,J jiti /r , ■'' « ■f^y (Hmntll mmrmitg | pitatg THE GIFT OF >-vyvl . ...'irvN^.ot^^-'vM-t-.rvrwvv.j- .. .. ...C.^-LU..*^ ...J\.:1.\^.L13 678-2 Cornell University Library TA 545.S66 Smithsonian geographical tables 3 1924 004 447 110 Cornell University Library The original of tiiis book is in tine Cornell University Library. There are no known copyright restrictions in the United States on the use of the text. http://www.archive.org/details/cu31924004447110 ^tmti^sioman ^mtisceuanemisi CoIlKtiansi 854 SMITHSONIAN GEOGRAPHICAL TABLES PREPARED BY R. S. WOODWARD CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION 1894 D The Riverside Press, Cambridge, Mass., U.S.A. Electrotyped and Printed by H. O. Houghton & Co. ADVERTISEMENT. In connection with the system of meteorological observations established by the Smithsonian Institution about 1850, a series of meteorological tables was compiled by Dr. Arnold Guyot, at the request of Secretary Henry, and was pub- lished in 1852 as a volume of the Miscellaneous Collections. A second edition was published in 1857, and a third edition, with further amendments, in 1859. Though primarily designed for meteorological observers reporting to the Smithsonian Institution, the tables were so widely used by meteorologists and physicists that, after twenty-five years of valuable service, the work was again re- vised, and a fourth edition was published in 1884. In a few years the demand for the tables exhausted the edition, and it appeared to me desirable to recast the work entirely, rather than to undertake its revision again. After careful consideration I decided to publish the new work in three parts : Meteorological Tables, Geographical Tables, and Physical Tables, each representative of the latest knowledge in its field, and independent of the others ; but the three forming a homogeneous series. Although thus historically related to Doctor Guyot's Tables, the present work is so entirely changed with respect to material, arrangement, and presentation, that it is not a fifth edition of the older tables, but essentially a new publication. The first volume of the new series of Smithsonian Tables (the Meteorological Tables) appeared in 1893. The present volume, forming the second of the series, the Geographical Tables, has been prepared by Professor R. S. Woodward, formerly of the United States Coast and Geodetic Survey, but now of Columbia College, New York, who has brought to the work a very wide experience both in field work and in the reduction of extensive geodetic observations. S. P. Langley, Secretary. PREFACE. In the preparation of the following work two difficulties of quite different kinds presented themselves. The first of these was to make a judicious selec- tion of matter suited to the needs of the average geographer, and at the same time to keep the volume within prescribed limits. Of the vast amount of material available, much must be omitted from any work of limited dimen- sions, and it was essential to adopt some rule of discrimination. The rule adopted and adhered to, so far as practicable, was to incorporate little material already accessible in good form elsewhere. Accordingly, while numerous ref- erences are made in the volume to such accessible material, an attempt has been made wherever feasible to introduce new matter, or matter not hitherto generally available. The second difficulty arose from the present uncertainty in the relation of the British and metric units of length, or rather from the absence of any generally adopted ratio of the British yard to the metre. The dimensions of the earth adopted for the tables are those of General Clarke, published in 1866, and now most commonly used in geodesy. These dimensions are expressed in English feet, and in order to convert them into metres it is necessary to adopt a ratio of the foot to the metre. The ratio used by General Clarke, and hitherto gener- ally used, is now known to be erroneous by about one one hundred thousandth part. The ratio used in this volume is that adopted provisionally by the Office of Standard Weights and Measures of the United States and legalized by Act of Congress in 1866. But inasmuch as a precise determination of this ratio is now in progress under the auspices of the International Bureau of Weights and Measures, and inasmuch as the value for the ratio found by this Bureau will doubtless be generally adopted, it has been thought" best in the present edition to restrict quantities expressed in metric measures to limits which will require no change from the uncertainty in question. In conformity with this decision the dimensions of the earth are given in feet only, and, with a few unimportant exceptions, to which attention is called in the proper places, tables giving quan- tities in metres are limited to such a number of figures as are definitely known. VI PREFACE. It is a matter of regret that, owing to the cause just stated, less prominence has been given in the tables to metric than to British units of length. On the other hand, it seems probable that the more general use of British units will meet the approval of the majority of those for whose use the volume is designed. The introductory part of the volume is divided into seven sections-under the heads, Useful Formulas, Mensuration, Units, Geodesy, Astronomy, Theory of Errors, and Explanation of Source and Use of Tables, respectively. In pre- senting the subjects embraced under the first six of these headings an attempt was made to give only those features leading directly to practical applications of the principles involved. It is hoped, however, that enough has been given of each subject to render the work of value in a broader sense to those who may desire to go beyond mere applications. The most of the calculations required in the preparation of the tables were made by Mr. Charles H. Kummell and Mr. B. C. Washington, Jr. Their work was done with skill and fidelity, and it is believed that the systematic checks applied by them have rendered the tables they computed entirely trustworthy. Mention of the particular tables computed by each of them is made in the Explanation of Source and Use of Tables, where full credit is given also for data not specially prepared for the volume. The Appendix to the present volume is that prepared by Mr. George E. Cur- tis for the Meteorological Tables. Its usefulness to the geographer is no less obvious and general than to the meteorologist The proofs have been read independently by Mr. Charles H. Kummell and the editor. The plate proofs, also, have been read by the editor ; and while it is difficult to avoid errors in a first edition of a work containing many formulas and figures, it is believed that few, if any, important errata remain in this volume. R. S. Woodward. Columbia College, New York, N. Y., June 15, 1894. CONTENTS. USEFUL FORMULAS. PAGE 1. Algebraic Formulas xiii a. Arithmetic and geometric means xiii b. Arithmetic progression xiii 0. Geometric progression xiii d. Sums of special series xiii e. The binomial series and applications xiv f. Exponential and logarithmic series xiv g. Relations of natural logarithms to other logarithms .... xv 2. Trigonometric Formulas xv a. Signs of trigonometric functions xv b. Values of functions for special angles xv c. Fundamental formulas xv d. Formulas involving two angles xvi e. Formulas involving multiple angles xvi f. Exponential values. Moivre's formula xvi g. Values of functions in series xvii h. Conversion of arcs into angles and angles into arcs .... xvii 3. Formulas for Solution of Plane Triangles xviii 4. Formulas for Solution of Spherical Triangles xx a. Right angled spherical triangles xx b. Oblique angled triangles xx 5. Elementary Differential Formulas xxi a. Algebraic xxi b. Trigonometric and inverse trigonometric xxi 6. Taylor's and Maclaurin's Series xxii a. Taylor's series xxii b. Maclaurin's series xxii c. Example of Taylor's series xxii d. Example of Maclaurin's series xxiii 7. Elementary Formulas for Integration xxiii a. Indefinite integrals xxiii b. Definite integration xxvi MENSURATION. I. Lines xxviii a. In a circle xxviii b. In regular polygon xxviii c. In ellipse xxix vm CONTENTS. 2. Areas xxix a. Area of plane triangle xxix b. Area of trapezoid xxix c. Area of regular polygon xxx d. Area of circle, circular annulus, etc xxx e. Area of ellipse xxx f. Surface of sphere, etc xxxi g. Surface of right cylinder xxxi h. Surface of right cone xxxi i. Surface of spheroid xxxi 3. Volumes xxxii a. Volume of prism xxxii b. Volume of pyramid xxxii c. Volume of right circular cylinder xxxii d. Volume of right cone with circular base xxxii e. Volume of sphere and spherical segments xxxii f. Volume of ellipsoid xxxiii UNITS. 1. Standards of Length and Mass xxxiv 2. British Measures and Weights xxxvii a. Linear measures xxxvii b. Surface or square measures xxxviii c. Measures of capacity xxxviii d. Measures of weight xxxix 3. Metric Measures and Weights xl 4. The C. G. S. System of Units xlii GEODESY. 1. Form of the Earth. The Earth's Spheroid. The Geoid . . xliii 2. Adopted Dimensions of Earth's Spheroid xliii 3. Auxiliary Quantities xliii 4. Equations to Generating Ellipse of Spheroid xliv 5. Latitudes used in Geodesy xliv 6. Radii of Curvature xlv 7. Lengths of Arcs of Meridians and Parallels of Latitude xlvi a. Arcs of meridian xlvi b. Arcs of parallel xlix 8. Radius-Vector of Earth's Spheroid 1 9. Areas of Zones and Quadrilaterals of the Earth's Surface 1 10. Spheres of Equal Volume and Equal Surface with Earth's Spheroid Hi 11. Co-ordinates for the Polyconic Projection of Maps . . . Hii 12. Lines on a Spheroid Ivi a. Characteristic property of curves of vertical section .... Ivi b. Characteristic property of geodesic line Ivii CONTENTS. IX 13. Solution of Spheroidal Triangles Ivii a. Spherical or spheroidal excess Iviii 14. Geodetic Differences of Latitude, Longitude, and Azimuth Iviii a. Primary triangulation Iviii b. Secondary triangulation Ix 15. Trigonometric Leveling Ixi a. Computation of heights from observed zenith distances ... Ixi b. Coefficients of refraction Ixiii c. Dip and distance of sea horizon Ixiii 16. Miscellaneous Formulas Ixiii a. Correction to observed angle for eccentric position of instrument Ixiii b. Reduction of measured base to sea level Ixiv c. The three-point problem Ixiv 17. Salient Facts of Physical Geodesy Ixv a. Area of earth's surface, areas of continents, area of oceans . . Ixv b. Average heights of continents and depths of oceans .... Ixv c. Volume, surface density, mean density, and mass of earth . . Ixv d. Principal moments of inertia and energy of rotation of earth . Ixvi ASTRONOMY. 1. The Celestial Sphere. Planes and Circles of Reference . Ixvli 2. Spherical Co-ordinates Ixvii a. Notation Ixvii b. Altitude and azimuth in terms of declination and hour angle . Ixviii c. Declination and hour angle in terms of altitude and azimuth . Ixix d. Hour angle and azimuth in terms of zenith distance .... Ixix e. Formulas for parallactic angle Ixix f. Hour angle, azimuth, and zenith distance of a star at elongation Ixx g. Hour angle, zenith distance, and parallactic angle for transit of a star across prime vertical Ixx h. Hour angle and azimuth of a star when in the horizon, or at the time of rising or setting Ixxi i. Differential formulas Ixxii 3. Relations of Different Kinds of Time used in Astronomy . Ixxii a. The sidereal and solar days Ixxii b. Relation of apparent and mean time Ixxiii c. Relation of sidereal and mean solar intervals of time .... Ixxiii d. Interconversion of sidereal and mean solar time Ixxiii e. Relation of sidereal time to the right ascension and hour angle of a star Ixxiv 4. Determination of Time Ixxiv a. By meridian transits Ixxiv b. By a single observed altitude of a star Ixxvi c. By equal altitudes of a star Ixxvii 5. JDetermination of Latitude Ixxvii a. By meridian altitudes Ixxvii b. By the measured altitude of a star at a known time .... Ixxviii c. By the zenith telescope Ixxix X CONTENTS. 6. Determination of Azimuth Ixxix a. By observation of a star at a known time Ixxix b. By an observed altitude of a star Ixxxi c. By equal altitudes of a star Ixxxi THEORY OF ERRORS. 1. Laws of Error Ixxxiii a. Probable, mean, and average errors Ixxxiv b. Probable, mean, average, and maximum actual errors of inter- polated logarithms, trigonometric functions, etc Ixxxv 2. The Method of Least Squares Ixxxvi a. General statement of method Ixxxvi b. Relation of probable, mean, and average errors Ixxxviii c. Case of a single unknown quantity Ixxxix d. Case of observed function of several unknown quantities . . xc e. Case of functions of several observed quantities xciii f. Computation of mean and probable errors of functions of ob- served quantities xcv EXPLANATION OF SOURCE AND USE OF TABLES. Tables i and 2 xcix Table 3 . xcix Table 4 xcix Tables 5 and 6 xcix Tables 7 and 8 c Table 9 c Tables 10 and 11 c Table 12 c Tables 13 and 14 c Tables 15 and 16 ci Table 17 ci Table 18 cii Tables 19-24 cii Tables 25-29 ciii Table 30 ciii Table 31 civ Tables 32 and 33 civ Tables 34 and 35 civ Tables 36 and 37 civ Table 38 civ Table 39 civ Table 40 civ Table 41 cv Table 42 cv CONTENTS. XI TABLES. TABLB PAGE 1. For converting U. S. Weights and Measures — Customary to Metric 2 2. For converting U. S. Weights and Measures — Metric to Cus- tomary 3 3. Values of reciprocals, squares, cubes, square roots, cube roots, and common logarithms of natural numbers 4-2,2 4. Circumference and area of circle in terms of diameter d . . . 23 5. Logarithms of numbers, 4-place 24-25 6. Antilogarithms, 4-place 26-27 7. Natural sines and cosines .... 28-29 8. Natural tangents and cotangents 30-31 9. Traverse table (differences of latitude and departure) .... 32-47 10. Logarithms of meridian radius of curvature in English feet . . 48-56 1 1 . Logarithms of radius of curvature of normal section in English feet 5 7-65 12. Logarithms of radius of curvature (in metres) of sections oblique to meridian 66-67 13. Logarithms of factors for computing spheroidal excess of triangles (unit ■= English foot) 68 14. Logarithms of factors for computing spheroidal excess of triangles (unit = the metre) 69 15. Logarithms of factors for computing differences of latitude, longi- tude, and azimuth in secondary triangulation (unit = English foot) 70-73 16. Logarithms of factors for computing differences of latitude, longi- tude, and azimuth in secondary triangulation (unit = the metre) 74-77 17. Lengths of terrestrial arcs of meridian (in English feet) .... 78-80 18. Lengths of terrestrial arcs of parallel (in English feet) .... 81-83 19. Co-ordinates for projection of maps, scale = 1/250 000 . . . . 84-91 20. Co-ordinates for projection of maps, scale =^ 1/125 000 .... 92-101 21. Co-ordinates for projection of maps, scale := 1/126 720 . . . . 102-109 22. Co-ordinates for projection of maps, scale = 1/63 360 .... 110-121 23. Co-ordinates for projection of maps, scale = 1/200000 .... 122-131 24. Co-ordinates for projection of maps, scale = 1/80 000 .... 132-141 25. Areas of quadrilaterals of the earth's surface of 10° extent in lati- tude and longitude 142 26. Areas of quadrilaterals of the earth's surface of 1° extent in lati- tude and longitude 144-145 27. Areas of quadrilaterals of the earth's surface of 30' extent in lati- tude and longitude • . . 146-148 28. Areas of quadrilaterals of the earth's surface of 15' extent in lati- tude and longitude 150-154 29. Areas of quadrilaterals of the earth's surface of 10' extent in lati- tude and longitude 156-159 30. Determination of heights by the barometer (formula of Babinet) . 160 31. Mean astronomical refraction 161 Xll CONTENTS. 32. Conversion of arc into time : 162 33. Conversion of time into arc 163 34. Conversion of mean time into sidereal time 164 35. Conversion of sidereal time into mean time 165 36. Length of 1° of the meridian at different latitudes (in metres, statute miles, and geographic miles) 166 37. Length of 1° of the parallel at different latitudes (in metres, stat- , ute miles, and geographic miles) 167 38. Interconversion of nautical and statute miles 168 39. Continental measures of length, with their metric and English equivalents 168 40. Acceleration (g) of gravity on surface of earth and derived func- tions 169 41. Linear expansions of principal metals 170 42. Fractional change in a number corresponding to a change in its logarithm 170 APPENDIX. Numerical Constants 171 Goedetical Constants 171 Astronomical Constants . 172 Physical Constants 172 Synoptic conversion of English and Metric Units — English to Metric 173 Metric to English 174 Dimensions of physical quantities 175 INDEX 177 USEFUL FORMULAS. I. Algebraic. a. Arithmetic and geometric means. The arithmetic mean of n quanti- ties a, 6, c, . . . is -^(« + d + . + ...); their geometric mean is {a b c. . .)". A case of special interest is b. Arithmetic progression. If a is the first term, and a-\-d, a-\- 2 d, <7 -|- 3 ^, . . . are the successive terms, the «th or last term z is z-:=. a -\- (n — i) d. The sum s of the n terms of this series is sz=\{a-\-z)n^{a-\-\(^~-i)d}n =^ {z — i (n — i) d} ft c. Geometric progression. If a is the first term, and a r, a r^, . . . aie the successive terms, the «th or last term z is z = a r"-\ The sum of the n terms is a (y"— i ) r z — a __ z (f— i) If r— I r— I (/•— i) ^-1- r < I and n ^co, a d. Sums of special series. I + 2+3 + 4 + --- + " =i«(«+i) 2+4 + 6 + 8 + ... + 2 « = «(«+i) i+3 + 5-i-7-l---- + (2«— i)= «' i"+ 2''+ 3^+ 4^+ • ■ . + «=" = J « (« + I) (2 « + i) i'+ 2'+ 3'+ 4'+ . . ■ + «' = i «" (« + i)^ XIV USEFUL FORMULAS. e. The binomial series and applications. For a > b. (JL^) ..-. n {n— i) {n — 2) „ , ,. , 1.2.3 ' For X < I, , n{n~ i) , , n (n — T.) (n — 2) . . (i.±xy=^±nx + \.a ' ^' ± ^ ^77:^ -' ^' + . . . \ -\- X I ^\— x-\-x'^ — o(?-\-x^— ... = 1 ■+-x^x^+x^+x^-\-. . (^ J ^y = i + 2a: + 3^=+4^'+S^*+--- {1 -^ xf = I -^ i X- i x' + ^x' - jh ^'+ ■ ■ ■ (i _ ^)i = I _ 1 a; - i aj^" - -jJb- jc' - T^H •^^^^ - • • • (^ ^ ^)i = I - i ^ + I *^ - A *' + A\ ^* - ■ • ■ ^^^^=1 + ^^ + 1 .^= + ,^^''+1^^* + .... f. Exponential and logarithmic series. For — 00 < a: < 00, ^^i ^^1.2 ' 1.2. 3 ' 1.2.3.4 ' The number e is the base of the natural or " Napierian " system of logarithms. For X = + I, the above series gives e = 2.718281828459 .... In the natural system the following series hold with the limitations indicated : ^=. + '^x '^ 1.2 ^ 1.2.3 — 00 < X < 00; log (i-{-x) = x x' ,x' _ 2 "•" 3 x' x' 4 "^ S log (1 -x)=—x x' x' :r^ *^ 2 3 4 S ^ < I ; iog«=,{j^+i(i^)'+i(:-^y+*(:-f^)'+-} o < a; < 00 ; X -\- y \ y ( y \^ ( y \^ ~\ ^°g "T~ = ^ I 2x+y + * U^+j/j +* iTl^+7J +• ■ • [ f<(2x+y)\ USEFUL FORMULAS. XV g. Relations of natural logarithms to other logarithms. £ =^ base of any system, JV= any number, Z = log iVto base B = log^JV, I = log iV" to base e = logeiV; Then Z = / log^ = Ijlog^B, logoff = i/log«5 = /t, say, which is called the modulus of the system whose base is £. In the common, or Briggean system, /* = logioi? = 0.43429448 .... log /A = 9-6377843 — 10- 2. Trigonometric Formulas. a. Signs of trigonometric functions. Function. 1st Quadrant. 2d Quadrant. 3d Quadrant. 4th Quadrant. sine cosine .... tangent . . . cotangent . . . + + + + + + + + b. Values of functions for special angles. 0° 90° 180° 270° 360° 30° 45° 60° sine .... + 1 — I h ^V2 iVs cosine . . . + 1 — I + 1 W3 l^/2 i tangent . . . 00 00 i^s I V3 cotangent . . 00 00 00 V3 I 4V3 c. Fundamental formulas. sin^ a -(- cos' a = I, cos a sec 0=1, sin a tan tt =^ ■ tan a cot a ^ I, sin a cosec a = i, cos a cos a cot a = sm a I + tan* a = ——2— =^ sec* a, ' cos" o ' versed sin a : I -\- cot* a : I — COS a. -2— ^^= coseC a, XVI USEFUL FORMULAS. d. Formulas involving two angles. sin (a ± 13)^ sin a cos y8 ± cos u. sin 13, cos (a ± /3) ^ cos a cos yS T sin u sin /3. tan (a ± /3) = (tan a ± tan 13) /{i T tan a tan P), cot (a ± y3) =^ (cot a cot ^ T l)/(c0t a ± COt /3). sin a -[- sin /8 ^ 2 sin J(a -|- )8) cos ^(a — ;8), sin I* — sin )8 = 2 cos i(a -|- ^) sin J(a — jS). cos a -|- cos /8 = 2 cos i(a -}- )8) COS i(a — yS), cos a — COS p^ — 2 sin ^(a -\- /3) sin J^(a — ;8). sin (a ± fi) tan u. ± tan « = ^^ 51 '^ cos a COS /3 sin (y8 ± a) cot a ± cot S = ■ ^ • — i- "^ sm a sin /3 2 sin a sin |8 = cos (a — p) — cos (a -|- /3), 2 cos a cos P = COS (a — /8) + COS (a -|- P), 2 sin u, COS p = sin (<» — )S) -j- sin (a -j- ;8). sin a + sin /3 , , ,^~. , , „\ -^ ^ ■ Q = tan i(o 4- iS) cot Ka — /S), sin a — sin yS 2^ 1 f/ 2^ r/i cos a -|- cos ^ . . . . ' a = — cot Ua -\- B) cot i(a — 8). cos a — COS )8 2v I f'/ 2\ f/ e. Formulas involving multiple angles. sin 2 a = 2 sin u. cos a, sin 3 a = 3 sin u, cos^ a — sin' a. cos 20.=^ cos" a — sin"" 0=1 — 2 sin" a = 2 cos" a— i, cos 3 a = C0S° a — 3 sin" a COS a. sin a I — cos a /l — COS a\i tan i a = I _|_ COS a sin a V -(- cos a) ' 2 tan a ^ cot" 0—1 tan 2 a =: 3 — ' cot 2 a :^ > "" ^ I — tan" a 2 cot a 2 tan i a I — tan" i o sin a = i |-i — ' COS a = j — 7 — r-; I + tan" i a I + tan" ^ a 2 sin" a = I — cos 2 a, 2 COs" a = I -)- COS 2 a, 4 sin' a = 3 sin u, — sin 3 a, 4 cos° = 3 cos a -)- cos 3 o. f. Exponential values. Moivre's formula. e = base of natural logarithms, z^V — I, 2"= — I, ?^ — i, 1*^=1, etc. cos ;t; = i (tf*" + ^ -*"), sin a; = ^V ("f^ — ^~*"), cos zjc ^ ^ (^-'^ 4" ^)> sill ^'•^ = 2V («"""' — O' (cos .»: ± z sin xy^ = cos »zx ± i sin /«x. USEFUL FORMULAS. g. Values of functions in series. For X in arc the following series hold within the limits indicated. *"0 mA lyl sm X = X — T — i 6 I20 5040 COS ;c=i _1_ . . 2 ' 24 720 ' ' — 00 <:<:<-)- 00. tan X = * + J ^» + T^V ^' + 3Vf *' + . . . , sec ^ = I + i ^= + A ^* + ^ ^s + . . . , — J7r , 180 X 60' TT 18 X 6 X 60" x!' = X • Xviii USEFUL FORMULAS. Put i8o° IT Then z^ p° z=. number of degrees in the radius, ^ ° ^ — - ^ p' = number of minutes in the radius, ^ ° ^ — 5-^^ — — = p" = number of seconds in the radius. IT x° ^x p°, x' ^x p', x" = X p". p° = 57.''295779S, log p° — 1.75812263, p' — 3437-'74677, log p' = 3-53627388, p" = 2o6264."8o6, log p" = 5.31442513. 3. Formulas for Solution of Plane Triangles. a, d, c = sides of triangle, a, ^, y := angles opposite to a, b, c, respectively, A =■ area of triangle, r ■=■ radius of inscribed circle, R = radius of circumscribed circle, s = i (a -i- 6 -\- c). sin a sin /3 sin y ' a-^b cos y + ^ cos ^, b =^ c cos a-\- a cos y, c = a cos P -\- b cos a. „ . a b c r = 4 i? sm J a sm ^ ^ sm i y = ^^ ^ - (a + b) cos ^ (a -j- )8) = ^ cos J- (a — j8), (d! — b) sin ^ (a -j- ;S) :^ a, p has two values. V=l8o°-(a + y3). , where tan ^ = 2 v^a ^ sin ^ y/(a — b), = a sin y/sin a. ^ := ^ « i5 sin y. USEFUL FORMULAS. 4. Formulas for Solution of Spherical Triangles. a. Right angled spherical triangles. a, b,c = sides of triangle, c being the hypotenuse, a,l3,y = angles opposite to a, b, c, respectively, y = 9°°- sin a = sva. c sin a, sin ^ = sin r sin j8, tan a = tan c cos /3, tan ^ = tan ^ cos a, = sin b tan a, = sin a tan ^ ; cos a = cos a sin ;8, cos ^ = cos b sin a ; cos c = cos a cos 3 ^ cot a cot ;8. b. Oblique angled triangles. a, b, c-=^ sides of triangle, a, p,y ::= angles Opposite to a, b, c, respectively, s=^\{a-\-b-\-c), a = i (a + ^ + y), £=a-|-j8-j-y — 180° = spherical excess, ^ = surface of triangle on sphere of radius r. sin a sin b sin c sin a sin /? sin y' cos a = cos b cos c -\- sin b sin c cos a, — cos a- cos (cr — a) „ COS ((T — S) COS ( ^ sin b s\n c ^ sm b sin c sin (j — V) sin Cj — c) tan'' J a = ^ ■ I \ ■ ■^ sin J sm [s — a) cot \ a cot i ^ + cos y cot i £ = ; : » -* sin y tan" J € = tan \ s tan J (j — a) tan i (s — b) tan ^ (j — f). Napier's analogies. , . , ,, cos \(a — S) , , , ,. sin 4- (a — S) tanH^ + ^) = cosH'^ + /) ^^" ^'' *^" ^ ^'^ ~ ^) = sinHa + ^r ^"^'' 1 / I o\ COS i (fl — ^) sin i (a — ^) tanH-+^) = 35ry^^cotiy, tan H- - ^) = ^HTHM^) ^°H 7- USEFUL FORMULAS. XXI Gauss's formulas. cos i (a 4" /^) *^°s i ^ = cos \{a -\- b^ sin \ y, sin J (a -j- j8) cos i f = cos ^ {a — b) cos J y, cos J- (a — ^) sin ^ f =: sin is (a -\- b) sin J- y, sin J (a — ;8) sin J^ f =: sin J (« — (5) cos J y. 5. Elementary Differential Formulas. a. Algebraic. «, V, IV, . . . =■ variables subject to differentiation, a, b, c, . . . ^= constants. (x)} dx. If a; =: <^ (y), and dx = <^' (y) dy, f/(x) dx = J/{<^ (7)} f (y) dy. d_ dy f/(x,y)dx = f^dx. Xxiv USEFUL FORMULAS. Since d{uv) = udv -\- vdu, I udv =.uv — \ vdu ; and if « = f^x) and z/ = ^ {x), JX-) '-^ dx = A-) ^ (-) -> (-)#^^ '^-* jdxj/(x, y) dy =jdyjy{x, y) dx. I dx \f{x) dx:=^ X i/{x) dx — i xfix) dx, n-\-i ^ ^ia + bxTdx^^^+^'^-C. /-J = log.t+C, /^ = 3-Mog(. + ^.). Jl?^~x-^^' J {a-\- bxf= ~ b{a-\-bx) + ^- /^/a: , ^ r — '^•^ , ^ J I ^2 = arc tan x -\- C, I ^i ^a = arc cot * + C. /dx — -j—r-^^ (ab)~^ arc tan {b/a)* x -\- C, for « and b both positive, = (ab)~* arc cot (^/i?)* ^ -|~ ^> ^°^ '^ ^'^'^ '^ both negative, ( — ab^ — bx = i(- «^)~* log (_ aby -\- bx + ^' ^°^ ^^ negative. /dx b -\- ex a^^bx^cx- = ('^^ - ^"^'^ ^''^ *^" (SF::^)* + ^' *°'' «^ - -^^ > °' C(a -\- x'f dx = i X (a -\- x^i -{- Is a log {^c + (a + ar^*} + C. fid' -xydx = lx (a^ -xy-\-\ a" arc sin ^ + C. !"(« + bxy dx = ^(a + bx)i/b + a * This is the formula for Integration by parts. t Natural logarithms are used in this and the following integrals. For relation of natural to common logarithms see section i, g. USEFUL FORMULAS. J*(« -{-2 dx-\- cxy dx=i(d-\- cx) {a-\-2bx-^ cx^'lc ■^\(ac- V^jc^ia + 2bx + cx^i dx + C. C(a -\- bx)-i (ix=2(a-{- bx^jb + C. Jia + ^x) (a + bx)-i dx = %{7,ab-2aji-{-p bx) {a + bxy/b'' + C. j (a" — x^)-i dx=± arc sin - + C, X , ^ = =F arc cos - -f- C, (a~\-x\i , „ —^ \ Ar C. C(a + xyi dx = log {x + (« 4- xj} + C, = ilog a; -|- (3 -|- :r^)* X — (a ■ ypy- + c. C(a -{-2 bx-\- cxY^ dx = -j=p log {b-\-cx-\- {ac-\- bcx + c'xy)-\- C, for o, b -\- cx — ~ / — arc sin /ts u y/— (x) dx -^^ \ 4> (x) dx -\- \ ^ (x) dx -\- . . . { (x) dx. a b b a \<^{x)dx-^ — \<^ (x) dx. a b a a I (a;) dx^\^ {a — 00) dx. o o If 4> (x) =
  • (x) dx= t ^ (x) dx, and | ^ (x) dx = o. — a o — a If A be tlie greatest and B the least value of ^ (x) within the limits a and b, b A(b — a)>C^ (xydx > B {b — a), a a formula useful in determining approximate values of integrals. See, e. g., section 6, d. b If U=: \ 'k (x) dx, a '^^_ JL/\ ^"—^^l\ 00 r dx _ r dx J i+x^~J iJrx-' — ^'^- o I 00 o 00 /jfE. = WVW, /^ = i.. o USEFUL FORMULAS. xxvii O 00 OO 00 o o Ce-"'^' x-"dx= 1.3.5... (2 «-i)a-»(2 a)-"' + '^V7r. o 00 p-' "= x-i dx = ^{kIo). o I sill mx sin nx dx ■=. | cos w:c cos «;i; for w and « integers and m — n odd, o = o, for m and « integers and m — n even. TV IT I sin^ mx dx = I cos° wz;c ^a: = J n-, for m an integer. ^- I sin" X dx = \ cos" ^ (/a: = j (i — «'') *^"~^' ^ar. 000 CO 00 /sin X J /'cos X , /, , ^ o o 00 00 1 sin x' dx :=l cos x^ dx = ^ V(w/2). o o 00 Ce - "' ==" cos2l>xdx=zie-^''' "'>' V(ir/a). o 00 Ig-a2x2 gjjj 2^a; (/.»;:= o. o MENSURATION. I. Lines. a. In a circle. r = radius of circle, c = length of any chord, s = arc subtended by c, a = angle corresponding to s, h = height of arc s above c, or perpendicular distance from middle point of arc to chord. Circumference ■=■2 irr, 77 = 3.14159265, log 77 = 0.49714987, 277 = 6.28318531, log 2 77 = 0.79817987. ^ = 2 r sin J a, J = r a. Length of perpendicular from center on chord = r cos \ a =.{.-i(5^)-.(^)*-A(^y- A^r (1 — cos i a) = 2 r sin^ J a = u{(9'+*©*+ri.(9'+. = »?{.+«©■+...}. "=«{'+•(*)■+•••}■ b. In regular polygon. r = radius of inscribed circle, ^= radius of circumscribed circle, n =^ number of sides, s :=: length of any side, /3 = angle subtended by s, p = perimeter of polygon. MENSURATION. ^ = 36o7«, J = 2 r tan ^ yS = 2 i? sin J j8, p=^ns-:=2nr tan ^ ^8 = 2 « ^ sin J /8. See table under c, below. c. In ellipse. a = semi-axis major, b = semi-axis minor, e = eccentricity = (i — b^laF)^, P= perimeter of ellipse, « = (3 - b)l(a. + b) XXIX i+y/r^^~4 "^8 "^ 64^' Distance from centre to focus = a «, Distance from focus to extremity of major axis z= a {1 — e), Distance from focus to extremity of minor axis ^ a. P=,r(«+3)(l + i«^ + TV«' + ^k/ + .--) = IT (a + 3) ^, say, where ^ stands for the series in n. The values of ^ cor- responding to a few values of n are : — n 1 n ? 1. 0000 o-S 1-0635 O.I 1.0025. 0.6 1.0922 0.2 1. 0100 0.7 1. 1267 0-3 1.0226 0.8 1. 1677 0.4 1.0404 0.9 i-aiSS I.O 1.2732 • 2. Areas. a. Area of plane triangle. (See table on p. xix.) b. Area of Trapezoid. b^ = upper base of trapezoid, bi = lower base of trapezoid, a = altitude of trapezoid, or perpendicular distance between bases. Area = ^ (bi-{- b^ a. MEJfSURATION. c. Area of regular polygon. A = area, r, J? ^ radii of inscribed and circumscribed circles, s = length of any side, n = number of sides, (3 =: angle subtended hy s = 36o°/«. A = nr'tanil3 = in Ji^ sin P — ins^ cot i^. Table of Values. n & A A R » ^ 3 I20° 0.4330 j'' 1.2990 R'^ 0.5774 J- 1. 7321 i? 4 9° 1. 0000 2.0000 0.7071 I.4I42 5 72 1-7205 2.3776 0.8507 1-1756 6 60 2.5981 2.5981 I.OOOO I.OOOO 7 5if 3-6339 2.7364 1-1524 0.8678 8 45 5.8284 2.8284 1.3066 0.7654 9 40 6.1818 2.8925 1. 4619 0.6840 lO 36 7.6942 2.9389 I.6I80 0.6180 II 32A 9-3656 2-9735 1.7747 0-5635 12 30 II. 1962 3.0000 1-9319 0.5176 13 28A 13.1858 3.0207 2.0893 0.4786 14 2Sf 15-3345 3-0372 2.2470 0.4450 IS 24 17.6424 3-0505 2.4049 0.4158 i6 22^ 20.1094 3-0615 2.5629 0.3902 d. Area of circle, circular annulus, etc. r = radius of circle, d = diameter, a = angle of any sector, rj, ^2 = smaller and greater radii of an annulus. Area of circle ^ tt r^ = ^ tt d^, 'r = 3-14 159 265, log n- = 0.49 714987. Area of sector :^ ar', for a in arc, =:ir r^ (a/360), for a in degrees. Area of annulus ::= tt (r/ — ri'^. e. Area of ellipse. a, i = semi axes respectively i) sin i ((^2 — ^i)- Surface of spherical triangle =: r' e, for e in arc, = r^ c/p", for £ in seconds, p" = 206 264.8", log p" = 5.31 442 513. g. Surface of right cylinder. r = radius of bases of cylinder, h = altitude of cylinder. Area cylindrical surface ^= 2 tr r h. Total surface =1 2 tt r (r -\- k). h. Surface of right cone. r = radius of base, h = altitude, f = slant height. Conical surface = irrs^Trr(h'^-\- r^, Total surface = tt r (j- -}- ^)- i. Surface of spheroid. a, b = semi axes, e = eccentricity = {(a -{- 6) (a — b)Yla. Surface of oblate spheroid ^ 2 ir a' \^ '^ 2 e '°^ \i — e) \ = ^^ a" i-i - \ e" - ^ ^ - ^ e^ - . . .). (■ . ,, , . arc sin e ) Surface of prolate spheroid = 2 ira^ i. (j. — ey-\- ^ )■ z= j^iT a b {\ — \ ^ — -^ ^ — t\^ e^ — . ■ ■)■ * The logarithm in this formula refers to the natural or "Napierian" system. For areas of zones and quadrilaterals of an oblate spheroid, see pp. 1-lii. XXXll MENSURATION. 3. Volumes. a. Volume of prism. A = area of base, h = altitude, F= volume. V=Ah. For an oblique triangular prism whose edges a, b, c are inclined at an angle a to the base, F= \ {a-\-b-\-c) A€m. a. b. Volume of pyramid. A = area of base, h = altitude, V= volume. F= ^AA. For a truncated pyramid whose parallel upper and lower bases have areas Ai and Ai respectively and whose distance apart is A, V=lh {A, + sjA, A, + A,). The volume of a wedge and obelisk may be expressed by means of the volumes of pyramids and prisms. c. Volume of right circular cylinder. r = radius of base, A = altitude, F= volume. F= 77 r' h. 77 = 3.14159265, log 77 = 0.49 714987. For an obliquely truncated cylinder (having a circular base) whose shortest and longest elements are h^ and h^ respectively, F= i 77 r^ {h^ + h^. For a hollow cylinder the radii of whose inner and outer surfaces are r^ and r^ respectively, and whose altitude is h, d. Volume of right cone with circular base. r = radius of base, h = altitude, V^ volume. V— lirr'^h. For a right truncated cone the radii of whose upper and lower parallel bases are r-i and r^ respectively, and whose altitude is h, F= J ,7 /^ (^1+ r^ n + rf). e. Volume of sphere and spherical segments. r = radius of sphere, h = altitude of segment, F= volume. MENSURATION. XXXIU For the entire sphere F:^ I IT r* ^ 4.1888 r" approximately. (For ir and log tt see c above.) For a spherical segment of height k V=irh^{r — \K). For a zone, or difference in volume of two segments whose altitudes are h-^ and hi respectively V=irr (hi — h^~\-K (y^i — /^?) = i ^ A /5 (3 ^ + 3 ^ + A y^^), where r^ and r^ are the radii of the bases of the zone and ^ h = h^ — h^. f. Volume of ellipsoid. a, b, c^ semi axes, F= volume. F= %iT a b c. For an ellipsoid of revolution about the a-axis, V=%-jr a b\ the ^axis, V=. % ir a^ b. UNITS. I. Standards of Length and Mass. The only systems of units used extensively at the present day are the British and metric. The fundamental units in these systems are those of time, length, and mass. From these all other units are derived. The unit of time, the mean solar second, is common to both systems. The standard unit of length in the British system is the Imperial Yard, which is defined to be the distance between two marks on a metallic bar, kept in the Tower of London, when the temperature of the bar is 60° F. The standard unit of mass in the British system is the Imperial Pound Avoirdu- pois. It is a cylindrical mass of platinum marked " P. S. 1844, i lb.," preserved in the office of the Exchequer at Westminster. In the metric system the standard unit of length is the Metre, now represented by numerous platinum iridium Prototypes prepared by the International Bureau of Weights and Measures. The standard of mass in the metric system is the Kilogramme, now represented by numerous platinum iridium Prototypes prepared by the International Bureau of Weights and Measures. Both systems of units have been legalized by the United States. Virtually, how- ever, the material standards of length and mass of the United States are cer- tain Prototype Metres and certain Prototype Kilogrammes. The present status of the two systems of units so far as it relates to the United States is set forth in the following statement from the Superintendent of Standard Weights and Measures, bearing the date April 5, 1893. Fundamental Standards of Length and Mass.* " While the Constitution of the United States authorizes Congress to ' fix the standard of weights and measures,' this power has never been definitely exer- cised, and but little legislation has been enacted upon the subject. Washington regarded the matter of sufficient importance to justify a special reference to it in his first annual message to Congress (January, 1790), and Jefferson, while Secre- tary of State, prepared a report at the request of the House of Representatives, in which he proposed Quly, 1790) 'to reduce every branch to the decimal ratio already established for coins, and thus bring the calculation of the principal affairs of life within the arithmetic of every man who can multiply and divide.' The consideration of the subject being again urged by Washington, a committee * Bulletin 26, U. S. Coast and Geodetic Survey. Washington : Government Printing Office, 1893. Published here by permission of Dr. T. C. Mendenhall, Superintendent Coast and Geo- detic Survey. UNITS. XXXV of Congress reported in favor of Jefferson's plan, but no legislation followed. In the mean time the executive branch of the Government found it necessary to procure standards for use in the collection of revenue and other operations in which weights and measures were required, and the Troughton 82-inch brass scale was obtained for the Coast and Geodetic Survey in 1814, a platinum kilo- gramme and metre, by Gallatin, in 182 1, and a Troy pound from London in 1827, also by Gallatin. In 1828 the latter was, by act of Congress, made the standard of mass for the Mint of the United States, and although totally unfit for such pur- pose it has since remained the standard for coinage purposes. " In 1830 the Secretary of the Treasury was directed to cause a comparison to be made of the standards of weight and measure used at the principal custom- houses, as a result of which large discrepancies were disclosed in the weights and measures in use. The Treasury Department, being obliged to execute the consti- tutional provision that all duties, imposts, and excises shall be uniform throughout the United States, adopted the Troughton scale as the standard of length ; the avoirdupois pound to be derived from the Troy pound of the Mint as the unit of mass. At the same time the Department adopted the wine gallon of 231 cubic inches for liquid measure and the Winchester bushel of 2 150-42 cubic inches for dry measure. In 1836 the Secretary of the Treasury was authorized to cause a complete set of all weights and measures, adopted as standards by the Depart- ment for the use of custom-houses and for other purposes, to be delivered to the Governor of each State in the Union for the use of the States respectively, the object being to encourage uniformity of weights and measures throughout the Union. At this time several States had adopted standards differing from those used in the Treasury Department, but after a time these were rejected, and finally nearly all the States formally adopted by act of legislature the standards which had been put in their hands by the National Government. Thus a good degree of uniformity was secured, although Congress had not adopted a standard of mass or of length other than for coinage purposes as already described. " The next and in many respects the most important legislation upon the subject was the Act of July 28, 1866, making the use of the metric system lawful through- out the United States, and defining the weights and measures in common use in terms of the units of this system. This was: the first general legislation upon the subject, and the metric system was thus the first, and thus far the only system made generally legal throughout the country. " In 1875 an International Metric Convention was agreed upon by seventeen governments, including the United States, at which it was undertaken to establish and maintain at common expense a permanent International Bureau of Weights and Measures, the first object of which should be the preparation of a new inter- national standard metre and a new international standard kilogramme, copies of which should be made for distribution among the contributing governments. Since the organization of the Bureau, the United States has regularly contributed to its support, and in 1889 the copies of the new international prototypes were ready for distribution. This was effected by lot, and the United States received metres Nos. 21 and 27, and kilogrammes Nos. 4 and 20. The metres and kilo- grammes are made from the same material, which is an alloy of platinum with ten per cent of iridium. XXXVl UNITS. "On January 2, 1890, the seals which had been placed on metre No. 27 and kilogramme No. 20, at the International Bureau of Weights and Measures near Paris, were broken in the Cabinet room of the Executive Mansion by the Presi- dent of the United States, in the presence of the Secretary of State and the Secretary of the Treasury, together with a number of invited guests. They were thus adopted as the National Prototype Metre and Kilogramme. " The Troughton scale, which in the early part of the century had been tenta- tively adopted as a standard of length, has long been recognized as quite un- suitable for such use, owing to its faulty construction and the inferiority of its graduation. For many years, in standardizing length measures, recourse to copies of the imperial yard of Great Britain had been necessary, and to the copies of the metre of the archives in the Ofifice of Weights and Measures. The standard of mass originally selected was likewise unfit for use for similar reasons, and had been practically ignored. "The recent receipt of the very accurate copies of the International Metric Standards, which are constructed in accord with the most advanced conceptions of modern metrology, enables comparisons to be made directly with those stand- ards, as the equations of the National Prototypes are accurately known. It has seemed, therefore, that greater stability in weights and measures, as well as much higher accuracy in their comparison, can be secured by accepting the international prototypes as the fundamental standards of length and mass. It was doubtless the intention of Congress that this should be done when the International Metric Convention was entered into in 1875 ; otherwise there would be nothing gained from the annual contributions to its support which the Government has con- stantly made. Such action will also have the great advantage of putting us in direct relation in our weights and measures with all civilized nations, most of which have adopted the metric system for exclusive use. The practical effect upon our customary weights and measures is, of course, nothing. The most care- ful study of the relation of the yard and the metre has failed thus far to show that the relation as defined by Congress in the Act of 1866 is in error. The pound as there defined, in its relation to the kilogramme, differs from the impe- rial pound of Great Britain by not more than one part in one hundred thousand, an error, if it be so called, which utterly vanishes in comparison with the allow- ances in all ordinary transactions. Only the most refined scientific research will demand a closer approximation, and in scientific work the kilogramme itself is now universally used, both in this country and in England.* * Note. — Reference to the Act of 1866 results in the establishment of the following : — Equations, •;6oo r yard = r— - metre. ■' 3937 I pound avoirdupois == , kilo. A more precise value of the English pound avoirdupois is ^. g^ kilo., differing from the above by about one part in one hundred thousand, but the equation established by law is sufficiently accurate for all ordinary conversions. As already stated, in work of high precision the kilogramme is now all but universally used, and no conversion is required. UNITS. xxxvii " In view of these facts, and the absence of any material normal standards of customary weights and measures, the Office of Weights and Measures, with the approval of the Secretary of the Treasury, will in the future regard the Interna- tional Prototype Metre and Kilogramme as fundamental standards, and the cus- tomary units, the yard and the pound, will be derived therefrom in accordance with the Act of July 28, 1866. Indeed, this course has been practically forced upon this office for several years, but it is considered desirable to make this for- mal announcement for the information of all interested in the science of metrology or in measurements of precision. T. C. Mendenhall, Superintendent of Standard Weights and Measures. " Approved : J. G. Carlisle, Secretary of the Treasury. April s, 1893." No ratios of the yard to the metre and of the pound to the kilogramme have as yet been adopted by international agreement ; but precise values of these ratios will doubtless be determined and adopted within a few years by the International Bureau of Weights and Measures. In the mean time, it will suffice for most pur- poses to use the values of the ratios adopted provisionally by the Office of Stand- ard Weights and Measures of the United States. These values are — I yard ^ f f§f metres, or i metre = %%%i yards, I pound :=: i^8£§ kilogrammes, or i kilogramme ;= f f ^f § pounds. These ratios were legalized by Act of Congress in 1866. Expressed decimally these values are * — I yard = 0.914402 metres, 1 metre ^ i.093 611 yards, I pound = 0.45 359 kilogrammes, i kilogramme =. 2.20462 pounds. The above values of the relations of the standards of the British and Metric systems of units are adopted in this work. Tables i and 2 give the equivalents of multiples of the standard units and also equivalents of multiples of the derived units of surface and volume. These tables are published by the Office of Stand- ard Weights and Measures of the United States, and are here republished by per- mission of the Superintendent of that Office. 2. British Measures and Weights. a. Linear measures. The unit of linear measure is the yard. Its principal sub-multiples and multi- ples are the inch ; the foot ; the rod, perch, or pole ; the furlong ; and the mile. The following table exhibits the relations among these measures : — * The actual error of the relation of the yard to the metre may be as great as 1/200 000th part, and the actual error of the relation of the pound to the kilogramme as great as i/ioo oooth part. UNITS. Inches. Feet. Yards. Rods. Furlongs. Miles. I 0.083 0.028 0.00505 0.00012626 0.0000157828 12 1. 0-333 0.06060 0.00151515 0.00018939 36 3- I. 0.1818 0.004545 0.00056818 198 16.S S-S I. 0.025 0.003125 7920 660. 220. 40. I. 0.125 63360 5280. 1760. 320. 8. I. Other measures are the — Surveyor's or Gunter's chain = 4 rods = 66 feet = 100 links of 7.92 inches each. Fathom := 6 feet ; Cable length =120 fathoms. Hand = 4 inches ; Palm = 3 inches ; Span = 9 inches. b. Surface or square measures. The unit of square measure is the square yard. Its relations to the principal derived units in use are shown in the following table : — Sq. feet. Sq. yards. Sq. rods. Roods. Acres. Sq. miles. I. O.IIII 0.00367309 0.000091827 0.000022957 9- I. 0.0330579 0.000826448 0.000206612 272.25 30.25 I. 0.025 0.00625 10890. 1210. 40. I. 0.25 43560- 4840. 160. 4- I. 27878400 3097600. 102400. 2560. 640. I. c. Measures of capacity. The unit of capacity for dry measure is the bushel (2150.4 cubic inches about). The units of capacity for liquid measure are the British gallon (of 277.3 cubic inches about) and the wine gallon (of 231 cubic inches, nominally). The latter gallon is most commonly used in the United States. The following table shows the relations of the sub-multiples and multiples of the bushel and gallon : UNITS. XXXIX Dry Measures. Liquids. Pint = ^ bushel. Gill = ^gan. Quart = 2 pints =-h " Pint = 4 gills = i " Peck — 8 quarts = J Quart = 2 pints = i " Bushel = 4 pecks =1 " Gallon ^ 4 quarts = 1 " Barrel = 31^ gallons = 3ii " Hhd. = 2 barrels = 63 " Besides the above measures of capacity the following volumetric units are used : — Cubic foot = 1728 cubic inches. Cubic yard ^= 27 cubic feet = 46656 cubic inches. Board-measure foot = i square foot X i inch thickness = 144 cubic inches. Perch (of masonry) = i perch (16.5 feet) length X i foot height X i-S feet thickness = 24.75 cubic feet ; 25 cubic feet are commonly called a perch for con- venience. Cord (of wood) = 8 feet length X 4 feet breadth X 4 feet height. :=: 128 cubic feet. d. Measures of weight. The unit of weight is the avoirdupois pound. One 7000th part of this is called a grain, and 5760 such grains make the troy pound. The sub-multiples and mul- tiples of these two pounds are exhibited in the following table : — Avoirdupois. Troy. Dram = 5*^ lb. Grain = 5 tVtt lb. Ounce ^16 drs. = ^ " Pennyweight = : 20 grs. = ^iu Pound = 16 ozs. = %" Ounce = 24 dwt. = A " Quarter = 28 lbs. = 2I" Pound = 12 ozs. = I " Hundred-wt = 4qrs. = 112 " Long ton = 20 cwt. = 2240 " Short ton ^= = 2000 " xl UNITS. 3. Metric Measures and Weights. As explained in section i above, the standards of length and mass in the metric system are the metre and the kilogramme. Two material representatives of each of these standards are possessed by the United States and preserved at the Office of Standard Weights and Measures at Washington, D. C. The standards of length are Prototype Metres Nos. 21 and 27. These are platinum iridium bars of X cross section, and their lengths are defined by lines ruled on their neutral surfaces. Their lengths at any temperature / Centigrade are given by the following equations : — Prototype No. 21 = i" -j- 2.''5 -|- 8.>'665 t -\- 0.1^00 100 t^, Prototype No. 27^1"*— i.^^e -]- 8.f 657 ^ + o.''oo 100 t% where the symbol /*. stands for one micron, or one millionth of a metre. The probable^ errors of these Prototjrpes may be taken as not exceeding ± o.''2, or 1/5 000 000th of a metre for temperatures between 0° and 30° C. The standards of mass are Prototype Kilogrammes Nos. 4 and 20. They are cylindrical masses of platinum iridium. Their masses and volumes are given by the following equations : — Mass. Volume. Prototype Kilogramme No. 4=1*" — o."^o7S, 46."''4i8, Prototype Kilogramme No. 20 = i*" — o.'"''o39, 46.'"'402, where the — Symbol kg stands for one kilogramme. Symbol mg stands for one milligramme = o.^'oooooi. Symbol ml stands for one millilitre = one cubic centimetre. The definitive probable error assigned to the Prototype Kilogrammes by the International Bureau is ± o.'^oo2, or 1/500 000 oooth of a kilogramme. The act of Congress approved July 28, 1866, authorizing the use of the metric system in the United States, provides that the tables in a schedule annexed shall be recognized " as establishing, in terms of the weights and measures now in use in the United States, the equivalents of the weights and measures expressed therein in terms of the metric system ; and said tables may be lawfully used for computing, determining, and expressing, in customary weights and measures, the weights and measures of the metric system." The following copy of that sched- ule gives the denominations of the multiples and sub-multiples of the measures of length, surface, capacity, and weight in the metric system as well as their legalized equivalents in British units. UNITS. Xli Schedule annexed to Act of July 28, 1866. Measures of Length. Metric Denominations. Myriametre Kilometre Hectometre Decametre . Metre . Decimetre Centimetre . . Millimetre Values in Metres. lOOOO. 1000. 100. 10. O.I O.OI O.OOI Equivalents in Denominations in Use. 6.2137 miles. 0.62137 mile, or 3280 feet and 10 inches. 328 feet and i inch. 393.7 inches. 39.37 inches. 3.937 inches. 0.3937 inch. 0.0394 inch. Measures of Surface. Metric Denominations. Hectare . Are . . Centare ■ Values in Square Metres. 10000 100 Equivalents in Denominations in Use. 2.471 acres. 1 19.6 square yards. 1550 square inches. Measures of Capacity. Metric Denominations and Values. Kilolitre or stere Hectolitre . . Decalitre . . . Litre . . . Decilitre . . . Centilitre Millilitre . No. of Litres. 1000. 100. 0.1 O.OI O.OOI Cubic Measure. I cubic metre . . o. r cubic metre 10 cubic decimetres . I cubic decimetre . o. I cubic decimetre . 10 cubic centimetres . I cubic centimetre Equivalents in Denominations in Use. Dry Measure. 1.30S cubic yards 2 bus. and 3.35 pks. g.oS quarts . . o.goS quart. . . 6.1022 cubic inches . o.6ro2 cubic inch 0.061 cubic inch . . Liquid or Wine Measure. 264.17 gallons. 26.417 gallons. 2.6417 gallons. 1.0567 quarts. 0.84s ffi'l' 0.338 fluid-ounce. 0.27 fluid-drachm. Measures of W^eight. Metric Denominations and Values. Names. Millier or tonneau Quintal Myriagramme . . . Kilogramme, or kilo . Hectogramme . Decagramme . . Gramme . . . Decigramme Centigramme Milligramme Number of Weight of what Quantity of Water Grammes. at Maximum Density. I 000000. looooo. loooo. 1000. 100. 10. 0.1 O.OI O.OOI I cubic metre . . . I hectolitre 10 litres . . 1 litre . . . . I decilitre .... 10 cubic centimetres I cubic centimetre . 0.1 cubic centimetre 10 cubic millimetres I cubic millimetre Equivalents in Denominations in Use. Avoirdupois Weight. 2204.6 220.46 22.046 2.2046 3-5274 0-3527 15-432 1.5432 0.1543 0.0154 pounds. pounds. pounds. pounds. ounces. ounce. grains. grains. grain, grain. xlii UNITS. 4. The C. G. S. System of Units. The C. G. S. system of units is a metric system in which the fundamental units are the centimetre, the gramme, and the mean solar second. It is the sys- tem now generally used for the expression of physical quantities. The most important of the derived units in the C. G. S. system, their equiva- lents in terms of ordinary units, and their dimensions in terms of the fundamen- tal units of length, mass, and time, are given in the Appendix to this volume. For an elaborate consideration of the subject of units and their interrelations the reader may be referred to " Units and Physical Constants," by J. D. Everett, London, Macmillan & Co., i2mo, 4th ed., 1891. GEODESY. I. Form of the Earth. The Earth's Spheroid. The Geoid. The shape of the earth is defined essentially by the sea surface, which embraces about three fourths of the entire surface. The sea surface is an equipotential surface due to the attraction of the earth's mass and to the centrifugal force of its rotation. We may imagine this surface to extend through the continents, and thus to be continuous. Its position at any continental point is the height at which water would stand if a canal connected the point with the ocean. Geodetic measurements show that this surface is represented very closely by an oblate spheroid, whose shorter axis coincides with the rotation axis of the earth. This is called the earth's spheroid. The actual sea surface, on the other hand, is called the geoid. With respect to the spheroid the geoid is a wavy sur- face lying partly above and partly below ; but the extent of the divergence of the two surfaces is probably confined to a few hundred feet. 2. Adopted Dimensions of Earth's Spheroid. The dimensions of the earth's spheroid here adopted are those of General A. R. Clarke, published in 1866, to wit : — Semi major axis, a = 20 926 062 English feet. Semi minor axis, (5 =: 20 855 121 " " 3. Auxiliary Quantities. The following quantities are of frequent use in geodetic formulas : — e ^-)-... , ^ — 6 = « sin 2 ^ — J «^ sin 4 c^ -|- . . . . For the adopted spheroid and log (i — e^ = 9.9970504, 1^ — ij/ (in seconds) = 7oo."44 sin 2 — i."i9 sin 4 <^, — 6 (in seconds) = 3So."22 sin 2 4> — o."3o sin 4 ^. 6. Radii of Curvature. p„ ^ radius of curvature of meridian section of spheroid at any point whose latitude is <^ =PO, Fig. i, p„ = radius of curvature of normal section perpendicular to the meridian at the same point = FQ, Fig. i. Pa =■ radius of curvature of normal section making angle a with the meridian at same point. p„ = «(i-^^)(i-^=sin^<^)-i, p„ = a(i-e' sin^ )-^, 1 cos'^ a , sin^ a P» = i (i 4- -^ cos^^ ^ cos= a) (i - e^ sin= #. log (i - e^ sin^ ^)-* — + log (i + n) — p, « cos 2 -\- ^ fhfi^ COS 4<^ — ^ p. «' COS 6 = o, log p„= 7-3214243 - 7373-9 _± 6^ = 7.3206875 = log a. 7. Length of Arcs of Meridians and Parallels of Latitude. a. Arcs of Meridian. For the computation of short meridional arcs lying between given parallels of latitude the following simple formulas suffice : A<^ = <^2 — "^1, AJ/=p„ A^. In these, ^1 and 4>i are the latitudes of the ends of the arc, AM is the required length, and p„ is the meridian radius of curvature for the latitude 4> of the middle point of the arc. The formula for AM implies that A is expressed in parts of the radius. If A(j> is expressed in seconds, minutes, or degrees of arc, the for- mula becomes — Meridional distance AM in feet. . „. pm Acf> (in seconds) 206204.8 Pm, A(j} (in minutes) "~ 3437-747 ' _ Pm A4> (in degrees) . 57-29578 ' (2) log (1/206264.8) = 4.6855749 — 10, log (1/3437-747) = 6.4637261 — 10, log (1/57-29578) = 8.2418774 — 10. ^1) 02 = 6nd latitudes of arc, A0 = 0^ — 0j, p„ = meridian radius of curvature for = ^(^2 + ^,) ; for log pn see Table 10. GEODESY. xlvii The relations (2) will answer most practical purposes when A<^ does not exceed 5°. A comparison with the precise formula (3) below shows in fact that the error of (2) is very nearly \ ^ Acft" cos 2^ . AM, which vanishes for ^ =: 45°, and which for A^ = 5° is at most -zz^ws ^-^> or about II feet. Numerical example. Suppose — '#^ = 37'' 29'48."i7, 'h = 35° 48' 29."89. Then 't> = K<^2 + <^i) = 36° 39' 09-"°3, A4>= sin 3A<^ (3) -|- Ai cos 8<^ sin 4A<^ In this, AM, , and A^ have the same meanings as above, and A,^ Ai, . . . are functions of a and if or of a and n. Thus, in terms of a and n, A„ = a(i-\- «)-! (i + i «= + ^ «- + ... ), ^1 = 3« (i + fi)"^ (n-in^ - . ■ ■), A,= ya(i-\- n)-^ (n'-i^n'- ...), ^3=||a(i+«)-i(«»-...), A,= Uia{-^+nT^(n\- ...). Introducing the adopted values of a and n, these constants become — log. ^„ = 20 890 606 feet, 7.3199510, Ai= 106 411 feet, 5.0269880, ^2= 113 feet, 2.0528, Ai = 0.15 feet, 9.174 — 10. xlviii GEODESY. It appears, therefore, that the first three terms of (3) will give A J/ with an accuracy considerably surpassing that of the constant A,,- In the use of (3) it will generally be most convenient to express A(j> in degrees, and in this case Ao must be divided by the number of degrees in the radius, viz. : 57.2957795 [1.7581226]. Applying this value and writing the logarithms of Aq, Ai, etc., in rectangular brackets in place of A^, Ai, etc., (3) becomes Meridional distance AM in feet. AM= [5.5618284] A(^ (in degrees) — [5.0269880] cos 2 sin A(f> (4) 4" [2.0528] cos 4^ sin 2A(f) 20 = ^j + 0„ A0 = ^j — 0j, 01, 02 = end latitudes of arc. Formula (4) will suffice for the calculation of any portion or the whole of a quadrant. The length of a quadrant is the value of the first term of (4) when = 45° and A<^ = 90°, since all of the remaining terms vanish. Numerical examples. — 1°. Suppose <^i = 0° and <^2 = 45°- Then 2, and the entire length of the parallel is — 2 TT r = 2 TT p„ cos . Designate the portion of a parallel lying between meridians whose longitudes are Aj and X^ by AT', and call the difference of longitude Aj — ' K ^^■ Then — Arc of parallel A/' in feet. 2 7rp„ cos <^ ^^= 1296000 ^^ ('" seconds), 2 irp„ COS ^ .. r • ^ \ / s =^ 7 AA. (m mmutes), (i ) 21600 ^ '' ^ ' 2 TT p„ COS .... J . = 7 AA. (in degrees). log (2 w/1296000) = 4.6855749 — 10, log (2 7r/2l6oo) = 6.4637261 — 10, log (2 7r/36o) = 8.2418774 — 10. Aj, ^2, = end longitudes of arc, A\ := A^ — \, Pn = radius of curvature of normal section for latitude of parallel ; for log pn see Table 1 1. Numerical Exampk. — Suppose ^ ^ 35°, and AA = 72". Then from the third of (9) log. cons't 8.2418774 — 10 Table 11, p„ 7.3211716 cos <^ 9-9133645 — 10 AA 1.8573325 A/'= 21 564827 feet, A^ 7-3337460 * The best formula for computing the entire length of a meridian curve is this : IT (a + ^) (I + i «2 + A «* + . . .), in which a, i, and « are the same as defined in section 2. For the values here adopted — log. {i -{- i tfl -\- . . .) 0.0000003 (a + b) 7.6209807 ir 0.4971499 length 8.1 181 309 The length of the perimeter of the generating ellipse, or the meridian circumference of the earth, is, therefore — 131 259 550 feet = 24 859.76 miles. GEODESY. The values of APfor intervals of lo", 20" . . . 60", and for 10', 20' . . . 60' are given in Table 18 for each degree of latitude from 0° to 90°. 8. Radius- Vector of Earth's Spheroid. p = radius-vector ■=a(jL — 2e^ sin= 4> + e* sin" <^)J (i - e^ sin^ <^)-». a (2 — g") log p = log ^j^,_^ - -\-ix(m - n) cos 2<^ — i fi {nfi — n^ cos 4^ -j- ^ //, (»z' — «') cos 6<^ For the adopted spheroid log (p in feet) = 7.3199520 -)- [3.86769] cos 2^ — [1.2737] cos 4"^. the logarithms for the terms in ^ corresponding to units of the seventh decimal place. . Thus, for ^ =; o, log p = 7.3199520 + 7373-8 — 18.8 = 7.3206875 = log a. 9. Areas of Zones and Quadrilaterals of the Earth's Surface. An expression for the area of a zone of the earth's surface or of a quadrilateral bounded by meridians and parallels may be found in the following manner : — The area of an elementary zone dZ, whose middle latitude is <^ and whose width is p„ d^, is (see Fig. i), dZ = 2 TT r p,„ d^ = 2 77 p;„ p„ cos <^ d d (i — e^ sin= f The integral of this between limits corresponding to <^i and <^2, or the area of a zone bounded by parallels whose latitudes are ^j and <^2 respectively, is Z=ir a' I - ^ 1 e sin <^2 I — e^ sin" sin | A(^ ) ^ Ai, If Q be the area of a quadrilateral bounded by the parallels whose latitudes are ^1 and ^2 and by meridians whose difference of longitude is AX, ^ 27r Hence, using the English mile as unit of length, (5) and (6) give for the adopted spheroid — Area of quadrilateral in square miles. " ( ^1 cos <^ sin ^ A<^ — ^2 cos 30 sin | A.^ ) e = AX (m degrees) j _|_ ,3 cos s<^ sin f A,^ - . . . i ' log cf — 5.7375398, (7) log ^2= 2.79173, log <^3 = 9-976 — lO- = ii.^i + 'Pi ). A<(> = <(>2 — ()>„ (/)j, (/)2 == latitudes'of bounding parallels, AX = difference of longitude of bounding meridians. » ^1, c^, c, are obtained from C„ C„ C^ respectively by dividing the latter by the number of degrees in the pdius, viz : 57.29578. Hi GEODESY. Numerical examples. — i°. Suppose <^i = o, <^2 = 9°° ^"^^ ^^ = 360°- Then (7) should give the area of a hemispheroid. The calculation runs thus : log. log. log. Ci 5-7375398 C2 2.79173 ^3 9.976 — 10 COS (^ 9.8494850 — 10 cos 3 ^ 9.84948^ — 10 COS 5 ^ 9.849„ — 10 sin \ A<^ 9.8494850 — 10 sin § A^ 9.84949 — 10 sin f A^ 9-848„ — 10 360 2.5563025 360 2.55630 360 2.556 Sum 7.9928123 5.o47oo„ 2.229 Hence — I St term ^ - - 98358591 2d term = - I 11429 3d term = - 169 Q = sum = 98470189 Twice this is the area of the spheroidal surface of the earth j z. e., 196 940 378 square miles. 2°. The last result may be checked by (4). Thus, — + —+... j = 0.00225928 log ^i - Y - . . . j = 9-9990177 logs'' ^7.1961072 log 4. TT = 1.0992099 log (196940407) = 8.2943348 This number agrees with the number derived above as closely as 7-place logarithms will permit, the discrepancy between the two values being about -STSniiswu P^''* of the area. Hence, with a precision somewhat greater than the precision of the elements of the adopted spheroid warrants. Area earth's surface = 196 940 400 square miles. The areas of quadrilaterals of the earth's surface bounded by meridians and parallels of 1°, 30', 15', and 10' extent respectively, in latitude and longitude, are given in Tables 25 to 29. 10. Spheres of Equal Volume and Equal Surface with Earth's Spheroid. ri =^ radius of sphere having same volume as the earth's spheroid, ^2 = radius of sphere having same surface as that spheroid. = a (i _ J ^2 _ ^j ^4 _ ^^^^^, _,_y GEODESY. V 3 IS 35 / '^ — >'i = i ae^ (i -\- ^ e^ -{-...) = 0.00113 a, about. ''2 — ''1 = ^ ae* -j^ . . . = 0.00000 1 a, about. liii II. Co-ordinates for the Polyconic Projection of Maps. In the polyconic system of map projection every parallel of latitude appears on the map as the developed circumference of the base of a right cone tangent to the spheroid along that parallel. Thus the parallel EI^ (Fig. 2) will appear in projection as the arc of a circle £0J^ (Fig. 3) whose radius 0(? = / is equal to the slant height of the tangent cone £J^G (Fig. 2). Evidently one meridian and only one will appear as a straight line. This meridian is generally made the central meridian of the area to be projected. The distances along this cen- tral meridian between consecutive parallels are made equal (on the scale of the map) to the real A^ distances along the surface of the spheroid. The circles in which the parallels are developed are not concentric, but their centres all lie on the central meridian. The meridians are concave toward the central meridian, and, except near the corners of maps showing large areas, they cross the paral- lels at angles differing little from right angles. In the practical work of map making, the meridians and parallels are most ad- vantageously defined by the co-ordinates of their points of intersection. These co- ordinates may be expressed in the following manner : For any parallel, as EOF (Fig. 3), take the origin O at the intersection with the central meridian, and let the rectangular axes of Y (OG) and X {OQ) be re- spectively coincident with and perpendicular to this meridian. Call the interval in longitude between the central meridian and the next adjacent one A\, and denote the angle at the centre G subtended by the developed arc OP by a. liv GEODESY. Then from Fig. 3 it appears that :*; = / sin a, y=z2 I sin" \a. But from Figs. 2 and 3, /=p„COt^, /a = r AX = p„ AA, COS , whence a = AA. sin <^. Hence, in terms of known quantities there result a; = p„ cot 4> sin (A\ sin <^), / n jy = 2 p„ cot <^ sin*" J (A\ sin <^). Numerical example. — Suppose ^ = 4°° and AA, = 25° = 90000". Then log 90000" = 4.9542425, log sin 40° := 9.808067s — 10, log 5785o."88 = 4.7623100 ; AX sin) = AX sin — ^(AX sin <^)» + . . . , sin'' 4(A^ sin ^) = i(AX sin c^)" - ^(AX sin <^)^ + . . . ; whence, to terms of the second order, a; = p„ AX cos <^ [1 — J(AX sin 4>y], ,s y = ip„ (AX)" sin 2<^ [i - ^{AX sin<^)"]. ^ ^ If the terms of the second order in these equations be neglected, the value of X will be too great by an amount somewhat less than |^(AX sin ^)" . x, and the value of y will be too great by an amount somewhat less than -^(^^ sin <^5'>ili^ An idea of the magnitudes of these fractions of x and y may be gained from the following table, which gives the values of ^(AX sin )" for a few values of the arguments AX and 4>- GEODESY. Values of |-(AA, sin (fif. Iv AX 4> 20° 40° 60° o I 2 3 I/I68000 1/42000 I/I8700 1/47700 I/II900 VS3oo 1/26260 1/6560 1/2920 It appears from this table that the first terms of (2) will suffice in computing the co-ordinates for projection of all maps on ordinary scales, and of less extent in longitude than 2° from the middle meridian. For example, the value of x for AA, = 2°, and (^ = 40°, and for a scale of two miles to one inch (1/126720), is 53.063 inches less i/iigoo part, or about 0.004 inch, which may properly be regarded as a vanishing quantity in map construction. For the computation of the co-ordinates given in the tables 19 to 24, where AA. does not exceed 1°, it is amply sufficient, therefore, to use X = p„ AA. cos , y = iPn (AA)" sin 2(^. (3) In these formulas and in (2), if AA is expressed in seconds, minutes, or degrees, it must be divided by the number of seconds, minutes, or degrees in the radius. The logarithms of the reciprocals of these numbers are given on p. xlvi. In the construction of tables like 19 to 24, it is most convenient, when English units are used, to express AA in minutes and x and y in inches. For this purpose, sup- posing log p„ to be taken from Table 11, if j be the scale of the map, or scale factor, equations (3) become — Co-ordinates x and y in inches for scale s. p„ s AA COS 4>, 3437-747 3 AA in minutes ; log (12/3437-747) = 7-54291 - 10, log (3/(3437-747)") = 3-4046 - 10. (4) Tables 19 to 24 give the values of x undy for various scales and for the zone of the earth's surface lying between 0° and 80°. Numerical example. — Suppose ^ = 40° and AX = 15' ; and let the scale of the map be one mile to the inch, or j = 1/63360. Then the calculation by (4) runs thus : Ivi GEODESY. log. log. cons't 7.54291 — 10 cons't 3.4046 — 10 P» 7-32130 Pn 7-3213 J 5.19818 — 10 s 5.1982 — 10 15 1.17609 (is)' 2.3522 COS <^ 9.88425 — 10 sin 2^ 9-9934 — 10 X 1. 12273 y 8.2697 — 10 In. In. X = 13.266 y = 0.01861. These values of x and y, it will be observed, agree with those corresponding to the same arguments in Table 22. When many values for the same scale are to be computed, log s should, of course, be combined with the constant logarithms of (4). Moreover, since in (4) x varies as AX and y as (A\)^, when several pairs of co-ordinates are to be com- puted for the same latitude, it will be most advantageous to compute the pair cor- responding to the greatest common divisor of the several values of A\ and derive the other pairs by direct multiplication. 12. Lines on a Spheroid. The most important lines on a spheroid used in geodesy are (a) the curve of a vertical section ; (i) the geodesic line ; and (1:) the alignment curve. Imagine two points in the surface of a spheroid, and denote them by /\ and J'i respectively. The vertical plane at I'l containing /'j and the vertical plane at /^ containing I'l give vertical section curves or lines. The curves cut out by these two planes coincide only when -fj and /j are in a meridian plane. The geodesic line is the shortest line joining Pj and /ji a-nd lying in the surface of the spheroid. The alignment curve on a spheroid is a curve whose vertical tangent plane at every point of its length contains the terminal points J^i and ^2. The curve {a) lies wholly in one plane, while (6) and (c) are curves of double curvature. In the case of a triangle formed by joining three points on a spheroid by lines lying in its surface, the curves of class (a) give two distinct sets of triangle sides, while the curves of classes (f) and give but one set of sides each. For all intervisible points on the surface of the earth, these different lines differ immaterially in length ; the only appreciable differences they present are in their azimuths (see formula under b below). Of the three classes of curves the first two only are of special importance. a. Characteristic property of curves of vertical section. Let ai,2 = azimuth of vertical section at Ii through /j, 02.1 = azimuth of vertical section at I\ through J^i, $1, 6^ = reduced latitudes of J^i and /j respectively, 81, 82 = angles of depression at /'i and ^2 respectively of the chord joining these points. Then the characteristic property of the vertical section curve joining I'l and P^ is sin ai2 cos 01 cos Si = sin (a^i — 180°) cos ^2 cos 82. GEODESY. lyii The azimuths ai.j and a^^, it will be observed, are the astronomical azimuths, or the azimuths which would be determined astronomically by means of an alti- tude and azimuth instrument. b. Characteristic property of geodesic line. Let a'i.2 = azimuth of geodesic line at J'l, "■'2.1 = azimuth of geodesic line at ^2, ^i) ^2 = reduced latitudes of F^ and T'a respectively. Then the characteristic property of the geodesic line is sin ai.2 cos 61 — sin (i8o°— 03.1) cos 0^ = cos $0, where 60 is the reduced latitude of the point where the geodesic through ^1 and /a is at right angles to a meridian plane. The difference between the astronomical azimuth ajj and the geodesic azimuth a'l 2 is expressed by the following formula : «i.2 — a'1.2 (in seconds) = ^V p" ^^ (-) cos^ ^ sin 201,2, where s = length of geodesic line T'l ^'2, a = major semi-axis of spheroid, e =. eccentricity of spheroid, p" = 206264. "8, 4> = astronomical latitude of F^, ai.2 = azimuth (astronomical or geodesic) of F^ F^, log tV p"\-] ^= 7-4244 — 20, for a in feet. Thus, for <^ = o and ai.j = 45°, for which cos^ sin 201.2 = 1, the above for- mula gives "1.2 — a'1.2 = o."o74, for s z= 100 miles, = 0.296, for s = 200 miles. so that for most geodetic work this difference is of little if any importance. 13. Solution of Spheroidal Triangles. The data for solution of a spheroidal triangle ordinarily presented are the measured angles and the length of one side. This latter may be either a geodesic line or a vertical section curve, since their lengths are in general sensibly equal. Such triangles are most conveniently solved in accordance with the rule afforded by Legendre's theorem, which asserts that the sides of a spheroidal triangle (of any measurable size on the earth) are sensibly equal to the sides of a plane triangle having a base of the same length and angles equal respectively to the spheroidal angles diminished each by one third of the excess of the spheroidal triangle. In other words, the computation of spheroidal triangles is thus made to depend on the computation of plane triangles. Iviii GEODESY. a. Spherical or spheroidal excess. The excess of a spheroidal triangle of ordinary extent on the earth is given by e (in seconds) ^ p" . Pm Pn where 5 is the area of the spheroidal or corresponding plane triangle ; p^, p„ are the principal radii of curvature for the mean latitude of the vertices of the tri- angle ; and p" :^ 206 264."8. For a sphere, p^ = p„=: radius of the sphere. Denote the angles of the spheroidal triangle by A, B, C, respectively ; the cor- responding angles of the plane triangle by a, p, y (as on p. xviii) ; and the sides common to the two triangles by a, b, c. Then S^\ ab wa.y^=\bc svc^ a.-=.\ ca sin j8. a = A — \i, P = B — \t, y=<: e. Tables 13 and 14 give the values of log (fi"l2p^^ for intervals of 1° of astro- nomical or geographical latitude.* 14. Geodetic Differences of Latitude, Longitude, and Azimuth. a. Primary triangulation. Denote two points on the surface of the earth's spheroid by P^ and F^ respec- tively. Let s = length of geodesic line joining Bi and /j, ^1, (f>2 = astronomical latitudes of J\ and Tg, Aj, X2 = longitudes of I\ and I^t AA. = A.2 — ^1, ai.2 := azimuth of I\ P^ (s) at /j, 02,1 = azimuth of /j P^ (i) at P^, e = eccentricity of spheroid, Pm, Pn = principal (meridian and normal) radii of curvature at the point P^. Then for the longest sides of measurable triangles on the earth the following formulas will give <^2, A2, and 03.1 in terms of ^j, Xj, ai.2, and s. The azimuths are astronomical, and are reckoned from the south by way of the west through 360°. a' := 180° — ai.2, and a2.i =: l8o° -\- a", for ajj 180° (■) " = ^„ ,{ ^ + i 7^. (^J"cOS= <^, COS= a' } • (2) t—k YZZ^i cos'' ^1 sin 2a' (3) * For the solution of very large triangles and for a full treatment of the theory thereof, consult Die Mathematischen und Physikalischen Theorieen der Hoheren Geoddsie, von Dr. F. R. Helmert. Leipzig, 1880, 1884. GEODESY. tan ^(a" - AX + = ± \^P°l - ^ 7 '? cot ^ a' (4) sin i(9o° - <^i + ^) ^"' ^ ' , , J sin i(a" — a' + Z) ■^ - '^^ = ^. sinlK + a' + O {' + tV ^^ cos» K-" - a')}. (5) To express 17, f, and <^2 — ^1 in seconds of arc we must multiply the right hand sides of (2), (3), and (5) by p" = 206 264."8. For logarithmic compution of V' and t,", or t] and i in seconds, we may write with an accuracy generally sufficient log V = log (p"s/p:) + I -t^, (^)' «=°s' "^i ''°^' <^'' (6) log C" = log I (73^ + log {(v'7 cos' = Ai-{- A^, AA = ^1 + B„ Aa = Ci + C2, in which, for example, A^ and A^ are the first and second terms respectively of A^, due regard being paid to the signs of the functions of ajj. Numerical example. The following example will serve to illustrate the use of formulas (i) to (3). The value of log J- is for s in English feet, s being in this case about 12.3 miles. ^1 38°54'o8."38 \ 88° 03' 24."is ai.2 43° 01' 46."29 Acji — 07' 5o."2i AA +09'20."22 Aa — 05' si."32 ^^ 38°46'i8."i7 A2 88°i2'44."3| aj.i 222° 55' S4."97 i(<^2+^i) 38° so' i3-"2 7 » See Appendix 7, Report of 1884, for latest edition of these tables. GEODESY. Ixi log log log log s 4.81308 J 4.81308 s sin ai.2 4.647 J sin aj.j 4.647 COS ai.2 9.86392 sin ai,2 9.83402 J sin ai,2 4.647 J cos ajj 4.677 '^1 7-9949S sec <^i 0.10890 a^ 0.279 h o-688 ^i 7-99316 ^2 0.733 Ai 2.6719s ^1 2.74916 ^2 9-573 -^2 0.012 sin <^i 9-79795 Q o-o57 Ci 2.547 1 1 log Ai - 469."84 ^1 + S6i."25 d - 3S2."46 Aa 2.54570 -^2- o."37 ^2- i."o3 C2+ i."i4 AA. 2.74836 A^-47o."2i AX + 56o."22 Aa-35i."32 sin ^(^2 + sf-i) 9-79734 15. Trigonometric Leveling. a. Computation of heights from observed zenith distances. Let J =^ sea level distance between two points jPj and P^, III, ^2 = heights above sea level of P^ and P^, Zi = observed zenith distance of P2 from Pi, 02 = observed zenith distance of Pi from P^, p = radius of curvature of vertical section at Pi through P2, or at P2 through Pi, the curvature being sensibly the same for both for this purpose, C = angle at centre of curvature subtended by s, mi, vti = coefficients of refraction at Pi and P^, A^i, Az2 = angles of refraction at Pi and P^. Then, the fundamental relations are C = - , A«i = MiC, A«2 = m^C, / s ^1 + .^2 + ^Zi -\- Az2 = 180° + C, H2 - Hi = s tan \{Z2 + A02 - % - A^,) (i + ^^ + ^^ + ^+ . . .). (2) When the zenith distances Zi and z^ are simultaneous, or when A^i and A^g are assumed to be equal, (2) becomes ^2-^i = -tan \{Z2 - zi) (i +=^7^' + I^ + - • •)• (3) For the case of a single observed zenith distance Zi, say, and a known or assumed value of »« ^ Wi = m2, the following formula may be applied : Z?^ — .Si = J' cot ^1 -| : s' 4" s^ cot'^ ^1. (4) The coefficient of refraction m varies very greatly under different atmospheric conditions. Its average value for land lines is about 0.07. The following table gives the values of log ^(i — 2 m) and log (i — m) for values of m ranging from 0.05 to o.io. It is taken from Appendix 18, Report of U. S. Coast and Geodetic Ixii GEODESY. Survey for 1876. Table 12 taken from the same source gives values of log p needed for use in (3) and (4). Table of values of log \{i — 2 m) and log (i — m). m \o%\{\ — 2ni). log (i — m). m log i(l — 2 m). log (l — m). 0.050 9.65321 9.978 0.07s 9.62839 9.966 51 65225 77 76 62737 66 52 65128 77 77 62634 65 S3 65031 76 78 62531 65 54 64933 76 79 62428 64 0.055 9.64836 9-975 0.080 9.62325 9-964 56 64738 75 81 62221 63 57 64640 75 82 62118 63 58 64542 74 83 62014 62 59 64444 74 84 61910 62 0.060 9-64345 9-973 0.085 9.61805 9.961 61 64246 73 86 61700 61 62 64147 72 87 61595 60 63 64048 72 88 61490 60 64 63949 71 89 61384 60 0.065 9.63849 9.971 0.090 9.61278 9-959 66 63749 70 91 61172 59 67 63649 70 92 61066 58 68 63548 69 93 60959 58 69 63448 69 94 60853 57 0.070 9-63347 9.968 0.095 9.60746 9.957 71 63246 68 96 60638 56 72 63144 68 97 60531 56 73 63043 67 98 60423 55 74 62941 67 99 60315 55 0.1 00 9.60206 9-954 For less precise work one may use equation (4) in the form ^ — ^ = J cot Zi-\- c j", (5) wherein, if we make m = 0.07 and use for p its average value, or y/ p„ p„, for latitude 45", log e = 2.313 — 10 for J in feet, =: 2.829 ~ 10 for J in metres. Thus, for a distance (s) of 10 miles the value of the term cs^ in (5) is 57.3 feet. : observed in the place of zenit lus : — ^2 — -Si = ± J tan ai -|- (T ^, (6) If altitudes %, say, are observed in the place of zenith distances z-^, it is most convenient to write (5) thus : — GEODESY. Ixiii where the upper sign is used when a^ is an angle of elevation and the lower sign when tti is an angle of depression. b. Coefficients of refraction. When «i and z^ are both observed for a given line, a coefficient of refraction may be computed from the assumption of equality of coefficients at the two ends of the line. Thus, equations (i) give Az, + Az^ = 180° + C - (2i + z^), or s s (mi -\-m^-^= 180° + - - (^1 + 22). whence »Zl + Z«2 ^ 1 — - (^1 -\- Zi — 180°). Assuming »«i = Wj = m, and supposing z^ + z^ — 180° expressed in seconds of arc, ^ = * { ^ - "^ (^1 + ^^ - ^^''°) p" = 206264. "8, log p" = 5.3144251. c. Dip and distance of sea horizon. Let Then Ji = height of eye above sea level, S = dip or angle of depression of horizon, s = distance of horizon from observer. 8 (in seconds) = 58.82 \/A in feet, = 106.54 \//i in metres. J (in miles) = 1.317 ^/lia feet. J (in kilometres) = 3-839 \/A in metres. The above formulas take account of curvature and refraction. They depend on the value 0.0784 for the coefficient of refraction, and are quite as accurate as the uncertainties in such data justify. For convenience of memory, and for an accuracy amply sufficient in most cases, the coefficients of the radicals in the last two formulas may be written f and ^ respectively. 16. Miscellaneous Formulas. a. Correction to observed angle for eccentric position of instrument Let C" be the eccentric position of the instrument, and Co the observed value of the angle at that point between two other points A and B. Let C denote the central point as well as the angle AC£ desired. Call the distance CC r and denote the angle ACC by &. Denote the lines BC and AC, which are as- sumed to be sensibly the same as BC and AC, hy a and l> respectively. Then Ixiv GEODESY. p'V sin (e — Co) p"r sin C- Ca (in seconds) = ^ ^ °-^ - '^—^ , p" = 2 06 2 64."8, log p" = 5 .3 1 442 5 1 . Attention must be paid to the signs of sin {6 — Co) and sin 6, and to the fact that angles are counted from A towards £ through 360°. A diagram drawn in accordance with the above specifications will elucidate any special case. b. Reduction of measured base to sea level. Let / be the length of the bar, tape or other unit used in measuring the base. Let 4 be the corresponding length reduced to sea level for a height h, this latter being the observed height of /. Then if p denote the radius of curvature of the earth's surface in the direction of the base, *=,-^.= (.-:+...)' •with sufficient accuracy. Hence, for the whole length of the base, 2/0 = S/- -'^Ih. If L denote the total measured length, Zq the corresponding total sea level length, and ZTthe mean value of the heights h, the above equation gives P c. The three-point problem. In this problem the positions of three points A, B, C, and hence the elements of the triangle they form, are given together with the two angles APC and BPC at a point P whose position is required. Denote the angles and the sides of the known triangle by A, B, C, and a, b, c, respectively. Also put APC=P, BPC=a, PAC^x, PBC=^y. Then the sum of the angles in the quadrilateral PACB is a + y8 + ^-f^+C=36o°, whence \{x ^y)= 180° - Ka + /3 + C). (i) Compute an auxiliary angle z from the equation « sin fi , s tan z = -j— — - ; (2) I? sin a Then tan \{x -y) = tan {z - -45°) tan \ix + y). (3) These three equations give all the data essential to a complete determination of the position of P. Any special case should be elucidated by a diagram drawn in accordance with the specifications given above. GEODESY. Ixv When the positions of the points A, B, C are given on a map, the position of P on the same map may be found graphically by drawing lines making angles with each other equal to the given angles a. and ;8 from a point on a piece of tracing paper, and then placing this tracing on the map so as to meet the required conditions. This ready method of solving the problem is often sufficient. 17- Salient Facts of Physical Geodesy. a. Area of earth's surface, areas of continents, area of oceans.* Square miles. Total area of earth's surface 196 940 000 Area continent of Europe 3 820 000 " " Asia 17230000 " " Africa 11 480 000 " " Australia 3 406 000 " " America 15950000 Total area of continents 51886000 Total area of oceans 145054000 b. Average heights of continents and depths of oceans.f Average height of continent of Europe . " " " Asia . . " " " Africa . " " " Australia " " " America . Average height of all Feet. 980 1640 1640 820 1340 1440 Feet. Metres. 300 500 500 250 410 440 Metres. 3680 3890 3340 3440 Average depth of Atlantic Ocean 12 100 " " Pacific Ocean 12 700 " " Indian Ocean 11 000 Average depth of all 11 300 c. Volume, surface density, mean density, and mass of earth. Volume of earth = 259 880 000 000 cubic miles. = I 083 200 000 000 cubic kilometres. =: 260 X 1°" cubic miles (about). = 108 X 10" cubic kilometres (about). Surface density of earth = 2.56 ± 0.16 t Mean density of earth =:: 5.576 ± 0.016. * Derived from relative areas given in Helmert's Geoddsie, Band II. p. 313. t Helmert's Geoddsie, Band II. p. 313. t These densities are given by Professor Wm. Harkness in his memoir on The Solar Parallax and Related Constants. The surface density applies to that portion of the earth's crust which lies above and within a shell ten mUes thick, the lower surface of this shell being ten mUes below sea level. Ixvi GEODESY. Assuming the mass of a cubic foot of water to be 62.28 pounds (at 62° F.)y Mass of earth* = 13 284 X 10^^ pounds. = 6642 X 10'^ tons (of 2000 lbs.). = 60258 X 10'" kilogrammes. d. Principal moments of inertia and energy of rotation of earth. M=. mass of earth, A = moment of inertia of earth about an axis in its equator, C = moment of inertia about axis of rotation, a = equatorial axis of earth, o) =^ angular velocity of earth, =^ (2 T/86164) for mean solar second as unit of time. Thent ^ =: 0.325 Ma% C = 0.326 Ma\ Energy of rotation of earth = ^ lo^C. = 0.163 '^'^■^a^- = 504 X 10^' foot-poundals. ^217 X 10^^ kilogramme-metres. ^ 212 X 10°' ergs. Jie/erences. The most exhaustive treatise on the theory of geodesy is found in " Die Mathe- matischen und Physikalischen Theorieen der Hoheren Geodasie," von Dr. F. R. Helmert. Leipzig : B. G. Teubner ; 8vo, 1880 (vol. i.), 1884 (vol. ii.). An excel- lent work on the practical as well as theoretical features of the subject is " Die geodatischen Hauptpunkte und ihre Co-ordinaten," von G. Zachariae ; autorisirte deutsche Ausgabe, von E. Lamp. Berlin : Robert Oppenheim, 8vo, 1878. Of works in English the most comprehensive is " Geodesy," by A. R. Clarke. Ox- ford : The Clarendon Press, 8vo, 1880. * The mass of the earth's atmosphere is about one-minionth part of the entire mass, or about 66 X 10" tons. t The values of A and C axe those given by Harkness, Uc. cit., but they are here abridged to three places of decimals. ASTRONOMY. I. The Celestial Sphere. Planes and Circles of Reference. The celestial sphere is a sphere to which it is convenient to refer stars and other celestial objects. Its centre is assumed to be coincident with the eye of the observer, and the objects referred to it are supposed to lie in its surface. The orientation of this sphere is defined by its equator, which is assumed to be parallel to the earth's equator. The equator is thus the principal plane of refer- ence. Other planes of reference are the plane of the horizon, which is perpen- dicular to the plumb line at the place ; the meridian, which is a plane through the place and the earth's axis of rotation ; the prime-vertical, which is a vertical plane at the place at right angles to the meridian ; and the ecliptic, which is a plane parallel to the plane of the earth's orbit. These planes cut the surface of the sphere in great circles called the equator, the horizon, the meridian, etc. The points on the sphere defined by the intersection of the meridians, or the points where the axis of the equator pierces the sphere, are called the poles. Similarly, the prolongation of the plumb line upwards pierces the sphere in the zenith, and its prolongation downwards pierces the sphere in the nadir. Great circles pass- ing through the zenith are called vertical circles. 2. Spherical Co-ordinates. a. Notation. The position of a celestial body may be defined by several systems of co-ordi- nates. The most important of these in practical astronomy are the azimuth and altitude system and the hour angle and declination system. In the first of these the azimuth of a star or other body is the angle between the meridian plane of the place and a vertical plane through the star. It is measured, in gen- eral, from the south around by the west through 360°. The altitude of a star is its angular distance above the horizon, and its zenith distance is the complement of the altitude. In the second system the hour angle of a star is the angle between the meridian plane of the place and a meridian plane through the star. It is measured towards the west. through 360°. The declination of a star is its angular distance above or below the equator ; the complement of the declination is called the polar distance. The angular distance of the pole above the horizon is equal to the zenith dis- tance of the equator, or to the latitude of the place. Likewise, the altitude of the equator and the zenith distance of the pole are each equal to the comple- ment of the latitude at any place. Ixviii ASTRONOMY. These quantities are usually designated by the following notation : — A = the azimuth of a star or object, h = its altitude, z = its zenith distance = 90° — k, t = its hour angle, 8 =^ its declination, / = its polar distance = 90° — 8, q = the parallactic angle, or angle at the star between the pole and the zenith, ^ = the latitude of the place of observation. b. Altitude and azimuth in terms of declination and hour angle. The fundamental relations for this problem are — sin h = sin <^ sin 8 -|- cos <^ cos 8 cos f, cos A cos ^ = — cos ^ sin 8 -j- sin <^ cos 8 cos f, (i) cos ^ sin ^ = cos 8 sin t. When it is desired to compute both A and k by means of logarithms, the most convenient formulas are, m sin M = sin 8, ,, tan 8 m cos M-=- cos S cos t, cos r , , ,^ . tan t cos M / V sm h = m cos (^ - M), tan A = ^^^ ^^ _^y (2; cos h cos A ^m sin ( — M), . ^ __ cos A ^ cos hsin A=z cos 8 sin t, tan (^ — M)' A > 180° when / > 180° and A < 180° when t < 180°. For the computation of A and z separately, the following formulas are useful : sin / tan A =^ ■ cos <^ tan 8 (i — tan cot 8 cos t) (3) a sin f 1—6 cos t' where a = sec fj) cot 8, 6 ^ tan <^ cot 8. Formulas (3) are especially appropriate for the computation of a series of azimuths of close circumpolar stars, since a and l> will be constant for a given place and date. cos z = cos (^ — 8) — 2 cos <^ cos 8 sin" ^ /, sin" i z = sin" i (<^ ~ 8) + cos <^ cos 8 sin" ^ f, , \ (.^ ~ S) = <^ — 8, for^ >8 ^^ = 8 — ^, for ^< 8. ASTRONOMY. Ixix For logarithmic application of (4) we may write nt^ = cos (^ cos 8, ti^ = sin^ \(^ ~ 8), tan iV= — sin \ i, (5) n ^^"^^ = c-5FiV^=iIO^^i"i^- c. Declination and hour angle in terms of altitude and azimuth. The fundamental relations for this case are sin 8 = sin (^ sin h. — cos ^ cos h cos A, cos S cos t = cos (^ sin ^ -|- sin <^ cos h cos A, (i) cos 8 sin / = cos h sin A. For logarithmic computation by means of an auxiliary angle M one may write m sin M=:. cos /^ cos A, tanM^ cot /^ cos A, m cos Jf = sin h, ■ 5. • / 1 Tiir\ i J tan A sin Jlf / n sm 8 = »z sm (d> — M), tan / := -. ^-^, (2) ^^ ^' cos (^ — il/) ^ ^ cos S cos / = »z cos (^ — ilf), cos S sin / ^ cos A sin A, tan 8 =: tan (<^ — M) cos /. d. Hour angle and azimuth in terms of zenith distance. cos z — sin (/> sin 8 cos i ■■ cos cos 8 ^^^, sjn0r-^)_cos^c^)^ ^=1(^ + 8 + ^). cos o- cos ((T — z) . sin sin ^. Ixx ASTRONOMY. The first three of these are adapted to logarithmic computation as follows : — n sin N-=- cos <^ cos /, n cos N^ sin <^, cos 2 = « sin (8 -|- JST), sin z cos q=-n cos (8 -\- N), sin z sin q ^ cos 4> sin /,• whence tan iV^^ cot <^ cos t, tan if sin iV" , ^ tan.sm^ = ^.^^g_^_^y (2) tan cos f = cot (S + ■^)- A similar adaptation results for the last three of equations (i) by interchanging S and z. The equations (2) give both z and q in terms of ^, 8, and t, without ambiguity, since tan z is positive for stars above the horizon. If A, z, and q are all required from <^, 8, and /, they are best given by the Gaussian relations sin J z sin ^{A + ^) = sin ^t cos i(<^ -|- 8), sin J z cos ^{A -\- q)^cos^ t sin J(<^ — 8), ,-. cos ^ 2 sin i(^ — ^) ^ sin ^ t sin J(<^ -|- S), cos J ^ cos ^A — q) = cos J ^ cos i(<^ — 8). f. Hour angle, azimuth, and zenith distance of a star at elongation. In this case the parallactic angle is 90° and the required quantities are given by the formulas tan <^ '=°'^=tsr8"' . cos 8 sm^= T' (i) cos <^ ^ ' sin d) When all of the quantities t. A, and z axe to be computed the following formulas are more advantageous : — JP = sin (8 4- ^) sin (8 - <^), sm i? ^ 1 — ■ — -^> cos A = 71 sm z = -: — s> (2) cos ^ sm 8 cos <^ sm 8 ^ ' . . -^ . ^ cos 8 ^ tan / = -T-— 7-— — -sj ta.nA= — ^^j tan 2:=: sinc^cosS >- . tan ^ ^ _ ^^^ j|.^^o _ ^ _ gy On account of refraction, the values of t and A given by these formulas are subject to the following corrections, to wit : — R , tan <^ ^ cos <^ cos o sm t sm yj ' where ^ is the refraction in the horizon. Thus the actual values of the hour angle and azimuth at the time of rising or setting of a star are / + A^ and ^ + A^. Ixxii ASTRONOMY. i. Differential formulas. The general differential relations for the altitude and azimuth and the declina- tion and hour angle systems of coordinates are : — tiz z=— cos q dh -\- sin g cos h dt -\- cos A d(f>, , •. sin z dA^ sin q dZ -\- cos q cos I dt — cos z sin A d^i. ^S = — cos q dz-\- sin q sin z dA A^ cos t dcj>, / . cos 8 d(=^ sin q dz -\- cos ^ sin z ^^ + sin 8 sin / (/^. The following values derived from (i) are of interest as showing the dependence of z and ^ on ^ in special cases : — m (^) cos 8 For a star in the meridian = o, = rir-i' bin z For a star in the prime vertical = cos ^, = sin <^, For a star at elongation = cos 8, = o. 3. Relations of Different Kinds of Time used in Astronomy. a. The sidereal and solar days. The sidereal day is the interval between two successive transits of the vernal equinox over the same meridian. The sidereal time at any instant is the hour angle of the vernal equinox reckoned from the meridian towards the west from o to 24 hours. The sidereal time at any place is o when the vernal equinox is in the meridian of that place. The solar day is the interval between two successive transits of the sun across any meridian ; and the solar time at any instant is the hour angle of the sun at , that instant. The solar day begins at any place when the sun is in the meridian of that place. The mean solar day is the interval between two successive transits over the same meridian of a fictitious sun, called the mean sun, which is assumed to move uniformly in the equator at such a rate that it returns to the vernal equinox at the same instant with the actual sun. Time reckoned with respect to the actual sun is called apparent time, while that reckoned with respect to the mean sun is called mean time. The difference between apparent and mean time, which amounts at most to about 16°*, is called the equation of time. This quantity is given for every day in the year in ephemerides. The sidereal time when a star or other object crosses the meridian is called the right ascension of the object. The right ascension of the mean sun is also called the sidereal time of mean noon. This time is given for every day in the year in ephemerides for particular meridians, and can be found for any meridian by allow- ing for the difference in longitude. The time to which ephemerides and most astronomical calculations are referred ASTRONOMY. Ixxiii is the solar day, beginning at noon, and divided to hours numbered continuously from o* to 24*. This is called astronomical time ; and such a day is called the astronomical day. It begins, therefore, 12 hours later than the civil day. b. Relation of apparent and mean time. A = apparent time = hour angle of real sun, M = mean time ^ hour angle of mean sun, jE = equation of time. M=A-\-£. In the use of this relation, £ may be most conveniently derived (by interpola- tion for the place of observation) from an ephemeris. c. Relation of sidereal and mean solar intervals of time. /= interval of mean solar time, /' = corresponding interval in sidereal time, r = the ratio of the tropical year expressed in sidereal days to the tropical year expressed in mean solar days 366.2422 _ Q = ^2 2. — = 1.002738. 365.2422 l'=rI—/-\-(r- 1)7=7+0.002738 7 7= r-' 7' = 7' - (i - r-') /' = /'- 0.002730 7'. Tables for making such calculations are usually given in ephemerides (see, for example, the American Ephemeris). Short tables for this purpose are Tables 34 and 35 of this volume. Frequent reference is made to the relations 24* sidereal time = 23* 56" 04.'o9i solar time, 24'* mean time = 24* 03"" 56.^555 sidereal time. d. Intercohversion of sidereal and mean solar time. T„ = mean time at any place, T, = corresponding sidereal time, = right ascension of meridian of the place, A = right ascension of mean sun for place and date, = sidereal time of mean noon for place and date. T,= A -\- Tm expressed in sidereal time. 7;, = (71 — A) expressed in mean time. The quantity A is given in the ephemerides for particular meridians, and can be found by interpolation for any meridian whose longitude with respect to the meridian of the ephemeris is known. The formulas assume that A is taken out of the ephemeris for the next preceding mean noon. Ixxiv ASTRONOMY. e. Relation of sidereal time to the right ascension and hour angle of a star. T, = sidereal time at any place, = right ascension of the meridian of the place, a = right ascension of a star, t := the hour angle of the star at the time 7J. T, = a -\- t, f^T, — a. 4. Determination of Time. a. By meridian transits. A determination of time consists in finding the correction to the clock, chro- nometer, or watch used to record time. If 7J denote the true time at any place of an event, T the corresponding observed clock time, and AT' the clock correc- tion. To = r+ AT. The simplest way to determine the clock correction is to observe the transit of a star, whose right ascension is known, across the meridian. In this case the true time TJ = a, the right ascension of the star ; and if T' is the observed clock time of the transit, AT=a — T. Meridian transits of stars may be observed by means of a theodolite or transit instrument mounted so that its telescope describes the meridian when rotated about its horizontal axis. The meridian transit instrument is specially designed for this purpose, and affords the most precise method of determining time.* Since it is impossible to place the telescope of such an instrument exactly in the meridian, it is essential in precise work to determine certain constants, which define this defect of adjustment, along with the clock correction. These con- stants are the azimuth of the telescope when in the horizon, the inclination of the horizontal axis of the telescope, and the error of collimation of the telescope.t Let a = azimuth constant, 6 = inclination or level constant, c = collimation constant. a is considered plus when the instrument points east of south ; i is plus when the west end of the rotation axis is the higher ; and ( is intrinsically plus when the star observed crosses the thread (or threads) too soon from lack of collima- tion. (The latter constant is generally referred to the clamp or circle on the horizontal axis of the instrument.) * The best treatise on the theory and use of this instrument is to be found in Chauvenet's Manual of Spherical and Practical Astronomy, which should be consulted by one desiring to go into the details of the subject. t Other equivalent constants may be used, but those given are most commonly employed. ASTRONOMY, Ixxv Also let = latitude of the place, 8 = declination of star observed, a =: right ascension of star observed, T= observed clock time of star's transit, ^^= the clock correction at an assumed epoch T„, r = the rate of the clock, or other timepiece, A sin (d) — 8) cos 8 ~ ^^'^ " azimuth factor," J, cos ((i — 8) ~ cos 8 ~ *^ " '^^^^ factor," C=^ cos^ ^^ ^^ " collimation factor." Then, when a, b, e are small (conveniently less than lo" each, and in ordinary practice less than i' each), T^ Ar+ Aa -\- Bb ^ Cc -\- r {T - To) = a. This is known as Mayer's formula for the computation of time from star transits. The quantity Bb is generally observed directly with a striding level. Assuming it to be known and combined with T, the above equation gives AT-\-Aa-{-a-\-r(T-ro) = a-T. (i) This equation involves four unknown quantities, AT, a, c, and r; so that in general it will be essential to observe at least four different stars in order to get the objective quantity AT. Where great precision is not needed, the effect of the rate, for short intervals of time, may be ignored, and the collimation c may be rendered insignificant by adjustment. Then the equation (i) is simplified in AT-{- Aa = a— T (2) This shows that observations of two stars of different declinations will suffice to give AT. Since the factor A is plus for stars south of the zenith (in north lati- tude) and minus for stars north of the zenith, if stars be so chosen as to make the two values of A equal numerically but of opposite signs, AT'will result from the mean of two equations of the form (2). With good instrumental adjustments (b and c small), this simple sort of observation with a theodolite will give AT to the nearest second. A still better plan for approximate determination of time is to observe a pair of north and south stars as above, and then reverse the telescope and observe an- other pair similarly situated, since the remaining error of collimation will be partly if not wholly eliminated. Indeed, a well selected and well observed set of four stars will give the error of the timepiece used within a half second or less. This method is especially available to geographers who may desire such an approxi- mate value of the timepiece correction for use in determining azimuth. It will suflOice in the application of the method to set up the instrument (theodolite or tran- sit) in the vertical plane of Polaris, which is always close enough to the meridian. The determination will then proceed according to the following programme : — Ixxvi ASTRONOMY. 1. Observe time of transit of a star south of zenith, 2. Observe time of transit of a star north of zenith. Reverse telescope, 3. Observe time of transit of another star south of zenith, 4. Observe time of transit of another star north of zenith. Each star observation will give an equation of the form (i), and the mean of the four resulting equations is ^44 4 4 Now the coefficient of r in this equation may be always made zero by taking for the epoch 7J the mean of the observed times T. Likewise, ^A and %C may be made small by suitably selected stars, since two of the A's and C's are positive and two negative. The value \ 2(a — T) is thus always a close approximation to AT" for the epoch T(,^\ "SiT, when %A and 2C approximate to zero. But if these suras are not sraall, approximate values of a and c may be found from the four equations of the form (i), neglecting the rate, and these substituted in the above formula will give all needful precision. For refined work, as in determining differences of longitude, several groups of stars are observed, half of them with the telescope in one position and half in the reverse position, and the quantities AT, a, c, and r are computed by the method of least squares. In such work it is always advantageous to select the stars with a view to making the sums of the azimuth and collimation coefficients approxi- mate to zero, since this gives the highest precision and entails the simplest com- putations.* b. By a single observed altitude of a star. An approximate determination of time, often sufficient for the purposes of the geographer, may be had by observing the altitude or zenith distance of a known star. The method requires also a knowledge of the latitude of the place. Let Zj = the observed zenith distance of the star, Ji = thje refraction, z = the true zenith distance of the star, = z,-\~J?, a, S, = the right ascension and declination of the star, i = hour angle of star at time of observation, T= observed time when Zi is measured, AT:= correction to timepiece, (j} = latitude of place. Then the hour angle / may be computed by sin (a- — (h) cos (a- — 8) n / 1 1 l^ 1 \ tanHif= ^^ / ^ — ^-^. °' = iw + 8 + '2)- ^ cos o- cos (o- — z) ^\r I I y * -For details of theory and practice in time work done according to this plan see Bulletin 49, 'U. S. Geological Survey. ASTRONOMY. Ixxvii Having the hour angle the clock correction A 7" is given by A7'=a + /— T, in which all terms must be expressed in the same unit ; /. e., in sidereal or in mean time. The refraction R may be taken from Table 31. The most advantageous position of the star observed, so far as the effect of an error in the measured quantity z-^ is concerned, is in the prime vertical, but stars near the horizon should be avoided on account of uncertainties in refraction. The least favorable position of the star is in the meridian. Compared with the preceding method the present method is inferior in preci- sion, but it is often available when the other cannot be applied. c. By equal altitudes of a star. This method is an obvious extension of the preceding method, and has the advantage of eliminating the effect of constant instrumental errors in the meas- ured altitudes or zenith distances. Thus it is plain that the mean of the times when a (fixed) star has the same altitude east and west of the meridian, whether one can measure that altitude correctly or not, is the time of meridian transit. This method may, therefore, give a good approximation to the timepiece correction when nothing better than an engineer's transit, whose telescope can be clamped, is available. When the instrument has a vertical circle (or when a sextant is used) a series of altitudes may be observed before meridian passage of the star, and a similar series in the reverse order with equal altitudes respectively after meridian passage. The half sums of the times of equal altitudes on the two sides of the meridian will give a series of values for the time of meridian transit from which the precision attained may be inferred. This method is frequently applied to the sun, observations being made before and after noon. For the theory of the corrections essential in this case on account of the changing position of the sun, on account of inequalities in the observed altitudes, etc., the reader must be referred to special treatises on prac- tical astronomy.* 5. Determination of Latitude. a. By meridian altitudes. The readiest method of determining the latitude of a place is to measure the meridian zenith distance or altitude of a known star. When precision is not re- quired this process is a very simple one, since it is only essential to follow a (fixed) star near the meridian until its altitude is greatest, or zenith distance least. Thus, if the observed zenith distance is ^i, the true zenith distance z, and the refrac- tion R, z = Zi-^R; * The best work of this kind is Chauvenet's Manual of Spherical and Practical Astronomy- It should be consulted by all persons desiring a knowledge of the details of practical astronomy. Ixxviii ASTRONOMY. and if the declination of the star is 8 and the latitude of the place ^, according as the star is south or north of the zenith. A more accurate application of the same principle is to observe the altitudes of a circumpolar star at upper and lower culmination (above and below the pole). The mean of these altitudes, corrected for refraction, is the latitude of the place. This process, it will be observed, does not require a knowledge of the star's declination. b. By the measured altitude of a star at a known time. A = measured altitude corrected for refraction, Ts = observed sidereal time, a, 8 ^ right ascension and declination of star, f = hour angle of star, 4> = latitude of place. Then = l3±y. In the application of these p may be taken numerically less than 90°, and since t may also be taken less than 90°, yS may be taken with the same sign as 8. y is indeterminate as to sign analytically, but whether it should be taken as positive or negative can be decided in general by an approximate knowledge of the lati- tude, which is always had except in localities near the equator. The most advantageous position of a star in determining latitude by this method is in the meridian, and the least advantageous in the prime vertical. When a series of observations on the same star is made, they should be equally distributed about the meridian ; and when more than one star is observed it is advantageous to observe equal numbers of them on the north and south of the zenith. The application of this method to the pole star is especially well adapted to the means available to the geographer and engineer, namely, a good theodolite and a good timepiece. In this case the following simple formula for the latitude may be used : — (j>^= h — p cos / + \p'^ sin i" sin^ t tan h, where/ is the polar distance of Polaris in seconds (about 5400"), and the other symbols have the same meaning as defined above. Tables giving the logarithms of/ and \p^ sin i" are published in the American Ephemeris. ASTRONOMY. Ixxix c. By the zenith telescope. The zenith telescope furnishes the most precise means known for the deter- mination of the latitude of a place. For the theory of the instrument and method when applied to refined work the reader must be referred to special treatises.* It will suffice here to state the principle of the method, which may sometimes be advantageously applied by the geographer. Let z^ be the meridian zenith distance of a star south of the zenith, and z^ the meridian zenith distance of another star north of the zenith. Let 8, and 8„ denote the declinations of these stars respec- tively. Then «« = <)!> — 8« K^^K — ^, whence •^ = i (8. + S„) + i {z, - ^„). It appears, therefore, that this method requires only that the difference {z^ — 2„) be measured. Herein lies the advantage of the method, since that difference may be made small by a suitable selection of pairs of stars. With the zenith telescope the stars are so chosen that the difference (z^ — z„) may be measured by means of a micrometer in the telescope. The essential principles and advantages of this method may be realized also with a theodolite, or other telescope, to which a vertical circle is attached, the difference {z, — z„) being measured on the circle ; and a determination of latitude within s'' or less is thus easy with small theodolites of the best class {i. e., with those whose circles read to lo" or less by opposite verniers or microscopes). 6. Determination of Azimuth. a. By observation of a star at a known time. Tg = sidereal time of observation, a, 8 :^ right ascension and declination of star observed, t :=: hour angle of star, (j> = latitude of place, A = azimuth of the star at the time 7] counted from the south around by the west through 360°. The azimuth A may be computed by the formulas a = sec <^ cot 8, 3 = tan ^ cot 8, a sin / (i) tan A =^ — I — d cos i The angle A will fall in the same semicircle as f, and A is thus determined by its tangent without ambiguity. The quantities a and i will be sensibly constant for * Among which Chauvenet's Manual of Spherical and Practical Astronomy is the best. Ixxx ASTRONOMY, a given star and date ; and hence they need be computed but once for a series of observations on the same star on one date. The effects of small errors A/, A^, and AS in the assumed time, latitude, and declination are expressed by cos S cos ^ ^ ^ . . . . , sin ^ : AA — sm A cot z Ad, -: — - AS, sin z ' ^' sin a ' respectively, where z and q are the zenith distance and parallactic angle of the star. Hence the effect of A/ will vanish for a star at elongation ; the effect of A(^ vanishes for a star in the meridian, and is always small (in middle latitudes) for a close circumpolar star ; the effect of AS vanishes for a star in the meridian. It appears advantageous, therefore, to observe for azimuth (in middle latitudes) close circumpolar stars at elongations, since the effect of the time error is then least, and the effects of errors in the latitude and declination are small and may be eliminated entirely by observing the same star at both elongations. The hour angle t^, the azimuth A^ and the altitude h^ of a star at elongation are given by the formulas (2) of section 2,f. Those best suited to the purpose are K"" = sin (8 + <^) sin (8 - ^, K , cos S , sin X^ ' K^ = sin (8 4- 4,) sin (8 - <^).* b. By an observed altitude of a star. k = true altitude of star observed ; t. e., the observed altitude less the refrac- tion, ^ = latitude of place, p = polar distance of star, A = azimuth of star. tan^ hA = sin ("• - ) sin (a- — h) cos 90°, or when the declination (S) of the star is negative. 0. By equal altitudes of a star. By this method, when a fixed star is observed first east of the meridian and then west of the meridian at the same altitude, the direction of the meridian will * In precise work the computed azimuth requires the following correction for daily aberration, namely : — cos ^ A/i = — o."-',z —■ — cos A, •J sm 3 ' -where A is to be reckoned from the south by way of the west through 360°. Ixxxii ASTRONOMY. obviously be given by the mean of the azimuth circle readings for the two observed directions. This process will thus give the direction of the meridian free from the effect of any instrumental errors common to the equal altitudes observed. Neither does it require any knowledge of the star's position (right ascension and declination). It is therefore available to one provided with no- thing but an instrument for measuring altitudes and azimuths, and is susceptible of considerable precision when a series of such equal altitudes is carefully referred to a terrestrial mark. When the sun is observed, it is essential to take account of its change in declination between the first and the second observation. Let A-^ and A^ be the true azimuths counted from the meridian toward the east and west respectively at the times t^ and t^ of the two observations. Also, let AS be the increase in declination of the sun in the interval (4 — A). Then An A-\ COS tj) sin ^(/'a — /i) Calling the azimuth circle readings for the east and west observations H^ and Ji^ respectively, the resulting azimuths are A, = i(J?, - J?,) - i(A, - A,), A, = i(Ji, - Ry) + ^{A, - A,). References. Many excellent treatises on spherical and practical astronomy are available. Among these the most complete are the following : — " A Manual of Spherical and Practical Astronomy," by William Chauvenet. Philadelphia : J. B. Lippincott & Co., 2 vols., 8vo, sth ed., 1887. " A Treatise on Practical Astronomy, as applied to Astronomy and Geodesy," by C. L. Doo- little. New York: John Wiley & Sons, 8vo, 2d ed., 1888. "Lehrbuch der Spharischen Astronomie," von F. Briinnow. Berlin : Fred. Diimler, 8vo, 1851. " Spherical Astronomy," by F. Briinnow. Translated by the author from the second German edition. London : Asher & Co., 8vo, 1865. THEORY OF ERRORS. I. Laws of Error. The theory of errors is that branch of mathematical science which considers the nature and extent of errors in derived quantities due to errors in the data on which such quantities depend. A law of error is a relation between the magni- tude of an error and the probability of its occurrence. The simplest case of a law of error is that in which all possible errors (in the system of errors) are equally likely to occur. An example of such a case is had in the errors of tabular logarithms, natural trigonometric functions, etc. ; all errors from zero to a half unit in the last tabular place being equally likely to occur. When quantities subject to errors following simple laws are combined in any manner, the law of error of the quantity resulting from the combination is in general more complex than that of either component. Let e denote the magnitude of any error in a system of errors whose law of error is defined by (e). Then if e vary continuously the probability of its occurrence will be expressed by (e) = , _f\ f fo' values of e between — ^ and — (i — i), = for values of e between — (i — ^) and + (i — 0> (i) = y-^ — J— for values of e between + (i — ^^^ + h Ixxxiv THEORY OF ERRORS. It thus appears that <^(e) in this case is represented by the upper base and the two sides of a trapezoid. When, as is usually the practice, the quantity (z'j — v^ f is rounded to the nearest unit of the last tabular place, ^(c) becomes more complex, but is still represented by a series of straight lines. It is worthy of remark that the latter species of interpolated value is considerably less precise than the former, wherein an additional figure beyond the last tabular place is retained. When an infinite number of infinitesimal errors, each subject to the law of con- stant probability and each as likely to be positive as negative, are combined by addition, the law of the resultant error is of remarkable simplicity and generality. It is expressed by ■where e is the Napierian base, tt = 3.14159 -|-, and >^ is a constant dependent on the relative magnitude of the errors in the system. This is the law of error of least squares. It is the law followed more or less closely by most species of observational errors. Its general use is justified by experience rather than by mathematical deduction. a. Probable, mean, and average errors. For the purposes of comparison of different systems of errors following the same law, three different terms are in use. These are Hc^e. probable error* or that error in the system which is as likely to be exceeded as not ; the mean error, or that error which is the square root of the mean of the squares of all errors in the system ; and the average error, which is the average, regardless of sign, of all errors in the system. Denote these errors by e^, e„, £„, respectively. Then in all systems in which positive and negative errors of equal magnitude are equally likely to occur, and in which the limits of error are denoted by — a and -}- a, the analytical definitions of the probable, mean, and average errors are : — — fp o -f €p -\-a J.^(e) d^ = J(e) d. =: j'4,(.) de = i, — a — Cp o -{- fp _l_ ^ ^^^ ^m = j*<^0 e" A €„ = jf.^(£) c d,. * The reader should observe that the word probable is here used in a specially technical sense. Thus, the probable error is not " the most probable error," nor " the most probable value of the actual error," etc., as commonly interpreted. THEORY OF ERRORS. IxXXV b. Probable, mean, average, and maximum actual errors of interpo- lated logarithms, trigonometric functions, etc. When values of logarithms, etc., are interpolated from numerical tables by means of first differences, as explained above, the probable and other errors depend on the magnitude of the interpolating factor. Thus, the interpolated value is V = Vx-\-(V2 — Vi) t where v-^ and v^ are consecutive tabular values and t is the interpolating factor. For the species of interpolated value wherein the quantity iy^ — v^ t is not rounded to the nearest unit of the last tabular place (or wherein the next figure beyond that place is retained) the maximum possible actual error is 0.5 of a unit of the last tabular place, and formulas (i) and (3) show that the probable, mean, and average errors are given by the following expressions : — «j, := J (i — i) for t between o and \, ^\ — ]e *^'2.t (i — for i between \ and §, = i / for ^ between f and i. [ - (i - 2 /)^ h 96 (i - ^) ^ \ I _ (l _ 2/)» ^ ^ ^'' ^^ (x — {\ 't ""^ ^ between o and \, I_(2/_i)8 = • — -/ Ts-f- for t between \ and i. 24 (i — t) t ^ It thus appears that the probable error of an interpolated value of the species under consideration decreases from 0.25 to 0.15 of a unit of the last tabular place as t increases from o to 0.5. Hence such interpolated values are more precise than tabular values. For the species of interpolated values ordinarily used, wherein {v^ — v^ t is rounded to the nearest unit of the last tabular place, the probable, mean, and average errors are greater than the corresponding errors for tabular values. The laws of error for this ordinary species of interpolated value are similar to but in general more complex than those defined by equations (i). It must suffice here to give the practical results which fiow from these laws for special values of the interpolating factor t.* The following table gives the probable, mean, average, and maximum actual error of such interpolated values for /^ i, |^, J, . . . i>jj. It will be observed that / = i corresponds to a tabular value. * For the theory of the errors of this species of interpolated values see Annals of Mathematics, vol. ii. pp. 54-59. IxXJCVi THEORY OF ERRORS. Characteristic Errors of Interpolated Logarithms, etc. Interpolating factor Probable error Mean error Average error Maximum actual t «P «m «a error I 0.250 0.289 0.250 \ \ .292 .408 •333 I \ .256 •347 .287 # 4 .276 .382 •313 I \ .268 •370 ■Z'^-i ^ \ .277 •38s ■z-^^ I \ .274 .380 •311 \\ \ .279 •389 .318 I \ .278 .386 •316 \\ tV .281 •392 .320 I 2. The Method of Least Squares. a. General statement of method. When the errors to which observed quantities are subject follow the law ex- pressed by a unique method results for the computation of the most probable values of the observed quantities and of quantities dependent on the observed quantities. The method requires that the sum of the weighted squares of the corrections to the observed quantities shall be a minimum,* subject to whatever theoretical condi- tions the corrections must satisfy. These conditions are of two kinds, namely, those expressing relations between the corrections only, and those expressing relations between the corrections and other unknown quantities whose values are disposable in determining the minimum. A familiar illustration of the first class of conditions is presented by the case of a triangle each of whpse angles is mea- sured, the condition being that the sum of the corrections is a constant. An equally familiar illustration of the second class of conditions is found in the case where the sum and difference of two unknown quantities are separately observed ; in this case the two unknowns are to be found along with the corrections. Mathematically, the general problem of least squares may be stated in two * Hence the term least squares. THEORY OF ERRORS. Ixxxvii equations. Thus, let x,y,z,. . . be the observed quantities with weights /, ^, r, . . , . Let the corrections to the observed quantities be denoted by A^t, Aj, Az, . . . ; so that the corrected quantities are x -|- Ax, y -\- ^y, z-\-^z, . . . . Let the disposable quantities whose values are to be determined along with the correc- tions be denoted by ^, i;, ^ Then, the theoretical conditions which must be satisfied by « -j" ^^t y 4" ^y> ^ "t~ ^■^j • • • ^"^ by f , 17, 4 • • • may be symbolized by ■Pn (i,V,C---x-\- Ax, y -\- Ay, z -\- Az, . . .) = o. (4) Subject to the conditions specified by the n equations (4), we must also have / (A^)" -|- ^ (Ayy -\- r {Azf + . . . = a minimum (5) = u, say. Equations (4) and (5) contain the solution of every problem of adjustment by the method of least squares. Two examples may suffice to illustrate their use. First, take the case of the observed angles of a triangle alluded to above. Calling the observed angles x, y, z, we have x-\-Ax-\-y-\-Ay-\-z-\-Az^ 180° -f- spherical excess, or Ax -\- Ay -\- Az'= 180° -|- spherical excess — (x -\- y -\- z) = c, say. This is the only condition of the form (4). The problem is completely stated, then, in the two equations Ax -\- Ay-\- Az = c p {Aocf -\- q {Ayf -(- r (Azf = a min. =: u. To solve this problem the simplest mode of procedure is to eliminate one of the corrections by means of the first equation and then make u a minimum. Thus, eliminating Az, there results u =/ (Axf + q (Ayy -\-r(c-Ax- Ayf. The conditions for a minimum of u are : — 3U /^ I N A I A 9ax ' — V 1 ' y —- V 1 ' — ^ — ") du 9Ay ' = rAx-{-(^-{-r)Ay- — re = 0; and these give. in connection with the value Az = --C- ■ Ax- ■Ay, where Ax = :f, Ay=Q, P q Q— ' Az: r' p^ q^ r When the weights are equal, or when p ^ q = r, the corrections are — Ax = Aj/ = A^ = J f. Ixxxviii THEORY OF ERRORS. Secondly, take the case, also alluded to above, of the observed sum and the observed difference of two numbers. Denote the numbers by i and rj, the latter being the smaller. Let the observed values of the sum (^ -j~ '^) ^^ denoted by xi, X2, . . . x^ and their weights pi, A> • • • /m respectively. Likewise, call the observed values of the difference {t — rj), y^, y^, . . . y^ and their weights qi, q^. . . q^ respectively. Then there will hs. m -\- n equations of the type (4), namely : — I + 77 — (ari -f Aa;i) = o, f -j- 17 — («2 -j- b.x^ ■= o. f + 17 — (^».+ AarJ = o, i — v — (ji-\- AjCi) = o, ^ - ^ - ( J2 + ^^2) = o. (a) f - 77 - 0„ + Ay„) = o ; and the minimum equation is u = A (A^,)^ + A (\x,y + . . . + ^1 (Ay^y + q, (Ay,y + . . . = a min. (b) The equations of group (a) give Axi =:: S -{- rj — Xi, AX2 = $-\-r] — X2, (C) Ayi = i-r, - j/j, Ays, = $ - 7j — y^, • ' * > and these values in (b) give « = A G^ + ^ - ^^r + • ■ • + ?i (f - >? - J'l)^ + • - • (d) Thus it appears that all conditions will be satisfied if f and 77 are so determined as to make u in (d) a minimum. Hence, using square brackets to denote sum- mation of like quantities, the values of f and rj must be found from || = [/ + ^] f+ |> -^] 77 - |>x + ^^] = o, n ^'^ 5^^ = \j-q-\^+[j, + q-\rj-\jx-qy-\ = o. Equations (e) give f and rj, and these substituted in (c) will give the corrections to the observed quantities. b. Relation of probable, mean, and average errors. The introduction of the law of error (2) in equations (3) furnishes the following relations, when it is assumed that the limits of possible error are —00 and 4-0° '■ ^ = 0.6745 e„ = 0.8453 €„. (6) THEORY OF ERRORS. Ixxxix c. Case of a single unknown quantity. The case of a single unknown quantity whose observed values are of equal or unequal weight is comprised in the following formulas : — Xi, X2, . . . Xn^ observed values of unknown quantity, A, A> • • • /m ^ the weights of xi, x^, . . . Vi, V2, . . . v^^ most probable corrections to Xi, x^, . . • X = most probable value of the unknown quantity, m = the number of independent observations. Then the conditional equations (4) are X — X\ ^^ Z'^j X — X^ ^2» X Xjf^ V^ j the minimum equation (5) is P\V\ -\-piOi + . . . = \Jv^ = lp{x — x^^ = a min., where i=i, 2, . . . m, and /i^i -\-piX2 -\- . . .p^x^ _ [px'\ ^■~ A+A + ---A [/]■ When the weights are equal,/]. =^2 = • • • =A« ^^^ m or the arithmetic mean of the observed values. Weight of a; = [/] when the/V are unequal, ^ m when the/'j are equal. \pvv\ Mean error of an observed value of weight unity = y ^_ ^ for unequal weights, ^= y _ ■ for equal weights. / r pvtii Mean error of an observed value of weight/ =: y / _ ^.v ^ for unequal weights. Mean error of x = y ,^ _ j\ r^-i for unequal weights, _. 4 / — ISJ — ^ for equal weights. V »z (»« — i) The corresponding probable errors are found by multiplying these values by 0.6745. See equation (6). XC THEORY OF ERRORS. A formula for the average error sometimes useful is \_pv'\ Average error =^ i , _ \ T^ for unequal weights. M = "7 — / =^ for equal weights. In these the residuals v are all taken with the same sign. A sufficient approxi- H mation in many cases of equal weights is ^^-^ ; but the above formulas dependent on the squares of the residuals are in general more precise. An important check on the computation of x is \^pv\ = o ; i. e., the sum of the residuals v, each multiplied by its weight, is zero if the computation is correct. d. Case of observed function of several unknown quantities f, 17, ([ . . . . A case of frequent occurrence, and one which includes the preceding case, is that in which a function of several unknown quantities is observed. Thus, for example, the observed time of passage of a star across the middle thread of a transit instrument is a function of the azimuth and collimation of the transit instrument and the error of the timepiece used. In cases of this kind the con- ditional equations of the type (4) assume the form that is, each of them contains but one observed quantity x along with several disposable (disposable in satisfying the minimum equation) quantities $, r], ^ . . . . The process of solution in this case consists in eliminating the corrections Axi, Ax2, . . . from the above conditional equations, substituting their values in the minimum equation (5), and then placing the differential coefficients of u with respect to f, »;, ^ . . . separately equal to zero. There will thus result as many independent equations as there are unknown quantities of the class in which ^, 17, t, . . . fall, the remaining unknown quantities Axi, Aarj, . . . , or the corrections to the observed values, are then found from the conditional equations. In many applications it happens that the conditional equations F{^, 17, C, • • • x-\- ^x)=zo, are not of the linear form. But they may be rendered linear in the following manner. First, eliminate the quantities x -\- J^x from the conditional equations. The result of this elimination may be written /fe vA- ■ ■) — X — ^.x = o. Secondly, put »; = ■70- A'7. where fo) Vo, ■ ■ • are approximate values of f, 1;, ... , found in any manner, and Af, At/, ... are corrections thereto. Then supposing the approximate values THEORY OF ERRORS. xci fo, Vo, ■ • • SO close that we may neglect the squares, products, and higher powers of A^, At], . . . , Taylor's series gives which is linear with respect to the corrections A^, At/, ... , For brevity, and for the sake of conformity with notation generally used, put n = x — /(fo, Vo, &•••); V = Ax, „-^f ,-^ ,-M_ X = Af, Jf = A17, z = A^, . . . . Then the conditional equations will assume the form ax -\- by -\- cz -\- . . . — n^v\ and if they are tn in number they may be written individually thus : — (a) a^ + ^2 + <^2 + . . . — «2 = Z'2, dm -\- K + <^m + • • • — «m = Z'm- The minimum equation (5) becomes u = [/z;2] = [p(ax -\- by -\- cz -{-... — n)']; so that placing ^=-, ^, ^:^, . . . separately equal to zero will give as many independent equations as there are values of x,^y, z, . . . . The resulting equa- tions are in the usual (Gaussian) notation of least squares : — \J>aa\x -\- [pab']y + \_pac] z -{-... — {pan] = o, [pab] -^[/>bb] +[pbc] -\-...-[j>bn]^o, (b) [pac] -^[J>bc] -\-U>cc] +..._[/ot] = o, The equations (a) are sometimes called observation-equations. The absolute term n is called the observed quantity. It is always equal to the observed quan- tity minus the computed quantity/ (fo, 170,^.. •), which latter is assumed to be free from errors of observation. The term v is called the residual. It is some- times, though quite erroneously, replaced by zero in the equations (a). The equations (b) are called normal equations. They are usually formed directly from equations (a) by the following process : Multiply each equation by the coefficient of x and by the weight / of the v in the same equation, and add the products. The result is the first equation of (b), or the normal equation in x. The normal equations in y, z, . . . are found in a similar manner. XCii THEORY OF ERRORS. A noteworthy peculiarity of the normal equations is their symmetry. Hence in forming equations (b) from (a) it is not essential to compute all the coefficients of X, y,z, . . . except in the first equation. Checks on the computed values of the numerical terms in the normal equations are found thus : Add the coefficients a, b, c, . . . of x, y, z, . . . in (a) and put «i + ^1 + i^i + ■ • ■ = ■fi. «2 + ^2 + <^2 + • • • = •S'ZI Multiply each of these, first, by its pa ; secondly, by itspb, etc., and then add the products. The results are \_paa\ -\- [pad] -|- [pac] -)-... = [pas] [pad] + [pib] + [pic] + . . . = [pl>s] These will check the coefficients of x, y, z, . . . in (b). To check the absolute terms, multiply each of the above sums by its np, and add the products. The result is [pan] 4- [J>6n] + [pen] + . . . = [psn], which must be satisfied if the absolute terms are correct. Checks on the computation of x, y, z, . . . from (b) and of Vi, v^, • . . from (a) are furnished by [pav'] = o, [p6v] = o, [pcv] = 0, .... To get the unknowns x, y, z, and their weights simultaneously, the best method of procedure is, in general, the following : For brevity replace the absolute terms in (b) by A, B, C, . . . respectively. Then the solution of (b) will be expressed by J' = «2 + A + 72 + • • • . (C) z— (d) Pi weight of ^ — > * 73 To compute mean (and hence probable) errors the following formulas apply : — m = the number of observed quantities n = number of equations of condition, ft, = number of the quantities x, y, z, . . . c„ z=^ mean error of an observed quantity («) of weight unity, ip = corresponding probable error = 0.6745 e„,. THEORY OF ERRORS. XCIU \l m — jj. 4. for unequal weights, -i — J— for equal weights, m — ft. Mean error of any observed quantity («) of weight/ = -^i Mean error of x = e„ y/aj, Mean error of .y = e„ y/^^, Mean error of 2 = £„ ^y^^ where a^, /ggj 73» • • • are defined by equations (c) and (d) above. e. Case of functions of several observed quantities x, y, z This case is that in which the conditional equations (4) contain no disposable quantities i, rj, ^, . . . . It is the opposite extreme to that represented by the case of the preceding section.* It finds its most important and extensive application in the adjustment of triangulation, wherein the observed quantities are the angles and bases of the triangulation, and the conditions (4) arise from the geometrical relations which the observed quantities Ji/us their respective corrections must satisfy. An outline of the general method of procedure in this case is the following : — The first step consists in stating the conditional equations and in reducing them to the linear form if they are not originally so. The form in which they present themselves is (4) with $, rj, ^, . . . suppressed, or i^(Xi + A Xi, ^2 -|- A ^2, *^3 + ^ .^S) • • • ) = °. wherein x, y, z, . . . of (4) are replaced by x^, x^, x^ . . . for the purpose of sim- plicity in the sequel. If this equation is not linear, Taylor's series gives F(xi, X2,X3...)-\- g^ Axi 4- -g^ Axa = . . . = o, since the method supposes that the squares, products, etc., of Axi, Aarj . • . may be neglected. The last equation is then linear with respect to the corrections Axi, Ajc2 • • • which it is desired to find. For brevity put F(xx, X2, Xg . . . ) = gi, a. known quantity, 3F __ 9F_ 3F _ dxx — "^^ 9x, — ''" 9xs — '^3, • . . . Then the conditional equations will be of the type «iAxi -|- '^i^^i + aA^s + • • • + ?i ^= o- * The middle ground between these extremes has been little explored ; indeed, most practical applications fall at one or the other of the extremes. XCIV THEORY OF ERRORS. There will be as many equations of this type as there are independent relations which the quantities x^ -\- Axi, x^ -\- Ax^, . . . must satisfy. Suppose there are k such relations, and let the differential coefficients 9J^/9xi, SFjSxi, ... for the sec- ond relation be denoted by bi, h, b^, . . . ; for the third relation by Ci, c^, Cg etc. Then all of the conditional equations may be written thus : «iAxi + a^!^i + as^Xa + . . . + ^i ^ o, bi -\-b2 -\-bi +...+^2 = 0, {a) (l -\- C2 -\-C3 + . . . 4- ^3 = O, . . . , the number of these equations being k. Call the weights of the observed quantities x^, x^, . . . pi, p^, . . . . Then, sub- ject to the conditions (a) we must have (in accordance with (5)) u =p,{Ax,y + A(A^2y + . . . = [/(A*)^ (b) a minimum. Equations (a) and (b) contain the solution of all problems falling under the present case. Obviously, the number of conditions (a) must be less than the number of observed quantities x, or less than the number of Ax's in (b) ; in other words, if m denote the number of observed quantities, m > k, ior ii m ^ ^ the minimum equation (b) has no meaning. The question presented by (a) and (b) is one of elimination only. Two methods, the one direct and the other indirect, are available. Thus, by the direct method one finds from (a) as many Ax's as there are equations (a), or k such values, and substitutes them in (b). The remaining (m — k) values of Ax in (b) may then be treated as independent and the differential coefficients of u with respect to each of them placed equal to zero. Thus all of the corrections Ax become known. By the indirect process, one multiplies the first of equations (a) by a factor Qi, the second by Q2, the third by Qs, . . . and subtracts the differential (with respect to the A^c's) of the sum of these products from half the differential of (b). The result of these operations is J ^« = {piAxi — (aiQi -\- biQi -\- CiQi -{- . . .)} liAxi 4- {p^Ax^ — (^2^1 + ^262 + AiCa + • . •)} ^^^2 + . . . -f {p^Ax^ - (a^Q, + b„,Q, -\-c^Q,-\-.. .)} dAx^ Now we may choose the factors Qi, Q2, . . . Qt in such a way as to make k of the coefficients of the differentials in this equation disappear ; and after thus elimi- nating A of these differentials we are at liberty to place the coefficients of the remaining (m — K) differentials equal to zero. Thus all conditions are satisfied by making a\Qi + hOs. + c-^Qi + . . . _ /jA^i = o, «2 + *2 -\- c^ + . . . — p^Ax^ = o, (c) «m -{- b„ -\- c^ -{-...— /„Ax„, = o ; and the values of the corrections will be given by these equations when the fac- tors Qx, Qi, . . . are known. To find the latter it suffices to substitute the values THEORY OF ERRORS. XCV of Ax, Ax2, . . . from (c) in (a), whereby there will result /i equations containing the Qi, Qa . . . Qt alone as unknowns. The result of this substitution is [f]e.+[f]G.+[f]e.+. y] + f ] + ad ~ 71. + + Vp\ <28 + .. •+?! = °, ~ be' .P- + •■ • +?2 = o, ~ a' Vp\ + ■ ■ -\-qi — o, {d) These equations {d) are derived directly from ( X 9y=' cosy, 3z- ~ sin z cos z and .= = =(?! )V+(^ cos yYi ^y'+ii ! CfX ■* n -7. s: (4.) Suppose the case of a single triangle all of whose angles are observed. What is the mean error, ist, of an observed angle; 2d, of the correction to an observed angle ; and 3d, of the corrected or adjusted angle .■' Let X, y, z denote the observed angles, /, g, r their weights, and l^x, t^y, Az the corresponding corrections. Then, as shown on p. Ixxxvii, Aa: + Aj + A2; = (T = 180° -f- sph. excess — {x ■\- y -\- z) = error of closure of triangle, c Q = - + - + - p~ g~ r A^ =%, Ly = 5, Az = 2. p q r * As remarked by Sir George Airy in his T/ieory of Errors. t jit = modulus of common logarithms. THEORY OF ERRORS. XCVU For brevity, put g-=- 1 80° -1- spherical excess, h -. Then p~ q~ r Q = h {g — X — y — z) =1 he, ^x = -{g-x-y-z), P x-\- \x =Ag -x-y-z)-\-x, with similar expressions for the other two angles. Now by the formula on p. xcv the square of the mean error of an observed angle of weight unity is (since there is but one condition to which Aa;, Aj/, Aa are subject), K^xf + g{^yf + r{^zf = |1= k^. Hence, the squares of the mean errors of the observed angles x, y, z, their weights being/, q, r respectively, are hc^ hf_ h^ P ' q' r' respectively. To get the mean error of a correction, Aa; for example, formula (a) gives A V= A(A^) = -|(.. + ^„ + ^,), and the corresponding expressions for the actual errors of t^y and A2 are found from this by replacing p hy q and r respectively. Thus by (p), observing that the mean errors of x, y, z are given above, there result Square of mean error of Ax = {hcfff, ^y = {hclgy, " " " i^z = {hclr)\ Likewise, the formula for the actual error oi x -\- ^x is A V= A(x + Ax) = (i -^y. h _h ' P^" p"" and the corresponding expressions for the actual errors oi y -\- Ay and z -\- Az are found by interchange of q and r with/. Thus the squares of the mean errors of the adjusted angles are : — for(x + Ax), ^'^i_|y for(^ + A^), f-"(^-J). for(. + A.), ^\-'^. XCVUl THEORY OF ERRORS. In case the weights are equal, or in case p-=q-=.r, h=z\, and there result, — Square of mean error of observed angle = \ c^, " " correction to observed angle = \ c\ " " adjusted angle = f r". u u where c is the error of closure of the triangle ; so that in this case of equal weights the three mean errors are to one another as 4^/3, J, and J^2, References. The literature of the theory of errors, especially as exemplified by the method of least squares, is very extensive. Amongst the best treatises the following are worthy of special mention : Method of Least Squares, Appendix to vol. ii. of Chauvenet's " Spherical and Practical Astronomy." Philadelphia : J. B. Lippin- cott & Co., 8vo, 5th ed., 1887. " A Treatise on the Adjustment of Observations, with Applications to Geodetic Work and Other Measures of Precision," by T. W. Wright. New York : D. Van Nostrand, 8vo, 1884. " On the Algebraical and Numerical Theory of Errors of Observation and on the Combination of Observa- tions," by Sir George Biddle Airy. London : Macmillan & Co., i2mo, 2d ed., 1875. " Die Ausgleichungsrechnung nach der Methode der Kleinsten Quadrate, mit Anwendungen auf die Geodasie und die Theorie der Messinstrumente," von F. R. Helmert. Leipzig : B. G. Teubner, 8vo, 1872. EXPLANATION OF SOURCE AND USE OF THE TABLES. Tables i and 2 are copies of tables issued by the Office of Standard Weights and Measures of the United States, edition of November, 1891. Table 3 is derived from standard tables giving such data. The arrangement is that given in " Des Ingenieurs Taschenbuch, herausgegeben von dem Verein ' Hiitte '"* (i ith edition, 1877). The numbers have been compared with those given in the latter work, and also with those in Barlow's " Tables." The loga- rithms have been checked by comparison with Vega's 7-place tables. Table 4 is abridged from a similar table in the Taschenbuch just referred to. Tables 5 and 6 are copies of standard forms for such table. They have been checked by comparison with standard higher-place tables. The mode of using these tables will be evident from the following examples : — (i.) To find the logarithm of any number, as 0.06944, we look in Table 5 in the column headed N for the first two significant figures of the number, which are in this case 69. In the same horizontal line with 69 we now look for the number in the column headed with the next figure of the given number, which is in the present case 4. We thus find .8414 for the mantissa of the logarithm of the number 694. To get the increase due to the additional figure 4, we look in the same horizontal line under Prop. Parts in the column headed 4 and find the number 2, which is the amount in units of the fourth place to be added to the part of the mantissa previously found. Thus the mantissa of log (0.06944) is .8416. The characteristic for the logarithm in question is —2 =8 — 10. Hence log (0.06944) =8.8416 — 10. (2.) To find the number corresponding to any logarithm, as 8.8416— 10, we look in Table 6 in the column headed L for the first two figures of the mantissa, which are in this case 84. In the same horizontal line with 84 we now look for the number in the column headed by the next figure of the mantissa, which is in this case i. We thus find 6394 for the number corresponding to the mantissa 8410. Tq get the increase due to the additional figure 6, we look in the same horizontal line under Prop. Parts in the column headed 6 and find 10, which is the amount in units of the fourth place to be added to the number previously found. Thus the significant figures of the number are 6944, and since the char- acteristic of the logarithm is 8— io=— 2, the required number is 0.06944. * Berlin : Verlag von Ernst & Korn. This work is an invaluable one to the engineer, archi- tect, geographer, etc. C EXPLANATION OF SOURCE AND USE OF TABLES. Tables 7 and 8 are taken from " Smithsonian Meteorological Tables " (the first volume of this series). Their mode of use will be apparent from the follow- ing example: Required the sine and tangent for 28° 17'. sine 28° 10', Table 7 0.4720. Tabular difference = 26. Proportional part for 7' (7 X 2.6) . . 18. sine 28° 17' 0.4738. tangent 28° 10', Table 8 0.5354. Difference for i' = 3.8. Increase for 7' (7 X 3-8) 27. tangent 28° 17' 0.5381. Table 9 is a copy of a similar table published in " Professional Papers, Corps Engineers," U. S. A., No. 12. It has been checked by comparison with other tables in general use. This table is useful in computing latitudes and departures in traverse surveys wherein the bearings of the lines are observed to the nearest quarter of a degree, and in other work where multiples of sines and cosines are required. Thus, if L denote the length and B the bearing from the meridian of any line, the latitude and departure of the line are given by LcosB and Zsin^ respectively ; the " latitude " being the distance approximately between the paral- lels of latitude at the ends of the line, and the " departure " being the distance approximately between the meridians at the ends of the line. As an example, let it be required to compute the latitude and departure for L ^ 4837, in any unit, and JB = 36° 15'. The computation runs thus : — Latitude. Departure. For 4000 3225.77 2365-23 800 645.16 473-05 30 24.19 17.74 7 5-63 4-14 4837 Zcos^ = 3900.77 Zsin^= 2860.16 Tables 10 and 11 give the logarithms of the principal radii of curvature of the earth's spheroid. They were computed by Mr. B. C. Washington, Jr., and care- fully checked by differences. They depend on the elements of Clarke's spheroid of 1866. The use of these tables is sufficiently explained on p. xlv-xlix. Table 12 gives logarithms of radii of curvature of the earth's spheroid in sec- tions inclined to the meridian sections. It is abridged to 5 places from a 6-place table published in the " Report of the U. S. Coast and Geodetic Survey for 1876." Its use is explained on pp. Ixi-lxiv. Tables 13 and 14 give logarithms of factors needed to compute the spheroidal excess of triangles on the earth's spheroid. No. 13 is constructed for the Eng- lish foot as unit, and No. 14 for the metre. These tables were computed by Mr. EXPLANATION OF SOURCE AND USE OF TABLES. CI Charles H. Kummell. Their use is explained on p. Iviii. The following example will illustrate their use : — Latitude of vertex A of triangle 48° 08' £ " 47 52 C " 47 04 Mean latitude 47 41 Angle C= 51° 22' 55" log sin C 9.89283 — 10 log a (feet) 5.64401 log ^ (feet) 5.58681 log factor, Table 13, for 47° 41' 0.37176 Spheroidal excess = 3i."29o, log 1.49541 Tables 15 and 16 give logarithms of factors for computing differences of lati- tude, longitude, and azimuth in secondary triangulation whose lines are 12 miles (20 kilometres) or less in length. These tables were computed by Mr. Charles H. Kummell. Table 15 gives factors for the English foot as unit, and Table 16 for the metre as unit. The use of these tables is illustrated by a numerical exam- ple given on pp. Ix and Ixi. For lines not exceeding the length mentioned, the tables will give differences of latitude and longitude to the nearest hundredth of a second of arc, using 5-place logarithms of the lengths of the lines. Table 17 gives lengths of terrestrial arcs of meridians corresponding to lati- tude intervals of 10", 20", . . . 60", and 10', 20', . . . 60', or lengths corresponding to arcs less than 1°. The unit of length is the English foot. The table was computed by Mr. B. C. Washington, Jr. The length corresponding to any latitude interval is the distance along the meridian between parallels whose latitudes are less and greater respectively than the given latitude by half the interval. Thus, for example, the length corre- sponding to the interval 30' and latitude 37" (182047.3 feet) is the distance along the meridian from latitude 36° 45' to latitude 37° 15'. By interpolation, we may get from this table the meridional distance corre- sponding to any interval. The following example illustrates this use : Required the distance between latitude 41° 28' 17. "8 and latitude 41° 39' 53."4. The difference of these latitudes is 11' 35."6, and their mean is 41° 34' o5."6. The computation runs thus : — Latitude . 41°. Tabular difference. 10' 60724.60 feet 10.70 feet l' 6072.46 «( 1.07 " 30" 3036-23 K •54 " s" 506.04 U .09 " o."6 12 .41 60.72 7-°S 4( sum. .01 " i4.09 V "60- ^ 12.41 " Distance = = 70407.10 a When the degree of precision required is as great as that of the example just Cii EXPLANATION OF SOURCE AND USE OF TABLES. given, it will be more convenient to use formulas (2) on p. xlvi. Thus, in this example, — log. A = 41° 34' os.''6, p„ (Table 10) 7.3196820 cons't 4-6855749 Length ^ 70407.10 feet 4.8476165 Table 18 gives lengths of terrestrial arcs of parallels corresponding to longi- tude intervals of 10", 20", . . . 60", and 10', 20', . . . 60', or lengths corresponding to arcs less than 1°. The unit is the English foot. This table was computed by Mr. B. C. Washington, Jr. The method of using this table is similar to that applicable to Table 17 explained above. For the computation of long arcs it will in general be less laborious to use the formulas (i) on p. xlix than to resort to interpolation from Table 18. Tables 19-24 give the rectangular co-ordinates for the projection of maps, in accordance with the polyconic system explained on pp. liii-lvi, for the following scales respectively : — > unit = English inch. (2 miles to I inch) (i mile to I inch) unit = millimetre. These tables were computed by Mr. B. C. Washington, Jr. The use of these tables and their application in the construction of maps may be best explained by an example. Suppose it is required to draw meridians and parallels for a map of an area of 1° extent in longitude, lying between the paral- lels of 34° and 35°. Let the scale of the map be one mile to the inch, or 1/63360, and let the meridians and parallels be 10' apart respectively. Draw on the pro- jection paper an indefinite straight line AB, Fig. 4, to represent the middle me- ridian of the map. Take any convenient point, as C, on this line for the latitude 34°, and lay off from this point the meridional distances CD, C£, CF, . . . CI, given in the second column of Table 22, p. 114.* Through the points £>, E, F, ... I, thus found, draw indefinite straight lines perpendicular to AB. By means of these lines and the tabular co-ordinates, points on the developed parallels and meridians are readily found. Thus, for example, the abscissas for points ten minutes apart on the parallel 34° 20' are 9.53, 19.06, and 28.59 inches. These distances are to be laid off on NN' in both dir.ections from A£. At the points Z, M, N, U, M', N', so determined, erect perpendiculars to NN' equal in length, respectively, to the ordinates corresponding to the longitude intervals * The meridional distances and the abscissas of the points on the developed parallels in Fig. 4 are one twentieth of the true or tabular values. The ordinates of points on the developed paral- lels are the tabular values. abl e 19, scale 1 250000 . 20, 1 125000 21, I 126720 22, 63360 23, 200000 24, 1 800O0 ejSplanation of source and use of tables. cm lo', 20', 30'. The curved line joining the extremities of these perpendiculars is the parallel required. It may be drawn by means of a flexible ruler. The other parallels are constructed in the same manner. They are all concave towards the north or south according as the map shows a portion of the northern or southern hemisphere. The meridians are drawn in a similar manner through the points {e.g., P, Q, M, R, S,T, C^in Fig. 4) having the same longitude relative to the middle meridian. All meridians are concave towards the middle meridian. A test of the graphical work which should always be applied is the approxima- tion to equality of corresponding diagonals in the various quadrilaterals formed. Thus in Fig. 4, FJf should be equal to WY, CNto CN', EVtoEW, etc.* X 1 X I V y JH T G S F M N M z E Z M JM D Q W C F V 35° 50' dor 3cr 2d l(f 34° Tables 25-29 give areas of quadrilaterals, bounded by meridians and parallels, of the earth's surface. They are taken from " Bulletin 50, U. S. Geological Sur- vey." The unit of length used is the English mile, and the areas are thus given in square miles. The method of using these tables is obvious. Table 30 gives data for the computation of heights, from barometric meas- ures, in accordance with the formula of Babinet.f This table is taken from the " Smithsonian Meteorological Tables " (the first volume of this series). The manner of using it is explained in connection with the table. * It should be noted that CTVis not equal to EV, A^and Preferring here to points on the developed parallels. t Comptes Rendus, Paris, 1850, vol. xxv. p. 309. civ EXPLANATION OF SOURCE AND USE OF TABLES. Table 31 gives the mean astronomical refraction in terms of the apparent alti- tude of a star or other object outside the earth's atmosphere. It is taken from Vega's 7-place table of logarithms. Its use will be evident from the following example : — Apparent altitude of star = 34° 17' i2."7 Refraction^ i' 24."3 — ^ X i-"i = i 24.1 True altitude of star =34 15 48-6 Tables 32 and 33 facilitate the interconversion of arc and time. They are taken from the " Smithsonian Meteorological Tables" (the first volume of this, series). The following examples illustrate their use : — (i.) To convert 68° 29' 48."8 into time we have from Table 32 — 68° = 4'' 32" 'oo" 29' = I 56 48" = 3- 20 o."8 = OS Equivalent in time = 4 33 59.25 (2.) To convert 5"* 43"" 28.'8 into arc we have from Table 33 — 5>' =75° 00' 00" 43" = 10 45 00 28' = 7 00 o.'8 = 12 Equivalent in arc ^85 52 12 Tables 34 and 35 facilitate the interconversion of mean solar and sidereal time intervals. They are taken from Vega's 7-place table of logarithms. The mode of using them is explained in the tables themselves. Tables 36 and 37 give the lengths of degrees of terrestrial arcs of meridians and parallels expressed in metres,* statute miles (English), and geographic miles (distance corresponding to i' on the earth's equator). These tables are taken from the " Smithsonian Meteorological Tables " (the first volume of this series). Table 38 facilitates the interconversion of statute (English) miles and nautical miles. The nautical mile used is that defined by the U. S. Coast and Geodetic Survey, namely : the length of a minute of arc of a great circle of the sphere whose surface equals that of the earth (Clarke's spheroid of 1866). For formula for radius of such sphere see p. lii. This table is taken from the " Smithsonian Meteorological Tables " (the first volume of this series). Table 39 gives the English and metric equivalents of other standards of length still in use or obsolescent. It is taken from the " Smithsonian Meteoro- logical Tables " (the first volume of this series). Table 40 gives values of the acceleration (g) of gravity, log g; log (1/2^), log v'2 g, * It should be observed that the metric values given in these tables depend on Clarke's value of the ratio of the yard to the metre, which is now known to be erroneous by about the i/ loooooth part. EXPLANATION OF SOURCE AND USE OF TABLES. CV and (^/w^) or the length of a seconds pendulum, 'for intervals of 5" of geograph- ical latitude. It was computed by the editor, and is based on the formula for g given by Professor William Harkness in his memoir " On the Solar Parallax and its Related Constants." * Table 41 gives the linear expansions of the principal metals. It was compiled by the editor from various sources. The values given for the expansion per degree Centigrade have been rounded (with one exception) to the nearest unit in the millionths place, or to the nearest micron, since different specimens of the same metal vary more or less in the ten-millionths place. Table 42 gives the fractional changes in numbers corresponding to changes in the 4th, 5th, . . . 7th place of their logarithms. These fractions are often con- venient in showing the approximate error in a number due to a given error in its logarithm, or the converse. Thus, for example, referring to the remark in a foot-note under explanation of Tables 36 and 37 above, the error in the loga- rithm of Clarke's ratio of the yard to the metre is about 4 units in the sixth place of decimals ; the Table 42 shows, then, that the metric equivalents in Tables 36 and 37 are erroneous by about i/ioooooth part. * Washington, Government Printing Office, 1891. GEOGRAPHICAL TABLES Table 1 . FOR CONVERTING U. S. WEIGHTS AND MEASURES. CUSTOMARY TO METRIC. LINEAR. CAPACITY. Inches to milli- metres. Feet to metres. Yards to metres. Miles to kilometres. Fluid drams to millilitres or cubic centi- metres. Fluid ounces to milli- litres. Quarts to litres. Gallons to litres. 2 = 3 = 4 = 8 = 9 = 25-4001 50-8001 76-2002 101-6002 127-0003 1 52-4003 177-8004 203-2004 228-6005 0-304801 0-609601 0-914402 1-219202 1-524003 1-828804 2-133604 2-438405 2-743205 0-914402 1-828804 2-743205 3-657607 4-572009 5-48641 1 6-400813 7-315215 8-229616 1-60935 3-21869 4-82804 •6-43739 8-04674 9-65608 11-26543 [2-87478 I4"484i2 2 = 3 = 4 = 8 = 9 = 3-70 7-39 11-09 18-48 22-l8 25-88 29-57 33-27 29-57 88-72 118-29 147-87 177-44 207-02 0-94636 1-89272 2-83908 3-78543 4-73179 5-67815 6-62451 7-57087 851723 3-78543 7-57087 11-35630 15-14174 18-92717 22 71261 26-49804 30-28348 34-06891 SQUARE. WEIGHT. Square inches to square centi- metres. Square feet to square deci- metres. Square yards to square metres. Acres to hectares. Grains to milli- grammes. Avoirdu- pois ounces to grammes. Avoirdu- pois pounds to kilo- grammes. Troy ounces to grammes. 1 = 2 = 3 = 4 = 8 = 9 = 6-452 12-903 19-355 25-807 32-258 38-710 45-161 51-613 58-065 18-581 27-871 37-161 46-452 55-742 65-032 74-323 83-613 0-836 1-672 2508 3344 4-181 5-017 ll^ 7-525 0-4047 0-8094 I-2141 I-6187 2-0234 2-4281 2-8328 3-2375 3-6422 2 = 3 = 4 = 1 = 7 = 8 = 9 = 64.7989 129-5978 194-3968 259-1957 323-9946 388-7935 453-.5924 518-3914 583-1903 283495 §5-0486 1 1 3-398 1 141-7476 170-0972 198-4467 226-7962 255-1457 0-45359 0-90719 1-36978 1-81437 2-26796 2-72156 3-17515 3-62874 4-08233 31-10348 62-20696 93-31044 124-41392 155-51740 186-62088 248-82785 279-93133 CUBIC. Cubic inches to cubic centi- metres. Cubic feet to cubic metres. Cubic yards to cubic metres. Bushels to hectolitres. 2 = 3 = 4 = 7 = 8 = 9 = 16-387 32-774 49-161 65-549 81-936 98-323 1 14-710 131-097 147-484 0-02832 0-05663 0-08495 0-11327 O-14158 0-16990 0-19822 0-22654 0-25485 0-765 1-529 2-294 3-058 3-823 4-587 6-I16 6-881 0-35239 0-70479 1-05718 1-40957 I-76196 2- 1 1436 2-46675 2-81914 3-17154 I G I s< I fa I n I fi I a 1 5432-. unter's c }. statute thom lutical m ot = 0.3 ifoir. pour 55639 gra lain = mile = le = 34801 met ns = 20-1168 259-000 1-829 1853-25 re, 9-484 453-5924 I kil metres, liectares. metres. metres. 0158 log. 277 gram, ogramme. The only authorized material standard of customary length is the Troughton scale belonging to this office, whose length at 59°.(>2 Fahr. conforms to the British standard. The yard in use m the United States is therefore equal to the British yard. The only authorized material standard of customary weight is the Troy pound of the Mint. It is of brass of unknown density, and therefore not suitable for a standard of mass. It was derived from the British standard Troy pound of 1758 by direct comparison. The British Avoirdupois pound was also derived from the latter, and contains 7,000 grains Troy. The grain Troy is therefore the same as the grain Avoirdupois, and the pound Avoirdupois in use in the United States is equal to the British pound Avoirdupois. The British gallon = 4.54346 litres. The British bushel = 36.3477 litres. The length of the nautical mile given above and adopted by the U. S. Coast and Geodetic Survey many years ago is defined as that of a minute of arc of a great circle of a sphere whose surface equals that of the earth (Clarke's Spheroid of 1866). * Issued by U. S. OfBce of Standard Weights and Measures, an4/^ublished here by permilsion of Suoerint^ilient of Coast and Geodetic Survey. Tabl FOR CONVERTING U. S. WEIGHTS AND MEASURES. METRIC TO CUSTOMARY. Table 2. LINEAR. CAPACITY. Millilitres Metres to inches. Metres to feet. Metres to yards. Kilo- metres to niiJes. or cubic centi- metres to fluid drams. Centi- litres to fluid ounces. Litres to quarts. Deca- litres to gallons. Hecto- litres to bushels. I — 39-3700 3.28083 I -0936 1 1 0-62137 1 =::: 0-27 0-338 1-0567 2-6417 2-8377 2 = 767400 6-55.67 2-187222 1-24274 2 = 0-54 0-81 0-676 2-1134 5-2834 5-6755 3 = llS-lloo 9-84250 3-280833 1-86411 3 = 1-014 3-1700 7-9251 8-5132 4 = 157-4800 13-12333 4-374444 2-48548 4 = 1-08 •-353 4-2267 10-5668 11-3510 5 = i96'S5oo 16-40417 5-468056 3-10685 1-35 1-691 5-2834 13-2085 14-1887 6 = 236-2200 19-68500 6-561667 3-72822 6 = 1-62 2-029 6-3401 15-8502 18-4919 17-0265 I — 275-5900 22-96583 7-655278 4-34959 7 = 1-89 2-367 7-3968 19-8642 8 = 314-9600 26-24667 8-748889 4-97096 8 = 2-16 2-705 8-4535 21-1336 22-7019 9 = 354-3300 29-52750 9.842500 5-59233 9 = 2-43 3-043 9-5101 23-7753 25-5397 SQUARE. ■WEIGHT. Square centi- metres to square inches. Square metres to square feet. Square metres to square yards. Hectares to acres. Milli- grammes to grains. Kilo- grammes to grains. Hecto- grammes to ounces avoirdu- pois. Kilo- grammes to pounds avoirdu- pois. I = 0-1550 10-764 1-195 2-471 I = 0-01543 15432-36 3-5274 2-20462 2 = 0-3100 21-528 2-392 4-942 2 — 0-03086 30864-71 7-0548 4-40924 3 = 0-4650 32-292 3-588 '^'VJ 3 = 0-04630 46297-07 10-5822 6-61387 4 = 0.6200 43-055 4-784 9-884 4 = 0-06173 61729-43 14-1096 8-81849 0-7750 53-819 5-980 12-355 0-07716 77161-78 17-6370 I1-02311 6 ^ 0.9300 64-583 7-176 14-826 6 — 0-09259 92594-14 21-1644 13-22773 7 ^^ i-o85o 75-347 8-372 17-297 7 ^ 0-10803 108026-49 24-6918 15-43236 8=: 1-2400 86111 9-568 19-768 8 = 0-12346 123458-85 28-2192 17-63698 9 = 1-3950 96-875 10-764 22-239 9 = 0-13889 138891-21 31-7466 19-84160 CUBIC. WEIGHT — {continued'). Cubic centi- metres to cubic inches. Cubic deci- metres to cubic inches. Cubic metres to cubic feet. Cubic metres to cubic yards. Quintals to pounds av. Milliers or tonnes to pounds av. Kilogrammes to ounces Troy. I — o-o5lo 61-023 35-314 1-308 I = 220-46 2204-6 32-1507 2 ^ 0-1220 122-047 70-629 2-616 2 ^ 440-92 4409-2 64-3015 3 = 0-1831 183-070 105-943 3-924 3 = 661-39 6613-9 96-4522 4 = 0-2441 244-094 141-258 5-232 4 = 881-85 8S18-5 128*6030 0-3051 305-117 176-572 211-887 6-540 5 == 1102-31 11023-1 160-7537 6 = 0-3661 366-140 7-848 6 = 1322-77 13227-7 192-9044 7 = 0-4272 427-164 247-201 9-156 7 = 1543-24 15432-4 225-0552 8 = 0-4882 488-187 282-516 317-830 10-464 8 = 1763-70 17637-0 257-2059 289-3567 9 = 0-5492 549-210 II-771 9 = 1984-16 1 984 1 -6 By the concurrent action of the principal governments of the world an International Bureau of Weights and Measures has been established near Paris. Under the direction of the International Committee, two ingots were cast of pure platinum-iridium in the proportion of 9 parts of the former to i of the latter metal. From one of these a cer- tain number of kilogrammes were prepared, from the other a definite number of metre bars. These standards of weight and length were iniercompared, without preference, and certain ones were selected as International prototype stand- ards. The others were distributed by lot, in September, 1889, to the different governments and are called National prototype standards. Those apportioned to the United States were received in 1890 and are in the keeping of this office. The metric system was legalized in the United States in 1866. The International Standard Metre is derived from the Mfetre des Archives, and its length is defined by the dis- tance between two lines at o'' Centigrade, on a platinum-iridium bar deposited at the International Bureau of Weights and Measures. The International Standard Kilogramme is a mass of platinum-iridium deposited at the same place, and its weight in vacuo is the same as that of the Kilogramme des Archives. The litre is equal to a cubic decimetre, and it is measured by the quantity of distilled water which, at its maximum density, will counterpoise, the standard kilogramme in a vacuum, the volume of such a quantity of water being, as nearly as has been ascertained, equal to a cubic decimetre. SMITMRniUI AIM Xanl E-e 3 Table 3. VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS. n 1000.^ »2 »8 slu p log. « 1 1000.000 I I 1. 0000 1. 0000 0.00000 2 3 4 500.000 333-333 250.000 4 li 8 27 64 1.4142 1.7321 2.0000 1.2599 1.4422 1-5874 0.30103 0.47712 0,60206 5 6 9 200.000 166.667 142.857 125.000 III. Ill 81 125 216 343 512 729 Z.2361 2-4495 2.6458 2.8284 3.0000 1.7 100 1.8171 1.9129 2.0000 2.0801 0.69897 0.77815 0.84510 0.90309 0.95424 10 100.000 100 1000 3-1623 2.1544 1.00000 11 12 '3 14 90.9091 833333 76.9231 71.4286 121 144 169 196 1331 1728 2197 2744 3-3166 3.4641 3-6056 3-7417 2.2240 2.2894 2.3513 2.4101 1.04139 I.079I8 I.I 1394 I.I46I3 15 i6 ;^ 19 66.6667 62.5000 58.8235 52.6316 225 289 324 361 3375 4096 4913 5832 6859 3-8730 4.0000 4.1231 4.2426 4-3589 2.4662 2.5198 2-S7I3 2.6207 2.6684 I.I7609 I.Z04I2 1.2304s 1.25527 1.27875 20 21 22 23 24 50.0000 47.6190 45-4545 43-4783 41.6667 400 441 484 529 576 8000 9261 10648 12167 13824 4.4721 4.5826 4-7958 4.8990 2.7144 2.7589 2.8020 2.8439 2.8845 1-30103 1.32222 1.34242 1.36173 1. 3802 1 25 26 29 40.0000 38.4615 37.0370 3S-7'43 34.4828 625 676 729 15625 19683 21952 24389 5.0000 5.0990 5.1962 S-2915 S-3852 2.9240 2.9625 3.0000 3.0366 3.0723 1.39794 1.41497 1.43136 1.44716 1.46240 30 31 32 33 34 33-3333 32.2581 31.2500 30.3030 29.4118 900 961 1024 1089 1156 27000 29791 32768 35937 39304 5-4772 5-6569 5-7446 5-8310 3.1072 3-1414 3-1748 3-2075 3-2396 1.47712 I.49I36 1-50515 I.5I85I I.53I48 35 36 ^^ 39 28.5714 27.7778 27.0270 26.3158 25.6410 1225 1296 1369 1444 1521 42875 46656 50653 54872 59319 5-9161 6.0000 6.0828 6.1644 6.2450 3.27 1 1 3-3019 3-3322 3.3620 3-3912 1.54407 1-55630 1.56820 1.57978 1.59106 40 41 42 43 44 25.0000 24.3902 23.809s 23.2558 22.7273 1600 1681 1764 1849 1936 64000 68921 74088 79507 85184 6.3246 6.4031 6.4S07 6-5574 6-6332 3.4200 3.4482 3.4760 3-5034 3-5303 1.60206 1. 61 278 1.62325 1-63347 1.64345 45 46 49 22.2222 21.7391 21.2766 20.8333 20.4082 2025 2118 2209 2304 2401 91125 97336 103823 1 10592 117649 6.7082 6.9282 7.0000 3-6o88 3-6342 3-6593 1.65321 1.66276 ■ I.672IO I.68I24 1.69020 50 SI Sz 53 S4 20.0000 19.6078 19.2308 18.8679 18.5185 2500 2601 2704 2809 2916 125000 132651 140608 148877 157464 7.0711 7.1414 7.2111 7.2801 7-3485 3.6840 3-7084 3-7325 3-7563 3-7798 1.69897 1-70757 I.7I600 1.72428 1-73239 Smithsonian Tables. Table 3. VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS. « 1000.^ «2 «8 J« \n log. » 55 18.1818 3025 166375 7.4162 3.8030 1.74036 S6 17.8571 3136 I756I6 7-4833 3-8259 1.74819 57 17-5439 3249 185193 7-5498 3-8485 1-75587 S8 17.2414 3364 I95I12 7.6158 3.8709 1-76343 59 16.9492 3481 205379 7.6811 3-8930 1.77085 60 16.6667 3600 216000 7.7460 3-9149 1-77815 6i 16.3934 3721 226981 7.8102 3-9365 1-78533 62 16.1290 3844 238328 7.8740 3-9579 1.79239 63 15-8730 3969 250047 7-9373 3-9791 1-79934 64 15.6250 4096 262144 8.0000 4.0000 1.80618 65 15.3846 4225 274625 8.0623 4.0207 1.81291 66 15-1515 4356 287496 8.1240 4.0412 1.81954 67 14.9254 4489 300763 8.1854 4.0615 1.82607 68 14.7059 4624 314432 8.2462 4.0817 ^■^W 69 14.4928 4761 328509 8.3066 4.1016 1-83885 70 14-2857 4900 343000 8.3666 4.1213 1.84510 71 14.0845 5041 357911 8.4261 4.1408 1.85126 72 i 13.8889 5184 373248 8-4853 4.1602 1-85733 73 13.6986 5329 389017 8.5440 4-1793 1-86332 74 13-5135 5476 405224 8.6023 4.1983 1.86923 75 13-3333 5625 421875 8.6603 4.2172 1.87506 76 13-1579 5776 438976 8.7178 4.2358 i.88n8i 77 12.9870 5929 456533 fi^So 4-2543 1.88649 78 1 2.8205 6084 474552 8.8318 4.2727 1.89209 79 12.6582 6241 493°39 8.8882 4.2908 1.89763 80 12.5000 6400 512000 8.9443 4.3089 1.90309 81 12-3457 656; 531441 9.0000 4.3267 1.90849 82 12.1951 12.0482 6724 551368 9-°554 4-3445 1.91381 83 6889 571787 9.1104 4-3621 1. 9 1 908 84 11.9048 7056 592704 9.1652 4-3795 1.92428 85 11.7647 7225 614125 9.219s 4.3968 1.92942 86 11.6279 7396 636056 9-2736 4.4140 1.93450 87 11.4943 7569 658503 9-3274 4.4310 1.93952 88 11.3636 7744 681472 9.3808 4.4480 1.94448 89 11.2360 7921 704969 9.4340 4.4647 1-94939 90 ii.iili 8100 729000 9.4868 4.4814 1-95424 91 10.9890 8281 753571 9-5394 4-4979 1.95904 92 10.8696 8464 778688 9-5917 4-5144 1-96379 93 10.7527 8649 804357 830584 9-6437 4-5307 1.96848 94 10.6383 8836 9.6954 4-5468 1-97313 95 10.5263 9025 85737s 9.7468 4-5629 1.97772 96 10.4167 9216 884736 9.7980 4.5789 1.98227 97 10.3093 9409 912673 9.8489 4-5947 1.98677 98 10.2041 9604 941192 9.8995 4.6104 1-99123 99 lO.IOIO 9801 970299 9.9499 4.6261 1-99564 100 10.0000 lOOOO I 000000 10.0000 4.6416 2.00000 1 01 9.90099 I020I 1030301 10.0499 4.6570 2.00432 102 9.80392 10404 1061208 10.099s 4.6723 2.00860 103 9.70874 10609 1092727 10.1489 4.6875 2.01284 104 9.61538 I0816 1124864 10.1980 4-7027 2.01703 105 9.52381 11025 1157625 10.2470 4-7177 2.02119 106 9-43396 1 1236 1191016 10.2956 4-7326 2.02531 107 9-34579 11449 1225043 10.3441 4-7475 2.02938 108 9.25926 1 1664 1259712 10.3923 4.7622 2.03342 109 9-17431 11881 1295029 10.4403 4-7769 2.03743 Smithsonian Tables. Table 3. VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS. CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS. n 1000.1- tfi «' ^n %n log. « 110 9.09091 I2I00 I33IOOO 10.4881 4.7914 2.04139 III 9.00901 1 2321 1367631 10.5357 4.8059 2.04532 112 8.92857 12544 1404928 10.5830 4.8203 2.04922 "3 8.84956 12769 1442897 10.6301 4.8346 2.05308 114 8.77193 12996 I481544 10.6771 4.8488 2.05690 115 8.69565 13225 1520875 10.7238 4.8629 2.06070 ii6 8.62069 13689 1560896 10.7703 4.8770 2.06446 117 8.54701 1601613 10.8167 4.8910 2.06819 118 8.47458 13924 1643032 10.8628 4.9049 2.07188 119 8.40336 I4161 1685I59 10.9087 4.9187 2.07555 120 8.33333 14400 1728000 10.9545 4.9324 2.07918 121 8.26446 I464I 177 1 561 11.0000 4.9461 Z.08279 122 8.19672 14884 1815848 11.0454 4-9597 2.08636 123 8.13008 I5129 1860867 11.0905 4-9732 2.08991 124 8.06452 15376 1906624 "•135s 4.9866 2.09342 125 8.00000 15625 I953I25 11.1803 5.0000 2.09691 126 7.93651 15876 2000376 11.2250 S-0133 2.10037 127 7.87402 16129 2O4B383 H.2694 5.0265 2.10380 128 7.81250 16384 2097152 2146689 "•3137 5.0397 2.10721 129 7.75194 16641 ".3578 5.0528 2.11059 130 7.69231 16900 2197000 11.4018 5.0658 5.0788 2.11394 131 7-63359 I7161 2248091 11.4455 2.1 1727 132 7.57576 17424 2299968 11.4891 5.0916 2.12057 133 7.51880 17689 2352637 11.5326 5.1045 2.12385 134 7.46269 17956 2406104 11.5758 5.1172 2.12710 135 7.40741 18225 2460375 11.6190 5.1299 2.13033 136 7.35294 18496 2515456 11.6619 5.1426 2-13354 '37 7.29927 18769 2571353 11.7047 5-1551 2.13672 138 7.24638 19044 2628072 "■7473 11.7898 5.1676 2. 1 3988 139 7.19424 19321 2685619 5.1801 2.I430I 140 7.14286 19600 2744000 11.8322 5-1925 2.14613 141 7.09220 19881 2803221 11.8743 2.14922 142 7.04225 20164 2863288 11.9164 5.2171 2.15229 143 6.99301 20449 2924207 11.9583 5-2293 2-15534 144 6.94444 20736 2985984 12.0000 5-2415 2.15836 145 6.89655 21025 3048625 12.0416 5-2536 2.16137 146 6.84932 21316 3II2I36 12.0830 5.2656 2.16435 ^''l 6.80272 21609 3176523 12.1244 5-2776 2.16732 148 6.75676 21904 3241792 12.1655 5.2896 2.17026 149 6.71141 22201 3307949 12.2066 5-3015 2.17319 150 6.66667 22500 22801 3375000 12.2474 S-3133 2.17609 151 6.62252 3442951 12.2882 S-3251 2.17898 152 6.57893 23104 351 1808 12.3288 5-3368 2.18184 153 6-53595 23409 3581577 12.3693 5-3485 2.18469 154 6.49351 23716 3652264 12.4097 5-3601 2.18752 155 156 6.45161 6.41026 24025 24336 3723875 3796416 12.4499 12.4900 5-3717 5-3832 2.19033 2.19312 2.19590 2.19866 2.20140 157 6.36943 24649 3869893 12.5300 5-3947 158 6.3291 1 24964 3944312 12.5698 5.4061 159 6.28931 25281 4019679 12.6095 S-4175 160 6.25000 25600 4096000 12.6491 5.4288 2.20412 161 6.21 1 18 25921 4173281 12.6886 5.4401 2.20683 2.20952 162 163 6.17284 26244 4251528 12.7279 5.4514 6.13497 26^96 4330747 12.7671 5.4626 2.21 2ig 2.21484 164 6.09756 4410944 12.8062 5-4737 Smithsonian Tables. Table 3. VALUES OF RECIPROCALS, SQUARES. CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS. K 1000.5- «2 „3 ^« ^ log. n 165 1 66 leg 6.06061 6.02410 S.98802 5.95238 5.91716 27225 278^9 28224 28561 4492125 4574296 4657463 4741632 4826809 12.8452 12.8841 12.9228 12.9615 13.0000 5.4848 5-4959 5.5069 5-5178 5.5288 2.21748 2.22011 2.22272 2.22531 2.22789 170 171 172 173 174 5-88235 5.84795 5-81395 5-78035 5-74713 28900 29241 29584 29929 30276 4913000 50002 I I 5088448 S177717 526S024 1 3-0384 ■ 13.0767 13.1149 13-1529 13.1909 5-5397 5-5505 5-5613 5-S72I 5-5828 2.23045 2.23300 2-23553 2.23805 2.24055 175 176 177 178 179 5.71429 5.68182 5.64972 5.61798 5-58659 30625 30976 31329 31684 32041 5359375 5451776 5545233 5639752 5735339 13.2288 13.2665 13-3041 13-3417 13-3791 5-5934 5.6041 5-6147 5.6252 5-6357 2.24304 2.24551 2.24797 2.25042 2.25285 180 181 182 184 5-p4^6 5-49451 5.46448 5-43478 32400 32761 33124 33489 33856 5832000 6028568 6128487 6229504 13.4164 13-4536 13.4907 13-5277 13-5647 5.6462 2.25527 2.25768 2.26007 2.26245 2.26482 185 186 187 :88 189 5-40541 5-37634 5-34759 5-31915 5.29101 34225 34596 34969 35344 35721 6331625 6434856 6539203 6644672 6751269 13.6015 13.6382 13.6748 13-7113 13-7477 5.6980 s-7083 5.7185 5-7388 2.26717 2.26951 2.27184 2.27416 2.27646 190 191 192 193 194 5.26316 5.23560 S-20833 5-18135 5.15464 36100 36481 36864 37249 37636 6859000 6967871 7077888 7189057 7301384 13.7840 13.8203 13.8564 13.8924 13.9284 S-7489 5-7590 5.7690 5.7790 5-7890 2.2787s 2.28103 2.28330 2.28556 2.28780 195 196 III 199 5.12821 5.10204 5.07614 5-05051 5-02513 38025 38416 38809 39204 39601 7414875 7529536 7645373 7762392 7880599 13.9642 14.0000 14-0357 14.0712 14.1067 5;8i86 5-8383 2.29003 2.29226 2.29447 2.29667 2.29885 200 201 202 203 204 5.00000 4.97512 4.95050 4.9261 1 4.90196 40000 40401 40804 41209 41616 8000000 8120601 8242408 n3gS427 8489664 14.1421 14.1774 14.2127 14.2478 14.2829 5.8480 5-8578 5-8675 5.8771 5.8868 2.30103 2.30320 2-30535 2.30750 2.30963 205 206 209 4.87805 4-85437 4.83092 4.80769 4-78469 42025 42436 42849 43264 43681 8615:25 8741816 8869743 8998912 9129329 14.3178 14-3527 14-3875 14.4222 14.4568 5.8964 5-9059 5-9155 5.9250 5-9345 2.31175 2-31387 2-31597 2.31806 2.32015 210 211 212 213 214 4.76190 4-73934 4.71698 4.69484 4.67290 44100 44521 44944 45369 45796 9261000 9393931 9528128 9663597 9800344 14.4914 14.5258 14.5602 14-5945 14.6287 5-9439 5-9533 5.9627 5-9721 5.9814 2.32222 2.32428 2.32634 2.32838 2.33041 215 216 217 218 219 4.65116 4.62963 4.60829 4.58716 4.56621 46225 46656 47089 47524 47961 9938375 10077696 10218313 10360232 10503459 14.6629 14.6969 14.7309 14.7648 14.7986 5-9907 6.0000 6.0092 6.0185 6.0277 2.33244 2-33445 2.33646 2.33846 2.34044 Smithsonian Tabues. Table 3. VALUES OF RECIPROCALS, ROOTS, AND COMMON SQUARES, CUBES, SQUARE ROOTS, CUBE LOGARITHMS OF NATURAL NUMBERS. n 1000.^ rfl »8 in ^ log. n 220 221 222 223 224 4-54545 4.52489 4.50450 4.48431 4.46429 48400 48841 49284 49729 50176 10648000 IO793861 I 094 I 048 I 1089567 II239424 14.8324 14.8661 14.8997 14-9332 14-9666 6.0368 • 6.0459 6.0550 6.0641 6.0732 2.34242 2.34439 2-34635 2.34830 2.35025 225 226 227 228 229 4.44444 4.42478 4.40529 4;3668i 50625 51076 51529 51984 52441 I I 390625 1 1 543176 1 1 697083 12008989 15.0000 15.0665 15.0997 15-1327 6.0822 6.0912 6.1002 6.1091 6.1180 2.35218 2.3541 1 2.35603 2-35793 2.35984 230 231 232 233 234 4-34783 4.32900 4-31034 4.29185 4.27350 52900 53361 53824 54289 54756 I 2 167000 12326391 1 2487 1 68 12649337 I 28 I 2904 15.1658 15.1987 i5-23'5 15.2643 15.2971 6.1269 6.1358 6.1446 6-1534 6.1622 2.36173 2.36361 2.36549 2.36736 2.36922 235 236 237 238 239 4.25532 4.23729 4.21941 4.20168 4.18410 56169 56644 57121 12977875 13144256 '3312053 13481272 13651919 15-3297 15-3623 15.3948 15.4272 15.4596 6.1710 6.1797 6.1885 6.1972 6.2058 ■ 2.37107 2.37291 2-37475 2.37658 2.37840 240 241 242 243 244 4.16667 4.14938 4.13223 4- "523 4.09836 57600 58081 58564 59049 59536 13824000 I 3997 52 I 14172488 14348907 14526784 15.4919 15-5242 15-5563 15.5885 15.6205 6.2145 6.2231 6-2317 6.2403 6.2488 2.38021 2.38202 2.38382 2.38561 2-38739 245 246 247 248 249 4.08163 4.06504 4.04858 4.03226 4.01606 60025 60516 61009 61504 62001 14706125 14886936 15069223 15252992 15438249 15.6525 15.6844 15.7162 15.7480 15.7797 6.265S 6.2743 6.2828 6.2912 2.38917 2.39094 2.39270 2.39445 2.39620 250 251 252 253 254 4.00000 3.98406 3.96825 3-95257 3-93701 62500 63001 63504 64009 64516 15625000 1 58132 51 16003008 16194277 163S7064 15.8114 15.8430 15-8745 15.9060 15-9374 6.2996 6.3080 6.3164 6.3247 6.3330 2-39794 2.39967 2.40140 2.40312 2.40483 255 256 2S7 258 259 3-92157 3.90625 3.89105 3-87597 3.86100 65025 66049 66564 67081 16581375 16777216 16974593 17173512 17373979 15.9687 16.0000 16.0312 16.0624 16.0935 6.3496 6-3579 6.3661 6-3743 2.40654 2.40824 2.40993 2.41 162 2.41330 260 261 262 263 264 3.84615 3.83142 3.81679 3.80228 3.78788 67600 681 21 68644 69169 69696 17576000 17779581 17984728 18191447 18399744 16.1245 16.155s 16.1864 16.2173 16.2481 6-3825 ^•^907 6.3988 6.4070 6.4151 2.41497 2.41664 2.41830 2.41996 2.42160. 265 266 267 268 269 3-77358 3-75940 3-74532 3-73134 3-71747 70225 70756 71289 71824 72361 18609625 18821096 19034163 19248832 19465109 16.2788 16.3095 16.3401 16.3707 16.4012 6.4232 6.4312 6-4393 6-4473 6-4553 2.42325 2.42488 2.42651 2.42813 2-42975 270 271 272 273 274 3-70370 3.69004 3.67647 3.66300 3.64964 72900 73441 73984 74529 75076 19683000 19902511 20123648 20346417 20570824 16.4317 16.4621 16.4924 16.5227 16.5529 6-4633 6-4713 6.4792 6.4872 6.4951 2.43136 2.43297 2.43457 2.43616 2-43775 Smithsonian Tables. Table 3> VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS. (/« '^» log. n 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 3°9 310 3" 312 313 314 315 316 318 319 320 321 322 323 324 325 326 327 328 329 3-63636 3.62319 3.61011 3-59712 3-58423 3-57143 3-55872 3.54610 3-53357 3-52113 3-50877 3.49650 3-48432 3-47222 3.46021 3.44828 3-43643 3.42466 3.41297 3.40136 3-38983 3-37838 3.36700 3-35570 3-34448 3-33333 3.32226 3.31 1 26 3-30033 3.28947 3.27869 3.26797 3-25733 3.24675 3.23625 3.22581 3-21543 3-20513 3.19489 3. 1847 1 3.17460 3.16456 3-15457 3-14465 3.13480 3.12500 3.11527 3-10559 3.09598 3.08642 3.07692 3.06748 3.05810 3.04878 3-03951 75625 76176 76729 77284 77841 78400 78961 79524 80656 81225 81796 82369 82944 83521 84100 84681 85264 86436 87025 87616 88209 89401 goooo 90601 91204 91809 92416 93025 93636 94249 94864 95481 96100 96721 97344 97969 98596 99225 99856 100489 101124 101761 102400 103041 103684 104329 104976 105625 106276 106929 107584 108241 20796S75 21024570 21253933 21484952 21717639 21952000 22188041 22425768 22665187 22906304 23149125 23393656 23639903 23887872 24137569 24389000 246421 7 1 24897088 25153757 25412184 25672375 25934336 26198073 26463592 26730899 27000000 27270901 27543608 27818127 28094464 28372625 28652616 28934443 29218112 29503629 29791000 30080231 30371328 30664297 30959144 31255875 31554496 31855013 32157432 32461759 32768000 33076161 33386248 33698267 34012224 34328125 34645976 34965783 35287552 35611289 16.5831 6.5030 16.6132 6.5108 16.6433 6.5187 16.6733 6.5265 16.7033 6-5343 16.7332 6.5421 16.7631 6.5499 16.7929 6-5577 16.8226 6.5654 16.8523 6-5731 16.8819 6.5808 16.9115 6.5885 16.9411 6.5962 16.9706 6.6039 17.0000 6.6115 17.0294 17.0587 17.0880 17.1172 17.1464 17.1756 17.2047 17-2337 17.2627 17.2916 17.3205 17-3494 17.3781 17.4069 17-4356 17.4642 17.4929 17.5214 17.5499 17.5784 17.6068 17.6352 17.6635 17.6918 17.7200 17.7482 17.7764 17.8045 17.8326 17.8606 17.8885 17.9165 17.9444 17.9722 18.0000 18.0278 18.0555 18.0831 18.1108 18.1384 6.6191 6.6267 6-6343 6.6419 6.6494 6.6569 6.6644 6.6719 6.6794 6.6869 6.6943 6.7018 6.7092 6.7166 6.7240 6-7313 6-7387 6.7460 6-7533 6.7606 6.7679 6.7752 6.7824 6.7897 6.7969 6.8041 6.81 13 6.8185 6.8256 6.8328 6.8399 6.8470 6.8541 6.8612 6.8683 6-8753 6.8824 6.8894 6.8964 6-9034 2-43933 2.44091 2.44248 2.44404 2.44560 2.44716 2.44871 2.45025 2.45179 2.45332 2.45484 2.45637 2.45788 2-45939 2.46090 2.46240 2.46389 2.46538 2.46687 2.46835 2.46982 2.47129 2.47276 2.47422 2.47567 2.47712 2.47857 2.48001 2.48144 2.48287 2.48430 2.48572 2.48714 2.48855 2.48996 2.49136 2.49276 2.49415 2.49554 2-49693 2.49831 2.49969 2.50106 2.50243 2-50379 2.50515 2.50651 2.50786 2.50920 2.51055 2.51188 2.51322 2-51455 2.51587 2.51720 Smithsonian Tables. Table 3. VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS. » 1000.^ »2 «8 in \n log. « 330 3-03030 108900 35937000 18.1659 6.9104 2.51851 2.51983 331 3.02115 IO9561 36264691 18.1934 6.9174 332 3.01205 I 10224 36594368 18.2209 6.9244 2.52114 333 3.00300 I 10889 36926037 18.2483 6.9313 2.52244 334 2.99401 "I556 37259704 18.2757 6.9382 2.52375 335 2.98507 II2225 37595375 18.3030 6.9451 2.52504 336 2.97619 I I 2896 37933056 18.3303 6.9521 2.52634 337 2.96736 "3569 38272753 '§•3576 6.9589 2.52763 338 2.95858 2.94985 II4244 38614472 18.384S 6.9658 2.52892 339 II492I 38958219 18.4120 6.9727 2.53020 340 2.941 18 II560O 39304000 18.4391 6.979s 2.5314S 341 2-93255 2.92398 I16281 39651821 18.4662 6.9864 2-53275 342 1 1 6964 40001688 18.4932 6.9932 2-53403 343 2.91545 I 17649 40353607 18.5203 7.0000 2-53529 344 2.90698 I 18336 40707584 18.5472 7.0068 2.53656 345 2.89855 I I 9025 41063625 18.5742 7.0136 2.53782 346 ^•oi°i7 II9716 41421736 18.6011 7-0203 2.53908 347 2.88184 120409 41781923 18.6279 7.0271 2-54033 2.54158 2.54283 348 2.87356 I2II04 42144192 18.6548 18.6815 7-0338 349 2.86533 I2180I 42508549 7.0406 350 2.85714 122500 42875000 18.7083 7-0473 2.54407 351 2.84900 I232OI 43243551 18.7350 7-0540 2-54531 352 2.84091 123904 43614208 18.7617 7.0607 2-54654 353 2.83286 124609 43986977 18.7883 7.0674 2.54777 354 2.82486 I25316 44361864 18.8149 7-0740 2.54900 355 2.8i6go 126025 44738875 18.8414 7.0807 2.55023 356 2.80899 126736 45118016 18.8680 7-0873 2-55145 357 2.801 1 2 127449 45499293 18.8944 7.0940 2.55267 358 2.79330 128164 45882712 18.9209 7.1006 2.55388 359 2.78552 128881 46268279 18.9473 7.1072 2.55509 360 2.77778 129600 46656000 18.9737 7-1138 2.55630 361 2.77008 I3032I 47045881 19.0000 7.1204 2-55751 362 2.76243 I3IO44 47437928 19.0263 7.1269 2-55871 363 2.75482 I3I769 47832147 19.0526 7-1335 2-55991 364 2.74725 132496 48228544 19.0788 7.1400 2.56110 365 2-73973 133225 48627125 19.1050 7.1466 2.56229 366 2.73224 133956 134689 49027896 19.1311 7-1531 2.56348 ^% 2.72480 49430863 19-1572 I91833 2.56467 368 2.71739 135424 49836032 7.1661 2.56585 369 2.71003 I36161 50243409 19.2094 7.1726 2.56703 370 2.70270 136900 50653000 19.2354 7.1791 2.56820 371 2.69542 2.68817 137641 51064811 19.2614 7.1855 2.56937 372 138384 51478848 19.2873 7.1920 2.57054 373 2.68097 I39I29 51895117 19-3132 7-1984 2.57171 374 2.67380 139876 52313624 19-3391 7.2048 2.57287 375 2.66667 140625 52734375 19.3649 7.2112 2. i;740'j 376 2-65957 141376 53157376 19-3907 7.2177 2-57519 377 2.65252 I42129 53582633 19.4165 7.2240 2.57634 378 2.64550 2.63852 142884 54010152 19.4422 7.2304 2.57749 379 143641 54439939 19.4679 7.2368 2.57864 380 2.63158 144400 54872000 19-4936 7.2432 2.57978 ^i' 2.62467 I45161 55306341 19.5192 7.2495 2.1:8002 382 2.61780 145924 55742968 19.5448 7-2558 2.58206 2.58320 2-58433 383 2.61097 146689 56181887 19.5704 7.2622 384 2.60417 147456 56623104 19-5959 7.2685 Smithsonian Tables. Table 3. VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS. n 1000.^ «2 «» in %n log. « 3R5 386 389 2.59740 2.58398 2.57732 2.57069 148225 148996 149769 150544 I5I32I 57066625 57512456 57960603 58411072 58863869 19.6214 19.6469 19.6723 19.6977 19.7231 7.2748 7.2811 7.2874 7.2936 7.2999 2.58546 2.58659 2.58771 2.58883 2.58995 390 391 392 393 394 2.56410 2-S5754 2.55102 2.54453 2.53807 1 52100 152881 153664 154449 155236 59319000 59776471 60236288 60698457 61 162984 19.7484 19-7737 19.7990 19.8242 19.8494 7.3061 7-3124 7.3186 7.3248 7-3310 2.59106 2.59218 2.59329 2-59439 2.59550 395 396 398 399 2-53165 2.52C25 2.51889 2.51256 2.50627 156025 156816 157609 158404 159201 6162987s 62099136 62570773 63044792 63521199 19.8746 19.8997 19.9249 19.9499 19.9750 7-3372 7-3434 7-3496 7-3558 7-3619 2.59660 2.59770 2.59879 2.59988 2.60097 400 401 402 403 404 2.50000 2-49377 2.48756 2.48139 2-47525 160000 16080I 161604 162409 163216 64000000 64481201 64964808 65450827 65939264 20.0000 20.0250 20.0499 20.0749 20.0998 7-3681 7-3742 7-3803 7.3864 7-3925 2.60206 2.60314 2.60423 2.60531 2.60638 405 406 409 2.46914 2.46305 2.45700 2.45098 2-44499 164025 164836 165649 166464 167281 66430125 66923416 67419I43 679I73I2 68417929 20.1246 20.1494 20.1742 20.1990 20.2237 7-3986 7.4047 7.4108 7.4169 7.4229 2.60746 2.60853 2^61066 2.61172 410 411 412 413 414 2.43902 2.43309 2.42718 2.42 1 31 2.41546 168100 168921 169744 170569 171396 68921000 69426531 69934528 70444997 70957944 20.2485 20.2731 20.2978 20.3224 20.3470 7.4290 7-4350 7.4410 7.4470 7-4530 2.61278 2.61384 . 2.61490 2.6159s 2.61700 415 416 417 418 419 2.40964 2.40385 2.39808 172225 1738^9 174724 I75561 71473375 71991296 725II713 73034632 73560059 20.3715 20.3961 20.4206 20.4450 20.4695 7-4590 7.4650 7.4710 7.4770 7-4829 2.61805 2.61909 2.62014 2.621 1 8 2.62221 420 421 422 423 424 2.38095 2.37530 2.36407 2.35849 176400 177241 178084 178929 179776 74088000 74618461 76225024 20.4939 20.5183 20.5426 20.5670 20.5913 7-4889 7.4948 7-5007 7.5067 7.5126 2.62325 2.62428 2.62531 2.62634 2.62737 425 426 427 428 429 2.35294 2.34742 2.34192 2.3364s 2.33100 180625 181476 182329 183184 184041 76765625 77308776 77854483 78402752 78953589 20.6155 20.6398 20.6640 20.6882 20.7123 7-5185 7.5244 7-5302 7-5361 7.5420 2.62839 2.62941 2.63043 2.63144 2.63246 430 431 432 433 434 2.32558 2.32019 2.31481 2.30947 2.30415 184900 185761 186624 187489 188356 79507000 80062991 80621568 81182737 81746504 20.7364 20.7605 20.7846 20.8087 20.8327 7-5478 7-5537 7-5S9S 7-5654 7.5712 2-63347 2-63448 2.63548 2.63649 2-63749 435 436 437 438 439 2.29885 2.29358 2.28833 2.28311 2.27790 189225 190096 190969 191844 192721 82312875 82881856 83453453 84027672 84604519 20.8567 20.8806 20.9045 20.9284 20.9523 7-5770 7.5828 7.5886 7-5944 7.6001 2.63849 2-63949 2.64048 2.64147 2.64246 Smithsonian Tables. Table 3. VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, C ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS CUBE n 1000.^- «2 «8 ^n %n log. n 440 2.27273 193600 85184000 20.9762 7.6059 2-64345 441 2.26757 194481 85766121 21.0000 7.6117 2.64444 442 Z.26244 195364 86350888 21.0238 7.6174 2.64542 443 2.25734 196249 86938307 21.0476 7.6232 7.6289 2.64640 444 2.25225 I97I36 87528384 21.0713 2.64738 445 2.24719 198025 88121125 21.0950 21.1187 7.6346 2.64836 446 2.24215 I 9891 6 88716536 7.6403 2.64933 447 2.23714 199809 89314623 21.1424 7.6460 2.65031 448 2.23214 200704 89915392 90518849 21.1660 7-6517 2.65128 449 2.22717 201601 21.1896 7-6574 2.6522s 450 2.22222 202500 91125000 21.2132 7-6631 2.65321 451 2.21730 203401 9173385I 21.2368 7.6688 2.65418 452 2.21239 204304 92345408 21.2603 21.2838 7.6744 2.65514 453 2.20751 205209 92959677 7.6801 2.65610 454 2.20264 2061 16 93576664 21.3073 7.6857 2.65706 455 2.19780 207025 9419637s 21.3307 7-6914 2.65801 456 2.19298 207936 94818816 21.3542 7.6970 2.65896 ^^57 2.I8818 208849 95443993 21.3776 7.7026 2.65992 458 2.18341 209764 96071912 21.4009 7.7082 2.66087 459 2.I7S65 210681 96702579 21.4243 7-7138 2.66181 460 2.I739I 211600 97336000 21.4476 7-7194 2.66276 461 2.16920 212521 97972181 21.4709 7.7250 2.66370 462 2.16450 213444 98611128 21.4942 7.7306 2.66464 463 2.15983 214369 99252847 21.5174 7.7362 2.66558 464 2-15517 215296 99897344 21.5407 7.7418 2.66652 465 2.15054 216225 100544625 21.5639 7-7473 2.6674s 466 2.14592 217156 101194696 21.5870 7-7529 2.66839 467 2-14133 218089 101847563 21.6102 7-7584 2.66932 468 2.13675 219024 J02503232 21.6333 7-7639 2.67025 469 2.13220 219961 103161709 21.6564 7.769s 2.67117 470 2.12766 220900 221841 103823000 21.679s 7-7750 2.67210 471 2.I23I4 104487111 21.7025 7.7805 2.67302 472 2.1 1864 222784 105154048 21.7256 7.7860 2.67486 473 2.11416 223729 105823817 21.7486 7-7915 474 2.10970 224677 106496424 21.77J5 7.7970 2.67578 475 2.10526 225625 107171875 21.7945 7-8025 2.67669 476 2.10084 226576 107850176 21.8174 7.8079 2.67761 2.67852 477 2.09644 227529 108531333 21.8403 7-8134 478 2.09205 2.08768 228484 109215352 21.8632 7.8188 2.67943 479 229441 109902239 21.8861 7.8243 2.68034 480 2.08333 230400 110592000 21.9089 7-8297 2.68124 481 2.07900 231361 11 1284641 21.9317 7-8352 2.6821s 482 2.07469 232324 111980168 21.9545 7.8406 2.68305 483 2.07039 233289 112678587 21.9773 7.8460 2.6839s 484 2.0661 2 234256 I 13379904 22.0000 7.8514 2.6848s 485 2.06186 235225 114084125 22.0227 7.8568 2.68574 2.68664 486 2.05761 236196 114791256 22.0454 22.0681 7.8622 487 2-0533? 237169 I 15501303 7-8676 2:i^li 488 2.04918 238144 116214272 22.0907 7-87^4 489 2.04499 2391 2 I 116930169 22.1133 2.68931 490 491 2.04082 2.03666 240100 241081 I 17649000 118370771 22.1359 22.1^85 22.l8ll 7-^f37 7.8891 2.69020 2.69108 2.69197 2.69285 2.69373 492 2.03252 242064 119095488 7.8944 493 2.02840 243049 119823157 22.2036 7.8998 494 2.02429 244036 120553784 22.2261 7-9051 Smithsonian Tables. 1 12 Table 3. VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS. n 1000.'- rfi »8 V« ^n log. n 495 496 499 2.02020 2.01613 2.01207 2.00803 2.00401 245025 246016 247009 248004 249001 121287375 122023936 122763473 123505992 124251499 22.2486 22.2711 22.2935 22.3159 22.3383 7-9105 7.9158 7.9211 7.9264 7-9317 2.69461 2.69548 2.69636 2.69723 2.69810 500 SOI S02 503 504 2.00000 1.99601 ;« 1.98413 250000 251001 252004 253009 254016 125000000 125751501 126506008 127263527 128024064 22.3607 22.3830 22.4054 22.4277 22.4499 7-9370 7.9420 7.9476 7.9528 7.9581 2.69897 2.69984 2.70070 2.70157 2.70243 505 506 507 S08 509 1.98020 1.97628 1.97239 1.96850 1.96464 256036 257049 258064 259081 128787625 129554216 130323843 I3IO965I2 131872229 22.4722 22.4944 22.5167 22.5389 22.5610 719686 7-9739 7-9791 7-9843 2.70329 2.70415 2.70501 2.70586 2.70672 510 SI I 512 513 514 1.96078 1.95695 1.95312 1.94932 1-94553 260100 261121 262144 263169 264196 132651000 133432831 134217728 135005697 135796744 22.5832 22.6053 22.6274 22.6495 22.6716 7.9896 7.9948 8.0000 8.0052 8.0104 2.70757 2.70842 2.70927 2.71012 2.71096 515 S16 S18 519 1-94175 1-93798 1.93424 1.93050 1.92678 266256 267289 268324 269361 136590875 137388096 138188413 138991832 139798359 22.6936 22.7 1 56 22.7376 22.7596 22.7816 8.0156 8.0208 8.0260 8.0311 8.0363 2.71181 2.7126s 2.71349 2.71433 2-71517 520 521 522 523 524 1.92308 1.91939 1.91571 1. 9 1 205 1.90840 270400 271441 272484 273529 274576 140608000 141420761 142236648 143055667 143877824 22.8035 22.8254 22.8473 22.8692 22.8910 8^0466 8.0517 8.0569 8.0620 2.71600 2.71684 2.71767 2.71850 2.71933 525 526 527 528 529 1.90476 1.90114 1-89753 1.89394 1.89036 275625 276676 277729 ■ 278784 279841 144703125 146363183 I47197952 148035889 22.9129 22.9347 22.9565 22.9783 23.0000 8.0671 8.0723 8.0774 8.0825 8.0876 2.72016 2.72099 2.72181 2.72263 2.72346 530 531 532 533 534 1.88679 1.88324 1.87970 1.87617 r.87266 280900 281961 283024 284089 285156 148877000 149721291 150568768 I514I9437 152273304 23.0217 23-0434 23.0651 23.0868 23.1084 8.0927 8.0978 8.1028 8.1079 8.1130 2.72428 2.72509 2.72591 2.72673 2.72754 535 536 537 538 539 1.86916 1.86567 1.86220 1.85874 1.85529 286225 287296 288369 289444 290521 I53I30375 153990656 1 548541 53 155720872 156590819 23.1301 23.1517 23-1733 23.1948 23.2164 8.1180 8.1231 8.1281 2-72835 2.72916 2-72997 2.73078 2.73159 540 541 542 543 544 1.85185 1.84843 1.84502 1.84162 1.83824 291600 292681 293764 294849 295936 157464000 158 340421 159220088 160103007 160989184 23-2379 23.2594 23.2809 23.3024 23-3238 8.1483 8.1583 8.1633 2.73239 2.73320 2.73400 2.73480 2.73560 545 546 548 549 1.83486 1.83150 1. 828 1 5 1.82482 1.82149 297025 298116 299209 300304 301401 161878625 162771336 163667323 164566592 165469149 23-3452 23.3666 23.3880 23.4094 23-4307 8.1683 8.1733 ^■'783 8.1833 8.1882 2.73640 2.73719 2.73799 2.73878 2.73957 Smithsonian Tables. 13 Table 3. VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS. « 1000.^ «2 «3 V« v« log. » 550 552 553 554 1.81818 ; 1.81488 1.81159 1.80832 1.80505 302500 303601 304704 305809 306916 166375000 16728415I 169112377 I7OO3I464 23.4521 23-4734 23-4947 23.5160 23-5372 8.1932 8.1982 8.2031 8.2081 8.2130 2.74036 2.74115 2.74194 2.74273 2.74351 555 556 557 558 559 1.80180 1.79856 1-79533 1.79211 1.78891 308025 309136 310249 311364 312481 170953875 171879616 172808693 173741112 174676879 23.5584 23-5797 23.6008 23.6220 23.6432 8.2180 8.2229 8.2278 8.2327 8-2377 2.74429 2.74507 2.74586 2.74663 2.74741 560 562 563 564 1-78571 1.78253 1.77936 1.77620 1-77305 313600 314721 315844 316969 318096 I756160OO 176558481 177504328 178453547 I 794061 44 23-6643 23.6854 23.7065 23.7276 23.7487 8.2426 8.2475 8.2524 8-2573 8.2621 2.74819 2.74896 2.74974 2.75051 2.75128 565 566 567 568 569 1. 76991 1.76678 1.76367 1.76056 1-75747 319225 320356 321489 322624 323761 180362125 181321496 182284263 183250432 184220009 23.7697 23.7908 23.8118 23.8328 23-8537 8.2670 8.2719 8.2768 8.2816 8.2865 2.75205 2.75282 2.75358 2-75435 2.7551 1 570 571 572 573 574 1-75439 1-75131 1.74825 1.74520 1.74216 324900 326041 327184 328329 329476 185193000 1861694II 187149248 188132517 1891 19224 23-8747 23.8956 23.9165 23-9374 23-9583 8.2913 8.2962 8.3010 8.3059 8.3107 2.75664 2.75740 2.75815 2.75891 575 576 577 578 579 1-73913 1-736" 1-73310 1.73010 1.72712 330625 331776 332929 334084 335241 190109375 191102976 192100033 193100552 194104539 23.9792 24.0000 24.0208 24.0416 24.0624 8.3155 8.3203 8.3251 8.3300 8-3348 2.75967 2.76042 2.76118 1-& 580 581 582 584 1.72414 1.72117 1.71821 1-71527 1-71233 336400 337561 338724 339889 341056 195112000 196122941 197137368 198155287 199176704 24.0832 24-1039 24.1247 24.1454 24.1661 8.3396 8-3443 8.3491 §•3539 8-3587 2.76343 2.76418 2.76492 2.76567 2.76641 585 586 587 588 589 1.70940 1.70648 1.70358 1.70068 1.69779 342225 343396 344569 345744 346921 200201625 201230056 202262003 203297472 204336469 24.1868 24.2074 24.2281 24.2487 24.2693 8.3730 8-3777 8.3825 2.76716 2.76864 2.76938 2.77012 590 591 592 593 594 1.69492 1.69205 1.68919 1.68634 1.68350 348100 349281 350464 351649 352836 205379000 206425071 207474688 208527857 209584584 24.2899 24.3105 24-3311 24.3516 24.3721 8.3872 8.3919 8.3967 8.4014 8.4061 2.77085 2-77159 2.77232 2.77305 2-77379 595 596 597 598 599 1.68067 1.67785 1.67504 1.67224 1.66945 354025 355216 356409 357604 358801 210644875 211708736 212776173 213847192 214921799 24.3926 24.4131 24-4336 24.4540 24-4745 8.4108 8-4155 8.4202 8.4249 8.4296 2.77452 2.77525 2.77597 2.77670 2.77743 600 601 602 603 604 1.66667 1.66389 1.66113 1-65837 1-65563 360000 361 201 362404 363609 364816 216000000 217081801 218167208 219256227 220348864 24-4949 24-5153 24-5357 24.5561 24.5764 8-4343 8.4390 8.4437 8.4484 8.4530 2.77815 2.77887 2.77960 2.78032 2.78104 Smithsonian Tables. 14 Table 3. VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS. » 1000.J «2 k3 v« v« log. K 605 606 609 1.65289 1.65017 1.64745 1.64474 1.64204 366025 367236 368449 369664 370881 221445125 222545016 223648543 224755712 225866529 24.5967 24.6171 24.6374 24.6577 24.6779 8.4577 8.4623 8.4670 8.4716 8.4763 2.78176 2.78247 2.78319 2.78390 2.78462 610 611 612 613 614 1.63666 1-63399 i!62866 372100 373321 374544 375769 376996 226981000 228099131 229220928 230346397 231475544 24.6982 24.7184 24.7386 24.7588 24.7790 8.4809 8.4856 8.4902 8.4948 8.4994 2.78533 2.78604 2.7867s 2.78746 2.78817 615 616 617 618 619 1.62602 1.62338 1.6207 s 1.61812 1.61551 378225 380689 381924 383161 232608375 233744896 234885113 236029032 237176659 24.7992 24.8193 24-8395 24.8596 24.8797 8.5040 8.5086 8.5132 8.5178 8.5224 2.78888 2.78958 2.79029 2.79099 2.79169 620 621 622 623 624 1. 61 290 1.61031 1.60772 1.60514 1.60256 384400 at 388129 389376 238328000 239483061 240641848 241804367 242970624 24.8998 24.9199 24-9399 24.9600 24.9800 8.5270 8.5316 8.5362 8.5408 8-5453 2.79239 2.79309 2.79379 2.79449 2.79518 625 626 628 629 1.60000 I-S9744 1.59490 1.59236 390625 391876 393129 394384 395641 244140625 245314376 246491883 247673152 248858189 25.0000 25.0200 25.0400 25.0599 25.0799 8.5499 8.5544 8.5590 8-5635 8.5681 2-79934 2.79657 2.79727 2.79796 2.7986s 630 631 632 633 634 1-58730 1.58479 1.58228 I-S7978 1.57729 396900 398161 399424 400689 401956 250047000 251239591 252435968 253636137 254840104 25.0998 25.1197 25.1396 25.1595 25.1794 8.5726 8.5772 8.5817 8.5862 8.5907 2-79934 2.8nnn3 2.80072 2.80140 2.80209 635 636 638 639 1.57480 \m 1.56740 1.5649s 403225 404496 405769 407044 408321 256047875 257259456 258474853 259694072 260917119 25.1992 25.2190 25.2389 25.2587 25.2784 8.5952 8-5997 8!6o88 8.6132 2.80277 2.80346 2.80414 2.80482 2.80550 640 641 642 643 644 1.56250 1.56006 1-55763 1-555" 1.55280 409600 410881 412164 413449 414736 262144000 263374721 264609288 265847707 267089984 25.2982 25.3180 25-3377 25-3574 25.3772 8.6177 8.6222 8.6267 8.6312 8.6357 2.80618 2.80686 2.80754 2.80821 2.80889 645 646 647 648 649 1-55039 1-54799 1.54560 1.54321 1.54083 416025 417316 418609 419904 421201 268336125 269586136 270840023 272097792 273359449 25.3969 25.4165 25.4362 25.4558 25-4755 8.6401 8.6446 8.6490 8-6535 8-6579 2.80956 2.81023 2.81090 2.81158 2.81224 650 652 ^" 654 1.53846 1.53610 1-53374 1-53139 1.52905 422500 423801 425104 426409 427716 274625000 275894451 277167808 278445077 279726264 25-4951 25-5147 25-5343 25-5539 25-5734 8.6624 8.6668 8.6713 8.6801 2.81291 2.81358 2.81425 2.81491 2.81558 655 656 659 1.52672 1-52439 1.52207 1.51976 1-51745 429025 430336 431649 432964 434281 281011375 282300416 283593393 284890312 286191179 25.5930 25.6125 25.6320 25.6515 25.6710 8.6845 8.6890 8.6934 8.6978 8.7022 2.81624 2.81690 2.81757 2.81823 2.81889 Smithsonian Tables. IS Table 3. VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS. « 1000.^ »2 »3 ^n %n log. « 660 66i 662 663 664 1-51515 1.51286 1-51057 1.50830 1.50602 435600 436921 438244 439569 440896 287496000 288804781 290117528 291434247 292754944 25.6905 25.7099 25.7294 25.7488 25.7682 8.7066 8.7110 f-7'S4 8.7198 8.7241 2.81954 2.82020 2.82086 2.82151 2.82217 665 666 667 668 669 1.50376 1. 50150 1.49925 1. 49701 1-49477 442225 443556 444889 446224 447561 294079625 295408296 296740963 298077632 299418309 25.7876 25.8070 25.8263 25.8457 25.8650 8.7285 8.7329 8-7373 8.7416 8.7460 2.82282 ■ 2.82347 2.82413 2.82478 2.82543 670 671 672 673 674 1.49254 1.49031 1. 488 10 1.48588 1.48368 448900 450241 451584 452929 454276 300763000 3021 117 11 303464448 304821217 306182024 25.8844 25.9037 25.9230 25.9422 25.9615 8.7503 8.7547 8.7590 8.7634 8.7677 2.82607 2.82672 2.82737 2.82802 2.82866 675 676 677 678 679 1.48148 1.47929 1.47710 1-47493 1.47275 455625 456976 458329 46104I 307546875 308915776 310288733 311665752 313046839 25.9808 26.0000 26.0192 26.0384 26.0576 8.7721 8.7764 8.7807 8.7850 8.7893 2.82930 Z.82995 2.83059 2.83123 2.83187 680 681 682 683 684 1.47059 1.46843 1.46628 1.46413 1.46199 462400 463761 466489 467856 314432000 315821241 317214568 318611987 320013504 26.0768 26.0960 26.1151 26.1343 26.1534 5-7937 8.7980 8.8023 8.8066 8.8108 2.83251 2.83315 2.83378 2.83442 2.83506 685 686 687 688 689 1.4598s 1-45773 1.45560 1-45349 1-45138 469225 470596 471969 473344 474721 321419125 322828856 324242703 325660672 327082769 26.1725 26.1916 26.2107 26.2298 26.2488 8.8152 8.8194 8.8237 8.8280 8.8323 2.83569 2.83632 2.83696 2.83759 2.83822 690 691 692 693 694 1.44928 1.44718 1.44509 1.44300 1.44092 476100 477481 478864 480249 481636 328509000 329939371 331373888 332812557 334255384 26.2679 26.2869 26.3059 26.3249 26.3439 8.8366 8.8408 8.8451 8.8493 8.8536 2.83885 2.83948 2.84011 2.84073 2.84136 695 696 697 698 699 1-4388S 1.43678 1.43472 1.43266 1.43062 483025 485809 487204 488601 335702375 338608873 34OO6S392 341532099 26.3629 26.3818 26.4008 26.4197 26.4386 8.8578 8.8621 8.8663 8.8706 8.8748 2.84198 2.84261 2.84386 2.84448 700 701 702 703 704 1.42857 1.42653 1.42450 1.42248 1.42045 490000 491401 492804 494209 495616 343000000 344472IOI 345948408 347428927 348913664 26.4575 26.4764 26.4953 26.5141 26.533° 8.8790 8.8833 8.8875 8.8917 8.8959 2.84510 2.84572 2.84634 2.84696 2.84757 705 706 707 708 709 1.41844 1.41643 1-41443 1-41243 1.41044 497025 498436 499849 501264 502681 350402625 351895816 353393243 354894912 356400829 26.5518 26.5707 26.5895 26.6083 26.6271 8.9001 8.9043 8.908s 8.9127 8.9169 2.84819 2.84880 2.84942 2.85003 2.85065 710 711 712 713 714 1.40845 1.40647 1.40449 1.40252 1.40056 504100 505521 &t 509796 357911000 359425431 360944128 362467097 363994344 26.6458 26.6646 26.6833 26.7021 26.7208 8.9211 8-9253 8.9295 8-9337 8.9378 2.85126 2.85187 2.85248 2.85309 2.85370 ■ 16 Table 3. VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS. « 1000.*- »2 «8 ^« \n log. K 715 716 717 718 719 1.39860 1.3966s 1.39470 1.39276 1.39082 5II225 512656 514089 515524 516961 365525875 367061696 368601813 370146232 371694959 26.7395 26.7582 26.7769 26.7955 26.8142 8.9420 8.9462 8.9503 8.9545 8.9587 2.85431 2.85491 2.85552 2.85612 2.85673 720 721 722 723 724 1.38889 1.38696 1.38504 1-38313 1.38122 518400 519841 521284 522729 524176 373248000 374805361 376367048 377933067 379503424 26.8328 26.8514 26.8701 26.8887 26.9072 8.9628 8.9670 8-97" 8.9752 8.9794 2-85733 2.85794 2.85854 2.85914 2.85974 725 726 727 728 729 I-3793I I-3774I I -37 552 1-37363 1-37174 525625 527076 528529 529984 53I44I 381078125 382657176 384240583 385828352 387420489 26.9258 26.9444 26.9629 26.9815 27.0000 f-9^3S 8.9876 8.9918 8.9959 g.oooo 2.86034 2.86094 2.86153 2.86213 2.86273 730 731 732 733 734 1.36986 1.36799 1.36612 1.36426 1.36240 532900 534361 535824 537289 538756 389017000 39061789I 392223168 393832837 395446904 27.0185 27.0370 27-0555 27.0740 27.0924 9.0041 9.0082 9.0123 9.0164 9.0205 2.86332 2.86392 2.86451 2.86510 2.86570 735 736 738 739 1.36054 1.35870 1.35685 I-3550I 1-35318 540225 541696 543169 544644 54612I 398688256 400315553 401947272 403583419 27.1109 27.1293 27.1477 27.1662 27.1846 9.0246 9.0287 9.0328 9.0369 9.0410 2.86629 2.86688 2.86747 2.86806 2.86864 740 741 742 743 744 1-35135 1-34953 I-3477I 1.34590 1.34409 547600 549081 550564 552049 553536 405224000 406869021 408518488 410172407 411830784 27.2029 27.2213 27.2397 27.2580 27.2764 9-0450 9.0491 9-0532 9.0572 9.0613 2.86923 2.86982 2.87040 2.87099 2.87157 745 746 747 748 749 1.34228 1.34048 1.33869 1.33690 1-335" 556516 558009 559504 561001 413493625 415160936 416832723 418508992 420189749 27.2947 27.3130 27-3313 27.3496 27-3679 9.0654 9.0694 90735 9-0775 9.0816 2.87216 2.87274 2-87332 2.87390 2.87448 750 751 752 7S3 754 1-33333 1-33156 1.32979 1.32802 1.32626 562500 564001 565504 567009 568516 421875000 423564751 425259008 426957777 428661064 27.3861 27.4044 27.4226 27.4408 27.4591 9.0856 9.0896 9-0937 9.0977 9.1017 2.87506 2.87564 2.87622 2.87679 2.87737 755 756 757 758 759 1.32450 1.3227 s 1. 32100 1.31926 1-31752 570025 571536 573049 574564 576081 430368875 432081 21 6 433798093 4355I95I2 437245479 27-4773 27-4955 27.5136 27-5318 27.5500 9.1057 9.1098 9.1138 9.1178 9.1218 2.87795 2.87852 2.87910 2.87967 2.88024 760 761 762 763 764 1-31579 1.31406 1-31234 1.31062 1.30890 577600 579I2I 580644 582169 583696 438976000 440711081 442450728 444194947 445943744 27.5681 27.5862 27-6043 27.6225 27.6405 9.1258 9.1298 9-1338 9-1378 9-1418 2.88081 2.88138 2.8819s 2.88252 2.88309 765 766 767 768 769 1.30719 1.30548 1.30378 1.30208 1.30039 5882I9 589824 591361 447697125 449455096 451217663 452984832 454756609 27.6586 27.6767 27.6948 27.7128 27.7308 9-1458 9.1498 9-1537 9-1577 9.1617 2.88366 2.88423 2.88480 2.88536 2.88593 Smithsonian Tables. 17 Table 3. VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS. n 1000.^ k2 »s in v« log. « 770 771 772 773 774 1.29870 1.29702 1-29534 1.29366 1.29199 592900 594441 595984 597529 599076 456533000 45831401 I 461889917 463684824 27.7489 27.7669 27.7849 27.8029 27.8209 9.1696 9.1736 9-I77S 9.1815 2.88649 2.88705 2.88762 2.88818 2.88874 775 776 777 778 779 1.29032 1.28866 1.28700 1.2853s 1.28370 600625 602176 603729 605284 606841 465484375 467288576 469097433 470910952 472729139 27.8388 27.8568 27.8747 27.8927 27.9106 9.1855 9.1894 9-1933 9-1973 9.2012 2.88930 2.88986 2.89042 2.89098 2.89154 780 781 782 783 784 1.28205 1.28041 1.27877 1.27714 1-27551 608400 609961 61 1 524 613089 614656 474552000 476379541 478211768 480048687 481890304 27.9285 27.9464 27.9643 27.9821 28.0000 9.2052 9.2091 9.2130 9.2170 9-2209 2.89209 2.89265 2.89321 2.89376 2.89432 785 786 788 789 1.27389 1.27226 1.27065 1.26904 1.26743 616225 617796 619369 620944 622521 483736625 485587656 487443403 489303872 491169069 28.0179 28.0357 28.0535 28.0713 28.0891 9.2248 9.2287 9.2326 9-2365 9.2404 2.89487 2.89542 2.89597 2.89653 2.89708 790 791 792 793 794 1.26582 1.26422 1.26263 1.26103 1.25945 624100 625681 627264 628849 630436 493039000 494913671 496793088 498677257 500566184 28.1069 28.1247 28.1425 28.1603 28.1780 9-2443 9.2482 9.2521 9.2560 9.2599 2.89763 2.89818 2.89873 2.89927 2.89982 795 796 797 798 799 1.25786 1.25628 1-25471 1-25313 1.25156 632025 633616 635209 636804 638401 502459875 504358336 506261573 508169592 510082399 28.1957 28.2135 28.2312 28.2489 28.2666 9.2638 9.2677 9.2716 9.2754 9-2793 2.90037 2.90091 2.90146 2.90200 2.9025s 800 801 802 803 804 1.25000 1.24844 1.24688 1-24533 1.24378 640000 641601 643204 644809 646416 512000000 513922401 515849608 517781627 519718464 28.2843 28.3019 28.3196 28.3373 28.3549 9.2832 9.2870 2.90309 2.90363 2.90417 2.90472 2.90526 805 806 809 1.24224 1.24069 1.23916 1.23762 1.23609 648025 649636 651249 652864 654481 521660125 523606616 525557943 527514112 529475129 28.3725 28.3901 28.4077 28.4253 28.4429 9.3025 9-3063 9.3102 9.3140 9-3179 2.90580 2.90741 2.90795 810 8n 812 814 1-23457 1.23305 1-23153 1.23001 1.22850 656100 657721 662596 531441000 533411731 535387328 537367797 539353144 28.4605 28.4781 28.4956 28.5132 28.5307 9-3217 9-3255 9.3294 9-3332 9-3370 2.90849 2.90902 2.90956 2.91009 2.91062 815 816 817 818 819 1.22699 1.22549 1.22399 1.22249 1.22100 664225 665856 667489 669124 670761 541343375 543338496 545338513 547343432 549353259 28.5482 28.5657 28.5832 28.6007 28.6182 9.3408 9-3447 9-3485 9-3523 9-3561 2.91 1 16 2.91169 2.91222 2.9127s 2.91328 820 821 822 823 824 1.21951 1. 2 1 803 1.21655 1.21507 I.2I359 672400 674041 675684 677329 678976 551368000 553387661 555412248 557441767 559476224 28.6356 28.6531 28.6705 28.6880 28.7054 9-3599 9-3637 9-3675 9-3713 9-3751 2.91381 2.91434 2.91487 2.91540 2.91593 Smithsonian Tables. 18 VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS. C ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS Tablg 3. UARE ROOTS, CUBE n 1000.^ tfl «= ^n V« log. « 825 826 827 828 829 I.2Z2I2 1.21065 1. 2091 9 1.20773 1.20627 680625 682276 683929 685584 687241 561515625 563559976 565609283 567663552 569722789 28.7228 28.7402 28.7576 28.7750 28.7924 9-3789 9-3827 9-3865 9-3902 9-3940 2.91645 2.91698 2.91751 2.91803 2-91855 830 832 833 834 1.20482 1.20337 1. 20192 1.20048 I.I9904 688900 690561 692224 693889 695556 571787000 573856191 575930368 578009537 580093704 28.8097 28.8271 28.8444 28.8617 28.8791 9-3978 9.4016 9-4053 9.4091 9.4129 2.91908 2.91960 2.92012 2.92065 2.921 17 835 836 838 839 I. 197 60 I.I9617 I.19474 I.I9332 I.I919O 697225 698896 700569 702244 703921 58218287s 584277056 588480472 590589719 28.8964 28.9137 28.9310 28.9482 28.965s 9.4166 9.4204 9.4241 9.4279 9.4316 2.92169 2.92221 2.92273 2.92324 2.92376 840 841 842 843 844 1.19048 1.18906 1.1876s 1. 1 8624 I.18483 705600 707281 708964 710649 712336 592704000 594823321 596947688 599077107 601211584 28.9828 29.0000 29.0172 29-0345 29.0517 9-4354 9-4391 9-4429 9.4466 9-4503 2.92428 2.92480 2.92531 2.92583 2.92634 845 846 847 848 849 1-18343 1. 1 8203 1. 18064 1.1792s I.17786 714025 715716 717409 719104 720801 603351 I 25 605495736 607645423 609800192 61 1960049 29.0689 29.0861 29.1033 29.1204 29.1376 9-4541 9.4578 9-4615 9.4652 9.4690 2.92686 2.92737 2.92788 2.92840 2.92891 850 852 853 854 I.I7647 1.17509 1-17371 1-17233 I.I7096 722500 724201 725904 727609 729316 614125000 616295051 618470208 620650477 622835864 29.1548 29.1719 29.1890 29.2062 29.2233 9-4727 9.4764 9.4801 9.4838 9.4875 2.92942 2.92993 2.93044 2.93095 2.93146 855 856 1% 858 859 1.16959 1. 16822 1. 16686 1. 16550 I.16414 731025 732736 734449 736164 737881 625026375 627222016 629422793 63 1 6287 1 2 633839779 29.2404 29.2575 29.2746 29.2916 29.3087 9.4912 9-4949 9.4986 9.5023 9.5060 2.93197 2.93247 2.93298 2-93349 2-93399 860 861 862 863 864 1.16279 I.16144 1. 16009 1-15875 1-15741 739600 741321 743044 744769 746496 636056000 638277381 640503928 642735647 644972544 29.3258 29.3428 29.3598 29.3769 29-3939 9-5097 9-5134 9.5171 9-5207 9.5244 2.93450 2.93500 2-93551 2.93601 2-93651 865 866 867 868 869 1. 1 5607 1-15473 1-15340 1.15207 1.15075 748225 749956 751689 753424 755161 647214625 649461896 651714363 653972032 656234909 29.4109 29.4279 29.4449 29.4618 29.4788 9-5281 9-5317 9-5354 9-5391 9-5427 2.93702 2.93752 2.93802 2.93852 2.93902 870 872 874 1-14943 1.14811 1.14679 1. 14548 1.14416 756900 762129 763876 658503000 6607763U 663054848 665338617 667627624 29.4958 295127 29.5296 29.5466 29-5635 9.5464 9-5501 9-5537 9-5574 9.5610 2.93952 2.94002 2.94052 2.94101 2.94151 875 876 878 879 1. 1 4286 1-14155 1. 14025 76562s 767376 769129 770884 772641 66992187s 672221376 674526133 676836152 6791 51439 29.5804 29-5973 29.6142 29.6311 29.6479 9.5647 9-5683 9-5719 9-5756 9.5792 2.94201 2.94250 2.94300 2.94349 2.94399 Smithsonian Tables. 19 Table 3. VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS. n 1000.^ rfl «8 in > log. n 880 88i 882 883 884 1.13636 1-13507 '•13379 1.13250 1.13122 774400 776161 777924 779689 781456 681472000 683797841 686128968 688465387 690807104 29.6648 29.6816 29.6985 29-7153 29.7321 9.5828 9.586s 9-5901 9-5937 9-5973 2.94448 2.94498 2.94547 2.94596 2.94645 885 886 887 888 889 ;:;^8%^ 1. 12740 1.12613 1.12486 783225 788544 790321 693154125 695506456 697864103 700227072 702595369 29-7489 29.7658 29.7825 29.7993 29.8161 9.6010 9.6046 9.6082 9.6118 9.6154 2.94694 2-94743 2,94792 2.94841 2.94890 890 891 892 893 894 1.12360 1.12233 1.12108 1.11982 1.11857 792100 793881 795664 797449 799236 704969000 707347971 709732288 712121957 714516984 29-8329 29.8496 29.8664 29.8831 29.8998 9.6190 9.6226 9.6262 9.6298 9-6334 2.94939 2.95036 2.95085 2.95134 895 896 899 1.11732 I.I 1607 1.11483 i-"3S9 1.1123s 801025 802816 804609 806404 808201 716917375 719323136 721734273 724150792 726572699 29.9166 29-9333 29.9500 29.9666 29-9833 9.6370 9.6406 9,6442 9.6477 9-6513 2.95182 2.95231 2.95279 2.95328 2.95376 900 901 902 903 904 I. mil 1. 10988 1. 10865 1. 10742 1.10619 810000 811801 813604 815409 817216 729000000 731432701 733870808 736314327 738763264 30.0000 30.0167 30-0333 30.0500 30.0666 9-6549 9-6585 9.6620 9.6656 9.6692 2.95424 2.95472 2.95521 2.95569 2.95617 905 906 909 1.10497 1-I037S 1. 102 54 1.10132 I.IOOII 819025 820836 822649 824464 826281 741 2 17625 743677416 746142643 748613312 751089429 30.0832 30.0998 30.1164 30-1330 30.1496 9.6727 9.6763 9.6799 9.6834 9.6870 2.95665 2.95713 2-95761 2.95809 2.95856 910 911 912 913 914 1.09890 1.09769 1.09649 1.09529 1.09409 828100 829921 831744 833569 835396 753571000 756058031 758550528 761048497 763551944 30.1662 30.1828 30-1993 30.2159 30.2324 9.6905 9.6941 9.6976 9.7012 9.7047 2.95904 2.95952 2.95999 2.96047 2.9609s 915 916 917 918 919 1.09290 I.09I70 I. 09051 1.08932 I.088I4 837225 839056 840889 842724 844561 766060875 768575296 771095213 773620632 776151559 30.2490 30.2655 30.2820 30.2985 30-3150 9.7082 9.7118 9-7 '53 9.7188 9.7224 2.96142 2.96190 2.96277 2.96284 2.96332 920 921 922 923 924 1.08696 1.08578 1.08460 1.08342 1.08225 846400 848241 850084 851929 853776 778688000 781229961 783777448 786330467 788889024 30-3315 30.3480 30-3645 30.3809 30-3974 9-7259 9.7294 9-7329 9-7364 9.7400 2.96379 2.96426 2.96473 2.96520 2.96567 925 926 927 928 929 1.08108 1.07991 1.07875 1.07759 1.07643 855625 857476 859329 861184 863041 791453125 794022776 796597983 799178752 801765089 30.4138 30.4302 30-4467 30.4631 30-4795 9-7435 9-7470 9-7505 9-7540 9-7575 2.96614 2.96661 2.96708 2.96755 2.96802 930 931 932 933 934 1.07527 1.07411 1.07296 1.07181 1.07066 864900 866761 868624 870489 872356 804357000 806954491 809557568 812166237 814780504 30-4959 30-5123 30.5287 30.5450 30.5614 9.7610 9.764s 9.7680 9-7715 9-775° 2.96848 2.9689s 2.96942 2.96988 2-97035 Table 3. VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS. » lOOO.j- tfi «8 in %n log. n 935 936 937 938 939 1.06952 1.06838 1.06724 I.066IO 1.06496 874225 876096 S77969 879844 881721 817400375 820025856 822656953 825293672 827936019 30.5778 30.5941 30.6105 30.6268 30.6431 9-7785 9.7819 9-7854 9.7889 9.7924 ■Z.Oi-JQ&Y 2.97128 2.97174 2.97220 2.97267 940 941 942 943 944 1.06383 1.06270 1. 06 1 57 1.06045 1.05932 883600 885481 .887364 889249 891 136 830584000 833237621 835896888 838561807 841232384 30-6594 30-6757 30.6920 30.7083 30.7246 9-7959 9-7993 9.8028 9.8063 9.8097 2-97313 2-97359 2.97405 2.97451 2.97497 945 946 947 948 949 1.05820 1.05708 1.05597 1.05485 1-05374 893025 894916 896809 898704 900601 843908625 846590536 849278123 851971392 854670349 30.7409 30-7571 30-7734 30.7896 30.8058 9.8132 9.8167 9.8201 • 9.8236 9.8270 2-97543 2.97589 2-97635 2.97681 2.97727 950 951 952 9S3 954 1.05263 1.05152 1.05042 1.04932 1.04822 902500 904401 906304 908209 910116 857375000 860085351 862801408 865523177 868250664 30.8221 30-8383 30.8545 30.8707 30.8869 9.8305 9-8339 9.8408 9.8443 2.97772 2.97818 2.97864 2.97909 2.97955 955 956 958 959 1.047 1 2 1.04603 1.04493 1.04384 1.04275 912025 913936 915849 917764 919681 870983875 873722816 876467493 879217912 881974079 30.9031 30.9192 30-9354 30.9516 30.9677 9-8477 9.8511 9.8546 9.8580 9.8614 2.98000 2.98046 2.98091 2.98137 2.98182 960 961 962 963 964 1. 041 67 1.04058 1.03950 1.03832 1-03734 921600 923521 925444 927369 929296 884736000 887503681 890277128 893056347 895841344 30-9839 31.0000 31.0161 31.0322 31.0483 9.8648 9.8683 9.8717 9.8785 2.98227 2.98272 2.98318 2.98408 965 966 969 1.03627 1.03520 1-03413 1.03306 1.03199 931225 933156 935089 937024 938961 898632125 901428696 904231063 907039232 909853209 31.0644 31.0805 31.0966 31.1127 31.1288 9.8819 9.8854 9.8888 9.8922 9.8956 2.98453 2.98498 2.98543 2.98588 2.98632 970 971 972 973 974 1.03093 1.02987 1. 02881 1.02775 1.02669 940900 942841 944784 946729 948676 912673000 91 5498611 918330048 92I167317 924010424 31.1448 31.1609 31.1769 31.1929 31.2090 9.8990 9.9024 9.9058 9.9092 9.9126 2.98677 2.98722 2.98767 2.98811 2.98856 975 976 977 978 979 1.02564 1.02459 1.02354 1.02249 1.02145 950625 952576 954529 956484 958441 926859375 9297 I 41 76 932574833 935441352 938313739 31.2250 31.2410 31.2570 31-2730 31.2890 9.9160 9.9194 9.9227 9.9261 9-9295 2.98900 2.99034 2.99078 980 981 982 983 984 1. 02041 I.OI937 1.01833 1.01729 1. 01 626 960400 962361 964324 966289 968256 941 192000 944076141 946966168 949862087 952763904 31.3050 31.3209 31-3369 31-3688 9-9329 99363 9.9396 9.9430 9-9464 2.99123 2.99167 2.99211 2.99255 2.99300 985 986 1 989 1-01523 1. 01420 1-01317 1.01215 1.01112 970225 972196 974169 976144 978121 955671625 958585256 961 504803 964430272 967361669 31-3847 31.4006 31.4166 31-4325 31.4484 9-9497 9-9531 9-9565 9.9598 9.9632 2.99344 2.99388 2.99432 2.99476 2.99520 Smithsonian Tables. Table 3. VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS. » 1000.^ «2 «' . */« ^ log. » 990 991 992 993 994 995 996 997 998 999 1000 I.OIOIO 1.00908 1.00806 1.00705 1.00604 1.00503 1.00402 1.00301 1.00200 1. 00 1 00 I. OOOOO 980100 982081 984064 986049 988036 990025 992016 994009 996004 998001 I 000000 970299000 973242271 976I9I488 979146657 982107784 985074875 988047936 991026973 9940H992 997002999 lOOOOOOOOO 31-4643 31.4802 31.4960 31-51 19 31.5278 31-5436 31-5595 31-5753 31-59" 31.6070 31.6228 9.9666 9.9699 9-9733 9.9766 g.9800 9-9833 9.9865 9.9900 9-9933 9.9967 10.0000 2.99564 2.99607 2.99651 2-99695 2-99739 2.99782 2.99826 2.99870 2.99913 2.99957 3.00000 Smithsonian Tables. CIRCUMFERENCE AND AREA OF CIRCLE DIAMETER d. IN Table 4. TERMS OF ird ^ird^ i^d^ ird 10 II 12 13 14 15 16 17 18 19 20 21 22 24 2S 26 27 28 29 30 31 32 33 34 36 37 38 39 31.416 34-558 37.699 40.841 43.982 47.124 50.265 53-407 56-549 59.690 62.832 65-973 69.115 72.257 75-398 78.540 8i.68i 84.823 87.965 91.106 94.248 97-389 100.53 103.67 106.81 iog.96 113.10 116.24. 119.38 122.52 78.5398 9S-°332 113.097 132.732 153-938 176.715 201.062 226.980 254.469 283.529 314-159 346.361 380.133 415.476 452-389 490.874 530-929 572-555 615.752 660.520 706.858 754.768 804.248 855.299 907.920 962.113 1017.88 1075.21 1134.11 1194.59 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 57 1^ 61 62 63 64 65 66 67 68 125.66 128.81 131-95 135-09 138-23 141-37 144-51 147-65 150.80 153-94 157.08 160.22 163.36 166.50 169.65 172.79 175-93 179.07 182.21 185-35 188.50 191.64 194.78 197.92 201.06 204.20 207-35 210.49 213.63 216.77 1256.64 1320.25 1385-44 1452.20 1520-53 1590.43 1661.90 1734-94 1809.56 1885.74 1963.50 2042.82 2123.72 2206.18 2290.22 2375-83 2463.01 2551.76 2642.08 2733-97 2827.43 2922.47 3019.07 3"7-25 3216.99 3318.31 3421.19 3525-65 3631.68 3739-28 70 71 72 73 74 75 76 77 78 80 81 82 83 85 86 87 88 89 90 91 92 93 94 96 97 98 99 219.91 223.05 226.19 229-34 232.48 235-62 238.76 241.90 245.04 248.19 251-33 254-47 257.61 260.75 263.89 267.04 270.18 273-32 276.46 279.60 282.74 285.88 289.03 292.17 295-31 298.45 301-59 304-73 307.88 311.02 3848-45 3959-19 4071.50 4185.39 4300-84 4417.86 4536-46 4656.63 4778.36 4901.67 5026.55 5153-00 5281.02 5410.61 5541-77 5674.50 5808.80 5944.68 6082.12 6221.14 6361-73 6503.88 6647.61 6792.91 6939-78 7088.22 7238.23 7389.81 7542.96 7697.69 Smithsonian Tables. 23 Table 5. LOGARITHMS OF NUMBERS. N. 0000 0043 0086 0128 0170 0414 04S3 0492 0531 0569 0792 0828 0864 0899 0934 1139 1173 1206 1239 1271 1461 1492 1523 1553 1584 1761 1790 1818 1847 1875 2041 2068 2095 2122 2148 2304 2330 2355 2380 2405 2553 2577 2601 2625 2648 2788 2810 2833 2856 2878 3010 3032 3054 3075 3096 3222 3243 3263 3284 3304 3424 3444 3464 3483 3502 3617 3636 3655 3674 3692 3802 3820 3838 3856 3874 3979 3997 4°i4 4031 4048 4150 4166 4183 4200 4216 43H 433° 4346 4362 4378 4472 4487 4S°2 4518 4533 4624 4639 4654 4669 4683 4771 4786 4800 4814 4829 4914 4928 4942 49SS 4969 5051 5065 5079 5092 5105 518s 5198 521 I 5224 5237 5315 5328 5340 S3S3 5366 5441 54S3 5465 5478 5490 5563 S575 5587 5599 56" 5682 5694 5705 5717 5729 5798 5809 5821 5832 5843 59" 5922 5933 5944 5955 6021 6031 6042 6053 6064 6128 6138 6149 6160 6170 6232 6243 6253 6263 6274 6335 634s 6355 6365 6375 6435 6444 6454 6464 6474 6532 6542 6551 6561 6571 6628 6637 6646 6656 6665 6721 6730 6739 6749 6758 6812 6821 6830 6839 6848 6902 691 I 6920 6928 6937 6990 6998 7007 7016 7024 7076 7084 7093 7101 71 10 7160 7168 7177 7185 7193 7243 7251 7259 7267 7275 7324 7332 7340 7348 7356 0212 0253 0294 0334 0374 0607 0645 0682 0719 07S5 0969 1004 1038 1072 I 106 1303 1335 1367 1399 143° 1614 1644 1673 1703 1732 1903 1931 1959 1987 2014 2175 2201 2227 2253 2279 2430 24SS 2480 2504 2529 2672 269s 2718 2742 2765 2900 2923 2945 2967 2989 3118 3139 3160 3181 3201 3324 3345 3365 3385 3404 3522 3541 3560 3579 3598 37" 3729 3747 3766 3784 3892 3909 3927 3945 3962 4065 4082 4099 41 16 4133 4232 4249 4265 4281 4298 4393 4409 4425 4440 4456 4548 4564 4579 4594 4609 4698 4713 4728 4742 4757 4843 4857 4871 4886 4900 4983 4997 50" 5024 5038 5119 5132 5145 5159 5172 5250 5263 5276 5289 5302 5378 5391 5403 5416 5428 5502 SSH 5527 5539 5551 5623 563s 5647 5658 5670 5740 5752 5763 5775 5786 5855 5866 5877 5888 5899 5966 5977 5988 5999 6010 6075 6085 6096 6107 61 17 6180 6191 6201 6212 6222 6284 6294 6304 6314 6325 6385 6395 6405 6415 6425 6484 6493 6503 6513 6522 6580 6590 6599 6609 6618 6675 6684 6693 6702 6712 6767 6776 6785 6794 6803 6857 6866 6875 6884 6893 6946 6955 6964 6972 6981 7033 7042 7050 7059 7067 7118 7126 7135 7143 7152 7202 7210 7218 7226 7235 7284 7292 7300 7308 7316 7364 7372 7380 7388 7396 Prop. Parts. 12 3 4 8 12 4 8 II 3 7 10 3 6 10 369 246 246 246 246 2 4 5 7 8 9 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 2 2 2 2 2 17 21 25 29 33 37 15 19 23 26 30 34 14 17 21 24 28 31 13 16 19 23 26 29 12 15 18 21 24 27 " 14 17 20 22 25 II 13 16 18 21 24 10 12 15 17 20 22 912 14 10 19 21 911 13 16 18 20 8 II 13 8 10 12 8 10 12 7 9" 7 9" 15 17 19 14 16 18 141517 131517 12 14 16 7 9 10 12 14 15 7 8 10 II 13 15 689 II 13 14 689 II 12 14 679 10 12 13 6 7 9 6 7 8 5 7 8 568 S 6 8 10 II 13 10 II 12 9 II 12 9 10 12 9 10 II 9 10 II 8 10 II 8 9 10 8 9 10 8 9 10 8 9 10 7 8 9 7 8 9 7 8 9 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 7 8 7 8 7 7 6 7 6 7 N. 123 456 789 Smithsonian Tables. 24 LOGARITHMS OF NUMBERS. Table 5. N. 12 3 4 5 6 7 8 9 Prop. Parts. 123 456 789 55 59 7404 7412 7419 7427 7435 7482 7490 7497 7505 7513 7559 7566 7574 7582 7589 7634 7642 7649 7657 7664 7709 7716 7723 7731 7738 7443 7451 7459 7466 7474 7520 7528 7536 7S43 7551 7597 7604 7612 7619 7627 7672 7679 7686 7694 770I 7745 7752 7760 7767 7774 122 1 2 2 I 2 2 112 I I 2 3 3 3 3 3 4 4 4 4 4 5 5 5 4 4 5 6 7 5 f 7 5 6 7 5 6 7 567 60 6i 62 P 64 7782 7789 7796 7803 7810 7853 7860 7868 7875 7882 7924 7931 7938 794S 7952 7993 8000 8007 8014 8021 8062 8069 8075 8082 8089 7818 7825 7832 7839 7846 7889 7896 7903 7910 7917 7959 7966 7973 7980 7987 8028 8035 8041 8048 8055 8096 8102 8109 8n6 8122 112 112 112 I I 2 I I 2 3 3 3 3 3 4 4 3 3 3 4 4 4 4 4 566 5 6 6 5 6 6 ^ 5 t 5 5 6 65 66 67 68 69 8129 8136 8142 8149 8156 8195 8202 8209 8215 8222 8261 8267 8274 8280 8287 P^l f33i 8338 8344 8351 8388 8395 8401 8407 8414 8162 8169 8176 8182 8189 8228 8235 8241 8248 8254 8293 8299 8306 8312 8319 8357 8363 8370 8376 8382 8420 8426 8432 8439 8445 112 I I 2 112 112 I I 2 3 3 3 3 2 3 3 3 3 3 4 4 4 4 4 5 5 6 5 5 6 5 5 6 456 456 70 71 72 73 74 8451 8457 8463 8470 8476 8513 8519 8525 8531 8S37 8573 8579 8585 8591 8S97 8633 8639 8645 8651 8657 8692 8698 8704 8710 8716 8482 8488 8494 8500 8506 8543 8549 8555 8561 8567 8603 8609 8615 8621 8627 8663 8669 867s 8681 8686 8722 8727 8733 8739 8745 112 112 112 112 112 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 5 6 4 5 5 4 5 5 4 5 5 4 5 5 75 76 77 78 79 8751 8756 8762 8768 8774 8808 8814 8820 8825 8831 8865 8871 8876 8882 8887 8921 8927 8932 8938 8943 8976 8982 8987 8993 8998 8779 8785 8791 8797 8802 8837 8842 8848 8854 8859 8893 8899 8904 8910 891 s 8949 8954 8960 8965 8971 9004 9009 9015 9020 9025 112 112 112 112 112 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 5 5 4 5 5 4 4 5 4 4 5 4 4 5 80 81 82 f3 84 9031 9036 9042 9047 9053 9085 9090 9096 9101 9106 9138 9143 9149 9154 9159 9191 9196 9201 9206 9212 9243 9248 9-253 9258 9263 9058 9063 9069 9074 9079 9112 9117 9122 9128 9133 9165 9170 917s 9180 9186 9217 9222 9227 9232 9238 9269 9274 9279 9284 9289 I I 2 112 112 112 112 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 85 86 87 88 89 9294 9299 9304 9309 9315 9345 9350 9355 9360 9365 9395 9400 9405 9410 941 s 9445 9450 9455 946o 9465 9494 9499 9504 9509 95i3 9320 9325 9330 933S 9340 9370 9375 9380 9385 9390 9420 9425 9430 9435 9440 9469 9474 9479 9484 9489 9518 9523 9528 9533 9538 I I 2 I I 2 Oil Oil Oil 2 2 2 2 2 3 3 2 2 2 3 3 3 3 3 4 4 5 4 4 5 3 4 4 3 4 4 3 4 4 90 91 92 93 94 9542 9547 9552 9557 9562 9590 9595 9600 9605 9609 9638 9643 9647 9652 9657 968s 9689 9694 9699 9703 9731 9736 9741 9745 97SO 9566 9571 9576 9581 9586 9614 9619 9624 9628 9633 9661 9666 9671 9675 9680 9708 9713 9717 9722 9727 9754 9759 9763 9768 9773 Oil Oil Oil Oil Oil 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 95 96 99 9777 9782 9786 9791 9795 9823 9827 9832 9836 9841 9868 9872 9877 9881 9886 9912 9917 9921 9926 9930 9956 9961 9965 9969 9974 9800 9805 9809 9814 9818 9845 9850 9854 9859 9863 9890 9894 9899 9903 9908 9934 9939 9943 9948 9952 9978 9983 9987 9991 9996 Oil Oil Oil Oil Oil 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 3 4 4 3 4 4 3 4 4 3 3 4 N. 12 3 4 5 6 7 8 9 12 3 4 5 6 7 8 9 Smithsonian Tables. 25 Table 6. ANTILOCARITHMS. L. 12 3 4 5 6 7 8 9 Prop. Parts. 12 3 t a V f .00 1000 1002 1005 1007 1009 1023 1026 1028 1030 1033 1012 1014 1016 1019 1021 ] I I I 222 .01 1035 1038 1040 1042 1045 1 I I I 222 .02 1047 1050 1052 1054 I0S7 1059 1062 1064 1067 1069 1084 1086 1089 1091 1094 1 I I I 222 •°3 1072 1074 1076 1079 lOSI ) III 222 .04 1096 1099 1102 1104 1107 1109 1112 IH4 1117 1H9 I I 112 222 .05 1122 1125 1127 1130 1132 H35 1 138 1 140 1 143 1 146 I 112 222 .06 1148 1151 1153 1156 1159 1175 1178 1180 1183 1186 1161 1164 1167 1169 1172 I I I 2 222 .07 1189 iigi 1194 1197 1199 I 1 112 222 .08 1202 1205 1208 1211 1213 1216 1219 1222 1225 1227 I 112 2 2 3 .09 1230 1233 1236 1239 1242 1245 1247 1250 1253 1256 I t 112 223 .10 1259 1262 1265 1268 1271 1288 1291 1294 1297 1300 1274 1276 1279 1282 1285 I [ 112 223 .11 1303 1306 1309 1312 131 5 I [ 12 2 2 2 3 .12 1318 1321 1324 1327 1330 1334 1337 1340 1343 1346 I [ 12 2 223 •13 1349 1352 1355 1358 1361 1380 1384 1387 139° 1393 1365 1368 1371 1374 1377 I I 12 2 2 3 3 .14 1396 1400 1403 1406 1409 I [ I :i 2 2 3 3 .15 1413 1416 1419 1422 1426 1429 1432 1435 1439 1442 I [ 12 2 2 3 3 .16 I44S 1449 "452 I4S5 1459 1462 1466 1469 1472 1476 I t 12 2 2 3 3 •17 1479 1483 i486 1489 1493 1496 1500 1503 1507 1 510 I 12 2 233 .18 1514 1517 1521 1524 1528 1531 IS3S 1538 1542 1545 I C 12 2 2 3 3 .19 1549 1552 1556 1560 1563 1567 1570 1574 1578 1 581 I I 12 2 3 3 3 .20 1585 1589 1592 1596 1600 1603 1607 1611 1614 1618 I [ 12 2 3 3 3 .21 1622 1626 1629 1633 1637 1641 1644 1648 1652 1656 I I 2 2 2 3 3 3 .22 1660 1663 1667 1671 1675 1679 1683 1687 1690 1694 I [ 2 2 2 3 3 3 •23 1698 1702 1706 1710 1714 1718 1722 1726 1730 1734 I I 2 2 2 3 3 4 .24 1738 1742 1746 1750 1754 1758 1762 1766 1770 1774 I [ 2 2 2 3 3 4 .25 1778 1782 1786 1791 1795 1799 1803 1807 181 I 1816 I [ 2 2 2 3 3 4 .26 1820 1824 1828 1832 1837 1841 1845 1849 1854 1858 1884 1888 1892 1897 1901 I t 223 3 3 4 .27 1862 1866 1871 187s 1879 I [ 223 3 3 4 .28 1905 1910 1914 1919 1923 1928 1932 1936 1941 1945 1972 1977 1982 1986 1991 I [ 223 3 4 4 .29 1950 1954 1959 1963 1968 I I 223 3 4 4 .30 1995 2000 2004 2009 2014 2018 2023 2028 2032 2037 2065 2070 2075 2080 2084 I I 223 3 4 4 •31 2042 2046 2051 2056 2061 I I 223 3 4 4 •32 2089 2094 2099 2104 2 1 09 2138 2143 2148 2153 2158 2113 2118 2123 2128 2133 2163 2168 2173 2178 2183 I I 223 3 4 4 •33 I I 223 3 4 4 ■34 2188 2193 2198 2203 2208 2213 2218 2223 2228 2234 I I 2 233 4 4 S .35 2239 2244 2249 2254 2259 2265 2270 2275 2280 2286 I I 2 233 4 4 S •36 2291 2296 2301 2307 2312 2317 2323 2328 2333 2339 2371 2377 2382 2388 2393 I I 2233 4 4 5 •37 2344 2350 235s 2360 2366 I 1 2 233 4 4 5 •38 2399 2404 2410 2415 2421 2427 2432 2438 2443 2449 I I 2 233 4 4 5 •39 2455 2460 2466 2472 2477 2483 2489 2495 2500 2506 I I 2 233 4 S S .40 2512 2518 2523 2529 2535 2541 2547 2553 25S9 2564 2600 2606 2612 2618 2624 I I 2 234 4 5 5 .41 2570 2576 2582 2588 2594 I I 2 234 4 S 5 4 S 6 .42 2630 2636 2642 2649 2655 2661 2667 2673 2679 2685 I I 2 234 •43 2692 2698 2704 2710 2716 2723 2729 273s 2742 2748 I I 2334 4 S 6 •44 2754 2761 2767 2773 2780 2786 2793 2799 2805 2812 I I 2 3 3 4 456 .45 2818 2825 2831 2838 2844 2851 2858 2864 2871 2877 1 I 2 3 3 4 5 5 6 .46 2884 2891 2897 2904 291 I 2917 2924 2931 2938 2944 I 1 2 3 3 4 S S 6 •47 2951 2958 2965 2972 2979 2985 2992 2999 3006 3013 I I 2 3 3 4 5 1 ^ S 6 6 .48 3020 3027 3034 3041 3048 3055 3062 3069 3076 3083 I I 2 3 4 4 ■49 3090 3097 3105 31 1 2 31 19 3126 3133 3141 3148 31SS I I 2 3 4 4 566 L. 12 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 Smithsonian Tables. 26 ANTILOCARITHMS. Table 6. L. 12 3 4 5 6 7 8 9 1 2 Prop. Parts. 3 4 5 6 7 8 9 .50 ■5' .52 •53 ■54 3162 3170 3177 3184 3192 3236 3243 3251 3258 3266 33" 3319 3327 3334 3342 3388 3396 3404 3412 3420 3467 3475 3483 3491 3499 3199 3206 3214 3221 3228 3273 32S1 3289 3296 3304 3350 3357 3365 3373 338" 3428 3436 3443 3451 3459 3508 3516 3524 3532 3540 I I I 2 I 2 I 2 I 2 2 2 2 2 2 3 4 3 4 3 4 3 4 3 4 4 5 5 5 5 5 6 7 5 6 7 5 6 7 6 6 7 667 .55 .56 ■11 ■59 3548 3556 3565 3573 3581 3631 3639 3648 3656 3664 3715 3724 3733 3741 3750 3802 381 I 3819 3828 3837 3890 3899 3908 3917 3926 3589 3597 3606 3614 3622 3673 3681 3690 3698 3707 3758 3767 3776 3784 3793 3846 3855 3864 3873 3882 3936 3945 3954 3963 3972 I 2 I 2 I 2 I 2 I 2 2 3 3 3 3 3 4 3 4 3 4 4 4 4 5 5 5 5 5 5 6 7 7 6 7 8 6 7 8 678 678 .60 .6i .62 ■P .64 3981 3990 3999 4009 4018 4074 4083 4093 4102 41 1 1 4169 4178 4188 4198 4207 4266 4276 4285 429s 4305 4365 4375 4385 4395 44o6 4027 4036 4046 4055 4064 4121 4130 4140 4150 4159 4217 4227 4236 4246 4256 431 5 4325 4335 4345 4355 4416 4426 4436 4446 4457 I 2 I 2 I 2 I 2 I 2 3 3 3 3 3 4 S 4 5 4 5 4 5 4 5 6 6 6 6 6 6 7 8 7 8 9 7 8 9 7 8 9 7 8 9 .65 .66 :69 4467 4477 4487 4498 4508 4571 4581 4592 4603 4613 4677 4688 4699 4710 4721 4786 4797 4808 4819 4831 4898 4909 4920 4932 4943 4519 4529 4539 4550 4560 4624 4634 4645 4656 4667 4732 4742 4753 4764 4775 4842 4853 4864 4875 4887 4955 4966 4977 4989 5°°° I 2 I 2 I 2 I 2 I 2 3 3 3 3 3 4 5 4 5 5 6 6 6 7 7 7 7 8 9 7 9 10 8 9 10 8 9 10 8 9 10 .70 ■71 .72 ■73 ■74 5012 5023 5035 5047 5058 5129 5140 5152 5164 5176 5248 5260 5272 5284 5297 5370 5383 5395 5408 5420 5495 5508 5521 5534 5546 5070 5082 5093 5105 5117 5188 5200 5212 5224 5236 5309 5321 5333 5346 5358 5433 5445 5458 5470 5483 5559 5572 5585 5598 5610 I 2 I 2 I 2 I 3 I 3 4 4 4 4 4 5 i 5 6 7 7 8 8 911 8 10 II 9 10 II 9 10 II 9 10 12 .75 .76 ■77 .78 79 5623 5636 5649 5662 5675 5754 5768 5781 5794 5808 5888 5902 5916 5929 5943 6026 6039 6053 6067 6081 6166 6180 6194 6209 6223 5689 5702 5715 5728 5741 5821 5834 5848 5861 5875 5957 5970 5984 5998 6012 6095 6109 6124 6138 6152 6237 6252 6266 6281 6295 I 3 I 3 I 3 I 3 I 3 4 4 4 4 4 5 7 5 7 5 7 6 7^ 8 8 8 8 9 9 10 12 9 II 12 10 II 12 10 II 13 10 II 13 .80 .81 .82 .84 6310 6324 6339 6353 6368 6457 6471 6486 6501 6516 6607 6622 6637 6653 6668 6761 6776 6792 6808 6823 6918 6934 6950 6966 6982 6383 6397 6412 6427 6442 6531 6546 6561 6577 6592 6683 6699 6714 6730 6745 6839 6855 6871 6887 6902 6998 7015 7031 7047 7063 1 3 2 3 2 3 2 3 2 3 4 5 5 5 5 6 7 6 8 6 8 6 8 6 8 9 9 9 9 10 10 12 13 11 12 14 II 12 14 II 13 14 II 13 15 .85 .86 ■87 .88 .89 7079 7096 7112 7129 7145 7244 7261 7278 7295 731 1 7413 743° 7447 7464 7482 7586 7603 7621 7638 7656 7762 7780 7798 7816 7834 7161 7178 7194 7211 7228 7328 7345 7362 7379 7396 7499 7516 7534 755' 7568 7674 7691 7709 7727 7745 7852 7870 7889 7907 7925 2 3 2 3 2 3 2 4 2 4 5 5 5 5 5 7 8 7 8 7 9 7 9 7 9 10 10 10 II II 12 13 15 12 13 15 12 14 16 12 14 16 13 14 16 .90 .91 .92 ■93 •94 7943 7962 7980 7998 8017 8128 8147 8166 8185 8204 8318 8337 8356 8375 8395 851 I 8531 8551 8570 8590 8710 8730 8750 8770 8790 803s 8054 8072 8091 81 10 8222 8241 8260 8279 8299 8414 8433 8453 8472 8492 8610 8630 8650 8670 8690 8810 8831 8851 8872 8892 2 4 2 4 2 4 2 4 2 4 6 6 6 6 6 7 9 8 10 8 10 8 10 II II 12 12 12 13 15 17 13 15 17 14 15 17 14 16 18 14 16 18 .95 .96 •99 8913 8933 8954 8974 8995 9120 9141 9162 9183 9204 9333 9354 9376 9397 9419 955° 9572 9594 9616 9638 9772 9795 9817 9840 9863 9016 9036 9057 9078 9099 9226 9247 9268 9290 931 I 9441 9462 9484 9506 9528 9661 9683 9705 9727 975° 9886 9908 9931 9954 9977 2 4 2 4 2 4 2 4 2 5 6 6 7 7 7 8 10 811 911 911 911 12 13 13 13 14 15 17 19 15 17 19 15 17 20 16 18 20 16 18 20 L. 12 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 Smithsonian Tables. 27 Table 7. NATURAL SINES AND COSINES. Natural Sines. Prop. Angle. 0' 10' 20' SC 40' SC 60' Angle. Faits lor 1'. 0° .0000 00 .0029 09 .0058 18 .0087 27 .011635 .0290 8 .014544 .0174 52 89° 2.9 I •0174 52 .0203 6 .0232 7 .0261 8 .03199 .03490 88 2.9 2 .0349 •0378 I .0407 I .0436 2 .0465 3 .04943 .05234 87 2.9 3 .0523 4 •0552 4 .0581 4 .0610 5 •0639 S .06685 .0697 6 86 2.9 4 .0697 6 .0726 6 .0755 6 .0784 6 .08136 .0842 5 .08716 85 2.9 5 .0871 6 .0900 5 .0929 5 .0958 5 .0987 4 .10164 •1045 3 84 2.9 6 •10453 .10742 .11031 .11320 .11609 .11898 .12187 P 2.9 7 .12187 .1247 6 .12764 ■130S 3 •1334 •1363 •1392 82 2.9 8 .1392 .1421 .1449 .1478 •1507 .1536 .1564 81 2.9 9 .1564 •1593 .1622 .1650 .1679 .1708 •1736 80 2.9 10 •1736 .1765 .1794 .1822 .1851 .1880 .1908 79 2.9 II .1908 •1937 .1965 .1994 .2022 .2051 .2079 78 ^t 12 .2079 .2108 .2136 .2164 .2193 .2221 .2250 77 2.8 13 .2250 .2278 .2306 •2334 •2363 .2391 •^4J9 76 2.8 14 .2419 .2447 .2476 .2504 •2532 .2560 .2588 75 2.8 15 .2588 .2616 .2644 .2672 .2700 .2728 .2756 74 2.8 16 .2756 .2784 .2812 .2840 .2868 .2896 .2924 73 2.8 17 .2924 •2952 .2979 .3007 •3035 .3062 .3090 72 2.8 18 .3090 .3118 •3145 •3173 .3201 .3228 •3256 71 2.8 19 .3256 ■3283 ■331 1 •3338 •3365 •3393 .3420 70 2.7 20 .3420 •3448 •3475 •3502 •3529 •3557 •3584 69 2.7 21 ■3584 .3611 •3638 •366s .3692 •3719 •3746 68 2.7 22 •3746 •3773 .3800 .3827 •3854 .3881 •3907 ^l 2.7 23 •3907 •3934 .3961 ■3987 .4014 .4041 .4067 66 2.7 24 .4067 .4094 .4120 .4147 ■4173 .4200 .4226 65 2.7 25 .4226 •4253 .4279 ■4305 •4331 •4358 .4384 64 2.6 26 •4384 .4410 •4436 .4462 •4514 .4540 ^3 2.6 27 •4S40 .4566 •4592 .4617 •4643 .4669 14848 62 2.6 28 .4695 .4720 .4746 •4772 •4797 .4823 61 2.6 29 .4848 .4874 .4899 .4924 .4950 •4975 .5000 60 2.5 30 .5000 .5025 .5050 •507s .5100 •5125 .5150 59 2.5 31 .5150 •517s .5200 .5225 .5250 •527s •5299 58 2.5 32 .5299 •5324 •5348 •5373 •5398 .5422 .5446 5? 2.5 33 •5446 •5471 •5495 •5519 •5544 •5568 •5592 56 2.4 34 •5592 .5616 .5640 .5688 •5712 •5736 55 2.4 3S •5736 .5760 •5783 .5807 •5831 •5854 .5878 54 2.4 36 .5878 .5901 .5925 .5948 •5972 •5995 .6018 53 2-3 .6018 .6065 .6088 .6111 .6134 •6157 52 2-3 38 •6157 ".6i8o .6202 .6225 .6248 .6271 .629; 51 2^3 39 .6293 .6316 •6338 .6361 •6383 .6406 .6428 50 2.3 40 .6428 .6450 .6472 •6494 •6517 •6539 .6561 49 2.2 41 .6561 •6583 .6604 .6626 .6648 .6670 .6691 48 2.2 42 .6691 •6713 .6734 .6756 .6777 .6799 .6820 47 2.2 43 .6820 .6841 .6862 .6884 .6905 .6926 .6947 46 2.1 44 .6947 .6967 .6988 .7009 .7030 •7050 .7071 45 2.1 60' 50' 40' 30' 20' 10' 0' Angle. Smiths 9NIAN T«B LES. Natural Cosines. 2i $ Table 7. NATURAL SINES AND COSINES. Natural Sines. Piop. AjiEle. C 10' 20' 30- 40' 50' 60' Angle. Parts for 1', 45° .7071 .7092 .7112 ■7133 •7153 ■7173 •7193 44° 2.0 46 •7193 .7214 ■7234 ■7254 ■7274 .7294 ■7314 43 2.0 "^l ■73H ■7333 ■7353 ■7373 •7392 .7412 •7431 42 2.0 48 •7431 ■7451 .7470 .7490 ■7509 ■7528 •7547 41 19 49 •7547 ■7566 •7585 .7604 .7623 .7642 .7660 40 1.9 50 .7660 .7679 .7698 .7716 ■7735 •7753 .7771 39 1.9 51 •7771 .7790 .7808 .7826 .7844 .7862 .7880 38 1.8 S2 .7880 .7898 .7916 ■7934 .7969 .7986 37 1.8 S3 .7986 .8004 .8021 .8039 :8o56 ■8073 .8090 36 1-7 54 .8090 .8107 .8124 .8141 .8158 .8175 .8192 35 '•7 55 .8192 .8208 .8225 .8241 .8258 .8274 .8290 34 1.6 S6 .8290 .8307 .8323 ■8339 •8355 ■8371 .8387 33 1.6 ■^387 ■8403 .8418 ■8434 .8450 .8465 .8480 32 1.6 58 .8480 .8496 .8511 .8526 ■8542 ■8557 •8572 31 i-S 59 •8572 ■8587 .8601 .8616 .8631 .8646 .8660 30 15 60 .8660 ■8675 .8689 .8704 .8718 ■8732 .8746 29 1.4 61 .8746 .8760 ■8774 .8788 .8802 .8816 .8829 28 1.4 62 .8829 .8843 ■8857 .8870 .8884 .8897 .8910 27 1.4 63 .8910 .8923 .8936 ■8949 .8962 ■8975 .8988 26 13 64 .8988 .9001 .9013 .9026 .9038 .9051 .9063 25 1-3 65 .9063 ■907s .9088 .9100 .9112 .9124 •9135 24 1.2 66 ■9135 .9147 ■9159 .9171 .9182 .9194 .9205 23 1.2 67 .920s .9216 .9228 ■9239 .9250 .9261 .9272 22 I.I 68 .9272 .9283 ■9293 ■9304 ■9315 ■9325 •9336 21 I.I 69 •9336 ■9346 •9356 ■9367 ■9377 ■9387 •9397 20 I.O 70 ■9397 .9407 .9417 .9426 ■9436 .9446 •9455 19 I.O 71 ■9455 •9465 ■9474 ■9483 ■9492 .9502 •95" 18 0.9 72 ■95" .9520 .9528 .9546 ■9555 •9563 17 0.9 73 •9563 .9572 .9588 ■9596 ■9605 .9613 16 0.8 74 .9613 19628 ■9636 .9644 .9652 •9659 15 0.8 75 .9659 .9667 .9674 .9681 .9689 .9696 •9703 14 0.7 76 •9703 .9710 .9717 ■9724 ■9730 ■9737 •9744 13 0.7 77 ■9744 ■9750 ■9757 •9763 .9769 ■9775 .9781 12 0.6 78 .9781 .9787 ■9793 ■9799 .9805 .9811 .9816 II 0.6 79 .9816 .9822 .9827 ■9833 ■9838 ■9843 .9848 10 0.5 80 .9848 ■9853 ■9858 .9863 .9868 .9872 •9877 9 0.5 81 .9877 .9881 .9886 .9890 .9894 ■9899 •9903 8 0.4 82 •9903 .9907 ■99" .9914 .9918 .9922 •9925 7 0.4 ^3 ■9925 •9929 •9932 ■9936 ■9939 ■9942 •9945 6 0-3 84 ■9945 ■9951 ■9954 ■9957 ■9959 .9962 5 0-3 85 .9962 .9964 .9967 .9969 .9971 •9974 .9976 4 0.2 86 .9976 ■9978 .9980 .9981 •9985 .9986 3 0.2 87 .9986 .9988 .9989 .9990 ■9992 •9993 •9994 2 0.1 88 ■9994 ■9995 .9996 ■9997 ■9997 •9998 •9998 I 0.1 89 .9998 ■9999 ■9999 1. 0000 1. 0000 1. 0000 I.OOOO 0.0 60' 50' 40' 30' 20' 10' 0' Angle. Smithsonian Tables. Natural Cosines. 29 Table 8. NATURAL TANGENTS AND COTANGENTS. Natural Tangents. Aagle. 0' 10' zor ac 40' 5^ 60' Angle. Prop. Farts lor 1'. 0° .0000 .0029 I .0058 2 .0087 3 .01164 •0145 5 .01746 89° 2.9 I .01746 .0203 6 .0232 8 .0261 9 .0291 .0320 I .0349 2 88 2.9 2 .0349 2 •0378 3 .0407 s .0436 6 .0465 8 .0494 9 ■0524 I 87 2.9 3 .0524 I •0553 3 .0728 s .0582 4 .061 1 6 .0640 8 .0670 ■0699 3 86 2.9 4 .06993 .0757 8 .0787 .08163 .0845 6 .08749 85 2.9 5 .0874 9 .0904 2 ■0933 5 .0962 9 .0992 3 .1021 6 .1051 84 2.9 6 .1051 .1080 5 .11099 ■I 139 4 .11688 .11983 .12278 83 2.9 I .12278 .12574 .12869 .13165 .1346 ■1376 .1405 82 3^0 8 .1405 •1435 .1465 •1495 .1524 ■1554 ■1584 81 3^0 9 .1584 .1614 .1644 ■1673 •1703 ■1733 •1763 80 3^0 10 ■1763 •1793 .1823 •1853 .1883 .1914 .1944 79 3^0 11 .1944 .1974 .2004 ■2035 .2065 .2095 .2278 .2126 78 30 12 .2126 .2156 .2186 .2217 .2247 •2309 77 3-1 13 .2309 ■2339 .2370 .2401 .2432 .2462 76 3^1 '4 ■2493 ■2524 •2555 .2586 .2617 .2648 .2679 75 3^1 15 .2679 .2711 .2742 •2773 .2805 .2836 .2867 74 3'i i6 .2867 .2899 .293 1 .2962 ^ .3026 •3057 73 3^2 17 ■3°S7 .3089 .3121 •3153 •3217 •3249 72 3^2 i8 •3249 .3281 •3314 ■3346 •3378 ■34" ■3443 71 3-2 19 ■3443 •3476 .3508 •3541 •3574 .3607 .3640 70 3-3 20 .3640 •3673 .3706 •3739 ■3772 ■3805 •3839 69 3^3 21 •3839 .3872 .3906 ■3939 ■3973 .4006 .4040 68 3-4 22 .4040 .4074 .4108 .4142 .4176 .4210 .4245 67 3^4 23 .4245 •4279 •43'4 ■4348 •4383 .4417 .4452 66 3^5 24 .4452 •4487 .4522 ■4557 •4592 .4628 .4663 65 3' 5 25 .4663 .4699 ■4734 .4770 .4806 .4841 •4877 64 3^6 26 .4877 ■4913 •4950 .4986 .5022 .5059 .5280 •5095 63 3-6 27 •5095 •5132 .5169 .5206 •5243 •5317 62 3-7 28 •5317 ■5354 .5581 •5392 ■5430 .5467 ■5505 •5543 61 3^8 29 •5543 .5619 .5658 .5696 •5735 •5774 60 3.8 30 •5774 .5812 .5851 .5890 ■5930 ■5969 .6009 59 3'9 31 .6009 .6048 .6088 .6128 .6168 .6208 .6249 58 4.0 32 .6249 .6289 .6330 ■6371 .6412 ■6453 .6494 57 4.1 33 .6494 .6536 .6577 .6619 .6661 .6703 •6745 56 4.2 34 •6745 .6787 .6830 .6873 .6916 .6959 .7002 55 4-3 35 .7002 .7046 .7089 ■7133 .7177 .7221 .7265 •7536 54 4.4 36 .7265 ■7310 ■7355 .7400 •7445 ■7490 53 4' 5 3Z ■7536 •75§' .7627 •7673 .7720 .7766 •7813 .8098 52 4.6 38 .7860 .7907 ■7954 .8002 .8050 51 4.7 39 .8098 .8146 ■8195 .8243 .8292 .8342 .8391 50 4.9 40 .8391 .8441 .8491 ;8g47 .8591 .8642 .8693 49 5.0 41 ■8693 .8744 .8796 .8§99 .8952 .9004 48 5^2 42 .9004 .90S7 .9110 .9163 .9217 .9271 •9325 47 5^4 43 •9325 .9380 ■9435 .9490 %\ .9601 .9657 46 S-S 44 .9657 •9713 .9770 .9827 ■9942 1. 0000 45 5'7 60' 50' 40' 30' 20' 10' 0' Angle. Smithson IAN TaBL ES. Natural Cotangents. 30 NATURAL TANGENTS AND COTANGENTS. Natural Tangents. Table 8. Aseis. 0' 10' 20' 30' 40' 50' 60' Angle. Prop. Parts lor 1'. 45° 1. 0000 1.0058 1.OH7 1.0176 1.0235 1.0295 1-0355 44° 5-9 46 '•0355 1. 041 6 1.0477 1-0538 1.0599 1.0661 1.0724 43 6.1 47 1.0724 1.0786 1.0850 1.0913 1.0977 1.1041 1.1106 42 6.4 48 I.I 106 1.1171 1.1237 1-1303 1. 1369 1.1436 1.1504 41 6.6 49 1.1504 1.1571 1. 1640 1. 1708 1.1778 1.1847 1.1918 40 6.9 50 1.1918 1.1988 1.2059 1-2131 1.2203 1.2276 1.2349 39 7.2 51 1.2349 1.2423 1.2497 1.2572 1.2647 1.2723 1-2799 38 7-5 52 1.2799 1.2876 1.2954 1-3032 1.3111 1.3190 1.3270 3Z l-^ S3 1.3270 '•3351 J -3432 I-35H 1-3597 1:3680 1-3764 36 8.2 54 1-3764 1.3848 1-3934 1.4019 1.4106 1-4193 1.4281 35 8.5 55 1.428 1 1-4370 1.4460 1-4550 1.4641 1-4733 1.4826 34 9.1 S6 1.4826 1.4919 1.5013 1. 5108 1.5204 1-5301 1-5399 33 9.6 57 1-5399 I-54&7 1-5597 1-5697 1.5798 1.5900 1.6003 32 lO.I 58 1.6003 1.6107 1.6212 1.6319 1.6426 1-6534 1.6643 31 10.7 59 1.6643 1-6753 1.6864 1.6977 1.7090 1.7205 1.7321 30 11-3 60 1.7321 1-7437 1.7556 1-7675 1.8418 1.7796 1.7917 1.8040 29 12.0 61 1.8040 1.8165 1. 829 1 1.8546 1.8676 1.8807 28 12.8 62 1.8807 1.8940 1.9074 1.9210 1-9347 1.9486 1.9626 27 13.6 63 1.9626 1.9768 1.9912 2.0057 2.0204 2-0353 2.1283 2.0503 26 14.6 64 2.0503 2.0655 2.0809 2.0965 2.1123 2.1445 25 15-7 65 2.1 445 2.1609 2.1775 2-1943 2.2113 2.2286 2.2460 24 16.9 66 2.2460 2.2637 2.2817 2.2998 2.3183 2-3369 2-3559 23 18.3 67 2-3559 2.3750 2-3945 2.4142 2.4342 2-4545 2.4751 22 19.9 68 2-4751 2.4960 2.5172 2. 5386 2.5605 2.5826 2.605 1 21 21.7 69 2.6051 2.6279 2.6511 2.6746 2.6985 2.7228 2-7475 20 23-7 70 2-7475 2.7725 2.7980 2.8239 2.8502 2.8770 2.9042 19 71 2.9042 2.9319 2.9600 2.9887 3.0178 3-0475 3.0777 18 72 3-0777 3.1084 3-1397 3.1716 3.2041 3-2371 3.2709 ^l 73 3.2709 3-3052 3-3402 3-3759 3.4124 3-4495 3-4874 16 74 3-4874 3.5261 3-5656 3.6059 3.6470 3.6891 3-7321 15 75 3-7321 3.7760 3.8208 3.8667 3-9136 3.9617 4.0108 14 76 4.0108 4.061 1 4.1126 4-1653 4-2193 4.2747 4-33' 5 13 77 4-3315 4-3897 4-4494 4.5107 4-5736 4.6382 4.7046 12 78 4.7046 4.7729 4.8430 4.9152 4.9894 5.0658 5.1446 11 79 5.1446 5-2257 5-3093 5-3955 5-4845 5-5764 5-6713 10 80 S-6713 5-7694 5-8708 5-9758 6.0844 6.1970 6-3138 9 81 6.3138 6.4348 6.5606 6.6912 6.8269 6.9682 7-1154 8 82 7.1 1 54 7.2687 7-4287 7-5958 7-7704 7-9530 8.1443 7 83 8.1443 8.3450 8-5555 8-7769 9.0098 9-2553 9.5144 6 84 9-5144 9.7882 10.0780 10.3854 10.7119 11.0594 11.4301 5 85 1 1. 4301 11.8262 12.2505 12.7062 13.1969 13-7267 14-3007 4 86 14.3007 14.9244 1 5.6048 16.3499 17.1693 18.0750 19.0811 3 87 19.081 1 20.2056 21.4704 22.9038 24.5418 26.4316 28.6363 2 88 28.6363 31.2416 34-3678 38-1885 42.9641 49.1039 57.2900 I 89 57.2900 68.7501 85-9398 114.5887 171.8854 343-7737 00 60' 5^ 40' 30' 20' 10' 0' Angle. Smithsonian Tables. Natural Cotangents. 31 Table 9. TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE. 1 3 ° 64° 63 ° 40 TRAVERSE TABLE. ^'^'■^ ®' DIFFERENCES OF LATITUDE AND DEPARTURE. -Continued. 1 a3 1 CO 27° 28° 29° s 1 ■i P Lat. Dep. Lat. Dep. Lat. Dep. i 1 0.89100 0-45399 0.90798 0.88294 0.46947 0.87462 0.48481 1 2 1.78201 1.76589 0.93894 1.74924 0.96962 2 3 2.67301 1-36197 2.64884 1.40841 2.62386 1-45443 3 4 3.56402 1.81596 3-53179 1.87788 1.93924 4 S 4-45503 2.26995 4-41473 2-34735 4-37310 2.42405 60 6 5-34603 2.72394 S-29768 2.81682 5.24772 2.90886 6 7 6.23704 3-17793 6.18063 3.28630 6.12234 3-39367 7 8 7.12805 3-63193 4.08591 7-06358 3-75577 6.99696 3.87848 8 9 8.01905 7.94652 4.22524 7.87156 4-36329 9 1 0.88901 0.45787 0.88089 0-47332 0.87249 0.48862 1 2 1.77803 0.91574 1.76178 0.94664 1.74499 0-97724 2 3 2.66705 1-37362 2.64267 1.41996 2.61748 1.46566 3 4 3-55606 1.83149 3-52356 1.89328 3.48998 1.95448 4 IS 5 4.44508 2.28937 4.40445 2.36660 4.36248 2.44310 45 6 5-33410 2.74724 5-28534 2.83992 5-23497 2.93172 6 7 6.2231 1 3.205U 6.16623 3-31324 6.10747 3-42034 7 8 7.11213 3.66299 7.04712 3.78656 6-97996 3.90896 8 9 8.00H5 4.12086 7.92801 4.25988 7-85246 4-39759 9 1 0.88701 0.46174 0.87881 0.47715 0.87035 0.49242 1 2 1.77402 0.92349 1-75763 0-95431 1.74071. 0.98484 2 3 2.66103 1.38524, 2.63645 1-43147 2.61106 1.47727 3 4 3.54804 1.84699 3-S1526 1.90863 3.48142 1.96969 4 30 5 4-43505 2.30874 4.39408 2.38579 4-35177 2.4621 1 30 6 5.32206 2.77049 5.27290 2.86295 5.22213 2-95454 6 7 6.20907 3.23224 6.1517: 3-340II 6.09248 3.44696 7 8 7.09608 3-69398 7-03053 3.81727 6.96284 3-93938 8 9 7.98309 4-15573 7-90935 4.29442 7.83320 4.43181 9 1 0.88498 0.46561 0.87672 0.48098 0.86819 0.49621 1 2 1.76997 0.93122 1-75345 0.96197 1-73639 0-99243 2 3 2.65496 1.39684 2.63018 1.44296 2.60459 1.48864 3 4 3-53995 1.86245 3.50690 1.92395 3-47279 1.98486 4 45 5 4.42493 2.32807 4-38363 2.40494 4.34099 2.48108 5 IS 6 5.30992 2.79368 5.26036 2-88593 5.20919 2.97729 6 7 6.19491 3-25930 6.13708 3.36692 6.07739 3-47351 7 8 7.07990 3.72491 7.01381 3.84791 6.94559 3-96973 8 9 7-96488 4.19053 7.89054 4.32889 7.81378 4.46594 9 a Dep. Lat. Dep. Lat. Dep. Lat. s 3" B a CO S n re i 5 p n en 6 2° 6 L° 6 0° Smithsonian Tables. 41 "^•^"-^ ®' TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE. -CONTINUED. 1 c i 1 to 5 30° 31° 32° 8 § .2 P Lat. Dep. Lat. Dep. Lat. Dep. 1 0.86602 0.50000 0.85716 0.51503 0.84804 0.52991 1 2 1.7320S 1. 00000 1-71433 1.03007 1.69609 I-OW83 2 3 2.59807 1.50000 2.57150 1.54511 2.54414 1-58975 3 4 3.46410 2.00000 3.42866 2.06015 3-39219 2.1 1967 4 o 4.33012 2.50000 4.28583 2-57519 4.24024 2.64959 1 60 6 5.19615 3.00000 5.14300 3.09022 5.08828 3-17951 6 7 6.06217 3.50000 6.00017 3.60526 S-93633 6.78438 3-70943 7 8 6.92820 4.00000 6-85733 4.12030 4-23935 8 9 7.79422 4.50000 7.71450 4-63534 7-63243 4-76927 9 1 0.86383 0.50377 0.85491 0.51877 0.84572 0-53361 1 2 1.72767 1.00754 1.70982 1-03754 1.6914s 1.06722 2 3 2.59150 1.51132 2.56473 I-55631 2.53718 1.60084 3 4 3-45534 2.01509 3.41964 2.07509 3.38291 2.I344S 4 IS 4-31917 2.51887 4.27456 2.59386 4.22863 2.66S07 1 45 6 5.18301 3.02264 5.12947 3.1 1263 5.07436 3.20168 7 6.04684 3.52641 5.98438 3-63141 5.92009 4.26891 7 8 6.91068 4.03019 6.83929 4.15018 6.76582 8 9 7-774SI 4-53396 7.69420 4.6689s 7.61155 4.80253 9 1 0.86162 0.50753 0.85264 0.52249 0.84339 0.53730 1 2 '•72325 1. 01 507 1.70528 1.04499 1.68678 1.07460 2 3 2.58488 1.52261 2-55792 1.56749 2-53017 1.61190 3 4 3.44651 2.03015 3.41056 2.08999 3-37356 2.14920 4 30 4.30814 2.53769 4.26320 2.61249 4.21695 2.68650 1 30 6 5.16977 3-04523 S-11584 3-13499 5.06034 3.22380 7 6.03140 3-55276 6.82 II 2 3-65749 5-90373 3-761 10 7 8 6.89303 4.06030 4.56784 4-17998 6-74713 4.29840 8 9 7.75466 7.67376 4.70248 7.59052 4.83570 9 1 0.85940 0.51 129 0.85035 0.52621 0.84103 0.54097 1 2 I.7I88I 1.02258 r--53387 1.70070 1.05242 1.68207 1.08194 2 3 2.57821 2-55105 1.57864 2.5231 1 1.62292 2.16389 3 4 3-43762 2.04517 3.40140 2.10485 3-36415 4 4S 5 4.29703 2.55646 4.25176 2.63107 4.20519 2.70487 5 'S 6 5-15643 3-06775 5.102H 3.15728 3-68349 5.04623 3.24584 6 7 6.01584 3-57905 5.95246 5.88827 3.78682 7 8 6.87525 4.09034 6.80281 4.20971 6.72831 4.32779 8 9 7-73465 4.60163 7.65316 4-73592 7-56935 4.86877 9 § a Dep. Lat. Dep. Lat. Dep. Lat. a s 5 c K 1 01 s 5 3° 5 3° 5 70 P p Smithsonian Tables. 42 TRAVERSE TABLE. ^*°'-^ ®' DIFFERENCES OF LATITUDE AND DEPARTURE. -CONTINUED. i u § CO 33° 34° 35° (D (J C CO CO B a a i 5 Lat. Dep. Lat. Dep. Lat. Dep. Q § 1 0.83867 0.54463 0.82903 0.55919 0.81915 0.57357 1 2 1.67734 1.08927 1.65807 1.11838 1.63830 1.14715 2 3 2.51601 1.63391 2.48711 1.67757 2.45745 1.72072 3 4 3-35468 2.17855 3-31615 4.14518 2.23677 3.27660 2.29430 4 5 4-19335 2.72319 2.79596 4.09576 2.86788 5 60 6 5.03202 3-26783 4.97422 3-35515 4.91491 3-44145 6 7 5.87069 3.81247 5.80326 3-91435 5.73406 4.01503 7 8 6.70936 4.35711 6.63230 4-47354 6-55321 4.58861 8 9 7.54803 4.90175 7-46133 5-03273 7-37236 5.16218 9 1 0.83628 0.54829 0.82659 0.56280 0.81664 0.57714 1 2 1.67257 1.09658 1.65318 1. 12560 1.63328 1.15429 2 3 2.50885 1.64487 2.47977 1.68841 2.44992 1-73143 3 4 3-34514 219317 3-30636 2.25121 3.26656 2.30858 4 IS 5 4-18143 2.74146 4.13295 2.81402 4.08320 2.88572 45 6 5.01771 3.28975 4.95954 5.78613 3-37682 4.89984 3.46287 6 7 5-85400 3.83805 3-93963 5-71649 4.04001 7 8 6.69028 4.38634 6.61272 4.50243 6-53313 4.61 7 16 8 9 7.52657 4.93463 7-43931 5.06524 7-34977 5.19430 9 1 0.83388 0-55193 0.82412 0.56640 0.81411 0.58070 1 2 1.66777 1. 1 0387 1.64825 1.13281 1.62823 1.16140 2 3 2.50165 1.65581 2.47237 I. 69921 2.44234 1.74210 3 4 3-33554 2.20774 3.29650 2.26562 3.25646 2.32281 4 30 5 4.16942 2.75968 4.12063 2.83203 4.07057 2.90351 5 30 6 5-00331 3.31 162 4.94475 3-39843 4.88469 3.48421 6 7 5.83720 3-86355 5.76888 3.96484 5.69880 4.06492 7 8 6.67108 4.41549 6.59300 4.53124 6.51292 4.64562 8 9 7.50497 4.96743 7.41713 5-09765 7.32703 5.22632 9 1 0.83147 0-55557 0.82164 5-56999 0.81 1 57 0.58425 1 2 1.66294 1.11114 1.64329 1-13999 1.62314 1. 16850 2 3 2.49441 1. 6667 1 2.46494 2.43472 1.75275 3 4 3.32588 2.22228 3.28658 2.27998 3.24629 2.33700 4 45 5 4-' 5735 4.98882 2.77785 4.10823 2.84998 4.05787 2.92125 15 6 4.92988 3-41998 4.86944 3-50550 6 7 5.82029 3.88899 5-75152 3-98997 5.68101 4.08975 7 8 6.65176 4.44456 6.57317 4-55997 6.49260 4.67400 8 9 7.48323 5.00013 7.39482 5.12997 7.30416 5.25825 9 t S-' p 3 n CD Dep. Lat. Dep. Lat. Dep. Lat. a c n CO 5 5° 5 5° 5 1° Smithsonian Tables. 43 Table 9. TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE. -CONTINUED. s. 3 .3 Q 36° 37° 38° CO S 3 .a Lat. Dep. Lat. Dep. Lat. Dep. 1 0.80901 0.58778 0.79863 0.60181 0.78801 0.61 566 1 2 1.61803 I-I75S7 1.59727 1.20363 1.57602 1. 23132 2 3 2.42705 176335 2.39590 1.80544 2.36403 1.84698 3 4 3.23606 2.35114 3-19454 2.40726 3.15204 2.46264 4 4.04508 2.93892 3-99317 3.00907 3-9400S 3.07830 s 60 6 4.85410 3.52671 4.79181 3.61089 4.72806 3-69396 6 7 5.6631 1 4.1 1449 5-59044 4.21270 5.51607 4-30963 7 8 6.47213 4.70228 6.38908 4.81452 6.30408 4.92529 8 9 7.28115 5.29006 7.18771 S-41633 7.09209 s- 54095 9 1 0.80644 0.59130 0.79600 0.60529 1-78531 0.61909 1 2 1. 61 288 1.18261 1.59200 1.21058 1.81588 1.57063 1.23818 2 3 2.41933 1-77392 2.38800 2-35595 1.85728 3 4 3.22577 2.36523 3.18400 2.421 17 3.14126 2.47637 4 IS 5 4.03222 2.95654 3-54785 3.98001 3.02647 3.92658 3-09547 1 45 6 4.83866 4.77601 3-63176 4.71 190 3-71456 6 7 5.6451 1 4.13916 5.57201 4-23705 S.49721 4-33365 7 8 6.4515s 4-73047 6.36801 4.84235 6.28253 7.06785 4-95275 8 9 7.25800 5.32178 7.16401 5.44764 5-57184 9 1 0.80385 0.59482 0-79335 0.60876 0.78260 0.62251 1 2 1.6077 1 1. 1 8964 1.58670 1.21752 1.56521 1.24502 2 3 2.41 1 57 1.78446 2.38005 1.82628 2.34782 1.86754 3 4 3.21542 2.37929 3-17341 2.43504 3-13043 2.49005 4 3° 5 4.01928 2.9741 1 3.96676 3.04380 3-91304 3.1 1 257 5 30 6 4.82314 3-56893 4.7601 1 3.65256 4-69564 3-73508 6 7 5.62699 4-16375 5-S5347 4.26132 5-47825 4-35760 4.9801 1 7 8 6.43085 4.75858 6.34682 4.87009 6.26086 8 9 7-23471 5-35340 7-14017 S-47885 7-04347 5.60263 9 1 0.80125 0.59832 0.79068 0.61 221 0.77988 0.62592 r 2 1.60250 1.19664 1-58137 1.22443 1-55946 1. 25184 2 3 2.40376 1.79497 2.37206 1.83665 2-33965 1-87777 3 4 3.20501 2.39329 3.16275 2.44886 3-1 1953 2.50369 4 45 4.00626 2.99162 3-95344 3.06108 3.89942 3.1 2961 5 IS 6 4.80752 3.58994 4-74413 3-67330 4.67930 3-75554 6 7 5.60877 4.18827 S-53482 4.28552 5.45919 4.38146 7 8 6.41003 4.78659 6-32551 4-89773 6.23907 5-00738 8 9 7.21128 5.38492 7.1 1620 5-50995 7.01896 5-63331 9 1' Dep. Lat. Dep. Lat. Dep. Lat. 1 1 1 5 3° 5 2° S 1° g S 1 Smithsonian Tables. 44 TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE. Table 9. -Continued. .a en S 39° 40° 41° Lat. Dep. Lat. Dep. Lat. Dep. 1 0.77714 0.62932 0.76604 0.64278 0.75470 0.65605 1 2 1-55429 11^796 1.53208 1.28557 1.50941 1.31211 2 3 2.33143 2.29813 1.92836 2.26412 1.96S17 3 4 3.10858 2.51728 3.06417 2-57115 3.01883 2.62423 4 o S 3-88573 3.14660 3.83022 3-21393 3-77354 3.28029 5 60 6 4.66287 3-77592 4.59626 3.85672 4.52825 3-93635 7 5.44002 4.40524 S-36231 6.12835 4.49951 5.28296 4.59241 7 8 6.21716 ml 5.14230 6.03767 5-24847 8 9 6.99431 6-89439 5.78508 6.79238 5-90453 9 1 0-77439 0.63270 0.76323 0.64612 0.75184 0.65934 1 2 1.54878 1.26 541 1.89811 1.52646 1.29224 1.50368 1.31869 2 3 2-32317 2.28969 1-93837 2.25552 1.97803 3 4 309757 2.53082 3-05293 2.58449 3.00736 2.63738 4 IS 3.87196 3.16352 3.81616 3.23062 3.75920 3.29672 5 45 6 4.64635 3-79623 4-57939 3.87674 4.51104 3.95607 6 7 5.42074 4.42893 5.34262 4.52286 5.26288 4.61542 7 8 6.19514 5.06164 6.10586 5.16899 6.01472 5-27476 8 9 6-96953 s-69434 6.86909 5-815" 6.76656 5-934" 9 1 0.77162 0.63607 0.76040 0.64944 0.7489s 0.66262 1 2 1-54324 1.27215 1.52081 1.29889 1. 49791 1.32524 2 3 2.31487 1.90823 2.28121 1.94834 2.24686 1.98786 3 4 3.08649 2.54431 3.04162 2-59779 2.99582 2.65048 4 3° 5 3.85812 3.18039 3.80203 3.24724 3-74477 3-31310 5 30 6 4.62974 3.81646 4.56243 3.89668 4-49373 3-97572 6 7 5-40137 4-45254 5-32284 4.54613 5.19558 5.24268 4-63834 7 8 6.17299 5.08862 6.08324 5.99164 5.30096 8 9 6.94462 5.72470 6.84365 5-84503 6.74060 5.96358 9 1 0.76884 0.63943 0.75756 0.65276 0.74605 0.66588 1 2 1.53768 1.27887 1-S1513 1.30552 1.95828 1. 492 1 1 1.33176 2 3 2.30652 1.91831 2.27269 2.23817 2.98422 1.99764 3 4 3-07536 2-55775 3.03026 2.61 104 2.66352 4 45 S 3.84420 3-19719 3-78782 2.26380 3-73028 3-32940 5 15 6 4.61305 3-83663 4-54539 3.91656 4-47634 3-99529 6 7 5.38189 4.47607 5-30295 4.56932 5.22240 4.661 17 7 8 6.15073 5.1 1 551 6.06052 5.22208 5.98845 5-32705 8 9 6.91957 S-75495 6.81808 5.87484 6.71451 5-99293 9 5' B a 1 o Dep. Lat. Dep. Lat. Dep. Lat. s c 5 0° 4 9° 4 8° Smithsonian Tables. 45 ''"*^'-^ ®' TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE. -CONTINUED. CO 1 .a 42° 43° 44° i .a p 1 Lat. Dep. Lat. Dep. Lat. Dep. 1 0.74314 0.66913 0-73135 0.68199 0.71933 0.69465 1 2 1.48628 1.33826 1.46270 1-36399 1.43867 1-38931 2 3 2.22943 2.00739 2.19406 2.04599 2.15801 2.08397 3 4 2.97257 2.67652 2.92541 2.72799 2-87735 2.77863 4 5 3.71572 4.45886 3-34565 4.01478 3.65676 3.40999 3-59669 3-47329 5 60 6 4.38812 4.09199 4.31603 4-16795 6 7 5.20201 4.68391 5- "947 4-77398 5-03537 4.86260 7 ' 8 5-94515 5-35304 5.8W82 5-45598 5-75471 5-55726 8 9 6.68830 6.02217 6.58218 6.13798 6.47405 6.25192 9 1 0.74021 0.67236 0.72837 0.68518 0.71630 0.69779 1-39558 1 2 1.48043 1-34473 1-45674 1-37036 1.43260 2 3 2.22065 2.017 10 2.18511 2-05554 2.14890 2-09337 3 4 2.96087 2.68946 2.91348 2.74073 2.86520 2.79116 4 15 5 3.70109 3-36183 3.64185 3.42591 3-58151 4.29781 3.48895 5 45 6 4.44130 4.03420 4.37022 4.H109 4.18674 6 7 5.18152 4.70656 5.09859 4.79628 5-01411 4-88453 7 8 5.92174 5-37893 5.82696 5.48146 5-73041 5.58232 8 9 6.66196 6.05130 6-55533 6.16664 6.44671 6.28011 9 1 0.73727 0.67559 0.72537 0.68835 0.71325 0.70090 1 2 1-47455 i-35"8 1.45074 1.37670 1.42650 1.40181 2 3 2.21183 2.02677 2.17612 2.06506 2-13975 2.10272 3 4 2.94910 2.70236 2.90149 2-75341 2.85300 2.80363 4 3° 5 3.68638 3-37795 3.62687 3-44177 3.56625 3-50454 5 30 6 4.42366 4-05354 4.35224 '•■l^'i^l 4.27950 4.2054s 6 7 5.16094 4.72913 5-07762 4.81848 4.99275 4.90636 7 8 5.89821 5.40472 5.80299 6.52836 5-50683 5.70600 5.60727 8 9 6-63549 6.08031 6.19519 6.41925 6.30818 9 1 0-73432 0.67880 0.72236 0.69151 0.71018 0.70401 1 2 1.46864 1.35760 1.44472 1.38302 1.42037 1.40802 2 3 2.20296 2.03640 2.16709 2.07453 2.13055 2.11204 3 4 2.93729 2.71520 2.88945 2.76605 3-45756 2.84074 2.81605 4 45 5 3.67 1 61 3-39400 3.61182 3-55092 3.52007 I IS 6 4-40593 4.07280 4-33418 4.14907 4.26111 4.22408 7 5.14025 4.75160 5-05654 4.84059 4.97129 4.92810 7 8 S.87458 5-43040 5.77891 5.53210 5.68148 5.63211 8 9 6.60890 6.10920 6.50127 6.22361 6.39166 6.33613 9 g a Dep. Lat. Dep. Lat. Dep. Lat. g a a 1 5' % 5' c 4 70 4 6° 4 5° Smithsonian Tables. 46 TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE. Table 9. -Continued. oi u i .2 Q 45° i CO 5 Lat. Dep. 1 0.70710 0.70710 1 2 1.41421 1.41421 2 3 2.12132 2.12132 3 4 2.82842 2.82842 4 5 3-53553 3-53553 5 6 4.24264 4.24264 6 7 4.94974 4.94974 7 8 5.65685 5-65685 8 9 6.36396 6.36396 9 P Dep. Lat. 4. 5° Smithsonian Tables. 47 Table: 10. LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE p„ IN ENGLISH FEET. [Derivation of table explained on p. xlv.] Lat 0° 1° 2° 3° 4° 5° 6° 7° 8° 9° 10° P. P. 0' I 2 3 4 1 1 9 10 II 12 13 H ■5 i6 il 19 20 21 22 23 24 2I 27 28 29 30 31 32 33 34 35 36 11 39 40 4" 42 43 44 11 47 48 49 50 S' 52 S3 54 55 56 57 S8 59 60 7.317 7379 7.317 7392 7.317 7433 7.317 7300 7.317 7593 7.317 77M 7.317 7861 7.317 8034 7.317 8233 7.317 8458 7.317 8709 1 7379 7379 7379 7379 7379 7379 7379 7379 7379 7392 7393 7394 7394 7395 7395 7396 7396 7397 7434 743S 7436 7437 7438 7438 7439 7440 7441 7501 7503 7504 7506 7507 7508 7510 7SII 75'3 7595 7597 7599 7600 7602 7604 7606 7608 7610 7716 7719 7721 7723 7726 7728 7730 7732 7735 7864 7866 7869 7872 7875 7877 7S80 7883 7885 8037 8040 8043 8046 S050 8053 8056 £1? 8237 8240 8244 8247 8251 8255 8258 8262 8265 8462 S466 8470 8474 8478 8482 8486 8490 8494 87r8 8722 8727 873- 873s 8740 8744 8749 10 20 50 40 50 60 .2 •3 •5 .7 .8 I.O 7379 7397 7442 7514 7612 7737 78S8 8065 8269 8498 8753 7379 7379 7379 7379 7380 7380 7380 7380 7380 7398 7398 7399 7399 7400 7401 7401 7402 7402 7443 7444 7445 7446 7447 7448 7449 7450 7451 7515 75'7 75-8 7S20 7521 7522 7524 7525 7527 7614 7616 7618 7619 7621 7623 7625 7627 7629 7739 7742 7744 7746 7749 7751 7753 7755 7757 •7891 7894 78,6 7899 7902 7905 7908 7910 7913 8068 8071 807s 8078 8081 8084 8087 8091 8094 8273 8276 8280 8283 8287 8291 8294 8298 8301 i'502 S506 8510 8514 8518 8523 8527 8531 853s 8758 8762 8767 8771 8776 8780 8785 8789 8794 2 10 20 30 40 50 6a •3 ■ 7 1.0 ■•3 1-7 2.0 7380 7403 7452 7528 7631 7760 7916 8097 8305 8539 8798 7380 7380 7381 7381 7381 7381 7381 7382 7382 7404 7404 7405 7405 7406 7407 7407 7408 7408 7453 7454 7455 7456 7458 7459 7460 7461 7462 7530 7531 7533 7534 7535 7537 7538 7540 7541 7633 7635 7637 7638 7640 7642 7644 7646 7648 7762 7765 7767 7770 7772 7774 7777 7779 7782 7919 7922 7924 7927 7930 7933 7936 7938 7941 8100 8104 8107 Siio 81 14 8117 8120 8123 8127 8309 8312 8316 8320 8324 8327 8331 8543 8547 85S» 8555 8559 8554 8568 8572 8576 8803 8807 8812 8816 8821 8826 883a 8839 3 10 20 30 40 50 60 •5 1.0 ■•5 2.0 2-5 30 7382 7409 7463 7543 7650 7784 7944 8130 8342 8580 8844 7382 7383 7383 7383 7384 7384 7384 7384 7385 7410 7410 741 1 7412 7413 7413 7414 7415 7415 7464 7465 7466 7467 7469 7470 7471 7472 7473 7545 7546 7548 7549 7551 7553 7554 7556 7SS7 7652 7654 7656 7658 7661 7663 7665 7667 7669 7786 7789 7791 7794 7796 7799 7801 7804 7806 7947 79S<> 7953 7956 7959 7961 7964 7967 7970 ■8.33 8137 8140 8144 8147 8150 8154 8157 8161 8346 8350 8353 8357 8361 836s 8369 8372 8376 8584 8588 8593 8597 8601 8605 8609 8614 8618 8849 8853 8858 8862 8867 8872 S876 8881 8885 4 L 10 20 30 40 60 •7 1-3 2.0 2-7 3-3 4.0 738s 7416 7474 7559 7671 7809 7973 8164 8380 8622 8890 7385 7386 7386 7386 ■7387 7387 7387 7388 74'7 7418 74-8 7419 7420 7421 7422 7422 7423 7475 7476 7478 7482 7483 7484 7486 7561 7562 7564 7566 7567 7569 7S7I 7573 7574 7673 7675 7677 7679 7682 7684 7686 7688 7690 7811 7814 7816 7819 7821 7824 7826 7829 7831 , 7976 7979 7982 7985 7988 7991 7994 7997 Sooo 8003 8167 8171 8174 8178 8181 8184 8188 8191 8195. 8384 8388 8392 8396 8400 8403 8407 8411 841S 8626 8631 8635 8639 8643 8648 8652 8656 8661 8895 8899 8904 8909 8914 8918 8923 8928 8932 6 10 20 30 40 50 5o .8 '•7 2-5 3-3 4.2 50 738S 7424 7487 7576 7692 7834 8198 8419 8665 8937 7388 7389 7389 7390 7390 7390 7391 7391 7392 7425 7426 7427 7428 7429 7429 7430 7431 7432 7488 7489 7490 7491 7493 7494 7495 7497 7498 7578 7579 7581 7583 7584 7586 7588 7590 7591 7694 7696 7699 7701 7703 7705 7707 7710 7712 7837 7839 7842 7845 7848 7850 7853 7856 7858 8006 8009 8012 8015 8019 S022 8025 8028 8031 8201 8205 8208 8212 8215 8219 8222 8226 8229 8423 8427 8431 8435 8439 8442 8446 8450 8454 8669 8674 8678 8683 8687 8691 8696 8700 8705 8942 8947 8951 8956 8961 8966 8971 8975 8980 7392 7433 7500 7593 7714 7861 8034 8233 8458 8709 898s SniTh SONIAN Tables . — — 48/ LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE p„ FEET. [Derivation of table explained on p. xlv.] Table 10. IN ENGLISH Lat. 11° 12° 13° 14° 15° 16° 17° i8° 19° 20° P.P. 7.317 7.317 7.317 7.317 7.318 7.318 7.318 7.318 7.318 7.318 0' I 2 3 8985 9285 9611 9960 0333 0730 "49 1591 2054 2539 4 S9C10 8995 8999 9290 9296 9301 9617 9622 9628 9966 9972 9978 0340 '346 0353 0737 0744 0750 1156 "63 1171 159=1 1606 1614 2062 2070 2078 2547 . 2556 2564 10 ■7 4 I 9004 9009 9014 9306 9312 9317 9633 9639 9645 9984 9990 91.96 0319 0366 0372 0757 0764 0771 1178 ii«S 1 192 1621 1629 1637 2086 2094 2102 2572 2580 2589 20 30 40 50 60 1-3 2.0 2.7 3-3 4.0 I 9 10 II 12 ■3 9019 9023 9028 9322 9327 9333 9650 9656 9661 *0002 *ooo8 *ooi4 0379 0385 0392 0778 0784 0791 "99 1207 I2I4 1644 1652 1659 2110 2118 2126 2597 2605 2614 6 9033 9338 9667 *0020 0398 0798 1221 1667 2134 2622 9038 9043 9048 9343 9349 9354 9673 9678 9684 *33 4142 4152 4161 4170 4179 4189 4198 4688 4697 4707 4716 4726 4735 4745 4754 4764 5269 5279 5289 5299 5309 5319 5328 5338 5348 5868 % 5899 5909 5919 5929 5939 5949 6484 6494 6505 65 IS 6526 6536 6546 6557 6567 71 16 7126 7137 7148 7158 7169 7180 7190 7201 7762 7784 7795 7806 7817 7828 7839 7850 8423 8434 8445 8457 8468 8479 8490 8501 8512 10 20 30 40 50 60 1.3 2.6 4.0 5-3 6.7 S.o 3131 3659 4207 4774 5358 5960 6578 7212 7860 8523 3139 3148 3157 316s 3174 3183 3191 3200 3209 3668 3677 3686 3695 ■3704 37'3 3722 3731 3740 4216 4226 4235 4244 4254 4263 4272 4282 4291 4783 4793 4802 4812 4822 4831 4841 4851 4860 5368 5378 538S 5398 5408 5417 5427 5437 5447 5970 59S0 5990 6000 6011 6021 6031 6041 6051 6588 6599 6609 6620 6630 6640 6651 6661 6672 7222 7233 7244 7254 7263 7276 7287 7297 7308 7871 7882 7893 7904 7915 7926 7937 7948 7959 8557 8568 8579 8591 8602 8613 8624 9 10 20 30 40 1^ 1-5 3.0 4-5 6.0 7-S 9.0 3217 3749 4300 487Q 5457 6062 6682 7319 7970 8635 3226 3235 3244 3252 3261 3270 3278 3287 3296 3758 3767 3776 3785 3813 3822 3831 4310 4319 4328 4338 4347 4356 4366 4375 4384 4899 490S 4918 4928 4937 4947 4937 5467 5477 5487 5497 5507 5517 5527 5537 5347 6072 6082 6092 6ro2 6113 6123 6133 6143 6154 6693 6703 6714 6724 673s 6745 6756 6766 6777 7329 7340 7351 7362 7383 7394 7403 7416 79S1 7992 8003 8014 8025 8036 8047 8058 8069 8647 8658 8669 8680 8691 8703 8714 S725 8736 10 10 20 30 40 5° 60 1-7 3-3 S-o 6.7 8-3 lO.O 33°S 3840 4394 4966 5557 6164 6787 7426 8080 8747 3313 3322 3331 3340 3349 3357 3366 3375 3384 3849 3858 3067 3876 3885 3894 3904 3913 3922 4403 4413 4422 4431 4441 4450 4460 4469 4479 4976 4986 4996 5005 5015 5025 5034 5044 5054 SS67 5587 5 '597 5607 5617 5627 5637 5647 6174 5i8s 6195 6205 6226 6236 6246 6256 6798 6808 6819 6829 6840 6851 6861 7437 7448 7459 7469 7480 7491 7502 7513 7523 8091 8102 8113 8124 8135 8146 8157 8168 8179 8759 i^i 8815 8826 8838 8849 11 10 20 30 40 1.8 3-7 5-5 7-3 9.2 II.O 3393 3931 4488 5064 5657 6267 6893 7534 8190 8860 34°i 3410 3419 3428 3437 3446 3463 3472 3940 3949 395S 3967 3977 3986 3995 4004 4<"3 4498 4507 4516 4526 4S3S 4545 4554 4564 4373 5073 5083 5093 5103 5112 5122 5132 5142 5'5i 5667 5677 5687 5697 5707 5717 S727 5737 5747 6277 6287 6298 6308 6318 6329 6339 tis. 6903 6914 6924 693s 6946 6956 6967 7545 7556 7567 7578 7588 7599 7610 7621 7632 8201 8212 8223 8234 8246 8257 8268 llll 8871 8883 8894 8905 8916 8928 8939 8950 S962 12 10 20 30 40 so 6a 2.0 4.0 6.0 8.0 10.0 12.0 3481 4022 4583 S161 5757 6370 6999 7643 8301 8973 3490 3499 3508 3516 3525 3S34 3543 3552 3561 4032 4041 4050 4059 4068 4078 4086 4096 410S 4592 4602 4611 4621 4630 4640 4649 4659 4668 5171 5181 5191 52tXl 5210 5220 5230 5240 5250 5767 5787 5798 5808 5818 5828 5838 5848 6380 6391 6401 64II 6422 6432 6442 6453 6463 7009 7020 7030 7041 7052 7062 7073 7084 7094 7653 7664 7675 7685 7697 7708 7719 7729 7740 8312 8323 8334 llti 8368 8379 8390 8401 89S4 8996 9007 9018 9030 9041 9052 9064 907s 3570 4115 4678 5259 5858 6474 7105 7751 8412 9086 Smithsonian Tables. 50 LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE p„ FEET. [Derivation of table explained on p. xlv.] Table 10. IN ENGLISH Lat. 31° 32= 33° 34° 35° 36° 37° 38° 39° 40° P.P. 7.318 7.318 7.319 7.319 7.319 7.319 7.319 7.319 7.319 7.319 0' I 2 3 go86 9773 0472 1182 1902 2631 3369 4114 4866 5623 11 9098 9109 9120 9785 9796 9807 0484 049s 0507 1194 I205 I2I8 1914 1926 1938 2643 2656 2658 3381 3394 3406 4126 4139 4151 4878 4891 4904 5636 5649 5661 4 I 9132 9143 9134 9819 9831 9843 0519 0531 0542 1230 I24I 1253 1950 1962 ■974 2680 2692 2705 3418 3431 3443 4164 4176 4189 49i5 4929 4941 5674 5687 5699 10 1.8 9 10 II 12 13 9165 9177 9189 9854 9866 9877 0554 0566 0577 1265 1277 1289 1986 ■999 20H 2717 2729 2741 3455 3468 3480 4201 4214 4226 4954 4966 4979 5712 5725 5737 30 40 50 5-5 7-3 9.2 II.O 9200 9889 0590 I30I 2023 2753 3492 4239 4992 5750 9211 9223 9234 9900 9912 9924 o6qi 0613 0625 I3I3 1325 1337 2035 2047 2059 2766 2778 2790 3S°5 3517 3530 4251 4264 4276 5004 5017 5029 5763 5775 5788 14 9245 9257 9268 9935 9947 9958 0637 0648 0660 1349 I36I 1373 2071 2083 209s 2803 2815 28»7 3542 3567 4289 4301 4314 5042 S°55 5067 5801 5813 5826 '9 20 21 22 23 9280 9291 9302 9970 9982 9993 0672 0684 0696 138s '397 1409 2108 2120 2132 2839 2852 2S64 3579 3592 3604 4326 4339 4351 5080 5092 5 'OS 5839 5851 5864 12 9314 *ooo5 0707 1421 2144 2876 3616 4364 5118 5877 9325 9337 9348 *ooi6 •0028 *0040 0719 0731 0743 1433 1445 1457 2156 2i68 218a 2888 2901 2913 3629 3641 3654 4376 4389 4401 5130 5M3 5156 5890 5902 59'5 24 25 26 9360 9371 9382 *oo5i ♦0063 *0075 0755 0766 0778 1469 1481 1493 2192 2205 2217 292s 2938 2950 3666 3678 3691 4414 4426 4439 S'68 5181 S193 592S 5940 5953 10 2.0 11 29 30 31 32 33 9393 9405 9417 *oo86 »<»98 *oiio 0790 0802 0814 1505 1517 1529 2229 2241 2253 2962 2974 2987 3703 3716 3728 445' 4464 4477 5206 5219 5231 5966 5978 5991 30 40 50 60 4.0 6.0 8.0 lO.O IZ.O 9428 *OI2I 0826 1541 2265 2999 3741 4489 5244 6004 9440 945' 9463 *oi33 *oi44 •0156 0837 0849 086. 1565 IS77 2278 2290 2302 301 1 3024 3036 3753 3765 3778 4502 4514 4527 5256 5269 5282 6017 6029 6042 34 9474 9485 9497 *oi68 *oi79 *oi9i 0873 0885 0897 1589 1601 1613 2314 2326 2338 3048 3060 3073 3790 3803 3815 4539 4552 4564 5294 5307 5320 6055 6067 6080 39 40 4" 42 43 9508 9520 9531 *0203 •0214 *0226 0908 0920 0932 1625 1637 1649 2351 2363 2375 3085 3097 3110 3828 3840 3852 4S77 4589 4602 5332 5345 5358 6093 6106 6118 13 9543 *0238 0944 1661 2387 3122 3865 4614 5370 6131 9554 9566 9577 9589 9600 9612 *0249 •0261 *o273 *028s ♦0296 *0308 0956 0968 0980 1673 1685 1697 2399 2411 2424 2436 2448 2460 3134 3147 3159 3877 3890 3902 391S 3927 3939 4627 4640 4652 4665 4677 4690 5383 539S 5421 5433 5446 6144 6156 6169 6/82 6195 6207 44 11 1003 1015 1721 >733 3>84 3196 10 20 2.2 4.3 47 48 49 50 51 52 53 9623 9635 9646 *0320 *033i *0343 1027 1039 1051 1745 .>757 1769 2472 2485 2497 3208 3221 3233 3952 3964 3977 4702 4715 4727 5459 5471 5484 6220 6233 6245 30 40 so 60 |-S 10.8 13.0 9658 *035S 1063 1781 2509 324s 3989 4740 5497 6258 9669 9'i8i 9692 *0366 *o378 *0390 i°7S 1087 1098 J 793 1805 1S17 2521 2533 2546 3258 3270 3282 4002 4014 4027 4753 4765 4778 5509 5522 5535 6271 6284 6296 54 11 9704 97"S 9727 *O402 *o4i3 *o425 mo 1122 1134 1829 1841 1854 2558 2570 2582 329s 3307 3319 4039 4052 4064 4790 4803 4815 5347 5560 5573 6309 6322 6335 % 59 60 9739 975° 9762 *0437 *0449 *046o 1146 1158 1170 1S66 1878 1890 2594 2607 26x9 3332 3344 3356 4077 4089 4101 4828 4841 4853 5585 5598 561 1 6347 6360 6373 9773 *o472 1 182 igo2 2631 3369 4114 4866 5623 6385 1 Smithsonian Tables. 51 Table 10. LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE p„ IN ENGLISH FEET. [Derivation of table explained on p. xlv.] Lat. 41° 42° 43° 44° 4S° 46° .47° 48° 49° 50° P.P. 7.319 7.319 7.319 7.319 7.319 7.320 7.320 7.320 7.320 7.320 0' 1 6385 7152 7921 8692 9464 0236 1007 1776 2543 3306 6398 7164 7933 8704 9476 0248 1020 1789 2556 33 '9 2 641 1 7177 7946 8717 9489 0261 1033 1802 2569 3331 3 5424 7190 7959 8730 9502 0274 104s 1815 2581 3344 4 6436 7203 7972 8743 95^5 0287 1058 1827 2594 3357 1 6449 7216 7985 8756 9528 0300 1071 1840 2607 3369 6 6462 7228 7998 8769 9541 0313 1084 1853 2619 3382 7 6475 7241 8010 8782 9554 0326 1097 1866 2632 3395 8 6487 7254 8023 8794 9566 0338 mo 1879 2645 3407 9 10 II 6500 7267 8036 8807 9579 0351 1122 1892 265S 3420 12 6513 7280 8049 8820 9592 0364 "35 1904 2670 3433 6526 7292 8062 8833 9605 0377 1 148 1917 2683 3445 12 6538 7305 807s 8846 9618 0390 1 161 1930 2696 3458 13 6551 7318 8087 8859 9631 0403 1174 1943 2709 3471 30 40 4.0 14 6564 7331 8100 8872 9644 0416 1 187 1955 2721 34S3 8.0 "5 6577 7344 8113 8884 9657 0429 1199 1968 2734 3496 50 i6 6589 7356 8126 S897 9669 0441 1212 1981 2747 3509 60 12.0 \l 6602 6615 7369 7382 8139 8152 8910 8923 9682 9695 0454 0467 1225 123S 1994 2007 2760 2772 3521 3534 19 20 21 6628 7395 8165 8936 9708 0480 1251 2019 2785 3547 6640 7408 8177 8949 9721 0493 1264 2032 2798 3559 itll 7420 8igo 8962 9734 0506 1276 2°45 2811 3572 22 6666 7433 8203 8975 9747 0519 1289 2058 2823 3585 n 6679 7446 8216 8987 9760 0531 1302 2071 2836 3597 24 6692 7459 8229 9000 9772 0544 1315 2083 2849 3610 ^1 6704 7472 8242 9013 9785 0557 1328 2096 2861 3623 26 6717 7485 8254 9026 9798 0570 1341 2109 2874 3635 27 6730 7497 8267 9039 9811 0583 1353 2122 28S7 3648 28 6743 7510 8280 9052 9824 0596 1366 2134 2900 3661 29 30 31 675s 7523 8293 9065 9837 0609 1379 2147 2912 3673 13 6768 7536 8306 9077 9850 0621 1392 2160 2925 3686 6781 7549 8319 9090 9862 0634 1405 2173 2938 3699 32 33 6794 6806 7561 7574 S332 8344 9103 91 16 ^^^i 0647 0660 1418 1430 2186 2198 2950 2963 37" 3724 34 6819 7587 8357 9129 9901 0673 1443 221 1 2976 3736 10 2.2 35 6832 7600 8370 9142 9914 0686 1456 2224 2989 3749 4-3 35 6844 7613 8383 9155 9927 0699 1469 2237 3001 3762 30 40 50 6.5 8.7 37 6858 7626 8396 9168 9940 0711 1482 2249 3014 3774 38 6870 7638 8409 9180 9953 0724 1494 2262 3027 3787 60 13.0 39 40 41 6883 7651 8422 9193 9965 0737 1507 2275 3039 3800 6896 7664 8434 9206 997S 0750 1520 2288 3052 3812 6909 7677 8447 9219 9991 0763 1533 2301 3065 3825 42 6921 7690 8460 9232 *ooo4 0776 1546 2313 3078 3838 43 6934 7702 8473 9245 *ooi7 0788 1559 2326 3090 3850 44 6947 7715 8486 9258 *oo3o 0801 1571 2339 3103 3863 45 6960 7728 8499 9270 *oo43 0814 1584 2352 3875 46 6973 7741 8512 9283 *oo55 0827 1597 2364 3128 3888 *l 698s 7754 S524 9296 *oo68 0840 i6ia 48 6998 7767 8537 9309 *oo8i 0853 1623 2390 3^54 39^3 49 60 5> 701 1 7779 8550 9322 *oo94 0866 1635 2403 3166 3926 7024 7792 8563 9335 *oi07 0878 1648 241S 3179 3938 7036 780s IH^ 9348 *0I20 0891 1661 2428 52 7049 7818 8589 9361 *oi33 0904 1674 2441 3205 3964 53 7831 9373 •0146 0917 1687 2454 3217 3976 54 7'c^i 7100 7844 lit. 8614 8627 8640 9356 9399 9412 *oi58 *oi7i •0184 0930 0943 09SS 1699 1712 1725 2466 2479 2492 3230 3243 3255 3989 4002 4014 57 58 7113 7126 7882 7895 8653 8666 9425 9438 *oi97 *0210 0968 0981 1738 1751 2503 2517 3268 3281 4027 4039 4052 59 60 7139 7908 8679 9451 *0223 C994 1763 2530 3293 7132 7921 8692 9464 *0236 1007 1776 2543 3306 4065 Smiths DNIAN T ABLES. 52 Table 10. LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE Pm IN ENGLISH FEET. [Derivation of table explained on p. xlv.] Lat. Si° 52° S3° 54° ss° S6° 57° 58° 59° 60° P.P. 7.320 7.320 7.320 7.320 7.320 7.320 7.320 7.320 7.320 7.321 C I 2 3 4065 4817 5564 6303 7034 7756 8467 9168 9857 0534 4077 4090 4102 4829 4842 4854 5576 5589 5601 6315 6327 6340 7046 7058 7070 7768 7780 7792 8479 8491 8502 9180 9191 9203 9868 9891 0545 0556 0567 4 5 6 4115 4127 4140 4867 4879 4892 5613 ^63! 6352 7082 7094 7107 7804 7815 7827 lilt 8538 9214 9226 9238 9903 9914 9925 0578 9 10 II 12 13 4152 4165 4177 4904 4917 4929 5650 5662 5675 6388 6401 6413 7119 7131 7143 7839 7851 7863 8550 8561 8573 9249 9261 9272 9937 9948 9960 0612 0623 0634 20 30 40 5° 60 4-3 |-5 10.8 13.0 4190 4942 5687 642s 7155 787s 8585 9284 9971 0645 4203 4215 4228 4954 4967 4979 5699 5712 5724 6437 6449 6462 7167 7179 7191 7887 7899 791 1 8597 8608 8620 9295 9307 9318 9982 ^9994 •0005 0656 0667 0678 H IS i6 4240 4992 5004 5017 5737 5749 5761 6474 6486 6498 7203 7215 7227 7923 7934 7946 8632 8643 8655 9330 9341 9353 •0016 *0027 *oo39 0689 0701 0712 19 20 21 22 23 4278 4291 4303 5029 5042 5054 5774 5786 5799 6510 6523 6535 7239 7251 7263 7958 7970 7982 8667 8679 8690 9364 9376 9387 •0050 *oo6i •cx>73 0723 0734 0745 4316 5067 581. 6547 7275 7994 8702 9399 •0084 0756 4328 4341 4353 5079 S092 5104 5823 5848 6559 till 7287 7299 7311 8006 8018 8030 8714 8725 8737 9410 9422 9433 *°°95 *oi07 *oii8 0767 0778 0789 24 25 26 4366 4378 4391 5117 5129 5141 5860 5872 5885 6596 6608 6620 7323 7335 7348 S042 8053 8065 8749 8760 8772 9445 9456 9468 *OI29 *oi40 *OIS2 0800 0812 0823 12 27 28 29 30 31 32 33 4403 4416 4428 5154 5166 5179 5897 5909 5922 6632 6645 6657 7360 7384 8077 8101 8784 8796 8807 9479 9491 9502 *oi63 0834 0845 0856 20 30 40 50 60 4.0 6.0 8.0 lO.O 12.0 4441 5191 5934 6669 7396 81 13 8819 9514 •0197 0867 4454 4466 4479 5203 5216 5228 5946 5959 5971 6681 6693 6706 7408 7420 7432 8125 8137 8148 8831 8842 88S4 9525 9537 9548 *0208 *0219 *023I 0878 0889 0900 34 35 36 4491 4504 4517 5241 5983 5995 6008 6718 6730 6742 7456 7468 8160 8172 8184 8866 8877 8889 9560 9571 9583 *0242 •0253 ♦0264 0911 0922 0933 11 39 40 41 42 43 4529 4542 4554 5278 5291 5303 6020 6032 6045 6754 6767 6779 7480 7492 7504 8196 8207 8219 8901 8913 8924 9617 *027S •0287 •0298 0944 09SS 0966 11 4567 5316 6057 6791 7516 8231 8936 9629 *0309 0977 4579 4592 4604 5328 5341 5353 6069 6082 6094 6803 6815 6828 7528 7540 7552 8243 8255 8266 8948 8959 8971 9640 9652 9663 *0320 *°332 *o343 0988 0999 lOIO 44 45 46 4617 4629 4642 5366 5378 5390 6106 61 18 6131 684a 6852 6864 7564 7576 7588 8278 8290 8302 8982 8994 9006 9675 9686 9697 *0354 •0365 *o377 102 1 1032 1043 10 1.8 47 48 49 50 5' 52 53 4654 4667 4679 ■5403 5428 6143 6155 6168 6876 6889 6goi 7600 7612 7624 8314 8325 8337 9017 9029 9040 9709 9720 9732 *0388 *0399 ♦0411 1054 1065 1076 20 30 40 5° 60 3-7 5-5 7-3 9-2 II.O 4692 5440 6180 6913 7636 8349 9052 9743 *0422 1087 4704 4717 4729 5452 5465 5477 6192 6205 6217 6925 6937 6949 7648 7660 7672 8361 8373 8384 9064 9075 9087 9754 9766 9777 *°433 *o444 *0456 1098 1109 II20 54 1^ 4742 4754 4767 5490 5502 55'4 6229 6241 6254 6961 6973 6986 7684 7696 7708 8396 8408 8420 9098 9110 9122 9789 9800 981 1 •0467 II31 1 142 "53 11 59 60 4779 4792 4804 5527 5539 5552 6266 6278 6291 6998 7010 7022 7720 7732 7744 8432 8443 845s 9133 9145 9156 9823 9834 9846 *o5oo *OSI2 *o523 1 164 1175 1 186 4817 5564 6303 7034 7756 8467 916S 9857 *o534 1 197 Smithsonian Tables. S3 Table 10. LOGARITHMS OF MERIDIAN RADIUS OP CURVATURE p„ FEET. [Derivation of table explained on p. xlv.] IN ENGLISH Lat. 61° 62° 63° 64° 65° 66° 67° 68° 69° 70° P.P. 0' 1 2 3 4 7 8 9 10 II 12 13 14 15 16 •7 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 11 39 40 41 42 43 44 45 46 :^ 49 60 51 52 53 54 55 56 11 59 60 7.321 1 197 7.321 1845 7.321 2479 7.321 3097 7.321 3698 7.321 4282 7.321 4848 7.321 5396 7.321 * 5924 7.321 6432 11 1208 1219 1230 1241 1262 1284 129s 1856 1866 1877 i838 1898 1909 1920 193 1 1941 2489 2500 2510 2521 2531 2541 2552 2562 2573 3107 3117 3127 3137 3147 3158 3168 3178 3188 3708 3718 3728 3738 3747 3757 3767 3777 3787 4292 4301 43" 4320 4330 4340 4349 'Ml 4876 4885 4894 4904 4913 4922 4932 5405 5414 5423 5432 5440 5449 5458 5467 5476 5933 5941 5950 5958 5967 5975 5984 5993 6001 6440 6448 6457 6465 t%\ 6480 649S 6506 10 20 30 40 50 60 1.8 3-7 5.5 7-3 9.2 ll.o 1306 1952 2583 3198 3797 4378 494' 5485 6010 6514 1317 1328 1338 1349 1360 1371 1382 1392 1403 1963 1973 1984 1994 2005 2016 2026 2037 2047 2593 2604 2614 2625 2635 2645 2656 2666 2677 3208 3218 3228 3238 3248 3259 3269 3279 3289 3807 3817 3826 3836 3846 3856 3866 3885 4387 4397 4406 4416 4425 4435 4444 4454 4463 4950 4959 4969 4978 4987 ,4996 5005 S015 5024 5494 5503 5512 5521 5529 5538 5547 5556 5565 6018 6027 6035 6044 6052 6061 6069 6078 6086 6522 6530 6539 6547 till 6571 6580 6588 10 1414 2058 2687 3299 3895 4473 S033 5574 6095 6596 10 20 30 40 50 60 '•7 3-3 5.0 8.3 10,0 1425 1436 1447 1% 1479 1490 1501 1512 2069 2079 2090 2100 2111 2122 2132 2143 2153 2697 2708 2718 2728 2738 2749 2759 2769 2780 3309 3319 3329 3339 3349 3360 3370 33S0 339° 3905 3915 3924 3934 3944 3954 3964 3973 3983 4482 4492 4501 45" 4520 4530 4539 4549 4558 5042 5051 5060 5069 5078 5088 5097 5106 5"5 5583 5592 5600 5609 5618 5627 5636 5644 5653 6103 6112 6120 6129 6171 6604 6612 6621 6629 6637 664s 6653 6662 6670 9 1523 2164 2790 3400 3993 4568 5124 5662 6180 6678 1534 1545 1555 1566 1577 1588 1599 1009 1620 2175 2185 2196 2206 2217 2228 2238 2249 2259 2S00 2811 2821 2831 2841 2852 2862 2872 2883 3410 3420 3430 3440 3450 3460 3470 3480 3490 4003 4012 4022 4032 4041 4051 4061 4071 4080 4577 4587 4596 4606 4615 4624 4634 4643 4653 5'33 5 '42 5151 5160 5169 5179 5188 5'97 5206 5671 5680 5688 5697 5706 5715 5724 5732 5741 6188 6197 6205 6214 6222 6230 6239 6247 6256 6686 6694 6702 6710 6718 6727 6735 6743 6751 10 20 30 40 ■•5 3.0 ti 7-5 9.0 1631 2270 2893 3500 4090 4662 5215 575° 6264 6759 8 1642 1652 1663 1674 1684 1695 1706 1717 1727 2280 2291 2301 2312 2322 2333 2343 2354 2364 2903 2913 2924 2934 2944 2954 2964 2975 2985 3510 3520 3530 3540 3549 3559 3569 3579 3589 4100 4109 4119 4128 4138 4148 4157 4167 4176 fell 4690 4S99 4708 4718 ■4727 4736 4745 5224 5233 5242 5251 5260 5270 5297 5759 5767 5776 5785 5793 5802 5811 5820 5828 6272 6281 6289 6298 6306 6314 6323 6331 6340 6767 till 6791 6799 6807 6815 6823 6831 10 20 30 40 50 6a '•3 2.6 4.0 5-3 6.7 8.0 1738 2375 2995 3599 4185 4755 5306 5837 6348 6839 1749 1759 1770 1781 1791 1802 1813 1824 1834 2385 2396 2406 2417 2427 2437 2448 2458 2469 3005 3015 3026 3036 3046 3056 3066 3077 3087 3609 3619 3629 3639 364i 3658 3668 4196 4205 4215 4224 4234 4244 4253 4263 4272 4764 4774 4783 4792 4801 481 1 4820 4829 4839 53'5 5324 5333 5342 535' 5360 5369 5378 5387 5846 5854 5863 §z 5889 5898 5907 5915 6356 6365 6373 6382 6390 6398. 6407 641S 6424 6847 6855 6863 6871 6879 6887 6895 6903 691 1 1845 2479 3097 3698 4282 4848 5396 5924 6432 6919 Smiths ONIAN T ABLES. S4 LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE p„ FEET. [Derivation of table explained on p. xlv.] Table 10. IN ENGLISH Lat. 71° 72° 73° 74° 75° 76° 77° 78° 79° 80° P.P. 0' I 2 3 4 5 6 I 9 10 II 12 "3 14 \l '7 iS '9 20 21 22 23 24 11 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 % 49 50 51 52 53 54 % I 59 60 7.321 6919 7.321 7385 7.321 7829 7.321 8251 7.321 8650 7.321 9025 7.321 9377 7.321 9704 7.322 0007 7.322 0284 6927 6935 6943 6951 6958 6966 6974 6982 6990 7392 7400 7407 7415 7422 7430 7437 7445 7452 7836 7843 7851 7858 786s 7872 7879 7887 7894 8258 8265 8271 8278 8285 8292 8299 830s 8312 8656 8663 8669 8676 8682 8688 8695 8701 8708 9°3i 9037 9043 9049 9°55 9061 9067 9073 9079 9383 9388 9394 9399 9405 9411 9416 9422 9427 9709 9714 9720 9725 9730 9735 9740 9746 9751 0012 0017 CX)2I 0026 0031 0036 0041 0045 0050 0288 0293 0297 0302 0306 0310 0315 0319 0324 10 20 30 40 lo 1.3 2.6 4.0 5-3 %■'' 8.0 6998 7460 7901 8319 8714 9085 9433 9756 0055 0328 7 7006 7014 7021 7029 7037 7045 7053 7060 7068 7467 7475 7482 7490 7497 7505 7512 7520 7527 7908 7915 7922 7929 7936 7944 7951 795S 7965 8326 8332 8339 8346 8353 8359 8366 8373 8379 8720 8727 8733 8739 8745 8752 8758 8764 8771 9091 9097 9103 9109 911S 9121 9127 9133 9139 9438 9444 9449 9455 9460 9466 9471 9477 9482 9761 9766 9771 9776 9781 9787 9792 9797 9802 0060 0064 0069 0074 0078 0083 0088 0093 0097 0332 0337 0341 0345 0349 0354 0358 0362 0367 10 20 30 40 1.2 2.3 3-5 li 7.0 7076 7535 7972 8385 8777 9145 9488 9807 0102 0371 7084 7092 7099 7107 711S 7123 7131 7138 7146 7542 7550 7557 7565 7580 7587 7595 7602 7993 8000 8007 8014 802I 8028 8035 8393 8399 8406 8413 8419 S426 8433 8440 8446 8783 8790 8796 8802 8808 881S 8821 8827 8834 9151 9157 9163 9169 9174 9180 9186 9192 9198 9493 9499 9504 9510 9515 9521 9526 9532 9537 9812 9817 9822 9827 9832 9838 9843 9848 9853 0107 GUI OI16 0120 0125 0130 0134 0139 0143 0375 0379 0384 0388 0392 0396 0400 0405 0409 6 10 20 30 40 50 60 I.O 2.0 30 4.0 5.0 6.0 7154 7610 8042 8453 8840 9204 9543 9858 0148 0413 7162 7170 7177 718s 7193 7201 7209 7216 7224 7617 7625 7632 7639 7646 7654 7661 7668 7676 8056 8070 8077 8084 8091 8098 8105 8460 8466 8473 8493 8499 8506 8512 8846 8852 8859 886s 8871 8877 8883 8890 8896 9210 9216 9221 9227 9233 9239 9245 9250 9256 9548 9554 9559 9565 9570 9575 9586 9592 9863 9868 9873 9883 988S 9893 9898 9903 0153 0157 0162 0166 OI7I 0176 0180 0185 0189 0417 0421 0426 0430 0434 0438 0442 0447 0451 6 10 20 30 40 50 60 .8 1-7 2-5 3-3 4.2 5-0 7232 7683 8112 8519 S902 9262 9597 9908 0194 0455 7240 7247 7255 7263 7270 7278 7286 7294 7301 7690 7798 7705 7712 7719 7727 7734 7741 7749 8119 8126 8133 8140 8147 8154 8161 8168 8175 8526 8532 S539 8545 8552 8SS9 8565 8572 8578 8908 8914 8921 8927 8933 8939 8945 8952 8958 9268 9274 9279 9285 9291 9297 9303 9308 9314 9602 9608 9613 9619 9624 9629 963 s 9640 9646 9913 9918 9923 9928 9933 9938 9943 9948 9953 0199 0203 0208 0212 0217 0222 0226 0231 023s 0459 0463 0467 0471 0475 0480 0484 0488 0492 4 10 20 30 40 lo •7 1-3 2.0 2.7 3-3 4.0 7309 7756 8182 8585 8964 9320 9651 9953 0240 0496 7317 7324 7332 7339 7347 7355 7362 7370 7377 7763 7771 7778 7785 7792 7800 7807 7814 7822 8189 8196 8203 8210 8216 8223 8230 8237 8244 8598 8604 86ri 8617 8624 8630 8637 8643 8970 8988 8994 9001 9007 9°i3 9019 9326 9331 9337 9343 9348 9354 9360 9366 9371 9656 9662 9667 9672 9677 9683 9688 9693 9699 9963 9968 9973 9987 9992 9997 *boo2 0244 0249 0253 0258 0262 0266 0271 0275 0280 0500 0504 0508 0512 0516 0520 0524 0528 0532 7385 7829 8251 8650 9025 9377 9704 *ooo7 0284 0536 Smithsonian Tables. 55 Table 10. LOGARITHMS OF MERrOIAN RADIUS OF CURVATURE p^ IN ENGLISH FEET. [Derivation of table explained on p. xlv,] Lat. 8l° 82° 83° 84° Ss" 86° 87° 88° 89° P. P. 7.322 7.322 7.322 7.322 7.322 7.322 7.322 7.322 7.322 0' I 3 0536 0763 0963 1138 1285 1407 1501 1569 1609 4 0540 0544 0548 0766 0770 0773 0966 0969 0972 1 141 1 143 1146 1287 1289 1292 1409 1410 1412 1502 1504 1505 1570 ■571 1571 i6og 1610 1610 4 1 0552 0555 0560 0777 0780 0784 0975 0978 0982 1148 1151 "54 1294 1296 1298 1414 1415 1417 1506 1507 1509 ■572 ■573 ■574 1611 1611 1611 10 20 30 40 50 60 •7 ■•3 2.0 2-7 3.3 4.0 7 8 9 10 II 12 '3 0564 0568 0572 0787 0791 0794 ^11 0991 1156 IIS9 1 161 1300 1303 I3°5 1419 1421 1422 1510 1511 1513 ■575 ■576 1612 1612 1613 0576 0798 0994 1 164 1307 1424 1514 ■577 1613 0580 I'M 0801 0805 0808 0997 1000 1003 1167 1 169 1 172 1309 1311 13 14 1426 1427 1429 I5'5 1517 1518 1578 ■579 ■579 1613 1614 1614 14 0592 0595 0599 0812 0815 0819 1006 1009 1012 1 174 1 180 1316 1318 1320 1431 1432 1434 1519 1520 1522 1580 1581 1582 1615 1615 1615 17 l8 19 20 ZI 22 23 0603 0607 0611 0822 0826 0829 1015 1018 1021 1182 1185 1 187 1322 1325 1327 1435 1438 1439 1523 1524 1526 ■583 ■583 1584 1616 1616 1617 fl 0615 0833 1024 1190 1329 1441 • 1527 ■585 1617 10 20 30 40 5° 60 .5 I.O ■■5 2.0 0619 0623 0626 0836 0840 0843 1027 1030 1033 1 192 1 195 1 197 1331 1333 133s 1443 1444 1446 1528 1529 1530 1585 1586 ■587 1617 1617 1618 24 0630 0634 0638 0846 0849 0853 1036 1039 1042 1200 1202 1205 1337 1339 1341 1447 1449 1451 1531 1532 ■534 1588 ■S88 ■589 1618 1618 1618 29 30 31 32 33 0642 0645 0649 0856 0859 0863 1045 1048 105 1 1207 1210 1212 1343 1345 1347 1452 1454 1455 ■535 ■536 ■537 ■59° 1591 ■591 1618 1619 1619 3 0653 0866 1054 1215 1349 '457 ■538 1592 1619 0660 0664 0S69 0873 0876 1057 1060 1062 1217 1220 1222 1351 1353 1355 1459 1460 1462 1539 ■540 1541 ■593 ■593 ■594 1619 1619 1620 34 11 o658 0671 0675 0879 0882 o885 1065 1068 1071 1225 1227 1229 1357 1359 1361 1463 1465 1467 1542 ■543 ■545 ■595 '595 1595 1620 1620 1620 10 ■3 11 39 40 41 42 43 0679 0683 0686 0889 0892 0895 1074 1076 1079 1232 1234 1237 1363 1365 1367 1468 1470 1471 1546 1548 ■597 1598 ■598 1620 1621 1621 20 30 40 50 60 ■7 1.0 ■•3 ■■7 2.0 0690 0899 1082 1239 1369 1473 ■549 ■599 162 1 0694 0697 0701 0902 ogo6 0909 108s 1088 1090 1241 1244 1246 1371 1373 >375 1474 1476 1477 ■550 ■55^ ■552 ■599 1600 1600 1621 1621 162 z 44 45 46 0705 0708 0712 0912 0915 0919 1093 1096 1099 1249 1251 "S3 ■377 1378 1380 >479 1480 148. ■553 ■554 ■555 1601 1601 1602 1621 1621 1622 49 60 51 52 53 0716 0720 0723 0922 0925 0929 1 102 1 104 1 107 1256 1258 1261 1382 ■384 1386 1483 \1M ■556 ■557 1558 1602 1603 1603 1622 1622 1622 1 0727 0932 mo 1263 1388 1487 ■559 1604 1622 10 20 30 40 .2 •3 '5 ■7 0731 0734 0738, 0935 0938 0941 1113 1116 1118 1265 1267 1270 1390 1392 1394 1488 1490 1491 1560 1561 1562 1604 1605 1605 1622 1622 1622 54 11 0741 0745 0749 0944 0947 0951 1121 1124 1 127 1272 1274 1275 1396 1397 1399 1493 1494 1495 ■563 1564 1565 1606 i6o5 1607 1622 1622 1623 so 60 1.0 11 59 60 0752 0756 0759 0954 0957 0960 1 130 1 132 1135 1278 1281 1283 1401 1403 1405 1497 1498 1500 156S 1567 1568 1607 l6o8 1608 1623 1623 1623 0763 0963 1138 1285 1407 1 501 1569 1609 1623 Smithsoni KM Tab LES. S6 Table 1 1 , LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION p„ (N ENGLISH FEET. [Derivatiou of table explained on p. xlv.] Lat. 0° 1° 2° 3° 4° 5° 6° 7° 8° 9° 10° P.P. 7.320 7.320 7.320 7.320 7.320 7.320 7.320 7.320 7.320 7.320 7.320 I 2 3 6875 6S80 6893 6916 6947 6987 7036 7094 7160 7235 7319 687s 6875 6875 6880 6880 6880 6893 6894 6894 6916 6917 6917 6948 6949 6949 6988 6989 6989 7037 7038 7039 7095 7096 7097 7161 7162 7164 7236 7238 7239 7320 7322 7323 4 5 6 687s 6875 6875 6880 6881 6881 6894 6894 6895 6918 6918 6918 6950 6950 6951 6990 6991 6992 7040 7041 7041 7098 7099 7100 7165 7166 7167 7240 7241 7243 7325 7326 7327 I 9 10 ir 12 13 6875 6875 6881 6881 68S1 6895 6895 6896 6919 6919 6920 6951 6952 6953 6993 6993 6994 7042 7043 7044 7101 7102 7103 7168 7170 7171 7244 7245 7247 7329 7330 7332 1 6875 68S1 6896 6920 6953 699s 7045 7104 7172 7248 7333 687s 6875 6875 6881 6881 6882 6896 6897 6897 6920 6921 6921 6954 6955 6955 6996 6996 6997 7046 7047 7048 7105 7106 7107 7173 7174 7176 7249 7251 7252 7334 7336 7338 14 l6 6875 6876 6875 6882 6882 6882 6898 689S 6898 6922 6922 6923 6956 6957 6998 6999 6999 7049 70S0 7050 7108 7109 7111 7177 7178 7'79 7254 7255 7256 7339 7341 7342 10 20 30 40 50 60 .2 ■3 .5 -.1 I.O 20 21 22 23 6876 6876 6876 6882 6883 6883 6899 6899 6goo 6923 6924 6924 6957 6958 6959 7000 7001 7cx)i 7051 7052 7053 7112 7113 7114 7180 7182 7-83 7258 7259 7261 7343 7345 7346 6876 6883 6goo 692s 69S9 7002 7054 711S 7184 7262 7348 6876 6876 6876 6883 6883 6884 6900 6901 6901 6925 6926 6926 6960 6960 6961 7003 7004 7004 7055 7056 7057 7116 7117 7118 718s 7186 7188 7263 7265 7266 7350 7351 7353 24 25 26 6876 6876 6876 6884 6884 6884 6901 6902 6902 6927 6927 6928 6962 6962 6963 7005 7006 7007 7058 7059 7060 71 19 7120 7122 71S9 7190 7191 7268 7269 7270 7354 7356 7358 27 28 29 30 31 32 33 6876 6876 6876 6884 688s 6885 6962 6902 6903 6928 6929 6929 696s 6965 7008 7Cxj8 7009 7061 7062 7063 7123 7124 7125 7192 7 "94 7195 7272 7273 7275 7359 7361 7362 6876 6885 6903 6930 6966 7010 7064 7126 7196 7276 7364 6877 6877 6877 688s 6886 6886 6903 6904 6904 6930 6931 6931 6967 6967 6968 701 1 7012 7013 7065 7066 7067 7127 7128 7129 7197 7199 7200 7277 7366 7367 7368 34 35 36 6877 6877 6877 6886 6887 6887 690s 6905 6905 6932 6932 6933 6969 6969 6970 7014 701S 701S 7068 7069 7070 7130 7131 7133 7201 7202 7204 7282 7283 7284 7370 737' 7373 37 38 39 40 41 42 43 6877 6877 6877 6887 6887 6888 6906 6906 6907 6933 6934 6935 6971. 6972 6972 7016 7017 7018 7070 7071 7072 7134 7135 7136 7206 7208 7286 7287 7289 7374 7376 7377 2 6877 6888 6907 6935 6973 7019 7073 7137 7209 7290 7379 10 20 30 40 .3 •7 1.0 1-3 6877 6877 6877 6888 6888 6889 6909 6936 6936 6937 6974 6974 697s 7020 7021 7021 7074 7075 7076 7138 7139 7140 7210 7212 7213 7291 7293 7294 7381 7382 7384 44 % 49 50 5' 52 53 6877 6878 6878 6878 6878 ■6878 6889 6889 6889 6889 68qo 6890 6909 6910 6910 6910 69II 691 1 6937 6938 6938 6939 6939 6940 6976 6976 6977 6978 6979 6979 7022 7023 7024 702s 7025 7026 7077 7078 7079 7080 ■7081 7082 7141 7142 7144 7"4| 7146 7147 7214 7216 7217 72>8 7219 7221 7296 7297 7298 7300 7301 7303 7385 7387 7389 7390 7392 7393 so 60 1-7 2.0 6878 6890 6gri 6941 6980 7027 70S3 7148 7222 7304 7395 6878 6878 6879 6890 6891 6891 6gi2 691Z 6913 6942 6942 6943 6981 6981 6982 702S 7029 7030 7084 7085 7086 7149 7150 7152 7223 7225 7226 7305 7307 7308 7397 7398 7400 54 11 6879 6879 6879 6891 6892 6892 6913 6914 6914 6943 6944 6944 6983 6983 6984 7031 7032 7032 7087 7088 7090 7153 7154 715s 7227 7228 7230 7310 7311 7313 7401 7403 7405 11 59 60 6879 6880 6880 6892 6892 6893 6915 6915 6916 6945 694s 6946 6985 6986 6986 7033 7034 7035 7091 7092 7°93 7156 7158 7159 7231 7232 7234 7314 7316 7317 7406 7408 7409 688a 6893 6916 6947 6987 7036 7094 7160 7235 7319 741 1 -1 Smithsonian Tables. 57 Table 1 1 . LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION p„ IN ENGLISH FEET. [Derivation of table explained on p. xlv.] Lat. 11° 12° 13° 14° iS° 16° 17° i8° 19° 20° p.p. 0' X 2 3 4 I 9 10 II 12 ■3 ■4 IS l6 I's' '9 20 21 22 23 24 25 26 'I 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 60 51 52 S3 54 55 S6 57 58 59 60 7.320 741 1 7.320 75" 7.320 7619 7.320 7736 7.320 7860 7.320 7992 7.320 8132 7.320 8279 7.320 8434 7.320 8595 1 7413 7414 7416 7417 7419 7421 7422 7424 7425 7513 75-4 7516 7518 75 '9 7521 7523 7525 7526 7621 7623 7625 7627 7628 7630 7632 7634 7636 7738 7740 7742 7744 7746 7748 7750 7752 7754 7862 7864 7867 7869 7871 7873 7875 7878 7880 7994 7997 7999 8001 8003 8006 8008 80 lO 8013 8134 8137 8139 8142 8.44 8146 8149 8151 8.54 8282 8284 8287 8289 8292 8295 8297 8300 8302 8437 8439 8442 8444 8447 8450 8452 8455 8457 8603 R606 8609 8612 861S 8617 8620 JO 20 30 40 lo .2 ■ 3 •5 :l I.O 7427 7528 7638 7756 7882 801S 8156 8305 8460 8623 7429 7430 7432 7433 7435 7437 7438 7440 7441 7530 7532 7533 7535 7537 7539 7541 7542 7544 7640 7642 7644 7646 7647 7649 7651 7653 7655 7758 7760 7762 7768 7770 7772 7774 7884 7886 7888 7890 7892 7895 7897 7899 7901 8017 802a 8022 8024 8026 8029 8031 8033 8036 8158 8161 8163 8166 8168 8170 8173 817s 8178 8307 831a 8312 8315 8317 8320 8322 832s 8327 8463 HI 8471 8473 8476 8479 8482 8484 8626 8629 8631 8634 8637 8640 8643 8645 8648 a 7443 7546 7657 7776 7903 8038 8180 8330 8487 8651 7445 7445 7448 74SO 7451 7453 7455 7457 7458 7548 7550 7551 7553 7555 7557 7559 7560 7562 7659 7661 7663 ^666 766S 7670 7672 7674 7778 7780 7782 7784 7786 7789 7791 7793 7795 7905 7907 7910 7912 79"4 7916 7918 7921 7923 8040 8043 8045 8047 S049 8052 tit 8059 8182 8185 8187 8 [90 8192 8195 8197 8200 8202 8333 till 8340 8343 8346 8348 8351 8353 8490 8492 8495 8498 8500 8503 8506 8509 8511 8654 8657 8659 8662 8668 S671 8673 8676 10 20 30 40 lo .3 •7 x.o 1.3 1-7 2.0 7460 7564 7676 7797 7925 8061 8205 8356 8514 8679 7462 7463 7465 7466 7468 7470 7471 7473 7474 7566 7568 7569 7571 7573 7575 7577 7578 7580 7678 7680 7682 7684 7686 7688 7690 7692 7694 7799 7801 7803 7805 7807 7810 7812 7814 7816 7927 7929 7932 7934 7936 7938 7940 7943 7945 8063 8066 8068 8071 8073 8075 8078 8080 8083 8207 8210 8212 8215 8217 8219 8222 8224 8227 8358 8361 8363 8366 8368 8371 8373 8378 8517 8519 8522 8525 8527 8530 8536 8538 8682 868s 8687 869a 8693 8696 8699 8701 8704 3 7476 7582 7696 7818 7947 8085 8229 8381 8541 8707 7478 7479 7481 7483 7484 7486 7488 7490 7491 7584 7586 7588 7590 7591 7593 7595 7597 7599 769S 7700 7702 7704 7706 7708 7710 7712 7714 7820 7822 7824 7826 7828 7831 7833 7835 7837 7949 7952 7954 7956 7958 7961 7963 7965 7968 8087 8090 8092 ^,t 8099 8101 8103 3io6 823. 8234 8236 8239 8241 8244 8246 8249 8251 8384 8386 8389 8391 8394 8397 8399 8402 8404 8544 8546 8549 8552 8554 8557 8560 8563 856s 8710 87-3 87.S 8718 8721 8724 8727 8729 8732 10 20 30 40 50 60 •5 1.0 '■5 2.0 2.5 3.0 7493 7601 7716 7839 7970 8108 8254 8407 8568 8735 7495 7497 7498 7500 7502 7504 7506 7507 7509 7603 7605 7606 7608 7610 7612 7614 76'5 7617 77 '8 7720 7722 7724 7726 7728 7730 7732 7734 7841 7843 7845 7847 7849 7852 I! 7858 7972 7974 7977 7979 7981 7983 7985 7988 7990 81 10 81 13 81 15 8118 81 20 8l22 8125 8.27 8130 8256 8259 8261 8264 8266 8269 8271 8274 8276 8410 84.2 84-5 8418 8420 8423 8425 8429 8431 8571 8573 8576 8579 8581 8584 8587 8590 8592 8738 8741 8743 8746 8749 8752 8755 75" 7619 7736 7860 7992 8132 8279 8434 8595 8763 Smiths ONIAN 1 'ables. S8 LOGARITHMS OF Table 1 1 . RADIUS OF CURVATURE OF NORMAL SECTION p„ IN ENGLISH FEET. [Derivation of table explained on p. xlv.] Lat. 210 22? 23° 24° 2S° 26° 27° 28° 29° 30° P. P. 7.320 7.320 7.320 7.320 7.320 7.320 7.320 7.321 7.321 7.321 0' X 2 3 8763 8939 9120 9308 9502 9701 9907 0117 0332 0553 8766 8769 8772 8942 894s 8948 9"3 9126 9129 9311 9314 9318 9505 9508 9512 9705 9708 9712 9910 99'3 9917 0121 0124 0128 0336 0340 0343 0556 0560 0564 4 5 6 877s 8778 8780 8951 8953 8956 9132 9136 9139 9321 9324 9327 95'S 95-8 9521 9715 9718 9722 9920 9924 9927 0131 0135 0138 0347 0351 0354 0567 0571 0575 7 8 9 10 II 12 13 8789 8959 8962 8965 9142 9'45 9148 9330 9333 9337 952s 9528 9531 9725 9728 9732 993" 9934 9938 0142 0145 0149 0358 0361 0365 0579 0582 0586 2 S792 8968 9151 9340 9535 9735 9941 0153 0369 0590 10 20 30 40 50 60 •3 •7 l.o 1-3 8795 8798 8800 8971 8974 8977 9'54 9157 9160 9343 9346 9349 9538 9541 9545 9739 9742 9745 9945 9948 9952 0156 0159 0163 0372 0376 0380 0594 0597 0601 14 ■ 5 i6 8804 8807 88ia 8980 8983 8986 9163 9167 9170 9353 9356 9359 9548 9551 9554. 9749 9752 9756 9955 9959 9962 0167 0170 0174 0383 0387 0391 0605 0608 0612 2.0 17 i8 '9 20 21 22 23 88i2 88.5 8818 8989 8992 899s 9173 9176 9179 9362 936s 9368 9SS8 9561 9564 9759 9762 9766 9966 9969 9973 0177 0181 0185 0394 0398 0402 0616 0620 0623 8821 S998 9182 9372 9568 9769 9976 018S 0405 0627 8824 8827 8830 9001 9004 9007 9191 9375 9378 9381 9571 9574 9578 9773 9776 9779 9980 9983 9987 0192 0195 0199 0409 0413 0416 0631 063s 0638 24 25 26 11 29 30 3' 32 33 8833 8836 8839 8841 8844 8847 9010 9013 9016 9020 9023 9026 9195 919S 9201 9204 9207 9210 9384 9388 9391 9394 9398 9401 9581 9584 9588 9591 9594 9598 9783 9786 9790 9793 9796 9800 9990 9994 9997 *QOOI *ooo4 *ooo8 0203 0206 0210 0213 0217 0220 0420 0424 0427 0431 0435 0438 0642 0646 0649 0653 0657 o66i 3 10 20 30 40 ■5 I.O 1-5 2.0 2-5 3.0 8850 9029 9213 9404 9601 9803 *OOTI 0224 0442 0664 8853 8856 8859 9032 9035 9038 9216 9220 9223 9407 9411 94>4 9604 9608 9611 9807 9810 9814 *aoi5 *ooi8 *0022 0228 0231 023s 0446 0449 04S3 0668 0672 0676 34 35 36 8862 8865 8868 9041 9044 9047 9226 9229 9232 9417 9420 9424 9614 9618 9621 9817 9820 9824 *0025 *0029 *0032 0238 0242 0246 0457 0460 0464 0679 0683 0687 37 38 39 40 41 42 43 44 11 8871 8874 8877 9050 9053 9056 923s 9238 9242 9427 9430 9433 9624 9628 9631 9827 9831 9834 •0036 *oo39 *oo43 0249 0253 0256 0468 0471 0475 0691 0694 0698 4 8879 9059 924s 9437 9634 9838 *oo46 0260 0479 0702 8882 8885 8888 S891 ?!'♦ 8S97 9062 906s 9068 9071 9074 9077 9248 9251 9254 9257 9260 9264 9440 9443 9446 945° 9453 9456 963S 9641 9644 9648 9651 9654 9841 9844 9848 9851 9855 9858 *oo5o •0053 *oo57 *oo6o *oo64 *oo67 0264 0267 0271 0274 0278 0282 0482 0486 0490 0493 0497 0501 0706 0710 0713 0717 0721 0725 10 20 •7 1-3 47 48 49 60 51 52 53 8900 8903 8906 908a 9083 9086 9267 9270 9273 9459 9466 9658 9661 9664 9862 9865 9869 *oo7l *oo74 ♦0078 0285 0289 0293 0505 050S 0512 0728 0732 0736 40 5° 60 2-7 3-3 4.0 8909 9089 9276 9469 9668 9872 *co82 0296 0516 0740 8912 S915 8918 9093 9096 9099 9279 9283 9286 9472 9476 9479 9671 9674 9678 9875 9879 9882 *oo85 *oo39 ♦0092 0300 0303 0307 05.9 0523 0527 0743 0747 0751 54 55 56 8921 8924 8927 9102 910S 9108 9289 9292 9295 9482 9485 9489 9681 9685 9688 9886 9889 9893 •0096 *oo99 *oi03 0311 0314 0318 0530 0534 0538 0755 0759 0762 57 58 59 60 8930 8933 8936 9111 91 14 9117 9298 9302 9305 9492 9495 9498 9691 9695 969S 9896 9900 9903 *oro6 *OIIO *oii3 0322 0325 0329 0542 054s 0549 0766 0770 0774 8939 9120 9308 9502 9701 9907 *oii7 0332 0553 0777 Smithsonian Tables. 59 Table 1 1 . LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION p„ IN ENGLISH FEET. [Derivation of table explained on p. xlv.] Lat. 31° 32° 33° 34° 35° 36° 37° 38° 39° 40° P.P. 7.321 7.321 7.321 7.321 7.321 7.321 7.321 7.321 7.321 7.321 0' I 2 3 0777 1006 1239 1476 1716 1959 2205 2453 2704 2956 3 0781 0785 0789 1010 1014 I0i8 1243 1247 1251 1480 1484 1488 1720 1724 1728 1963 1967 1971 2209 2213 2217 2457 2462 2466 2708 2712 2716 2961 2965 2969 4 1 0793 0796 0800 1022 1026 1029 1255 I2S9 1263 1492 1496 1500 1732 1736 1740 1975 1979 1983 2221 2226 2230 2470 2474 2478 2721 2725 2729 2973 2978 2982 10 •5 I 9 10 iz 12 13 0804 0808 081 1 1033 1037 IO41 1267 1271 1275 1504 1S08 1512 1744 1748 1752 .988 1992 1996 2234 223S 2242 2482 2487 2491 2733 2737 2742 2986 2990 2994 20 30 40 so 60 1.0 i-S 2.0 25 3.0 081S I04S 1279 1516 1756 2000 2246 2495 2746 2999 0S19 0823 0827 1049 IOS3 IOS7 1282 1286 1290 1520 1760 1764 1768 2004 2008 2012 2250 2254 2259 2499 2503 2507 2750 2754 2758 3003 3007 3011 >4 IS l6 0830 fslt 1060 1064 1068 1294 1298 1302 1532 1536 iS-P 1772 1776 1780 2016 2020 2024 2263 2267 2271 2512 2516 2520 2763 2767 2771 3016 3020 3024 11 '9 20 21 22 23 0842 0846 0849 1072 1076 1080 .306 1310 1314 1 544 1548 1552 1784 1789 1793 2028 2033 2037 2275 2279 2283 2524 2528 2532 2775 2779 2784 3028 3032 3037 4 o8s3 1084 13 iS 1556 1797 2041 2287 2537 2788 3041 0857 0861 0865 1087 1091 1095 1322 1326 1330 1560 1564 1368 1801 1805 1809 2045 2049 2053 2292 2296 2300 2541 2545 2549 2792 2796 2800 3045 3049 3054 24 0869 0872 0876 1099 U03 1 107 1334 1337 1341 1572 1576 1580 1813 1817 1821 2057 2061 2065 2304 2308 2312 2553 2557 2562 2805 2809 28.3 3058 3062 3066 10 •7 27 28 39 30 31 32 33 0880 0884 0888 nil 1115 iiiS 1345 1349 1353 1584 1588 1592 1825 1829 1833 2069 2073 2077 2316 2321 2325 2566 2570 2574 2817 2822 2826 3071 3075 3079 20 30 40 50 60 '•3 2.0 2-7 3-3 4.0 0891 1 122 1357 ■596 1837 2082 2329 2578 2830 30S3 089s 0899 0903 X126 1130 1134 1361 1365 1369 1600 1604 1608 1841 1845 1849 2086 2090 2094 2333 2337 2341 2583 2587 2591 2834 2838 2843 3087 3092 3096 34 35 36 0907 0910 0914 1 138 1142 1146 1373 1377 1381 1612 1616 1620 1853 1857 1861 209S 2102 2106 234s 2350 2354 2595 2599 2603 2847 2851 2855 3100 3104 3109 39 40 4« 42 43 0918 0922 0926 1 150 "53 "57 1385 1389 1393 1624 1628 1632 1865 1870 1874 2110 2114 2119 2358 2362 2366 2608 2612 2616 2859 2864 2868 3113 3117 3121 6 0930 1 161 1397 1636 1878 2123 2370 2620 2872 3126 °933 0937 0941 1 165 1169 1 173 1401 1405 1409 1640 1882 1886 1890 2127 213 1 2135 2374 2379 2383 2624 2629 2633 2876 2880 2885 3130 3138 44 4S 46 % 49 60 s> 52 S3 54 5S S6 0945 0949 0953 0956 0960 0964 M77 1181 1185 1189 119Z 1196 1412 1416 X420 1428 1432 1652 1656 1660 1664 1668 1672 1894 1898 1902 1906 1910 1914 2139 2143 2147 2151 2156 2160 2387 2391 2395 2399 2403 2408 2637 2641 264s 2649 lilt 2889 2893 2897 2902 2906 2910 3143 3147 3151 3 '55 3160 3164 10 20 30 40 .8 '•7 2-5 3<3 4.2 5.0 0968 1200 1436 1676 1918 2164 2412 2662 2914 3 '68 0972 0976 0979 0983 0987 0991 1204 1208 1212 12 16 1220 1224 1440 1444 1448 1452 1436 1460 1680 1684 1688 1692 1696 1700 1922 1926 1931 1935 1939 1943 2168 2172 2176 218a 2184 2i88 2416 2420 2424 2428 2433 2437 2666 2670 267s 2687 2918 2923 2927 2931 2935 2940 3 '72 3181 3185 3189 3 '93 57 58 59 60 0995 0999 1003 1228 1231 I23S 1464 1468 '472 1704 1708 1712 1947 1951 1955 2193 2197 2201 2441 2445 2449 2691 2696 2700 2944 2948 2952 3198 3202 3206 iao6 1239 1476 1716 1959 2205 2453 2704 2956 3210 Smiths ONIAN 7 ABLES. 60 Table 1 1 . LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION p„ IN ENGLISH FEET. [Derivation of table explained on p. xlv.] Lat. 41° 42° 43° 44° 45° 46° 47° 48° 49° So° P.P. 7.321 7.321 7.321 7.321 7.321 7.321 7.321 7.321 7.321 7.321 0' I 2 3 3210 3466 3722 3979 4236 4494 4751 5007 5263 5517 3215 3219 3223 3470 3474 3479 3726 3731 3735 3988 3992 4241 4245 4249 4498 4502 4507 4760 4764 5012 5016 5020 5267 5271 5276 5522 5526 5530 4 I 3227 3232 3236 3483 3487 3491 3739 3744 3748 3996 4001 4005 4254 4258 4262 45" 4515 4520 4768 4772 4777 5024 5029 5033 5280 5284 5288 5534 5538 5543 I 9 10 II 12 "3 3240 3244 3249 3496 3500 3504 3752 3756 3761 4Q09 4013 4018 4267 4271 4275 4524 4528 4532 4781 4785 4789 5037 5042 5046 5293 5297 5301 5547 5551 5555 4 3253 3508 3765 4022 4279 4537 4794 5050 5305 5560 3257 3261 3266 3513 3517 3521 3769 3774 3778 4026 4031 4035 4284 4288 4292 4541 4545 4550 4798 4802 4807 5054 5059 5063 5310 5314 53'8 5568 5572 14 3270 3274 3278 3526 3530 3534 3782 3786 3791 4039 4043 4048 4297 4301 4305 4554 4558 4562 4S11 481S 4819 5067 S071 5076 5322 5327 5331 5576 5581 5585 10 •7 19 20 21 22 23 32S3 3287 3291 3538 3543 3547 3795 3799 3803 4052 4056 4061 4309 4314 4318 4567 4571 4575 4824 4828 4832 5080 S084 5088 5335 5339 5344 5589 5593 5598 30 40 50 60 2.0 2.7 3-3 4.0 3295 3S5I 3808 4065 4322 4580 4837 5093 5348 5602 3300 3304 3308 3555 3560 3564 3812 3816 3821 4069 4°73 4078 4327 4331 4335 4584 4588 4592 4841 4845 4S49 5097 5101 S«o5 5352 5356 5361 5606 5610 5614 24 11 3312 3317 3321 3568 3573 3577 3825 3829 3833 4082 4086 4091 4339 4344 434S 4597 4601 4605 4854 5 no 5II4 SII8 5365 5369 5373 5619 5623 5627 11 29 30 31 32 33 3325 3329 3334 3581 3585 3590 3S38 3842 3846 409s 4099 4104 4352 4357 4361 4610 4614 4618 4866 4871 4875 5123 5127 5I3I 5378 5382 5386 5631 5636 5640 3338 3594 3851 4108 4365 4622 4879 5135 5390 5644 3342 3347 335' 3607 3855 3859 3863 4112 41 16 4121 4369 4374 4378 4627 4631 4635 4884 4888 4892 SI40 5-44 5148 5395 5399 5403 5648 5652 5657 34 - 33 5S 33 S9 3364 361 1 3615 3620 3868 3876 412s 4129 4134 4382 4387 4391 4640 4644 -4648 4896 4901 4905 5152 5157 5 161 5407 5412 5416 5661 5665 5669 39 40 4' 42 43 336S 3372 3376 3624 3628 3632 3881 3SS5 3889 4138 4142 4146 4395 4399 4404 4652 4661 4909 4913 491S 5165 5 169 5174 5420 5424 5428 5673 5678 5682 6 10 20 30 40 1^ .8 1-7 2-5 3-3 4.2 3381 3637 3893 4151 4408 4665 4922 5178 5433 5686 3385 3389 3393 3641 3645 3649 3898 ■ 3902 3906 4155 4159 4164 4412 4417 442 1 4670 4674 467S 4926 4931 4935 5182 5186 5191 5437 5441 5445 5690 5694 5699 44 45 46 3398 3402 3406 3658 3662 39" 391S 3919 4168 4172 4176 4425 4430 4434 4682 4687 4691 4939 4943 4948 5195 5 '99 5203 5450 5454 5458 5703 5707 57" 47 48 49 60 51 52 53 3410 3415 3419 3667 3671 3675 3923 3928 3932 4181 4>85 4189 4438 4442 4447 4695 4700 4704 4952 4956 4960 5208 52,2 5216 5462 5467 5471 5716 5720 5724 3423 3679 3936 4194 4451 4708 4965 5220 5475 5728 3427 3432 3436 3684 368S 3692 3941 3945 3949 419S 4202 4206 4455 4460 4464 4712 4717 4721 4969 4973 4978 5225 5229 5233 5479 5488 5732 5737 5741 54 11 3440 3445 3449 3697 3701 37°S 3953 3958 3962 42II 421S 4219 4468 4472 4477 472s 4730 4734 4982 4986 4990 5237 5242 5246 5492 5496 5500 5745 5749 5753 S7 58 59 60 3453 3457 3462 3709 3714 3718 3966 3971 3975 4224 422S 4232 4481 448s 449° 4738 4742 4747 4995 4999 5o°3 5250 5254 5259 5505 5509 5513 5758 5762 5766 3466 3722 3979 4236 4494 4751 5007 5263 SS17 5770 Smithsonian Tables. 61 Table 1 1 . LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION Pn IN ENGLISH FEET. [Derivation of table explained on p. xlv.] Lat. Si° 52° 53° 54° 55° 56° 57" 58° 59° 60° P.P. 7.321 7.321 7.321 7.321 7.321 7.321 7.321 7.321 7.321 7.321 0' X 2 3 S770 6021 6270 6517 6760 7001 7238 7472 7701 7927 5774 577S 5783 6025 6029 6034 6274 6278 6282 6521 6525 6529 6764 6768 6772 7005 7009 7013 7242 7246 7250 7476 7480 7483 770s 7709 7712 7931 7934 7938 4 I 5787 5791 5795 6038 6042 6046 6286 6290 6295 6533 6537 6541 6775 6780 6785 7017 7021 7025 7254 7261 7487 7491 7495 7716 7720 7724 7942 7945 7949 .8 1-7 2-5 3-3 4.2 5-0 I 9 10 II 12 '3 5799 5804 5808 6050 6055 6059 6299 6303 6307 654s 6549 6553 6789 6793 6797 7029 7033 7037 726s 7269 7273 7499 7502 7506 7728 7735 7953 7957 7960 20 30 40 IS 5812 6063 6311 6557 6801 7041 7277 75 'o 7739 7964 5816 5820 5825 6067 6071 6075 6315 6319 6324 6561 6569 6805 6809 6813 7045 7049 7053 7281 728s 7289 75U 7518 7522 7743 7747 77SO 7968 7971 7975 '4 16 5829 5833 5837 6079 6083 6088 6328 6332 6336 6573 6577 6582 6817 6821 6825 7057 7060 7064 7293 7296 7300 7526 7529 7533 7754 7758 7762 7979 7982 7986 "7 18 •9 20 21 22 23 5841 5846 5850 6092 6096 6100 6340 6345 6349 6586 6590 6594 6829 6837 7068 7072 7076 73°4 73°8 7312 7537 7S4I 7545 7766 7769 7773 7990 7994 7997 5854 6104 6353 6598 6841 7080 7316 7549 7777 8001 5858 5862 5867 6108 61 12 6117 6357 6361 6365 6602 6606 6610 6845 7092 7320 7324 7328 7552 7557 7560 7781 8005 8008 8012 24 11 5871 5875 5879 6121 6125 6129 6369 6373 6378 6614 6618 6623 SI? 686s 7096 7100 7104 7332 7335 7339 7564 7568 7572 7792 7796 7800 8016 8019 8023 4 27 28 29 30 31 32 33 5883 5888 5892 6133 6138 6142 6382 6386 6390 6627 6631 6635 6869 6873 6877 7108 7II2 7II6 7343 7347 7351 7576 7579 7583 7804 7807 781 1 8027 8031 8034 10 20 30 40 lo •7 1-3 2.0 2-7 3-3 4.0 5896 6146 6394 6639 6881 7120 7355 7587 7815 8038 S900 5904 5909 6150 6154 6158 6398 6402 6406 6647 6651 6885 6889 6893 7124 7128 7132 7359 7363 7367 7591 7595 7598 7819 7822 7826 8042 8045 8049 34 35 36 5913 5917 5921 6162 6i66 6171 6410 6414 6419 6655 6659 6663 6897 6901 6905 7136 7139 7143 7371 7374 7378 7602 7605 7610 7830 7833 7837 8053 8056 8060 11 39 40 41 42 43 5925 5930 5934 6175 6179 6183 6423 6427 6431 6667 6671 6675 6909 6913 6917 7147 7I5I 7155 7386 7390 7614 7617 7621 7841 7845 7848 8064 8068 8071 3 5938 6187 6435 6679 6921 7159 7394 7625 7852 8075 5942 5946 5951 6191 6195 6200 6439 6443 6447 6683 6687 6691 6925 6929 6933 7163 7167 7I7I 7398 7402 7406 7629 7633 7635 7856 7860 7863 8079 8082 8086 44 5955 5959 5963 6204 6208 6212 6451 645s 6460 669s 6699 6704 6937 6941 6945 7175 7179 7183 7410 7413 7417 7640 7867 7871 7875 8089 8093 8097 .5 I.O '•5 2.0 2-5 3.0 % 49 60 51 52 53 5967 5972 5976 6216 6221 6225 6464 6468 6472 6708 6712 6716 6949 6953 6957 7187 7I9I 7'9S 7421 7425 7429 7652 7655 7659 7882 7886 8100 8104 8107 20 40 5980 6229 6476 6720 6961 7199 7433 7663 7890 8111 5992 6233 6237 6241 6480 6484 6488 6724 6728 6732 6965 6969 6973 7203 7207 7211 7437 744' 7445 7667 7671 7674 7894 7897 7901 8115 8118 8122 54 5996 6000 6005 6245 6249 6254 6492 6496 6501 6736 6740 6744 6977 6981 6985 7215 7218 7222 7449 7452 7456 7678 7682 7686 7905 7908 7912 8126 8129 8133 59 60 6009 6013 6017 6258 6262 6266 6505 6509 65 '3 6748 6752 6756 6989 6993 6997 7226 7230 7234 7460 7464 7468 7690 7693 7916 7920 7923 8.37 8141 8.44 * 6021 6270 6517 6760 7001 7238 7472 7701 7927 8148 Smiths ONIAN 1 'ables. 62 Table 1 1 . LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION p„ IN ENGLISH FEET. [Derivation of table explained on p. xlv.] Lat. 61° 62° 63° 64° 65° 66° 67° 68° 69° 70° P.P. 0' I 2 3 4 5 6 7 S 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 :i 27 28 29 30 31 32 33 34 11 37 38 39 40 41 42 43 44 45 46 47 48 49 50 SI 52 53 54 11 % 59 60 7.321 8148 7.321 8364 7.321 8575 7.321 8781 7.321 8982 7.321 9175 7.321 9365 7.321 9548 7.321 9724 7.321 9893 4 8x52 8155 8159 8162 8166 8170 8173 8177 8180 8368 8371 837s 8378 8382 8386 8389 8393 839S It 8585 8589 8606 8784 8788 8791 879s 8798 8801 880s 8808 8812 S'f5 8989 8992 8995 8998 9002 9008 9012 9179 9182 9186 9189 9192 9195 9198 9202 9205 9368 9371 9374 9377 9380 9384 9387 9390 9393 9551 9554 9557 9560 9562 9565 9568 9571 9574 9727 9730 9732 9735 9738 9741 9744 9746 9749 9896 9898 9901 9904 9906 9909 9912 9915 9917 8184 8400 8610 8815 9015 9208 9396 9577 9752 9920 10 20 30 40 io •7 1.3 2.0 2.7 3.3 4.0 8188 8191 819s 8198 8202 8206 8209 8213 8215 8403 8407 8410 84.4 8417 8421 8428 8431 8613 8617 8620 8624 8627 8631 8534 8638 8641 8818 8822 882s 8829 8832 8835 8839 8842 8845 9018 go2i 9025 9028 9°3i 9034 9°37 9041 9044 9211 9214 9218 9221 9224 9227 9230 9234 9237 9399 9402 9405 9408 941 1 9415 9418 9421 9424 9580 9583 9586 9589 9592 9595 9598 9601 9604 9755 9758 9761 9764 9766 9769 9772 9775 9778 9923 9926 9928 9931 9934 9937 9940 9942 9945 3 S220 8435 8645 8849 9047 9240 9427 9607 9781 9948 8224 8227 8231 8238 8242 8245 8250 8253 8438 8442 S445 8449 8452 8456 8459 8463 8465 8648 8652 8655 8659 8662 8665 8669 8672 8676 8852 8856 8859 8862 8865 8869 8872 8879 9050 9054 9057 9060 9063 9067 9070 9073 9077 9243 9246 9250 9253 9256 9259 9262 9266 9269 9430 9433 9436 9439 9442 9445 9448 9451 9454 9610 9613 9616 9619 9621 9624 9627 9630 9633 9784 9787 9789 9792 9795 9798 9801 9951 9953 9956 9959 9961 9964 9967 9970 9972 10 20 3° 40 50 60 •5 r.o 1-5 2.0 2-5 3.0 8257 847° 8679 8882 9080 9272 9457 9636 9809 9975 8261 8264 8268 8271 8275 8279 8282 8285 8289 8473 8477 848a 8484 8487 8491 8494 8498 8501 8682 8686 8689 8693 8696 8699 8703 8706 8710 88Ss 8889 8892 8896 8899 8902 8906 8909 8913 9083 9086 9090 9°93 9096 9099 9102 9106 9109 9275 9278 9281 9284 9287 9291 9294 9297 9300 9460 9463 9466 9469 9472 9475 9478 9481 9484 9639 9642 9645 9648 9651 9654 9660 9663 9812 981S 9817 9820 9823 9826 9829 983' 9834 9978 9980 9983 9986 998S 9991 9994 9997 9999 2 8293 8505 8713 8916 9112 9303 9487 9666 9837 #0002 S296 8300 8303 8307 8310 8314 8317 8321 8324 8508 8512 8515 8519 8522 8526 8529 8533 8536 8716 8720 8723 8727 8730 8733 8737 8740 8744 8919 8926 8929 8932 8936 8939 8942 8946 9115 9118 9122 912s 9128 9131 9134 9138 9141 9306 9309 9312 9315 93 iS 9322 9325 9328 9331 9490 9493 9496 9499 9502 9506 9509 9512 9515 9669 9672 967s 9678 9680 9683 9686 9689 9692 9840 9843 9845 9848 9851 9854 9857 *ooos *ooo7 *ooio *ooi3 *coiS *ooi8 *002I *0024 *0026 10 20 30 40 50 60 ■3 ■7 I.O 1-3 1-7 2.0 8328 8540 8747 8949 9144 9334 9S<8 9695 986s *0029 8332 8335 8339 8342 8346 8350 8353 8357 8360 8543 8547 8550 8554 8561 8564 8568 8571 8750 8754 8757 8761 8764 S767 8771 8778 8952 8956 8959 8962 8965 8969 8972 8975 8979 9147 9150 9154 9157 9160 9163 9166 9170 9173 9337 9340 9343 9346 9349 9353 9356 9359 9362 9521 9524 9527 9530 9533 9536 9539 9542 9545 9698 9701 9704 9707 9709 9712 9715 9718 9721 9868 9S71 9873 9876 9879 9882 9885 9887 9890 *C032 *oo34 *oo37 *oo39 *0042 *oo45 *oo47 *oo5o #0052 8364 8575 8781 8982 9176 9365 9548 9724 9893 *ooS5 Smithsonian Tables. 63 Table 1 1 . LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION p„ IN ENGLISH FEET. [Derivatton of table explained on p. xlv.] Lat. 71" 72° 73° 74° 75° 76° 77° 78° 79° 80° P.P. 7.322 7.322 7.322 7.322 7.322 7.322 7.322 7.322 7.322 7.322 * 0' X 2 3 005S 0210 03 59 0499 0632 0757 0875 0984 1085 1177 0058 0060 0063 0213 0215 0218 0361 0364 0366 0501 0504 0506 0634 0636 0639 0759 0761 0763 0877 0879 0880 0986 0987 0989 1087 1088 1090 1178 ii8a 1181 4 i I 9 10 II 12 13 0066 006S 0071 0074 0077 0079 0220 0223 '0226 0228 0231 0233 0369 0371 0373 0376 0378 0381 0508 0510 0513 0515 0517 0520 0641 0643 064s 0647 0650 0652 0765 0767 0769 0771 0773 0775 0882 0884 0886 0888 0889 0891 0991 0992 0994 0995 0998 0999 1091 1093 109s 1Q96 1098 1099 1 183 1184 1186 1 187 1 189 1190 3 JO 20 30 40 ■5 I.O ■•5 2.0 2-5 3.0 0082 0236 0383 0522 0654 0777 0893 IGOI IIOI 1192 0085 0087 0090 0238 0241 0243 0385 0388 0390 0524 0526 0529 0656 0658 0660 0779 0781 0783 0895 0897 0899 1003 1004 1006 II02 1 104 1 105 ■■93 1 19s 1 196 14 IS l6 0092 009s 0098 0246 0248 0251 0392 0394 0397 0531 0533 0535 0662 0664 0667 0785 0787 0789 ogoi 0902 0904 1008 1009 lOIl 1 107 1 108 mo 1 198 ■■99 1200 20 21 22 23 0100 OIG3 0105 0253 0256 0258 0399 0401 0404 0537 0540 0542 0669 0671 0673 0791 0793 0795 0906 0908 0910 IOI3 lois 1016 nil 1113 1114 1202 1203 ■205 oioS 0261 0406 0544 067s 0797 0912 1018 1 1 16 1206 GUI OII3 OI16 0263 0266 0268 □408 041 1 0413 0546 0549 0551 0677 0679 0681 0799 0801 0803 0914 0916 0917 1020 1021 1023 1118 1119 1121 1207 1209 1210 24 11 11 29 30 31 32 33 aii8 0121 0124 0126 0129 0131 0271 0273 0276 0278 0281 0283 0416 0418 0420 0423 0425 0428 0553 0555 0558 0560 0562 0565 0683 0685 068S o6go 0692 0694 0805 0807 0809 081 1 0813 081S 0919 0921 0923 0925 0926 0928 1025 1026 1028 1030 1032 1033 1122 1126 1 127 1 129 1130 1212 1213 1214 1216 1217 1219 a 10 20 30 40 1: .3 •7 1.0 ■■3 ».? I.O 0134 0286 0430 0567 0696 0817 0930 1035 1 132 1220 1221 1223 1224 0137 0139 0142 0288 0291 0293 0432 0435 0437 0569 0571 0574 0698 0700 0702 0819 0821 0823 0932 0934 0935 1037 1038 1040 ■■33 ■ ■35 1136 34 11 0144 0147 0150 0296 0298 0300 0439 0441 0444 0575 0578 0580 0704 0706 0708 0825 0826 0828 0937 0939 0941 1042 1043 1045 1138 ■■39 1141 1226 1227 1228 11 39 40 41 42 43 0152 0155 0157 0303 0305 0308 0446 0448 0451 0582 0585 0587 0710 0712 0714 0830 0832 0834 0943 0944 0945 1047 1049 1050 1 142 ■■44 ■■45 1230 123 1 ■233 0160 0310 0453 0589 0716 0835 0948 1052 ■■47 ■234 0162 0165 0167 0312 0315 0317 0455 0458 0460 0591 0593 0596 0718 0720 0722 0838 0840 0842 0950 0952 0953 1054 1055 1057 1 148 1150 ■■5^ ■235 ■237 .238 44 49 60 5' 52 53 0170 0172 0175 0177 oi8a 0182 0185 0320 0322 0324 0327 0329 0332 0462 0464 0467 0469 0471 0474 0598 c6oo 0602 0604 0607 0609 0724 0726 0729 0731 0733 0735 0844 0846 0848 0850 0852 0854 0955 0957 0959 0961 0962 09S4 1058 1060 1062 1063 1065 1066 '■53 1 154 1 156 ■■57 ■■59 1160 1240 1241 1242 ■244 ■245 ■247 1 10 20 30 40 50 60 .2 ■3 ■5 i I.O 0334 0476 061 1 0737 0856 0966 1068 1 162 1248 0187 0190 0192 0336 0339 0341 0478 0481 0483 0613 0615 0617 0739 0741 0743 0858 086a 0862 0968 0970 0971 1070 107 1 1073 ■ ■63 1 165 1166 ■249 125 1 I2S2 54 11 0195 0197 0200 0344 0346 0349 0485 0487 0490 0619 0621 0624 0745 0747 0749 □864 0865 0867 0973 0975 0977 •075 1076 1078 1 168 1169 ■ 171 ■253 ■254 1256 11 59 60 0202 0205 0207 0351 0354 0356 0492 0494 0497 0626 0628 0630 0751 0753 0755 0869 0871 0873 0979 0980 0982 1080 1082 1083 1 172 ■■74 ■■75 ■257 ■ 258 1260 0210 0359 0499 0632 0757 0875 0984 1085 ■■77 I261 Smiths ONIAN 1 'ables. 64 Table 11. LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION Pn IN ENGLISH FEET. [Derivation of table explained on p. xlv.] Lat. 81° 82° 83° 84° 850 86° 87° 88° 89° p.p. 7.322 7.322 7.322 7.322 7.322 7.322 7.322 7.322 7.322 0' I 2 3 1261 1337 1403 1461 1511 '55' 1583 1605 1619 1262 1264 1265 1338 1339 1340 1404 1405 1406 1462 1463 1464 1512 1512 I5'3 1552 1552 1553 '583 '584 '584 1605 1606 i6o6 1619 1619 1619 4 I 1266 1267 1269 1341 1342 1344 1407 1408 1410 1465 1465 1465 1514 ■514 1515 ■553 ■554 1555 '585 1585 ■585 1606 1606 1607 1619 1619 1620 I 9 10 II 12 13 1270 1271 1273 1345 1346 1347 1411 1412 1413 1467 1468 1469 1516 1517 1517 ■555 ■555 1556 ■586 1586 ■587 1607 1607 160S 1620 1620 1620 2 1274 1348 1414 1470 1518 ■557 ■587 1608 1620 1275 1277 1278 1349 1350 1352 1415 1416 1417 1471 1472 1473 1519 1519 1520 ■558 1558 '559 '587 1588 1588 1608 1609 1609 1620 1620 1620 H 1279 1280 1282 1353 1354 1355 1418 1419 1420 1474 1474 1475 1521 1521 1522 ■559 1560 1561 ■589 ■589 15S9 1609 i6og 1610 1620 1620 1621 10 •3 17 i8 19 20 21 22 23 1283 1284 1286 1356 1358 >359 142 1 1422 1423 1476 1477 1478 1523 1524 1524 1561 ■562 1562 1590 '59° 1591 1610 1610 161 1 162 1 162 1 1621 20 30 40 so 60 ■7 1.0 ■■3 ■■7 2.0 1287 1360 1424 1479 1525 '563 ■591 1611 1621 1288 I2go 1291 1361 1362 1363 1425 1426 1427 1480 1481 1481 1526 1526 .1527 1563 1564 1564 I59^ ■592 ■592 1611 1611 1612 162 z 1621 1621 24 26 1292 1293 1295 1364 1365 1367 142S 1429 1430 1482 1483 1484 152S 1528 1529 1565 ■593 '593 1593 1612 1612 i6ia 1621 I62I 1622 27 28 29 30 31 32 33 1296 1297 1299 1368 1369 1370 1431 1432 1433 1485 1485 i486 1530 1531 1531 1566 1567 1567 ■594 ■594 '595 1612 1613 1613 1622 1622 1622 1300 1371 ■434 1487 1532 1568 ■595 1613 1622 1301 1302 1304 1372 '373 1374 1435 1436 1437 1488 1489 1489 1533 1533 '534 1568 1569 '569 '595 ■596 ■596 1613 1613 1614 1622 1622 1622 34 35 36 1305 1306 1307 1376 1378 1438 1438 1439 1490 1491 1492 1535 1535 1536 '57° 1570 ■571 1597 ■597 ■ 597 1614 1614 1614 1622 1622 1623 37 38 39 40 41 42 43 1308 13 10 1311 "379 1380 1381 1440 1441 1442 1493 1493 1494 1537 '538 1538 1571 1572 1572 ■598 ■598 '599 1614 1615 1615 1623 1623 1623 1 ID 20 30 40 fo .2 •3 ■5 .7 .8 1.0 13 12 1382 1443 I49S 1539 '573 ■599 1615 1623 1313 1315 13 15 1383 1384 138s 1386 1387 1389 1444 1445 1446 1496 1497 1497 1498 1499 1500 1540 '54° 154' 1573 ■ 574 ■574 '599 1600 1600 1615 1615 1616 1616 1616 1616 1623 1623 1623 1623 1623 1623 tl 13 18 1320 1447 1448 1542 1543 ■575 ■576 1600 1601 tl 49 60 51 52 53 1321 1322 1324 1390 1391 1392 1449 1450 1451 1501 1 501 1502 1543 1544 1544 1576 ■577 ■577 1601 1601 1602 1616 1617 1617 1623 1623 1623 1325 1393 1452 1503 1545 ■578 1602 1617 1623 1326 1327 1329 1394 1395 1396 1453 1454 1455 1504 1505 1505 1546 1546 '547 '578 1579 '579 1602 1603 1603 1617 1617 1618 1623 1623 1623 54 55 S6 >330 >33i 1332 1397 1398 1399 1456 1456 1457 1506 1507 1508 1547 1548 '549 ■ 580 1580 1581 1603 ■603 1604 1618 1618 1618 1623 1623 1623 57 58 59 60 1333 1335 1336 1400 1401 1402 1458 1459 1460 1509 1509 1510 1549 '55° 1550 1581 '582 1582 1604 1604 1605 16.8 1619 i6ig 1623 1623 1623 1337 1403 1461 1511 '55' ■583 1605 i6ig 1623 Smithsonian Tables. fie Table 12. LOGARITHMS OF RADIUS OF CURVATURE Pa (IN METRES) OF SECTION OF EARTH'S SURFACE INCLINED TO MERIDIAN AT AZIMUTH a. [Formula for pa given on p. xlv,] LATITUDE Azimuth. 22° 23° 24° 25° 26° 27° 28° 29° 30° 31° 0° 6.80237 6.80242 6.80248 6.80254 6.80260 6.80266 6.80272 6.80279 6.80285 6.80292 5 10 IS 239 244 254 244 250 259 250 264 256 261 270 262 267 276 268 273 282 274 275 280 285 294 287 292 300 $ 20 3° 266 282 300 271 287 305 277 292 309 282 297 314 288 302 319 293 308 324 299 313 330 305 319 335 3" 325 340 317 331 346 35 40 45 320 364 324 329 350 371 333 354 375 338 358 379 343 362 383 387 353 372 391 358 396 363 382 400 50 386 407 427 389 410 430 392 413 432 396 416 435 399 420 438 403 423 442 407 426 445 411 430 448 415 434 451 419 437 455 65 70 75 445 461 473 476 450 465 478 480 455 470 482 458 473 484 461 475 487 464 478 489 467 481 492 470 484 494 80 85 90 483 489 490 485 490 492 487 492 494 489 494 496 491 496 498 4p 500 495 5°' 502 498 503 504 500 5°5 507 502 507 509 Azimuth. LATITUDE. 32° 33° 34° 35° 36° 37° 38° 39° 40° 41° 0° 6.80299 6.80306 6.80313 6.80320 6.80327 6.8033s 6.80342 6.80350 6.80357 6.80365 5 10 '5 300 305 313 307 312 320 314 319 326 322 326 333 329 333 340 336 340 348 344 348 355 351 III f 369 366 370 376 20 25 30 324 337 352 330 337 349 364 343 355 370 350 362 376 382 364 11^ III 394 37| 388 401 385 395 407 35 40 45 369 386 405 374 392 410 380 397 414 385 402 419 391 407 424 397 412 429 402 418 434 408 423 439 414 429 444 420 434 449 50 II 423 441 458 428 445 462 432 449 465 436 469 441 457 472 461 476 450 465 480 454 469 484 459 474 487 464 478 491 65 70 75 486 497 476 489 Soo 480 492 502 483 495 505 486 498 S08 489 501 510 493 504 513 496 507 S16 500 510 519 503 514 522 80 85 90 505 510 5" 507 512 514 510 5H 516 512 517 518 515 519 521 517 522 523 520 524 526 523 527 528 525 529 53' 528 532 533 Smithsonia N Table s. 66. Table 12. LOGARITHMS OF RADIUS OF CURVATURE Pa. (IN METRES) OF SECTION OF EARTH'S SURFACE INCLINED TO MERIDIAN AT AZIMUTH a. [Formula for pa given on p. xlv.] LATITUDE. Azimuth. 42° 43° 44° 45° 46° 47° 48° 49° 50° 51° o° 6.80373 6.80380 6.80388 6.80396 6.80404 6.8041 1 6.8041 9 6.80426 6.80434 6.80442 S 10 IS 374 384 382 385 391 389 393 399 397 400 406 404 408 413 412 415 420 42 42 42 428 3 430 8 435 438 442 443 445 450 20 3° 392 402 413 408 420 406 426 413 422 433 420 429 439 427 436 446 4: 44 4. 4 441 2 449 2 458 448 456 465 463 471 35 40 45 426 440 454 432 446 459 438 464 444 457 470 450 462 475 456 468 480 At >2 468 4 479 5 490 474 485 495 480 490 500 SO 468 482 495 %l 499 478 490 S02 482 487 499 510 492 503 SU 4c 5c 5' 6 501 8 512 8 522 506 526 SIO 520 530 65 70 75 S07 S17 525 510 520 528 514 523 530 534 520 529 536 524 532 539 52 s: 54 8 531 6 539 t2 545 S34 542 548 538 545 551 8o 85 90 531 534 536 534 537 538 536 540 541 539 542 544 542 545 546 544 548 549 54 5. 5. ^7 55° 553 1 554 553 555 556 '3 559 LATITUDE. Azimuth. 52° 53° 54° 55° S6° 57° 58° 59° 60° 0° 6.80449 6.80457 6.80464 6.80471 6.80479 6.80486 6.80493 6.80500 6.80506 5 10 '5 450 453 457 464 465 467 471 472 474 478 479 481 485 486 488 492 493 495 498 500 502 505 507 509 5" 20 25 30 462 469 477 469 476 484 476 482 49° 483 489 496 489 495 502 496 501 S08 502 508 514 509 514 519 515 520 525 35 40 45 486 496 505 492 SOI Sio 498 506 515 S°3 512 520 509 517 525 51S 522 530 520 527 534 525 532 539 S3I 537 543 SO 1^ 515 524 533 520 S28 537 524 533 541 528 537 544 533 548 537 545 552 542 548 SSS 546 552 558 556 562 6s 70 75 548 554 545 SSI 557 548 SS4 559 551 SS7 562 1 565 5|^ gi 561 566 570 564 569 573 567 572 575 80 85 90 S6? 563 564 566 S66 568 569 568 570 571 571 573 574 573 575 576 576 S78 578 578 580 580 Smithsonian Tables. 67 Table 13. LOGARITHMS OF FACTORS t^stFOR COMPUTING SPHEROIDAL EXCESS OF TRIANGLES. UNIT = THE ENGLISH FOOT. [Derivation and use of table explained on p. Iviii.] log. factor and log. factor and log. factor and log. factor and change per minute. <* change per minute. 1> change per minute. change per minute. 0° 0.37498 — 0.00 20° 0.37429 — O.I2 40° 0'372S5 — 0.18 60° 0.37056 — 0.15 I 498 — 0.02 21 422 — 0.12 41 244 — 0.17 61 047 — 0.15 2 497 — 0.02 22 41 S — 0.12 42 234 — 0.17 62 038 — 0.13 3 496 — 0.02 23 40S — 0.12 43 224 — 0.17 63 030 — 0.13 4 49S — 0.03 24 401 — 0.13 44 214 „ — 0.18 64 022 — 0.13 5 493 — 0.03 25 393 — 0.13 45 203 — 0.17 65 014 — 0.13 6 491 — 0.03 26 385 — 0.13 46 193 — 0.17 66 006 — 0.13 7 489 — 0.03 27 377 — 0.15 47 183 — 0.17 67 0.36998 — 0.12 8 487 — 0.05 28 368 — 0.13 48 '73 „ — 0.18 68 991 — 0.12 9 484 — 0.07 29 360 — 0.15 49 162 — 0.17 69 984 — 0.12 10 480 — 0.07 30 3SI — 0.15 50 152 — 0.17 70 977 — 0.10 II 476 — 0.07 31 342 — 0.1S SI 142 — 0.17 71 971 — 0.12 12 472 32 333 — 0.17 52 132 — 0.17 72 964 — 0.08 '3 468 —0.08 33 323 — 0.15 53 122 — 0.17 73 959 — 0.10 14 463 — 0.07 34 314 — 0.17 54 112 — 0.15 74 953 „ — 0.08 15 4S9 — O.IO 35 304 — 0.15 55 103 — 0.17 75 948 — 0.08 i6 453 „ — 0.08 36 295 — 0.17 56 093 — 0.17 76 943 „ — 0.08 17 448 — O.IO 37 285 — 0.17 57 083 — 0.1S 77 938 — 0.07 i8 442 — O.IO 38 275 — 0.17 58 074 — 0.1S 78 934 — 0.07 19 436 — 0.12 39 26s — 0.17 59 065 — 0.1s 79 930 — 0.07 20 429 — 0.12 40 — 0.18 60 056 — 0.IS 80 926 Smithsonian Tables. 68 _e«_ Table 14. LOGARITHMS OF FACTORS-j^^ FOR COMPUTING SPHEROIDAL EXCESS OF TRIANGLES. UNIT==THE METRE. [Derivation and use of table explained on p, Iviii.] log. factor and log. factor and log. factor and log. factor and i- change per minute. * change per minute. change per minute. change per minute. 0° 1.40695 — 0.00 20° 1.40626 — 0.12 40° 1.40452 — 0.18 60° 1.40253 — 0.15 I 695 — 0.02 21 619 — 0.12 41 441 — 0.17 61 244 — 0.15 2 694 — 0.02 22 612 — 0.12 42 431 — 0.17 62 23s — 0.13 3 693 — 0.02 23 605 — 0.13 43 421 — 0.17 63 227 — 0.13 4 692 — 0.03 .24 597 — 0.12 44 4" „ — 0.18 64 219 — CIS 5 690 — 0.03 25 590 — 0.13 45 400 — 0.17 65 210 — 0.12 6 688 — 0.03 26 582 — 0.1S 46 390 — 0.17 66 203 — 0.13 7 686 — 0.05 27 573 — C.13 47 380 — 0.18 67 195 — 0.12 8 683 — 0.05 28 S6S — 0.1S 48 369 — 0.17 68 188 — 0.12 9 680 — 0.05 29 SS6 —0.13 49 359 — 0.17 69 181 — 0.12 10 677 — 0.07 30 548 —0.15 50 349 — 0.17 70 174 — 0.10 II 673 — 0.07 31 539 — 0.15 SI 339 — 0.17 71 168 — 0.12 12 669 — 0.07 32 530 — 0.17 52 329 — 0.17 72 161 — O.IO 13 665 ^ — 0.08 33 520 — 0.15 S3 319 — 0.17 73 '55 „ — 0.08 14 660 — 0.08 34 — 0.17 S4 309 — 0.17 74 150 — O.IO 15 ^55 „ — 0.08 35 SOI — 0.17 55 299 -0.15 75 144 — 0.08 i6 650 — O.IO 36 491 — 0.15 S6 290 — 0.17 76 139 — 0.07 17 644 — 0.08 37 482 — 0.17 S7 280 -0.15 77 '35 „ — 0.08 i8 639 — 0.12 38 472 — 0.17 S8 271 — 0.1S 78 130 — 0.07 19 632 — O.IO 39 462 — 0.17 59 262 — 0.15 79 126 — 0.05 20 626 — 0.12 40 452 — 0.18 60 253 -0.15 80 123 Smithsonian Tables. 69 Table 15. LOGARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATI- TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANCULATION. UNIT=THE ENGLISH FOOT. [Derivation and use of table explained on p. Ix.] ai ^i=a «2 *2 ^2 01 h = CX oa *2 f2 o°oo' 7.99669 7-99374 00 00 0.372 io°oo' 7-99655 7-99369 9.621 9.926 0.398 10 669 374 7-839 8.137 0.372 10 6SS 369 9.628 9-933 0.399 20 669 374 8.140 8.438 0.372 20 654 369 9.636 9.941 0.400 3° 669 374 8.316 8.614 0.372 30 654 369 9-643 9-948 0.401 40 669 374 8.441 Im 0.372 40 654 369 9-650 9-955 0.402 SO 669 374 8.538 8.836 0.372 SO 653 369 9-657 9-963 0.403 I 00 669 374 8.617 8.915 0-372 II 00 653 3i 9-663 9.970 0.404 10 374 8.684 8.982 0.372 10 652 ^fo 9.670 9-977 0.404 20 668 374 8.742 9.040 0-372 20 652 368 9.677 9-983 0.405 30 668 374 ^•^93 9.091 0-373 30 651 ^fo 9-683 9.990 0.406 40 668 374 8.839 8.880 9-137 0-373 40 651 368 9.690 9-997 0.407 50 668 374 9.179 0-373 so 650 368 9.696 0.003 0.408 2 00 668 374 8.918 9.216 0-373 12 00 650 367 9.702 0.010 0.409 10 668 373 1%^ 9.251 0-373 10 649 367 9.708 0.016 0.410 20 668 373 8.985 9.283 0-373 20 649 367 9-714 0.023 0.412 30 668 373 9.015 9-314 0.374 30 648 367 9.720 0.029 0.413 40 668 373 9-043 9-342 0-374 40 648 367 9.726 0-035 0.414 SO 668 373 9.069 9-368 0.374 SO 647 367 9-732 0.041 0.415 300 668 373 9.094 9-393 0.374 1300 646 366 9-738 0.048 0.416 10 667 373 9.1 18 9.417 0-37 5 10 646 366 9-744 0.054 0.417 20 667 373 9.140 9-439 0-37S 20 645 366 9-749 0.060 0.418 30 667 373 9.161 9.460 0-37 5 30 645 366 9-7S5 0.065 0.419 40 667 373 9.182 9.481 0.376 40 644 366 9-761 0.071 0.420 SO 667 373 9.201 9.500 0-376 SO 644 36s 9.766 0.077 0.422 400 667 373 9.220 9.519 0.376 1400 643 365 9.771 0.083 0.423 lO 666 373 9-237 9-537 0-377 10 642 36s 9-777 0.088 0.424 20 666 373 9-254 9-554 0-377 20 642 365 9.782 0.094 0.425 30 666 373 9.271 9- 570 0.377 30 641 36s 9.787 0.100 0.426 40 666 373 9.287 0.378 40 640 364 9.792 0.105 0.428 SO 666 373 9.302 9.602 0.378 50 640 364 9.798 0.1 11 0.429 SOD ffs 373 9-317 9.617 0.379 15 00 639 364 t^ 0.116 0.430 10 66s 373 9-331 9.631 0.379 10 639 364 0.121 0.431 20 665 372 9-34S 9-645 0.379 20 638 363 9.813 0.127 0.433 30 f.^ 372 9-358 9.659 0.380 30 637 363 9.818 0.132 0.434 40 664 372 9-372 9.672 0.380 40 637 363 9.822 0.137 0.435 so 664 372 9-384 9.685 0.381 50 636 363 9.827 0.142 0.437 600 664 372 9-397 9.697 0.381 16 00 63s 363 9.832 0.147 0.438 10 664 372 9-409 9.709 0.382 10 63s 362 9-837 0-153 0-439 20 663 372 9.420 9.721 0.383 20 634 362 9.841 0.158 0.441 30 f? 372 9-432 9-732 0.383 30 633 362 9.846 0.163 0.168 0.442 40 663 372 9-443 9-744 0.384 40 632 362 9.851 0.443 so 662 372 9-4S3 9-755 0.384 SO 632 ■361 9.855 0.173 0-44S 7 00 662 372 9.464 9-765 0.385 17 00 631 361 9.860 0.178 0.446 10 662 371 9-474 9.776 0.386 10 630 36r 9.864 0.182 0.448 20 662 371 9.484 9.786 0.386 20 630 361 9.869 0.187 0.449 30 661 371 9.494 9.796 0.387 30 629 360 9-873 0.192 0.450 40 661 371 9-504 9.806 °-^ll 40 628 360 9.878 0.197 0.452 50 661 371 9-513 9.816 0.388 so 627 360 9.882 0.202 0-4S3 800 660 371 9-523 9.825 0.389 1800 627 360 9.886 0.206 0.455 10 660 371 9-532 9-834 0.389 10 626 359 9.890 0.21 1 0.456 20 659 371 9.541 9-843 0.390 20 625 359 9.895 0.216 0.458 30 659 371 9-549 9.852 0.391 30 624 359 9-899 0.220 0.459 40 ^l 370 9-5|| 9.861 0.392 40 624 359 9-903 0.225 0.461 SO 658 370 9.566 9.870 0.392 so 623 3S8 9-907 0.229 0.463 900 658 370 9-575 9-f2? 0.393 1900 622 358 9.911 0.234 0.464 10 i^'' 370 9-583 9.886 0-394 10 621 358 9-915 0.239 0.466 20 657 370 9.591 9-895 0-395 20 620 3S8 9.919 0.243 0.467 30 \\ 370 ^•M 9-903 0.396 30 620 357 9.923 0.248 0.469 40 656 ^I^ 9.606 9.910 0.396 40 619 357 9.927 0.252 0.470 SO 656 369 9.614 9.918 0.397 50 618 3S7 9-931 0.256 0.472 1000 6SS 369 9.621 9.926 0.398 20.00 617 3S7 9-935 0.261 0.474 Smithso NIAN Tab LES. 70 Table 15. LOGARITHMS' OF FACTORS FOR COMPUTING DIFFERENCES OF LATI- TUDE. LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. UNIT = THE ENGLISH FOOT. [Derivation and use of table explained on p. Ix.] 20°00' 01 h\==cx 02 *2 ^2 ax *2 = f2 02 *2 f2 7.99617 7-99357 9-935 0.261 0.474 3o°oo' 7-99558 7-99337 0.13s 0.138 0.496 0.593 10 616 356 9-939 0.265 0.47 s 10 ^\ 337 0.500 0.595 20 61 S 356 9-943 0.270 0.477 20 556 336 0.141 0.503 0.598 3° 615 356 9-947 0.274 0.479 30 555 336 0.144 0.507 0.600 40 614 355 9.951 0.278 0.480, 40 554 335 0.146 O.5H 0.603 5° 613 355 9-955 0.282 0.482 50 553 335 0.149 0.514 0.605 21 00 612 355 9-958 0.287 0.484 31 00 552 335 0.152 0.518 0.607 10 611 355 9.962 0.291 0.486 10 550 334 0.1 55 0.522 0.610 20 610 354 9.966 0.295 0.487 20 549 334 0.158 0.525 0.612 3° 609 354 9.970 0.299 0.489 30 548 333 0.161 0.529 0.615 40 608 354 9-973 0.304 0.491 40 547 333 0.164 0.532 0.617 SO 608 353 9-977 0.308 0.493 50 546 333 0.166 0.536 0.619 22 00 607 353 9.981 0.312 0.494 32 00 545 332 0.169 0.540 0.622 10 606 353 9.984 0.316 0.496 10 544 332 0.172 0.543 0.624 20 60s 353 9.988 0.320 0.498 20 542 332 0-I7S 0.547 0.627 3° 604 352 9-991 0.324 0.500 30 541 331 0.177 0.550 0.629 4° 603 352 9-995 9.998 0.328 0.502 40 540 331 O.IOO 0.554 0.632 5° 602 352 0.332 0.503 50 539 330 0.183 0.558 0.634 2300 601 351 0.002 0.336 0.505 3300 538 330 0.186 0.561 0.637 10 600 351 0.005 0.340 0.507 10 537 330 0.188 It^ 0.639 20 600 351 0.009 0.344 0.509 20 535 329 0.I9I 0.642 3° 599 350 0.012 0.348 0.51 1 30 534 329 0.194 0.572 0.644 40 cg8 35° 0.016 0.352 0.513 40 533 328 0.197 0.S7S 0.647 5° 597 350 0.019 0-356 0.51 5 50 532 328 0.199 0.579 0.650 2400 596 349 0.023 0.360 0.517 3400 531 328 0.202 0.583 0.652 10 59S 349 0.026 0.364 0.518 10 529 327 0.205 0.208 0.586 0.65s 20 594 349 0.029 0.368 0.520 20 528 327 0.590 0.657 30 593 348 0.033 0.372 0.522 30 527 326 0.210 0.593 0.660 40 592 348 0.036 0.376 0.524 40 526 326 0.213 0.597 °-f^ 5° 591 348 0.039 0.380 0.526 SO 525 326 0.216 0.600 0.665 2500 347 0.043 0.384 0.528 35 00 523 325 0.218 0.604 0.668 10 589 347 0.046 0.388 0.530 10 522 325 0.221 0.608 0.671 0.673 20 588 347 0.049 0.392 0.532 20 521 324 0.224 0.61 1 30 587 346 0.052 0.396 0.534 30 520 324 0.226 0.615 0.676 0.679 o.68i 40 586 346 0.056 0.399 0.536 40 519 324 0.229 0.618 5° 58s 346 0.059 0.403 0.538 SO 517 323 0.232 0.622 2600 584 345 0.062 0.407 0.540 3600 516 323 0.234 0.625 0.684 10 583 345 0.065 0.068 0.41 1 0-S43 10 515 322 0.237 0.629 0.687 ^0 20 S82 345 0.415 0.54s 20 514 322 0.239 0.632 0.689 3° 581 344 0.072 0.418 0.547 30 512 322 0.242 0.636 0.692 40 580 344 0.075 0.422 0.549 40 5" 321 0.245 0.640 5° 579 344 0.078 0.426 0.551 50 510 321 0.247 0.643 27 00 578 343 0.081 0.430 0-5S3 3700 509 320 0.250 0.647 0.700 10 577 343 0.084 0.433 0.555 10 S°2 320 0.253 0.650 0.703 0.706 20 576 343 0.087 0.437 0.557 20 506 320 0.25s 0.654 30 575 342 0.090 0.441 0.559 30 505 319 0.258 0.657 0.661 0.709 40 574 342 0.093 0.445 0.562 40 504 319 0.260 0.712 5° 573 342 0.096 0.448 0.564 SO 503 318 0.263 0.665 0.715 2800 571 341 0.099 0.452 0.566 3800 501 318 0.266 0.668 0.717 10 570 341 0.102 0.456 0.568 10 500 317 0.268 0.672 0.720 20 569 341 0.105 0.460 0.570 20 499 317 0.271 0.675 0.723 30 568 340 0.108 0.463 0.573 30 498 317 0.273 0.679 0.726 40 567 340 0.1 1 1 0.467 0-575 40 496 316 0.276 °-^«^ 0.729 50 566 340 0.1 14 0.471 0.577 50 495 316 0.278 0.686 0.732 2900 56s 339 0.117 0.474 0.579 3900 494 315 0.281 0.690 0.693 V.?k 10 y 564 339 0.120 0.478 0.582 10 492 315 0.284 0.738 20 563 338 0.123 0.482 0.584 20 491 315 0.286 0.697 0.741 30 562 338 0.126 0.485 0.586 30 490 314 0.289 0.701 0.744 40 S6i 338 0.129 0.489 0.588 40 489 314 0.291 0.704 0.747 50 560 337 0.132 0.493 0.591 50 487 313 0.294 0.708 0.750 3000 558 337 0.135 0.496 0.593 40 00 486 313 0.296 0.71 1 0-7S3 Smithsonian Tables. 71 Table 15. LOGARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATI- TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. UNIT = THE ENGLISH FOOT. [Derivation and use of table explained on p. be.]

    fll *1=^1 «2 h C2 o°oo' 8.51268 8.50973 00 00 1.404 io°oo' 8.51254 8.50968 0.653 0.958 1.430 10 268 973 8.871 9.169 1.404 10 254 9^f 0.660 0.965 1-431 20 268 973 9.172 9.470 1.404 20 253- 968 0.668 0-973 1.432 30 268 973 9-348 9.646 1.404 30 253 9^i 0.675 0.980 1-433 40 268 973 9-473 Hll 1-404 40 2S3 968 0.682 0.987 1-434 5° 268 973 9.570 9.868 1.404 SO 252 967 0.689 0-99S 1-43S I 00 267 973 9.649 9-947 1.404 II 00 252 967 0.695 1.002 1.436 10 267 973 9.716 0.014 1.404 10 251 967 0.702 1.009 1.436 20 267 973 9-774 0.072 1.404 20 251 967 0.709 1.015 1-437 30 267 973 9.825 0.123 1.405 30 250 967 0.715 1.022 1-438 40 267 973 9.871 0.169 1.405 40 250 9^7 0.722 1.029 1-439 SO 267 973 9.912 0.21 1 1-405 SO 249 966 0.728 1-035 1.440 2 00 267 972 9-950 0.248 1.405 12 00 249 966 0.734 1.042 1-441 10 267 972 9.985 0.283 1.405 10 248 966 0.740 1.048 1.442 20 267 972 0.017 0-31 s 1.405 20 248 966 0.746 1.055 1.444 30 266 972 0.047 0.346 1.406 30 247 966 0.752 1. 061 1.445 40 266 972 0.075 0-374 1.406 40 246 966 0.758 1.067 1.446 SO 266 972 O.IOI 0.400 1.406 50 246 96s 0.764 1-073 1-447 300 266 972 0.126 0.425 1.406 1300 245 965 0.770 1.080 1.448 10 266 972 0.150 0.449 1.407 10 245 96s 0.776 1.086 1.449 20 266 972 0.172 0.471 1.407 20 244 965 0.781 1.092 1.450 30 266 972 0.193 0.492 1.407 30 244 965 0.787 1.097 1-451 40 266 972 0.214 0-513 1.408 40 243 964 0.792 1-103 1.452 SO 266 972 0.233 0.532 1.408 SO 242 964 0.798 1. 109 1-454 400 265 972 0.252 o-SSi 1.408 1400 242 964 0.803 1. 115 1-455 10 26s 972 0.269 0.569 1.409 10 241 964 0.809 1. 120 1.456 20 265 972 0.286 0.586 1.409 20 241 964 0.814 1. 126 1-457 30 265 972 0-303 0.602 1.409 30 240 963 0.819 1.132 1.458 40 26s 972 0.319 0.618 I.4I0 40 239 963 0.824 1-137 1.460 SO 264 972 0-334 0.634 I.4I0 SO 239 963 0.830 1-143 1. 461 Soo 264 972 0.349 0.649 I.4II 15 00 238 963 0.835 1.148 1.462 10 264 971 0-363 0.663 I.4II 10 237 963 0.840 i-i S3 1-463 20 264 971 0-377 0.677 I.4II 20 237 962 0.84s I.I 59 1.465 30 264 971 0.390 0.691 I.4I2 30 236 962 0.850 1. 164 1.466 40 263 971 0.404 0.704 I.4I2 40 23s 962 0.854 1. 169 1.467 SO 263 971 0.416 0.717 I-4I3 SO 23s 962 0.859 1-174 1.469 600 263 971 0.428 0.729 1-413 i6oo 234 961 0.864 1.179 1.470 10 263 971 0.440 0.741 I.4I4 10 233 961 0.869 1.185 1.471 20 262 971 0.452 0-753 1-415 20 233 961 0-873 1. 190 1-473 30 262 971 0.464 0.764 I.4IS 30 232 961 0.878 1.195 1-474 40 262 971 0.475 0.776 I.4I6 40 231 961 0.883 1.200 1-475 SO 261 971 0.485 0.787 I.4I6 SO 231 960 0.887 1.205 1-477 700 261 970 0.496 0-797 I.4I7 17 00 230 960 0.892 1.210 1-478 10 261 970 0.506 0.808 I.4I7 10 229 960 0.896 1. 214 1.4S0 20 260 970 0.516 0.818 I.4I8 20 228 960 0.901 1. 219 1. 481 30 260 970 0.526 0.828 1-419 30 228 959 0.905 1.224 1.482 40 260 970 0.536 °Pl 1-419 40 227 959 0.910 1.229 1.484 SO 2S9 970 0.545 0.848 1.420 SO 226 959 0.914 1.234 1.485 800 259 970 0-SS5 °-il2 1. 42 1 1800 225 959 0.918 1.238 1.487 10 259 970 0.564 0.866 I.42I 10 225 958 0.922 1.248 1-489 20 258 970 0-573 0.875 1.422 20 224 958 0.927 1.490 30 258 969 0.581 0.884 1-423 30 223 958 0.931 1.252 1-491 40 258 ^^ 0.590 0.893 1.424 40 223 958 0-93S 1-257 1-493 SO 2S7 969 0.598 0.902 1.424 50 222 957 0-939 1. 261 1-495 9 00 257 969 0.607 0.910 1.425 1900 221 957 0-943 1.266 1.496 10 256 969 0.615 0.918 1.426 10 220 957 0.947 1.271 1.498 20 256 969 0.623 0.927 1.427 20 219 957 0-951 I-27S 1-499 30 256 969 0.630 0-935 1.428 30 2X8 955 0.955 1.279 1. 501 40 ZSS 969 0.638 0.942 1.428 40 218 956 0.959 1.284 1.502 SO 2SS 968 0.646 0.950 1.429 SO 217 956 0.963 1.288 1-504 1000 254 968 0.653 0.958 1.430 20 00 216 955 0.967 1.293 1.506 Smithsonian Tables. 74 Table 16. LOGARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATI- TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANCULATION. UNIT = THE METRE. [Derivation and use of table explained on p. Ix.] ai *i=a oa h <^2 * «i i5i = ri aa h ^2 20°00' 8.51216 8.50955 0.967 1.293 1.506 30°oo' 8-S1157 8.50936 1. 167 1.528 1.625 10 21S 9S5 0.971 1.297 1.507 10 156 936 1. 170 I-S32 1.627 20 214 9SS 0.975 1.301 1.509 20 15s 935 1-173 1-535 1.630 30 214 9SS 0.979 1.306 I.5H 30 154 935 1. 176 1-539 1.632 40 213 9S4 0.983 1.310 1.512 40 153 934 1.178 1-543 1-635 5° 212 9S4 0.987 I-3H I.514 SO 152 934 1. 181 1.546 1-637 21 00 211 9S4 0.990 1-319 1.516 31 00 151 934 1.184 1.550 1.639 10 210 953 0.994 1-323 I.518 10 149 933 1.187 I -554 1.642 20 209 9S3 0.998 1-327 I.519 20 148 933 1. 190 1-557 1.644 30 208 953 1.002 I-33I 1.521 30 147 933 1-193 1.561 1.646 40 207 953 1.005 1-336 1-523 40 146 932 1-195 1.564 1.649 5° 207 952 1.009 1.340 1.524 SO 145 932 1.198 1.568 1.651 2200 206 952 1-013 1.344 1.526 3200 144 931 1.201 1.572 1.654 10 20s 952 1.016 1.348 1.528 10 143 931 1.204 1-575 1.656 20 204 951 1. 020 1-352 1-530 20 141 931 1.207 1-579 1.659 30 203 951 1.023 1-356 I-S32 30 140 930 1.209 1.582 1.661 40 202 951 1.027 1-534 40 139 930 1.212 1.586 1.664 SO 201 9SI 1.030 1.364 I-S3S 50 138 929 1.215 1.590 1.666 2300 200 950 1.034 1.368 1-537 3300 137 929 1.218 1-593 1.669 10 199 950 1-037 1.372 1-539 10 136 929 1.220 I-S97 1.671 20 198 950 1.041 1-376 1.541 20 134 928 1.223 1.600 1.674 30 197 949 1.044 1.380 1-543 30 133 928 . 1.226 1.604 1.676 40 197 949 1.048 1.384 I-54S 40 132 927 1.229 1.607 1.679 5° 196 949 1.051 1-388 1-547 50 131 927 1.231 1.611 1.682 2400 19s 948 1.055 1.392 1.549 3400 130 927 1-234 1.615 1.618 1.684 10 194 948 1.058 1.396 1.550 10 128 926 1-237 1.687 20 193 948 1. 061 1.400 1.552 20 127 ' 926 1.239 1.622 1.689 30 192 947 1.065 1.068 1.404 1-554 30 126 925 1.242 1.625 1.692 40 191 947 1.408 1.556 40 125 925 1.245 1.629 1.695 50 190 947 1. 07 1 1.412 1.558 50 124 925 1.248 1.632 1.697 2500 189 946 1.075 1.078 1.416 1.560 3500 122 924 1.250 1.636 1.700 10 188 946 1.420 1.562 10 121 924 1-253 1.639 1.702 20 187 946 1.081 1.424 1.564 20 120 923 1.256 1.643 1.705 30 186 94S 1.084 1.427 1.566 30 119 923 1.258 1.647 1.708 40 '?s 945 1.088 1-431 1.568 40 118 923 1.261 1.650 1.7 1 1 SO 184 945 1.091 I-43S I-S70 SO 116 922 1.264 1.654 1-713 2600 'f3 944 1.094 1-439 1.572 3600 "5 922 1.266 1.657 1. 7 16 to 182 944 1.097 1-443 1-575 10 114 921 1.269 1.661 1.719 20 181 944 1. 100 1.447 1-577 20 "3 921 1.271 1.664 1.721 30 180 943 1. 104 1.450 1-579 30 III 921 1.274 1.668 1.724 40 179 943 1.107 1.454 1.581 40 110 920 1.277 1.672 1.727 SO 178 943 I.IIO 1.458 1-583 SO 109 920 1.279 1.675 1-730 27 00 177 942 1. 113 1.462 1-58S 3700 108 919 1.282 1.679 1-732 10 176 942 1. 116 1.465 1.587 10 106 919 1.285 1.682 I-73S 20 17s 942 1.119 1.469 1.589 20 105 919 1.287 1.686 1-738 30 174 941 1.122 1-473 1-591 30 104 918 1.290 1.689 1.741 40 172 941 1. 125 1-477 40 103 918 1.292 1.693 1.744 SO 171 941 1.128 1.480 1.596 SO 102 917 1.295 1.697 1-747 2800 170 940 1.131 1.484 1.598 3800 100 917 1.298 1.700 1.749 10 169 940 1-134 1.488 1.600 10 099 916 1.300 1.704 1-752 20 168 940 I-I37 1.492 1.602 20 098 916 1-303 1.707 1-755 30 167 939 1.140 1.495 1.605 30 097 916 1-30S 1.7U 1.758 40 166 939 I-I43 1.499 1.607 40 095 91 S 1.308 1.715 1.718 1.761 SO i6s 1.146 1-503 1.609 SO 094 915 1.310 1.764 2900 Z64 938 1.149 1.506 1.611 3900 093 914 1-313 1.722 1.767 10 163 938 1.152 1.510 1.614 10 092 914 1.316 1.725 1.770 20 162 937 1.155 1.514 i.6i6 20 090 914 1-318 1.729 1-773 30 161 937 1.158 1.517 1.618 30 089 913 1-321 1-733 1.776 40 i6o 937 1. 161 1.521 1.620 40 088 913 1-323 1-736 1.779 SO 158 936 1. 164 1.525 1-623 SO 086 912 1.326 1.740 1.781 3000 IS7 936 1.167 1.528 1-625 4000 085 912 1.328 1-743 1.784 Gmithsonian Tables. 75 Table 1 6. LOGARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATI- TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. UNIT=THE METRE. [Derivation and use of table explained on p. Ix.] I- ai h=ci 02 ii C2 * 01 *i = ^i 02 h £2 40°oo' 8.51085 8.50912 1.328 1-743 1.784 So°oo' 8.51008 8.50886 1.480 1.971 1.987 10 084 911 '•33' 1-747 1.787 10 007 886 1.482 1.975 1.990 20 083 911 1-333 1.751 1.790 20 006 885 1.485 1.980 1.994 3° 081 911 I '336 I-7S4 1-793 30 005 ff5 1.487 ■•9?^ 1.998 40 080 910 1-338 1.758 1.797 40 003 f§5 1.490 1.988 2.002 SO 079 910 1-341 1.762 1.800 SO 002 884 1.492 1.992 2.006 41 oo 078 909 1-344 1.765 1.803 51 00 001 884 1.49s 1.498 1.996 2.010 10 076 909 1.346 1.769 1.806 10 000 883 2.000 2.014 20 07s 908 1-349 1.772 1.809 20 8.50998 883 1.500 2.004 2.017 3° 074 908 I-3SI 1.776 I.8l2 30 997 882 1-S03 2.008 2.021 40 072 908 I-3S4 1.780 I.8I5 40 996 882 1.50S 1.508 2.013 2.025 SO 071 907 I-3S6 1-783 I.8I8 SO 994 882 2.017 2.029 42 00 070 907 I-3S9 1.787 1. 82 1 52 00 993 881 1.510 2.021 2.033 10 069 906 1.361 1.791 1.824 10 992 881 1-S13 2.025 2.037 20 067 906 1.364 1.794 1.828 20 991 880 1.516 2.030 2.041 30 066 90s 1.366 1.798 1. 83 1 30 990 880 1.518 2.034 2.045 40 065 90s 1.369 1.802 1.834 40 988 880 1. 521 2.038 2.049 5° 063 90s I-37I 1.805 1-837 SO 987 879 I-S23 2.042 2.053 4300 062 904 1-374 1.809 1.840 S3 00 986 879 1.526 2.047 2.057 10 o6i 904 1-376 1.813 1.843 10 985 878 1.529 2.051 2.062 20 060 903 1-379 1.817 1.847 20 983 878 I-S3' 2.05s 2.066 30 058 903 1.381 1.820 1.850 30 982 877 I-S34 2.060 2.070 40 057 902 1.384 1.824 I-8S3 40 981 877 I-S37 2.064 2.074 SO 056 902 1.386 1.828 1.856 SO 980 877 I-S39 2.068 2.078 4400 054 902 1.389 1.832 1.860 54 00 978 876 1.542 2.073 2.082 10 053 901 I -391 1.83s 1.863 10 977 876 I-S44 2.077 2.086 20 052 901 '-394 1.839 1.866 20 976 87s 1-S47 2.081 2.091 30 051 900 1.396 1.843 1.870 30 97S 87s i-SSO 2.086 2.09s 40 049 goo 1-399 1.847 '■f73 40 973 87s I-SS2 2.090 2.099 SO 048 899 1. 401 1.850 1.876 SO 972 874 i-SSS 2.095 2.104 4500 047 899 1.404 1.854 1.880 5500 971 874 '-558 2.099 2.108 10 04S 899 1.407 1-858 1.883 10 970 873 1.560 2.104 2.112 20 044 898 1.409 1.862 1.886 20 969 873 1-563 2.108 2.1 16 30 043 898 1.412 1.86s 1.890 30 967 873 1.566 2.113 2.I2I 40 042 897 1-414 1.869 1.893 40 966 872 1.568 2.117 2.125 SO 040 897 1.417 1-873 1.897 SO 965 872 1.571 2.122 2.130 4600 039 ^96 1.419 'ir 1.900 56 00 964 871 I-S74 2.126 2.134 lO 038 l^. 1.422 1.881 1.903 10 963 871 1-577 2.131 2.138 20 036 896 1.424 1.885 1.907 20 961 871 1-S79 2.136 2.143 30 03s 89s 1.427 1.888 1.910 30 960 870 1.582 2.140 2.147 40 034 89s 1.429 1.892 1.914 40 9S9 870 \-$^ 2.145 2.152 so 033 894 1.432 1.896 1.917 SO 958 869 2.150 2.156 4700 031 894 1-434 1.900 1.921 5700 9S7 869 1.590 2.154 2.161 10 030 893 1-437 1.904 1.924 10 956 869 I-S93 2.159 2.166 20 029 893 1-439 1.908 1.928 20 9S4 868 1.596 2.164 2.170 30 027 026 893 1.442 1.912 1.932 30 9S3 868 1.599 2.169 2.I7S 40 892 1.444 1.916 I -935 40 952 867 1.601 2.173 2.178 2.179 SO 025 892 1.447 1.920 1-939 SO 9SI 867 1.604 2.184 48 00 024 891 1.449 1.923 1.942 5800 950 867 1.607 2.183 2.188 2.189 10 022 891 1.452 1.927 1.946 10 949 866 1.610 2.193 2.1^ 20 021 890 1.454 1-931 1.950 20 947 866 1.613 2.193 30 020 890 I-4S7 J-93S I-9S3 30 946 866 1.615 2.197 2.203 2.208 40 019 «f •■459 1-939 I-9S7 40 94S 865 1.618 2.202 SO 017 889 1.462 1-943 1. 961 SO 944 86^ 1.621 2.207 2.213 4900 016 889 888 888 1.464 1.947 1.964 59 00 943 864 1.624 2.212 2.217 10 oiS 1.467 1.951 1.968 10 942 864 1.627 2.217 2.222 20 013 1.469 I-9SS 1.972 20 941 864 1.630 2.222 2.227 30 40 SO 012 on 010 888 887 887 1.472 I-47S 1-477 1.959 1.963 1.967 I-97S 1.979 1.983 30 40 SO 939 938 937 863 863 863 1.632 2.227 2.232 2.2-;7 2.232 2.237 2.242 5000 008 886 1.480 1.97 1 1.987 6000 936 862 1.641 2.242 2.247 Smithsonian Tables. 76 Table 16. LOCARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATI- TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. UNIT = THE METRE. [Derivation and use of tabic explained on p. Ix.] "1 il = ci 02 h Ci t- fli h=ci aa h ^2 6o°oo' 8.50936 8.50862 1.641 2.242 2.247 70°oo' 8.50877 5.50842 1.841 2.607 2.608 10 93S 862 1.644 2.247 2.252 10 876 842 1.84s 2.615 2.616 20 934 861 1.647 2.253 2.257 20 875 842 1.849 2.622 2.623 3° 933 861 1.650 2.258 2.262 30 875 842 1-853 2.630 2.631 40 932 861 1-653 2.263 2,268 2.267 40 874 841 1-857 2.637 2.638 5° 931 860 1.656 2.272 50 873 841 1.861 2.645 2.646 6i 00 929 860 1.659 2.273 2.277 71 00 872 841 1.865 2-653 2-653 lO 928 860 1.662 2.279 2.283 10 871 841 1.869 2.661 2.661 20 927 859 1.665 2.284 2.288 20 871 840 1-873 2.668 2.669 3° 926 859 1.668 2.289 2.293 3° 870 840 1.877 2.676 2.677 40 925 fsf 1.67 1 2.29s 2.298 40 869 840 1.881 2.684 2.685 5° 924 858 1.674 2.300 2.303 50 868 840 1.886 2.692 2-693 62 00 923 858 1.677 2.305 2.309 72 00 868 839 1.890 2.701 2.701 10 922 fS7 1. 680 2.31 1 2.314 10 867 839 1.894 2.709 2.709 20 921 857 1.683 2.316 2.320 20 866 839 1.898 2.717 2.718 3° 920 ^57 1.686 2.322 2.325 30 86s ^39 1.903 2.725 2.726 40 919 856 1.689 2.327 2.330 40 l^^ ^3f 1.907 2.734 2.734 5° 918 856 1.692 2.333 2-336 5° 864 838 I 912 2.742 2.742 6300 917 856 1.69s 1.698 2-338 2.341 7300 ff3 838 1.916 2-751 2.751 10 916 855 2.344 2-347 10 862 838 1.921 2.760 2.760 20 91 S 85s 1.701 2.350 2.352 20 862 837 1.925 2.769 2.769 30 913 85s 1.704 2-3SS 2.358 30 861 837 1-930 2.777 2.778 40 912 854 1.708 2.361 2.364 40 860 837 1-935 2.786 2-787 5° 911 854 1.711 2.367 2.369 50 860 837 1-939 2.795 2.796 6400 910 854 1.714 2.373 2.375 7400 ^59 |3f 1.944 2.804 2.805 10 909 853 1.717 2.378 2.381 10 858 836 1.949 2.814 2.814 20 908 8S3 1.720 2.384 2.387 20 858 836 1.954 2.823 2.823 30 907 853 1.724 2.390 2.392 30 ^57 836 1.958 2.832 2-833 40 906 852 1.727 2.396 2.398 40 ^5^ 836 'i:g 2.842 2.842 5° 905 852 1730 2.402 2.404 5° 856 835 2.851 2.852 6500 904 852 1-733 2.408 2.410 7500 ^55 83s 1-973 2.861 2.861 10 903 851 1-737 2.414 2.416 10 854 f3S 1.978 2.871 Hi' 20 902 851 1.740 ?„i\?.o 2.422 20 854 835 1.984 2.881 2.881 3° 901 851 1-743 2.426 2.428 3° i" 834 1.989 2-891 2.891 40 900 850 1-747 2.432 2-434 40 852 834 1.994 2.901 2.901 50 900 850 1.750 2.438 2.440 5° 852 834 1.999 2.911 2.912 6600 850 I -7 S3 2.445 2.446 7600 ^5' 834 2.005 2.922 2.922 10 898 849 I-7S7 2.451 2-453 10 ?5' 834 2-010 2.932 2-933 20 897 849 1.760 2.457 2.459 20 850 833 2.015 2.943 2.943 30 896 849 1.764 2.464 2.465 30 849 833 2.021 2-954 2-954 40 89s 848 1.767 2.470 2472 40 849 833 2.027 2.96s 2.965 5° 8^ 848 I -77 1 2.476 2.478 50 848 833 2.032 2.976 2.976 67 00 893 848 1-774 2.483 2.484 7700 848 833 2.038 2.987 2.987 10 892 847 1.778 2.489 2.491 10 847 832 2-044 2.998 2.998 20 891 847 1.781 2.496 2.497 20 847 832 2.050 3.010 3-010 30 890 847 1.785 1.788 2.502 2.504 30 846 832 2-056 3.021 3.021 40 889 847 2.509 2.510 40 845 832 2.062 3-033 3-033 50 888 846 1.792 2.516 2.517 50 845 832 2.068 3-045 3-045 6800 887 846 I-79S 2.522 2.524 78 00 844 832 2.074 3-057 3-057 10 887 846 1.799 2.529 2-531 10 844 831 2.080 3-069 3.069 20 886 845 1.803 2.536 2-537 20 843 831 2.086 3.082 3-082 30 88s 845 1.806 2-543 2.544 30 843 !3' 2-093 3-094 3-094 40 884 845 1.810 2.550 2-55' 40 842 P' 2.099 3-107 3-107 SO 883 844 1.814 2-557 2.558 SO 842 831 2.106 3.120 3.120 6900 882 844 1.818 2.564 2.565 7900 841 831 2.113 3-133 3-133 10 881 844 1.821 2.571 2.572 10 841 830 2.II9 3.146 3-146 20 880 844 1.825 2.578 2.579 20 840 830 2.126 3.160 3-160 30 880 843 1.829 2-585 2.586 30 840 830 2-133 3-'^^ 3-'^t 40 879 843 1-833 2-593 2.594 40 839 830 2.140 3.188 3.188 50 878 843 1-837 2.600 2.601 50 839 830 2.148 3.202 3.202 7000 877 842 1.841 2.607 2.608 80 00 839 830 2.155 3.216 3.216 Smithsonian Tables. 77 Table 1 7. LENGTHS OF TERRESTRIAL ARCS OF MERIDIAN. [Derivation of table explained on p. xlvi.] Latitude Latitude. Latitude. Latitude. Latitude. Latitude. Interval. 0° 1° 2° 3° 4° Feet. Feet. Feet. Feet. Feet. lo" 1007.66 1007.66 vxyj.iyj 1007.68 1007.71 ■ 20 2015.31 2015.32 2015.34 2015.37 2015.41 30 3022.97 3022.98 3023.01 3023.06 3023.12 40 4030.63 4030.64 4030.68 4030.74 4030.83 50 5038.28 5038.30 5038.35 5038.42 5038.54 6a 6045.94 6045.96 6046.02 6046. 11 6046.24 lO* 60450.4 60459.6 60460.2 60461.1 60462.4 20 120918.8 120919.2 120920.4 120922.2 120924.8 30 181378.3 181378.8 181380.6 181383.3 181387,3 40 241837.7 241838.4 241840.8 241844.4 241849,7 50 302297.1 302298.0 302301.0 302305.5 302312,1 60 362756.5 362757.6 362761.2 362766.6 362774.5 5° 6° 7° 8° 9° 10" 1007.73 1007.77 1007.81 1007.86 1007,91 20 2015.47 2015.54 2015.62 2015.71 2015,82 30 3023.20 3023.31 3023.43 3023.56 3023.72 40 4030.94 4031.08 4031.24 4031.42 4031.63 50 5038.67 5038.84 5089.04 5039.28 5039,54 60 6046.41 6046.61 6046.85 6047.13 6047.45 10' 60464. z 60466.1 60468.5 60471.3 60474.5 20 I2092S.2 120932.3 I20937.t 120942.6 120949,0 30 181392.3 18139S.4 181405.6 181413.9 181423.4 40 241856.4 241864.6 241874.2 241885.2 241897.9 50 302320.5 302330.7 302342.7 302356.5 302372.4 60 362784.6 362796.8 362811.2 362827.8 362846.9 10° 11° 12° 13° 14° to" 1007.97 1008.03 1008.10 1008.18 1008.26 20 2015.93 2016.06 2016. 20 2016.35 2016.51 .30 3023.90 3024.09 3024.30 3024.52 3024.77 40 4031.86 4032.12 4032.40 4032.70 4033.02 50 5039-83 5040.15 5040.50 5040.88 5041.28 60 6047.80 6048.18 6048.60 6049.05 6049,54 lol 60478.0 60481.8 60486.0 60490.5 60495.4 20 120955.9 120963.6 120972.0 120981.0 120990.7 30 181433.9 181445.4 181458.0 181471.5 181486.1 40 241911.8 241927.2 241944.0 241962.0 241981.4 302476.8 1° 302389.8 302409.0 302430.0 302452,5 60 362867.8 362890.8 362916.0 362943.0 362972.2 15° 16° 17° 18° 19° 10" 1008.34 1008.44 1008.53 1008.63 1008.74 20 2016.69 2016.87 2017.06 2017.27 2017.48 30 3025.03 3025.30 3025.60 3025.90 3026.23 40 4033.37 4033-74 4034-13 4034-54 403497 so 5041.72 5042. iS 5042.66 5043.18 5043.71 60 6050.06 6050.61 6051.19 6051.81 6052.45 to/ 60500.6 60506.1 60511.9 605 18. I 60524,5 20 121001.2 I2rOI2.2 121023,8 121036.2 121049,0 30 181501.7 I8I5I8.3 181535-8 181554.3 181573,6 40 242002.3 242024.4 242047.7 242072.4 242098, 1 50 302502.9 302530.5 302559.6 302590.5 302622,6 60 363003.5 363036.6 363071.5 363108.6 363147.1 20° 21° 22° 23° 24° 10" 1008.86 1008.97 1000.10 2018.19 loog,22 1009,35 20 2017.71 2017.95 2018.44 2018,70 30 3026.56 3026.92 3027.28 3027.66 3028,06 40 4035.42 4035.89 4036.38 4036.88 4037,41 50 5044-28 5044.86 5045.48 5046.10 5046,76 60 6053.13 6053.84 6054.57 6055,33 6056,11 lol 60531.3 60538.4 60545.7 60553,3 60561.1 20 121062.6 121076.8 121091,4 121 106,5 181659,8 121122,3 30 181593.9 181615.1 181637.1 181683,4 40 242125.2 242153.5 242182,8 242213,0 242244,5 50 302656.5 302691.9 302728.5 302766,3 302805,6 60 363187.8 363230.3 363274.2 363319,6 363366,7 Smithsonian Tables. 78 Table 17. LENGTHS OF TERRESTRIAL ARCS OF MERIDIAN. [Derivation of table explained on p. xlvi.] Latitude Latitude. Latitude. Latitude. Latitude. Latitude. Interval. 25° 26° 27° 28° 29° Feet. Feet. Feet. Feet. Feet. lO" 1009.49 1009.63 1009.77 1009.92 1010.07 20 2018.97 2019.25 2019.54 2019.83 2020. 13 30 3028.46 3028.88 3029.31 3029.75 3030.20 40 4037.95 4038.51 4039.08 4039.67 4040.27 SO 5047.44 5048.13 5048.85 5049.58 5050.33 60 6056.92 6057.75 6058.62 6059.50 6060.40 10' 60569.2 60577.6 60586.2 60595.0 60604.0 20 12113S.5 121155.2 121172.3 121190.0 12120S.0 30 181707.7 181732.7 181758.5 181785.0 1S1812.0 40 242276.9 242310.3 242344.7 242379.9 242416.0 50 302846.1 302SS7.9 302930.9 302974.9 303019.9 60 363415.4 363465-5 363517.1 363569.9 363623.9 30° 31° 32° 33° 34° 10" 1010.22 1010.38 1010.54 1010.70 1010.86 20 2020.44 2020.75 2021.07 2021.40 2021.73 30 3030.66 3031.13 3031.61 3032.10 3032.59 40 4040.88 4041.51 4042.15 4042.80 4043.46 50 5051.10 5051.89 5052.68 5053.50 5054.32 60 6061.32 6062.26 6063.22 6064.20 6065.19 10/ 60613.2 60622.6 60632.2 60642.0 60651.9 20 121226.4 121245.3 121264.4 121283.9 121303.8 30 181839-7 181867.9 181896.6 181925.9 181955.7 40 ' 242452-9 242490.5 242528.8 242567-9 242607.6 50 303066.1 303113.2 303161.1 303209.9 303259-4 60 363679-3 363735-8 363793.3 363851.8 363911-3 35° 36° 37° 38° 39° 10" 1011.03 I0II.20 1011.37 1011.55 1011.72 20 2022.06 2022.40 2022.7S Z023.09 2023.44 30 3033.10 3033-61 3034.12 3034.64 3035.17 40 4044.13 4044.81 4045.50 4046.19 4046.S9 50 5055.16 5056.01 S056.87 5057-74 5058.61 60 6066.19 6067.21 6068.24 6069.29 6070.34 lO* 60661.9 60672.1 60682.4 60692.9 60703.4 20 121323.9 I21344-3 121364.9 121385.7 121406.7 30 181985.8 I 820 I 6.4 182047.3 182078.6 182110.1 40 242647.S 242688.S 242729.7 242771.4 242813.4 50 303309.7 303360.6 303412.2 303464.3 303516.8 60 363971.7 364032.8 364094.6 364157. I 364220.2 40° 41° 42° 43° 44° 10" 1011.90 1012.08 1012.25 1012.43 1012.61 20 2023.80 2024.15 2024.51 2024.S7 2025.23 30 3035-7° 3036.23 3036.77 3037.30 3037-84 40 4047.60 4048.31 4049.02 4049.74 4050.46 50 5059.50 5060.38 5061.28 5062.17 5063.07 60 6071.39 607Z.46 6073.53 6074.61 6075.69 lO* 60713.9 60724.6 60735.3 60746.1 60756.9 20 121427.9 121449.2 I21470.6 121492.2 121513.7 30 182141.8 182173.8 182206.0 182238.2 182270.6 40 242855.8 242S98.4 242941.3 242984-3 243027.4 5° 303569.7 303623.0 303676.6 303730.4 303784-3 60 364283.7 364347.6 3644II.9 364476.5 364541.2 45° 46- 47° 48° 49° 10" 1012.79 1012.97 1013.15 1013.33 1013.51 20 2025.59 2025.95 2026.31 2026.67 2027.02 30 3038.3S 3038.92 3039.46 3040.00 3040.54 40 4051.1S 4051.90 4052.62 4053-34 4054.05 50 5063.97 5064.87 5065.77 5066.67 5067.55 60 6076.77 6077.8s 6078.93 6080.00 6o8i.o8 lO* 60767.7 60778.5 60789.3 60800.0 60810.8 20 1ZJS35-3 121556.9 182367.8 121600. 1 121621.5 30 182303.0 182335.4 182400.1 182432.3 40 243070.6 243113.9 243157.0 243200.Z 243243.0 50 303838.3 303892.4 303946.3 304000.1 304053.8 6a 364606.0 364670,8 364735-5 364800.2 364864.5 Smithsonian Tables. 79 Table 17. LENGTHS OF TERRESTRIAL ARCS OF MERIDIAN. [Derivation of table explained on p. xlvi.] Latitude Latitude. Latitude. Latitude. Latitude. Latitude. Latitude. Interval. So° 51° S2° 53° 54° 55° Feet. Feet. Feet. Feet. Feet. Feet. lo" loi3.6g 1013.87 1014.04 1014.22 1014.39 1014.56 2Q 2027.38 2027.74 2028.09 2028.44 2028.78 2029.12 3° 3041.07 3041.60 3042.13 3042.65 3043-17 3043.68 40 4054.76 4055.47 4056.17 4056.87 4057.56 4058.24 50 5068.46 5069.34 5070.22 5071.09 5071.96 5072.80 60 6082.15 6083.21 6084.26 6085.31 6086.35 6087.37 lol 60821.5 60832.1 60842.6 60853.1 60863.5 60873.7 20 121642.9 121664.2 121685.2 121706.2 121726.9 • 121747.3 30 182464.4 182496.2 182527.7 182559.2 182590.4 182621.0 40 243285.8 243328.3 243370.3 243412.3 243453.8 243494.6 50 304107.3 304160.4 304212.9 304265.4 304317-3 304368.3 60 364928.8 364992.5 365055.5 365118.5 365180.8 365242.0 56° 57° 58O 59° 60° 61° 10" 1014.73 1014.90 1015.06 1015.22 1015.38 1015.53 20 2029.46 2029.79 2030.12 2030.44 2030.76 Z031.07 30 3044.19 3044.69 3045.18 3045-66 3046.14 3046.60 40 4058.92 4059.58 4060.24 4060.88 4061.52 4062.14 50 5073.65 5074.48 5075.30 5076.10 5076.90 5077.67 60 6088.38 6089.38 6090.36 6091.33 6092.27 6093.20 10' 60883.8 60893.8 60903.6 60913.3 60922.7 121845.5 60932.0 20 121767.6 121787.5 121807.Z 121826.5 121864.1 30 182651.4 182681.3 182710.8 182739.8 182768.2 182796.1 40 243535-2 2435750 243614.4 243653.0 243691.0 243728.2 50 304419.0 304468.8 304518.0 304566.3 304613.7 304660.2 60 365302.S 365362.6 365421.6 365479.6 365536.4 365592..2 62° 63° 64° 65° 66° 67° 10" 1015.69 1015.83 1015.98 1016.12 1016.26 1016.39 2032.78 20 2031.37 2031.67 2031.96 2032.24 2032.51 • 30 3047.06 3047.50 3047.94 3048.36 3048.77 3049.16 40 4062.74 4063.34 4063.92 4064.48 4065.02 4065.55 50 5078.43 5079.17 5079.90 5080.60 5081.28 5081.94 60 6094.12 6095.00 6095.87 6096.71 6097.54 6098.33 lO* 60941.2 60950.0 60958.7 60967.1 60975.4 60983.3 20 121882.3 12 1900.1 121917.5 182876.2 121934.3 121950.7 121966.6 30 182823.5 182850.1 182901.4 243868.6 182926.1 182949.8 40 243764.6 243800.2 243835-0 304876.8 243933.1 50 304705.8 304750.2 304793-7 304835-7 304916.4 60 365647.0 365700.2 365752.4 365802.8 365852.2 365899.7 68° 69° 70° 71° 72° 73° 10" 1016.52 1016.64 1016.76 1016.87 1016.98 IOZ7.O9 20 2033.03 2033.28 2033-52 2033-75 2033.96 . 2034-17 30 3049.55 3049.92 3050.2S 3050.62 3050.95 3051.26 40 4066.07 4066.56 406704 4067.49 4067.93 4068.34 50 5082.58 5083.20 5083.80 5084.36 5084.91 6101.89 5085.43 60 6099. 10 6199.84 6100.55 6101.24 6102.52 10' 60991.0 61998.4 61005.5 61012.4 61018.9 122037,8 61025.2 20 121982.0 121996.8 122011.1 122024.8 122050.3 30 182973.1 182995.2 183016.6 183037.1 183056.8 183075,5 40 243964.1 243993-6 244022.2 244049.5 244075.7 244100.6 SO 304955.1 304992.0 305027.7 305061.9 305094.6 305125.8 60 365946.1 365990.4 366033.2 366074.3 366113.5 366151.O 74° 75° 76° 77° 78° 79° io" 1017.1S 1017.28 1017.37 1017.45 1017.53 1017.60 20 2034.37 2034.56 2034-73 2034.90 2035.05 3052.58 2035.19 30 3051.56 3051.84 3052.10 3052.35 3052.79 40 4068.74 4069.12 4069.46 4069.80 4070.10 4070.38 s. 5085.92 5086.40 5086.83 5087.24 5087.63 5087.98 60 6103.11 6103.67 6104.20 6104.69 6105.16 6105.58 lo/ 6103 1. 1 61036.7 61042.0 61046.9 61051.6 61055.8 20 122062.2 122073.5 122083.9 122093.9 122103.x 122111.5 30 183093.3 183110.2 183125.9 183140.8 183154.7 183167.3 40 244124.4 244147.0 244167.8 244187.8 244206.2 244223.0 r 305155.5 305183-7 305209.8 305234-7 305257.8 305278.8 60 366186.6 366220.4 366251.8 366281.6 366309.4 366334.6 Smith SON AN Tables 80 Table 18. LENGTHS OF TERRESTRIAL ARCS OF PARALLEL. [Derivation of table explained on p. xlix.] Longitude Latitude. Latitude. Latitude. Latitude. Latitude. Interval. 0° 1° 2° 3° 4° Feet. Feet. Feet. Feet. Feet. id" 1014.52 1014.37 , 1013.91 1013.14 1012.07 20 2029.05 2028.74 2027. 82 2026.29 Z024.14 3° 3043.57 3043- 11 3041.73 3039.43 3036.21 40 4058.10 4057.48 4055.64 4052 57 4048.28 SO 5072.62 5071.86 S069.55 S065.72 5060.35 60 6087.14 6086.23 6083.46 6078.S6 6072.42 10' 60S71.4 60862.3 60834.6 60788.6 60724.2 20 121742.9 121724.5 121669.2 121577.2 121448.4 30 182614.3 182586.8 182503 .8 182365.7 182172.6 40 243485.8 243449.0 243338.4 243154.3 242896.8 SO 304357-2 304311-3 304173.0 303942.9 303621.0 60 365228.5 365173-6 365007.6 364731.5 364345-2 5° 6° 7° 8° 9° 10" 1010.69 1D09.00 1007.01 1004.72 1002.12 20 2021.38 201S.01 2014.03 2009.43 2004.23 30 3032.07 3027.01 3021 04 30I4-IS 3006.35 40 4042.76 4036.02 4028.05 4018.87 4008.47 50 5053-45 5045.02 5035.06 5023-58 5010.58 60 6064.14 6054.02 6042.08 6028.30 6012.70 lO* 60641.4 60540.2 60420.8 60283.0 60127.0 20 121282.8 121080.5 120S41.6 120566.0 120254.0 30 181924.2 181620.7 1S1262.3 180849.1 18038 1. 1 40 242565.6 242161.0 241683.1 24II32.I 240508.1 SO 303207.0 302701.2 302103.9 301415.1 300635.1 60 36384S.4 363241.4 362524.7 361698.1 360762,1 10° 11° 12° 13° 14° 10" 999.21 996.01 992.50 98869 984.58 20 1998.43 1992.01 1985.00 1977-38 1969.17 30 2997.64 2988.02 2977.50 2966-07 2953.75 40 3996-85 3984.03 3970.00 395476 393S.34 50 4996.06 4980.04 4962.50 4943-46 4922.92 60 5995-28 5976.04 5955-00 5932.15 5907.50 lo/ 59952-8 59760.4 S9SSO.O 59321-s 59075-0 20 I 19905.6 119520.8 119100.0 118042.9 118150.1 30 179858.3 179281.3 178650.0 177964.4 177225. I 40 239811.1 239041.7 238200.0 237285.8 236300.2 5° 299763.9 298802.1 297750.0 296607.3 295375.2 60 359716-7 358562.5 357300.0 3559Z8.8 3S4450.2 15° 16° 17° 18° 19° 10" 980.18 975-47 970.48 965.18 959.60 20 1960.35 1950-95 1940.95 1930.36 1919.19 30 2940-53. 2926.42 2911.42 2895.5s 2878.79 40 3920.71 3901.90 3881.90 3860.73 3838.3S 5° 4900.S8 4877-37 4852.38 4825.91 4797.98 60 5881.06 5852-84 5822.85 5791.09 5757-58 lo/ 58810.6 58528.4 58228.5 57910.9 57575-8 20 117621.2 117056.9 I 16457.0 115821.8 11S151-S 30 176431.9 175585-3 174685.5 173732.8 172727.3 40 235242.5 234113.8 232914.0 231643.7 230303.0 50 294053.1 292642.2 291142.S 289554.6 287878.8 60 352863.7 351170.6 349371.0 347465.5 345454-6 20° 21° 22° 23° 24° 10" 953.72 947.5s 941.10 934.36 927-33 20 1907.44 1895. 10 1882.19 1S68.71 1854-67 30 2861.15 2842.66 2823.29 2803.07 2782.00 40 3814.87 3790.21 3764.3S 3737-43 3709-33 50 4768-59 4737-76 4705.48 4671.78 4636.66 60 5722.31 5685.31 5646.58 5606.14 5564.00 10' 57223.1 56853.1 56465.8 56061.4 55640.0 20 114446.2 I 13706.2 112931.5 112122.8 11T280.0 30 171669.2 170559.4 169397-3 168184.3 166919.9 40 22S892.3 227412.5 225863.0 224245.7 222559.9 5° 286115.4 2S4265.6 282328.8 280307.1 278199-9 60 343338.S 34«"8.7 338794.6 336368.5 333839-9 Smithsonian Tables. 81 Table 18. LENGTHS OF TERRESTRIAL ARCS OF PARALLEL. [Derivation of table explained on p. xlix.] Longitude Latitude, Latitude. Latitude. Latitude. Latitude, Interval. 250 26° 27O 28° 29° Feet. Feet. Feet. Feet. Feet. lo" 920.03 912.44 904.58 896.44 888.03 20 1840.0s 1824.88 1809.16 1792.88 1776.06 30 2760.08 2737-33 2713-74 2689.32 2664.09 40 3680.11 3649-77 3618.32 3585.76 3552.12 50 4600.14 4562.21 4522.89 4482.20 4440,15 60 SS20.17 5474-65 5427-47 5378.64 5328.18 10' SS201.7 S4746-S 54274-7 53786.4 53281.8 20 110403.3 - 109493.0 108549.5 107572.9 106563.5 30 16S605.0 164239.5 162S24.2 161359.3 159845.3 40 220806.6 218986.1 217099.0 215"45.7 213127.1 so 276008.3 273732.5 271373.7 268932.2 266408.8 60 331209.9 328479.1 325648.4 322718.6 319690.5 30° 31° 32° 33° 34° 10" 879-35 870.40 861.18 851.71 841.97 20 1758.70 1740.80 1722.37 1703.41 1683.94 30 2638.04 2611.20 2583.55 2S55-'2 2525.91 3367.88 40 3517-39 3481.59 3444-74 3406.83 50 4396-74 4351-99 4305.92 4258.53 4209.8s 60 5276.09 5222.39 5167.10 5110.24 5051,82 lO* 52760.9 52223.9 51671,0 51102,4 50518,2 20 IOSS2I.8 104447.8 103342.1 102204.8 101036.4 30 158282.5 156671.8 155013.1 153307.3 151554-6 40 2 1 1043. s 208895.7 206684.2 204409.7 202072.8 Si 263804.4 261119.6 258.355-2 255512.1 252591.0 60 316565.3 313343.5 310026.3 306614.S 303109.2 35° 36° 37° 38° 39° 10" 831.98 821.73 811.23 800.48 789.49 20 1663.95 1643.46 1622.46 1600.97 1578.98 30 2495-93 2465.19 2433,69 2401.45 2368.48 40 3327-91 3286.91 3244-92 3201.93 3157-97 50 4<59.88 4108.64 4056-15 4002.42 3947-46 60 4991.85 4930.37 4867.38 4802.90 4736.95 tol 499-8.6 49303-7 48673.8 48029.0 47369-5 20 99837-2 98607.4 97347-6 96058.0 94739.1 30 149755-8 147911.2 146021.4 144087,0 142108.5 40 199674-3 197214.9 194695.2 192116.0 189478.2 1° 249592.9 246518.6 243369.0 240145.0 236847.7 60 2995 n-S 295822.3 292042.8 288174.0 284217.2 40° 41° 42° 43° 44° lo" 778.26 766.79 755.08 743.15 730.98 20 1556.52 1533.58 1510.17 1486.29 1461.96 30 2334.78 2300.37 2265.25 2229.44 2192.9s 40 3113.04 3067.15 3020.33 2972.59 2923-93 so 3891.30 3833.94 3775-42 3715.73 3654.91 60 4669.55 4600.73 4530.50 4458.88 4385.89 lof 46695.6 46007.3 45305-0 44588.8 43858.9 20 93391.2 92014.7 90610.0 89177.6 87717-9 30 140086.7 138022.0 135915-0 133766.4 131576.8 40 186782.3 184029.3 181220.0 178355.2 175435.8 so 2334779 230035.7 226525.0 222944.0 219294.7 60 280173.5 276044.0 271830.1 267532.8 263153.6 4S° 46° 47° 48° 49° 10" 718.59 705.99 693.16 680.12 666.87 20 1437-19 1411.97 1386.32 1360.24 "333.75 30 ^JS5-7f 2117.96 2079.48 2040.36 2000.62 40 2874-38 2823.94 2772.64 2720.49 2667.50 g 3592.97 3529.93 3465-80 3400.61 3334-37 4311.56 4235-91 4158-96 4080.73 4001.25 10' 20 43115-6 86231.3 42359-1 84718.2 41589-6 83179-2 40807.3 81614.6 40012.5 80024.9 30 129346.9 127077-3 124768.7 122421.9 120037.4 40 172462.S 169436.5 166358.3 163229.2 160049.9 S 215578.2 211795.5 207947.9 204036.4 200062.3 240074.8 60 258693.8 254154-7 249S37-S 244843,7 Smithsoni AN Tables 82 Table 18. LENGTHS OF TERRESTRIAL ARCS OF PARALLEL. [Derivation of table explained on p. xlix.] Longitude Latitude. Latitude. Latitude. Latitude. Latitude. Latitude. Interval. So° 51° 52° 53° 54° 55° Feet. Feet. Feet. Feet. Feet. Feet. lO" 653.42 639-77 625.92 611.88 597-65 583.23 20 1306.8s 1279.54 1251.84 1223.76 1195.30 1166.47 30 1960.27 1919.31 1877-76 1835-63 1792.94 1749.70 40 2613.69 2559.08 3198.85 2503.68 2447-51 2390-59 2332-93 50 3267.12 3129.60 3059-39 2988.28 2916.16 60 3920.54 3838.62 3755-52 3671.27 3585-89 3499-40 10' 39205.4 38386.2 37555-2 36712.7 35858-9 34994-0 20 78410.8 76772.4 75110-4 73425-4 71717.8 69988-a 30 I 17616. I 115158.6 112665.6 110138.0 107576.6 104981.9 40 156821.5 I53S44-8 150220.8 146850.7 143435-5 '39975-9 1° 196026.9 191931.0 187776.0 183563.4 179294.4 174969.9 60 235232.3 230317.2 225331.2 220276-1 215153-3 209963.9 56° 57° 58° 59° 60° 61° 10" 568.64 553.87 538.93 523-82 508-55 493-13 20 1137-28 H07.74 1077.86 1047.65 1017.11 986.26 30 1703.92 l66i.6i 1616.79 1571-47 1525.66 1479.38 40 2274.56 2215.4S 2155-72 2095.29 2034.22 1972.52 50 2843.20 2769-35 2694.64 2619.12 2542.77 2465.64 6a 3411.83 3323-22 3233-57 3142-94 3051-33 2958.77 10' 34118.3 33232.2 32335-7 31429.4 30513-3 29587-7 20 68236.7 66464.4 64671.5 62858.8 61026.6 59175.5 30 102355.0 99696.6 97007.2 942S8.1 91539-9 88763.2 40 136473-4 132928.8 129343.0 125717-5 122053.2 118351.0 50 170591.7 166161.0 161678.7 ■57146-9 152566.5 147938.7 60 204710.0 199393-2 194014.4 188576.3 183079.8 177526.4 62° 63° 64° 65° 65° 67° 10" 477-55 461.83 445.96 429-95 413-82 397-55 20 955.10 923.65 891.92 859.91 827.63 795.10 30 1432.66 1385.48 1337-88 1289.86 1241.44 1192.64 40 1910.21 1847.31 1783.84 1719.81 1655.26 1590.19 50 2387-76 2309.14 2229.80 2149.76 2069.08 1987.74 6a 2865.31 2770.96 2675.75 2579-72 2482.89 2385.29 la* 28653.1 27709.6 26757.5 25797-2 24828.9 23852.9 2a 57306.2 55419.2 S35'5-i 51594.4 49657-8 47705.8 3a 85959-4 83128.9 80272.6 7739I-S 74486.7 71558.6 40 114612.5 110838.5 107030.2 103 188.7 99315.6 95411.5 50 143265.6 138548. 1 133787-7 128985.9 124144- 5 I 19264.4 60 171918.7 166257.7 160545.2 154783.1 148973.4 143117-3 68° 69° 70° 71° 72° 73° 10" 381.16 364.65 348.03 331-30 314-47 297-54 20 762.32 729-30 696.06 662.60 628.94 595-08 30 "43-47 1093.95 1044.09 993.90 943-41 892.62 40 1524.63 1458.60 1392- " 1325-20 1257-88 1190.16 SO 1905.79 1823.25 1740.14 1656.5a 1572-34 1487.70 60 2286.95 2187.90 2088.17 1987.81 1886.81 1785.23 10' 22869.5 21879.0 20881.7 19878.1 18868. 1 17852.3 20 45739-0 43758-0 41763-5 39756.1 37736.3 35704-7 30 68608.4 65637.0 62645.2 59634.2 56604.4 53557-0 40 91477.9 87516.0 83527-0 79512.2 75472.6 71409.4 SO "4347-4 109395.0 104408.7 99390.3 94340.7 89261.7 60 137216.9 131274.0 125290.4 119268.4 113208.8 107114.0 74° 75° 76° 77° 78° 79° to" 280.52 263.41 246.22 228.96 211.62 '21^^ 20 561.04 526.82 492.44 457-91 423.24 388.43 30 841.56 790.23 738.66 686.86 634-85 582.64 40 1122.08 1053.64 984.88 915-82 846.47 776.86 SO 1402.60 1317-06 1231.10 1144.78 1058-09 971.08 60 1683.11 1580.47 1477-33 1373-73 1269.71 1165.29 10' 16831.1 15804.7 14773-3 13737-3 J2697.1 11652.9 20 33662.3 31609.3 29546.5 27474.6 25394-2 23305.8 30 50493.4 47414.0 443 19-8 41211.9 38091.2 34958-7 40 67324.6 63218.6 59093-0 54949.2 50788.3 46611.6 SO 84155-7 79023-3 73866.3 68686.5 63485-4 58264.5 60 I009S6.8 94828.0 88639.6 82423.8 761S2.5 69917.4 Smithsonian Tables. 83 Table 1 9. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ubhii - [Derivation of table explained on pp. liii — Ivi.] •is o"oo' 30 45 I 00 IS 30 4S 'S 30 45 300 IS 30 45 400 15 30 45 500 IS 30 45 6 00 15 30 45 7 00 15 30 45 800 IS 30 45 900 15 30 45 •ogS •CS"I3 V s V p. Inches. ^•353 8.706 I3-°S9 17.412 8.706 I3-°S9 17.412 8.706 13059 17413 ^•353 8.706 13.060 17-413 4-353 8.707 13.060 17413 4-353 8.707 13.060 17-414 4-354 8.707 13.061 17-414 4-354 8-707 13.061 17-415 ^•354 8.708 13.062 17.416 1354 8.708 13.062 17.417 CO-ORDINATES OF DEVELOPED PARALLEL FOR- 15' longitude. Inches, 4-383 4-383 4-383 4.382 4.382 4.382 4-381 4-381 4-380 4-379 4-379 4-378 4-377 4-376 4-375 4-373 4-37 z 4-371 4-369 4.368 4.366 4-364 4-363 4.361 4-359 4-357 4-355 4-353 4-35° 4-348 4-346 4-343 4-340 4-338 4-335 4-332 4-329 4.326 4-323 4.320 4-317 Inches. .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .002 .002 .002 .002 .002 .002 3c/ longitude. Inches. 8.766 8.766 8-765 8-765 8.764 8.764 8.763 8.762 8.760 8-759 8-757 8-755 8-753 8.751 8.749 8.747 8-744 8.742 8.739 8.736 8.732 8.729 8-725 8.722 8.718 8.714 8.710 8.70s 8.701 8.696 8.691 8.686 8.681 8.67s 8.670 8.664 8.658 8.652 8.646 8.640 8-633 Inches. .000 .000 .000 .001 .001 .001 .001 .001 .001 .001 .001 .002 .002 .002 .002 .002 -003 .003 .003 .003 ■003 .003 .004 .004 .004 .004 .004 .004 .005 .005 .005 .005 .005 .005 .006 .006 .006 .006 '.006 .006 .006 45' longitude. 13.148 13.148 13.148 13-147 13.146 13-145 13-144 13.142 13.141 13-138 13-136 13-133 13-130 13-127 13.124 13.120 13.116 13-112 13.108 13.104 13.099 13.094 13.088 13.082 13.076 13.071 13.064 13-058 13-051 13.044 13-036 13.029 13.021 13-013 13.005 12.996 12.987 12.979 12.969 12.960 12.950 Inches. .000 .000 .001 .001 .001 .002 .002 -003 -003 .003 .004 .004 .004 .005 .005 .006 .006 .006 .007 .007 .007 .008 .008 .008 .009 .009 .010 .010 .010 .oil ,011 .oil .012 .012 -013 .013 .013 .014 .014 .014 .015 1° longitude. Inches. 17-531 17-531 17-530 17-530 17.528 17-527 17-525 17-523 17.521 17.518 17-514 17.511 17.507 17-503 17.498 17.494 17.488 17-483 17-478 17.472 17-465 17-458 17-451 17-443 17-435 17.428 17.419 17.410 17.401 17.392 17.382 17-372 17.362 17-351 17-340 17.328 17.316 17-305 17.292 17.280 17.266 Inches. .000 .001 .001 .002 .003 .003 .004 .005 .005 .006 .007 .007 .008 .008 .009 .009 .010 .011 .012 .013 -013 .014 .014 .015 .016 .017 .017 .018 .019 .019 .020 .020 .021 .022 .022 -023 .024 .024 .025 .026 .026 Smithsonian Tables. 84 Table 19. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE mUi - [Derivation of table explained on pp. liii — Ivi.] Latitude of parallel. Meridional dis- tances from even degree parallels. CO-ORDINATES OF DEVELOPED PARALLEL FOR — 15' longitude. 30^ longitude. 45' longitude. 1° longitude. X y X y X y X y Inches. Inches. Inches. Inches. Inches. Inches. Indies. Inches. Inches. I0°oo' 4.317 .002 8-633 .006 12.950 .015 17.266 .026 IS 3° 45 4-354 8.709 13-063 4-313 4.310 4.306 .002 .002 .002 8.626 8.620 8.613 .007 .007 .007 12.940 12.930 12.919 .015 .015 .016 17-253 17.240 17.226 .027 .027 .028 II 00 IS 30 4S 17.418 4-303 4.299 4.295 4.292 .002 .002 .002 .002 8.606 8.598 8-591 8.583 .007 .007 .007 .008 12.908 1 218^6 12.875 .016 .016 .017 .017 17.2II 17.196 17.182 17.166 .029 .029 .030 .031 4-355 8.709 13.064 12 00 IS 3° 4S 17.419 4.288 4.284 4.280 4-275 .002 .002 .002 .002 8-575 8.567 8-559 8.551 .008 .008 .008 .008 12.863 12.851 12.839 12.826 .017 .018 .018 .019 17.150 17-134 I7.I18 17.102 •031 -03Z .032 -033 4-355 8.710 13.065 1300 IS 30 4S 17.420 4-271 4.267 4.262 4.258 .002 .002 .002 .002 8.542 8.534 8.516 .008 .009 .009 .009 12.813 12.800 12.787 12.774 .019 .019 .020 .020 17.084 17.067 17.050 17.032 •034 -034 -03s ■035 4-355 8.7 1 1 13.066 1400 IS 30 4S 17.421 4-253 4.249 4.244 4-239 .002 .002 .002 .002 8.507 8.498 8.488 8.479 .009 .009 .009 ,009 12.760 12.746 12.732 12.718 .020 .021 .021 .021 17.013 16.995 16.976 16.957 •036 .036 -037 -038 4-356 8.7 II 13.067 1500 IS 3° 45 17-423 4-234 4.229 4.224 4.219 .002 .002 .002 .002 8.469 8.459 8.449 8.439 .010 .010 .010 .010 12.703 12.688 12.673 12.658 .022 .022 .022 .022 16.938 16.918 16.898 16.877 .038 ■039 •039 .040 4-356 8.712 13.068 1600 IS 30 45 17.424 4.214 4.209 4.204 4.198 .003 .003 .003 .003 8.428 8.417 8.407 8.396 .010 .010 .010 .Oil 12.642 12.626 12.610 12.594 .023 .023 .023 .024 16.856 16.835 16.814 16.792 .041 .041 .042 .042 4-356 8-713 13.069 17 00 IS 30 45 17.426 4.192 4.187 4.181 4-175 -003 .003 .003 .003 8-385 8.374 8.362 8.351 .oil .oil .oil .oil 12-577 12.561 12.544 12.526 .024 .024 .025 .025 16.770 16.748 16.725 16.702 •043 .043 .044 .044 4-357 8.714 13.071 i8oo IS 30 45 17.427 4.170 4.164 4.158 4.152 .003 .003 .003 .003 8.339 8.327 8.316 8.303 .oil .oil .012 .012 12.509 12.491 12.473 12.455 .025 .026 .026 .026 16.679 16.631 16.606 •045 .045 .046 .046 4.357 8-715 13.072 1900 IS 30 45 17.429 4.145 4-139 4-133 4.127 .003 .003 ■003 .003 8.291 8.278 8.266 8-253 .012 .012 .OI2 .012 12.436 12.418 12.399 12.380 .026 .027 .027 .027 16.582 16.557 16.532 16.506 •047 .048 .048 .048 8.716 13-073 2000 17.431 4.120 -003 8.240 .012 12.360 .028 16.480 .049 Smithsonian Tables. 8S Table 1 9. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE mW- [Derivation of table explained on pp. liii-lvi,] ■s Meridional dis- tances from even degree parallels. CO-ORDINATES OF DEVELOPED PARALLEL FOR — 15' longitude. 30* longitude. 45' longitude. 1° longitude. X y X y X y X y Inches. Inches. Inches. Inches. Inches. Inches. Inches. Inches. Inches. 20°00' 15 3° 45 8.717 13-075 4.120 4-114 4-107 4.100 .003 .003 .003 .003 8.240 8.227 8.214 8.200 .012 .012 •013 •013 12.360 12.349 12.321 12.301 .028 .028 .028 .029 16.480 16.454 16.428 16.401 .049 •050 .050 .051 21 00 15 3° 45 17433 4.094 4.087 4.080 4-073 ■003 -003 ■003 .003 8.187 8.173 8-159 8-145 .013 .013 .013 -013 12.280 12.260 12.239 12.218 .029 .029 .029 .030 16.374 16.346 16.318 16.291 .051 .052 .052 •053 ^359 8.718 13.076 22 00 15 3° 45 17-435 4.066 4-058 4.051 4.044 .003 .003 .003 .003 8.I3I 8.117 8.102 8.088 .013 .013 .014 .014 12.197 12.175 12.154 12.132 .030 -030 •030 .031 16.262 16.234 16.205 16.176 •053 .054 ■054 •055 4-359 13.078 2300 IS 30 45 17-437 4.036 4.029 4.021 4.014 .003 .003 .003 .004 8.073 8.058 8.043 8.028 .014 .014 .014 .014 12.109 12.087 12.064 12.041 .031 .031 .031 ■032 16.146 16.116 16.086 16.055 ■055 •055 .056 .056 4.360 8.720 13.080 2400 15 30 45 17-439 4.006 3-998 3-990 3.982 .004 .004 .004 .004 8.012 7-997 7-981 7-965 .014 .014 .014 -015 12.018 11.995 II.971 11.948 -032 .032 .032 -033 16.024 15-993 15.962 15-930 •057 .058 .058 4-360 8.721 13.081 2500 15 30 45 17.442 3-974 3-966 3-958 3-950 .004 .004 .004 .004 7-949 7-933 7-916 7.900 .015 .015 .015 .015 11-923 H.899 11.874 H.850 ■033 •033 -033 •034 15-898 15.865 15-832 15.800 •059, •059 :o°l^ 4.361 8.722 13-083 2600 15 30 45 17.444 3-942 3-933 3-925 3-916 .004 .004 .004 .004 7.883 7.866 7.849 7-833 .015 •015 .015 •015 11.825 11.800 11-774 11.749 •034 •034 •034 -035 15.767 15-733 15.699 15-665 .060 .061 .061 .061 4.362 8.723 13-085 27 00 15 30 45 17.446 3.908 3-899 .004 .004 .004 .004 7.816 7.798 7.780 7-763 .015 .016 .016 .016 11.723 11.697 11.671 1 1.644 -035 •035 -03s .036 15-631 15-596 15.561 15.526 .062 .062 •063 4.362 8.724 13-087 2800 17-449 3-873 .004 7-745 .016 11.618 •036 15.490 .064 IS 30 45 4-363 8.726 13.088 3-863 3854 3-845 .004 .004 .004 7-727 7.709 7.691 .016 .016 .016 11-591 11-563 11.536 .036 .036 .036 15-454 15.418 15-382 .064 .064 .065 2900 IS 30 45 17-451 3-836 3.827 3-817 3.808 .004 .004 .004 .004 7-673 7-654 7-6i6 .016 .016 .016 .016 11.509 11.481 11-453 11.425 -036 -037 •037 •037 15-345 15-308 15-270 15-233 .065 .066 4-363 8.727 13.091 3000 17-454 3-799 .004 7-598 .017 11.396 ■037 15-195 .066 Smithsonian Tables. 86 Table 1 9. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE aiiaSaa - [Derivation of table explained on pp. liii-lvi.] Latitude ol parallel. Meridional dis- tances from even degree parallels. CO-ORDINATES OF DEVELOPED PARALLEL FOR — 15' longitude. 30' longitude. 45' longitude. \° longitude. X y X y X y X y Inches. Inches. Inches. Inches. Inches. Inches. Inches. Inches. Inches. 30°00' •s 3° 45 4364 8.728 13.092 3-799 3-789 3-779 3-770 .004 .004 .004 .004 7-598 7-578 7-559 7-540 .017 .017 .017 .017 11.396 11.367 "-338 11.309 -037 ■037 .038 .038 15-195 15.156 I5.I18 15.079 .066 .067 .067 .067 31 00 '5 30 45 17-457 3.760 3-750 3-740 3-730 .004 .004 .004 .004 7.520 7.500 7480 7.460 .017 .017 .017 .017 11.280 11.250 II. 221 II. 191 .038 .038 .038 .038 1 5.040 15.001 14.961 14.921 .068 .c68 .068 .068 4-365 8.730 •3-095 3200 '15 3° 45 17.460 3.720 3-7 10 3-700 3.690 .004 .004 .004 .004 7.441 7.420 7.400 7-379 .017 .017 .017 .017 II. 161 II. 130 II. 100 11.069 •039 -039 -039 -039 14.881 14.840 14-799 14.758 .069 .069 .069 .070 4.366 8.73' i3-°97 3300 IS 30 45 17.462 3-679 3.648 .004 .004 .004 .004 7-359 7-338 7-317 7.296 .017 .018 .oi8 .018 1 1.038 11.007 10.975 10.943 -039 -039 .040 .040 14.718 14.676 H-633 14.591 .070 .070 .070 .071 4.366 8-733 13.099 3400 15 30 45 17.465 3-637 3.626 3.616 3-605 .004 .004 .0,04 .004 7-275 7-253 7-231 7.210 .018 .018 .018 .018 10.912 10.879 10847 10.815 .040 .040 .040 .040 14.549 14.506 14.463 14.420 .071 .071 .071 .072 4-367 8-734 13.101 3500 15 3° 45 17.468 3-594 3-583 3 572 3-561 .004 .004 .004 ■ .005 7.188 7.166 7.144 7.122 .018 .018 .018 .018 10.782 10749 10.716 10.683 .040 .041 .041 .041 14-376 14332 14.288 14.244 .072 .072 .072 -073 4.368 8-735 13-103 3600 '5 30 45 17-471 3-550 3-539 3-527 3-516 .005 .005 .005 .005 7.100 7-077 7.054 7.032 .018 .018 .018 .018 10.650 10.616 10.582 10.547 .041 .041 .041 .041 14.200 14.154 14.109 14.063 -073 -073 -073 •073 4-368 8.736 13-105 3700 15 30 45 17-473 3-504 3-470 .005 .005 .005 .005 7.009 6.986 6.963 6-939 .018 .018 .018 .018 10.513 10.479 10.444 10.409 .041 .041 .042 .042 14.018 13-972 13-925 13-879 -074 .074 .074 -074 4-369 8.738 13.108 3800 15 30 45 17-477 3-458 3-446 3-434 3.422 .005 .005 .005 .005 6.916 6.892 6.869 6.845 .019 .019 .019 .019 10.374 10-339 10-303 10.267 .042 .042 .042 .042 13-832 1.3-785 13-737 13.690 •074 .074 •075 .075 4-370 8.740 13.110 3900 15 30 45 17.480 3-4" 3-398 3-386 3-374 .005 .005 -005 .005 6.821 6-797 6-773 6.748 .019 .019 .019 .019 10.232 10.195 10.159 10.123 .042 .042 .042 .042 13.642 13-594 13-545 13-497 .075 -075 -075 .075 4-371 8.741 13.112 4000 17-483 3-362 .005 6.724 .019 10.086 .042 13-448 -075 Smithsonian Tables. 87 Table 19. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE nxiW- [Derivation of table explained on p. liii-Ivi.] ■s 11 Meridional dis- tances from even degree parallels. CO-ORDINATES OF DEVELOPED PARALLEL FOR- 15' longitude. so' longitude. 45' longitude. 1° longitude. X y X y X y X y Inches* Inches. Inches. Inches. Inches. Inches. Inches. Inches. Inches. 40°oo' IS 3° 45 4-371 8743 13-114 3-362 3-350 3-337 3-325 .005 .005 .005 .005 6.724 6.699 6.650 .019 .019 .019 .019 10.086 10.049 10.012 9-975 .042 .042 •043 •043 13.448 13-399 13-349 13-300 •075 .075 .076 .076 41 00 IS 30 45 17.486 3-312 3-300 3-287 3-275 .005 .005 .005 -005 6.625 6.600 6-57S 6-549 .019 .019 .019 .019 9-937 9.900 9.862 9.824 •043 •043 -043 •043 13.250 13.200 13-149 13-098 .076 .076 .076 .076 4-372 8.744 13-117 42 00 IS 30 4S 17.489 3.262 3-249 3-236 3-223 .005 .005 .005 .005 6.524 6.498 6.472 6-447 .019 .019 .019 .019 9.786 9-747 9.709 9.670 •043 -043 •043 •043 13.048 12.996 12.945 12.893 .076 .076 .076 .076 4-373 8.746 13.119 4300 IS 30 4S 17.492 3-210 3-197 3.184 3-170 .005 .005 .005 .005 6.421 6-394 6.368 6.342 .019 .019 .019 .019 9.631 9.592 9-552 9-513 •043 •043 -043 •043 12.S42 12.789 .076 .076 .076 .076 4-374 8.747 13.121 4400 IS 30 4S 17-495 3-158 3-144 3-131 3.118 .005 .005 .005 .005 6.316 6.289 6.262 6.235 .019 .019 .019 .019 9-473 9-433 9-393 9-3S3 -043 •043 ■043 ■043 12.631 12.578 12.524 12.471 .077 .077 .077 .077 4-375 8.749 13.124 4500 IS 30 45 17.498 3-104 3-091 3-077 3-063 .005 .005 .005 .005 6.209 6.i8i 6-154 6.127 .019 .019 .019 .019 9-313 9.272 9-231 9.190 •043 -043 ■043 •043 12.417 12.367 12.308 12.254 .077 .077 .077 .077 4-375 8-751' 13.126 4600 17.501 3.050 .005 6.100 .019 9-150 •043 12.200 .077 IS 30 45 4-376 8.752 13.128 3-036 3.022 3.008 .005 .005 .005 6.072 6.044 6.017 .019 .019 .019 9.108 9.067 9.025 •043 -043 -043 12.144 12.089 12.033 .077 .077 .077 4700 IS 30 45 17.504 2.994 2.980 2.966 2.952 .005 .005 .005 .005 S-989 5.961 S-933 5.904 .019 .019 .019 .019 8.983 8.857 -043 •043 -043 •043 11.978 11.922 11.865 11.809 .076 .076 .076 .076 4-377 8-754 13-131 48 00 IS 30 45 17.508 2.938 2.924 2.909 2.89s .005 .005 .005 .005 5.876 S-848 5.819 5.790 .019 .019 .019 .019 8.814 8.771 8.728 8.686 •043 •043 •043 •043 11.752 111638 II.581 .076 .076 .076 .076 4-378 8-7SS 13-133 4900 15 30 45 17.511 2.881 2.866 2.852 2.837 .005 .005 .005 .005 5.762 S-733 5-704 5-675 .019 .019 .019 .019 8.643 8,599 8-555 8.512 -043 •043 ■043 .042 11.524 11.465 11.407 11-349 .076 .076 .076 .076 4-378 8-757 13-135 50 00 17-514 2.823 •005 5.646 .019 8.468 .042 11.291 .076 Smithsonian Tables. 88 Table 19. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE T^isTS- [Derivation of table explained on p. liii-lvi.] "S . 9 n Meridional dis- tances from even degree parallels. CO-ORDINATES OF DEVELOPED PARALLEL FOR — is' longitude. 30^ longitude. 45' longitude. 1° longitude. X y X y X y X y Inckts. /nckgs. Inches. Inches. Inches. Inches. Inches. Inches. Inches. So°oo' IS 3° 4S 13-137 2.823 2.808 2.793 2.779 .005 .005 .005 .005 5.646 5.616 5- 587 5-557 .019 .019 .019 .019 8.468 8.424 8.380 8-336 .042 .042 .042 .042 II. 291 11.232 II.I74 II. 114 .076 -075 -07 s -075 SI 00 IS 30 45 17-517 2.764 2.749 2-734 2.719 .005 .005 .005 .005 5.528 5-498 5.468 S-438 .019 .019 .019 .019 8.291 8.247 8.202 8-157 .042 .042 .042 .042 11.055 10.996 10.936 10.876 .075 •075 .075 .075 4.380 8.760 13.140 5200 IS 30 4S 17.520 2.704 2.689 2.674 2.659 .005 .005 .005 .005 5.408 5-378 5-347 5-317 .019 .019 .019 .018 8.II2 - 8.067 8.021 7.976 .042 .042 .041 .041 10.816 10.756 10.695 10.634 .074 •074 .074 .074 t.fe\ 13.142 S3 00 IS 30 45 17-523 2.643 2.628 2.613 2-597 .005 .005 .005 .005 5.287 5.256 5-225 5-195 .018 .018 .018 .018 7-930 7.792 .041 .041 .041 .041 10-573 10.512 10.451 10.389 .074 .074 -073 -073 4-381 8.763 13-144 54 00 IS 30 45 17.526 2.582 2.566 2.551 2-535 .005 .005 .005 .005 5.164 5-133 5.102 5.070 .018 .018 .018 .018 7-745 7.699 7.606 .041 .041 .041 .041 10.327 10.266 10.203 10.141 •073 ■073 •073 .072 4.382 8.764 13147 SSOo IS 30 45 17.529 2.520 2488 2.472 .005 .004 .004 .004 5-039 5.008 4.976 4-945 .018 .018 .018 .018 7-559 7-512 7-465 7-417 .041 .040 .040 .040 10.078 10.016 9-953 9.890 .072 .072 .072 .071 13-149 S6oo IS 30 45 17-532 2.456 2.441 2.425 2.409 .004 .004 .004 .004 4-913 4.881 4-849 4.817 .018 .018 .018 .018 7-370 7.322 7.274 7.226 .040 .040 .040 .040 9.826 9763 9.699 9-635 .071 .071 .071 .070 4-384 8.767 13-151 5700 IS 30 45 17-535 2-393 2.377 2.361 2-344 .004 .004 .004 .004 4-785 4-753 4.721 4.689 .018 .017 .017 .017 7.178 7-130 7.082 7-033 -039 •039 -039 •039 9-S7I 9.507 9-442 9-378 .070 .070 .070 .069 tr4 13-153 S8oo 17-537 2.328 .004 4.656 .017 6.985 •039 9-313 .069 15 30 45 4-385 8.770 13-155 2.312 2.296 2.279 .004 .004 .004 4.624 4.591 4-559 .017 .017 .017 6.936 6.8H7 6.838 •039 [038 9.248 9.183 9.117 ;o68 5900 15 30 45 17-540 2.263 2.246 2.230 2.214 .004 .004 .004 .004 4.526 4-493 4.460 4.427 .017 .017 .017 .017 6.789 6.740 6.690 6.641 .038 .038 .038 .038 9-052 8.986 8.920 8.854 .068 .068 .067 .067 4.386 8.772 13-157 6000 17-543 2.197 .004 4-394 .017 6.591 -037 8.788 .067 Smithsonian Tables. 89 Table 19. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE sWinnF- [Derivation of table explained on pp. liii-lvi.] 11 Meridional dis- tances Irum even degree Ijarallels. CO-ORDIN.'VTES OF DEVELOPED PARALLEL FOR — 15' longitude. 30^ longitude. 45' longitude. 1° longitude. 1 X y X y X y X y Inches. htches. Inches. IncJies Inches. Inches, Inches. Inches. Inches. 6o°oo' 15 3° 4S 4-386' 8.773 I3-'S9 2.197 2.180 2.164 2.147 .004 .004 .004 .004 4-394 4.361 4.327 4.294 .017 .017 .016 .016 6.591 6.541 6.491 6.441 -037 •037 -037 •037 8.788 8.722 15^ .067 .066 .066 .066 61 00 IS 30 45 17.546 2.130 2.II4 2.097 2.080 .004 .004 .004 .004 4.261 4.227 4-194 4.160 .016 .016 .016 .016 6.391 6.340 6.290 6.240 •037 .036 ■036 •036 8.521 8.454 8-387 8.320 .06s .064 .064 4.387 8.774 13.161 62 00 IS 30 45 17.548 2.063 2.046 2.029 2.012 .004 .004 .004 .004 4.126 4.092 4.058 4.024 .016 .016 .016 .016 6.189 6.138 6.088 6.036 .036 •036 •035 •03s 8.252 8.184 8.117 8.048 .064 .063 .063 4.388 8.776 13.163 6300 IS 30 45 17.551 1.99s 1-978 1. 96 1 1-944 .004 .004 .004 .004 3-99° 3-956 |8%^ .015 .015 .015 .015 5-985 5.883 5-83" •03s •03s •034 •034 7.980 7.912 7.844 7-775 .062 .062 .061 .061 4.388 8.777 13.165 6400 IS 30 45 17-554 1.926 ;i9^ 1.875 .004 .004 .004 .004 3-853 3.819 3-784 3-749 .015 .015 .015 .015 5.780 5.676 5.624 •034 •034 •034 •033 7.706 7-499 .060 .060 .060 .059 13.167 6500 IS 30 45 17.556 1.857 1.840 1.823 1.805 .004 .004 .004 .004 3-715 3.680 3-645 3.610 .015 .015 .014 .014 5-572 5.520 5.468 5-415 •033 -033 •033 -C32 7.430 7.360 7.290 7.220 •059 .059 .058 .058 4.390 8-779 13.169 6600 15 30 45 17-559 1.788 1.770 1-753 1-735 .004 .004 .004 .003 3-575 3-540 3-505 3-470 .014 .014 .014 .014 5-363 5-310 5.258 5-205 .032 •032 .032 .031 7-151 7.080 7.010 6.940 •057 •057 .056 .056 8780 13.171 67 00 IS 30 45 17.561 1.717 1.700 1.682 1.664 .003 .003 .003 .003 3-435 3.400 3-364 3-329 .014 .014 .014 .013 5.152 5-099 5-046 4-993 .031 .031 .031 .030 6.870 6.799 6.728 6.658 •05s .055 •054 •054 8.782 13.172 6800 15 30 45 17.563 1.647 1.629 1.6(1 1-593 -003 •003 .003 .003 3-293 3-258 3.222 3.186 .013 .013 .013 •013 4.940 , 4.886 .030 ■030 .029 .029 6.586 6.515 6.444 6.373 .053 •053 .052 .052 4.391 8.783 13-174 69 00 15 30 45 17.565 1-575 I-5S7 1.540 1.522 .003 .003 -003 .003 3.151 3-"5 3-079 3.043 .013 .013 .013 .012 4.726 4-672 4.618 4.564 .029 .029 .028 .028 6.301 6.230 6.158 .051 .051 .051 .050 1392 8-784 13.176 7000 17.568 1.504 .003 3.007 .012 4.510 .028 6.014 .049 Smithsonian Tables. 90 CO-ORDINATES FOR PROJECTION OF MAPS. [Derivation of table explained on pp. liii-lvi.] Table 19> SCALE Wffinf ■g Meridional dis tances from even degree parallels. CO-ORDINATES OF DEVELOPED PARALLEL FOR — 15' longitude. 30* longitude. 45' longitude. 1° longitude. X y X y X y X y Inches. Inches. Inches. Inches. Inches. Inches. Inches. Inches. Inches. 70°oo' IS 3° 4S 13-177 1.504 1.486 1.467 1-449 .003 •003 .003 .003 3-007 2.971 2.93s .012 .012 .012 .012 4.510 4-456 4.402 4-348 .028 .028 .027 .027 6.014 5.942 5-870 5-797 •049 -049 .048 .048 71 00 IS 30 4S 17.570 I-43I I -41 3 1-395 1-377 .003 .003 .003 .003 2.862 2.826 2.790 2-753 .012 .012 .on ■oil 4.294 4-239 4.185 4.130 .027 .026 .026 .026 5-725 ^So S-S07 .047 .047 .046 .046 8.786 13-179 7200 17.572 1-358 .003 2.717 .oil 4-075 .025 5-434 .045 IS 30 4S 13.180 1-340 1.322 1.304 .003 .003 -003 2.681 2.644 2.607 .011 .oil .oil 4.021 3.966 3-9 1 1 .025 .025 .024 5.288 5-215 •045 .044 .044 7300 IS 30 4S 17-573 1.285 1.267 1.249 1.230 -003 .003 -003 .003 2.571 2-S34 2.497 2.461 .011 .oil .010 .010 3-856 3.801 3-746 3.691 .024 .024 .024 .023 5.142 5.068 4.994 4.921 •043 .043 .042 .041 4-394 8.788 13.181 7400 . IS 30 4S 17-575 I.2I2 I-I93 1..7S 1.156 .003 -003 .002 .002 2.424 2.387 2-350 Z-313 .010 .010 .010 .010 3636 3.580 3-525 3-470 -023 .023 .022 .022 4.848 4-774 4.700 4.626 .041 .040 .040 -039 13-183 7500 17-577 I -138 .002 2.276 .010 3-414 .022 4-552 .038 IS 30 45 4-395 8.789 13.184 1.119 I.IOI 1.082 .002 .002 .002 2.239 2.202 2.165 .009 .C09 .009 3-358 3-303 3-247 .021 .021 .021 4.478 4.404 4-329 .038 •037 •037 7600 IS 30 45 17-579 1.064 1.045 1.026 1.008 .002 .002 .002 .002 2.127 2.090 2.053 2.016 .009 .009 .009 .009 3-191 3-135 3-079 3-023 .020 .020 .020 .019 4.255 4.180 4.106 4.031 .036 .036 -035 -034 4-395 13-185 7700 IS 30 45 17.580 0.989 0.970 0.952 0-933 .002 .002 .002 .002 1.978 1.941 .008 .008 .008 .008 2.967 2.911 2-855 2-799 .019 .019 .018 .018 3-956 3-882 3-807 3-732 •034 -033 -033 .032 4-395 8.791 13.186 7800 IS 30 45 17.582 0.914 0.895 0.877 0.858 .002 .002 .002 .002 1.828 1.791 1-753 1.716 .008 .008 .008 .008 2-743 2.686 2.630 2-573 .018 .017 .017 .017 3-657 3-582 3-506 3-43' .031 .031 .030 .030 4-396 8.791 13.187 7900 IS 30 45 17-583 0.839 0.820 0.801 0.782 .002 .002 .002 .002 1.678 1.640 1.603 1-565 .007 .007 .007 .007 2.517 2.461 2.404 2.348 .016 .016 .016 .015 3-356 3.281 3.205 3-130 .029 .028 .028 .027 4-396 8.792 13.188 80 00 17-584 0.764 .002 1.527 .007 2.291 .015 3-OS4 .026 Smithsonian Tables. 91 Table 20. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE iT^innr- [Derivation of table explained on pp. liii — Ivi.] ■g _ ABSCISSAS OF DEVELOPED PARALLEL. tf^ T^ TN T IkT A fl T> t^ f^ v^ ORDINATES OF ^§ DEVELOPED •S c "S c 5 c s' 10' IS' 20' 25' 30' PARALLEL. 2^ s^«a longitude. longitude. longitude. longitude. longitude. longitude. Iftches. Inches, Itiches. Inches. Inches. Inches. Inches. 4) o°oo' 2.922 5.844 8.765 11.687 14.609 17-531 ■Ii 0° 1° lO ■■5.804" 2.922 5-843 8.76s 11.687 14.608 17-530 3-2 20 1 1.608 2.922 2.922 S-843 S-843 8.765 8.76s 11.686 14.608 14.608 17-530 17-530 30 17.412 11.686 Inches. Inches. 40 23.216 2.922 S-843 8.764 11.686 14.608 17-529 17-528 5' 10 0.000 .000 SO 29.020 2.921 S-843 8.764 11.686 14.607 .000 I 00 2.921 S-843 8.764 11.685 14.606 17.528 IS 20 .000 .000 .000 .001 .001 tOOI 10 5.840 2.921 5.842 8.763 11.684 14.606 17.527 25 30 .000 •000 , 20 1 1.608 2.921 S.842 8.763 11.684 14.604 17.525 30 17.412 2.921 5.841 8.762 11.683 14.604 17.524 40 23.216 2.920 5.841 8.761 11.682 14.602 17.522 S° 29.020 2.920 5.840 8.761 11.681 14.601 17.521 2 00 5-804' 2.920 5.840 S-839 8.760 8.759 11.680 11.678 14.600 14.598 17.520 17.518 2° 3° 10 2.920 20 11.608 2.919 S-f39 8.758 11.677 14.596 17.516 5 0.000 0.000 30 17.412 2.919 S-838 8-757 11.676 14.594 17.513 10 .000 .000 40 23.216 2.918 S-i37 8.756 11.674 14.592 17.511 15 .001 .001 SO 29.020 2.918 5.836 8-755 11.673 14.591 17.509 20 .001 .002 300 2.918 5-836 8-753 ,1.671 14.589 17.507 25 3° .002 .003 .003 .004 10 ■ 'i&^^ 2.917 5-835 8.752 11.669 14.586 17-504 20 11.608 2.917 2.916 5-834 5-832 8.750 8.749 11.667 11.665 14.584 14.581 17.501 30 17413 17.497 40 23.217 2.916 5-831 8.747 I.. 663 14.578 17.494 4° f s° 4 00 29.021 2.915 2.915 5.830 8.746 8.744 11.661 11.659 14.576 14-574 17.491 17.488 5 0.000 0.000 10 ■■ ■5.804' 2.914 5.828 8.742 11.656 14-570 17.484 10 .001 .001 20 11.609 2.913 5.827 §•740 11.654 14.567 17.480 15 .001 .002 30 17413 2.913 5.825 8.738 11.651 14.564 17.476 20 .002 .003 40 23.217 2.912 5.824 8.736 11.648 14.560 i-^A^ 25 .004 .005 SO 29.022 2.911 5-823 8-734 11.646 14-557 30 .005 .007 Soo 10 '"iko^ 2.911 2.910 5.822 5.820 8.732 8.730 11.643 11.640 14-554 14.550 17.465 17.459 20 11.609 2.909 5.818 8.727 11.636 14.546 17455 6° 7° 30 17.414 2.QO0 5.817 8.725 8.722 "-633 11.630 14.542 14-538 17.450 17.445 40 23.218 2.908 5-815 SO 29.022 2.907 5-813 8.720 11.627 14-534 17-440 5 10 0.000 .001 0.000 .001 600 2.906 5.812 8.718 11.624 14-530 17.43s IS .002 .002 10 20 " 5-805' 11.609 2.905 2.904 5-810 5.808 8-71S 8.712 11.620 ii.6i6 14.524 14.520 17.429 17.424 20 25 .004 .006 .008 .004 .006 30 17.414 2.903 5.806 8.709 11.612 14-515 17.418 30 •009 40 23.219 2.902 5.804 8.706 11.608 14.510 i7-4'3 SO 29.024 2.901 5.802 8.703 11.604 14.506 17.407 700 10 "'s-Sos' 2.900 5.800 5-798 8.701 8.697 11.601 11.596 14-501 17.401 8° 2.099 14.496 17.395 20 11.610 2.898 S-796 8.694 11.592 14.490 14.484 17.387 5 0.000 30 17.415 2.897 5-794 ff§° 11.587 17.381 10 .001 40 23.220 2,896 5-791 8.687 11.583 14-478 17.374 15 •003 .005 5° 29.025 2.895 5-789 8.684 11.578 14-473 17.368 20 800 2.894 S-787 8.680 11.574 14.468 17.361 25 30 .007 010 Smithson IAN TaBL ES. 92 Table 20. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE nhtf [Derivation of table explained on pp. liU — Ivi.] ■S3 8°oo' lO 5.80s 20 11.610 3° 17.416 40 23.221 5° 29.026 900 10 5.806 20 ii.6ti 30 17.417 40 23.222 SO 29.028 10 00 10 20 30 40 5° 11 00 10 20 30 40 5° 12 00 10 20 3° 40 so 1300 10 20 30 40 so 1400 10 20 30 40 50 15 00 10 20 30 40 SO 1600 Inches. 5.806 II.612 17.417 23.223 29.029 5.806 II.612 17.419 23.225 29.031 5.807 II.613 17.420 23.226 29.033 5.807 II.614 17.421 23.228 29.03s 5.808 II.615 17.422 23.230 29.038 5.808 II.616 17.424 23.232 29.040 ABSCISSAS OF DEVELOPED PARALLEL. s' longitude. 2.894 2.892 2.891 2.890 2.888 2.887 2.886 2.885 2.883 2.882 2.881 2.879 2.878 2.876 2.875 2.873 2.872 2.870 2.869 2.867 2.865 2.864 2.862 2.860 2.858 2-857 2.855 2.853 2.851 2.849 2.847 2.846 2.844 2.842 2.840 2.838 2.836 2.834 2.831 2.829 2.827 2.825 2.823 2.821 2.818 2.816 2.814 2.812 2.809 10' longitude. Inches, S787 5.784 5.782 S-779 S777 S-77S S-772 S-769 5-767 5.764 S-761 S-7S8 S-7SS S-752 S-749 5.746 S-743 5.740 S-737 S-734 S-730 5.727 5-724 5.720 S-7I7 S-713 5.709 5.706 5.702 5.698 5.695 5.691 5.687 5.683 5.679 S-675 5.671 5.667 5-654 5.650 5.646 5.641 5-637 5.632 5.628 5.623 5.619 IS' longitude. 8.680 8.677 8.673 8.669 8.666 8.662 8.658 8.654 8.650 8.646 8.642 8.637 8-633 8.628 8.624 8.619 8.614 8.610 8.606 8.601 8.596 8.590 8.580 8-S7S 8.570 8.564 8-559 8-SS3 8.548 8.542 8-536 8.530 8.524 8.519 8-S13 8.507 8.500 8.494 8.488 8.481 8.475 8.469 8.462 8-455 8.448 8.441 8-435 8.428 20' longitude. Inches, 569 564 559 554 549 544 539 533 528 522 516 5" 504 498 492 ,486 .480 ■474 .468 461 454 447 ,440 434 ,426 419 412 404 397 390 ,382 374 366 358 350 ■342 '334 ,326 317 308 300 292 282 274 264 255 ,246 11.237 25' longitude. Inches. 14.468 14.461 14-455 14.448 14.442 14.436 14.430 14.424 14.416 14.410 14.402 14.396 14.388 14.380 14-373 14.366 14-358 14-350 14.342 14-334 14.326 14.318 14.309 14.300 14.292 14.282 14.274 14.264 14.256 14.246 14-237 14.228 14.218 14.208 14.198 14.188 14.178 14.168 14.157 14.146 14.136 14.125 14.114 14.103 14.092 14.080 14.069 14.058 14.046 30' longitude. 7-361 7-353 7-346 7-338 7-331 7-324 7-317 7-308 7-300 7.291 7.283 7-275 7.266 7.257 7.248 7-239 7.229 7.220 7.211 7.201 7.191 7.181 7.171 7.161 7.150 7-139 7.128 7.117 7.107 7-095 7.084 7-073 7.061 7-049 7-038 7.026 7-014 7.001 6.988 6-975 6.963 6.950 6-937 6.924 6.910 6.897 6.883 6.870 16.856 ORDINATES OF DEVELOPED PARALLEL. 3-s Inches. 0.000 .COl .003 .005 .007 .010 0.000 .001 -003 .006 .009 ■013 0.000 .002 .004 .007 .011 .016 14° 0.000 .002 .004 .008 .012 .018 16° 0.001 .002 .005 .009 .014 .020 Inches. 0.000 .001 .003 .005 .008 .012 0.000 .002 .004 .006 .010 .014 13° 0.000 .002 .004 .007 .012 .017 15° O.OOI .002 .005 .009 .013 .019 Smithsonian Tables. 93 Table 20. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE jit^tsz- [Derivation of table explained on pp. liii-lvi.] "Set) ABSCISSAS OF DEVELOPED PARALLEL. "S •»i|. ORDINATES OF DEVELOPED u .2 «-aii 11 11 S' 10' 15' 20' 25' 30' PARALLEL. 2'^ |S V P. longitude. * longitude longitude. longitude. longitude. longitude. Inches, Inches. Inches. Indus, Inches. Inches. Inches. Il- i6°oo' 2.809 5.619 8.428 11.237 14.046 16.856 ls 16° 17° 10 V-809 2.807 5.614 8.421 11.228 14.034 16.841 11.617 17.426 2.804 2.802 5.609 5.604 8.414 8.406 11.218 11.208 16.827 16.813 16.798 zo 3° 14.022 14.010 Inches. Inches. 40 23-234 2.800 S-599 8.399 11.199 11.189 13998 s' 10 0.00 1 O.OOI SO 29.043 2.797 S-S9S 8-392 13.986 16.784 .002 .002 17 00 11.618 2.795 S-S90 8.385 ' 11.180 13-974 16.769 '5 20 .005 .009 .014 .020 .COS .010 10 2.792 5-S8s \^v 11.170 13.962 16.754 25 30 .015 .021 20 2.790 5.580 8.369 11.159 13-949 16.739 30 17.427 2.787 S-S7S 8.362 11.149 13-936 16.724 40 23-236 2.785 5-570 8.354 U.I39 13-924 16.709 S° 29.046 2.782 5-564 8-347 11.129 13.911 16.693 18 00 ' s'sio' 2.780 5-559 8.339 8.331 11.119 13.898 16.678 18° 19° 10 2-777 S-5S4 11.108 13.885 16.662 20 11.619 2.774 5-549 8-323 11.097 13-872 16.646 5 0.001 O.OOI 30 17.429 2.772 5-543 8.315 11.087 13-859 16.630 10 .002 ■'^ 40 23-^39 2.769 S-S38 8.307 11.076 13-845 16.614 15 .006 50 29.049 2.766 5-533 8.299 11.065 13-832 16.598 20 25 .010 .016 .010 .016 19 00 2.764 S-527 8.291 11.054 13.818 16.582 30 .022 .024 10 5.810 2.761 5.522 8.282 11.043 13.804 16.565 20 11.621 2.758 5-516 8.274 11.032 13-790 16.548 3° 17-431 2-7SS 5-5'o 8.266 11.021 13-776 16.531 40 23.242 2.752 5- 505 8-257 11.009 13.762 16.514 20° 21° 50 2000 29.052 2.750 2.747 5-499 5-493 8.249 8.240 10.998 10.987 13-748 13-734 16.497 16.480 5 0.00 1 O.OOI 10 5.811 2-743 5.487 8.231 10.975 13-719 16.462 lO .003 .006 20 H.622 2.741 5.482 8.222 10.963 13-704 16.445 15 .006 30 17-433 2-738 5.476 8.213 10.951 13.689 16,427 20 .oil .oil 40 23.244 2-73S 5.470 8.204 10.939 13-674 16.409 25 .017 .018 SO 29.055 2.732 5-464 8.196 10.928 13.660 16.391 30 .025 .026 21 00 10 ■■■s-8;2" 2.729 2.726 S-458 5-4S2 8.187 8.177 10.916 10.903 13-645 13.629 '6-373 '6-355 20 U.623 2-723 5-445 8.168 10.891 13.614 16.336 22° 23° 30 40 '7-435 2.720 S-439 5-433 8.159 8.150 10.878 10.866 13-598 13-583 16.318 16.300 23-247 2.717 SO 29.058 2.714 5-427 8.141 10.854 13-568 16.281 5 10 0.00 [ ■003 6.001 .003 22 00 2.710 5-421 8.131 10.842 '3-552 16.262 'S .007 .007 ID "5-812' 2.707 5.414 8.122 10.829 '3-536 16.243 20 .012 .018 .012 20 11.625 2.704 5.408 8.II2 10.816 13.520 16.223 25 ■oig .028 30 17-437 2.701 5.401 8.102 10.802 13-503 16.204 30 .027 40 23.250 2.697 m 8.092 10.790 '3-487 16.184 5° 29.062 2.694 8.083 10.777 '3-471 16.165 2300 "^■^'l 2.691 5.382 8.073 8.063 10C764 '3-455 16.145 24° 10 s^:^^ 10.750 13-438 16.125 20 11.626 2.6S4 8.053 10.737 13.421 16.105 5 O.OOI 30 17-439 2.681 s-362 8.042 10.723 13.404 16.085 10 -003 40 23-252 2.677 5-355 8.032 10.710 i3-3'<7 16.064 15 .007 50 29.066 2.674 5-348 8.022 10.696 13-371 16.045 20 25 .013 .020 24 00 2.671 S-34I 8.012 10.683 13-354 16.024 30 .028 Smithsom AN TaBL ES. i^MMl 94 CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TTsWlf [Derivation of table explained on pp. liii-lvi.] Table 20- a ■a '5 « .2 "■oi! .■gSc-3 £stn. ABSCISSAS OF DEVELUPKD PARALLEL. longitude. 10' longitude. 15' longitude. 20 longitude. 25' longitude. 30' longitude. ORDINATES OF DEVELOPED PARALLEL. 24''00' lO 20 3° 40 5° 25 00 10 20 30 40 50 2600 10 20 30 40 50 27 00 10 20 30 40 ■ 50 2800 10 20 3° 40 SO 29 00 10 20 30 40 50 3000 10 20 30 40 50 31 00 10 20 30 40 50 3200 Inches S.814 11.628 17.442 23.256 29.069 5.81S 11.629 17.444 23.259 29.074 5.816 II.631 17.446 23.262 29.077 5.816 I '-633 17.449 23.265 29.082 5-817 U.634 17.451 23.268 29.086 5.818 11.636 17454 23.272 29.090 5.819 11.638 17457 23.276 29.094 5.820 11.640 17.460 23.280 29.100 Inches. 2.671 2.667 2.664 2.660 2.657 2.653 2.650 2.646 2.642 2.639 2.635 2.631 2.628 2.624 2.620 2.616 2.613 2.609 2.605 2.6oi 2.597 2-593 2.589 2.586 2.582 2.578 2.574 2.570 2.566 2.562 2.558 2-553 2.549 2-545 2.541 2-537 2-533 2.528 2.524 2.520 2.515 2.51 1 2.507 2.502 2.498 2.493 2.489 2.485 2.480 Inches. 5-341 5-334 5-327 5-320 5-313 5.306 5-299 5.292 5-285 5-278 5-270 5.263 5.256 5.248 5.240 5-233 5.225 5.218 5.210 5.203 5-195 5.187 5-'79 5 171 5-163 5-155 5-147 5-139 5-131 5-123 5.115 5.107 5.098 5.090 5.082 5-073 5.065 5.056 5.048 5-039 S-031 5.022 5.014 5.005 4.996 4.987 4.978 4.969 4.960 Inches. 8.012 8.002 7.991 7.981 7-970 7.960 7-949 7-938 7-927 7.916 7.905 7.894 7.883 7.872 7.861 7.849 7.838 7.827 7.816 7.804 7-792 7.780 7.768 7-757 7-745 7-733 7.721 7.709 7.697 7.685 7-673 7.660 7.648 7-635 7.622 7.610 7-598 7-585 7-572 7-559 7.546 7-533 7-520 7-507 7-494 7.480 7.467 7-454 7.441 0.683 0.669 0.655 0.641 0.627 0.613 0.599 0.584 0.570 0-555 0.540 0.526 0.51 1 0.496 0.481 0.466 0.451 0.436 0.421 0.405 0.390 0.3-4 0.358 0.342 0.327 0.311 0.294 0.278 0.262 0.246 0.230 0.213 0.197 0.180 0.163 0.146 0.130 0.1 13 0.096 0.078 0.061 0.044 0.027 0.009 9.992 9-974 9.956 9-938 9.921 Inches. 3-354 3-336 3-319 3-301 3.284 3.266 3.249 3-231 3-212 3194 3-176 3-157 3-139 3.120 3.IOI 3.082 3-063 3-045 3.026 3.006 2.987 2.967 2.947 2.928 2.909 2.889 2.868 2.848 2.828 2.808 2.788 2.767 2.746 2.725 2.704 2.683 2.662 2.641 2.620 2.598 2-577 2-555 2-534 2.512 2.490 2.467 2.445 2.423 [2.401 Inches. 6.024 6.003 5.982 5-961 5-940 5-9 1 9 5.898 5-877 5.854 5-833 5.81 1 5.788 5-767 5-744 5-721 5-698 5.6/6 5-654 5-631 5.608 5-584 5.560 5-537 S-514 5.490 5.466 5442 5.418 5-394 5-369 5-345 5-320 5-295 5.270 5-245 5.220 5-195 5.169 5-143 5-118 5.066 5.040 5.014 4.987 4.960 4-934 4.908 24° Inches. 0.00 1 •003 .007 .013 .020 .028 26° O.OOI .003 .008 .013 .021 •030 28° .004 .008 .014 .022 .032 30" .004 .008 .015 •023 -033 32° O.OOI .004 .009 .015 .024 -034 25° Inches. O.OOI .003 .007 .013 .020 .029 27" O.OOI .003 .008 .014 .022 .031 29° .004 .008 .014 .023 .032 31° O.OOI .004 .008 .015 .023 -034 Smithsonian Tables. 95 Table 20. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ahti - [Derivation of table explained on pp. liii-lvi.] .2 ABSCISSAS OF DEVELOPED PARALLEL. •s . 1^ tf» ORDINATES OF ■S*" .2 m-aS DEVELOPED .^1 •ISg-S S' 10' 15' 20' 25' 30' PARALLEL. 3S- |ssa longitude. longitude. longitude. longitude. longitude. longitude. Itiches. Inches. Iftches. Inches. Inches. Inches. Inches. %i 32°oo' 2.480 4.960 7.441 9.921 12.401 14.881 II Q a 32° 33° 10 20 5.821 11.642 2.476 2.471 4.951 4.942 7.427 7-413 9-903 12.379 12.355 14.854 14.827 J 3° 17.462 2.467 4-933 7.400 9:866 12.333 14.800 Inches. Inches. 40 23.283 2.462 4.924 7.386 9.848 "•3i° 14.772 5' 10 0.001 0.001 5° 29.104 2.458 4.915 7-373 9.830 12.288 14-745 .004 .004 3300 24S3 4.906 7-359 9.812 12.265 14.717 IS ' 20 .009 .MS .024 .034 .009 .016 ID 5.822 2.448 4.896 7-345 9-793 12.241 14.689 25 30 .624 .035 20 11.643 2.444 4.887 7-33' 9-774 12.218 14.661 30 17.465 2439 4.878 7-316 9-755 12.194 14.633 40 23.287 2434 2.429 4.868 4.859 7.302 7.288 9-736 9.7:8 12.171 14.605 14.576 29>io9 12.147 3400 2.425 4.850 7-274 9.699 12.124 14.549 34° 35° 10 5.823 2.420 4.840 7.260 9.680 12.100 14.520 20 11.64s 17.468 241 S 4.830 7.246 9.661 12.076 14.491 5 0.001 O.OOI 30 2.410 4.821 7-231 9.642 1 2.052 14.462 10 .004 .004 40 23.291 2.406 4.811 7.217 9.622 12.028 14.434 15 .009 .009 5° 29.113 2.401 4.802 7.203 9.604 12.004 14.405 20 25 .016 .025 .016 .025 35 00 2.396 4.792 7.188 9.584 11.980 14.376 30 .036 .036 10 ■■5.824" 2.391 4.782 7-174 9-565 11.956 14.347 20 11.647 2.386 4-773 7-159 9-545 11.932 '4-318 30 17.471 2.381 4-763 7.144 9.526 11.907 14.288 40 23.294 2.377 4-753 7-13° 9.506 "■1^3 14.259 36° 37° 50 3600 29.118 2.372 2.367 4-743 4-733 7-115 7.099 9.486 9.466 11.858 11-833 14-230 14.200 5 0.001 0.001 10 ■■■s.82;' 2.362 4-723 7.08s 9-446 11.808 14.170 10 .004 .004 20 11.649 2-357 4-713 7.070 9.426 11.783 14-139 15 .009 .009 30 17473 2-351 4-703 7-055 9.406 "•757 14.109 20 .016 .016 40 23.297 2.346 4-693 7-039 9-386 11.732 14.078 25 .025 .026 5° 29.122 2.341 4.683 7.024 9-366 11.707 14.048 30 .036 .037 37 00 2-336 4-673 7.009 9-345 9-325 11.682 14.018 10 's.826^ 2-335 4.662 6.994 11.656 13.987 38° __o 20 I I. 651 2.326 4-652 6.978 9-3°4 11.630 J3.956 39 30 17477 2.321 4.642 6.963 9.284 11.605 13-925 40 23.302 2.316 4.631 6-947 9.263 11.579 13.894 5 10 0.001 .004 0*OOI 50 29.128 2.31 1 4.621 6.932 9.242 "■553 13.864 .004 38 00 10 ■■ ■5:827 ■ 2.305 2.300 4.611 4.600 6.916 9.222 9.200 11.527 11.501 13-832 13.801 15 20 25 .009 .017 .026 .009 20 "•653 2.295 4-59° 6.884 9.179 11.474 13-769 .037 30 17.480 2.290 4-579 6.869 9.158 11.448 '3-737 30 .037 40 50 23.306 2.284 2.279 4.568 4-558 6.853 6.837 9-137 9.116 11.421 13-705 13-673 29.133 "-395 3900 10 "■5.828' 2.274 2.268 4-548 4-537 6.821 6.805 9.09s 9-073 U.369 11.342 13.642 13.610 40° 20 11.655 17483 2.263 2.258 4.526 6.789 9.052 11-315 13-577 S 0.001 30 4-515 6-773 9.030 11.288 13.545 10 .004 40 23.310 2.252 4-504 6-756 9.008 11.261 13.513 15 .009 5° 29.138 2.247 4-493 6.740 8.987 11.234 13.480 20 25 .017 .026 40 CO 2.241 4-483 6.724 8.965 11.207 13.448 30 .038 Smithsonian Tables. 96 Table 20. / :0-ORDINATES FOR PROJECTION OF MAPS. SCALE 1 \ 18646ff' [Derivation o£ table explained on pp. liii-lvi.] *K 2 is ABSCISSAS OF DEVELOPED PARALLEL. /"^TiTXTXT A T" o . UKUlJNALco \js ■S3 otJ-S" DEVELOPKD 11 lisi 5' 10' 15' 20' 25' 30' PARALLEL. S^ lasa longitude. longitude. longitude. longitude. longitude. longitude. Inches. Inches. Inches. Inches. Inches. Inches. Inches. 40°oo' Z.2i,\ 4-483 6.724 8.965 11.207 13.448 = 40° 41° 10 'I829 2.236 4.472 6.707 8.943 II.179 13-415 J- 20 11.657 2.230 4.461 6.691 !•§" II. 152 13-382 3° 17.486 2.225 4.450 ^•^7^ f-f99 II. 124 13-349 Inches. Inches. 40 23-314 2.219 4-439 6.658 f-|77 11.097 13-316 5' 10 0.00 1 O.OOI 5° 29.143 2.214 4.428 6.641 8.855 11.069 13-283 .004 .004 41 00 2.208 4.417 f-f"l ^■?34 11. 042 13-250 15 20 .009 .017 .026 .009 .017 .026 10 V-Sso' 2.203 4-406 6.608 8.81 1 II.014 13.217 25 30 20 11.659 2.197 4-394 6.591 8.788 10.985 13-183 ■038 .038 30 17.489 2.192 4-383 6-575 6-558 6-541 8.766 10.958 13-149 40 23-319 2.186 2.180 4-372 4.360 8-744 8.721 10.929 13-115 13.081 5° 29.149 10.901 4200 10 "5-831 2-175 2.169 4-349 4-338 6.524 6.507 8.698 8.676 10.873 10.844 13.048 13-013 42° 43° 20 1 1. 661 2.163 4.326 6.490 8.653 10.816 12.979 5 O.OOl O.OOI 30 17.492 2.157 4-315 6.472 8.630 10.787 12-945 10 .004 .004 40 23-323 2.152 4-303 6.455 8.607 10.759 12.910 15 .010 .010 SO 29.154 2.146 4.292 6.438 8.584 10.730 12.876 20 25 .017 .026 .017 .027 4300 2.140 4.281 6.421 8.561 10.702 12.842 30 .038 .038 10 " S-832' 2-13S 4.269 6.403 8.538 10.672 12.807 20 30 11.663 17-495 2.129 2.123 4.257 4.246 6.386 6.368 8.514 10.643 10.614 12.772 12.737 40 23-327 2.117 4-234 6-351 8.468 10.585 12.701 44° 45° 5° 29.159 2.111 4.222 6-333 8-444 10.556 12.667 4400 2.105 4.210 6.316 8.421 10.526 12.631 5 O.OOI 0.001 10 5-833 2.099 4.199 6.298 8-397 10.496 12.596 10 .004 .004 20 11.666 2.093 4.187 • 6.280 8-373 10.467 12.560 IS .010 .010 3° 17.498 2.087 4-I7S 6.262 8.350 10-437 12.524 20 .017 .017 40 23-331 2.08l 4.163 6.244 8.326 10.407 12.489 25 .027 •038 ■038 5° 29.164 2.076 4.151 6.227 8.302 10.378 12.453 30 4500 10 2.070 2.064 4-139 4.127 6.209 6. 1 91 8.278 8.254 10.348 10.317 12.417 12.381 "V-834' 46° 47° 20 11.668 2.057 4.11S 6.172 6.154 8.230 8.206 10.288 10.257 12.345 12.308 30 17.501 2.051 4.103 40 23-335 2.045 4.091 6.136 8.i8i 10.226 12.272 5 10 0.001 O.OOI 5° 29.169 2.039 4.079 6.118 8.157 10.197 12.236 .004 .004 15 20 .OlO .010 4600 2-033 4.067 6.100 ^•'33 10.166 12.199 .017 .017 10 "5-835' 2.027 4-054 6.081 8.108 10.136 12.163 25 .027 .027 20 11.670 2.021 4.042 6.063 8.084 10.104 12.125 30 .038 -038 30 17-504 2.015 4.030 6.044 8.059 10.074 12.089 40 50 23-339 29-174 2.009 2.003 4.017 4.005 6.026 6.008 8.034 8.010 10.043 10.013 12.052 12.015 48° 4700 10 "5-836' 1.996 3-992 3.980 S-989 5.970 7.985 7.960 9.981 9-951 11.978 11.941 20 11.672 1.984 3-968 5-951 7-935 9-gJ§ 11.903 S 0.001 30 17.508 1.978 3-955 5-933 7-§"° 9.888 1 1 .866 10 .004 40 23-344 I -97 1 3-943 5-9'4 7-885 9.857 11.828 IS .010 50 29.180 1.965 3-930 5-895 7.860 9.826 11-791 20 25 30 .017 .026 48 00 1-959 3-917 5.876 7-835 9-794 11.752 .038 Smithsonian Tables. 97 Table 20. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ttbW- [Derivation of table explained on pp. liii-lvi.] 48°00' 10 20 3° 40 5° 4900 10 20 30 40 5° 5000 10 20 3^ 40 5° 51 CO 10 20 3° 40 50 52 CO 10 20 3° 40 50 5300 10 20 30 40 5° 54 00 10 20 30 40 50 SSoo 10 20 30 40 5° 5600 if E S >« V _=5 .a (J - a b> c V h ABSCISSAS OF DEVELOPED PARALLEL. s- u a< Inches, 5-837 11.674 17.51 1 23-34'^ 29.185 5.838 n.676 17-514 23-352 29.190 5' longitude. 5-839 11.678 17-517 23-356 29.194 5.840 11.680 17.520 23.360 29.200 5-841 11.682 17-523 23-364 29.204 5.842 11.684 17.526 23.368 29.210 5-843 11.686 17.529 23-372 29.214 5-844 11.688 17-532 23-376 29.220 Inches. 1.959 1.952 1-946 1.9+0 1-933 1.927 1.921 1.914 1.908 1.901 1.895 1.888 1.882 1.875 1.869 1.863 1.856 1.842 1.836 1.829 1.823 1.816 1.809 1.803 1.796 1.789 1.782 1.776 1.769 1.762 1-755 1-748 1.742 •-73S 1.728 1.721 1-714 1.707 1.700 1.694 1.687 1.680 1.673 1.666 1.659 1.652 1.645 1.638 10' longitude. 15' longitude. Inches. 3-917 3-905 3.892 3-879 3-867 3-854 3.841 3.828 3-815 3-803 3-790 3-777 3-764 3-753 3-737 3-724 3-711 3-698 3-685 3-672 3-658 3-645 3-632 3.618 3-605 3-592 3-578 3-565 3-55' 3-538 3-524 3-511 3-497 3-483 3-470 3-456 3-442 3-429 3-415 3.401 3-387 3-373 3-359 3-345 3-331 3-317 3-303 3.289 3-275 5.876 5.838 5-819 5.800 5.781 5-762 5-743 5-723 5.704 5.684 5-665 5.646 5.626 5.606 S-587 5-567 5-547 5-528 5-527 5.488 5.468 5.448 5.428 5.408 5-388 5-367 5-347 5-327 5-307 5.287 5.266 5.246 5-225 5-205 5.184 5.164 5-t43 5.122 5.101 5.080 5.060 5-039 5.018 4-997 4-976 4-955 4-934 4-913 20 longitude. Inches, 7-835 7.810 7-784 7-759 7-733 7.708 7.682 7-657 7-631 7-605 7-579 7-553 7-527 7-501 7-475 7-449 7.422 7-396 7-370 7-343 7-317 7.290 7.264 7-237 7.210 7.184 7.156 7-130 7-103 7.076 7.049 7.022 6.994 6.967 6.940 6.912 6.885 6.857 6.830 6.802 6-774 6.746 6.719 6.691 6.663 6-579 6.551 25' longitude. Inches. 9-794 9.762 9-730 9-699 9.667 9-635 9-603 9-571 9-539 9-507 9-474 9-442 9-409 9-376 9-344 9-3 1' 9-278 9.245 9.212 9.179 9.146 9-1 '3 9.080 9.046 9.013 8.980 8.946 8.912 8.878 8.844 8.811 8.777 8.742 8.708 8.674 8.640 8.606 8.572 8-537 8.502 8.468 8-433 8.398 8.364 8.328 8.294 8.258 8.224 8.188 30' longitude. Inches. 11.752 11.714 11.677 11.638 11.600 n.562 11.523 11.485 1 1.446 11. 408 11.369 11-330 11.291 11.251 11.212 11-173 11.134 11.094 11.055 11.015 10.975 10.936 10895 10.855 10.816 10.775 10.734 10.694 10.654 10.613 10.573 10.533 10.491 10.450 r 0.409 10.368 10.327 10.286 10.244 10.202 10.161 10.120 ORDINATES OF DEVELOPED PARALLEL. 10.078 10.036 9.994 9-952 9.910 9.868 25 9.826 30 48° Inches. 0.00 1 .004. .010 .017 .026 .038 49° 50° 0.001 .004 .009 .017 .026 -03S 52° 0.00 1 .004 .009 .017 .026 •037 54° 0.001 .004 .009 .016 .025 .036 56° .004 .009 .016 .025 .036 Inches. 0.00 1 .004 .010 .017 .026 .038 51° 0.001 .004 .009 017 .026 •037 53° .004 .009 .016 .026 •037 55° 0.00 1 .004 .009 .016 .025 .036 Smithsonian Tables. 98 Table 20. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE iWinnr- [Derivation of table explained on pp. liii-lvi.] 5j !» ."3 y c'rt St 0, ABSCISSAS OF DEVELOPED PARALLEL. longitude. longitude. '5' longitude. 20' longitude. 25' longitude 30' longitude. ORDTNATES OF DEVELOPED PARALLEL. 56°oo' lO 20 3° 40 SO 5700 10 20 30 40 5° 58 00 10 20 30 40 SO 59 00 10 20 30 40 SO 6000 10 20 30 40 SO 61 00 10 20 30 40 SO 62 00 10 20 30 40 SO 6300 10 20 30 40 SO 64 00 Inches. S-845 11.690 I7-S3S 23.380 29.224 5.846 11.692 I7-S37 23-383 29.229 5.847 11.694 17.540 23-387 29.234 5.848 11.695 17-543 23-391 29.238 5.849 11.697 17.546 23-394 29.243 5.850 11.699 17-549 23-398 29.248 5.850 11.701 17-551 23.402 29.252 5-851 11.702 17-554 23-405 29256 Inches. .638 .631 .624 .616 .609 .602 -59S ■588 .566 -559 -552 •545 ■538 -530 .516 509 .501 -494 -487 -479 -472 .465 -457 .450 .442 -435 .428 .420 ■413 •405 ■398 -390 -383 •3^5 -338 .360 -353 •345 -338 -330 .322 -31 S ■307 .300 .292 1.284 Inches. 3-27S 3.261 3-247 3-233 3.219 3.204 3.190 3-176 3.162 3-147 3-133 3-"9 3.104 3.090 3075 3.061 3.046 3-032 3-017 3-003 2988 2973 2.959 2.944 2.929 2.914 2.900 2.885 2.870 2.855 2.840 2.825 2.810 2.795 2.781 2.766 2.751 2.736 2.720 2.705 2.690 2.675 2.660 2.645 2.630 2.614 2-599 2.584 2.569 Inches. 4-913 4.892 4.870 4.849 4.828 4.807 4.785 4.764 4-742 4.721 4.699 4.678 4.656 4-634 4.613 4.591 4.569 4-547 4.526 4.504 4.482 4.460 4-438 4.416 4-394 4-372 4-349 4-327 4-3QS 4-283 4.261 4.238 4.216 4-103 4.171 4148 4.126 4.103 4.081 4.058 4-035 4013 3-990 3-967 3-944 3921 3-899 3.876 3853 Inches, 6.551 6.522 6.494 6.466 6.437 6.409 6.380 6.352 6-323 6.294 6.266 6.237 6.208 6.179 6.150 6.122 6.092 6.063 6.034 6.005 s-976 5.946 5-9 '7 5.888 5.858 5.829 5-799 S-770 5-740 5.710 5.681 5.651 5.621 5-591 5.561 S-531 S-501 5-47" 5.441 5.410 5.380 S-350 5-320 5.290 S-2S9 5.228 5.198 5.168 5- 1 37 Inches. 8.188 8.118 8.082 8.046 8.011 7.976 7-940 7-904 7.868 7832 7.796 7.760 7-724 7.688 7.652 7.6r6 7-579 7-543 7-506 7-470 7-433 7-396 7.360 7-323 7.286 7.249 7.212 7-I7S 7-138 7.101 7.064 7.026 6.988 6.952 6.914 6.877 6.839 6.801 6.763 6.726 6.688 6.650 6.612 6-574 6.536 6.498 6.460 6.422 Inches. 9.826 9.784 9-741 9.698 9.656 9.613 9- 57 1 9-527 9.485 9.442 9-398 9-356 9-313 9.269 9.226 g.182 9-139 9-095 9.052 9.008 8.963 8.920 8.876 8.831 8.788 8.743 8.699 8.654 8.610 8.566 8.521 8.476 8.431 8.386 8.342 8.297 8.252 8.207 8.i6i 8.116 8.071 8.026 7.9S0 7-934 7.889 7-843 7-797 7-751 7.706 56° Inches. 0.00 1 .004 .009 .016 .025 •036 58° O.OOI .004 .009 .015 .024 •034 60° O.OOI .004 .008 .015 •023 •033 62° O.OOI .004 .008 .014 .022 .032 64° 0.001 .003 .008 .013 .021 .030 57° Inches. O.OOI .C04 .009 .016 .024 •03s 59° .004 .008 .015 .024 •034 61° O.OOI .004 .008 .014 .023 -033 63° O.OOI .003 .008 .014 .022 .031 Smithsonian Tables. 99 Table 20. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE jTsW- [Derivation of table explained on pp. liii-lvi.] o i, ABSCISSAS OF DEVELOPED PARALLEL. r\r}T\j'K kT bH S?^ UKl^iJNAljLa \JS .gTJ .2 "i-ojS DEVELOPED |1 rt S' 10' IS' 20' 25' 30' PARALLEL. J"- gSSo, longitude. longitude. longitude. longitude. longitude. longitude. iTiches. Inches. Inches. Inches. Inches. Inches. Inches. ■2^5 64°oo' 1.284 2.569 3-853 S-I37 6.422 y.yc6 Ss 64° 65° lO "'i.hs2 1.277 2-553 3-830 5.106 6-383 7.660 ^■2 20 n.704 I7-5S6 1.269 I.261 2-538 2.523 3.807 3-784 5-076 5.045 6-345 7.614 7.568 30 Ifickes. Inches, 40 23.408 1.254 2.507 3-761 5.014 6.268 7-522 s' 10 0,001 0.001 .003 SO 29.260 1.246 2.492 3-738 4-984 6.230 7-476 .003 65 00 1.238 2.477 3-71S 4-953 6.192 7-430 IS 20 .008 .013 .021 .007 .013 •020 10 S-8S3' I.231 2.461 3-^? 4.922 6-153 7-384 25 30 20 11.706 1.223 2.446 3.668 4.891 6.114 7-337 .030 .029 30 17-558 I.215 2.430 3-645 4.860 6,075 7.290 40 23.411 1.207 2.415 3.622 4.829 6.037 7-244 SO 29.264 1.200 2-399 3-599 4.798 5.998 7.198 6600 s-Sm' I.I92 1.184 -384 3-575 4.767 4-736 5-959 7.151 66° 67° 10 3-552 5.920 7.104 20 11.707 1. 176 2.352 3-529 4-705 5.881 7-057 s 0.001 O.OOI 30 17.561 1.168 2-337 3- 50s 4-673 5.842 7.010 10 •003 -003 40 23.414 1.161 2.321 3-482 4.642 5-803 6.963 15 .007 .007 SO 29.268 I-IS3 2-30S 3-458 4.611 5.764 6.916 20 -013 .012 67 00 1.145 2.290 3-435 4-580 5-725 6.869 25 30 .020 .029 .019 .028 10 "s-Sm" I-I37 2.274 34" 4.548 5-685 6.822 20 11.709 17-563 1.129 2.258 3-388 3-364 4-S17 4.485 5.646 5.607 6.775 6.728 30 1.121 2.243 40 23.418 1. 113 2.227 3-340 4-454 5567 6.680 68° 69° SO 6800 29.272 1.106 1.098 2.21 1 2.105 3-317 3-293 4.422 4-391 5.528 5.489 6.634 6.586 5 0.001 0.001 10 5-855" 1.090 1.082 2.180 3.269 4-359 5-449 6-539 10 .003 .003 20 II.7I0 2.164 3.246 4.328 5.410 6.491 15 .007 .006 30 17.565 1.074 2.148 3.222 4.296 S-370 6-443 20 .012 .oil 40 23.420 1.066 2.132 3.198 4.264 S-330 6-396 25 .019 .018 SO 29.276 1.058 2.116 3-174 4.232 5-291 6-349 30 .027 .026 69 00 1.050 2.100 3-151 4.201 5.251 6.301 6.253 10 "'i.k'{e 1.042 2.084 3.127 4.169 5.211 MnO utO 20 11.712 1.034 2.068 3-103 4-137 5.171 6.205 70° 71 30 17-567 1.026 2.052 3-079 4105 S-131 6.157 40 23-423 1.018 2.037 3-055 4-073 5.092 6.110 5 10 0,001 0.001 SO 29.279 l.OIO 2.021 3-031 4.041 5.052 6.062 .003 -003 7000 10 ■■ 5-856 ■ 1.002 .994 2.005 1.989 3.007 2.983 4.009 3-977 5.012 4-972 6.014 5.966 IS 20 25 .006 .011 .017 .024 .006 .010 .016 20 11-713 .986 1.972 2-959 3-945 4-931 S-917 .024 30 17.570 .978 1.956 2-935 3-913 4.891 5.869 30 40 SO 23.426 29.282 .970 .962 1.940 2.911 2.886 3-881 3.848 4.851 4.811 5.821 1.924 5-773 71 00 10 ■■ 5-857 ■ -954 -946 1.892 2.862 2.838 3.816 3-784 4-771 4-730 5-676 72° 20 11.714 -938 1.876 2.814 3-752 4.690 5.628 5 0.001 30 17.572 ■93° 1.860 2.790 3.720 4-650 5-579 10 .003 40 23.429 .922 1.844 2.765 3.687 4.609 5-531 15 .006 SO 29.286 .914 1.828 2.741 3-655 4.569 5-483 20 25 .010 .016 72 00 .906 1.811 2.717 3-623 4-529 5-434 30 .023 Smithsonian Tables. Table 20. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ji^sini- [Derivation of table explained on pp. liii-lvi.] ■"Eg .2 »'S2 C S oj h ^ S > SS ^ j3 u p< ABSCISSAS OF DEVELOPED PARALLEL. 5 longitude. longitude. 15' longitude. longitude. 25' longitude. 30' longitude. ORDINATES OF DEVELOPED PARALLEL. 72"00' 10 20 30 40 SO 7300 10 20 30 40 SO 7400 10 20 30 40 50 7500 10 20 30 40 SO 7600 10 20 30 40 SO 77 00 10 20 30 40 SO 78 00 10 20 30 40 SO 7900 10 20 30 40 so 8000 IncheS' S.858 II.716 '7-573 23431 29.289 5.858 1 1.7 17 '7-575 23-434 29.292 5.859 11.718 '7-S77 23-436 29.295 5.860 n.719 17-578 23-438 29.298 5.860 11.720 17.580 23.440 29.300 5.860 11.721 17.582 23.442 29.302 5.861 11.722 '7-583 23.444 29.304 5.861 11.723 17-584 23-445 29.306 Inches. .906 873 865 ,857 849 .841 832 824 .816 808 .800 79' •783 767 759 ■750 742 734 ,726 ,717 ,709 ,701 .692 ,684 676 .668 ,659 ,651 643 ■634 ,626 ,618 609 601 593 584 576 568 559 55' 542 534 526 5'7 .509 Inches. ,811 ■795 -779 763 746 730 7'4 ,697 681 ,665 ,648 632 616 599 566 550 534 517 484 468 451 435 418 402 368 352 335 319 302 28s 269 ,252 23s 219 202 169 152 '35 119 102 085 068 052 035 1.018 Inches. 2.717 2.693 2.668 2.644 2.620 2-595 2.571 2.546 2.522 2.497 2-473 2.448 2.424 2-399 2.374 2.350 2-325 2.300 2.276 2.251 2.226 2.201 2.177 2.152 2.127 2.102 2.078 2.053 2.028 2.003 1.978 I -953 1.928 1.903 1.878 1-853 1.828 1.803 1.778 1-753 1.728 1-703 1.678 '•653 1.628 1.602 I -577 '■552 1.527 Inches. 3-623 3-590 3-558 3-525 3-493 3.460 3.428 3-395 3-362 3-330 3-297 3-264 3-232 3- '99 3.160 3-'33 3.100 3.067 3-034 3.002 2.968 2-935 2.902 2.870 2.836 2.803 2.770 2-737 2-704 2.671 2.638 2.604 2.571 2-538 2.504 2.471 2.438 2.404 2.371 2.338 2.304 2.270 2-237 2.204 2.170 2-136 2.103 2.070 2.036 Inches. 4.529 4.488 4-447 4.407 4-366 4-325 4.285 4.244 4.203 4.162 4.121 4.081 4.040 3-999 3-957 3.916 3-875 3-834 3-793 3-752 3-7" 3.669 3.628 3-587 3-546 3-504 3-463 3.421 3-380 3-339 3-297 3.256 3-214 3-'72 3-'3' 3.089 3-047 3.005 2.964 2.922 2.880 2.797 2-755 2-713 2.671 2.629 2.587 2-54S iTtches. 5-434 5.386 5-336 5.288 5-239 5.190 5.141 5.092 5.044 4-994 4-945 4.897 4-847 4.798 4.748 4.699 4.650 4.601 4.552 4.502 4-453 4-403 4-354 4-304 4-255 4.205 4-155 4.105 4.056 4.006 3-956 3-907 3.856 3.806 3-757 3.706 3.606 3-556 3.506 3-456 3.406 3-356 3-305 3-255 3-205 3-155 3-104 3-054 %% 72" Inches. 0.001 .003 .006 .010 .016 .023 74° 0.001 .002 .005 .009 .014 .020 76° O.OOI .002 .005 .008 -013 .018 78° 0.000 .002 .004 .007 .oil .016 73° Inches. 0.001 .002 .005 .010 .015 .021 75° 0.001 .002 .005 .009 -013 .019 77° 0.000 .002 .004 .007 .012 .017 79° 0.000 .002 .004 .006 .010 .014 Smithsonian Tables. Table 21 . CO-ORDINATES FOR PROJECTION OF MAPS. SCALE iWtit- [Derivatiun of table explained od pp. liii-lvi.] o 1-1 * Meridional dis- tances from even degree parallels. CO-ORDINATES OF DEVELOPED PARALLEL FOR — 15' longitude. 30' longitude. 45' longitude. 1° longitude. X y X y X y X y Inches. Inches. Inches. Inches. Inches. Incites. Inches. Inches. Inches. o°oo' 15 30 45 "'8.588' 17.176 25.764 8.647 8.646 8.646 8.646 .000 .000 .000 .000 17-293 17-293 17.292 17.291 .000 .001 .001 .001 25.940 25-939 25.938 25-937 .000 .001 .001 .002 34-586 34-585 34-584 34.582 .000 .001 .003 .004 I 00 15 30 45 34-352 8.645 8.644 8.643 8.642 .000 .000 .000 .001 17.291 17.289 17.287 17.28s .001 .002 .002 .002 25.936 25-933 25.930 25-927 .003 .003 .004 .005 34-581 34-577 34-573 34-569 .005 .008 .009 8.588 17.176 25.764 2 00 '5 30 45 • 34-352 8.641 8.640 8.638 8.636 .001 .001 .001 .001 17-283 17.279 17.276 17-273 .003 .003 .003 .004 25-924 25-919 25.914 25.909 .006 .007 .007 .008 34-565 34-559 34-552 34-546 .Oil .012 .014 .015 8.588 17.176 25.765 300 IS 30 45 34-353 8.635 8.633 8.630 8.628 .001 .001 .001 .001 17.270 17.265 17.260 17.256 .004 .004 .005 .005 25.904 25.898 25.891 25.884 .009 .009 .010 .oil 34-539 34-530 34-521 34-512 .016 .018 .019 .020 8.588 17.177 25-765 4 00 34-353 8.626 .001 17.251 .005 25-877 .012 34-502 .021 15 30 45 8.589 17.177 25.766 8.623 8.620 8.617 .OOI .001 .002 17.245 17.240 17-234 .006 .005 .006 25.868 25-859 25.850 .012 •013 .014 34-491 34-479 34-467 ■023 .024 .025 5 00 34-354 8.614 .002 17.228 .007 25.842 .015 34-456 .026 15 30 45 8.589 17-177 25.766 8.610 8.607 8.603 .002 .002 .002 17.221 17.213 17.206 .007 .007 .008 25-831 25.820 25.809 .016 .016 .017 34-441 34-427 34.412 .028 .029 .030 6 00 15 30 45 34-355 8.600 8-595 8.587 .002 .002 .002 .002 17.199 17.191 17.182 17.174 .008 .008 .008 .009 25-799 25.786 25-773 25.760 .018 .019 .020 .021 34-398 34-381 34-364 34-347 .031 •033 •034 •035 8.589 17.178 25.767 7 00 15 30 45 34-356 8.583 8.578 .002 .002 .003 .003 17.165 17-155 17.145 17.136 .009 .009 .009 .010 25-748 25-7.-H3 25.718 25.704 .021 .022 .022 .023 34-330 34-3'0 34.291 34-272 •037 .038 .040 .041 8.589 17.179 25.768 800 34-358 8-563 .003 17.126 .010 25.689 .023 34-252 .042 15 30 45 8.590 17.180 25.769 ■8.S5S 8.552 8.546 .003 .003 .003 17-115 17.104 17-093 .010 .011 .011 25-673 25-656 25-639 .024 .024 .025 34-230 34.208 34.186 .044 .045 .046 900 15 30 45 34-359 8.541 8-535 8.528 8.522 .003 .003 .003 .003 17.082 17.069 17.057 17-045 .012 .OI2 .012 .013 25.622 25.604 25-585 25-567 .026 .027 .027 .028 34-163 34-138 34-114 34.089 -047 .048 .050 .051 8.590 17.180 25-771 10 00 34-361 8.516 .003 17.032 ■013 25-548 .029 34.064 .052 Smithsonian Tables. Table 21 . CO-ORDINATES FOR PROJECTION OF IVIAPS. SCALE iifsW- [Derivation of table explained on pp. liii-lvi.] ■^uf, CO-ORDINATES OF DEVELOPED PARALLEL FOR - i3 "■ llll Ilia 15' longitude. yj longitude. 45' longitude. 1° longitude. X y X y X y X y Inches. Inches, Inches, Inches, Inches, Inches. Inches, Inches, Inches. io°oo' IS 3° 45 8.591 17.181 25.772 8.516 8.509 8.502 8.496 -003 -003 .003 -003 17.032 17.019 17.005 16.991 -013 .013 .013 .014 25.548 25.528 25.507 25-487 .029 .030 -031 .032 34.064 34-037 34-010 33-982 -052 -054 -055 .056 II 00 15 3° 45 34-363 8.489 8.481 .004 .004 .004 .004 16.977 16.962 16.947 16-933 .014 .014 .015 .015 25.466 25-444 25.421 25-399 .032 •033 -033 -034 33-955 33-925 33-895 33-865 •057 .058 8.591 17.183 25774 12 00 IS 3° 45 34-365 8.459 8.451 8.443 8.434 .004 .004 .004 .004 16.918 16.901 16.885 16.869 .015 .016 .016 .016 25-376 25-352 25.328 25-304 •03s -03 s •.036 .036 33-835 33803 33-770 33-738 .061 .063 .064 .065 8.592 17.184 25.776 1300 15 30 45 34-368 8.426 8.418 8.409 8.400 .004 .004 .004 .004 16.853 16.83s 16.818 16.800 .017 .017 .017 .018 25.279 25-253 25.227 25.201 •037 .038 -039 .040 33-706 33-636 33.601 .066 .067 .069 .070 8.592 17.185 25.778 1400 IS 30 45 34-370 8.391 8.382 8-363 .004 -005 .005 .005 16.783 16.764 16.745 16.726 .018 .018 .018 .019 25.174 25.146 25.118 25.090 .040 .041 .041 .042 33-566 33-528 33-490 33-453 .071 .072 -073 .074 8-593 17.186 25.780 1500 15 30 45 34-373 8-354 8-344 8.334 8.324 •005 .005 .005 •005 16.708 16.688 16.668 16.647 .019 .019 .019 .020 25.061 25-031 25.001 24.971 .042 -043 -044 •045 33-415 33-375 33-335 33-295 •075 .077 .078 ■079 8.594 17.188 25.782 1600 15 30 45 34-376 8-314 8.303 8.292 8.282 .005 .005 .005 .005 16.627 16.606 16.564 .020 .020 .020 .021 24.941 24.909 24.877 24-845 .045 •045 .046 .046 33-255 33.212 33-170 33-127 .080 .081 .082 .083 8-595 17.190 25.784 1700 IS 30 45 34-379 8.271 8.260 8.249 8-237 .005 .005 .006 16.542 16.520 16.497 16.475 .021 .021 .021 .022 24.813 24-779 24.746 24.712 -047 .048 .049 .050 33-084 33-039 32-994 32-949 .084 .085 8.596 17.191 25.787 1800 IS 30 45 34-382 8.226 8.214 8.202 8.190 .006 .006 .006 .006 16.452 16.428 16.404 16.381 .022 .022 .023 .023 24.678 24.642 24.607 24.571 .050 .051 -051 .052 32.904 32-856 32.809 32.761 .089 .090 .091 .092 8.596 17-193 25.790 1900 IS 30 45 34-386 8.178 8.166 8-IS3 8.141 .006 .006 .006 .006 16-357 16.332 16.307 16.282 -023 .023 .024 .024 24-535 24.498 24.460 24.422 .052 -053 -054 .055 32-714 32.664 32.614 32-563 -093 -094 .095 .096 8-597 17.195 25.792 20 00 34-39° 8.128 .006 16.257 .024 24.385 -05s 32-513 .097 Smithsonian Tables. 103 Table 21. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE iWnrr- [Derivation of table explained on pp. liii-lvi,] ii Meridional dis- tances from even degree parallels. CO-ORDINATES OF DEVELOPED PARALLEL FOR — 1 15' longitude. so' longitude. 45' longitude. 1° longitude. 1 c y X y X y X y Inches. Inches. Inches. Inches. Inches. Inches. Inches. Inches. Inches. 20°00' ■S 30 4S ■■'8.598' 17.197 25-795 8.128 8.II5 8.102 8.089 .006 .006 .006 .006 16.257 16.230 16.204 16.178 .024 .024 .025 .025 24.385 24.346 24.306 24.267 .056 .056 .057 32.513 32.461 32.408 32.356 •099 .100 21 00 IS 30 4S 34-394 8.076 8.062 8.048 8.035 .006 .006 .006 .007 16.152 16.124 16.097 16.069 .025 .025 .026 .026 24.227 24.186 24.145 24.104 •057 .058 .058 .059 32.303 32.24S 32.193 32.138 .101 .102 -103 .104 8-599 17.199 25.798 22 00 IS 30 4S 34-398 8.021 8.006 7-992 7-978 .007 .007 .007 .007 16.042 16.013 15.984 15-955 .026 .026 .027 .027 24.062 24.019 23.976 23-933 •059 .060 .060 .061 32.083 32.026 31.968 31.911 .105 .106 8.600 17.201 25.801 2300 IS 30 4S 34.402 7-963 7.948 7-933 7.918 .007 .007 .007 .007 15.927 15-897 15.867 IS-837 .027 .027 .028 .028 23.890 23.845 23.800 23-756 .061 .062 .062 .063 31.853 31.794 31-734 31-674 .109 .109 .110 .111 8.602 17.203 25.804 2400 IS 3° 45 34.406 7.904 7.888 7.872 7-857 .007 .007 .007 .007 15.807 15.776 15-745 15-713 .028 .028 .029 .029 23.711 23.664 23.617 23-570 •063 .064 .064 •065 31.614 31.552 31.489 31-427 .112 .113 .114 •115 8.603 17.205 25.808 2500 IS 30 4S 34-410 7.841 7.825 7.809 7-793 .007 .007 .007 .007 15.682 15.650 15.617 15-585 .029 .029 .029 .030 23-524 23-475 23.426 23-378 .065 .065 .066 .067 31-365 31-30° 31-235 31.170 .116 .117 .117 .118 8.604 17.207 25.811 2600 IS 30 45 34-415 7.776 7.760 7-743 7.726 .007 .008 15-553 15.519 15.486 15-452 .030 .030 .030 .030 23-329 23-279 23.229 23-179 .067 !o68 31.106 31-039 30.972 30.905 .119 .120 .121 .121 8.605 17.210 25.814 27 00 IS 30 45 34-419 7.709 7.692 7-675 7.657 .008 .008 .008 .008 15.419 15-384 15-350 15-315 .031 .031 .031 .031 23.128 23.076 23.024 22.972 .069 .069 .070 .070 30.838 30-769 30.699 30.630 .122 .123 .124 .124 8.606 17.212 25.818 28 00 15 30 45 34.424 7.640 7.622 7.604 7.586 .008 .008 .008 .008 15.280 15.244 15.208 15-173 .031 .031 .032 •032 22.920 22.866 22.813 22.759 .070 .071 .071 .072 30.560 30-489 30-417 30-345 .125 .126 .127 .127 8.607 17.215 25.822 29 00 IS 30 45 34-43° 7.568 7-55° 7-531 7-513 .008 .008 .008 .008 15-137 15.100 15-063 15.026 .032 .032 •032 ■033 22.705 22.650 22.594 22.539 .072 .072 .073 ■073 30.274 30.200 30.125 30.051 .123 .129 .130 .130 8.609 17.217 25.826 3000 34-435 7-494 .008 14.989 ■033 22.483 .074 29.978 131 Smithsonian Tables. 104 Table 21 , CO-ORDINATES FOR PROJECTION OF MAPS. [Derivation of table explained on pp. liii-lvi, j SCALE 144T44' Latitude of parallel. Meridional dis- tances from even degree parallels. CO-ORDINATES 3F DEVELOPED PARALLEL FOR — is' longitude. 30' longitude. 45' longitude. 1° longitude. | X y X y X y X y Inches. Inches. Inches. Inches. Inches. Inches. Inches. Inches. Incites. 30°00' 30 45 8.610 17.220 25-830 7-494 7-475 7-456 7-437 .008 .008 .008 .008 14.989 14-951 14-913 14-874 •033 -033 •033 -033 22.483 22.426 22.369 22.312 -074 .074 -074 -075 29.978 29.902 29.825 29.749 ■131 •131 .132 -133 31 00 IS 3° 4S 34.440 7.418 7-398 7-379 7-3S9 .008 .008 .008 .008 14.836 14.797 14.758 14.718 ■°33 -033 •034 -034 22.254 22.19s 22.137 22.078 -075 .075 .076 .076 29.672 29.594 29.515 29-437 •133 -134 •13s -13s 8.61 1 17.213 25.834 32 00 "5 3° 45 34.446 7-340 7-319 7.299 7.279 .008 .008 .009 .009 14.679 14.639 14.598 14.558 •034 -034 -034 •034 22.019 2i'.898 , 21.837 .076 .077 -077 .077 29-358 29.278 29.197 29.116 -136 .136 -137 •137 8.613 17.225 25.838 33 °o 15 30 45 34.451 7.259 7.238 7-217 7-197 .009 .009 .009 .009 14.518 14-476 14-435 14-393 -034 -035 -03s -035 21.777 21.714 21.652 21.590 .078 .078 .078 .078 29.036 28.953 28.869 28.786 .138 .138 •139 -139 8.614 17.228 25.842 3400 IS 30 45 34.456 7.176 7-1 54 7-133 7.112 .oog .009 .009 .009 14-352 14.309 14.266 14.224 -03s -°35 -03s -035 21.527 21.464 21.400 21.336 .079 .079 .079 28.703 28.618 ^^533 28.448 .140 .141 .141 .142 8.615 17.231 25.846 3500 IS 3° 45 34.462 7.091 7.069 7-047 7-025 .009 .009 .009 .009 14.181 14.138 14.094 14-050 •035 .036 .036 .036 21.272 21.207 21.141 21.076 .080 .080 .080 .080 28.362 28.275 28.188 28.101 .142 .142 ■143 -143 8.617 17.234 25.851 3600 15 30 4S 34.468 7.003 6.981 6.936 .009 .009 .009 .009 14-007 13.962 13-917 13-873 .036 .036 -036 •036 21.010 20.943 20.876 20.809 .081 .081 .081 .081 28.014 27.924 27-835 27-745 -144 -144 •144 •145 8.618 17.237 25.855 3700 IS 30 45 34-474 6-914 6.891 6.868 6.845 .009 .009 .009 .009 13.828 13.782 13-736 13.690 .036 .036 .036 -037 20.742 20.673 20.604 20.536 .082 .082 .082 .082 27.655 27.564 27-472 27.381 •145 .145 .146 .146 8.620 17.240 25.860 3800 IS 3° 45 34.480 6.822 6.799 6-775 6-752 .009 .009 .009 .009 13-645 13-598 13-551 I3-S°4 -037 -037 -037 •037 20.467 20.397 20.326 20.256 .082 .083 .083 -083 27.289 27.196 27.102 27.008 .147 .147 .147 •147 8.621 17-243 25.864 3900 15 30 45 34-485 6.729 6.705 6.681 6.657 .009 .009 .009 .009 13-457 13.409 13-361 13-314 -037 -037 -037 -037 20.186 20.114 20.042 19.970 .083 .083 .083 .084 26.914 26.819 26.723 26.627 .148 .148 .148 .148 8.623 17.246 25.868 4000 34-491 6.633 .009 13.266 -037 19.899 .084 26.532 .149 Smithsonian Tables. I°S Table 21. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE m^if [Derivation of table explained on pp. liii-lvi.] 40°00' IS 30 45 41 00 IS 30 45 42 00 15 30 45 4300 IS 30 45 4400 IS 30 45 45 00 15 30 45 4600 IS' 30 45 4700 15 30 45 48 00 IS 30 45 4900 IS 30 45 5000 •■as 8 Inches. 8.624 17.249 25-873 34-497 8.625 17.250 25-875 34.500 8.627 25.882 34-Sio 8.629 17-257 25.886 34-515 8.630 17.261 25.891 34-522 CO-ORDINATES OF DEVELOPED PARALLEL FOR — 15' longitude. 8.632 17.264 25.896 34-528 8-633 17.267 25.901 34-534 8.635 17.270 25.905 34-54° 8.637 17-273 25.910 34-546 8.638 17.276 25.914 34-552 Inches. 6.633 6.608 6.584 6.560 6-535 6.510 6.485 6.460 6-435 6.410 6.385 6-359 6-334 6.308 6.282 6.256 6.230 6.203 6.177 6.151 6.124 6.097 6.071 6.044 6.017 5.990 5.962 5-935 5.908 5.880 5.852 5.824 5-796 5-768 5-740 5.712 5.684 5.626 5-598 5-569 Inches. .009 .009 .009 .009 .009 .009 ;oo9 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 so' longitude. Inches. 13.266 13.217 13.168 13.119 13.070 13.020 12.970 12.920 12.871 12.820 12.769 12.718 12.667 12.615 12.563 12.512 12.460 12.407 12.354 12.301 12.249 12.195 12.141 12.088 12.034 11-979 11.925 11.870 11.815 11.760 11.704 11.648 11-593 11.536 11.480 11.424 11.367 11.310 11.253 11.195 11.138 Inches. •037 •037 ■037 •037 037 •037 -037 •037 •037 •037 .038 .038 .038 .038 .038 .038 .038 .038 .038 .038 ■038 ■038 •038 .038 .038 .038 .038 .038 ■038 .038 .038 .038 ■038 .038 .038 •037 •037 •037 -037 •037 •037 45' longitude. Inches. 19.899 19.825 19-752 19.679 19.605 19-53° 19.456 19.381 19.306 19.230 19.154 19-077 19.001 18.923 18.845 18.767 18.689 18.610 18.531 18.452 18.373 18.292 18.212 18.131 18.051 17.969 17.887 17.805 17.723 17.640 17556 17-473 17-389 17.30S 17.220 17-135 17.051 16.965 16.879 16.793 16.707 Inches. .084 .084 .084 .084 .084 .084 .084 .084 .085 .085 .085 .085 .085 .085 .085 .085 .085 .085 .085 .085 .085 .085 .085 .085 .085 .085 •085 .085 .085 .085 ■085 .085 .085 .085 .084 .084 .084 .084 .084 .084 .084 1° longitude. Inches, 26.532 26.434 26.336 26.238 26.140 26.041 25-941 25.841 25.741 25.640 25.538 25.436 25.335 25-231 25.127 25.023 24.919 24.814 24.708 24.603 24-497 24.390 24.283 24.175 24.068 23-959 23.849 23.740 23.631 23.520 23.408 23.297 23.186 23-073 22.960 22.847 22.734 22.620 22.505 22.391 22.276 Inches. .149 •149 •149 .149 .150 .150 .150 .150 .150 .150 •151 ■151 •151 .151 .151 -151 .151 •151 ■151 .151 •151 .151 .151 .151 .151 •151 .151 ■151 .151 .151 .151 .151 .150 .150 .150 .150 .150 .150 .150 .150 •150 Smithsonian Tabues. 106 Table 21 , CO-ORDINATES FOR PROJECTION OF MAPS. [Derivation of table explained on pp. liii-lvi.] SCALE iiPtif So°oo' IS 3° 45 51 00 "S 3° 45 5200 15 30 45 5300 IS 30 45 54 00 IS 30 45 5500 15 30 45 5600 IS 30 45 57(30 IS 30 45 5800 15 30 45 59 00 IS 30 45 60 00 =3eS 5 So? S S S Inches. 8.640 17.279 25.919 34-558 8.641 17.282 25.924 34-565 CO-ORDINATES OF DEVELOPED PARALLEL FOR — is' longitude. 8-643 17.285 25.928 34-571 8.644 17.288 25.932 34-576 8.646 17.291 25-937 34-582 8.647 17.294 25-941 34-588 8.648 17.297 25.946 34-594 8.650 17.300 25.950 34.600 8.651 17-303 25-954 34.605 8-653 17-305 25.958 34.611 Inches. 5-569 5-S40 5.511 5.482 5-453 5-423 5-394 5-364 5-334 5-305 5-275 5-245 5-215 5.185 5-154 5-124 5.094 5.063 5-032 5.002 4-971 4.940 4.909 4.878 4.846 4.81S 4.784 4-752 4.720 4.689 4.657 4.625 4-593 4.561 4.529 4-497 4.464 4-432 4-399 4-367 4-334 30' longitude. Inches. .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .008 .008 .008 .008 .008 .008 .008 .008 Inches. II.138 11.080 11.022 10.963 10.905 10.846 10.787 10.728 10.669 10.609 10.549 10.490 10.430 10.369 10.309 10.248 10.187 10.126 10.064 10.003 9.942 9.879 9.817 9-755 9-693 9.630 9.567 9-504 9.441 9-377 9-314 9.250 9.186 9.122 9.058 8-993 8.929 8.864 8-799 8.734 8.669 45' longitude. Inches. -037 -037 •037 -037 •037 -037 •037 •037 -037 .036 .036 .036 .036 •036 .036 ■036 .036 .036 .036 .036 .036 •035 •035 -035 •035 •035 -035 -03s •03s •035 -034 -034 •034 -034 •034 -034 -033 -033 -033 •033 -033 Inches. 16.707 16.620 16.532 16.445 16.358 16.269 16.181 16.092 16.004 15-914 15.824 15-734 15.645 15-554 15-463 15-372 15.281 15.189 15.097 15.004 14.912 14.819 14.726 14-633 14-539 14.445 14-351 14.256 14.162 14.066 13-970 13-875 13-779 13-683 13.586 13.490 13-393 13.296' 13.198 13.100 Inches. .084 .084 .084 .083 •083 .083 .083 .083 .083 .082 .082 .082 .082 .082 .081 .081 .081 .081 .080 .080 .080 .080 .079 .079 .079 .079 .078 .078 .078 .077 .077 .077 .076 .076 .076 .075 •075 .075 •075 .074 1° longitude. 13.003 .074 Inches. 22.276 22.160 22.043 21.927 21.692 21.574 21.456 21.338 21.218 21.099 20.979 20.860 20.738 20.617 20.496 20.374 20.252 20.129 20.000 19.883 19-759 19.634 19.510 19.386 19.260 19-134 . 19.008 18.882 18.754 18.627 18.500 18.372 18.244 18.115 17.986 17.858 17.728 17-597 17.467 17-337 Inches. .150 -149 .149 .149 .148 .148 .148 .147 .147 .146 .146 .14s .145 .145 .144 .144 .144 ■143 •143 .142 .142 .141 .141 .140 .140 .140 •139 -139 .138 .138 -137 -137 .136 •135 -13s -134 -134 •133 -133 .132 •131 Smithsonian Tables. 107 Table 21. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE iWnnr- [Derivation of table explained on pp. liii-lvi*] •S3 S'fi J, Sag .2 mT3,SJ C g lU K CO-ORDINATES OF DEVELOPED PARALLEL FOR - 15' longitude. 30^ longitude. 45' longitude. 1° longitude. 6o°oo' IS 3° 45 61 00 IS 30 45 62 CO IS 30 45 6300 IS 30 45 64 00 IS 30 45 65 00 IS 30 45 6600 IS 30 45 67 00 15 30 45 6800 15 30 45 6900 15 30 45 7000 Inches. 8.654 17.308 25.962 34.616 8.655 17.311 25.966 34.621 8.657 17.313 25.970 34.626 8.658 17.316 25-974 34.632 8.659 17.318 25.977 34.636 8.660 17.321 25.981 34.641 8.661 17-323 25.984 34.646 8.663 '7-325 25.988 34-650 8.664 17.327 25.991 34.655 8.665 17.329 25.994 34-659 Inches, 4-334 4.301 4.269 4-236 4.203 4.170 4.136 4.103 4.070 4-036 4.003 3-970 3936 3.902 3.868 3-835 3.801 3-767 3.664 3-630 3-596 3-561 3-527 3-492 3-458 3-423 3-388 3-353 3-318 3-283 3.248 2.966 Inches. .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .007 .007 .007 .007 .007 .007 .007 .007 .007 .007 .007 .007 .007 .007 .007 .007 .007 .007 .007 3-213 3-178 3-143 .007 .006 .006 3.108 .006 3-072* 3-037 3.002 .006 .006 .006 .006 Inches. 8.669 8.603 8.537 8.471 8.406 8-339 8.273 8.207 8.140 8.073 8.006 7-939 7.872 7.804 7-737 7.669 7.602 7-533 7-465 7-397 7-329 7.260 7-191 7-123 7.054 6.984 6.91 5 6.846 6.776 6.706 6.637 6.567 6.497 6.427 6.356 6.286 6.216 6.145 6.074 6.003 S-932 Inches, -033 •032 .032 .032 .032 .032 •032 .031 .031 .031 .031 .031 .031 .030 .030 .030 .030 .029 .029 .029 .029 .028 .028 .028 .028 .028 .027 .027 .027 .027 .020 .026 .026 .026 .025 -025 .025 .025 .024 .024 .024 Inches. 13-003 12.904 12.806 12.707 12.608 12.509 12.410 12.310 12.210 12.110 12.009 11.909 11.808 11.707 11.605 11.504 11.402 11.300 II.I9S 11.096 10.993 10.890 10.787 10.684 10.581 10.477 10-373 10.269 10.165 10.060 9-955 9-850 9.746 ■ 9.640 9-535 9-429 9-323 9.217 9.111 9.005 8.899 Inches. .074 .074 -073 -073 .072 .072 .072 .071 .071 .071 .070 .070 .069 .069 .068 .068 .067 .067 .066 .066 .065 .065 .064 .064 .063 ■063 .062 .062 .061 .061 .060 .060 -059 •059 .058 .058 ■0S7 •057 •056 •056 •055 Inches, 17^337 17.206 17.074 16.943 16.81 1 16.679 16.546 16.413 16.280 16.146 16.012 15.878 15-744 15.609 15-474 15-338 15.203 15.067 14.930 14-794 14.658 14.520 14.383 14.245 14.108 13.969 13-830 13.692 13-553 13-413 13-273 13-134 12.994 12.854 12.713 12.572 12.431 12.290 12.148 12.006 11.865 Inches, •131 •131 ■130" .129 .128 .128 .127 .126 .I2S .125 .124 .123 .122 .122 .121 .120 .119 .119 .118 .117 .116 .lis .114 •113 .111 .III .110 .109 .108 .107 .106 .105 .104 .103 .102 .101 .100 .099 .098 .097 Smithsonian Tables. 108 Table 21. CO-ORDINATES FOR PROJECTION OF IVIAPS. SCALE tztW- [Derivation of table explained on pp. liii-lvi.] Meridional dis- tances from even degree parallels. CO-ORDINATES OF DEVELOPED PARALLEL FOR — is' longitude. so' longitude. 4S' longitude. 1° longitude. 1 X y A y X y X y Inches^ Inches. Inches. Inches. Inches. Inches. Inches. Inches. Inches. 70°oo' IS 3° 4S 8.666" 17-331 25.997 2.966 2.930 2.895 2.859 .006 .006 .006 .006 S-932 5.861 S-790 5.718 .024 .024 -023 .023 8.899 8-578 .055 •OSS -054 -053 11.865 11.722 11.580 11-437 .097 .096 .095 .094 71 00 IS 30 45 34-663 Z.824 2.788 2.752 2.716 .006 .006 .006 .C06 5.647 S-576 S-S04 S-432 .023 .023 .022 .022 8.471 8-363 8.256 8.148 .052 .052 .051 .051 11.294 II. 151 11.008 10.864 •093 .092 .091 .090 8.667 17-333 26.000 7200 IS 30 45 34-667 2.680 2.644 2.608 2.572 .006 .006 .005 .005 5-360 5.288 5.2r6 5-144 .022 .022 .021 .021 8.040 7.932 7.824 7-716 .050 .050 •049 .049 10.720 10.576 10.432 10.288 .089 .088 .087 .086 8.668 17-335 26.003 7300 IS 30 45 34.670 2-536 2.500 2.463 2.427 .005 .005 .005 .005 5.072 4.999 4.927 4.854 .021 .021 .020 .020 7.608 7-499 7-390 7.281 .048 .048 .047 .046 10.144 9-998 9-854 9.708 .085 .084 -083 .081 8.668 26.006 7400 IS 30 45 34-674 2.391 2-354 2.318 2.281 .005 .005 .005 .005 4.782 4-636 4-563 .020 .020 .019 .019 7-172 7.063 6.844 -045 ■044 -044 •043 9-563 9.417 9.272 9.126 .080 ■079 .078 .077 8.669 17-339 26.008 7500 IS 30 45 34-677 2.245 2.208 2.172 2-135 .COS .004 .004 .004 4.490 4-417 4-343 4.270 .019 .019 .018 .018 6-735 6.625 6.515 6.405 -043 .042 .042 .041 8.980 8.540 .076 -074 •073 .072 8.670 17-340 26.010 7600 15 30 45 34.680 2.098 2.062 2.025 1.988 .004 .004 .004 .C04 4-197 4.123 4.050 3-976 .018 .018 .017 .017 6.296 6.185 6.075 5-964 .040 .040 -039 .038 8-394 8.247 8.100 7.952 .071 .067 8.671 17-342 26.013 7700 IS 3° 45 34.684 1.951 1-914 1.877 1.840 .004 .004 .004 .004 3-903 3.829 .017 .017 .016 .016 5.854 5-743 5.632 5-522 •037 .037 .036 .036 7.805 7.658 7.510 7.362 .066 .065 .064 .063 8.672 17-343 26.015 7800 15 30 45 34.686 1.804 1.766 1-729 1.692 .004 .004 .004 .004 3.607 3-533 3-4S9 3-385 .015 .015 •015 .014 5.41 1 5.188 S-077 •035 •034 -034 •033 7-214 7.066 6.91 8 6.769 .062 .060 .059 .058 8.672 17-344 26.017 7900 IS 30 45 34.689 1.655 1.618 1. 581 1.544 .004 .003 .003 -003 3-310 3-236 3.162 3.087 .014 .014 .013 .013 4.966 4-854 4-742 4.631 .032 •031 .030 -030 6.621 6.472 6-323 6.174 -057 -05s .054 -053 8.673 17-346 26.018 8000 34.691 1.506 .003 3013 ■013 4.519 .029 6.026 .052 Smithsonian Tables. 109 Table 22. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ittW- [Derivation of table explained on pp. liii-lvi.] ■SI 3 2- ■ Meridional dis- tances from even degree parallels. ABSCISSAS OF DEVELOPED PARALLEL. ORDINATES OF DEVELOPED PARALLEL. 5' longitude. 10' longitude. IS' longitude. 20' longitude. 25' longitude. 30' longitude. o°oo' 10 20 30 40 SO I 00 10 20 30 40 SO 200 10 20 30 40 SO 300 10 20 30 40 SO 400 10 20 30 40 SO 5 00 10 20 30 40 50 600 10 20 30 40 50 700 Inchis. Inches. 5.764 S-764 5-764 5.764 5-764 S-764 5.764 5-763 S-763 S-762 5.762 5.761 5.761 5.760 5-759 S-759 S-758 5-757 S-756 5-756 5-754 S-7S3 5-7 52 5-751 5-750 5-749 S-748 S-746 S-745 5-744 5-743 5-741 5-739 S-738 5-736 5-735 S-733 S-731 5-729 5-727 5-726 5-724 5.722 Inches. 11.529 11.528 11.528 11.528 n.528 11-527 11-527 11.526 11.525 11.524 11.524 11.523 11.522 11.520 11-519 11.517 II. 516 11.514 11-513 II. 511 11.509 11-507 "•505 11.503 II. 501 11.498 11.496 11-493 11.490 11.488 11.485 11.482 11-479 11.476 11.472 11.469 11.466 11.462 11.458 11-455 11.451 11.447 11.443 Inches. 17.293 17.293 17.292 17.292 17.291 17.291 17.291 17.288 17.287 17.285 17.284 17.283 17.281 17.278 17.276 17-274 17.272 17.270 17.267 17.264 17.260 17-257 17.254 17.251 17.247 17.243 17.240 17.236 17-232 17.228 17-223 17.218 17.213 17.209 17.204 17.199 '7-^93 17.188 17.182 17.177 17-171 17.165 Ittches. 23.058 23.057 23.056 23.056 23-055 23054 23-054 23.052 23.050 23.049 23.047 23-045 23.044 23.041 23.038 23-035 23.032 23-029 23.026 23.022 23.018 23.014 23.010 23.006 23.002 22.996 22.991 22.986 22.981 22.976 22.970 22.964 22.958 22.951 22.945 22.938 22.932 22.924 22.917 22.910 22.902 22.894 22.887 Inches. 28.822 28.821 28.821 28.820 28.819 28.818 28.818 28.816 28.813 28.811 28.809 28.807 28.805 28.801 28.797 28.794 28.790 28.786 28.783 28.778 28.773 28.767 28.762 28.757 28.752 28.746 28.739 28.733 28.726 28.720 28.713 28.705 28.689 28.681 28.673 28.665 28.656 28.646 28.637 28.628 28.618 28.609 Inches. 34.586 34.585 34-585 34-583 34^-583 34.582 34-581 34-579 34-576 34-573 34-571 34.568 34-565 34.561 34-556 34-552 34-548 34-543 34-539 34-533 34-527 34-520 34-514 34-508 34-502 34-495 34-487 34-479 34-471 34.463 34-456 34.446 34.436 34.427 34.417 34.408 34.398 34.387 34-375 34-364 34-353 34-342 34-330 0° 1° 11-451 22.901 34-352 45.803 57-254 68.704 5' 10 15 20 25 30 Inches. 0.000 .000 .000 .000 .000 .000 Inches. 0.000 .000 .001 .001 .002 .003 11.451 22.901 34.352 45.803 57.254 68.704 2° 3° n.451 22.902 34.353 45.804 57-254 68.705 5 10 15 20 2S 30 0.000 .001 .001 .002 .004 .005 0.000 .001 .002 .003 11.451 22.902 34-353 45.804 57.255 68.706 4° 5° 5 10 15 20 25 30 0.000 .001 .003 .005 .007 .011 0.000 .001 .006 .009 .013 11.451 22.903 34-354 45-805 57-256 68.708 11.452 22.903 57.258 68.710 6° t 5 10 IS 20 25 30 0.000 .002 .004 .007 .oil .016 0.000 .002 :S .013 .018 11.452 22.904 34-356 45.808 57.260 68.712 Smithsonian Tables. Table 22. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE fghTS- [Derivation of table explained on pp. liii-lvi.] "C c « *- ABSCISSAS OF DEVELOPED PARALLEL. 5' longitude. lO' longitude. IS' longitude. 20' longitude. 25' longitude. 30' longitude. ORDINATES OF DEVELOPED PARALLEL. 7°00 10 20 3° 40 5° 800 10 20 30 40 so 900 10 20 30 40 5° 10 20 30 40 SO 10 20 30 40 5° 10 20 30 40 SO 1300 10 20 30 40 SO 1400 Inches. 68.712 11.452 22.905 34-3S8 45.810 57.262 68.715 "•4S3 22.906 34-3S9 45.81Z 57.265 68.718 11.454 22.907 33-361 45.814 57.268 68.722 11.454 22.909 34-263 4S-817 57.272 68.726 11.455 22.910 34-365 45.820 57-275 68.730 11.456 22.91Z 34-367 45.823 57.279 68.735 11.457 22.913 34-370 45.827 57.284 68.740 Inches. 5-722 5-720 5-7 1 7 5-715 5-7 13 5.7 1 1 5.709 5.706 5-704 5.701 5.696 5.694 5.691 5.688 5.686 5.683 5.680 5-677 5-674 5.671 5.668 5.662 5.659 5.656 5.652 5.646 5.642 5-639 5.636 s-632 5.628 5.625 5.621 5.618 5.614 5.610 5.606 5.602 5-598 5-594 Inches. 11-443 "•439 "-43S 11.430 11.426 11.422 11.417 11.412 11.407 11.403 11.398 "•393 11.388 11.382 "•377 "-37 1 11.366 11.360 "-3SS "-349 "-343 "-337 "■331 11.324 11.318 11.312 11.305 11.298 11.292 11.285 11.278 11.271 11.264 11.257 11.250 11.242 n.235 11.227 11.220 11.212 11.204 II. 196 II.188 Inches. 17.165 17.159 17.152 17.146 17-139 17.132 17.126 17.119 17.111 17.104 17.096 17.089 17.082 17-073 17.065 17.057 17.049 17.040 17.032 17.023 17.014 17.005 16.996 16.987 16.978 16.968 16.958 16.948 16.938 16.928 16.918 16.907 16.896 16.885 16.874 16.864 16.853 16.841 16.829 16.818 16.806 16.794 16.783 Inches* 22.887 22.878 22.869 22.861 22.852 22.843 22.834 22.825 22.815 22.805 22.795 22.786 22.776 22.764 22.754 22.742 22.732 22.720 22.710 22.698 22.685 22.673 22.661 22.649 22.637 22.624 22.610 22.597 22.584 22.570 22.557 22.542 22.528 22.514 22.499 22.485 22.470 22.45s 22.439 22.424 22.408 22.392 22.377 Inches. 28.609 28.598 28.587 28.576 28.565 28.554 28.543 28.531 28.519 28.507 28.494 28.482 28.470 28.456 28.442 28.428 28.415 28.401 28.387 28.372 28.357 28.342 28.327 28.311 28.296 28.280 28.263 28.246 28.230 28.213 28.196 28.178 28.160 28.142 28.124 28.106 z8.o88 28.069 28.049 28.030 28.010 27.991 27.971 Inches. 34-330 34-317 34-304 34.291 34.278 34.265 34.252 34-237 34.222 34-208 34-193 34-178 34-163 34-147 34-130 34-"4 34-097 34-081 34.064 34.046 34.028 34.010 33-992 33-973 33-955 33-935 33-915 33-895 33-875 33-855 33-835 33-814 33-792 33-770 33-749 33-727 33-706 33.682 33659 33-635 33^6i:2 33-589 33-565 Inches. 0.000 .002 .005 .008 .013 .018 0.001 .003 .006 .010 .016 -023 O.COI .003 .007 .013 .020 .028 13° .004 .008 .015 .023 -033 Inches. O.OOI .002 .005 .009 .014 .021 .003 .006 .Oil .018 .026 0.001 •003 .008 .014 .021 •031 14° 0.001 .004 .009 .016 .025 ■035 Smithsonian Tables. Table 22. CO-ORDINATES FOR PROJECTION OF MAPS. [Derivation of table explained on pp. liii-lvi.] SCALE ^ aioff - ^a- ABSCISSAS OF DEVELOPED PARALLEL. •ST! .2 »-oi^ ORDINATES OF DEVELOPED PARALLEL. S' 10' >5' 20' 25' 30' s°- gSuo, longitude. longitude. longitude. longitude. longitude. longitude. iTiches. Inches. Inches. Inches. Inches. Inches. Inches. 11 i4°oo' lO 20 30 40 50 68.740 5-594 5.582 5- 578 5-573 II.188 II.180 II. 172 1 1. 163 II.155 II.147 16.783 16.770 16.758 16.745 16.733 16.720 22.377 22.360 22.344 22.327 22.310 22.294 27.971 27.950 27-930 271867 33-565 33-540 33-515 33-490 33-465 33-440 B ►J'" 14° 15° 11.458 22.915 34.373 45.830 57.288 5' 10 15 Inches. O.OOl .004 .009 Inches. 0.001 .004 .009 15 00 10 20 30 40 50 1600 10 20 30 40 50 68.746 5-569 5-565 5.560 5-556 5-55" 5-547 5.542 5.538 5.533 5.528 5.524 5-519 11-138 11.130 II. 121 II. 112 II.I03 11.094 11.085 11.076 11.066 11.057 11.047 11.038 16.708 16.694 16.681 16.667 16.654 16.641 16.628 16.613 16.599 16.585 16.556 22.277 22.259 22.241 22.223 22.206 22.188 22.170 22.151 22.132 22.113 22.094 22.075 27.846 27.824 27.802 27.779 27-757 27-735 27-713 27.689 27.665 27.642 27.618 27.594 33.415 33-389 33-362 33-335 33-308 33-282 33-255 33.227 33-198 33-170 33.142 33-"3 20 25 30 .aib .025 -03s .017 .026 -038 11.459 22.917 34-376 45.834 57-293 68.752 5 10 15 20 16° ^f 11.460 22.919 45.838 57-298 0.001 .004 .010 .018 O.OOI .005 .011 .019 17 00 10 20 30 40 50 68.758 5-509 5-504 5-499 5.494 5.489 11.028 II.O18 1 1.008 10.978 16.542 16.527 16.512 16.497 16.482 16.467 22.056 22.036 22.016 21.996 21.976 21.956 27.571 27.546 27.521 27-495 27.470 27-445 33-085 33.055 33-025 32-994 32-964 32-934 25 30 .028 .040 .029 .042 1 1. 461 22.921 34-382 45-843 57-3°4 1800 10 20 30 40 SO 68.764 5.484 5.479 5.468 5.463 5.458 10.968 10.957 10.947 10.936 10.926 10.915 16.452 16.436 16.420 16.404 16.389 16-373 21.936 21.915 21.894 21.872 21.852 21.830 27.420 27-394 27-367 27-341 27-315 27.288 32-904 32-872 32.840 32.809 32-777 32-746 18° 19° 11.462 22.924 34-386 45.848 57-310 5 10 15 20 2S O.OOI .005 .Oil .020 .031 O.OOI .005 .012 .021 -032 1900 68.771 5-452 10.905 16-357 21.809 27.262 32-714 30 •044 .046 10 20 3° 40 50 2000 11.463 22.926 34-390 45-853 57-316 68.779 5-447 5-441 5-436 5-430 5-424 5.419 10.893 10.882 10.871 10.860 10.849 10.838 16.340 16.324 16.307 16.290 16.274 16.257 21.787 21.765 21.742 21.720 21.698 21.676 27.234 27.206 27.178 27.150 27.123 27.095 32.680 32-647 32.614 32.580 32-547 32-S13 20° 21° 5 10 15 20 25 30 0.001 .005 .012 .022 -034 .049 0.001 .006 .013 .022 •03s .051 10 20 30 40 s° 11.464 22.929 34-394 45-858 57-322 5-413 5-407 5.401 5-396 5-390 10.826 10.814 10.803 10.791 10.779 16.239 16.222 16.204 16.187 16.169 21.652 21.629 21.605 21.582 21.558 27.065 27.036 27.007 26.978 26.948 32.478 32-443 32-408 32-373 32.338 21 00 68.787 5-384 10.768 16.151 21-535 26.919 32.303 Smithsonian Tables. Table 22. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE vthn- [Derivation of table explained on pp. liii-lvi.] 11 Meridional dis- tances from even degree parallels. ABSCISSAS OF DEVELOPED PARALLEL. ES OF PED EL. S' longitude. 10' longitude. 15' longitude. 20' longitude. 25' longitude. 30' longitude. DEVELO PARALL 21°00' lO 20 30 40 SO 22 00 10 20 30 40 50 23 00 10 20 30 40 so 2400 10 20 30 40 50 2500 10 20 30 40 SO 2600 10 20 30 40 50 27 00 10 20 30 40 SO 2800 Inches. 68.787 Inches. 5-384 5-378 5-366 5-359 5-353 5-347 5-341 5-334 5-328 5.322 5-315 S-309 5.302 5.282 5.276 5.269 S-263 5.256 5.249 5.242 5-235 5.227 5.220 5-213 5.206 5-199 5-191 5.184 5-177 S-169 5.162 S-154 S-147 5.140 5-132 5.124 5.116 5-109 5.101 5-093 Inches. 10.768 10.755 10.743 10.731 10.719 10.707 10.694 10.682 10.669 10.656 10.643 10.631 10.618 10.604 10.591 10.578 10.565 10.551 10.538 10.526 10.512 10.498 10.483 10.469 10.455 10.441 10.426 10.412 10.397 10.383 10.369 10.354 10-339 10.324 10.309 10.294 10.279 10.264 10.248 10.233 10.2l8 10.202 10.187 Inches. 16.151 16-133 16.115 16.097 16.078 16.060 16.042 16.022 16.003 15.984 15-965 15.946 15-927 i5'.887 15.867 15.847 15.827 15.807 15.789 15.767 15.746 15-725 15.704 15.682 15.661 15-639 15.618 15.596 15-575 15-553 15-531 15-508 15.486 15-463 15-441 15.419 15-396 15-373 15-349 15.326 15-303 15.280 Inches. 21-535 21.511 21.486 21.462 21.438 21.413 21.389 21.363 21.338 21.312 21.287 21.261 21.236 21.209 21.182 21.156 21.129 21.102 21.076 21.052 21.023 20.995 20.967 20.938 20.910 20.881 20.852 20.824 20.795 20.766 20.737 20.708 20.678 20.648 20.618 20.588 20.558 20.528 20.497 20.466 20.435 20.404 20.374 Inches. 26.919 26.889 26.858 26.828 26.797 26.767 26.736 26.704 26.672 26.641 26.609 26.577 26.545 26.511 26.478 26.445 26.412 26.378 26.345 26.315 26.279 26.244 26.209 26.173 26.137 26.101 26.065 26.029 25-993 25.958 25-922 25.884 25.847 25.810 25.772 25-735 25.698 25.659 25.621 25-582 25-544 25-505 25.467 Inches. 32-303 32.266 32.230 32-193 32.156 32.120 32.083 32.045 32.006 31.969 31-930 31-892 31-853 31-813 31-774 31-733 31.694 31-654 31.614 31-577 31-535 31-493 31-450 31.408 31-365 31-322 31-279 31-235 31.192 31-149 31.106 31.061 31.017 30.972 30.927 30.882 30.838 30.791 30-745 30.699 30-653 30.607 30.560 ■B13 !i 5' 10 15 20 25 3° 21° 22° 11.466 22.932 34-,397 45.863 57-329 68.795 Inches. 0.001 .006 ■013 .022 ■035 .051 Inches. 0.001 .006 •013 .023 .036 .052 11. 467 22.934 34.401 45.868 57-336 68.803 23° 24" 11.469 22.937 34.406 45-874 57-343 68.812 S 10 15 20 25 30 O.OOI .006 .014 .024 •038 .054 0.002 .006 .014 .025 •039 .056 11.470 22.940 34.410 45.880 57-350 68.821 25° 26° 5 10 IS 20 25 30 0.002 .006 .026 .040 .058 0.002 .007 .026 .041 .059 11.472 22.943 45.886 57-358 68.830 11-473 22.946 34-419 45.892 57-365 68.838 5 10 15 20 25 30 27" 28° 0.002 .007 -015 .027 .042 .061 0.002 .007 .016 .028 •043 .063 11-475 22.950 34.424 45.899 57-374 68.849 Smithsonian Tables. "3 Table 22. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE fTsinS' [Derivation of table explained on pp. liii-lvi.] *J3 ional dis> sfrom degree lels. ABSCISSAS OF DEVELOPED PARALLEL. ORDINATES OF DEVELOPED o ^1 •liil 5' 10' IS' 20' 25' 30' PARALLEL. 'Js. l^s^a longitude. longitude. longitude. longitude. longitude. longitude. Inc^s. Inches. Inches. Inches. Inches. Inches. Inches. I'^ 28°00' 10 68.849 s-093 5.085 10.187 10.171 15.280 15.256 20.374 20.342 25-467 25-427 30.560 30-513 § B 28° 29" U.476 20 22.953 s-077 10-155 15-232 20.310 25-387 30.465 Inches. Inches. 3° 34430 5-069 10.139 15.208 20.278 25-347 30-417 5' 0.002 0.002 40 45.906 5.061 10.123 15.185 20.246 25.308 30-369 10 .007 .007 .016 so S7-383 5.054 10.107 15-161 20.214 25.268 30.321 IS > .016 20 .028 .028 2900 10 68.859 s-046 5-037 10.091 10.075 15-137 15.II2 20.182 20.150 25.228 25.187 30.274 30.224 25 30 -043 .063 .044 .064 11.478 20 22.957 5-029 10.058 15.087 20.117 25.146 30-175 30.126 30 34-435 5.021 10.042 15-063 15.038 20.084 25.105 40 45-913 S-013 10.025 20.051 25.064 30.076 SO 3000 10 57-391 68.870 5.004 4.996 4.988 10.009 9-993 9.976 15.013 14.989 14.963 20.018 19.985 19.951 25.022 24.981 24.939 30.027 29.978 29.927 30° '31° 11.480 20 22.960 4-979 9-959 14.938 '9-§i7 24.896 29.876 S 0.002 0.002 30 34.440 4.971 9.942 14.912 19.883 24.854 29.825 10 .007 .007 40 45.920 4.962 9.925 14.887 19.849 24.812 29.774 15 .016 .017 SO 57.400 4-954 9.908 14.862 19-815 24.769 29.723 20 25 .029 .045 .030 .046 31 00 10 68.880 4-945 4-937 9.891 9-873 14.836 14.810 19.782 19-747 24.727 24-683 29.672 29.620 30 .065 .067 11.482 20 22.964 4.928 9?56 14.784 19.712 24.640 29.568 30 34.446 4.919 9-838 14-758 19.677 24.596 29-515 40 SO 45.927 57.409 4.910 4.902 9.821 9.804 14-731 14-705 19.642 19.607 24.552 24-509 29.463 29.411 32° 33° 32 00 10 68.891 4-893 4.884 9.786 9.768 14.679 14.652 19-572 19-536 24.465 24.420 29-358 29.305 s 0.002 0.002 11.484 20 22.967 '^l^l 9.750 14.625 19.500 24-376 29.251 10 .007 .008 30 34-451 4.866 9-732 14-598 19.465 24-331 29.197 IS .017 .017 40 45-934 4.857 9-714 14-572 19.429 24.286 29.143 20 •030 .031 SO 57-418 4.848 9.696 14-545 19-393 24.241 29.089 25 30 ■1% .048 .069 3300 10 68.902 4-839 4.830 9.679 9.660 14.518 14.490 19-357 19.320 24.196 24.150 29.036 28.980 11.485 20 22.971 4.821 9.642 14.462 19.283 24.104 28.925 30 40 34-456 45.942 4.812 4.802 9-623 9.605 14-435 14.407 19.246 19.210 24.058 24.012 28.870 28.814 -1.0 -IfO SO 3400 10 57-427 68.913 4-793 4.784 4-774 9.586 9-568 9-549 14-379 14-352 14-323 19-173 19.136 19.098 23.966 23.920 23.872 28.759 28.704 28.647 34 35 5 10 IS 20 25 30 0.002 .008 .017 .031 -049 .070 0.002 .008 .018 11.487 20 30 22.975 34.462 4-765 4-755 9-530 9-5" 14.295 14.267 19.060 19.022 23.825 23-778 28.590 28-533 .031 .049 .071 40 5° 45-949 57-437 4-746 4-737 9.492 9-473 14.238 14.210 18.946 23-730 23.683 28.476 28.420 3SOO 68.924 4.727 9-454 14.181 18.908 23-636 28.363 Smithsonian Tables. 114 Table 22. CO-ORDINATES FOR PROJECTION OF IVIAPS. SCALE t^^T)- [Derivation of table explained on pp. liii-lvi.] ABSCISSAS OF DEVELOPED PARALLEL. 5' longitude. 10' longitude. IS' longitude. 20' lon^tude. 25' longitude. 30' longitude. ORDINATES OF DEVELOPED PARALLEL. 10 20 30 40 50 3600 10 20 30 40 SO 3700 10 20 30 40 SO 3800 10 20 30 40 SO 3900 10 20 30 40 SO 4000 10 20 30 40 so 41 00 10 20 30 40 SO Inches. 68.924 H.489 22.978 34.468 4S'9S7 S7r446 68.93s 1 1. 491 22.983 34-474 4S-96S S74S7 68.94S "•493 22.986 34.480 57.466 68.959 11.495 22.990 34-485 45-980 57-475 68.970 11.497 22.994 34-491 45.988 57-485 68.982 11.499 22.998 34-497 45-996 57-495 68.994 II. 501 23.002 34-503 46.004 57-506 42 00 69.007 Inches* 4.727 4-717 4.708 4-6g8 4.688 4.679 4.669 4.659 4.649 4-639 4.629 4.619 4.609 4-599 4-589 4-579 4-568 4-558 4.548 4-538 4-527 4-517 4.506 4-496 4-486 4-475 4.464 4-454 4-443 4-433 4.422 4-4" 4.400 4-389 4-378 4-368 4-357 4-346 4-335 4-324 4-312 4.301 4.290 Inches. 9-454 9-435 9.415 9-396 9-377 9-357 9-338 9.318 9.298 9.278 9.258 9.238 9.219 9-198 9.178 9-157 9-137 9.1 17 9.096 9.076 9.055 9-034 9.013 8.992 8-971 8.950 8.929 8.908 8.886 8.865 8.844 8.822 8.800 8.779 8-757 8-735 8-713 8.691 8.669 8.647 8.625 8.603 Inches. I4.181 14.152 14.123 14.094 14.065 14.036 14.007 13-977 13-947 13-917 13-887 13.858 13.828 13-797 13-767 13-736 13.706 13-675 13-645 13-613 13.582 13-551 13.520 13.488 13-457 13-425 13-393 13-361 13-330 13.298 13.266 13-233 13.201 13.168 13-135 13-103 13.070 13-037 13.004 1 2.97 1 12.937 12.904 12.871 Inches. 18.908 18.870 18.831 18.792 18.753 18.714 18.676 18.636 18.596 18.556 18.517 18.477 18-437 18.396 18.356 18.315 18.274 18.234 18.193 18.151 18.109 18.068 18.026 17.984 17-943 17.900 17.858 17.815 17-773 17-730 17.688 17.644 17.601 17-557 17.514 17.470 17.427 17-383 17-338 17.294 17.250 17.205 17. 161 23-636 23-587 23-539 23.490 23.442 23-393 23-345 23-295 23-245 23-195 23.146 23.096 23.046 22.995 22.944 22.894 22.843 22.792 22.741 22.689 22.637 22.585 22.533 22.481 22.429 22.375 22.322 22.269 22.216 22.163 22.110 22.055 22.001 21.947 21.892 21.838 21.784 21.728 21.673 21.6:8 21.562 21.507 21.451 Inches. 28.363 28.305 28.246 28.188 28.130 28.072 28.014 27.954 27.894 27-835 27.775 27.715 27.656 27.594 27-533 27.472 27.411 27-350 27.289 27.227 27.164 27.102 27.039 26.977 26.914 26.8151 26.787 26.723 26.659 26.595 26.532 26.466 26.401 26.336 26.271 26.206 26.140 26.074 26.007 25-941 25-875 25.808 25.742 •afe 35° Inches. 0.002 .008 .018 .031 .049 .071 37° 0.002 .008 .018 .032 .050 -073 39° 0.002 .008 .018 -033 .051 -074 36° Inches. 0.002 .008 .018 -032 •050 .072 41" 0-002 .008 .019 -033 .052 .075 0.002 .008 .018 -033 •051 -073 40° 0.002 .008 .019 ■033 .052 -074 42° 0-002 .008 .019 -033 .052 .075 Smithsonian Tables. "S Table 22. CO-ORDINATES FOR PROJECTION OF MAPS. [Derivation of table explained on pp. liii-lvi.] SCALE ^Tsirs- '■OSS .2 WO " ."i rt > H 42°00' lO 20 3° 40 5° 4300 10 20 3° 40 5° 4400 10 20 3° 40 SO 45 00 10 20 30 40 5° 4600 10 20 30 40 so 4700 10 20 30 40 SO 48 00 10 20 30 40 SO 49 00 Inches. 69.007 ABSCISSAS OF DEVELOPED PARALLEL. S' longitude. 11.503 23.000 34-Sio 46.013 S7-SI6 69.019 11.505 23.010 34-5'S 46.020 57-525 69.030 11.507 23.014 34.522 46.029 S7'S36 69.043 U.509 23.018 34.528 46.037 57-546 69-055 :i.5ii 23.023 34-534 46.045 57-557 69.068 11-513 23.027 34-540 46.053 57-567 69.080 II. 516 23-031 34-546 46.062 57-577 69.093 4.290 4.279 4.268 4.256 4-245 4-234 4.222 4.2H 4.199 4.188 4.176 4.165 4-153 4.142 4.130 4. 1 18 4.106 4.095 4.083 4.071 4-059 4.047 4-035 4.023 4.01 1 3-999 3-987 3-975 3-963 3-951 3-938 3.926 3914 3.889 3-877 3-864 3.852 3-839 3.827 3.814 3.802 3-789 10' longitude. Inches. 8.581 8-558 8-535 8-513 8.490 8.467 8.445 8.422 8-399 8.376 8-353 8-330 8-307 8.283 8.260 8.236 8.213 8.189 8.166 8.142 8.1 18 8.094 8.070 8.046 8.023 7.998 7-974 7.950 7-925 7.901 7-877 7.852 7.827 7.803 7.778 7-753 7.729 7.704 7.679 7-653 7.628 7.603 7.578 IS' longitude Inches. 12.871 2.837 2.803 2.769 2-735 2.701 2.667 2-633 2-598 2.564 2.529 2.494 2.460 2.425 2.390 2-354 2.319 2.284 2.249 2.213 2.177 2.141 2.105 2.070 2.034 1-997 1.961 1.925 1.888 1.852 1.815 1.778 1.741 1.704 1.667 1.630 1-593 1-555 1. 518 1.480 1.442 1.405 11.367 20' longitude. Inches. I7.161 I7.H6 17.071 17.025 16.980 16.935 16.890 16.844 16.798 16.751 16.705 16.659 16.613 16.566 16.519 16.473 16.426 16.379 16.332 16.284 16.236 i6.i88 16.141 16.093 16.045 15-997 15.948 15.899 15.851 15.802 15-754 15.704 15.606 15-556 15-507 15.457 15.407 15.357 15-307 15-257 15.206 15.156 25' longitude. Inches. 21.451 21.395 21.338 21.282 21.225 21.169 21.054 20.997 20.939 20.882 20.824 20.767 20.708 20.649 20.591 20.532 20.473 20.415 20.355 20.295 20.236 20.176 20.116 20.056 19.996 '9-935 19-974 19.813 19-753 19.692 19.630 19.569 19-507 19.445 19.383 19.322 19.259 19.196 19-134 19.071 19.008 18.945 30' longitude. Inches. 25.742 25.674 25.606 25.538 25.470 25.402 25-334 25.265 25.196 25.127 25.058 24.989 24.920 24.849 24.779 24.709 24.638 24-568 24.498 24.426 24-354 24.283 24.211 24.139 24.068 23-995 23.922 23.849 23.776 23-703 23.630 23.556 23.482 23.408 23-334 23.260 23.186 23.111 23-03S 22.960 22.885 22.810 22.734 ORDINATES OF DEVELOPED PARALLEL. 42" Inches. ,002 ,008 ,019 033 ,052 ,075 44° 0.002 .008 .019 .034 .052 -075 46° 0.002 .008 .019 •034 -053 .076 48° 0.002 .008 .019 ■033 .052 .075 43° Inches. 0.002 .008 .019 •033 .052 .075 45° 0.002 .008 .019 .034 47° 0.002 .008 .019 .034 .052 .075 49° 0.002 .008 .019 ■033 .052 •07 S Smithsonian Tables. 116 Table 22. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 75^7. [Derivation of table explained on pp. liii-lvi.] . inal dis- from egree Is. ABSCISSAS OF DEVELOPED PARALLEL. 'ES OF OKDINAl ■S5 .2 »^J^ Vni DEVELOPED ' p S 10 15' 20' 25' 30' PARALLEL. : •3°' g2 S a longitude. longitude. longitude. longitude. longitude. longitude. Inches. hiches. Inches. Inches. Inches. Inches. Inches. ,49°oo' 10 69.093 3-789 3-776 7-578 7.553 11.367 11.329 11.291 15.156 15.105 15.054 18.945 18.882 22.734 22.658 22.581 49° 50° II. 517 20 23-035 3-764 7.527 18.818 Inches. Inches. 30 34-SS2 3-751 7.502 11.253 15.003 18.754 22.505 . 40 46.070 3-738 7.476 11.214 14-952 18.690 22.429 s 0.002 .008 .019 0.002 .008 .019 SO S7-S87 3-725 7-451 11.176 14.901 18.627 22.352 10 15 5000 69.105 3-713 7-425 11.138 14.850 18.563 22.276 20 25 •033 -052 •033 .052 10 11.520 3.700 7-399 11.099 14.799 18.499 22.198 30 .075 -07S 20 23.039 3.687 7-374 11.060 14-747 18.434 22.121 30 3i-S5« 3-674 7-348 1 1. 021 14.695 18.369 22.043 40 46.078 3.661 7.322 10.983 14.644 18.305 2i!888 21.811 21.732 SO 51 00 10 57.598 69.117 3-648 3-63S 3.622 7.296 7.270 7.244 10.944 10.905 10.866 14-592 14.540 14.488 18.240 18.176 18.110 51° 52° II. 521 20 23-043 3.609 7.218 10.827 14.436 18.045 21.653 s 10 0.002 0.002 30 34-564 3-596 7.191 10.787 14-383 17-979 21.574 .008 .008 40 46.086 3-583 7.165 10.748 14-330 17-913 21.496 15 20 .019 .018 50 57.607 3-S70 7-139 10.709 14.278 17.848 21.417 -033 -033 5200 10 69.128 3-556 3-543 7-113 7.086 10.669 10.629 14.226 14.172 17.782 17.716 21.338 21.259 25 30 .051 .074 .051 -073 11.523 20 23-047 3-530 7.060 10.589 14.119 17.649 21.179 30 34-S70 3-516 7-033 10.550 14.066 17-583 21.099 •40 46.094 57-617 3-503 7.006 6.980 10.510 14.013 13.960 17.516 21.019 SO 3-490 10.470 17.450 20.939 5300 10 69.140 . 3-477 3-463 6-953 6.926 10.430 10.389 13.906 13.852 17-383 17.316 20.860 20.779 53° S4° "-525 5 0.002 0.002 20 23.051 3-450 6.899 10.349 13-798 17.248 20.698 10 .008 .008 30 34-576 3-436 6.872 10.309 13-745 17.181 20.617 15 .018 .018 40 46.102 3-423 6.845 10.268 13.691 17.114 20.536 20 .032 .032 SO 57-627 3-409 6.8i8 10.228 13-637 17.046 20.455 25 30 .050 -073 -050 .072 S4 00 10 69.152 3-396 3-382 6.791 6.764 10.187 10.146 13-583 13.528 16.979 16.910 20.374 20.292 11.527 20 23-055 3-368 6-737 10.105 13-474 16.842 20.210 30 34- 582 3-3SS 3-341 6.709 6.682 10.064 13-419 13-364 16.774 20.128 40 46.109 10.023 16.706 20.047 - -0 56° -SO 55 00 57-636 69.164 3-327 3-314 6.655 6.628 9.982 9-941 ' 13-310 13-255 16.637 16.569 19.964 19-883 SS 5 10 IS 20 0.002 0.002 10 11.529 3-300 6.600 ■9.900 13.200 16.500 19.800 .008 .018 .008 .018 20 23.059 3.286 6.572 9.859 13-145 16.431 19.717 .032 -049 .071 .031 -049 .070 30 34-5«8 3.272 6.545 9.817 13.089 16.362 19.634 25 30 40 46.117 3.258 6-517 9-776 13-034 16.293 19-551 50 57.646 3-24S 6.489 9-734 12.979 16.224 19.468 5600 69.176 3-231 6.462 9-693 12.924 16.155 19-385 Smithsonian Tables. 117 Table 22. CO-ORDINATES FOR PROJECTION OF MAPS. [Derivation of table explained on pp. liii-lvi.] SCALE ^TsinTS- o II Meridional dis- tances from even degree parallels. ABSCISSAS OF DEVELOPED PARALLEL. ES OF PED EL. S' longitude. 10' longitude. '5' longitude. 20' longitude. 25' longitude. 30' longitude. DEVELC PARALL 56°oo' 10 20 30 40 SO S7 00 10 20 30 40 SO 5800 10 20 30 40 SO 5900 10 20 30 40 SO 6000 10 20 30 40 SO 61 00 10 20 30 40 SO 62 00 10 20 30 40 SO 6300 Inches. 69.176 Inches. 3-231 3.217 3-203 3.189 3-175 3.161 3-147 3^133 3-"9 3.104 3^090 3.076 3.062 3.048 3^034 3.019 3^005 2.991 2.976 2.962 2.947 2-933 2.918 2.904 2.890 2.875 2.860 2.846 2.831 2.816 2.802 2.787 2.772 2.758 2.743 2.728 2.713 2.699 2.684 2.669 2.654 2.639 2.624 Inches. 6.462 %^ 6.378 6.350 6.322 6.294 6.266 6-237 6.209 6.i8i 6.152 6.124 6.096 6.067 6.038 6.010 5.981 5-953 5^924 S-779 5750 S72I 5.662 5^633 5.604 S^S74 5^545 "^\ 5.456 5.427 5-397 5^367 5-337 5-308 5.278 5.248 Inches, 9-693 9.651 9.609 9-567 9-525 9-483 9.441 9-398 9-356 9-314 9.271 9.229 9.186 9-'43 9.101 9.058 9.015 8.972 8.929 8.885 8.842 8.799 8755 8.712 8.669 8.625 8.581 8-537 8.493 8.450 8.406 8.361 8.3'7 8.273 8.229 8.184 8.140 8.096 8.051 8.006 7.961 7.917 7.872 Inches. 12.924 12.868 12.812 12.756 12.700 12.644 12.588 12.531 12.475 12.418 12.362 12.305 12.248 12.191 12.134 12.077 12.020 11.962 11.905 11.847 11.790 11.732 11.674 11.616 11.558 11.500 11.441 "-383 11.324 11.266 11.208 11.148 11.090 11.030 10.972 10.912 10.854 10.794 '0734 10.675 10.615 10.556 10.496 Inches. 16.155 16.085 16.015 '5-945 15.875 15.805 '5-735 15.664 '5-594 '5-523 15.452 15.381 '5-3" '5-239 15.168 15.096 15.025 '4^953 14.882 14.809 14-737 14.665 14.592 14.520 14.448 '4-375 14.302 14.229 14.156 14.083 14.010 13.862 13788 '3715 13.641 13-567 13-493 13.418 13.269 i3^i95 13.120 Inches. i9^385 19.301 19.217 I9^i34 19.050 18.966 18.882 18.797 18.712 18.627 18.542 18.457 18-373 18.287 18.201 18.115 18.029 17.944 '^-858 17:684 17.597 17.510 17.424 17-337 17.249 17.162 17-074 16.899 16.81 1 16.723 16.634 16.546 16.457 16.369 16.280 16.191 16.102 16.012 15-923 '5-833 '5-744 ■S • 56° 57° "•S3' 23-063 34-594 46.125 57-656 69.188 5' 10 '5 20 25 30 Inches. 0.002 .008 .018 .031 •049 .070 Inches. 0.002 .008 .017 .031 .048 .069 "•533 23.066 34-599 Si 69.199 58° S9° "-S3S 23-070 34-6Q5 46.140 57-675 69.210 S 10 IS 20 25 30 0.002 .008 .017 •030 •047 .068 0.002 .007 .017 •030 .046 .067 "•537 23.074 34.610 46.147 57.684 69.221 60° 61° "•539 23.077 34-616 46.154 57-693 69.232 5 10 '5 20 25 30 0.002 .007 .016 .029 .045 .065 0.002 .007 .016 .029 .064 11.540 23.081 46.162 57.702 69.242 62° 63° S 10 15 20 25 3° 0.002 .007 .016 .028 -044 .063 0.002 .007 .015 .027 11.542 23.084 34.626 46.168 577 10 69253 Smithsonian Tables. 1x8 Table 22. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ^i^- [Derivation of table explained on pp. liii-lvi.] •S3 513 h> c V H ABSCISSAS OF DEVELOPED PARALLEL. 5' longitude. lO' longitude. IS' longitude. 20 longitude. 2S' longitude. 30' longitude. ORDINATES OF DEVELOPED PARALLEL. 63°00' lO 20 3° 40 5° 6400 10 20 3° 40 5° 6500 10 20 30 40 5° 66 00 10 20 30 40 50 67 00 10 20 30 40 5° 6800 10 20 30 40 so 6900 10 20 30 40 SO 7000 Inches. 69-2S3 11.544 23.087 34-631 46.17s 57.718 69.262 11.545 23.091 34-636 46.182 57.727 69.272 11.547 23.094 34.641 46.188 S7-73S 69.282 11.548 23.097 34-646 46.194 57-742 69.291 11.550 23.100 34.650 46.200 57-750 69.300 11.552 23.103 34-654 46.206 57-758 69.309 "■SS3 23.106 34-659 46.212 57-764 69.317 1.977 Inches. 2.624 2.609 2-594 2.579 2.564 2.549 2-534 2.519 2.504 2.488 2-473 2.458 2-443 2.428 2.412 2-397 2.382 2.366 2-3SI 2-336 2.320 2.305 2.290 2.274 2.259 2.243 2.228 2.212 2.197 2.181 2.166 2.150 2.134 2.119 2.103 2.088 2.072 2.056 2.040 2.025 2.009 1-993 Inches. S.248 5.218 5.188 s-iss 5.128 5.098 s-068 s-037 5.007 4-977 4-947 4.916 4.886 4-855 4.825 4-794 4.764 4-733 4.702 4.672 4.641 4.610 4-579 4.548 4.518 4.487 4-4SS 4.424 4-393 4.362 4-331 4.300 4.269 4-237 4.206 4-175 4.144 4.112 4.081 4.049 4.018 3.986 3-9SS Inches. 7.872 7.827 7.782 7-737 7.692 7.647 7.602 7-556 7.511 7-465 7.420 7-374 7-329 7.283 7-237 7-191 7-145 7.100 7.054 7.007 6.961 6.915 6.869 6.823 6.776 6.730 6.683 6.637 6.590 6-543 6-497 6.450 6.403 6-356 ^■^^^ 6.263 6.2 1 6 6.169 6.121 6.074 6.027 5.980 S-932 Inches. 10.496 10.436 10.376 10.316 10.256 10.196 10.136 10.075 10.014 9-954 9-893 9.832 9.772 9.711 9.650 9.588 9527 g.466 9.405 9-343 9.282 9.220 9.158 9.097 9-035 8-973 8.911 8.849 8.787 8.724 8.662 8.600 8.538 8.475 8.412 8.350 8.288 8.225 8.162 8.099 8.036 7-973 7.910 Inches. 13.120 13-045 12.970 12.895 12.820 12.745 12.670 12.594 12.518 12.442 12.367 12.291 12.215 12.139 12.062 11.986 11.909 "-833 11.756 11.679 11.602 11.525 11.448 "■371 11.294 11.217 11.139 11.061 10.984 10.906 10.828 10.750 10.672 10.594 10.516 10.438 10.360 10.281 10.202 10.124 10.045 9.966 9.888 Inches. 15-744 15-654 15.564 15-473 15-383 15-293 15.203 15.112 15.022 14.930 14.840 14.749 14.658 14.566 14.474 14-383 14.291 14.199 14.107 14.015 13.922 13-830 13-738 13-645 '3-553 13.460 13.366 13-273 13.180 13.087 12.994 i2.goo 12.806 12.712 12.619 12.525 12.431 12.337 12.242 12.148 12.054 11. 959 11.865 Inches s' 0.002 10 .007 15 .015 20 .027 25 -043 30 .061 63° 65° 5 10 0.002 .006 15 20 .014 .026 25 30 .040 .058 67° O.OOI .006 .014 .024 .038 -054 69° O.OOI .006 .013 .022 -03s .051 64° 0.002 .007 .015 .026 .041 .060 66° 0.002 .006 .014 .025 •039 .056 68° O.OOI .006 -013 .023 .036 •053 70" 0.001 .005 .012 .022 ■034 ■049 Smithsonian Tables. TI9 Table 22. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE vrhrr- [Derivation of table explained on p. liii-lvi.] .82 Meridionel dis- tances from even degree parallels. ABSCISSAS OF DEVELOPED PARALLEL. ES OF PED EL. S' longitude. 10' longitude. 'S' longitude. 20' longitude. 25' longitude. 30' longitude. DEVELO PARALL 7o°oo' 10 20 30 40 50 71 00 lO 20 3° 40 50 72 00 10 20 30 40 50 7300 10 20 30 40 50 7400 10 20 30 40 SO 7500 10 20 30 40 50 7600 10 20 30 40 50 7700 Inches. 69-317 Inches. 1.977 1.962 1.946 1.930 I.914 1.898 1.882 1.866 1.850 1.835 1.819 •1.803 1.787 1.771 1755 1.739 1723 1.707 1.691 1.674 1.658 1.642 1.626 1.610 1.594 1.578 1.562 1-545 1.529 "-513 1.497 1.480 1.464 1.448 1.432 1.415 1.399 1.350 1-334 1.317 1.301 Inches. 3-955 3923 3.892 3.860 3.828 3796 ■3;765 3-733 3-^5' 3.669 3-637 3.605 3-574 3542 3-509 3-477 3-445 3-413 3.381 3.349 3.317 3.284 3.252 3.220 3-188 3-155 3-123 3.091 3-058 3.026 2-993 2.961 2.928 2.896 2.863 2.831 2.798 2.765 2733 2.700 2.667 2.634 2.602 Inches. 5-932 5.885 5-837 5.790 5.742 5-695 5.647 5.600 5-552 5-504 5.456 5.408 5.360 5-312 5-264 5.216 5.168 5.120 5.072 5.024 4-975 4.927 4.830 4.782 4-636 4-587 4.539 4.490 4.441 4-392 4.344 4-295 4.246 4.197 4.148 4.099 4.050 4.001 3952 3.903 Inches. 7.910 7.846 7783 7.720 7.656 7.593 7.530 7.466 7.402 7-338 7.275 7.2H 7-147 7-083 7.019 6-955 6.891 6.826 6.762 6.698 6.634 6.569 6.504 6.440 6.376 6.311 6.246 6.181 6.116 6.052 5-987 5-922 5-856 5.792 5.661 5-596 5.530 5-465 5.400 5.204 Inches. 9.888 9.808 9-729 9.650 9-571 9.491 9.412 9-333 9253 9-173 9.094 9.014 8.934 8.854 8.774 S.694 8.614 8.533 8.453 8-373 8.292 8.211 8-131 8.050 7.970 7.727 7-645 7.565 7-484 7.402 7.321 7.240 7-158 7.077 6.995 6.913 6.832 6.750 6.668 6.586 6.505 Inches. 11.865 11.770 11.675 "■579 11.485 11.389 11.294 11.199 II. 103 11.008 10.912 10.816 10.721 10.625 10.528 10.432 10.336 10.240 10.144 10.047 9.950 9-853 9.660 9-563 9.466 9-369 9.272 9-175 9-077 8.980 8.882 8.785 8.687 8.590 8.492 8.394 8.296 8.198 8.099 8.002 7.903 7.805 11 ■|| 5' 10 15 20 25 30 5 10 15 20 25 30 70= 71» ".554 23.109 34-663 46.217 57.772 69.326 Inches. 0.001 .005 .012 .022 -034 •049 Inches. O.OOI .005 .012 .021 .032 .047 . 11.556 23.ni 34.667 46.222 57.778 69.334 72° 73° "•557 23.114 34-670 46.227 57784 69.341 O.OOI .005 .oil .020 .031 •044 O.OOI .005 .oil .019 .029 .042 11.558 23.116 34-674 46.232 57.790 69.348 5 10 15 20 25 30 5 10 15 20 25 30 74° 75° "-559 23.118 34-677 46.236 57796 69-355 0.001 .004 .010 .018 .028 .040 0.001 .004 .009 .017 .026 .038 11.560 23.120 34-681 46.241 57.801 69.361 760 77° O.OOI .004 .009 .016 .025 .036 0.001 .004 .008 .015 .023 .033 11.561 23.122 34.683 46.244 57.806 69.367 Smithsonian Tables. 120 Table 22. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE sTsitT!- [Derivation of table explained on p. liii-lvi.J "S .a •°B8 ABSCISSAS OF DEVELOPED PARALEL. «-s •1" •is-!= DEVELOPED P |iil S longitude. 10' longitude. 15' longitude. 20' longitude. 25' longitude. 30' longitude. PARALLEL. Inches* Inches. Inches. Inches. Inches. Inches. Inches. i-^ 77°oo' 10 69.367 1.301 1.284 1.268 1.252 2.602 2.569 2-536 2-503 3-903 3-854 3.804 3-755 5.204 5-138 5.072 5.006 6.505 6.423 6.341 6.258 7.805 7.707 7.609 7-510 *5c Jj 77" 78° 11.562 23.124 34.686 20 30 5' 10 IS Inches. Inches. 40 46.248 I-23S 2.470 3.706 4.941 6.176 7.41 1 0.00 1 O.OOI 5° 57.810 1.219 2.438 3-656 4-875 6.094 7-313 .008 .003 .008 7800 10 69-373 1.202 1.186 2.40s 2.372 3-607 3-558 4.810 4-744 6.012 s-930 7.214 7.I15 20 25 30 -015 .023 •033 .014 .021 ■031 11.563 20 23.126 1. 169 2-339 3.508 4.678 5847 7.016 30 34689 I-IS3 2.306 3-459 4.612 5-765 6.918 40 5° 46.252 57-814 1-136 2.273 3.410 3-360 4.546 4.480 5-683 5.600 6.819 6.720 7900 10 69-377 1.104 1.087 2.207 2.174 3-3" 3.261 4.414 4-348 5-518 5-435 6.621 6.522 79° 80° 11.564 s O.OOI O.OOI 20 23.127 1.070 2.141 3.211 4.282 5-352 6.422 10 -003 .003 30 34.691 1.054 2.108 3.162 4.216 5.270 6-323 •5 .007 .006 40 4^-?SS 1-037 2.075 3.112 4.150 4.083 5.187 6.224 20 .013 .on SO 57.818 1. 02 1 2.042 3.062 5-104 6.125 25 .020 .018 30 .028 .026 8000 69.382 1.004 2.009 3-013 4.017 5.022 6.026 Smithsonian Tables. 121 Table 23. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE aooStft - [Derivation of table explained on pp. liii-lvi.] •s . ■=sg CO-ORDINATES Of DEVELOPED PARALLEL FOR— iq/ loDgitude. 20' longitude. ao' longitude 40^ longitude. 50' longitude. 1° longitude. 3- Meridio tances even d paralle X y X y X y X y X y X y tnm. mm. mm. mm. mm. mm. mm mm. mm. mm. mm. mm. mm. o°oo' 92.8 .0 185.5 .0 278.3 .0 371.I .0 463.8 .0 556.6 .0 lO 92.1 92.8 .0 i8S-S .0 278.3 .0 371.I .0 463.8 .0 556-6 .0 20 184.3 92.8 .0 185.5 .0 278.3 .0 37I.I .0 463.8 .0 556.6 .0 3° 276.4 92.8 .0 185.5 .0 278.3 .0 371.0 .0 463.8 .0 556.6 .0 40 368.6 92.8 .0 185.S .0 278.3 .0 371.0 .0 463.8 .0 5S6.6 .0 SO 460.7 92.8 .0 185.5 .0 278.3 .0' 371.0 .0 463-7 .0 556.5 .1 I oo 92.8 .0 185.5 .0 278.3 .0 371.0 .0 463-7 .1 556.5 .1 10 92.1 92.7 .0 185.5 .0 278.2 .0 371.0 .0 463-7 .1 556-4 .1 20 184.3 92.7 .0 185.5 .0 278.2 .0 37 1 -o .0 463-7 .1 556-4 .1 3° ^Ifi 92.7 .0 185.5 .0 278.2 .0 370.9 .0 463-7 .1 556-4 .1 40 368.6 92.7 .0 185.4 .0 278.2 .0 370.9 .0 463.6 .1 556-3 .1 SO 460.7 92.7 .0 185.4 .0 278.2 .0 370.9 .1 463.6 .1 556-3 .2 2 00 92.7 .0 185.4 .0 278.1 .0 370.8 .1 463.6 .1 556-3 .2 10 92.1 92.7 .0 185.4 .0 278.1 .0 370.8 .1 463-5 .1 556-2 .2 20 184.3 92.7 .0 185.4 .0 278.1 .0 370.8 .1 463-4 .1 S56-1 .2 30 ^IH 92.7 .0 185.3 .0 278.0 .0 370.7 .1 463-4 .1 556-0 .2 40 368.6 92.7 .0 185.3 .0 278.0 .0 370.6 .1 463-3 .2 SS6-o .2 SO 460.7 92.7 .0 185-3 .0 278.0 .1 370.6 .1 463.2 .2 555-9 .2 300 92.6 .0 185.3 .0 277.9 .1 370.6 .1 463-2 .2 555-8 .2 10 92. 1 92.6 .0 185.2 .0 277.9 .1 370.5 .1 463.1 .2 555-7 -3 20 184.3 92.6 .0 185.2 .0 277.8 .1 370.4 .1 463.0 .2 555-7 -3 30 276.4 92.6 .0 185.2 .0 277.8 .1 370.4 .1 463-0 .2 SSS-S •3 40 368.6 92.6 .0 185.1 .0 277.7 .1 370.3 .1 462.8 .2 5S5-4 -3 SO 460.7 92.6 .0 185.1 .0 277.7 .1 370.2 .1 462.8 .2 SSS-4 •3 400 92.5 .0 185.1 .0 277.6 .1 370.2 .2 462.7 .2 555-2 •3 10 1^4-3 92.S .0 185.0 .0 277.6 .1 370.1 .2 462.6 .2 SSS-' -3 20 92.S .0 185.0 .0 277.5 .1 370.0 .2 462.5 .2 555-0 .3 30 'IH 92.5 .0 185.0 .0 277.4 .1 309.9 .2 462.4 .2 554-9 554-8 -3 40 368.6 92.5 .0 184.9 .0 277.4 .1 369.8 .2 462.3 ■3 -4 SO 460.7 92.4 .0 184.9 .0 277.3 .1 369.8 .2 462.2 -3 S54.6 -4 500 92.4 .0 184.8 .0 277-3 .1 369.7 .2 462.1 -3 554.5 •4 10 92.2 92.4 .0 184.8 .1 277.2 .1 369.6 .2 462.0 -3 554.3 -4 20 184.3 92.4 .0 184.7 .1 277.1 .1 369.5 .2 461.8 ■3 554.2 -4 30 276.4 92-3 .0 184.7 .1 277.0 .1 369.4 .2 461.7 .3 554.0 ■4 40 368.6 92-3 .0 184.6 .1 276.9 .1 369.2 .2 461.6 .3 SS3-9 .5 so 460.7 92-3 .0 184.6 .1 276.9 .1 369.2 .2 461.4 -3 553-7 -S 600 92-3 .0 184.5 .1 276.8 .1 369.0 .2 461.3 -4 553-6 .5 10 ■ 92.2 92.2 .0 184.5 .1 276.7 .1 368.9 368.8 .2 461.2 -4 553-4 -S 20 184.3 92.2 .0 184.4 .1 276.6 .1 .2 461.0 -4 553-2 .5 30 276.4 92.2 .0 184.3 .1 276.5 .1 36S.7 .2 460.8 -4 553-0 .5 40 368.6 92.1 .0 184.3 .1 276.4 .1 368.6 .2 460.7 •4 552-8 .§ SO 460.7 92.1 .0 184.2 .1 276.3 .1 368.4 .2 460.6 -4 552-7 .6 700 92.1 .0 184.2 .1 276.2 .1 368.3 •3 460.4 -4 552-5 .6 10 92.2 92.0 .0 184.1 .1 276.1 .1 368.2 •3 460.2 -4 552.2 .6 20 184.3 92.0 .0 184.0 .1 276.0 .1 368.0 •3 460.0 ■4 SS2-I .6 30 276.4 92.0 .0 184.0 .1 275.9 27S.8 .1 367-9 .3 459-9 -4 55'-9 .6 40 368.6 91.9 .0 ■f3-9 .1 .1 367.8 .3 459-7 -4 > 551-6 .6 SO 460.7 91.9 .0 183.8 .1 27S.7 .1 367.6 .3 459-5 •5 551-4 •7 800 91.9 .0 183.7 .1 275.6 .2 367-5 -3 4S9-4 •S 551.2 ■7 Smithsonian Tables. Table 23. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE udlKf [Derivation of table explained on pp. liii-lvi.] Latitude of parallel. Meridional dis- tances from even degree parallels. CO-ORDINATES OF DEVELOPED PARALLEL FOR— 10/ longitude. 2.tJ longitude. 30/ longitude. 40' longitude. Sof longitude. 1° longitude. X y X y X y X y X y X y mm. mm. mm. mm. mm. mm. ?nm. mm. mm. mvu mm. m»t. mm. 8°oo' 91.9 .0 1837 .1 275.6 .2 367.5 •3 459-4 •s 551-2 •7 10 92.2 91.8 .0 183-7 .1 27S.5 .2 367.3 •3 459-2 ■5 551.0 •7 20 184.3 91.8 .0 183.6 .1 275.4 .2 367.2 •3 459.0 -S 550-7 -7 30 276.5 91.8 .0 183.5 .1 275.2 .2 357-2 ■3 458.8 •5 S50-5 •7 40 368.6 91.7 .0 183.4 .1 275.1 .2 366.8 -3 458.6 ■S 550-3 -7 so 460.8 91.7 .0 183.3 .1 275.0 .z 366.7 •3 458.4 •5 550.0 -7 900 91.6 .0 183.3 .1 274.9 .2 366.5 •3 458.2 •S 549.8 .8 10 92.2 91.6 .0 183.2 .1 274.8 .2 366.4 •3 458.0 •5 549-5 .8 20 184.3 91-5 .0 183.1 .1 274.6 .2 3^^-" •3 457-7 •S 549.2 .8 30 276.5 91.5 .0 183.0 .1 274.5 .2 366.0 •3 457.5 .5 549-2 .8 40 368.6 91-5 .0 182.9 .1 274.4 .2 365.8 -4 457-3 .6 548.8 .8 5° 460.8 91.4 .0 182.8 .1 274.2 .2 365.6 -4 457-0 .6 548.5 .8 1000 91.4 .0 182.7 .1 274.1 .2 365.5 •4 456.8 .6 548.2 .8 10 92.2 91-3 .0 182.6 .1 274.0 .2 365.3 •4 456.6 .6 547-9 .8 20 184.3 9'-3 .0 182.5 .1 273.8 .2 365.1 -4 456.4 .6 547-6 -9 30 276.5 91.2 .0 182.4 .1 273.7 .2 364.9 -4 456.1 .6 547-3 -9 40 368.7 91.2 .0 182.3 .1 273.5 .2 364.7 .4 455-9 .6 547.0 -9 5° 460.8 91.1 .0 182.2 .1 273.4 .2 364.5 .4 455-6 .6 546-7 -9 II 00 91. 1 .0 182.I .1 273.2 .2 364.3 •4 455-4 .6 546.4 -9 10 92.2 91.0 .0 182.0 .1 273.1 .2 364.1 .4 4S5-' .6 546.1 -9 20 184.3 91.0 .0 181.9 .1 272.9 .2 363.8 .4 454-8 .6 545.8 -9 30 276.5 90.9 .0 181.8 .1 272.7 .2 363-6 .4 454-6 -7 545-5 -9 40 368.7 90.9 .0 181.7 .1 272.6 .2 363-4 .4 454-3 -7 545.2 I.O 5° 460.8 90.8 .0 181.6 .1 272.4 .2 363-2 .4 454-0 -7 544-8 I.O 12 00 90.8 .0 181. 5 .1 272.2 .2 363-0 .4 453-8 -7 544-5 1.0 10 92.2 90.7 .0 181.4 .1 272.1 _2 362.8 •4 453-4 -7 544.1 I.O 20 184.4 90.6 .0 181.3 .1 271.9 .2 362.5 .4 453-2 -7 543.8 I.O 30 276.5 90.6 .0 181. 1 .1 271.7 ■3 362.3 .4 452.8 -7 543.4 I.O 40 368.7 90.5 .0 181.O .1 271.6 •3 362.1 .4 452.6 -7 543-1 I.O 5° 460.9 90.5 .0 180.9 .1 271.4 .3 361.8 -S 452-3 •7 542.8 I.I 1300 90.4 .0 180.8 .1 271.2 ■3 361.6 -5 452.0 -7 542-4 I.I 10 92.2 903 .0 180.7 .1 271.0 •3 361.4 -5 451-7 -7 542.0 I.I 20 184.4 90-3 .0 180.6 .1 270.8 .3 361. 1 -5 451.4 .8 541-7 I.I 30 276.6 90.2 .0 180.4 .1 270.6 •3 360.8 -5 451.0 .8 541-3 I.I 40 368.8 90.2 .0 180.3 .1 270.4 •3 360.6 -5 450.8 .8 540.9 I.I 50 461.0 90.1 .0 180.2 .1 270.3 •3 360.4 -S 450-4 .8 540.5 I.I 1400 90.0 .0 180.I .1 270.1 •3 360.1 •5 450.2 .8 540.2 I.I 10 92.2 90.0 .0 179.9 .1 269.9 •3 359.8 -5 449.8 .8 539-8 1.2 20 184.4 89.9 .0 179.8 .1 269.7 .3 359.6 •5 449-5 .8 539-4 1.2 3° 276.6 89.8 .0 179.7 .1 269.5 .3 3S9-3 •S 449.2 .8 539-0 1.2 40 368.8 89.8 .0 179.S .1 269.3 ■3 359-9 -5 448.8 .8 538.6 1.2 SO 461.0 89.7 .0 179.4 .1 269.1 .3 358.8 •5 448.5 .8 538.2 1.2 1500 89.6 .0 179.3 .1 268.9 .3 358-S •5 448.2 .8 537-8 1.2 10 92.2 89.6 .0 I79.I .1 268.7 •3 358-2 •S 447-8 .8 537-4 1.2 20 184.4 89.5 .0 179.0 .1 268.5 .3 358-0 .6 447-4 .8 536-9 1.2 30 276.6 89.4 .0 178.8 .1 268.3 •3 357-7 .6 447.1 -9 536-5 1.2 40 368.8 89-3 .0 178.7 .1 268.0 .3 357-4 .6 446-7 -9 536.0 1-3 SO 461.0 89-3 .0 178.5 .1 267.8 ■3 357-1 .6 446-4 -9 535-6 1-3 1600 89.2 .0 178.4 .1 267.6 •3 356.8 .6 446.0 -9 535-2 1.3 Smithsonian Tables. 123 Table 23. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ^Wtmr- [Derivation of table explained on pp. liii-lvi.] i6°oo' 10 92.2 20 184.4 3° 276.6 40 368.8 SO 461.0 17 00 10 92.2 20 184.4 3° 276.7 40 368.9 SO 461. 1 i8oo 10 92.2 20 184.5 30 276.7 40 368.9 so 461.2 1900 10 20 30 40 SO zo 00 10 20 30 40 SO 21 00 10 20 30 40 SO 22 00 10 20 30 40 SO 23 00 10 20 30 40 SO 2400 ■5 a s .S ufOM lass. 92.2 184.S 276.7 369.0 461.2 92.2 184.5 276.8 369.0 461.2 92-3 184.5 276.8 369.0 461.3 92-3 184.S 276.8 369.1 461.4 92.3 184.6 276.8 369.1 461.4 CO-ORDINATKS OF DEVELOPED PARALLEL FOR — 10^ longitude. 89.2 '89.1 89.0 89.0 88,9 S8.7 88.7 88.6 88.5 88.4 88.3 88.3 88.2 88.1 88.0 111 87.7 87.6 87.6 87.5 87.4 87.3 87.2 87.1 87.0 86.9 86.8 86.7 86.6 86.5 86.4 86.3 86.2 86.1 86.0 in 85.7 85.6 8S.S 85.4 85.3 85.2 85.1 85.0 84.9 84.8 20^ longitude. 178.4 178.2 178.1 177.9 177.8 177.6 177-S 177-3 177.2 177.0 176.8 176.7 176.5 176-3 176.2 176.0 175.8 175.6 I7S-S I7S-3 175.1 174.9 174.8 174.6 174.4 174.2 174.0 173-8 173-7 I73-S '73-3 1 73- 1 172.9 172.7 172.5 172-3 172.1 171.9 171.7 171.5 171-3 171. 1 170.9 170.7 170.4 170.Z 170.0 169.8 169.6 30/ longitude. 267.6 267.4 267.2 266.9 266.7 266.5 266.2 266.0 265.7 265.5 265.2 265.0 264.8 264.5 264.2 264.0 263.7 263.5 263.2 263.0 2627 262.4 262.1 261.9 261.6 261.3 261.0 260.8 260.5 260.2 2S9-9 259.6 259-3 258.8 258.4 258.2 257.8 257.6 257.2 256.6 256.3 256.0 255-7 255-3 255-0 254-7 254-4 40^ longitude. 356.8 356-5 356.2 355-9 355-6 3SS-3 355-0 354-6 354-3 354-0 3S3-6 353-3 3S3-0 352.6 352-3 352.0 351-6 351-3 351-0 350.6 350.2 349-9 349-5 349-2 348-8 348.4 348.0 347-7 347-3 346.9 346-6 346.2 345-8 345-4 345-0 344-6 344-2 343-8 343-4 343-0 342-6 342.2 341.8 341-3 340-9 340-4 340-0 339-6 339-2 so' longitude. 446.0 445-6 445-2 444-8 444-4 444-1 443-7 443-3 442.9 442.5 442.0 441.6 441.2 440.8 440.4 440.0 439-6 439-1 438-7 438-2 437-8 437-4 436-9 436-4 436.0 435-6 435-0 434-6 434-2 433-6 433-2 432-7 432.2 431-7 431.2 430-8 430-2 429.8 429.2 428.8 428.2 427.7 427.2 426.6 426.1 425-6 425.0 424.5 424.0 1.3 9 9 •9 9 9 ■9 ■9 •9 1.0 1.0 i.o i.o 1.2 1.2 1.2 1.2 1.2 1.2 1° longitude. 535-2 S34-7 534-3 533-8 533-3 532-9 532-4 532.0 531-S 531-0 530-5 530.0 529-5 529.0 528.5 528.0 527-5 526.9 526.4 525-9 525-4 524.8 524-3 523-7 523.2 522.7 522.1 521.5 521.0 520.4 519-8 519.2 518.6 518.0 517-5 516.9 516-3 51 5-7 515.1 SI4-S S13-8 513-2 512.6 512.0 511-3 510.7 5101 509.4 508.7 Smithsonian Tables. 124 CO-ORDINATES FOR PROJECTION OF MAPS. [Derivation of table explained on pp. liii-lvi.] Table 23. SCALE Winnr- •s 11 dional dis- ' :es from 1 degree lUels. CO-ORDINATES OF DEVELOPED PARALLEL FOR— lo^ longitude. iof longitude. 30^ longitude. 40/ longitude. so' longitude. 1° longitude. II X y X y X y X y X y X y mm. mm. mm. mm. mm. mm. mm. mm. mm. mm. mm. mm. 24°0O' 84.8 .0 169.6 .2 254-4 339-2 .8 424.0 1-3 508.7 1.8 10 184.6 IH .0 169.4 .2 254.0 338-7 .8 423-4 '•3 508.1 ,1.8 20 84.6 .0 169.I .2 253-7 338-3 337-8 .8 422.8 «-3 507.4 1.8 3° 276.9 84.S .0 168.9 .2 253-4 .8 422.3 1-3 506.8 1.8 40 369-2 84.4 .0 168.7 .2 253.0 337-4 .8 421.8 1-3 506.1 1.8 SO 461.S 84.2 .0 168.5 .2 252.7 337-0 .8 421.2 1-3 505.4 1.9 2500 84.1 .1 168.3 .2 252.4 336-s .8 420.6 >-3 504-8 1.9 10 2^-? 84.0 .1 168.0 .2 252.0 336-0 .8 420.0 1-3 504.1 1-9 20 184.6 In .1 167.8 .2 251.7 335-6 .8 419-5 1-3 503-4 1.9 30 276.9 83-8 .1 167.6 .2 251-3 335-1 .8 418.9 1-3 502.7 1.9 40 369.2 83-7 .1- 167.3 .2 251.0 334-6 .8 418.3 417-8 1-3 502.0 1-9 SO 461.6 83.6 .1 167.1 .z 250.6 334-2 .8 1-3 501.3 1-9 2600 83-4 .1 166.9 .2 250.3 333-7 -9 417.2 1-3 500.6 1-9 10 §^•3 83-3 .1 166.6 .2 249.9 333-2 -9 416.6 1-3 499-9 1.9 20 184.6 83.2 .1 166.4 .2 249.6 332-8 -9 416.0 '■3 499-1 1.9 30 277.0 83-1 .1 166.1 .2 249.2 332-3 -9 415-4 1-3 498.4 1.9 40 369-3 82.9 .1 165.9 .2 248.8 331-8 -9 414-8 1-4 497-7 2.0 SO 461.6 82.8 .1 165.7 .z 248.5 331-3 •9 414.2 ■1.4 497-0 2.0 27 00 IH .1 165.4 .2 248.1 330-8 -9 413.6 1-4 496-3 2.0 10 ■■■92.3" 82.6 .1 165.2 .2 247.8 330-4 •9 413.0 1-4 49S-S 494.8 2.0 20 184-7 82.S .1 164.9 .2 247.4 r 329-8 -9 412.3 1-4 2.0 30 277.0 82.3 .1 164.7 .2 247.0 329-4 -9 411.7 1-4 494.0 2.0 40 369-3 82.2 .1 164.4 .2 246.7 328.9 -9 411. 1 1-4 493-3 2.0 SO 461.6 82.1 .1 164.2 .2 246.3 328.4 •9 410.4 1.4 492.5 2.0 2800 82.0 .1 163.9 .2 245-9 327-9 •9 409.8 1.4 491.8 2.0 10 92.4 81.8 .1 163-7 .2 245.5 327-4 •9 409.2 1.4 491.0 2.0 20 184.7 81.7 .1 163.4 .2 24S-.I 326.8 .9 408.6 1.4 490-3 2.0 30 277.0 81.6 .1 163.2 .2 244.7 326.3 -9 407-9 1.4 481:1 2.0 40 369-4 81.5 .1 162.9 .2 244-4 325-8 -9 407-3 1.4 2.0 SO 461.8 81.3 .1 162.7 .2 244.0 325-3 ■9 406.6 1.4 488.0 2.1 2900 81.2 .1 162.4 .2 243.6 324.8 •9 406.0 1.4 487.2 2.1 10 92.4 81.1 .1 i6z.i .2 243-2 324-3 -9 405-4 1.4 486.4 2.1 20 184-7 80.9 .1 1 61. 9 .2 242.8 323-8 •9 404.7 1.4 485-6 2.1 30 277.1 80.8 .1 161.6 .2 242.4 323-2 -9 404.0 1.4 484.8 2.1 40 369-4 80.7 .1 161.3 .2 242.0 322-7 •9 403-4 1.4 484.0 2.1 SO 461.8 80.5 .1 161. 1 .2 241.6 322.2 -9 402.7 i-S 483.2 2.1 3000 80.4 .1 160.8 .2 241.2 321.6 -9 402.0 1-5 482.5 2.1 10 92.4 80.3 .1 160.5 .2 240.8 321.1 -9 401.4 J-S 481.6 2.1 20 184.8 80.1 .1 160.3 .2 240.4 320.6 -9 400.7 i-S 480.8 2.1 30 277.1 80.0 .1 160.0 .2 240.0 320.0 -9 400.0 1-5 480.0 2.1 40 369- s 79-9 .1 IS9-7 .2 239.6 319-4 -9 399-3 1-5 479-2 2.1 SO 461.9 79-7 .1 IS9-S .2 239.2 318.9 -9 398.6 1-5 478.4 2.1 3100 79.6 .1 159.2 .2 238.8 318.4 I.O 398.0 1-5 477.5 2.1 10 92.4 79-4 .1 158.9 .2 238.4 317-8 I.O 397-2 1-5 476.7 2.1 20 184.8 79-3 .1 158.6 .2 237-9 317-2 1.0 396-6 1-5 475.9 2.2 30 277.2 79.2 .1 158-3 .2 237-5 3.'6.7 I.O 395-8 1-5 475.0 2.2 40 369.6 79.0 .1 I58.r .2 237-1 316.1 I.O 395-2 1-5 474.2 2.2 so 462.0 78.9 .1 157.8 .2 236.7 315-6 I.O 394-4 i-S 473-3 2.2 3200 78.8 .1 IS7-S .2 236.2 •s 31S-0 I.O 393-8 1-5 472.5 2.2 Smithsonian Tables. I2S Table 23. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ^mW- [Derivation of table explained on pp. liii-lvi.] ■s_^. onal dis- > from iegree els. CO-ORDINATES OF DEVELOPED PARALLEL FOR— 10' longitude. jo' longitude. 30' longitude. 40' longitude. 50' longitude. 1° longitude. 3^ Igsl igs- llsa X y X y X y X y X y X y mm. 9Km. mm. mm. mm. mm. mm. WW. mm. mm. mm. mm. mm. aa'oo' 78.8 IS7-S .2 236.2 3 1 5-0 I.O 393-8 i-S 472.5 2.2 lO 92.4 78.6 157.2 .2 235.8 314-4 I.O 393-0 i-S 471.6 2.2 20 184.8 78.5 156.9 .2 235-4 3'3-8 1.0 392-3 1-5 470.8 2.2 3° 277-2 78-3 156.6 .2 235.0 313-3 I.O 391.6 i-S 469.9 2.2 40 3696 78.2 156-3 .2 234-5 312.7 I.O 390.8 i-S 469.0 2.2 50 462.0 78.0 156.0 .2 234.1 312.1 I.O 390.1 I -5 468.1 2.2 3300 77-9 155.8 .2 233-6 .6 3"-5 I.O 3ig-5 i-S 467-3 2.2 10 92.4 77-7 155-5 .2 233-2 .6 310.9 I.O 388.6 1-5 466.4 2.2 20 184.8 77.6 .1 iSS-2 .2 232-7 .6 3i°-3 I.O 387-9 1.5 465.5 2.2 3° 277-3 77-4 154.9 .2 232.3 .6 3°9-7 I.O 387.2 1.6 464.6 2.2 40 369-7 77-3 154.6 .2 231.9 .6 309.2 I.O 386.4 1.6 463.7 2.2 5° 462.1 77-1 154-3 .£. 231.4 .6 308.6 I.O 385-7 1.6 462.8 2.2 3400 77-0 ,1 154.0 •3 231.0 .6 308.0 I.O 384-9 1.6 461.9 2-3 10 92.4 76.8 153-7 -3 230.5 .6 307-4 I.O 384-2 1.6 461.0 2-3 20 184.9 76.7 153-4 -3 230.0 .6 306.7 I.O 383-4 1.6 460.1 2.3 3° 277-3 76.5 I S3-! •3 229.6 .6 306.1 I.O 382.6 1.6 459.2 2-3 40 369-7 76.4 152.8 -3 229.1 .6 305-5 I.O 381.9 1.6 458-3 2-3 SO 462.1 76.2 152.4 -3 228.7 .6 304-9 I.O 381. 1 1.6 457-3 2-3 3S00 76.1 152. 1 •3 228.2 .6 304-3 I.O 380.4 1.6 456-4 2-3 10 92.4 7S-9 1 51. 8 ■3 227.8 .6 303-7 I.O 379-6 1.6 455-5 2-3 20 184.9 75.8 151-S -3 227.3 .6 303-0 I.O 378-8 1.6 454-6 2-3 30 277.4 75-6 151.2 -3 226.8 .6 302.4 I.O 378-0 1.6 453-6 2-3 40 369-8 7S-4 150.9 -3 226.4 .6 301.8 I.O 377-2 1.6 452-7 2-3 SO 462.Z 7S-3 150.6 -3 225.9 .6 301.2 I.O 376-S 1.6 451.8 2-3 3600 7S-I 150.3 -3 225.4 .6 300.6 I.O 375-7 1.6 450.8 2-3 10 92-S 7S-0 .1 150.0 -3 224.9 .6 299.9 I.O 374-9 1.6 449-9 2-3 20 184.9 74-8 149.6 -3 224.5 .6 299-3 I.O 374-1 1.6 448.9 2-3 30 277.4 74-7 149-3 •3 224.0 .6 298.6 I.O 373-3 1.6 448.0 2-3 40 369-8 74- S 149.0 -3 223.5 .6 298.0 I.O 372-5 1.6 447.0 2-3 SO 462.3 74-3 148.7 •3 223.0 .6 297-4 I.O 371-7 1.6 446.0 2-3 3700 74.2 148.4 •3 222.5 .6 296.7 I.O 370.9 1.6 445.1 2-3 10 92-S 74.0 .1 148.0 -3 222.1 .6 296.1 I.O 370.1 1.6 444.1 2-3 20 185.0 73-8 147-7 -3 221.6 .6 295.4 I.O 369-2 1.6 443-1 2-3 30 277.4 73-7 147.4 -3 221. 1 .6 294.8 I.O 368-4 1.6 442.1 2-3 40 3699 73-S -^ 147-1 -3 220.6 .6 294.1 I.O 367.6 1.6 441.2 2.4 SO 462.4 73-4 146.7 -3 220.1 .6 293-4 I.O 366.8 1.6 440.2 2.4 3800 73-2 146.4 ■3 219.6 .6 292.8 I.O 366.0 1.6 439-2 2.4 10 92. s 73-0 146. 1 ■3 219.1 .6 292.1 I.O 365-1 1.6 438.2 2.4 20 185.0 72.9 I4S-7 -3 218.6 .6 291.4 I.I 364-3 1.6 437-2 2.4 3° 277.5 72.7 145.4 ■3 218.1 .6 290.8 I.I 363-5 1.6 436.2 2.4 40 370.0 72.5 145.1 •3 217.6 .6 290.1 I.I 362.6 1.6 435-2 2.4 SO 462.5 72.4 144.7 -3 217.1 .6 289.4 I.I 361.8 1.6 434.2 2.4 3900 72.2 144.4 -3 216.6 .6 288.8 I.I 361.0 1-7 433-1 2.4 10 92-S 72.0 144.0 -3 216.1 .6 288.1 I.I 360.1 1-7 432-1 2.4 20 185.0 71.8 143-7 -3 215.6 .6 287.4 I.I 359-2 1-7 431-1 2.4 30 277.5 71.7 143-4 -3 215.0 .6 286.7 I.I 358-4 1-7 430.1 2.4 40 370.0 71-5 143.0 -3 214.5 .6 286.0 I.I 357-S 1-7 429.0 2.4 SO 462.6 71-3 142.7 ■3 214.0 .6 285-3 I.I 356-6 1-7 428.0 2.4 4000 71.2 .1 142.3 -3 213-5 .6 284.6 I.I 3S5-8 1-7 427.0 2.4 Smithsonian Tables. 126 Table 23. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ^mrr. [Derivation of table explained on pp. liii-lvi.] ■si „ B 01 ^ 2 M * CO-ORDINATES OF DEVELOPED PARALLEL FOR— lo' longitude. X y 20^ longitude. 30/ longitude. 40^ longitude. 50^ longitude. 1° lonptude. 40"oo 10 20 30 40 SO 41 00 10 20 30 40 50 42 00 10 20 30 40 SO 4300 10 20 30 40 SO 44 00 10 20 30 40 SO 4500 10 20 30 40 SO 4600 10 20 30 40 SO 4700 10 20 30 40 50 4800 02.5 185.1 277.6 370-1 462.6 92.5 185. r 277.6 370.2 462.7 92.6 185.1 277.7 370.2 462.8 92.6 185.2 277.7 370.3 462.9 92.6 185.2 277.8 370.4 463.0 92.6 185.2 277.8 370.4 463.0 92.6 185-3 277.9 370-S 463.1 92.6 i8S-3 277.9 370.6 463.2 71.2 71.0 70.8 70.6 70-S 70-3 70.1 69.9 69.8 69.6 69.4 69.2 69.0 68.9 68.7 68.5 68.3 68.1 68.0 67.8 67.6 67.4 67.2 67.0 66.8 66.6 66.5 66.3 66.1 65.9 65-7 65.5 65-3 65.1 64.9 64.7 64.6 64.4 64.2 64.0 63.8 63.6 63-4 63-2 63.0 62.8 62.6 62.4 62.2 142.3 142.0 141.6 141-3 140.9 140.6 140.2 139-9 I39-S 139.2 138.8 138.4 1 38. 1 137-7 137-4 137-0 136.6 136-3 135-9 135-5 135-2 134.8 134-4 134.0 133-7 133-3 132.9 132.6 132.2 131.8 131-4 131.0 130.6 130-3 129.9 129.5 1 29. 1 128.7 128.3 127.9 127.6 127.2 126.8 126.4 126.0 125.6 125.2 124.8 .1 124.4 213-5 212.9 212.4 211.9 211.4 210.8 209.8 209.2 208.7 208.2 207.7 207.1 206.6 206.0 205.5 204-9 204.4 Z03.8 203-3 202. 7 202.2 201.6 201.1 200.5 200.0 99-4 98.8 98-3 97-7 97.1 96.6 96.0 95-4 94-8 94-2 93-6 93-1 92.5 91.9 91-3 90.7 90.1 89-5 88.9 88.3 87.8 87.2 186.6 284.6 283.9 283.2 282.6 281.8 281.1 280.4 279.7 279.0 278-3 277.6 276-9 276-2 275.4 274-7 274.0 273.2 272-5 271.8 271.0 270.3 269.0 268.8 268.1 267-4 266.6 265-8 265.1 264.4 263.6 262.8 262.1 261.3 260.5 259.8 259.0 258.2 257-4 256.6 255-9 255- 254-3 253-S 252.7 251.9 251.1 250.4 249.6 248.8 I.I i.i I.I i.i 1.1 i.i 1.1 1.1 1.1 I.I I.I I.I I.I 1.1 I.I 1.1 I.I I.I I.I I.I I.I I.I 1.1 1.1 I.I 1.1 I.I I.I 1.1 I.I 1.1 I.I I.I 1.1 I.I I.I I.I 1.1 1.1 I.I 1.1 1.1 1.1 I.I I.I I.I I.I 355-8 354-9 354-0 353-2 352-3 351-4 350.6 349-6 348.8 347-9 347-0 346-1 345-2 344-3 343-4 342-4 341-S 340.6 339-8 338-8 337-9 337-0 336-0 335-1 334-2 333-2 332-3 331-4 330-4 329-5 328-6 327.6 326.6 325.6 324-7 323-7 322.8 321-8 320.8 319.8 318.9 317-9 316.9 315-9 3 '4-9 313-9 313-0 312.0 311.0 427.0 425-9 424.9 423-8 422.8 421.7 420.7 419.6 418.5 417-5 416-4 415-3 414.2 413.2 412.1 410.9 409.9 408.8 407.7 406.6 405-5 404.4 403-3 402.1 401.0 399-9 398.8 397-7 396-5 395-4 394-3 393-1 391-9 390-8 389.6 388.4 386.2 3f5-9 383-8 382.7 381 -5 380-3 379-1 377-9 376-7 375-5 374-3 373-1 Smithsonian Tables. 127 Table 23. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TtD^Tv* [Derivation of table explained on pp. liii-lvi.] •3_. nal dis- from egree Is. CO-ORDINATES OF DEVELOPED PARALLEL FOR- lo' longitude. 20' longitude. 30' longitude. 40^ longitude. so' longitude. 1° longitude. |1 'tfd 2^ |iS£S, X y X y X y X y X y X y mm. mm. mm. mm. mm mm. mm. mm. mm. mm. mm. mm. tnm. 48°oo' 62.2 124.4 -3 186.6 .6 248.8 I.I 311.0 1.7 373-1 2.4 10 92.7 62.0 124.0 ■3 186.0 .6 248.0 I.l 310.0 1-7 371-9 2.4 20 185-3 278.0 61.8 123.6 •3 185.4 .6 247.2 l.I 309.0 1-7 370.7 2.4 3° 61.6 123.2 •3 184.7 .6 246.3 I.I 307.9 1-7 369.5 2.4 40 370.6 61.4 122.8 -3 184.I .6 245.5 I.l 306.9 1-7 368-3 2.4 SO 463-3 61.2 122.4 -3 183-5 .6 244.7 I.l 305.9 1-7 367-1 2.4 49 00 61.0 122.0 -3 182.9 .6 243.9 I.I 304.9 1.7 365-9 2.4 10 '"92-7" 60.8 121.6 ■3 182.3 .6 243.1 1.1 303.9 1-7 364.7 2.4 20 185.4 278.0 60.6 121.1 -3 181.7 .6 242.3 I.I 302.8 1-7 363-4 2.4 3° 60.4 120.7 -3 181.1 .6 241.4 1.1 301.8 1.7 362.2 2.4 40 370.7 60.2 120.3 -3 180.5 .6 240.6 I.I 300.8 1.7 361.0 2.4 SO 463-4 60.0 1 19.9 •3 179.9 .6 239.8 I.l 299.8 1.7 359-8 2.4 5000 59.8 119-5 -3 179.2 .6 239.0 I.l 298.8 1.7 358-5 2.4 10 92.7 S9-S 1 19.1 -3 178.6 .6 238.2 I.I 297.7 1.7 357.2 2.4 20 185.4 278.1 S9-3 118.7 •3 178.0 .6 237.3 I.l 2966 1.7 356.0 2.4 30 59.1 118.2 •3 177-4 .6 236.5 I.l 295.6 1-7 354.7 2.4 40 370.8 S8-9 II 7.8 •3 176.8 .6 235-7 l.I 294.6 1.7 353-5 2.4 SO 463-4 58.7 117.4 -3 176.1 .6 234-8 I.I 293.6 1-7 352-3 2.4 SI 00 sf-s 1 17.0 •3 17S-S .6 234.0 l.I 292.5 1-7 351.0 2.4 10 "f^'-j' 58-3 .1 116.6 •3 174-9 .6 233.2 1.1 291.4 1.6 349-7 2.4 20 185.4 278.1 58.1 • I 1 16.2 •3 174-2 .6 232.3 l.I 290.4 1.6 348-S 2.4 30 S7-9 •I 115-7 -3 173-6 .6 231.5 l.I 289.4 1.6 347-2 2.4 40 ^l°-l 57-6 .1 iiS-3 •3 173-0 .6 230.6 I.l 288.2 1.6 345-9 2.4 SO 463-6 57-4 "4-9 •3 172.3 .6 229.8 1.1 287.2 1.6 344.6 2.4 5200 57-2 .1 114.5 •3 171.7 .6 228.9 1.0 286.2 1.6 343.4 2.4 10 92.7 5^2 ■ I 114.0 •3 171.1 .6 228.1 1.0 285.1 1.6 342.1 2.4 20 185.4 56.8 .1 113.6 •3 170.4 .6 227.2 I.O 284.0 1.6 340.8 2.4 30 278.2 56.6 .1 113.2 •3 169.8 .6 226.4 1.0 283.0 1.6 2.3 40 370-9 56.4 112.8 -3 i6g.i .6 225.5 1.0 281.9 1.6 338.3 2.3 SO 463-6 56.2 -I 112.3 •3 168.5 .6 224.6 1.0 280.8 1.6 337.0 2-3 S3 00 56.0 .1 111.9 •3 167.9 .6 223.8 1.0 279.8 1.6 335-7 2.3 10 92."7 SS-7 .1 111.5 -3 167.2 .6 222.9 1.0 278.6 1.6 334-4 2-3 20 185.5 278.2 SS-S .1 III.O -3 166.6 .6 222.1 1.0 277.6 1.6 333-1 2.3 30 SS-3 • 1 110.6 -3 165-9 .6 221.2 1.0 276.5 1.6 331-8 2.3 40 37I-0 SS-i .1 110.2 •3 165.2 .6 220.3 1.0 275-4 1.6 330.5 2.3 SO 463-7 54-9 •1 109.7 •3 164.6 .6 219.5 1.0 274.4 1.6 329.2 2.3 54 00 54.6 .1 109.3 -3 164.0 .6 218.6 1.0 273.2 1.6 3279 2.3 10 92.8 54-4 108.9 •3 163.3 .6 217.7 1.0 272.1 1.6 326.6 2.3 20 185.5 54-2 108.4 •3 162.6 .6 216.8 1.0 271.0 1.6 325.3 2-3 30 278.3 54.0 ■ I 108.0 ■3 162.0 .6 216.0 1.0 269.9 1.6 323.9 2-3 40 3?'-2 S3-8 107.5 •3 161.3 .6 215.I 1.0 268.8 1.6 322.6 2-3 50 463-8 53-6 107.1 •3 160.6 .6 214.2 1.0 267.7 1.6 321.3 2.3 SSoo S3-3 .1 106.7 -3 160.0 .6 213-3 1.0 266.6 1.6 320.0 2-3 10 92.8 S3-I .1 106.2 -3 1S9-3 158.7 .6 212.4 1.0 265.6 1.6 318.7 2.3 20 185.5 278.3 S2-9 105.8 -3 .6 211.6 1.0 264.4 1.6 317-3 2-3 30 S2-7 • 1 ioS-3 •3 158.0 .6 210.7 1.0 263.4 1.6 316.0 2.3 40 ^v-i 52-4 104.9 •3 157.3 .6 209.8 1.0 262.2 1.6 314.6 2-3 SO 463-8 S2.2 •1 104.4 -3 156.7 .6 208.9 1.0 261.1 1.6 313.3 2.3 5600 52.0 .1 104.0 .2 156.0 .6 208.0 1.0 260.0 1.6 312.0 2-3 Smithsonian Tables. 128 Table 23. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE Winnr- [Derivation of table explained on pp. liii-lvi.} ■3 . naldis- from egree Is. CO-ORDINATES OF DEVELOPED PARALLEL FOR— ia> longitude. 20^ longitude. 30' longitude. 40^ longitude. so' longitude. 1° longitude. •S3 .2«-e^ ^lls. X y X y X y X y X y X y mm. tnm. mm. mm. mm. mm. mm. fftm. mm. mm. mm. mm. mm. S6°oo' 52.0 104.0 .2 156.0 .6 208.0 1.0 260.0 1.6 312.0 2-3 lO '"ga.'s" 51.8 .1 103.6 .2 iSS-3 .6 207.1 I.O 258.9 1.6 310.7 2-3 20 185.6 278.4 51.6 .1 1 03. 1 .2 154.6 .6 206.2 1.0 257.8 1.6 309-3 2.2 30 Si-3 102.6 .2 154.0 .6 205.3 1.0 256.6 1.6 307-9 2.2 40 371.2 Si.i 102.2 .2 1 53-3 .6 204.4 1.0 2SS-S i-S 306.6 2.2 SO 464.0 50.9 101.8 .2 152.6 .6 203.5 1.0 254.4 i-S 3OS-3 2.2 57 00 50.6 IOI.3 .2 152.0 .6 202.6 1.0 253.2 1-5 303-9 2.2 10 '"92.8" 50-4 100.8 .2 iSi-3 .6 201.7 1.0 252.1 I-S 302.5 2.2 20 185.6 278.4 50.2 100.4 .2 150.6 .6 200.8 1.0 251.0 I-S 301.1 2.2 30 50.0 .1 99-9 .2 149.9 .6 199.8 1.0 249.8 1-5 299.8 2.2 40 371-2 49-7 .1 99-S .2 149.2 .6 199.0 1.0 248.7 I-S 298.4 2.2 SO 464.0 49-S •I 99-0 .2 148.5 •S 198.0 1.0 247.6 I-S 297.1 2.2 S8oo 49-3 ,1 98.6 .2 147.8 •s 197.1 1.0 246.4 I-S 295-7 2.2 io "92.8 49.0 .1 98.1 .2 147.2 •s 196.2 1.0 245.2 i-S 294-3 2.2 20 185.6 48.8 .1 97-6 .2 146.5 145-8 •5 I9S-3 1.0 244.1 i-S 292.9 2.2 30 278.5 48.6 • I 97-2 .2 •S 194.4 1.0 243.0 I-S 291-5 2.2 40 371-3 48.4 .1 96.7 .2 I4S-I •S 193-4 1.0 241.8 1-5 290.2 2.2 SO 464.1 48.1 -1 96-3 .2 144.4 •S 192.5 1.0 240.6 I-S 288.8 2.1 59 00 47-9 ,1 95.8 .2 143-7 •s 191.6 1.0 239-5 1-5 287.4 2.1 10 92.8 47-7 .1 9S-3 .2 143-0 •s 190.7 1.0 238.4 I-S 286.0 2.1 20 185.7 278.5 47-4 .1 94-9 .2 142.3 -s 189.7 1.0 237.2 I-S 284.6 2.1 30 47-2 94-4 .2 141.6 •s 188.8 1.0 236.0 1-5 ^§3-? 2.1 40 371-3 47.0 93-9 .2 140.9 •s 187.9 -9 234.8 1-5 281.8 2.1 SO 464.3 46.7 93-S .2 140.2 •s 186.9 •9 233-6 I-S 280.4 2.1 6ooo 46.5 ,1 93-0 .2 m •s 186.0 -9 232- s I-S 279.0 2.1 10 92.8 46.3 92.5 .2 -s 185.0 -9 231-3 I-S 277.6 2.1 20 278.6 46.0 .1 92.1 .2 138-1 •s 184.1 9 230.2 1-4 276.2 2.1 30 45.8 .1 91.6 .2 137-4 -s 183.2 •9 229.0 1-4 274.8 2.1 40 371-4 45.6 91.1 .2 136-7 ■s 182.2 -9 227.8 1-4 273-4 2.1 SO 464.2 4S-3 •I 90.6 .2 136.0 •s 181.3 •9 226.6 1-4 271-9 2.1 61 00 45.1 90.2 .2 '35-3 -s 180.4 •9 225.4 1-4 270.5 2.1 10 92.9 44-8 ,1 89-7 .2 134.6 -s 179-4 -9 224.2 1-4 269.1 2.1 20 185.7 44-6 .1 89.2 .2 133-9 -s 178.5 •9 223.1 1-4 267.7 2.1 30 278,6 44-4 88.8 .2 133-1 -s 177-S -9 221.9 1-4 266.3 2.0 40 371-4 44-1 88.3 .2 132.4 -s 176.6 -9 220.7 1-4 264.8 2.0 SO 464-3 43-9 87.8 .2 13 1 -7 -s 175.6 •9 219.6 1-4 263.5 2.0 6200 43-7 87-3 .2 131-0 •s 174-7 -9 218.4 1-4 262.0 2.0 10 92.9 43-4 86.9 .2 130-3 -s 173-7 -9 217.2 1-4 260.6 2.0 20 185.7 278.6 43-2 ,1 86.4 .2 129.6 •s 172.8 •9 216.0 1-4 259.1 2.0 30 43-0 ,1 85-9 .2 128.8 -s 171.8 •9 214.8 1-4 257-7 2.0 40 37I-S 42.7 85-4 .2 128.1 -s 170.8 -9 213-6 1-4 256.3 2.0 so 464-4 42.5 •I 84.9 .2 127.4 -s 169.9 -9 212.4 1-4 254.8 2.0 6300 42.2 84-S .2 126.7 ■s 168.9 -9 211.2 1.4 253-4 2.0 10 92.9 42.0 ,1 84.0 .2 126.0 -s 168.0 -9 210.0 1.4 251.9 2.0 20 185.8 41.7 ,1 83-5 .2 125.2 -s 167.0 •9 208.8 1-4 250.5 2.0 30 278.7 41.5 83.0 .2 124.5 •5 166.0 -9 207.5 1-3 249.0 1.9 40 371-6 41-3 82.5 .2 123.8 ■5 165.0 -9 206.3 1-3 247.6 1-9 SO 464-4 41.0 82.0 .2 123.1 -s 1 64. 1 -9 205.1 1-3 246.1 1-9 6400 40.8 .1 81.6 .2 122.3 ■s 163.1 -9 203.9 1-3 244-7 1.9 Smithsonian Tables. 129 Table 23. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE Wtnnr- [Derivation of table explained on pp. liii.-lviii.] "8_. [onal dis- s from degree els. CO-ORDINATES OF DEVELOPED PARALLEL FOR— lo' longitude. 20' longitude. 30' longitude. 40/ longitude. so' longitude. 1° longitude. Be |sgl 3I gssa X y X y mm. X y X y X y mm. X y mm. mm. mm. mm. WW. mm. mm. mm. mm. mm. mm. 64°oo' 40.8 .1 81.6 .2 122.3 •5 1 63. 1 ■% 203-9 1-3 244-7 1.9 10 92.9 40-5 .1 81. 1 .2 I2I.6 -5 162.2 .8 202.7 1-3 243.2 1.9 20 185.8 40-3 .1 80.6 .2 120.9 •5 161.2 .8 201.4 1-3 241.7 1.9 3° 278.7 40.0 .1 80.1 .2 1 20. 1 -S 160.2 .8 200.2 1-3 240.2 1.9 40 371.6 39-8 .1 79.6 .2 1 19.4 -S 159.2 .8 199.0 1-3 238.8 1.9 SO 464-5 39-6 .1 79.1 .2 1 18.7 •S 158.2 .8 197.8 '•3 237-4 1.9 6500 39-3 .1 78.6 .2 II7.9 -s 157.2 .8 196.6 1-3 235-9 1-9 10 92.9 39-1 .1 78.1 .2 II7.2 •5 156.2 .8 ■95-3 1-3 234-4 1.9 20 278.7 38-8 .1 77-6 .2 II6.5 -5 155-3 .8 194.1 1-3 232-9 1.8 30 38.6 .1 77-2 .2 1 1 5.7 -S 1 54-3 .8 192.9 1-3 231-5 1.8 40 37 1 -0 38-3 .1 76-7 .2 1 15.0 -5 153-3 .8 191.6 1-3 230.0 1.8 50 464.6 38.1 •" 76.2 .i II4.2 ■5 152-3 .8 190.4 1-3 228.5 1.8 66 00 37-8 .1 75-7 .2 1 1 3- 5 •S 151-4 .8 '!?■" 1-3 227.0 1.8 10 92.9" 37-6 .0 75-2 .2 1 1 2.8 -4 150.4 .8 188.0 13 225-5 1.8 zo 37-3 .0 74-7 .2 H2.0 ■4 149.4 .8 186.7 1.2 224.0 1.8 30 278.8 37-1 .0 74.2 .2 III. 3 -4 148.4 .8 185.4 1.2 222.5 1.8 40 3717 36.8 .0 73-7 .2 1 10.6 •4 147.4 .8 184.2 1.2 221. 1 1.8 5° 464.6 36.6 .0 73-2 .2 109.8 •4 146.4 .8 183.0 1.2 219.6 1.8 67 00 36-4 .0 72.7 .2 109.0 -4 145.4 .8 181.8 1.2 218.1 1.8 10 278.8 361 .0 72.2 .2 108.3 -4 144.4 .8 180.5 1.2 216.6 1-7 20 35-8 .0 71.7 .2 107.6 -4 143-4 .8 179.2 1.2 215.1 1-7 3° 35-6 .0 71.2 .2 106.8 •4 142.4 .8 178.0 1.2 213.6 1-7 40 371.8 35-4 .0 70.7 .2 106.0 •4 141.4 .8 176.8 1.2 2I2.I 1-7 SO 464.7 35-1 .0 70.2 .2 105-3 •4 140.4 .8 175-5 1.2 210.6 1-7 6800 34-8 .0 69-7 .2 104.6 •4 139-4 .8 174.2 1.2 209.1 1-7 10 93-0 34-6 .0 .2 103.8 ■4 138.4 -7 173-0 1.2 207.6 1-7 20 %n 34-4 .0 68.7 .2 103.0 ■4 137-4 -7 171.8 1.2 206.1 1-7 30 34-1 .0 68.2 .2 102.3 •4 136.4 -7 170.4 i.i 204.5 1-7 40 37' 1 33-8 .0 67-7 .2 101.5 100.8 •4 135-4 -7 169.2 168.0 1.1 203.0 1-7 SO 464.8 33-6 .0 67.2 .2 •4 134-4 -7 I.I 201.5 1.6 6900 33-3 .0 66.7 .2 1 00.0 •4 133-4 -7 166.7 I.I 200.0 1.6 10 93-0 33-1 .0 66.2 .2 99.3 -4 132.4 •7 165.4 1.1 198.5 1.6 20 185.9 278.9 32.8 .0 65-7 .2 98.5 -4 131-3 •7 164.2 I.I 197.0 1.6 30 32-6 .0 65.2 .2 97-7 •4 130-3 -7 162.9 I.I I9S-S 1.6 40 371-8 32-3 .0 64-7 .2 97.0 -4 129-3 -7 161.6 i.i 194.0 1.6 SO 464.8 32.1 .0 64.1 .2 96.2 -4 128.3 •7 160.4 I.I 192.4 1.6 70 00 31.8 .0 63.6 .2 9S-5 •4 127-3 -7 1 59- 1 i.i 190.9 1.6 10 930 31-6 .0 63.1 .2 94-7 •4 126.2 ■7 157-8 I.I 189.4 1.6 20 1 8 5.9 278.9 31-3 .0 62.6 .2 93-9 •4 125.2 -7 156.6 1.1 187.9 1.6 30 3'-i .0 62.1 .2 93-2 -4 124.2 •7 155-3 I.I 186.4 '•5 40 371-9 30.8 .0 61.6 .2 92-4 •4 123.2 ■7 154-0 1.1 184.8 i-S SO 464.9 30-S .0 61. 1 .2 91.6 -4 122.2 ■7 152-7 1.0 183.2 ^■\ 71 00 30-3 .0 60.6 .2 90.9 •4 121.2 -7 151-4 I.O 181.7 i-S 10 186.0 30-0 .0 60.1 .2 90.1 ■4 120.2 -7 150.2 I.O 180.2 i-S 20 29.8 .0 59.6 .2 89-3 -4 119.1 •7 148.9 1.0 178.7 i-S 30 278.9 29.5 .0 S9-0 .2 88.0 •4 1 18.1 ■7 147.6 1.0 177.1 1-5 40 371-9 29-3 .0 58-5 .2 87.8 •4 117.1 .6 146.4 1.0 175.6 I-S SO 464.9 29.0 .0 58.0 .2 87.1 •4 116.1 .6 145.1 I.O 174.1 1.4 72 00 28.8 .0 S7-S .2 86.3 •4 115.0 .6 143.8 I.O 172.6 1.4 Smithsonian Tables. 130 Table 23. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE aoAtO - [Derivation of table explained on pp. liii-lvi.] •s ■S3 i% ridionaldis- ices from iT\ degree rallels. CO-ORDINATES OF DEVELOPED PARALLEL FOR— 10' longitude. 3& longitude. 30^ longitude. 40' longitude. 50/ longitude. 1° longitude. 3^ ^att X y X y X y X y X y X y mm. mm. mm. mm. mm. mm. mm. mm. mm. TKtn. mm. mm. mm. 72°00' 28.8 .0 S7-S .2 86.3 ■4 1 1 5.0 .6 143-8 I.O 172.6 1-4 10 93.0 28.5 .0 S7.0 .2 8S-S •4 1 14.0 .6 142.5 I.O I7I.0 1.4 20 186.0 28.2 .0 56.5 84.7 •3 1 13.0 .6 141. 2 1.0 169.4 1-4 3° 279.0 28.0 .0 56.0 83-9 •3 III.9 .6 139-9 I.O 167.9 1.4 40 372.0 27.7 .0 SS-S 83.2 •3 1 10.9 .6 138.6 I.O 166.4 1-4 SO 465.0 27.5 .0 S4-9 82.4 •3 109.9 .6 137-4 I.O 164.8 1.4 7300 27.2 .0 54-4 81.6 •3 108.8 .6 136.0 -9 163-3 1.4 10 93-0 27.0 .0 S3-9 80.8 •3 107.8 .6 134.8 -9 161.7 1.4 20 186.0 26.7 .0 S34 80.1 •3 106.8 .6 133-4 -9 160.1 1-3 3° 279.0 26.4 .0 52.9 79-3 •3 105.7 .6 132.2 -9 158.6 1-3 40 372.0 26.2 .0 5^-=5 78.5 ■3 104.7 .6 130.8 -9 157.0 1-3 SO 465.0 25.9 .0 5i.g 77-7 •3 103.6 .6 129.6 •9 'SS-S 1-3 7400 25.6 .0 S'-3 77.0 ■3 102.6 .6 128.2 •9 IS3-9 1-3 10 93-0 25.4 .0 50.8 76.2 •3 I0I.6 .6 127.0 -9 152-3 1-3 20 186.0 25.1 .0 So-3 7S-4 •3 100.5 .6 125.6 ■9 150.8 1-3 30 279.0 24.9 .0 49-7 74.6 •3 99.5 .6 124.4 •9 149.2 1-3 40 372.0 24.6 .0 49.2 73-8 •3 98.4 .6 123.0 -9 147-7 1.2 SO 465.0 24.4 .0 48.7 73-0 •3 97-4 •S 121.8 ■9 146.1 1.2 7500 24.1 .0 48.2 72-3 •3 96.4 •S 120.4 .8 144.5 1.2 10 93.0 23.8 .0 47-7 7I-S ■3 95-3 •s 1 19.2 .8 143.0 1.2 20 186.0 23.6 .0 47.1 70.7 ■3 94.2 ■s 1 1 7.8 .8 141.4 1.2 30 279.1 23-3 .0 46.6 69.9 •3 93-2 ■s 116.5 .8 139.8 1.2 40 372.1 23.0 .0 46.1 69.1 •3 92.2 •s 1 1 5.2 .8 138.2 1.2 5° 465.1 22.8 .0 4S-S 68.3 •3 91. 1 •s 1 1 3.8 .8 136.6 I.I 7600 22.S .0 45.0 tu •3 90.0 ■s 1 1 2.6 .8 13s- 1 i.i 10 93.0 22.2 .0 44-5 ■3 89.0 ■s III. 2 .8 133-S I.I 20 186.1 22.0 .0 44.0 65.9 •3 87.9 •s 109.9 .8 131-9 1. 1 30 279.1 21.7 .0 43-4 65.2 •3 f^-f •s 108.6 .8 130-3 I.I 40 3721 21.5 .0 42.9 64.4 •3 85.8 •s 107.3 .8 128.8 I.I SO 465.1 21.2 .0 42.4 63.6 •3 84.8 •s 106.0 ■7 127.1 I.I 7700 20.9 .0 41.9 62.8 •3 83.7 •s 104.6 •7 125.6 I.I 10 93.0 20.7 .0 41-3 62.0 •3 82.7 ■s 103.4 •7 124.0 I.I 20 i86.i 20.4 .0 40.8 61.2 •3 81.6 ■5 102.0 -7 122.4 1.0 30 279.1 20.1 .0 40-3 60.4 ■3 80.6 ■s 100.7 •7 120.8 1.0 40 372.2 19.9 .0 39-« 59.6 •3 79-S •4 99-4 •7 "9-3 I.O SO 465.2 19.6 .0 39-2 58.8 •3 78.4 ■4 98.0 •7 117.7 I.O 78 00 19.4 .0 387 58.0 .2 77-4 •4 96.8 •7 116.1 I.O 10 93.0 19.1 .0 38.2 57.2 .2 76.3 •4 9S-4 •7 "4-5 I.O 20 1 86. 1 18.8 .0 37-6 56.5 .2 7S-3 •4 94.1 ■7 112.9 1.0 30 279.1 18.6 .0 37-1 SS-7 .2 74.2 ■4 92.8 -7 111.4 I.O 40 372.2 18.3 .0 36.6 54.9 .2 73-2 •4 91.4 .6 109.7 -9 SO 465.2 18.0 .0 36.0 54.1 .2 72.1 ■4 90.1 .6 108.1 ■9 7900 17.8 .0 3S-S S3-3 .2 71.0 ■4 88.8 .6 106.6 •9 10 93-° I7-S .0 3S-0 52.5 .2 70.0 ■4 ?2-4 .6 104.9 •9 20 186.1 17.2 .0 34-5 S»-7 .2 68.9 •4 86.2 .6 103.4 •9 30 279.2 17.0' .0 33-9 So-9 .2 67.8 ■4 84.8 .6 101.8 ■§ 40 372.2 16.7 .0 33-4 50.1 .2 66.8 •4 83-4 .6 100.1 .8 SO 465.2 16.4 .0 32-9 49-3 .2 65.7 ■4 82.2 .6 98.6 .8 8000 16.2 .0 32-3 .1 48.5 .2 64.6 •4 80.8 .6 97.0 .8 Smithsonian Tables. 131 Table 24. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE jnhsv- [Derivation of table explained on pp. liii-lvi.] •S H o"oo' 10 20 3° 40 5° 1 00 10 20 30 40 SO 2 00 10 20 3° 40 5° 300 10 20 30 40 5° 400 10 20 30 40 SO 500 10 20 30 40 so 6 00 10 20 30 40 so 7 00 10 20 30 40 SO 800 2ES 230.4 460.7 691.0 921.4 iiSi-8 230.4 460.7 691.0 921.4 1151.8 230.4 460.7 691.0 921.4 1151.8 230.4 460.7 691. 1 921.4 1151.8 230.4 460.7 691. 1 921.4 1151.8 230.4 460.7 691. 1 921.5 1151.8 230.4 460.8 691. 1 921.5 1151.9 230.4 460.8 691.1 921.5 1151.9 ABSCISSAS OF DEVELOPED PARALLEL. longitude. 16.0 16.0 16.0 16.0 16.0 15.9 15.9 15.9 iS-9 15.9 iS-9 ■S-9 IS-9 15.9 IS-9 15.8 15.8 15.8 15.8 1 5-8 15.8 IS7 15-7 iS-7 iS-7 1 5-6 15.6 15.6 15.6 iS-S iS-S iS-S 15-4 15.4 15.4 iS-3 iS-3 15.2 15.2 15.2 iS-i 1 5-1 iS-i 15.0 15.0 14-9 14.9 114.8 10' longitude. 231.9 231.9 231.9 231.9 231.9 231.9 231.9 231.9 231.8 231.8 231.8 231.8 231.8 231.8 2317 231-7 231-7 231.6 231.6 231.6 23I-S 23I-S 231-4 231-4 229.7 IS' longitude. 347-9 347-9 347-8 347-8 347-8 347-8 347-8 347-8 347-8 347-7 347-7 347-7 347-7 347-6 347-6 347-S 347-S 347-S 347-4 347-3 347-3 347-2 347-2 347-1 231-4 347-0 231-3 347-0 231-3 346-9 231.2 346.8 231.1 346-7 231. 1 346.6 231.0 346.6 231.0 346.5 230.9 346-4 230.8 346-3 230.8 346.2 230.7 346.1 230.7 346.0 230.6 34S-9 230.5 345-8 230.4 34S-7 230.4 345-5 230-3 345-4 230.2 345-3 230.1 345-2 230.0 345-0 229.9 344-9 229.9 344-8 229.8 344-6 344-5 20' longitude. 463-8 463.8 463-8 463.8 463.8 463-8 463.8 463-7 463-7 463-6 463.6 463.6 463-6 463-S 463-4 463-4 463-3 463-3 463.2 463.1 463.0 463.0 462-9 462.8 462.7 462.6 462.5 462.4 462.3 462.2 462.1 462.0 461.8 461.7 461 -6 461.4 461.3 461.2 461.0 460.9 460.7 460.6 460.4 460.2 460.0 459-9 459-7 4S9-5 459-4 25' longitude. 579-8 579-8 579-8 579.8 579-8 579-7 579-7 579-6 579-6 5796 579-6 579-S 579-4 579-4 579-3 579-2 579-2 579-1 579.0 578.8 578.6 578-5 578.4 578.2 578.2 578.0 577.8 577-8 577-6 577-4 S77-3 577-1 577-0 576.8 576.6 576.4 576.2 576-1 575-9 S75-7 575-5 S7S-3 575-0 574-8 574.6 574.4 574-2 30' longitude. 695.8 695.8 695.7 695-7 695-7 695.6 695.6 695-5 695.5 695-5 695.4 695-3 695-3 695-2 695.0 695.0 694-9 694.8 694-7 694.6 694.4 694-3 694.2 694.1 693-9 693.6 693-4 693-3 693.1 692-9 692.8 692.5 692.3 692.2 692.0 691-7 691.5 691.3 691. 1 690.8 690.6 690.4 690.1 689.8 689.6 689.3 689.0 ORDINATES OF DEVELOPED PARALLEL. I>S mm, 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.2 0.0 0.0 O.I O.l 0.2 0-3 8° 0.0 0.0 0.1 0.2 0-3 0.4 mm. 0.0 0.0 0.0 0.0 0.0 O.I 0.0 0.0 0.0 0.1 0.1 0.2 0.0 0.0 O.I O.I 0.2 0-3 0.0 0.0 O.I 0.2 0.3 0.4 Smithsonian Tables. 1,^2 CO-ORDINATES FOR PROJECTION OF MAPS. [Derivation of table explained on pp. liii-lvi.] Table 24. SCALE 8 a tail - 21 ■9S i =308 .3 o-oiJ ABSCISSAS OF DEVELOPED PARALLEL. S' longitude. 10' longitude. IS' longitude. 20' longitude. ZS' longitude. 30' longitude. ORDINATES OF DEVELOPED PARALLEL. 8°00' 10 20 30 40 SO 900 10 20 30 40 SO 10 00 10 20 30 40 SO 11 00 10 20 30 40 SO 12 00 10 20 30 40 SO 1300 10 20 30 40 SO 1400 10 20 30 40 SO iSpo 10 20 30 40 so i6oo 230.4 460.8 691.2 921.6 II 52.0 230.4 460.8 691.2 921.6 1152.0 230.4 460.8 691.3 921.7 II52.I 230.4 460.9 691.3 921.8 1152.2 230.4 460.9 691.2 921.8 1152.2 230-5 460.9 691.4 921.9 1 1 52.4 230.5 461.0 691.5 922.0 1 1 52.4 230.5 461.0 691.5 922.0 1 1 52.6 1 14.8 1 14.8 114.7 114.7 1 14.6 114.6 1 14.5 H4.5 114.4 114.4 1 14-3 1 14-3 114.2 1 1 4.2 114.1 1 1 4.0 114.0 1 1 3-9 113-8 113.8 113-7 113.6 1 1 3-6 "3-S 113-4 1 1 3-4 113-3 113.2 1 13.2 113.1 11 3-0 1 1 2.9 1 1 2.8 1 1 2.8 112.7 1 1 2.6 112.5 112.5 1 1 2.4 112.3 112.2 112.1 112.0 111.9 1 1 1.8 111.8 111.7 111.6 229.7 344- S 229.6 344-4 229.5 344-2 229.4 344-1 229.3 343-9 229.2 343-ii 229.1 229.0 228.9 228.7 228.6 228.5 228.4 228.3 228.2 228.0 227.9 227.8 227.7 227.5 227.4 227.3 227.1 227.0 226.9 226.7 226.6 226.4 226.3 226.2 226.0 225.9 225.7 225.6 225.4 225.2 225.1 224.9 224.7 224.6 224.4 224.2 224.1 223.9 223.7 223-S 223-3 223.2 I I 1.5 223.0 343-6 343-4 343-3 343-1 343-0 342.8 342.6 342-4 342-3 342.1 341-9 341-7 341-S 341-3 341-1 340-9 340-7 340-5 340-3 340.1 339-9 339-7 339-4 339-2 339-0 338-8 338-6 338-3 338-1 337-9 337-6 337-4 337-! 336-8 336-6 336-4 336-1 335-8 33S-6 335-3 33S-0 334-7 459-4 459.2 459-0 458.8 458-6 458-4 458.2 457-9 457-7 457-5 457-3 457-0 456-8 456-6 456.4 456.1 455-8 455.6 455-4 4SS-? 454-8 454-6 454-3 454-0 453-8 453-5 453-2 452.9 452.6 452-3 452.0 451-7 451.4 451.1 450.8 450.5 450-2 449-8 449-5 449.1 448.8 448.5 448.1 447.8 447-4 447.0 446.7 446-3 334-S 446-0 574.2 574.0 573-7 573-4 S73-2 S73-0 572.7 572.4 572.2 S7I-8 571.6 571-3 571.0 570-8 570-4 570.1 569.8 569.5 569.2 568.8 568.6 568.2 567.8 567-6 567-2 566.8 566.5 566.1 565.8 565.4 564.6 564.2 563-9 563-5 563-1 562-7 562.3 561.8 561-4 561.0 560.6 560.2 559-7 559.2 558.8 558-4 557-9 SS7-4 689.0 688.7 688.4 688.1 687.8 687.5 687.2 686.9 686.6 686.2 685.9 685.6 685.3 684.9 684.5 684.1 683.8 683.4 683.0 682.6 682.3 681.8 681.4 681.1 680.6 680.2 679-8 679-3 678.9 678.5 678.1 677.6 677.1 676.7 676.2 675-7 675.2 674.8 674.2 673-7 673.2 672.7 672.2 671.6 671.1 670.6 670.0 669.5 668.9 •as go 0.0 0.0 0.1 0.2 03 0.4 0.0 0.1 0.1 0.2 0.4 0.5 0.0 O.I 0.2 0-3 0.4 0.6 14" s 0.0 10 O.I M 0.2 20 0-3 2S 0.5 30 0.7 16° 0.0 0.1 0.2 0.4 0.6 0.8 mvi. 0.0 O.I 0.1 0.2 0-3 0.5 0.0 0.1 O.I 0.2 0.4 0.6 13° 0.0 O.I 0.2 0-3 0.5 0-7 15° 0.0 0.1 0.2 0-3 0.5 0.8 Smithsonian Tables. 133 Table 24. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE -gnhsV' [Derivation of table explained on pp. liii-lvi.] II .2 »-DJi M S P, s ABSCISSAS OF DEVELOPED PARALLEL. 5' longitude. lO' longitude. longitude. 20' longitude. 25 longitude. 30' longitude. ORDINATES OF DEVELOPED PARALLEL. l6°oo' lo zo 3° 40 5° 17 00 10 20 3° 40 5° 18 00 10 20 30 40 SO 1900 10 20 30 40 50 2000 10 20 30 40 50 21 00 10 20 3° 40 SO 22 00 10 20 30 40 SO 23 00 10 20 30 40 SO 2400 230.5 461. 1 691.6 922.1 1 1 52.6 230.6 461. 1 691.6 922.2 1152.8 230.6 46r.i 691.7 922.3 1 1 52.8 230.6 461.2 691.8 922.4 1153.0 230.6 461.2 691.9 922.5 IIS3-I 230.6 461.3 692.0 922.6 "53-2 230.7 461.4 692.0 922.7 "534 230.7 461.4 692.1 922.8 "53-6 1H.5 111.4 111.3 III. 2 III. I III.O 1 10.9 1 10.8 1 10.7 1 10.6 1 10.5 1 10.4 110.3 110.2 IIO.I 1 1 0.0 109.9 109.8 109.7 109.6 109.5 109.4 109.2 109.1 109.0 108.9 108.8 108.7 108.5 108.4 108.3 108.2 108. 1 107.9 107.8 107.7 107.6 107.4 107-3 107.2 107.1 106.9 106.8 106.7 106.5 106.4 106.3 1 06. 1 106.0 223.0 334-5 222.8 334-2 222.6 333-9 222.4 333-6 222.2 333-3 222.0 333-1 221.8 221.6 221.4 221.2 221.0 220.8 220.6 220.4 220.2 220.0 219.8 219.6 219.4 219.1 218.9 218.7 218.5 218.2 218.0 217.8 ZI7.5 21 7-3 217.1 216.8 216.6 216.4 216.1 215.9 215.6 215.4 215.1 214.9 214.6 214.4 214.1 213.9 213.6 213-3 213.1 212.8 212.5 212.3 212.0 332-8 332-5 332-2 331-9 331-6 331-3 331-0 330-6 330-3 330-0 329-7 329-4 329.0 328.7 328.4 328.0 327-7 327-4 327.0 326-7 326-3 326.0 325.6 325-3 324-9 324-5 324.2 323-8 323-4 323-1 322.7 322-3 321.9 321.6 321.2 320.8 320.4 320.0 319.6 319.2 318.8 318.4 318.0 446.0 445-6 445.2 444.8 444.4 444.1 443-7 443-3 442-9 442.5 442.1 441.7 441-3 440.8 440.4 440.0 439-6 439-2 438-7 438-3 437-8 437-4 436-9 436-5 436.0 435-6 435-1 434-6 434-2 433-7 433-2 432-7 432-2 431-7 431.2 430.8 430-3 429.8 429.2 428.8 428.2 427.7 427.2 426.6 426.1 425.6 425.0 424-5 424.0 557-4 557-0 556-5 556.0 555-6 55S-I 554-6 S54-I 553-6 553-1 552.6 552-1 551-6 551.0 , 550.6 550.0 549-4 549-0 548-4 547-8 547-3 546.8 546.1 545-6 545-0 544-4 543-8 543-3 542.7 542.1 S4I-5 540-9 540-3 S39-6 539-0 538-4 537-8 53I-? 536-6 536.0 535-3 534-6 534-0 533-3 532-6 532.0 531-3 530-6 530.0 668.9 668.3 667.8 667.2 666.7 666.1 664.9 664.3 663.7 663.1 662.5 661.9 661.3 660.7 660.0 659-3 658.7 658.1 657-4 656.8 656.1 655-4 654.7 654.1 652.6 652.0 651.2 650-5 649.8 649.1 648.4 647.6 646.9 646.1 645.4 644.6 643-9 643.1 642.4 641.6 640.8 640.0 639.2 638.4 637.6 636.8 636.0 = 13 mm. THm. .5' 0.0 0.0 TO O.I O.I 15 0.2 0.2 20 0.4 0.4 2S 0.6 0.6 30 0.8 0.8 16° 18° 0.0 0.1 0.2 0.4 0.6 0.9 0.0 0.1 0.2 0.4 0.7 I.O s 0.0 10 0.1 15 0-3 20 o-S 25 0-7 30 1.1 24° 0.0 0.1 0-3 0.5 0.8 I.I 17" 19° 0.0 0.1 0.2 0.4 0.6 0.9 0.0 O.I 0.3- 0-5 0-7 1.0 23° 0.0 0.1 0-3 0.5 0.8 i.i Smithsonian Tables. 134 Table 24. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE tish^- [Derivation of table explained on pp. liii-lvi.] •S3 24"00' 10 20 3° 40 SO 2500 10 20 30 40 SO 2600 10 20 30 40 SO 27 00 10 20 30 40 SO 28 00 10 20 30 40 so 2900 10 20 30 40 SO 3000 10 20 30 40 SO 31 00 10 20 30 40 SO 3200 I s S > « ^S S p. 230.7 461.5 692.2 923.0 "S37 230.8 461.5 692.3 923.1 1153.8 230.8 461.6 692.4 923.2 1 1 54.0 230.8 461.7 692.5 923-3 1 1 54.2 230.9 461.7 692.6 923-5 1 1 54.4 230.9 461.8 692.7 923.6 1154.5 230.9 461.9 692.8 923.8 1 1 54.7 231.0 461.9 692.9 923-9 1 154-8 ABSCISSAS OF DEVELOPED PARALLEL. longitude. 106.0 105.9 105.7 105.6 105.4 "05-3 105.2 105.0 104.9 104-7 104.6 104.4 104.3 1 04. 1 104.0 103.8 103-7 "03-5 103.4 103.2 103.1 102.9 102.8 102.6 102.5 102.3 102. 1 102.0 101.8 101.7 101.5 101.3 101.2 lOI.O 100.8 100.7 100.5 100.3 100.2 1 00.0 99-8 99-6 99-S 99-3 99.1 99.0 98.8 98.6 98.4 10' longitude. 212.0 21 1.7 2II.4 2II.2 210.9 210.6 210.3 210.0 209.7 209.4 209.2 208.9 208.6 208.3 208.0 207.7 207.4 207.1 206.8 206.5 206.2 205.8 205-S 205.2 204.9 204.6 204.3 204.0 203.6 203-3 203.0 202.7 202.3 202.0 201.7 201.4 201.0 200.7 200.3 200.0 199.6 "99-3 199.0 198.6 198.3 197.9 197.6 197.2 196.9 "S' longitude. 318.0 3"7-6 317-2 3"6.7 3'6.3 3" 5-9 3"S-5 3'S-o 314.6 314.2 3"3-7 313-3 312.9 312.4 312.0 3"-S 311. 1 310.6 310.2 309-7 309.2 308.8 308.3 307-9 307-4 306.9 306.4 305-9 30S-S 305.0 304-5 304.0 303-5 303-0 302.5 302.0 301-S 301.0 300.5 300.0 299.5 299.0 298.4 297.9 297.4 296.9 296.3 295.8 295-3 20' longitude. 424.0 423-4 422.9 422.3 421.8 421.2 420.6 420.0 419.5 418.9 418.3 4"7-7 417.2 416.6 416.0 415-4 414.8 414.2 413.6 413.0 412.3 41 1.7 411. 1 410.5 409.8 409.2 408.6 407-9 407-3 406.6 406.0 405-4 404.7 404.0 403-4 402.7 402.0 401.4 400.7 400.0 399-3 398.6 397-9 397.2 396-5 395-8 395-" 394-4 393-7 25' longitude. 530.0 529-3 528.6 527.9 527.2 526.5 525.8 525.0 524-4 523.6 522.9 522.2 521.4 520.7 520.0 519.2 518.4 S17-7 S"7-o 516.2 S"S-4 514.6 5"3-8 5" 3-" 5" 2.3 511.5 510.7 509.9 509.1 S08.3 S07-S 506.7 505.8 505-0 504.2 503-4 502.6 501.7 500.8 500.0 499-1 498.2 497-4 496.5 495-6 494.8 493-9 493-0 492.2 30' longitude. 636.0 635.2 634-3 632.6 631.8 631.0 630.1 629.2 628.3 627.5 626.6 625.7 624.8 623-9 623.0 622.1 621.2 620.3 619.4 618.5 617.5 616.6 615.7 614.8 613.8 612.8 611.9 610.9 610.0 609.0 608.0 607.0 606.0 605.0 604.1 603.1 602.0 601.0 599-9 598.9 597-9 596-9 595.8 594-8 593-8 592-7 591.6 590.6 ORDINATES OF DEVELOPED PARALLEL. go 1-1 •■" 24- mtn. 0.0 O.I 0-3 0.5 0.8 I.I 26° 0.0 0.1 0-3 0.5 0.8 1.2 28° 0.0 0.1 0.6 0.9 1-3 30° 0.0 0.1 0.6 0.9 "•3 32° 0.0 0.2 0-3 0.6 0.9 1.4 25" 0.0 O.I 0-3 1.2 27- 0.0 0.1 0-3 0.5 0.8 1.2 29° 0.0 0.1 o. o. 0.9 "•3 ;.i 3"° 0.0 0.1 0.6 0.9 "•3 Smithsonian Tables. "35 Table 24. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE g^,^. [Derivation of table explained on pp. liii-lvi.] "S ional dis- :5 from degree lels. ABSCISSAS OF DEVELOPED PARALLEL. ORDINATES OF DEVELOPED ll rm S' 10' >S' 20' 25' 30' PARALLEL. Hs. gjsSS. longitude. longitude. longitude . longitude. longitude. longitude. mm. mm. mm. mm. fnm. mm. mm. ■II 32000' 98.4 196.9 295-3 393-7 492.2 si2-3 32° 33° 10 20 30 231.0 462.0 693.0 98.2 98.1 97-9 196.5 ig6.i 195.8 294.8 294.2 293-7 393-0 392-3 391.6 491.2 490-4 ij mm. mm. 40 924.0 977 195.4 293.1 390.8 488.6 586.3 S' 10 0.0 0.0 SO "SS-o 97-S 195.1 292.6 390.1 487.6 585.2 0.2 0.2 3300 974 194.7 292.1 389.4 486.8 584.1 IS 20 ai oi 10 231.0 97.2 194-3 291.5 388.6 485.8 583-0 25 30 0.9 1-4 1.0 20 462.1 97-° 194.0 290.9 387-9 484.9 580.8 1.4 30 693.2 96.8 193.6 290.4 387.2 484.0 40 924.2 96.6 96.4 193.2 192.8 289.S 289.3 386.4 38S-7 483-0 482.1 S79-7 578-5 5° USS-2 3400 10 23I.I 96.2 96.0 192.5 192.1 288.7 288.Z 385-0 384-2 481.2 480.2 S774 576.3 34' 35° 20 462.2 9S-9 191.7 287.6 383-4 479-3 S7S-2 s 0.0 0.0 30 693.2 9S7 191 -3 287.0 382.6 478.3 574-0 10 0.2 0.2 40 9243 9SS 190.9 286.4 381.9 4774 572.8 «5 0.4 0.4 SO "SS4 9S-3 190.6 285.8 381.1 476.4 5717 20 25 0.6 I.O 0.6 1.0 3500 95.1 '§°-S 285.3 380.4 4754 570.5 30 1.4 1.4 10 Z31.1 94.9 189.8 284.7 379-6 474-S 5694 20 30 462.Z 6934 947 945 189.4 189.0 284.1 283.5 378.8 378-0 473-S 472-S 471.6 568.2 567.0 40 924-S 94-3 188.6 282.9 377-2 565-9 36° 37° so 3600 1155.6 94.1 93-9 188.2 187.8 282.4 281.8 376-S 37S7 470.6 469.6 564.7 S63-S 5 0.0 0.0 10 231.2 937 187.4 281.2 374-9 468.6 562-3 10 0.2 0.2 20 462.3 93-S 187.0 280.6 374-1 467.6 . 561.1 IS 0.4 0.4 3° 693-5 924.6 93-3 186.6 280.0 373-3 466.6 559-9 5587 20 0.6 0.6 40 93' I 186.2 279.4 372-S 465-6 25 1.0 1.0 so 1 1 55.8 92.9 185.8 278.8 3717 464.6 S57-S 30 1.4 I-S 3700 10 92.7 92-S 185.4 185.0 278.2 277.6 370-9 370.1 462.6 556-3 SS5-I 231.2 38° irfi 20 693.6 92-3 184.6 184.2 276.9 276.3 369.2 368.4 461.6 460.5 S53-9 552.6 39 30 92.1 40 924.8 91.9 183.8 2757 3f7-6 459-5 5514 5 0.0 0.0 SO 1 1 56.0 91.7 183.4 27S-I 366.8 458-S 550-2 10 0.2 0.2 3800 9I-S 183.0 274.5 366.0 457-4 548.9 IS 20 0.4 0.7 1.0 0.4 0.7 10 231.2 9' -3 182.6 273.8 365-1 456.4 5477 25 1.0 20 462.5 91.1 182.1 273.2 364-3 4554 546-4 30 i-S 1-5 30 6937 90.9 181.7 272.6 363-5 4544 S45-2 40 925.0 1156.2 90.7 181.3 180.9 272.0 362.6 361.8 453-3 544-0 ^ 5° 90.4 271.4 452.2 542-7 ._,o 3900 10 231.3 90.2 180.5 180.1 270.7 270.1 361.0 360.1 451.2 450.2 541.4 540.2 40° 20 462.6 89.8 179.6 269.4 359-2 449.0 538.9 5 0.0 30 693.8 89.6 179.2 268.8 358-4 448.0 537-6 10 0.2 40 925.1 89.4 178.8 268.2 357-6 447.0 536.3 15 0.4 SO 1156.4 89.2 178-3 267.5 356-7 445-8 535-0 20 25 0.7 1.0 4000 89.0 177.9 266.9 355-8 -444-8 533-8 30 i-S Smithsonian Tables. 136 Table 24i CO-ORDINATES FOR PROJECTION OF MAPS. SCALE srshns- [Derivation of table explained on pp. liii-lvij S'rs 40"oo 10 20 30 40 so 41 CO 10 20 30 40 so 42 00 10 20 30 40 so 4300 10 20 30 40 so 4400 10 20 30 40 so 4S00 10 20 30 40 so 46 00 10 20 30 40 so 4700 10 20 30 40 so 4800 'as 462.6 694.0 1 1 56.0 2314 462.7 694.1 1 1 56.8 231 -4 462.8 694.2 925.6 1157.0 231.4 462.9 694-3 925.8 II57.2 23I-S 463.0 694.4 92S-9 1157.4 231-5 463.1 694.6 926.1 1157.6 231.6 463.1 694.7 926.3 II57.8 231.6 463.2 694.8 926.4 1 1 58.0 ABSCISSAS OF DEVELOPED PARALLEL. s' longitude. 89.0 88.7 88.5 88.3 88.1 87.9 87.6 87.4 87.2 87.0 86.8 86.5 86.3 86.1 85.8 85.6 85.4 85.2 84.9 84.7 84-5 84.2 84.0 83.8 83.6 83-3 83.1 82.8 82.6 82.4 82.1 81.9 81.6 81.4 81.2 80.9 80.7 80.4 80.2 80.0 79-7 79-S 79-2 79.0 78.7 78.5 78.2 78.0 77-7 10' longitude. 177-9 I77-S 177-0 176.6 176.2 I7S-7 I7S-3 174-8 174.4 173-9 I73-S 173-0 172.6 172.1 17 1. 7 171.2 170.8 170-3 169.9 169.4 169.0 168.5 168.0 167.6 167.1 166.6 166.2 165.7 165.2 164.7 164.3 163.8 163-3 162.8 162.3 1 61 .9 1 61. 4 160.9 160.4 159.9 •594 158.9 1585 158.0 157-5 157-0 156.5 156.0 IS5-5 «S' longitude. 266.9 266.2 265.6 264.9 264.2 263.6 262.9 262.3 261.6 260.9 260.2 259.6 258.9 258.2 257.6 256.9 256.2 2SS-S 254.8 254.1 253-4 252.8 252.0 251-3 250.6 249.9 249.2 248.5 247.8 247.1 246.4 245.7 245.0 244.2 243-5 242.8 242.1 241.4 240.6 239-9 239.2 238.4 237-7 236.9 236.2 235-S 234-7 234.0 233.2 20' longitude. 355-8 355-0 354-1 353-2 352-3 3514 350.6 349-7 348-8 347-9 347-0 346.1 345-2 344-3 343-4 342- 5 341.6 340.7 339? 338-8 337-9 337-0 336-0 335-1 334-2 333-2 332-3 3314 330-4 329-5 328-S 327.6 326.6 325.6 324-7 323-7 322.8 321.8 320.8 319.8 318.9 317.9 316.9 315.9 314-9 314-0 313-0 312.0 311.0 25' longitude. 444.8 443-7 442.6 441-5 440.4 439-3 438.2 437-1 436.0 434.8 433-8 432.6 431-5 430.4 429.2 428.1 427.0 425.8 424.7 423.6 422.4 421.2 420.0 418.9 417.8 416.6 415.4 414.2 413.0 411.8 410.6 409-4 408.2 407.0 405.8 404.6 4034 402.2 401.0 39q.8 398.6 397.4 396.2 394.9 3936 392.4 391.2 390-0 388.7 533^8 532-4 S3'-' 529.8 528.5 527.2 525.8 524.5 523-1 521.8 520.5 519.1 517.8 516.4 S'S-i S13-7 512.3 511.0 509.6 508.3 506.9 S05-S 504.1 502.7 501-3 499-9 498-5 497.0 495-6 494.2 492.8 491-3 489.9 488.5 487.0 485.6 484.1 482.7 481.2 479.8 478-3 476.8 475-4 473.9 472.4 470.9 469.4 467-9 466.4 ORDINATES OF DEVELOPED PARALLEL. 'aii ^■s mm. 5' 0.0 10 0.2 IS 0.4 20 0.7 25 I.O 30 1-S 40° 42" 46° 5 0.0 10 0.2 IS 0.4 20 0.7 25 i.i 30 1-5 41" 43° 47" Smithsonian Tables. 137 Table 24. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE snhnS' [Derivation of table explained on pp. Uii-lvi.] A ABSCISSAS OF DEVELOPED PARALLEL. *« lis ORDINATES OF DEVELOPED o 01 — •diJ 2 c 61) J 11 SsSs S' 10' "5' 20' 25' 30' PARALLEL. S^ gasa longitude. longitude. longitude. longitude. longitude. longitude. m?n. mm. tnm. mm. mm. tntn. mm. 1-^ 48°oo' 77-7 iSS-S 233-2 311.0 388.7 466.4 |.i 48° 49° 10 231.6 77-S 155.0 232.5 310.0 387-4 464-9 20 463-3 77-2 IS4-S 231.7 308.9 386.2 463-4 3° 695.0 77.0 154.0 230.9 307-9 384-9 461.9 mm mm. 40 926.6 76.7 IS3-S 230.2 306.9 383-6 460.4 s' 10 0.0 0.0 SO 1158.2 76.5 IS2-9 229.4 305-9 382.4 458.8 0.2 0.2 49 00 76.2 152.4 228.7 304-9 381.1 457-3 455.8 15 20 0.4 0.7 0.4 0.7 10 2317 76.0 I SI -9 227.9 303-8 379-8 25 30 1.0 1.0 20 463.4 75-7 1 51. 4 227.1 302.8 378.6 454-3 i.S 1-S 3° 695.1 7S-4 150.9 226.4 301.8 377-2 452-7 40 SO 926.8 1 1 58.4 75.2 150.4 225.6 224.8 300.8 299.8 376.0 374-7 451.1 449.6 74-9 149.9 5000 10 231-7 74-7 74-4 w^ 224.0 223.3 298.7 297.7 373-4 372-1 448.1 446.5 50° 51° 20 463-S 74.2 148.3 147-8 222.5 296.6 370.8 445-0 5 0.0 0.0 30 695.2 73-9 221.7 295.6 S.i 443-4 10 0.2 0.2 40 926.9 73-6 '47-3 220.9 294.6 441.8 15 0.4 0.4 SO 1158.6 73-4 146.8 220.1 293-S 366.9 440-3 20 25 0.7 1.0 0-7 t.o 51 00 73-1 146.2 219.4 218.6 292.5 365.6 438-7 30 i-S i-S 10 231.8 72.9 I4S-7 291.4 364-3 437-2 20 t^-^ 72.6 145.2 217.8 290.4 363-0 43S-S 30 69S-3 72-3 144.7 217.0 289.3 361.6 434-0 40 9^Z-J 72.1 144.1 216.2 288.3 360.4 432-4 52° 53° SO 52 00 1158.8 71.8 71-S 143-6 I43-" 215.4 214.6 287.2 286.2 359.0 357.7 430.8 429.2 S 0.0 0.0 10 231.8" 71-3 142- s 213.8 285.1 356.4 427.6 10 0.2 0.2 20 463.6 71.0 142.0 213.0 284.0 355.0 426.1 15 0.4 0.4 30 695.4 70.7 141.5 212.2 283.0 353-7 424.4 20 0.7 0.6 40 927.2 70-S 140.9 2II.4 ^^'•f 352-4 422.8 25 1.0 1.0 SO 1 1 59.0 70.2 140.4 210.6 280.8 ■ 351-0 421.3 30 1-5 i-S S3 00 69.9 139-9 209.8 279.8 278.7 349-7 348.4 419.6 418.0 10 ""V3V.8' 69.7 '39-3 209.0 xkO 20 463-7 69.4 i3|.g 208.2 277.6 347-0 416.4 54° S5 30 40 695.6 927.4 138-3 137-7 206.6 276.5 275.4 345-6 344-2 414.8 413-1 5 10 0.0 0.0 SO 1159.2 68.6 137-2 205-7 274-3 342-9 411.5 0.2 0.2 S4 00 10 231.9 68.3 68.0 136.6 136.1 204.9 204.1 273.2 272.2 341-6 340.2 409.9 408.2 15 20 0.6 1 0.4 0.6 1.0 20 463.8 67.8 I3S-S 203-3 271.0 338-8 406.6 25 1-4 1.4 30 69S-7 67.5 135-0 202.4 269.9 3374 404.9 30 40 SO 927.6 1159.4 67.2 66.9 134-4 201.6 200.8 267.8 336-0 403-3 401.6 '33-9 334-7 SSoo 10 231-9 66.7 66.4 133-3 132.8 200.0 1 99. 1 266.6 265-5 333-3 33 1-9 460.0 398-3 56° 20 463-9 66.1 132.2 198.3 264.4 330-5 396.6 5 0.0 30 695-8 ^5-8 131-7 197-5 263.3 329.2 395-0 10 0.2 . 40 927.7 65.6 131. 1 196.6 262.2 327.8 393-3 IS 0.4 SO 1159.6 6S-3 '30-5 195.8 261. 1 326.4 391.6 20 25 0.6 1.0 5600 65.0 130.0 195.0 260.0 325-0 389-9 30 1-4 Smithsonian Tables. 138 Table 24. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ^W [Derivation of table explained on pp. liii-lvi.] 11 2is .2 m-a^ ABSCISSAS OF DEVELOPED PARALLEL. longitude, 10' longitude. IS' longitude. 2& longitude. 25' longitude. 30' longitude. ORDINATES OF DEVELOPED PARALLEL. seooo' 10 20 30 40 5° S7 00 10 20 30 40 SO 5800 10 20 30 40 SO S9 00 10 20 30 40 SO 6000 10 20 30 40 SO 61 00 10 20 30 40 SO 62 00 10 20 30 40 SO 6300 10 20 30 40 SO 6400 232.0 463-9 69S-9 927.9 IIS9-8 232.0 464.0 696.0 928.0 1 1 60.0 232.0 464.1 696.1 928.2 Il60.2 232.1 464.2 696.2 928.3 1 160.4 232.1 464.2 696.4 1 1 60.6 232.2 464-3 696.4 928.6 1 160.8 232.2 464.4 696.6 928.8 II6I.0 232.2 464-4 696.7 928.9 II6I.I 65.0 64.7 64.4 64.2 63.6 63-3 63.0 62.7 62.5 62.2 61.9 61.6 61.3 61.0 60.7 60.4 60.2 S9-9 59-6 59-3 59-0 58.7 58-4 58.. 57-8 57-5 S7-Z S7.0 56-7 56.4 56.1 SS-8 55-5 55-2 54-9 54-6 54-3 S4-0 S3-7 53-4 S3- 1 52.8 52.S 52.2 SI.9 51.6 S'-3 Si-o 30.0 29.4 28.9 28.3 27.7 27.2 26.6 26.0 25-5 24.9 24.3 23.8 23.2 22.6 22.0 2I-S 20.9 20.3 19.7 19.2 18.6 18.0 17.4 16.8 16.3 '5-7 15.1 14-5 13-9 13-3 12.7 12.1 ii.S 10.9 10.3 09.8 09.2 08.6 08.0 07.4 06.8 06.2 05.6 65.0 04.4 03.8 03.1 02.5 101.9 195.0 194.1 193-3 192.4 191.6 190.8 189.9 189.1 188.2 187.4 186.5 185.6 184.8 183.9 183.1 182.2 181.4 180.5 179.6 178.7 177.9 177.0 176.1 I7S-3 174.4 173-5 172.6 171.7 170.8 170.0 169.1 168.2 167-3 166.4 '^^■| 164.6 163.7 162.8 161.9 161.0 160.1 159.2 158-3 IS7-4 156-S iSS-6 154-7 153-8 152.9 260.0 258.8 257-7 256.6 255-S 254.4 253.2 252.1 251.0 249.8 248.7 247-5 246.4 245.2 244.1 242.9 241.8 240.6 239-5 238-3 237-2 236.0 234-8 233-7 232-S 231.4 230.2 229.0 227.8 226.6 225.4 224.2 223.1 221.9 220.7 219-5 218.3 217.1 215.9 214.7 213-5 212.3 2X1. 1 209.9 208.7 207-5 206.3 205.1 203.9 325-0 323-6 322.2 320.8 3'9-4 318.0 316.6 31 5-1 3>3-7 312.3 310-8 309-4 308.0 306.6 305-" 303-6 302.2 300.8 299-4 297.9 296.4 295.0 293.6 292.1 290.6 289.2 287.7 286.2 284.8 283-3 281.8 280.3 278.8 277-4 275-8 274.4 272.9 271.4 269.9 268.4 266.9 265.4 263.9 262.4 260.9 259.4 257-8 256.4 254.8 388-3 386.6 384-9 383-2 381-S 379-9 378.1 376-4 374-8 373-0 371-3 369.6 367-9 365-1 364-4 362.7 361.0 359-2 357-5 355-7 354-0 352.3 3S0-S 348-8 347-0 345-2 343-4 341.7 340.0 338.2 336.4 334.6 332.8 331.0 329-3 327-5 325-7 323-9 322.1 320-3 318-S 316.7 3 '4.9 313-1 3"-3 309-4 307.6 305.8 2S ■an S6° tntn. 0.0 0.2 0.4 0.6 I.O 1-4 58° 0.0 0.2 0.6 1.0 1.4 60° 0.0 0.1 0.6 0.9 1-3 62° 0.0 0.1 0.3 0.6 0.9 1-3 64° 0.0 0.1 0.3 Ik 1.2 57" mm. 0.0 0.2 0.6 1.0 1-4 59° 0.0 0.1 0.6 0.9 1-3 61° 0.0 0.1 0.6 0.9 ».3 63° 0.0 0.1 0-3 0.5 0.9 1.2 Smithsonian Tables. 139 Table 24. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE Tshv' [Derivation of table explained on pp. liii-lvi.] ABSCISSAS OF DEVELOPED PARALLEL. "S ORDINATES OF DEVELOPED h It Merid tance even paral S' longitude. 10' longitude. 15' longitude. 20' longitude. 25' longitude. 30' longitude. PARALLEL. mm. mm. mm. vtm. 9flfH. ftlTH. fnm. tl 64°oo' 51.0 IOI.9 152.9 203.9 254.8 305.8 64° 6S° 10 464-5 S0.7 IOI.3 152.0 202.6 253-3 304.0 3-- 20 S0.4 100.7 151.1 201.4 251.8 302.2 3° 696.8 S0.1 1 00. 1 150.2 200.2 ^5°-3 300.4 mm. mm. 4° 929.0 49-8 99- S 149.2 199.0 248.8 298.5 5' 0.0 0.0 SO I161.2 49.4 98.9 148.3 197.8 247.2 296.6 10 0.1 0.1 6500 49-1 98-3 147.4 196.6 245-7 294.8 15 20 0-3 0.5 0.8 03 10 232.3 48.8 97.7 146.5 195-3 244.2 293.0 25 20 464.6 48.5 97-1 145.6 194-1 242.6 291.2 30 1.2 1.2 30 696.9 48.2 96.4 144.7 192.9 241.1 289.3 40 929.1 I161.4 47-9 47-6 95-8 143-7 142.8 191.6 239.6 238.0 287.5 285.7 5° 95.2 190.4 66° 67° 6600 10 232.3 47-3 47.0 94.6 94-0 141.9 141 .0 189.2 188.0 236-5 235.0 283.8 281.9 20 464.6 46.7 93-4 140.0 186.7 233-4 280.1 S 0.0 0.0 3° 697.0 46.4 92.7 I39-I 185-5 231-8 278.2 10 0.1 0.1 40 929-3 46.1 92.1 138.2 184.2 230.3 276.4 15 0.3 0.3 5° I161.6 45.8 91.S 137-2 183.0 228.8 274.5 20 25 °ok C:^ 67 00 4S-4 90.9 136-3 181.8 227.2 272.6 30 i.i I.I 10 232.4 4S.I §°-? I3S-4 180.5 225.6 270.8 20 30 464.7 697.0 44-8 44-S 89.6 134-4 133-S 179.2 178.0 224.0 222.5 268.9 267.0 40 929.4 44.2 88.4 132.6 176.8 221.0 265.1 68° 69° SO 6800 ii6i.8 43-9 43-6 87.7 87.1 131.6 130-7 175-S 174.2 219.4 217.8 263.2 261.4 5 0.0 0.0 10 232.4 43-2 86.5 129.8 173-0 216.2 259.5 10 0.1 0.1 20 464.8 42-9 85.9 128.8 171.7 214.6 257-6 IS 0.3 0.3 30 697.1 42.6 85.2 127-9 170-5 213.1 25S-7 20 0.5 OS 40 929.5 42.3 84.6 126.9 169.2 211.6 253.9 25 0.7 0.7 so 1 161.9 42.0 84.0 126.0 168.0 210.0 251.9 30 1.1 1.0 6900 10 41.7 41.4 83.4 82.7 125.0 124.1 166.7 165.4 208.4" ' 206.8 250.1 248.2 232.4 wrtO 110 20 464.8 697.2 41.0 40.7 82.1 81.S 80.8 123.2 122.2 ' 164.2 162.9 205.2 203.6 246.3 70 71 3° 244.4 40 929.6 40-4 121.2 161.6 202.0 242.5 5 10 0.0 0.0 SO 1 162.0 40.1 80.2 120.3 160.4 200.5 240.6 O.I 0.1 70 00 39-8 79-6 "9-3 159.1 198-9 238.7 IS 20 0.2 0.4 0.7 I.O 0.2 0.4 10 232.4 39-S 78.9 1 18.4 157.8 197.3 236.8 25 30 0.7 0.9 20 464.9 78.3 117.4 156.6 195-7 234.8 30 697-3 38.8 77.6 116.5 155-3 194.1 232.9 40 929-7 1 162.2 38-S 38.2 77-0 76.4 "5-5 1 14.6 154.0 152.8 192.6 231.1 SO 191.0 229.1 71 00 10 "'232.s' 37-9 37-6 75-7 75-1 113.6 112.6 151-5 150-2 187.8 227.2 225.3 72° 20 464.9 37-2 74-S 73-8 111.7 148.9 186.2 223.4 s 0.0 30 697-4 36-9 110.7 147-6 184-5 221.4 10 O.I 40 929.8 36-6 73-2 ;s^ 146.3 182.9 219.5 15 0.2 SO 1 162.3 36.3 72.5 145.0 181.3 217.6 20 0.4 25 0.6 7200 359 71.9 107.8 143.8 179-7 215.6 30 0.9 -Smithsonian Tables. 140 Table 24 CO-ORDINATES FOR PROJECTION OF MAPS. SCALE -wnhm- [Derivation of table explained on pp. liii-lvi.] ■K. ABSCISSAS OF DEVELOPED PARALLEL. UH .2 g-aJ! ORDINATES OF DEVELOPED |i 13 ■egg's s' 10' IS' 20' 25' 30' PARALLEL. ^3°- gS S S, longitude. longitude. longitude. longitude. longitude. longitude. mm. fntn. fitm. mm. mm. mm. mm. u 72°oo' 3S-9 71.9 107.8 143.8 179.7 215.6 11 72° 73° 10 20 2*32.5 465.0 3S-6 3S.3 71.2 70.6 106.9 105.9 142.5 I41.2 178.1 176.5 213.7 2II.8 ^.a 30 697.4 35-0 70.0 104.9 \n 174.9 209.9 mm. ntfH. 40 929.9 34.6 69.3 104.0 173-2 207.9 s' 10 0.0 0.0 SO 1 162.4 34-3 68.7 103.0 137.3 171.6 206.0 O.I 0.1 7300 34.0 68.0 102.0 136.0 170.0 204.1 IS 20 0.2 0.2 0.4 0.6 10 232.5 465.0 33.7 67.4 lOI.O 134-7 168.4 202.1 2S 30 20 33-4 66.7 lOO.I 133.4 166.8 200.2 0.9 0.9 30 697.5 33.0 66.1 99.1 132.2 165.2 198.2 40 1162.6 32.7 ^S-4 64.8 98.1 130.8 163.6 161.9 196.3 SO 32.4 97.1 129.5 194-3 7400 10 232.5 32.1 317 64.1 f3-S 96.2 95.2 128.2 127.0 160.3 158.7 192.4 190-4 74° 7S° 20 465.1 31-4 62.8 94.2 125.6 157.0 188.5 s 0.0 0.0 30 697.6 3'i 62.2 93.2 124.3 ISS.4 186.5 10 0.1 0.1 40 930.1 30.8 61.S 92.3 123.0 IS3-8 184.6 IS 0.2 0.2 SO 1 162.6 30-4 60.9 91.3 121.8 152.2 182.6 20 25 l;l 0-3 0.5 7500 30.1 60.2 90.3 ' 120.4 150.6 180.7 30 0.8 0.8 10 232.6' 29.8 59.6 89.3 119.1 148.9 178.7 20 465.1 29.4 58.9 S8-3 8S.4 1 1 7.8 147.2 176.7 30 697.6 29.1 874 1 16.5 145.6 174.8 76° 40 930.2 28.8 57.6 86.4 1 15.2 144.0 172.8 77° SO 1 1 62.8 28.5 S6.9 85.4 "39 142.4 170.8 7600 28.1 S6-3 84.4 112.6 140.7 168.8 s 10 0.0 0.1 0.0 0.1 10 232.6 27.8 55.6 83.4 111.2 139.0 . 166.9 15 20 0.2 0.2 20 465.1 27.5 SS.O 82.4 109.9 137.4 164.9 0-3 0.5 0.7 0.3 0.5 0.7 30 697.7 ^I'l S4.3 81.4 108.6 135.8 162.9 2S 30 40 930.3 26.8 S3-7 80.5 107.3 134.2 161.0 SO 7700 H62.8 26.5 26.2 S3-0 79-S 78.5 106.0 132.S 130.8 159.0 IS7.0 52.3 104.7 10 232.6 25.8 Si-7 77.S 103.4 129.2 155.0 78° 79° 20 30 465.2 697.8 2S.S 25.2 51.0 50.4 76.S 7S.S 102.0 100.7 127.6 125.9 153.1 151.1 40 930.4 24.8 49-7 74.6 99.4 124.2 149.1 S 0.0 0.0 SO 1 1 63.0 24.5 49.0 73-6 98.1 122.6 147.1 10 15 0.1 0.2 0.1 0.1 7800 24.2 48.4 72.6 96.8 121.0 145.1 20 0.3 0-3 10 232.6 23.9 47-7 71.6 9S.4 "9-3 143-2 25 0.4 04 20 465.2 23. s 47.1 70.6 94.1 H7.6 141.2 30 0.6 0.6 30 697.8 23.2 46.4 69.6 92.8 1 1 6.0 139.2 40 930.4 1 163.0 22.9 45.7 67;6 91.4 114.3 112.6 137-2 SO 22.5 45.1 90.1 135.2 7900 10 232.6' 22.2 21.9 44.4 43-7 66.6 65.6 88.8 87.S III.O 109.4 133.2 131.2 80° 20 465.2 21.5 43-1 64.6 86.1 107.6 129.2 5 0.0 30 697.9 21.2 42.4 63.6 84.8 106.0 127.2 10 0.1 40 930-5 20.9 41.7 62.6 83.S 104.4 125.2 15 0.1 SO 1163.1 20.5 41. 1 61.6 82.1 102.6 123.2 20 2S C.2 0.4 8000 20.2 40.4 60.6 80.8 lOI.O 121.2 30 0.5 Smithsonian Tables. 141 Table 25. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 10° EXTENT IN LATITUDE AND LONGITUDE. [Derivation of table explained on pp. l-lii.] Middle Latitude of Quadrilateral. Area in Square Miles. 0° 474653 S 47289s 10 467631 IS 458891 20 446728 2S 43'2i3 30 412442 35 390533 40 365627 45 337890 50 307514 55 274714 6o 239730 65 202S23 70 164279 75 124400 So 83504 85 41924 Smithsonian Tables. 142 Table 26. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 1° EXTENT IN LATITUDE AND LONGITUDE. [Derivation of table explained on pp. 1-lii.] Middle latitude o£ quadrilateral. Area in square miles. Middle latitude of quadrilateral. Area in square miles. Middle latitude of quadrilateral. Area in square miles. o°oo' 30 1 00 I 30 4752-33 4752.16 4751-63 4750-75 26° 00' 26 30 27 00 27 30 4282.50 4264.51 4246.20 4227.56 52° 00' 52 30 53 00 53 30 295o.q8 2851.68 2 00 2 30 3 00 3 30 4749-52 4747-93 4746.00 4743-71 28 00 28 30 29 00 29 30 4208.61 4189-33 4169.74 4149.83 54 00 54 30 55 00 55 30 2818.27 2784.62 2750.76 2716.67 4 00 4 30 5 00 s 30 4741.07 4738.08 4734-74 4731.04 30 00 30 30 31 00 31 30 4129.60 4109.06 4088.21 4067.05 56 00 56 30 57 00 57 30 2682.37 2647.85 2613.13 2578.19 6 00 6 30 7 00 7 30 4727.00 4722.61 4717.86 4712.76 32 00 32 30 33 00 33 30 4045-57 4023.79 4001.69 3979-30 58 00 58 30 59 00 59 30 2543.05 2507.70 2472.16 2436.42 8 00 8 30 9 00 9 30 4707-32 4701.52 34 00 34 30 35 00 35 30 3956-59 3933-59 3910.28 3886.67 60 00 60 30 61 00 61 30 2400.48 2364.34 2338.02 2291.51 10 00 10 30 11 00 n 30 4682.05 4674.86 4667.32 4659-43 36 00 36 30 37 00 37 30 3862.76 3838.56 3814.06 3789.26 62 00 62 30 63 00 63 30 2254.82 2217.94 2180.89 2143.66 12 00 12 30 13 00 13 30 4651.20 4642.63 4633-71 4624.44 38 00 38 30 39 00 39 30 3764-18 3738-80 37i3-i4 3687.18 64 00 64 30 65 00 65 30 2106.26 2068.68 2030.94 1993.04 14 00 14 30 15 00 IS 30 4614.82 4604.87 4594-57 4583.92 40 00 40 30 41 00 41 30 3660.95 3634-42 3607.62 3580.54 66 00 66 30 67 00 67 30 1954.97 1916.75 i839;i4 16 00 16 30 17 00 17 30 4572.94 4561.61 4549.94 4537-93 42 00 42 30 43 00 43 30 3553-17 3525-54 3497-62 3469-44 68 00 68 30 69 00 69 30 1801.16 1762.33 1723.36 1684.24 18 00 i8 30 19 00 19 30 4525-59 4512.90 4499.87 4486.51 44 00 44 30 45 00 45 30 3440-98 3412.26 3383-27 3354-01 70 00 70 30 71 00 71 30 1645.00 1605.62 1566.10 1526.46 20 00 20 30 21 00 21 30 4472-81 4458-78 4444.41 4429.71 46 00 46 30 47 00 47 30 3324-49 3294-71 3264.68 3234-39 72 00 72 30 73 00 73 30 1486.70 1446.81 1406.81 1366.69 22 00 22 30 23 00 23 30 4414.67 4399-30 4383.60 4367-57 48 00 48 30 49 00 49 30 3203.84 3173-04 3141-99 3110.69 74 00 74 30 75 00 75 30 1326.46 1286.12 1245.68 1205.13 24 00 24 30 25 00 25 30 4351.21 4334-52 4317-51 4300.17 50 00 50 30 51 00 51 30 3079-15 3047-37 3015-34 2983.08 76 00 76 30 77 00 77 3° 1164.49 "23.75 1082.91 1041.99 Smithsonian Tables. 144 Table 26. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 1° LATITUDE AND LONGITUDE. EXTENT IN [Derivation of table explained on pp. l-lii.] Middle latitude of quadrilateral. Area in square miles. Middle latitude of quadrilateral. Area in square miles. Middle latitude of quadrilateral. Area in square miles. 78° oo' 78 30 79 00 79 30 1000.99 959-90 918.73 877.49 82° 00' 82 30 83 00 83 30 670.27 628.64 586.97 545-24 86° 00' 86 30 87 00 87 30 336.02 294.08 252.11 210.12 80 00 80 30 , 8i 00 81 30 836.18 794-79 753-34 711-83 84 00 84 30 85 00 85 30 461.66 419.81 377-93 88 00 88 30 89 00 89 30 168.12 126.10 84.07 42.04 Smithsonian Tables. '45 Table 27. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 30' EXTENT IN LATITUDE AND LONGITUDE. [Derivation of table explained on pp. 1-lii.] Middle latitude of quadrilateral. Area in square miles. Middle latitude of quadrilateral. Area in square miles. Middle latitude of quadrilateral. Area in square miles. o°oo' IS o 30 4S 1 188.10 1188.08 1188.05 1188.00 13° 00' 13 15 13 30 13 45 1158.44 1157.29 1156.12 1154-93 26° 00' 26 IS 26 30 26 45 1070.64 1068.40 1066.14 1063.86 I 00 ' IS I 30 I 4S 1187.92 1187.82 U87.70 1187.56 14 00 14 IS 14 30 14 45 1153-72 1 1 52.48 1151.23 1149.95 27 00 27 15 27 30 27 45 1061.56 1059.24 1056.90 1054-54 2 00 2 IS 2 30 2 45 1187.39 1187.20 1186.99 H86.76 15 00 15 IS 15 30 15 45 1148.65 1147-33 1145.99 1144.63 28 00 28 IS 28 30 28 45 1052.16 1049.76 1047-34 1044.90 3 00 3 15 3 30 3 45 1186.51 1186.24 1185.95 1185.62 16 00 16 15 16 30 16 45 1143.25 1 141.84 1 1 40.41 1138.96 29 00 29 15 29 30 29 45 1042.44 1039.97 1037-47 1034-95 4 00 4 IS 4 30 4 45 1185.28 1184.92 1184.53 1 184.13 17 00 17 IS 17 30 17 45 "37-5° 1136.00 1134.49 1132.96 30 00 30 IS 30 30 30 45 1032.41 1029.85 1024.68 5 00 5 IS 5 30 S 45 1183.70 1183.24 1182.77 1182.28 18 00 18 15 18 30 18 45 1131-41 1129.83 1128.24 1126.62 31 00 31 IS 31 30 31 45 1022.06 1019.43 1016.77 1014.10 6 00 6 30 6 45 1181.76 1181.22 1180.66 1180.08 19 00 19 IS 19 30 19 45 1124.98 1123.32 1121.64 1119.93 32 00 32 IS 32 30 32 45 1011.40 1008.69 1005.96 1003.20 7 00 7 15 7 3° 7 45 1179.48 1178.85 1178.20 1177-53 20 00 20 IS 20 30 20 45 1 1 18.21 1116.47 1114.71 1112.92 33 00 33 15 33 30 33 45 1000.43 997.64 994.83 992.00 8 00 8 30 8 45 1176.84 1 176.13 "75-39 1174.63 21 00 21 15 21 30 21 45 iiii.ii 1109.28 1107.44 1105.57 34 00 34 IS 34 30 34 45 989.16 986.29 983-41 980.50 9 00 9. 15 9 3° 9 45 1173.86 1173.06 1172.23 1171-39 22 00 22 IS 22 30 22 45 1103.68 1101.77 1099.84 1097.88 35 00 35 15 35 30 3S 45 977-58 974.64 971.68 968.70 10 00 10 IS 10 30 10 45 1170.52 1169.63 1168.73 1167.80 23 00 23 15 23 30 23 45 1095.91 1093.92 1091.90 1089.87 36 00 36 IS 36 30 36 45 965.70 962.68 959-65 956.60 II 00 II IS II 30 II 45 1166.84 1165.86 1164.86 1163.85 24 00 24 IS 24 30 24 45 1087.81 1085.74 1083.64 1081.52 37 00 37 IS 37 30 37 45 953- 52 950-43 947-32 944.21 12 00 12 IS 12 30 12 4S 1162.81 1160.67 1159.56 25 00 25 IS 25 30 25 45 1079.39 1077.23 1075.05 1072.85 38 00 38 15 38 30 38 45 941.05 937-88 934-71 931-SI Smithsonian Tables. 146 Table 27. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 30' EXTENT IN LATITUDE AND LONGITUDE. [Derivation of table explained on pp. 1-Iii.] Middle latitude of quadrilateral. Area in square miles. Middle latitude of quadrilateral. Area in square miles. Middle latitude of quadrilateral. Area in square miles. 39" 00 39 15 39 30 39 45 40 oo 40 15 40 3° 4° 45 41 00 41 IS 41 3° 41 45 42 oo 42 '5 42 .3° 42 45 43 oo 43 "5 43 30 43 45 44 00 44 15 44 30 44 45 45 00 45 15 45 30 45 45 46 00 46 IS 46 30 46 4S 47 00 47 15 47 30 47 45 48 00 48 15 48 30 48 45 49 00 49 15 49 30 49 45 50 00 50 IS SO 30 50 45 51 00 51 15 51 30 SI 45 928.29 925.06 921.80 918.53 915.25 911-94 908.61 905.27 901.91 898.54 895.14 891.73 888.30 884.85 881.39 877.91 874.41 870.90 867.37 863.82 860.25 856.67 853.07 849.46 845.82 842.18 138-51 834.83 831.13 827.42 823.68 819.94 816.18 812.40 808.60 804.79 800.97 797.13 793-27 789-39 785.50 781.60 777.68 773-74 769.79 765-83 761.85 757.85 753-84 749.82 745-78 741.72 52° 00' 52 15 52 30 52 45 53 00 S3 IS S3 30 53 45 54 00 54 15 54 30 54 45 55 00 55 15 55 30 55 45 56 00 56 IS 56 30 56 45 57 00 57 IS 57 30 57 45 58 IS S8 30 58 45 59 00 59 15 59 30 59 45 60 00 60 15 60 30 60 45 61 00 61 15 61 30 61 45 62 00 62 15 62 30 62 45 63 00 63 15 63 30 63 4S 64 00 64 15 64 30 64 45 737.65 733-57 729-47 725-36 721.23 717.08 712-93 708.76 704-57 700.38 696.16 691.94 687.70 683.44 679.17 674.89 670.60 666.29 661.97 657-64 653.29 648.93 644.55 640.17 635-77 631-36 626.93 622.49 618.05 613.59 609.11 604.62 600.13 595.62 591.09 586.56 582.01 S77-4S 572.88 568.30 563-71 559-11 SS4-49 549-86 545-23 540.58 535-92 531-25 526.57 521.88 517.17 512.46 65° 00' 65 15 65 30 65 45 66 00 66 5 66 30 66 45 67 00 67 15 67 30 67 45 68 00 68 15 68 30 68 45 69 00 69 15 69 30 69 45 70 00 70 15 70 30 70 45 71 00 71 15 71 30 71 45 72 00 72 15 72 30 72 45 73 00 73 IS 73 30 73 45 74 00 74 IS 74 30 74 45 75 00 75 IS 75 30 75 45 76 00 76 15 76 30 76 45 77 00 77 IS 77 30 77 45 507.74 503.01 498.26 493-Si 488.75 483-97 479-19 474.40 469.60 464.78 459-96 455-13 450-29 445-45 440.59 435-72 430.84 425.96 421.06 416.16 411.25 406.34 401.41 396.47 3§'-53 386.58 381.62 376.65 371.68 366.70 361.71 356-71 346.69 341.68 336.65 331-62 326.58 321-53 316.48 311.42 306.36 301.28 296.21 291.12 286.04 280.94 275.84 270-73 265.62 260.50 255-38 Smithsonian Tables. 147 Table 27. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 30' EXTENT IN LATITUDE AND LONGITUDE. [Derivation of table explained on pp. 1-lii.] Middle latitude of quadrilateral. 78° 00' 78 IS 78 30 78 4S 79 00 79 IS 79 30 79 4S 80 00 80 IS 80 30 80 4S 81 00 8i IS 81 30 8i 4S Area in square miles. Z50.2S 245.12 239.98 234-83 229.68 224.53 219-37 214.21 209.05 203.88 198.70 I93-SZ 188.34 183-15 177.96 172.77 Middle latitude of quadrilateral, 82° 00' 82 IS 82 30 82 45 83 00 83 IS 83 30 83 4S 84 00 84 IS 84 30 84 4S 8s 00 fS IS 85 30 85 45 Area in square miles. 167.57 162.37 157.16 151-95 146.74 141-53 136-31 131-09 125.87 120.64 115.42 iio.iS 104.95 99.72 94.48 89.25 Middle latitude of quadrilateral. 86° 00' 86 15 86 30 86 45 87 00 87 IS 87 30 87 4S 88 00 88 15 88 30 88 45 89 00 89 IS 89 30 89 45 Area in square miles. 84.01 78.76 68!27 63.03 57-78 52-53 47.28 42.03 36-78 31-53 26.27 21.02 1576 10.51 5.26 Smithsonian Tables. 148 Table 28. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 15' EXTENT IN LATITUDE AND LONGITUDE. [Derivation of table explained on pp. I-IU.] Middle latitude of quadrilateral. Area in square miles. Middle latitude of quadrilateral. Area in square miles. Middle latitude of quadrilateral. Area in square miles. o°07'3o" o 15 oo 22 30 30 00 297,02 297.02 297.02 297.01 6° 37' 30" 6 45 00 6 52 30 7 00 00 295.09 295.02 294.95 294.87 13° 07' 30" 13 15 00 13 22 30 13 30 00 289.47 289.33 289.18 289.03 37 30 45 00 52 30 1 00 00 297.01 297.00 7 07 30 7 15 00 7 22 30 7 30 00 294.79 294.71 294.63 294-55 13 37 30 13 45 00 13 52 30 14 00 00 288.88 288.7-5 288.58 288.43 I 07 30 I 15 00 I 22 30 I 30 00 296.97 296.96 296.94 296.93 7 37 30 7 45 00 7 52 30 8 00 00 294.47 294-39 294.30 294.21 14 07 30 14 15 00 14 22 30 14 30 00 288.28 288.12 287.96 287.81 I 37 30 I 45 00 1 52 30 2 00 00 296.89 296.87 296.85 8 07 30 8 15 00 8 22 30 8 30 00 294.12 294.03 293.94 293-85 14 37 30 14 45 00 14 52 30 15 00 00 287.6s 287.49 287-33 287.17 2 07 30 2 15 00 2 22 30 2 30 00 296.82 296.80 296.77 296.75 8 37 30 8 45 00 8 52 30 9 00 00 293.66 293-56 293-47 IS 07 30 15 15 00 15 22 30 15 30 00 287.00 286.83 286.67 286.50 2 37 30 2 45 00 2 52 30 3 00 00 296.72 296.69 296.66 296.63 9 07 30 9 15 00 9 22 30 9 30 00 293-37 293.27 293.16 293.06 IS 37 30 15 45 00 15 52 30 16 00 00 286.33 286.16 285.99 285.82 3 07 30 3 15 00 3 22 30 3 30 00 296.60 296.56 296.53 296.49 9 37 30 9 45 00 9 52 30 10 00 00 292.9s 292.85 292.74 292.63 16 07 30 16 IS 00 16 22 30 16 30 00 28546 285.28 2S5.10 3 37 30. 3 45 00 3 52 30 4 00 00 296.45 296.41 296.36 296.32 10 07 30 10 15 00 10 22 30 10 30 00 292.52 292.41 292.30 292.19 16 37 30 16 45 00 16 52 30 17 00 00 284.92 284.74 284.56 284.38 4 07 30 4 15 00 4 22 30 4 30 00 296.28 296.23 296.18 296.13 10 37 30 10 45 00 10 52 30 11 00 00 292.07 291.95 291.83 291.71 17 07 30 17 15 00 17 22 30 17 30 00 284.19 284.00 283.81 283.62 4 37 30 4 45 00 4 52 30 5 00 00 296.08 296.03 295.98 295-93 II 07 30 11 15 00 II 22 30 II 30 00 291.59 291.47 291-34 291.22 17 37 30 17 45 00 17 52 30 18 00 00 283-43 283.24 S 07 30 5 15 00 5 22 30 5 30 00 295.87 295.81 295-75 295.69 II 37 30 II 45 00 11 52 30 12 00 00 291.09 290.96 290.83 290.70 18 07 30 18 15 00 18 22 30 18 30 00 282.66 282.46 282.26 282.06 S 37 30 5 45 00 s 52 30 6 00 00 295.63 295-57 295.51 295-44 12 07 30 12 15 00 12 22 30 12 30 00 290-57 290.44 290.30 290.17 18 37 30 18 45 00 18 52 30 19 00 00 281.86 281.66 281.45 281.25 6 07 30 6 15 00 6 22 30 6 30 00 295-37 295-31 295.24 295-17 12 37 30 12 45 00 12 52 30 13 00 00 290.03 289.89 289.75 289.61 19 07 30 19 15 00 19 22 30 19 30 00 281.04 280.83 280.62 280.41 Smithsonian Tables. 150 Table 28. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 15' EXTENT IN AKCAs ur V" LATITUDE AND LONGITUDE. [Oenvation of table explained on pp. 1-lii.] Middle latitude of quadrilateral. Area in square miles. Middle latitude of quadrilateral. Area in square miles. Middle latitude of quadrilateral. Area in square miles. 19° 37' 30" 19 45 00 19 52 30 20 CO 00 280.20 279.99 279.77 279-55 26° 07' 30" 26 15 00 26 22 30 26 30 00 267.38 267.10 266.82 266.54 32° 37' 30" 32 45 00 32 52 30 33 00 00 251-15 250.80 250.45 250.11 20 07 30 20 IS 00 20 22 30 20 30 00 279'34 279.12 278.90 278.68 26 37 30 26 45 00 26 52 30 27 00 00 266.25 265.97 265.68 265-39 33 07 30 33 15 00 33 22 30 33 30 00 249.76 249.41 249.06 248.71 20 37 30 20 45 00 20 52 30 21 00 00 278.46 278.23 278.00 277.78 27 07 30 27 15 00 27 22 30 27 30 00 265.10 264.81 264.52 264.23 33 37 30 33 45 00 33 52 30 34 00 00 248.36 248.00 247-65 247.29 21 07 30 21 IS 00 21 22 30 21 30 00 277-55 277-32 277.09 276.86 27 37 30 27 45 00 27 52 30 28 00 00 263.93 263.64 263.34 263.04 34 07 30 34 15 00 34 22 30 34 30 00 246.93 246.57 246.21 245.85 21 37 30 21 45 00 21 52 30 22 00 00 276.63 276.39 276.16 275.92 28 07 30 28 15 00 28 22 30 28 30 00 262.74 262.44 262.14 261.84 34 37 30 34 45 00 34 52 30 35 00 00 245.49 245-13 244.76 244.40 22 07 30 22 15 00 22 22 30 22 30 00 275.68 275-44 275.20 274.96 28 37 30 28 45 00 28 52 30 29 00 00 261.53 261.23 260.92 260.61 35 07 30 35 15 00 35 22 30 35 30 00 244.03 243-66 243.29 242.92 22 37 30 22 45 00 22 52 30 23 00 00 274.72 274.47 274.22 273.98 29 07 30 29 IS 00 29 22 30 29 30 00 260.30 259.99 259.68 259-37 35 37 30 35 45 00 35 52 30 36 00 00 242.55 242.18 241.80 241.43 23 07 30 23 15 00 23 22 30 23 30 00 273-73 273.48 273-23 272.9S 29 37 30 29 45 00 29 52 30 30 00 00 259-05 258.74 258.42 258.10 36 07 30 36 15 00 36 22 30 36 30 00 241.05 240.67 240.29 239.91 23 37 30 23 45 00 23 52 30 24 00 00 272.72 272.47 272.21 271.95 30 07 30 30 15 00 30 22 30 30 30 00 257.78 257-46 257.14 256.82 36 37 30 36 45 00 36 52 30 37 00 00 239-53 239-15 238.77 238.38 24 07 30 24 15 00 24 22 30 24 30 00 271.69 271-44 271.17 270.91 30 37 30 30 45 00 30 52 30 31 00 00 256.49 256.17 255.84 255-52 37 07 30 37 15 00 37 22 30 37 30 00 237-99 237.61 237,22 236.83 24 37 30 24 45 00 24 52 30 25 00 GO 270.65 270.38 270.1 1 269.85 31 07 30 31 15 00 31 22 30 31 30 00 255-19 254.86 254-53 254.19 37 37 30 37 45 00 37 52 30 38 00 00 236.44 236.05 235.66 235.26 25 07 30 25 IS 00 25 22 30 25 30 00 269.58 269.31 268.76 31 37 30 31 45 00 31 52 30 32 00 00 253-86 253-53 253-19 252.85 38 07 30 38 IS 00 38 22 30 38 30 00 234.87 234-47 233-68 ZS 37 30 25 45 00 25 52 30 26 00 00 268.49 268.21 267.94 267.66 32 07 30 32 15 00 32 22 30 32 30 00 252-51 252.17 251.83 251.49 38 37 30 38 45 00 38 52 30 39 00 00 233-28 232.88 232.48 232.07 Smithsonian Tables. 151 Table 28. AREAS OF QUADRILATERALS OP E&RTH'S SURFACE OF 15' EXTENT IN LATITUDE AND LONGITUDE. [Derivation of table explained on pp. l-lii.] Middle latitude of quadrilateral. Area in square miles. Middle latitude of quadrilateral. Area in square miles. Middle latitude of quadrilateral. Area in square miles. 39° 07' 30" 39 15 00 39 22 30 39 30 00 231.67 231.27 230.86 230.45 45°37'3°" 45 45 00 45 52 30 46 00 00 209.17 208.71 208.25 207.78 52° 07' 30" 52 IS 00 52 22 30 52 30 00 183.90 182.37 39 37 30 39 45 00 39 52 30 40 00 00 230.04 229.63 229.22 228.81 46 07 30 46 15 00 46 22 30 46 30 00 207.32 206.86 206.39 205.92 52 37 30 52 45 00 52 52 30 53 00 00 181.85 i8o!82 180.31 40 07 30 40 15 00 40 22 30 40 30 00 228.40 227.99 227.57 227.15 46 37 30 46 45 00 46 52 30 47 00 00 205.45 204.99 204.52 204.05 S3 07 30 S3 15 00 53 22 30 S3 30 00 179-79 179-27 178-75 178.23 40 37 30 40 45 00 40 52 3° 41 00 00 226.73 226.32 225.90 225.48 47 07 30 47 15 00 47 22 30 47 30 00 203.57 203.10 202.63 202.15 53 37 30 53 45 00 53 52 30 54 00 00 177.71 176.67 176.14 41 07 30 41 15 00 41 22 30 41 30 00 225.06 224.64 224.21 223.79 47 37 30 47 45 00 47 52 30 48 00 00 201.67 201.20 200.72 200.24 54 07 30 54 15 00 54 22 30 54 30 00 175.62 175.10 174-57 174.04 41 37 30 41 45 00 41 52 30 42 00 00 223.36 222.93 222.50 222.08 48 07 30 48 15 00 48 22 30 48 30 00 199.76 199.28 198.80 198.32 54 37 30 54 45 00 54 52 30 55 00 00 173.51 172.99 172.46 171.93 42 07 30 42 15 00 42 22 30 42 30 00 221.65 221.21 220.78 220.3s 48 37 30 48 45 00 48 52 30 49 00 00 19783 196.86 196.38 55 07 30 55 15 00 55 22 30 55 30 00 171-39 170-86 170-33 169-79 42 37 30 42 45 00 42 52 30 43 00 00 219.91 219.48 219.04 218.60 49 07 30 49 15 00 49 22 30 49 30 00 195-89 195.40 194.91 194.42 55 37 30 55 45 00 55 52 30 56 00 00 169.26 168.72 168.19 167.65 43 07 30 43 15 00 43 22 30 43 30 00 218.16 217-73 217.28 216.84 49 37 30 49 45 00 49 52 30 50 00 00 193-93 193-44 192.94 192.45 56 07 30 56 15 00 56 22 30 56 30 00 167. II 166.03 165-49 43 37 30 43 45 00 43 52 30 44 00 00 216.40 215.96 2'5-5i 215.06 50 07 30 50 15 00 50 22 30 50 30 00 191-95 191.46 190.96 190.46 56 37 30 56 45 00 56 52 30 57 00 00 164-95 163.32 44 07 30 44 15 00 44 22 30 44 30 00 214.61 214.17 213.72 213.27 SO 37 30 50 45 00 50 52 30 51 00 00 189.96 189.46 188.96 188.46 57 07 30 57 15 00 57 22 30 57 30 00 162.78 162.23 161.68 161. 14 44 37 30 44 45 00 44 52 30 45 00 00 212.82 212.37 211.91 211.46 51 07 30 SI IS 00 51 22 30 51 30 00 187.96 187.46 186.95 186.45 57 37 30 57 45 00 57 52 30 58 00 00 160.59 160.04 159-49 158-94 45 07 30 45 15 00 45 22 30 45 30 00 211.00 210.55 210.09 209.63 51 37 30 5' 45 00 51 52 30 52 00 00 185.94 185-43 184.92 184.41 58 07 30 58 15 00 58 22 30 58 30 CO 158-39 157.84 157-29 156.73 Smithsonian Tables. 152 Table 28. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 15' EXTENT IN ^ LATITUDE AND LONGITUDE. [Derivation of table explained on pp. 1-lii.] Middle latitude of quadrilateral. Area in square miles. Middle latitude of quadrilateral. Area in square miles. Middle latitude of quadrilateral. Area in square miles. 58° 37' 30" 58 45 °o 58 52 30 59 00 00 156.18 155.62 155-07 154-51 65° 07' 30" 65 15 00 65 22 30 65 30 00 126.34 125-75 125.16 124.57 71° 37' 30" 71 45 00 71 52 30 72 00 00 94.78 94.16 93-54 ■ 92.92 59 07 30 59 IS 00 59 22 30 59 30 00 153-96 153-40 152.84 152.28 65 37 30 65 45 00 6s 52 30 66 00 00 123.97 123-38 122.78 122.19 72 07 30 72 15 00 72 22 30 72 30 00 92.30 91.68 91.05 90-43 59 37 30 59 45 00 59 52 30 60 00 00 151.72 151. 16 150.60 150.03 66 07 30 66 15 00 66 22 30 66 30 00 121.59 120.99 120.40 119.80 72 37 30 72 45 00 72 52 30 73 00 00 89.80 89.18 88-55 87-93 60 07 30 60 15 00 60 22 30 60 30 00 149-47 148.91 148.34 147-77 66 37 30 66 45 00 66 52 30 67 00 00 119.20 118.60 118.00 117.40 73 07 30 73 15 00 73 22 30 73 30 00 87.30 86.67 86.05 85.42 60 37 30 60 45 00 60 52 30 61 00 00 147.21 146.64 146.07 145.50 67 07 30 67 15 00 67 22 30 67 30 00 116.80 1 16.20 "5-59 114.99 73 37 30 73 45 00 73 52 30 74 00 00 84.79 84.16 8353 82.91 61 07 30 61 15 00 61 22 30 61 30 00 144-93 144.36 143-79 143.22 67 37 30 67 45 00 67 52 30 68 00 00 114-39 113.78 113.18 112.57 74 07 30 74 15 00 74 22 30 74 30 00 82.28 81.65 8r.oi 80.38 6i 37 30 61 45 00 61 52 30 62 00 00 142.65 142.08 141.50 140.93 68 07 30 68 15 00 68 22 30 68 30 00 1 1 1.97 1 1 1.36 110.76 110.15 74 37 30 74 45 00 74 52 30 75 00 00 79-75 79.12 78.49 77.86 62 07 30 62 15 00 62 22 30 62 30 00 140-35 139-78 139.20 138.62 68 37 30 68 45 00 68 52 30 69 00 00 109.54 108.93 108.32 107.71 75 07 30 75 IS 00 75 22 30 75 30 00 77-22 76-59 75-95 75-32 62 37 30 62 45 00 62 52 30 63 00 00 138.04 137-47 136.89 136-31 69 07 30 69 IS 00 69 22 30 69 30 00 107.10 106.49 105.88 105.27 75 37 30 75 45 00 75 52 30 76 00 00 74-69 74-05 73-42 72-78 63 07 30 63 IS 00 63 22 30 63 30 00 I3S-73 135-1S 134-56 133-98 69 37 30 69 4S 00 69 52 30 70 00 00 104.65 104.04 103.43 102.81 76 07 30 76 15 00 76 22 30 76 30 00 72.14 71-51 70.87 70.24 63 37 30 63 45 00 63 52 30 64 00 00 133-40 132.81 132-23 131.64 70 07 30 70 15 00 70 22 30 70 30 00 102.20 101.59 100.97 100.35 76 37 30 76 45 00 76 52 30 77 00 00 69.60 68.96 (8.32 67.6S 64 07 30 64 15 00 64 22 30 64 30 00 131.06 130-47 129.88 129.29 70 37 30 70 45 00 70 52 30 71 00 00 99-74 99.12 97:^8 77 07 30 77 15 00 77 22 30 77 30 00 66.41 65.77 65-13 64 37 30 64 45 00 64 52 30 65 00 00 128.70 128.12 127-53 126.94 71 07 30 71 IS 00 71 22 30 71 30 00 97.26 96.65 96-03 95-41 77 37 30 77 45 00 77 52 30 78 00 00 64.49 63.85 63.20 62.56 Smithsonian Tables. 153 Table 28. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 15' EXTENT IN LATITUDE AND LONGITUDE. [Derivation of table explained on pp. 1-lii.] Middle latitude of quadrilateral. 78° 07' 30" 78 IS 00 78 22 30 78 30 00 78 37 30 78 4S 00 78 52 30 79 00 00 79 07 30 79 15 00 79 22 30 79 3° 00 79 37 30 79 45 0° 79 S2 30 80 00 00 80 07 30 80 15 00 80 22 30 80 30 00 80 37 30 80 45 00 80 52 30 81 00 00 81 07 30 81 81 15 00 22 30 01 30 00 81 37 30 81 45 00 81 52 30 82 00 00 Area in square miles. 61.92 61.28 60.64 60.00 59-35 58.06 57.42 56.78 56-13 55-49 54-84 54-20 53-55 52.91 52.26 51.62 50.97 50.32 49.68 49-03 48.38 47-73 47.08 46.44 45-79 45-14 44.49 43-84 43-19 42.54 41. 89 Middle latitude of quadrilateral. 15 00 22 30 82° 07' 30" 82 15 00 82 22 30 82 30 00 82 37 30 82 45 00 82 52 30 83 00 00 83 07 30 §3 - 83 30 00 83 37 30 83 45 00 83 52 30 84 00 00 84 07 30 84 15 00 84 22 30 84 30 00 84 37 30 84 45 00 84 52 30 85 00 00 85 07 30 85 15 00 85 22 30 85 30 00 85 37 30 85 45 00 85 52 30 86 00 00 Area in square miles. 41.24 40.59 39-94 39-29 38.64 37-99 36-69 36-03 35-38 34-73 34.08 33-42 32-77 32.12 31-47 30-81 30.16 29.51 28.86 28.20 26.89 26.24 25-58 24-93 24.27 23.62 22.97 22.31 21.66 21.00 Middle latitude of quadrilateral. 86° 07' 30" 86 15 00 86 22 30 86 30 00 86 37 30 86 45 00 86 52 30 87 00 00 87 07 30 87 15 00 87 22 30 87 30 00 87 37 30 87 45 00 87 52 30 88 00 00 88 07 30 88 15 00 88 22 30 88 30 00 88 37 30 88 45 00 88 52 30 89 00 00 89 07 30 15 00 22 30 89 89 30 00 89 37 30 89 45 00 89 52 30 Area in square miles. 20.3s 19.69 19.04 18.38 17.72 17.07 16.41 15-76 15.10 14.44 13-79 13.13 12.48 11.82 11.16 10.51 9.85 9.20 8.54 7.88 7.22 6.57 5.91 5.26 4.60 3-94 3.28 2.63 1.97 '-31 0.66 Smithsonian Tables. 154 Table 29. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 10' EXTENT IN LATITUDE AND LONGITUDE. [Derivation of table explained on pp. 1-lii.] Middle latitude of quadrilateral. Area in square miles. Middle latitude of quadrilateral. Area in square miles. Middle latitude of quadrilateral. Area in square miles. o°os' IS 25 3S 132.01 132.01 132.01 132.00 8°4S' 8 55 9 OS 9 15 130-51 130-46 130.40 130-34 17° 25' 17 35 17 45 17 55 126.11 126.00 125.88 125-77 o 45 55 1 OS I IS 132.00 i3>-99 131-99 131.98 9 25 9 35 9 45 9 55 130.28 130.22 130.15 130.09 18 05 18 15 18 25 18 35 125.65 125.54 125.42 125.30 I 25 I 35 I 45 I 55 131-97 131.96 131-95 131-94 10 05 10 IS 10 25 10 35 130.02 129.96 129.89 129.82 18 45 18 55 19 05 19 IS 125.18 125.06 124.94 124.81 2 OS 2 15 2 25 2 35 131-93 131.91 10 45 10 55 11 05 11 15 129.76 129.68 129.61 129.54 19 25 19 35 19 45 19 55 124.69 124-56 124.44 124.31 2 45 2 55 3 °S 3 15 131.86 131.84 131.82 131.80 II 2S II 35 II 45 11 55 129-47 129-39 129.32 129.24 20 05 20 15 20 25 20 35 124.18 124.05 123.92 123-79 3 25 3 35 3 45 3 55 131.78 131.76 131-74 131-71 12 05 12 IS 12 25 12 35 129.16 129.08 129.00 128.92 20 45 20 55 21 OS 21 IS 123.66 123.52 123-39 123.25 4 OS 4 15 4 25 4 35 131.68 131.66 131-63 131.60 12 45 12 55 13 OS 13 15 128.84 128.76 128.67 128.59 21 25 21 35 21 4S 21 SS 123.12 122.98 122.84 12270 4 45 4 55 5 OS S IS 131-57 131-54 131-50 131-47 13 25 13 35 13 4S 13 SS 128.50 128.41 128.33 128.24 22 05 22 15 22 25 22 35 122.56 122.42 122.28 122.13 S 25 5 35 5 45 S SS 131-44 131.40 131-36 131-33 14 OS 14 IS 14 25 14 35 128.14 128.05 127.96 127.87 22 45 22 55 23 OS 23 IS 121.99 121.84 121.69 121-55 6 05 ^ '5 6 25 6 35 131-29 131-25 131.21 131-16 14 45 14 55 15 05 IS IS 127-77 127.67 127.58 127.48 23 25 23 35 23 45 23 SS 121.40 121.25 121. 10 120.94 6 45 6 55 7 OS 7 IS 131-12 131-07 131-03 130.98 15 25 15 35 IS 45 IS SS 127.38 127.28 127.18 127.08 24 OS 24 15 24 25 24 35 120.79 120.64 120.48 120.33 7 25 7 35 7 45 7 SS 130-93 130.88 130.84 130-79 16 05 16 IS 16 25 16 35 126.98 126.87 126.77 126.66 24 45 24 SS 25 05 25 15 120.17 120.01 119-8S 119.69 8 OS f 'S 8 25 8 3S 130.68 130-63 130-57 164s 16 55 17 05 17 IS 126.55 126.44 126.33 126.22 2S 25 25 35 25 45 25 55 119-53 119-37 119.21 119.04 Smithsonian Tabi .ES. 156 Table 29. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 10' EXTENT IN LATITUDE AND LONGITUDE. [Derivation of table explained on pp. 1-lii.] Middle latitude of quadrilateral. Area in square miles. Middle latitude of quadrilateral. Area in square miles. Middle latitude of quadrilateral. Area in square miles. 26° OS' 26 15 • 26 25 26 35 118.87 118.71 118.54 118.37 34=45' 34 55 35 05 35 15 108.94 108.73 108.51 108.29 43° 25' 43 35 43 45 43 55 96.50 96.24 95-98 95-71 26 45 26 55 27 05 27 15 1 18.21 118.04 117.87 117.69 35 25 35 35 35 45 35 55 108.07 107.85 107.63 107.41 44 05 44 IS 44 25 44 35 95-45 95-19 94-92 94.65 27 25 27 35 27 45 27 55 117.52 "7-35 117.17 116.99 36 05 36 IS 36 25 36 35 107.19 106.96 106.74 106.51 44 45 44 55 45 05 45 IS 94-38 94-11 93-84 93-58 28 05 28 15 28 25 28 35 116.82 1 16.64 116.46 r 16.28 36 45 36 55 37 OS 37 15 106.29 106.06 105.83 105.60 45 2S 45 35 45 45 45 55 93-30 93-03 92.76 92.48 28 45 28 55 29 05 29 IS n6.io 115.92 "5-73 "5-55 37 25 37 35 37 45 37 55 105-37 105.14 104.91 104.68 46 OS 46 15 46 25 46 35 92.21 • 91.94 91.66 91-38 29 25 29 35 29 45 29 55 "5-37 115.18 114.99 1 14.81 38 05 38 15 ' 38 25 38 35 104.44 104.21 103-97 103-74 46 45 46 55 47 OS 47 IS 91.10 90.82 90-55 90.27 30 05 30 15 30 25 30 35 114.62 "4-43 114.24 114.04 38 45 38 55 39 OS 39 15 103.50 103.26 103.02 102.78 47 25 47 35 47 45 47 55 89.99 89.70 89.42 89.14 30 45 3° 55 3.1 05 31 '5 "Hi 113.66 ii3'47 113.27 39 25 39 35 39 45 39 55 102.54 102.30 102.06 101.82 48 OS 48 15 48 25 48 35 88.85 88.57 88.28 88.00 31 25 31 35 31 45 31 55 "3-07 112.88 112.68 112.48 40 05 40 15 40 25 40 35 101.57 101.33 101.08 100.83 48 45 48 55 49 OS 49 IS 87-71 87.42 87-13 86-84 32 05 32 IS 32 25 32 35 112.28 112.08 1 1 1.87 111.67 40 45 40 55 41 05 41 15 100.59 100.34 100.09 99.84 49 25 49 35- 49 45 49 55 86-55 86.26 85.97 85.68 32 45 32 55 33 05 33 15 111.47 111.26 111.06 1 10.85 41 25 41 35 41 45 41 55 99-59 98.83 50 05 SO IS SO 25 SO 35 85-39 85.09 84.80 84.50 33 25 33 35 33 45 33 55 110.64 110.43 110.22 110.01 42 05 42 15 42 2S 42 35 98-57 98.32 98.06 97.80 SO 45 50 55 51 05 51 15 84.21 83.91 83.61 83-31 34 OS 34 IS '34 25 34 35 109.80 109.59 109-37 109.16 42 45 42 55 43 OS 43 15 97-55 97.29 97-03 96.77 51 25 SI 35 51 45 51 55 83.01 82.71 82.41 82.11 Smithsonian Tables. 157 Table 29. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 10' EXTENT IN LATITUDE AND LONGITUDE. [Derivation of table explained on pp. 1-lii.] Middle latitude of quadrilateral. Area in square miles. Middle latitude of quadrilateral. Area in square miles. Middle latitude of quadrilateral. Area in square miles. 52° 05' 52 15 52 25 52 35 81.81 81.51 81.20 80.90 60° 45' 60 55 61 05 6i 15 65.17 64.84 64.50 64.16 69° 25' 69 35 69 45 69 55 46.97 46.60 46.24 45-88 52 45 52 55 53 OS 53 15 80.60 80.29 79.9S 79.68 61 25 61 35 6i 45 61 55 63.82 63.48 63.14 62.80 70 05 70 15 70 25 70 35 4S-5I 45-15 44-7» 44.42 53 25 53 35 53 45 53 55 79-37 79-06 78.75 78.44 62 05 62 15 62 25 62 35 62.46 62.12 61.78 61.44 70 45 70 55 71 OS 71 15 44-05 43-69 43-32 42.95 54 OS 54 IS 54 25 54 35 78.13 77.82 77-51 77-19 62 45 62 55 63 OS 63 15 61.10 60.75 60.41 60.06 71 25 71 35 71 45 71 55 42.58 42.22 41.8s 41.48 ■ 54 45 54 55 55 OS 55 15 76.88 76.57 76.25 75-94 63 25 63 35 63 45 63 55 59-72 59-37 72 OS 72 15 72 25 72 35 41.11 40.74 40.37 40.00 55 25 55 35 55 45 55 55 75-62 75-30 74-99 74-67 64 05 64 15 64 25 64 35 58-33 57-99 57-64 57-29 72 45 72 55 73 OS 73 15 39-63 38^89 38.52 56 OS S6 IS 56 25 56 35 74-35 74-03 73-71 73-39 64 45 64 55 65 OS 65 15 56-94 56-59 56-24 55-89 73 25 73 3S 73 45 73 55 38.1S 37.78 37-41 37-03 56 45 56 55 57 05 57 15 73-07 72-75 72.43 72.10 65 25 65 35 65 45 65 55 SS-S4 55-19 54-83 54-48 74 OS 74 15 74 25 74 35 36.66 36.29 35-91 35-54 57 25 57 35 57 45 57 55 71-78 71.46 71-13 70.80 66 05 66 15 66 25 66 35 54.13 53-78 53-42 53.06 74 45 74 55 75 OS 75 IS 35-17 34-79 34-42 34-04 58 05 58 IS 58 25 S8 35 70.48 70-15 69.82 69.49 ^< 45 66 55 67 05 67 IS 52-71 52-35 52.00 51.64 75 25 75 35 75 45 75 55 33-66 3329 32.91 32-53 58 45 58 55 59 05 59 15 ^11 68.51 68.18 67 25 67 35 67 45 67 5S 51.28 So-93 50-57 50.21 76 05 76 IS 76 25 76 35 32.16 31-78 31.40 31-03 59 25 59 35 59 45 59 55 67.84 67.18 66.85 68 OS 68 15 68 25 68 35 49-85 49.49 49-13 48.77 76 45 76 55 77 OS 77 15 30.65 30.27 29.89 29.51 60 05 60 15 60 25 60 35 66.51 66.18 65.84 65-51 68 45 68 ss 69 05 69 15 48.41 48.05 47-69 47-33 77 25 77 35 77 45 77 55 29.13 28.76 28.37 27.99 Smithsonian Tables. 158 Table 29. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 10' EXTENT IN LATITUDE AND LONGITUDE. [Derivation of table explained on pp. I-lii.] Middle latitude of quadrilateral. Area in square miles. Middle latitude of quadrilateral. Area in square miles. Middle latitude of quadrilateral. Area in square miles. 78° OS' 78 15 78 25 78 35 27.62 27.24 26.85 26.47 82° OS' 82 IS 82 25 82 35 18.43 18.04 17-65 17.27 86° OS' 86 15 86 25 86 35 tit 8.36 7-97 78 45 78 55 79 OS 79 IS 26.09 25.71 25-33 24.9s 82 45 82 55 83 OS 83 IS 16.88 16.50 16.11 15-73 86 45 86 55 87 05 87 15 7-59 7.20 6.81 6.42 79 25 79 35 79 45 79 55 24-57 24.18 23.80 23.42 83 25 83 35 83 45 83 55 15-34 14.95 14-57 14.18 87 25 87 35 87 45 87 55 6.03 S-64 5-25 4.86 80 05 80 IS 80 25 80 35 23.04 22.65 22.27 21.89 84 05 84 15 84 25 84 35 13-79 13.40 13.02 12.63 88 OS 88 IS 88 25 88 35 4-47 4.09 3-70 3-31 80 45 80 55 81 OS 81 IS 21.50 21.12 20.73 20.3s 84 45 84 55 85 05 8s IS 12.24 11.86 11.47 11.08 88 45 88 55 89 OS 89 15 2.92 2-53 2.14 1-75 81 25 8i 35 81 45 81 55 19.97 19.58 19.20 18.81 8s 25 85 35 85 45 85 55 10.69 10.30 992 9-S3 89 25 89 35 89 45 89 55 1.36 0.97 0.58 0!i9 Smithsonian Tables. 159 Table 30. DETERMINATION OF HEIGHTS BY THE BAROMETER. Formula of Babinet, C(m feet) = 32494 fi + °"^ ^ | — English Measures. L 900 J t2 (to + t)-\ I + — rrrr — I — Metric Measures. In which Z= Difference of height of two stations in feet or metres. .ffoi -5^ Barometric readings at the lower and upper stations respectively, corrected for all sources of instrumental error. /■(J, ^= Air temperatures at the lower and upper stations respectively. Values of C. ENGLISH MEASURES. METRIC MEASURES. ife+0- logC. C. F. Feet. 10° 4.69834 49928 IS ■70339 505" 20 •70837 51094 2S •71330 5'677 30 .71818 52261 35 4.72300 52844 40 .72777 53428 45 .73248 5401 1 SO •7371 S S4S9S SS •74177 55178 60 4-74633 55761 6S •75085 56344 70 ■75532 56927 7S •75975 575" 80 •76413 58094 85 4.76847 58677 90 .77276 59260 95 .77702 59844 100 .78123 60427 Smithsonian Tables. i(to+i)- logC. C. C. Metres. —10° 4.18639 15360 — 8 .19000 15488 — 6 ■19357 15616 — 4 .I97J2 15744 — 2 .20063 15872 4.20412 16000 +2 .20758 1 61 28 4 .21101 16256 16384 6 .21442 8 .21780 16512 10 4.22115 .22448 16640 12 16768 14 .22778 16896 16 .23106 17024 18 •23431 17152 20 4-23754 17280 22 .24075 17408 24 •24393 17536 26 .24709 17664 28 .25022 17792 30 4.25334 17920 32 •25643 18048 3i .25950 18176 36 .26255 18304 160 MEAN REFRACTION. Table 31 , a-3 o o 10 20 30 40 5° I o 10 20 30 40 50 3 o 10 20 30 40 50 Refraction. 0.-B 34 54-1 32 49.2 30 S2-3 29 3-5 27 22.7 25 49-8 24 24.6 23 6.7 21 55-6 20 50.9 1951-9 18 58.0 18 8.6 17 23.0 1640.7 16 0.9 15234 14 47-8 14 14.6 4_o 10 20 30 40 50 5 o 60 7 o 13437 13 15.0 12 48.3 12 23.7 12 0.7 "38-9 II 18.3 10 58.6 10 39.6 10 21.2 10 3-3 946.5 930-9 916.0 9 1-9 848.4 835-6 823-3 811.6 8 0.3 7 49-S 7 39-2 7 29.2 719.7 124.9 116.9 ioS.8 100.8 92.9 85.2 77-9 71. 1 64.7 59.0 53-9 49.4 45.6 42-3 39-8 37-S 3S-6 33-2 3°-9 28.7 26.7 24.6 23.0 21.8 20.6 19.7 19.0 1S.4 17-9 16.8 15.6 14.9 14.1 '3-5 12.8 12.3 11.7 ".3 10.8 J0.3 lO.O 9-5 7 O 10 20 30 40 50 10 20 30 40 50 Refraction. 719-7 7 10.5 7 1.7 653-3 645.1 637-2 629.6 9 o 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 6 22.3 615.2 6 8.4 6 1.8 5 55-4 5 49-3 5 43-3 5 37-6 5320 526.5 521.3 5 16.2 5 II-2 5 6.4 5 1-7 457.2 452-8 4 44-3 440.2 436-3 432-4 428.7 425-0 421.4 4 18.0 414.6 4 "-3 4 8.1 13 o I 4 4-9 10 20 30 40 SO 14 o 4 1.8 358.8 3 55-9 3 53-0 350-2 347-4 8.4 8.2 7-9 7.6 7-3 7-1 6.8 6.6 6.4 6.1 6.0 5-7 5-6 S-5 5-2 5-1 50 4.8 4-7 4-5 4-4 4.3 4.2 4.1 3-9 3-9 3-7 3-7 3.6 3.4 3-4 3.3 3-2 3-2 3-1 3.0 2.9 2.9 2.8 2.8 a-43 14 O 20 40 Refraction. 3 47-4 3 42-1 ^37-o IS o 20 40 17 o 20 40 20 40 19 o 20 40 20 40 20 40 20 40 23 o 20 40 24 o 332-1 327-4 322.9 318.6 314-5 310.5 6.6 3 2.9 259-3 255.8 252-5 2 49-3 246.1 243.L 2 40.2 237-3 234-5 231-9 2293 226.8 ^3.-3 2 21.9 2 19.6 217-4 15-2 213.0 2 10.9 2 8.9 20 40 25 o 20 40 26 o 20 40 27 o 20 40 28 o 7.0 S-i 3-2 2 1.4 '59-6 157.8 I 56.1 I 54-4 I 52.(! I 51.2 '49-7 I 48.2 5-3 S-i 4.9 4-7 4-5 4-3 4-1 4.0 3-9 3-7 3-6 3 5 3-3 3-2 3-2 3.0 2.9 2.9 2.8 2.6 2.6 2-5 2-5 2-4 2-3 2.2 2.2 2.2 2.1 2.0 '■9 1.9 1-9 1.8 1.8 \.i ■.7 1.7 1.6 1.6 1-5 l-S 28 o 20 40 29 o 20 40 30 o 20 40 31 o 20 40 32 O 20 40 33 o 20 40 34 o 20 40 35 20 40 36 o 20 40 37 o 20 40 38 20 39 o 20 40 40 o 20 40 41 o 20 40 42 o Refraction 48.2 46.7 45-3 43-8 42-4 41.0 39-7 38.4 37-1 35-8 34-5 33-3 32.1 30-9 29.8 28.7 27.6 26.5 254 24-3 23-3 22.3 21-3 20.3 19-3 18.3 17.4 16.5 15.6 14-7 118 12.9 12.0 11.2 10.3 9-5 7-9 7-1 5-5 4-7 4.0 i3 3 i2. 60 JS. Refraction. 64.0 61.8 59-7 57-7 5 5-7 53-8 51-9 i;o.2 46.7 45-1 43-5 41.9 40.4 38-9 37-5 36.1 26±. 33-3 32.0 30-7 194_ 28.2 26.9 25-7 24.5 23-3 22.2 21.0 18.8 17-7 16.6 15-5 14-5 13-4 12.3 1 1.2 10.2 9.1 8.1 4-1 2.2 2.1 2.0 2.0 1.9 1.9 1.7 1.8 1-7 1.6 1.6 1.6 l-S 1-5 1.4 1-4 1.4 1.4 1-3 1.3 1-3 1.2 1-3 1.2 E.O 4.0 4.1 Smithsonian Tables. 161 Table 32. FOR CONVERSION OF ARC INTO TIME. o h. m. h. m. h. m. h. m. h. in. h. m. / m. s. // s. 60 4 120 8 180 12 240 16 300 20 0.000 I 4 61 4 4 121 8 4 181 12 4 241 16 4 301 20 4 I 4 I 0.067 2 8 62 4 8 122 8 8 182 12 8 242 16 8 302 20 8 2 8 2 OI33 1 12 61 412 123 812 183 12 12 243 16 12 303 2012 3 12 3 0.200 4 16 64 416 124 8i6 184 12 16 244 16 16 304 20 16 4 16 4 0.267 5 020 65 420 125 820 185 12 20 245 1620 305 20 20 5 020 5 °-333 6 024 66 424 126 824 186 12 24 246 1624 306 2024 6 024 6 0.400 7 028 67 428 127 828 187 1228 247 1628 307 2028 7 028 7 0.467 8 032 68 432 128 832 188 1232 248 1632 308 20 32 8 032 8 0-533 9 10 II 036 69 436 129 836 189 1236 249 1636 309 2036 9 10 036 9 0.600 040 70 440 130 840 190 1240 250 1640 310 2040 040 10 0.667 044 71 444 131 844 191 1244 2SI 1644 31^ 2044 II 044 II °-733 12 048 72 448 132 848 192 12 48 2S2 1648 312 2048 12 048 12 0.800 n OS2 73 452 133 «52 ■93 1252 253 16 52 313 20 52 13 OS2 13 0.867 14 056 74 4 56 134 8s6 ■94 12 56 2S4 16 314 2056 ■4 056 14 0-933 15 I 75 5 135 Q 19fa ■3 255 17 315 21 15 I 15 1. 000 i6 I 4 76 5 4 136 9 4 196 ■3 4 256 17 4 316 21 4 16 I 4 16 1.067 17 I 8 77 5 » 137 9 » 197 ■3 « 257 17 « 3^7 21 8 17 I 8 17 ■•■33 i8 I 12 7« 512 i3« 912 198 13 12 2S8 17 12 3'« 21 12 18 I 12 18 1.200 iQ I 16 79 SI5 139 9 16 199 13 16 259 17 16 319 21 16 ■9 116 ■9 20 1.267 20 21 I 20 80 520 140 920 200 1320 260 17 20 320 21 20 20 I 20 1-333 I 24 81 524 141 924 201 1324 261 ■724 321 21 24 21 124 21 1.400 22 I 28 82 528 142 928 202 1328 262 1728 322 2128 22 128 22 1.467 ZS 132 »3 532 143 932 203 1332 263 ■732 323 21 32 23 132 23 1-533 24 13b 84 536 144 936 204 ■3 36 264 1736 324 21 36 24 136 24 25 I 40 Ufa 540 14fa 940 20fa 1340 265 1740 325 21 40 25 I 40 25 1.667 26 144 86 544 146 9 44 206 1344 266 ■7 44 326 2144 26 144 26 ■-733 27 148 »7 5 4« 147 948 207 1348 267 ■748 327 2148 27 148 27 1.800 28 I S2 88 5 52 148 952 208 ■3 52 268 17 S2 32S 21 S2 28 I S2 28 1.867 29 30 156 89 5 5^' 149 9 5t> 209 ■3 5'' 269 175& 329 330 33^ 21 56 29 ■56 29 ■-933 2 90 6 150 10 210 14 270 18 22 22 4 30 31 2 30 2.000 ^i 2 4 91 6 4 151 10 4 211 14 4 271 18 4 2 4 31 2.067 7,2 2 8 92 6 8 152 10 8 212 14 8 272 18 8 332 22 8 32 2 8 32 2-133 ^^ 2 12 93 612 153 10 12 213 14 12 273 18 12 333 22 12 33 2 12 33 2.200 34 216 94 616 154 10 16 214 14 16 274 18 16 334 22 16 ik 216 34 2.267 35 2 20 95 620 155 1020 21fa 1420 275 1820 335 22 20 2 20 35 2-333 ^6 2 24 96 624 i5fe 1024 216 1424 276 1824 336 22 24 36 224 36 2.400 37 228 97 628 ■57 1028 217 1428 277 1828 337 2228 37 228 37 2.467 38 232 98 632 iS8 1032 218 1432 278 1832 33« 2232 3« 232 38 2-533 39 40 236 99 636 159 1036 219 1436 279 183b 339 340 341 2236 39 236 39 240 100 lOI 640 160 1040 220 1440 280 1840 2240 40 240 40 2.667 41 244 644 161 1044 221 1444 281 1844 2244 41 244 41 2-733 42 248 102 648 162 1048 222 1448 282 1848 342 2248 42 248 42 2.800 43 252 103 652 163 10 52 223 ■452 283 1852 343 22 S2 43 2 C,2 43 2.867 44 2 56 104 656 164 1056 224 1456 284 18 s6 344 22 56 44 2S6 44 2-933 45 3 105 7 165 II 22fa ■5 285 19 345 23 45 3 ° 45 3.000 46 3 4 106 7 4 166 " ? 226 ■5 4 286 19 4 346 23 4 46 3 4 46 3.067 47 3 » 107 7 t> 167 II 8 227 ■5 a 287 ig 8 347 23 8 47 3 8 47 3133 48 312 108 712 168 II 12 228 ■5 12 288 19 12 348 2312 48 312 48 3.200 49 31b 109 7 16 169 n 16 229 15 16 289 19 16 349 2316 49 316 49 3.267 50 320 110 720 170 n 20 230 15 20 290 1920 350 351 23 20 2324 50 320 50 3-333 51 324 in 724 171 II 24 231 1524 291 1924 5^ 324 51 3.400 52 328 112 728 172 11 28 232 1528 292 1928 352 2328 52 328 52 3-467 53 iSf, 113 ^32 ■73 1132 233 ■532 293 1932 353 23 32 53 332 53 3-533 J';* 3 3t' 114 736 ■74 II 36 234 1536 294 1936 354 2336 54 336 ii 3.600 fab 340 Ufa 740 IVfa II 40 23fa 1540 29fa ■940 355 2340 55 340 3.667 5b 3 44 lib 744 17b 1144 236 1544 296 ■9 44 356 2344 56 344 56 3-733 H 348 ir/ 748 ■77 II 48 237 154a 297 1948 357 2348 57 348 ■57 3.800 5» 352 118 752 178 ■■52 238 1552 298 1952 35« 2352 58 352 58 3.867 59 3 5f ny 7 5*' ■79 180 II 56 239 ■5 50 299 19 Sb 359 360 23 s6 59 356 59 60 3-933 60 4 120 8 12 240 16 300 20 24 60 4 4.000 ^^^ Smithsonian Tables. 162 FOR CONVERSION OF TIME INTO ARC. Table 33. Hours of Time into Arc. Time. Arc. Time. Arc. Time. Arc. Time. Arc. Time. Arc. Time. Arc. hrs. hrs. hrs. hrs. hrs. hrs. 1 IS 5 75 9 135 13 195 17 255 21 315 2 3° 6 90 10 150 14 210 18 270 22 330 3 4S 7 105 11 165 15 225 19 285 23 34S 4 60 8 120 12 180 16 240 20 300 24 360 IVIinutes of Time into Arc. Seconds of Time into Arc. m. / m. ' m. f s. / // s. f // s. / ft 1 015 21 S15 41 10 15 1 015 21 515 41 10 15 2 030 22 5 3° 42 10 30 2 030 22 530 42 1030 3 4S 23 5 45 43 1045 3 045 23 5 45 43 10 45 4 I 24 6 44 II 4 I 24 6 44 II S I IS 25 615 45 II IS 5 I IS 25 615 45 II 15 6 130 26 6 30 46 II 30 6 130 26 6 30 46 II 30 7 145 27 645 47 II 45 7 145 '^l 645 47 "45 8 2 28 7 48 12 8 2 28 7 48 12 9 215 29 7 IS 49 12 IS 9 215 29 7 IS 49 12 IS 10 230 30 730 50 12 30 10 230 30 7 3° 50 12 30 n 2 45 31 7 45 S' 1245 II ^45 31 ^45 SI 12 45 12 3 32 8 S2 13 12 3 32 8 52 13 13 3 IS 33 815 53 13 15 13 3 15 33 **i5 S3 13 15 14 330 34 830 54 1330 14 3 3° 34 830 54 1330 IS 3 4S 35 845 55 1345 15 3 45 35 845 55 1345 i6 4 36 9 14 i6 4 ° 3" 9 ° Sb 14 17 4 IS 37 915 S? 14 15 17 415 37 9 '5 K 1415 i8 4 3° 3« 930 S« 1430 18 430 3** 9 3° s*» 1430 19 4 45 39 9 45 59 14 45 19 4 45 39 9 45 59 1445 20 S 40 10 60 15 ° 20 5 40 10 60 IS 0. IHundr edtlis of a Sec ond of Time into Arc " Hundredths of a Sec- .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 ond of Time. // // ff // // „ // // // ft 0.00 0.00 0.15 0.30 0.4s 0.60 0.75 0.90 1.05 1.20 ^■l\ .lO 1.50 i.6s 1.80 1-95 2.10 2.25 2.40 2-55 2.70 2.85 .20 3.00 3-15 3-3° 3-45 3-to 3-75 3-90 4.05 4.20 4-35 •30 4.50 4.65 4.80 4-95 5.10 S-25 5-4° 5-55 5.70 5.85 .40 6.00 6.1S 6.30 6.45 6.60 6.75 6.90 7-05 7.20 7-35 0.50 7-50 7.6^ 7.80 7-95 8.10 8.25 8.40 8.55 8.70 8.8s .60 9.00 9.15 9-3° 9-45 9.60 9-75 9.90 10.05 10.20 ^^M .70 10.50 10.65 10.80 10.95 II. 10 11.25 11.40 11-55 11.70 11.05 .80 12.00 12.15 12.30 12.45 12.60 12.75 12.90 I3-°S 13.20 '^■^5 .90 13-50 13-65 13.80 13-95 14.10 14.25 14.40 14-55 14.70 14.85 Smithsonian Tables. 163 Table 34. CONVERSION OF MEAN TIME INTO SIDEREAL TIME. s m m I m 2 m 3 h m s 000 h m s 6 515 h m s 12 10 29 h m s 18 IS 44 s 0.00 in s s 0.50 m s 3 3 I 2 3 4 1 9 065 12 10 18 16 24 21- 30 26 03631 04237 048 42 54 47 6 II 20 61725 62330 62936 641 46 64751 65356 702 12 1634 12 22 40 12 28 45 12 34 50 12 40 55 1247 1 12 S3 6 12 59 11 13 516 18 21 49 18 27 54 18 33 59 18 40 5 18 46 10 18 52 15 18 58 20 19 4 26 19 10 31 O.OI 0.02 0.03 0.04 0.0s 0.06 0.07 0.08 O.OQ 4 7 II 018 22 26 29 033 0.51 0.52 0-53 0.54 0.5s 0.56 0.58 0-59 3 6 310 314 317 321 ^2^ 332 3 35 lO I 52 7 6 7 13 II 21 19 16 36 O.IO 037 0.60 3 39 II 12 13 U IS i 19 I 658 I 13 3 I 19 8 I 2513 131 19 I 37 24 14329 14934 I 55 40 7 12 12 7 18 17 72423 73028 73633 74238 74844 7 54 49 8 054 13 17 27 13 23 32 13 29 37 13 35 42 13 41 48 13 47 53 13 53 58 14 3 14 6 9 19 22 41 19 28 47 19 34 52 19 40 57 1947 2 19 53 7 19 59 13 zo 5 i8 20 I I 23 O.I I 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 40 044 047 051 058 1 2 I 6 1 9 o.6i 0.62 0.63 0.64 0.6s 0.66 0.67 0.68 0.69 3 50 3 54 3 57 4 I 412 20 2 I 45 8 659 14 12 14 20 17 28 0.20 1 13 0.70 4 16 21 22 23 24 2I 27 28 29 2 7 so 21355 2 20 I 2 26 6 232 n 238 16 24422 25027 2 56 32 813 5 8 19 10 82515 8 31 20 83726 84331 84936 85541 Q I 47 14 18 19 14 24 24 14 30 30 14 36 35 14 42 40 14 48 45 14 54 51 15 056 IS 7 I 20 23 34 20 29 39 20 35 44 20 41 49 20 47 5S 20 54 21 5 21 6 10 21 T2 16 0.21 0.22 0.23 0.24 0.25 0.26 0.28 0.29 I 17 I 20 I 24 1 28 131 13s 1 39 142 I 46 0.71 0.72 0-73 0.74 0.7s 0.76 0.77 0.78 0.79 419 423 427 430 4 34 438 441 4 45 4 49 30 3 237 9 7 52 11; 13 6 21 18 21 0.30 ISO 0.80 452 31 32 33 34 i 39 3 843 3 '448 32053 32658 3 33 3 3 39 9 34514 351 19 3 57 24 9 '3 57 9 20 2 926 8 93213 93818 94423 9 50 28 95634 10 239 15 1912 152517 1531 22 15 37 27 154333 154938 15.5543 16 I 48 16 7 54 21 24 26 21 30 31 21 36 37 21 42 42 21 48 47 21 54 52 22 58 22 7 3 22 13 8 0.31 0.32 0-33 0-34 0.36 0-37 0.38 0.39 1 53 1 57 2 I 2 4 2 8 2 II 215 2 19 2 22 0.8 1 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 456 4 59 5 3 5 7 5 10 514 5 '8 521 525 40 4 330 10 8 44 16 13 59 22 19 13 0.40 226 0.90 529 41 42 43 44 45 46 :^ 49 4 9 35 41540 42145 427 SI 43356 440 I 446 6 45212 45817 5 422 51027 51633 52238 52843 53448 54054 54659 5 53 4 5 59 9 10 14 49 10 20 55 10 27 1033 5 10 39 10 10 45 16 10 51 21 10 57 26 11 331 16 20 4 16 26 9 16 32 14 16 38 20 164425 16 so 30 16 56 35 17 241 17 846 22 25 19 22 31 24 22 37 29 22 43 34 22 49 39 22 55 45 23 I 50 23 7 55 2314 0.41 0.42 0-43 0.44 0.45 0.46 0.47 0.48 0.49 230 233 237 241 244 248 252 25s 259 0.91 0.92 0-93 0.94 0.9s 0.96 0.97 0.98 0.99 5 32 536 5 40 5 43 5 47 551 SS4 558 2 50 11 9 37 17 '4 51 23 20 6 0.50 3 3 1. 00 6 5 SI 52 53 54 i 59 II 1542 II 21 47 II 27 52 11 3358 II 40 3 II 46 8 115213 11 58 19 12 424 17 20 56 1727 2 1733 7 17 39 12 17 45 17 17 51 23 17 57 28 '§ 3 33 18 938 23 26 1 1 23 32 16 23 38 21 23 44 27 23 50 32 23 56 37 24 242 24 848 24 14 S3 Example : Let the given mean time be 14' 57" 32'.s6. The table gives first for 14'' 54"" 51" 2" 27' then for 2 41 0.44 2 27.44 The sum 14' W" 12".i:6 -1-2" ■il'.AA I c' o^rf 60 6 515 12 10 29 181544 24 20 58 is the required s idereal tii .. Smithsonian Tables. 164 Table 35. CONVERSION OF SIDEREAL TIME INTO MEAN TIME. m m m m s I 2 3 h m s h m s h m s h m s s m s s m s o 000 6 615 12 12 29 18 1844 0.00 0.50 3 3 I 066 6 12 21 12 18 35 18 24 50 0.0 1 4 0.51 3 7 z 12 12 618 27 12 24 42 18 30 56 0.02 7 0.52 310 3 18 19 62433 12 30 48 1837 2 0.03 II 0-53 3 '4 4 02425 6 30 40 12 36 54 1843 9 0.04 15 0.54 318 S 03031 6 36 46 1243 18 49 15 0.05 18 0.55 321 6 03637 ^'^oS? 1249 7 185521 0.06 22 0.56 32s 7 04244 648 58 12 55 13 19 I 27 0.07 26 0.57 329 8 48 SO 655 4 13 I 19 19 7 34 0.08 29 0.58 332 9 05456 7 I II 13 725 19 13 40 0.09 033 0.59 336 10 112 7 7 17 13 13 31 19 ig 46 O.IO 037 0.60 340 n I 7 9 7 1323 13 19 38 19 25 52 O.I I 40 0.61 3 43 12 I 13 IS 7 1929 13 25 44 19 31 59 0.12 044 0.62 3 47 13 I 19 21 72536 13 31 50 1938 5 0.13 048 0.63 351 14 I 2527 73142 13 37 56 19 44 n 0.14 051 0.64 3 54 15 131 34 73748 1344 3 19 50 17 0.1 5 055 0.65 358 16 1 3740 7 43 54 1350 9 19 56 23 0.16 059 0.66 4 2 17 14346 7 50 I 13 56 IS 20 230 0.17 I 2 0.67 4 5 . 18 14952 756 7 14 221 20 836 0.18 I 6 0.68 4 9 19 I 55 55 8 2 13 14 828 20 14 42 0.19 I 10 0.69 413 20 2 2 5 8 8 19 14 14 34 20 20 48 0.20 I 13 0.70 4 16 21 2 8 II 8 1426 14 20 40 20 26 55 0.21 I 17 0.71 4 20 22 2 14 17 82032 14 26 46 2033 I 0.22 I 21 0.72 424 23 2 20 24 82638 14 32 53 2039 7 0.23 124 0.73 427 24 22630 83244 14 38 59 20 45 13 0.24 1 28 0.74 431 25 23236 83851 1445 5 20 51 20 0.25 I 32 0.75 ^^ 26 23842 84457 14 51 II 20 57 26 0.26 135 0.76 438 27 24449 851 3 14 57 18 21 332 0.27 I 39 0.77 442 28 2 5055 857 9 IS 324 21 938 0.28 143 0.78 446 29 2 S7 I 9 316 15 930 21 1545 0.29 I 46 0.79 4 49 .30 3 3 7 9 922 15 15 36 21 21 51 0.30 150 0.80 4 53 31 3 9 14 91528 15 21 43 21 27 57 0.31 154 0.81 4 57 32 31520 9zt 34 152749 2134 3 0.32 157 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 5 33 321 26 92741 IS 33 55 21 40 10 0.33 2 I 'st 34 32732 9 33 47 1540 I 21 46 16 0.34 2 5 2 8 35 33338 9 39 53 1546 8 21 52 22 0-3S 5 II 36 3 39 45 9 45 59 15 52 14 21 58 28 0.36 2 12 2 16 515 37 3 45 51 952 5 15 58 20 22 4 35 0.37 5 19 38 3 51 57 9 58 12 16 4 26 22 10 41 0.38 2 19 522 526 39 358 3 10 4 18 16 10 33 22 16 47 0-39 223 40 4 4 10 10 10 24 16 16 39 22 22 53 0.40 226 0.90 530 41 4 10 16 10 16 30 16 22 45 22 29 0.41 230 0.91 5 33 42 4 16 22 10 22 37 16 28 51 2235 6 0.42 234 0.92 5 37 43 42228 10 28 43 16 34 57 22 41 12 0.43 237 0-93 541 44 42835 10 34 49 16 41 4 22 47 18 0.44 241 0.94 544 548 43 43441 10 40 55 16 47 10 22 53 24 0.45 0.46 245 0-95 0.96 46 44047 1047 2 16 53 16 22 59 31 2 48 5 52 47 48 44653 4 53 1053 8 10 59 14 16 59 22 17 529 23 5 37 23 II 43 0.47 0.48 252 2 56 oip 5 55 5 59 6 3 49 4 59 6 II 5 20 17 II 35 23 17 49 0.49 259 0.99 50 5 5 12 II II 27 17 17 41 23 23 56 0.50 3 3 1. 00 6 6 51 5 II i& II 17 33 17 23 47 2330 2 52 5 17 25 II 2339 17 29 54 2336 8 Ex: imple : Gi ven is'c "o". 53 52331 II 2945 1736 1742 6 23 42 14 23 48 21 Th i table giv :s 54 52937 II 35 52 first f or 14" 57" or 2 i8» 2° 27' 55 5 35 43 II 41 58 17 48 12 23 54 27 then i 42 0.44 56 59 541 50 54756 5 54 2 608 6 615 II 48 4 11 54 10 12 17 12 623 17 54 19 18 025 18 631 18 12 V 24 033 24 639 24 12 46 24 18 52 Th 1 5' O" ( is the 15 5 differenc y — 2°27'. required i 2 . e 44=14" nean tims 27.44 57°32'-S6 60 12 1229 18 18 44 24 24 58 Smithsonian Tables. x6S Table 36. LENGTH OF ONE DEGREE OF THE MERIDIAN AT DIFFERENT LATITUDES. [Derivation of table explained on pp. xlvi-xlviii.] Latitude. 0° I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 i6 17 i8 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 ^2 38 39 40 41 42 43 44 45 Metres. 110568.5 1 10568.8 1 10569.8 110571.5 110573.9 1 10577.0 1 10580.7 1 1058 5.1 1 10590.2 1 1 0595.9 1 10602.3 110609.3 110617.0 1 10625.3 1 10634.2 II 0643.7 1 10653.8 1 10664.5 1 10675.7 I 10687.5 1 10699.9 1 107 1 2.8 1 10726.2 1 1 0740. 1 110754.4 1 10769.2 110784,5 1 10800.2 110816.3 1 10832.8 110849.7 1 10866.9 1 10884.4 1 10902.3 1 10920.4 1 10938.8 110957.4 1 10976.3 110995.3 111014.5 " 1033.9 1 1 1053.4 IH073.0 1 1 1092.6 111112.4 111132.1 Statute Miles. 68.703 "-68.704 68.705 68.706 68.707 68.709 68.711 68.714 68.717 68.721 68.725 68.729 68.734 68.739 68.745 68.751 68.757 68.763 68.770 68.778 68.786 68.794 68.802 68.8ro 68.819 68.829 68.838 68.848 68.858 68.868 68.879 68.889 68.900 68.911 68.923 68.934 68.946 68.957 68.969 68.981 68.993 69.005 69.017 69.029 69.042 69.054 Geographic Miles. i' of the Eq 59-594 59-594 59-595 59-596 59-597 59-598 59.600 59.603 59.606 59.609 59.612 59.616 J9.620 59.625 59.629 59-634 59.640 S9.646 59-652 59.658 59-665 59.672 59679 59.686 59.694 59.702 59-710 59-719 59-727 59-736 59-745 59-755 59.764 59-774 59.784 59-794 59.804 59.814 59.824 59-834 59-845 59-855 59.866 59-876 59.887 59.898 Latitude. 45° 46 47 48 49 50 51 52 S3 54 55 56 57 58 59 60 61 62 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 f3 84 85 86 87 88 89 90 Metres. 111132.1 111151.9 111171.6 111191.3 111210.9 111230.5 111249.9 1 1 1269.2 11 1 288.3 1 1 1307.3 1 1 1326.0 111344.5 II 1362.7 1 1 1380.7 1 1 1398.4 111415.7 1 1 1432.7 1 1 1449.4 111465.7 111481.5 1 11497.0 111512.0 1 1 1526.5 I "540.5 111554.1 111567.1 II 1579-7 111591.6 I n 603.0 111613.9 H1624.1 111633.8 1 1 1642.8 111651.2 1 1 1659.0 11 1666.2 111672.6 111678.5 111683.6 I1I688.1 111691.9 111695.0 n 1697.4 111699.2 11 1 700.2 1 1 1700.6 Statute Miles. 69.054 69.067 69.079 69.091 69.103 69.1 IS 69.127 69.139 69-151 69.163 69.175 69.186 69.198 69.209 69.220 69.230 69.241 69.251 69.261 69.271 69.281 69.290 69.299 69.308 69.316 69.324 69.332 69.340 69-347 69-354 69.360 69.366 69.372 69-377 69.382 69.386 69.390 69-394 69397 69.400 69.402 69.404 69.405 69.407 69.407 69.407 Geographic Miles. i' of the Eq. 59.898 59.908 59919 59.929 59.940 S9-9SJ 59.961 59-972 59.982 59-992 60.002 60.012 6o.022 60.032 60.041 60.051 60.060 60.069 60.077 60.086 60.094 60.102 60.110 60.118 60.125 60.132 60.139 60.145 60.151 60.157 60.163 60.168 60.173 60.177 60.182 60.186 60.189 60.192 60.195 60.197 60.199 60.201 60.202 60.203 60.204 60.204 Smithsonian Tables. 166 Table 37. LENGTH OF ONE DEGREE OF THE PARALLEL AT DIFFERENT LATITUDES. [Derivation of table explained on p. xlix.] Statute Geographic Statute Geographic Latitude. Metres. Miles. Miles. i' of the Eq. Latitude. Metres. Miles. Miles. i' of the Eq. 0"= 111321.9 69.171 60.000 45° 78850.0 48.99s 42.498 I II 1305.2 69.162 59.991 46 77466.5 48-135 41-753 2 111254.6 69.130 59.964 47 76059-2 47.261 40.994 3 1H170.4 69.078 59.918 59-855 48 74628.5 46.372 40.223 4 1 1 1052.6 69.005 49 73174-9 45-469 39-440 5 110901.2 68.911 59-773 50 71698.9 44-552 38.644 6 1 107 16.2 68.796 59-673 51 70200.8 43.621 37-837 7 1 10497.7 68.660 59-556 52 68681.1 42.676 37.018 8 1 10245.8 68.503 59.420 S3 67140.3 41.719 36.187 9 109960.5 68.326 59.266 54 65578.8 40.749 35-346 10 109641.9 68.128 59-095 55 63997.1 39-766 34-493 II 109290.1 67.909 58.905 56 62395.7 38-771 33-630 12 108905.2 67.670 58.697 57 60775.1 37-764 32-757 13 108487.3 67.411 58.472 58 59135-7 36-745 31-873 H 108036.6 67.131 58.229 59 57478-1 35-715 30-979 15 I07SS3-I 66.830 57.969 60 55802.8 34-674 3ao76 i6 107037.0 66.510 57.690- 61 541 10.2 33.622 29.164 '7 106488.S 66.169 57-395 62 52400.9 32.560 28.243 i8 105907.7 65.808 57.082 f3 50675-4 31.488 27-313 19 105294.7 65.427 56.751 64 48934-3 30.406 26-374 20 104649.8 65.026 56.404 65 47178.0 29-315 25.428 21 103973.2 64.606 56.039 66 45407.1 28.215 24-473 22 103265.0 64.166 55-657 67 43622.2 27.106 23.511 23 102525.4 63.706 55-259 68 41823.8 25.988 22.542 24 101754.6 63.227 54-843 69 40012.4 24.862 21.566 25 100953.0 62.729 54.411 70 38188.6 23.729 20.583 26 1 00 1 20.6 62.212 53'963 71 36353-0 22.589 '§■593 27 99257.8 61.676 53-498 72 34506.2 21.441 18.598 28 98364.8 61. 121 53-0I6 73 32648.6 20.287 17-597 29 97441.9 60.548 52.519 74 30780.9 19.126 16-590 30 96489.3 59-956 52.006 75 28903.6 17.960 15-578 31 9SS°7-3 59-345 51.476 76 27017.4 16.788 14.562 32 94496.2 58-717 50-931 '^l 25122.8 1 5.61 1 13-541 33 93456-3 58.071 50-371 78 23220.4 14.428 12.51S 11.486 34 92387.9 57-407 49-795 79 21310.8 13.242 35 91 291. 3 56726 49.204 80 19394.6 12.051 10.453 36 goi66.i 56.027 48.598 81 17472-4 10.857 9-417 8-378 37 89014.8 55-3" 47-977 82 15544-7 f^^i 38 87835.6 54-578 47-341 f3 13612.2 8.458 7-337 6.293 39 86629.6 -53-829 46.691 84 11675-5 7-255 40 85397.0 53-063 46.027 85 9735-1 6.049 5-247 41 84138.4 52.281 45-349 86 7791-7 4.841 4.200 42 82854.0 51-483 44.656 87 5845-9 3-632 3-151 43 81544.2 50.669 43-950 88 3898-3 2.422 2.101 44 80209.4 49.840 43-231 89 1949.4 1. 211 1. 05 1 45 78850.0 48-995 42.498 90 0.0 0.000 0.000 Smithsonian Tables. 167 Table 38. INTERCONVERSION OF NAUTICAL AND STATUTE MILES. 1 nautical mile* =6080.37 feet Nautical Miles. Statute Miles. Statute Miles. Nautical Miles. 1 2 3 4 5 6 I 9 1.1516 2.3031 4.6062 S-7S78 6.9093 8.0609 9.2124 10.3640 1 2 3 4 5 6 I 9 0.8684 1.7368 2.6052 34736 4.3420 5.2104 6.0788 6.9472 7.815s Smithsonian Tables. * As defined by the United States Coast and Geodetic Survey. Table 39. CONTINENTAL MEASURES OF LENGTH WITH THEIR METRIC AND ENGLISH EQUIVALENTS. The asterisk (*) indicates that the measure is obsolete or seldom used. Measure. El, Netherlands Fathom, Swedish = 6 feet Foot, Austrian,* old French * Russian Rheinlandisch or Rhenish (Prussia, Denmark, Norway)* Swedish* Spanish *=i vara *Klafter, Wiener (Vienna) *Line, old French = -j^ foot Mile, Austrian post* =24000 feet. . . . German sea Swedish ^36000 feet Norwegian = 36000 feet Netherlands (mijl) Prussian (law of 1868) Danish Palm, Netherlands *Rode, Danish *kuthe, Prussian, Norwegian Sagene, Russian *Toise, old French =6 feet *Vara, Spanish Mexican Werst, or versta, Russian = 500 sagene Metric Equivalent. I metre. 1.7814 " 0.31608 " 0.32484 " 0.30480 " 0.3138s " 0.2969 " 0.2786 " 1.89648 " 0.22558 cm. 7.58594 km. 1.852 10.69 11.2986 I 7.500 7.5324 0.1 3.7662 3.7662 2.1336 1.9490 °-83S9 0.8 ^8o 1.0668 metre. km. English Equivalent. 3.2808 feet. 5.8445 " 1.0370 " 1.0657 " I « 1.0297 " 0.9741 " 0.9140 " 6.2221 " 0.0888 inch. 4.714 statute miles. 1. 1508 " 6.642 " 7.02 " " 0.6214 " " 4.660 " « 4.6804 " 0.3281 feet. 12.356 " 12.356 " 7 6.3943 " 2.7424 " 2.7293 " 3500 " Smithsonian Tables. 168 Table 40. ACCELERATION (g) OF GRAVITY ON SURFACE OF EARTH AND DERIVED FUNCTIONS. ^^9.77989-1-0.05221 sin' ^ := 9,80599—0.02610 COS 2^ metres.* ^= geographical latitude.

    °S4 10g^;«- '^: Metres. Mitres. 0° 9.7798 0-99033 8.70864-10 0.64568 0.99090 S .7803 035 862 569 09s 10 .7814 040 857 572 106 IS •7834 049 848 576 127 20 •7859 060 837 S82 152 25 •7893 075 822 589 186 30 .7929 091 806 597 222 35 .7969 109 788 606 264 40 .8014 129 768 616 309 45 .8060 149 748 626 355 5° .8105 169 728 636 401 55 .8150 189 708 646 447 60 .8191 207 690 65s 488 65 .8227 223 674 663 525 70 .8261 238 659 670 559 75 .8286 249 648 676 584 80 .8306 258 639 680 605 85 •8317 263 634 683 616 90 .8322 26s 632 684 621 Smithsonian Tables. * From The Solar Parallax and its Related Constants, by Wm. Harkness, Professor of Mathematics, U. S. N. ; Washington : Government Printing OflBce, 1891. t Tliis is length of seconds pendulum. 169 Table 41 . LINEAR EXPANSIONS OF PRINCIPAL METALS, IN MICRONS PER METRE (OR MILLIONTHS PER UNIT LENGTH). Name of metal. Aluminum . . Brass .... Copper . . . Glass .... Gold .... Iron, cast . . . Iron, wrought Lead .... Platinum . . . Platinum-iridium i SUver .... Steel, hard . . Steel, soft . . . Tin Zinc Expansion per degree C. 20 19 17 9 IS II 12 28 19 12 II 19 29 Expansion per degree F. II. I 10.S 9.4 6.1 6.7 iS-S 4.8 IO.S 6.1 10.S 16.1 Smithsonian Tables. > Of Intematioiial Prototype Metres. Table 42. FRACTIONAL CHANCE IN A NUMBER CORRESPONDING TO A CHANGE IN ITS LOGARITHM. Computed from the formula, AiV _ Alogjy N ~ II. ' II = modulus of commou logarithms = 0.43429448. For AlogiV = I unit in AJ\r N For AlogiV = 4 units in AA^ N (in round numbers) 4th place 5th " 6th " 7th « 4th place Sth " 6th " 7th " nfW Iftlot loolinnr 4S4384C Smithsonian Tables. 170 APPENDIX. CONSTANTS. Numerical Constants. Base of natural (Napierian) logarithms, Log e, modulus of common logarithms, Circumference of circle in degrees, " " " in minutes, " " " in seconds, Circumference of circle, diameter unity. Number. Logarithm. 2* = 6.2831853 0.7981799 -^ = 1.0471976 0.0200286 1= 0.3183099 9.5028501 - -10 ir2 = 9.8696044 0.9942997 Number. = e =2.7182818 = A* = 0434294s = 360 = 21600 = 1296000 = If =3.14159265 l/ifi = 0.1013212 Vt = 17724539 -ri = 0.5641896 V IT The arc of a circle equal to its radius is in degrees, p° = i8o/w in minutes, p = 60 p° in seconds, p" = 60 p' For a circle of unit radius, the arc of 1° = i/p° arc of i' = i/p' arc (or sine) of i"= i /p" V7= ■■ I.4I42I36 ■■ 1.7320508 Logarithm. 0.4342945 9-6377843 — 10 2.5563025 4-3344538 6. n 26050 0.4971499 9.0057003 — 10 0-2485749 9.7514251 — 10 0.1505150 0.2385607 57.29578° 1.7581226 3437-7468' 3-S362739 : 206264.8" 5.3144251 = 0.0174533 8.2418774 — 10 - 0.0002909 6.4637261 — 10 = 0.00000485 4.6855749 — 10 Geodetical Constants. Dimensions of the earth (Clarke's spheroid, 1866) and derived quantities. Equatorial semi-axis in feet, in mUes, Polar semi-axis in feet, in miles, (Eccentricity)^ =^^^ Flattening = 2^:ii = a = 20926062. = a= 3963.3 = i = 208551 21. = * = 3949-8 ^ = 0.00676866 7.3206875 3.5980536 7.3192127 3.5965788 7-8305030- =/= 1/294.9784 7-5302098 — 10 = 24859.76 miles. = 24901.96 " = 196940400 square miles. = 5.576± 0.016. = 2.56 ±0.16. Perimeter of meridian ellipse. Circumference of equator. Area of earth's surface, Mean density of the earth (Harkness) Surface density " " " Acceleration of gravity (Harkness) : g (cm. per second) = 980.60 (i — 0.002662 cos 2^) for latitude ^ and sea level. g, at equator = 977.99 ; g, at Washington = 980.07 ; g, at Paris = 980.94 j g, at poles = 983.21 ; g, at Greenwich = 981.17. Length of the seconds pendulum (Harkness) : / = 39.01 2540 -|- 0.208268 sin^ I/) inches = 0.990910 + 0.005290 sin^ (p metres. Smithsonian Tables. 171 APPENDIX. CONSTANTS. -Continued. Astronomical Constants (Harkness). Sidereal year = 365.256 357 8 mean solar days. Sidereal day = 23A ^Qi" 4.1100 mean solar time. Mean solar day = 24* yn 56.^546 sidereal time. Mean distance of the earth from the sun = 92 800 oco miles. Physical Constants. Velocity of light (Harkness) = 186 337 miles per second = 299 878 km. per second. Velocity of sound through dry air = 1090 ^/I + 0.00367 t° C. feet per second. Weight of distilled water, free from air, barometer 30 inches : Weight in grains. Weight in grammes. Volume. 62° F. 4O C. 6i° F. 4O C. I cubic inch (determination of 1890) 252.286 252.568 16.3479 16.3662 I cubic centimetre (1890) 15-3953 'S4'2S 0.9976 0.9987 I cubic foot (1890) at 62° F. 62.2786 lbs. A standard atmosphere is the pressure of a vertical column of pure mercury whose height is 760 mm. and temperature 0° C, under standard gravity at latitude 45° and at sea level. I standard atmosphere = 1033 grammes per sq. cm. = 14.7 pounds per sq. inch. Pressure of mercurial column i inch high = 34.5 grammes per sq. cm. = 0.491 pounds per sq. inch. Weight of dry air (containing 0.0004 of i's weight of carbonic acid) : I cubic centimetre at temperature 32° F. and pressure 760 mm. and under the standard value of gravity weighs 0.001 293 05 gramme. Density of mercury at 0° C. (compared with water of maximum density under atmos- pheric pressure) = 13.5956. Freezing point of mercury = — 38.°5 C. (Regnault, 1862.) Coefficient of expansion of air (at const, pressure of 76o»"«) for 1° C. (do.) : 0.003670. Coefficient of expansion of mercury for Centigrade temperatures (Broch) : A = Aq (i — 0.000 181 792 t — 0.000000000 175 fl — .000000000035 llfi '")• Coefficient of linear expansion of brass for 1° C, = 0.000 0174 to 0.000 0190. Coefficient of cubical expansion of glass for 1° C, y = 0.000 021 to 0.000 028. Ordinary glass (Recknagel) : at 10° C, 7 = 0.000 0255 ; at 100°, 7 = 0.000 0276. Specific heat of dry air compared with an equal weight of water : at constant pressure, £p = 0.2374 (from 0° to 100° C, Regnault). at constant volume, A» = 0.1689. Ratio of the two specific heats of air (Rontgen) : ^p /Kv = 1.4053. Thermal conductivity of air (Graetz) : k = 0.000 0484 (i + 0.001 85 f, C.) ^^'"""' cm. sec. [The quantity of heat that passes in unit time through unit area of a plate of unit thickness, when its opposite faces differ in temperature by one degree.] Latent heat of liquefaction of ice (Bunsen) = 80.025 mass degrees, C. Latent heat of vaporization of water = 606.5 — °'695 '° C. Absolute zero of temperature (Thomson, Heat, Encyc. Brit.) : — 273.°o C. = 459.°4 F. Mechanical equivalent of heat : * I pound-degree, F. (the British thermal unit) = about 778 foot-pounds. I pound-degree, C. = 1400 foot-pounds. 1 calorie or kilogramme-degree, C. = 3087 foot-pounds = 426.8 kilogram- metres = 4187 joules (for g — 981 cm.). Smithsonian Tables. * Based on Prof. Rowland^s determinations. (Proc. A m. Acad, Arts and ScU^ 1880.) 172 APPENDIX. SYNOPTIC CONVERSION OF ENGLISH AND METRIC UNITS. English to Metric. Units of length. Matric equivalents. I inch. I foot. I yard. I mile. Units of area. I square inch. I square foot. I square yard. I acre. I square mile. 41 » Units of volume. 1 cubic inch. I cubic foot. I cubic yard. Units of capacity. I gallon (U. S.) = 231 cubic inches. I quart (U. S.). I Imperial gallon (British^. 277.463 cubic inches (i8go). I bushel (U. S.) = 2150.42 cubic inches. I bushel (British). centimetres, metre. 2.54000 0.304801 0.914402 " 1.60935 kilometres. 6.45163 929.034 0.8361 31 0.404687 2.59000 259.000 16.3872 0.028317 0.764559 64.7990 0-453593 28.3496 3i-'035 1. 01 605 0.907186 square centimetres. square metre. hectares. square kilometres. hectares. cubic centimetres, cubic metres or steres. cubic metres or steres. 3.78544 litres. 0.94636 litres. 4.54683 litres. 35.2393 litres. 36.3477 litres. milligrammes. kilogrammes. grammes. grammes. tonnes. tonnes. Logarithms. 0.404 83s 9.484016 — 10 9.961 137 — 10 0.206 650 0.809 669 2.968 032 9.922 274 — 10 9.607 1 20 — 10 0.413300 2.413 300 1. 214 504 8.452 047 — 10 9.883411 — 10 0.578 u6 9.976056 — 10 0.657 709 1.547027 1.560477 i.8n 568 9.656 666 — 10 1.452 546 1.492810 0.006 914 9.957696 — 10 Units of mass. I grain. I pound avoirdupois. I ounce avoirdupois. I ounce troy. I ton ^2240 lbs.). I ton (2000 lbs.). Units of velocity. I foot per sec. (0.6818 miles per hr.) = 0.30480 metres per sec. = 1.0973 km. per hr. I mile per hr. (1.4667 feet per sec.) = 0.44704 metres per sec. = 1.6093 !""• P^"^ hr. Units of force. I poundal. Weight of I grain (for g = 981 cm.). Weight of I pound av. (for^= 981 cm.). 13825.5 dynes. 63.57 dynes. 4.45 X 10' dynes. 4.140 682 1.803 237 5-648 335 Units of stress — in gravitation measure. I pound per square inch = 70.307 grammes per sq. centimetre. I pound per square foot = 4.8824 kilogrammes per sq. metre. Units of work- 1 foot-poundal. -In absolute measure. 421 403 ergs. 1.846997 0.688 634 5.624 6g8 — in gravitation measure. I foot-pound (for^= 981 cm.) = 1356.3 X 10* ergs = 0.138255 kilogram-metres. Units of activity (rate of doing work). I foot-pound per minute (for^= 981 cm.) = 0.022605 watts. , , , 1 horse-power (33 000 foot-pounds per min.) = 746 wa s = 1.01387 force de cheval. Units of heat. I pound-degree, F. I pound-degree, C. — 252 small calories or gramme-degrees, C. = 1.8 pound-degrees, F. Smithsonian Tables. 173 APPENDIX. SYNOPTIC CONVERSION OF ENGLISH AND METRIC UNITS. Metric to English. English equivalents. Logarithms. Units of length. I metre (lo' microns). I kilometre. Units of area. I square centimetre. I square metre. ti it I hectare. I square kilometre. Units of volume. I cubic centimetre. I cubic metre or st6re. (( t( ii Units of capacity. I litre (61.023 cubic inches). I hectolitre. Units of mass. I gramme. I kilogramme. (( (1 I tonne. It Units of velocity. I metre per second, ti t( (1 I km. per hr. (0.2778 m. per sec). Units of force. I dyne (weight of (981)-' grammes, iorg= 981 cm.) ■■ Units of stress — In gravitation measure. I gramme per square centimetre. o 014223 pounds per sq. inch. I kilogramme per square metre. 0.204817 pounds per sq. foot. I standard atmosphere. i47 pounds per sq. inch. Units of work — In absolute measure, I erg. 2.3730 X 10"* foot poundals. I megalerg = 10° ergs j i joule = 10'' ergs. — In gravitation measure. I kilogramme-metre (£or^= 981 cm.) = 981 X lo^ ergs = 7.2330 foot-pounds. Units of activity (rate of doing work). I watt = I joule per sec. (= 44.2385 foot-pounds per minute, for ^= 981 cm.) = 0.10194 kilogramme-metre per sec, for ^ = 981 cm. I force de cheval = 75 kilogramme-metres per sec. = 735J watts = 0.98632 horse-power. Units of heat. I calorie or kilogramme-degree = 3.968 pound-degrees, F. = 2.2046 pound-degrees, C. I small calorie or therm, or gramme-degree = o.ooi calorie or kilogramme-degree. 39.3700 inches. 1-595 165 3-28083 feet. 0.515984 1. 09361 yards. 0.038863 0.62137 miles. 9-793350- - 10 0.15500 square inches. 9.190 331- - 10 10.7639 square feet. 1.03 1 968 I.I9599 square yards. 0.077 726 2.47104 acres. 0.392880 0.38610 square miles. 9.586 701 — -10 0.0610234 cubic inches. 8.785496- -10 35-3145 cubic feet. 1-547 953 1.30794 cubic yards. 0.1 16 589 0.26417 gallons (U. S.). 9.421 884 — -10 1.05668 quarts (U. S.). 0.023 944 0.21993 Imp. gallons (British). 9.342 291 - 10 2.83774 bushels (U. S.). 0.452973 2.75121 bushels (British). 0-439 523 15-4324 grains. 1.188433 2.20462 pounds avoirdupois. 0-343334 35-2739 ounces avoirdupois. 1-547 454 32.1507 ounces troy. 1.507 190 0.98421 tons (2240 lbs.). 9.993086- 10 1.10231 tons (2000 lbs.). 0.042 304 3.2808 feet per second. 0.515984 2.2369 miles per hour. 0-349653 0.62137 miles per hour. 9-793350- 10 = 7.2330 X lo-* poundals. {See def. p. 172.) Smithsonian Tables. 174 APPENDIX. DIMENSIONS OF PHYSICAL QUANTITIES. L = length ; M = mass ; T = time. Quantity. Area. Volume. Mass. Density. Velocity. Acceleration. Angle. Angular Velocity. Dimensions Quantity. [L^] Momentum. [L8] Moment of Inertia. [M] Force. [M L~*] Stress (per unit area). [LT-i] Work or Energy. [LT-2] Rate of Working (Power), [o] H e a t. [■j—i] Thermal Conductivity. Dimensions. [L M T-i] [ML2] [L M T-2] [L-i M T-2] [L2 M T-^] [L2 M T-2] [U M T-2] [L-i M T-i] In Electrostatics. Quantity of Electricity. Surface Density: quantity per unit area. Difference of Potential: quantity of work required to move a quantity of electricity ; (work done) -f- (quan- tity moved). Electric Force, or Electro-motive Intensity: (quantity) -;- (distance^). Capacity of an accumulator : e-i- £. Specific Inductive Capacity. In Magnetics. Q u a n t i t y of- Magnetism, or Strength of Pole. Strength or Intensity of Field: (quantity) -^ (distance^). Magnetic Force. Magnetic Moment: (quantity) X (length). Intensity of Magnetization: magnetic moment per unit volume. Magnetic Potential: work done in moving a quantity of magnetism j (work done) -f- (quantity moved). Magnetic Inductive Capacity. Dimensions in Symbol, electrostatic system. e [L? M* T-i] T [L-* Mi T-i] £ [L* Mi T-i] Cor g k m S m I I [L-» M* T-i] [L] [o] Dimensions in electro-magnetic system, [L^ M* T-i] [L-* Mi T-i] [L-i Mi T-i] \\} Mi T-i] [L-i Mi T-i] In Electro-magnetics. Symbol. Intensity of Current. i Quantity of Electricity conveyed by current : e (intensity) X (time). Potential, or difference of potential : (work done) -=- (quantity of electricity upon which work is done). Electric Force: the mechanical force act- ing on electro-magnetic unit of quantity; (mechanical force) -f- (quantity). Resistance of a conductor : E-^i. R Capacity: quantity of electricity stored up q per unit potential-difference produced by it. Specific Conductivity: the intensity of current passing across unit area under the action of unit electric force. Specific Resistance: the reciprocal of r specific conductivity. Vox a. [LiMiT-i] y- [o] Dimensions in Name of electro-magnetic practical unit, [Li Mi T-i] AmpSre. [Li Mi] Coulomb. E [L? Mi T-2] 3B [Li Mi T^ [LT-i] [L-i T2] [L-^T] [L2 T-i] Volt. Ohm. Farad. Smithsonian Tables. I7S INDEX. Acceleration, dimensions of 175 of gravity, formula for 171 table of values of igo Air, cubical expansion, specific heat, thermal conductivity, and weight of 172 Airy, Sir George, treatise cited xcviii Albrecht, Dr. Th., treatise cited Ixxx Algebraic formulas xiii-xv Alignment curve ]vi Aluminum, linear expansion of 170 Ampere, dimensions of 17 c Angles, equivalents in arcs xviii sum of, in spheroidal triangle Ivii Angular velocity, dimensions of 175 Annulus, circular, area of xxx Antilogarithms, explanation of use of xcix 4-place table of 26, 27 Appendix 171-17S Arcs, equivalents in angles xvii of meridians and parallels xlvi-1 table of lengths of meridional 78-80 table of lengths of parallel 81-83 table of time equivalents 162 Are xli Area, of circle xxx table of values of 23 of surface of earth 1-lii Areas, of continents Ixv of oceans Ixv of plane and curved surfaces xxix-xxxi of zones and quadrilaterals of the earth's surface 1-lii tables of values of 142-159 of regular polygons xxx Arithmetic means, progression, and series.. xiii Astronomical constants 172 co-ordinates Ixvii latitude xliv time Ixxii Astronomy Ixvii-lxxxii references to works on Ixxxii Atmosphere, mass of earth's Ixvi standard pressure of 172 weight of unit of volume of 172 Average error, definition of Ixxxiv Azimuth, astronomical and geodetic Ivii computation of differences of Iviii-lxi determination of Ixxix Babinet, barometric formula of 160 Barometer, heights by jgo Binomial series xiv Brass, linear expansion of 170 Brunnow, F., treatise cited Ixxxii Bushel, Winchester xxxv equivalent in litres 2 Cable length xxxviii Calorie, value of 172 Capacity, measures of, British xxxviii Metric xli Centare jjli Chauvenet, Wm., treatise cited Ixxxii Circumference, of circle xxviii table of values of . 23 of earth xlix, 171 of ellipse xxix C. G. S. system of units xlii Clarke, General A. R., spheroid of xliii treatise cited ixyi Coefficient, of cubical expansion of air and mercury 172 of linear expansion of metals 170 of refraction. . .'. Ixiii Compression, of earth xliii Computation, of differences of latitude, lon- gitude, and azimuth lyiij of mean and probable errors xcv Conductivity, thermal, of air 172 Cone, surface of xxxi volume of xxxii Constants, astronomical 172 geodetical 171 numerical 171 of earth's spheroid xliv Continental measures (table of British and Metric equivalents) 168 Continents, areas of Ixv average heights of Ixv Conversion, of arcs into angles and angles into arcs xvii of British and Metric units. . .2, 3, 173, 174 Co-ordinates, astronomical Ixvii for projection of maps liii-lvi table of, scale 1/250000 84-91 table of, scale 1/125000 92-101 X78 INDEX. Co-ordinates (continued). table of, scale 1/126720 102-109 table of, scale 1/63360 110-121 table of, scale 1/200000 122-131 table of, scale 1/80000 1 32-1 41 of generating ellipse of earth's spheroid . . xliv Copper, linear expansion of 170 Cord (of wood), volume of xxxix Correction, for astronomical refraction, table of mean values of 161 to observed angle for eccentric position of instrument Ixiii to reduce measured base to sea level. . .Ixiv Cosines, table of natural 28, 29 use of table explained c Cotangents, table of natural 3°. 3' use of table explained c Coulomb, dimensions of 175 Cubature, of volumes xxxii Cubes, table of 4-22 Cube roots, table of 4-22 Cylinder, surface of xxxi volume of xxxii Day, sidereal and solar Ixxii, 172 Degrees, number of, in unit radius xviii of terrestrial meridian xlvi, 166 of terrestrial parallel xlix, 167 Density, mean, of earth Ixv mean, of superficial strata of earth Ixv of mercury 172 Departures (and latitudes), table of 32-47 mode of use of table explained c Depths, average, of oceans Ixv Determination, of azimuth Ixxix of heights, by barometer 160 by trigonometric leveling Ixi of latitude Ixxvii of time Ixxiv Difference, between astronomical and geo- detic azimuth Ivii of heights, by barometer i6o by trigonometric leveling Ixi Differences, of latitude, longitude, and azi- muth, on earth's spheroid Iviii table for computation of 70-77 Difierential formulas xxi Dimensions, of earth xliii, 171 of physical quantities 175 Dip, of sea horizon Ixiii Distance, of sea horizon Ixiii of sun from earth 172 Doolittle, Prof. C. L., treatise cited Ixxxii Earth, compression of xliii, 171 Earth (continued). density of Ixv dimensions of xliii, 171 ellipticity of xliii, 171 energy (of rotation) of Ixvl equatorial perimeter of xliii, 171 flattening of xliii, 171 mass of Ixvi meridian perimeter of xlix, 171 moments of inertia of Ixvi shape of xliii surface area of lit volume of Ixv Eccentricity, of ellipse xliii of earth's spheroid xliv, 171 El, value of 168 Electric quantities, dimensions of 175 Electro-magnetic quantities, dimensions of . 175 Ellipse, area of xxx equations to xliv length of perimeter of xxix Ellipsoid, volume of (see Spheroid) xxxiii Ellipticity, of earth xliii, 171 Energy, dimensions of 175 of rotation of earth Ixvi Equations, of ellipse xliv of Prototype Kilogrammes xl of Prototype metres xl Error, in ratio of English yard to Metre, .xxxvii Errors, probable, mean, average . .Ixxxiv, Ixxxviii table of, for interpolated quantities. .Ixxxvi theory of Ixxxiii Everett, J. D., treatise cited xlii Excess, spherical or spheroidal Iviii Expansion, cubical, for air and mercury .... 172 linear, of principal metals 170 Farad, dimensions of 175 Fathom, length of xxxviii Swedish 168 Flattening, of earth xliii, 171 Foot, Austrian 168 British xxxvii French, Rhenish, Spanish, Swedish. . . . i68 Force, dimensions of 175 Formulas, algebraic xiii-xv for differentiation xxi for integration xxiii for solution of plane triangles xviii for solution of spherical triangles xx trigonometric xv Freezing point of mercury 172 Functions, trigonometric, of one angle xv of two angles xvi special values of xv values in series xvii INDEX. 179 Gallon, British and wine xxxviii Gauss's formulas for spherical triangles xxi Geocentric latitude xliv Geodesy xliii-lxvi references to works on Ixvi Geodetic azimuth Ivii Geodetic differences of latitude, longitude, and azimuth Iviii Geodetic line Ivii Geodetical constants 171 Geographical latitude xliv Geographical positions, computation of .Iviii-lxi Geoid, definition of xliii Geometric means, progression xiii Glass, linear expansion of 170, 172 Gold, linear expansion of 170 Gravity, acceleration of, formula for 171 table of values of 169 Gunter's chain, length of xxxviii Harkness, Prof. Wm., memoir cited Ixv, 169, 171, 172 Heat, dimensions of . ^ 175 latent, of liquefaction of ice 172 of vaporizatigg of water 172 mechanical equiv^nt of 172 Hectare ♦. xli Heights, average, of continents Ixv determination of, 1^ barometer 160 trigonometrically Ixi Helmert, Dr. F. R., treatise on geodesy cited Ixvi treatise on theory of errors cited xcviii Horizon, dip of sea Ixiii Imperial pound and yard xxxiv Integrals, definite xxvi indefinite xxxiii Interconversion, of Eilglish and Metric units .' 2,3, 173, 174 of sidereal and solar time Ixxiii tables for i 164, 165 Iron, linear expansion of 170 Joule, value of 174 Kilogramme, Prototype xxxiv equations of xl relation to pound xxxvi, xli Kinetic energy, dimensions of.:. 175 of rotation of earth Ixvi Klafter, Wiener, in terms of foot and metre. 1, 168 Latitude, astronomical, geocentric, and re- duced xliv determination of Ixxvii Latitudes and departures, table of 32-47 mode of use of table explained c Lead, linear expansion of 170 Least squares, method of Ixxxvi references to works on xcviii Legendre's theorem for solution of sphe- roidal triangles Ivii Length, of arc of meridian xlvi of arc of parallel xlix of equator of earth 171 of meridian circumference of earth 171 of perimeter of ellipse xxix of Prototype Metres Nos. 21 and 27 xl of seconds pendulum, formula for 171 table of values of 169 Leveling, trigonometric 1x1 Line (French), value of 168 Lines, lengths of xxviii on a spheroid Ivi Linear measures, British xxxvii Metric xli tables for iiiterconversion of. .2, 3, 173, 174 Litre xli Logarithms, anti-, 4-place table of 26, 27 explanation of use of xcix 4-place table of common 24, 25 of natural numbers, table of 4-22 relations of different xv series for xiv Maclaurin's series xxii example of xxiii Magnetic quantities, dimensions of 175 Maps, co-ordinates for projection of (see Co-ordinates for projection of maps) liii projection of . .' cii Mass, of earth Ixv of earth's atmosphere Ixvi of Prototype Kilogrammes Nos. 4 and 20 xl Mayer's formula for transit instrument . . . .Ixxv Mean, arithmetic and geometric xiii Mean distance of earth from sun 172 Mean error, definition of Ixxxiv computation of xcv Mean time Ixxii table for conversion to sidereal time 164 Measures xxxiv of capacity, British xxxviii Metric xli of length, British xxxvi; Continental 168 Metric xli i8o INDEX. Measures (continued). of surface, British xxxviii Metric xli tables for interconversion of. .2, 3, 173, 174 Mechanical equivalent of heat 172 Mechanical units, dimensions of 175 Mensuration xxviii-xxxiii Mercury, density and cubical expansion of , . 172 Meridian, arcs of terrestrial xlvi table of lengths of 78-80 circumference of earth xlix, 171 Method of least squares Ixxxvi Metre, Prototype xxxiv equations of Nos. 21 and 27 xl relation to British yard xxxvi, xli Metric system xl Mile, Austrian 168 British (statute) xxxvii Danish, German sea, Netherlands, Nor- wegian, Prussian, Swedish 168 Nautical 168 Modulus of common logarithms xv Moivre's formula xvi Moment of inertia of mass, dimensions of. . . 175 Moments of inertia of earth Ixvi Momentum, dimensions of 175 Napierian base (of logarithms) xiv, 171 Napierian logarithms xiv Napier's analc^gies xx Natural logarithms xiv Nautical mile, table of equivalents in statute miles 168 Numerical constants 171 Ohm, dimensions of 175 Palm, length of, Snglish xxxviii Netherlands 168 Parallel, arcs of terrestrial xlix table of lengths of 81-83 Pendulum, length of seconds 171 table of lengths of 169 Perch (of masonry) volume of xxxix Perimeter, of circle xxviii of ellipse xxix of regular polygon xxviii, xxx Physical constants 172 Physical geodesy, salient facts of Ixv Physical quantities, dimensions of 175 Platinum, linear expansion of 170 Platinum iridium, linear expansion of 170 Polyconic projection of maps liii graphical process of, explained cii Polygons, regular, areas of xxx lengths of lines of xxvii Potential (electric), dimensions of 175 Pothenot's problem Ixiv Pound, imperial, avoirdupois xxxiv Power, dimensions of 175 Pressure, of atmosphere 172 Prism, volume of xxxii Probable error, definition of Ixxxiv computation of xcv Projection of maps liii, cii Prototype Kilogrammes and Metres xxxiv Equations of xl Quadrilaterals, of earth's surface, areas of 1 tables of areas of 142-159 Quantity, of electricity, dimensions of 175 Radii, of curvature xiv Radius of curvature, of meridian, table of logarithms of 48-56 of section normal to meridian, table of logarithms of 57-^5 of section oblique to meridian, table of logarithms of 66, 67 Radius vector of earth's surface 1 Rate of working (power), dimensions of 175 Raiio, of pound to kilogramme xxxvi of specific heats of air 172 of yard to metre xxxvi Reciprocals, of natural numbers, table of. .4-22 Reduced latitude xliv Reduction to sea level of measured base line. Ixiv References, to works on astronomy Ixxxii to works on geodesy Ixvi to works on the theory of errors xcviii Refraction, astronomical, table of 161 example of computation of civ coefficients of terrestrial Ixiii Right ascension Ixxii Rode, Danish 168 Ruthe, Prussian, Norwegian 16S Sagene, Russian 168 Sea level (see Geoid), reduction of measured base line to Ixiv Sea surface, area of Ixv Secondary triangulation, differences of lati- tude, longitude, and azimuth in Ix Series, binomial xiv logarithmic xiv of Maclaurin and Taylor xxii trigonometric xvii Sidereal day and year, length of 172 INDEX. i8i Sidereal time Ixxii table for conversion to mean time.. 165 Signs, of trigonometric functions xv Silver, linear expansion of 170 Sines, table of natural 28, 29 explanation of use of c Solar time Ixxii table for conversion of mean solar to sidereal 164 Solution, of plane triangles xviii of spherical triangles xx of spheroidal triangles Ivii Span, length of xxxviii Specific heat of air 172 Sphere, equal in surface with earth lii equal in volume with earth lii surface of xxxi volume of xxxii Spherical excess (see Spheroidal excess) Iviii Spheroid, representing the earth xliii surface of xxxi volume of xxxiii volume of earth's Ixv Spheroidal excess Iviii example of computation of ci Spheroidal triangle Ivii Square roots, table of 4-22 Squares, table of 4-22 Standards, of length and mass xxxiv Steel, linear expansion of 170 Stere xli Stress, dimensions of 175 units of 173. '74 Sums, of arithmetic and geometric progres- sion, and special series xiii Surfaces (see Areas) xxix Surface measures, British xxxviii Metric xli tables for interconversion of. . .2, 3, 173, 174 Surface, of continents Ixv of earth's spheroid lii of oceans ixv of sphere and spheroid xxxi Surveyor's chain, length of xxxviii Table for cf .iversion of arc into time 162 con-'^rsion of mean into sidereal time . .164 ■conversion of sidereal into mean time. .165 iconversion of time into arc 163 determination of heights by barometer. . 160 dnterconversion of British and Metric units 2,3,173. 174 interconversion of nautical and statute miles ....168 Table of acceleration of gravity and derived quantities '^9 Table of {contimted). antilogarithms, 4-place z6, 27 areas of quadrilaterals of earth's surface of 10° extent in latitude and longi- tude 142 1° extent in latitude and longi- tude 144, 145 30' extent in latitude and longi- tude 146-148 15' extent in latitude and longi- tude 150-154 10' extent in latitude and longi- tude 156-159 areas of regular polygons xxx circumference and area of circle 23 constants, astronomical 172 geodetical 171 numerical 171 for interconversion of English and Metric units 2, 3, 173, 174 Continental measures of length 168 co-ordinates for projection of maps — scale 1/250000 84-gi scale 1/125000 92-101 scale 1/126720 102-109 scale 1/63360 110-121 scale 1/200000 122-131 scale 1/80000 132-141 departures and latitudes 32-47 dimensions of physical quantities 175 errors of interpolated values from nu- merical tables Ixxxvi expansions (linear) of principal metals. . 170 formulas for solution of plane triangles, .xlx fractional change in number due to change in its logarithm 170 latitudes and departures 32-47 lengths of arcs of meridian 78-80 of arcs of parallel 81-83 of 1° of meridian 166 of 1° of parallel 167 linear expansions of metals 170 logarithms, 4-place 24. 25 anti-, 4-place 26, 27 of factors for computing spheroidal excess 68, 69 of factors for computing differences of latitude, longitude, and azi- muth 70-77 of meridian radius of curvature. .48-55 of radius of curvature of normal section S^^S of radius of curvature of oblique sections 66, 67 mean astronomical refraction 161 measures and weights — British, of capacity xxxix l82 INDEX. Table o£ (continued). British, of length xzxvUi British, of surface , xxxviii British, of weight xxxix Metric xli tables for interconversion of 2. 3> 173. 174 natural cosines 28, 29 natural tangents 30> 31 radii of curvature, logarithms of, for meridian section 48-SS for normal section 56-65 for oblique section 66, 67 reciprocals, squares, cubes, square roots, cube roots, and logarithms of natural numbers 4-22 refraction, mean astronomical 161 signs of trigonometrical functions xv values for computing areas and dimen- sions of regular polygons xxx for computing perimeter of ellipse xxix of log i (l — 2m) and log (I — m) used in trigonometric leveling . . .Ixii weights and measures (see Table of measures and weights) 2, 3, 173, 174 Table, traverse (see Traverse table) 32-47 Tangents, natural, table of 30> 31 use of table explained c Taschenbuch, Des Ingenieurs xcix Taylor's series '. xxii Temperature, absolute zero of 172 of freezing mercury 172 Theory of errors , . .Ixxxiii-xcviii references to works on .' xcviii Thermal conductivity, dimensions of 175 of air 172 Three-point problem Ixiv Time, determination of Ixxiv equivalents in arc, table of 163 example of use of table civ interconversion of sidereal and solar, tables for 164, 165 Tin, linear expansion of 170 Toise, value in feet and metres 168 Ton, long and short xxxix Tonne 173, 174 Tonneau xli Trapezoid, area of xxix Traverse table 32-47 explanation of use of c Triangles, plane, solution of xviii Triangles {continued). spherical, solution of xx spheroidal, solution of Ivii Triangulation, primary and secondary, differ- ences of latitude, longitude, and azimuth in Iviii-lx Trigonometric functions, of one angle xv of two angles xvi series for xvii Trigonometric leveling Ixi Units, British System xxxvii C. G. S. System xlii Metric System xl standards of length and mass '.xxxiv tables for interconversion of British and Metric 2, 3, 173, 174 Useful formulas xiii-xxvii Vara, Mexican and Spanish 168 Velocity, dimensions of 175 of light and sound 172 Versta, Russian 168 Vertical section curve on spheroid Ivi Volt, dimensions of 175 Volume, of earth Ixv of solids xxxii Weight, of distilled water 172 Weights and measures (see Measures and weights), tables for interconversion of British and Metric -> 3> '73. 174 Werst, Russian 168 Work, dimensions of 175 Wright, Prof. T. W., treatise cited xcviii Yard, imperial ... , , xxxiv ratio of, tor N.xxxvi, xxxvii Zachariae, G., treatise ' ' Zenith distances, use o. leveling Zenith telescope, use of Zero, of absolute temperature . . . Zinc, linear expansion of Zones, of earth's surface, area of . .„xlvi i ^ v^