corresponding to c.c. of Decinormal AgNO^,* 25 c.c. of Beer to he employed. cc^AgNOs drains NaCl per gallon. co.^AgNOs Grains NaCl per gallon. c.c.-AgNOs Grains NaCI per gallon. 0^1 1^64 2-2 36-04 4-2 68-80 0^2 3-28 2^3 37-67 4-3 70-43 0^3 4^91 2-4 39^31 4-4 72-07 0^4 6^55 2-5 40-95 4-5 73-71 0-5 8-19 2^6 42^59 4-6 75-35 0^6 9^83 2-7 44^23 4-7 76-99 0-7 11^47 2^8 45-86 4-8 78'62 08 13^10 2^9 47-50 4-9 80-26 0-9 14-74 3 49-14 5-0 81-90 1-0 16-38 3^1 50-78 5-1 83-54 1^1 18-02 3^2 52-42 5-2 85-18 1^2 19-66 3-3 54-05 5-3 86-81 13 21^29 3-4 55-69 6-4 88-45 1-4 22^93 3-5 57-33 5-5 90-09 Vh 24-57 3-6 58 -97 5-6 91-73 \-6 26-21 3-7 60-61 5-7 93-37 VI 27-85 3-8 62-24 5-8 95-00 1-8 29-48 3 9 63-88 5^9 96-64 1-9 31-12 4-0 65-52 6^0 98-28 2^0 32-76 4-1 67-16 6-1 99-92 2^1 34-40 jfofe. — The above table is useful in giTiiig the amount of NaCl that may be present, calculated from the combined chlorine found. To obtain the actual amount of sodium chloride, the sodium present must also be determined. * 1 c.c.=0-00685 gm. NaCI. 100 ORIGINAL GRAVITY OF BEER. Examples of the determination of " original gravity " of beer. I. By the Distillation Process. Experimental data : — Sp. gr. of the spirit distillate at 60° P. . . 989-40 „ „ extract residue „ . . 1018 76 Acidity (calculated as acetic acid) . . 0'15% Then 1000-989-40= . . . . 1060 spirit indication 015 -0-10* = 0-05, which by Table (p. 99) shows 0-08 „ „ Total 10-68 „ „ By Table (p. 98) 10-68 spirit indication =47-0 + (-8 x -5) = 47-40 degrees of gravity lost Sp. gr. of extract residue = 1018-76 1066-16 original gravity. Or, omit taking the extract gravity and take that of the beer itself, whence a theoretical extract gravity can be found as follows : — Experimental data : — Sp. gr. of the beer at 60° P 1008-36 „ „ spirit distillate . 98940 Acidity 015% 1008-36 989-40 18-96 (less) -20 (a constant t) 18-76 + 1000 = 1018-76, the extract gravity deduced. Degrees of gravity lost 47-40 (found as above) 1066-16 original gravity. II. By the Evaporation Process. Experimental data : — Sp. gr. of the beer at 60° P. . 1009-70 „ „ extract residue „ . . , 1019-55 Acidity (calculated as acetic acid) . . 0-26% Then 1019-55 -1009-70 .... =9-85 spirit indication 0-26 - -10=0-16, which by Table (p. 99) shows 0-22 „ „ Total 10-07 „ „ * Graham, Hotmann and Redwood calculated that the normal acidity of beer is 010 per cent, expressed as acetic acid. In the calculation above we have to take into consideration only the acidity in excess of the normal amount. t Representing the gain in density by condensation when the constituents of beer are mixed together : the gain in density varies from 0'15to0-36,the average being 0-2, OEiaiNAL GftAVlTY OF BESR. 101 By Table (p. 98) 10-07 spirit indication =44'9 + (;-7 x -5) = 45 '25 degrees of gravity lost sp. gr. of extract residue = 1019'55 1064-80 original gravity. Note. — The above examples are taken from J. A. Nettleton's Original Qravity, Blunt's Modification of Tabarie's Formula. Tabarie's formula for indirectly determining alcobol in beer and wine from the sp. gr. of the original sample and of the boiled sample made up to the volume taken at the same temperature is a sp. gr. of alcohol boiled away=g- where S=sp. gr. of original liquid S6= „ boiled „ or "extract." Blunt has shown* that a more correct result is obtained by using the formula sp. gr. of alcohol boiled away = 1 - (Sj - S) = 1 + S-S6 This is fully confirmed by Hehner, who found "that in all cases the results obtained by subtraction are closer to those obtained by distillation than are those, by Tabarie's formula, and the results are better the greater the alcoholic strength." t Specific Eotatort Power. The specific rotatory power of an optically active substance in solution may be defined as the tngle through which a plane polarized ray of light of definite refrangibility is rotated by a column one decimetre in length of a solution containing 1 gram of the substance in 1 c.c. If the rotation is observed through a tube I decimetres in length, and the solution contains c grams of substances in 100 c.c, then, if a he the angle of rotation, the " specitic rotatory power " is given by the formula , T a. 100 aj = — 7 '- ■' I.e. The ray used and the temperature of the liquid are generally added, thus [a]^ = 66-6° means that the specific rotatory power for ray D J at the temperature of 20° C. is 66-6°. The specific rotatory power (or "specific rotation") of liquid carbon compounds is given by the formula Where I is the length of the observation tube in decimetres, d is the sp. gr. of the liquid referred to water at 4° 0. as standard, in which case d expresses the weight in grams of 1 c.c. • Analytt, 1891, 16, p. 221. t Hid., p. 223. % Sodium flame. 102 SPtiCIFIC ROTATORY POWHR. In this country observations are commonly made at a temperature of 60° F., but on the Continent 20° 0. is the " normal temperature " of observation. With many substances, however, a difference of 4'4° C. causes but little difference in the readings. Molecular Rotation. — This term is applied to the product of the molecular weight (M) and specific rotation of a body divided by 100, and is represented by the symbol [M]. rM]= JL[a] •- ■■ 100 '■ -' The divisor 100 is used simply to avoid the use of inconveniently large numbers. [M] expresses the rotation which would" result if each c.c. of the solution contained 1 gram -molecule of the active substance and the length of the liquid column were 1 mm. MuUirotation. — Freshly prepared solutions of a number of the sugars show a rotatory power different from that of the same solution on standing, undergoing either an increase or decrease until finally a constant value is reached. This phenomenon is termed muUirotation or mutarotation. Originally the term bi-rotation was used, as the observation was made that a dextrose solution when freshly prepared gave about twice the reading of the same solution after standing. At the ordinary temperature a period of from six to twenty-four hours is usually required, but by boiling the transformation to the stable form is completed in a few minutes.* Dextrose, lactose, and maltose show this behaviour, maltose giving with a freshly made solution a lower reading than that observed after standing for some hours. Sucrose does not show this effect. Observations are usually made with a polarimeter, such as Laurent's half-shadow instrument, for which homogeneous light, generally a sodium flame, is required ; or with a Soleil-Ventzke- Scheibler Colour Saccharimeter, which is adapted for use with white light illumination from oil or gas lamps ; or with a modern Half -shadow Saccharimeter, t in which the field of view is divided into two surfaces, each of which alternately becomes perfectly dark as the analyser is rotated, the point sought, and at which the reading is taken, being that at which the two surfaces show exactly the same degree of illumination or partial shadow. White light is used. Specific rotatory power as determined by the (more or less obsolete) Soleil-Ventzke-Scheibler Colour Saccharimeter is indicated by [o]], where j is the transition tmt (i.e. from the blue to the red), ana is the ray complementary to the medium yellow or jaune moyen — hence the j. This joMne moyen ray is the true medium * The same result is also attained by adding a few drups of strong ammonia before making up the volume of the solution. t In the latest type of polarimeter, the optical field is divided into 3 parts instead of 2, as in the half-shadow instruments. Such instruments are more accurate, the equality of the field being capable of a more delicate adjustment. These " have properly displaced the colour iustrnmeuts completely : the part of these in sacchari- metry has been played, and tor good " (Dr. Schonrock). SPBOIFIO ROTATOEt POWIlR. 103 yellow of the solar spectrum ; its wave-length is 0'0005608 milli- metres. * The Ventzke scale is such that 100 divisions equal the amount of rotation caused by a " normal sugar solution," 200 mm. in length, at 17'5° C. Ventzke proposed a method of preparing this solution which was iiftended to render the use of a balance un- necessary. He defined the normal sugar solution as a solution of pure sugar in water which should have at 17"5° C. the sp. gr. of 1"100, water at 17'5° being unity. To determine then the polarizing sugar of any substance, it would simply be necessary to prepare a solution of it having this density as shown by a hydrometer. But this method was soon abandoned, because the salts in the cane- sugars to be investigated have a density different from that of sugar itself, and hence cause erroneous results. As, however, the 100 point of many saccharimeters had already been fixed by aid of the normal sugar solution of I'l sp. gr., and as it was desirable not to change the scale once introduced, the concentration of the Ventzke normal solution at 17"5° was then determined, and it was found that 100 c.c. of such a solution contained 26'048 grams of sugar : thus the normal weight should be 26*048 grams. The above remarks apply only to the original Ventzke instru- ments. Since 1900 the normal weight has been altered to 26'0 grams, and the normal sugar solution is prepared as follows : — 26 grams of chemically pure dry sugar are dissolved in water at 20° 0. in a flask graduated to contain 100 true c.c. The solution is made up to the mark, well mixed, filtered if necessary, and polarized in a 200-mm. tube at 20° C. The reading should be 100 scale-divisions, and each scale-division indicates 0"26 gram of sucrose. Factors for the Conversion of [aj^ into [a]j AND vice versa. To convert [a]s into [a]j, multiply by I'l 11 (log. 0"04571) or add one-ninth. _ To convert [a]j into [o]d, multiply by 0-9 (log. 1-95429) or subtract one-tenth. Thus if [a]D = 202°, then [al =202-t-22-4=224-4°. [a],= 57°, then [«!„= 57- 5-7= 51-3°. [Landolt gives [o], =^pj^ [o]d=1"128 [bJd. In the Soleil-Ventzke-Scheibler Saccharimeter 100 scale-divisions equal 38"43° for ray j, or 1 scale-division =0-3843° o) (log. T-58467). * The wave-length of D is 689 ixii. 104 SPECIFIC ROTATORY POWBB. [According to Dr Schonrock* 100° Veiitzke = 34-68° for D at 17-5°C. or 1° „ = 0-3468° „ ,, The number 0-3468 is called fixQ factor of reduction. "Landolt has actually found in the observation of a cane-sugar solution in a Schmidt and Haensch half-shadow saccharimeter, with a gas lamp, that a rotation of 100° V. corresponds to the rotation of 34-65° ±0-05° for sodium light. But if it is required accurately to measure the rotation of a sugar solution for sodium light, this must be done in a polarimeter actually illuminated by sodium light." *] The values representing specific rotation vary directly as the sp. gr. divisor (D) used. Thus, if 150° be the specific rotation of maltose for [oil 3-85 (that is, on the basis of the 3-86 divisor) the specific 150 X 3-93 rotation where the divisor 3-93 is used will be — gTgs — =152*7°. The number of grams per 100 c.c. of a solution of a carbohydrate of which the sp. gr. (water = 1000) is known is found by dividing the sp. gr. minus 1000 by a constant given in the subjoined table. This constant is usually denoted by D. Table showing the Specific Rotatokt Powbks of the Pkincipal Cakbohydkates in 10 Pee Cent. Solution at 20° C. ( = 68° F.). Divisor to get grams per lOOo.c.t Specific rotatory Substimce. Formula. Specific rotatory power (absolute.) •power reduced to the common divisor 3-88. D . Mu Wj [o]d3-86 Wj3-86 Sucrose O12H22O11 3-85 + 66 '6° + 73-8° + 66-6° + 74-0° Dextrose CbHiA 3-85 + 52-7° + 58-6° + 52-8° + 58-7° (d-61ucose) Laevulose it 3-85 - 93-8° -104-2° -• 940° -104-5° (d-Fruotose) Invert Sugar CeHiaOeH- 3-85 -20-55° - 22-8° - 20-6° - 22-9° Maltose C]2H220ii 3-93 + 138° + 153-3° + 135-5° + 150-6° Dextrin (CeHioO^V 3-95 + 200° + 222-2° + 195-4° + 217-1° Lactose GiaHoftOit' 3-71 + 62-5° + 58-3° ... (cryst.) H20 Lactose C12H22O11 3-91 + 55-3° + 61-4° t •• (anhyd.) iPofe.— At the meeting of the International Commission for unifying methods of sugar analysis, held in Paris in 1900, the normal temperature of +20° C. was adopted and alt measuring vessels are required to be graduated in true c. c. at this temperature. * Landolt's Optical Rotation of Organic Substances, Part IV. t For a complete series of correct divisors for various concentrations, the valuable papers by Brown, Morris and Millar in the Joum. Chem. Soc, 1897, should be con- sulted. According to J. Heron, the common divisor 3'S6 gives total solids correctly only in those cases where the sp. gr. of the solution lies between 1036 and 1040. For solutions containing more than 12 grams of solids per 100 c.c. the divisor 3*86 gives closer results. SPilOIFIO ROTATOEt POWHE. 105 The following values are given in Landolt's wort already referred to : — ■ Substance. Strength of solution Wn Cane-sugar CijHjaOii 10 + 66°5 Glucose CgHjaOg 1-15 + 52 '8 (Dextrose) Fructose . 10 - 93 (Laevulose) Invert Sugar CsHiA + CaHiA 10 - 20-1 Maltose CijHjjOiit 10 + 137-5 Lactose O12H22O11. HaO 1-36 + 52-5 Galactose OeHiA 1-15 or 20 + 81 Raffinose OiaH^^Oie. SH^O 10 + 104-5 Soleil-Vbntzke-Soheiblbk. Saccharimbtek 200-MM. Tube ttsbd : Teansition Tint. ] gram in 100 o.c. of Scale-diyjsions of deviation at 20° C.J I-or absolute divisors. For 3-86 divisor. Canffsugar Dextrose Laevulose Invert sugar . Maltose . Lactose (cryst.) (anhyd.) . Dextrin . Gallisin . + 3-84§ + 3-05 - 5-42 - 1-19 + 7-98 + 3-03 + 3-20 + 11-56 + 3-85 + 3-08 - 5-44 - 1-18 + 7-84 + 11-30 + 4-85 To convert OiaHjjOu into C12H34O12 "12^24012 )) C13H23O11 OiaHjgOiQ , , Oi2H240ia CioHoiO- '12"24yi2 It CiaUooOii 360 Multiplier. 342 342 3eo 360 324 192 176 176 = 1-053 192 192 = 0-95 = 1-111 •16 or add one- ninth 324-16 360-192-°'^ or deduct one- tenth Logarithm. 0-02228 1-97772 0-04577 1-95423 • When crystallized CeTlt-fle. H2O. t When crystallized Ci2H220ii.H2O. t The number of scale-aivisions are obtained by dividing the [a]J in each "case by 19-215 (log. 1-28364). § When inverted this becomes - 1-25. 106 SPECIFIC ROTATORY POWER. The following examples show the methods employed in solving problems connected with this subject. Ex. I. To find a formula for calculating the amount of cane-sugar present in a mixture of cane-sugar and dextrose when the specific rotatory power (ray j) before and after inversion are known. Let Rj be the specific rotatory power before inversion Ea be the specific rotatory power after inversion and let x be the percentage of cane-sugar present. Then 100 - a; is the percentage of dextrose present. Hence 100 Kb= 73-8a;H-(100 -a) 58-6 and 100 Ra= - 24-0a:-|- (100 - x) 58-6 100(R!.-Ea)=97-8a;. Rft — Ka '"'" -978 ■ Similarly when we have given the scale-degrees (D) before and after inversion, the 200-mm. tube being used — Grams of cane-sugar per 100 c.c. of solution = ,.„„ • Ex. XL Determination of cane-sugar in mixtures of cane- and invert-sugar only. The method now universally adopted is Herzfeld's modification of Clerget's process.* It is carried out as follows : — Dissolve the normal weight (26'048t grams) of the sample to be examined in water' and make up to 100 c.c, decolorizing and filtering if necessary, and polarize at 20° C. Transfer 50 c.c. of this solution to a 100- C.C. flask, add 5 c.c. strong (38%) hydrochloric acid and about 20 c.c. of water. Well shake the flask and immerse in a bath of water at the temperature of 70° C, at the same time putting a thermometer in the flask : when the temperature of the sugar solution has reached 68° - 70° C, which it should do in five minutes, the flask is kept in the water-bath at this temperature for flve minutes longer, then taken out, cooled down quickly to the normal temperature, diluted with water to 100 c.c, polarized at 20° 0., and the reading multiplied by two on account of the dilution of the liquid. Herzfeld found that pure cane-sugar treated as above showed a change of rotation on a SoleU-Ventzke-Scheibler Saccharimeter of 132-66 divisions at 20° C. Hence— 100 (direct — inverted reading)* Cane-sugar / = 132 '66 ' But, since the algebraical difference here becomes the mm of the two readinys without regard to sign, and 100/132'66 = 0*7539 Cane-sugar % =0-7539 x (sum of readings) [log. 0-7539 = 1-87729]. * This method is only applicable when other sugars, innlins, starches, and glucosides, which are also inverted by acids, are not present. When such bodies are present, hydrolysis may be effected by the use of invertase. t Now 26-0 grams. SPECIFIC ROTATORT POWER. 107 If, instead of 20° C, the readings before and after inversion are made at f C, p 100 (direct — inverted reading) 142-66 - - 2 Ek. III. Determination of dextrose and maltose from the cupric reducing power and optical activity (or "opticity") of a solution before and after fermentation. As an example we may take a commercial " Glucose,'' which gave the following results : — Cupric reduction before fermentation 78'85 % „ after „ 6"62 „ 72-23 Opticity before fermentation 49'98 [ajn. „ after „ 11-24 „ 38-74 By fermentation dextrose and maltose are removed, and the differences between the cupric reductions and between the opticities before and after fermentation give measures of the amounts of the two sugars present. Hence, if D and M be the percentages of dextrose and maltose present respectively, we have (taking 62 as the K of maltose) : — 62M + 100 D = 7223(i) 138M + 52-7D = 3874(ii) (i) X 138. 8556 M + 13800 D = 996774 (ii)x 62. 8556 M+ 3267 D = 24018 8 10533 D= 756586 ^ 756586 ■ „„ »=-[0533='l-83 From (i) 62 M = 7223 - 7 183 = 40. M=|^= 0-65. Eesult— Dextrose 71-83 % Maltose 0-65 „ 108 POLARltaETfiR EfiADlitaa. POLAEIMETEB READINGS. — REDUCTION OF MINUTES TO DECIMALS OF A Degree. Minutes Decimal equiva- lent. Minutes. Decimal equiva- lent. Minutes Decimal equiva- lent. Minutes. Decimal equiva- lent. 1 •017 16 •267 31 •517 46 •767 2 •033 17 •283 32 •533 47 •783 3 •05 18 •3 33 •55 48 •8 4 •067 19 •317 34 •567 49 •817 5 •083 20 ■333 36 •583 50 •833 6 ■1 21 ■35 36 •6 51 •85 7 •117 22 •367 37 •617 52 ■867 8 •133 23 ■383 38 •633 53 •883 9 ■15 24 •4 39 ■65 54 ■9 10 •167 25 •417 40 •667 55 •917 11 •183 26 •433 41 •683 66 •933 12 ■2 27 •45 42 ■7 57 •95 13 •217 28 •467 43 •717 58 •967 14 •233 29 ■483 44 •733 59 ■983 15 •25 30 •5 45 •75 DETERMINATION OF CUPEIO REDUCING POWER. 109 OupRio Oxide Reducing Powers op the Carbohydrates. Definition.— "Dextrose being the type of reducing bodies and the substance for which the amount of cupric oxide reduced was first determined, I use it as the standard to which to refer all other reducing carbohydrates or mixtures of reducing with non-reducing ones. I take the cupric oxide reducing power (or ' cupric reducing power') of a body or mixture to be the amount of cupric oxide, calculated as dextrose, which 100 parts reduce : it is designated by the letter K."—(0' Sullivan). Briefly, we may define " K " as the specific cupric reducing power of a substance referred to dextrose as standard (100). The divisor is often added : thus Ks-se = 25 means that the cupric reducing power of the substance is one-fou.rth that of dextrose when the solid matter is determined by the 3-86 divisor. Preparaiion of FMing's Solution for Gravimetric Determinations. — Dissolve 34"64 grams of pure recrystallized copper sulphate in dis- tilled water and make up the volume to 500 c.c. Then dissolve 173 grams Eochelle salt and 65 grams anhydrous sodium hydroxide in separate beakers, mix the solutions, and make up the volume with distilled water to 500 c.c. These two solutions are kept in separate bottles and are mixed in equal volumes, to form Fehling's solution, immediately before use. Method of making a determination of cupric reducing power.— Fiity C.C. of the freshly mixed Fehling's solution are placed in a beaker of about 250 c.c. capacity, and having a diameter of 7'5 cm. ( = 3 inches). This is placed in a boiling water- bath, and when the solution has attained the temperature of the water, the accurately weighed or measured volume of the sugar solution is added, and the whole made up to 100 c.c. with boiling distilled water. The beaker, which is covered with a clock glass, is then returned to the water- bath and the heating continued for exactly twelve minutes. The precipitated cuprous oxide is now rapidly filtered oflf through a ajoxhlet tube, washed first with hot water, then with alcohol and ether, and finally dried. When dry, the cuprous oxide is reduced to metallic - copper by gently heating in a stream of hydrogen, and weighed ; or it may be oxidized in a stream of oxygen and weighed as CuO. Sometimes the CU2O is weighed as such, after being dried in a water oven (see O'SulUvan and Stern, Jour. Ohem. Soc, 1896, p. 1692). As spontaneous reduction of Fehling's solution invariably takes place, the amount of this must be carefully determined for every , fresh batch of the solution and allowed for in each determination of cupric reducing power. It usually amounts to 0-002 to 0'003 gram CuO per 50 c.c. of Fehling's solution used. It is of great importance, in making the above determination, that an amount of the reducing sugar is taken that will give a weight of CuO lying between 0'15 and 0-35 gram. 110 DETERMINATION OF OUPBIO REDUCING POWER. It must be carefully borne in mind that the values given in the following tables are correct only when the preparation of the Fehling's solution, and the manner of carrying out the determina- tion of cupric reducing power conform exactly with the directions given on p. 109. It has been shown that the amount and nature of the alkali in Fehling's solution exercises a great influence on the quantity of copper reduced by a given weight of maltose or of the starSh-transformation products ; but with dextrose and laevulose the influence is far less. Glendinning has proved that an equiv- alent ainount of potassium hydroxide may be substituted for the sodium compound without causing any alteration in the reducing power. In the case of dextrose and laevulose the variant which has the greatest influence' is the state of dilution of the Fehling's solution. When the dilution is greater than that prescribed in the standard method, the reducing power is appreciably lower, and the greater the dilution the greater the difference. The weights of the principal kinds of sugar which, it is generally assumed, will reduce 10 c.c. of Fehling's solution are as follows : — 10 c.c. Fehling's solution = 0'0500 gram of dextrose, laevulose or invert sugar. =0'0475 „ „ sucrose (after inversion) =0-0678 „ „ lactose =0'0807 ,, „ maltose Rules to find the values of " K " when referred to different divisors. When the true divisor is used to determine grams of sugar per 100 c.c, the K so obtained is called absolute. Frequently, however, K3-86 — that is, the relative cupric reducing power when the divisor 3'86 is used to get grams of sugar per 100 c.c. — is required. Thus, 1 -367 grams CuO = 1 gram of absolute maltose, then for 1 gram of 3'86 maltose we should have 1 -367 X III = 1 -343 gram CuO. Let the true divisor to get grams per 100 c.c. be M, then . Kabsolute=^^««^^. * , 3-86 Fehling's solution may not give correct results after keeping (say a few months), even when the tartrate component solution remains perfectly clear and apparently undecomposed. Decidedly low results have been obtained by the use of such a solution. For gallisin K3 86= 42. 1 gram = 1-01 gram CuO (approximately). FACTORS FOR CUPRIG REDUCTION. Ill 1 eqoc^ (MO t-iOt- Oil.-* OS ai-*Tti (Mt-t-- «>r4 W (M1>1'- - s SSS i-HTOOl r-< t* ^ Oa <4I £»'<# 00 «a)co 1-iiO r^ {MM« Mcom iWWCO iHr-IIM ^■rv o* bob bbb bbb obb oah 000 t-i >» .1? .%% 3IS 3li 3IS UOO OQO COO 000 000 •4-i 00 "ttt rH iao> (M t>lM dSooo 10 00] ^IHH ^rt ^ II II II II II II II II II II II II II II II en S3 S ^.^ ^^ •s 1 1 •1 ■0 >1 1 i- u pit A s C4 o II- i_> .. « 1- !.. ^ - _ _ F" 1 S ■a »4 1 2" " " ! - s <0 CO 1 1 1 m " 1 goooo f2S?5 to 00 to wegrg CO^M rHMrt OCO U3 CD Wt-< ■45 -dicMCO rHO*« .HOtH in u3 CQOoeo (OrHtO lOrH 100 to 00 CO 00 3 t-t-

* 1 •S d g s 1 83 §3 u. CQ 1" 1 a ■» 5 s ea q * 1 2 i ■§ 0) * 1 n CQ CC OS 3 S 0-" J3 O gb ° - I2 § CO d rt M OO oj S, ■o S > 00 .s s. a ■?■ M I SB- a* Si II « OS .• S is be s a .gSS 5M. > K O • S3 J. » rt 0} g a o O h _^- o 112 ALCOHOL TABLE. Alcoho L Table Per cent. Per cent. Per cent. Per cent. Per cent. Per cent. ^W of Alcohol of Alcohol under ^"io^'i-* of Alcohol of Alcohol under bU if. by weight by volume Proof. 60 F. by weight by volume Proof. 1-0000 0^00 0^00 100^00 -9775 15-25 18-78 67^10 •9995 0^26 0^33 99^42 -9770 15^67 19-28 66 ^20 •9990 0-53 0^66 98-84 -9765 16 •OS 19-78 65 ^34 •9985 79 0^99 98-26 -9760 16^46 20-24 64^53 •9980 1^06 r34 97 66 -9755 16-85 20-71 63^72 •9975 1-37 1^73 96^97 -9750 17-25 21^19 62 ^87 * -9970 169 212 96-29 -9745 17-67 21-69 62^00 •9965 2 00 2-51 95-60 •9740 18-08 22^18 6ri3 •9960 2^28 2^86 95-00 •9735 18-46 22^64 60^32 •9955 2^56 3^21 94^40 •9730 18-85 23^10 59^52 ■9950 2 •83 3^55 93 ^78 •9725 19-25 23^58 58 ^67 •9945 3^12 3^90 9316 •97-20 19-67 24^08 57 80 •9940 3^41 4^27 92-50 ■9715 20-08 - 24^58 56 •gs •9935 3-71 4^63 91-87 -9710 20-50 25^07 56-06 •9930 4 '00 5 00 91-23 -9705 20-92 '25^57 55^20 •9925 4^31 5 •39 90-55 •9700 21-31 26^04 54^37 •9920 4 62 5^78 89-87 -9695 21-69 26^49 53^57 •9915 4^94 6^17 89-20 -9690 22-08 2695 52 ^77 •9910 5^25 6^55 88-50 -9685 22 '46 27^40 51-98 •9905 5^56 6^94 87-84 -9680 22^85 27^86 51 •IS •9900 5^87 7^32 87-16 •9675 23-23 28^31 50 •SS •9895 6^21 7-74 86-43 ■9670 23-62 28^77 49^60 •9890 6 57 8^18 85-65 ■9665 24-00 29-22 48^80 ■9885 6-93 8^63 84-88 ■9660 24-38 29-67 48-00 •9880 ^■1^ 9 04 84-15 •9655 24-77 30-13 47-20 •9875 7^60 9^45 83-43 ■9650 25-14 30-57 46-44 •9870 7^93 9^86 82-70 ■9645 25-50 30-98 45-70 •9865 8^29 10 30 81-96 ■9640 25-86 31-40 44-97 ■9860 8^64 10^73 81-20 •9635 26-20 31-80 44-27 •9855 9^00 11-17 80-42 •9630 26-53 32-19 43-60 •9850 9-36 11 •ei 79-65 •9625 26-87 32-58 42-90 •9845 9^71 12^05 78-90 •9620 27-21 32 ^98 42-20 •9840 lO^OS 12^49 78-10 •9615 27-57 33 •sg 41-47 ■9835 . 10^46 12-96 77-30 •9610 27-93 33^81 40^74 ■9830 ]0^85 13-43 76 ^46 •9605 28-25 34^18 40-10 •9825 11 ^23 13-90 75-64 •9600 28-56 34^54 39-47 •9820 11^62 14^37 74-82 •9595 28-87 34-90 38-84 •9815 1200 14^84 74-00 -9590 29-20 35 •28 38-18 •9810 12 •38 15-30 73-18 -9585 29-53 35^66 37-50 •9805 12^77 15-77 72-36 •9580 29-87 36 ^04 36-83 •9800 13^15 16^24 71-54 •9575 30 17 36 39 36-23 •9795 13 ^54 16^70 70-73 •9570 30-44 36 70 35-68 ■9790 13 92 17^17 69-90 •9565 30-72 37 ^02 35-13 ■9785 14^36 17^70 68-97 •9560 31-00 37^34 34-57 ■9780 14^82 18 •25 68 •OO •9555 31-31 37^69 33-95 ALCOHOL TABLE. 113 Alcohol TAVLS—continued. Sp. gl-. at 60" i" Per cent of Aleoho ty weight Per cent. of Aleoho . by volume Per cent under . Proof. ■ Sp. gr. at 60° F Per cent Per cent, of Alcohol of Aleoho by weight, by volume Per cent. ntider . Proof. ■9550 31-62 38-04 33-32 -9325 43-48 51^07 10-50 ■9545 31^94 38-40 32-70 -9320 43-71 51^32 10 05 •9540 32-25 38-75 32-08 -9315 43-95 61^58 9-60 ■9535 32^56 39-11 31-46 •9310 44-18 51-82 9-20 ■9530 32-87 39-47 30-84 •9305 44-41 52-06 8-77 ' "9525 33 •IS 39^81 30-24 •9300 44-64 52-29 8-36 ■9520 33 ^47 40-14 29^66 -9295 44-86 52-53 7-94 ■9515 33 ■76 40-47 29^08 ■9290 45-09 52-77 7-52 ■9610 34 ■oe 40-79 28-52 •9285 45-32 53-01 7-10 •9505 34^29 41-05 28-06 •9280 46 -55 53-24 6-70 ■9600 3i-52 41-32 27 ■.60 •9275 45 ■r? 63-48 6-27 ■9495 3i-76 41-58 27-13 ■9270 46-00 53-72 ^ - 5-86 ■9490 36 ■OO 41-84 26-67 •9265 46-23 53-95 ~5-45 ■9485 36 ^25 42-12 26-20 •9260 46-46 64-19 5-03 ■9480 36-60 42-40 25-70 •9255 46-68 54-43 4^62 •9475 36-75 42-67 25-22 -9260 46-91 54-66 4 '20 •9470 36-00 42-95 24-74 -9245 47-14 54-90 3^80 •9465 36-28 43-26 24-20 ■9240 47^36 55-13 3-38 •9460 36 ^56 43-56 23-66 •9235 47^59 55-37 2^97 •9455 36^83 43-87 23-12 -9230 47^82 55-60 2^66 •9450 3711 , 44-18 22-58 ■9226 48-05 55-83 2^15 ■9445 37^39 44-49 22-04 ■9220 48-27 56-07 1^74 ■9440 37-67 44-79 21-50 ■9215 48-50 56-30 1^33 •9435 37-94 45^10 20-96 ■9210 48-73 66-64 0-92 •9430 38-22 45-41 20-43 -9205 48-96 56-77 0-50 •9425 38 ■SO 45-71 19-89 -9200 49-16 56-98 0-14 •9420 38-78 46-02 19-36 ■9198 49-24 57-06 Proof •9415 39-05 46-32 18-83 ■9195 49-39 57-20 0-25 •9410 39-30 46-59 18-36 •9190 49^64 57-45 0-68 •9405 39-55 46-86 17-88 •9185 49 ■se 57-69 1^10 •9400 39-80 47-13 17-40 •9180 60-09 57-92 1^51 •9395 40-05 47^40 16-93 •9175 50-30 58-14 1^89 ■9390 40-30 47-67 16-46 •9170 50^52 58^36 £•28 ■9385 40 •55 47^94 ■ 15-98 •9165 50-74 68 ^58 2-66 ■9380 40-80 48^21 15-50 ■9160 60-96 58 •SO 3-05 •9375 41-05 48-48 15-04 ■9155 51 -17 59^01 3-41 ■9370 41-30 48-75 14-57 ■9150 51^38 59^22 3-78 ■9365 41-55 49-02 14-10 ■9145 51 ^58 59 ^43 4-14 •9360 41-80 49-29 13-63 •9140 6^79 69^63 4-50 •9355 42^06 49^55 13-16 •9135 52-00 59-84 4-87 •9350 42'29 49-81 12-70 ■9130 52-23 60-07 5-27 •9345 42^52 50 ■oe 12-27 •9125 52^45 60-30 5-67 ■9340 42^76 50-31 11-82 •9120 52-68 60-52 6-07 9335 43^00 50-67 11-38 •9115 52-91 60-74 6-47 ■9330 i3-2i 50-82 10-94 •9110 53^13 60-97 6-86 114 ALCOHOL TABLE. Alcohol Tk^hiSr— continued. at 60" F. Per cent, of Alcohol by weight. Per cent, of Alcohol by volume. Per cent. over , Proof. atM^. Per cent, of Alcohol hy weight. Per cent, of Alcohol )y volume. Percent. over Proof. •9105 53 ■35 61-19 7-23 ■8880 63-26 70-77 24-02 ■9100 53-57 61^40 7-61 ■8875 63 ^48 70-97 24-37 ■9095 53 ^78 61 ^62 7-99 ■8870 63 ■yo 71-17 24-73 •9090 54^00 61 ^84 8-36 ■8865 63 ■gi 71-38 25-09 ■9085 54^24 62^07 8-78 ■8860 64-13 71-58 25-44 ■9080 54^48 62^31 9^20 •8855 64-35 71-78 25-79 •9075 54^71 62 ^55 9-62 ■8850 64 -57 71-98 ■26-15 ■9070 54 ■OS 62^79 10^03 ■8845 64^78 72-18 26-50 ■9065 55^18 63-02 10^44 •8840 65-00 72-38 26-85 •9060 55^41 63-24 10-84 ■8835 65-21 72 •SS 27-19 •9055 55 ^64 63-46 11-24 ■8830 65-42 n-n 27-52 --9060 55^86 63-69 11-64 •8825 65-63 72^96 27-85 ■9045^ 56^'09- 63 ^91 12-03 •8820 65-83 73^15 28-19 ■9040 56-32 64^14 12-41 -8815 66-04 73-34 28-52 ■9035 56 ^55 64-36 12-80 -8810 66-26 73^54 28-87 •9030 56^77 64-58 13-18 -8805 66-48 73-73 29-22 9025 57^00 64-80 13^57 •8800 66-70 73-93 29-57 •9020 57-22 65-01 13^92 •8795 66-91 74-13 29-92 ■9015 57-42 65^21 14-27 -8790 67-13 74-33 30-26 ■9010 57-63 65^41 14-62 -8785 67-33 74-52 30-59 •9005 57 ■SS 65-61 14-97 •8780 67-54 74-70 30-92 •9000 58-05 65-81 15-33 •8775 67-75 74-89 31-25 •8995 58-27 66-03 15-72 •8770 67-96 ■ 75-08 31-58 ■8990 58-50 66-25 16-11 •8765 68-17 75-27 31-90 •8985 58-73 66-47 16-49 •8760 68-38 75-45 32-23 •8980 58-95 66-69 16-88 •8755 68-58 75-64 32-.56 •8975 59-17 66-90 17-25 -8750 68-79 75-83 32-89 •8970 59-39 67-11 17-61 •8745 69-00 76-01 33-21 ^8965 59-61 67-32 17-98 ■8740 69-21 76-20 33-54 ■8960 59-83 67-53 18-34 -8735 69-42 76-39 33-86 ■8955 60-04 67-73 18-70 •8730 69-63 76-57 34-19 ■8950 60-26 67-93 19-05 •8725 69-83 76-76 34-51 ■8945 60-46 68 13 19-39 -8720 70-04 76-94 34-84 •8940 60-67 68-33 19-74 -8715 70-24 77-12 35-14 •8935 60-88 68-52 20-08 -8710 70^44 77-29 35-45 •8930 61-08 68-72 20-42 •8705 70^64 77-46 35-76 •8925 61-29 68-91 20-77 •8700 70^84 77-64 36-07 •8920 61-50 69-11 21-11 -8695 71-04 77-82 36-37 ■8915 61-71 69-30 21-45 ■8690 71-25 78-00 36-69 ■8910 61-92 69-50 21-79 -8685 71-46 78-18 37-01 •8905 62-14 69-71 22-16 -8680 71-67 78-36 37-33 •8900 62-36 69-92 22-53 ■8675 71-88 78-55 37-65 ■8895 62-59 70-14 22-91 ■8670 72-09 78-73 37-98 ■8890 62-82 70-35 23-29 ■8666 72-30 78-93 88-32 •8885 63-04 70-57 23-66 ■8660 72-52 79-12 38-65 ALCOHOL TABLE. 115 Alcohol Table — continue. Sp. (jr. at 60° F. Per cent. Per cent. Per cent at 60° F Per cent. Per cent. Per cent. of Alcohoi of Alcoho ov^r of Alcohol of Alcohol over by weight by volume Proof. by weight by volume Proof. ■8655 72 ^74 79^31 38-99 ■8430 82^15 87^24 52-90 ■8650 72-96 79^50 39-32 ■8425 82-35 87^40 53-16 ■8645 73-17 79-68 39-64 ■8420 82-54 87-55 53^43 ■8640 73-38 79-86 39-96 -8415 82-73 87-70 53-70 ■8635 73 ^58 80-04 40-27 ■8410 82-92 87-85 53-96 •8630 73-79 80-22 40-60 ■8405 83-12 88-00 54-23 ■8625 74-00 80-40 40-91 ■8400 83-31 88-16 54-50 ■8620 74-23 80-60 41-26 ■8395 83-50 88-31 54-75 ■8615 74-45 80-80 41-61 •8390 83-69 88-46 55-02 ■8610 74-68 81-00 41^96 -8385 83-88 88-61 55-28 ■8605 74-91 81-20 42-31 ■8380 84-08 88-76 55-55 •8600 75-14 81-40 . 42-66 ■8375 84-28 88-92 55-83 •8595 75-36 81-60 43-00 ■8370 84-48 89-08 66-10 ■8590 75-59 81-80 43-35 ■8365 84-68 89-24 56-38 ■8585 75-82 82-00 43-70 •8360 84-88 89^39 56-66 ■8580 76-04 82-19 44-04 ■8355 85-08 89 ^55 56-93 ■8575 76-25 82-37 44-35 ■8350 85-27 89-70 57 20 ■8570 76-46 82-54 44-66 ■8345 85-46 89-84 57-45 ■8565 76-67 82-72 44-97 ■8340 85-65 89-99 57^71 •8660 76-88 82-90 45-28 ■8335 85-85 90-14 57-97 ■8556 77^08 83-07 45-60 ■8330 86-04 90-29 58-23 ■8550 77^29 83-25 45-90 ■83-25 86-23 90-43 68-48 ■8545 77-50 83-43 46-20 ■8320 86-42 90-58 58-74 ■8540 77-71 83-60 46-51 -8315 86-62 90-73 59-00 ■8535 77-92 83-78 46-82 -8310 86-81 90-88 59-26 ■8530 78-12 83-94 47-11 ■8305 87^00 91-02 59-51 •8525 78^32 84-11 47-40 -8300 87-19 91-17 59-77 •8520 78^52 84-27 47-70 -8295 87-38 91-31 60-02 ■8515 78-72 84-44 47-98 -8290 87-58 91-46 60-28 ■8510 78-92 84-60 48-27 •8285 87^77 91-60 60-53 ■8505 79-12 84 ^77 48-56 •8280 '87 ^96 91-75 60^79 ■8500 79-32 84^93 48-84 -8275 88-16 91-90 61-05 ■8495 79-52 85-10 49-13 •8270 88-36 92-05 61-32 ■8490 79-72 85-26 49-38 ■8265 88-56 92-21 61-60 ■8485 79-92 85-42 49-67 ■8260 88-76 92-36 61-86 ■8480 8013 85-59 50-00 -8255 88-96 92-51 62-12 ■8475 80-33 86-77 50-31 -8250 89-16 92-66 62-38 ■8470 80-54 85-94 50-61 -8245 89-35 92-80 62-63 ■8465 80-75 86-11 50-91 ■8240 89-54 92-94 62-88 •8460 80-96 86-28 51-21 ■8235 89-73 93-09 63:13 ■8455 81-16 86-45 51-50 ■8230 89-92 93-23 63'38 ■8450 81-36 86-61 5T78 ■8225 90-11 93-36 63-62 ■8445 81-56 86-77 52-06 ■8220 90^29 93-49 63 84 ■8440 81-76 86-93 52-34 ■8215 90-46 93-62 64-06 •8435 81 ^96 87-09 52-62 •8210 90-64 93 ^75 64-30 116 ALCOHOL TABLE. Alcohol Ta^l^— continued. Per cent. Per cent. Per cent. Per cent. Per cent. Per cent. Sp.gr. of Alcohol of Alcohol over Sp. (T. of Alcohol of Alcohol over at 60° P. by weight. by volume. Proof. at 00° F. by weight. by volume. Proof. •8205 90^82 93-87 64-51 -8065 95-86 97-39 70-67 •8200 91 '00 94-00 64-74 -8060 96-03 97-51 70 •sa •8195 91-18 94-13 64-96 -8055 96-20 97-62 71 ^07 ■8190 91-36 94-26 65^18 -8050 96-37 97-73 71-26 •8185 91^54 94-38 65^40 •8048 96 ■es 97-83 71-45 ■8180 91-71 94-61 65-62 -8040 96-70 97-94 71-64 •8175 91-89 94-64 65-85 -8035 96-87 98-05 71-83 •8170 92-07 94-76 66-07 •8030 97-03 98-16 72-02 •8165 92-26 94-90 66-30 -8025 97-20 98-27 72-20 •8160 92-44 95-03 66-53 ■8020 97-37 98-37 72-40 •8155 92-63 95^16 66-76 -8015 97^63 98-48 72-58 •8150 92-81 95-29 67-00 ■8010 97-70 98-59 72-77 •8145 93-00 95-42 67-23 -8005 97-87 98-69 72-95 •8140 93-18 95-55 67-46 ■8000 98-03 98-80 73-14 •8135 93-37 96-69 67-70 -7995 98-19 98-89 73-30 •8130 93-65 95-82 67-92 -7990 98-34 98-98 73-47 •8125 93-74 95-95 68-15 •7985 98-50 99-07 73-64 ■8120 93^92 96-08 68-38 ■7980 98-66 99-16 73-81 ■8115 94-10 96-20 68-60 ■7975 98-81 99-26 73-97 •8110 94-28 96-32 68-80 -7970 98-97 99-35 74-14 •8105 94-45 96-43 69-00 •7965 99-13 99-45 74-31 •8100 94-62 96-55 69-20 ■7960 99-29 99-55 74-50 •8095 94-80 96-67 69-40 ■7955 99-45 99-65 74-66 •8090 94-97 96-78 69-61 -7950 99-61 99-75 74-83 •8085 95-14 96-90 69-82 -7945 99-78 99-86 75-01 •8080 95-32 97-02 70-03 -7940 99-94 99-96 75-18 •8075 95-50 97-15 70-25 Absolute Alcohol •8070 95-68 97-27 70-46 -7938 100-00 100-00 75-25 In "The Sale of Food and Drugs Act Amendment Act, 1879," section 6, it is enacted that Brandy, Whisky, or Rum mav be reduced to 25° U.P. and Gin to 35° U.P. 25° U.P. =0-9473 sp. gr., per cent, alcohol by weight. 35° U.P. = 0-9564 sp. gr., per cent, alcohol by weight. 42-78 per cent, alcohol by volume, 35-85 37-08 per cent, alcohol by volume, 30-78 "Rectified spirit" (B.P. 1898) is alcohol of sp. gr. 0'8340. It contains 90 percent, of alcohol by volume, 85 ■65 percent, of alcohol by weight; 57^7° 0. P. " Proof Spirit " is defined by statute (58 Geo. III. c. 28) as "that which at a temperature of 51° F. weighs exactly twelve-thirteenths of an equal measure of distilled water." The sp. gr. of proof spirit at 51° F. is 0^92308 (water at 51° F.=l). At 60° F./60° F. its sp. gr. DILUTED SPIEITS. 117 is 0'91984, and it contains 57"06 per cent, of alcohol,by volume, i9"24 per cent, by weight. By the " obsenration " of spirits is meant the difference between the apparent alcoholic strength, as shown by the hydrometer, and the true strength found after distillation. Simple rules for finding the percentages of added watai' iii the case of diluted spirits. I. Brandy, Whisky, or Rum (25° U. P. allowed). Let a sample be N° U. P. Therefore in 100 volumes we have N volumes of water, and (100 -N) volumes of proof-spirit. Let X he the percentage of water by volume added to spirit of 25° U. P. to produce a sample N° U. P. Then equating amounts of water we have — (100 -K)^ +a!=N. 25-- + x = 'S. 4 |a;=N-25. 4(N-25) '' — 3 • Hence we have the following rule : — To get percentage of added water by volume in the case of (lUuted brandy, whisky, or rum, increase the excess of degrees U. P. above 25 by one-third. II. Gin (35° U. P. allowed). Beasoniug exactly as in I., we have — 35 (100-!Bi)j;QQ + a!i = N,. 2o'«i=^i-35. 20 a!i = 13(Ni-35). a!i = l-54(Ni-35). Hence the rule : — To get percentage of added water by volume in diluted gin, multiply the excess of degrees U. P alDOve 35 by 1'54. %♦ The above rales I owe to Mr E. W. T. Jones, who dwcovered them empirically and used them simply for checking results obtained by the usual method of calculation from the percentage of alcohol present. The proofs I have given above established tlie accuracy of Rule I., and gave the correct fact >t 1*54 In Rule II. in place of the 1^ previously used for checking. — A. E. J. 118 ALCOHOL (COEEECTIONS, ETC.). CoaREoxioN OF Spboipio Gravity of Dilute Alcohol foe TEMPBRATURI!!. Speoiflo Gravity. r Pah. rc. Specific Gravity. r Fah. rc. •794--864 0-00046 0-00083 •965- -966 0^00026 0-00047 •864--889 45 81 •966- -967 25 45 •889- -902 44 79 •967- -968 24 -43 ■902- -912 43 77 •968- ^969 23 41 •912- -921 42 76 •969- -970 22 40 •921-'928 41 74 •970- ^971 21 38 •928- -935 40 72 ■971- -973 20 36 •935-^940 39 70 -973- -974 19 34 •940--943 38 68 -974.- ^975 18 32 •943-^946 37 67 •975- ^976 17 31 •946-^949 36 65. •976- ^977 16 29 •949- -951 35 63 •977- ^978 15 27 ■951--953 34 61 •978- •980 14 25 •953--955 33 59 •980- -981 13 23 •955--957 32 58 •981- ^983 12 22 •957-^959 31 56 •983- ^985 11 20 •959-^961 30 54 •985- ^987 10 18 •961--962 29 52 •987- -990 ■00009 16 •962-^963 28 60 •990- -995 8 , 14 ■963--965 27 49 •995-1-000 7 13 ExiU. — To obtain correct sp. gr. at 60° Fah. ( = 15-5° 0.), multiply the factor given in the table opposite to the observed sp. gr. by the difference in temperature, and aM if the recorded temperature is ahom 60° F. , or siihtract if it is below 60°. .Eb.— The sp. gr. at 60° Fah. of dilute alcohol of sp. gr. 0-952 at 64° Fah. i3 0-952 + (0-00034x4) = 0^95336. Vaeious Methods of stating Alooholio Strengths. Based on Squibb's absolute alcohol of sp. gr. 0-7935, Proof spirit containing 49-2 °/„ of this alcohol, and having a sp. gr. of 0-9198, and using c.o. to indicate the volume of 1 gram of water at 60° F., we have the formulse given below. Let S = sp. gr. at 60°/60° F. °/^= grams of absolute alcohol per 100 grams. «/i)=c.c. absolute alcohol per 100 c.c. wlv=grams of absolute alcohol per 100 c.o. P—c.c. proof spirit per 100 c.c. then 7. vlvx. ^7935 ' S ' Px-4525 s s " s W«=7_x 1-262 S = l-262 «)/ii=0^.57O3 P wh^'l, X S - -7935 vjv -=0-4526 P P=%x2-21S -1-753 »/« -2-21 to/» grains per fluid ounce — w/wx 4-3756. ALCOHOL CALCULATIONS, 119 Alcohol Calculations. Ex. 1. To find the quantity of water which must be added to spirit of 25° O.P. to reduce it to 20° U.P.— 100 volumes of spirit at 25° O.P. contain as much alcohol as 125 volumes of proof spirit. 100 volumes of spirit at 20° U.P. contain as much alcohol as 80 volumes of proof spirit. Hence, 125 volumes of proof spirit are equivalent to 100 volumes of spirit of 25° O.P. 1 volume of proof spirit is equivalent to — — volumes of 125 spirit of 25° O.P. 80 volumes of proof spirit are equivalent to — -^ — =64 volumes of spirit of 25° O.P. ; that is, 100 volumes of spirit of 20° U.P. can be made by diluting 64 volumes of spirit of 25° O.P. with water. Suppose, for example, 10 gallons at 20° U.P. are required, we take 6"4 gallons at 25° O.P., or 6 gallons 1 quart IJ pints, and dilute with water to 10 gaUons. Ex. 2. To find the quantity of water which must be added to spirit of 60° O.P. to reduce it to 30° O.P. 100 volumes of spirit at 60° O.P. are equivalent to 160 volumes of proof spirit. 100 volumes of spirit at 30° O.P. are equivalent to 130 volumes of proof spirit. Hence 160 volumes of proof spirit are equivalent to 100 volumes of spirit of 60° O.P.— - 1 volimie of proof spirit is equivalent to — — volumes of luO spirit of 60° O.P. 130 volumes of proof spirit are equivalent to — ^aji — =" 81i volumes of spirit of 60° O.P. ; that is, 100 volumes of spirit of 30° O.P. can be made by diluting 81j volumes of spirit of 60° O.P. with water. Thus if 20 gallons are required we must take 16 J gallons of the strong spirit and dilute with water to 20 gallons. 12D taoSPHATB TABLE. Table showing the Amounts to be subtracted feom the Values GIVEN IN THE PHOSPHATE TABLE SO THAT THEY MAY BE IN AOCOKDANOE WITH THE INTERNATIONAL ATOMIC WEIGHTS OP 1912. Mg2P20} CaaPaOs CaPaOs ^205 Pa 10-0 0-03 0-02 0-02 15-0 0'05 0-03 0-03 008 20-0 0-07 0-05 0-03 0-011 25-0 0-08 0-06 0-04 0-013 30-0 0-09 0-07 0-06 0-016 35-0 Oil 0-08 0-06 0-019 40-0 O'lS 0'09 0-07 0-021 45-0 0-15 010 0-07 0-025 60-0 0-16 0-12 0-08 0-027 56 -0 0-18 0-13 0'09 0-029. 60-0 0-19 0-13 0-10 , 0-033 65-0 0-21 0-14 0-11 0-035 70-0 p-23 0-15 0-12 0-038 Ex. 1. 2 grams of a sample of Superphosphate gave 0-3770 gram Mg^PjO,. From the Table 37-70 = 52-64 CajPjOg Correction (mean of '11 and -13)= -12 2 )52-52 26-26% CaaPjOg Ex. 2. 1 gram of a Phosphate gave 0-5500 gram M.g^Pi'^r- From the Table 55-00 Mg2PA= 35'18 FjO^='re-80 CagPjOg. Correction (to be subtracted) -09 -18 35-09%P3O„ = 76-62 CaaPA- PHOSPHATE TABLE. 121 Table foe Phosphates. MgzPjO, CajPjOg CaPjOc P^O. Ps MgjPjO, CajPjOe CaPjOe PjOs P2 0-1 0-14 0-09 0^06 0^028 4^1 5-73 3-66 2-62 1-145 •2 0-28 o-rs 0^13 0^056 -2 5-87 3-75 2-69 1-173 •3 0-42 0-27 0-19 0^084 •3 6-00 3-84 2-75 1-201 •4 0-56 0-36 0-26 0-112 •4 6-14 3-93 2-82 1-229 ■5 0-70 0-45 0^32 0-140 •5 6-28 4-01 2-88 1-257 •6 0-84 0-54 0-38 0-168 -6 6-42 4-10 2-94 1-285 •7 0-98 0^62 0^45 0-196 -7 6-56 4^19 3-01 1-313 ■8 112 0^71 0^51 0-223 ■8 6-70 4^28 3-07 1-341 •9 1-26 0^80 0^58 0-251 -9 6-84 4^37 3-14 1-369 1-0 1-40 0^89 0-64 0-279 5-0 6-98 4 •46 3-20 1-396 •1 1-54 0^98 0-70 0-307 -1 7-12 4^55 3-26 1-424 ■2 1-68 ro7 ©■77 0-335 -2 7^26 4^64 3-33 1-452 •3 1-82 M6 0-83 0-363 -3 7-40 4-73 3-39 1-480 ■4 1-96 1^25 0^90 0-391 •4 7^54 4^82 3-45 1-508 •5 2-09 1^34 0^96 0-419 -5 7^68 4^91 3^52 1-536 •6 2-23 1^43 ro2 0-447 -6 7^82 5^00 3-58 1-564 •7 2-37 1^52 1^09 0-475 -7 7^96 5 08 3^65 1^592 ■8 2-51 1-61 1^15 0^503 ■8 8^10 5 •I? 3-71 1-620 •9 2-65 r7o 1^22 0-531 -9 8^24 5^26 3^77 1-648 2-0 2-79 1^78 1-28 0-559 6-0 8 ■SB 5^35 3-84 1-676 •1 2-93 ]^87 r34 0-587 •1 8^52 5^44 3-90 1-704 ■2 3-07 1^96 1^41 0-614 •2 8^66 5-53 3^97 1^732 •3 3-21 2^05 ^47 0-642 •3 8-80 5-62 4-03 r760 •4 3-35 2^14 1^54 0-670 ■4 8-94 5-71 4-09 1-787 •5 3-49 2^23 1-60 0-698 -5 9-08 5-80 4^16 1-815 ■6 3-63 2-32 1^66 0-726 -6 9-22 5-89 4^22 1-843 ■7 3-77 2^41 1^73 0-754 -7 9-36 5-98 4^29 1-871 •8 3-91 2^50 1-79 0-782 -8 9-50 6^07 4-35 1-899 ■9 4-05 2-59 1^86 0-810 -9 9-64 6^15 4-41 1-927 3-0 4-19 2-68 1^92 0-838 7-0 9-77 6-24 4-48 1-955 •1 4-33 2^77 1^98 0-866 •1 9^91 6^33 4-54 1-983 •2 4-47 2^85 2-05 0-894 ■2 10^05 6-42 4-61 2-011 •3 4-61 2-94 2-11 0-922 ■3 10^19 6-51 4-67 2-039 •4 4-75 3 ■OS 2^18 0-950 ■4 10 ■SS 6^60 4-73 2-067 •5 4-89 3-12 2^24 0-978 ■5 10^47 6^69 4-80 2^095 ■6 5 03 3^21 2^30 1-006 ■6 10-61 6^78 4-86 £■123 •7 5-17 3 ■so 2^37 1-033 ■7 10-75 6-87 4-93 2^151 •8 5-31 3-39 2-43 1-061 ■8 10^89 6-96 4-99 2-178 •9 5-45 3^48 2-50 r089 ■9 11-03 7-05 5-05 2-206 4-0 5-59 3-57 2-56 1^117 8^0 11-17 7-14 5-12 2-234 MgaPjC h •01 •02 ■03 ■04 ■05 •06 ■07 ■08 •09 CajPaO 8 ■01 ■03 •04 -06 •07 •08 ■10 ■11 ■13 CaPjOj ■01 ■02 •03 -04 •05 •05 -06 ■07 ■08 PA ■01 ■01 •02 •03 •03 -04 -05 ■05 ■06 P^ ■003 •006 •008 •Oil ■014 -017 ■020 ■022 -025 122 PHOSPHATB TABLE. Table for Phosphates — continued. MgjPaO, CbsPjOb CaPjOs P^Ois Ps MgjPjO, CaaPjOj CaPjOe PjOs Pj 8-1 11-31 7-22 5-18 2-262 12-7 17-73 11-33 8-12 3-547 •2 11-45 7-31 5-25 2-290 -8 17-87 11-42 8-19 3-575 •3 11-59 7-40 5-31 2-318 -9 18-01 11-51 8-25 3-603 •4 11-73 7-49 5-37 2-346 13-0 18-15 11-60 8-32 3-631 ■5 11-87 7-58 5-44 2-374 -1 18-29 11-68 8-38 3-669 ■6 1201 7-67 5 50 2-402 -2 18-43 11-77 8-44 3-687 •7 12-15 7-76 5-57 2-430 -3 18-57 11-86 8-51 3-714 •8 12-29 7-85 5-63 2-468 ■4 18-71 11-95 8-57 3-742 ■9 12-43 7-94 5-69 2-486 -5 18-85 12-04 8-64 3-770 9 12-67 8-03 5-76 2-514 -6 18-99 12-13 8-70 3-798 ■1 12-71 8-12 5-82 2-541 •7 19-13 12-22 8-76 3-826 •2 12-85 8-21 5-89 2-669 •8 19-27 12-31 8-83 3-854 •3 12-99 8-30 5-95 2-597 -9 19-41 12-40 8-89 3-882 ■4 13-13 8-38 6-01 2-6-25 14-0 19-55 12-49 8-96 3-910 . •5 13-27 8-47 6-08 2-653 -1 19-69 12-58 9-02 3-938 •6 13-41 8-56 6-14 2-681 -2 19-83 12-67 9 08 3-966 •7 13-65 8-65 6-21 2-709 -3 19-97 12-76 9-15 3-994 •8 13-69 8-74 6-27 2-737 -4 20-11 12-84 9-21 4-022 •9 13-83 8-83 6-33 2-765 -5 20-25 12-93 9-28 4-050 10-0 13-96 8-92 6-40 2-793 •6 20-39 13-02 9-34 4-078 •1 14-10 9-01 6-46 2-821 •7 20-53 13-11 9-40 4-105 •2 14-24 9-10 6-52 2-849 -8 20-67 13-20 9-47 4-133 •3 14-38 9-19 6-59 2-877 -9 20-81 13-29 9-53 4-161 ■4 14-52 9-28 6-65 2-905 15-0 20-95 13-38 9-60 4-189 •5 14-66 9-37 6-72 2-932 -1 21-09 13-47 9-66 4-217 •6 14-80 9-45 6-78 2-960 -2 21-23 13-56 9-72 4-245 •7 14-94 9-54 6-84 2-988 -3 21-37 13-65 9-79 4-273 •8 15-08 9-63 6-91 3-016 -4 21-50 13-74 9-85 4-301 ■9 15-22 9-72 6-97 3-044 -5 21-64 13-83 9-92 4-329 11-0 15-36 9-81 7 04 3-072 -6 21-78 13-91 9-98 4-357 •1 15-50 9-90 7-10 3-100 -7 21-92 14-00 10-04 4-385 •2 15-64 9-99 7-16 3-128 -8 22-06 14-09 10-11 4-413 •3 15-78 10-08 7-23 3-156 ■9 22-20 14-18 10-17 4-441 •4 15-92 10-17 7-29 3-184 16-0 22-34 14-27 10-23 4-469 ■5 16-06 10-26 7-36 3-212 -1 22-48 14-36 10-30 4-496 ■6 16-20 10-35 7-42 3-240 ■2 22-62 14-45 10-36 4-524 •7 16-34 10-44 7-48 3-268 -3 22-76 14-54 10-43 4-652 •8 16-48 10-53 7-55 3-296 -4 22-90 14-63 10-49 4-580 •9 16-62 10-61 7-61 3-324 •5 23-04 14-72 10-55 4-608 12-0 16-76 10-70 7-68 3-351 -6 23-18 14-81 10-62 4-636 •1 16-90 10-79 7-74 3-379 -7 23-32 14-89 10-68 4-664 •2 17-04 10-88 7-80 3-407 -8 23-46 14-98 10-75 4-692 •3 17-18 10-97 7-87 3-436 -9 23-60 15-07 10-81 4-720 •4 17-32 11-06 7-93 3-463 17-0 23-74 15-16 10-87 4-748 •5 17-46 11-15 8-00 3-491 -1 23-88 15-25 10-94 4-776 ■6 17-60 11-24 8-06 3-519 -2 24-02 15-34 11-00 4-804 PHOSPHATE TABLE. 123 Table for Phosphates — continued. MgjPjO, CaaPjOg CePaOe P2O. P2 MgjP^O, CaaPjOj CaPjOe PjOs Pj 17-3 24-16 15-43 11^07 4-832 21-3 29-74 19-00 13-62 5-949 •i 24-30 15-52 11-13 4-860 -4 29-88 19-09 13-69 5-977 •5 24-44 15-61 11-19 4-887 •5 30-02 19-18 13-75 6-005 ■6 24-58 15-70 11-26 4-915 •6 30-16 19-27 13-82 6-033 •7 24-72 15-79 11-32 4-943 •7 30-30 19-35 13-88 6-060 •8 24-86 15-88 11-39 4-971 •8 30-44 19-44 13-94 6-088 •9 25-00 15^97 11-45 4-999 -9 30-68 19-53 14-01 6-116 18-0 25-14 16 •OS 11-51 5-027 22-0 30-72 19-62 14 07 6-144 •1 25-27 16-14 11-58 5-055 ■1 30-86 19-71 14-14 6-172 •2 25-41 16-23 11-64 5-083 -2 31-00 19-80 14-20 6-200 ■3 25-55 16-32 11-71 5-111 •3 31-14 19-89 14-26 6-228 •4 25-69 16-41 11-77 5-139 •4 31-28 19-98 14-33 6-256 ■5 25-83 16-50 11-83 5-167 -5 31-42 20-07 14-39 6-284 ■6 25-97 16-59 11-90 5-195 ■6 31-56 20-16 14-46 6-312 •7 26-11 16-68 11-96 5-223 •7 31-70 20^25 14-52 6-340 •8 26-25 16-77 12-03 5-250 •8 31-84 20-34 14-58 6-368 •9 26-39 16-86 12-09 5-278 •9 31-98 20-43 14-65 6-396 19-0 26-53 16-95 12-15 5-306 23-0 32-12 20-51 14-71 6-423 ■1 26-67 17-04 12-22 5-334 -1 32-26 20-60 14-78 6-451 •2 26-81 17-12 12-28 5-362 -2 32-40 20-69 14-84 6-479 •3 26-95 17-21 12-35 5-390 -3 32-54 20-78 14-90 6-607 •4 27-09 17-30 12-41 5-418 •4 32-68 20-87 14-97 6-536 ■5 27-23 17-39 12-47 5-446 -5 32-82 20-96 15-03 6-563 ■6 27-37 17-48 12-54 5-474 -6 32-96 21-05 15^10 6-591 •7 27-51 17-57 32-60 5-502 -7 33-09 21-14 15-16 6-619 •8 27-65 17-66 12-67 5-530 -8 33-23 21-23 15-22 6-647 •9 27-79 17-75 12-73 5-558 -9 33-37 21-32 15-29 6-675 20-0 27-93 17-84 12-79 5-586 24-0 33-51 21-41 15-35 6-703 •1 28-07 17-93 12-86 5-614 -1 33-65 21-50 15-42 6-731 •2 28-21 18-02 12-92 5-642 •2 33-79 21-58 15-48 6-759 ■3 28-35 18-11 12-99 5-669 -3 33-93 21-67 15^54 6-787 ■4 28-49 18-20 13-05 5-697 -4 34-07 21-76 15-61 6-814 ■5 28-63 18-28 13-11 5-725 -5 34-21 21-85 15-67 6-842 •6 28-77 18-37 13-18 5-753 -6 34-35 21-94 15-74 6-870 ■7 28-91 18-46 13-24 5-781 •7 34-49 22-03 15-80 6-898 •8 29-05 18-55 13-31 5-809 •8 34-63 22-12 15-86 6-926 •9 29-19 18-64 t3-37 5-837 -9 34-77 22-21 15-93 6-964 21-0 29-32 18-73 13 43 5-865 ■25 34-91 22-30 15-99 6-982 ■1 29-46 18-82 13-50 5-893 -1 35-05 22-39 16-06 7-010 •2 29-60 18-91 13-56 5-921 •2 35-19 22-48 16-12 7-038 MgaPA •01 -02 -03 -04 -05 -06 -07 -08 •09 C^PA •01 •03 -04 -06 •07 -08 •10 -11 •13 CaPaOg -01 •02 -03 •04 -05 •05 -06 -07 •08 P2O, -01 -01 •02 -03 -03 •04 •05 -05 •06 p: •003 •006 •008 -Oil •014 •017 •020 •022 -025 124 PHOSPHATB TABLE. Table fob, Phosphates — continued. MgjP^O, CasPjOe CaPjO, PjOs Pz MgjPjO, CasPaOs CaPjOs PjOj Pj 25-3 35-33 22-57 16-18 7-066 29-9 41-75 26-67 19-13 8-351 •i 35-47 22-66 16-26 7-094 30-0 41-89 26-76 19-19 8-378 •5 35-61 22-74 16-31 7-122 -1 42-03 26-85 19-25 8-406 •6 35-75 22-83 16-58 7-150 -2 42-17 26-94 19-32 8-434 •7 35-89 22-92 16-44 7-178 •3 42-31 27-03 19-38 8-462 ■t 36-03 23 01 16-50 7-205 -4 42-45 27-11 19-45 8-490 ■9 36-17 23-10 16-57 7-233 -5 42-69 27-20 19-51 8-518 26-0 36-31 23-19 16-63 7-261 -6 42-73 27-29 19-57 8-546 •1 36-45 23-28 16-70 7-289 •7 42-87 27-38 19-64 8-574 •2 36-59 23-37 16-76 7-317 -8 43-01 27-47 19-70 8-602 •3 36-73 23-46 16-82 7-345 -9 43-15 27-56 19-77 8-630 ■4 36-87 23-55 16-89 7-373 31-0 43-29 27-65 19-83 8-658 •5 37-00 23-64 16-96 7-401 -1 43-43 27-74 15-89 8-686 •6 37-14 23-72 17-02 7-429 •2 43-57 27-83 19-96 8-714 7 37-28 23-81 17-08 7-457 •3 43-71 27-92 20-02 8-742 •8 37-42 23-90 17-14 7-485 •4 43-85 28-01 20 09 8-769 •9 37-56 23-99 17-21 7-513 •5 43-99 28-10 20-15 8-797 27-0 37-70 24-08 17-27 7-541 ■6 44-13 28-18 20-21 8-825 •1 37-84 24-17 17-33 7-569 -7 44-27 28-27 20-28 8-853 ■2 37-98 24-26 17-40 7-697 -8 44-41 28-36 20-34 8-881 ■3 38-12 24-35 17-46 7-624 -9 44-55 28-45 20-41 8-909 •4 38-26 24-44 17-53 7-652 32-0 44-69 28-54 20-47 8-937 •5 38-40 24-53 17-59 7-680 -1 44-82 28-63 20-53 8-965 •6 38-54 24-62 17-65 7-708 -2 44-96 28-72 20-60 8-993 •7 38-68 24-71 17-72 7-736 -3 45-10 28-81 20-66 9-021 •8 38-82 24-80 17-78 7-764 -4 45-24 28-90 20-72 9-049 •9 38-96 24-88 17-85 7-792 •5 45-38 28-99 20-79 9-077 28-0 39-10 24-97 17-91 7-820 •6 45-52 29-08 20-85 9-105 ■1 39-24 25-06 17-97 7-848 •7 45-66 29-17 20-92 9-133 •2 39-38 25-15 18-04 7-876 ■8 45-80 29-26 20-98 9-160 •3 39-62 25-24 18-10 7-904 -9 45-94 29-34 21-04 9-188 •4 39-66 25-33 18-17 7-932 33-0 46-08 29-43 21-11 9-216 •5 39-80 25-42 18-23 7-959 •1 46-22 29-52 21-17 9-244 •6 39-94 25-61 18-29 7-987 •2 46-36 29-61 21-24 9-272 •7 40-08 25-60 18-36 8-015 -3 46-50 29-70 21-30 9-300 •8 40-22 25-69 18-42 8-043 ■4 46-64 29-79 21-36 9-328 •9 40-36 25-78 18-49 8-071 -5 46-78 29-88 21-43 9-356 290 40-50 25-87 18-55 8-099 -6 46-92 29-97 21-49 9-384 •1 40-64 25-95 18-61 8-127 ■7 47-06 30-06 21-56 9-412 •2 40-78 26-04 18-68 8-165 •8 47-20 30-15 21-62 9-440 •3 40-92 26-13 18-74 8-183 -9 47-34 30-24 21-68 9-468 •4 41-06 26-22 18-81 8-211 34-0 47-48 30-33 21-75 9-496 •5 41-19 26-31 18-87 8 239 -1 47-62 30-41 21-81 9-523 •6 41-33 26-40 18-93 8-267 -2 47-76 30-50 21-88 9-551 ■7 41-47 26-49 19-00 8-295 ■3 47-90 30-59 21-94 9-579 ■8 41-61 26-58 19-06 8-323 •4 48-04 30-68 22-00 9-607 PHOSPHATE TABLS. 125 Table for Phosphates— coreimMeci. MgjPjO, CajPjOs CaPjOa P^Os Pj MgjPjO, CaaPjOg CaPjOs PjOs P2 34-5 48-18 30-77 22-07 9-635 38-5 53-76 34-34 24-63 10-752 •6 48-32 30-86 22-13 9-663 -6 53-90 34-43 24-69 10-780 ■7 48-46 30-95 22-20 9-691 •7 54-04 34-52 24-75 10-808 •8 48-60 31-04 22-26 9-719 •8 54-18 34-61 24-82 10-836 ■9 48-74 31-13 22-32 9 747 •9 54-32 34-70 24-88 10 864 35-0 48-87 31-22 22 39 9-775 39-0 54-46 34-78 24-95 10^892 •1 49-01 31-31 22-45 9-803 •1 54-60 34-87 25-01 10-920 ■2 49-15 31-40 22-52 9-831 •2 54-74 34-96 25-07 10-948 •3 49-29 31-49 22-58 9-859 •3 54-88 35-05 25-14 10-976 •4 49-43 31-57 22-64 9-887 -4 55 02 35-14 25-20 11-004 ■5 49-57 31-66 22-71 9-914 -5 55 16 35-23 25-27 11-032 •6 49-71 31-75 22-77 9-942 •6 55-30 35-32 25-33 1 1 -060 •7 49-85 31-84 22-84 9-970 •7 55-44 35-41 25-39 11-087 •8 49-99 31-93 22-90 9-998 -8 55-58 35-50 25-46 11-115 •9 50-13 32-02 22-96 10-026 -9 55-72 35-59 25-52 11-143 36 50-27 32-11 23-03 10-054 40 55-86 35-68 25-59 11-171 •1 50-41 32-20 23-09 10-082 -1 56-00 35-77 25-65 11-199 •2 50-55 32-29 23-16 10-110 -2 56-14 35-85 -25-71 11-227 •3 50-69 32-38 23-22 10-138 -3 56-28 35-94 25-78 11-255 ■4 50-83 32-47 23-28 10-166 -4 56-42 36-03 25-84 11-283 ■5 50-97 32-55 23-35 10-194 ■5 56-55 36-12 25-91 11-311 •6 51-11 32-64 23-41 10-222 -6 56-69 36-21 25-97 11-339 •7 51 -25 32-73 23-48 10-250 -7 56-83 36-30 26-03 11-367 •8 51-39 32-82 23-54 10-278 -8 56-97 36-39 26-10 11-395 •9 51-53 32-91 23-60 10-306 -9 57-11 36-48 2616 11-423 37-0 51-67 33 00 23-67 10-333 41-0 57-25 36-67 26-23 11-451 •1 51-81 33-09 23-73 10-361 -1 57-39 36-66 26-29 11-478 •2 51-95 33-18 23-80 10-389 -2 57-53 36-75 26-35 11-506 •3 52-09 33-27 23-86 10-417 -3 57-67 36-84 26-42 11-534 •4 52-23 33-36 23-92 10-445 -4 57-81 36-93 26-48 11-562 ■5 52-37 33-45 23-99 10-473 -5 57-95 37-01 26-55 11-590 ■6 52-51 33-54 24-05 10-501 -6 58-09 37-10 26-61 11618 •7 52-64 33-62 24-12 10-529 •7 58-23 37-19 26-67 11-646 •8 52-78 33-71 24-18 10-557 -8 58-37 37-28 26-74 11-674 ■9 52-92 33-80 24-24 10-585 -9 58-51 37-37 26-80 11-702 38-0 53-06 33-89 24-31 10-613 42 58-65 37-46 26-87 11-730 •1 53-20 33-98 24-37 10-641 •1 58-79 37-55 26-93 11-758 •2 53-34 34-07 24-43 10-669 -2 58-93 37-64 26-99 11-786 •3 53-48 3416 24-50 10-696 •3 59-07 37-73 27-06 11-814 ■4 i)3-62 34-25 24-56 10-724 ■4 59-21 37-82 27-12 11 -84^ MgjP^C V •01 -02 •03 -04 -05 -06 -07 -08 -09 CaqPjO 8 -01 -03 •04 ■06 -07 -08 •10 ■11 -13 CaPjOj -01 -02 -03 -04 -05 -05 -06 -07 -08 PA •01 -01 ■02 -03 -03 -04 -05 •05 -06 pI •003 -006 -008 •Oil •014 -017 •020 •022 -025 126 PHOSPHATE TABLE. Table for Phosphates — coniinued. Mg,PjO, CajPjO, CaPjOe P2O5 P2 Mg2 PjO, CaaPjOs CaPjOe PjO. P. 42-5 59-35 37-91 27-19 11-869 47 1 65-77 42-01 30-13 13-154 •6 59-49 38-00 27-25 11-897 2 65-91 42-10 3019 13-182 •7 59-63 38-08 27-31 11-925 3 66-05 42-19 30-26 13-210 ■8 69-77 38-17 27-38 11-953 4 66-19 42-28 30-32 13-238 •9 59-91 38-26 27-44 11-981 5 66-33 42-37 30-38 13-266 43-0 60-05 38-35 27-51 12-009 6 66-47 42-46 30-45 13-294 ■1 60-18 38-44 27-57 12037 7 66-61 42-64 30-51 13-322 •2 60-32 38-53 27-63 12-065 8 66-75 42-63 30-58 13-350 •3 60-46 38-62 27-70 12093 9 66-89 42-72 30-64 13-378 ■4 60-60 38-71 27-76 12-121 48 67-03 42-81 30-70 13-406 •5 60-74 38-80 27-83 12-149 1 67-17 42-90 30-77 13-433 •6 60-88 38-89 27-89 12-177 2 67-31 42-99 30-83 13-461 ■7 61-02 38-98 27-95 12-205 3 67-45 43-08 30-90 13-489 •8 61-16 39-07 28-02 12-232 4 67-59 43-17 30-96 13-517 •9 61-30 39-16 28-08 12-260 5 67-73 43-26 31-02 13-545 44-0 61-44 39-24 28-14 12-288 6 67-87 43-35 31-09 13-573 •1 61-58 39-33 28-21 12-316 7 68-00 43-44 31-15 13-601 ■2 61-72 39-42 28-27 12-344 8 68-14 43-53 31-22 13-629 •3 61-86 39-51 28-34 12-372 9 68-28 43-61 31-28 13-657 ■4 62-00 39-60 28-40 12-400 49 68-42 43-70 31-34 13-685 ■5 62-14 39-69 28-46 12-428 1 68-56 43-79 31-41 13-713 •6 62-28 39-78 28-53 12-456 2 68-70 43-88 31-47 13-741 •7 62-42 39-87 28-59 12-484 3 68-84 43-97 31-53 13-769 •8 62-66 39-96 28-66 12-512 4 68-98 44-06 31-60 13-796 •9 62-70 40-05 28-72 12-540 5 69-12 44-15 31-66 13-824 45-0 62-84 40-14 28-78 12-668 6 69-26 44-24 31-73 13-852 •1 62-98 40-23 28-85 12-596 7 69-40 44-33 31-79 13-880 ■2 63-12 40-31 28-91 12-624 8 69-54 44-42 31-86 13-908 •3 63-26 40-40 28-98 12-661 9 69-68 44-51 31-92 13-936 •4 63-40 40-49 29-04 12-679 50 69-82 44-60 31-98 13-964 •5 63-54 40-58 29-10 12-707 1 69-96 44-68 32-06 13-992 •6 63-68 40-67 29-17 12-735 2 70-10 44-77 32-11 14-020 •7 63-82 40-76 29-23 12-763 3 70-24 44-86 32-17 14-048 ■8 63-96 40-85 29-30 12-791 4 70-38 44-95 32-24 14-076 •9 64-10 40-94 29-36 12-819 5 70-62 46-04 32-30 14-104 46-0 64-23 41-03 29-42 12-847 6 70-66 45-13 32-37 14-132 •1 64-37 41-12 29-49 12-876 7 70-80 45-22 32-43 14-160 2 64-51 41-21 29-55 12-903 8 70-94 45-31 32-49 14-187 •3 64-65 41-30 29-62 12-931 9 71-08 45-40 32-66 14-215 ■4 64-79 41-38 29-68 12-959 51 71-22 45-49 32-62 14-243 •5 64-93 41-47 29-74 12-987 1 71-36 46-58 32-69 14-271 •6 65-07 41-56 29-81 13-015 2 71-50 45-67 32-76 14-299 ■7 65-21 41-65 29-87 13-042 3 71-64 45-76 32-81 14-327 •8 65-35 41-74 29-94 13-070 4 71-78 45-84 32-88 14-365 •9 65-49 41-83 30-00 13-098 5 71-91 45-93 32-94 14-383 47-0 65-63 41-92 30-06 13-126 6 72-05 46-02 33-01 14 -411 FHOSFHATB TABLB. 127 Table foe Phosphates — continued. MgjPjO, CajPjOs CaPjO. P2O5 Ps MgjPjO, CasPjO, CaPjOij P2O5 Pa 51-7 72-19 46-11 33-07 14-439 55-7 77-78 49-68 35-63 15-556 •8 72-33 46-20 83-13 14-467 -8 77-92 49-77 35-69 15-584 ■9 72-47 46-29 33-20 14-495 -9 78 06 49-86 35-76 15-612 52-0 72-61 46-38 33-26 14-523 56-0 78-20 49-95 35-82 15-640 •1 72-75 46-47 33-33 14-551 -1 78-34 50-04 35-88 15-668 •2 72-89 46-56 33-39 14-579 •2 78-48 50-12 35-95 15-696 •3 73-03 46-65 33-45 14-606 -3 78-62 50-21 36-01 15-724 ■4 73-17 46-74 33-52 14-634 -4 78-76 50-30 36-08 15-751 •5 73-31 46-83 33-58 14-662 •5 78-90 50-39 36-14 15-779 •6 73-45 46-91 33-65 14-690 •6 79-04 50-48 36-20 15-807 •7 73-59 47-00 33-71 14-718 -7 79-18 50-67 36-27 15-835 •8 73-73 47-09 33-77 14-746 -8 79-32 50-66 36-33 15-863 •9 73-87 47-18 33-84 14-774 -9 79-46 50-75 36-40 15^891 53-0 74-01 47-27 33-90 14-802 57-0 79-60 50-84 36-46 15 919 •1 74-15 47-36 33-97 14-830 •1 79-74 50 •gs 36-52 15-947 •2 74-29 47-45 34-03 14-858 •2 79-87 51-02 36-59 15-975 •3 74-43 47-54 34-09 14-886 -3 80-01 51-11 36-65 16-003 ■4 74-57 47-63 34-16 14-914 -4 80-15 51-20 36-72 16-031 •5 74-71 47-72 34-22 14-941 •5 80-29 51-28 36-78 16-059 •6 74-85 47-81 34-29 14-969 ■6 80-43 51-37 36-84 16-087 ■7 74-99 47-90 34-35 14-997 •7 80-57 51-46 36-91 16-115 •8 75-13 47-99 34-41 15-025 -8 80-71 51-55 36-97 16-142 ■9 75-27 48-07 34-48 15-053 -9 80-85 51-64 37 04 16-l70 54-0 75-41 48-16 34-54 15-081 58-0 80-99 51-73 37-10 16-198 •1 75-55 48-25 34-61 15-109 •1 81-13 51-82 37^16 16-226 •2 75-69 48-34 34-67 15-137 -2 81-27 51-91 37-23 16-254 •3 75-83 48-43 34-73 15-165 ■3 81-41 52-00 37-29 16-282 •4 75-97 48-52 34-80 15-193 -4 81-55 52-09 37-36 16-310 •5 76-10 48-61 34-86 15-221 -5 81-69 52-18 37-42 16-338 •6 76-24 48-70 34-93 15-249 •6 81-83 52-27 37-48 16 •366 •7 76-38 48-79 34-99 15-277 -7 81-97 52-35 37-55 16-394 •8 76-52 48-88 35 05 15-305 •8 82-11 52-44 37-61 16-422 ■9 76-66 48-97 35-12 15-333 •9 82-25 52-53 37-68 16-450 55-0 76-80 49-06 35-18 15-360 59 82-39 52-62 37-74 16-478 •1 76-94 49-14 35-24 15-388 -1 82-53 52-71 37-80 16-505 •2 77-08 49-23 35-31 15-416 -2 82-67 52-80 37-87 16-533 •3 77-22 49-32 35-37 15-444 -3 82-81 52-89 37-93 16-561 ■4 77-36 49-41 35-44 15-472 -4 82-95 52-98 38-00 16-589 •5 77-50 49-50 35-50 15-500 -5 83-09 53-07 38-06 16-617 ■6 77-64 49-59 35-56 15-528 -6 83-23 53-16 38-12 16-645 MgaPjC \ -01 -02 •03 •04 -05 -06 •07 -08 ■09 CajPjO 8 ■01 -03 -04 -06 •07 -08 -10 -11 -13 CaPjOj -01 -02 -03 -04 •05 -05 -06 -07 -08 P2O. ■01 •01 -02 -03 •03 -04 •05 -05 -06 P^ -003 -006 -008 -Oil •014 -017 •020 •022 -025 128 CONVERSION OF NITROGEN INTO AMMONIA. Table for Phosphates — contimiM. MgaPaO, CaaPaOs CaPjOs P2O5 P2 MgaPaOj CasPaOj CaPaOe PaOs Pa 59-7 83 '37 53-25 38-19 16-673 61-0 85-18 54-41 39-02 17-036 ■8 83-51 53-34 38-25 16-701 62 86-58 55-30 39-66 17-315 ■9 83 '65 53-43 38-32 16-729 63 87-97 56-19 40-30 17-595 60 '0 83-78 53-51 38-38 16-757 64 89-37 57-08 40-94 17-874 •1 83-92 53-60 38-44 16-785 65 90-77 57-97 41-58 18-153 ■2 84-06 53-69 38-51 16-813 66 9216 58-87 42 22 18-433 ■3 84-20 53-78 38-57 16-841 67 93-56 69-76 42-86 18-712 •4 84-34 53-87 38-63 16-869 68 94-96 60-65 43-60 18-991 •5 84-48 53-96 38-70 16-896 69 96-35 81-54 44-14 19-270 •6 84-62 54-05 38-76 16-924 70 97-75 62-43 44-78 19-550 •7 84-76 54-14 38-83 16-952 71 9914 U3-33 45-41 19-829 •8 84-90 54-23 38-89 16-980 100-00 63-87 45-81 20-000 ■9 85-04 54-32 38-95 17-008 Table for the Conversion of Nitrogen into Ammonia and Albumikoids (=lfx6-25). Albumin- Albumin' Albumin- N. NH3. oids (NX 6 -26). N. NH3. oids (NX6-26). W. NH3. oids (NX6-25). 0-1 0-12 0-63 1^9 2-31 11-88 3-7 4^49 23-13 -2 -24 1-25 2-0 2^43 12-60 •8 4^61 23-75 -3 ■36 1-88 -1 2^55 13-13 •9 4^73 24-38 -4 -49 2-50 ■2 2-67 13-75 4-0 4-86 26 00 •6 -61 3-13 •3 2-79 14^38 •1 4-98 26-63 -s -73 3-75 •4 2-91 15^00 •2 5^10 26-25 •7 •86 4-38 •5 3-04 16^63 •3 5^22 26-88 -8 -97 500 •6 316 16 "25 •4 5^34 27-50 -9 1-09 5-63 •7 3-28 16^88 ■5 5-46 28-13 1-0 1-21 6-25 •8 3-40 17-50 •6 5 ■58 28-75 ■1 1-34 6-88 •9 3-52 18-13 •7 5^71 29^38 -2 1-46 7-50 30 3-64 18-75 •8 6-83 30 00 •3 1-58 8-13 •1 3-76 19-38 •9 5-95 30-63 •4 1-70 8-75 •2 3-88 20-00 5 6^08 31-25 -5 1-82 9-38 -3 4-01 20-63 •1 6^20 31-88 -6 1-94 10-00 •4 413 21-25 •2 6-32 32^50 •7 2-06 10-63 -5 4-25 21-88 •3 6^44 33-13 ■8 2-19 11-25 •6 4-37 22-60 •4 6^57 33-75 N •01 •02 -03 04 ■05 •06 •07 OR ■09 NH3 •01 •02 ■04 • 05 -06 •07 ■09 in •11 Albun linoids ■06 •13 -19 ib •31 •38 •44 • 50 •66 CONVERSION OF NITBOQISN INTO AMMONIA. 129 Table for the Convbrsion of Nitrogen into Ammonia and Albuminoids — continued. Albiimiu- Albumin- Albumin- N. NHj. oWs (NX6-Z5). N. NHs, oids (NX 6-26). N. NH3. oids (NX6-25). 5-5 .6-69 34-38 9-1 11-06 56 88 12-6 15-32 78-75 •6 6-81 35-00 ■2 11-19 57-50 -7 15-44 79-38 •7 6-93 35-63 -3 11-31 58-13 •8 15-56 80-00 •8 7 05 36-25 •4 11-43 58-75 -9 15-68 80-63 •9 7-17 36-88 -5 11-55 59-38 13 15-81 81-25 6-0 7-30 37-50 •6 n-67 60-00 -1 15-93 81-88 •1 7-42 38-13 •7 11-79 60-63 -2 16-05 82-50 •2 7-54 38-75 -8 11-92 61-25 •3 16-17 83-13 •3 7-66 39 38 -9 12-04 61-88 -4 16-29 83-75 •4 7-78 40-00 10-0 12-16 62-50 -6 16-41 84-38 ■5 7-90 40-63 •1 12-28 63-13 -6 16-54 85-00 •6 8-02 41-25 •2 12-40 63-75 •7 16-66 85-63 •7 8-15 41-88 •3 12-52 64-38 •8 16-78 86-25 •8 8-27 42-50 •4 12-64 65-00 •9 16-90 86-88 ■9 8-39 43-13 •5 12-77 65-63 14-0 17 02 87-50 7-0 8-51 48-75 •6 12-89 66-25 •1 17-14 88-13 •1 8-63 44-38 •7 13-01 66-88 -2 17-27 88-75 •2 8-75 45-00 •8 13-13 67-50 •3' 17-39 89-38 ;3 8-88 45-63 -9 13-25 68-13 •4 17^51 90-00 •4 9-00 46-25 11-0. 13-37 68-75 ■5 17-63 90-63 •5 912 46 88 -1 13-50 69-38 -6 17-75 91-25 •6 9-24 47-50 ■2 13-62 70-00 •7 17-87 91-88 ■7 9-36 48-13 ■3 13-74 70-63 •8 17-99 92-50 •8 - 9-48 48-75 -4 13-86 71-25 -9 18-12 93-13 •9 9-61 49-38 •5 13 98 71-88 15-0 18-24 93-75 8-0 9-73 50-00 •6 14-10 72-50 •1 18-36 94-38 •1 9-85 50-63 •7 14-23 73-13 -2 18-48 95-00 •2 9-97 51-25 •8 14-35 73-75 •3 18-60 95*63 •3 10-09 51-88 ■9 14-47 74-38 -4 18-72 96-25 ■4 10-21 52-50 12-0 14-59 75-00 •5 18-85 96-88 •5 10-33 53-13 •1 14-71 75-63 •6 18-97 97-50 •6 10-46 53-75 •2 14-83 76-25 -7 1909 98-13 ■7 10-58 54-38 •8 14-95 76-88 -8 19-21 98-75 •8 10-70 55-00 ■4 15-08 77-50 •9 19-33 99-38 •9 10-82 55-63 -5 15-20 78-13 16-0 19-45 100-00 9-0 10-94 56-25 N •01 -02 •03 -04 •05 •06 -07 -08 -09 NHs •01 -02 -04 •05 •06 •07 -09 •10 -11 Album inoids -06 •13 •19 -25 •31 -38 ■44 •50 -56 130 KJBLDAHL TABLE. Table for Kjbldahl Process : 1 Gram of Substance being used. 1 C.C. N/5 aoid=0-002802 gram N (log. 3-44747) = 0-003407 gram NH3 (log. 3-53237). CO. N/5 acid used. XN. %UHs. CO. N/6 acid used. %N. %NHs. CO. N/B acid used. %N. XNHs. 1 2 3 4 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0-28 0-56 0-84 1-12 1-40 1-68 1-96 2-24 2-52 2-80 3-08 3-36 3-64 3-92 4-20 4-48 4-76 5-04 5-32 5-60 6-88 6-16 6-44 6-72 0-34 0-68 1-02 1-36 1-70 204 2-38 2-73 3-07 3-41 3-75 4-09 4-43 4-77 5-11 6-45 5-79 6-13 6-47 6-81 7-15 7-50 7-84 8-18 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 7-01 7-29 7-67 7-85 8-13 8-41 8-69 8-97 9-25 9-53 9-81 10-09 10-37 10-65 10-93 11-21 11-49 11-77 12-05 12^33 12^61 12-89 13-17 13-45 8^52 8-86 9^20 9^54 9-88 10-22 10-56 10-90 11-24 11-58 11-92 12-27 12-61 12-95 13-29 13-63 13-97 14-31 14-65 14-99 15-33 15-67 16-01 16-35 49 50 51 62 53 54 55 56 67 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 13-73 14-01 14-29 14-57 14-85 15-13 15-41 15-69 15-97 16-25 16-53 16-81 17-09 17-37 17-65 17-93 18-21 18-49 18-77 19-05 19-33 19-61 19-89 20-17 16-69 17-04 17-38 17-72 18-06 18-40 18-74 19-08 19-42 19-76 20-10 20-44 20-78 21-12 21-46 21-80 22-15 22-49 22-83 23-17 23-61 23-85 24-19 24-53 c.c. N/5 acid 0-1 0-2 0-3 0-4 0-6 0-6 0-7 0-8 0-9 %N -03 •06 •08 •11 •14 •17 ■20 -22 -26 % NH, •03 •07 •10 •14 •17 -20 -24 -27 •31 factobs for calculating nitrogenous substances. 131 Factors for Caloulatino Various Nitrogenous Substances. Multiply Nitrogen by Logarithm. Authority. Albuminoids . 6-25 0-79588 Albumin 6-39 0-80560 Richmond Casein .... 6-39 ,, Proteins of cheese . 6-39 „ milk . 6-39 ,, dried milk . 6-87 0-83696 Gelatin. 5-5 0-74086 Allen and Searle : Mitchell Proteins in meat-extraot 6-33 0-80140 Allen and Searle Hide substance (from nitrogen in leather) . 5-62 0-74958 J. G. Parker The comparative values of feeding stuffs * are frequently expressed in terms of " food units," which, are calculated as follows : — Multiply the sum of the percentages of oil and albuminoids by 2^ and add the percentage of "digestible carbohydrates." The result gives the percentage of food units. Exs. Two linseed cakes contained Oil Albuminoids Digestible carbohydrates Hence we have A 14-36 27-42 A B 14-36 10-06 27-42 28-50 32-59 34-13 . 41-78 x2^t = 104-45 + 32-59= 137 B 10-06 28-50 38-56 x2| = 96-40 + 34-13= 130-5. The relative values of A and B are thus 137 : 130-5, or 1-05 : 1. It must be specially noticed that " food units " express the total intrinsic value of a feeding stuflf — both as food, and as manure after it has passed through the animal. * Dyer, Fertilizers and Feeding Stuffs, p. 81. t Best done by using the equivalent fraction — , thus ~-^= Wi-i6. 132 oils, fats, and waxes. Oils, Fats, and Waxes. Oils are neutral bodies of more or less viscous consistence, liquid at the ordinary temperature, combustible, lighter than water and insoluble in it, sometimes soluble in alcohol, and always soluble in ether. Oils are classified as follows : — (i) fatty or fixed oils ; (ii) essential or volatile oils ; and (ui) mineral oils. The fatty or fixed oils are simply liquid fats, and, in contradistinction to the members of the second class, decompose when heated. Essential oils have strong and characteristic odours, and are vapourizable without decomposition, usually with little or no residue. Many essential oils consist of hydrocarbons or other fluid bodies mixed with solid oxidized compounds. On cooling such,, or by evaporation, the latter often crystallize out, the solid thus separating being termed the stearoptene, whilst the liquid is called the elaeoptene. Mineral oUs form a class somewhat by themselves, and include petroleum and oils distilled from peat, shale, etc. : they consist of mixtures of hydrocarbons. Fats are the (neutral) triglycerides of the higher fatty acids. A great many fats may be considered as mixtures of the triglycerides of several fatty acids, as of tripalmitin, tristearin and triolein ; but mixed esters of glycerol may also exist in fats, e.g., oleo- palmito-butyrate in butter-fat. Waxes are esters formed by the union of mono- or di-hydric alcohols with the higher fatty acids. The waxes, therefore, do not contain glycerol, and consequently, on being heated, do not emit the odour of acrolein, neither do they, on keeping, become rancid, owing to the stability of the esters of which they consist. Waxes are derived from both the animal and the vegetable kingdoms, beeswax being typical of the former, and carnauba wax of the latter. Japan wax consists chiefly of glycerides, and hence is classed among " fats " : whilst sperm oil contains only a small amount of glycerides, but a large percentage of unsaponifiable matter, and is classed among "waxes." (1) The acid value is the measure of the amount of free fatty acids in a fat or wax. It gives the number of milligrams of potassium hydroxide required to neutralize the free fatty acids in one gram of a fat or wax. (2) The saponification value, or Kottstorfer value, is the number of milligrams of potassium hydroxide required to saponify completely one ^ram of a fat or wax (or gives grams of KHO required for 1000 grams of a fat or wax). (3) The ester value gives the number of milligrams of potassium hydroxide required for the saponification of the neutral esters in one gram of a fat or wax. OILS, E'ATS, AND WAXES. 133 If a fat contains no free fatty acide, (3) is identical with (2) ; but in the more usual case, in which small quantities of free fatty acids are present, (3) is obtained by subtracting (1) from (2). (4) The iodine value gives the percentage of iodine absorbed by a fat or wax. (5) The Hekner value gives the percentage of insoluble fatty acids in a fat or wax. For most fats it lies between 95 and 97. (6) The Beichert-Meissl value gives the number of c.c. of deci- normal alkali (barium or potassium hydroxide) required to neutralize the distillate of volatile acids obtained from 5 grams of a fat or wax by the Keichert distillation process. 134 TABLES OP CONSTANTS OF OILS, FATS, AND WAXES. P IB i IB o O n e1 1-* 62-62-5 @ 30° C. 67-58 @ 40° C. 64 @ 30° 0. 74-76-6 @ 30° C. 64-66 @ 80° C. 68 @ 40° C. 80-81 @ 30° C. 68-5 @ 30° C. 59-6 @ 40° C. 68-8 @ 40° C. 63 @ 40° C' 68-60 @ 30° C. 63-63-6 @ 30° C. 63-4 @ 40° C. 70-72 @ 25° C. 66-6 @ 30° C. 60 @ 40° C. 72-2 @ 25° C. 65-68 @ 40° C. 74-5 @ 26° C. 1? is o us us V= S t-SS SsS sSJs ss s -f + + + ++ + + + + + + ■ + s -sss ss ■ -ss's -ss s ■ + + + + + + + + + ++ + + -f + iH rHrHiHr-liHrH r^ iHiH r-lrH^rH II 8*. i U3 esse T s 3! » "S ' S oi 'Sm«SS * ' S w ^ S "3 ' Ol 0> AGO 03A0>0aA 0030303 09 i 1+1 III -gii 'Vi^ II 1 lllllllg'^llll^lg '4 bo oaascssasaraasososcsoiasoiaaiososcQosos ■' ■' ■'■''' i '' Js J, i ■' i ■' ■' ■' '' ■' '' ■' ■' '' SaffiPoSoioiaa^aSaaaoiaioaai ooooooooooooooooooooo s ::i :;;::.::■■::;;::: ^ mi?!! iff until = « p- a, t4 f. § H ■p £? -B R'rt 3 -Sf !S Bus m" »o v W-^ nn) a o t? -i 4 OJ S! iH ms h . at fe ^ a ' & s s •« eo 1 + 1 t rH 11 5 s H ii 5 o -* CO oq o oltH 1 1 1 ®? ^ a t> m oa' .b Qt) OS S fe« ^ rA 4 J, A s ft? a o CQ lo o o ? ° ■ o * « 1 _p ■g izi ^ > a •S ;S M m i 1 ^ 1 " '-' EQ aj n o d 1^. @ 1 6 *^ S 3 ^y CO I C> d lO 1? "* ® 3 ® a 2^ R s ^ lO tn IH o 1 1 Is u 3 « ■* « ^£ §^ ,A ^ 4 ^o a a ffl-43 h , ■gl M in ua Mi* 1? O <£> CO a^ 00 o CQfl4 ®d € s s ^ ^ «-t OT 00 8j O 6 6 Ph ^ 1 1 •o (M ■*g ^ 1 136 TABLES OP CONSTANTS OF OILS, PATS, AND WAXfiS. a ° a o n h o if^ s ® w II 1 1 US U3 OD 03 ;j (tl •«* -J. ^9 s 11 7 s J. ■? 3 % i^ ®f & OS en ^la 1 r 1 1 1 S ^ s o o o o o o "S f t .a "• ■g H § ^ Si 3 ee •♦a |2i 1 1 I 9 1 i i '-' ^ l-» •A ^ S o . d d f^ d ® (B) b £ ! sa y la ^ CO « S ! ■? ^ I 7 ^ S .2 rt«? £!^ ii jj, J) 5j 4, Jb ffl *~ 00 ?H S => il s 3 Ip- CO 3 00 : S b o . ^ g-d a fO m A X 2 S tt> lA) ■* CO -fM «o ©.. as J, iH ^1, .^ « ftP "S 6 b o o S5 a o o ^ & 01 s H & !5 g i s re s 1 i a ^ s 1 « 5 s ^ & ^ UBICHBRT-MRTSSL VALtJfiS OF OILS, fATS, AND WAXHS. 13? Table showing Reichebt-Meissl Values fok cektain Oils, Fats, and Waxes. (e.o. K/10 alkali required by 5 grama.) Almond oil 0-5 Linseed oil Apricot kernel oil 0-0 Maize oil Arachls oil 0-0-1-6 Neat's foot oil Beeswax . 0-34-0-54 Niger seed oil . Cacao butter . 0-2-0-8 Nutmeg butter Castor oil 1-1 Olive oil Cocoa-nut oil . 7-0-7-8 Palm oil Cod-liver oil . 0-4-0-8 Rap« oil . Cotton-seed oil 0-7-0-9 Sesam6 oil Croton oil 12-13-5 Sperm oil Lard . 0-5-0-77 ESSENTI Wheat oil AL Oils. 0-0 . 4-4-5 0-9-1-2 011-0-63 . 1-4-2 6 0-8-1-9 0-0-8 . 1-2 0-6 . 2-3 The following results were obtained in the laboratory of Sohimmel & Co., and are considered to have been established with certainty.* 16° C". /16'. Kotation observed directly in 100 mm. tube with sodium light @ 20° 0. Oil of bergamot ,, lemon , „ orange (sweet) „ (bitter) 0-883- -886 0-858- -861 0-848--852 u + 9° to -fl5° not above 20° -1-59° to +67° not below 59° + 96° to + 98° not below 96° + 92° to +98° not below 92° (limonene) Oils and Fats. Table or Saponification Values. 5 Grams Saponified. 1 CO. N/2 aoid = 0-02805 gram KOH (log. 2-44793). So. of C.C. N/2 acid used. Saponification value. No. of CO. N/2 acid used. Saponification value. 30-0 -2 •4 •6 , -8 + 0-1 o.c. = +0-56 168-30 169-42 170-54 171-67 172-79 31-0 •2 -4 ■6 •8 + 0-1 0.0. = +0-56 173-91 175-03 176-15 177-28 178-40 * From liandolt's Optical Rotating Power of Organic Sub8taneei. 138 OILS AND PATS. Oils and Fats. Table op Saponification Yazves— continued. 5 Grama Saponified. 1 CO. N/2 acid = 0-02805 gram KOH (log. 2 ■44793). No. of c.c. N/2 Saponification No. of c.c. N/2 Saponification acid used. value. acid used. value. + 0-1 e.c. = +0-56 + 0-1 c.c. = +0-56 32-0 179-52 37-8 212-06 •2 180-64 38-0 213 18 ■4 181-76 •2 214-30 •6 182-89 •4 215-42 ■8 184-01 -6 216 55 33-0 185-13 •8 217-67 •2 186-25 89-0 218-79 •4 187-37 -2 219-91 •6 188-SO -4 221-03 •8 189-62 -6 22216 34-0 190-74 -8 223-28 ■2 191-86 40-0 224-40 •4 192-98 •2 225-62 •6 194-11 •4 226-64 •8 195-23 •6 227-77 35-0 196-35 •8 228-89 •2 197-47 41-0 230-01 •4 198-59 •6 199-72 10 5-61 •8 200-84 2-0 11-22 36-0 201-96 3 16-83 •2 203-08 4-0 22-44 •4 204-20 6-0 28 05 •6 205-33 6-0 33-66 •8 206-45 7-0 39-27 37-0 207-57 8-0 44-88 •2 208-69 9-0 50-49 •4 209-81 10 56-10 •6 210-94 The Saponification Equivalent of a fat is tte number of grams that would be sapordfled by 1 litre of a normal solution of am,y alkali. It is the quotient obtained by dividing 56108 by the saponification value. BUTTER ANALYSIS. 139 SOLTTBLE OB VOLATILE AOIDS IN BlTTTEE FAT. 5 Grams Bntter Fat being taken. CO. 5^ AlkaU. •/. Solnbie C.C. ■/. Soluble C.C. V. SoluWe or VolatUo S. Alkali. or Volatile N Alkali. or VoUtlle 10 Acids.* 10 Acids. 10 Acids. 1-0 0-18 13-5 2-38 26-0 4-53 1'6 0-26 14-0 2-46 26-5 4-66 2-0 0-35 14-5 2-55 27-0 4-75 2'5 0-44 15'0 2-64 27-5 4-84 3-0 0-53 15-5 2-73 28-0 4-93 3-5 0-62 16 2-82 28-5 5-02 4-0 0-70 16-5 2-90 29-0 5-10 4-5 0-79 17-0 2-99 29-6 5-19 6-0 0-88 17-5 3-08 30-0 5-28 6-5 0-97 18-0 3-17 30-5 5-37 6-0 1-06 18-5 3-26 310 5-46 6-5 1-14 190 8-34 31-5 5-54 7-0 1-23 19'5 3-43 32-0 5-63 7-6 1-32 20-0 3-52 32-5 5-72 8-0 1-41 20-5 8-61 33'0 6-81 8-5 1-50 21-0 3-70 33-5 5-90 9 1-58 21-6 3-78 34-0 6-98 9-5 1-67 22-0 3-87 34-5 6-07 10-0 1-76 22-5 3-96 35-0 6-16 10-6 11-0 1-85 1-94 23-0 23-6 4-05 4-14 0-1 0-02 11-6 2-02 24-0 4-22 0-2 0-04 12-0 2-11 24-5 4-31 . 0-3 0-05 12-5 2-20 25-0 4-40 0-4 0-07 13 2-29 25'6 4-49 • Calculated as Butyric Acid, C4H802=88. 140 DBTBEMINATION OF BUTTBR-B^AT IN MARGARINIJ. Table fob the Dbtbkmination of Buttbe-Fat in Mabgabinb.* Reioherfc-Wollny Percentage ot Butter-Fat Number of the Mixture. present in the Mixture. 4-0 10 4-3 . 11 4-6 . 12 4-9 . 13 5-2 . 14 5-5 . 15 5-9 16 6-2 . 17 6-5 . 18 6-8 . 19 7-1 . 20 N'oie. — Since the above was issued margarine manufiicturera have largely introduced cocoa-nut oil iuto their product, 40 per cent, or more being sometimes used. The volatile acids thus derived may cause an unduly high percentage of butter-fat to be recorded (see The Analyst, 1904, p. 208). Table showing the Vabiations in Reiohbbt-Wollny NUMBEB, ETC., OF BUTTBB AND MAEGABINE. t Batter. Margarine. Mean. Variations. Reiohert-WoUny number 28-4 C.C. 21-2-35 c.c. 00-0-3 0.0. Insoluble fatty acids . 87-75% 85-6-89-6% 95-96% Soluble fatty acids 5-58% 4 •6-7-0% trace Butyro - refractometer (Zeiss) at 35" 0. 46-0 43-8-49 52-56 Iodine absorption . 37-4% 31-6-42-0% 50-60% . Sp. gr. 100° F./100° . 0-9117 0-9105- -9122 0-901--903 Potash absorption . 22-58% 22-01-22-98% 19-1-19-6% The Interdependence of the Physical and Chemical Criteria in the Analysis of Bdtter-Fat. During 1901-2 over four hundred samples of butter were taken from farms or creameries in various parts of the United Kingdom, inclndiag the Orkneys, Shetlands and Hebrides, the samples being specially selected with the view of ascertaining by analysis the extent to which the chemical nature of butter-fat is dependent on the climatic influences to which the cows are exposed, on the nature and amount of the food supplied, and on the breed, period * From the Report of the official method for determining the percentage of butter-fat in margarine (see The Analyit, 1900, p. 310). t By H. Droop Richmond, see Appendix XXT. to the Final Eepmi of the Depart- mental Committee on Butter Regulations, 1901. ANALYSIS OP BUTTBE PAT. 141 of lactation, and idiosyncrasy of the individual cow. Of the samples collected, 357 were fuUy analysed in the Government Laboratory, and the results, which are fully recorded in supple- ments to the report already referred to, form the subject of a paper with the above title* by Dr T. B. Thorpe, C.B., F.R.S. The results are summarized in the subjoined table : — Butter-tat. S67 samples examined. 39 samples (10-9^.) 290 samples (81-2%). 28 samples (7-9%). Reiehert - Wolluy number Sp.gr. 100° F./100°F. Saponification eCLuiva- lent (Koettstorfer number) Butyro - refiactometer (Zeiss) at 45° C. . Soluble acids +% Insoluble acids % 22-5-24-5 0-9101- -9108 255-4-251-3 219-3-222-8 42-41-5 4-3-4-7 90-1 -89-4 25-5-30-5 0-9110- -9123 251-1-242-4 223-0-231-0 41-3-39-9 4-8-5-7 89-3-87-9 31-3-32-6 0-9125- -9130 241-5-241-2 231-9-232-2 39-7-39-4 5-8-6-0 87-9-87-7 Dr Thorpe makes tl\e following comments : — " It will be seen that, in a general sense, the relative density of butter-fat increases as the Eeichert-Wollny number is augmented.^ This would, of course, follow from the well-known fact that the glycerides of low molecular weight have a greater density than the glycerides of the higher fatty acids which occur in butter." . . . " Speaking broadly, the variations of the saponification numbers are in inverse relation to those of the Eeichert-WoUny values and the relative densities.^ . . . The Zeiss numbers generally decrease in magnitude as the Eeichert-Wollny values increase, but the rate of diminution is not regular." X BoAED OP Ageiculturb Eules. Sale of Butter Eegulations, 1902. Where the proportion of water in a sample of butter exceeds 16 per cent., it shall be presumed for the purposes of the Sale of Food and Drugs Acts, 1875 to 1899, until the contrary is proved, that the butter is not genuine by reason of the excessive amount of water therein. This regulation extends to Great Britain, and came into operation on 15th May 1902. « Joam. C?iem. Soc, 1904, pp. 248-256. t Calculated as butyric acid. t These relations are deduced from curves plotted from the averages of the various analytical results. 142 CALCULATION OF THE RESULTS OF MILK ANALYSES. The Departmental Committee on butter regulations, in their Final Eeport, dated 1st December 1903, recommend ; — (1) That the figure 24, arrived at by the Eeichert-WoUny method, should be the limit below which a presumption should be raised that butter is not genuine. (2) That the use of 10 per cent, of sesam6 oil in the manufacture of margarine be made compulsory. (3) That steps should be taken to obtain international co-operation. Two members of the Committee, however, favoured the Eeichert- Wollny number of 23 instead of 24. A third member, who did not sign the Report of the majority, stated in a separate report that he considered it would be "highly dangerous" to fix any limit at present. Calculation of the Results of Milk Analyses. According to the " Sale of MUk Regulations, 1901 " (see p. 143), milk is to be presumed not to be genuine if the non-fatty solids fall below 8"5 per cent., or the mUk-fat below 3 per cent. The calculation of the amount of added water in the case of samples whose non-fatty solids fall below the above limit is made as follows : — Since 8'5 parts of non-fatty solids correspond to 100 parts of genuine {i.e., presumably genuine) milk, S parts of non-fatty solids correspond to -g;— xS of genuine milk ; and 100 parts of the watered sample will contain 100-^^ = ^ (8-5 - S) of added water. 8"5 8'5 Since log. 1^=1-07058, we have 8'5 log. of percentage of added water = 1'07058-H log. (8'5 — per cent, of non-fatty solids found). We will now consider two examples. Example I. Example II. Non-fatty solids . . 7'60 per cent. 7 89 Fat 2-80 ■ „ 2-25 Example I. 8-50 -7-60 =0-90. 1-07058 log. 0-9 1-95424 l-02482=log. 10-6 .-. at least 10 per cent, of added water. A mixture of 90 parts of genuine milk and 10 parts of 90 added water should contain -_-x 3=2-7 per cent, at least of fat. The sample contains 2 -8 per cent., and hence contains proportion- ately a little more fat than that given in the Regulation. CALCULATIOif OF THE EESULTS OF MILK ANALYSES. 143 Example II. 8-50 -7 -89 =0-61. 1-07058 log. 0-61= 1-78533 0'85591=log. 7'2 .■. at least 7 per cent of added water. A mixture of 93 parts of genuine milk and 7 parts of added water should contain 0'93x3=2"79 per cent, at least of fat. The sample contains only 2 '25 per cent., and is, therefore, ^ ~ '- = 19 per cent, deficient in milk-fat as well. a to Note. — The results given above can be expressed in a different way. Thus, in Ex. I. we have 90 parts of genuine milk mixed with 10 parts of water ; or to 100 parts of milk ll'l parts of water have been added — hence, on this view, the sample has. been diluted with ll'l per cent, of added water. Similarly, a milk that consisted of equal parts of milk and water would be said to be diluted with 100 per cent, of added water. Seeing, however, that the real issue at stake is the composition of the article supplied to the purchaser, the statement that a sample of "milk" contains, e.g., 90 per cent, of genuine milk and 10 per cent, of added water is considered decidedly preferable. Board of Agriculture Rules. Sale of Milk Regulations, 1901. Milk 1. Where a sample of milk (not being milk sold as skimmed, or separated, or condensed, milk) contains less than 3 per cent, of milk-fat, it shall be presumed for the purposes of the Sale of Food and Drugs Acts, 1875 to 1899, until the contrary is proved, that the milk is not genuine, by reason of the abstraction therefrom of milk-fat, or the addition thereto of water. 2. Where a sample of milk (not being milk sold as skimmed, or separated, or condensed, milk) contains less than 8"5 per cent, of milk-solids other than milk-fat, it shall be presumed for the purposes of the Sale of Food and Drugs Acts, 1875 to 1899, until the contrary is proved, that the milk is not genuine, by reason of the abstraction therefrom of milk-solids other than milk-fat, or the addition thereto of water. Skimmed or Separated Milk. 3. Where a sample of skimmed or separated milk (not being condensed milk) contains less than 9 per cent, of mUk-solids, it shall be presumed for the purposes of the Sale of Food and Drugs Acts, 1875 to 1899, until the contrary is proved, that the milk is not genuine, by reason of the abstraction therefrom of milk-solids other than milk-fat, or the addition thereto of water. The above regulations extend to Great Britain, and camfe into operation on 1st September 1901. 144 MILK ANALYSIS. Table giving the Peecentagb Deficiency of Non-fatty Solids (N.F.S.) IN Milk in which these are below the Legal Minimum of 8 "5 per cent. X Non-fatty % Deflcienoy % Non-fatty % Deflcienoy % Non-fatty % Deficiency Solids. in N.r.S. Solids. in N.F.S. Solids. in N.F.S. 4-0 52-94 5-5 35-29 7-0 17-65 •1 51 -76 •6 34-12 •1 16-47 •2 50-59 -7 32-94 •2 15-29 •3 49-41 ■8 31-76 •3 14-12 •4 48-24 •9 30-59 •4 12-94 •5 47-06 6^0 29-41 •5 11-76 •6 45-88 •1 28-24 -6 10-69 ■7 44-71 •2 27-06 -7 9-41 ■8 43-53 •3 25-88 •8 8-24 ■9 42-35 •4 24-71 -9 7-06 5-0 41-18 -5 23-53 8-0 5-88 •1 40-00 •6 22-35 -1 4-71 •2 39-82 •7 21-18 •2 3-53 •3 37-65 •8 20-00 -3 2-35 •4 36-47 -9 18-82 •4 1-18 ■01 -12 •02 •23 •03 •35 •04 •47 •05 •06 -07 08 -09 Subtract -59 -71 -82 -94 1-06 Ux. — A sample of "milk" containing 7-26% of non-fatty solids would thus show a deficiency of 15-29 - -71 = 14-58%. , Table showing the Deficiency in Fat in Creamed Milk. X Milk-fat. X Deficiency in Fat. X Milk-fat. Z Deficiency in Fat. X Milk-fat. X Deficiency in Fat. 0-1 -2 -3 •4 •5 •6 •7 •8 -9 1-0 96-67 93-33 90-00 86-67 83-33 80-00 76-67 73-33 70-00 66-67 1-1 •2 ■3 •4 •5 -6 •7 •8 •9 2^0 63-33 60-00 56-67 53-33 50-00 46-67 43-33 40-00 36-67 33-33 2-1 -2 -3 •4 •5 •6 •7 •8 •9 30-00 26-67 23-33 20-00 16-67 13-33 10-00 6 67 3-33 -01 0-33 -02 0-67 •03_ 1-00 -04 -05 •06 •07 •08 •09 Subtract 1-33 1-67 200 2 '33 2-67 3^00 SPECIFIC GRAVITY OP UlLK. 145 ft *» d p. w ■* ••• ^ ^ CQ CQ CO 00 ^>-o»ow(^lcQLpcp^«oap04Mu^ocpa>pr1CQU3 cq CO ' -^ ' ' ira ' CQ CO CO CO raoapwco^u3to^*o»p(Neoipeocpaap(Neoio iH04 "'co'''" 'tP* CO CO CQ 00 aaprHC^cp-^u^p^«pp(^Icpu»pl>•ppcqoQ'^ O rH N ' CO CQ CO CO CQ aiprHCiOT'5ti«i»ooospc.oopG.oopoapr^(^^cp■^»pp^*oopr-^ Ah''''"''" N ' '" ' CQ -OOaspP'~HCTlNCOTt)l£S?O^CTO OS O r-t w (N c^^ OT-i(NCQ-^iO-OOCnOi-<{MCO'^WTOt^OOOSO II s to o s + V ■* p^ 00 (M fl h + 1 Si B Cq 1rt^ p "o © •5 43 CO o -7-1 , ' * r^^ g fet ■-^ B »^?^ ti tn "•*«> ^M o« ■*-» « " > f GO % "Si: oo tu o >-< r-1 ^ o o •a .3 i 5 ^^ « 1-1 dp. .a 9i M " a •a O 0) t- a •sb .a ,^.4 d & & , *> o o bO^^-i«* 3 :3a & ;^s ^r M M J^ oJlUfH -c o a M g ^ 146 PRESERVATIVES IN MILK AND OBBAM. Preservatives in Milk and Cream. The Local Government Board have recently issued a Draft of "The Public Health (Milk and Cream) Regulations, 1912," by which the addition of any preservative substance to milk (including separated, skimmed, condensed, and dried milk), or to cream con- taining less than 40 per cent, by weight of milk fat, is prohibited. The addition of any thickening substance* to cream, whether con- taining preservative or not, is also prohibited. These regulations will come into operation on June 1, 1912. Cream containing 40 per cent, or more by weight of milk fat may contain no preservative substance other than (i) Boric acid, borax, or a mixture of these preservative substances, — the article to be described, in such cases, as Preserved Cream, and the amount of preservative, calculated as boric acid (H3BO3), to be specified on the label thus : " Preserved Cream containing Boric Acid not exceeding — per cent." t (ii) Hydrogen peroxide, in amount not exceeding O'l per cent, by weight — the cream being labelled " Preserved Cream Peroxidised." These latter Regulations will not come into operation till January I, 1913. Quinine. Hydrochloride of Quinine, C^oHi^N^O,, HCl, mfi. =396-712 Percentage composition. CaoHajNA • • 81-73 HCl . . . . 919 H2O .... 9-08 100-00 Sulphate of Quinine, 2[(C2„H2,N202)2.H2SOJ, 15H2O. = 1763-26 Percentage composition. H,0 . To convert [ Multiplier. C20H24N2O2 into CjoHaiNA. HCl, 2HaO ! 1-2236 ,, 2[(Ca,HMNA)2-H2S04], 15HaOi' 1-360 73-65 11-12 15-33 100-00 Lo;;. to be added. 0-087 6462 0133 4273 Tincture of Quinine, B.P. 1898, contaii;i3 2 grams of hydrochloride of quinine in 100 c.c. * i.e. sucrate of lime, gelatin^ starch paste, etc. ; but neither cane nor beet sugar shall be regarded as a preservative or as a thickening substance, t No meption is made ol the maximum amount ol boric acid that will be allowed. (To Face Page 146). The Public Health (Milk and Cream) Regulations, 1912," were issued on August 1, 1912. They differ from the Draft, as summarized on page 146, in the following respects : — For 40 per cent.'' (of milk fat) read "35 per cent." For "June 1, 1912 " read " October 1, 1912." Paragraph (ii) should be (ii) Hydrogen peroxide— the cream being labelled Preserved Cream (Peroxide)." MIXTURES OF COPFBB AND CHICORY. 147 E. W. T. Jones's Method for the Estimation of Chicory in Mixtures of Coffee and Chicory. The sample is dried in the water-oven, and 5 grams are weighed into a large porcelain dish. Aboiit 200. c.c. of water are added, and boiled for 15 minutes. After allowing a minute or two for settling, the liquid is strained through a piece of copper gauze placed in a funnel into a 250-c.c. measuring flask, care being taken to disturb the grounds as little as possible. The latter are now treated with about 50 c.c. of water, boiled for 5 minutes, and the liquid strained off as before. The flask is then cooled, made up to the mark, well shaken and filtered, the liquid being poured on a dry filter ; 50 c.c. of the filtrate ( = 1 gram of the coffee mixture) are then pipetted into a weighed, flat-bottomed glass dish, evaporated to dryness over a steam-bath, and finally dried in the water-oveu. The results are returned to the nearest percentage of chicory (see Table on p. 148). Treated as above, chicory gives a mean percentage extract of 70 ; while coffee gives a remarkably constant percentage extract of 24. To determine the percentage of chicory from the weight of extract obtained, we proceed as follows : — Let a; = percentage of chicory. .•. 100 -!B= ,, coffee, and let E= „ extract found. .-. 7b+ -24(100- a;) = E. 0-7a; + 24--24a!=E. •46a!=E-24. E-24. '"- -46 Putting a; = 1, we find E = 24'46, and the table on page 148 is in this way easily calculated. Note. — By the above method E. W. T. Jones obtained the excellent results recorded in The Analyst, 1882, 7, 76, in the case of the Birkenhead " Coffee " samples. Lead in Tartaric and Citric Acids and in Cream OF Tartar. Dr MacFadden, in a Report to the Local Government Board,* recommends the adoption of a limit of 0002 per cent, (approxi- mately ith grain per lb.) of lead as impurity in tartaric acid, citric acid, and cream of tartar. * Report (No. 2) on Lead and Arsenic in Tartaric Acid, Citric Acid and Cream of Tartar, 1907. 148 COFFEE AND CHICORY TABLE. Table showing the Percentage of Chicory with Coffee from THE Percentage of Aqueous Extract. Extract per Chicory per Extract per Chicory per Extract per Chlcoiy per cent. cent. cent. cent. cent. cent. 24-46 1 40-10 36 55-28 68 ■92 2 ■56 36 74 69 25-38 3 41-02 37 56 20 70 ■84 4 ■48 38 66 71 26-30 5 -94 89 57 12 72 •76 6 42-40 40 58 78 27-22 7 -86 41 58 04 74 -68 8 48-32 42 50 75 28-14 9 •78 43 96 76 •60 10 44^24 44 59 42 77 29 06 11 •70 45 88 78 -52 12 45-16 46 60 84 79 -98 13 ■62 47 80 80 80-44 14 46-08 48 61 26 81 •90 15 -54 49 72 82 31 •se 16 47-00 50 62 18 83 •82 17 -46 51 64 84 32-28 18 -92 52 63 10 85 •74 19 48-38 53 56 86 33^20 20 -84 54 64 02 87 •66 21 49-30 55 48 88 34^12 22 ■76 56 94 89 -58 23 50^22 57 65 40 90 35-04 24 -68 58 86 91 -50 25 51-14 69 66 32 92 ■96 26 ■60 60 78 93 36 ^42 27 52-06 61 67 24 94 ■88 28. ■52 62 70 95 37 ^34 29 ■98 63 68 16 96 -80 30 53^44 64 62 97 38-26 81 •90 65 69 08 98 •72 32 54 ■36 66 54 99 39-18 33 ■82 67 70 00 100 •64 34 pood pre8bbvatives. 149 Food Preservatives. The Departmental Committee on Food Preservatives appointed in 1899 in their Report,* issued in 1901, make the foflowng recommendations : — ■ (a) That the use of formaldehyde or formalin, or preparations thereof, in food or drinis, be absolutely prohibited, and that salicylic acid be not used in a greater proportion than 1 grain per pint in liquid food and 1 grain per pound in solid food. Its presence in all cases to be declared. (6) That the use of any preservative or colouring matter what- ever in milk offered for sale in the United Kingdom be con- stituted an offence under the Sale of Food and Drugs Acta.t («) That the only preservative which it shall be lawful to use in cream be boric acid, or mixtures of boric acid and borax, and in amount not exceeding 0"25 per cent, expressed as boric acid. The amount of such preservative to be notified by a label upon the vessel. {d) That the only preservative permitted to be used in butter and margarine be boric acid, or mixtures of boric acid and borax, to be used in proportions not exceeding 0'5 per cent, expressed as boric acid. (e) That in the case of all dietetic preparations intended for the use of invalids or infants, chemical preservatives of all kinds be prohibited. (f) That the use of copper salts in the so-called greening of pre- served foods be prohibited. (g) That means be provided either by the establishment of a separate court of reference, or by the imposition of more direct obligation on the Local Government Board, to exercise supervision over the use of preservatives and colouring matters in foods, and to prepare schedules of such as may be considered inimical to the public health. With regard to the recommendation marked (/), Dr Tunniciilfe, a member of the Committee, points out the value of appearance in rendering foods appetising, and recommends that not more than the equivalent of half a grain of metallic copper per pound should be allowed to be added, the aclual amount used being declared. Arsestio in Food. In the Final Eepoit of the Royal Commission appointed to in- quire into Arsenical Poisoning, issued in November 1903, the Commissioners state (Part VIII., p. 50), that "In our view it would be entirely proper that penalties should be imposed under the Sale of Food and Drugs Acts upon any vendor of beer or any other liquid food, or of any liquid entering into the- composition * Report of Departmental Committee on Preservatives and Colouring Matters in Food, 1901, pp. XXX and xxxi. t See also Circular issued by the local Government Board, July 11, 1906 (reprinted in The Analyst, 1906, 31. 278). 150 DATA IN HEAT AND THBBMO-CHBMTSTRY. of food, if that liquid is shown by an adequate test to contain xis*'^ of a grain or more of araenic in the gallon ; and, with regard to solid food — no matter whether it is habitually consumed in large or in small quantities, or whether it is taken by itself (like golden syrup) or mixed with water or other substances (like chicory or ' carnos ') — if the substance is shown by an adequate test to contain jj^th grain of arsenic or more in the pound." Note. — In the above " arsenic '' is taken to mean arsenious oxide (As,Ob). Data in Heat and Thermo-Chbmistky. The C.G.S. unit of heat is the calorie, which is the quantity of heat required to raise 1 gram of water through 1° C. A large or major calorie is the quantity of heat required to raise 1 kilogram of water through 1° 0. A British Thermal Unit (B.T.U.) is the quantity of heat required to raise 1 lb. of water through 1° Fah. 1 (large) calorie=3'968 B.T.U. (log. 0^59857). 1 B.T.U. = 0-252 (large) calories (log. 1-40143). The values of the mechanical equivalent of heat, that is, the number of units of mechanical work equivalent to one unit of heat, or Joule's equivalent (designated by the letter J), aa:e usually taken to be as follows : — 777 foot-pounds are equivalent to 1 B.T.U. (lb. deg. Fah.). 1399 „ „ „ 1 lb. deg. 0. 426-3 kilogrammetres „ „ 1 kilogram-deg. C. or kilo- calorie. 4-180 joules* „ „ 1 gram-deg. C. or calorie. The water for the heat units is supposed to be taken at 20° C. (68° F.) and the degree of temperature is supposed to be measured by the hydrogen thermometer. Heat evolved in calories (water-gram-degrees) on burning 1 gram of: — Hydrogen to water at 0° 34000 Carbon to carbon dioxide ... . 8080 „ „ monoxide . . 2400 Coal 8300-6400 Anthracite 8000 Coke 7100-6860 Wood (with 20 per cent, water) . . . 2750 „ (air-dried) 2900 „ (dried at 120° C.) 3600 Peat (air-dried) 3000-3500 Lignite 3500-5000 The latent heat of water is 80 (gram-deg. C.) or 144 in B.T.U. The latent heat of steam is 537 (gram-deg. 0.) or 967 in B.T.U. * The joule is the practical unit of work in the G.G.8. system. It equals 10 milliaD(or W) absolute units of work (ergs), determination op the calorific power of fuel. 151 The Determination of the Calorific Power of Fuel by Thompson's Calorimeter. Although recent comparative experiments with different types of calorimeter * have conclusively proved the superiority of Mahler's Bomb Calorimeter above all other forms, still, owing to the expense of the instrument, it seems unlikely to come into general use at present. And since Thompson's Calorimeter is so largely used, the following details of manipulation are given, so that the best results the instrument is capable of giving may be obtained .t In the first place it should be noted that for coals of an anthracitic character, yielding more than 87 per cent, of coke, or for coke itself, Thompson's Calorimeter is not suited as an indicator of their comparative calorific power, for the simple reason that some of the carbon is so graphitic in its nature that it will not burn perfectly when mixed with nitrate and chlorate of potash ; but with bituminous and semi-bituminous coals the appaiatus yields very satisfactory results. Prepa/ration of the sample of coal. — Sample the coal until an average portion passes through an 8-mesh sieve. Take about 20 grams of this ana run through a 68-mesh sieve, taking care that the whole sample selected is thus treated. Then dry at 100° C, and use the dried coal for making the determination. Preparation of the oxidizing mixture. — Potassium nitrate and chlorate are used in the proportion of 1 part of nitrate to 3 of chlorate. These are first thoroughly dried, ground separately, and sifted through a 30-mesh sieve — a finer powder being prejudicial. The powders are then mixed in the proportions stated, and kept in a well-stoppered bottle. Preparation of the wick. — Oxford cotton is soaked in a moderately strong solution of potassium nitrate, and dried. When dry, it should bum a little too quickly. It should then be rubbed between two pieces of cloth until it bums just freely enough. Four cotton strands are twisted together, cut into j-inch lengths, thoroughly dried, and put into a bottle. 2'he process. — Before weighing out the coal, etc., read the temperature of the room, and regulate the temperature of the water used by the following table. Temperature of room. Water should be at. 80° F. (26-7° C.) 70° F. (21 -ro.) 72° (22-2° C.) 64° (17 '8° C.) 67° {19-4° C.) 60° (15-6° 0.) 60° (15-6° 0.) 54° (12-2° C.) 55° (12-8° (J.) 50° (10° 0.) 50° (10° C.) 46° (7-8° C.) 42° (5-6° C.) 40° (4-4° C.) ♦ See paper by Brame and Cowan, J.S.C.I., 1903, p. 1230. t The details given are condensed from the valuable paper by J. W. Thomas in the Chemical ITewa, 26th March 1881, p. 136, with additions by the author. 152 DfiTBRMINATION OP THE OALOEIPIC POWBB OF EtJBL. Instead of simply filling up to the 29,010 grain mark, it is more accurate to measure out 2 litres, less 116 cc, since 29,010 grains of water occupy 1884 cc. A tall narrow cylinder with a single mark serves to measure the 116 cc to be withdrawn from the second litre before pouring in. Put a thermometer into the water and leave it there while weighing out the coal. 30 grains of the dried coal are intimately mixed with 330 grains of the oxirlizing mixture ; best with a spatula rather than in a mortar. Introduce the mixture into the cylinder (3j"xf"), pressing down in small portions at a time with a test-tube ; do not tap. Put in the fuse, opening out its lower end in the mixture. Then read the thermometer, iight the fuse and place the cylinder, with its stand and cover, quickly in the jar. The combustion should occiipy between one and two minutes. At its conclusion the stopcock is opened and the whole moved up and down in the liquid with the thermometer, the latter being read three or four times, and its maximum reading noted. An example will show the mode of calculating results. Temperature of room 60° F. „ water after combustion . . . 671 ^ „ „ before combustion . . . 54'4 Increase 12'7 + ^* 1-27 Evaporative power of the coal, i.e. number of lb. of water at 212° F. evaporated by 1 lb. of the dried coal 13'97 13 '97 X 537 = 7502 calories, i.e. grams of water heated 1° C. by 1 gram of the coal. 13-97x967 = 13509 British Thermal Units, or number of lb. of water heated through 1° Fah. by 1 lb. of the coal. The evaporative power of the coal in its original state can be calculated as follows : — Suppose the above coal to have 11 '5 per cent, of moisture, then 1 lb. contains •885 lb. of dry coal, and "115 lb. of moisture, •885xl3-97 = 12-36. The quantity of heat required to raise 0115 lb. of water from 60° to 212° F., and to convert the boiling water into steam, is (152 + 967) X -115 poimd-degree Fah. units, which has an evaporative power of 1119X-115 ^e^^— = 0-13 lb. * An addition ol 10 per cent, is made to allow tor the heat absorbed by the xjopper cylinder and stand and for carbon not completely burned. It has been found to be too small in most cases, and an increase to 15 per cent, has been suggested by Scheurer-Kestner, ELBOTRICAL UNITS. 153 Hence the evaporative power of the original coal is 12-36- 13= 12-23 lb. r r s Since __ =1-16, the amount to be finally deducted is obtained by simply multiplying this number by the amount of water contained in 1 lb. of coal. When the ultimate analysis of a dry coal is known, the calorific value (in calories) can be approximately calculated by the following formula : — Q=j-iQ 1 8140 C + 31500 (H- (^+|lzi j + 2220 S | = 81-4 + 43-125 {8 H-(0 + N) + l} +22-2 8. Thus, the analysis of a dry coal gave 9009 ; H 3-85 ; (0 + N) 361 ; S Q-ll. Hence Q = 81-4 x 90-09 + 43125{8 x 3-85 - 3-61 + l} + 22-2 X -77 = 7333 + 1216 + 17 = 8566 Mahler's calorimeter gave 8629 calories. ^q Electrical Units. The ohm is the resistance oflered to an unvarying electric current by a column of mercury at 0° C, 14'4521 grams in mass, of a constant cross-sectional area, and of a length of 106-3 cm. The ampere is represented by the unvarying electric current which, when passed through a 10 per cent, aqueous solution of silver nitrate, deposits silver at the rate of 0001118 gram per second. " The volt is the electrical pressure that, if steadily applied to a conductor whose resistance is one ohm, will produce a current of one ampere, and which is represented by 0'6974 ( — — ) of the electrical pressure at 15° C. between the poles of a standard Clark's CeU. Table of Electro-Chemical Equivalents. (In grams per coulomb. *) Hydrogen Potassium Sodium . Gold Silver Copper (ie) ,, (ous) Mercury (ic) (ous) . Tin(io) . " ("'") ^. . • The coulomb Ib t in one Eecond (also ( 0-000010384 Iron (ous) . . 0-0002902 0-0004053 .. (io) . 0-0001935 0-000-2388 Nickel . . 00003043 . 0-0006791 Zinc . 0-000337 0-001118 Lead . 0-0010716 0-0003281 0-0006562 Oxygen . 0-00008286 0-0010374 Chlorine . . 0-0003673 0-0020748 Iodine . 0-001314 0-0003058 Bromine . . 0-0008282 0-0006116 Nitrogen . . 0-0000485 the quantity of eleutr city conveyed bya current of one ampere (all ed an ampere-seco nd). 154 ELBOTRIOAL UNITS. The values given on. p. 153 are obtained by multiplying 0'000010384 (the electro-chemical equivalent of hydrogen) by the fraction atomic weight ^j ^^-^^ gigj^gj^^_ valency The prefix meg- means a million times the unit to which it is prefixed. The prefix micro- means a millionth part of the unit to which it is prefixed. Thus a megohm is a million ohms, and 1 microvolt is a millionth of a volt. The watt is the power of a current of 1 ampere flowing under a pressure of 1 volt. It equals y^j of one horse-power. 1 kilowatt=1000 watts^44,240 ft.-lb. per min. = 1'34 horse-power. 1 electrical horse-power =746 watts=33,000 ft.-lb. per min. 1 B.T.U. =3,600,000 watt-seconds, or 3-6x 10« watt-seconds. 1 kilowatt-hour =1 "34 horse-power hours. 1 French or metric horse-power =75 kilogrammetres per sec. =32,549 ft.-lb. per min. ^ =736 watts. = 0'9863 British horse-power. 1 British horse-power = 1"01385 French horse-power (force de cheval). Board of Trade Unit (B.T.U.). For commercial purposes- electrical energy is measured in units of 1000 watt-hours each, known as Board of Trade units. 1 B.T.U. = -,—2- = 1 J- horse power-hours. Rules foe the Conversion of Thermometric. Degrees peom ONE Scale into Another. To Convert ° F. into ° C. " F. into ° K. ° C. into ° K ° C. into ° R.- ° R. into ° F. ° R. into ° G. Kules. First subtiact 32, then multiply by 6 and divide by 9. First subtract 32, then multiply by 4 and divide by 9. Multiply by 9 and divide by 5, then add 32. Multiply by 4 and divide by 5. Multiply by 9 and divide by 4, then add 32. Multiply by 5 and divide by 4. Note. — Perhaps the simplest rule for the conversion of °C. into °F. is the following : — Double the number of degrees, subtract one-tenth, then add 32. Thus 90° 0. 90x2 = 180-18 = 162-1-32 = 194° F. THBRMOMBTRIC TABLES. 155 Conversion of the different Thermometric Scales. Table I. Fahr. Reaum. Cent. Fahb. ReHum. Cent. Fahr. Reiium. Cent. 500 208 260 452 186-7 233-3 404 165-3 206-7 499 207-6 259-4 451 186-2 232-8 403 164-9 206-1 498 207-1 258-9 450 185-8 232-2 402 164-4 206-6 497 206-7 258-3 US 185-3 231-7 401 164 205 496 206-2 257-8 448 184-9 231-1 400 163-6 •204-4 495 205-8 257-2 447 184-4 230-6 399 163-1 203-9 494 205-3 256-7 446 184 230 398 162-7 203-3 493 204-9 256-1 445 183-6 229-4 397 162-2 202-8 492 204-4 255-6 444 183-1 228-9 396 161-8 202-2 491 204 255 443 182-7 228-3 395 161-3 201-7 490 203-6 254-4 442 182-2 227-8 394 160-9 201-1 489 203-1 253-9 441 181-8 227-2 393 160-4 200-6 488 202-7 253-3 440 181-3 226-7 392 160 200 487 202-2 252-8 439 180-9 226 1 391 159-6 199-4 486 201-8 252-2 438 180-4 225-6 390 159-1 198-9 485 201-3 251-7 437 180 225 389 158-7 198-3 484 200-9 251-1 436 179-6 224-4 388 158-2 197-8 483 200-4 250-6 435 179-1 223-9 387 167-8 197-2 482 200 250 434 178-7 223-3 386 157-3 196-7 481 199-6 249-4 433 178-2 222-8 385 150-9 196-1 480 199-1 248-9 432 177-8 222-2 384 156-4 195-6 479 198-7 248-3 431 177-3 221-7 383 156 195 478 198-2 247-8 430 176-9 221-1 382 155-6 194-4 477 197-8 247-2 429 176-4- 220-6 381 155-1 193-9 476 197-3 246-7 428 176 220 380 154-7 193-3 475 196-9 246-1 . 427 175-6 21P-4 379 154-2 192-8 474 196-4 245-6 426 175-1 218-9 378 153-8 192-2 473 196 245 425 174-7 218-3 377 153-3 191-7 472 195-6 244-4 424 174-2 217-8 376 152-9 191-1 471 195-1 243-9 423 173-8 217-2 375 152-4 190-6 470 194-7 243-3 422 173-3 216-7 374 152 190 469 194-2 242-8 421 172-9 216-1 373 151-6 189-4 468 193-8 242-2 420 172-4 215-6 372 151-1 188-9 467 193-3 241-7 419 172 215 371 150-7 188-3 466 192-9 241-1 418 171-6 214-4 370 160-2 187-8 465 192-4 240-6 417 171-1 213-9 369 149-8 187-2 464 192 240 416 170-7 213-3 368 149-3 186-7 463 191-6 239-4 415 170-2 212-8 367 148-9 186-1 462 191-1 238-9 414 169-8 -212-2 366 148-4 185-6 461 190-7 238-3 413 169-3 211-7 365 148 185 460 190-2 237-8 412 168-9 211-1 364 147-6 184-4 459 189-8 237-2 411 168-4 210-6 363 147-1 183-9 458 189-3 236-7 410 168 210 362 146-7 183-3 457 188-9 236-] 409 167-6 209-4 361 146-2 182-8 456 188-4 235-6 408 167-1 208-9 360 145-8 182-2 455 188 235 407 166-7 208-3 359 145-3 181-7 454 187-6 234-4 406 166-2 207-8 358 144-9 181-1 463 1 187-1 233-9 405 165-8 207-2 367 144-4 180-6 156 THBRMOMBTRIO TABLES. Conversion op the different Thbrmometrio Scales. Table I.- Faiir. Rcanm. Cent. Fahr. Keaum. Cent. Fauk. Reaum. Cent. 356 144 180 308 122-7 153-3 260 101-3 126-7 355 143 6 179 4 307 122-2 152-8 259 100-9 126-1 354 143-1 178-9 306 121-8 162-2 258 100-4 125-6 353 142-7 178-3 305 121-3 151-7 267 100 125 352 142-2 177-8 304 120-9 1.51-1 256 99-6 124-4 •351 141-8 177-2 303 120-4 160-6 255 99-1 123-9 350 141-3 176-7 302 120 150 254 98-7 123-3 349 140-9 176-1 301 119-6 149-4 253 98-2 1-22-8 348 140-4 175-6 300 119-1 148-9 252 97-8 122-2 347 140 175 299 118-7 148-3 251 97-3 1217 -346 139-6 174-4 298 118-2 147-8 260 96-9 121-1 345 139-1 173-9 297 117-8 147-2 249 96-4 120-6 344 138-7 173-3 296 117-3 146-7 248 96 120 343 138-2 172-8 295 116-9 146-1 247 95-6 119-4 342 137-8 172-2 294 116-4 145-6 246 95-1 118-9 341 137-3 171-7 293 116 145 245 94-7 118-3 340 136-9 171-1 292 115-6 J44-4 244 94-2 117-8 339 136-4 170-6 291 115-1 143-9 243 93-8 117-2 338 136 170 290 114-7 143-3 242 93-3 116-7 337 135-6 169-4 289 114-2 142-8 241 92-9 116-1 336 135-1 168-9 288 113-8 142-2 240 92-4 115-6 335 134-7 168-3 287 113-3 141-7 239 92 115 334 134-2 167-8 286 112-9 141-1 238 91-6 114-4 333 133-8 167-2 285 112-4 140-6 237 91-1 113-9 332 133-3 166-7 284 112 140 236 90-7 113-3 331 132-9 166-1 283 111-6 139-4 235 90-2 112-8 330 132-4 165-6 282 111-1 138-9 234 89-8 112-2 329 132 165 281 110-7 138-3 233 89-3 111-7 328 131-6 164-4 280 110-2 137-8 232 88-9 1111 327 131-1 163-9 279 109-8 137-2 231 88-4 110-6 326 130-7 163 -3 278 109-3 136-7 230 88 110 325 130-2 162-8 277 108-9 136-1 229 87-6 109-4 324 129-8 162-2 276 108-4 135-0 228 87-1 108-9 323 129-3 161-7 275 108 135 227 86-7 108-3 322 128-9 161-1 274 107-6 134-4 226 86-2 107-8 321 128-4 160-6 273 107-1 133-9 225 85-8 107-2 320 128 160 272 106-7 133-3- 224 85-3 106 -7 319 127-6 159-4 271 106-2 132-8 223 84-9 106 1 318 127-1 158-9 270 105-8 132-2 222 84-4 105-6 317 126-7 158-3 269 105-3 LSI -7 221 84 105 ' 316 126-2 157-8 268 104-9 131-1 220 83-6 104-4 315 125-8 157-2 267 104-4 130-6 219 83-1 103-9 314 125-3 156-7 266 104 130 218 82-7 103-3 313 124-9 156-1 265 103-6 129-4 2^17 82-2 102-8 312 1-24-4 155-6 264 103-1 128-9 216 81-8 102-2 3U 124 155 263 102-7 128-3 215 81-3 101-7 310 123-6 154-4 262 102-2 127-8 214 80-9 101-1 309 123-1 153-9 261 101-8 127-2 213 80-4 100-6 THERMOMBTRIC TABLES. 157 Conversion of the bifferent Thermometrio Scales. Table I. — contimced. Fahk. Reatim. Cent. Fahk. Eeanm. Cent- Fahe. Eeanm. Cent. 212 80 100-0 164 58-7 73-3 116 37-3 46-7 211 79-6 99-4 163 58-2 72-8 115 36-9 46-1 210 79-1 98-9 162 57-8 72-2 114 36-4 45-6 209 78-7 98-3 161 57-3 71-7 113 36-0 45-0 208 78-2 97-8 160 56-9 71-1 112 35-6 44-4 207 77-8 97-2 159 56-4 70-6 111 351 43^9 206 77-3 96-7 158 56 70-0 110 34-7 43-3 205 76-9 96 1 157 55-6 69-4 109 34-2 42-8 204 76-4 95-6 156 55-1 68-9 108 33-8 42-2 203 76-0 95-0 155 54-7 68-3 107 33-3 41-7 202 75-6 94-4 154 54-2 67-8 106 32-9 41-1 201 75-1 93-9 153 53-8 67-2 105 32-4 40-6 200 74-7 93-3 152 53-3 66-7 104 32 40-0 199 74-2 92-8 151 52-9 66-1 103 31-6 39-4 198 73-8 92-2 150 52-4 65-6 102 31-1 38-9 197 73-3 91-7 149 52-0 65 101 30-7 38-3 196 72-9 91-1 148 51-6 64-4 100 30-2 37-8 195 72-4 90-6 147 51-1 63-9 99 29-8 37-2 194 72-0 90-0 146 50-7 63-3 98 29-3 36-7 193 71-6 89-4 145 50-2 62-8 97 28-9 36-1 192 71-1 88-9 144 49-8 62-2 96 28-4 35-6 191 70-7 88-3 143 49-3 61-7 95 28-0 35-0 190 70-2 87-8 142 48-9 61-1 94 27-6 34-4 189 69-8 87-2 141 48-4 60-6 93 27-1 33-9 188 69-3 86-7 140 48-0 60-0 92 26-7 33-3 187 68-9 86-1 139 47-6 59-4 91 26-2 32-8 186 68-4 85-6 138 47-1 58-9 90 25-8 32-2 185 68-0 85-0 137 46-7 58-3 89 25-3 31-7 184 67-6 84-4 136 46-2 57-8 88 24-9 31-1 183 67-1 83-9 135 45-8 57-2 87 24-4 30-6 182 66-7 83-3 134 45-3 56-7 86 24-0 30-0 181 66-2 82-8 133 44-9 56-1 85 2£ 6 29-4 180 65-8 82-2 132 44-4 55-6 84 23 1 28-9 179 65 '3 81-7 131 44-0 55-0 83 22-7 28-3 178 64-9 81-1 130 43-6 54-4 82 22-2 27-8 177 64-4 80-6 129 43-1 53-9 81 21-8 27-2 176 64-0 80-0 128 42-7 53-3 80 21-3 26-7 175 63-6 79-4 127 42-2 52-8 79 20-9 26-1 174 63-1 78-9 126 41-8 52-2 78 20-4 25-6 173 62-7 78-3 125 41-3 51-7 77 20-0 25-0 172 62-2 77-8 124 40-9 51-1 76 19-6 24-4 171 61-8 77-2 123 40-4 50-6 75 19-1 23-9 170 61-3 76-7 122 40 50-0 74 18-7 23-3 169 60-9 76-1 121 39-6 49-4 73 18-2 22-8 168 60 '4 75-6 120 39-1 48-9 72 17-8 22-2 167 60-0 75-0 119 38-7 48-3 71 17-3 21-7 166 59-6 74-4 118 38-2 47-8 70 16-9 21-1 165 59-1 73-9 117 37-8 47-2 69 16-4 20-6 158 THBRMOMETRIC TABLES. Conversion of the difpkrbnt Thermometrio Scalek. Table I. — continued. Fahk. Reaum. Cent. Fahb. Reaum. Cent. Fattb, Seaiim. Cent. 68 16-0 20-0 34 0'9 1-1 -14-2 -17-8 67 15-6 19 4 33 0-4 0-6 - 1 -14-7 -18-3 66 15-1 18 9 32 0-0 0-0 - 2 -15-1 -18-9 65 14-7 18 3 31 - 0'4 - 0-6 - 3 -15-6 -19-4 64 14-2 17 8 30 - 0'9 - 11 - 4 -16-0 -20 63 13 '8 17 2 29 - 13 - 1-7 - 5 -16'4 -20-6 62 13-3 16 7 28 - 1-8 - 2-2 - 6 -16-9 -21-1 61 12-9 16 1 27 - 2-2 - 2-8 - 7 -17-3 -21-7 60 12-4 15 6 26 - 2-7 - 3-3 - 8 -17-8 -22-2 59 12-0 15 25 - 31 - 3'9 - 9 -18-2 -22-8 58 11-6 14 i 24 - 3'6 - 4-4 -10 -18-7 -23-3 57 HI 13 9 23 - 4-0 - 5-0 -11 -19-1 -23-9 56 10-7 13 3 22 - 4-4 - 5-6 -12 -19-6 -24-4 55 10-2 12 8 21 - 4-9 - 6-1 -13 -20-0 -25-0 64 9-8 12 2 20 - 5-3 - 6-7 -14 -20-4 -25 '6 53 9-3 11 7 19 - 5-8 - 7-2 -15 -20-9 -26-1 52 8-9 11 1 18 - 6-2 - 7-8 -16 -21-3 -26-7 51 8-4 10 6 17 - 6-7 - 8-3 -17 -21-8 -27-2 50 80 10 16 - 7-1 - 8-9 -18 -22-2 -27-8 49 7-6 9 4 15 - 7-6 - 9-5 -19 -22-7 -28-3 48 7-1 8 9 14 - 8-0 -10-0 -20 -23-1 -28-9 47 6-7 8 3 13 - 8-4 -10-6 -21 -23-6 -29-4 46 6-2 7 8 12 - 8-9 -11-1 -22 -24-0 -30-0 45 5-8 7 2 11 - 93 -11-7 -23 -24-4 -30-6 44 5-3 6 7 10 - 9-8 -12-2 -24 -24-9 -31-1 43 4-9 6 1 9 -10-2 -12-8 -25 -25-3 -31-7 42 4-4 5 6 8 -10-7 -13-3 -26 -25-8 -32-2 41 4-0 5 7 -in -13-9 -27 -26-2 -32-8 40 3-6 4 4 6 -11-6 -14-4 -28 -26-7 -33-3 39 3-1 3 9 6 -12-0 -15-0 -29 -27-1 -33-9 38 2-7 3 3 4 -12-4 -15-6 -30 -27-6 -34-4 37 2-2 2 8 3 -12-9 -16-1 -31 -28 -35-0 ■ 36 1-8 2 2 2 -13-3 -16-7 35 1-3 1-7 1 -13-8 -17-2 COHVBRSION OF THE DIFFERENT ThEEMOMETKIO SCALES. Table II. Ckht. Eeaum. Fahr. Cent. Reanm. Fahr. Cest. Reaum. Fahr. 260 208 500 252 201-6 485-8 244 195-2 471-2 259 207-2 498-2 251 200-8 483-8 243 194-4 469-4 268 206-4 496-4 250 200 482 242 193-6 467-6 257 205-6 494-6 249 199-2 480-2 241 192-8 465-8 256 204-8 492-8 248 198-4 478-4 240 192 464 256 204 491 247 197-6 476-6 239 191-2 462-2 254 203-2 489-2 246 196-8 474-8 238 190-4 460-4 253 202-4 487-4 245 196 473 237 189-6 458-6 THEBMOMETRIC TABLES. 159 CONVEKSION OF THE DIFFEEENT ThBRMOMBTRIO S0ALE8. Table II. — continiKd. Crht. Reaum. Falir. Cent. Reaum. Fahr. Cent. Reaum. Fahr. 236 188-8 456-8 188 150-4 370-4 140 112 284 235 188 455 187 149-6 368-6 139 111-2 282-2 234 187-2 463-2 186 148-8 366-8 133 110-4 280-4 233 186-4 461-4 186 148 365 137 109-6 278-6 232 185 6 449-6 184 147-2 363-2 136 108-8 276-5 231 184-8 447-8 183 146-4 361 -4 135 108 276 230 184 446 182 146-6 359-6 134 107-2 273-2 229 183-2 444-2 181 144-8 357-8 133 106-4 271-4 228 182-4 442-4 180 144 856 132 105-6 269-6 227 181-6 440-6 179 143-2 364-2 131 104-8 267-8 226 180-8 438-8 178 142-4 362-4 130 104 266 225 180 437 177 141-6 360-6 129 103-2 264-2 224 179-2 435-2 176 140-8 348-8 128 102-4 262-4 223 178-4 ,433-4 175 140 347 127 101-6 260-6 222 177-6 431-6 174 139-2 345-2 126 100-8 258-8 221 176-8 429-8 173 138-4 343-4 126 100 257 220 176 428 172 137-6 341-6 124 99-2 265-2 219 175-2 426-2 171 136-8 339-8 123 98-4 253-4 218 174-4 424-4 170 136 338 122 97-6 251-6 217 173-6 422-6 169 136-2 336-2 121 96-8 249-8 216 172-8 420-8 168 134-4 334-4 1-20 96 248 215 172 419 167 133-6 332-6 119 95-2 246-2 214 171-2 417-2 166 132-8 330-8 118 94-4 244-4 213 170-4 415-4 165 132 329 117 93-6 242-6 212 169-6 413-6 164 131-2 327-2 116 92-8 240-8 211 168-8 411-8 163 130-4 325-4 115 92 239 210 168 410 162 129-6 323-6 114 91-2 237-2 209 167-2 408-2 161 128-8 321-8 113 90-4 235-4 208 166-4 406-4 160 128 820 112 89-6 233-6 207 165-6 404-6 159 127-2 318-2 111 88-8 231-8 206 164-8 402-8 158 126-4 316-4 110 88 230 205 164 401 157 125-6 314-6 109 87-2 228-2 204 163-2 399-2 156 124-8 312-8 108 86-4 226-4 203 162-4 397-4 155 124 311 107 85-6 224-6 202 161-6 396-6 154 123-2 309-2 106 84-8 222-8 201 160-8 393-8 153 122-4 307-4 105 84 221 200 160 892 152 121-6 305-6 104 83-2 219-2 199 159-2 390-2 151 120-8 303-8 103 82-4 217-4 198 158-4 388-4 150 120 302 102 81-6 215-6 197 157-6 386-6 149 119-2 300-2 101 80-8 213-8 196 156-8 384-8 148 118-4 298-4 100 80 212 195 156 383 147 117-6 296-6 99 79-2 210-2 194 155-2 381-2 146 116-8 294-8 98 78-4 208-4 193 154-4 379-4 145 116 293 97 77-6 206-6 192 163-6 377-6 144 115-2 291-2 96 76-8 204-8 191 152-8 376-8 143 114-4 289-4 96 76 203 190 152 374 142 113-6 287-0 94 75-2 201-2 189 151-2 372-2 141 112-8 285-8 93 74-4 199-4 160 THEBMOMETBIC TABLES. COK VERSION OF THE DIFFERENT ThEKMOMETKIO SOALES. Table U.—contirmed. Cknt. Heaum. Fahr. Cent. Reaum. Fahr. Cent. Reaum. Fahr. 92 73-6 197-6 49 39-2 120-2 6 4-8 42-8 91 72-8 195-8 48 38-4 118-4 5 4 41 90 72 194 47 37-6 116-6 4 3-2 39-2 89 71-2 192-2 46 36-8 114-8 3 2-4 37-4 88 70-4 190-4 45 36 113 2 1-6 35-6 87 69-6 188-6 44 35-2 111-2 1 0-8 33-8 86 68-8 186-8 43 34-4 109-4 32 85 08 185 42 33-6 107-6 -1 -0-8 30-2 84 67-2 183-2 41 32-8 105-8 _o -1-6 28-4 83 66-4 181-4 40 32 104 -3 -2-4 26-6 82 65-6 179-6 39 31-2 102-2 -4 -3-2 24-8 81 64-8 177-8 38 30-4 100-4 -5 -4 23 80 64 170 37 29-6 98-6 -6 -4-8 21-2 79 03-2 174-2 36 28-8 96-8 -7 -5-6 19-4 78 62-4 172-4 35 28 95 -8 -0-4 17-6 77 61-6 170-6 34 27-2 93-2 -9 -7-2 15-8 76 60-8 163-8 33 20-4 91-4 -10 -8 14 75 00 167 32 25-6 89-6 -11 -8-8 12-2 74 59-2 165-2 31 24-8 87-8 -12 -9-0 10-4 73 58-4 163-4 30 24 86 -13 -10-4 8-6 72 57-6 161-6 29 23-2 84-2 -14 -11-2 6-8 71 50-8 159-8 28 22-4 82-4 -15 -12 5 70 56 158 27 21-6 80-6 -16 -12-8 3-2 69 55-2 156-2 26 20-8 78-8 -17 -13-0 1-4 08 54-4 154-4 25 20 77 -18 -14-4 -0-4 67 53-6 152-6 24 19-2 75-2 -19 -15-2 -2-2 66 52-8 150-8 23 18-4 73-4 -20 -16 -4 65 52 149 22 17-6 71-6 -21 -16-8 -5-8 64 51-2 147-2 21 16-8 69-8 -22 -17-6 -7-6 63 50-4 145-4 20 16 08 -23 -18-4 -9-4 62 49-6 143-6 19 15-2 06-2 -24 -19-2 -11-2 61 48-8 141-8 18 14-4 64-4 -25 -20 -18 60 48 140- 17 13-6 62-6 -26 -20-8 -14-8 59 47-2 138-2 16 12-8 60-8 -27 -21-6 -16-6 58 46-4 136-4 15 12 59 -28 -22-4 -18-4 57 45-6 134-6 14 11-2 57-2 -29 -23-2 -20-2 56 44-8 132-8 13 10-4 55-4 -30 -24 -22 55 44 .131 12 9-6 53-6 • 31 -24-8 -23-8 54 43-2 129-2 11 8-8 51-8 .-32 -25-6 -25-6 53 42-4 127-4 10 8 50 -33 -26-4 -27-4 52 41 'e 125-6 9 7-2 48-2 -34 -27-2 -29-2 51 40-8 123-8 8 6-4 40-4 -35 -28 -31 50 40 122 7 5-6 44-6 INDEX. PAGE Alcohol Calculations, 119 Alooliol, Correction for Temperature, 118 Alcohol Tables, . 112 Alkaline Permanganate Solution, 79 Ammonia, sp. gr. of. 75 Ammonium Molybdate Solution, 54 Approximations, . 36 Aqueous Vapour, Tension of, 81 Areas and Volumes of Bodies, . 31 Arsenic in Food, . 149 Atomic Weights, . 1 Barn Gallon, 59 Barometric Tables, 66 Baum^'s Hydrometer, 72 Beer Analysis Tables, 98 Beer, Original Gravity of. 100 Bi-rotation, 102 Blunt's Modification of Tabarie's Formi ala, . 101 Butter Analysis Tables, . 139 Butter Regulations, 141 Calorie, the, 150 Calorific Power of Fuel, . 151 Chicory in Coffee, 147 Computation, . . . . 35 Cuprio Kednoing Power, . 109 Data, Various Useful, 31 Densities of Common Substances, 63 Drams per lb. into Percentage, . 65 Electrical Units, . . . . 153 L 162 INDKX. PAGE Electro-chemical Equivalents, 153 Factors, Various Useful, 31 Fehling's Solution, 109 Food Units, .... 131 Foreign Moneys and their Equivalents, 62 Foreign Weights and their Equivalents, 62 Freezing Mixtures, 64 Gallisin, . . ... 110 Gases, Coefficients of Absorption of, in Water, 29 Gases, Correction of Volumes for Temperature, 67 Gases, Densities of, ... . 7 Glycerine, sp. gr. of, . 78 Gravimetric Factors, 8 Hardness of Water, Keagents for, 80 Hardness of Water, Table of. 8S Heat, Data in, .... . 150 Herzfeld's Method of Inversion, 106 Hydrochloric Acid, sp. gr. of, . 73 Indicators, Notes on, . 52 Indirect Analysis, Examples of, 40 Joule, the, ..... 150 (note) •■K," Values of, . . . . 111 Kjeldahl Table, . 130 Latent Heat of Water and Steam, 160 Lead in Citric and Tartaric Acids, 147 Logarithmic Factors, Use of, . 39 Logarithmic Tables, .... 2 Logarithms, Notes on, ... 32 Magnesia Mixture, .... 54 Melting Points of Metals, . . . . 7 Mercury Vapour, Tension of, . 70 Micron, . ... 67 Mil . 67 (note) Milk Analyses, Calculation of Results of. 142 Milk Regulations, ... 143 Milk, sp. gr. of, . . 145 Milk, Table giving Deficiency of Non-fatty Solids in 144 Milk, Table giving Fat Deficiency in, 144 INDEX. 16S Molecular Rotation, ...... Multirolation or Mutarotation, .... Nessler's Solution, . . ... Nitrates by Crum's Method, Example of, Nitrate.s in Water, Determination of, Nitric Acid, sp. gr. of, . Nitrogen into Ammonia and Albuminoids, Nitrogen into Casein, Gelatin, etc. Nitrogen, reduction of o.c. to grams. Nitrometer Analysis, Normal Solution, Definition of. Obscuration of Spirits, ..... Oils, Fats, and Waxes, Constants of, Oils, Fats, and Waxes, Definitions of, Oxygen, Dissolved, amount of in Distilled Water, . Parts per 100,000 into grains per gallon, Percentage Compositions, Table of, Percentage into owts., qrs., and lb. per ton, etc., Phosphate Tables, ...... Polarimeter Readings, reduction of minutes to decimals of degree, Potash, Caustic, -sp. gr. of, . . . . - . Potassium and Sodium Chlorides, Indirect Determination of. Precipitating Powers of Reagents, Prescriptions, Signs used in Medical, Preservatives in Food, .... Preservatives in Milk and Cream, Proof Spirit, Proteins, Factors for, Quinine, . . .... Quinine, Tincture of. Quintal, . . . • Reciprocals, Table of, ... Rectified Spirit, ...... Reiohert-Meiisl Values of Oils and Fats, Salt in Beer, . • ... Saponification Equivalent, .... Saponification Values of Oils and Fats, Table for, Saturated Solutions of Salts, Strength of, PAGB 102 102 7& 94 88 73 128 131 83 28 22 117 134 132 97 91 42 64 121 108 76 40 54 61 146, 149 146 116 131 146 146 60 30 116 137 99 138 137 77 164 INDEX. Sewage Effluents, Standards for, Soda, Caustic, sp. gr, of, ... Specific Rotatory Power, Specific Rotatory Power, Examples of. Spirits, Rnles for finding Dilution of, . Standard Solutions, Correction for Temperature, Starch Indicator, Sulphuric Acid, sp. gr. of, Thermo-Ohemlstry, Data in, Thermometric Degrees, Rules for Conversion of, Thermometric Tables, Thompson's Calorimeter, Thresh's Starch Solution, Ton, Metric, ... Turmeric Paper, . Twaddell's Hydrometer, . Useful Factors and Data, .... Volumetric Factors, Water Analysis, Reagents for. Water Analysis Results, Calculation of. Water Analysis Results, Method of Recording, Water Analysis, Tables for, Water, Volume and Density at Different Temperatures, Water, Weight of 1 cubic inch, foot, and yard of, Weights and Measures, . . . . ■ 96 76 101 106 117 29 80 74 150 154 155 151 94 62 53 31 31 22 79 93 95 81 71 56 55 PRINTED BY NEILL AND 00., LTD., EDINBT7R0H.