v^.Tsiiir-it;^: ; CORNELL UNIVERSITY LIBRARY Cornell University Library QC 183.B29 An attempt to test the theories of capil 3 1924 012 328 385 *..„i DATE DUE lUEt-kiBS^S^t mrewssESES ■4:^AN 0£(U Z. 3QU. intmimmi CA YLORO ,j:a^.^-iaa^^ **^jj PHINTED IN U.S.> Cornell University Library The original of this book is in the Cornell University Library. There are no known copyright restrictions in the United States on the use of the text. http://www.archive.org/details/cu31924012328385 \ AN ATTEMPT TO TEST THE THEOKIES OF CAPILLARY ACTION. ionlinn: C. J. CLAY, M.A. & SON, CAMBRIDGE UNIVEESITY PBESS WAREHOUSE, 17, Pateknostee Kow. CAMBRIDGE: DEIGHTON, BELL, AND CO. LEIPZIG: F. A. BROCKHAUS. AN ATTEMPT TO TEST THE THEORIES OF CAPILLAEY ACTION BY COMPAEING THE THEORETICAL AND MEASURED FORMS OF DROPS OF FLUID, FEANCIS BASHFORTH, B.D. LATE PEOPESSOK OP APPLIED MATHEMATICS TO THE ADVANCED CLASS OP KOTAL ARTILLERY OFFICERS, WOOLWICH, AND FORMERLY FELLOW OF ST JOHN'S COLLEGE, CAMBRIDGE. WITH AN EXPLANATION OF THE METHOD OF INTEGRATION EMPLOYED IN CONSTRUCTING THE TABLES WHICH GIVE THE THEORETICAL FORMS OF SUCH DROPS, BY J. C. ADAMS, M.A, F.RS. FELLOW OF PEMBROKE COLLEGE, AND LOWNDEAN PROFESSOR OF ASTRONOMY AND GEOMETRY IN THE UNIVERSITY OF CAMBRIDGE. AT THE UNIVERSITY PRESS. 1883 A. 'S^joQ UNIVERSITY LjBRARY,/' TAe writers take this opportunity of returning their thanks to the Syndics of the University Press for undertaking the expense of printing this work. INTKODUCTION. Many years have elapsed since this work was commenced, and it is even now only partially completed. My object was to test the received theories of Capillary Action, and through them the assumed laws of molecular attraction, on which they are founded. To this end it was proposed to compare the actual forms of drops of fluid resting on horizontal planes they do not wet, with their theoretical forms. After some trials a satisfactory micrometrical instrument was constructed for the measurement of the forms of drops of fluid, but my attempts to calculate their forms as surfaces of double curvature failed entirely, and my undertaking must have ended here, if I had depended upon my own resources. But at this point Professor J. C. Adams furnished me with a perfectly satisfactory method of calculating by quadratures the exact theoretical forms of drops of fluids from the Differential Equation of Laplace, an account of which he has now had the kindness to prepare for publication. After the calculation of a few forms, application was made to the Royal Society for assistance from the Government grant in making the needful calculations. The following extracts from the application (Oct. 27, 1855) will explain the objects of the undertaking. " I have carefully examined all the published " experiments that I could meet with, but these have been generally made with "capiUary tubes, and in consequence of the diflSculties inherent in this mode of "observation they have not led to consistent and satisfactory results. " It appeared to me that the best test of theory would be obtained by making "careful measures of the forms assumed by drops of fluid resting on horizontal "planes of various solids " "At first I knew of no better mode of arriving at the theoretical forms than " that given by geometrical construction, but I am indebted to Mr Adams for a "method of treating the differential equation ddz \ dz du" , u du „ _2 ■ + '■ d^ " ^''^ - b ' hsr (^-£/ ' when put under the form - + - sin ^ = 2 + 2ab' 7 = 2 + /8 r , 2 INTRODUCTION. "which gives the theoretical form of tha drop with an accuracy exceeding that of "the most refined measurements. Values of r, y and ^ have been calculated by this boo "method for values of at intervals of 2|° to 5°, from tj} = to ^ = 145°, for "values of j8 equal to ^, ^, 1, 3, 6, 10 and 16. It is however very desirable that "calculations should be made for more numerous as well as for larger values of /8. "I also propose to make accurate measurements of the forms of the common "surfaces of two fluids that do not mix. The form of a drop of fluid (A) will "be taken when immersed in a fluid (B), and also the form of a drop of the fluid " {B) when immersed in fluid (A), and for this purpose a plate-glass cell has been "constructed, so that the observations can be made whether the drops rest on the "bottom, or float in contact with the upper surface. The forms of drops of fluids "(A) and (B) will also be taken when resting on horizontal planes surrounded by the " atmosphere." "The objects of the experiments are "I. To compare the actual forms assumed by drops of fluid when resting on "horizontal planes composed of substances which they do not wet, with their theo- "retical forms. "IL To dotermine the effects of supporting planes composed of various sub- " stances. "III. To examine the effects of different degrees of roughness of the supporting "planes composed of various substances. " IV. To determine the effects of vaifiations of temperature on the forms of the "drops of fluid from 32" to about 200" F. "V. To examine the mutual action of two fluids that do not mix, and the " effects of variation of temperature on them." The Eoyal Society voted a grant of £50, the sum applied for. These calcula- tions were completed in 1857. And after the calculation of the theoretical forms and volumes of sessile drops had been carried as far as seemed needful, the money in hand was applied to the calculation of theoretical forms and volumes of pendent drops of fluids. The results of these calculations have been printed in Table IV. The delay in the publication of my results has arisen from the interruption of my labours, caused first by my removal in 1857 from College to a country living, and secondly by my appointment in 1864 to the Professorship of Applied Mathematics to the Advanced Class of Royal Artillery Officers, Woolwich. As no systematic ex- periments had then been made since the time of Button to determine the Resistance of the Air to the motion of projectiles, and those for round shot only, I was induced to turn my attention to the subject of Ballistics. The Results of my Experiments have been published under the authority of the Secretary of State for War, as follows— I. Reports on Experiments made with the Bashforth Chronograph to determine the Resistance of the Air to the Motion of Projectiles, 1865—1870. London, W. Clowes and Sons, &c. &c. INTRODUCTION. d II. Final Report on Experiments, &c. &c., 1878 — 80. London, W. Clowes and Sons, &c. &c. And in connection with these Eeports I published a Mathematical Treatise on the Motion of Projectiles, 1873, and a Supplement to that work, 1881. Immediately after the completion of these labours I turned my attention to the preparation for publication of a part of my work on Capillary Action, for I cannot now hope to be able to complete the work originally proposed. The Tables II. and III. appear to give all that is required in order to supply the means for filling up the intervals to five places of decimals for all values of ^8 under 100, and of (f> under 180°. The Table IV. for negative values of ^, although not so complete, will afford considerable assistance, and the deficiencies can be easily supplied by original calcu- lation preparatory to interpolation. Table V. gives the theoretical forms of free capillary surfaces of revolution about a vertical axis, which was used in calculating the forms of drops of mercury shewn in the diagrams. Deficiencies may be easily suppUed by the help of Table II. by interpolation. As a specimen of the work I proposed to do, I have given diagrams and co- ordinates observed and calculated of forms of drops of mercury carefully measured in 1863. These shew how correctly the calculated and measured forms of these drops agree, notwithstanding the very considerable variation in their outlines. Also, as I found my measuring instrument in good working order in 1882, I have made numerous measurements of drops of the same kind of mercury of 4, 8, 12, 16, 20 and 24grs. in order to find the values of a and eo. The values derived from each particular measurement vary considerably — ^but the mean results for each weight of drop are satisfactory and appear to confirm the received theories of Capil- lary Action. Bat as the Theories of Young, Laplace, Gauss and Poisson lead to the same differential equation, and therefore give the same form of drops of fluid, experi- ments of this kind are not capable of deciding whether Poisson is correct in sup- posing that a rapid change of density takes place near the free surfaces of fluids. But more definite information on this head may be expected when the values of a and w at the common surfaces of fluids which do not mix, as well as the efi'ect pf variation of temperature on these quantities, have been determinqd according to ihe original scheme. Having given examples of the work I proposed to myself in the first instance, I must leave to others the further examination of this important question, for it still appears to me that this is the only way by which we can arrive at any definite results. I take this opportunity to return my best thanks to the Syndics of the University Press for having undertaken the publication of this work. 1—2 CHAPTER I. THEORETICAL EXPLANATIONS OE CAPILLARY ACTION. The phenomena which arise from Capillary Action seem to contradict the laws of fluid equilibrium. In consequence, many worthless theories have been proposed with a view to explain apparent anomalies. After long groping in the dark, it was found to be desirable to discover by experiment what were the actual phenomena which required explanation. Hawksbee* found that the height to which a fluid would rise in a capillary tube of given radius was the same for all . thicknesses of the tube. From this it was apparent that the attracting force of the tube was situated at or near the inner surface of the tube. But he does not appear to have taken account of the mutual attractions of the particles of the fluid. Jurin '* also found that the height of the column of fluid supported by capillary action depended solely upon the interior diameter of the tube at the upper surface of the fluid. From this he con- cluded that the column of fluid raised' by Capillary Action was supported by the attraction of the periphery or section of the tube to which the upper surface of the fluid cohered or was contiguous. Clairaut" was the first to attempt to explain capillary phenomena on right prin- ciples, by referring them to the mutual attraction of the particles of the fluid, and to the attraction of the particles of the solid on the particles of the fluid; and sup- posing these attractions to depend upon the same function of the distance, he concludes that even if the attraction of the capillary tube be of a less intensity than that of the water, provided the intensity of the latter attraction be not twice as great as that of the former, the water will still rise in the tube (p. 121). Clairaut supposed that the attraction was sensible only at very small distances (p. 113). Shortly afterwards Segnef* introduced the supposition that forces of attraction of both the particles of the solid and of the fluid vanished at sensible distances. He concluded that these forces gave' a constant tension to the free capillaiy surfaceis, and • Phil. Tram., 1711 and 1712. i Commentarii Soc. Reg. Sei. Gottingensis. T 1 b Old. 1718 and 1719. 1751. • ThSorie de la Figwre de la Terre, 1743. Chapitre z. THEOEETICAL EXPLANATIONS OF CAPILLARY ACTION. 5 thence he tried to calculate the forms of sessile drops of fluid with a view to com- pare them with their measured forms. But in his calculations he took into account only the curvature of the vertical sections made by a plane passing through the axis of the drop. His measurements of the actual forms appear not to have been very precise. An important paper on the Cohesion of Fluids was read before the Koyal Society by Dr Young* in which he pointed out the necessity of taking into account the curvatures of both of the principal sections of the drop, and clearly propounded the true principles on which the solution of the problem must depend. He arrived at the conclusions (1) that the tension of a free capillary surface would be constant, and (2) that the angle of contact between a given solid and fluid surface would also be con- stant. He attempted to derive these hypotheses from physical considerations, but it is not easy to follow his reasoning. Even the editor of his works. Dean Peacock, observes on his Analysis of the Simplest Forms that "In th.e original Essay, the "mathematical form of this investigation and the figures were suppressed, the reasoning "and the results to which it leads being expressed in ordinary language : even in its "altered form the investigation is unduly concise and obscure'"". And respecting the appropriate angle of contact. Young confesses that "the whole of this reasoning on the "attraction of solids is to be considered rather as an approximation than as a strict "demonstration"". This may in part be urged as a reason why Laplace ** did not more fully recognise the value of Young's labours. And although many of their results agreed, the processes by which they arrived at them were very different, except that they were much on a par in respect to the constaaicy of the angle of contact, which Laplace did not deduce mathematically from his theory. Very good accounts of Laplace's Theory were given by Petit ^ and Pessuti?, while it was attacked by others, as Young ^, Brunacci'', Poisson* and others. Gauss'' by a new and striking mathematical investigation obtained the same differential equation to the form of capillary surfaces as La-place had done, and also supplied the defect of his work by obtaining an expression for the angle of contact of the fluid with the solid. Like Laplace he supposed the fluid to be homogeneous and incompressible. Bertrand ' has published a Memoir on Capillary Action, with a view to make known the method of Gauss, as well as some simplifications of which it is susceptible. In 1831, Poisson published his important work, the Nonvelle Theorie de I' Action Gapillaire. He strongly objects, to Laplace's Theory because he has omitted in his calculations to take account of a physical circumstanccj the consideration of which was essential; that is, the rapid variation of density which the liquid suffers near » Deo. 20, 1804. ^ Quarterly ^Review and Works, Vol. i., p. 436. " Works, Vol. I., p. 420 (note). - " BmgnaUUi, T. ix., 1816. ■= lb. p. 434. ' Nouvelle Theorie, 1831. 4 Mic. Gil. Supp. au X Livre, 1806, 1807. ^ Princip. Gen. Theo. Fig. Fluid. Gott. 1830. " Journal de I'^cole Polyteehnique. Cahier xti, Dove's Repertorium, Bd. v., p. 49. 1813. ' Liouville xiii., p. 185. ' Mem. Soc. Ital. T. xiv. 6 THEORETICAL EXPLANATIOl^JS OF CAPILLARY ACTION. its free surface, and near the solid against which it rests, "sans laquelle les ph^no- "mfenes capillaires n'auraient pas lieu"*. But he, in fact, arrives at a differential equa- tion of precisely the same form as Young, Laplace and Gauss, It must be confessed that Poisson is probably quite right in supposing a rapid variation of density near the free surface of a fluid, and he has done good service in shewing how this sup- posed variation of density near the free surface of fluids may be taken account of in the mathematical treatment of Capillary Action. The reader may be further referred to a M4imoire sur la Theorie de I' Action MoUculaire, par Jean Plana ^ • Nouvelle TMorie, p. 6. ' Turin Memoires, 2 SSrie, T. xiv. CHAPTER II. EXPERIMENTAL TESTS OF THEORIES OF CAPILLARY ACTION. Many attempts have been made in recent times to test by experiment these theoretical explanations of capillary phenomena. For this purpose Haiiy and Tremery' at the request of Laplace made some experiments to determine the elevation of water and of oil of oranges, and the depression of mercury in capillary tubes. Their results appear to have satisfied Laplace that the elevation or the depression of a fluid in capillary tubes varied inversely as the diameter of the tube. A tube of one milli- metre in diameter gave a mean elevation of 13"°" "569 for water, and of 6"™ -7389 for oil of oranges, and a mean depression of 7"™ '333 for mercury. In the SuppUment A la TMorie de V Action Gapillaire, Laplace found the fol- lowing expression for the approximate thickness {q) of a large drop of fluid resting on a horizontal plane '' : , 1 - cos' -^ 1 /2 . ot' ^ """ 2 2 „ 7 • =r aal sm -^ For comparison, Gay-Lussac measured the thickness of a drop of mercury one decimetre (21) in diameter resting upon a perfectly horizontal glass plane, and found it to be 3°™-378 at a temperature 12''-8C. In calculating the value of q Laplace neglects the value of — j because it is an insensible quantity. He then supposes - = 13 square millimetres, and or' = 152 grades ==136'*'8 as determined by some previous experiments, and substituting finds g- = 3"™ -39664, instead of the measured thickness 3""" -378. Gauss merely refers to the results of Laplace, and gives the value of his a' which is equivalent to the ^ of Laplace, equal 3 '25 square millimetres. ' Supp. au X Livre, p. 52, -53. '' P- 64. 8 EXPEBIMENTAL TESTS OE THEORIES OF CAPILLARY ACTION. Poisson* obtains the following expression for the approximate theoretical thick- ness (k) of a drop of fluid resting on a horizontal plane : 2 ^ Si'cosl-^ ^^ Here the a, and to' of Poisson are respectively the a/ - and tt - ct' of Laplace. Keferring to a previous experiment, Poisson writes a" cos w' = 4'5746 for a tempera- ture of 12°-8C., and for a first approximation, he uses only the first term in (o). Thus ^''= (a V2 cos j) = a" (1 -f cos o)'), or F cos &)' = (a" cos ft)') (1 -f cos ft)'). And writing for k, 3°™ -378, the experimental thickness of a drop of mercury of radius ^=50"°", at a temperature 12°-8C., as found by Gay-Lussac, he obtains (3-378)'' cos ft)' = a" cos w (1 + cos ft)') = 4-5746 (1 + cos a), which gives cos a>' = cos 48° nearly, or a' = 48° nearly, and a" cos a>' = a' cos 48° = 4-5746 now gives a or a/- = 2"™ -6146. a? . .... In the next place the term — only is neglected, because it is insensible : Z' = Z + (V2-l)a = 50 -l-l-083^ 51-083; and A; =3"^ -378. Substituting in (o), Accad. Fit. e Mat. Torino, T. 40 (1836). « Ibid. p. 221. EXPERIMENTAL TESTS OF THEORIES OF CAPILLARY ACTION. 9 in the interior, and found it to be 5"56 square millimetres*, and, therefore, a or A / - = 2'"'° 'SS?. Then substituting this value of a" in Poisson's'' formula ^=-V + 6-b[6H|(1-&0^-|], and making h = ■t""" '69, a = radius of tube = 0°"" -9525, according to Gay-Lussac's ex- periment, he obtained h = cos to' = 0-8440 or m = 32°-5 ° = (180° — l^T'o) nearly, instead of 45°'5 given by Poisson. Substituting these two values a'' = 5'56 and w'=32'''5 in Poisson's expression (o), for the theoretical thickness of a large drop of mercury quoted above, he obtains 3""" •235 instead of the measured thickness S'^'-STS. Upon this he remarks that the smallness of this difference which corresponds to considerable differences in the values of a? and of cosw', shews that this observation was little adapted to give, by its combination with the depression of mercury in capillary tubes, exact values of these quantities. Avogadro then determined to measure the depression of mercury in a capillary tube, so that he might obtain a value of m determined entirely from his own ex- periments. His glass tube had a radius of 0"""'80*. He adopted a depression of gram .j25^ that being the mean of a great number of careful observations. The tempera- ture was between 10° C. and 14° C. This depression is rather less than that found by Gay-Lussac quoted above, when allowance is made for difference in the radii of the tubes with which they experimented. Substituting as before he finds w' = 40° 21' = (180° -139° 39'). In the next place Avogadro substitutes the value of cos a/ just found = 07621 and a''=6-56, in Poisson's formula (o) quoted above, and finds 3'""''154 for the thick- ness of a large drop of mercury instead of Gay-Lussac's measured thickness 3™° '378. Desains^ has deduced from Danger's experiments' a* or - = 6'7144, which gives a or */- = 2"^ -5912 and a = 37° 52' 33" = (180° - 142° 7' 27"), which values appeared to satisfy best the whole of the experiments. He states however that for different sorts of mercury a or */- varied from 2"™ "55 to 2"""' "61, and to' from 38° to 45° or from (180°— 142°) to (180' -135°). Desains also obtained from experiments with large drops of mercury a or ^1 = 2"^ -621 and o,' = 41°36'30"=(180°-138°23'30"). Still more recently Quincke has made very numerous experiments with a view to determine the capillary constants for a variety of fluids, and also for metals at » P. 221. ^ Nouvelle TMorie, p. 147." ' Acead. Fis. e Mat. p. 223. B. " P. 227. • Ann. de Ch. Ph. [3] T." li. (1857). ' Ann. de Ch. Ph. [3] T. xxiv. p. 501. 10 EXPERIMENTAL TESTS OF THEOEIES OP CAPILLARY ACTION. a temperature just above the melting point. He found that the values of a or ^ - decreased for the same drop of mercury*, according to the time it had stood in position. He also found that w' varied from 38° to 45<'^ or from (180° - 142°) to (180° - 135°). But other results were obtained far beyond these limits. For the mean value of a or ^- he adopted 2""" -8°, and some of his experiments gave as high a value as 2°"" '9, both of which differ considerably from the previously received value 2°™-6. In 1868-9 Quincke published*^ the results of some experiments made to deter- mine the capillary constants at the common surfaces of two fluids incapable of mixing. In this case he pursued methods of experimenting in some respects similar to those I had suggested in my application to the Eoyal Society in 1855. But the value of Quincke's results is very much diminished by the manner in which he carried out his experiments, and by his mode of determining the theoretical forms of sessile drops of fluid. Thus Quincke's method requires the measurement, with great precision, of the height of the vertex of a large drop above the largest horizontal section of the drop. But in my experiments I have found that only a rough approximation to this quantity can be obtained directly by the most careful measurement. The theoretical forms of Quincke are much the same as those of Segner, for in the calculations of both, one of the two principal radii of curvature is supposed to be infinite. There is also a further objection to the use of large drops of fluid, which Quincke's methods of calculation necessitated, because they change their form slowly when a change in their volume is made. But only a slight change in the volume of a small drop will give a marked change in its form. The favourite method of testing the theories of capillary action has been by the measurements of the heights to which fluids rise in capillary tubes. In cases where the fluid wets the solid, there is only one constant, a, to be determined, as the angle tu' = 0. But experiments of this kind are very liable to be vitiated by irregularities in the bore of the tubes, or by impurities adhering to the inner surface of fine tubes, which do not admit of being cleaned. The layer of fluid which lines the tubes must make a sensible reduction in the radii of the finer capillary tubes. And the theoretical expressions for the height of the fluids in these tubes are approximations which are not strictly applicable to tubes of large diameter used in experiments of this kind. Some recent writers on capillary action have disputed the correctness of the results arrived at by the earlier experimenters. Thus Simon ° has concluded from numerous experiments of his own that the elevation of water in capillary tubes is very far from- varying inversely as their diameters, and that the height to which water rises between parallel plates compared with that which takes place in tubes, instead of being as 1 : 2, is as 1 : 3, or rather as 1 to tt. » Fogg. Ann. Bd. cv., p. 35 (1858). i Fogg. Ann. Bd. cxx'xix. " P. 45. = P. 47. " Ann. de Ch. Ph. [3] T. xxxviii. (1851). EXPERIMENTAL TESTS OF THEORIES OF CAPILLARY ACTION. 11 Bfede* comes to the conclusion that the depression of mercury and the elevation of water in glass tubes do not respectively vary inversely as the diameters of the tubes exactly, and that the thickness of the substance of the tubes has a sensible effect, or, in other words, that the molecular attractions are not insensible at sensible distances. Wolf* afterwards concluded from his experiments that the elevation of the same fluid in capillary tubes, all circumstances being alike in other respects, depends upon the nature of the tube. Laplace and Poisson considered that the only effect of a change of temperature was to change the elevation of a capillary column according to the change in density. Thus Laplace " says "L'^l^vation d'un fluids qui mouille exactement les parois d'un " tube capillaire, est, a diverses temp&atures, en raison directe de la density du " fluide, et en raison inverse du diamfetre interieur du tube." And Poisson ^ obtains for the elevation (h) of a fluid in a capillary tube of radius a h = ^gpa. i: Rr*dr. He then supposes that by a change of temperature h, p and R are respectively changed into h', p and R', neglecting the change in a. And having found -j-— ^® remarks " L'exp^rience montre, en effet, que pour un m^me liquide h, diff^rentes "temperatures, I'^l^vation du point G croit proportionellement a la density ; ce qui " donne lieu de croire que la force repulsive de la chaleur, ou du moins, sa " variation, que nous avons n^glig^e, n'a qu'une influence insensible sur I'int^grale "f Rr^dr." Jo Very careful experiments have been carried out by Frankenheim and Sondhauss, and afterwards by Brunner, to determine how far the height of the capillary column depends upon the temperature. Frankenheim " found that the height to which water rises in a capillary tube 1™" '0 in radius at a temperature f C. is 15"™ -336- 0-02751* -0-000014f between -2''-5 and 93°-4C., and Brunner' finds it to be 15"™-33215-00286396« from 0" to 82''C. Hence it appears that the elevation of fluids decreases with an increase of temperature much more rapidly than would be expected according to the theories of Laplace and Poisson. In the foregoing sketch of the progress of experiments made to determine capillary constants I have given attention chiefly to those where mercury was « Savans Etr. Brux. T, xxv. (1853), b Ann. de Ch. Ph. [3] T. xlix. ' Supp. Th. de VAcHon Capillaire, p. 39. ■1 Nmivelle TMorie, p. 106. " Pogg. Ann. Bd. lxxii. (1847). f Disquisitio Phys. Exp., p. 34, 35 (1846). 2—2 12 EXPERIMENTAL TESTS OP THEORIES OF CAPILLARY ACTION. the' fluid employed. Every experimenter finds that changes of form are constantly going on in capillary surfaces from one cause or another. Still something more definite is desirable in the results. But as the experiments have been conducted apparently with every precaution, it does not appear probable that any new experi- ments of the same kind would lead to better results. When «' is determined by reflection its value must be obtained for a point at a short distance from the junction of the solid and fluid surfaces. The experiments on the thicknesses of large drops of fluid are not satisfactory because the theoretical expression is not exact, and because the thickness of the drop varies so slowly in large drops. Also the approximate theoretical thickness is given in terms of two unknown quantities a and m. During the time when I was able to use the Cambridge University Library, I made copious extracts from numerous papers on this subject, but it does not appear necessary for me to allude further to them in this place, especially as the late Professor Challis has published a very good and elaborate report on Capillary Action*. For numerous references to the works of early writers on the subject, reference may be made to the articles " Capillaritat," " Cohasion" and " Tropfen" in Gehler's Physihalisches Worterhuch. Recent experiments will be found referred to in Fortschritte der Physik 1845, &c. and in Jahresbericht, 1847, &c. von Liebig, Kopp, u. Will. See also the article on Capillary Action in the 9th edition of the Encyclopcedia Britannica by the late Professor Clerk Maxwell. * Brit. Ass. Report, 1834. CHAPTER III. ON THE CALCULATION OF THE THEORETICAL FORMS OF DROPS OF FLUID, UNDER THE INFLUENCE OF CAPILLARY ACTION, WHEN SUCH DROPS ARE BOUNDED BY SURFACES OF REVOLUTION WHICH MEET THEIR RESPECTIVE AXES AT RIGHT ANGLES. We have already stated that various methods of obtaining the difiFerential equa- tion to the surface of fluid under the action of capillary forces have been given by Laplace and other writers on Capillary Action. The form of the eqiiation obtained by these different methods is, however, in all cases the same. Perhaps the simplest way of obtaining the equation in question is to consider the fluid to be in equilibrium under the action of gravity and of a uniform surface tension. Let T be this uniform tension, R and Bl the principal radii of curvature at any point of the surface of the fluid, 'p the fluid pressute at that point. Then i + i^ = f-' If z be the vertical coordinate of the point measured downwards, o- the density of the fluid, and g the force of gravity, then •p = g _G + gaz p~ir~~T~- Let 6 be the radius of curvat ur e at the ori gin, so that at that point we have^ both Hence and the equation becomes p = b, and limit (—. — r ) = b. Vsm

; f and y instead of x, z, p and s. Thus simplified, our equation becomes 1 sin (f) „ ^ p X Also when = 0, we have ^ = 0, p = l and limit f^ — r) = l, hence the form of the curve depends on the single parameter /3. The magnitude of the curve, or its scale, is proportional to 6. The same equation is applicable to the case of hanging dro ps, but in that case z IS to be measured upwards from the vertex, and j8 will be n egative. dx and sin ^ = the above ■ equation is equivalent to ' g.liW^'^"' a , differential equation of the 2nd order. The two arbitrary constants, which enter into the integral of this equation are to be' determined by the condition that when « = 0, ^ = 0, and ^5- = 1. xdx We are unable either to find the general relation between x and z, by means of this equation, or to express "these two quantities in terms of a third variable. We may, however, as in \ all cases where the differential equation to a curve is given, develope the increments of the coordinates in series proceeding according to ascending powers of the increment of the quantity chosen as the independent variable. Thus we can trace a small portion of the curve starting from a known point, and then we naay make the point which terminates this portion a new starting point for tracing another small portion, and so on successively until any required portion of the curve has been traced. For instance, suppose the given equation to bit df~-^[dt'^'V' where / denotes any function of the -quantities ^, y and t. 16 CALCULATION OF FORMS OF DROPS. Then by repeated differentiations of this equation, and by substitution of the value of 5 in the successive results, we may find the general values of the higher differential coefiBcients W df in terms of -£ , V and t. Hence if, for a given value t^ of t, we know that 2/ = 2/o and I = (|)^, suppose, we can find the values of C| and the higher differential coefficients of y, which corre- ar spond to f = f„. Let these values be denoted by f^j , f ^j , &c. Therefore if t, = t„ + Bt^, and if y, and (-£) be the values of y and ■£ which correspond to t = t^, we have by Taylor's theorem The increment St^ must be taken so small as to render these series convergent. The values of y^ and (-^j being thus known, we may find (j^j , (-^A , &c., by the same formulae as before ; and then if and if y^ and f-^j be the values of y and -^ which correspond to i = ij,, we may simi- larly find y^ and (-tt) , and the same process may be repeated as often as we please. A similar process may be employed if we have any number of simultaneous differential equations, and the same number of dependent variables, such as, for instance, the following : ;7i=/(«> y, t), dt dy dt = F{x, y, t). CALCULATION OF FOEMS OF DROPS. 17 The method fails if any of the differential coefficients employed become infinite in the interval over which the integrations extend, and therefore the independent variable should be so chosen that no infinite or very large values of the differential coefficients will be introduced. The intervals adopted should be so small that a few of the terms of the series will suffice to. give the results with all the accuracy that is desired. After a few points of the curve, in the neighbourhood of the starting point, have been determined by the foregoing or some equivalent method, it will usually be found more convenient to determine other points of the curve in succession by making use of a series of successive values of the differential coefficient which is given immediately by the differential equation, rather than by employing the values of the successive differential coefficients of higher orders which are fovind by means of the several derived equations. To fix the ideas we will suppose, with especial reference to our present problem, that the given differential equation is one of the first order, say Let ... t_^, f_g, f_j, f_j, i„, fj, &c. be a series of values of the independent variable t, forming an arithmetical progression with the common difference eo, I^et ... 2/.„ 3/.3, y_„ y_„ y,, y^, &c. , denote the. corresponding values of y, and let -l-^ 9-3. 9'-2. ?-i. ^o. ?i. &c. be the corresponding values of q, or oi —, and suppose to to be so small that the successive differences of these values of q soon become small enough to be neglected. Let t^t^ + tm, and suppose that we have already found the values of • ■■ y_4. y-3. 2/-ii> 2/-1 up to ^0 and therefore also those of ... q_^, q_^ q_^, q_^ up to g'^, and that the successive differences of these quantities are taken according to the following scheme : n q ■ . 4 q^ Ag-3 ... ... 3 ?.3 A?-, AV. A'?.. . . . &c. 2 g-. A?-, AV> A'?, ■ ^*q^ &c. 1 ?-. A?„ A=?„ ?0 E, X8 CALCULATION OF POEMS OP DROPS. Then the general value of q found by the ordinary formula of interpolation, for any value of n, will be , = ,„+ A,„ ^4- A=,„ !i|-t^H- A',„ ^i|±^+ AV„^^^ provided that n be taken between limits for which this series remains convergent. Hence the general value of y will be y = jqdt = Q)jgdn, or, substituting the above value of q, and adding a constant to the integral so as. to. make y=ya when n= 0, 3/=^„ + eo|g„n + Ag4VA-gJ^)^. + AV„/ '-(--^^^^,\^f^) cZ. + &c.}. where all the integrals are supposed to vanish when n = 0. If, in particular, we put m = -l, and substitute the several values of the definite integrals 1-172 '^'^' I 1.2.3 ^ "'■^^- we shall have, by changing the signs throughout, 2'o-y-. = -|^,-^A2„--A=^„-^A»j,-^A^^„- — A'g„-g^A«y„ 275 , 33953 ^ 8183 ., ) 24192 ^« 3628800 ^»~ 1036800 ^""'^''•J- Similarly, putting «=1 and substituting the values of the definite integrals we shall have + -525^.,, 1070017 .,_^ 2082753^, , ] ^ 17280 ^ ^« + 3628800 ^ ^«~^ 7257600 ^ ^o + '^°j • It will usually be found expedient to choose « so small as to render it unnecessary to proceed beyond the fourth order of differences. The series last found gives the value of y^ in terms of quantities which are all supposed to be already known, that is, the value of the variable y which was previously known for values of the independent variable extending as far as « = « now becomes known for the value t=t,+co, or at the end of an additional interval J CALCULATION OP FORMS OP DROPS. 19 It will be remarked, however, that the coefficients of the series above found for 3/0 — y_j, after the first two terms, are much smaller and diminish . much more rapidly than the corresponding coefficients of the series for y^ — y„. Hence by taking into account the same number of terms of the series in the two cases, the value of 2/0 — y_j will be determined with much greater accuracy than that of y^ — y^. In what has gone before, the successive values of y up to y„ are supposed to be already known, and therefore the equation which gives the value of y„— y^^ may be regarded as merely supplying a verification of former work. If, however, we suppose that the value of j/, is only approximately known, while the successive values as far as y_^ have been found with the degree of accuracy desired, we may use the equation for y^ — y_^ to give the corrected value of y„, in the following manner. Suppose that (y„) is an approximate value oi y^, and let y„={y^ + ''}> where r] \s so small that its square may be neglected. Also let {q^ be the corresponding approximate value of q^, found from the equation by putting 2/ =(?/„) and t=t^. Then we may put q„ = (g-J + hq, where h denotes the value of the partial differential coefficient -~ or -^7' — - found ay dy by substituting (y„) for y and t^ for t after the differentiation. Let ACg-j), A^ (§'„), A'(g'„), A*.(g'„), &c. denote the values of the successive dif- ferences formed with the approximate value {q^ and the known values q_^, q_^, &c. which immediately precede it, then we have AVo = A' (?„)+&'?, A\ = A\q'>) + H &c. = &c. But, by the equation before obtained, f 1a 1 a2 1 as 19 A4 3 .5 863 ., 275 , 33953 ., 8183 .^ _„ 1 24192^'' 3628800^° 1036800^° }' Or, substituting for y„, q^, Aq^, A^q^ &c. their values in terms of tj and known quantities, (yo)-y-i + '; = »{(?o)-|A(3„)-lA=fe)-^A»(?„)-^A*fe)-&c.} 3—2 20 CALCULATION OF FORMS OF DROPS. Hence if e denote the excess of the quantity r 1 1 1 IQ ) - {(2„) - 1 ^ (2o) - ^ A=(?o) - 4 ^' (?o) - 720 ^' ^^"^ - *'•[ over the quantity (i/o) - y_^, we shall have or 7] = which determines rj, and therefore l/o = (j/o) + V> and g'„ = (?o) + *'? ^°*^ become known. If in finding e we stop at the term involving A*(g'„), we shall have 6 V = ^-720'*'* and ki] — 1-720'"* • It will be observed that the coef3Bcient of wh in the denominator of these expressions is the same as that of wA'g',, in the expression for 2/1.— 2/o- This is no mere coincidence, as it is easy to shew that, generally, the coefficient of any term foA'q^, in the expression for y^ — y^, is equal to the sum of the coefficients of the terms involving (oq^, wAg-j, (oh.%, (Sfc. . . . mA'g',, in the expression for y^ — y_,. Hence if in finding e we also include the term involving A° (g„), we shall similarly have 6 . 7) = 1 95 ■ and kT} = - 1-288'"* An approximate value of y„ may always be found from the series of values — y-i> y-s> V-v 1/-1 previously calculated, by taking^ the successive dififerences of four or fiv-e of the , last^ terms of the series, and assuming that the last difference so found remains constant. CALCULATION OP FORMS OF DROPS. 21 The numerical operations will be greatly facilitated by the use of Tables which exhibit the values of 720^^' 160^?' 60480^2, &c. for given values of A*q, A% A\ &c. Such Tables have been formed by Mr Bashforth for this purpose, and are given at the end of this Chapter. Having made these preliminary observations on the general method of finding successive small portions of a curve by means of its differential equation, we will now proceed to apply the method to the problem under consideration, viz. to the tracing of the curve formed by a meridional section of a drop of fluid, by means of the equation above found 1 sin „ ^ p X First, suppose ^ to be taken as the independent variable. The above equation may be regarded as giving p ag a function of the co- ordinates X and s, and these latter quantities are to be found by the integration of the equations dx dz . . Also X and z vanish with ^, and p is initially = 1. We will first find the form of the curve in the neighbourhood of the origin by developing p and the coordinates x and z in series of ascending powers of 0. Instead of employing the general method described at the outset, it will be found more convenient, in this particular case, to proceed as follows : Assume, as we evidently may do, p = 1 + &,<^" + 6,.^* + &,f + 1,-^' + ^„f° + &c., where h^, \, &c. are constants to be determined, then ^=pcos<^ = p|l-^2<^=+5-27374f-l-27:6<^' 22 CALCULATION OF FORMS OF DROPS. Substitute the assumed value of p and integrate, therefore * = [<^ - 6 "^^ + l70 '^' - 5040 '^' + 362880 ^' " 39916800 *" + '^°- J + J.g^'-ro^' + 4^'-6^0^'+44M20*"-H + &C., &c. , Similarly 4 = /' l*^ - 6 ^' + 120 "^^ - 50i0 '^' + 362880 "^^ " 39916800 '^" + '^'j ' and therefore ^=B^'-^'^'+ 7^0 "^°-iok'^'+ 362^0 '^"-4790^ + ^'[i^^-3^^^+9io^^-5ok^'°+435i560'^'^-H + ^^G^°-r8'^'+r4)^"-60i80^" + H + &c., &c. Also, we find ^ = 1 - \' + (6/ - 6J .^^ - (J/ - 2hp, + \) f + (6/ - 36,^6, + 6/ + 26,6, - 6,) - >/ - 46/6, + 36,6,^ + 36/6, - 26,6, - 26,6, + 6 J .^" + &c. CALCULATION OF FOEMS OF DKOPS. 23 Also a X ' and sin<^ 1- -u- "*'120 f. 1 5040 and from above • "^^ + 362880 "^^ "39916800 "^^ + *°-' r^ - (^ ^») ^^-»- (iro-^^^+^>^- (5-^-168^^ 44^^-^«) ^° "^U62880 6480 '^"^216 * 18 "'^9 7^ ~ U99I68OO 443520 ""'"7920 *~ 264 «"'" 22 « 11 'V "^ + &c., &c. Hence, by performing the division indicated, we may find * / 2, 4, 22,3,1,, 16, 68,, ' + (,4725 *» - 4725 ^« "'" 135 ^" + 81 ^" "^ 4725 ^-1575 ^"^^ "'■V93555 ""''42525 ' 14175 " 1215 " 243 " , 52 8 7 , , 16 , „ 4 , 8 • "'"155925^* "14175^"''* "'"525 ''"''* ■^135''^^* "525^* - 25 ^"^*' + 1485 ^« "" 945 ^^^^ ~ 21 ^"'^^ "^ 35 ^*^» + 297 ^- 2 + &C., &c. + ^K\-Yi^.)r Substitute these expressions in the equation i + ^ = 2 + ^., p X 24 CALCULATION OF FORMS OF DROPS. and equate the coefficients of corresponding powers of , and we shall find successively h- " 3 1183 '^«~~6760'^ 128 '^ 9216^' .* ^»- ~ 8960'^'^ 18432'^ ■^92160'^ ^81920 '^' _ 233 1 ^ 1469 '^"~ 14515200 '^ 36288 '^ 442368^ _ 104513 „, . 4882031 „ 5529600 '^ 88473600'^^' which gives the value of p in terms of thus found is exact, and not merely approximate. Also if s denote the length of the arc of the curve measured from the origin, V 80640 '^ ^ 165888 '^ ^ 829440 '^ ^ 737280 '^ J ^ + 1 + ; / 233 1 1469 104513 ^ U59667200 '^ 399168 '^ "^ 4866048 '^ "^ 60825600 '^ 443821 /S')<^" 88473600 ' to the 11th order in , we must proceed step by step according to the method described above, 4'-s> <^-2> ^-1' ^0 *° ^® ^ series of consecutive values of , with the common difference co, and let •■•^_6) *_4> ^-3! ^-2) ^-t.) "^O B. 26 CALCULATIOIf OF POEMS OF DROPS, be the corresponding values of the coordinates, and •••P_5, P-i, P-i, P-V P-l' Pn the corresponding radii of curvature. The equations to be integrated are dx . ^ = pcos4>, dz . , ^ = psin0, where - + — 2 = 2 + Bz. p X Suppose that the values of the coordinates, and consequently those of the radius of curvature, have been calculated for the successive values of <^ up to _3 AHog/)., AMogp.^ Alogp_, A'log|0_, logP-2 A'logjo.j Alogp.i logP-i If (o is taken sufficiently small, the differences as we proceed to higher orders will rapidly diminish, and it will generally be easy by inspection of the two or three last calculated fourth differences, to fix upon an approximate value of the fourth difference A* log /a, immediately succeeding. Call this approximate value A* log (pj, and by successive additions form A' log (/)„), AMog(/j„), Alog(|0„) and log(jo„), thus A'log/3_, AHogp., Anog(/,,) Alogp_, A^ogCp.) log/'-. Anog(p„) Alog(p„) log (po) CALCULATION OP FORMS OF DROPS. 27 Form the values of ...dx_^, dx_^, dx_^, dx_^, dx_^, .■.dz_^, dz_^, dz_^, dz_^, de_^, and of their successive differences, according to the following scheme : <»/3_5 cos 0_g = dx_^ ^^dx_^ A*dx_, Adx_^ A'da;_3 (op_^ cos _2 sin ^_3 = dz^^ A^dz_^ Adz_j (op_^ sin ^_j = cZ^_j If p„ were known, we might similarly form dx^ = mp^ cos ^„ and dz^ = wp^ sin ^„, and the successive differences Adx^, A^dx^, A'dx^, A*dx^, &c., Arfa„, A''J3„, A^dz^, A*dz^, &c., and then we should have, by what has been already proved, «„ - «_i = rfa-o - 2 ^<^*o - 12 ^"'^'^o ~ 24 ^''^*».~ 720 ^'^^° ~ '^*'-' and z„ - z_^ =dz^--^Adz^—^ A^dz, - ^^ A^dz^ - ^ A^dz^ - &c. ; and when a;„ and 5^„ had thus been found, we should have the equation l+!i5i. = 2 + ;3., in verification of the value which had been used for />„. 4—2 28 CALCULATION OF FORMS OF DROPS. Now, let {dx„) and (d^„) be approximate values of da;, and dz„ respectively, given by (dsB^) = CO (pa) cos 0„, (dz,) = CO (p,) sin 4>^, and let the successive differences found by employing (dx,) instead of dx^, and (dz„) instead of dz^, be denoted by A(&„), A'(_dx,), A^dx,), A'(dx^),&c., and A{dz,), A^dz,), A'{dz,\ A'{dz,),&c., respectively, and suppose that (xj and (aj are given by the equations W - ^-x = ('^^o) - J A (&J - 1 A^dx,) - 1 A\dx,) - ^ A* (,) (1 + ,,), the correction of the value of (dx,), and therefore also that of the values of A (dx^ A^ (dx,), A' {dx,). A* {dx,), &c. will be ■nco (p,) cos cj)„ and the correction of the values of (dz,), A{dz,), A'(dz,), A'(dz,), A* (dz,), &c. will be V(o (p„) sin ^0. Hence if we stop at the terms which involve differences of the 4th order, we shall have / N 251 , , «o - (a^oj = 720 '''" ^P"^ '^^^ ^o' and ^o-(«o) = 72o'?"Wsin^„. Hence, since Po ^a and we find 1 Po ~[pr ""•^» "1 1 " + /3[«o-(^,)] 251 = 720'""^' o„) sin ^„ 'cos d),, „"1 CALCULATION OF FORMS OF DROPS. 29 but _= (1_^)_ nearly, Po (Po) and u;r^}^'-'^' ^^^^^^' 1 251 and therefore r} : 251 , nearly. cos<^o_,_^1 Hence rj is found, and therefore the values of a?„ and z^, which were required, become known. In practice, the following slight modification of the above process will be found convenient. Suppose the assumed value of log(/3o) to be increased by 100 units of the last place of decimals employed, then while calculating the values of (dx^), {dz^, (x^), {Zf,) and the consequent value of [pj, note at the side of the work, the changes which would be severally caused in each of these quantities by such an augmen- tation of log(/j(|). It may be remarked that the changes in (a;,,) and («„) will be 251 f^^ times the changes > in (dx^) and (dz^) respectively, when we stop at terms 251 involving A*, and that f^^ may be conveniently put under the form 720 1 3 1 + ^ f 1 - -V 20 V 12/ Now suppose that an increase of 100 units in log(po) causes a diminution of fi units in log[|0„], and that the excess of log[/3(,] above log(p„) is A, of the same units, then the correction to be applied to the assumed value log(/3„) will be . 100 , \— — such units, 100 + /i and the correction to the value of log [/>„] will be — — — ^— such units, 100 + /X and the proportionate changes required in the values of (dx„), {dz^, («„) and {z^ will be at once found. If in finding (a;,) and {z^ we include the terms which involve differences of 251 the 5th order, the fraction =^^, which occurs in the above, should be replaced by 288 3 \ 96/ ' We may, of course, change the value of to whenever the more or less rapid rate of diminution of the successive differences shews that it is expedient to increase or diminish the interval. It is only necessary, by selection from or interpolation between the values already calculated, to find the coordinates for a few values of ^ separated from each other by the newly chosen interval. 30 CALCULATION OF FORMS OF DROPS. It may be remarked that when, by means of the appropriate series, we have found the values of p for a sufficient number of small values of (jj, we can form the corresponding values of dx and dz, and thence derive the corresponding values of X and z by the process of integration before explained, without the necessity of employing the series for finding those quantities. A numerical example of the work will be given later on. When X and z, and therefore also p, are known for a given value of 0, we can find the volume of the portion of the drop terminated by the horizontal plane a,t distance s from the origin, without any further integration. For if F be this volume, we have dV^'TTx'djs. Also from the differential equation, when the radius of curvature at the vertex is taken for the unit of length, 1 sind) „ - - + ^ = 2 + ^z, p X J ^, J, aj dp , COS d>ddx and therefore adz = — ^ H ^ — T- ^ — . p X or Hence '^^~fi| a^ + a;cos^(?(^-sin<^(?a;[, and, integrating the first term of dV by parts, ^ — q\ 2 I — h/a; cos <}) d(j) — f sin (f> dxY = Q \ J(x cos d , since dx = p cos (j) d. Also the weight is g\ Hence gaV^ 2'n-xTsin A = '7rx'T (- + ?^) , \p X J and •K^ t\ _ sin^ N g,.we find by transposition, _/_ 1 g. 53 , 2011 6799 \ V 80640 '^ 165888 '^ 829440 ^ 737280 ^ j^ ■ ,1 233 1 fl. , 1469 104513 ^ 443821 \ "^ U59667200 '^ 399168 '^ "^ 4866048 ^ "^ 60825600 '^ "^ 88473600 '^ )^ - &c., or should be so chosen that the series above found will give sufficiently accurate values of x, z and ^ throughout several, say four or five such intervals. The process to be followed is exactly similar to that explained before, except that in this case there are three quantities x, z and ^ to be determined by inte- gration instead of the two x and z. It is this circumstance only which makes it preferable to employ as the independent variable in the case where this method is applicable, viz. when /9 is a positive quantity. The present method is equally applicable whether /S be positive or negative. CALCULATION OF FORMS OP DROPS. 37 Now, suppose ...s_5, s_4, s_^, s_^, s_^, s^ to be a series of consecutive values of s, with the common difference co, and let ...^.j, ^.j, ^_g, ^_j, (/>_,, ^„ be the correspond- ing values of ^, and ■•■i''_5) ^-it ^_|) '''_2) ^_i> 3!oi •••■^-6) ^-4) ^_3> ^_21 ^-11 ^0' the corresponding values of the coordinates, and •■•P-S> P-i, P-3, P-i, P.i,Po> the corresponding radii of curvature. The equations to be integrated are ds p' dx . ^=cos.^, dz T- = sm 0, ds 1 1 sin _^, J0.3, d^_^, d(f>_^, ... dx_^, dx_^, dx_^, dx_^, dx_^, ... dz_^, dz_^, dz_^, dz_^, dz_^, and of their successive differences, according to the following scheme : O) — = d^_, ^^^ A^d0 P^ A#., A»d,^.3 — =#-4 A^C?<^_3 b.'d<^^ ''- Ld^_, A'd<^_, — = <^<^-3 A»d<^_, A^c^d) , P-^ A#., A=#., — = #_a A^drf) , ''- A#_. w cos (^_5 = cZa;_5 ^^dx_^ A.*dx_. Adx_^ A'dx_^ o) cos (f)_^ = (Za;.^ A'da;,, A*dx_. Adx_^ A^dx^ CO cos ^_3 = (Za;_3 A'di^.^ A*da;_ Adx^ A'dx_^ ft) cos ^_2 = dx_^ ^dx_^ Adx_^ ft) cos ^_j = d^_j CALCULATION OP FORMS OF DROPS. 39 and CO sin (j)_^ = dz_^ ^^dz_^ ^^^.^ o) sin ^_^ = dz_^ ^dz^ ^.*dz , Mz_^ A'dz_, ^ and dzj = c* sin ^j, and the successive differences M4>„ AV^„, Ay<^„, A*(^^„, &c., AcZ«„, A^t^a;,,, A'c?a;„, A^c^aj^, &c., AcZiT^, A'i^o, A'„ ought to agree with its assumed value, and the values of ^„, a;„ and z^ should satisfy the equation Po «0 which thus affords a verification of the value which was used for — . Po Now, let (cZ^o) ^® ^^ approximate value of d,) = CO (- ^Po' and let the successive differences found by employing (d^ instead of dcp^ be denoted by A (#„), A\dcl>X AX#o), AXdcp,), &c., and suppose that (^J is given by the equation (•^o) - -x = (cZ^o) - 1 A (#„) - 1 AXtZ,^„) - ^ A^((^,/,„) - ^ AXc^0„) - &c. 40 CALCULATION OF FORMS OF DROPS. Also, let (dx,) and (dz^) be approximate values of dx„ and dz^ respectively, given by (c?«J = w cos (0„), (dz,) = (o sin ((^„), and let the successive differences found by employing {dx^ instead of dx^, and {dz^ instead of dz^, be denoted by A {dx,), A\dx,), A\dx,), A\dx,), &c., and A (dz^, A^[dz^, A'{dz^), A\dz^), &c., respectively, and suppose that {x„) and [z„) are given by the equations (X,) - x_, = (dx,) - 1 A (dx,) - ^ A\dx,) - ^ A\dx,) - ^ A\dx,) - &c., {z,) - z_, = (dz,) -\a {dz,) - i AXdz,) - i AXdz,) - ^ A%dz,) - Scci Also let "1 .Po^ be found from the equation and suppose that this gives £] = ©-• where e is a very small known quantity. Then, if the true value of - =f-j+,y, the correction of the value of (d^„), and therefore also that of the values of A(d^„), A'(d^„), A'(c?0„), AXdcfi,), &c., will be cor,. Hence, if we stop at the terms which involve differences of the 4th order, we shall have 9o - (9o) = 720 "''• 251 Wherefore cos ^„ = cos (^J - ^^q '"'? ^^" ("^o) 251 and sin <^„ = sin ((^„) + ^ w'? cos (^„). Hence the correction to be applied to the values of (dx^), A (dx.), A^dxX AXdx ) A\dx,), &c., will be -72o'»'7Sin(0„), CALCULATION OF FORMS OF DROPS. 41 and the correction to be applied to the values of {dz^, A {dzX ^^{dz^, ^Xdz^), A%dz„), &c., will be 720 « '7 cos (^„). Whence if, as before, we stop at the terms which involve differences of the 4th order, we shall have /251 Y ^0 - K) = - (^720 "J '^ ^"^^ ^^»^' Hence, since and we find /251 \* ^0 - W = ^720 "j '' ^°® ^^»^' sin ( K). (^o) and the consequent value of [-1 , note at the side of the work the changes which . /1\ would be severally caused in each of these quantities by such an augmentation of \^-J . As before/ it may be remarked that if we stop at the terms involving A* the changes in {j>), W and (s„) will be ,^ times the changes in (d^„), {dx,) and {dz,) 251 respectively, and that j^ may be conveniently put under the form 251 If we also include the terms involving A', the coefficient y^Q ™"^* ^® replaced 1- 95 1/. 1\ Now suppose that an increase of 100 units in (-A causes a diminution of /i units in — I , and that the excess of LPoJ rection to be applied to the assumed value f — j will be — above ( — ) is X of the same units, then the cor- .PoJ W and the correction to the value of 100 X , —r- such units, 100 + /ti 1 Poi XfM will be such units, 100 +/i and the proportionate changes required ia the values of (d„), (c^a;„), (dz^), («„) and (zo) "will be at once found. A numerical example of the method, when s is taken as the independent variable, is given hereafter. As before, we may, if it is found convenient, increase or diminish the interval between the successive values of s. It may be remarked, as before, that when, by means of the appropriate series, we hav^ found the values of — for a sufficient number of small values of s, we can form the corresponding value of d^, and thence derive the corresponding values of d> by integration, and again by means of these we can find the corresponding values of dec and dz, and thence derive by integration the corresponding values of x and z without employing the series for those quantities, unless we choose to do so as a means of verification. CALCULATION OF FORMS OP DROPS. 43 In the foregoing investigation, ^ is supposed to be expressed in the circular measure, but in order to find cos " denote the number of seconds in ^, and if 7 denote the number 206264-8, we shall have deb" = - 7 cZs = - rJW, P P where log 7 = 5'3144251. In conclusion, it may be worth while to say a few words in order to point out the distinction between the method of integration above explained and that which is commonly known under the name of "Integration by Quadratures." In this latter method, we have to find y from the equation where f{t) is a known function of t. If we regard q as the ordinate of any point of a curve corresponding to the abscissa t, then 1/ will be the area included between the curve, the axis of t, the ordinate q, and some fixed ordinate. In this case the values of q can be found, a priori, for any given values of t, whereas in the more general case already treated of, where 5' is a function of y as well as of t, the unknown quantities y and q must be found simultaneously, and therefore we can only proceed step by step. As the simpler case is included in the more general one, we may, of course, still employ the same formula of integration that we have already obtained, but it will be more advantageous to use a slightly different one. If we denote the successive values of q by •••9'«-2. 9'.-.. ^n, &c., and if the corresponding values of y be denoted by ••■2/n-2. 2/n-l. !/n' ^^■' and if, in a notation similar to that already employed, the successive differences of the quantities q be represented as in the following scheme: 2n+l A?„ ^ A'g„,, A^g,,,, A\,, A\^, ^\.. , AV„,, AVn« ^^ AV„« &c., A?„« A\^, A^?n.3 A'g„^ A\,, 6—2 44 CALCULATION OF FORMS OF DROPS. then, as is before proved, we shall have Vn ~ yn-i~h'^^ between the limits t = t^ + {n—1) a and t=-t„ + na ( 1a 1 a2 1 as 19 a4 3 ., 863 .^ 275 , 33953 ^ 8183 ^ _ x, \ 24192^" 3628800^" 1036800^" ]' If we transform this series into one which contains only such differences as, in the above scheme, occur in the same horizontal lines as q^ and ^q^, we shall find that the coefficients of the successive differences ultimately diminish much more rapidly' than before. When the differences of higher orders than the 9 th are neglected, it is- readily shewn that the above series is equivalent to r 1 A 1 AS 1a, 11 A4 11 A« J/n - ^'n-i = « |9'. - 2 ^?» - 12 ^ 2»« + 24 ^'*+' "^ 720 ^"^^ ~ 1440 ^"*^ - 191 .5 191 , 2497 .8 _ 2497 , _ «. 1 60480 ^»+»"'' 120960 ^'■+="^3628800 ^-*-* 7257600 ^»« J" Similarly, by repeated applications of this formula, we have 191 e 191 2497 8 2497 ^^ ) 60480 ^"+2 ■•" 120960 ^»« ■*" 3628800 ^"^ 7257600 ^"^ ~ '^j ' &c., &c. 191 AC-. 191 A7 2497 8 2497 ^^ o 1 60480 ^"^ "^ 120960 ^""^ "*" 3628800 ^"^ 7257600 ^'"+'> ~ ' j ' Adding all these equations, and observing that A?n + Ag„., + &c. + Ag',„,, = g„ -5„, A'^«« + ^\ + &c. + A'q^^ = Ag„„ - A^„„, A'?,.. + A'2„ + &c. + A'q^ = A»^„,, - A^g„,, , &c. = &c. ^\^ + AVs + &c. + A'-g^ = A»g„,, - A=g^„, we obtain yn-ym = W^t between the limits t = % + ma and « = i^4-nca^ = " |?»Hi + g„,« + &c. + q,,, + ?„ - I (?„ - g,„) CALCULATION OF POBMS OF DROPS. 45 ~ 1440 ('^*^"+2 ~ ^'?m J - go480 (^°^«+8 - ^^Qm+s) + 120960 ^'^°5'»+3 - ^'9mJ 2497 , '>497 ) + 3628800 ^^ ^"^ - ^'^"•-*) - 7257600 ^^'^-^^ ~ ^'^™«) " '^°j ' in the first line of which expression ^rr^i + ?™« +&c. + q^-^ (q^ - qj may be replaced by i (?« + 2«) + g'™^ + ff„« + &c. + q^_,. Also, by substituting for the dififerences of odd orders in the series for 2/„-y„_i, viz. by putting &c. &c., we obtain Vn - y«-i = » { J fe + ?„- J - ^ (A^?„« + A'qn) + ^ (A\^, + A*g^,) 191 2497 1 - 120960 (^°^- + A'?„ J + ^25^^00 (^'?- + ^'?-) " &c.| , and similarly, by substituting for the differences of even orders in the series for 2/«-2/m' viz. by putting A'?^i = A?„^, - Aq-^, A\^^^ = Ag„^, - A?„, A'g,.« = A'^,^ - A'^„^,„ A'q^ = A^g^ - A=g„^„ &c. &c., we obtain 2/« - 3^^ = « {2 (ff- + ffJ + 2»« + ?„+2 + &c. + q,_. - 24 (^?" + A?„«) + 24 (A?„ + Aq^^J + liio (^'^«« + ^'O - 1^ (A^?^« + A'q^J mlQl ~ 120960 ^ ^"+' "^ ^''+'' 120960 ^ ^"^^ "^ ^"^^^ 9497 2497 + 7^7600 ("^'^"^ + '^'^''-) - 7257600 (^'^™« + ^'^-^^ " '^'•. When, by means of the method before explained, we have found a series of successive values of q, viz. ?m. ffm+l. &C-. 9'n-l' ?n. together with the differences of odd orders which are immediately contiguous to the horizontal lines through q„ and q„, we may advantageously employ the formula just obtained in verification of the value of y„ — 2/„ previously found. 46 CALCULATION OF FORMS OF DROPS. Weddle's approximate formula for the area of a curve which is divided into 6 portions by 7 given equidistant ordinates*, viz. 2/6-2/0= |^{?o+9'. + ?*+26+^(9'i + ?5) + 6?3l. has likewise been found to afford a convenient means of verification. Note. In the reference made at the top of p. 31 to Bertrand's paper, the page referred to should be 208 instead of 185, the latter being the page at which the paper begins. EXAMPLE OF THE METHOD, WHEN IS TAKEN AS THE INDEPENDENT VARIABLE. Suppose that /8 = 6, and that the values of x and z, and also that of p, have been already calculated for values of ^ at intervals of 2|° from 0° to 321", and that we wish to find the values of the same quantities for ^ = 35°. Here CO = the circular measure of 2^°, = 0-04363323, log o) = 8-6398174. In the first place calculate a table giving the logarithms of w cos , to sin ^ and sin <^ for values of <^ at intervals of 2^°. Thus for = 35° the calculation will be (0 8-6398174 8-6398174 cos^ 9-9133645 sin^ 97585913 8-5531819 8-3984087 The following is a portion of the table. Table A. log (&) cos ^) log (to sin (f) Boole's Finite Differences, p. 39. log (sin ^) 30° 8-5773480 8-3387874 9-6989700 32| 8-5658466 8-3700339 9-7302165 35 8-5531819 8-3984087 9-7585913 37i 8-5392841 8-4242645 9-7844471 40 8-5240714 8-4478849 9-8080675 CALCULATION OF FORMS OF DROPS. 47 Next, collect in a table the values of log/9 for the successive values of up to ^ = 32^°, and find their differences to the 4th order, thus Table I. <^ log/) A A' A= A* 22i 9-8858160 - 198034 + 2502 25 9-8660126 - 199279 -1245 + 1869 - 633 271 9-8460847 - 198655 + 624 + 1449 - 420 30 9-8262192 - 196582 + 2073 (+ 1049) - (400) 32| 9-8065610 (-193460) (+ 3122) 35 (9-7872150) In order to find an approximate value of log p for (f> = 35°, assume a value for the 4th difference immediately following those already found in the table, and by means of this form successively the approximate values of the 3rd, 2nd and 1st differences and of the log p for dx Adx A'dx A'dx A*da; 22I -03099194 + 2802 - 194464 + 2314 -968 23 -02904730 + 5116 - 189348 + 1453 -861 27i •02715382 + 6569 - 182779 + 868 -585 30 •02532603 + 7437 - 175342 (+ 406) (- 462) 32i •02357261 (+ 7843) (- 167499) 35 (•02189762) 48 CALCULATION OF FORMS OF DROPS. For , forming them by means of the logarithms in the 2nd column of Table A. Add to this table the approximate value of dz for (f) = 35°, and find the differences, as before, to the 4th order, thus Table III. ds Adz A'dz AWa A*dz 22°J •01283728 + 70770 - 13145 + 1416 + 79 25 •01354498 + 59041 - 11729 + 1348 - 68 274 ■01418539 + 48660 - 10381 + 1262 - 86 30 •01462199 + 39541 - 9119 (+ 1126) (- 136) 32| •01501740 (+ 31548) (- 7993) 35 (•01533288) For <}) = 35° the calculation will be log{p) 9-7872150 +100 log (g) sin ^) 8-3984087 log 8-1856237 (dz) -01533288 + 35-3 the change of (dz) for an increase of 100 units in log (p) is placed at the side. Collect in two other tables the successive values of w and s which have been already computed, and form the differences of these quantities to the 4th or 5th orders, by which means any error of consequence that may have crept into the work will at once become apparent. CALCULATION OF FORMS OF DEOPS. 49 From the values of {dx), (dz) and their differences, and from the known values of a; and 3 for ^ = 22^", find tlie approximate values of x and z ior (p = 35°, thus <^ = 32r, X •45780303 = j-ds = s- 0-0625 s' + 0-00338,54166 s' - 000035,458o s' + 0-00003,1453 s' - 0-00000,3049 s" + &c. Similarly, putting /3 = — O'o in the series for x and z respectively, we obtain x = s- 0-1666 s" + 0-02083,3 s' - 0-00244,9157 s' + 0-00029,4734 s» - 0-00003,5199 s" + &c., z = 0-5s^- 0-05729,16 s* + 0-00716,14583 s» - 0-00085,03747 s' + 0-00010,17165 s" - 0-00001,21847 s" + &c. From which we may find s (in circ. measure). (j} (in deg. &c.) X z 00 0° 0' 0" 0-0 0-0 ±01 ± 0-09993,753 ± 5 43 33-596 ± 0-09983,354 0-00499,428 ±0-2 ± 0-19950,108 ± 11 25 50051 . ± 0-19867,330 0-01990,879 ±0-3 ± 0-29832,065 ±17 5.33-051 ± 0-29555,009 0-04454,110 ±0-4 + 0-39603,409 ± 22 41 27-896 ± 0-38954,273 007856,212 CALCULATION OF FORMS OF DROPS. 53 Now, let us suppose that the values of p, ip, x and z have been already calcu- lated for s=0'l, s = 0'2 and s = 0'3, and that we wish to find the values of the same quantities for s = 0'4 by the foregoing method of integration. Here we have w = O'l. From the given values of - we may find the corresponding values of d=(o-, and their successive differences, as shewn in the following Table : s d^ Arf0 A'd^ A'd A*dcl> A'dcj, -0'3 0-09832,603 92,666 -0-2 0-09925,269 55,998 -36,668 -0,597 -01 0-09981,267 18,733 - 37,265 -0,201 + 0,396 +,006 0-0 0-1 - 18,733 -37,466 + 0,201 + 0,402 -,006 0-1 0-09981,267 - 55,998 - 37,265 + 0,597 + 0,396 (-,018) 0-2 0-09925,269 - 92,666 - 36,668 (+0,975) (+0,378) 03 0-09832,603 (-128,359) (-35,693) 0-4 (0-09704,244) If we supply another line of differences by supposing the 6th difference to be constant, we shall obtain the quantities included in parentheses in the above Table, and the corresponding assumed value of .-^ for s = 0-4 will be 0-97042,44. From the values of (d^) and its differences, and the known value of ior s= 0-4, thus For s = 0-3, -29832,065 s = 0-4, d(l) -09704,244 - i Adcj) + 64,179,5 - rVAWd!) + 2,974,4 ^ . . ^ , , . , , _ 1 A'fJrh — 040 fi ^ ^^ units of 8th decimal place -■^A'd - ,010 ^ -jhs^'d,^ + ,000 ,4 3)^ (^) -39603,413 ^ or 22° 41' 27"-903 0"-068 The changes placed at the side correspond to an increase in j— of 100 units in the 7th decimal place. As the interval a is rather large, we have taken into account the terms in A". .54 CALCULATION OF FORMS OF DROPS. "With this value of (0) we calculate the corresponding values of {dx) and {dz), thus logcos(^) 9-9650125 -0,6 \ogsm{j>) 9-5863199 +3,4 log CO 9- log 0) 9^ 8-9650125 9; 8-5863199 {dz) -03857624 +3,0. {dx) -09225980 - 1,2 The small quantities at the side are the changes of the quantities opposite to which they stand, in units of the last decimals respectively employed, which would be caused by an increase of 0"-06S in { O I 2 3 4 5 6 7 8 9 o o 88 176 264 352 440 528 616 704 792 I 88o 968 1056 "44 1232 1320 1408 1496 1583 1671 I 2 1759 1847 1935 2023 2111 2199 2287 237s 2463 2551 2 3 2639 2727 2815 2903 2991 3°79 3167 3255 3343 3431 3 4 3519 3607 369s 3783 3871 3959 4047 4135 4223 4311 4 5 4399 4487 4574 4662 475° 4838 4926 5014 5102 519° 5 6 5278 5366 5454 5542 5630 5718 5806 5894 5982 6070 6 7 6158 6246 6334 6422 6510 6598 6686 6774 6862 6950 7 8 7038 7126 7214 7302 739° 7478 7565 7653 7741 7829 8 9 7917 8005 8093 8181 8269 8357 8445 8533 8621 8709 9 10 8797 8885 8973 9061 9149 9237 9325 9413 9501 9589 10 II 9677 9765 9853 9941 10029 10117 10205 10293 10381 10469 II 12 I0SS7 10644 10732 10820 10908 10996 1 1 084 11172 1 1260 1 1 348 12 The units of 275 24192 A' are placed at the top of the Table, and the tens at the side. 62 TABLES. Table shewing the value of A° which corresponds to each unit in the value of 33953 3628800 A» = 106-87715 A'. O I 2 3 4 5 6 7 8 9 o o 107 214 321 428 534 641 748 85s 962 I 1069 1176 1283 1389 1496 1603 1710 1817 1924 2031 I 2 2138 2244 2351 2458 2565 2672 2779 2886 2993 3°99 2 3 3206 3313 3420 3527 3634 3741 3848 3954 4061 4168 3 4 4275 4382 4489 4596 4703 4809 4916 5023 5130 5237 4 5 5344 5451 5558 5664 5771 5878 5985 6092 6199 6306 5 6 6413 6520 6626 6733 6840 6947 7°54 7161 7268 7375 6 7 7481 7588 7695 7802 7909 8016 8123 8230 8336 8443 7 8 8550 8657 8764 8871 8978 9085 9191 9298 9405 9512 8 9 9619 9726 9833 9940 10046 10153 10260 10367 10474 10581 9 The units of 33953 3628800 A' are placed at the top of the Table, and the tens at the side. Table shewing the value of A° which corresponds to each unit in the value of 8183 ,„ 1 1036800 A'' = 126-7017 A^ I 2 3 4 5 • 6 7 8 9 127 253 380 507 634 760 887 1014 1 140 I 1267 1394 1520 1647 1774 1901 2027 2154 2281 2407 I 2 2534 2661 2787 2914 3041 3168 3294 3421 3548 3674 2 3 3801 3928 4054 4181 4308 4435 4561 4688 4815 4941 3 4 5068 519s 5321 5448 5575 5702 5828 5955 6082 6208 4 5 6335 6462 6588 6715 6842 6969 7095 7222 7349 7475 5 6 7602 7729 7856 7982 8109 8236 8362 8489 8616 8742 6 7 8869 8996 9123 9249 9376 95°3 9629 9756 9883 10009 7 8 10136 10263 10390 10516 10643 10770 10896 11023 11150 11276 8 9 1 1403 "53° 11657 11783 11910 12037 12163 12290 12417 I2S43 9 The units of 8183 1036800 A° are placed at the top of the Table, and the tens at the side. CHAPTEE IV. COMPARISON OF CALCULATED AND MEASURED FORMS OF DROPS. The coordinates ^ and -r for the curves represented by Laplace's differential equation were calculated by the method of Professor Adams for values of ^, 5", 10°, 15° 175», 180", and for values of i3, i, i |, ^; f , 1 ; IJ, 2, 2J; 3, 4, 5, 6, 7, 8; 10, 12, 14, 16 ; 20, 24, 28, 32 ; 40, 48, 56, 64, 72, 80, 88, 96 and 100. For ;S=1 the calculations were made by Professor Adams, for /3 = 10 by Professor W. G. Adams, and for the values of /3, J, ^, 3, 6, 16 and 32 by myself The calculations for the remaining positive values of ^ were made by Dr C. Powalky, who was recommended for the work by the late Professor Encke. Afterwards the values of j and y corresponding to ^ = 5°, and for the suc- cessive values of ^, 0, 8, 16, 24, 32, 40... 88 and 96 were arranged in order and differenced. Then the values of ^ and y corresponding to the same value of , 135°, 136°, 137°, 138° 153°, 154°, 155°, which were extremely useful, as will be explained hereafter, in deducing the capillary constants from the measured forms of drops of mercury. But these Tables would have been still more convenient if they had been formed so as to give log -T , log T and log ^ instead of t j t and tj, . The values of r and v vary so rapidly for low values of /3 and high values of P'r\ -0623 14-960 22-672 31-064 -2806 -4269 -5851 -0610 •0791 -0791 90 -0791 15-200 22-687 31-034 •2851 ■4272 •5845 •0565 ■0788 •0785 15-400 22-712 30-993 •2888 •4277 •5837 -0528 -0783 -0777 15-600 22-762 30-952 •2926 -4286 •5830 -0490 •0774 •0770 15-800 22-840 30-890 •2963 -4301 -5818 •0453 •0759 •0758 i6-ooo 22-925 30-826 -3001 ; ■4317 -5806 ■0415 ■0743 -0746 16-200 23-010 \ 30-720 : -3039 ■4333 -5786 •0377 •0727 •0726 eo'-o 16-400 23-128 30-590 •3076 -4356 -5762 -0340 -0704 ■0702 ■0370 -0720 16-600 23-250 30-447 -3114 •4378 •573s -0302 •0682 •0675 16-300 23-418 30-274 •3151 •4410 -5702 ■0265 •0650 -0642 ^r-O-^ ■0238 •0618 17-000 23-620 30-090 •3189 -4448 -5667 •0227 -0612 •0607 45 17-200 23-860 29-865 •3226 ■4493 ■5625 •0190 -0567 ■0565 -.«o-„ -0462 17-600 24-437 29-278 -3301 -4602 -5514 -OI15 -0458 •0454 30 •0120 i8-ooo 25-390 28-316 •3376 •4782 ■5333 •0040 •0278 •0273 T F-0.^ 18-214 *#* *** -3416 •5060 •5060 •0000 •0000 ■0000 15 -0033 ■0251 "Weight 4-57 grs. /? = 2-334 a =119-6 (o=U4°-48 6 = 0-09878 in. Temp. 40° F. Error in calculation of V= + 0000 035 cubic inch. COMPAEISON OF CALCULATED AND MEASURED FORMS OF DROPS. 67 No. II Original readings Readings converted The same when the origin of ""'q Ipiilaf/aH in turns of the screws nto inches coordinates is at the vertex v.. d.i\. Uld. LCL 2" < < z' x; < z x^ ■^. ^ z X inch inch inch inch inch ' inch inch inch 13-023 24-710 34-330 0-2443 0-4654 0-6467 0-1054 0-0907 0-0906 i48''-28 0-1054 0-09065 13-100 13-200 13-300 24-603 24-489 24'3S6 34-464 34-596 34-678 ■2457 -2476 ■2495 -4634 •4612 •4587 -6492 •6517 -6532 -1040 -I02I -1002 ■0927 -0949 ■0974 •0931 -0956 -0971 i45°-o i4o°-o i35°-o -1044 -1028 -1009 •0921 •0943 -0963 13-400 24-260 34-762 •2513 ■4569 -6548 •0984 -0992 -0987 13-600 13-800 24-146 24-040 34-904 35-010 •2551 ■2588 •4547 ■4527 •6575 •6595 •0946 •0909 -1014 •1034 -1014 •1034 I20°-0 -0938 -1018 14-000 23'975 35-086 -2626 ■4515 •6609 -0871 •1046 -1048 14-400 23-867 35-178 -2701 -4495 -6626 -0796 •1066 •1065 14-732 23-848 35-203 -2763 •4491 -6631 -0734 -1070 -1070 9o°-o •0734 -1070 15-000 23-866 35-192 -2813 -4495 ■6629 -0684 •1066 ■1068 15-400 23'9So 35-105 •2888 •4510 -6613 -0609 ■1051 •1052 15-800 16-200 24-072 24-270 34-989 34-782 •2963 -3039 -4533 -4571 •6591 •6552 -0534 ■0458 -1028 -0990 -1030 •0991 6o''-o -0463 ■0993 16-600 17-000 24-534 24-906 34-515 34-162 -3114 -3189 -4620 -4691 -6501 -6435 •0383 -0308 -0941 -0871 •0940 -0874 45°-o •0315 -0878 17-400 25-361 33-685 -3264 •4776 •6345 -0233 •0785 •0784 3o°-o •0170 •0687 17-800 25-978 33-078 ■3339 -4893 -6230 •0158 -0668 •0669 i8-ooo 26-368 32-688 -3376 •4966 -6157 -OI2I -0595 -0596 18-200 26-867 32-165 •3414 -5060 •6058 •0083 •0501 •0497 i5»-o -0051 -0394 18-400 27-540 31-478 ■3451 -5187 -5929 •0046 -0374 -0368 18-600 28-637 30-348 ■3489 •5394 •5716 -0008 -0167 •015s 18-642 *** *** ■3497 •5561 •5561 •0000 -0000 ■0000 Weight 9-523 grs. j8 = 6-44 a=126-2 o)=148»-28 6 = 0-159r6in. Temp. 37" F. Error in calculation of F= + 0-000 044 cubic inch. 9—2 68 COMPARISON OF CALCULATED AND MEASURED FORMS OF DROPS. No. Ill Original readings in turns of the screws Readings converted into inches The same when the origin of coordinates is at the vertex Calculated z" xr < / x; < Z ^J X, "^ z X 12-570 12-900 13-000 13-400 14-300 i6-ooo 17-000 1 8 'OOO 18-580 22-563 22.282 22-232 22-024 21-863 22.418 23-358 25-225 *** 34-683 35-05° 35-112 35-326 35-480 34-928 33-985 32-132 *** inch 0-2358 -2420 •2438 -2513 •2682 •3001 -3189 •3376 -3485 inch 0-4249 ■4196 •4187 -4147 •41 1 7 -4222 -4399 ■4751 •5400 inch 0-6533 •6602 -6614 •6654 •6683 -6579 -6401 -6052 •5400 inch 0-1127 •1065 •1047 -0972 -0803 •0484 •0296 ■0109 •OOOO inch 0-1151 -1204 •1213 -1253 •1283 •1178 •lOOI •0649 •OOOO inch 0-1133 •1202 •1214 •1254 •1283 •1179 ■lOOI •0652 •OOOO i4i''-7i i4o°'oo 135°-°° I20°^00 9o°^oo 6o''^oo 45°-°° 3o''-oo i5°-oo inch 0-1127 •II2I •lioi •1026 •0813 •0527 -0367 •0206 •0065 inch 0-II42 -I150 •1171 •1228 •1283 •1202 •1078 •0865 -0516 Weight 14:^725 grs. /3=ll-0 a=118-3 *)=141''-71 6 = 0^21572iii. Temp. 39" F. Error in calculation of F= + ©•000 057 cubic inch. COMPARISON OF CALCULATED AND MEASURED FORMS OF DROPS. 69 No. IV Original readings Read ings converted The same when the origin of Calculated in turns of the screws into inches coordinates is at the vertex 0" < < z' < < Z *. *. <^ z X inch inch inch inch inch inch inch inch 12-985 19-918 33-865 0-2435 0-3750 0-6379 0-1168 0-1311 0-1318 i4o°-o O-I168 0-1315 13-000 13-100 19-900 19-812 33-918 34-010 •2438 •2457 '3747 -3730 -6389 -6406 •1165 ■II46 -1314 -1331 -1328 ■1345 i35°-oo -1148 •1337 13-200 19725 34-093 -2476 -3714 -6422 -II27 -1347 •1361 13-300 19-642 34-167 "2495 -3698 -6436 -II08 -1363 -1375 13-400 i9"S53 34"230 •2513 -3681 -6448 -1090 •1380 -1387 I20°-00 -1072 -1394 i3-5°° 19-500 34-30° -2532 •3670 -6461 -1071 -1391 -1400 13-600 19-440 34-362 -2551 •3660 -6472 -1052 -1401 •1411 13-800 19-360 34-412 •2588 •3645 -6482 •1015 ■1416 •1421 14-000 19-294 34-486 -2626 -3633 -6496 -0977 -1428 -1435 14-200 19-243 34-532 -2663 ■3623 -6505 -0940 •1438 -1444 14-400 i9'i95 34-548 -2701 -3614 -6508 •0902 ■1447 •1447 14-600 19-182 34-560 -2738 -36II 6510 •0865 ■1450 -1449 90°-oo •0856 -1450 14-800 19-200 34-560 •2776 -3615 -6510 -0827 -1446 -1449 15-000 19-226 34-545 -2813 ■3620 -6507 -0790 •1441 •1446 15-200 19-277 34-520 •2851 •3629 -6502 •-0752 -1432 -1441 15-400 19-307 34-456 •2888 -3635 -6490 -0715 -1426 -1429 15-600 i9'3S3 34-388 -2926 ■3644 -6477 -0677 •1417 •1416 15-800 i9'445 34-322 -2963 ■3661 •6465 -0640 -1400 -1404 16-000 i9'539 34-228 -3001 -3679 -6447 -0602 •1382 -1386 60" -00 -0567 -1367 16-200 19-652 34-107 -3039 -3700 -6424 -0564 •1361 •1363 16-400 19-760 33-975 ■3076 -3721 -6399 •0527 ■1340 •1338 i6-6oo 19-913 33-832 -3114 -3749 -6373 -0489 -1312 -1312 i6-8oo 20-050 33-687 ■3151 -3775 •6345 •0452 -1286 -1284 17-000 17-200 20-240 20-442 33-496 .33-282 -3189 •3226 -38 1 1 ■3849 -6309 -6269 -0414 -0377 •1250 -1212 -1248 -1208 45°-oo -0402 -1239 17-400 20-653 33-036 •3264 -3889 -6223 -0339 -II72 •I162 ■ 17-600 20-902 32-792 -3301 •3936 -6177 -0302 -II25 •II16 17-800 21-204 32-516 -3339 -3993 -6125 -0264 -1068 -1064 30° -00 -0234 -1016 18-000 21-548 32-178 -3376 -4058 -6061 -0227 •1003 -1000 18-200 21-927 31-786 -3414 -4129 -5987 -0189 -0932 -0926 18-400 22-342 31-320 -3451 •4208 -5899 -0152 -0853 -0838 18-600 22-880 30-816 ■3489 -4309 -5804 -01 14 -0752 -0743 18-700 23-170 30-494 •3507 •4363 •5744 -0096 •0698 •0683 i5"-oo -0078 -06^1 18-800 23-517 30-134 •3526 -4429 -5676 -0077 •0632 •0615 '-'"O* 18-900 23'95o 29-762 -3545 •4510 •5606 -0058 -0551 -0545 19-000 24-436 29-205 ,-3564 •4602 -5501 •0039 -0459 -0440 19-100 25'i65 28-522 -3582 -4739 -5372 •0021 -0322 -03 1 1 19-210 *** 4S-** •3603 -5061 -5061 -0000 •0000 -0000 O'OO -0000 -0000 Weight 19-77 grs. /3=17-5 a=116-9 oj=140°-00 6 = 0-27358in. Temp. 38°r. Error in calculation of F— + O'OOO 012 cubic inch. 70 COMPARISON OF CALCULATED AND MEASURED FORMS OF DROPS. No. V Original readings Readings converted The same when the origin of Calculated in turns of the screws into inches coordinates is at the vertex 2" < < z' x; < Z ^1 ^. <^ z X inch inch inch inch inch inch inch inch 17732 21-555 36-516 0-3326 0-4059 0-6878 0-1174 0-1411 0-1408 i39°-4i 0-1174 0-14095 i7'8oo 21-492 36-603 ■3339 •4047 -689s ■I161 -1423 ■1425 i35''-o •1156 1 7 '900 21-398 36-702 •3357 -4029 -6914 ■1143 -1441 -1444 .1429 iS'ooo 21-333 36-782 -3376 -4017 •6929 -1124 •1453 -1459 l8'200 1 8 '400 21-189 21-068 36-910 37-005 •3414 -3451 -3990 -3967 -6953 -6971 ■1086 -1049 -1480 -1503 •1483 -1501 I20^'00 •1082 •i486 i8'6oo 20-986 37-094 -3489 -3952 •6987 -loii •1518 -1517 19-000 20-910 37-200 ■3564 -3937 -7007 -0936 -1533 -1537 i9'336 20-868 37-214 •3627 ■3929 -7010 •0873 -1541 -1540 -0868 19-800 20-905 37-194 •3714 ■3936 •7006 -0786 ■1534 -1536 90 "OO ■1540 20-209 21-006 37-095 •3789 -3955 -6988 •07 1 1 -1515 -1518 20-600 21-141 36-938 •3864 •3981 -6958 •0636 •1489 -1488 6o''-oo ■0581 21-000 21-368 36-736 -3939 •4024 -6920 •0561 ■1446 -1450 -1459 2 1 -400 21-638 36-443 •4014 ■4075 -6865 •0486 ■1395 ■1395 . -0.- -. 2 1 -800 2 2-00O 36-084 •4089 •4143 -6797 •041 1 ■1327 •1327 45 00 •0417 -1331 22-20O 22-460 35-640 •4164 •4230 •6713 •0336 ■1240 ■1243 22-600 23-031 35-052 •4239 •4337 -6603 ■0261 ■1133 ■1133 ^„0,„ -. •1106 23-000 23-788 34-312 •4314 -4480 -6463 •0186 ■0990 -0993 30 00 ■0247 23-400 24-786 33-256 •4389 -4668 •6264 •01 1 1 •0802 •0794 T F-0.«« ■0086 23-800 26-546 31-570 -4463 •5000 •5946 -0037 •0470 •0476 15 00 •0707 23'99S **# *** •4500 •5470 -5470 •0000 -0000 ■0000 Weight ? ^=2 4-023 a=119 9 0) = 139"- 41 6 = ( 3-31646 i n. Te mp. 49° F. The theoretical forms of these five drops of mercury have been drawn to a large scale in Fig. 2, ■\vhere the measured points are indicated by small crosses. COMPARISON OV CALCULATED AND MEASURED FORMS OF DROPS. 71 The agreement between theory and experiment appears to be so far satisfactory. And if on more exact comparison any slight discrepancy between theory and experi- ment should become apparent, it will be known that this is not due to any error in the calculated forms. In adapting a theoretical form to the measured form of a drop of mercury, it would be sufficient to secure its passing through the vertex A (Fig. 4) and the two points B, G, for which ^ = 90°, if it was possible to measure AO correctly. But this can be accomplished practically only with sufficient accuracy to give a rough first approximation to the value of /3, by finding OC-r-AO and referring to Table I. This value of /3, if erroneous, must be corrected by trial till a curve is found from Table II., which passes through JD and E, the extremities of the base, or till two curves are found for consecutive values of yS, one of which fe,lls outside, and the other within BE. Then by proportional parts the exact value of /3 required can be found. Let BG=2R, DE=2r, and AN = H. The following example will explain how the values of the capillary constants are obtained by means of these quantities. For the drop No. V. 2iJ = 0-3081 inch, ir= 0-1174 inch, and 2r = 0-2819 inch. Having found by the help of Table I. and by trial that the proper value of /3 lies between 24-0 and 24" 1, we proceed to find b' the radius of curvature at the vertex corresponding to y8' = 240. From Table II., when ^ = 90", we find that ^ = 5 = ^^i^ = 0-48692 and therefore &' = ^^MI^, which gives log 5' = 9-50020. bo b U-4oDyz That will suffice to secure a curve which passes through the vertex A and has the correct width BG. We wish in addition to secure a curve which passes through the two points D, E at the base of the drop, or through two points d, e near the base. log r = 9-14907 log 5"= 9-06967 log 6' = 9-50020 log 6' = 9-50020 H log p= 9-64887 log y = 9-56947 and therefore J = 0-44552 and ^ = 0-37108. And to find the theoretical form of this drop we use the manuscript Tables z H above referred to^ For /3' = 24-0 the Table gives t; = 0-37108 =77 corresponding to -% 000006, <^ = 139°-36. 00 00 ' See note » on next page. 72 COMPARISON OF CALCULATED AND MEASURED FORMS OF DROPS. Again, corresponding to /3" = 24-l we find in the same manner as before log &"= 9-50070, which gives ^ = 0-44501 and | = 0-37066. And for ^"=24-1 Uhe Table gives ^=0-37066 corresponding to . ^=24-1 •> X 6 z & 138» 139 140 &c. A •44700 ,„„ •44561-^1^ •44421-1*" &c. A •36874 ,,„„ •36997 + i^^ •37117 + 1''" &o. COMPARISON OF CALCULATED AND MEASURED FORMS OF DROPS. 73 It is evident that the above calculations would have teen facilitated if the Tables referred to in the note had been calculated for log ^ , log y and log ^ rather than for ^, r and p, as has been already remarked. The coordinates at the points of the theoretical curve at which the tangent is inclined to the horizon at angles of 15°, 30", 45", 60°, 90°, 120°, 135° &c,, are found by the help of Table V. for values of /3, 0-0, Ol, 0% OS 46-5, 46-6, 467. For instance for (f) = 135°, 73' = 24-0 ; ^ = 0-45156; 6 b = 0-36554 + S/3'= 0-023 gives -11 -15 X ;g= 24-023 ; ^ = 0-45145 ; ^= 0-36539 and 6 = 0-31646 inch. Therefore x = hx 0-45145 = 0-1429 inch, and 2 = 6x0-36539 = 0-1156 inch. DETEKMINATIONT OF CAPILLARY CONSTANTS OF MERCURY IN CONTACT WITH GLASS. The great impediment to the exact determination of capillary constants arises from the changes that usually take place at capillary surfaces when left undisturbed for some time. All careful experimenters have recognised this difficulty. It seemed therefore best to place a drop of mercury in position and to take measures of 2R, 2r a,nd If as opportunity offered. Drops weighing 4, 8, 12, 16, 20 and 24 grains were used, because it was expected -that, if a. and a were not really constant for mercury resting on glass, some indication of the manner in which they varied would thus be made manifest. The mercury was obtained as being pure from a leading philo- sophical instrument maker about 1862. When any experiment was to be made, a sufficient quantity was taken from this store, and after having been used, it was treated as waste. Also the same glass plate table was used in all the experiments. The glass plate was cleaned with blotting paper or with the pith of the stalk of the artichoke. And after this, either the same or a fresh drop of mercury was placed in position and vibrated. In the following tables of experiments the operation of cleaning the glass and replacing the same drop of mercury is indicated by a dotted line But a change in the mercury used is denoted by a line — across the table. The reading of the thermometer is given and also the time during which the drop had been in position when the measurement was made. The experiments were carried on in a small workshop built in a garden apart from other buildings. The B. 10 74 DETEEMINATION OF CAPILLARY CONSTANTS 01" MEECUEY. observing table rested on supports driven into the ground which were independent of the brick floor. There were public roads, used chiefly for light traffic, on two sides at the distances of 60 and 60 yards. The slow changes in the forms of drops of fluid appear to arise, (1) from some small change that takes pla,ce in the tension of the enveloping surface, (2) from changes of temperature between night and day, and (3) from slight tremors arising from passing vehicles, &c. The calculation of the capillary constants was carried on as the experiments were made. After all had been completed the reductions of the instrumental observations into inches were carefully examined, and the calculations of all the 145 experiments were repeated, so that the residts given in the following tables may be considered to be quite correct. The variation in the value of the capillary constants deduced from drops of mercury of the same size was much greater than was expected. But, when the mean values of « and a derived from each form of drop were compared, the agree- ment was surprisingly close. Hence so far as these experiments go the form of sessile drops appears to be that indicated by the Theories of Young, Laplace, Gauss and Poisson. Finally the values of a, w, and V were calculated from the mean values of 2i2, 2r, and H for each size of drop of mercury. The results are given on the last page for comparison with the means of the values of a and a derived from each experi- ment for each size of drop of mercury. In order to carry out the original scheme, as sketched in the Introduction, many more experiments should be made, particularly for the purpose of finding the effects of variation of temperature on the values of the capillary constants. The calculations for negative values of /8 should also be greatly extended, so that the intervals between them might be readily filled up by interpolation, as we have done in the case of positive values of /3. The measuring instrument in its present form appears to be satisfactory. The microscope descends in a vertical direction by its own weight and is raised by the screw. A screw of about 50 turns to the inch is very suitable for experimenting -with mercury. But a quicker motion will become desirable when experiments are made with a drop of one fluid immersed in another fluid, as the drops may be then much larger. All documents connected with these calculations now in my possession will be carefully preserved, and every assistance will be afforded to any person who may under- take the completion of the work. MiNTINQ ViCAEAGE, Oct. 1883. DETERMINATION OF CAPILLARY CONSTANTS OP MERCURY. 75 Drop op 4 Grains op Mercury. No. of Observa- tion H H r ? a (U J\ Temp. F Error in V Hours in position I 24 25 26 27 28 29 30 31 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 Means inch 0-07460 inch 0-09050 -09150 -08950 ■08940 -08950 inch 0-05990 ■06040 •06170 •06185 ■06165 •05965 ■06070 •06050 •06045 i^925 1^922 2-394 2'3i6 2^292 2^005 2^457 2^400 2^424 2^126 2-6'JO 2^549 2^472 2^638 2^633 2^755 ll7^oo 145-43 145-65 146-67 145-48 145-68 inch 0-1308 •1321 •1237 •1248 m. metres 3^321 3^356 3^142 3-169 60° cubic inch + -000002 ? ■0753s ■07635 ■07610 114-54 130-70 128^52 127^90 61 58 59 61 -1- -000039 + -000045 + -000036 -1- "000034 + "000005 + •000013 12 18 -07600 ■1251 3"i76 ? -07475 •07570 -09040 -08870 -08930 •08895 120-03 135-42 132-84 134-18 146-70 148-11 ■1291 •1215 3^279 3-087 60 58 \ 13 -07580 -07565 148^52 148-47 •1227 -1221 3^n7 3-101 60 62 + ^00002 2 + ^000014 8 22 ■07525 ■0759s ■07585 •08950 •06115 123-59 142-61 138-41 135-47 144-68 147-73 146-56 147-97 151-40 150-96 -1272 -1184 -1202 3^231 3-008 3-053 63 62 64 4- •OOOOIO -1- •000005 -1- -000007 1 -08760 -08790 ■■•o88'75 •06140 ■06160 •06090 13 15 ■07585 ■07535 •07545 -07620 •1215 •1180 •1182 3-086 66 -1- -000017 — -000009 - -000005 3 •08795 -08800 •08760 •05940 ■05965 143-56 143-09 144-77 2-997 3-003 64 67 34 36 •06140 148-57 •1175 2-985 66 4- -000014 21 -07380 -07430 •07475 •07490 -07470 -07460 -07480 -0751S •07545 ■07550 0-07531 •08850 •08810 •08770 •08760 •08925 -08970 -08940 -08880 •08880 •08850 ■05860 ■05960 ■0595s •05975 •05970 •05965 •06035 •06040 •06045 •06040 2^157 2^263 2^48 1 2^525 2^I72 2^075 2^104 2^305 2-391 2^467 129^85 132-60 139-85 141-02 127-39 123-57 148-16 147-20 149^17 149-16 147-32 146-77 •1241 -1228 -1196 •1191 ■1253 -1272 3-152 3-119 3-038 3-025 3-183 3-231 63 62 61 63 61 61 — -000048 — -000037 — -000030 — -000027 — -OOOO 11 — -000008 24 48 71 88 124-15 131-33 133-73 136-53 145-62 147-09 147^94 148-49 147^52 -1269 •1234 -1223 •I2IO 0-1233 3-224 3-134 3-106 3-074 61 59 57 58 — -000005 — -000002 -1- -000007 + -000005 38 61 96 III 0-08890 ©•06041 132-03 3-131 10—2 76 DETERMINATION OP CAPILLARY CONSTANTS OF MERCURY. Drop op 8 Grains of Mercury. No. of Observa- tion R H r ^ a 0) J\ Temp. P Error in V Hours in position 2 3 4 32 33 34 134 135 136 137 138 139 140 141 142 143 144 145 Means inch 0^09980 •loooo inch o-ioioo •10090 •10360 -10210 -10070 •lOIIO inch 0^08535 ■08535 ■08345 -08380 -08400 •08410 ■08315 •08350 •08340 •08320 •08330 •08335 •08335 •08390 -08420 -08445 •08435 •08430 5-226 5'37o 4^456 4-878 5-700 5^534 4-892 5^521 S'567 4-874 5-101 5-079 5-228 5-280 5-423 5*464 5-522 5-321 127-96 129-57 117-69 124-28 134-61 132-23 12374 131-53 132-05 123-59 126-22 126-52 128-51 129-29 130-89 131-35 132-20 129-77 128-44 144-45 145-10 i45'89 146-11 148-62 148-09 148-18 149-83 iSo;25 147-94 148-82 148-19 148-67 147-51 147-44 147-06 147-39 14675 147-57 inch o'i25o -1242 -1304 •1268 -1219 -1230 -1271 •1233 •1231 •1272 •1259 •1257 •1248 -1244 -1236 ■1234 -1230 •I241 0^1248 m. metres 3-175 3-156 60° 60 cubic inch -f -OOOOO I -t- "000017 -1- ^000030 ? . ? ? •09905 ■09915 ■09990 ■09990 •09945 ■looio -IOOI5 -09940 •09975 ■09950 ■09960 •09960 •09980 ■09985 •09985 •09965 0-09969 3-311 3-222 3-096 3-124 3-229 3^132 3'i26 3^231 3^i97 3^194 3^169 3^159 3^140 3^134 3-124 3-153 3-171 58 62 61 62 + ^000004 -1- ^000008 -H •000017' + -000037 + -000043 + -000046 + -000034 + -000045 + -000026 -1- -000023 -1- -000013 ■¥ •000016 + "000014 4- •OOOOII -1- -000008 I 18 22 5. 21 29 12 22 10 -10295 -10180 -10180 -10290 •10265 •10230 -10200 -10150 -10120 -lOIOO -10090 -I0I20 O-IOI76 58 57 57 58 58 56 58 55 56 57 58 58 13 23 37 46 61 0-08392 DETERMINATION OF CAPILLARY CONSTANTS OP MERCURY. 11 Drop op 12 Grains op Mercury. No. of Obser- vation R H r /3 a (D 7! Temp. F Error in V Hours in position 5 6 7 35 36 37 38 39 40 41 42 43 44 45 46 47 Means inch 0-11720 •I1735 •II763 ■11700 •I1810 inch 0-10900 •10920 •10785 inch o-ioiio •10230 •10288 -10020 -IOII5 8-728 8-331 9-044 8-267 10-592 124-99 121-50 126-53 121-70 136-68 133-39 133-07 120-94 134-08 130-85 131-47 126-ir 124-84 131-22 130-81 133-35 147-27 144-48 144-43 148-32 150-66 150-91 150-20 147^83 149-89 148-58 148-10 inch 0-1265 •1283 •1257 •1282 •1210 m. metres 3'2i3 3-259 3^193 3^256 3-073 3-110 3^"4 3-266 3-102 3-140 3-133 3-199 3-215 3-136 3-MI 3-111 3-166 59° 59 59 cubic inch - -OOOOOI H- -oooori - -000013 -t- -000022 - -000009 -1- -000035 + -000016 + -000032 -1- -000006 - -000005 - -000015 -1- -000027 - -000025 - -000043 - -000014 - -000009- ? 2 20 -11020 -10700 62 64 63 64 62 63 62 64 63 63 63 64 65 1 2 38 -I1830 -11810 -10800 -10785 -11030 •10750 -10790 •10760 ■10105 -10115 10-183 10-073 8-200 10-215 9-642 9-726 8-925 8-588 9-509 9-546 9-969 -1225 •1226 2 9 \ 12 13 16 2 7 21 45 145 ■I1710 •11810 -II770 •I1770 •10050 ■IOI35 •1013s •IOI60 -10005 •10025 -10035 -10040 •10025 •1286 •1221 •1236 •1233 ■1259 •1266 ■1235 •1237 •1225 -11740 ■I1675 -II710 -11740 ■11765 0-I1754 ■10955 •10915 -10787 -10820 •10790 o'io844 150-17 148-15 149-54 150-04 151-26 o-ioioo 128-85 148-74 0-1247 1 Drop of 16 Grains of Mercury. No. of Obser- vation R H r /8 a (D v/i Temp. F Error in V Hours in position 8 9 10 ir 48* 49* SO* 51* 52* 53 54 ■ 55 56 Means inch o^i3298 ■13290 •13185 •13215 ■13275 •13378 ■13375 ■13315 •13338 inch 0-11305 -11283 •I 1370 ■II290 •II420 ■II250 ■II245 -II285 ■I1240 •II525 -IIII5 -11240 -II2IO inch 0-11645 ■11642 ■ •"535 •11575 ■11675 ■11750 •11760 ■I 1 745 -11725 -11718 ■11823 -11695 -11665 0-11689 i4^7o3 14-809 13-448 14-228 i3^3.55 15^584 i5^53o 14^529 i5^3ii "•853 16-922 15^472 15-758 127-57 i28^i9 124-10 127-08 148-23 148-20 147-70 147-90 146-32 147-94 147-63 146-25 147-57 143-46 147-72 148-31 148-89 inch 0-1252 -1249 m. metres 3-180 3^173 3-225 3^187 3-229 3^154 3^156 3"i94 3^158 3^341 3-100 3^150 3"i33 3^183 59° 59 55 51 67 66 66 cubic inch... -t- -ooooio 4- -000012 6 7 •1270 •125s - -000031 - '000033 + -000014 -1- -000028 -t- •000021 2 \ 3 6 123-77 129-73 129-57 126-50 129-38 115-62 134-30 130-06 131-48 127-49 -1271 •1242 ■1242 •1257 ■1243 •1315 •1220 65 63. 62 62 63 63 - •000008 — ^000007 + '000053 + '000037 + '000028 -1- .'000009 II 21 \ 47 16 19 •13225 ■13415 ■13338 •13325 ■1240 ■1233 0-13306 O-II29I 147-39 •1253 Weight of this drop -was 16'12 grains. 78 DETERMINATION OE CAPILLARY CONSTANTS OF MERCURY. Drop of 20 Grains of Mercury. No. of Obser- vation H H r ^ a b) J\ Temp. F Error in V Hours in position 12 13 14 15 16 17 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 Means inch 0-14655 ■14405 "14420 ■14325 "I4420 ■14435 ■14563 ■14590 ■14803 ■14458 ■14508 ■14528 •14543 ■14520 ■14513 -14650 ■14775 -14790 inch o"ll425 "II910 "I1880 "I2100 ■I1810 "I1820 inch 0-13040 24*243 i7"o63 i7'373 15-018 18^438 18^387 19-386 19-836 26-497 18-967 20-595 20-184 20"937 20-671 20-330 133^07 116-94 117-71 III-IO I2I-II 120-69 147-93 147-47 147-28 147-16 149-04 148-76 145-71 145-50 148-00 149-11 149-26 149-58 150-17 150-27 149-25 146-98 147-38 147-17 148-99 145-48 146-04 149-82 149-04 148-94 147-31 147-59 148-05 inch 0-1226 m. metres 3^114 Ji° SI 51 SI 51 52 cubic inch — -000033 — ^000013 — ■000016 + ^000002 — "000046 — "00003 1 H- "000020 + "000027 + "000054 — "000036 — "000048 + "OOOOOI — "cioooo8 — "000023 — "000029 12 2 3 ? ? ? -12710 "12740 "12605 "12680 ■12705 "12980 ■13023 "13200 ■1308 ■1304 ■1342 ■1285 -1287 -1283 -1278 -1214 3-322 3-311 3-408 3-264 3-270 3-258 3-246 3-083 3-251 3^200 3-219 3-195 3"200 3-211 -II725 ■11695 •11370 121-60 122-44 135-72 I22-II 126-03 124-50 126-38 126-03 125-18 6i 61 62 \ I 47 -11785 -I1665 "I1730 "11685 ■11695 •11695 "12720 "12788 •12785 ■12785 •12755 "12790 -1280 "1260 62 63 61 63 64 63 63 61 60 4 19 24 29 "1267 ■1258 "I260 "1264 -1252 "1218 "1216 "I2II •I24I ■1237 ■1235 •1238 "I2I5 •1240 ■1246 -11580 •11380 "11360 ■11380 "II480 ■11472 ■11535 -11530 ■11382 ■11505 ■11550 •13045 •13193 "13220 ■13160 •13233 •13223 •12905 •12935 "13028 •13043 •13015 22-031 25-840 26-186 127-50 134-71 135-24 136-29 129-80 130-62 3-181 3-095 3-089 3-077 3-153 3-143 3-138 3^144 3^087 3^150 3^164 -1- "000027 -1- "000037 -H "000040 I 12 23 -14805 ■14758 "14768 26-769 23"662 24-065 23-175 22-958 25-358 22-982 22"48l 61 64 63 -i- "OOO061 + "000063 + "000068 13 25 36 3 7 47 49 S3 "14618 ■14615 ■14675 "14648 ■14640 131-05 130-54 135-42 130-02 128-86 65 65 66 66 67 — "000020 — "000023 — "000046 — "OOOOII "000000 0-14593 0-11621 •12935 126-95 o^i256 3^191 DETERMINATION OF CAPILLARY CONSTANTS OP MERCURY. 79 Drop op 24 Grains op Mercury. No. of n. Obser- R H r j8 a b) 11 Temp. Error in vation 'V a F V position inch inch inch inch m. metres cubic inch l8 0-16085 O^IlSoo 0'I4550 33^541 127^29 145-29 0-1254 3-184 54" + -000241 22 19 ■1605s •I1840 •14550 32-000 125-23 144-36 •1264 3-210 55 + -000231 23 20 21 22 •16060 •I1820 '•11825 ....".L4.S.70 -14085 •13745 .3.?;.2.33 32-264 28-249 125-47 144-07 152-70 ■1263 -1265 ...3.:.i°7... 3-147 3-212 58 "56 60 + •000225 + -000072 .35 17 •15870 130-29 •15638 •I20IO 125-08 — -000050 8 23 77 •15645 •15835 •II925 •13730 •14243 29-889 30-584 128-08 153-63 •1250 -1259 3-174 60 — -000078 32 •I183O 126-26 146-41 3-197 67 + -000024 78 •15970 ■11583 -14380 37-232 134-90 147^49 •1218 3-093 65 + -000014 14 79 ■15923 •II582 •I44S3 34-856 132-01 144-44 •1231 3-126 65 - -000039 24 80 81 ....75923 •15845 ■11685 ■14455 •I42I5 3.i'.75o 32-230 128-58 143^97 147-64 J1247 ■1245 3;.i68 66 66 + -000016 — -00000 1 38 3 •II770 128-97 82 •15893 ■II71O •14248 34-217 131-48 148-28 •1233 3-133 65 + -000008 8 83 •15908 ■I1615 •I42IO 37-078 135-72 150-00 •1214 3-083 63 — -000020 19 84 85 •15898 •I161O •II950 •14208 -I40I3 36-928 27-527 135-67 123-08 149-82 •1214 .....^..„.„.„ 3-084 63 64 -•000033 - -000061 31 •15675 147-51 3-238 h 86 ■15840 •II7IO •14280 32-457 129-43 146-13 •1243 3-157 64 — -000038 16 87 ■15908 •11675 •14323 34-352 131-45 146-95 ■1234 3-133 65 + -o'oooos 24 88 •15945 •II570 •14325 37-580 135-84 148-28 •1213 3-082 63 — -000010 60 89 •15938 •I1670 •14343 34-991 I3I-99 147-22 ■1231 3-127 62 + -000032 . 72 90 ■15790 ■II9OO •14320 27-462 121-18 143-09 •1285 3-263 61 + -000009 86 91 92 •15855 •I1825 •14330 •13950 30-109 28-350 125-10 144-80 149-24 •1264 3-212 3-219 61 61 + -000037 — -000049 87 1 •15683 ■II947 124-51 •1267 93 •15660 •I1895 ■13985 28-357 124-94 148-05 •1265 3-214 61 — -000098 15 94 95 ■15640 ■15795 •0930 •I 1805 •13990 •14040 .?.7.:34o 32^352 123-28 147-28 150-46 •1240 3-235 61 "61 — -000100 17 6 130-00 3-151 - -000018 96 •15805 ■11750 •14065 33^373 131-55 150-37 -1233 3-132 64 — -000037 26 97 •15780 •I1815 •14053 31-695 129-10 149-76 •1245 3-161 64 - -000033 31 98 99 100 lOI ......!'.57So •15820 •II775 •14065 -14220 -I4I20 "■■-14163 .3L;5.92 3.°;soo 29-962 30-681 129-42 148-88 146-60 .14.7;47 147-21 -1243 ■■■■r258 •1258 ■1254 3-158 ...3.;.i.96. ■3-196 3-184 62 63 65 — -000081 + -000012 — -000040 — -000033 45 •I183O "'•iTsis 126-35 4 126-35 1 7 •15785 ■11810 127^24 67 102 •15820 •11755 •I4I95 32-145 129-23 147^53 •1244 3-160 61 — -000027 22 103 104 ■15830 •11755 •14200 32-333 30-860 129-39 147-66 1 47 '94 ....■.^.?.4.3 •1249 ...3:1.58... 3-172 62 ■62 — -000020 — -000076 31 •IS745 ■11790 •14095 128-21 h loS •15785 •11785 •I4I45 31-339 128-40 147^76 •1248 3-170 63 — -000040 12 106 •15730 •11850 •I4I20 29-209 i25"44 146-69 -1263 3-207 63 — -000063 26 107 •15810 •11795 •14250 30-517 126-54 145-75 •1257 3-193 64 — ^000020 36 108 •15820 •11740 •14200 32-372 129-62 147 -48 •1242 3-155 61 - ^000033 50 ■109 •15785 •I 1 740 •I42IO 31-391 i28^49 146-34 •1248 3-169 61 - ^00007 2 74 no •15770 •11775 •14220 30-263 126^73 145-54 •1256 3-191 61 — ^000066 98 III 112 •15765 ■15770 •11760 •14225 3.°:.34.8 29-'76i 126-96 145-37 147-61 J?..?55. •1261 3-188 3-202 63 "64 — -000081 - -000013 146 I ■11870 •I4I20 125-82 113 •15850 •11710 •14250 33"077 130-32 147-13 •1239 3-147 61 — -000025 10 114 •15820 •11710 •14220 32-692 130-16 147-11 •1240 3-149 58 - -000051 34 "S •15830 •I 1 700 •I42IO 33^261 130-95 147-66 •1236 3-139 61 - -000045 59 ri6 Means •15850 •11725 •14260 ©•I4I99 32^668 129-63 146-82 147-46 ■1242 3-155 3-169 61 - -000019 81 0-15825 o^ii778 128-52 0-1248 80 DETERMINATION OF CAPILLARY CONSTANTS OF MERCURY. Summary of Mean Eesults for each weight of Drop of Mercury. Weight Laplace's Error in (1) Error in J' Error J'- Error Drop a a V a 'V a Grains inch inch m. metres m. metre 4 132-02 + 3-31 147-52 -0-27 0-1233 -•0015 3-131 -0-038 8 i28"44 - 0-27 147-57 -0-22 ■1248 3-171 + 0-002 12 128-85 + o"i4 148-74 + 0-95 •1247 — "OOOI 3-166 - 0-003 i6 127-49 — I"22 147-39 - 0-40 •1253 + "0005 3-183 + 0-014 20 126-95 -i"76 148-05 + 0-26 "I256 + "0008 3-191 + 0-022 24 Means 128-52 — 0-19 147-46 -0-33 "1248 3-169 128-71 147-79 0-1248 3-169 Values of a, m, &c., deduced from the mean values of E, H, and r FOR each size of Drop of Mercijry. Weight Drop R H r j8 a (1) J\ Error in V Grains 4 8 12 16 20 24 Means inch 0-07531 -09969 -II7S4 •13306 •14593 •15825 inch 0-08890 -10176 "1 0844 "11291 •11621 •11778 inch 0-06041 -08392 -lOIOO "11689 •12935 "14199 2^334 5-236 9-328 I4"68i 21-433 31-796 131-96 i28"4i 128-88 127-32 126-87 128-55 147-51 147-56 148-76 147-40 148-07 147-46 inch 0-1231 "1248 "1246 •1253 "1256 "1247 m. metres 3-127 3-170 3-164 3-183 3-189 3-168 3-167 cubic inch + 0-000003 + "000021 + "000002 + "000025 + "00000 1 — "000013 128-67 147-79 0-1247 The forms of these six drops are given in Fig. 3 on a large scale; U/<^ = 90° /3 •0 •I •2 ■3 •4 •5 •6 7 •8 ■9 o I 2 i-ooooo •15466 •24507 •02 1 80 •16546 •25248 •04149 ■17576 •25967 •05942 •18562 •26666 •07589 •19508 •27345 •09115 •20418 •2"8oo6 •10542 •21294 •28650 •11880 •22138 -29278 •13140 •22953 ■29890 •14333 •23742 •30488 3 4 5 1-31072 •36278 •40615 •31643 •36745 •41012 •32201 •37204 •41403 •32748 ■37656 •41789 •33283. •38100 •42169 •33807 •38535 ■42544 •34320 •38963 •42914 ■34824 ■39386 •43278 ■35318 ■39802 •43638 •35803 -4021 1 - ■43993 6 7 8 I '44344 •47621 •S°SSo •44690 •47928 •50827 •45032 •48232 •51101 •45369 •48533 •51371 •45702 •48830 •51640 •46032 '49124 •51906 •46358 •49415 -52169 •46679 •49703 •52430 •4^996 •49988 •52689 •47310 -50270 •52946 9 lO II i'532oo •55621 •57852 •53452 •55851 •58065 ■53702 •56080 ■58277 ■53949 •56307 •58488 •54194 •56533 •58698 •54437 •56758 •58906 •54678 •56981 •59112 •54917 •57202 •59317 •55154 •57421 •59520 •55389 •57638 -59722 12 13 14 I-S9923 •61856- •63667 ■60122 •62042 •63842 •60320 •62227 •64016 •60517 •62411 •64189 •60712 •62594 •64'36i •60906 •62776 ■64532 •61099 -62957 -64702 •61290 •63136 •64871 •61480 •63314 ■65039 •61669 ■63491 •65206 IS i6 17 i^65372 •66984 •68512 •65537 •67140 •68661 •65701 •67296 •68809 •65864 •67451 •68956 -66027 •67605 -69102 •66189 •67758 -69248 -66350 -67910 •69393 •66510 ■68062 •69537 •66669 •68213 •69681 •66827 •68363 •69824 i8 19 20 i^69966 •71353 •72678 •70108 -71488 -72807 •70249 •71623 •72936 •70389 •71757 •73064 •70528 -71890 •73192 •70667 •72023 •73319 ■70805 •72155 •73446 •70943 ■72287 •73572 -71080 •72418 •73698 •71217 •72548 •73823 21 22 23 i^73947 •75165 •76336 -74071 •75284 •76451 •74194 •75403 •76565 •74317 •75521 •76679 •74440 •75639 •76792 •74562 •75756 ■76905 ■74684 ■75873 -77017 •74805 •75989 ■77129 ■74926 -76105 •77241 ■75046 •76221 ■77352 24 25 26 1-77463 •78550 •79600 •77574 •78657 •79703 •77684 -78764 -79806 •77794 •78870 •79908 •77903 •78975 •80010 -7801 1 -79080 -80112 •78119 ■79185 -80213 •78227 ■79289 ■80314 ■78335 ■79393 •80415 ■78443 •79497 •80515 27 28 29 1-80615 •81598 •82550 •80715 •81695 •82643 -80814 -81791 ■82736 •80913 •81887 •82829 •81012 •81983 •82922 -81110 •82078 ■83015 -81208 -82173 •83107 -81306 -82268 -83199 •81404 -82362 -83291 •81501 -82456 ■83383 30 31 32 1-83474 •84371 -85242 •83565 •84459 •85328 •83656 ■84547 ■85414 •83746 •84635 •85499 •83836 •84722 ■85584 •83926 •84809 •85669 •84015 •84896 ■85754 -84104 -84983 • •85838 •84193 •85070 ■85922 •84282 •85156 •86006 33 34 35 1-86090 -86915 •87719 •86173 •86996 •87798 ■ -86256 -87077 -87877 •86339 •87158 •87956 •86422 •87239 •88035 ■86505 •87320 •88113 •86587 ■87400 •88191 -86669 -87480 -88269 ■86751 ■87560 •88347 •86833 •87640 •88425 z 1} X 1 z I X b z ~b 5° lO IS •08703 •17268 •25564 •00380 •01507 •03344 •08699 •17236 •25462 •00379 •01502 ■03324 •0869s •17204 •25363 •00379 •01498 •03305 •08691 •I7I73 •25265 •00379 •01494 •03286 •08687 •17142 •25170 •00379 •01490 •03268 20 30 ■33479 •40923 ■47826 •05838 •08920 •12511 ■33255 ■40523 •47203 •05779 •08787 •12262 •33039 •40143 ■46619 •05723 •08662 •12030 ■32830 •39780 •46071 •05668 •08543 •II8I4 •32628 •39434 •45553 •05615 •08430 •11613 35 40 45 ■54144 ■59848 •64928 •16533 •20908 •25560 •53260 •58681 •63469 •I6II7 •20274 •24658 •52446 •57621 •62161 •IS739 •19707 ■23863 •5I69I •56651 •60978 •15391 ■I 9 1 94 •23155 •50988 ■55756 ■59898 •15071 •18726 •22517 5° 55 60 •69385 ■73229 •76478 •30420 •35427 •40522 •67636 •71206 ■74203 •29203 ■33851 ■38552 •66089 ■69435 •72231 •28146 •32503 •36888 •64703 •67862 •70492 •27216 •31330 ■35454 •63448 •66448 ■68939 •26387 ■30294 •34199 65 70 75 •79152 •81277 •82879 •45655 •50780 ■55857 •76656 •78596 •80052 •43261 •47939 •52552 •74510 •76305 •77649 •41262 ■45592 •49847 •72629 •74308 ■75561 •39556 •43604 •47S73 •70956 •72539 •73718 ■38073 •41886 ■45622 80 85 90 •83987 •84630 •84838 •60850 ■65724 •70453 ■81055 •81635 •81822 •57070 •61466 •65717 •78572 •79104 •79275 •54004 ■58038 ■61931 •76420 ■76915 ■77074 •51442 •55191 •58803 ■74523 •74989 •75137 •49255 •52771 =56154 95 1 00 i°5 •84640 •84067 ■83150 •75009 •79371 •83516 •81645 ■8II33 •80314 ■69802 •73702 •77401 ■79113 •78646 ■77899 ■65665 •69224 •72596 ■76924 ■76491 •75801 •62262 •65556 •68674 •74998 ■74593 ■73948 •59391 ■62472 ■65386 no "5 .120 •81917 •80402 •78634 •87427 •91089 •94487 •79216 •77868 •76297 •80886 ■84143 •87162 •76900 •75674 •74246 •75768 •78730 ■81474 •74878 ■7374s •72428 •71605 •74340 •76873 •73086 ■72027 •70799 ■68122 ■70674 •73039 125 130 135 •76644 ■74465 •72128 •97612 I '00453 f03oo6 •74531 •72598 •70525 •8993s •92456 •94720 •72642 ■70886 ■69004 ■83994 •86283 ■88339 ■70948 •69328 ■67590 ■79198 •81310 •83207 •69417 •67906 •66284 ■75209 •77182 ■78949 140 145 15° •69663 •67105 •64482 1^05264 1^07229 I'oSgoi •68339 •66068 ■63738 •96723 •98467 •99952 •67018 ■64954 •62834 •90159 ■91744 •9309s ■65758 •63851 •61893 •84887 •86350 ■87599 ■64574 ■62792 •60963 ■8oc;i9 •81884 •83050 155 160 165 •61826 •59167 ■56532 i^i0284 111387 I-I22l8 ■6137s •59003 •56647 i^oii83 i^o2i66 I-029I0 •60681 ■58518 •56364 •94217 ■95113 •9S793 ■59901 •57898 •55901 •88636 •89467 •90097 •59101 •57223 ■55353 ■84020 ■84798 ■85390 170 17s 180 ■53949 ■51439 •49026 I^I2792 i'i3i23 I^I3229 •54329 •52069 •49885 1^03425 1-03723 1-03819 ■54240 ■52164 ■50151 •96265 •96538 ■96630, •53927' ■51994 •50II6 •90535 •90790 •90872 ■53500 •51684 ■50914 ■85802 ■86041 ■86117 (S) 11 ^= 4' 4-5 q •0 5-5 t )'0 ^ X -b z 1) X b z 1 X b z ~b X b z b X z b 5" lO IS •08683 •17II2 •25076 •00378 •01486 •03249 •08679 •17082 •24984 ■00378 ■01482 ■03231 •08675 •17052 ■24894 •00378 •01478 •03213 •08671 ■17022 •24806 ■00378 •01474 •03196 •08667 •16992 •24719 •00377 ■01471 •03179 20 30 •32432 •39102 •45064 •05564 •08323 •11423 •32241 •38784 •44600 •°55i5 ■08221 ■I 1 244 •32057 •38479 •44159 •05468 •08123 •11075 •31878 ■38186 •43738 •05422 •08030 •10916 •31704 •37903 •43336 •05377 07940 ■10764 35 40 45 ■50329 •54928 •58905 •14773 •18298 •21938 •49710 •54156 •57986 •14495 ■17903 •21409 •49127 ■53434 ■57133 •14236 •17537 •20922 •48576 •52755 •56335 •13993 ■17196 ■20472 •48053 •52116 •55588 •13764 ■16878 ■20055 5° 55 60 •62302 •65165 •67536 ■25642 •29370 •33^87 •61249 •63992 •66258 •24967 ■28538 ■32091 •60275 ■62912 •65086 ■24349 •27781 •31191 •59370 ■61911 •64005 •23781 •27089 •30371 •58525 ■60981 ■63001 ■23257 •26454 ■29621 65 70 75 ■69453 •70953 •72069 •36766 •40383 •43919 •68089 ■69518 •70580 ■35602 ■39050 ■42414 •66840 ■68208 ■69223 •34555 •37854 •41071 •65689 •67004 •67978 •33606 •36773 •39860 •64625 •65891 •66829 •32739 •35790 •38761 80 85 90 •72832 •73271 •73411 •47355 •50676 •53869 •71306 •71722 •71856 •45682 •48837 •51868 ■69917 •70314 ■70441 •44192 •47203 •50095 '•68643 ■69024 ■69145 •42853 •45737 •48508 ■67468 •6783s •67952 •41640 •44414 ■47076 95 100 i°5 ■73279 •72898 •72290 •56922 •59825 ■62569 •71730 •71369 •70792 •54766 •57518 ■60119 •70322 •69977 •69428 •52858 •55482 •57960 •69032 ■68701 •68176 •51153 •53665 •56036 •67842 •67525 ■67021 ■49617 •52030 •54307 no "5 120 •71478 •70483 •69326 •65147 ■67550 •69775 •70023 ■69081 •67984 ■62563 ■64842 ■66948 ■68095 •67798 ■66753 •60287 •62457 •64464 •67475 •66616 •65617 •58262 •60337 •62258 •66348 •65523 ■64564 •56444 •58436 •60280 125 130 135 •68026 •66604 ■65078 •71817 •73672 •75338 •66753 •65405 '63963 ■68882 ■70639 ■72218 ■65581 ■64297 ■62920 •66306 ■67979 ■69483 •64496 •63269 ■61950 •64020 •65620 •67059 •63487 •62309 ■61043 ■61971 •63508 •64889 140 145 150 •63467 •61790 •60065 •76814 ■78IOI •79201 •62433 ■60844 •59207 •73616 ■74837 •75881 •61466 •59951 ■58391 •70816 •71979 •72973 •6=559 ■59109 ■57616 •68334 •69448 •70399 •59707 •58314 •56879 •66114 •67184 •68098 15s 160 165 •58310 •56540 •54772 •801 1 5 •80849 •81407 ■57541 ■55861 •54180 •76748 •77446 •77974 •56802 ■55198 •53593 ■73801 •74466 •74972 •56094 •54555 •53017 •71192 •71828 '72315 •55416 •53937 •52457 •68860 '69473 '69940 170 175 1 80 •53021 •51300 •49623 •81796 •82022 •82096 •52515 •50875 '49278 •78345 •78561 •78632 •52001 •50433 •48902 •75326 •75532 •75600 •51489 •49983 •485 II •726SS •72853 '72917 •50985 •49535 •48115 '70267 '70458 '70520 (5) II i8 = 6- 5 7 7'S 8 •0 8 •5 5° lO 15 X z 1> X z 1) X b z l X z 1 X b z •08663 ■16963 •24634 •00377 •01467 •03163 •08659 •16934 •24550 ■00377 •01463 •03147 •08655 •16906 •24467 •00377 •01459 •03131 •08651 ■16877 •24386 •00376 •01456 •03115 •08647 •16849 •24306 •00376 ■01452 ■03100 20 35 ■31534 ■37630 ■42951 •05334 •07854 •10620 ■31369 ■37367 ■42583 •05292 •07771 •10482 •31208 ■37II2 ■42229 •05251 •07693 •10351 ■31051 ■36866 ■41889 •05211 •07615 •10225 •30897 •36628 ■41562 •05172 •07541 •10105 35 45 ■47556 ■51511 ■54884 •13548 ■16579 ■19666 •47083 ■50939 ■54220 •13344 ■16299 •19302 ■46631 •50395 •53591 •13150 •16034 •18960 •46199 ■49877 ■52995 •12966 •15784 •18638 ■45785 ■49382 ■52428 •12790 ■15546 •18334 53 55 60 ■57733 •6311 1 •62065 •22771 ■25868 •28930 •56988 •59295 ■61189 ■22318 ■25322 •28291 •56285 ■58526 •60366 •21994 •24813 •27697 ■55619 ■57801 ■59590 •21497 •24338 •27143 ■54987 ■57115 ■58857 •21123 ■23893 ■26624 6S 70 75 •6363s •64857 •65762 •31943 •34890 •37756 ■62710 •63892 ■64768 •31209 •34061 •36834 •61842 ■62989 •63837 •30528 •33293 •35983 •61024 •62139 ■62963 •29895 ■32581 ■35192 ■60252 ■61337 •62139 •29303 ■31917 ■34455 80 85 90 •66379 •66733 •66846 •40534 ■43209 •45774 ■65364 ■65706 •658IS ■39519 •42105 •44584 ■64415 ■64745 ■64851 •38583 ■41088 •43488 •63524 ■63844 •63947 ■37716 •40147 ■42476 •62685 ■6299s ■63096 •36911 ■39273 •41536 95 100 105 •66738 •66434 •65949 •48222 •50547 •52740 ■65712 •65418 ■64949 •46948 •49193 •51311 ■64753 ■64467 ■64013 •45777 ■47950 •50001 •63851 •63574 •63134 "44696 •46804 •48792 ■63002 •62732 ■62306 •43693 •45742 •47673 no "5 J20 •65301 •64506 •63582 •54799 •56717 •58492 •64323 ■63556 •62664 •53299 •55151 •56865 •63407 ■62665 ■61802 •51923 •53716 ■55375 •62546 •61827 ■60990 •50657 ■52395 •54003 ■61734 •61036 ■60223 •49485 ■51173 •5273s 125 130 135 •62545 •61410 •60192 •60I2I •6I60I •62930 •61663 ■60567 ■59390 •58437 ■59866 ■6II5I ■60834 ■59773 ■58633 •56896 •58279 •59522 '60051 •59022 •57917 •55479 •56820 •58027 ■59311 ■583" ■57238 •54169 •55472 •56646 140 145 ^50 •58904 •57563 •56179 •641 n •65142 •66023 •58147 •56851 ■55514 •62291 •63286 •64138 ■57430 ■56175 •54880 •60627 ■61590 ■62415 •56750 : •55532 ■54276 •59097 ■60032 •60832 •56104 ■54920 ■53699 •57684 •58593 •59371 155 160 165 •54769. •53342 •51914 •66758 •67349 •67800 •54150 •52771 •51389 •64848 •65420 •65856 ■53558 ■52222 •50882 •63103 •63657 •64080 ■52993 ■51696 ■50394 •61500 ■62038 ■62449 ■52451 •51190 •49924 •60020 ■60544 '60944 170 175 180 •50492 •49091 ; •47719 •68115 •68300 •68360 •50014 •48657 •47328 •66I6I •66340 •66398 •49549 •48233 •46942 ■64376 •64548 •64605 •49099 •47819 •46564 •62736 ■62905 •62960 •48662 •47416 •46193 •61223 ■61389 ■61443 (7) II )8 = 9-0 5" lO IS 20 25 30 35 40 45 50 55 60 65 70 75 8d 85 90 95 100 105 no "5 125 130 135 140 145 15° iSS 160 165 170 175 180 X I ■08643 •16821 ■24228 •30748 ■36397 ■41246 •45388 •48909 ■51887 •54387 ■56463 ■58162 •59522 ■60579 ■61360 •61892 ■62194 •62291 ■62200 ■61938 ■61523 ■60967 ■60288 •59497 ■58609 ■57636 ■56592 •55488 ■54336 ■53147 ■51932 ■50703 ■49470 ■48240 •47025 •45832 •00376 ■01448 •03085 •05135 ■07469 •09989 ■12623 •15321 •18046 ■20771 •23474 •26137 •28748 •31295 •33767 •36158 •38458 •40661 ■42760 •44753 •46632 •48396 •50038 •51558 ■52953 •54221 •55363 •56373 •57258 •58015 •58648 •59158 •59547 •59820 ■59982 ■60034 9-5 •08639 •16793 •24151 •30603 •36173 •40941 •45006 •48457 •51371 •53815 ■55843 ■57502 •58829 •59860 •60622 •61141 ■61435 ■61530 •61441 •61186 ■60781 ■60239 ■59578 •58807 •57942 ■56994 ■55977 ■54900 ■53778 ■52618 •51434 ■50235 ■49032 •47831 •46645 •45480 z ~b •00376 •01445 ■03070 •05099 ■07400 •09878 •12463 •15106 •17773 •20438 •23078 •25678 •28226 ■3071 1 •33122 •35453 •37694 ■39842 •41888 •43830 •45661 •47380 •48979 ■50461 ■51820 •53055 •54167 •55153 ■56015 ■56753 •57371 •57868 ■58247 •58514 •58671 ■58722 I0"0 •08635 ■16766 •24075 •30460 •35955 •40647 •44639 •48023 •50877 ■53269 •55252 •56874 •58171 •59178 ■59921 •60427 ■60715 •60808 ■60721 ■60472 •60077 •59549 ■58903 ■58151 ■57307 ■56382 ■55389 ■54339 ■53243 ■52111 ■50955 ■49784 •48609 ■47436 •46277 ■45138 ■00375 •01441 •03056 •05063 •07333 •09771 •12310 ■14902 . ■17514 •20I2I •22703 •25245 •27734 •30161 •32516 •34791 •36979 ■39074 •41071 •42965 ■44752 ■46428 •47989 •49434 ■50760 •51966 •53050 •54013 •54854 •55575 •56178 •56663 •57034 ■57294 •57447 •57497 io'5 X b ■08631 ■16739 •24000 •30320 •35743 •40362 •44285 •47606 •50404 •52747 ■54688 ■5627s •57543 •58528 •59254 •59749 •60030 •60121 ■60036 ■59793 ■59407 •58892 ■58260 •57525 ■56701 •55798 ■54827 ■53801 •52731 ■51624 ■50494 ■49350 •48201 ■47053 •45920 •44804 •00375 •01438 •03042 •05028 •07269 •09668 •12163 •14707 •17267 •19820 •22348 •24835 •27269 •29642 ■3194s •34167 •36306 •38352 •40303 •42153 •43899 •4SS35 •47060 •48471 •49767 •50944 •52003 •52944 •53767 •54471 •55060 •55535 •55897 •56152 •56301 •56350 iro X 1 •08627 ■16712 ■23927 •30184 ■3S537 ■40087 •43944 ■47205 •49949 •52246 •54148 ■55702 •56944 •57908 •58618 •59101 •59377 •59466 •59383 •59145 •58768 ■58264 •57646 •56928 •56122 •55239 •54290 •53286 •52239 •51157 •50051 •48931 •47806 •46683 •4S573 ■44480 z T> •00375 •01434 ■03028 •04994 •07206 ■09569 ■12022 •14520 ■17032 ■19534 ■220H •24446 ■26829 •29151 •31404 •33578 •35670 •37671 •39579 •41388 •4309s •44694 •46186 •47565 •48832 •49984 •51019 •51940 ■52744 •53433 •54010 •54474 •54829 •55078 •55224 •55272 (8) II i8 = I] ■5 i: VO I2-5 I, j-o I, 3-5 X b z 1) X b z X b z b X b z X b z ~b 5" lO 15 •08623 •16685 ■23855 •0037s •OI43I •03014 •08619 •16658 •23784 •00374 •01427 •03000 •08615 •16632 •23714 ■00374 ■01424 ■02987 ■o86n •16606 •23645 ■00374 ■01421 ■02974 •08607 •16580 ■23577 •00374 ■01417 •02961 20 3° ■30051 •35337 ■39820 •04961 •07145 •09474 •29921 •35142 ■39562 •04929 •07086 ■09382 •29794 •34952 •393" ■04898 ■07029 ■09293 •29669 ■34767 ■39067 ■04867 •06973 •09207 •29546 ■34586 •38829 •04837 ■06919 ■09123 35 40 45 ■43615 •46819 ■49512 •11887 ■I434I •16807 •43296 •46446 •49093 •11757 ■14170 •16592 ■42988 •46086 •48689 •11631 ■14005 ■16386 ■42689 •45738 •48298 •11510 ■13847 •16188 •42400 •45402 •47921 ■"393 ■13694 ■15998 5° 55 60 ■51765 ■53630 ■55153 •19262 •21690 •24077 •51304 •53134 ■54628 •19002 ■21384 •23725 •50861 ■52657 ■54123 •18753 ■21092 •23390 ■50433 ■52198 ■53638 •18515 •20813 •23070 •50020 ■51756 •53171 ■18286 ■20546 ■22764 65 70 75 •56371 ■57315 •58010 ■26412 •28686 •30892 •55821 •56746 •57428 •26015 •28244 •30406 ■55293 •56200 •56870 ■25637 •27824 •29944 ■54787 •55677 •56335 •25276 •27423 •29504 •54300 •55174 •55820 ■24931 ■27040 ■29083 80 85 90 •58483 ■58753 •58840 •33020 •35068 •37027 ■57892 ■58157 •58241 ■32492 ■34498 ■36418 •57326 ■57586 •57667 •31990 ■33957 ■35839 •56782 ■57037 ■57117 •31512 •33442 •35289 •56259 ■56510 •56589 ■31056 •32951 •34765 95 100 i°5 ■58759 •58526 •58157 •38895 •40666 ■42336 •58162 •57934 •57572 •38248 •39982 •41618 ■57591 ■57366 •57012 ■37634 ■39335 ■40938 •57042 ■56822 •56474 •37050 •38717 •40291 •56514 •56299 •55957 •36494 •38131 ■39675 iro "5 120 •57664 •57059 •56357 •43901 •45362 •467 1 1 •57089 •56497 •55809 •43152 •44582 •45904 •56538 ■55958 ■55283 •42443 •43843 •45140 •56009 ■55440 ■54778 ■41768 •43142 ■44414 •55501 ■54942 •54292 ■41126 ■42475 ■43723 125 13a 13s •55568 ■54703 ■53774 •47951 •49079 •50091 •55036 •54189 •53279 •47119 •48223 •49216 •54525 •53695 •52802 •46331 •47413 •48388 •54034 •53220 ■52344 •45583 •46644 •47601 ■53561 •52762 •51902 ■44871 •45913 •46853 140 145 150 •52791 •51766 •50707 •50993 . •51780 •52455 •52316 •5I3II •50273 •50099 •50870 •51532 •51859 ■50873 ■49855 •49252 ■50008 •50658 ■51418 ■50450 ■49451 •48449 •49191 •49829 •50993 ■50042 ■49061 ■47686 •4841 S •49041 155 160 165 •49624 •48527 •47424 •53020 •53475 •53823 •49212 •48136 ■4705s •52085 •52531 ■52872 •48814 •47758 ■46698 ■51200 •51638 •51972 ■48429 •47393 •46351 •50361 ■50791 ■51119 •48057 •47039 ■46015 •49564 ■49986 ■50308 170 175 180 •46324 •45236 •44164 •54066 •54210 •54256 •45976 ■44908 •43857 •53"! •53252 •53298 •45638 •44589 •43558 •52207 •52346 •52391 •453" ■44280 •43267 ■51350 ■51486 ■51531 ■44993 •43979 •42983 •50535 •50669 •50713 (9) 12 II /3 = 14-0 I 4-5 I. 5-0 I 5-5 I 5-0 5° lo IS X z X b z X b z 1> X 1 z b X z b •08604 •16554 •23509 •00373 •01414 •02949 •08600 •16529 •23443 •00373 •01411 •02936 •08596 ■16503 '23377 •00373 ■01408 •02924 •08592 •16478 ■23313 ■00373 •01404 •02912 •08588 ■16453 ■23249 •00372 •01401 •02900 20 3= •29426 •34410 '38598 •04808 ■06866 •09042 •29308 ■34237 •38374 •04779 •06S15 •08963 •29192 •34069 '38155 '04751 •06765 •08887 •29078 ■33905 ■37942 1 •04723 •06716 •08813 •28967 ■33744 ■37734 •04696 •06669 •08741 35 40 45 1 •421 19 •45077 '47556 •11281 •13547 •15815 •41847 ■44762 •47203 •11172 •13405 •15639 •41582 ■44456 •46861 •11067 •13268 •15469 ' ^41325 ■44159 •46530 •10964 •13135 •15305 ■41074 ■43871 •46209 •10865 •13007 ■15147 5° 55 60 '49622 •51329 •52721 •18067 •20289 •S2470 ■49237 ■50917 •52287 •17856 ■20042 '22188 •48865 •50519 •51867 '17653 •19805 •^1918 •48504 •50134 •5 146 1 •17457 ■19577 •21658 •48155 ■49761 •51069 •17268 ■19358 •21408 65 70 75 •53831 •54691 •55325 '24601 •26674 •28682 ■53379 ■54225 '54848 '24285 •26323 •28298 '52942 •53775 ■54387 ■23981 •25987 •27930 •52520 ■53340 ■53942 •23689 •25664 •27577 •52112 ■52919 ■53513 •23409 ■25354 •27238 80 85 90 •55756 ■56002 •56080 '30620 •32483 •34265 ■55271 ■55513 '55590 ■30203 •32036 ■33787 •54804 ■55042 ■55118 '29804 •31607 •33330 ■54353 ■54588 ■54662 •29422 •31195 •32892 ■53917 •54148 •54221 •29055 •30801 •32471 95 ioo i°5 '56007 •55795 •55459 •35963 ■37572 •39089 ■55518 ■55310 ■54980 •35456 •37037 •38529 ■55047 ■54842 ■54517 •34971 •36527 ■37994 ■54592 ■54391 ■54070 •34506 •36038 ■37482 ■54152 ■53954 ■53639 •34061 •35569 •36991 no "5 120 •55011 •54462 •53824 •40513 •41839 •43066 ■54539 ■53999 ■53372 •39928 •41232 •42439 •54084 •53553 •52936 ■39370 ■40652 ■41839 ■53645 ■53122 ■52515 •38836 •40097 •41265 •53220 ■52705 ■52107 •38324 ■39566 ■40716 125 130 135 •53106 •52321 •51476 •44193 •45217 •46140 •52666 ■51896 ■51064 •43546 •44553 ■45460 ■52242 •51484 •50666 •42928 ■43918 •4481 1 ■51832 ■51085 ■50280 •42337 ■43312 •44191 "51435 ■50699 ■49907 ■41771 •42732 •43596 140 145 150 •50582 •49648 •48684 ■46959 •47676 •48291 •50185 •49267 •48318 •46266 •46971 ■47576 •49801 •48898 •47964 •45604 ■46298 ■46893 ■49429 ■48540 ■47621 •44971 •45654 •46240 ■49069 ■48193 ■47288 •44365 •45037 •45614 155 160 165 •47697 •46696 •45689 •48805 •49220 •49537 ■47348 •46363 •45372 •48081 •48489 •48801 •47009 ■46040 •45065 ■47390 •47792 •48099 ■46680 ■45726 •44766 •46729 •47125 •47427 •46361 ■45421 "44475 •46096 •46486 •46784 170 175 180 •44684 •43687 •42707 •49760 •49892 •49935 •44383 •43403 •42438 •49021 ■49151 •49193 ■44091 •43126 ■42176 •48315 •48443 •48484 •43807 •42856 •41920 •47640 •47766 •47807 •43530 •42593 •41670 •46994 •47118 •47158 (10) II )8 = i6- 5 17 •0 17-5 18 •0 18 ■5 X z ~b X 1) z X z X z "b X 1} z 1 10 IS •08584 •16429 •23186 •00372 •01398 •02888 •08580 •16404 •23124 •00372 •01395 •02877 •08577 •16380 ■23063 •00372 •01392 •02865 •08573 ■16356 •23002 •00371 •01389 •02854 •08569 ■16332 •22942 •00371 •01386 •02843 20 30 •28857 •33587 •37531 •04669 •06622 •08671 ■2.8750 ■33433 •37333 •04643 •06577 •08603 •28645 ■33282 •37140 •04618 •06533 •08537 •28541 ■33134 •36951 ■04593 •06490 •08472 •28439 ■32989 ■36767 •04569 •06448 •08409 35 40 45 •40830 •43591 ■45898 •10769 •12882 •14994 •40592 •43318 •45595 •1067s •12762 •14846 ■40361 ■43052 •45301 •10584 •12646 •14703 ■40135 ■42794 •45014 •10496 •12533 ■14564 ■39914 ■42542 ■44735 •I04IO •12423 •14430 5° 55 6o •47816 ■49400 •50689 •17086 •19146 •21167 •47487 ■49050 •50321 •16910 •18942 •20934 •47168 ■48710 •49963 •16740 •18745 •20709 •46858 •48379 •49616 •16575 •18554 •20493 •46556 •48057 ■49279 •16415 •18369 •20284 65 70 75 •5I7I7 •525" •53098 •23139 •25C-56 •26913 ■51334 •52117 ■52696 •22879 •24769 ■26599 •50962 •51735 •52306 •22628 ■24492 •26296 •50602 •51364 •51927 •22385 •24224 •26004 •50252 ■51004 ■51559 •22151 •23966 •25723 80 85 90 •53495 ■53722 •53795 •28702 •30422 •32067 •53087 •53311 •53382 •28363 •30058 •31678 •52691 •52913 •52982 •28036 •29707 •3^304 •52308 •52526 •52595 •27720 •29368 •30944 ■51936 ■52150 •52219 •27415 •29041 •30596 95 100 i°5 •53727 •53532 •53222 ■33634 ■35118 •36520 ■53315 ■53123 •52818 •33223 ■34685 •36067 •52916 •52727 •52426 •32827 ■34269 ■35631 ■52529 ■52343 ■52046 •32446 ■33868 •352II •52153 •51970 ■51677 •32078 •33481 ■348^6 no "5 120 •52809 •52301 •5I7I2 •37833 •39057 •40189 •52411 •51910 •51330 •37361 ■38567 ■39683 •52025 ■51531 ■50959 •36907 •38096 ■39196 ■51650 ■5 1 164 ■50599 •36470 ■37642 •38727 ■51286 ■50807 ■50250 •36047 •37205 •38275 125 130 135 •51051 •50325 •49545 •41228 •42176 ■43025 •50679 •49962 •49194 •40707 •41 641 •42478 •50317 •49610 •48853 ■40206 ■41 1 26 ■41952 ■49966 •49269 ■48522 •39723 •40631 •41446 •49625 ■48937 ■48200 •39258 •40153 •40958 140 145 15° •48720 ■47856 •46964 •43783 •44446 •45013 •48380 •47529 •46650 •43225 ■43878 ■44437 •48050 •47212 ■46344 •42689 ■43331 •43884 ■47730 ■46903 ■46047 •42172 •42807 •43351 •47419 ■46603 •45758 •41674 ■42302 •42838 iSS 160 165 •46051 •45124 ■44192 •45489 ■45873 •46167 •45750 •44836 •43916 •44907 •45285 •45575 ■45456 •44555 •43648 ■44347 ■44720 •45006 ■45I7I ■44282 ■43386 •43808 •44176 •44459 ■44893 •44016 •43131 •43289 •43653 •43931 170 17s 180 •43261 ■42337 •41426 ■46375 •46496 ■46536 •42998 •42087 •41188 •45780 •45900 •45939 ■42742 ■41843 ■40956 •45208 ■45327 ■45365 . ^42492 •41604 •40729 •44658 •44775 •44813 •42248 ■41371 •40507 •44129 •44244 •44281 (") 12—2 II 13 = I 9-0 I 9-5 20^0 2ro 22-0 4> X ~b z 1? X ~b z X b z b X ~b z 1? X 1 z ~b 5° 15 ■08565 •16308 •22883 •00371 ■01383 •02832 •08562 •16284 •22825 •00371 •01380 •02821 •08558 •16261 •22768 •00370 •01377 •02811 •08550 •16214 •2265s •00370 •01371 •02790 •08543 •16169 ■22545 •00369 •01365 •02770 20 3° •28339 ■32847 •36586 ■04545 •06407 •08348 •28240 •32707 ■36409 ■04521 •06367 •08288 •28143 •32571 •36236 •04498 •06327 •08230 •27953 ■32306 ■35901 •04453 •06250 •08118 •27769 •32050 ■35579 •04410 •06177 •08010 35 40 45 •39699 ■42297 •44464 •10327 •12317 •14299 •39489 •42058 •44199 •10246 •12214 •14172 •39283 ■41824 ■43941 •10167 ■12113 •14050 •38885 •41373 •43443 •10016 •11919 •13814 ■38505 •40942 •42969 •09871 •11736 •13591 5° 55 60 •46262 ■47745 •48951 •16260 '18190 •20081 ■45977 ■47441 •48632 •16110 •18017 •19885 ■45698 ■47145 ■48322 •15965 •17849 •19694 •45161 •46575 •47725 •15686 •17528 •19330 •44650 ■46033 ■47158 •15423 •17224 •18987 65 70 75 •49912 ■5of>S4 •51202 •21924 •23716 ■25450 ■49581 ■50314 ■50855 •21705 •23474 •25186 ■49259 ■49984 ■50518 •21492 •23240 •24931 •48640 •49349 •49870 •21086 •22793 •24445 ■48053 ■48746 •49255 •20704 •22373 •23987 80 85 90 ■51574 •51785 ■51854 •27121 •28725 •30261 •51222 •51431 ■51499 •26836 •28420 •29937 ■50880 ■51087 •51153 •26561 •28126 •29623 •50223 •50426 •50489 •26037 •27565 •29026 •49600 •49798 •49860 •25543 •27037 •28465 95 100 i°5 ■51789 •51608 •51319 •31723 •33108 •34415 ■51435 •51256 ■50970 •31380 •32748 •34038 ■51091 •50914 •50632 ■31049 ■32400 ■33674 •50430 •50257 •49982 •30418 •31738 •32981 •49802 ■49633 ■49364 •29825 •31115 •32330 no "5 120 ■50933 •50460 •49910 •35640 •36783 •37839 •50589 •50123 •49580 •35248 •36376 •37418 •5025s •49795 •49258 •34869 •35982 •37012 •49613 •49164 •48640 •34147 •35233 •36239 •49004 ■48565 •48053 •33470 •34531 •35514 125 130 13s ■49293 •48614 •47887 •38810 ■39693 •40488 •48970 •48300 •47582 •38377 •39249 •40034 ■48656 •47995 ■47285 ■37959 •38820 ■39596 •48052 •47407 •46714 •37163 •38005 •38762 •47478 •46848 •46170 •36418 •37240 •37980 140 145 150 •47116 •46310 ■45476 ■4"9S •41814 ■42344 •46821 •46024 •45201 •40732 •41343 •41867 •46533 ■45746 ■44933 •40285 •40889 •41407 ■45979 ■45210 ■44417 •39435 •40025 •40532 •45452 •44700 •43924 •38639 •3921S •397 1 1 IS5 160 165 •44622 •43756 •42882 •42789 •43148 •43423 •44358 •43502 •42639 •42307 •42661 •42933 ■44100 ■43254 ■42402 •41841 •42191 •42460 •43602 •42775 •41944 •40955 •41299 •41560 •43128 •42319 •41506 •40125 •40460 •40717 170 175 180 •42010 •41 143 •40290 ■43618 •43732 •43769 •41777 •40921 •40078 •43125 •43238 . •43275 ■41550 •40704 •39870 •42649 •42761 •42797 •41 II I •40284 •39468 •41744 •41854 •41889 •40690 •39881 •39082 •40897 •41004 •41039 (12) II 23 i> 5" lO IS 20 25 30 35 45 5° 55 60 6S 70 75 80 85 90 95 TOO i°5 rio "5 120 125 130 135 140 145 15° 155 160 165 170 175 180 X b •°8S35 •16123 •22438 •27591 ■31803 ■35269 ■38141 ■40529 ■42516 •44162 •45516 •46618 •47493 •481 7 1 •48670 ■49008 ■49201 •49262 ■49205 •49039 •48776 •48424 •47995 ■47494 •46932 ■46315 ■45651 •44949 •44214 •43453 •4267s •41883 •41086 •40287 ■39494 •38712 z J •00369 •01359 •02750 ■04368 •06107 •07907 •09733 •11561 •13379 ■15173 •16937 ■18662 ■20343 ■21976 •23556 ■25078 •26540 ■27937 •29268 ■30529 •317T8 ■32833 ■33871 •34833 •35718 ■36521 •37246 •37891 ■38454 •38939 •39345 •39673 •39925 •40101 •40206 •40240 24 X •08528 ■16079 ■22333 •27418 •31564 •34971 •37791 •40134 •42082 ■43696 •45023 •46102 •46960 •47624 •48112 •48443 •48632 •48692 •48636 ■48474 ■48216 ■47872 ■47451 ■46961 •46410 •45806 ■45156 •44468 •43748 ■43003 •42240 •41464 •40683 •39900 ■39123 •38356 •00368 ■01354 •02731 •04327 •06039 •07808 •09601 •"395 •13177 •14936 •16664 ■18355 •20002 •21601 ■23148 •24638 ■26070 •27438 •28741 •29976 •31 140 ■32232 ■33249 ■34191 •35057 •35844 ■36554 •37185 •37737 •38212 •38610 •38931 •39178 •39351 ■39454 ■39487 25 X b •08521 ■16035 •22230 •27250 ■31333 ■34684 ■37455 ■397SS •41666 •43249 ■44551 •45609 ■46451 •47101 •47579 ■47905 •48089 •48148 •48092 ■47934 ■47682 ■47345 ■46931 ■46452 ■45911 ■45319 •44682 •44008 •43302 •42571 •41823 •41062 •40296 •39528 ■38766 ■38014 •00368 •01348 •02712 •04288 ■05974 •07713 ■09475 •11236 •12985 •14711 •16405 j •18063 •19678 ■21246 •22761 ] •24221 •25626 •26966 ■28243 •29453 ■30594 •31665 •32662 •33585 •34433 ■35204 ■35901 '36519 •37061 ■37526 •37915 ■38231 •38472 ■38643 ■38744 ■38776 26 27 ■08513 ■15992 ■22130 •27087 •31110 •34407 •37131 ■39390 •41267 ■42821 ■44099 ■45137 ■45963 ■46601 ■47070 ■47389 ■47570 •47628 ■47573 •47418 •47170 ■46840 ■46434 ■45964 ■45434 ■44853 ■44228 ■43567 ■42874 ■42157 ■41423 •40676 ■39924 ■39170 •38422 •37683 z I •00367 ■01343 •02694 •04250 •05911 ■07622 •09354 •11084 •12802 •14496 •16159 •17786 •19370 •20908 ■22395 ■23826 ■25204 ■26519 '27771 •28958 •30077 •31127 •32105 •33010 ■33842 ■34599 •35282 •35888 •36420 •36876 ■37258 •37568 ■37805 •37973 •38072 ■38103 X b •08506 ■15949 •22032 •26928 ■30894 ■34140 ■36818 ■39039 •40883 ■42410 ■43665 ■44684 ■45495 •461 2 1 ■46582 ■46895 •47073 •47130 ■47076 •46924 •46680 ■46356 •45958 ■45496 •44976 •44406 '43793 •43143 •42463 ■41759 ■41039 ■40305 ■39566 •38825 ■38090 •37364 z ~b •00367 ■01338 •02676 ■04213 ■05850 ■07535 ■09238 •10939 •12627 •14291 ■15924 •17522 •19077 •20586 ■22047 •23452 •24803 •26094 •27323 •28488 •29586 •30616 ■31577 ■32465 •33282 ■34025 ■34695 •35290 •35812 •36260 •36635 ■36940 •37173 •37337 ■37434 •37465 (13) II i8 = 28 5" 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 no 115 125 130 135 140 145 15a 155 160 165 170 17s 180 X I ■08499 ■15937 •21935 •26773 ■30684 •33881 •36517 ■38701 •40514 ■42015 ■43248 •44249 •45046 ■45661 ■461 14 ■46421 •46596 ■46652 •46599 ■46449 ■46210 •45892 •45501 •45047 •44537 •43977 •43374 •42736 •42068 •41376 ■40668 ■39947 ■39221 •38493 •37770 •37056 z ~b ■00366 ■01332 •02659 •04177 ■05792 •07451 •09127 •10800 •12459 ■14095 •15700 •17269 •18797 •20280 •21714 ■23095 •24422 •25690 •26897 ■28041 ■29119 •30131 •31074 •31947 •32749 •33479 •34137 ■34722 •35235 •35675 •36044 •36343 •36572 •36734 •36829 •36860 29 ■08491 •15865 •21841 ■26623 •30481 •33631 •36226 •38376 •40159 •41634 •42847 •43831 •44613 •45219 ■45664 ■45966 •46138 ■46193 ■46142 ■45993 ■45759 •45446 •45061 •44615 •441 15 •43564 ■42972 •42345 ■41687 •41008 ■403 1 1 •39602 •38888 •38172 •37461 •36759 •00366 ■01327 •02642 •04143 •05736 •07370 •09020 •10666 •12298 •13907 ■15485 •17028 ■18529 ■19987 •21396 •22754 •24059 •25305 ■26491 •27616 •28674 •29669 •30595 •31453 •32242 ■32960 •33605 ■34182 •34686 •3S"8 •35482 •35776 •36000 ■36160 •36253 ■36284 30 •08484 •15824 •21748 •26476 •30283 •33388 •35944 •38061 ■39816 ■41268 ■42461 •43429 ■44199 •44794 •45231 •45528 ■45698 •45752 •45701 •45555 •45325 ■45017 •44638 •44200 •43708 •43166 •42584 ■41967 •41320 ■40652 •39966 ■39269 •38566 •37862 ■37162 ■36471 ■00366 ■01322 ■02626 •04109 •05681 •07292 ■o89t7 ■10538 •12144 ■13727 •15280 •16797 •18274 •19708 •21093 •22429 •23711 •24937 •26103 •27209 •28250 •29228 •30139 •30983 ■31758 ■32464 •33099 •33666 •34162 ■34587 ■34945 •35234 •35455 •35612 •35704 •35735 31 X 1 •08477 •15784 •21657 •26332 •30090 ■33153 •35671 •37756 •39485 •40914 •42088 •43041 •43799 •44384 •44815 •45107 •45274 •45327 •45277 •45133 •44907 •44604 •44231 •43800 •43316 •42783 •42210 •41603 ■40966 •40309 •39634 •38947 •3825s •37562 •36873 •36192 z 1 •00365 •01317 •02610 •04076 •05628 •07217 •08818 •10415 •11996 •13555 •15083 •16576 •18029 •19440 •20803 •22118 •23379 •24585 ■25732 •26820 •27845 •28807 ■29703 ■30534 •31296 ■31991 •32616 •33173 •33662 •34080 •34432 •34717 •34935 •35089 •35179 •35210 32 ■08470 •15744 •21568 ■26192 ■29903 •32924 •35408 •37462 •39165 •40573 ■41729 ■42667 •43413 •43989 •44413 •44701 •44865 ■44917 •44868 ■44727 •44504 •44206 ■43840 •43415 •42937 •42413 ■41849 •41251 •40625 ■39977 •39312 •38636 •37955 •37272 •36592 •35921 •00365 •01312 •02594 ■04044 •05576 •07144 •08723 ■10296 ■11854 •13389 ■14894 •16364 •17795 ■19184 ■20526 •21820 •23061 ■24248 •25377 •26448 •27457 •28404 •29286 •30104 •30854 •31538 •32154 •32702 •33183 •33596 ■33942 •34222 •34437 •34588 •34678 ■34708 (14) II 13 = 33 34 35 36 37 4> X z X z X z X z X z b b b b b b b b b b 5" 10 15 •08463 ■15704 •2I48I •00364 •01307 •02578 ■08456 ■15665 ■21395 ■00364 •01302 •02563 ■08449 •15627 ■21311 •00363 ■01297 ■02548 •08442 •15589 •21229 ■00363 ■01293 •02534 ■08435 ■15551 •211^8 ■00362 ■01288 ■02520 20 25 33 ■2605s ■29721 ■32702 •04012 •05526 •07073 ■25921 •29544 ■32486 •03982 ■05478 . •07005 •25791 ■29371 ■32276 ■03953 ■05431 ■06939 •25663 •29203 ■32073 ■03924 ■05385 ■06875 •25538 •29039 ■31875 ■03896 •05341 ■06813 35 40 45 •35152 ■37177 ■38855 ■08631 •10182 ■11717 ■34904 ■36901 •38556 •08542 ■I007I •11585 •34663 •36633 ■38266 ■08456 ■09964 ■11458 ■34429 ■36373 ■37984 •08372 ■09861 •1133s •34201 •36120 •37710 ■08291 ■09761 •1I2I6 5° 55 6d •40243 ■41382 ■42306 ■13229 ■14712 ■16160 ■39924 ■41046 •41956 ■13076 •14537 •15964 •39615 ■40721 ■41618 ■12928 •14368 ■IS775 ■39315 ■40406 ■41291 ■12785 ■14206 ■15594 ■39024 ■40101 ■40974 ■12647 ■14049 ■15419 65 70 75 ■43040 ■43607 ■44025 •17570 ■18938 ■20260 ■42680 •43239 •43651 ■17354 •18702 •20005 •42332 ■42883 ■43289 •17146 •18474 ■19759 ■41995 ■42539 ■42939 •16945 •18255 ■19522 ■41668 ■42205 ■42600 ■16752 ■18044 ■19294 80 85 90 ■44309 ■44470 ■44522 ■21534 •22757 ■23925 •43931 •44089 •44140 •21260 •22464 •23615 •43565 •43721 •43771 •20996 •22183 ■23317 ■43211 •43365 •43414 ■20742 •21912 •23031 ■42868 ■43019 ■43068 ■20497 ■21651 ■22756 95 100 105 •44474 •44335 •44116 ■25037 •26091 ■27086 •44093 •43956 ■43740 •24710 ■25749 •26729 •43725 •4359° •43377 ■24397 •25421 ■26387 •43368 •4323s •43025 •24095 •25105 •26058 •43023 ■42892 ■42685 ■23805 ■24801 ■25741 no "5 120 ■43821 •43461 ■43043 •28018 •28886 ■29692 •43450 •43095 •42683 •27648 ■28503 •29297 •43091 ■42741 •42335 •27293 •28135 •28918 ■42744 ■42399 ■41998 ■26951 ■27782 ■28554 ■42407 ■42067 ■41672 •26622 •27442 •28204 125 130 135 ■42571 ■42056 ■4I50I ■30432 ■31105 ■31712 ■42218 ■41710 ■41 163 •30026 •30689 •31288 ■41877 •41376 ■40836 •29636 •30290 •30881 ■41546 ■41052 ■40520 •29262 •29907 •30489 ■41226 ■40738 •40214 •28903 ■29538 •30112 140 145 150 ■40912 ■40295 ■39656 •32250 •32724 •33133 •40583 •39975 ■39346 •31818 ■32285 ■32688 ■40265 •39665 ■39045 ■31403 •31864 •32261 •39956 •39365 ■38753 •31005 •31459 ■31850 ■39656 ■39074 ■38469 •30622 •31070 ■31455 155 160 165 ■39000 ■38335 ■37664 •33473 •33749 ■33961 •38699 •38043 •37382 •33023 ■33295 ■33504 ■38407 ■37760 ■37108 •32592 •32860 •33066 ■38124 ■37486 •36842 ■32177 ■32441 ■32644 ■37849 ' ■37219 ■36584 ■31778 ■32038 •32239 170 175 180 ■36991 •36320 ■35658 •34108 •34198 •34228 •36718 •36056 •35404 •33649 ■33738 •33767 ■36453 ■35800 •35^57 •33209 ■33296 •33324 ■36196 ■35552 ■34917 •32786 ■32872 •32900 •35946 •35311 , •34683 •32380 ■32465 •32492 (15) II s= 38 ■; «- 9 40 41 42 <^ X 1 z ~b X 1 z I X 1> z 1 X ~b z ~b X b z ~b 5" 10 15 •0S428 •15514 •21069 •00362 •01283 •02506 •08421 ■15477 •20991 •00362 •01279 •02492 •08414 •I544I ■20914 •00361 •01274 •02478 •08407 •15405 •20838 •00361 •01270 •02464 •08400 •15369 ■20764 ■00360 •01266 •02451 20 30 •25416 •28879 •31682 •03869 •05298 •06753 ■25297 •28723 ■31494 •03842 ■05256 •06694 ■25180 ■28570 •31310 •03816 •05215 •06637 •25065 •28421 •3I13I •03790 •05175 •06582 •24953 •2827s •30956 •03765 •05136 •06528 35 40 45 •33980 •35875 •37445 •08213 •09665 •IIIOI ■33764 ■35637 •37187 •08137 ■09571 •10990 ■33SS4 •35405 •36936 •08063 •09481 •10882 ■33349 ■35179 •36691 •07991 •09393 •10777 •33150 •34959 •36454 •07922 •09308 •10676 5^ 55 60 •38742 •39805 •40667 •12514 •13898 •15250 ■38468 ■39517 •40369 •12385 ■13751 •15086 •38201 •39238 •40079 •12260 ■13610 •14928 ■37941 •38966 ■39797 •12139 •13473 •14775 ■37689 ■38702 •39523 •12022 ■13340 ■14627 65 70 75 ■41352 •41882 •42271 ■16565 •17841 •19074 •41045 ■41568 ■41952 •16384 •17644 •I886I •40747 •41263 •41643 •16210 ■17454 •18656 •40457 •40967 •41342 •16041 ■17270 •18458 ■4017s ■40679 ■41050 ■15878 ■17092 ■18266 80 85 90 •42536 •42685 •42733 •20261 •21400 •22490 •42213 •42361 •42408 •20033 •21158 •22233 •41900 •42046 •42093 ■19813 •20924 •21986 •41596 •41739 ■41787 •I960I •20698 •21747 ■41300 ■41442 •41489 •19395 ■20479 ■21516 95 100 i°5 •42688 ■42559 •4235s •23525' •24508 •25436 ■42364 •42237 ■42035 •23256 •24226 •25142 •42049 •41924 •41724 •22996 •23954 •24858 ■41743 ■41621 ■41422 •22745 •23691 •24583 •41446 •41325 •41129 •22502 ■23437 •24318 no "5 120 •42081 •41745 •41355 •26305 •27115 •27866 •41764 ■41433 •41048 •26000 •26799 ■27540 •41457 •41130 •40749 ■25705 •26495 •27226 ■41158 •4083s ■40459 •25420 •26201 •26923 •40868 •40549 •40177 •25145 •25917 •26630 125 130 135 •40915 •40434 •39916 •28556 •29183 •29750 •40614 ■40139 •39627 •28222 •28841 •29400 •40321 •39852 •39346 •27899 ■28511 •29063 •40036 ■39573 •39073 •27587 •28192 •28738 •39760 ■39302 ■38808 •27286 •27884 ■28423 140 145 15=5 •39366 •38791 •38194 ■30253 •30695 ■3107s ■39084 ■38516 •37927 •29897 ■30334 •30709 •38810 •38249 •37667 •29554 ■29985 ■30356 ■38543 •37989 •37414 •29223 •29648 •30015 ■38284 •37736 ■37168 ■28903 ■29323 ■29685 155 160 165 •37582 •36960 •36333 •31394 •31651 ■31849 •37323 •36708 •36088 •31023 •31278 •31473 •37071 ■36464 ■35851 •30666 •30918 •31 II I •36825 •36226 •35620 ■30321 •30570 ■30761 ■36586 ■35994 ■35395 ■29988 ■30234 ■30423 170 175 180 •35703 •35076 •34456 •31989 •32072 •32099 •35467 •34847 ■34235 ■31611 •31693 •31720 ■35237 •34625 •34020 •31247 •31328 •31354 •35013 •34408 •3381 1 •30895 •30975 •31001 ■34795 •34197 ■33606 •30556 •30634 •30660 (16) II /8 = 43 •^ 10 IS 20 25 30 35 40 45 50 55 6o 65 70 75 80 85 90 95 100 105 no "5 125 130 135 140 145 150 155 160 165 170 175 180 X I ■08393 ■15334 •20691 •24843 •28132 •30785 •32955 •34744 •36223 •37443 •38445 ■39256 '39901 ■40399 ■40766 ■41013 ■41153 •41199 •41157 •41037 •40844 •40586 •40270 •39903 •39491 •39038 •38550 •38032 ■37490 •36929 •36353 •35768 •35175 •34582 •33991 •33406 ■00360 •01261 •02438 •03741 •05098 •06475 •07855 •09225 •10578 ■11908 •13211 ■14483 •15719 •16920 •18080 •19196 •20268 •21292 •22267 ■23191 •24061 •24879. -25641 •26346 ■26995 •27586 •28119 •28593 •29008 •29366 •29666 •29909 •30096 •30228 ■30305 •30330 44 •08387 •15299 •20619 ■24735 •27992 ■30618 ■32765 •34535 ■35997 •37204 ■38194 •38997 •39634 •40126 •40489 ■40733 •40872 •40917 •40876 ■40757 •40566 •403 1 1 •39999 •39636 •00359 •01257 •02426 •03717 •05061 •06424 •07789 •09144 •10482 •11798 •13086 •14344 •15566 •16753 •17900 •19003 •20063 •21075 •22039 •22952 •23813 •24621 •25375 •26072 ■39229 •38781 •38298 •26713 •27298 •27824 •37786 •37250 •36695 •28293 •28704 •29058 •36126 •35547 •34961 •29354 •29595 •29780 •34374 33790 33211 •29910 ■29986 •300H 45 •08380 •15265 •20548 •24629 ■27855 •30455 •32579 •34330 •35777 •36971 ■37950 •38744 •39374 ■39861 •40220 •40460 •40598 •40643 •40603 •40485 •40295 •40044 •39734 •39376 •38973 •38530 •38053 •37546 •37016 •36467 •35904 •35332 •34752 •34172 •33593 •33021 z I ■00359 ■01253 •02414 •03694 •05024 •06374 •07725 ■09066 •10389 •11691 •12965 •14209 •15418 •16591 •17725 •18816 •19864 •20865 ■21818 •22721 •23572 •24371 •25117 ■25807 •26440 •27019 ■27539 •28002 •28409 ■28760 •29052 •29290 ■29473 •29602 •29677 •29702 46 •08373 •15231 •20478 •24525 •27721 •30296 •32398 ■34131 •35562 •36744 •37712 •38497 •39121 •39602 •39957 •40195 •40332 •40376 •40336 •40219 ■40032 ■39783 •39477 •39123 •38724 ■38286 •37814 ■37312 •36788 •36245 •35688 ■35122 ■34548 •33974 •33401 •32835 ■00358 ■01249 •02402 ■03671 •04989 •06326 •07663 •08990 •10299 •11587 •12847 •14078 ■15274 ■16434 '17556 •18634 •19671 •20661 •21604 ■22497 ■23339 •24128 •24867 ■25549 •2617s •26748 •27262 •27721 •28123 •28470 •28760 ■28995 •29176 •29303 •29378 •29403 47 X b •08366 ■15197 •20409 ■24423 ■27590 •30140 •32221 ■33936 ■35353 ■36522 •37480 •38256 •38874 ■39350 •39701 •39937 •40072 •40116 •40076 •39960 •39776 ■39529 •39227 •38876 •38481 •38048 •37581 •37084 ■36566 •36028 ■35477 ■34916 ■34349 •33780 ■33213 •32653 z 'b ■00358 •01245 •02390 •03649 •04955 •06279 •07602 •08916 •10211 •11485 ■12732 ■13950 •15133 ■16281 •17391 •18458 •19484 •20463 •21396 •22279 •23113 •23894 •24624 •25299 •25919 •26485 •26994 •27448 •27846 ■28189 •28476 ■28709 •28888 •29014 •29088 ■29113 (17) 13 II i8 = 48 49 50 c 2 54 <^ X 1 z X 1 z ~b X z X b z ~b X b z b 5° 10 IS •08360 •15164 ■20342 •00358 •01 241 •02378 •08353 •I5I3I •20276 •00357 -01237 -02366 •08347 •15099 •20210 •00357 •01233 •0235s ■08333 •15035 -20082 •00356 •01225 -02334 •08320 •14972 •19957 •0035s •012 17 •02313 20 30 ■24323 ■27461 •29987 •03627 ■04921 •06232 •24225 '27335 -29837 •03605 •04888 •06187 ■24128 -27211 •29691 •03584 •04856 -06143 -23940 •26971 •29406 •03543 •04794 •06058 •23758 •26740 •29133 •03504 •04734 •05976 35 40 45 •32048 •33746 ■35148 •07543 •08843 •10126 •31879 -33560 •34948 •07485 •08773 •10043 •31713 •33378 •34753 •07429 ■08704 •09962 •31392 •33026 •3437s •07320 •08571 •09805 •31084 •32689 ■34013 •07216 •08445 •09656 50 55 6o ■06335 •37254 •38022 •11387 •12621 •13826 -36094 •37034 •37793 •11291 ■12513 ■1370S -35887 •36818 •37570 •11198 ■12407 ■13588 ■35487 •36400 •37138 •11018 ■12204 •13363 •35105 •36000 •36725 •10847 •12011 •13148 65 70 75 ■38633 ■39104 ■39451 •14997 ■16133 •17231 •38398 •38865 •39207 •14865 ■15989 •17075 •38169 •38630 •38969 ■14736 •15849 ■16924 •3772s •38178 •38510 ■14488 •15580 •16634 •37301 •37745 •38071 •14253 •15324 •16359 80 85 90 ■39685 ■39819 •39862 •18287 •19302 •20271 •39439 •39572 •39614 •18121 •19126 •20084 •39199 •39331 •39373 •17959 •18954 ■19903 •38736 •38865 •38906 •17649 •18624 •I9SS5 •38293 •38419 •38459 •I73SS •18311 ■19225 95 100 i°5 •39822 ■39707 •39525 •21194 •22068 •22893 •3957s •39460 •39280 •20998 •21862 •22679 •39333 •39220 •39041 •20808 •21663 •22472 •38867 •38756 •38581 •20442 •21281 •22074 •38422 ■38313 •38I4I •2009S •20919 •21697 110 "5 120 •39281 ■38982 •38635 •23667 •24388 ■25056 •39039 ■38743 •38400 •23445 •24159 •24820 •38803 •38510 •38170 •23230 •23937 •24591 •38347 •38060 •37726 •22817 •23510 •24152 •379" ■37630 •37302 •22426 •23106 ■23736 125 130 135 •38244 •37815 •37353 •25670 •26230 •26734 •38012 •37588 •37I3I -25428 •25982 •26481 •37786 ■37366 •36914 •25193 •25741 •26236 •37350 •36938 •36494 •24743 •25280 •25765 •36933 •36528 •36092 •24316 •24843 •25319 140 145 150 •36862 •36349 •35817 •27183 •27577 •27916 •36645 •36137 •356II •26926 •27316 •27651 •36433 •35930 •35409 •26676 •27062 •27394 •36023 •35530 •35018 •26197 •26575 •26902 •35630 •35147 •34644 •25743 •26114 •26436 155 160 165 •35271 •34716 •34154 •28201 •28431 •28608 •35070 •34520 •33964 •27934 •28161 •28337 •34873 •34329 •33778 •27674 •27898 •28073 •34492 •33958 •33418 •27176 •27396 •27567 •34127 •33603 •33073 •26705 •26921 •27089 170 175 180 •33591 ■33030 ■3247s •28733 •28807 •28831 •33406 •32851 •32301 •28461 •28534 •28557 •33225 ■3267s •32131 •28196 •28269 •28291 •3287s •3233 s •3I80I •27688 •27760 •27782 •32540 •32009 ■31485 •27207 •27278 •27300 (18) II p= 56 58 60 6 2 64 i> X z ~b X 1 2 b X 1 b X 1 b X 1} z ~b 5" lO 15 ■08307 •14910 •19836 •00354 •01210 •02292 •08294 •14849 •19718 •00353 •01203 •02272 •08281 •14790 ■19603 •00352 •01196 •02252 ■08268 •14732 •19491 •00352 ■01189 ■02233 •08256 •14675 •19382 •00351 •OII82 •02215 20 3° •23582 •26516 ■28870 •03466 •04677 ■05898 •23411 •26300 ■28617 •03429 ■04622 •05823 •23246 •26092 •28372 ■03394 ■04569 ■05751 •23086 ■25891 •28136 ■03360 ■04518 ■05682 ■22930 ■25696 •27908 •03327 •04468 •05616 35 40 45 ■30787 •3^364 •33665 •071 1 7 •08324 •09515 •30502 •32052 •33331 •07022 •08209 ■09380 •30227 •31752 •33010 •06931 ■08099 •09250 •29963 •31463 •32701 ■06844 •07994 •09126 •29707 •3II85 •32404 •06760 •07892 ■09007 5=5 55 60 ■34738 •35617 •36329 •10684 ■11828 •12944 •34386 ■35250 •35950 •10529 •I1653 •12749 •34048 •34897 •35585 •10380 •11485 ■12563 •33723 •34558 •35234 ■10237 •II325 ■12386 •33409 •34231 ■34897 ■lOIOl •11172 •12216 65 70 75 •36894 ■37331 •37651 •14029 •15081 •16097 •36505 •36934 •37249 •13816 •14849 •15848 •36I3I •36553 ■36863 •13612 ■14628 •15610 •35773 •36187 ■36492 •13418 •14417 •15383 ■35427 •35835 ■3613s ■13232 •14215 •15166 80 85 90 •37869 ■3799,3 ■38032 •17075 •18014 •18912 •37463 •37585 ■37623 •16809 •17731 •18614 •37073 •37193 •37230 ■16555 ■17462 •18329 •36698 ■36816 •36853 •16313 •17205 •18058 ■36338 ■36454 •36491 ■16081 •16959 •17799 95 100 i°5 •37995 •37889 •37720 •19766 •20575 •21339 •37586 •37482 •37316 •19453 •20249 ■20998 •37194 •37092 •36929 •I9I54 ■19937 •20674 •36818 •36717 •36557 ■18869 •19639 •20365 ■36456 ■36357 ■36199 •18597 •I93S5 ■20069 no "5 120 ■37494 •37218 ■36896 ■22055 •22723 •23342 •37094 ■36823 ■36507 •21702 •22359 •22967 •367II •36444 •36133 •21366 •22012 ■22610 •36343 •36079 •35774 •21045 •21681 •22269 ■35988 ■35729 ■35428 ■20739 •21364 ■21943 125 130 135 •36534 •36136 •357^8 •23911 •24429 •24897 •36I5I ■35760 ■35339 •23526 •24035 •2449s •35783 •35399 •34985 •23159 •23660 ■24II2 •35429 •35051 •34644 •22809 •23302 •23747 •35089 •34717 •34316 ■•22475 •22960 •23398 140 145 15° •35254 •34779 •34285 •25313 •25678 •25993 •34893 •34426 •33940 •24904 •25263 •25572 •34546 •34086 •33609 •24514 ■24867 •25I7I ■34212 •33759 •33290 •24142 ■24490 •24789 •33891 •33445 •32983 •23788 ■24130 ■24424 155 160 16s •33778 ■33262 •32741 •26257 •26470 ■26635 ■33442 ■32935 ■32422 •25831 •26041 •26203 •33II9 •32620 •32II6 •25426 •25633 •25792 •32808 ■32317 ■31821 ' ^25040 •25243 •25400 •32508 •32025 •31536 •24671 •24872 ■25026 170 175 180 •32218 : ■31697 •31181 •26751 •26820 •26842 •31909 ■31397 •30889 ■ ^26318 •26385 •26407 •31611 •31107 •30607 •25905 •25971 •25993 ■31323 ■30827 ■30335 •255" •25576 ■25598 1 "31046 •30557 •30072 ■2513s •25199 •25221 (19) 13—2 II i8 = 66 68 70 1 ?2 74 X b z X b z 1> X b z b X Z b X b z b 5° lO IS •08243 •14619 ■19276 •00350 •0117s •02197 •08231 •14564 •19172 •00349 ■01169 •02180 •08219 '14510 •19070 •00349 ■01162 •02163 •08207 ■14457 ■18971 •00348 •01156 •02147 •08195 •14405 •18874 •00347 •01150 •02131 20 30 •22779 •255°7 •27688 •03295 •04420 •05552 •22632 •25324 •27474 •03264 •04374 •05491 •22488 •25145 •27267 •03234 •04330 •05432 •22349 ■24972 •27066 ■03205 •04287 •05374 •22213 •24804 •26871 •03177 •04245 •05318 35 40 45 •29460 •30917 •32117 •06680 •07794 ■08893 •29221 ■30657 •31840 •06602 •07700 •08783 •28990 •30406 •31572 •06527 •07610 ■08678 •28766 •30162 •31312 ■06455 ■07523 •08576 •28549 •29926 •3I06I •06385 •07439 •08478 5° 55 60 •33107 ■33917 •34572 ■09970 •11025 •12053 •32815 •33613 •34259 ■09845 •10884 •11897 •32533 •33320 •33956 ■09724 ■10749 ■11747 •32260 •33036 •33664 •09608 •10618 •11603 ■31996 •32762 ■33381 •09496 •10492 •11464 65 70 75 •35094 •35495 •35791 •13054 •14021 •14958 ■34773 ■35168 •35459 •12883 •13836 •14758 •34463 •34852 •35139 •12718 ■13658 •14567 ■34163 •34547 •34830 •12560 •13487 •14383 •33873 •34252 •34531 •12408 •13322 •14206 80 85 90 •35991 •3610S •36142 •15860 •16723 •17551 •35656 •35769 ■35805 •15647 •16498 •17313 •35333 •35444 •35480 •15442 •16282 •17085 •35022 •35131 •35166 •15246 ■16074 •16865 •34721 •34828 •34862 •15057 •15874 •16654 95 100 i°S •36107 ■36010 •35854 •18336 •19083 •19786 •35771 •35675 •35522 •18087 •18822 •19515 •35446 •35352 •35201 ■17848 ■18572 •19255 •35133 •35040 •34891 •17618 ■18332 ■19005 ■34830 •34738 •34591 •17397 •18101 •18765 no "5 120 •35646 •35391 ■35095 •20446 •21061 •21631 ■35317 •35066 •34774 •20165 •20771 •21333 •34999 •34752 •34464 ■19896 •20493 •21047 •34692 •34448 •34164 •19637 •20226 •20772 •34395 ■34154 ■33874 •19388 •19970 •20508 125 130 135 •34761 •34395 •34000 •22155 •22633 •23064 •34445 •34084 •33695 •21849 ■22320 •22745 •34139 •33783 •33400 ■21556 •22019 •22439 •33844 ■33493 •33115 •21274 •21731 •22144 ■33558 •33212 ■32839 •21004 •2 1454 •21861 140 145 150 •33581 •33142 •32687 •23449 •23786 •24075 •33282 •32849 •32401 •23124 ■23456 •23741 •32993 •32566 •32125 •22812 •23139 •23421 •32714 •32293 •31857 •22512 •22835 •23113 •32444 •32029 •31598 •22224 •22543 •22817 155 160 165 ■32219 •31743 ■31261 •24318 •24517 ■24668 •31940 •31471 •30996 •23981 •24176 •24325 •31670 •31207 •30739 •23657 ■23849 •23996 •31409 •30952 •30491 ■23346 •23535 •23681 ■3II56 •30705 ■30250 ■23047 •23234 •23378 170 175 180 •30778 •30296 •29818 •24775 •24839 •24861 •30519 •30044 •29573 •24431 •24494 •24515 ■30269 •29801 •29336 •24101 •24163 •24183 •30027 •29565 •29107 •23784 •23845 •23865 ■29792 •29337 •28885 •23479 •23539 •23559 (20) II ^= 76 78 80 82 84 X I z I X b z b X b z b X 1 z X b z ~b 5° lO IS •08183 •14353 •18780 •00346 •01 144 •02II5 •08171 •14303 •18688 •00346 •01 138 •02100 •08159 ■14253 •18597 •00345 •OII33 •02085 •08147 •14204 •18508 •00344 •01126 •02070 •08136 •14156 •18421 •00343 •0I12I •02056 20 33 •22081 •24640 •26681 •03149 •04205 ■05265 •21952 •24481 •26497 •03123 •04166 •05213 •21826 ■24326 •26318 •03097 •04128 •05162 •21703 ■24175 •26144 •03072 •04091 •05113 •21583 •24028 •25974 •03047 •04055 •05066 35 40 45 •28338 •29697 •30817 •06318 •07358 . ■08383 •28134 •29476 •30581 •06252 •07280 •08291 •27935 •29260 •30352 ■06189 •07204 •08203 ■27742 ■29051 ■30129 ■06127 ■07131 •08118 •27554 •28847 ■29913 •06068 •07060 •08035 53 55 60 •31740 •32496 ■33107 •09388 •I037I •II330 ■31492 •32238 •32842 •09284 •10254 •11201 •31251 ■31988 ■32584 •09183 •10141 •11076 •31018 •31746 •32334 •09086 •10032 •10955 ■30791 •31510 ■32091 ■08992 ■09927 ■10838 65 70 75 •33592 •33967 •34242 •I226I •I3I64 •14036 ■33320 •33690 ■33962 •12120 ■13011 ■13872 •33057 ■33422 •33690 •11984 •12863 ■13713 ■32801 ■33162 •33427 •"853 •12720 ■13559 •32553 •32909 •33171 •11725 ■12582 ■13411 80 85 go ■34429 •34535 •34569 •14875 •I568I •I 645 1 •34146 •34251 •34285 ■14700 •15495 •16256 •33872 ■33976 ^34009 •14531 •15316 ■16067 •33606 •33709 ■33741 ■14368 ■15143 ■15885 •33348 •33450 •33482 •14210 •14976 •15709 95 100 i°S •34537 •34446 •34301 •I7I84 •17879 •18534 ■34253 ■34163 •34019 ■16979 •17665 •18311 ■33978 ■33889 ■33747 •16781 •17458 •18097 •33711 •33623 •33483 ■16590 •17258 •17890 •33452 ■33365 ■33227 •16406 ■17066 ■17690 no "5 120 •34107 •33870 •33593 •I9I49 •19723 •20254 •33829 •33594 •33321 •18918 •19485 •20009 •33559 •33327 ■33058 •18696 •19255 •19773 •33297 •33068 •32802 ■18481 ■19033 ■19545 ■33043 ■32817 ■32554 •18274 ■18819 •19325 125 130 135 •33282 •32940 •32572 •20743 •2II88 •21589 •33015 •32676 •32314 •20491 •20931 •21327 •32755 ' •32421 ■32063 •20249 •20684 •2107s •32503 •32174 •31820 ■20015 ■20445 •20831 •32258 •31933 •31583 ■19790 •20214 •20596 140 145 150 •32182 ■31772 •31347 •21947 •22262 •22533 •31928 •31523 ■31104 •21680 •21991 •22259 ■31682 ■31282 ■30S68 •21424 •21731 •21995 •31443 ■31048 •30639 ■21177 ■21480 •21740 •31211 •30821 •30416 •20938 ■21237 •21494 155 i6o i6s •309 1 1 •30466 •30017 •22760 •22944 •23087 •30673 ■30234 •29790 •22484 ■22665 ■22806 •30443 •30009 •29570 •22217 •22396 •22535 •30219 •29790 •29356 ■21960 •22136 •22273 ■30001 •29577 •29148 •21711 •21886 •22021 170 175 180 •29565 •2911S •28669 •23186 •23245 •23265 •29344 •28899 •28459 •22904 •22962 •22982 ■29130 •28690 •28255 •22632 •22690 •22709 •28921 •28487 •28057 ■22369 •22428 •22446 ■28719 •28289 •27864 •22116 •22174 •22192 (21) II y3= 86 88 90 92 94 <^ X z 1 X b z X b z X ~b z b X ~b z 5° lo IS •08124 ■14109 •18336 •00343 •oiiis •02042 •08II3 •14062 •18253 •00342 •OHIO ■02029 •o8ior •14016 ■18172 ■00341 •01104 •02016 ■08090 •13971 ■18092 •00340 •01099 •02003 •08079 •13926 •18013 •00340 •01094 •01990 20 3= •21466 •2388s •25809 ■03023 •04021 •05020 •21352 •23745 •25648 •03000 •03987 •04975 •21240 •23608 •25491 •02977 ■03954 ■04931 •21131 •23475 •25338 •02955 •03922 •04889 •21024 •2334s •25188 •02933 •03891 •04848 35 40 45 •27371 •28649 •29703 •06010 •06991 •07955 •27192 •28456 •29498 •05955 •06924 •07877 •27018 •28268 •29299 ■05901 ■06859 ■07802 •26849 •28085 •29105 •05849 •06796 •07729 •26684 •27907 •28916 •05798 •0673s •07658 5° 55 60 ■30571 •31281 •31855 •08901 •09825 •10725 •30356 •31058 •31626 •08812 •09726 ■10616 •30147 ■30842 •31403 •08726 •09630 ■10510 •29944 •30631 •31186 •08643 ■09537 •10408 •29746 •30425 •3097s •08562 •09446 •10308 65 70 75 •32312 •32663 ■32923 •11601 ■12449 •13268 •32077 •32425 •32681 •I 1482 ■12320 •13130 ■31849 •32193 •32446 •11366 ■12195 ■12997 •31627 •31967 •32217 •11254 •12074 •12867 •31411 •31747 •31995 •rii45 •11956 •12741 8o 85 90 •33097 •33198 •33230 •14057 •14815 •15539 •32854 •32953 •32985 •13910 •14659 •15374 •32617 •3271S ■32747 •13767 ■14508 •15214 •32387 •32484 •32515 •13629 •14361 •15060 •32163 •32258 ■32289 •13494 •14218 •14910 95 100 i°5 ■33200 •33114 ■32978 •16228 ■16880 •17496 •3295s •32870 ■32736 •16055 •16700 ■17309 •32716 •32633 •32501 •15888 •16526 •17127 •32485 •32403 •32272 •15726 ■16357 •16952 •32260 •32179 •32049 ■15569 •16193 •16782 no 115 120 •32796 •32573 •32313 •18074 •18612 ■19112 •32556 •32335 •32078 •17880 •18413 ■18907 •32322 •32104 •31850 •17693 •18220 ■18708 ■32095 •31879 •31628 ■175" ■18033 •18516 ■31874 •31660 •31412 ■17335 •17851 •18329 125 130 135 •32020 •31699 •31353 •19572 •19991 •20369 •31789 •3I47I •3II29 •19362 •19776 •20149 •31564 •31249 ■30911 •19158 •19567 •19936 •31345 •31034 •30699 ■18960 •19365 ■19730 ■31132 •30824 ■30493 •18768 •19169 ■19530 140 145 15° •30986 •30600 •30199 •20707 •21002 •21256 •30766 ■30385 •29989. •20483 •20775 •21027 •30552 ■30176 ■29784 •20267 •20555 ■20805 ■30344 •29972 •29584 •20057 •20342 •20589 •30141 ■29773 •29389 ■19853 •20136 ■20380 IS5 160 165 •29789 •29370 •28946 •21471 •21644 •21777 •29583 •29169 •28750 •21238 •21410 •21542 •29383 •28973 ■28558 •21013 •21183 •21314 •29187 •28782 •28372 •20795 •20964 ■21093 ■28996 •28596 •28190 •20584 •20751 •20879 170 175 180 •28522 •28097 •27676 •2187I •21928 •21946 •28330 •27910 •27494 •21635 •21691 •21709 •28142 •27728 •27316 •21407 •21461 •21479 •27960 ■27550 •27143 •21185 •21239 •2x256 •27782 •27376 ■26973 •20970 •21023 •21040 (22) II )8 = 96 97 98 99 100 5" lO 15 X ~b z . ~b X b z T> X b z ~b X ~b z 1) X z ~b •08068 •13882 •17936 •00339 •01089 •01978 •08062 •13860 •17898 •00339 •01086 ■01972 •08057 ■13839 •17860 •00339 •01084 •01966 •08051 •13817 ■17823 ■00338 ■01081 ■01960 •08046 •13796 •17786 •00338 •01079 •01954 20 30 •20919 •23217 ■25042 •02912 •03860 ■04808 ■20867 •23154 •24970 ■02901 •03845 ■04788 ■20816 ■23092 •24899 •02891 •03830 ■04769 •20765 ■23031 •24829 ■02881 •03815 •04749 •20715 ■22970 ■24760 •02871 •03801 ■04730 35 40 45 •26522 •27733 •28731 •05748 •06676 •07589 •26443 ■27648 •28640 •05723 ■06647 •07555 •26364 •27564 •28551 •05699 ■06618 ■07522 •26287 •27481 •28463 •0567s ■06589 ■07489 ■26210 ■27398 ■28376 •05652 ■06561 ■07456 5° 55 60 "29553 •30225 •30769 •08483 •09358 •10211 •29458 •30127 •30668 ■ ^08445 •09315 ■10164 ■29364 ■30030 ■30568 •08407 •09273 ■10117 •29271 •29934 ■30469 •08370 ■09231 ■10071 •29180 ■29839 •30372 •08333 ■09190 ■10025 65 70 75 •31200 •31533 ■31778 •11039 •11842 •12618 ■31097 •31428 •31672 ■10988 ■11786 •12558 •3099s •31324 •31567 ■10937 ■11731 ■12499 ■30894 ■31222 •31463 ■10887 ■11677 ■12441 •30795 ■31121 ■31361 ■10837 •11623 ■12383 80 85 90 •31944 •32039 •32069 •13364 •14080 •14765 •31837' •3i93ii ■31961 ■13301 ■14012 •14694 •31731 •31825 •31855 ■13238 ■13946 ■14624 ■31626 ■31720 •31750 ■13176 ■13880 •14555 •31523 ■31616 ■31646 •13115 ■13816 ■14487 95 100 •32041 •31960 •31831 •15417 •16035 •16617 •319^3 •3185-3 •31724 •15342 •IS9S7 ■16536 ■31827 •31747 •31619 ■15269 ■15881 •16457 ■31722 •31642 •31515 ■15196 ■15805 ■16379 ■31618 •31539 ■31412 ■15125 ■15731 ■16302 no "5 120 •31658 •31447 ■31201 •17164 •17675 •18148 •31552 •31342 •31098 ■17080 •17589 ■18059 •31448 •31239 ■30996 ■16998 •17504 ■17972 •31345 •31137 •3089s ■16917 ■17420 •17886 •31243 ■31036 ■30795 ■16838 ■17338 •17801 125 130 135 •30924 •30620 •30292 •18582 •18979 •19337 •30822 •3°5i9 ■30193 ■18491 ■18886 •19242 ■30722 ■30420 ■30096 •18402 •1879s •19149 ■30622 •30322 ■30000 •18314 •18705 •19057 ■30524 ■30226 •29905 ■18227 ■18616 ■18966 140 145 150 •29944 •29579 •29200 •19656 •19936 •20177 •29847 •29484 -29107 ■19560 ■19838 ■20078 •29752 ■29390 ■29015 •19465 •19742 •19980 ■29657 ■29297 ■28924 •19371 •19647 •19884 ■29564 ■29206 •28835 •19279 •19554 •19790 ^55 160 i6s •28811 •28414 ■28013 •20380 •20545 ■20671 •28720 •28325 •27926 ■20280 ■20444 ■20569 •28630 •28237 •27840 •20182 •20344 •20469 ■28541 ■28150 •27755 •20085 •20246 •20371 •28453 ■28064 •27671 •19989 •20150 •20274 170 175 180 •27609 •27207 •26808 •20761 •20814 •20831 •27524 •27124 •26727 •20659 •20712 •20729 •27440 •27042 •26646 •20558 •2061 1 •20628 •27357 ■26961 ■26567 •20460 •20512 •20529 •27275 •26880 ■26489 •20362 •20414 •20431 (23) Ill V^b' 5" lO 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 no "5 125 130 140 145 15° 155 160 165 170 f7S 180 0-125 •00006 ■00072 •00360 •01 III •02646 •05314 •09480 •15485 •23618 ■34087 •47003 ■62360 •80038 •99803 1-21315 i'44iS3 i'67825 i^9i8i6 2^i559i 2'3864o 2-60497 2-80760 2-99113 3'i5332 3-29302 3'40994 3-50479 3-57908 3-63503 3-67521 3-70248 3-71978 3-72980 3-73493 3-73705 373756 0-25 -00005 -00072 -00358 •01106 -02621 -05243 -09312 '15135 •22962 ■32957 •45181 ■59592 •76038 •94263 i^i3934 1-34646 I '55955 1-77394 1-98508 2-18865 2-38085 2'55849 2^7I9I2 2'86lI2 2-98367 3-08677 3-17111 0-50 -00005 -00072 -00356 •01092 -02573 ■05107 •08994 •14487 •21768 •30934 •41986 •54826 •69275 •85068 1-01898 I-I9402 1-37220 1-54971 1-72306 I -8891 1 2-04507 2-18878 2-31860 2-43356 2-53321 2-61773 2-68767 3-23802 2-74404 3-28928 2-78818 3-32703 2-82159 3-35352 3-37109 3-38189 3-38785 3-39056 3-39122 2-84588 2-86270 2-87361 2-88oo2 2-88315 2-88398 075 -00005 -00072 ■00353 -01081 -02526 -04979 •08701 •13899 •20708 -29176 -39265 •50853 ■63748 •77703 •92431 1-07624 1-22968 1-38160 1-52920 I '66998 1 -80188 i"92326 2-03295 2^13024 2-21490 2-28707 2-34728 2-39631 2-43519 2-46508 2-48725 2-50294 2-5I34I 2-51973 2-52292 2-52382 i-o ■00005 -00071 •00351 ■01067 •02480 •04858 •08428 •13363 •19758 •27630 ■36914 •47477 •59129 •71637 •84743 -98177 I-II672 I'24972 1-37848 1-50099 1-61557 1-72095 i'8i623 1-90089 1-97477 2-03803 2-09108 2-13460 2-16942 2-19648 2-21679 2-23139 2^24I26 2-2473S 2^25048 2-25138 1-5 •00005 •00071 •00346 •01042 •02397 ■04636 •07938 -12419 -I8I25 •25027 •33040 •42022 -51800 •62172 •72928 •83855 •94751 1 -05425 1-15712 1-25468 1 '34579 1^42955 1-50539 1-57296 1-63217 I -683 1 8 1-72630 1 '76201 1-79091 1-81367 1-83704 1-84373 1-85250 1-85802 1-86092 1-86178 2-0 •00005 •00070 •00341 -01019 -02320 -04435 •07507 •11613 -16764 •22913 -29964 •37781 ■46209 •55075 -64202 •73420 -82566 '91493 1-00072 1-08195 i^i5773 2-5 -00005 -00070 •00337 ■00997 -02247 •04253 -07125 -10914 -15611 •2115s •27451 •34372 ■41779 •49521 •57450 •65423 •73307 -80982 -88344 •95306 I "01800 1-22743 1-07773 1-29059 I-I3193 i'347oo 1-18041 i'39659 1-43948 1-47593 1-50631 1-53108 1-55076 1-56591 1-57712 1-58495 1-58994 1-59261 1-59340 1-22314 1-26021 1-29183 I -3 1831 1-34001 1-35736 1-37081 1-38083 1-38789 1-39244 1-39488 1-39562 3-0 -00005 -00070 •00333 •00976 •02180 -04087 ■06784 -10302 -14618 -19666 •25353 •31562 •38168 •45039 •52048 •59072 -66000 -72730 •79178 •85272 •90954 •96183 1^00932 1^05185 1^0894 1 ^•12209 1^15003 1^17352 1^19284 f2o837 1^2 2046 1-22953 1*23595 1-24011 1-24237 1-24305 4-0 •00005 -00069 -00324 -00937 •02058 •°3794 •06199 •09277 •12990 •17272 -22036 -27183 -32612 •38218 •43903 •49573 •55144 •60544 •65707 •70582 75128 •79314 •83121 •86538 •89565 '92207 •94478 ■96396 •97983 ■99266 1-00274 1-01035 1-01580 i'oi935 1-02129 1-02188 (24) Ill V^b' 4> 5 6 7 8 10 12 14 16 20 24 5" lO IS ■00005 ■00068 •00317 •00004 •00067 •00309 ■00004 •00066 •00302 •00004 ■00066 ■00296 •00004 ■00064 •00283 •00004 •00063 •00272 •00004 ■00062 •00262 ■00004 •00060 •00252 ■00004 ■00058 •00235 •00004 •00057 •00221 20 25 33 •00901 •01950 ■03543 •OD868 •01854 •03326 •00838 •01767 ■03136 •ooSio •oi68g ■02968 •00760 ■01553 •02683 •00716 ■01439 •02451 •00677 ■01341 ■02257 ■00643 •01257 •02093 •00584 •01117 •01828 •00535 •01006 •01624 35 40 45 •05713 •08449 •11707 •05303 •07764 •10665 ■04951 ■07187 ■09801 •04645 •06694 •09071 ■04139 •05892 •07902 •03736 •05266 •07006 •03407 ■04763 ■06294 ■03132 ■04349 ■05715 •02699 •03706 ■04827 •02372 •03229 •04177 50 55 60 •15422 •19519 •23912 ■13945 •17536 •21364 ■12736 ■15930 ■19319 •11725 •I4S99 ■17637 •10126 ■12517 •15030 •08917 •10960 •13097 ■07967 •09747 ■11604 •07200 •08776 •10414 •06037 •07314 •08635 ■05195 •06264 •07367 65 ■ 7° 75 . ■28515 •33245 •38020 ■25356 •29442 ■33556 ■22840 ■26433 ■30041 •20784 ■23988 •27198 •17620 •20246 •22871 •15292 ■17513 •19727 •13505 •15424 •17335 •12088 •13775 •15452 •09981 •I 1334 ■12676 •08488 •09613 •10727 ■ So 85 90 •42769 ■47424 •51926 ■3763s •41627 ■45485 •33614 ■37105 •40474 ■30373 ■33471 ■36460 •25460 •27984 •30416 •21908 •24030 •26074 •19214 •21042 •22801 •17100 ■18702- •20243 •13993 •15272 •16502 •11819 •12878 •13897 95 100 i°S •56227 •60286 ■64072 •49166 •52640 •55880 •43689 •46722 •49551 •39310 •41998 ■44507 ■32733 ■34919 ■36959 •28022 •29859 •31574 •24477 •26057 •27533 •21710 •23095 •24388 •17672 •18777 ■19809 ■14867 ■15782 ■16637 no "5 120 •67560 •70736 •73592 •58867 •61589 •64041 ■52161. •54541 •56686 ■46822 •48935 •50841 •38844 •40565 •42 12 1 •33159 •34608 ■35919 •28898 •30147 •31277 •25584 •26679 •27672 •20764 •21640 •22435 ■17429 ■18155 ■18815 125 130 13s •76126 •78345 •80258 •66220 •68131 •69783 •58596 •60274 ■61727 •52540 •54034 •55330 •43510 •44734 •45799 •37091 •38126 •39028 •32289 ■33184 •33965 •28561 •29348 ■30036 •23147 •23780 •24333 ■19408 •19934 ■20395 140 145 150 •81879 •83227 •84321 ■71187 •72357 733" •62965 •63999 •64845 •56436 •57363 •58121 •46710 ■47475 •48104 •39801 •40452 •40989 •34636 •35202 •35669 ■30627 ■31127 ■31540 •24810 •25214 •25549 ■20794 ■21131 •21412 155 160 165 ■85185 •85841 •86313 •74067 74643 75059 ■65516 •66030 ■66402 •58726 ■59189 •59526 •48607 •48994 •49277 •41419 •41751 •41994 ■36044 •36335 •36548 •31873 •32131 •32320 •25819 •26029 •26184 •21639 ■2i8i6 •21947 170 175 180 •86623 •86792 •86846 75334 75487 75534 •66649 •66786 •66829 •59750 •59875 •59913 •49466 ■49571 •49604 •42157 •42249 •42277 •36691 •36772 •36798 •32448 •32520 •32543 •26289 •26348 •26367 ■22036 ■22086 ■22102 8. (25) 14 Ill V-^¥ 4> 28 32 40 48 56 64 72 80 88 96 100 5° lO IS •000042 •000539 •002077 •000041 •000520 •001964 •000040 •000488 •001773 •000040 •000459 •001617 •000039 •000434 •001487 •000038 •000412 •001381 •000037 •000392 •001283 •000036 •000374 •001201 •000036 •000358 •001129 •000035 ■000343 •001066 •000035 •000336 •001037 20 30 •004943 •009159 •014616 •004596 •008408 •013290 •004032 •007227 •011249 •003596 •006339 •009750 •003245 •005646 •008600 •002958 •005089 ■007689 •002717 ■004631 •006950 •002513 •004248 •006337 •002338 •003922 •005821 •002185 •003642 •005381 •002115 •003516 •005184 35 40 45 •021157 •028608 •036796 •019095 •025671 •032866 •015974 •021279 •027045 •OI372I •018149 •022938 •012015 •015803 ■019884 •010678 •013980 ■017525 •009602 •012522 •015648 •008717 •011329 •014121 •007977 •010337 •012854 •007348 •009497 •011786 •007068 •009124 •011312 5° 55 60 •°45555 ■054728 •064170 •040538 ■048551 •056782 •033162 •039525 •646042 •027999 •033249 •038614 •024184 ■02863s •033175 •021252 •025103 •029025 •018929 •022314 •025756 •017045 •020057 •023117 •015486 •018194 •020944 •014175 •016632 •019125 ■013596 •015942 •01S322 65 70 75 •073745 ■083334 •092824 •065118 ■073454 •081698 •052625 ■059198 •065689 •044024 •049418 ■054739 •037747 ■042300 •046790 •032970 •036896 •040764 •029216 •032657 •036045 •026191 •029247 •032254 •023705 •026446 •029144 •021625 •024107 •026550 •020708 •023077 •025408 80 85 93 •I02I2t •IIII36 •II9798 •089768 •097592 •105107 •072037 ■078187 •084093 •059940 •064976 •069812 •05 1 1 75 ■055419 •059495 •044541 •048196 •051705 ■039353 •042553 •045624 •035189 •038028 •040752 •031776 •034322 •036765 •028931 •031235 •033446 •027680 •029878 •031987 95 130 i°5 •128345 •135827 •I43IO3 •112261 •119012 •125327 •089715 •095022 •099987 ■074415 •078761 •082828 •063374 •067037 •070466 ■055045 •058199 •061153 •048548 •051310 •053897 ■043347 •045796 •048091 •039090 •041288 ■043347 •035550 •037538 •039401 •033994 ■035891 •037669 no 115 120 •149845 •156033 •161657 •I3I180 •136556 •141444 •104593 •108826 •112680 •086602 •090074 •093237 •073650 ■076579 •079249 •063895 •066421 ■068724 •056299 ■058512 ■060531 •050224 •052189 •053982 •045261 •047024 •048634 •041 134 •042730 •044188 •039321 •040845 •042237 125 130 135 •166714 •17I208 •I75152 •145842 •149755 •153191 •I16151 •119243 •121963 •096088 •098631 •100871 •081659 •083810 •085706 ■070804 •072661 •074300 •062356 •063986 ■065425 ■055603 •057052 •058332 •050089 ■051391 •052542 •045507 •046687 •047730 ■043495 •044622 •045619 140 145 150 •178562 •181459 •183870 •156166 •158697 •160806 •124322 •126332 •I280IO •102814 •104474 •105862 •087353 •088761 •089939 •075725 •076943 •077965 •066677 ■067749 •068648 •059447 •060402 •061203 •053545 •054404 •055125 •048640 •049420 ■050075 •046487 •047232 •047858 155 160 i6s •185823 •187349 •188479 •162515 •163853 •164845 •129374 •130443 •I31238 •I0699I •107878 •108538 •090899 ■091655 •092218 •078798 ■079453 ■079943 •069382 •069960 •070392 •061857 •062374 •062760 •055715 •056180 •056529 •050611 •051034 ■051351 •048371 •048775 •049077 170 175 180 •189246 •189682 •189820 •165519 •165904 '166027 •131779 •132088 •132186 •108989 •109247 •109329 •092603 •092823 •092894 •080278 •080470 •080532 •070688 •070858 •070913 •063024 •063177 •063225 •056768 •056906 •056950 •051569 •051694 •051734 •049287 •049407 ■049445 (26) IV ^=-o- I y8=-0-2 s h o-i •^ X 'b z V b^ s 'b 1-6 i> X b z b V b' / „ 5 ■ 43 • 44 •099834 •004996 O^OOOI 86. 18. 10 1-034980 1-017458 2-2189 0-2 11 . 27 . 12 T98670 •019929 0^0012 i"7 91. 0.56 1 -037303 1-117403 2-5565 o"3 17 . 10 . 10 •295526 •044639 ©■0062 1-8 95 •36. 45' 1-031506 1-217208 2-8924 0-4 22 . 52 . 22 ■389443 •078864 0^0190 1-9 100. 5. 9 1-017835 1-316243 3-2195 o'S 28.33.33 ■479501 •122239 0-0451 2-0 104. 25.35 -996592 1-413937 3-5312 0-6 34- 13- 29 •564827 •174310 0-0901 2-1 108. 37. 25 -968134 1-509779 3-8221 0-7 39 -51 -57 •644608 •234533 o'i597 2-2 112 . 39. 46 -932865 1-603330 4-0881 ^=-o- 0-8 0-9 45- 28.42 SI- 3-32 •718100 ■784634 •302289 ■376891 0-2589 0^3917 3 / II o-i 5 • 43 - 39 -099834 ■004995 o-oooi I'O 56.36. 16 •843623 •457591 0-5602 0-2 II . 26 . 31 •198672 •019919 O^OOI2« I'l 62 . 6. 41 •894566 •543597 0-7648 0^3 17- 7-52 •295538 ■044590 0^0062 I'2 67 ■34- 37 •937052 •634081 i^oo37 0-4 22.46. 55 •389493 ■078713 ©■0190 I '3 72. 59-52 •970764 •728188 ^•2733 0-5 28 . 22 . 56. ■479651 ■121883 0-0449 I "4 78 . 22 , 17 ■995474 •825049 ^•5679 0-6 33-55-15 -565192 ■173602 0-0896 I'S 83. 41 .41 I-OII047 •923792 i-88o6 0-7 39-23- 9 ■645381 ■233286 0-1587 1-6 88.57-53 1-017438 I-023S53 2^2035 0-8 44 • 46 . I -719570 ■300283 0-2572 i"7 94. 10 . 41 1-014689 1-123480 2^528l 0-9 50. 3-14 -787210 ■373889 0-3889 1-8 99- 19- 51 1-002922 1-222752 2-8459 i-o 55-14- 13 •847851 -453361 0-5562 I '9 104. 25 . 8 •982342 1-320578 3-1492 i-i 60 . 18 . 27 •90II48 -537936 0-7599 2'0 109 . 26 . 10 ■953225 1-416211 3-4311 1-2 1-3 65-15-25 70. 4-37 ■94685s •984825 -626844 •719323 0-9988 1-2703 ^=-o- 2 1^4 74-45- 38 1^015003 -814631 I -5 70 1 1-5 1-6 79-17- 59 83.41. 13 1^037420 ro52i87 -912059 1-010938 1^8929 2-2324 , // O'l 5-43-41 •099S34 •004995 o-oooi 1-7 87-54-55 1-059484 1-110649 2^5820 0-2 11 . 26 . 52 •198671 •019924 0-0012 1-8 91-58-33 ^■059554 1-210628 2-9350 0"3 17 • 9. I ■295532 •044615 0-0062 1-9 95-51-35 1-052696 1-310373 3-2849 o'4 22 .49. 38 •389468 ■078788 0-0190 2'0 99-33- 25 1-039258 I -409449 3-6258 0-5 28. 28. 14 ■479576 •122061 0-0450 2-1 103. 3.18 1^019627 1-507487 3*9526 0-6 34. 4.21 -565010 ■173956 0-0898 2-2 106 . 20 . 22 •994228 I '604194 4'26o9 0-7 39-37-31 ■644996 ■233909 0-1592 2 '3 109. 23. 30 ■963519 1-699349 4-5477 0-8 45 - 7-18 •718838 ■301286 0-2581 2-4 112 . II . 20 •927992 1^792815 4-8106 0-9 50 - 33 • 18 •785928 ■375390 0-3903 2^5 114.42. 7 •888167 1-884534 5-0484 I'O 55-55. 5 ■845749 •455478 0-5583 2-6 116.53.35 •844606 1-974541 5-2609 IT 61 . 12 . 19 •897879 •540775 0-7624 27 118 . 42 . 49 ■797913 2-062965 5^4484 1-2 66. 24. 39 •941991 •630481 1-0014 2-8 120. 5.59 •748753 2-150045 5-6122 1-3 71-31-43 ■977853 •723794 1-2720 2-9 120. 58 . 6 ■697878 2-236135 5-7538 1-4 76.33- 13 1-005325 ■819913 ^■5694 3-0 121 . 12 . 37 •646154 2-321719 5-8753 I'S 81. 28. 48 1^024357 ■918054 1-8874 3^1 120.41. 5 -594624 2-407419 5-9790 (27) 14—2 IV ^=-0 4 ^=-0-4 1) o-i 0'2 0-3 <^ z 1> V s b ^ X b z I V b' / II 5 • 43 ■ 36 II . 26. II 17. 6.42 ■099834 •198673 ■295544 •004995 •OI99I4 •044566 o-oooi 0-00I2 0-0062 4-0 4-1 4-2 / // 79. 26.59 75- 9-20 71- 4- 3 •690340 712338 •741417 3^344917 3-442443 3-538100 8-1825 8^333o 8-4915 o"4 0-6 22 . 44 . II 28. 17 . 39 33 . 46 . 10 •389518 •479725 •565374 •078638 •I2I706 •173249 0-0190 0-0448 0-0894 4^3 4^4 4-5 67- 15- 11 63 • 44 - 45 60.33. 6 •777026 •818532 ■865284 3-631525 3722488 3-810872 8-6604 88422 9-0388 07 0-8 0-9 39- 8.51 44 . 24 . 50 49.33. 22 -645764 720297 788479 ■232663 •299280 •372386 0-1583 0-2563 0-3875 4-6 4-7 4-8 57-39- 26 55. 2.16 52-39-43 •916662 ■972104 1-031116 3-896652 3-979865 4-060587 9-2525 9-4855 97398 IT I '2 54- 33-40 59- 25- 3 64. 6.54 •849929 •904373 •951646 •451238 •535082 •623I7I 0-5542 0-7573 0-9961 4-9 S^o 5-1' 50. 29.49 48 . 30 . 40 46 . 40 . 30 1-093278 1-158232 1-225683 4-138912 4-214938 4-288758 10-0173 10-3198 10-6492 1-3 1-4 1-5 68 . 38 . 35 72.59-31 77- 9- 12 •991680 1^024505 1-050232 714779 •809212 •905824 1-2682 1-5701 1-8972 5^2 5^3 5^4 44-57-42 43-20.53 41.48.51 1-295386 1-367139 I •44077 5 4-360458 4-430106 4-497760 11-0070 "•3947 11-8135 1-6 17 1-8 81. 7. 3 84- 52-34 88.25. II 1-069048 I -081 208 i;o87023 1-004017 1^103257 1-203072 2*2440 2-6047 2-9736 5^5 5-6 5-7 40. 20 . 32 38-55- 4 37- 31-43 1-516160 1-593180 1-671741 4-563461 4-627237 4689105 12-2646 12-7487 13-2666 1-9 2'0 2T 91.44. 19 94-49- 23 97-39-38 1-086851 I -081094 1-070186 1^303058 1-402880 1-502273 3-3450 3-7138 4-0754 5-8 5-9 6-0 36- 9- 51 34.48.58 33-28.38 1751766 I -833186 1-915945 4-749069 4-807122 4-863251 13-8185 14-4043 15-0239 2-2 2-3 2-4 100 . 14 . 19 102.32. 31 104.33. 12 1 •054592 1-034805 1-011338 I-60I04I 1-699057 1-796259 4-4259 47622 5-0820 6-1 6-2 6-3 32. 8.32 30. 48 . 22 29.27.57 1-999991 2-085277 2-171758 4^917435 4-969645 5-019850 15-6763 16-3605 17-0749 2-5 2-6 27 106.15. 9 107.36. 58 108.37. 4 •984733 •955558 •924411 I-89265I 1-988298 2-083323 5^3838 5-6668 5-9306 6-4 6-5 6-6 28. 7. 8 26.45.48 25 -23 -53 2-259392 2-348138 2-437953 5-068014 5-114098 5-158062 17-8175 18-5857 i9'376s 2-8 2-9 3-0 109. 13. 38 109. 24.39 109. 7.59 •891926 •858782 •825711 2^177899 2-272246 2-366619 6-1757 6-4029 6-6132 67 6-8 6-9 24. I . 22 22.38. 14 21 . 14. 32 2^528793 2-620615 2-713369 5^199865 5-239468 5-276832 20-1862 21-0x07 21-8454 3'i 3-2 3 '3 108. 21 . 30 107- z.-i-z 105 . II . 40 793504 •763016 •735167 2-461290 2^556527 2-652566 6-8081 6-9893 7-1585 7-0 7-1 7-2 19. 50. 19 18 . 25 . 40 17. 0.39 2-807009 2-901483 2-996736 5^3ii9i9 5^344696 5"375i3i 22-6848 23-5235 24-3548 3-4 3-5 3-6 102. 46 . 17 99-47-57 96. ig . 25 •710926 •691284 •677195 2-749576 2-847616 2-946603 7-3177 7-4689 7-6143 7-3 7-4 7-5 15 -35 -25 14 . 10 . 4 12.44.45 3-092714 3-189358 3-286610 5 '403 1 98 5^428875 5^452i45 25^1718 25^9673 267334 37 3-8 3-9 92-25-33 88. 13. 18 83 • 50 - 54 •669515 •668915 •675814 3-046290 3-146265 3-246002 77561 7-8965 8-0379 7-6 77 7-8 II. 19.37 9-54-49 8.30. 32 3-384410 3-482694 3^581403 5^472997 5-491426 5^507431 27'462o 28-1440 28-7710' (28) IV /S=-o 4 /8=-o-5 s ~b 7-9 8-0 8-1 «/» X b z ~b V b' b X z b V b' 1 /; 7- 6.SS S-44. 9 4 . 22 . 26 3-680473 3779842 3-879451 5-52I02I 5-532210 5-541018 29-3334 29-8220 30-2273 3-1 3-2 33 / « 96. 25.4s 94 • so . 48 92.54.51 •991863 •981987 •975171 2-485650 2-585158 2-684920 7-7054 8-0097 8-3097 8-2 8-3 8-4 3. I. 55 1 . 42 . 47 0.25. 14 1 3-979240 4'079i53 4-179133 5-547473 5-551609 S'5S3466 30-5400 30-7505 30-8494 3-4 3-5 3-6 3-7 3-8 3-9 4-0 4-1 4-2 90.39. 17 88. 5. 59 85.17.18 82.15.54 79. 4.42 75.46.36 72 . 24 . 22 69 . . 26 65.36.52 •972012 .•973058 -978790 •989603 1-005790 1-027542 1-054942 1-087976 1-126547 2-784864 2-884851 2-984676 3-084078 3-182747 3-280338 3-376496 3-470867 3-563113 8-6071 8-9040 9-2024 9-5046 9-8129 10-1296 10-4567- 10-7968 11-1518 /3=-o- 5 o-i 0'2 o"3 / « 5 ■ 43 • 34 11.25.50 17- 5-33 •099834 •198673 -295550 ■004994 •019909 •044541 0-0001 0-0012 0-0062 0-4 0-6 22 . 41 . 28 28 . 12 . 22 33 •37- 7 -389543 •479799 -565554 •078562 -121528 •172896 0-0189 0-0448 0-0892 4-3 4-4 4-5 62. 15. 13 58.56.37 55-41-49 1-170487 1-219580 I-273S7S 3-652926 3-740030 3-824184 11-5237 11-9141 12-3247 . 07 0-8 0-9 38.54.3s 44 . 3 . 46 49 • 3 . 40 •646144 •721016 789734 •232041 •298278 •370883 0-1578 0-2555 0-3860 4-6 4-7 4-8 52 . 31 . II 49.24. 52 46 . 22 . 47 1-332202 1-395179 1-462225 3-905180 3-982842 4-057021 12-7563 13-2097 13-6851 i-o 1-2 53-53. 24 58.32. 8 62 . 59. 6 •851981 -9°7553 •956362 •449110 •532214 •619464 0-5521 0-7546 0-9931 4-9 5-0 5-1 43 • 24 • 47 40. 30. 37 37.40. 1-533062 1-607419 1-685034 4-127589 4-194438 4-257477 14^1820 14-6996 15-2360 I '3 I '4 1-5 67.13.35 71. 14.54 75- 2.27 •998419 1-033831 1-062789 •710165 •803663 •899359 1-2657 1-5693 1-9002 5-2 5-3 5-4 34. 52.41 32. 8.24 29 . 26 . 59 1-765652 1-849028 1-934924 4-316628 4-371823 4-423010 15-7887 16-3548 16-9301 1-6 1-7 1-8 78.35-37 81.53.51 84.56.35 i-°85SS7 IT0246l 1-113880 •996716 1-095263 1-194597 2-2534 2-6243 3-0079 5-5 5-6 57 26. 48 . 14 24. 12. 5 21 . 38. 26 2-023109 2-113361 2-205460 4-470142 4-513188 4-552125 17-5097 18-0878 18-6577 1-9 2*0 2-1 87 . 43 • 14 90. 13.15 92 . 26. I^I20238 I-I21993 1-11963S 1-294385 1-394362 1-494328 3-3993 3-7944 4-1891 5-8 5-9 6-0 19. 7.18 16.38. 43 14. 12.45 2-299194 2-394357 2-490747 4-586943 4-617643 4-644239 19-2121 19-7428 20-2408 2 "2 2-3 2-4 94 . 20 . 53 95 -57 -16 97.14.27 1-113677 1-104653 1-093117 1-594145 1-693734 1-793064 4-5803 4-9654 5-3423 6-1 6-2 6-3 11 .49.31 9. 29. 9 7. 11.50 2-588172 2-686442 2-785378 4-666758 4-685240 4-699739 20-6966 21-0999 ' 21-4403 2*5 2-6 27 98.11-45 98.48.31 99. 4. 6 1-079638 1-064803 1-049215 1-892151 1-991044 2-089821 S-7098 6-0671 6-4138 6-4 6-5 6-6 4.57-44 2.47. 6 0.40. 7 2-884810 2-984576 3-084526 4-710322 4-717068 4-720072 21-7070 21-8890 21-9753 2-8 2-9 3-0 98.57.55 98 . 29 . 34 97.38.49 1-033490 1-018260 1-004169 2-188577 2^287410 2^3864i2 67503 7-0770 7-3949 (29) IV /3=-o-t 5 ^=-o- 5 s I O'l 0'2 0-3 <^ . X 1 ~b V b^ s ~b X 1 z V s b <^ X 1 z ~b V b' 1-9 2-0 2'I / « 79- 59- 13 8i . 24. 2 82 . 27 . 40 1-184483 I '2006 33 i'2i45S9 1-273339 1-372028 1-471044 3-4S91 3-9302 4-3839 0-5 0-6 0-7 / // 27-56- 36 33.10. 6 38. 12. 9 •480020 •566091 •647270 •120996 -171838 •230177 0-0445 o-o886 0-1564 2 '2 2-3 2-4 83- 9-55 83.33.43 83-29. 56 1-227048 i'238597 I '24985 7 1-570264 1-669595 1-768959 4-8486 s-3229 5-8062 0-8 0-9 i-o 43- I - 10 47- 35-42 51. 54.28 •723141 -793427 •857992 •295275 -366371 -442704 0-2528 0-3817 0-5456 2-5 2-6 2 7 83- 7-54 82 . 24 . 51 81.21. 18 1-261446 i-273;76 1-288044 r868285 1-967496 2-066500 6-2981 6-7989 7-3092 i-i 1-2 1-3 55-56- IS 59.40. I 63- 4-48 -916833 -970070 1-017931 •523534 -608165 ■695950 0-7460 0-9830 1-2558 2-8 2-9 3'o 79-S7-5S 78.15-33 76 . 15 . i6 1-304227 1-323071 I ■345-^87 2-16518D 2-263385 2-360926 7-8299 83621 8-9072 1-4 1-5 1-6 66. 9.48 68.54. 17 71 .17. 38 I 060741 1-098904 1-132892 -786310 ■878731 -972771 1-5628 1-9317 2-2698 3'i 3-2 3-3 73-58. 17 71 -25 -57 68.39. 44 i"373739 1-4J0437 i'434528 2-457573 2-553352 2-647052 9-4668 10-0424 10-6354 1-7 1-8 1-9 73. 19. 20 74.58.56 76.16. 8 1-163229 1-190485 1-215257 1-068052 1-164263 1-261144 2-6646 3-0834 3-5240 3-4 3-S 3-6 65.41. 9 62. 31 .43 59- 12.57 1-473291 1-516933 1-565583 2-739221 2-829181 2-916533 11-2471 11-8785 12-5300 2-0 2-1 2-2 77 .10.42 77- 42.33 77.51.42 1-238168 1-259854 1-280958 1-358482 1-456102 1-553850 3-9842 4-4628 4-9584 37 3-8 3 '9 55-46- 19 52-13- ic 48.34.47 1-619300 1-678J63 1-741787 3-000863 3-081756 3-158801 13-2014 13-8917 14-5989 2-3 2-4 2-5 77.38.18 77- 2.43 76. 5.24 1-302122 1-323983 1-347162 1-651585 1-749165 1-846441 5-4705 5-9990 6-5440 4-0 4T 4'2 44- 52- 21 41. 6.37 37- 19-35 I -8103 1 7 1-883442 1-960897 3231603 3-299787 3-363010 ^5-3198 160499 16-7832 2-6 2-7 2-8 74.47- 3 73. 8.29 71. 10. 44 1-372258 1-399837 1-430428 1-943239 2-039357 2-134558 7-1061 7-6860 8-2848 4-3 4 '4 4-5 33-31- II 29 .42.37 25.54.42 2-042370 2-1275x4 2-215948 3-420962 3-473372 3-520017 17-5121 18-2272 189177 2-9 3-0 3-1 68.54-57 66 . 22 . 26 63-34-37 I -4645 1 1 1-502507 I -5447 7 1 2-228563 2-321055 2-411673 8-9032 9-5424 10-2030 4-6 47 4-8 22. 8.15 18.24. 3 14.42.50 2-307271 2-401064 2-496903 3-560719 3-595350 3-623835 19-5710 20-1732 20-7092 3-2 3-3 3-4 60. 32. 56 57.18.56 53-54- 8 1-591588 I -643 1 62 1-699618 2-500024 2-585683 2-668205 10-8852 11-5887 12-3125 4-9 5-0 5-2 II . 5.21 7.32. 22 4- 4-35 0. 42.43 2-594364 2-693032 2-792505 2-892404 3-646149 3-662320 3-672424 3-676587 21-1627 21-5169 217550 21-8597 3-5 3-6 3-7 3-8 3-9 4-0 50.20. 3 46 . 38 9 42.49. 51 38 .56.32 34- 59-31 31- °- 3 1-763995 1-827252 1-898268 1-973848 2-053726 2-137577 2-747133 2-822009 2-892387 2-957839 3-017968 3^072419 13-0544 13-8110 14-5777 15-3478 16-1133 16-8638 ^=-o- s 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 26. 59. 23 22 . 58. 42 18.59. 7 15- 1-47 II. 7.47 7 . 18 . II + 3-34.. -0- 3-43 2-225024 2-315649 2-409001 2 -5046 1 1 2-602000 2-700692 2-800226 2-900164 3-120885 3-163111 3-198907 3-228145 3-250762 3-266764 3-276219 3-279260 17-5876 18-2706 18-8974 19-4510 19-9134 20-2659 20-4897 20-5664 O'l C3'2 0-3 0-4 / // 5.43-26 II . 24. 48 17 . 2. 6 22. 33. 20 •099834 ■198676 ■295568 ■389617 •004993 ■019894 ■044468 ■078337 0-000 1 0-0012 0-0061 0-0189 (3 1)- IV /8=-o- 9 ^=-o- 9 s b o'3 •^ X b 2 1 V s 1? <^ X b z b V / // 5 •43- 23 II . 24 . 28 I7.r 0-57 •099834 •198677 ■295574 •004993 •019889 •044443 o-oooi 0-0012 0-0061 4-0 4-1 4-2 1 II 18. 27 . 46 14 . 20 . 42 10 . 16 . 45 2-415467 2-511378 2-609059 2-878636 2-906865 2-928175 17-3722 17-9095 18-3474 0-4 °"S 0-6 07 0-8 o-g i-o i-i I '2 22.30.37 27.51.22 33- I- 9 37- S8- 7 42. 43.30 47- 6.45 51- 15-25 55- 5-14 58.35- 4 •385641 •48J093 •566268 •647641 723837 •794632 ■859947 •919839 ■974493 •078262 •120820 •171487 •229558 •294276 •364867 •440562 •520619 •604344 0-0189 0-0444 0-0884 OT559 0-2519 0-3802 0-5433 0-7429 0-9792 4-3 4-4 4-5 6. 17. 17 + 2. 23. 38 -I. 22. 57 2-707998 2-807693 2-907671 2-942567 2-950II9 2-950983 18-6660 18-8455 18-8667 /S=-i- D O-I 0-2 0-3 / // 5-43-21 11.24. 7 16 . 59 . 48 •099834 •198677 :29558o •004993 •019884 •044419 o-oooi 0-0012 0-0061 1-3 I "4 I -5 61.43- 57 64.31. I 66.55-34 1-024202 ^■069354 1-110418 •691099 ■780314 •871486 1-2518 1-5592 1-8997 0-4 0-5 0-6 22.27. 56 27.46. 8 32. 52. 14 •389666 ■480167 •566444 •078187 •120643 •171136 0-0188 -0444 0-0881 1-6 17 1-8 68.57. 2 70- 34-56 71.48.57 i'i47924 1-182454 1^214627 •964180 1-058026 1-152707 2-2712 2-6717 3-0992 07 0-8 0-9 37-44- 8 42. 19. 57 46.37. 59 •648009 ■724528 -795826 •228939 •293277 •363362 0-IS55 0-2510 0-3786 1-9 2-0 2'I 72-38.55 73- 4-45 73- 6.35 1^245087 1^274495 1-303519 1-247954 1-343532 1-439227 3-5519 4-0285 4-5280 1-0 I-I 1-2 50.36.41 54. 14. 42 57.30. 50 ■861878 •922803 •978844 •438416 •517693 •600498 0-5411 0-7397 0-9753 2'2 2 '3 2-4 72.44.41 71-59- 28 70-51-35 I '332823 1-363060 I '394863 1-534837 1-630155 1-724962 5-0499 5-5939 6-i6o2 1-3 1-4 I -5 60. 24. 7 62. 53.40 64. 58.50 1-030357 ro7779o 1-121669 -686196 •774222 •864075 1-2473 1-5549 1-8965 2 '5 2-6 27 69. 21 . 48 67-31- 7 65-20. 39 1-428832 i'46553o i'5^5470 i'8i90i2 1-912031 2-003702 6-7490 7-3608 7-9960 1-6 1-7 1-8 66.39. S 67.54. 2 68.43.31 1-162579 1^201151 ^■238047 •955320 1-047579 1-140523 2-2707 2-6757 3-1101 2-8 2-9 3-0. 62. 51.43 60- 5-43 57- 4- 10 1-549103 1-596812 1-648903 2-093672 2-181546 2-266894 8-6551 9-3378 10-0435 1-9 2-0 2-1 69 . 7 . 29 69. 6. 5 68.39.39 1-273948 1-309543 1-345517 i^233856 1-327337 1-420612 3-5727 4-0627 4-5792 3-1 32 3-3 53 -48-38 50 . 20 . 46 46 . 42 . II 1-705596 1-767023 1-833223 2-349254 2-428145 2-503072 10-7710 "-5177 12-2799 2-2 2-3 2-4 67 . 48. 42 66.33. 56 64. 56 . 16 1-382541 I^42I258 1*462276 1-513505 1-605704 1-696900 5-1221 5-6913 6-2866 3-4 ■ 3-5 3-6 42 - 54 - 33 38. 59- 30 34-58-36 1-904146 1-979648 2^059505 2-573544 2-639084 2-699241 13-0525 13-8283 14-5985 2-5 2-6 27 62. 56.48 60 . 36 . 47 57-57.39 ^■5o6i55 1-553395 I •604426 1786753 1-874884 1-960873 6-9082 7-5559 8^2290 37 3-8 3-9 30-53- 28 26.45-37 22.36.33 2-143412 2^231000 2^321842 2-753603 2-801812 2-843566 15-3521 16-0759 16-7548 2-8 2-9 3-0 55- o-'s8 51. 48. 32 48. 21. 36 1-659597 1-719167 1783300 2^044263 2*124568 a^2oi27S 8^9264 9^646o 10-3846 (32) IV /3=-ro ;8=-I- 5 s h 3'i •^ X 'b z ~b V X I z b V b' / // 44.42. 27 1-852061 2-273859 II-I37S 2-5 1 II 35-22. 7 1-823965 1-577109 6-9703 3-2 40 . 52 . 45 1-925412 2-341800 11-8983 2-6 31-20. 34 1-907458 1^632107 7-5711 3 '3 36.54. 21 2-003218 2-404588 12-6589 27 27. 7.29 I -994690 1-680955 8-1546 3'4 32.49. 5 2-085245 2-461748 13-4086 2^8 22.45-55 2-085332 1-723135 8-7054 3-5 28.38.47 2-171177 2-512848 14-1350 2-9 18.18.55 2'i78948 1-758221 9-2057 3-6 24. 25 .16 2-260622 2-557515 14-8233 3-0 13-49-35 2-275015 1-785899 9-6361 37 20 . 10 . ig 2-353123 2-595448 15-4566 3-1 9. 20. 58 2-372953 1-805975 9-9758 3-8 IS -55 -.42 2-448181 2-626423 i6'oi66 32 4-56- 3 2-472154 1^818392 10-2038 3"9 4-0 II •43- 7 7.34. 16 2-545264 2-643831 2^650304 2-667043 16-4834 16-8364 3-3 0-37-44 2-572013 1^823224 10-2994 B= -2-0 41 4"2 3 . 30 . 46 -0. 25.49 2743344 2843289 2-676683 2-679353 17-0552 / // o-i 0-2 5-42. 55 11 . 20 . 42 •099834 •198685 •004990 •019835 0-0001 0-0012 y8=-i- 5. 0-3 0-4 16. 48. 22 22 . 1 . 6 •295639 •389907 •044176 •077440 o-oo6i 0-0186 / It O'l S-43- 8 -099834 •00499 1 O'OOOI 0-5 26. 54. 28 •480881 •118885 0-0436 0'2 II . 22 . 25 •198681 •019860 0'0012 0-6 31.24.23 -568158 •167646 o-o86o o'3 16.54. 4 ■295609 •044298 o-oo6i 0-7 35-27-18 •651557 •222786 0-1508 0-4 22 . 14 . 28 •389787 •077813 0-0187 0-8 39- 0. 5 •731122 •283336 0-2420 0-5 27 . 20 . 10 •480526 •119763 0-0440 0-9 42 . 0.11 •807098 -348339 0-3631 0-6 32. 7-59 •567311 •169387 0-0871 I^O 44 - 25 - 33 •879913 •416869 0-5166 07 36- 35- 2 •649812 •225854 0-1531 I-I 46. 14. 41 -950142 •488052 0-7041 0-8 40 . 38 . 44 •727894 •288295 o^2466 1-2 47- 26.37 1-018473 •561062 0-9265 0-9 44.16.50 •801609 -355843 0-3710 1-3 48 . 0.56 ro85668 •635122 1-1842 i-o 47. 27. 26 ■871181 •427656 0-5292 1-4 47 - 57 - 44 1-152528 •709484 1-4768 IT 50. 8.57 736986 •502942 0-7228 1-5 47- 17-39 1-219857 783422 1-8037 1-2 52 . 20. 8 •999526 •580964 0-9529 r6 46. 1.51 1-288423 •856211 2-1633 1-3 54, 0. 7 1^059409 •661047 1-2198 1-7 44. ir- 57 1-358932 •927117 2-5535 1-4 55. 8.18 1-117316 -742573 1-5233 1-8 41.50. 8 1-431991 •995388 2-9709 i"S 55 •44- 27 I-I73979 •824970 1^8632 1-9 38.58-59 1-508082 1^060257 3-4110 I '6 55 • 48 . 38 1-230159 •907697 2^2388 2-0 35-41-32 1-587543 1^120948 3-8675 17 55-21.17 1-286618 •990234 2^6494 2-1 32. I. 11 1-670544 i^i7669i 4-3318 1-8 54 •23- 9 1-344100 1-072060 3-0942 2^2 28. 1.38 1-757087 1-226753 4-7932 I '9 52.55- 18 I •403308 1-152645 3-5718 2^3 23.46.52 1^847006 1^270458 5-2384 2-0 50.59. 8 1-464883 1-231433 4-0807 2-4 19 . 21 . 2 1-939974 1*307226 5-6519 2T 48. 36. 19 1-529382 1-307843 4-6185 2-5 14 . 48 . 24 2-035536 1-336597 . 6^0157 2 '2 45 • 48 . 52 1-597265 1-381259 5-1819 2^6 10. 13. 17 2-133134 1-358260 6-3106 2 '3 42 . 39 . I 1-668872 i-4Si°44 57662 2-7 5-39-58 2-232150 1-372067 6-5163 2-4 39. 9. 12 r7444i4 1-516545 6-3651 2^8 1 . 12 . 36 2-33i'946 1-378044 6-6132 (33) 15 IV fi=-2\ 5 yS=-3-< D J ^ X z V s •A X z V b o-i 1 b b' l I 1 7 d 1, S . 42 . 42 ■099834 -004988 0-000 1 1-3 / // 37- 13^59 1-130361 •582291 I '093 7 0-2 II . 19 . 0. •198689 -019810 0-0012 1-4 35^i6^ 13 1-210941 •641502 1-3486 °'3 16 . 42 . 40 •295668 -044054 0-0061 IS 32^39^ 19 1-293823 •697437 1-6240 0-4 21.47.49 . -390026 •077068 o'oiSs 1-6 29.27.34 1^379437 •749087 1-9136 0-S 26.29. I -481229 -118012 0-0432 1-7 25 ■ 45 • 59 1-468001 •795487 2-2087 0-6 30.41. 26 •568983 -165917 0-0850 1-8 21 . 40. 15 1^559514 •835750 2-4980 0-7 34- 20.53 ■653244 •219737 0-1484 1-9 17. 16.33 1^653759 •869111 2-7680 0-8 37 •23-57 •734212 -278404 0-2374 2-0 12 . 41 . 25 1-750328 -894977 3-0028 °'9 39.47-SS -812298 •340862 0-3550 2-1 8- 1.35 1-848671 •912956 3^1850 I'O 41.30.5L -888093 •406089 0-5034 2-2 + 3-23-42 1*948148 •922891 3-2967 i-i 42.31.36 -962313 •473104 0-6838 2-3 -1. 5.42 2-048103 •924869 3-3206 1-2 1-3 42 . 49 . 48 42. 25.50 1-035760 I-I09265 •540968 -608769 0-8967 1-1417 i8=-3-5 1-4 41 . 20 . 49 39-36-39 i'i8^64.'? •675609 1-4177 I'S i'259645 740593 T^ it 1-7222 / // o-i 5.42. 16 •099834 •004985 0-0001 1-6 37- 15-54 i'3379i5 •802822 2-0519 0-2 11. 15.36 -198697 •019761 0-0012 17 34.21.49 1-418953 -861394 2-4013 0-3 16.31.22 •295725 ■043812 0-0060 1-8 30-58-15 1-503087 •915418 2-7632 0-4 21.21. 31 •390259 ■076329 0-0183 f9 27- 9-35 i"59°4Si ■964038 3-1282 o^S 25-38-54 -481907 •116280 0-0424 2-0 23 . . 38 1680981 1-006464 3-4843 0-6 29. 17. 23 •570571 ■162489 0*0829 2-1 18.36-35 1774423 I -042010 3-8170 0-7 32.12. I -656450 ■213701 0-1437 2-2 14. 2.50 1-870360 1-070133 4-1097 0-8 34-19- 6 -740000 •268640 0-2281 2 '3 9-24-53 1-968244 1-090463 4'3442 0-9 35-36-15 -821882 ■326041 0-3382 2-4 4.48. 14 2-067449 1-102826 4^5oi6 2-5 0.18. 16 2-167325 1-107258 4-5631 i-o 36. 2.27 -902892 ■384669 0-4754 I -I I -2 1^3 35 • 37 • 57 34. 24. 22 32.24.32 -983890 1-065717 1-149131 ■443315 •500795 ■555941 0-6394 •0-8290 1-0414 ^=-3- D y // O-I 5 ■ 42 . 29 -099834 '004986 o-oooi i'4 29 . 42 . 30 1^234737 ■607610 1-2718 0-2 II . 17 . 18 -198693 -019786 0-0012 1-5 26. 23. 23 1-322940 ■654700 i^Si3S 0-3 16.37- -295697 •643933 o-oo6o 1-6 22.33. 17 1-413911 ■696178 17571 0-4 21-34-37 •390144 •076698 0*0184 17 18 . 19. 4 1^507579 731133 1-9909 °-s 26. 3.50 ■481571 •117144 0-0428 1-8 13.48. 12 1-603642 ■758821 2-2008 0-6 29.59. 6 •569787 •164197 0-0839 1-9 9. 8.28 1-701615 ■778716 2-3709 07 33 - 15 • 48 •654875 -216708 0-1461 2-0 + 4-27-49 1-860884 ■790551 2-4842 0-8 35-50.18 •737170 •273505 0-2328 2-1 — , 6 , 1-900786 794331 2-5241 0-9 37-39-58 -817223 •333427 0-3467 i-o 38.43. 12 •89574s •395347 0-4896 I-I 38-59-28 •973546 •458171 0-6621 1-2 38 . 2.9 . 14 1-051477 •520835 0-8640 (34) IV ^=-4'o )S=^4-o s 6 '^ X b z I V s ~b ^ X V o-i 0-2 o'3 0-4 o'S 0-6 0-7 0-8 0-9 / u 5-42. 4 "•13-54 16. 25.44 21. 8.30 25. 14. 14 28.36. 18 31- 9-31 32.50. 18 33-36.42 •099834 •198701 '295754 '390374 •482236 'S71336 •657973 •742707 -826286 •004983 -019737 -043692 •075961 •115420 -160791 •210715 •263813 •318716 o-oooi O-0OI2 0-0060 0-0182 0-0420 0-0818 0-1413 0-2233 0-3296 i-o 1^1 I '3 I '4 I'S 1-6 I '7 1-8 1-9 / // 33-28.25 32. 26.47 30-34. 42 27-56-35 24. 38. 10 20 . 46 . 27 16. ,29 . 22 "-S5-3I 7-13-56 2-33-44 -909560 '993395 1-078583 1-165764 ^'255369 1 '347574 1-442295 1-539203 1-637780 1-737388 -374082 '428593 ■480959 -529924 •574290 : -612947 '644937 -669502 -686145 -694666 0-4608 0-6158 0-7923 0-9858 1-1898 i'39S2 1-5902 1-7612 1-8925 1-9680 V i8 I 5° 30° 45° 60° 90° a: z X z X z X z X z b b b b b b b b b b + O'O o-i 0-2 •25882 •25860 •25838 •03407 •03403 ■03399 •50000 •49838 ■49679 ■•13397 •13330 •13264 •70711 •70232 •69770 ■29289 •28972 •28666 •86603 ■85673 •84794 •50000 ■49078 •48217 I'OOOOO •98421 •96976 I^OOOOO •96321 °"3 •25816 •25795 •25774 •03395 •03390 •03386 '49522 •49368 '49217 '13200 •13137 •13075 •69324 •68894 ■68478 ■28372 •28090 •27819 •83962 ■83174 '82427 •47412 ■46657 '45946 •95648 •94422 •93283 •90285 •87764 •85491 0-6 67 0-8 •2'57S2 •25730 •25710 •03381 •03377 •03373 •49068 ■48922 •48777 '13615 ■12955 '12896 •68075 •67684 ■67305 •27558 ■27306 •27062 •81715 ■8103s ■80384 ■4527s •44640 •44038 •92217 •91215- '90271 •83423 ■81529 ■79786 0-9 i'o •25689 ■25668 '25647 •03369 •03365 •03360 •48635 •48495 •48357 '12838 '12781 ■12725 •66937 ■66579 •66231 •26827 •26599 ■26378 ■79760 •79161 ■78585 •43465 •42919 ■42397 ■89377 ■88529 •87722 78173 •76671 •75268 t'2 1-3 I '4 '25626 •25606 •25585 •03356 •03352 •03348 •48221 ■48087 ■47955 •12670 •12616 ■12563 ■65892 ■65562 ■65241 •26164 ■25957 ■25756 •78031 ■77496 ■76979 ■41898 •41420 •40962 •86953 •86218 ■85513 73954 72719 71554 I "5 1-6 17 •25564 •25543 ■25523 •03344 ■03340 •03336 •47826 •47698 •47571 •12511 •12460 ••12409 ■64928 •64622 ■64323 •25560 •25370 •25185 ■76478 •75994 75526 '4052.2 •40098 •39690 ■84838 •84189 ■83564 •70453 ■69410 ■68418 1-8 1-9 2'0 •25503 •25482 •25462 •03332 •03328 •03324 •47447 •47324 •47203 '12360 •12311 ■12262 •64032 ■63747 •63469 '25004 '24829 •24658 •75072 •74631 •74203 •39297 •38918 ■38552 •82963 •82383 ■81822 ■67475 •66576 •65717 2'I 2 '2 2 '3 •25442 '25422 ■25402 •03321 '0331 7 '03313 •47084 •46965 ■46848 '12214 '12167 •12121 •63196 ■62929 •62668 '24491 •24328 '24169 73787 73382 •72988 •38198 •37855 ■37522 •81280 ■80755 ■80247 •64895 •64109 ■63353 2 '4 2-6 '25383 '25363 •25343 '03309 •03305 •03302 '46733 •46619 '46507 '12075 '12030 '11986 •62412 •62161 •61915 '24014 •23863 ■23715 •72605 •72231 71866 ■37200 •36888 ■36585 79754 •79275 •78810 •62628 •61931 •61260 27 2-8 2-9 •25324 •25304 •25285 '03298 •03294 '03290 ■46396 •46286 •46178 '11942 ■11899 '11856 •61674 •61437 •61205 '23570 •23429 •23290 71510 •71162 •70823 •36290 •36004 ■35726 78358 •77919 77491 '60613 ■59989 ■59386. 3-0 3"2 •25265 •25246 •25227 •03286 •03282 •03279 '46071 •45966 •45861 '11814 '11773 •11732 '60978 •60754 ■60534 '23155 •23022 •22892 •70492 •70168 ■69851 •35454 •35189 •34932 77074 •76667 •76270 •58803 •58240 ■57694 3"3 3'4 3-5 •25208 •25189 •25170 •03275 •03271 •03268 •45757 •45655 ■45553 •11692 •11652 •11613 •60318 •60106 ■59898 ■22765 •22640 •22517 •69540 •69236 •68939 •34681 •34437 •34199 75883 75506 75137 ■57165 •56652 ■56154 3-6 37 3-8 •25150 •25132 •25 "3 •03264 •03260 •03256 •45453 ■45355 ■45257 ■"573 •11535 •11497 ■59693 ■59491 ■59292 •22397 •22279 •22163 •68647 •68361 •68080 ■33966 •33739 •33517 •74776 ■74423 •74078 •55672 •55202 •5474s (36) V p 120° 135° 140° 145° I 50° * z X 2 X z X s X z ^ b b b b b b b b b + o"o O'l 0'2 •8660 •8641 •8602 I -5000 1-4152 1-3467 •7071 7276 . 7380 r7o7i 1-5931 i^5o62 •6428 •6718 •6898 1^7660 I ■6462 ^■55i3 •5736 -6175 •6413 1-8192 1-6862 "•5875 -5000 •5580 ■5905 1^8660 1-7238 i^6i98 o'3 0-4 •8549 ■8490 •8431 1-2897 1-2411 1-1988 •7432 7457 -7464 ^■4355 1^3762 1-3253 ■7005 7064 7095 ^■475° I^4I22 ^■3S9i •6559 -6652 -6712 1-5090 i^4439 1-3885 •6103 ■6233 -6320 1-5381 1^4707 1-4135 0-6 07 0-8 •8370 •8309 ■8248 1-1614 1-1280 1-0979 •7458 •7442 •7421 i^28o8 1-2414 I-206l 7109 7111 •7106 r3i29 i^27i8 ^2350 •6749 •6771 •6781 I -3404 1-2979 I-2S99 •6379 ■6420 ■6447 1-3639 1^3202 1-2812 09 I'O •8189 ■8131 ■807s 1-0705 I '045 3 1-0221 7396 7369 7340 1-1742 i"i4Si i"ii8s •7095 7079 •7060 I^20l8 i^i7i6 ^■1439 •6783 -6779 •6771 1-2257 ri947 I-I663 -6464 ■6472 •6474 1-2461 I -2 14.3 ri852 1-2 i'3 I "4 •8020 7966 7914 1-0008 •9809 •9623 7309 •7245 1-0939 1-0711 I -0499 ■7039 •7016 •6992 1T185 1^0950 ro73i •6759 •6744 •6728 i^i4oi 1-1158 1-0933 •6472 •6467 -6459 1^1584 1-1335 1-1105 1-6 17 7863 7814 7766 •9449 ■9285 •913I •7213 7181 •7148 1^030 1 i^oii5 •9941 •6966 •6940 •6914 i^o526 ^■0335 1-0154 ■6711 ■6692 •6671 1^0723 i'o526 1-0341 •6448 •6435 •6421 1^0890 1^0689 1-0501 1-8 1-9 2'0 7719 7674 76297 •8985 -8847 •87162 •7116 •7=85 •70525 •9776 •9620 •94720 •6888 •6861 ■68339 ■9985 ■9824 •96723 •6650 •6629 •66068 i^oi67 I -0003 •98467 •6406 ■6390 -63738 1-0323 1-0154 •99952 2'I 2'2 2-3 75866 7S44S 75035 -85916 -84728 •83595 •70212 •69903 ■69599 ■93318 ■91985 •90714 •68072 •67806 -67541 •95280 •93909 •92603 •65848 •65626 •65402 •96988 ■95582 ■94243 •63565 -63387 -63205 •98443 •97009 •95643 2-4 2-5 2-6 74636 74246 73865 -82512 •81474 •80479 •69299 •69004 •68712 •89500 ■88339 •87227 •67278 •67018 ■66760 •9^354 •90159 •89016 •65178 ■64955 •64732 •92965 ■91744 ■90575 •63021 ■62834 •62647 •94340 ■93095 •91904 27 2-8 2-9 73494 73131 72776 •79525 78608 ■77725 •68425 •68142 •67864 •86161 ■85137 •84153 ■66504 •66252 •66003 •87921 •86870 •85859 •64510 •64289 •64069 ■89454 ■88378 ■87344 -62459 ■62271 ■62082 •90762 •89666 •88613 3'° 3'i 3'2 72428 72088 71756 -76873 •76052 ■75260 ■67590 •67321 ■67055 •83207 •82295 ■81415 •65758 •65516. •65276 •84887 '83951 •83048 ■63851 ■63635 •63421 •86350 •85392 -84468 •61893 •61705 ■61518 ■87599 ■86623 •85682 3-3 3 '4 3-5 71430 71111 70799 •74495 73755 •73039 •66794 ■66537 •66285 •80566 ■79745 ■78951 •65039 •64805 ■64574 •82176 •81334 •80519 •63209 -62999 -62792 •83577 -82716 -81884 ■61332 ■61 147 •60963 ■84774 •83897 ■83050 3-6 37 3-8 70493 70193 •69898 72345 •71673 •71022 •66036 •65791 ■65550 •78182 ■77438 •76717 •64346 •64122 •63901 79731 78968 •78228 -62588 •62385 -62183 ■81080 -80300 79544 •60780 •60599 •60419 •82230 •81437 •80669 ^37) V ^ + 4-0 4'i 4-2 4-3 4'4 4-5 4-6 47 4-8 4-9 S"° 5"3 5-4 S'S 5-6 57 5-8 S'9 6-0 6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 6-9 7-0 7-1 7-2 7'3 7 '4 7-5 7-6 77 15° a: •25094 ■25076 ■25057 ■25039 ■25021 ■25002 •24984 •24966 •24948 •24930 •24912 •24894 •24876 •24858 •24841 •24823 •24806 •24788 •24771 ■24754 •24736 ■24719 •24702 •24685 •24668 ■24651 •24634 •24617 ■24600 ■24584 ■24567 ■24550 ■24534 •24517 ■24500 ■24484 •24467 ■24451 •24434 ■03253 •03249 •03245 •03242 •03238 ■03234 •03231 ■03227 •03223 •03220 •03216 •03213 •03209 •03206 •03203 •03199 •03196 ■03193 •03189 •03186 ■03183 •03179 •03176 •03173 •03170 •03166 •03163 •03160 •03157 ■03154 •03150 •03147 •03144 •03141 ■03138 ■03134 •03131 ■03128 •03125 ■45160 ■45064 •44969 ■44875 ■44783 •44691 •44600 ■44510 •44421 ■44333 •44246 ■44159 ■44073 •43988 •43904 •43821 •43738 •43656 •43575 •43495 ■43415 •43336 •43258 ■43180 •43103 ■43027 ■42951 •42876 ■42802 ■42729 •42656 •42583 ■425 1 1 ■42440 ■42369 •42299 •42229 •42160 •42091 •11460 ■114,23 •11386 •1135° •11314 •11279 •11244 •11209 ■"175 •11141 •I 1 108 •11075 •I 1042 •iioio ■10978 ■10947 •10916 •10885 •10854 •10824 •10794 •10764 •1073s •10706 •10677 •10648 ■10620 •10592 •10564 •10536 •10509 •10482 •i°45S •10429 ■10403 •i°377 •10351 •10326 •10300 45° ■59097 ■58905 •58716 •58529 ■58345 •58164 •57986 ■57810 ■57637 •57466 ■57298 ■57133 ■56969 •56807 •56647 •56490 ■56335 •56182 •56031 •55881 ■55733 ■55588 ■55444 ■55302 ■55161 •55021 ■54884 •54748 •54614 •54481 •54350 ■54220 •54091 ■53964 ■53838 ■53714 •53591 •53469 •53349 ■22050 ■21938 ■21828 •21721 ■21615 ■21511 •21409 •21309 •21210 •21112 •21016 •20922 •20829 •20738 •20648 •20559 •20472 •20386 •20301 •20218 •20136 ■20055 ■19975 •19896 •19818 •19741 •19666 •19592 •19518 •19445 ■19373 •19302 •19232 •19163 ■19095 •19027 •18960 •18894 •18828 60° •67805 ■67536 •67272 •67011 •66756 •66505 •66258 ■66016 ■65778 ■65543 ■65313 •65086 •64863 •64644 •64428 •64215 ■64005 ■63798 ■63595 ■63394 ■63196 ■63001 ■62809 •62619 •62432 •62247 •62065 •61885 •61708 •61533 •61360 •61189 •61020 •60853 •60688 •60526 •60366 •60207 •60050 •33300 •33087 •32879 •32676 •32477 •32282 •32091 •31903 •31720 •31540 •31364 •31191 •31021 •30854 •30690 •30529 •30371 •30215 •30062 •29912 •29765 ■29621 •29479 ■29339 •29201 •29064 •28930 •28798 •28668 •28540 •28414 •28291 •28169 •28048 ■27929 •27812 •27697 ■27583 •27471 90° ■73741 ■7341 1 •73088 •72771 •72460 ■7215s 71856 •71562 •71274 ■70991 ■70713 ■70441 •70173 •69909 •69650 ■69395 ■69145 •68899 •68657 ■68418 •68183 •67952 •67724 •67500 •67279 •67061 •66846 •66634 •6.6425 •66219 •66016 ■6581S •65617 ■65422 ■65229 •65039 •64851 •64666 •64483 •54301 •53869 ■53448 •53038 •52638 -52248 •51868 •51497 •5"34 •50780 •50434 •50095 •49764 •49440 •49122 •4881 1 •48508 •48210 •47918 ■47632 •47351 •47076 •46806 •46541 •46280 •46024 •45774 •45528 •45286 •45048 •44814 •44584 •44357 •44134 •43915 •43700 •434S8 •43280 •43075 (38) V yS I 20" I 35° I 40° I 45° I 50" a; z 1 X I z 1 X b z X 1 z 1 X z 1 + 3-9 4-0 4"i •69609 •69326 ■69048 •70390 ■69775 •69178 ■65312 ■65078 •64848 •76017 •75338 •74678 •63683 •63467 ■63254 •77511 •76814 •76138 ■61,985 ■61790 .■61597 •788II ■78IOI ■774II ■60241 ■60065 ■59890 ■79924 •79201 •78499 4-2 4-3 4-4 ■68775 •68506 •68242 ■68598 •68033 •67483 ■64621 •64398 ■64178 •74037 ■73413 •72807 ■63045 •62838 ■62634 ■75481 •74842 •74221 ■61405 •61 2 16 ■61029 ■76741 ■76089 75454 ■59717 ■59545 ■59375 •77817' ■77154 76509. 4-5 4-6 47 ■67984 •67730 ■67480 •66948 •66427 •65918 ■63960 ■63746 ■63535 ■72217 ■71642 ■71082 ■62433 •62234 •62038 •73616 •73027 ■72453 ■60844 ■60662 ■60481 ■74837 ■74236 ■73650 ■59207 ■59040 ■5887s •75881 ■75269 ■74673 4-8 4-9 ■67233 ■66991 ■66753 •65421 ■64937 •64464 ■63327 ■63122 •62920 •70536 ■70003 ■69483 •61845 ■61654 ■61466 •71894 ■71349 •70816 ■60302 •60126 ■59951 ■73079 ■72522 ■71979 ■58712 ■58551 ■58391 •74092 ' ■73526 ■72973 5-1 5 3 ■66519 ■66288 •66061 •64002 ■63551 ■63110 •62721 •62525 •62331 •68975 •68479 •67996 ■61280 ■61096 ■60915 •70296 •69788 •69292 ■59607 ■59439 ■71449 ■70931 ■70425 ■58232 ■58075 ■57920 ■72434 ■71908 ■71393 S-4 S'S 5-6 ■65837 ■65617 •65400 ■62679 •62258 •61846 ■62139 ■61950 ■61764 ■67523 •67059 •66606 ■60736 ■60559 ■60384 ■68808 ■68334 ■67871 ■59273 ■59109 ■58947. •69931 •69.448 •68976 ■57767 ■57616 ■57466 ■70890 •70399 ■69919 57 S-8 5-9 •65187 ■64977 ■64769 •61442 •61046 ■60659 •61580 •61399 ■61220 •66163 ■65730 ■65305 ■60211 •60041 ■59873 ■67417 ■66973 ■66539 ■58787 ■58628 •58470 ■68514 •68061 •67618 ■57317 ■57169 ■57023 •69449 •68989 ■68539 6-0 6-1 6-2 ■64564 ■64362 •64163 •60280 •59908 ■59544 •61043 ■60868 •60696 •64889 •64482 •64082 ■59707 ■59543 ■59381 ■66114 ■65697 ■65289 ■58314 ■58160 ■58008 •67184 •66759 •66343 ■56879 ■56736 ■56594 •68098 •67666 ■67243 6-3 6-4 6-5 ■63967 ■63773 ■63582 ■59186 •58836 ■58492 •60526 •60358 •60192 •63691 ■63307 •62931 •59220 •59061 ■58904 '64889 •64496 •64111 ■57858 •57710 '57563 •65935 •65534 •65142 ■56454 ■56316 ■56179 •66828 •66421 •66023 6-6 67 6-8 ■63394 ■63208 ■63024 ■58154 ■57823 ■57498 •60028 •59866 •59706 •62561 •62199 •61844 ■58749 •58596 ■58445 ■63733 •63362 •62999 ■57417 ■57273 ■57131 •64757 ■64379 ■64008 ■56044 ■55910 ■55777 •65632 •65248 •64871 6-9 7-0 7-1 ■62843 ■62664 ■62487 ■57179 ■56865 •56557 ■59547 ■59390 ■59235 ■6149s ■61151 ■60814 ■58295 •58147 •58001 •62642 •62291 •61946 ■56990 ■56851 ■56713 •6364:? ■63286 ■6293s ■ '55645 •55514 •55385 ■64501 •64138 •63781 7-2 7-3 7-4 •62312 •62140 •61970 ■56254 ■55956 ■55663 ■59082 ■58931 •58781 ■60483 •60157 •59837 ■57856 ■57712 ■57570 ■61608 •61276 •60949 ■56577 •56442 ■56308 ■62590 •62251 •61918 •55257 •55130 •55004 ■63430 •63085 •62747 7-5 7-6 77 •61802 •61636 •61472 •55375 ■55092 ■54813 ■586321 •58487 •58342 •59522 •59214 ■58910 ■57430 ■57291 ■57153 ■60627 •60311 ■60000 ■5617s ■56044 ■55914 ■61590 •61268 •60951 •54880 ■54756 ■54634 •62415 •62088 •61766 (39) V 15° + 7-8 7"9 8-0 8-1 8-2 8-3 8-4 8-5 8-6 8-7 8-8 8-9 9'° 9'i 9-2 9"3 9'4 9-5 9-6 97 9-8 9-9 lo'o lO'I IO'2 10-3 104 lo'S io'6 107 IO-8 io'9 II'O ii'i 1 1 "2 "■3 11-4 "•5 n-6 •24418 •24402 •24386 •24370 ■24354 •24338 ■24322 •24306 •24291 ■2427s ■24259 •24244 •24228 •24213 •24197 •24182 •24167 •24151 •24136 •24121 •24105 •24090 ■24075 •24060 ■24045 •24030 •24015 •24000 •23986 •23971 •23956 •23942 •23927 ■23913 •23898 •23884 •23869 ■23855 •23841 •03122 •03118 ■03115 •03112 •03109 •03106 •03103 •03100 •03097 •03094 •03091 •03088 •03085 •03082 •03079 •03076 •03073 •03070 •03067 •03064 •03062 ■03059 •03056 ■03053 ■03051 ■03048 ■03045 ■03042 •03039 •03037 ■03034 •03031 •03028 ■03025 •03023 •03020 •03017 ■03014 •0301 1 30° •42023 ■41956 •41889 •41822 ■41756 •41691 •41626 •41562 •41498 •41434 ■41371 •41308 •41246 •41184 •41122 •41061 •41001 •40941 •40882 •40823 •40764 ■40705 ■40647 •40589 ■40532 ■40475 •40418 •40362 •40306 •40251 •40196 •40141 •40087 ■40033 ■39979 ■39926 ■39873 •39820 ■39768 •10275 •10250 •10225 •10201 •10176 •10152 •10128 •10105 •10081 •10057 •10034 •looii •09989 •09966 •09944 •09922 •09900 •09878 •09856 •09835 •09813 •09792 •09771 •09750 •09729 •09709 •09688 •09668 •09648 •09628 •09608 •09589 •09569 •0955° ■09531 ■09512 ■09493 ■09474 •09456 45° ■53230 ■53112 "52995 ■52879 ■52764 ■52651 ■52539 •52428 ■52318 •52208 •52100 ■51993 •51887 •51782 ■51677 ■51574 ■51472 ■51371 •51270 ■51171 •51072 ■50974 •50877 ■50781 •50686 ■50591 ■50497 •50404 ■50312 •50220 •50129 ■50039 ■49949 •49860 •49772 •49685 ■49598 ■49512 •49427 •18764 •18701 •18638 •18576 ■18515 ■18454 •18394 ■18334 •18275 •18217 •18159 •18102 •18046 •17990 ■17935 •17881 •17827 ■17773 •17720 •17668 •17616 ■17565 ■17514 •17464 •17414 •17364 ■17315 •17267 •17219 •17172 •17125 •17078 •17032 •16986 •16941 •16896 •16851 •16807 •16763 60° •59895 ■59741 ■59590 ■59440 •59292 ■59145 •59000 ■58857 •58716 •58576 •58437 •58299 •58162 •58027 ■57893 ■57761 ■57631 ■57502 ■57374 ■57247 •57121 ■56997 •56874 ■56753 ■56632 ■56512 ■56393 ■56275 ■56159 •56044 ■55929 ■55815 ■55702 ■55590 ■55479 ■55369 •55261 ■55153 •55046 •27360 •27251 ■27143 •27037 •26932 •26828 •26725 •26624 •26524 •26425 •26328 •26232 •26137 •26043 ■25950 •25858 •25767 •25678 ■25590 •25503 •25416 •25330 •25245 •25161 •25078 •24996 ■24915 •24835 •24756 •24677 ■24599 •24522 ■24446 ■24371 •24296 ■24222 ■24149 •24077 •24005 90° •64302 •64123 •63947 ■63773 •63600 ■63430 •63262 •63096 •62932 •62769 •62608 •62449 •62291 ■62135 •61981 •61829 •61679 ■61530 •61382 •61236 •61092 •60950 •60808 •60667 •60528 •60391 ■60255 •60121 •59988 •59856 ■59725 ■59595 •59466 ■59338 •59212 •59087 •58963 •58840 •58719 •42872 ■42672 ■42476 ■42282 ■42091 •41903 •41718 ■41536 ■41356 •41179 ■41004 ■40831 •40661 ■40493 ■40327 •40163 ■40001 •39842 •39685 ■39529 "39375 •39223 •39074 •38926 ■38780 •38636 •38493 •38352 •38212 •38074 ■37938 ■37804 ■37671 ■37539 ■37409 •37280 •37153 •37027 ■36903 (4°) V /8 120° I 35° I. ^0° 145° I 50° * z X z X z X z X z ^ b b b b b b b b b + 7-8 7-9 8-0 ■61310 ■61149 •60990 •54539 ■54269 ■54003 ■58199 ■58057 ■57917 •58611 ■58317 •58027 •57017 ■56883 ■56750 •59694 ■59393 ■59097 ■55785 ■55658 •55532 •60639 ■60333 ■60032 ■54513 ■54394 ■54276 •61449 •6II38 •60832 8-1 8-2 8-3 •60833 •60678 ■60525 ■53741 ■53484 ■53230 ■57778 •57641 ■57505 ■57742 ■57461 ■57185 •56618 ■56488 ■56359 ■58805 ■58518 . •58236 •55407 •55283 •55161 ■59735 ■59443 ■59155 •54158 •54041 •53926 •60531 ■60235 •59943 8-4 8-5 8-6 •60373 •60223 •60074 •52981 •52735 •52493 ■57371 ■57238 •57106 ■56913 ■56645 ■56381 ■56231 •56104 ■55978 ■57958 ■57684 ■57414 •55040 •54920 •54801 ■58872 ■58593 ■58318 ■53812 ■53699 ■53587 •59655 ■59371 ■59092 87 8-8 8-9 ■59927 •59782 ■59639 •52254 •52019 •51787 •56976 •56847 •56719 •56120 •55864 ■55611 ■55854 •55731 ■55609 ■57148 •56886 •56628 •54684 •54567 •54451 ■58047 ■57780 ■57517 ■53476 ■53366 ■53256 •58817. ■58546 ■58279 9-0 9-1 9-2 ■S9497 ■59356 ■59217 •51558 •51332 •51110 •56592 •56467 •56342 •55362 ■55116 •54874 ■55488 ■55368 •55249 •56373 ■56122 •55875 •54336 •54223 •54110 ■57258 ■57003 •56751 ■53147 •53039 •52932 ■58015 ■57755 ■57499 9-3 9-4 9-5 •59079 •58942 •58807 •50891 •50675 •50461 •56219 •56097 •55976 •54635 ■54399 ■54167 •55131 •55015 ■54900 •55631 •55390 •55153 •53998 •53888 •53778 ■56502 •56257 •56015 •52826 •52721 •52618 •57247 •56998 •56753 9-6 97 9-8 •58673 •58541 •58410 ■50250 •50042 •49837 •55856 ■55737 ■55620 ■53938 ■53711 •53488 ■54786 ■54673 ■54561 •54919 •54688 •54460 •53669 •53561 •53454 •55776 •55541 •55309 •52515 •52413 •52312 •565II •56272 •56037 9-9 lO'O lO'I •58280 •58151 •58023 •49634 •49434 •49236 ■55504 ■55389 •55275 •53268 •53050 •52835 •54450 •54339 •54230 •54235 •54013 •53794 •53348 •53243 •53138 •55080 •54854 •54631 •52211 •52 1 II •52012 •55805 •55575 •55349 IO"2 10-3 10-4 •57897 •57772 •57648 •49041 •48849 •48659 •55162 •55050 •54939 •52623 •52414 •52207 •54122 •54014 •53907 •53577 •53363 •53152 •53034 •52932 •52831 ■54411 •54194 •53979 •51914 •51817 •51720 •55126 •54905 •54687 io'6 107 •57525 •57403 •57282 •48471 •48285 •48102 •54828 •54718 •54610 •52003 •51801 •51602 •53801 •53696 ■53592 •52944 •52738 ,•52535 •52731 ■52631 ■52532 •53767 •53558 •53351 •51624 •51529 ■51435 •54471 •54258 •54048 IO-8 io'9 II'O •57163 •57045 •56928 •47921 •47742 •47565 ■54503 •54396 •54290 •51406 •51211 •51019 ■53489 ■53387 ■53286 •52334 ■52136 ■51940 ■52434 ■52336 •52239 •53146 •52944 •52744 •51342 •51249 •51157 •53840 •53635 •53433 ii'i II'2 "■3 •56812 •56696 •56582 •47390 •47218 •47047 •54186 •54082 •53978 ■50829 ■50642 ■50456 •53185 •53085 •52986 ■51746 ■51554 •51365 •52143 •52048 •51953 ■52546 •52351 •52158 •51066 ■50976 •50886 •53233 •53035 •52839 1 1-4 ii-S 11-6 •56469 •56357 •56246 •46878 •467 1 1 •46546 •53876 •53774 •53674 •50273 •50092 •49913 •52888 •52791 ■52695 •51178 •50993 ■50810 •51859 •51766 •51674 •51968 •51780 ■51594 ■50796 ■50707 •50619 •52646 •52455 ■52266 (41) IG V /8 + , 11-7 11-8 11-9 I2'0 I2'I I2'2 12-3 I 2 '4 I2'6 I2'7 12-8 I2'9 13-0 i3"i 13-2 i3'3 i3'4 i3'5 i3'6 137 13-8 i3"9 i4"o 14-1 I4'2 14-3 14-4 14-5 14'6 147 14-8 14-9 iS'3 i5'4 iS'5 15° ■23826 •23812 •23798 •23784 •23770 ■23756 ■23742 •23728 ■23714 •23700 •23687 ■23673 ■23659 ■23645 •23632 •23618 ■23604 ■23591 ■23577 ■23563 ■2355° ■23536 ■23523 ■23509 •23496 •23482 •23469 ■23456 ■23443 •23429 •23416 •23403 •23390 ■23377 •23364 ■23352 ■23339 •23326 ■23313 z I •03009 •03006 •03003 •03000 •02998 •0299s •02992 •02989 •02987 •02984 •02981 •02979 •02976 •02974 •02971 •02969 •02966 •02964 •02961 •02959 •02956 •02954 •02951 •02949 •02946 •02944 •02941 •02939 •02936 •02934 •02931 •02929 •02926 •02924 •02922 •02919 •02917 •02914 •02912 30° •39716 •39664 ■39613 ■39562 ■39512 ■39461 •3941 1 ■39361 ■39311 •39262 ■39213 •39164 •39116 •39067 •39019 ■38971 •38924 •38876 ■38829 •38782 ■38736 •38690 •38644 •38598 ■38553 •38508 ■38463 •38418 ■38374 ■38329 ■38285 •38241 •38198 •38155 •38112 •38069 •38027 ■37984 '3794Z z 1) •09437 •09418 ■09400 •69382 ■09364 •09346 •09328 •09311 •09293 •09276 •09258 •09241 •09224 •09207 •09190 •09173 •09156 •09140 •09123 •09107 •09090 •09074 •09058 •09042 •09026 •09010 ■08994 •08979 •08963 •08948 •08932 •08917 ■08902 ■08887 •08872 •08857 •08842 ■08828 ■08813 45° ■49343 •49259 ■49176 ■49093 ■4901 1 •48930 •48849 ■48769 •48689 •48610 ■48531 ■48453 ■4837s •48298 •48221 ■48145 •48070 ■47995 •47921 ■47847 •47774 •47701 •47628 •47556 •47484 ■47413 ■47343 •47273 •47203 •47134 ■47065 •46997 •46929 •46861 ■46794 ■46727 •46661 ■4659s •46530 •16720 •16677 •16634 •16592 •16550 •16509 •16468 •16427 •16386 •16^46 •16306 •16266 •16227 •16188 •16149 •16111 •16073 •16035 •15998 •15961 •15924 •15887 •15851 •15815 •15779 •15744 •15709 •15674 •15639 •15604 •15570 •15536 ■15503 •15469 •15436 •15403 ■15370 ■15337 '1 5305 60° ■54940 ■5483s ■54731 ■54628 •54525 •54423 •54322 ■54222 ■54123 ■54024 ■53926 ■53829 ■53733 ■53638 "53543 ■53449 ■53356 ■53263 ■53171 ■53079 ■52988 •52898 ■52809 ■52721 •52633 •52546 •52459 ■52373 •52287 ■52202 •52117 ■52033 •51950 •51867 •51784 •51702 ■51621 •51541 •51461 •23934 •23864 •23794 •23725 •23657 •23589 •23522 ■23456 ■23390 •23325 ■23260 •23196 •23133 •23070 •23008 •22946 •22885 ■22824 •22764 •22704 •22645 •22586 •22528 •22470 ■22413 •22356 •22300 •22244 •22188 ■22133 •22078 •22024 •21971 •21Q18 •21865 '21813 •21761 •21709 ■21658 90° ■58598 ■58478 ■58359 •58241 •58124 •58008 ■57893 ■57779 ■57667 ■57555 ■57444 ■57334 ■57225 ■57117 ■57010 ■56904 ■56798 ■56693 ■56589 ■56486 •56383 ■56281 ■56180 ■56080 : •55980 •55881 •55783 ■55686 •55590 ■55494 ■55399 ■55305 ■55211 ■55118 ■55026 ■54934 ■54843 ■54752 ■54662 z 1) ■36780 •36658 ■36537 ■36418 •36300 •36183 •36067 ■35952 ■35839 •35727 •35616 •35506 •35397 •35289 •35182 •35076 •34971 •34867 '34765 •34663 '34562 •34462 •34363 •34265 •34168 •34072 •33976 ■33881 •33787 •33694 •33602 •33511 ■33420 ■33330 ■33241 ■3315.3 ■33065 •32978 •32892 (42) y /8 120° I 35° I 40° I 45° I 50° X z X z X z X ■ z X z 1) b b b b . b ~b b I b + 117 II-8 11-9 ■56136 ■56026 •55917 •46383 •46222 ■46062 •53574 ' '53475 ' '53377 •49736 ■49561 ■49387 •52599 •52504 ' -52410 •50629 •50450 •50274 •51582 -51491 -51401 ■51410 •51228 •51048 -50532 -50445 -50359 •52079 •51894 •51712 I2'0 I2-I I2'2 •55809 •55702 •55596 •45904 •45748 ■45594 ■53279 ■53182 •53086 •49216 ■49047 •48879 •52316 1 ^52223 ■52131 •50099 •49926 •49755 ' ■51311 ■51222 •51134 •50870 •50694 •50520 -50273 ■50188 -50104 •51532 ■51354 • -51178 12-3 12-4 12-5 ■55491 •55387 •55283 •45441 •45290 ■45140 •52991 ■52897 ■ -52803 •48713 . "48549 ■48387 •52040 •51949 •51859 •49586 -49418 •49252 •51046 •50959 ■50873 ■50348 •50177 •50008 ■50020 •49937 •49855 •51003 •50830 •50658 I2'6 127 12-8 ■55180 •55078 •54977 ■44992 •44845 •44700 ■52710 ■52617 •52526 • -48226 •48067 •47910 •51769 •51680 ' ^51592 •49088 •48926 ■48765 ■50787 -50702 -50617 -49841 ■49676 •49513 •49773 ■49692 ■4961 1 •50488, ■50320 ■50154 i2-g 13-0 i3'i •54877 ■54778 ■54679 •44556 ■44414 •44273 •52435 •52344 •52254 ■47754 •47600 •47447 •51505 ■51418 •51332 • -48606 •48449 •48293 ■50533 ■50450 •50367 ■49351 ■49191 ■49033 ■49531 ■49451 ■49372 -49991 -49829 -49669 13-2 i3'3 i3'4 ■54581 ■54484 •54388 •44134 •43996 •43859 •52165 •52077 •51989 •47296 •47147 ■46999 ■51247 ■51162 ■51077 •48139 •47987 ' -47836 ■50285 •50203 •50122 -48876 -48721 •48567 •49294 ■49216 •49138 •49510 •49352 -49196 13-5 13-6 137 •54292 •54197 •54103 •43723 •43589 •43456 •51902 •51816 •51730 •46852 •46707 •46563 •50993 ■50910 ■50827 • -47686 ■47538 •47391 •50042 •49962 •49883 ■48415 ■48264 ■48115 ■49061 •48985 •48909 •49041 •48888 •48737 13-8 13-9 14-0 •54009 •53916 •53824 •43325 ■4319s •43066 •51645 ■51560 •51476 ■ -46421 ■46280 ■46140 •50745 •50663 •50582 -47246 -47102 •46959 ■49804 •49726 ■49648 -47967 -47821 ■47676 •48834 •48759 •48684 •48587 ■48438 -48291 14-1 14-2 14-3 •53732 •53641 •53551 •42938 •42811 ■42686 •51392 •51309 •51227 ■46002 •45865 •45729 •50501 •50421 -50342 -46818 •46678 •46539 ■49571 •49494 ■49418 ■ ^47533 •47391 •47250 •48610 •48536 •48463 •48145 •48000 •47857 14-4 14-5 14-6 •53461 ■53372 ■53283 •42562 •42439 ■42317 •5 1 145 •51064 ■50983 •45594 •45461 •45329 •50263 -50185 •50107 •46402 •46266 •46131 ■49342 ■49267 •49192 '47 no -46971 -46834 •48390 •48318 •48246 -47716 •47576 •47437 147 14-8 14-9 ■53195 ■53108 •53022 •42196 •42076 •41957 •50903 ■50824 ■50745 •45198 •45068 ■44939 ■50030 -49953 •49877 •45997 -45865 -45734 ■49118 •49044 ■48971 •46698 ■46563 •46430 •48175 •48104 ■48034 •47299 •47162 •47027 15-1 15-2 •52936 •52851 ■52766 ■41839 •41722 •41606 •50666 ■50588 •50510 -448 1 1 •44685 ■44560 •49801 •49726 -49651 -45604 •45475 •45347 ■48898 •48826 ■48754 •46298 •46167 •46037 •47964 •47895 ■47826 •46893 •46760 •46628 15-3 15-4 15-5 ■52682 ■52598 ■5251S •41491 •41378 •41265 ■50433 ■50356 •50280 •44436 •44313 •44191 -49576 •49502 •49429 -45220 •45095 ■44971 •48682 •4861 1 ■48540 -45908 •45780 •45654 •47757 •47689 -47621 •46497 •46368 •46240 (43) 16—2 v /3 I 5° 30° 45° 60° 1 90° 1 X z X z X z X z X z b b b b b b b b b b + 15-6 157 iS-8 •23300 ■23288 •2327s •02910 ■02907 •02905 •37900 •37858 ■37817 •08798 •08784 •08769 ■46465 •46400 ■46336 •15273 •15241 •15209 ■S1382 ■51303 ■51225 •21607 •21557 •21507 •54573 •54484 ■54396 •32807 ■32722 •32638 15-9 i6'o i6-i •23262 •23249 •23237 •02902 ■02900 ■02898 •37775 •37734 •37693 •08755 •08741 •08727 ■46272 •46209 •46146 •15178 •15147 ■15116 •51147 •51069 •50992 •21457 •21408 •21359 •54308 •54221 •5413s •32554 ■32471 •32389 i6-2 16-3 16-4 ■23224 •23211 •23198 •02895 ■02893 ■02890 ■37652 ■37612 ■37571 •08713 •08699 •08685 •46084 •46022 •45960 •15085 •15054 •15024 ■50915 ■50839 ■50764 •21310 •21262 •21214 •54049 •53964 ■53879 •32308 •32227 •32147 i6-s i6-6 167 •23186 ■23173 •23161 •02888 •02886 •02883 •37531 ■37491 ■37451 •08671 •08657 •08644 •45898 ■45837 ■45776 •14994 •14964 •14934 ■50689 ■50615 •50541 ■21167 •21120 •21073 ■53795 ■537" ■53628 •32067 •31988 •31910 i6-8 i6'9 17-0 ■23148 •23136 ■23124 •02881 ■02879 ■02877 ■37412 ■37372 ■37333 •08630 •08617 •08603 •45715 ■45655 ■45595 •14904 •1487s •14846 •50467 ■50394 ■50321 •21026 •20980 •20934 •53545 •53463 •53382 •31832 •31755 •31678 17-1 17-2 17-3 •23112 •23099 •23087 ■02874 •02872 •02870 ■37294 ■37255 ■37217 •08590 •08576 •08563 ■45535 ■45476 •45417 •14817 •14788 •14759 ■50249 ■50177 ■50105 •20888 •20843 •20798 •53301 •53220 •53140 •31602 •31527 •31452 17-4 i7'S 17-6 •23°7S •23063 ■23050 •02868 ■02865 ■02863 ■37178 ■37140 ■37102 •08550 •08537 •08524 •45359 •45301 •45243 •14731 •14703 •1467s ■50034 ■49963 •49893 •20753 •20709 •20665 •53061 •52982 •52904 •31378 •31304 •31231 177 17-8 17-9 ■23038 •23026 •23014 ■02861 •02859 •02856 •37064 •37026 •36989 •085 1 1 •08498 •08485 •45185 ■45128 ■45071 •14647 •14619 •14591 •49823 •49754 •49685 •20621 •20578 •20535 •52826 •52749 •52672 ■31158 •31086 •31015 i8-o i8-i i8-2 •23002 •22990 •22978 •02854 •02852 ■02850 ■36951 ■36914 ■36877 •08472 •08459 •08446 ■45014 ■44958 •44902 ■14564 •14537 •14510 •49616 •49548 ■49480 •20493 •20451 •20409 ■52595 •52519 •52443 •30944 ■30874 ■30804 i8-3 18-4 i8-S •22966 ■22954 •22942 ■02847 •02845 •02843 •36840 ■36803 •36767 •08434 •08421 •08409 •44846 ■44790 ■44735 •14483 •14457 ■14430 ■49413 ■49346 ■49279 •20367 ■20325 •20284 •52368 •52293 •52219 •30734 •30665 •30596 i8-6 18.7 i8-8 •22930 •22919 ■22907 ■02841 •02839 •02836 ■36730 ■36694 ■36658 ■08397 •08384 •08372 ■44680 •44626 ■44572 •14404 •14378 •14351 ■49213 ■49147 ■49081 •20243 •20202 •20161 •52145 •52072 •51999 •30528 •30460 •30393 18-9 19*0 19-1 •22895 •22883 •22872 •02834 •02832 •02830 ■36622 ■36586 ■36551 •08360 •08348 •08336 ■44518 ■44464 ■44410 •14325 •14299 ■14273 •49016 ■48951 ■48886 •20121 •20081 •20041 •51926 •51854 •51782 •30327 •30261 •3019s 19-2 i9"3 19-4 •22860 •22848 •22837 •02828 •02825 •02823 ■36515 ■36479 •36444 •08324 •08312 ■08300 ■44357 ■44304 ■44251 •14248 •14222 •14197 ■48822 ■48758 ■4869s •20002 •19963 ■19924 •51711 •51640 •51569 •30130 •30065 •30001 (44) V i8 120° I, 35° 140° ll ^5° I 50° a: z X z X z X z X z -J b b b 1 ~b ~b b T b + iS-6 157 15-8 •52432 ■5235° •52268 •41153 •41043 •40933 ■50204 •50129 •5005 s ■44070 ■43950 •43831 •49356 •49284 ■49212 •44848 •44726 •44604 •48470 •48400 ■48331 •45529 •45405 ■45282 ■47554 ■47487 •47420 •46113 •45987 ■45862 15-9 i6"o i6-i •52187 •52107 •52027 •40824 •40716 •40609 •49981 •49907 •49834 •43713 •43596 •43480 ■49140 ■49069 •48998 •44484 ■44365 •44247 •48262 ■48193 •48125 ■45159 ■45037 •44916 ■47354 •47288 ■47222 •45738 ■45614 ■45491 l6'2 i6-3 i6-4 •51947 •51868 •51790 •40503 •40398 •40293 •49761 •49689 •49617 •43365 •43252 •43139 ■48928 ■48858 ■48789 ■44130 •44014 •43898 •48057 ■47990 •47923 ■44797 •44679 •44562 ■47157 ■47092 ■47028 ■45369 ■45249 ■45130 i6-s i6-6 167 ■51712 •51635 •51558 •40189 •40086 •39984 •49545 •49474 •49403 ■43026 ■42915 ■42805 ■48720 ■48651 ■48583 •43783 •43670 •43558 •47856 ■47790 ■47724 ■44446 ■44331 •44217 ■46964 ■46901 ■46838 ■45013 ■44896 ■44780 i6-8 i6'9 17-0 •51482 •51406 •51330 •39883 •39783 •39683 •49333 •49263 •49194 •42695 •42586 •42478 •48515 ■48447 ■48380 •43446 •43335 •43225 •47659 •47594 •47529 ■44103 •43990 ■43878 ■46775 ■46712 ■46650 •44665 ■44551 ■44437 17-1 17-2 i7'3 •51255 •51180 •5 1 106 •39584 •39486 •39389 •49125 •49056 •48988 •42372 ■42266 ■42160 ■48313 ■48247 ■48181 •43116 •43008 •42901 •47465 ■47401 •47338 •43767 •43657 •43548 •46588 •46526 ■46465 ■44325 •44214 •44103 i7'4 17-5 17-6 •51032 •50959 •50886 ■39292 •39196 •39101 ■48920 ■48853 •48786 •42056 •41952 •41850 ■48II5 •48050 ■47985 ■42795 •42689 •42584 •47275 ■47212 •47150 ■43439 •43331 •43224 •46404 ■46344 ■46284 ■43993 •43884 •43776 177 17-8 17-9 ■50814 •50742 ■50670 •39006 •38912 ■38819 •48720 ■48653 •48587 •41748 •41646 •41546 •47921 ■47857 ■47793 •42480 •42377 ■42274 ■47088 ■47026 •46964 •43II9 •43014 •42910 ■46224 ■46165 •46106 •43669 •43562 •43456 i8-o i8-i i8-2 •50599 •50528 •50458 •38727 •3863s •38544 ■48522 •48457 •48392 •41446 •41347 •41249 ■47730 •47667 •47605 •42172 •42071 •4I97I •46903 ■46842 ■46782 •42807 ■42704 •42602 ■46047 ■45989 ■45931 •43351 •43247 •43144 i8-3 18-4 i8-5 •50388 •50319 •50250 •38454 •38364 •38275 ■48328 ■48264 ■48200 •4II5I •41054 ■40958 •47543 •47481 •47419 •4I87I •41772 ■41674 ■46722 ■46662 ■46603 ■42501 •42401 •42302 ■45873 •45815 •45758 •43041 ■42939 •42838 i8-6 187 i8-8 •50181 •50113 •50045 •38186 •38098 •3801 1 ■48137 ■48074 ■4801 1 •40863 •40768 •40674 •47358 ■47297 •47236 ■41577 •41481 •41385 •46544 ■46485 ■46426 •42203 •42105 •42007 ■45701 ■45644 •45588 ■42738 •42639 •42540 18-9 i9"o 19-1 •49977 •49910 •49843 •37925 •37839 •37754 •47949 ■47887 •47825 •40581 •40488 •40396 •47176 •47116 •47056 •41290 •4II95 •4IIOI •46368 •46310 •46252 •41910 •41814 •4I7I8 •45532 •45476 ■45420 •42442 ■42344 •42247 19*2 i9"3 1 9 '4 ■49777 •49711 •49645 •37669 ■37585 •37501 •47764 •47703 •47642 ■40304 •40214 •40124 •46997 •46938 •46879 •41008 ■40915 •40823 •4619s ■46138 •46081 •41623 •41529 ■41436 •45365 •45310 •45255 •42151 •42056 •41961 (45) V ^ I 5° 30° 45° 60° 90° X z X z X z X z X z b T> I ~b 1 1 1 b 1 I + 19-5 19-6 197 •22825 •22814 ■22802 •02821 •02819 •02817 •36409 ■36374 ■36339 •08288 •08276 •08264 •44199 ■44147 ■44095 •I4I72 •I4I47 •I4I23 ■48632 ■48569 ■48507 •19885 •19846 •19808 •51499 ■51429 ■51359 ■29937 ■29873 •29810 19-8 19-9 20'O •22791 •22779 •22768 •02815 •02813 •028II ■36305 •36270 ■36236 ■08253 ■08241 •08230 ■44043 ■43991 ■43941 •14098 •14074 •14050 ■48445 •48383 •48322 •19770 •19732 •19694 ■51290 ■51221 ■51153 •29747 ■29685 •29623 20'I 20'2 20-3 ■22756 ■22745 •22734 •02808 •02806 •02804 •36202 •36168 ■36134 •08218 •08207 ■08195 •43890 •43840 ■43789 •14026 •14002 •13978 •48261 •48200 •48140 ■19657 •19619 •19582 ■S1085 ■51017 ■50950 •29562 •29501 •29440 20"4 20-5 20"6 •22722 •227II •22700 •02802 •02800 •02798 •36IOI •36067 ■36034 •08184 •08173 ■08162 ■43739 ■43689 •43640 •I39S4 ■13930 •13907 •48079 ■48019 ■47959 •I9S45 ■19509 ■19473 ■50883 •50817 ■50751 •29380 •29320 •29261 207 20-8 20'9 •22688 •22677 •22666 •02796 ■02794 •02792 •36000 ■35967 ■35934 ■08151 •08140 •08129 ■43590 ■43541 ■43492 ■13883 •13860 •13837 ■47900 ■47842 ■47783 •19437 •19401 •19366 ■50685 •50620 •50554 '29202 •29143 •29084 2I"0 2I'I 2I"2 ■22655 ■22644 •22633 •02790 •02788 •02786 ■35901 •35868 ■3583s •08118 ■08107 •08096 ■43443 ■4339s ■43347 •13814 •13791 •13769 ■47725 •47667 •47609 •19330 •19295 •19260 •50489 ■50424 ■50360 •29026 •28968 •28911 21-3 21-4 21'5 •22622 •226II •22600 •02784 •02782 •02780 ■35803 ■35770 ■35738 •08085 •08075 •08064 ■43299 ■43251 ■43203 •13746 •13723 •13701 ■47552 ■47495 ■47438 •19225 •19191 •19156 •50296 ■50233 •50170 •28854 •28797 •28741 21'6 21-7 21-8 ■'22589 •22578 ■22567 ■02778 •02776 •02774 ■35706 ■35674 ■35642 ■08053 •08042 •08031 •43156 ■43109 •43062 •13679 ■13657 •1363s ■47382 ■47325 •47269 •19122 •19088 •19054 •50107 ■50045 ■49983 •28685 •28630 •28575 2 I "9 2 2'0 22-r ■22556. ■22545 ■22534 •02772 •02770 •02768 ■3561 1 ■35579 ■35547 •08021 •08010 •08000 ■43015 •42969 ■42923 •13613 ■13591 •13570 ■47213 ■47158 •47103 •19021 •18987 •18954 •49922 •49860 ■49799 •28520 •28465 •28411 22*2 22-3 2 2 "4 ■22524 ■22513 •22502 •02766 ■02764 ■02762 ■35516 ■35484 ■35453 •07989 •07979 •07969 •42877 •42831 •42786 •13548 •13526 •13505 •47048 ■46994 •46939 •18921 •18888 •18855 •49738 •49677 •49617 ■28357 •28303 •28250 22-5 22'6 22'7 ■22491 ■22481 ■22470 •02760 •02758 •02756 ■35422 •35391 •35360 •07958 •07948 ■07938 •42740 •42695 •42650 •13484 •13463 •13442 •46885 •46831 •46778 •18822 •18790 •18758 •49557 •49497 ■49438 •28197 •28144 •28092 22-8 2 2 "9 23-0 ■22459 ■22449 •22438 •02754 •02752 •02750 ■35330 ■35209 ■35269 •07927 •07917 •07907 •42605 ■42561 •42516 •13421 •13400 •13379 •46724 •46671 •46618 •18726 •18694 •18662 ■49379 •49320 •49262 •28040 •27988 ■27937 23-1 23-2 23"3 •22427 •22417 •22406 •02748 •02746 •02744 ■35239 ■35208 ■35178 •07897 •07887 .•07877 •42472 •42428 •42384 •13359 •13338 •13317 •46566 •46513 •46461 •18631 •18599 •18568 •49204 ■49146 •49089 •27886 ■27835 •27784 (46) V /8 120° I, 35" 140" 145° I 50° X z X z X z X z X z b b b b b b b b b b + 19-5 i9'6 197 •49580 •49515 ■49450 •37418 •37336 •37254 •47582 •47522 ■47462 •40034 •39945 •39857 •46821 •46763 •46705 •40732 •40641 •40551 •46024 •45968 •45912 •41343 •41251 •41 1 60 •45201 ■45147 ■45093 •41867 . '41774 ■41682 19-8 19-9 20-O •49386 ■49322 •49258 •37173 •37092 •37012 •47402 •47343 ■47285 •39770 •39683 •39596 •46647 •46590 •46533 •40462 •40373 •40285 ■45856 •45801 ■45746 ■41069 ■40979 •40889 ■45039 ■44986 •44933 •41590 •41498 ■41407 20'I 20'2 20-3 ■49195 •49132 '49069 •36933 •36854 •36775 •47226 •47168 •47110 •39510 •39425 •39340 •46476 •46420 •46364 •40197 •401 10 •40024 ■45691 ■45637 •45583 ■40800 ■40712 ■40624 •44881 ■44828 ■44776 •41317 ■41227 •41138 20'4 20"5 20 '6 '49007 •48945 •48883 •36697 •36619 •36542 •47053 •46996 •46939 •39256 •39172 •39089 •46308 •46253 •46198 ■39938 ■39853 •39768 ■45529 ■4S47S •45422 •40537 ■40450 •40364 ■44724 ■44672 ■44621 '41050. •40962 •4087s 207 ■20-8 20-9 ■48822 '48761 •48700 ■36465 •36389 36314 •46883 •46826 •46770 •39006 •38924 •38843 •46143 •46088 •46033 ■39684 •39600 ■39517 ■45369 ■45316 ■45263 •40278 •40193 ■40109 •44570 •44519 •44468 •40789 ■40703 •40617 2I-0 2I-I 21'2 •48640 •48580 •48520 •36239 •36165 •36091 •46714 •46659 ■46603 •38762 •38682 •38602 •45979 •45925 •45871 •39435 ■39353 •39272 •45210 ■45158 •45106 •40025 ■39942 •39859 •44417 •44367 •44317 •40532 •40447 •40363 21-3 21-4 21-5 •4^846 1 •48402 ■48343 •36017 •35944 ■35871 •46548 ■46493 ■46439 •38523 •38444 •38365 •45818 •45765 •45712 •39191 ■39111 ■39031 ■45054 •45003 ■44952 ■ -39777 ■39695 •39614 •44267 •44217 •44168 ■40280 •40197 ■401 15 21'6 217 21-8 •48285 •48226 •48168 •35799 •35727 •35656 < •46385 •46331 •46277 •38287 •38210 •38133 •45660 •45608 •45556 •38952 •38873 •38794 •44901 ■44850 •44800 •39533 •39453 •39373 •441 19 •44070 ■44021 •40033 ■39952 •39871 2 I '9 22'0 ,22'I •48110 ■48053 •47996 •35585 •35514 •35444 •46224 •46170 •46117 •38056 •37980 •37905 •45504 •45452 ■45401 •38716 •38639 •38562 •44750 •44700 •44650 •39294 •39215 ■39137 ■43972 '43924 ■43876 •39791 ■39711 •39-632 a2'a 22-3 i2'4 •47939 ■47883 •47826 •35374 •35305 •45236 •46064 •46012 •45959 •37830 •37755 •37681 •45350 •45299 •45248 ■38486 •38410 •38334 •44601 ■44552 ■44503 ■39059 ■38982 ■38905 ■43828 •43780 ■43733 "39553 •S9475 •39397 22"5 22'6 227 •47770 ■47715 •47659 •35168 •35100 •35033 ■45907 •45855 •45804 •37607 •37534 •37461 •45198 ■45148 •45098 •38259 •38184 •38110 •44454 •44405 ■44357 •38829 •38753 •38678 '43686 ■43639 ■43592 •39319 •39242 •39166 22-8 22"9 23-0 •47604 •47549 •47494 •34966 •34899 •34833 •45753 •45702 •45651 •37389 •37317 •37246 •45048 •44998 ■44949 •38036 •37963 •37891 ■44309 •44261 •44214 •38603 •38528 •38454 ■43545 •43499 . ^43453 •39090 •39014 ■38939 Z3-I 23-2 233 •47440 •47385 •47331 •34767 •34701 •34636 •45601 •45550 •45500 '37175 •37104 •37034 •44900 •44851 •44802 •37818 •37746 •37674 •44166 •441 19 •44072 •38380 ■38307 ■38234 •43407 •43361 •433 IS •38864 •38790 •38716 (47) V /8 15° 30° 45° 60° 90° X Z X z X z X z X z b b I b b b b b b b + 23'4 23'5 23-6 •22396 •2238s ■22375 •02742 •02740 •02739 •35148 •35118 •35088 •07867 ■07857 ■07847 •42341 •42297 ■42254 •13297 •13277 •13257 ' ^46409 ■46357 ■46306 •18537 ■18506 •18476 ■49031 ■48974 •48917 ■27734 •27684 •27634 237 23-8 23'9 •22364 •22354 •22343 •02737 ■02735 •02733 •35°59 •35029 ■35000 ■07837 •07827 ■07818 •42211 •42168 •42125 ■13237 •13217 •13197 •46254 •46203 •46152 •18445 •18415 •18385 •48861 •48804 •48748 •27585 •27536 •27487 24*0 24-1 24-2 •22333 ■22323 •22312 •02731 •02729 ■02727 ■34971 •34942 •34913 ■07808 ■07798 •07789 •42082 •42040 •41998 •J3177 •13158 •13138 •46102 ■46051 •46001 •18355 •18325 •18296 •48692 •48636 •48581 •27438 •27389 •27341 24-3 24-4 24-5 •22302 •22291 •22281 •02725 •02723 •02721 •34884 , "34855 •34826 •07779 •07769 ■07760 •41956 •41914 •41872 •13118 ■13099 •13080 ■45951 ■45902 ■45853 ■18266 ■18236 ■18207 ■48526 •48471 •48417 •27293 •27245 •27198 24-6 247 24-8 •22271 ■22260 •22250 •02720 •02718 •02716 •34797 •34769 •34740 ■07750 ■07741 •07732 •41830 •41789 •41748 ■13061 •13042 ■13023 ■45803 ■45754 ■45705 •18178 •18149 •18120 ■48363 •48309 ■48255 •27151 •27104 •27058 24-9 25-0 25-1 •22240 •22230 •22220 •02714 •02712 •02711 •34712 •34684 •34656 ■07722 •07713 ■07704 •41707 •41666 •41626 •13004 ■12985 •12967 ■ ^4565 7 ■ ^45609 •45561 •18092 •18063 •18035 ■48202 •48148 •48095 •27012 •26966 •26921 25-2 25'3 25-4 •22210 •22200 •22190 •02709 •02707 •02705 •34628 ■34600 ■34572 •07694 •07685 ■07676 •41585 •41544 •41504 •12948 ■12929 •12911 ■45513 ■45466 ■45418 •18007 •17979 •17951 ■ ^48042 ■47990 •47937 •26875 •26830 •26785 25-5 25-6 257 •22180 •22170 •22160 •02703 •02702 •02700 ■34544 ■34516 •34489 •07667 •07658 •07649 •41464 ■41424 ■41385 •12892 •12874 •12856 ■45370 •45323 •45276 •17923 •17896 •17868 •47885 •47833 •47782 •26740 •2669s ■26651 2S-8 25-9 26-0 •22150 •22140 •22130 •02698 •02696 •02694 •34461 ■34434 ■34407 ■07640 ■07631 ■07622 ■41345 ■41306 ■41267 ■12838 '12820 •12802 •45230 •45183 •45137 •17840 •17813 ■17786 •47730 ■47679 •47628 •26607 ■26563 ■26519 26'I 26-2 26-3 •22120 •22I1I •22IOI ■02693 ■02691 ■02689 ■34380 ■34353 ■34326 ■07613 ■07604 •07596 ■41228 ■41189 ■41 15 1 •12785 •12767 •12749 •45091 ■45045 ■44999 •17759 ■17732 ■17706 •47577 •47527 •47476 •26476 ■26433 •26390 26-4 26-5 26-6 •22091 •22081 ■22071 ■02687 ■02685 •02684 •34299 •34272 •34245 ■07587 ■07578 •07569 ■41112 ■41073 ■41035 •12732 •12714 •12696 •44954 •44908 ■44863 ■17679 ■17652 •17626 •47426 •47376 •47327 ■26347 ■26304 •26262 267 26-8 26'9 •22062 •22052 •22042 •02682 •02680 ■02678 •34219 •34192 •34166 •07561 •07552 •07543 ■40997 ■40959 ■40921 •12679 •12661 •12644 •44818 ■44773 ■44729 ■17600 •17574 •17548 •47277 ■47228 •47179 •26220 •26178 •26136 . 27*0 27-1 27-2 •22032 •22022 ■22013 ■02676 ■02675 •02673 ■34140 ■34113 •34087 ■07535 •07526 •07518 ■40883 •40846 •40808 •12627 •12610 ■12593 •44684 •44640 ■44596 •17522 •17496 •17471 •47130 ■47082 ■47033 •26094 •26053 •26012 (48) V 120° /3 + 23"4 23"S 23-6 23"7 23-8 23"9 24*0 24'I 24'2 24'3 24-4 24'5 24'6 247 24-8 24-9 25-0 25'I 25*2 2S"3 2S'4 25-5 25-6 257 25-8 25'9 26'0 26'I 26"2 26-3 26'4 26-5 26-6 267 26-g 26"9 zyo 27-1 27*2 •47277 ■47224 •47171 •47118 ■47066 ■47013 •46961 ■46909 ■46858 ■46806 •4675s ■46704 •46653 •46603 •46552 •46502 •46452 ■46402 ■46353 •46303 •46254 ■46205 ■46157 ■46108 ■46060 ■46012 •45964 •45917 ■45869 ■45822 •45775 •45728 •45681 •45635 •45588 •45542 •45496 •45450 •45405 •34571 •34507 ■34443 •34380 ■34317 •34254 •34191 •34129 •34067 ■34005 •33944 •33883 •33823 •33763 •33703 •33644 •33585 •33526 •33467 ■33409 •33351 •33293 •33236 •33179 •33122 ■33066 •33010 •32954 •32899 •32844 •32789 •32734 •32680 •32626 •32572 •32519 •32465 •32412 •32359 135° •45450 •45401 •45351 •45302 •45253 •45205 •45156 •45108 •45060 •45012 •44964 •44916 •44869 ■44822 •44775 •44729 ■44682 •44636 •44590 •44544 ■44498 •44452 •44407 ■44362 •44317 ■44273 ■44228 •44184 •44140 •44096 •44052 •44008 •43965 ■43922 ■43879 •43836 •43793 •43750 •43708 ■36964 •36895 •36826 •36757 ■36689 •36621 •36554 •36487 •36420 •36354 •36288 •36223 •36158 •36093 •36029 •35965 •35901 •35838 ■35775 ■35712 •35650 •35587 •35525 •35464 ■35403 •35343 •35282 •35222 •35162 ■35103 ■35044 •34985 •34927 •34868 •34810 •34752 •3469s •34638 ■34581 140° X T •44754 ■44706 ■44658 ■44610 ■44562 •44515 ■44468 ■44421 •44374 •44327 ■44281 •44235 •44189 •44143 •44098 ■44053 ■44008 ■43963 •43918 ■43873 ■43829 ■43785 •43741 •43697 ■43653 ■43610 •43567 •43524 ■43481 ■43438 ■43395 ■43353 ■4331 1 ■43269 ■43227 ■43185 ■43143 •43102 •43061 •37603 ■37532 •37462 ■37392 ■37322 ■37253 •37185 •37117 •37049 •36981 •36914 •36847 •36781 ■36715 •36649 •36584 •36519 •36454 •36390 •36326 •36262 •36199 •36136 •36074 •36012 •35950 •35888 ■35827 •35766 •35705 •35645 •35585 •35525 •35466 •35407 •35348 •35290 •35232 •35174 145° •44025 •43978 •43932 •43886 ■43840 ■43794 ■43748 ■43703 ■43658 ■43613 •43568 •43523 •43478 •43434 •43390 •43346 ■43302 •43258 •4321S •43172 •43129 •43086 •43043 •43000 •42958 •42916 •42874 •42832 •42790 •42748 •42707 •42666 •42625 •42584 ■42543 •42503 •42463 •42423 •42383 •38162 •38090 •38019 ■37948 ■37877 •37807 •37737 •37668 •37599 •37530 •37462 •37394 •37326 •37259 •37192 •37126 •37060 ■36994 ■36929 •36864 •36800 •36736 ■36672 •36609 •36546 •36483 •36420 •36358 •36296 ■36234 •36173 ■36112 •36051 •35991 ■35931 ■35871 ■35812 ■35753 •35694 150° •43270 ■43225 ■43180 ■43135 ■43091 ■43047 ■43003 ■42959 ■42915 ■42871 •42828 ■42785 •42742 •42699 ■42656 ■42614 ■42571 ■42529 •42487 •4244s •42403 •42362 ■42321 •42280 •42239 •42198 ■42157 •42117 •42076 •42036 •41996 •41956 •41916 ■41877 ■41837 ■41798 •41759 ■41720 ■41682 •38643 •38570 •38498 ■38426 ■38354 ■38283 •38212 •38141 •38071 •38001 ■37932 •37864 •37796 •37728 •37660 ■37593 ■37526 •37460 •37394 •37328 •37262 •37197 •37132 ■37067 •37003 ■36939 ■36876 ■36813 •36750 •36688 •36626 ■36564 •36502 ■36441 ■36380 •36320 •36260 •36200 •36141 (49) 17 V /8 + 27'3 27-4 27'5 27-6 277 27-8 27-9 28-0 28T 28-2 28-3 28-4 28-5 28-6 287 28-8 28-9 29'0 29'I 29'2 29'3 29-4 29"S 29'6 297 29-8 29-9 30-0 30-1 30-3 3=-3 30 "4 30-6 307 30-8 30-9 31-0 31 ■! 15° •22033 •21993 •21983 •21974 •21964 ■21954 ■21945 ■21935 •21926 •2I916 •21937 ■21897 •2x888 •21879 •21869 •21860 •21850 •21841 •21832 •21822 •21813 •21803 •21794 •21785 ■21775 •21766 "21757 •21748 '21738 •21729 '21720 ■21711 •21702 '21693 ■21684 ■21675 ■21666 •21657 ■21648 •02671 •02669 •02667 •02666 •02664 •02662 •02660 •02659 •02657 ■0265s •02654 ■02652 •02650 •02649 •02647 ■02645 ■02644 ■02642 ■02640 ■02639 ■02637 •02636 •02634 •02632 •02631 •02629 •02628 •02626 •02624 •02623 ■02621 ■02620 ■02618 ■02616 •02615 •02613 •02612 •02610 •02608 •34061 ■34035 •34009 ■33983 ■33958 ■33932 •33906 ■33881 ■33855 ■33830 ■33805 ■33780 ■33755 ■33730 ■33705 ■33681 ■33656 ■33631 ■33607 ■33582 ■33558 ■33533 ■33509 ■33485 ■33460 ■33436 ■33412 ■33388 ■33364 ■33340 ■33317 ■33293 •33269 •33246 •33222 ■33199 •33176 •33153 •33130 •07510 •07501 ■07493 •07485 •07476 •07468 •07460 •07451 •07443 •07435 •07426 ■07418 ■07410 ■07402 •07394 ■07386 •07378 •07370 •07362 •07354 ■07347 "07339 •07331 ■07323 •07315 •07308 •07300 •07292 •07285 •07277 •07269 ■07262 •07254 ■07247 •07239 •07232 •07224 ■07217 ■07209 45° X ~b •40771 •40734 •40697 •40660 •40624 •40587 •40550 •40514 •40478 ■40442 ■40407 •40371 ■40335 •40300 •40264 ■40229 •40194 ■40159 •40125 •40090 •40^55 •40021 •39986 ■39952 •39918 ■39884 ■39850 ■39816 ■39783 ■39749 •39715 •39682 ■39649 •39616 ■39583 •39551 •39518 ■39485 •39453 ■12576 •12559 ■12542 ■12525 •12509 •12492 •12475 •I24S9 •12443 ■12426 •12410 •12394 •12378 ■12362 •12346 •12330 ■12314 ■12298 •12282 •12267 •12251 •12235 ■12220 ■12204 •12189 •12174 •12159 •12144 •12129 •12114 •12099 •12084 ■12069 •12054 •12040 •12025 •12010 •11996 •11981 60° •44552 ■44508 ■44464 •44421 •44378 •44335 •44292 •44249 •44207 •44164 •44122 •44080 •44038 ■43997 ■43955 •43913 •43872 •43831 •43790 •43750 ■43709 •43668 •43628 •43588 ■43548 •43508 ■43469 ■43429 •43389 •43350 •433 1 1 •43272 •43233 ■43195 ■43156 •43118 •43079 •43041 •43003 •17445 •17419 •17394 •17369 •17344 ■17319 •17294 •17269 •17245 •17220 ■17195 •17171 ■17147 •17123 •17099 ■17075 •17052 •17028 •17004 •16981 •16957 •16934 •16911 •16888 •16865 •16843 •16820 •16797 •16775 •16752 •16730 •16707 •16685 •16663 •16641 •16620 •16598 •16576 ■16555 90° ■46985 ■46937 •46889 •46841 •46794 ■46746 •46699 •46652 ■46605 •46559 •46512 •46466 •46420 ■46374 •46329 •46283 •46238 ■46193 •46148 •46104 ■46059 •46015 ■45971 ■45927 ■45883 ■45839 ■45796 •45752 ■45709 ■45666 ■45623 ■45580 ■45537 ■45495 ■45453 ■45411 •45369 •45327 •45285 •25971 •25930 •25889 •25849 •25809 •25769 •25729 •25690 •25651 •25612 •25573 •25534 •25495 •25457 •25419 •25381 ■25343 •25305 •25268 •25230 ■25193 ■25156 •25119 •25082 •25046 •25009 •24973 •24937 •24901 •24865 •24829 ■24794 •24759 •24724 •24689 •24654 •24620 •24585 •24551 (so) v /8 120° I 35° I +0" ] 45° I 50° X z X z X z X z X z + 27-3 27-4 27-5 b b b I b b b b b b •45 35 9 •45314 •45269 •32307 •32255 •32203 •43665 •43623 •43581 •34525 •34468 ■34412 ■43020 •42979 •42938 •35117 •35060 •35003 ■42343 ■42303 •42264 •35636 ■35578 ■35520 ■41643 ■41604 ■41566 •36082 •36023 •35964 27-6 277 27-8 ■45224 •45180 •45135 •32152 •32100 •32049 •43539 •43498 •43456 ■34356 ■34301 •34246 '42897 ■42856 •42816 •34946 •34890 •34834 •42224 ■42185 ■42146 ■35463 ■35406 •35349 ■41528 ■41490 ■41452 ■35906 ■35848 •35790 27-9 28-0 28-1 •45091 •45047 •45003 •31998 •31947 •31897 •43415 ■43374 ■43333 ■34192 ■34137 •34083 •42776 •42736 •42696 ■34778 •34722 ■34667 •42107 ■42068 ■42029 ■35292 •35235 ■35179 •41414 ■41376 ■41339 ■35732 ■35675 ■35618 28-2 28-3 28-4 •44969 •44916 •44872 •31847 •31797 •31748 •43292 ■43252 •432 1 1 •34029 •3397s •33922 •42656 •42616 •42577 •34612 ■34SS7 •34502 ■41990 •41952 •41914 ■35123 ■35067 ■35012 •41301 ■41264 •41227 ■35561 ! ■35505 ■ ■35449 1 28-5 28-6 287 •44829 •44786 •44743 ■31698 •31649 •31600 •43171 ■43131 •43091 •33868 •33815 •33762 ■42538 ■42499 •42460 •34448 •34394 •34340 •41876 ■41838 ■41800 •34957 •34902 •34848 ■41 190 ■41153 •41 1 16 ■35393 •35338 ■35283 i 28-8 28-9 29*0 •44700 •44658 '44615 ■31551 •31502 •31453 •43051 •43012 •42972 •33710 •33658 •33606 •42421 •42382 ■42344 •34287 •34234 •34182 ■41762 ■41724 •41687 •34794 •34740 •34686 •41080 •41044 •41008 ■35228 : ■35173 ^ ■35118 ; 29'I 29'2 29"3 ■44573 ■44531 ■44489 •31406 •31358 •31311 ■42933 •42893 •42854 ■33554 •33503 •33451 •42306 •42268 ■42230 •34129 •34076 •34024 •41650 ■41613 ■41576 ■34633 ■34580 ■34527 •40971 ■40935 •40899 ■35064 ■35010 ■34956 29-4 29-5 29-6 •44447 •44405 •44364 •31263 •31216 •31169 •42815 ■42776 ■42737 •33400 •33349 •33299 •42192 ■42154 •42116 •33972 •33920 •33869 ■41539 ■41502 ■41465 ■34474 ■34421 ■34369 •40864 •40828 •40792 ■34902 ■34849 ■34796 297 29-8 29-9 •44323 •44282 •44241 •31122 •31076 •31029 •42699 •42660 •42622 ■33249 •33199 •33149 •42078 •42041 •42004 •33818 •33767 •33716 ■41428 ■41392 ■41356 ■34317 ■34265 ■34213 ■40757 •40722 •40687 ■34743 ■34691 ■34639 30-0 30-1 30-2 •44200 •44159 •44119 •30983 •30937 •30892 •42584 •42546 •42508 ■33099 ■33050 •33001 •41967 •41930 •41893 •33666 •33616 •33566 •41320 ■41284 ■41248 •34162 •341 1 1 •34060 •40652 •40617 ■40582 ■34587 ■34536 ■34484 30'3 30"4 3°"S •44078 •44038 •43998 •30846 •30801 •30756 •42470 ■42433 '42395 •32952 •32904 •32855 •41856 •41819 ■41783 •33516 ■33466 ■33417 ■41212 ■41176 •41 141 •34009 ■33959 '33909 ■40548 ■40513 •40479 ■34433 ■34382 ■34331 30-6 307 30-8 •43958 •43918 •43879 ■30711 ■30667 •30622 •42358 •42321 •42284 •32807 •32759 ■32711 ■41747 •41711 ■4167s ■33368 ■33319 •33270 •41 106 ■41071 •41036 ■33859 ■33809 ■33760 •40445 •4041 1 •40377 ■34281 ■34230 ■34180 30"9 31-0 3i"i •43839 •43800 •43761 •30578 •30534 •30490 •42247 •42210 •42173 •32664 •32616 •32569 •41639 ■41603 •41567 ■33222 •33173 ■33125 •41001 •40966 ■40931 ■33711 ■33662 ■33613 1 ■40343 ■40309 ■40275 ■34130 ■34080 , ■34031 1 (si) 17—2 V )8 ] S" 30° 45° 60° 90° X z X I z X z ~b X 1 z ~b X ~b z + 3i'2 3i'3 3i'4 •21639 •21630 •21621 •02607 •02605 •02604 ■33107 ■33084 •33061 •07202 •07194 ■07187 •39420 ■39388 ■39356 ■11967 •"953 •11938 •42965 •42928 •42890 •16533 •16512 ■16490 ■45244 •45202 •45161 •24517 •24483 •24449 31-5 31-6 317 •21612 •21604 ■2IS9S •02602 •02600 •02599 •33038 •33015 •32992 ■07180 ■07172 ■07165 •39324 •39292 •39260 ■11924 ■11910 •11896 •42852 •42815 •42778 ■16469 ■16448 ■16427 •45120 ■45079 ■45038 ■2441 S ■24381 •24347 31-8 31-9 32-0 •21586 ■21577 •21568 •02597 •02596 •02594 •32970 •32947 •32924 •07158 ■07151 •07144 •39229 •39197 •39165 •11882 •11868 •11854 •42741 •42704 •42667 •16406 ■16385 ■16364 •44998 •44957 •44917 •24314 •24281 •24248 32-1 32-2 32-3 •21560 •21551 •21542 ■02592 •02591 •02589 •32902 •32879 ■32857 ■07136 •07129 •07122 •39134 •39102 •39071 •11840 •11826 •11813 •42631 •42594 ■42557 ■16343 ■16323 •16302 •44877 ■44837 ■44797 •24215 •24182 •24149 32'4 32-5 32-6 ■2IS33 •21524 •21516 •02588 •02586 •02584 ■32834 •32812 ■32790 •07I1S •07108 •07101 •39040 ■39009 •38978 •11799 •11785 •11772 ■42521 •42485 ■42449 ■16281 ■16261 ■16240 ■44757 •44718 •44678 ■24117 ■24085 •24053 327 32-8 32-9 •21507 ■21498 •21490 •02583 •02581 •02580 •32768 ■32746 ■32724 ■07094 ■07087 ■07080 •38947 •38917 •38886 •11758 •I 1 744 •11731 ■42413 ■42378 ■42342 . -16220 •16200 •16180 ■44639 •44600 ■44561 ■24021 ■23989 ■23957 33-° 33"2 •21481 •21472 •21464 •02578 •02576 •0257s •32702 •32680 •32658 •07073 ■07066 ■07060 •38855 •38825 ■38794 •11717 •11704 ■11690 •42306 •42271 ■4223s •16160 •16140 •I6I20 ■44522 •44483 ■44444 ■23925 •23893 ■23861 33'3 33-4 33'5 ■2145s •21447 •21438 •02573 •02572 •02570 •32636 •32615 ■32593 •07053 ■07046 •07039 •38764 •38734 •38704 ■11677 ■11664 ■11650 •42200 •42165 •42130 •16101 •I608I •16061 •44406 ■44367 •44329 •23830 •23799 •23768 33'6 337 33-8 •21429 ■21421 •21412 ■02569 •02567 •02566 •32571 •32550 •32528 ■07032 ■07026 ■07019 •38674 •38645 •38615 ■11637 ■11624 •11611 •42095 •42060 ■42026 •16042 •16022 •16003 •44291 •44253 •44215 ■23737 ■23706 •23675 33-9 34'o 34-1 •21404 ■21395 •21387 •02564 •02563 •02561 •32507 ■32486 ■32464 ■07012 •07005 •06998 •38585 ■38556 •38526 •11598 ■1158S •11572 •41991 •41956 •41922 •15983 •15964 •1594s ■44177 •44140 •44102 •23645 •23615 •23585 34'2 34'3 34"4 ■21378 •21370 •21361 •02560 •02558 •02557 ■32443 ■32422 •32401 •06992 •06985 •06978 •38497 •38468 ■38439 •"559 •11547 ■11534 •41887 •41853 •41819 •15925 •15906 •15887 •44065 •44028 ■43991 •23555 •23525 •23495 34-5 34-6 347 ■21353 ■21345 •21336 ' -02555 ■02554 ■02552 •32380 •32359 •32338 •06972 •06965 •06958 •38410 ■38381 ■38352 •11521 •11509 ■I 1496 •41785 ■4^752 •41718 •15868 •15849 •I583I ■ ^43954 ■43917 •43880 •23465 •23435 •23405 34-8 34-9 35'° •21328 •21319 ■21311 ■02551 •02549 •02548 ■32318 •32297 •32276 ■06952 •06945 ■06939 ■38324 ■38295 •38266 ■I 1483 •11471 •11458 •41685 •41651 •41618 •15812 ■15793 ■1577s . •43844 ■43807 •43771 •23375 •23346 •23317 (S2) V /8 120° I 35° 140° 145° I 50° X z X z X z X z X z b b 'b b b b b b b b + 31-2 3i'4 •43722 ■43683 ■43645 •30447 •30403 •30360 •42137 ■42100 ■42064 •32522 •32475 •32429 •41531 ■41496 ■41461 •33078 •33030 •32983 •40896 •40862 •40828 •33564 ■33516 •33468 ■40242 ■40208 ■4017s •33981 ■33932 ■33883 31-5 31-6 317 •43606 ■43568 •43529 •30317 ■30274 •30231 •42028 •41992 ■41956 •32382 •32336 •32290 •41425 ■41390 ■4135s •32936 ■32889 •32842 •40794 •40760 •40726 •33420 ■33372 ■33324 ■40142 ■40109 ■40076 •33835 ■33787 ■33739 31-8 3i'9 32-0 •43491 ■43453 ■43415 •30189 •30146 •30104 ■41920 ■41884 ■41849 •32244 •32199 ■32154 ■41320 ■41285 ■41251 •32795 ■32748 ■32702 •40692 ■40658 •40625 •33277 ■33230 •33183 ■40043 •40010 ■39977 ■33691 •33644 •33596 32-1 32-2 32'3 •43377 •43340 •43302 •30062 •30020 •29979 •41813 •41778 •41743 •32109 ■32064 ■32019 ■41216 ■41182 ■41147 •32656 •32610 •32564 •40591 •40558 •40525 •33136 •33089 •33043 ■39945 ■39912 ■39879 •33549 •33502 •33455 32'4 32-5 32-6 •43264 •43227 •4319° •29937 ■29896 ■2985s •41708 ■41673 •41638 •31975 •31930 ■31886 •41113 ■41079 ■41045 '32518 ■32473 ■32428 •40492 •40459 •40426 •32997 •32951 ■32905 ■39847 ■3981S ■39783 •33409 •33362 •33315 327 32-8 32-9 •43153 •431 16 •43°79 •29814 •29773 •29733 •41603 •41569 •4153s •31842 •31798 •31755 ■41011 •40977 •40944 '32383 ■32338 ■32294 •40393 •40360 ■40327 •32859 •32814 ■32769 ■39751 •39720 •39688 •33269 •33223 ■33178 33"° 33'i 33'2 '43043 •43006 •42970 •29692 •29652 •29612 ■41501 •41466 ■41432 •31712 •31669 ■31626 '40911 ■40877 •40844 ■32250 ■32206 ■32162 •40295 •40262 ■40230 •32724 ■32679 ■32634 ■39656 ■39625 ■39593 •33133 ■33087 ■33042 33'3 33"4 33'S ■42934 •42898 ■42862 •29572 •29532 •29492 •41398 ■41364 •41330 •31583 •31541 '31498 ■40811 '40778 •40745 . •32118 ■32075 •32032 •40198 ■40166 ■40134 •32590 ■32546 •32502 •39562 ■39531 ■39500 ■32997 ■32953 ■32908 33-6 337 33-8 •42826 •42790 ■4275s ■29453 •29414 •29375 •41297 •41263 •41230 •31456 •31414 •31372 ■40712 •40679 •40647 •31989 •31946 •31903 •40102 ■40070 •40038 •32458 •32415 •32371 ■39469 ■39438 ■39408 ■32864 •32820 ■32776 33'9 34'o 34-1 •42719 •42683 •42648 •29336 •29297 •29259 •41196 •41163 •41 1 30 •31330 •31288 ■31246 '40615 •40583 •40551 •31860 •31818 •31776 •4D006 ■3997s •39943 •32328 •32285 '32242 ■39377 •39346 ■39316 •32732 ■32688 •32645 34'2 34'3 34'4 •42613 •42578 •42543 ■29220 •29182 •29144 •41097 ■41064 ■41031 •31205 ■31163 ■31122 '40519 •40487 ■40455 •31734 ■31692 •31650 •39912 ■39881 •39850 •32199 •32157 ■32114 •39285 •39254 ■39224 •32601 ■32558 ■32515 34-5 34-6 347 •42508 ■42473 ■42439 •29106 •29068 •29031 •40998 ■40965 ■40933 •31082 ■31041 •31001 •404'23 •40391 •40359 •31608 •31567 ■31526 •39819 •39788 •397s 7 •32072 •32030 •31988 ■39194 ■39164 ■39134 •32472 ■32430 ■32387 34-8 34-9 35-° ■42404 ■42369 ■4233s •28993 •2895s •28918 •40900 •40868 •40836 •30961 •30921 •30881 •40327 •40296 •40265 •31485 •31444 •31403 •39726 •3969s •39665 •31947 •31905 •31864 •39105 •39075 ■39045 •32345 ■32303 •32261 ii^) V ! I 5° 30° 45° 60° 90° X I z I X b z ~b X 1 z b X z ~b X 1 z b i + j 3S'i 35'2 35 '3 •21303 ■21295 •21286 ■02547 •02545 •02544 •32255 •3223s •32214 •06933 •06926 •06920 •38238 •38209 •38I8I •11446 •11433 •11421 •41585 •41552 •4I5I9 •15756 •15738 •15720 •43735 •43699 •43663 ■23288 ■23259 •23230 35 '4 35-5 35-6 •21278 •21270 •21262 •02542 •02541 ■02540 •32194 •32174 •32153 •06914 •06907 •06901 •38152 •38124 •38096 •I 1408 •11396 •I 1 384 •41486 •41453 •4I42I •15702 •15684 •15666 ■43627 •43591 •43555 ■23201 •23172 •23144 i 357 35-8 35 "9 ■21253 •21245 •21237 •02538 ■02537 ■02535 •32133 •32113 •32093 •06895 •06888 •06882 •38068 •38040 •38012 •11371 •11359 •"347 •41388 •41356 •41323 •15648 •15630 •I56I2 •43520 •43484 •43449 •23"S •23087 •23059 36-0 36-1 362 •21229 •21220 •21212 ■02534 •02533 •02531 •32073 •32053 •32033 •06875 •06869 •06862 •37984 •37957 •37929 •11335 ■11323 •11311 •41291 •41259 •41227 •15594 •15576 •I5S59 •43414 •43379 •43344 •23031 •23003 ■2297s 36-3 36-4 36-5 •21204 •21196 •21188 •02530 •02528 •02527 •32013 •31993 ■31973 •06856 •06850 •06844 •37901 •37874 •37846 •11299 •11287 •1127s •4119s •4II63 •4II3I •15541 •15523 •15506 •43309 •43274 •43240 •22947 •22920 •22892 36-6 367 36-8 •2 1 180 •21172 •21164 •02526 •02524 •02523 ■31954 ■31934 ■31914 •06837 •06831 •06825 •37819 •37791 •37764 •11262 •11251 •11240 •41099 •41068 •41036 •15488 •15471 •15453 •43205 •43171 ■43136 •22864 •22837 •22810 36-9 3T° 37'i •21156 •2 1 148 •2 1 140 •02521 •02520 •02519 •31894 •31875 •31855 •06819 •06813 •06807 •37737 •37710 •37683 •11228 •11216 •11205 •41005 •40974 •40943 •15436 •15419 ■15402 •43102 •43068 ■43034 •22783 •22756 •22729 37-2 37"3 37'4 •21132 •21124 •21116 •02517 •02516 •02514 •31836 •31816 •31797 •06801 •06795 •06789 •37656 •37630 •37603 •11193 •11181 •11170 •40912 •40881 •40850 ■15385 •15368 •15351 •43000 •42966 ' ^42932 •22702 •22675 •22649 37-5 37-6 377 •21108 •2 1 100 •21093 •02513 •02512 •02510 •31778 •31758 •31739 •06783 •06777 •06771 •37576 •37550 •37523 •11158 •11147 •"135 •40819 •40788 •40758 •15334 •15317 •15300 •42899 •42865 •42832 •22622 •2259s •22569 37-8 37-9 38-0 •21085 •21077 •21069 •02509 •02507 ■02506 •31720 •31701 •31682 •06765 •06759 •06753 •37497 •37471 •37445 •11124 •11113 •IIIOI •40727 •40697 •40667 •15284 •15267 •15250 •42799 •42766 •42733 •22542 •22516 •22490 38-1 38-2 38-3 •21061 •21054 •21046 •02505 •02503 •02502 •31663 •31644 •31625 ■06747 •06741 ■06735 •37419 •37393 •37367 •11090 •11079 •11067 •40637 •40607 •40577 •15234 •15217 •15200 •42700 ■42667 •42634 •22464 •22438 •22412 38-4 38-5 38-6 ■21038 •21030 •21022 •02500 •02499 •02498 •31606 •31587 •31569 •06729 •06723 •06717 •37341 •37315 ■37290 •H056 •11045 •11034 •40547 ■40517 ■40487 •15184 •15167 •15151 •42601 ■42569 •42536 •22386 •22360 •22335 387 38-8 38-9 •21015 •21007 •20999 •02496 ■02495 •02493 •31550 •31531 •31513 •06712 •06706 •06700 •37264 •37238 •37213 ■11023 ■11012 •IIOOI •40458 •40428 •40398 •15134 •15118 •15102 ■42504 ■42472 ■42440 •22309 •22283 ■22258 (54) V /3 120° 135° 140° 145° 150" X z X z X z X z X z b b b b b I b b b b + 3S'i 35'2 35"3 ■42301 •42267 ■42233 ■28881 •28844 ■28807 ■40804 •40772 ■40740 •30841 ■30801 ■30762 •40233 •40202 •401 7 1 •31362 •31322 •31282 ■39634 ■39604 ■39574 •31823 ■31782 •31741 •39015 •38986 •38956 •32220 •32178 •32136 35'4 35-5 35-6 ■42199 ■42165 •42131 ■28771 •28734 •28698 •40708 ■40677 ■40645 •30722 •30683 •30644 ■40140 ■40109 ■40078 •31242 •31202 •3II62 •39544 ■39514 ■39484 •31701 ■31660 ■31620 •38927 ■38898 ■38869 •32095 •32054 •32013 357 35-8 35-9 ■42098 ■42064 ■42031 •28662 ■28626 •28590 ■40614 •40583 •40551 •30605 •30566 ■30528 •40047 •40016 •39986 •3II22 ■31083 ■31044 •39454 ■39424 •39394 •31579 ■31539 ■31499 ■38840 ■3881 1 ■38782 •31972 •31932 •31891 36-0 36-1 36-2 ■41998 •41965 •41932 ■28554 ■28518 •28483 •40520 •40489 •40458 •30489 •30451 •30413 •39956 ■39925 ■39895 •31005 •30966 •30927 •39365 •39335 •39306 ■31459 ■31419 ■31380 ■38753 ■38725 •38696 ■31859 •31810 •31770 36-3 36-4 36-5 ■41900 ■41867 •41834 •28447 •28412 •28377 ■40427 ■40396 •40365 •30375 •30337 •30299 •39865 •39835 •39805 •30888 •30850 •30812 •39276 •39247 •39218 •31340 •31301 •31262 ■38667 ■38638 •38610 ■31730 •31690 •31650 36-6 36-7 36-8 ■41802 ■41769 •41737 •28342 •28307 •28273 •40335 •40304 •40274 •30261 •30224 •30186 •39775 ■39745 •39715 •30774 •30736 •30698 •39189 •39160 •39131 •31223 •31185 •3 1 146 ■38581 ■38553 ■38525 ■31611 •31572 ■31533 36-9 37-0 37"i •41704 •41672 •41640 ■28238 •28204 •28169 •40244 •40214 •40183 •30149 •30112 •30075 •39685 •39656 •39626 •30660 •30622 •30584 •39102 •39074 •39045 •31108 •31070 ■31032 ■38497 ■38469 ■38441 •31494 ■31455 ■31417 37'2 37-3 37-4 •41608 •41576 •41544 •2813s •28101 •28067 • •40153 ■40123 ■40093 •30038 •30002 •29965 •39597 •39568 •39539 •30546 •30509 •30472 •39017 •38988 ■38960 •30994 ■30956 •30919 ■38414 ■38386 •38358 •31378 ■31340 •31302 37'S 37-6 377 •41512 •41481 •41449 •28033 •27999 •27966 •40063 •40034 •40004 ■29929 •29893 •29857 •39510 •39481 •39452 ■30435 •30398 •30361 •38932 •38903 •38875 •30881 ■30843 •30806 •38330 •38303 ■38275 •31264 •31226 •31189 37-8 37-9 38-0 •41418 •41386 •41355 •27932 •27899 •27866 •39975 •39945 •39916 •29821 •29786 •29750 •39423 •39394 •39366 ■30325 ■30289 ■30253 •38847 •38819 •38791 •30769 •30732 ■30695 •38248 ■38221 •38194 •31151 •31113 ■31075 38-1 38-2 38-3 •41324 ■41293 ■41262 ■27833 •27800 •27767 •39887 •39857 •39828 •29714 •29679 •29643 •39337 •39309 •39280 •30217 •30I8I ■30145 •38763 •38735 •38707 •30658 •30622 •30585 •38167 •38141 •38II4 ■31038 •31001 ■30964 38-4 38-5 38-6 , -41231 •41200 •41 1 70 •27735 •27702 ■27670 •39799 •39770 •3974i •29608 •29573 •29538 •39252 •39224 •39196 •30109 •30074 •30038 •38679 •38652 •38624 •30548 •30512 •30476 •38087 •38060 . ^38034 •30927 •30890 ■30854 387 38-8 38-9 •41 139 •41 109 ■41078 •27637 •27605 •27573 ■39713 •39684 •39656 ■29503 •29469 •29434 •39168 •39140 •39112 •30003 •29967 •29932 •38597 •38570 •38543 ■30440 ■30405 •30369 •38007 •37980 •37953 •30817 •30781 •30745 (55) V /8 + 39'o 39'i 39"2 39"3 39'4 39'5 39"6 397 3r8 39'9 4o'o 40'i 40'2 40'3 40-4 40-5 4o'6 407 40-8 40-9 4i'o 41-1 41'2 4i'3 41 "4 41-5 4i'6 417 41-8 41-9 42*0 42'I 42'2 42-3 42-4 42 "S 42*6 427 42-8 15° •20991 •20983 •20976 •20968 •20960 ■20952 •20945 •20937 •20929 •20922 •20^14 •20906 •2( •20891 •20884 •20876 •20868 •20861 ■20853 •20846 •20838 •20831 •20823 •20816 •20808 •20801 ■20793 •20786 •20778 •20771 •20764 •20756 •20749 •20741 •20734 •20727 •20719 •20712 ■20705 •02492 •02491 •02489 •02488 •02486 •02485 •02484 •02482 •02481 •02479 •02478 •02477 ■02475 •02474 •02472 •02471 •02470 ■02468 •02467 •02465 •02464 •02463 •02461 •02460 ■02458 ■02457 •02456 •02454 ■02453 ■02452 ■02451 ■02449 •02448 •02447 •02446 •02444 •02443 •02442 •02441 30° ■31494 ■3147s ■31457 ■31438 •31420 •31401 ■31383 ■31365 ■31346 ■31328 •31310 •31292 ■31274 ■31256 ■31238 •31220 •31202 ■31185 ■31167 ■31 149 ■31131 •31114 •31096 •31078 •31061 ■31043 ■31025 •31008 •30990 ■30973 ■30956 ■30938 •30921 •30904 ■30887 •30870 •30853 ■30836 •30819 z T> •06694 •06688 •06683 •06677 •06671 •06665 •06660 •06654 •06648 •06643 •06637 •06631 •06626 •06620 •06614 •06609 •06603 •06598 •06592 ■06587 •06582 •06576 •06571 •06565 •06560 •06555 •06549 ■06544 ■06538 ■06533 •06528 ■06522 •06517 ■065 1 1 •06506 •06501 •0649s •06490 ■06485 45° •37187 •37162 ■37136 •37111 •37086 ■37061 •37036 •37011 •36986 •36961 •36936 •36911 •36887 •36862 ■36837 ■36813 •36788 •36764 ■36739 ■36715 •36691 •36667 ■36643 ■36619 •3659s •36571 •36547 •36524 ■36500 ■36477 ■36454 ■36430 •36407 •36384 •36361 •36338 •363 IS ■36292 ■36269 •10990 •10979 •10969 •10958 •10947 •10936 •10925 •10915 •10904 •10893 •10882 •10872 •10861 ■10850 ■10840 ■10829 •10818 •10808 ■10797 •10787 ■10777 •10766 ■10756 •10746 ■10736 ■10726 •10716 ■10706 ■10696 ■10686 •10676 ■10666 ■10657 ■10647 ■10637 ■10627 ■10617 ■10608 •10598 60° •40369 •40339 •40310 •40281 •40252 •40223 •40194 •40165 ■40137 •40108 •40079 ■40051 •40022 ■39994 ■39965 ■39937 •39909 ■39881 ■39853 •39825 •39797 ■39769 ■39742 ■39714 ■39659 ■39631 •39604 ■39577 ■39550 ■39523 ■39496 ■39469 •39442 •39416 •39389 •39362 •39336 •39309 •15086 •15070 •15054 •15038 •15022 ■15006 •14990 •14975 •14959 •14943 ■14928 •14912 ■14897 ■14881 ■14866 ■14851 •1483s ■14820 •14805 •14790 •I477S •14760 ■I474S ■14730 •14715 •14700 ■14685 •14671 •14656 •14641 •14627 •14612 •14598 •14584 ■14569 •14555 •14541 •14526 •14512 90° •42408 •42376 •42344 •42312 •42280 •42249 •42217 •42186 •42155 •42124 •42093 •42062 •42031 •42000 •41970 ■41939 •41909 •41878 ■41848 •41818 •41787 ■41757 •41727 •41697 •41667 ■41637 •41607 •41578 •41548 •41519 ■41489 ■41460 •41430 ■41401 •41372 ■41343 •41314 ■41285 ■41256 •22233 •22208 •22183 •22158 ■22133 ■22108 ■22084 •22059 •22034 ■22010 •21986 •21962 •21938 •21914 •21890 ■21866 ■21842 •21818 •21795 •21771 •21747 •21724 ■21700 ■21677 •21653 •21630 •21607 •21584 •21561 •21539 •21516 •21493 •21471 '21448 •21425 •21403 •21381 •21358 •21336 (56) iS 120" 135° 140° 145° 150° X z X z X z X z X z 1 b •27540 •27509 ■27477 b b J b b b b b + 39'o 39-1 39-2 •41048 •4IOI8 •40987 •39627 ■39599 ■39570 •29400 •29366 •29332 •39084 •39056 •39028 ■29897 •29862 •29827 •38516 •38489 ■38462 •30334 •30299 •30263 •37927 •37901 •37874 •30709 •30674 •30638 39'3 39'4 39-5 ■40957 •40927 •40897 •27445 ■27414 ■27382 •39542 ■39513 •39485 ~ ^29298 •29264 •29230 •39000 •38973 •38946 ■29792 •29758 •29724 •38435 ■38408 •38382 •30228 •30193 ■30158 •37848 •37822 ■37796 •30602 •30566 ■30531 39'6 397 39-8 •40868 •40838 •40808 ■27351 ■27319 ■27288 •39457 ■39429 ■39401 •29196 •29163 •29129 ■38918 •38891 •38864 •29690 •29656 •29622 •3835s ■38328 •38302 •30123 •30088 •30054 •37770 •37745 •37719 ■30496 ■30461 •30426 39'9 4O'0 4o'i •40779 ■40749 •40720 •27257 •27226 •27195 ■39373 ■39346 •39318 •29096 •29063 •29030 •38837 ■38810 •38783 •26588 •29554 ■29520 •38275 •38249 •38222 ■30019 •29985 •29951 ■37693 ■37667 ■37642 ■30391 ■30356 •30322 40'2 40-3 40-4 •40691 ■40661 ■40632 •27165 •27134 •27103 •39290 •39263 •39235 •28997 •28965 •28932 •38756 ■38729 •38702 ■29487 •29453 ■29420 •38196 ■38170 "38144 •29917 •29883 •29849 •37616 ■37590 •37565 •30287 •30252 •30218 40'S 40'6 407 •40603 •40574 ■40545 •27073 •27043 •27013 •39208 ■39181 ■39154 •28899 •28867 •28834 •38676 ■38649 •38622 ■29387 •29354 ■29321 •38118 ■38092 •38066 •29815 •29782 •29748 •37540 ■37514 ■37489 •30184 •30150 •301 16 40-8 ' 40-9 4i'o ■40517 •40488 ■40459 •26983 •26953 •26923 ■39127 ■39100 ■39073 •28802 •28770 •28738 ■38596 ■38569 •38543 ■29288 '29255 ■29223 •38040 •38014 ■37989 •29714 •29681 •29648 •37464 •37439 •37414 •30083 •30049 •30015 41-1 41-2 41-3 ■40431 ■40402 ■40374 •26894 •26864 •26834 •39047 •39020 •38993 •28705 •28673 •28641 •38516 •38490 •38464 •29190 ■29158 •29126 •37963 •37937 •37912 •29615 •29582 •29550 •37389 •37364 •37340 •29982 •29948 ■29915 41-4 41-5 41-6 •40346 ■40317 ■40289 •26805 ■26775 •26746 •38967 •38940 •38914 •^610 ■28578 ■28547 •38438 •384 J 2 •38386 •29094 •29062 •29030 •37887 •37862 •37836 ■29517 •29484 •29452 ■37315 •37290 ■37265 •29882 •29849 •29S16 417 41-8 4i'9 ■40261 •40233 •40205 •26717 •26688 •26659 •38887 ■38861 ■38834 •28516 ■28485 ■28454 •38360 •38334 •38309 •28998 •28966 •28935 •37811 ■37786 •37761 •29419 •29387 •29355 •37240 •37216 •37192 ■29784 ■29751 •29718 42 'o 42-1 42-2 •40177 •40149 •40122 •26630 •26602 •26573 •38808 •38782 ■38756 •28423 •28392 •28362 •38284 •38258 •38233 •28903 •28871 •28840 ■37736 ■37711 •37686 •29323 •29291 •29260 •37168 •37143 ■37119 •29685 •29653 •29620 42-3 42-4 42-5 ■40094 ■40066 •40039 •26544 •26516 •26487 ■38730 •38704 •38678 •28331 •28300 •28270 •38207 •38182 •38157 •28809 •28778 •28747 •37661 •37636 •37612 •29228 •29196 •29165 •37095 ■37071 ■37047 •29588 •29556 •29524 42'6 427 42-8 •4001 1 •39984 ■39957 •26459 •26431 •26403 •38652 •38627 •38601 •28239 •28209 •28179 •38132 •38107 •38080 •28716 •28685 •28654 ■37587 ■37562 •37538 •29134 •29102 •29071 ■37023 •37000 •36976 •29492 •29461 •29429 (57) 18 V 15° /3 + 42 '9 43 'o 43'i 43'2 43'3 43 '4 43 'S 43 "6 437 43-8 43"9 44-0 44-1 44-2 44'3 44"4 44'S 44-6 447 44-8 44"9 45 "o 45'i 45'2 45 "3 45 '4 45 '5 45^6 457 45-8 45 '9 46'o 46T 46'2 46-3 46-4 46'S 46-6 467 X 1 •20698 •20691 •20683 •20676 •20669 •20662 •20655 •20647 •20640 •20633 •20626 •20619 •20611 •20604 •20597 •20590 ■20583 •20576 •20569 •20562 •2°555 •20548 •20541 ■20534 •20527 •20520 ■20513 •20506 •20499 ■20492 ■20485 •20478 •20471 •20464 ■20457 ■20450 •20443 •20436 •20430 •02440 ■02438 ■02437 ■02436 ■02435 ■02434 •02432 •02431 •02430 •02429 •02428 •02426 •02425 •02424 ■02423 •02422 ■02420 ■02419 ■02418 ■02417 •02416 ■02414 ■02413 ■02412 ■02411 ■02410 ■02408 ■02407 •02406 ■02405 •02404 ■02402 •02401 ■02400 ■02399 •02398 •02396 •02395 •02394 30 X I ■30802 ■30785 •30768 •30752 ■30735 •30718 ■30701 •30684 ■30668 ■30651 ■30635 •30618 •30601 ■30585 ■30568 ■30552 ■30536 ■30519 ■30503 ■30487 ■30471 ■30455 ■30439 ■30423 •30407 ■30391 ■30375 ■30359 ■30344 •30328 •30312 ■30296 ■30281 ■30265 '30249 ■30234 •30218 •30202 •30186 •06480 ■06475 •06469 •06464 •06459 ■06454 •06449 •06444 '06439 ■06434 '06429 ■06424 •06419 •06414 •06409 •06434 •06399 ■06394 •06389 •06384 •06379 ■06374 •06369 ■06365 •06360 ■06355 ■06350 •06346 •06341 ■06336 ■06331 ■06326 ■06322 ■06317 •06312 •06307 •06302 •06298 ■06293 45° •36246 •36223 •36200 •36177 ■36155 •36132 ■36109 ■36087 •36064 ■36042 ■36019 ■35997 ■35975 ■35952 ■35930 ■35908 ■35886 •35864 ■35842 ■35821 ■35799 ■35777 ■35755 ■35734 ■35712 ■35690 ■35669 ■35647 •35626 ■35604 ■35583 •35562 ■35541 ■35520 ■35499 ■35478 ■3545 7 ■35436 ■35416 •10588 •10578 •10569 ■10559 ■10549 ■10539 •10530 •10520 •10510 •10501 •10491 •10482 •10472 •10463 ■10453 •10444 ■10435 •10425 ■10416 ■10407 •10398 •10389 ■10380 ■10371 ■10362 ■i°353 ■10344 ■10335 ■10326 •10317 •10308 •10299 •10290 •10282 •10273 •10264 •10255 •10246 •10238 60° •39282 ■39256 •39229 •39203 ■39177 ■39151 ■39125 ■39099 ■39074 ■39048 •39022 "38997 ■38971 •38946 ■38921 ■38895 ■38870 ■38845 ■38819 ■38794 ■38769 ■38744 ■38719 ■38694 •38670 ■38645 •38620 ■38596 ■38571 ■38546 •38522 ■38497 ■38473 ■38449 ■38424 •38400 ■38376 ■38352 ■38328 •14498 ■14483 •14469 ■I44S5 ■14441 •14427 ■14413 ■14399 ■14385 ■14372 ■14358 ■14344 ■14331 ■14317 ■14303 •14290 ■14276 ■14263 '14249 ■14236 •14222 •14209 •14196 •14182 •14169 •14156 ■14143 •14130 •14117 •14104 •14091 ■14078 ■14065 •14052 ■14040 •14027 •14014 •14001 •13988 90° ■41228 ■41199 ■41 1 70 •41 142 •41113 ■41085 •41057 •41029 ■41001 •40973 •40945 ■40917 ■40890 ■40862 •40834 •40807 •40779 •40752 •40724 •40697 •40670 •40643 ■40616 ■40589 •40562 •40536 ■40509 ■40482 •40456 ■40429 •40402 ■40376 ■40350 •40323 •40297 •40271 ■40245 •40219 •40193 •21314 •21292 •21270 •21248 •21227 •21205 •21183 •21161 •2 1 140 ■21118 ■21096 •21075 •21054 •21032 •21011 •20990 ■20969 •20948 •20927 •20906 •20886 •20865 ■20844 ■20824 •20803 •20782 •20762 •20742 •20721 ■20701 ■20681 ■20661 ■20641 •20621 •20601 •20581 •20561 •20542 •20522 (58) V I20° iS 135° + 42-9 43'° 43"i 43'2 43"3 43'4 43"S 43"6 437 43-8 43"9 44-0 44" I 44-2 44"3 44"4 44'5 44-6 447 44-8 44"9 45'° 45-1 4S'2 45 "3 45 '4 4S'5 45 '6 457 45-8 45 "9 46"o 46'! 46"2 46-3 46 "4 46-5 46-6 467 X 1 ■39930 ■399°3 •39876 ■39849 ■39823 ■39796 ■39769 ■39743 •39716 ■39689 •39663 •39636 •39610 ■39584 ■39557 ■39531 ■395°5 •39479 •39453 •39427 ■39401 ■39376 ■39350 •39325 •39299 •39274 ■39249 •39223 •39198 ■39173 ■39148 ■39123 •39098 •39373 •39048 •39023 •38999 ■38974 •28950 z b ■2637s ■26346 •26320 •26292 ■26264 ■26237 •26209 •26181 ■26154 •26126 •26399 •26072 •26045 •26318 ■25992 •25965 •25938 •25912 •25885 ■25859 •25833 •25807 •25780 ■25754 •25728 •25702 •25676 •25650 •25625 •25599 •25574 •25549 •25523 ■25498 ■25473 ■25448 •25423 •25398 •25373 X 1) ■3857s ■3855° ■38524 ■38499 ■38473 •38448 •38423 ■38398 ■38373 ■38348 ■38323 •38298 ■38274 ■38249 •38224 ■38200 ■38175 ■38151 •38126 ■38102 •38077 •38053 •38029 ■38005 •37981 ■37957 ■37933 •37909 ■37885 •37861 •37838 •37814 •37790 •37767 •37743 •37720 ■37697 ■37673 ■37650 140" •28149 ■28119 ■28089 ■28059 ■28029 ■28000 ■27970 ■27941 •27911 •27882 ■27853 "27824 ■2779s •27766 •27738 •27709 •27680 ■27652 •27623 ■27595. ■27567 •27539 ■27511 •27483 •2745s '27427 '27399 '27372 •27344 •27317 •27289 •27262 '2723s •27208 •27181 ■27154 •27127 •27100 •27074 ■38057 ■38032 •38007 •37982 ■37957 ■37932 •37908 •37883 ■37859 ■37834 ■37810 •37786 ■37761 •37737 ■37713 ■37689 ■37665 •37641 ■37617 ■37593 ■37569 ■37546 •37522 ■37498 '37475 ■37451 •37428 ■37405 •37381 ■37358 ■3733s ■37312 ■37289 '37266 ■37243 •37220 •37197 ■37174 •37152 ■28624 ■28593 •28562 ■28532 ■28502 •28472 ■28442 ■28412 ■28382 ■28352 •28323 ■28293 ■28263 ■28234 ■28205 •28176 ■28147 •28118 ■28089 •28060 ■28031 •2800Z ■27974 ■27946 •27917 •27889 ■27861 ■27833 ■27805 ■27777 '27749 ■27721 '27693 •27666 •27638 •27610 •27583 ■27556 •27529 145" X 1) ■37514 ■37490 ■37465 '37441 ■37417 ■37393 ■37369 ■37345 ■37321 •37297 •37273 •37250 ■37226 ■37202 ■37179 ■3715s ■37132 •37109 •37086 •37062 ■37039 ■37016 ■36993 •36970 ■36947 ■36924 ■36901 •36878 •36856 •36833 ■36810 ■36788 ■36765 ■36743 •36720 •36698 •36676 •36654 •36632 •29040 •29008 ■28978 '28947 •28917 •28886 ■28855 ■28825 •28795 •28764 ■28734 •28704 ■28674 ■28644 '28614 '28585 ■28555 ■28525 ■28496 •28467 ■28438 '28409 ■28380 ■28351 '28322 ■28293 •28265 '28236 •28207 •28179 '28151 •28123 '2809s ■28067 ■28039 •28011 ■27983 •27956 •27928 150° •36952 ■36929 •36905 ■36881 ■36857 ■36834 •36811 ■36787 •36764 ■36741 ■36718 ■36695 ■36672 ■36649 ■36626 •36603 ■36580 ■36558 ■3653s '36512 ■36489 ■36467 ■36444 ■36421 ■36399 ■36377 ■3635s '56333 ■36311 ■36289 '36267 •36245 •36223 ■3620^ •36180 •36158 ■36136 ■36114 ■36093 z I •29397 •29366 •2933s •29304 •29273 •29242 •29211 •29180 ■29150 ■291 19» ■29088 •29058 ■29028 •28998 ■28968 ■28938 ■28908 ■28879 ■28849 •28819 •28789 •28760 ■28731 ■28701 •28672 ■28643 •28614 ■28585 ■28557 •28528 •28499 ■28470 •28442 ■28413 ■28384 •28356 •28328 •28300 ■28272 (59) Cambttlige : rP.INTED BY C. J. CLAY, M.A. AND SON, AT THIC UNIVERSITY PKESS. Scaler. 01 OZ 03 04 00 OS 07 OS Off /O II I'J 13 l-l IS JO II 13 IS 20 Incll, PIG. 1 ric4. 4 . ':^i'r WM:- "-...;.v...^«cawv