N^o. 97
TELEGRAPHIC DETERMINATION
LONGITUDES
IN
MEXICO, CENTRAL AMERICA, THE WEST INDIES,
AND ON THE
NORTH COAST OF SOUTH AMEEICA.
1888-1889-1890.
Cornell University Library
QB 229.U58 1888-90
Telegraphic determination of longitudes
3 1924 012 320 200
The original of this book is in
the Cornell University Library.
There are no known copyright restrictions in
the United States on the use of the text.
http://www.archive.org/details/cu31924012320200
No. OV.y 5,
BUREAU OF NAVIGATION— liYDKdGRAPHIC OFFICE.
TELEGRAPHIC DETERMINATION
LONGITUDES
IN
MEXICO, CENTRAL AMERICA, THE WEST INDIES,
AND ON THE
NORTH COAST OF jQUTH AMERICA,
.i/.^.^^/^ y/ [UAN DEL SUR; ST. NICOLAS
VO; AND LA GUAYRA,
RICHARDSON CLOVER,
-5";.../ -^...........^,, /f, ^' ;^,,,^_ STATIONS.
^^ ^^ '^ [,ES LAIED, U. S. N.
A REPORT ON MAGNETIC OBSERVATIONS MADE AT VKRA CRUZ; COATZACOALCOS;
SALINA CRUZ; PORT PLATA; CURASAO; AND LA GUAYRA.
BY
.leut. CHARLES LAIRD and Ensigns J. H. L. HOLCOMBE and L. M. GARRETT, U. S. N.
PUBLISHED IIY OKDF^l OK
COMMODORE T. M. RAMSAY, U. S. N.,
CHIEF OF BUREAU OF NAVIGATION, NAVY DEPARTMENT.
WASHINGTON:
GOVERNMENT PRINTING OFFICE.
18 9 1.
No. 97.^ 5_
BUREAU OF NAVIGATION— HYDROGRAPIIIC OFFICE.
TELEGRAPHIC DETERMINATION
OF
LONGITUDES
IN
MEXICO, CENTRAL AMERICA, THE WEST INDIES,
AND 0^f THE
NORTH COAST OF SOUTH AMERICA,
EMBRACING THE MERIDIANS Ol'
COATZACOALCOS; SALINA CRUZ; LA LIBERT AD; SAN JUAN DEL SUR; ST. NICOLAS
MOLE; PORT PLATA; SANTO DOMINGO; CURACAO; AND LA GUAYRA,
WITH THE
LATITUDES OF THE SEVERAL STATIONS.
BY
LIEUTENANTS J. A. NOREIS AND CHARLES LAIED, U. S. N.
TO WHICH IS APPENDED
A REPORT ON MAGNETIC OBSERVATIONS MADE AT VERA CRUZ; COATZACOALCOS;
SALINA CRUZ; PORT PLATA; CURASAO; AND LA GUAYRA.
BY
ieut. CHARLES LAIRD and Ensigns J. H. L. HOLCOMBE and L. M. GARRETT, U. S. N.
PUBLISHED BY ORDbV OF
COMMODORE 'f. M. RAMSAY, U. S. N.,
CHIEF OF BUREAU OF NAVIGATION, NAVY DEPARTMENT.
WASHINGTON:
GOVERNMENT PRINTING OFFICE,
18 9"l.
^k'-¥f-irerj
A.
univer^jsty
LIBRARY
CONTENTS
INTRODUCTION.
Page.
General Introduction 5
Description op Stations 16
Description of Instruments .~ 19
Instrumental Constants 21
Methods of Observation 22
Personal Equation 25
Methods of Reduction 25
observations.
Observations for Time 29
Observations for Latitude 100
results.
Final Chronometer Corrections 114
Differences op Chronometers prom Exchange op Time Signals 117
Differences op Longitude 120
Resulting Latitudes and Longitudes 123
appendix.
Report on Magnetic Observations 127
3
INTRODUCTION.
GENERAL INTRODUCTION.
In continuation of the work of establishing secondary meridians by telegraphic
measurement of differences of longitude, an expedition was sent out in 1883 by the
Bureau of Navigation of the Navy Department, of which Bureau Commodore J. G.
Walker, U. S. Navy, was at that time chief. A report of the work accomplished by
this expedition, which was in charge of Lieut. Commander (now Commander) C. H.
Davis, U. S. Navy, was published in 1885.^ The object was to measure over the
telegraph lines extending from Galveston, Tex., down the Gulf-coast of Mexico, across
the Isthmus of Tehuantepec, and thence down the west coast of Central and South
America to Valparaiso. This plan was carried out with the exception of the measure-
ment between Vera Cruz, on the Gulf of Mexico, and La Libertad, on the Pacific coast
of Central America. The delay, which would have been caused by crossing the Isth-
mus of Tehuantepec, where the methods of transportation were known to be primitive,
or by going around via the Isthmus of Panama, would have seriously interfered with the
remainder of the work, and this portion of the measurement was left to be completed
at some future time. The positions of Vera Cruz and La Libertad were carefully es-
tablished; the former from Galveston, and the latter from Panama. Upon the con-
clusion of this work the instruments were stored away at the Naval Observatory, and
the officers employed were detailed for sea service.
In the spring of 1888 it was decided by Commodore Walker, who was still Chief
of Bureau of Navigation, upon recommendation of the hydrographer, Commander J.
R. Bartlett, U. S. Navy, to complete this chain of measurements by putting in the
omitted links, and thus furnishing a verification of the positions on the west coast of
Central and South America.
Lieut. J. A. Norris, who had been an observer in the former expedition, was
placed in charge of the work, with instructions to collect the outfit of instruments
and supplies Lieut. Charles Laird, another member of the former party, was detailed
as an observer.
;^r^^ZZ;b^^i;^^in>^tion of Longitades in Mexico and Central America, and on the West Coast of South
America' by Lieut. Commander C. H. Davis and Lieuts. J. A. Norris and Charles Laird m 1883 and 1884. Bureau of
Navigation, Washington. 1885. 5
6 TELEGRAPHIC DETERMINATION OF LONGITUDES
Application was made througli the Department of State to the Governments of
the several countries for permission to land instruments and make observations at the
desirable points. These were Vera Cruz, Coatzacoalcos, and Salina Cruz, in Mexico;
La Libertad, in Salvador, and San Juan del Sur, in Nicaragua. The last-named point
was not in the regular chain of measurements, but it was considered desirable to de-
termine its position, as it was in the immediate vicinity of the Pacific terminus of the
proposed Nicaragua Canal. The required permission was promptly and cheerfully
granted by the Grovernments of the countries concerned.
Permission to use the telegraph lines of the Mexican and Central and South Ameri-
can telegraph companies for the exchange of time signals was asked and cordially
granted; and to the assistance rendered by the employees of these companies, under
orders from the main office in New York, much of the success of the work is due.
As the most favorable period for astronomical work in the portion of the tropics
to be visited is during the winter or dry season, it was not desirable that the expedi-
tion should start until about the middle of November. This gave plenty of time for
preparation, and the summer was passed in overhauling, cleaning, repairing, and test-
ing the instruments formerly in use. These were found to be. generally in fair condi-
tion, and, with the exception of the chronographs, were easily put in condition for use.
The chronographs were found to be considerably out of repair, and being of an anti-
quated pattern, difficult of adjustment, it was decided to replace them with new ones.
The model used by the U. S. Coast and Greodetic Survey was selected, and two of the
instruments were purchased from Fauth & Co , of Washington.
In consequence of the necessity of crossing the Isthmus of Tehuantepec it was
desirable to make the outfit as light as possible, and for this reason a tent was designed
for astronomical work, to be used instead of the wooden observatories which had served
in all preceding expeditions. One of these tents was supplied to each observing party
and in use was found to possess all the desired qualities of convenience, stability, and
lightness. Ordinary wall tents were also procured to be used as lodgings for the
observers at points where it might be difficult or impossible to find inhabitable houses.
Soon after preparations for the field were begun, Commander Bartlett was detached
from the Hydrographic Office and his place was taken by Lieut. George L. Dyer, U.
S. Navy, who had been assistant hydrographer. Lieutenant Dyer took great interest
in the work, was untiring in his efforts to supply the needs of the expedition, and
placed at the disposal of Lieutenant Norris all the available resources of his office. It
resulted from this that the outfit was very complete and work in the field was much
facilitated. At his suggestion a set of instruments for magnetic observations, consist-
ing of a magnetometer and a dip circle, was included in the list of instruments.
During the progess of these preparations a communication was received by the
Navy Department from M. Fressinet, the manager of the Soci^t^ Fran9aise des Tele
graphes Sous-Marins in the West Indies, offering the use of the cable, which had just
been completed, for the measurement of longitudes. This cable extends from Santiago
de Cuba through Hayti, San Domingo, and CuraQao to La Guayra in Venezuela. As
the preparations for the work in Mexico and Central America were so far advanced it
was decided to proceed with that measurement and to accept the liberal offer of the
French company for the following season.
m MEXICO, CENTRAL AMERICA, THE WEST INDIES, ETC. 7
Shortly before the date set for departure from the United States, Ensigns J. H. L.
Holcombe and S. S. Wood, U. S. Navy, were detailed as assistants, and on November
1 7, 1 888, the entire party sailed from New York for Vera Cruz in the Ward Line
steamer City of Washington. The voyage was pleasant, but rather long, owing to delays
at the numerous ports touched by the steamer.
Vera Cruz was finally reached on December i. A heavy norther was just setting
in, and though the members of the party succeeded in getting ashore, it was not
possible to land the instruments for several days afterward. The officials of the custom-
house had received instructions from their Grovernment to allow the free entry of the
effects of the expedition, and there was no delay experienced in getting possession of
them after they were landed.
As soon as possible after landing official calls were made on the city authorities,
who promptly granted permission to erect the observatory and courteously offered
any assistance in their power. The expedition was greatly indebted at this point to
Mr. H. Millard, the manager of the cable office, for many acts of kindness and courtesy.
He was untiring in his efforts to aid the party in every way in his power.
It had been intended that one observing party should proceed immediately to
Coatzacoalcos, while the other was making preparations for work at Vera Cruz. It
was found, however, that the only steamer which plied between these ports had just
left Vera Cruz, and the time of her return was problematical. She did not, in fact,
arrive until the 1 5th of December, and was not ready for her return trip to Coatza-
coalcos until the 2 1 St. The time was occupied in setting up the observatory and
instruments and making preparations for work. The site occupied by Lieutenant
Commander Davis in 1883 was easily found. His pier had been left standing, and
though considerably dilapidated and weather beaten, had not been moved from its
original position. It was repaired with little trouble, the wooden observatory was set
up around it, and the instruments mounted and adjusted. Lieutenant Laird assumed
charge of this station, with Ensign Holcombe as his assistant. For use as a magnetic
observatory the astronomical tent was set up on a square of open ground known as
Baluarte Santiago near the southern limit of the city. Magnetic observations were
begun as soon as these preparations were completed.
As soon as possible after the arrival of the steamer the outfit belonging to the
Coatzacoalcos party was put on board, and on December 2 1 Lieutenant Norris and
Ensign Wood sailed for that port. The steamer was small and indescribably dirty
and uncomfortable, and the trip was exceedingly disagreeable, though fortunately of
short duration, as the destination was reached the next morning.
Upon arriving the party was met by Mr. F. W. Carpenter, the manager of the
cable office, who had made all arrangements for landing the instruments, etc. Like
all employes of the telegraph company with whom the expedition came in contact, he
was untiring in his efforts to aid in every possible way, and his assistance was of the
greatest value.
Coatzacoalcos is a small town about 120 miles from Vera Cruz in a southeasterly
direction. It is situated on the left bank of the river of the same name, which here flows
nearly due north. It is only a short distance from the mouth of the river. A range
8 TELEGKAPHIC DBTBRMmATION OF LONGITUDES
of low sand hills lies between the town and the Gulf. A light-house is situated on one
of the highest of these hills neai- the mouth of the river.
The site for the observatory was chosen near the center of the town about 350
yards to the south and west of the light-house. The transit pier was built of bricks
and Portland cement, and the wooden observatory was set up around it. For com-
munication with the telegraph office, about a third of a mile distant, an insulated wire
was extended on poles. The transit and other instruments were mounted and adjusted
and all preparations for work were finally completed on December 28.
The weather on the Gulf coast of Mexico during the winter months is generally
unfavorable for astronomical work owing to the frequent northers, which last anywhere
from three days to a fortnight. These gales are of more or less violence, but always
bring thick clouds and rain, and while they continue it is next to impossible to make
star observations. After one gale ends and before the next one begins there are
generally a few days when the wind is from the southward and the weather is fine.
These were almost the only favorable opportunities for observation and every advantage
was taken of them. The cable between Vera Cruz and Coatzacoalcos being short, the
ordinary Morse telegraph instruments were in use, and it was possible to make an
automatic exchange of time signals for the comparison of the chronometers. Whenever
the weather remained clear, after the night's longitude work was completed, a number
of observations were made for the determination of latitude. The stations being so
near together and on the same coast, the weather conditions were similar, and when it
was possible to observe at one place it was generally clear enough at the other also.
The measurement was finally completed on January 17, 1889, observations having
been made and time signals exchanged on six nights, viz, December 29 and 30,
January 12, 15, 16, and 17.
Lieutenant Laird was then directed to proceed to Coatzacoalcos with his party and
instruments by the first opportunity, and Lieutenant Norris made preparations for the
journey across the Isthmus of Tehuantepec to Salina Cruz.
As the wooden observatory could not be transported it was left standing for the use
of Lieutenant Laird, who was directed to ship it to the United States when he had
completed his work. A like disposal was made of his observatory in Vera Cruz.
Before dismounting the instruments a meridian mark was placed on the brow of
a hill north of the observatory for the convenience of Lieutenant Laird in adjusting
his transit. A spot for his magnetic observatory was also selected and marked. The
bearing and distance of the light-house from the transit pier were obtained by triangu-
lation. The instruments were then packed and all preparations were made for the
journey.
In crossing the isthmus the intention was to proceed up the Coatzacoalcos River
in canoes as far as the small native village of Suchil, about a hundred miles. There a
train of twenty-five pack mules was to be in waiting to transport the instruments, etc.,
another hundred miles to the town of San Geronimo, which was the terminus of the
railway to Salina Cruz. This plan was successfully carried out. Progress on the
river was slow, as the canoes had to be poled against the current, which in places was
very swift. On the 2 2d of January the party left Coatzacoalcos and did not reach
IN MEXICO, CENTRAL AMERICA, THE WEST INDIES, ETC. 9
Suchil until the evening of tlie 29th. The mule train arrived the next evening and
and on the morning of the 31st a start was made for San Geronimo. The route for
the first day was over a rough and muddy road, througli the tangled intricacies of a
tropical forest The mules being heavily laden, some of the instrument boxes weighing
nearly 300 pounds, the rate of travel was necessarily slow. After the first day's
journey a much better road was found, as it was on the line of the telegraph wire where
the ground was kept clear of undergrowth. On the third day from Suchil the telegraph
station at the village of Sarabia was reached, where the party was hospitably received
by the station manager. A telegram was received here notifying Lieutenant Norris
that Lieutenant Laird and party had arrived at Coatzacoalcos.
San Greronimo was reached on the evening of February 5. This town was the
headquarters of Mr. F. Van Valkenburgh, the isthmus superintendent of the cable
company. The party was received and entertained with the utmost hospitahty by this
gentleman and his charming wife.
The train for Salina Cruz left on alternate days, which gave the party a needed
rest until the 7th. On that day a start was made at an early hour in the morning
and the final destination was reached in the evening. A stop was made at the city of
Tehuantepec, and in company with the United States consular agent, Mr. Albert'
Langner, an official visit was paid by Lieutenant Norris to the Jefe Politico of the city.
Salina Cruz is the port of Tehuantepec and consists of a small collection of huts
occupied by fishermen and laborers. The only houses of consequence belong to
merchants who visit the place occasionally to superintend the loading or discharge of
their ships. Nothing in the shape of a hotel or lodging house exists.
The cable house is on the beach nearly a mile from the town. It is a commo-
dious structure of corrugated iron containing several rooms. It had been at one time
used as an office and occupied by the corps of operators, but the office had been
removed to Tehuantepec and it was vacant. Mr. Van Valkenburgh kindly gave the
party permission to use it, arrangements were made with the proprietor of a hotel in
Tehuantepec to supply meals, and the observers found it a very comfortable habitation.
A suitable site for the observatory was found near the house, inside the grounds
belonging to it, a pier was built of bricks and mortar, and the astronomical tent was
set up. Everything was ready for work on the evening of February 9, but owing to
bad weather in Coatzacoalcos signals were not exchanged until the following night.
During the stay of Lieutenant Norris in Salina Cruz the weather was clear and,
for astronomical work, nearly perfect. The northerly winds, which blow at that season
almost constantly, seem to leave all their clouds and moisture on the north side of the
ridge which extends from east to west across the isthmus. In Coatzacoalcos the weather
continued more or less cloudy and rainy, but Lieutenant Laird succeeded in making
observations on the nights of February 10, 12, 13, 14, 15, and 16, and the successful
exchange of time signals on these nights rendered the measurement complete. Lieu-
tenant Laird was then directed to proceed across the isthmus as soon as possible and
occupy the Salina Cruz station, while Lieutenant Norris was on his way to La Libertad.
After the completion of the longitude work at Salina Cruz, about ten days elapsed
before the arrival of the steamer. This interval was employed in making latitude
10 TELEGEAPHIO DETEEMINATION OP LONGITUDES
observations, and in referring the position of the observatory to that of the observation
spot on the Hydrographic Office Chart. The exact position of this spot was not shown,
but it was referred to as being on the summit of the Morro Salina, a low hill near the
village. A signal was placed on top of this hill, as near the center as possible, and a
base line was measured near the observatory. From this the bearing and distance were
obtained by triangulation in the usual way.
On February 26, Lieutenant Norris and party embarked on the Pacific Mail
steamer ChjtU and sailed for La Libertad. The distance is not more than 600 miles,
but numerous stops were made, and much time consumed in taking in cargo, so that it
was not until March 6 that the destination was reached. As usual the party was
received by the Grovernment officials with great cordiality and many offers of assistance.
No delay occurred in landing the instruments and passing them through the custom-
house. As this station had been occupied by Lieutenant Laird during the expedition
of 1883-84, a search was at once made for the transit pier which he had left standing.
It was easily found from his description of the locality, but it was in a dilapidated
condition, and had been moved from its original position. The plot of ground in which
it stood had been converted into a corral for cattle and was consequently very dirty
and unpleasant. It being necessary to build a new pier it was decided to select a more
agreeable site, which was found in the yard in front of the telegraph office. The pier
was built of bricks and cement, the observatory was set up, and the instruments mounted
as soon as possible. As the spot selected for the pier was only a short distance from
the beach, upon which there was frequently a very heavy surf, experiments were made
to ascertain whether there was any perceptible tremor from this cause, but nothing of
the kind could be detected. A careful triangulation was made to fix the bearing and
distance between the old and the new piers.
Lieutenant Laird arrived in Salina Cruz on March 7, and was ready for work on
the loth. By this time the rainy season was approaching and there were signs of a
change in the weather. It was frequently quite cloudy at night in La Libertad, and
in Salina Cruz there were several showers No great delay was caused, however, and
successful observations were made and signals exchanged on the nights of March 12,
13, 14, 16, 17, and 18, which completed the measurement. The mirror galvanometer
was used in the exchange as the length of the cable precluded the use of the automatic
method. No latitude observations were made here, the latitude having been determined
by Lieutenant Laird on the former expedition.
After the completion of the work at La Libertad, several days were consumed
waiting for the steamer to San Juan del Sur. At that season of the year La Libertad
was not at all a pleasant abiding place. The heat was excessive both day and night
and high mountains north of the town completely shut off all breeze. No rain had
fallen for months, and the dirt in the streets was continually stirred up by the teams
bringing coffee from the surrounding country. On March 26, the Pacific Mail steamer
Starbuch arrived, and the party lost no time in getting on board of her.
San Juan del Sur was reached on March 29. The party was met on the steamer
by the manager of the cable office, Mr. James Tiddy. He had been notified by tele-
graph from La Libertad, and had made all possible arrangements to facilitate the work.
IN MEXICO, CENTRAL AMEEICA, THE WEST INDIES, ETC. H
A site for the observatory was selected in the grounds belonging to the cable company,
and a pier was built immediately ; the observatory and instruments were set up and
everything was ready for work on the night of March 30. Observations were made
and signals successfully exchanged on March 30, 31, April i and 2.
This concluded the work of the season. The instruments were dismounted and
packed after the latitude oliservations had been made, and were shipped by freight to
New York. Lieutenant Laird was directed to proceed with his party to Washington
by the most practicable route. On April 9 Lieutenant Norris and Ensign Wood em-
barked on the Pacific Mail steamer (ydij of Panama for New York via the Isthmus of
Panama. After a pleasant trip the party arrived in New York on April 25, and pro-
ceeded at once to Washington.
Lieutenant Laird took passage to Acapulco, Mexico, in the coasting steamer of
the Pacific Mail Line, and thence to Panama in the through steamer from San Fran-
cisco, arriving in New York on the 1 5th of May.
Work on the preliminary computation of the observations was at once begun.
Lieutenants Norris and Laird reducing their respective time observations, Ensign
Holcombe the magnetic work, and Ensign Wood the latitude.
The summer of 1889 was occupied by this work, and by the necessary prepara-
tions for the expedition to measure over the lines of the French company in the West
Indies. As soon as the instruments arrived from Central America they were over-
hauled and repairs made where needed. Such slight additions were made to the outfit
as experience had shown to be desirable. What prove'd to be a very important addi-
tion was a large tent, which was procured Ijy requisition from the War Department.
It was known that the means of communication between some of the ports in the
West Indies that it was desirable to visit were imperfect and unreliable, and it was decided
by the Navy Department to detail one of the men of war of the North Atlantic fleet for
the use of the expedition. The U. S. S. Yantic, Commander C. H. Rockwell, U. S Navy,
commanding, was selected and proved to be admirably adapted for the purpose.
During the summer Ensigns Holcombe and Wood were detached from the party,
and Ensio-ns L. M. Garrett and H. B. Wilson were detailed in their places.
On November 5, 1889, the expedition sailed from Washington on the U S. S.
Despatch for Hampton Roads, where the Yantic was in readiness. This point was
reached the next morning; tlae instruments and party were transferred immediately,
and the same afternoon the Yantic sailed for Santiago de Cuba.
At about the time of departure of the expedition Commodore Walker was suc-
ceeded as Chief of Bureau of Navigation by Commodore F. M. Ramsay, U. S. Navy,
and shortly after the hydrographer, Lieutenant Dyer, was relieved by Capt. Henry F.
Picking, U. S. Navy.
The lines of the Frencli cable company started from Santiago and extended to
St Nicolas Mole, on the northwest point of Hayti, thence to Port Plata, on the north
coast of the same island, in the Republic of San Domingo. A land hue connected
this point with the City of Santo Domingo, on the south side of the island. From
Santo Domingo a cable extended to the island of CuraQao, and thence to La Guayra,
in Venezuela.
12 TELEGRAPHIC DETERMINATION OF LONGITUDES
After a pleasant voyage the Yantic arrived at Santiago de Cuba on the 14th of
November. As soon as possible a call was made upon the local authorities by Com-
mander Rockwell and Lieutenants Norris and Laird, accompanied by the United States
consul. It was found that as yet no notification as to the expedition had been received
from the Spanish Government, but upon telegraphing to the governor general, at
Havana, he at once sent instructions to show the party every attention and to rendei-
all assistance required. The office of the cable company was also visited. M. Fressinet
was absent, but M. Pouye^s, the manager of the office, received the party with great
politeness and cheerful offers of assistance.
The position of Santiago de Cuba had been telegraphically determined in 1874
by the first expedition sent out by the Bureau of Navigation, under the command of
Lieut. Commander (now Commander) F. M. Green, U. S. Navy. Lieutenant
Norris had been a member of that party and was acquainted with the locality of the
observation spot. This was about a half-mile south of the city near a small fortification
known as Blanca Battery. The original transit pier had been removed, but it was
found that a pier of masonry had been erected and left standing in nearly the right
spot by some party of Spanish or Cuban surveyors. This was accordingly made use
of by Lieutenant Laird, who was left in charge of the station, with Ensign Garrett as
his assistant.
As soon as the Yantic had taken in a supply of coal and other necessary stores, a
start was made for St. Nicolas Mole, Hayti, on November 1 7. This port was reached
on the following evening, and" the next day Commander Rockwell asked and obtained
permission from the local authorities to land the instruments and make the observations.
A suitable site was selected near the telegraph office, and the pier was erected as soon
as possible.
St. Nicolas Mole is a small village, having little communication with the outside
world. Supplies of any kind except fruit are difficult if not impossible to obtain. No
suitable lodgings wei'e to be had, so the large army tent was set up on the beach near
the observatory, and proved a very comfortable habitation.
Lieutenant Norris had completed preparations for work on the night of the 23d
November, but on the day preceding a telegram was received from Lieutenant Laird
saying that he was ill with malarial fever, and would not be able to work for some
days. Fortunately the attack was not serious, and he had recovered sufficiently to
observe on tlie 25th. It had been hoped that time signals might be exchanged over
this link by tlie automatic method, as the cable was short and in good condition. It
was not found practicable, however, with the instruments possessed by the expedition,
and use was made of the mirror galvanometer. Two or three nights were consumed
in the attempt to work with the automatic system, but on the 28th it was abandoned
and the mirror was successfully substituted. The weather was generally good, and no
trouble was found in observing stars at either station. On the nights of November 28,
29, 30, December i, 2, and 3, observations were made and signals exchanged, com-
pleting the measurement.
It had been the intention to make magnetic observations at Santiago de Cuba, but
on account of the poor state of health of Lieutenant Laird, and the fact that yellow
IN MEXICO, CENTRAL AMERICA, THE WEST INJDIES, ETC. 13
fever had just broken out in the city, one of the first victims being M. Pouy(^s, of the
cable company, it was deemed advisable for the party to leave the station with as little
delay as possible. The magnetic observations were therefore reluctantly abandoned.
On the 4th of December the Yantic sailed for Santiago, took Lieutenant Laird and
party on board and conveyed them to Port Plata, arriving at that point on the 9th.
While at Santiago, Commander Rockwell received instructions from the Navy Depart-
ment to survey a small harbor on the south coast of Cuba, and as soon as he had landed
Lieutenant Laird at Port Plata he left to carry out his orders.
The climate of Port Plata was found by Lieutenant Laird to be decidedly unfavor-
able for astronomical work. Rain was almost continuous while he was getting ready
for work, and most of his star observations were made in the short intervals between
showers. By taking advantage of every opportunity he succeeded in working on the
nights of December 14, 15, 16, 19, and 20. No trouble from the weather was experi-
enced at St. Nicolas Mole. Showers were frequent during some of the nights, but
always passed over very quickly. While the Port Plata party was getting ready for
work, Lieutenant Norris determined the latitude of St. Nicolas Mole.
On the 20th of December Commander Rockwell arrived with the Yantic from the
Cuban coast, and on the 2 ist Lieutenant Norris and party embarked for Santo Domingo
City.
This point was reached on the evening of December 24th, but it was several days
before anything could be done in preparation for work. The week between Christmas
and New Year's was a general holiday for the inhabitants, and it was next to impossible
to find anyone willing to work. The Yantic was unable to get over the bar into the
river, and her position outside in the open roadstead was very uncomfortable owing
to the continuous heavy swell. As it was very necessary to make some repairs to her
boilers which could only be done in smooth water, Commander Rockwell landed the
party as soon as possible and then proceeded to Samana Bay, where there was a good
harbor.
Immediately after landing a call was made on the President of the Republic, who
courteously offered every assistance. A site for the observatory was speedily selected
near the foot of the old signal tower. As soon as workmen could be procured the
pier was built and the instruments were mounted and adjusted and a wire was extended
to the telegraph office about 200 yards distant.
It had been found upon arrival at this point that the overland telegraph line to
Port Plata did not belong to the same company that operated the cables, but to a
separate organization. A call was made upon the resident director of this company,
M. Gassend, and the object of the expedition explained to him, upon which he at once
placed the line at the disposal of the party.
As in the case of most land telegraph lines through a tropical country, the wire
was frequently broken, or insulation destroyed, and interruptions to traffic were many.
It was found that all messages between Santo Domingo and Port Plata were
repeated at La Vega, a station about two-thirds of the distance from the former place.
The operators were unanimously of the opinion that it would be impossible to work
over the whole line, unless it happened to be in unusually good condition. As it was
14 TELECIEAPHIC DETERMINATION OF LONGITUDES
not desirable to have the time signals repeated at La Veg-a if it could be avoided, it
was decided to try the mirror galvanometer, it being delicate enough to be influenced
by any current that could get through. This was also considered impracticable by the
telegraph operators, but on trial it was found to work perfectly. No difficulty was
experienced in exchanging signals, though the insulation of the line was so faulty that
it was necessary to use from ten to fifteen LeClanch^ cells at each end.
Bad weather at Port Plata delayed the work somewhat, but observations were
made and signals exchanged on the nights of January 2,3,4, 5, and 6, which completed
the measurement. While waiting for the Santo Domingo, party to get ready for work,
Lieutenant Laird determined the latitude of Port Plata, and also made magnetic
observations.
As soon as the longitude observations were finished, Commander Rockwell
proceeded in the Yantic to Port Plata, took Lieutenant Laird and party on board, and
sailed for Curaqao, arriving on January 1 7.'
The authorities at Curaqao took special pains to facilitate the work, and Lieuten-
ant Laird was ready for observation on the 20th. No bad weather was encountered
at either place, and the longitude measurement was completed in six consecutive nights,
ending January 25.
It had been intended that Lieutenant Laird should remain at CuraQao while
Lieutenant Norris proceeded in the Yantic to La Gruayra, but as it was particularly
desired by the Hydographic Office that magnetic observations should be made at the
latter place, it was finally decided that Lieutenant Norris should remain at Santo
Domingo. Lieutenant Laird was directed to proceed to La Guayra after finishing the
magnetic and latitude work at Curasao. The cables were to be connected at Curasao,
and the measurement made direct from Santo Domingo.
This plan was carried out successfully. Lieutenant Laird reached La Guayra on
the 2d of February, and was ready for work on the 6th. Some defect in the con-
nections prevented the exchange of signals on that niglit; on the 7th, 8th, loth, and
1 1 th the work was satisfactory, and the measurement was completed. On the- 9th no
signals were exchanged on account of the failure of the operator at Curasao to connect
the cables together.
As soon as he had completed the latitude and magnetic work at La Guayra,
Lieutenant Laird embarked on the Yantic, which was in readiness Santo Domingo
was reached on February 2 1 ; Lieutenant Norris and party were received on board,
and the ship sailed the same evening for Key West. This port was reached two
weeks later.
By directions from the Navy Department, the instruments were shipped to Wash-
ington by steamer, and the officers of the expedition proceeded to the same place by
rail, arriving on March 1 1 .
As has been said before, the members of the expedition, throughout the progress
of their work, were the recipients of many acts of courtesy and kindness. To mention
all to whom they are indebted for such acts would be to make a list of nearly everyone
met. Special acknowledgment is due, however, to the president and officials of the Mexi-
can and Central and South American cable companies in New York. These gentlemen,
IN MEXICO, CENTRAL AMERICA, THE WEST INDIES, ETC. 15
knowing the difficulties to be encountered in the countries where their Hnes were
situated, sent instructions to all their stations in Mexico and Central America to aid
in the work in every possible way ; consequently, upon arrival, the party found in
every case that all difficulties had been swept away as if by magic. The employes
were never weary in assisting by all means in their power, and by their hearty co-
operation many otherwise serious obstacles were easily surmounted. Special thanks
are due to Mr. Cummings, general manager of the companies in the city of Mexico ;
to Mr. Henry Millard, manager at Vera Cruz ; to Mr. F. W. Carpenter, at Coatzacoal-
cos; to Mr. Atherton, at La Libertad, and to Mr. James Tiddy and Mr. Kelley, at
San Juan del Sur.
To Mr. F. Van Valkenburgh, isthmus superintendent of the lines, the debt of the
expedition is still greater, as by his aid what promised to be the most difficult part of
the journey — the crossing of the isthmus — was rendered comparatively easy.
Special thanks are also due to the officials and employes of the French companies
in the West Indies, who granted all necessary facilities, and cheerfully aided in all
ways in their power. • Prominent in courtesy where all were courteous, may be men-
tioned M. Raymond Wallut, administrateur of the Soci^tci Francjaise des Telegraphes
Sous-Marins, and M. Gassend, the resident director in Santo Domingo of the Com-
pagnie Teldgraphique des Antilles. At Santiago de Cuba, upon the breaking out of
yellow fever, there was some temporary confusion in the French cable office, owing
to the death of the manager, M. Pouyds; and the thanks of the expedition are due to
Mr. Beall, of the English cable company, who generously offered his services as an
operator, and contributed greatly to the success of the work,
Special acknowledgment is to be made to His Excellency N. Van den Bran-
denhof, governor of Cura9ao, who manifested much interest in the work, and materi-
ally assisted in many ways.
As was to be expected, the consular representatives of the United States were
uniformly zealous in aiding the party to carry out its work. Special mention must be
made, however, of Mr. Otto E. Reimer, consul at Santiago de Cuba, who, by his
energy, zeal, and knowledge of the country and people, aided most materially in bring-
ino- the work at his station to a successful termination. Thanks are also due to Mr.
Albert Langner, consul at Tehuantepec; Mr. Emile Courtade, consul at La Libertad;
Mr. Holmann, consul at San Juan del Sur; Mr. Thomas Simpson, consul at Port
Plata; Mr. Juan A. Read, vice-consul at Santo Domingo ; Mr. L. B. Smith, consul
at Curasao, and Mr. W. S. Bird, consul at La Guayra. The party at Santo Domingo
is also indebted in many ways to Mr. Nathan Appleton, of Boston, who at that time
was engaged in building a railroad from the city to the interior of the island.
Last, but by no means least, the kindness with which the members of the party
were received on board the Yantic by Commander Rockwell and his officers, and the
valuable assistance which they cheerfully rendered on all occasions were fully appre-
ciated at the time, and will always remain among the most pleasant recollections of
the expedition.
16 TELEGEAPHIO DETERMINATION OF LONGITUDES
DESCRIPTION OF THE STATIONS.
VERA CRUZ.
The site selected for the observatory at Vera Cruz was that used by Lieutenant-
Commander Davis in 1883. (See Plate.)
The pier, inside Fort Conception at the north end of the city, was found standing,
but in bad repair. It was rebuilt and capped with a marble slab. The center of the
pier was 39 feet S. and 20.5 feet E. (true) of the gun pivot in the northwest salient of
the fort. From the center of the pier the vane of San Juan de Ulua light-house
bore N. 63° 45' 20" E. (true), distant 3,488.2 feet.
Connection was «iade with the telegraph office by means of an iron wire stretched
on insulators from the parapet of the fort over the roof of the railway station and
thence to the office.
The pier was left standing, but can not be considered as a permanent mark.
COATZACOALCOS.
The observatory was placed in a street near the center of the town, about 500
yards from the landing place on the river. (See Plate.)
The pier was built of bricks and Portland cement, the latter brought from Vera
Cruz. The light-house was in plain sight from the observatory. The magnetic
observatory was placed about 50 yards north of the transit pier and in the same
meridian. A telegraph line extended to the cable office about a third of a mile distant
From the center of the transit pier the center of the light-house bore N. 15° 58' E.
(true), distant 1,013.8 feet.
At the conclusion of the work the pier was left standing, and it is hoped that it
may remain as a permanent mark.
SALINA CRUZ.
•
The transit pier was built of bricks and mortar of native manufacture, by a native
bricklayer. It was situated in the northeast corner of the grounds belonging to the
cable company, at a distance of about 50 yards from the cable house. (See Plate.)
To the nortli was a low range of hills, and to the south, about 200 yards distant, was
the Pacific Ocean. The magnetic observatory was placed in the meridian of the
transit instrument, about 30 yards to the south. From the center of the transit pier the
observation point on Morro Salina bore S. 65° 10' W. (true), distant 7,395.1 feet.
The transit pier was left standing and is not likely to be disturbed.
LA LIBEETAD.
The observatory was located near the center of the small yard, in front of the
telegraph office, between that building and the beach. (See Plate.) Before finally
deciding upon this site, experiments were made to ascertain whether or not the heavy
surf on the beach, only ,20 or 30 yards away, would produce sufficient vibration of the
IN MEXICO, OENTBAL AMERICA, THE WEST INDIES, ETC. 17
ground to affect the instruments. It was found that there was no perceptible effect,
and the pier was built and the observatory and instruments set up. A double wire
was extended to the telegraph office only a few yards distant.
A careful reference was made by triangulation to the site of the old pier used in
1 884 by Lieutenant Laird, with the following result. From the center of the new pier
the old pier bore N. 9° 13' W. (true), distant 279.8 feet.
This pier was left standing and is not likely to be removed
SAN JUAN DEL SUE.
The telegraph station at this point was shut in by trees to the north and by hills to
the south. A convenient point was found in the yard, however, where by cutting down
a tree a good view of the northern sky was obtained. The pier was built of brick
and cement. A strong north wind was blowing most of the time, and it was necessarj'
to secure the observatory tent by additional guys on the weather side.
The old observation spot marked on the chart could not be exactly identified, so
reference was made by triangulation to the signal station and light-house on a hill
south of the harbor. From the center of the transit pier the signal station bore S. 44°
51' W. (true), distant 2,991.4 feet.
The pier was left standing and will probably remain as a permanent mark. (See
Plate.)
SANTIAGO DE CUBA,
The station at Santiago de Cuba was in the rear of the Blanca Battery, about
half a mile to the southward of the city. (See Plate.) This site had been used by
Lieutenant-Commander Green, U. S. Navy, in 1875. The pier used by him had been
removed, but near the same spot another had been erected by Spanish officers. This
latter was used.
Through the courtesy of the manager of the West Indian and Panama Cable
Company at this station the line extending from the cable hut to their office was used
for connecting with the French telegraph office.
A loop was run from the observing tent to the cable hut, about 125 yards distant,
and by means of an arrangement of switches the telegraph instruments in the tent could
be connected up at pleasure. Every evening the line was connected with the cable of the
Socidtd Fran9aise des T^ldgraphes Sous-Marins at the office and the signals exchanged
from the observing tent. The sheathing of the West Indian and Panama cable was
used as an earth.
From the center of the pier the southeast corner of the battery inclosure bore N.
45° 44' W. (true), distant 105. i feet.
The pier was left standing, and, as it is in the grounds connected with the fort,
will probably remain as a permanent mark.
ST. NICOLAS MOLE.
The observatory was located in the middle of one of the streets near where it
terminated on the beach on the north side of the village. The outlook to the north
21124— No. 97 2
18 TELEGRAPHIC DETERMINATION OF LONGITUDES
was over the bay. The pier was built of bricks and cement. A double wire was
extended to the telegraph office, about 40 feet distant. (See Plate.)
By triangalation the flagstaff of Fort St. Greorge was found to bear from the pier
N. 89° 29' W. (true), distant 1,117.5 feet.
This pier was left standing and will probably remain for some time. Although it
is in the middle of a street there is no traffic of any kind to interfere with it.
POET PLATA.
The observatory was placed on the promontory to the north of the city. (See
Plate.)
The pier was built of brick and cement. Connection was made with the telegraph
office, about 320 yards distant, by means of an insulated wire stretched from house
to house.
From the center of the pier, the light-house near the signal station bore N. ^^°
28' 15" W. (true), distant 565.4 feet, and the cross of the Catholic church bore S. 1°
28' 15" E, (true).
The pier was left standing, but can not be considered as a permanent mark.
SANTO DOMINGO CITY.
One of the most notable features in this place is the large square signal tower,
on the right bank of the Ozama River near its mouth. It was built by the first
Spanish settlers during the time of Columbus. A room is shown in the building which
is said to have been the place of confinement of Columbus before he was sent as a
prisoner to Spain. At the foot of the tower is a large parade ground, surrounded on
the landward sides by extensive barracks now in a more or less ruinous state. On this
parade ground a short distance south and west of the tower was located the transit pier.
(See Plate.) It was an excellent situation, having a clear north and south view, and
very quiet and free from interruption. The pier was built of bricks and cement. A
wire was extended along the barrack walls to the telegraph office.
The reference point given on the Hydrographic Office Chart is the iron light-house
on the south side of the city, about a quarter of a mile distant from the mouth of the
river. The bearing and distance of this light- house from the signal tower were
obtained from a civil engineer who had made a careful survey of the city. The
bearing and distance of the tower from the transit pier were measured directly with
the following results : From the transit pier the southwest angle of the tower bore
N. 50° 48' E. (true), distant 219.4 feet. From the pier the Hght-house bore S. 43° 2'
W. (true), distant 1,583.2 feet.
The pier was left standing, and will probably not be removed.
CDKAgAO.
The site selected for the observatory at CuraQao was in the open space in front of
the governor's mansion. (See Plate.) The center of the pier was 55 feet 3^ inches
W. (true) from the inner western angle of the entrance gate to the inclosure, and the
IN MEXICO, CENTRAL AMERICA, THE WEST INDIES, ETC. 19
distance in the meridian liae north to the edge of the sea jvall was 21 feet, 7^ inches.
The vane on the RifF Fort hght-house bore from the center of the pier S. 80° 45'
30" W. (true), distant 1,148.7 feet.
Connection was made with the telegraph office by means of an insulated wire.
At the conclusion of the work at Curasao the pier was removed.
LA GUAYEA.
The observatory was situated near the northeast corner of the vacant lot to the
eastward and adjoining the market. The railroad to Macuto passed between the obser-
vation spot and the sea wall. (See Plate.)
No direct measurement to the light-house in present use could be made, so the
position of the observation spot was referred to the light-house situated about 100 yards
to the eastward of the shore end of the breakwater.
The center of the pier was 119 feet i inch S. (true) from the outer face of the
sea wall, and the above-described light-house bore N. 72° 17' W. (true), distant
1,212.8 feet.
The pier was built of the usual material, and connection made with the telegraph
office as at the other stations.
• Upon the conclusion of the work all traces of the pier were removed.
DESCRIPTION OF THE INSTRUMENTS.
MERIDIAN INSTRUMENTS.
At all the stations occupied by the expedition, two of the meridian instruments
made by Stackpole, of New York, for the Transit of Venus Commission in 1874 were
used.
These instruments have a focal length of 30 inches, and an aperture of 2i inches.
The eyepiece is at the end of the axis, so that the observer always retains the same
position. They possess the advantage of great stability; when once adjusted in the
meridian there is no necessity of readjusting in azimuth, under the ordinary conditions.
The zenith telescope level and micrometer attached to the instrument enabled it to be
used for the latitude determinations. These instruments were originally fitted with
reticules of spider lines, but on a former expedition the danger of injury in transportation
was so clearly shown that these were replaced by ruled glass diaphragms, the lines
of which were arranged in groups as follows : One, three, seven, three, one. The middle
group of seven was the only one used in observing transits for time.
A spare transit, a combined transit instrument and zenith telescope, designed by
Mr. J. A. Rogers in 1873 for the U. S. Hydrographic Office, was taken with the advance
party of the expedition to be used in case of accidents.
CHRONOMETERS.
The time pieces used by the expedition were four break-circuit sidereal chronom-
eters, and two break-circuit mean time chronometers, made by Negus.
20 TELEGEAPHIC DETERMINATION OF LONGITUDES
The break-circuit sidereal chronometers are the same that have been used on all
the exi)editions sent out by the Bureau of Navigation since 1874. They have given
the greatest satisfaction, and the rates under the trying circumstances of marked
change in temperature and condition have been generally regular.
CHEONOGEAPHS.
Two cylinder chronographs, manufactured by Fauth & Co., were used. These
instruments are easily regulated, of hght weight, can be wound without being stopped,
and by pushing a button the speed of the cylinder can be doubled.
INK WEITEES.
Each party carried a Siemens polarized ink writer. These instruments were
originally purchased for use on the Brazilian land lines in 1879. Since then they
have been carried on every expedition sent out by the Hydrographic Office. They
have been found most useful, not only as a telegraph instrument, but also have been
made to serve as a chronograph and used as a polarized relay on both land lines and
cables where the feeble current demanded an extremely delicate relay.
BATTEEIES.
Each party carried twenty-four gravity cells made of vulcanite packed in boxes
containing twelve each, together with a supply of coppers, zincs, and copper sulphate.
PORTABLE OBSEKVATOEIES.
The wooden observatories that had been in use on all previous expeditions were
used at the stations of Vera Cruz and Coatzacoalcos. These huts were made to put
together in sections, each side and top being composed of two sections ; the sides were
bound together with cross pieces held in place by iron knees The sections of these
observatories were too bulky to be packed over the mountains, so they were shipped
to the United States after the conclusion of the work at the above-named stations.
At the other stations of the Mexico-Central American expedition, two observing tents,
designed by Lieut. J. A. Norris, were used. They proved so satisfactory that the
wooden observatories were discarded and the tents alone taken on the West Indian
expedition.
The parts of the frame of these tents, together with the connections, were inter-
changable ; the whole set on a solid foundation of sills floored over. A slit i foot wide,
commencing 3 feet from the floor extended across the roof from side to side, 4 feet
from one of the ends. This arrangement gave sufficient sweep for the transit instrument
in both azimuth and altitude, and allowed ample space at the other end of the tent for
the tables, chronometers, chronograph, and telegraph instruments. Three tables,
capable of being taken apart for packing, were furnished with each tent.
All metal fittings were made of composition, in order that the tents could be used
to cover the magnetic instruments. The severe strain these tents have been put to
whilst in service shows that they are admirably adapted for the work.
IN MEXICO, CENTRAL AMERICA, THE WEST INDIES, ETC. 21
Each party was supplied with a wall tent to be used as a habitation when neces-
sary. One of the wall tents, worn out during the first season's work, was replaced
through the courtesy of the War Department by a regulation hospital tent.
TRANSIT PIEES.
A pier of brick and cement, 24 inches by 22 inches and 36 inches high, was built
at each station as a foundation for the transit instrument.
On this and previous expeditions it was found necessary at some of the stations
for the officers to build the pier themselves. To facilitate matters, bricklayer's tools,
a marble slab, and, when there was a probability of not being able to procure
material, bricks and cement were carried as part of the outfit.
MISCELLANEOUS ARTICLES.
Besides the articles above enumerated, each party carried an aneroid barometer,
a thermometer, a plug switch-board, several relays of different resistance, detector
galvanometers, a break-circuit chronograph key, a supply of insulated copper wire,
screw posts, binders, insulators, a theodolite, a surveyor's chain, and a supply box
containing tools, lanterns, oil cans, etc.
The party in charge of Lieutenant Norris carried a complete photographic outfit.
The party in charge of Lieutenant Laird carried the latest pattern of Kew
unifilar magnetometer and a Barrow dip circle.
INSTRUMENTAL CONSTANTS.
The values of the flexure and inequality of pivots and of the revolutions of the
micrometer screws of transit instruments Nos. 1503 and 1504 were obtained from
Prof. William Harkness, U. S. Navy, of the Transit of Venus Commission. He also
furnished the original recorded values of the divisions of the levels, but it was found
that some of the scales had been interchanged, while others had been broken and
replaced by new ones, so that it was necessary to redetermine these values. The
striding level tube of No. 1504 used by Lieutenant Laii'd caused a great deal of
trouble by leakage. It was refilled several times, but could not be sealed tight enough
to prevent the escape of the liquid. In consequence of this, Lieutenant Laird was
several times compelled to substitute the tube of the zenith telescope level for the
defective one, sometimes using it with its own scale and sometimes with the other.
From this cause several different values of the level divisions enter into his work.
The values of all the levels were determined by observations of a terrestrial object,
some made in the field during the progress of the work and others after returning
to Washington. These were verified by measurements made with the mural circle at
the Naval Observatory at Washington.
The values adopted are as follows :
LEVELS, TRANSIT NO. 1503. s. "
Striding level i division = 0.076 = 1.14
Zenith telescope level i division = 1.53
22
TELEGRAPHIC DETERMINATION OP LONGITUDES
LEVELS, TRANSIT NO. 1504.
Striding level with proper scale i division — 0.091 r= 1.36
Zenith telescope level with proper scale i division rz 1.35
Zenith telescope tube with striding scale ^ . i division = 0.084 — ^ 26
Striding tube with zenith telescope scale i division :zi 1. 14
FLEXURE AND INEQUALITY OF PIVOTS.
No. 1 503. Flexure (./) + inequality of pivots, circle East z= + 0-3 ' 5
No. 1 504. Flexure (/) + inequality of pivots, circle East . - = + 0.283
MICROMETER SCREWS.
No. 1 503 - I revolution ::; 68.89
No. 1 504 I revolution == 69.36
EQUATORIAL THREAD INTERVALS.
In the following table the equatorial intervals from the mean of the threads are
given. The threads are numbered in the order in which they would be crossed by an
equatorial star, in the position of the instrument circle East. These intervals were
determined by many observations of the transits of circumpolar stars. They were
determined separately for each season's work, but as will be seen differ only slightly :
Threads.
Transit No. 1503.
Transit No. 1504.
First season.
Second season.
First season.
Second season.
I
-I3-'8S4
— 9. 231
— 4. 580
+ 0.008
+ 4- 632
+ 9- 238
+ 13-832
s.
—13-834
— 9.251
— 4- 636
— 0. 001
+ 4-635
+ 9- 250
+ 13- 839
8.
-12.195
— 8.064
— 4- 058
+ 0.032
+ 4. 066
+ 8.091
-)-I2. 164
8.
—12. 144
— 8.054
— 4. 024
+ 0-034
+ 4-007
+ 8.004
+ 12.167
II
III
IV
V
VI
VII
METHODS OF OBSERVATION.
OBSERVATIONS FOR TIME.
Upon arrival at a station the first care was to select a suitable site for the observa-
tory. It was necessary that there should be a clear view of the heavens in the line
of the meridian from the zenith to as near the horizon as possible. It was desirable
that the situation should be secluded to avoid annoyance from idle and curious inhab-
itants, and to obviate the necessity of a long telegraph wire it was well to get as near
as possible to the telegraph office. A site with these advantages being found, permis-
sion to use it was obtained from the proper authorities. A meridian line was then laid
m MEXICO, CENTRAL AMEEICA, THE WEST INDIES, ETC. 23
out by compass and the transit pier was built. As soon as this was completed the
observatory was erected over it and the instruments were mounted, batteries were set
up, and the chronometer and chronograph connections were made. The level and
collimation of the transit instrument were adjusted and a wire was extended to the
telegraph office. On the first clear evening the transit was set in the meridian by
repeated observations of zenith and circumpolar stars, and the chronometer correction
was obtained.
All preparations being complete at each end of the line, the method of work was
generally as follows : If the weather was clear, and likely to remain so, the observer
would begin work at any convenient time after dark, usually from 7 to 8 p. m. If it
was likely to be cloudy, observations were begun as soon after sunset as possible.
Five or six time stars and two or three circumpolars were observed, the striding level
being frequently applied and read. Then the instrument was reversed in the Y's
and about the same number of stars observed in the new position. If the nights
were clear this could be done within less than two hours, but when the weather was
cloudy the observations would frequently extend over six or eight hours.
From the terms of the agreement with the telegraph companies the lines could
be used for the exchange of time signals only after their day's work was finished. On
the lines in Mexico and Central America this was generally quite late at night, usually
between 11 p. m. and midnight, except on Sunday, when the work was finished earlier.
On the lines in the West Indies the work was generally over by 8 p. m.
On the line between Vera Cruz and Coatzacoalcos and thence to Salina Cruz the
instruments used were the ordinary Morse relay and sounder, and between these places
the signals were exchanged automatically. Connections were made at both ends of
the line in such a way that the chronometer at one observatory would register its
second beats upon the chronograph at the other, which chronograph was at the same
time registering the beats of its own chronometer. This was done for a certain number
of minutes and the connections were then changed by means of switches, so that the
operations were reversed. For this purpose the telegraph instruments and connections
were in the respective observatories, and the wire leading therefrom was simply
connected at the office with the main line. One of the telegraph operators would do
this and then go to the observatory to do the necessary talking.
Where mirror signals were used the arrangement was diff"erent. The mirror was
set up in the telegraph office and connected to the key and to the main line in the
regular way. This key was in its main features like the ordinary cable key with two
levers, and could be used for the regular telegraphic work. It had, however, an extra
contact point which was connected with the wire leading to the observatory in such a
-way that by pressing one of the levers of the key an impulse would be sent over the
cable, and at the same instant a mark would be made on the chronograph in the
observatory, thus recording the exact time at which the impulse was sent.
The observer at the other end of the line would see the result of this impulse in
the form of a movement of the light reflected from his mirror, and would record the
time of his perceiving it by pressing a key connected with the chronograph circuit in
his observatory.
24 TELEGRAPEIO DETERMINATION OF LONGITUDES
The exact procedure adopted was for the first observer to press his cable key at
intervals of two or three seconds for fifteen times, then a pause of eight or ten seconds
and another set of fifteen pressures, and so on until seventy-five signals had been sent
in groups of fifteen. The other observer recorded all this on his chronograph, and
then in his turn sent seventy-five signals in the same way. The next day each
observer sent to the other by telegraph the even minute which preceded the first signal
that he sent, and also the one that followed the last signal.
It was found that the agreement between the signals received by an observer was
generally quite close, not often differing from the mean by as much as a tenth of a
second. A few discordant ones would usually be found, generally at the beginning
of the groups of fifteen; these were rejected, and the final result would be from the
consideration of about seventy signals sent each way.
For a more full description of the methods of exchanging signals the reader is
referred to the report of the longitude expedition of 1883-84, mentioned in the foot-
note on page 5.
LATITUDE OBSERVATIONS.
For latitude work an observing list was prepared showing the pairs of stars
available, in the order of their right ascension, giving their zenith distance and the
setting of the instrument, and the approximate time of culmination.
Stars were selected which were within 25° of the zenith, but those used were
generally much nearer than that. The stars of a pair did not differ in zenith distance
more than twenty minutes of arc, and were from two to fifteen minutes apart in right
ascension. On clear nights latitude observations were generally made after the time
work had been finished. When this was impracticable a few nights were employed
after the conclusion of the longitude work. The method of observation was to set the
instrument at the mean zenith distance of a pair of stars just before the first one
entered the field; the zenith telescope level was adjusted so that the bubble was brought
to the middle of the tube. When the star appeared it was followed by the micrometer
thread and bisected as it crossed the middle transit thread. The micrometer and level
were then read and recorded and the instrument reversed The second star was
observed in the same manner, using the same micrometer thread. The chronometer
time of each transit was also recorded. This constituted one observation for latitude,
and as many were made at each station as circumstances would permit.
TRIANGULATION.
From the nature of the conditions governing the selection of sites for the observ-
ing stations, they were frequently placed in secluded localities, and as the piers could
not generally be considered as permanent, it was necessary to reduce the latitude and
longitude obtained by observation to some prominent and well-established landmark.
At most stations the point chosen was that fixed on the Hydrographic Office Chart of
the place, or that given in the Hst of positions published by the Hydrographic Office.
In making these measurements the bearing was usually obtained by reference to
a meridian mark established with the transit, and the distance was either measured
directly, or else the ordinary method of measuring a base line and angling from its
IN MEXICO, CENTRAL AMERICA, THE WEST INDIES, ETC. 25
ends with a theodolite was employed. The bearing and distance at each station of
the chosen landmark from the center of the transit pier are given in the description
of the stations.
PERSONAL EQUATION.
As in most of the longitude measurements made under the direction of the
Bureau of Navigation, no correction for personal equation has been introduced in the
following computations. The observers had no method of obtaining a value for this
changeable quantity while in the field, and it was, therefore, considered better to omit
it altogether rather than put in an arbitrary quantity obtained from observations made
before the starting of the expedition or after its return. If circumstances had permitted
the exchange of stations by the observers in the middle of each measurement, it would
have been the best way of eliminating error from this cause, but it was manifestly
impossible to do so, from lack of time and from other considerations. As far as
possible the observers were located alternately east and west of each other, thus prob-
ably diminishing, if not eliminating, the error at every second station. The measure-
ments made between Santiago de Cuba and Curasao, as also between Santiago de
Cuba and La Guayra, were four in number, Lieutenant Norris being alternately east
and west of Lieutenant Laird; consequently the longitudes of Cura9ao and La Guayra,
as derived from Santiago de Cuba, may be considered substantially free from the
effects of personal error. In the measurement between Vera Cruz and La Libertad,
Lieutenant Norris was first east, then west, and then east again of Lieutenant Laird;
hence, the longitude of La Libertad, as derived from Vera Cruz, is liable to correction
for the difference of personal equation between Norris east and Laird west. San Juan
del Sur is in the same category with La Libertad, the longitude being derived by the
same number of measurements from Vera Cruz.
METHODS OF REDUCTION.
REDUCTIONS OF TIME OBSERVATIONS.
The reduction of all the time observations was made by Lieutenants Norris and
Laird and Ensign Garrett. Lieutenant Norris reduced xill his own observations;
Lieutenant Laird reduced the observations made by him during the work of the first
season, while Ensign Garrett reduced those made by Lieutenant Laird during the last
season.
The chronograph sheets were read twice and compared with the record. To the
observed time of transit of each star reduced to the mean of the threads were applied
the flexure of the axis and inequality of pivots, level, azimuth, collimation and diurnal
aberration, and hourly rate The difference between the reduced meridian passage
of each star and its right ascension gave a value for 'the clock correction at the epoch
to which all the observations of that night were reduced.
26 TELEGEAPHIO DETERMINATION OF LONGITUDES
Each star then furnished an equation of condition for the final reduction to de-
termine the corrections to be applied to the assumed values of the azimuth and col-
limation constants and the mean clock correction. These equations were solved by
the method of least squares, and with the corrected values of the collimation and
azimuth constants, a new clock correction for each star was obtained. The mean of
these corrections, rejecting circumpolar stars, was the finally accepted clock correction.
The weight unity was assigned to all time stars and the circumpolars were weighted
for declination.
The hourly rate was obtained graphically by the construction of a curve. For
this purpose all the time observations made at each station were reduced and the differ-
ences between the clock corrections on the several nights deduced from the time stars
alone, gave the data for determining the known points of the curve. The middle time
of the signals sent and received at each station was the epoch of comparison; and the
middle time of the observed times of transit of clock stars was the epoch of reduction
on the same night. The clock correction was reduced from the epoch of reduction to
the epoch of comparison by applying the product of the hourly rate, taken from the
curve, multiplied by the elapsed time expressed in hours.
EEDUCTION OP LATITUDE OBSERVATIONS.
The reduction of the latitude observations was made by Ensigns Wood and
Wilson; Ensign Wood reducing those made during the first season's work, and Ensign
Wilson the remainder.
The stars used were originally selected from the British Association Catalogue.
In reducing the observations the declinations were taken from the Nautical Almanac,
the Berliner Jahrbuch, the Catalogues of Newcomb, Safi'ord, the Coast Survey, and
the various Greenwich lists.
The following notation was adopted: Let
q> z=. the latitude of the station ;
<5„ and d, =z the apparent declinations of the northern and southern stars ;
„ and I?, zz the zenith distances of the northern and southern stars ;
„ =: the zenith distance corresponding to the zero reading of the mi~
crometer;
M„ and M^ = the micrometer readings for northern and southern stars expressed
in revolutions of the micrometer;
TO„ and m, = the micrometer readings for northern and southern stars expressed
in seconds of arc ;
m'n and m', = the micrometer readings for northern and southern stars expressed
in minutes of arc;
L„ and L, z=. the state of the level for northern and southern stars expressed in
divisions of the level ;
4 and I, — the state of the level for northern and southern stars expressed in
seconds of arc; and
r„ and r, z= the value of the mean refraction for 5„ and S,.
In Talcott's method either of two cases may occur.
IN MEXICO, CENTRAL AMERICA, THE WEST INDIES, ETC. 27
Case I. When the circle is east for the northern star and west for the southern star,
the micrometer reading increases as the zenith distance increases.
Case II. When the circle is east for the southern star and west for the northern
star, the micrometer reading increases as the zenith distance decreases.
Hence in case I,
.?„ = ^„ + m„ + Z„ + r„
.?, n .?„ + w, + Z, + r,
^n — ^. = (m„ - m,) + (I - Z.) + (r„ _ r,)
and in Case II,
^n = ^0 — ^n — k — r„
^, = ^0 — m, — I, — r,
„ - ^. z= -{m„ - m,)—(l - l,)-{r^ — r,)
Since
Tauri .
7
4 9 30-421
+0.315
— 0. 046
— 0. 044
+0. 214
— 0. oig
30.841
3 21 9.072
21.771
— 0. 121
>
Camelop. 11.
E.
7
4 27 0.457
+0. 584
— 0. 14S
+0. 697
+0. 648
— 0. 001
2.237
3 38 40.076
— 48[22. 161]
X
Tauri
W.
7
4 42 54- 161
— 0. 321
+0. 086
—0. 032
-0. 257
+0. 016
53-653
3 54 31-829
— 48 21. 824
— 0. 068
V
Tauri ....
7
4 45 37-453
— 0. 309
+0.091
— 0. 065
— 0. 252
+0.018
36- 936
3 57 15- 119
21.817
-0.075
0'
Eridani
7
4 54 49. 297
-0. 287
+0. log
— 0. 129
— 0. 253
+0. 028
48. 765
4 6 26. 944
21.821
-0.071
y
Tauri . .
7
5 ' S°-944
— 0. 326
+0. 143
—0.015
— 0. 260
+0. 035
50. 521
4 13 28,681
2 I . 840
— 0. 052
6
Tauri
7
5 4 54- 360
— 0. 330
+0. 151
— 0. 005
— 0. 263
+0. 038
53-951
4 16 32.095
21.856
—0. 036
a
Tauri
7
5 17 55.621
-0. 328
+ 0.175
— 0. 010
—0. 262
+0.052
55- 248
4 29 33-219
22.029
+0. 137
Groom. 848 . .
7
5 28 18.807
—0. 685
+0.379
+ 1.024
—I. 019
+0.056
18.562
4 33 56-838
[21.724]
T
Tauri . .
7
5 23 57-481
-0. 341
+0. 190
+0.026
— 0. 272
+0.058
57.142
4 35 35-138
22. 004
■\-0. 112
^
Camelop.
7
5 31 24.357
-0. 843
+0. 492
+0. 550
— u. 621
+0. 066
24. 001
4 43 2. 102
[21.899]
i
Tauri . . .
w.
7
5 33 15-330
-0. 332
+0. 196
+0. 003
— 0. 265
+0. 068
15.000
4 44 53- 036
— 48 21. 964
+ 0.072
Assuming a' ^= — o. 437 + da' circle E.
a" = — o. 327 + da" " W.
c ^ + o. 259 + dc " E.
AT = -oii48"'2i». 873+fl'/.
NORMAL EQUATIONS.
-o.3i3+i-979^«'
— 0.016 +2. 554a'a"+ 2.liydc~ o. l^sdt \
+ 0. 662 — o. 705a'«' + 2. iiy da" -\- 22. 68<)dc — o. 840 rt'^ ]
+ 0. 130 + 0. 5lon'a'— o. iSida" ~ o. 840fl'-i- 757
+0. 803
-0. 497
—1.969
+ 1.805
+0. 025
33- 924
2
SI 22.359
[11-565]
u. Ceti
3 44 39- 170
+0. 306
~o. 202
-f 0. 108
+0. 346
+0.031
39- 759
2
56 28. 279
11.480
+0.058
48 Cephei, H. . . .
3 54 28. 164
+0- 735
-0. 541
—1.688
+ 1-573
+0. 044
28. 287
3
6 16.516
[II. 771]
f Arietis. . . .
3 56 41. 966
+0- 336
-0- 253
— 0. 019
+0. 368
+0. 047
42. 445
3
8 31.012
11-433
+0. on
Tauri
4 7 1.067
+0.314
—0. 260
-|-o. 072
+o. 349
+0.061
1.603
3
18 50. 176
11.427
+0. 005
f Tanri . .
4 9 19-923
+0.315
—0. 266
-|-o. 067
+0. 349
+0. 064
20.452
3
21 9.008
11.444
+0. 022
Groom. 716 . .
E.
4 20 42. 986
+0.491
-0. 455
—0. 664
+0- 756
+0. 079
43- 193
3
32 32.042
— 48[ii. 151]
Assuming a' = + o. 303 + da' circle W,
a" = + o. 446 + da" '• E.
c = + o. 364 + dc " E.
AT = — 0l'48'niI».422+(/,^.
NORMAL EQUATIONS.
0= — o. 027 + 3. 5i9$i dt\
+ 0. i52;-j-fl''^ " E. ] + 1.723 — i.297(/a'' + 4. i67a'a"-)-27.592a'f+ -^.Tp^dtX
— o'l 48™ 9". 339 + ^^ L +0.201 + 0.574^/3' — o. 85 1 a'a" + 3.304(/c-+ 15. 677^'^ J
a' ^-\- 0^.058 (circle east) ; a" = + o».o75 (circle west) ; c = o».095 ( + with circle east).
Chronometer No. 1295 at 3'' 22™.5 chron. time, o^ 48" 9'.3i6 j-; o=.oi6fast, losing 08.094 per hour.
whence da'
=
—
050
da"
=
— u
052
dc
=
—
057
dt
=^
—
002
IN MEXICO, CENTRAL AMERICA, THE WEST INDIES, ETC.
35
Transits of Stan observed at Coatzacoulcos, Me.xieo, by Lieut. J. A. Norris, U. S. Navy, wit/i transit No. ijoj, to determine the correction of sidereal chronometer
Negus No. I2gj.
Date.
Name of star.
2
.a
6
Transit over
mean of threads.
Flexure
and in-
equality
of pivots.
Level.
Azimuth.
Aberra-
tion and
coUi-
mation.
Rate.
Seconds
of corr.
transit.
R.A.
Chronometer
corrections.
V.
1SS9.
Jan. 10
V
Pisciuni ....
w.
7
//. m. s.
2 23 46. 130
— 0. 308
s.
—0. 025
+0. 028
J.
— 0. 184
s.
— 0. 067
s.
45-574
h. m. s.
I 35 38-478
h. m. s.
— 48 7.096
s,
+0. 038
Pisciuni
7
2 27 38- 743
—0.314
— 0. 030
-|-o. 020
— 0. 185
—0.061
38
173
I 39 31- 149
7.024
— 0. 034
E
Cassiop, . .
7
2 34 32. 707
— 0. 492
-0. 053
— 0. 191
— 0. 405
-0.051
3'
515
I 46 24. 236
[7. 279]
,i
Arietis . . .
7
2 36 37-509
— o- 335
— 0. 038
— 0. 005
-0- 195
— 0. 048
36
888
I 48 29.771
7. 117
+0- 059
50
Cassiop. . .
7
2 42 5.921
-0. 598
— 0. 076
-0.316
-0. 589
-0. 039
4
303
I 53 57-382
[6.921]
U
Arietis
7
2 49 2. 004
— 0- 341
— 0. 048
— 0. 01 1
— 0. 199
—0. 029
I
376
2 54. 333
7.043
— 0.015
Ceti . ...
7
2 55 >3-949
—0.314
— 0. 049
-|-o. 021
— 0. 185
— 0. 019
3
403
276. 388
7.015
— 0. 043
ti
Arietis . ...
7
304. 143
— 0. 334
— 0. 056
—0. 003
— 0. 194
— 0. 012
3
544
2 II 56.488
7.056
—0. 002
I
Cassiop. . . .
w.
7
3 8 3-357
-0. 530
-0. 097
— 0. 234
— 0. 466
0. 000
2
030
2 19 55-085
— 48 [6. 945]
• •
36
H. Cassiop. . .
E.
^
3 IS 36-493
^-o. 607
— 0. 403
— 0. 470
+0.471
+0. 012
36
710
2 27 29. 603
— 48 [7. 107]
V
Arietis . . .
7
3 20 37-117
+0. 338
— 0. 238
— 0. 01 1
H-o. 154
+0. 019
37
379
2 32 30-320
7.059
+0. 001
Br. 366 . . .
7
3 23 23. 643
+0. 534
— 0. 390
— 0. 346
+0.371
+0. 023
23
835
2 35 16.947
[6. 888]
35
Arietis . . .
7
3 25 2. 643
+0- 350
— u, 260
—0.031
+0. 161
-|-o. 026
2
889
2 36 55-848
7.041
— 0. 017
H-
Ceti
7
3 27 2.866
+0.316
^0. 240
+0. 026
+0. 145
+0.029
3
142
2 38 55- 987
7- 15s
+0. 097
41
Arietis . . .
7
3 31 33-401
+0. 349
— 0. 274
— 0. 030
-|-o. 160
+0. 036
ZZ
642
2 43 26. 594
7.048
—0. 010
47
Cephei, H.
7
3 39 29.214
+0- 803
— 0. 662
— 0. 804
+0. 748
+0. 048
29
347
2 51 22. 171
[7- 176]
a
Ceti .
7
3 44 35-011
+0. 306
— 0. 255
+0. 044
+0. 143
+0.056
35
304
2 56 28. 256
7.048
— 0. 010
(S
Arietis ... .
E.
7
3 53 23-306
+0. 344
— 0. 2S2
— 004
+0. 152
+0. 069
23
585
3 5 16.587
— 48 6. 998
— 0. 060
Assuming ii' \-o. i2g-\- da' circle W.
a" = + o. 191 +53m58».ii9 -f-aV. (^ -f-o. 026-|- i. 553a'a' — o.^i6da''-\- i. 2^0 dc -\- i^. yoi dt j dt = -|- o. 008
a'^-f- o',076 (circle east); a" = — o».oi7 (circle west); f = 0^.404 ( -f- with circle east).
Chronometer No. 1295 at 9'' 48">.8 cliron. time,o'' 53"' 58'. 103 -|- o''.oi7 fast, losing o». 188 per hour.
Feb. 10
(! Orionis .
54". 257 + dt.
-- — o. 482
+ o. 069
NORMAL EQUATIONS.
4. 298 da'
-4. ^idda'
O. 120(/ 53" 54". 265 + o'.oi5 fast, losing o''.i78 per hour.
IN MEXICO, CENTRAL AMERICA, THE WEST INDIES, ETC.
37
Transits of stars olisci-'t-d at Salina Cr,
jViwicfl, by Lieut. J. A. Norris, U. S. I\lmiy,vfith transit No. 1503, to determine the correction of sidereal chronometer
Negits No. i2g^.
Date.
Name of Star.
Transit over
mean of threads.
Flexure
and in-
equality
of pivots.
Level.
Azimuth.
Aberra-
tion and
colli-
mation.
s.
+0. 435
Rate.
Seconds
of corr.
transit.
R. A.
Chronometer
correction.
V.
1SS9.
Feb. 1 1
—--,
Ononis . .
E.
7
//. ni. s.
5 42 17-570
s.
+0. 306
s.
~o. 070
— 0. 006
s.
— 0. 170
18.065
h. in. s.
4 48 28. 067
h. m. s.
-0 53 49- 998
s.
—0. 124
10
C.imelop. . .
7
5 47 21.779
-f 0. 456
— 0. 103
+0. 034
+0-877
— 0. 156
22.887
4 53 32- 874
[50.013]
Tauri
7
5 50 17.061
+0. 337
-0. 075
+0. 002
+0. 467
— 0. 148
17.644
4 56 27. 545
50. 099
— 0. 023
"
Ononis . .
7
5 52 2.996
+0. 326
— 0. 072
0. 000
+0.451
— 0. 142
3-559
4 58 13-478
50.081
— 0. 041
,.3
Orionis
7
631- 739
-|- 0. 290
—0. 066
— 0. 010
+0. 4.-10
— 0. 112
2.281
5 9 12.238
50. 043
— 0. 079
'
Orionis . . .
7
6 22 33. 234
+0.317
— 0. 092
—0. 003
+0. 441
-0.057
ZZ- 840
5 28 43.654
50. 186
-|-o. 064
2
5 19
5 24
5 28
5 29
5 31
5 40
5 42
5 49
5 51
5 59
6 I
6 6
6 8
17
569
12
224
12
079
10
637
54
645
43
642
55
949
713
57
946
29
688
9
900
21
197
6
714
41
686
37
707
10
917
-o 53[46.
46.
46.
46.
[45-
46.
46.
-o S3 46-
-u 53 46.
46.
46.
46.
46.
[46.
[46.
-o 53 46.
735]
216
387
332
960]
218
165
127
231
226
170
304
294
238]
361]
220
o. 025
-|-o. 146
+0.091
— o. 023
o. 076
— o. 114
o. 010
— o. 015
— o. 071
-f-o. 063
+0.053
Assuming a'
AT
— 1 . 95 1 (/<: + o. 644 dt ~\ whence da
-{- 2. 6yg da" -\- i.S33nV-f- o. 141 dt \
^. NORMAL EQUATIONS.
:-f-o. 8n +a'3'' circleE. ( o = + o. 222 -\- 3. 455 da'
-. + o.64S + da" •• W. i — o.oio
= 4-0.419 + 0^ " E. 1 — o 216— l.9Si(/a' + i.533'/'''''+i9-947<^^— 0.269^^
,_0li53in46».248+/*. I — 0.037 -I- 0.644 (/,<'+ O. 141 r/u"- O. 269()'f-f- I2.6oin'/'
a' = + o>.748 (circle east); a" = + o. 646 (circle west); r = o. 424 ( -f- with circle east).
Chronometer No. i29Sat6ti 3ora.6 chron. time, oH 53™ 46=.24i -|-o».oiS fast, losing o'.isg per hour.
s.
= — o. 063
da" = -f-o. 001
dc = -f- o. 005
dt ^ -f- o. 006
38
TELEGRAPHIC DETERMINATION OP LONGITUDES
Transits of stars obserued af Salina Cruz, Mexico, by Lieut. J. A. Norris, U. S. Navy, with transit No. 1S03, to determine the correction of sidereal chronometer
Negus No. I2C)^.
Date.
Name of star.
u
u
Transit over
mean of threads.
Flexure
and in-
equality
of pivots.
Level.
Azimuth.
Aberra-
tion and
colli-
mation.
Rate.
s.
— 0. 100
Seconds
of corr.
transit.
R.A.
Chronometer
correction.
V.
1889.
Feb. 13
( Tauri . . .
E.
Ji. m. s.
s 50 9-530
s.
+0. 337
s.
— 0. 073
J.
— 0. 052
s.
+0. 395
s.
10. 037
h, m. s.
4 56 27.514
/;. m. s.
— 53 42-523
s.
+0. 029
II Orionis . . .
5 51 55-426
+0. 326
— 0. 070
+0, 009
+0.381
-0. 095
55-977
4 58 13-449
42. 528
+0. 034
19 II. Camelop. . .
S 57 59- 943
+0.-758
— 0. 164
—2. 482
+ 1-947
— 0. 080
59. 922
5 4 17-473
[42. 449]
. . .
/3 Orionis . . . .
6 2 53. 900
4-0. 290
— 0. 063
+0. 221
+0. 372
— 0. 067
54- 653
5 9 12. 209
42.444
—0. 050
r Orionis . . . .
6 5 54-716
-|-o. 292
— 0. 063
4-0. 209
+0. 371
-0.059
55.466
5 12 12. 965
42. 501
+0. 007
17 Camelop. . . .
6 13 23.743
+0.475
— 0. 103
-0. 845
+0.810
— u. 039
24. 041
5 19 41-556
[42.485]
. . .
& Orionis . .
6 20 1 . 949
+0. 302
— 0. 065
+0. ISO
+0. 368
— 0. 022
2.682
5 26 20. 212
42. 470
—0. 024
' 53™ 38^.595 -j- o'.oia fast, losing 0M69 per hour.
whence da' ^= — o. 020
da't =z + o. 004
dc = — o. 03 2
dt = — o. 003
IN MEXICO, CENTRAL AMERICA, THE WEST INDIES, ETC.
39
Transits of stars observed at Salina Cruz, Mexico, by Lieut. J. A. Norris, U. S. Navy, 7oit!t transit Wo. 1^03, to ,1'lcyininc the con-ection of sidereal chronometer
Negus No. i2gs.
Date.
Name of Star.
4J
c
E.
-a
'0
d
J?
Transit over
mean of threads.
Flexure
and ill-
equality
of pivots.
Level.
Azimuth.
Aberra-
tion and
coUi-
mation.
Rate.
Seconds
of corr.
transit.
R.A.
Chronometer
correction.
V.
1.SS9.
Feb. IS
17 Camelop.
h. m. s.
6 13 16.043
s.
+0- 475
s.
— 0. 270
.1.
— I. 290
+ /.'i56
s.
— 0. 115
s.
15-999
h. VI. s.
5 19 41-485
h. m. i.
-0 S3[34-SI4]
Groom. 966. . .
6 1 8 29. 064
+0-629
-0. 355
-2.651
+2. 024
— 0. too
28.611
5 24 54-451
[34- 160]
. . .
ip' Oiionis . . . .
6 22 17. 299
+0-317
-0. i8i
+0. 096
+0.532
—0. 089
■7-974
5 28 43. 603
34-371
+0- 003
fr' Orionis ....
6 23 29.371
+0. 294
-0 168
+0. 298
+0. 528
—0. 086
30. 237
5 29 55-909
34- 328
— ^0. 040
" Orionis . .
6 26 44.016
+0. 298
— 0. 17s
+0. 260
+0. 526
-0. 077
44. 848
5 33 10.465
34- 383
+0.015
130 Tauri
6 34 31.686
+o. 331
— u. 215
- 0. 022
+0-551
-0. 054
32.277
5 40 57- 909
34- 368
0. 000
«. Orionis . . . .
6 36 3. 103
+0. 288
— 0. 194
+0. 355
+0. 532
— 0. 050
4-034
5 42 29. 645
34- 389
+0.021
a Orionis ....
E.
6 42 43. 523
+0.314
— 0. 246
+0. 124
+0. 529
—0.031
44- 213
5 49 9- 861
— S3 34- 352
—0.016
66 Orionis . . .
W.
6 52 41. 506
-0. 309
+0- 033
-|-o. 202
-0. 567
— 0. 002
40. 863
5 59 6.680
— 53 34- 183
— 0. 185
36 H. Camelop. . .
6 55 19- 757
— 0. 497
-I-0.06I
-i.796
-'-375
-|-o. oo5
16.156
6 I 41-59°
[34- 566]
22 H. Camelop. . .
7 16.343
-0. 535
+0. 080
—2. 204
—1.603
-)-o. 020
12. lOI
6 6 37. 586
[34-515]
1) Geminorum , .
7 I 46. 200
— 0- 339
+0. 054
-0. 116
— 0. 612
+0. 025
45-212
6 8 10.880
34. 332
—0. 036
u Geminorum
7 9 SO- 3"
—0- 339
-|-o. 066
— 0. 116
—0.612
■\-o. 048
49- 358
6 16 14-979
34- 379
+0. on
8 Monocerotis . .
7 II 28. 407
— 0. 310
+0. 063
+0. 19s
-0. 567
+0. 052
27. 840
6 17 53-457
34- 383
+U.01S
V Geminorum . .
7 15 57-959
— 0. 335
+0- 074
-0. 075
— 0. 602
+0. 066
57-087
6 22 22. 589
34- 498
+0. 130
23 H. Camelop. . .
7 21 1-75°
-0. 78S
+0. 182
—4- 849
-3- 156
-fo. 080
53- 222
6 27 19.525
[33- 697]
y Geminorum
7 24 53-417
-0. 329
+0. 077
— 0. 006
— 0. 589
-|-o. 091
52.661
6 31 18. 274
34- 387
+0. 019
f Geminorum . .
W.
7 30 41-853
—0. 344
+0. 083
-0. 170
— 0. 625
+0. 108
40. 90s
6 37 6.476
— S3 34- 429
+0. 061
Assuming a' = + o. 801 + da' circle E.
«'/ = + o. 971 +(/«" " W
c = + o. 575 + dc " E.
AT = — oh S3"> 34S.36S + rf^.
NORMAL EQUATIONS.
O = — O. 046 + 2. 723 da'
s.
— I.4I3a'\dt
\ +0. 117 +0. i76r/«' — o. 786(fe''+ o. 564(?r,r+ 12. 9350'/
a' = Ar o'-866 (circle west); a'' = + o».9S 4 (circle east); c = os.593" (+with circle east) .
Chronometer No. 1295 at 61" 42™.9 chron. time, oh 53™ 308.31 6 + 08.017 fast, losing OM 65 per hour.
Assuming a' =r + o. 957 + rfa'' circle W,
^'/=: + o. 851 +a'3" " E.
c =-fo. 637+^^ " E.
AT = — oh 53"! 308.320 + (//.
S
da'
=
0.
091
da"
=
+
103
dc
=
0.
044
dt
=z
ODD
40
TRLBGUAPHIC DETERMINATION OP LONGITUDES
Transits of stars observed nl La LH'crfa,!, Salvador, by Lieut. J. A. Norris, U. S. Navy, ivith transit No. /joj, to determine the correction of sidereal chronom-
eter Ne-^'ii^ No. I2gj.
Date.
1889.
Mar. 9
Name of Star.
25 Monocerotis
a Canis Minoris ,
Groom. 1374 .
w' Cancri . . . .
X Germinorum
3 UrSK Majoris .
Br. 1 147 .
20 Navis . .
P Cancri . . .
30 Monocerotis .
ts Ilydraa . . .
y Cancri . . .
a Cancri . . .
e Hydr?e . . .
C Hydra; . .
p Ursfc Majoris
n" UrsEE Majoris
W.
aj
x:
'0
6
•A
Transit over
mean of threads.
Flexure
and in-
equality
of pivots.
Level.
Azimuth.
Aberra-
tion and
colli-
mation.
Rate.
s.
Seconds
of corr.
transit.
R. A.
Chronometer
correction.
V.
h. III. s.
s.
.r.
s.
s.
h. m. s.
h. 111. s.
s.
8 20. 829
+0. 301
+0- 033
-I-0.018
+0. 382
— 0. 150
21.413
7 31 45-775
-0 28 35
638
+0. 149
824. 669
+0.313
+0.031
-|-o. 008
+0. 383
— 0. 143
5.261
7 33 29- 804
35
457
— 0. 032
8 15 29.579
+0. 566
-fo. 041
— 0. 189
+ 1. 400
— 0. 097
31.300
7 46 55- 335
[35
965]
8 22 48. 003
+0. 341
+0. 024
— 0. 014
+0. 423
—0.071
48. 706
7 54 13-305
35
401
—0. 088
8 25 17. 163
+0. 346
+0.024
—0.017
+0.432
— 0. 062
17.886
7 56 42, 443
35
443
—0. 046
8 30 21. 064
+0. 496
+0. 038
— 0. 134
+ I.OS4
— 0. 044
22.474
8 I 47. 118
[35
356]
8 34 10. 307
-|-o. 603
-|-o. 050
— 0. 218
+ 1.586
—0.031
12.297
8 5 36.990
[35
307]
8 36 49. 174
+0. 286
+0. 026
-|-o. 030
+0. 395
— 0. 022
49. 889
8 8 14.412
35
477
— 0.012
8 39 4- 917
+0.319
+0. 030
-)-o. 004
+ 0.386
— 0. 014
5.642
8 10 30. 162
-0 28 35
480
—0. 009
8 48 43. 279
—0. 302
+0. 284
— 0. 034
— 0. 422
+0. 020
42. 825
8 20 7. 341
-0 28 35
484
- 0. 005
9 I 33-796
— 0. 311
+0. 270
— 0. 020
— 0. 422
+0. 065
33.378
8 32 57-980
35
398
—0.091
9 5 28. 179
-0. 336
+0. 289
4-0.018
— 0. 454
+0.078
27. 774
8 36 52- 301
35
473
—0.016
9 6 59. 123
— 0. 331
+0. 286
+0. oil
— 0. 444
+ 0. 084
58. 729
8 38 23. 147
35
582
+0. 093
9 9 3°- 340
— 0- 317
+0.275
— 0. 014
—0. 424
+ 0.092
29. 952
8 40 54.449
35
503
+0. 014
7
9 18 8.033
-0. 314
+0. 295
— 0. 014
— 0. 424
+0. 122
7.698
8 49 32. 166
35
532
+0. 043
7
9 21 9. 686
—0. 489
-Ho. 481
+0. 253
— I. 127
+0. 133
8-937
8 52 33-510
[35
427]
7
9 29 15. 086
—0. 484
+0. 554
-|-o. 246
— I. 104
+0. 161
14.459
9 38. 945
-0 2S[35
514]
NORMAL EQUATIONS.
Assuming a' = + 0.067 + "'''' circle E, fo=: — o. 049 + 4. 618 (/a' — 4. 321 nt
a" = — 0.145 + «'<^" " W- I —0.025 +2. 486 (/"+ 2.399rt'<:
c = + 0.421 + de " E. I +0. 329 — 4. 321 rfa' + 2. 399«fo''' + 21.9760'^ + 0.4380'/'
AT =— o'l 28'" 35'.489 -f-dt. [ +0. 031 —0.883 rfa' —u. 617 ara:"+ o. 4380^ + 12. 977 rf/- j
«' = + o».05g (circle east); a" ^ — o" 116 (circle west); f^o".40l (+ with circle east).
Chronometer No. 1295 at 8'' 43"'.! chron. time, o^ 28"' 35^.489 ± 0».oi3 fast, losing o''.2io per hour.
o. 883 dt '\ whence da' = — o. 008
0.6171* I (&" = + 0.029
I dc ^ — o. 020
dt =^ — o. 001
Mar. 12
66 Orionis . .
i' Orionis .
22 H. Camelop.
fi Geminorum
8 Monocerotis
« Argus . . .
y Geminorum
15 Monocerotis
f Geminorum
43 Camelop .
f Geminorum
% Geminorum
(J Geminorum
/? Canis Minoris .
25 Monocerotis
24 Lyncis .
K Geminorum .
Groom. 1374 .
53 Camelop. .
E.
E.
W.
W,
6 27
6 29
6 34
6 44
6 46
6 49
6 59
7 3
7 7
7 10
7 25
7 40
7 41
7 49
8 o
8 1
8 6
8 15
8 20
26. 937
34. 527
57. 121
35- 196
13. 626
49- 329
38.481
12. 420
24- 036
4-479
53- 964
5. 266
52- 054
30. 269
7.969
59-693
7-253
18.379
36- 659
+0.312
— 0. 064
+0.077
+ L,. 590
- -u. 151
27. 701
+0. 326
-0.057
— 0. on
+0. 608
— 0. 145
35- 248
+0. 501
— 0. 056
— 1. 116
+ i.668
-0. 128
57.990
+0. 341
— 0. 010
—0.081
+0. 637
— 0. 097
35.986
+0. 316
— 0. 006
+'J- 073
+u. 590
— u. 092
14. 507
+0. 210
0. 000
+0.715
+0. 969
— 0. 081
51. 142
+0. 328
+0. 006
— u. 026
+0,613
— 0. 050
39-352
+0.319
+0. 005
+0. 029
+0.597
— 0. 039
13-331
+0. 323
+0. 003
+u. 004
+0. 603
— 0. 026
24- 943
+0. 498
0. 000
—1.094
+ 1.642
-0.017
5- 508
~o. 334
+0. 029
+U.037
— 0. 671
+ 0. 033
53-058
—0. 328
+0-055
+0. 016
— 0. 656
+0. 077
4-430
-0. 336
+0.059
+u. 045
— u. 678
+u. 083
51.227
-0-317
+0. 061
— 0. 024
-0. 635
+0. 107
29.461
— u. 301
+0. 061
— 0. 082
— u. 629
+0. 140
7-158
— 0. 428
+0. 087
+0. 380
—1.218
+0. 146
58. 660
- 0. 340
+0. 066
+0- 059
— 0. 691
+0. 159
6.506
— 0. 566
+0. 095
+0.881
—2. 308
+0. 188
16. 669
— 0. 437
+0.062
+0.4"
-1.280
+0. 204
35-619
5 59
6 I
6 6
6 16
6 17
6 21
6 31
6 34
6 39
6 41
6 57
7 "
7 13
7 21
7 31
7 ii
7 37
7 46
7 52
6. 290
13.884
36- 363
14-575
53-087
29. 688
17-905
51.867
3-527
44- 237
31.618
42. 960
29. 767
8.134
45- 730
37.341
45.029
55. 168
14. 197
-u 28 21. 411
21.364
[21. 627]
21. 411
2 I . 420
[21.454]
21.447
21.464
21. 416
-O 28[2I. 271]
-O 28 21. 440
21.470
21.460
21.327
21.428
[21.319]
21.477
[21.501]
-O 28[21.422]
—0.015
— o. 062
—0.015
— o. 006
+ 0.021
+ 0. 038
— o. 010
+0.014
+0. 044
+0. 034
— o. 099
+ 6.002
+0.051
Assuming a' = + o. 459 + da' circle E.
a" = — o. 254 + da" " W
c = + o. 641 + dc " E.
^T =: — o^ 28™ 2I».428+a'A
NORMAL EQUATIONS,
f O = — u. 106 + 3. 728 da'
I. 467 dc — o. 090 dt 1 whence da' = + o. 016
>
+ 0.204 +3.lS3fl'rt"+ \.0-i,2 dc— \.']22 dt
+ 0. 891 — I. 467 da' + 4. 032 da" + 23. 946 dc -[- I. 022 dt
\^ — 0.046 — o.ogoda' — i. y22 da" -[- I. 022 dc -\- 14. SSg dt
«' = + 0^.475 (circle east); a" ^ — 0^.275 (circle west); fi=o'.6oS (+ with circle east).
Chronometer No. 1295, at 7'' I5'".S chron. time, o'' 28'" 2i'.426 -^ o^.oaS fast; losing 0M89 per hour.
da" = — o. 021
dc = — o. 033
dt = + o. 003
IN MEXICO, OENTllAL AMERICA, THE WES'! INDIES, ETC.
41
TransUs of stars o/>srnu:/ at La Libni.ul, Salvador, by T.inil. J. A. AWrh, U. S. Navy, wi/h transit No. 1503, to ,l.i,'n„ia,- the correction of sidereal chronometer
A'(;^'v/v No. I2gj.
Date.
a
Name of star.
u
•r-.
u
6
7
Transit over
mean of threads.
Flexure
and in-
equality
of pivots.
s.
-0.316
I,evcl.
s.
+0.038
.Vziniuth,
Aberra-
tion and
colli-
mation.
-0-' 585
Rate.
s.
-0.417
Seconds
of corr.
transit.
s.
26. 009
R. A,
Clironometer
correction.
V.
1SS9.
Mar. 1 3
OrionLs . .
/;. ni. s.
6 17 27.309
s.
— 0. 020
h.
5
/;/. s.
49 9- 440
//. m. s.
— 28 16. 569
s.
-0. 057
1
I^eporis
7
6 19 38. 569
— 0. 2,SS
+0.039
-0. 089
-0. 598
-0. 410
37- 223
5
5 1 20. 704
16.519
— 0. 107
/
Geminorum
.
6
6 59 35-651
~o. 328
+0. 113
+0. 010
— 0, 605
— 0. 276
34- 565
6
31 17.887
16.678
+0. 052
15
Monocerotis
7
7 3 9-589
-0.319
+0. Ill
— 0. 012
-0.589
— 0, 264
8.516
6
34 51-849
16.667
+0.041
e
Geminorum
•
7
7 5 -3-869
—0.341
+0. 121
+0. 042
— 0. 641
-0. 257
22. 793
6
37 6.073
16. 720
+0. 094
s
Geminorum
7
7 721. 206
-0- 323
+0. 116
— 0. 001
-0. 595
— 0. 250
20. 153
6
39 3- 509
16. 644
+0.018
Canis i\!ajoris .
7
7 17 19-693
-0. 291
+0. 105
— 0. 082
-0. 593
— 0. 217
iS. 615
6
49 2. 039
16. 576
— 0. 050
)
Canis Majoris .
7
7 27 2.029
—0. 286
+0. 100
— 0. 094
— 0. 602
— 0. 184
0. 963
6
58 44-319
16. 644
+0. 018
^5
Camelop. . .
7
7 36 3-743
-0. 873
+0. 283
+ 1-359
-4-515
— 0. 154
59. 843
7
7 43-724
[16. 119]
1
Geminorum
7
7 40 0. 550
— 0. 328
+0. 102
+Q. 01 I
—0. 606
— 0. 141
59- 58S
7
II 42.945
16. 643
+0.017
Piazzi vii, 67
3
7 47 38- 289
-0. 495
-fo. 135
+u. 422
-..596
— 0. 115
36. 640
7
19 20.348
[16. 292]
^4
Lyncis
w.
5
S I 55.5.6
-0.428
fo. 078
+0. 259
-I. 125
— 0. 067
54- 233
7
33 37-311
—0 28[i6. 922]
Groom. 1374 . .
E.
2
8 15 10. 319
-|-o. 566
-0. 273
-0. 509
+ 1.984
—0. 023
12. 064
7
46 55-1"
-0 28[i6.953]
(ji
Cancri
7
8 22 29. 154
+0. 341
—0. 163
— 0. 037
+0. 599
4-0. 002
29. 8g6
7
54 13-239
16.657
+0.031
X
Geminorum
7
8 24 58. 204
+0- 346
— 0. 165
— 0. 045
+0.612
-f 0. 010
58.962
7
56 42- 385
16.577
— 0. 049
C
Cancri
7
8 34 6. 926
+0- 330
-0- 153
— 0. 013
+0. 568
-(-0.041
7.699
8
5 51-120
16.579
— 0. 047
,^
Cangri . .
7
8 38 45.466
+0-319
—0. 146
-l-u.OII
+0. 547
-|-o. 056
46. 753
8
10 30. 114
16. 639
+0.013
1
Leonis . .
7
10 29 11. 117
+0.329
— 0. 180
— 0. Oil .
+0. 565
+0.428
34- 248
10
I 17.701
16. 547
— 0. 079
'/.
Hydrx
7
10 33 26. 899
+0. 291
-0. 153
+0. 069
+0.552
+0. 441
28. 099
10
5 11.462
16.637
+0. on
k
Leonis
7
10 38 47-274
+0. 339
-0. 172
— 0. 032
+0.591
+0. 458
48. 458
10
10 31.791
16.667
+0. 041
>'
Leonis . .
7
10 42 7-45°
+0- 334
-0. 165
— 0. 020
+0.576
+0. 469
8.644
10
13 51.965
16. 679
+0.053
/'
Leonis
7
10 55 14. 210
+0-319
— 0. 146
+0. 010
+ 0. 548
+0.513
15-454
10
26 58.827
16. 627
+0.001
35
H. Ursx Majoris
7
II 3 23.886
+-0- 505
— 0. 224
-0. 3S0
+ 1-554
+0. 541
25. 882
10
35 9-433
[16,449]
«
Ursa; Majoris
E.
7
II 25 9. 229
+ 0. 447
—0. 204
— 0. 258
+ 1.164
+0.614
10. 992
10
56 54- 323
-u 28[i6. 669]
NORMAL EQUATIONS.
'0 = — 0.222 + 4.051 (/«' + 2.630 (/c -)- 0.123 I* "
— 0.132 + 3.363 fl'a" — 4.146 dr — 1.765 r//
-\- 0.814 + 2.630 da' — 4.146 da" -|- 28.977 dr -\- 0.449 '*
+ 0.130 + 0.123 da' — 1.765 da" + 0.449 '^^ + 19.220 dt
a' = — o''.l87 (circle -west) ; a" =_ -\- OM59 (circle east) ; c = os.560 (+ with circle east).
Chronometer No. 1295, at 8'' 22"'.o chron. time, o'' 28'" i6".626 -J- o».oo8 fast, losing o».2oi per hour.
Assuming a' = — 0.266 + da' circle W.
a" = ^ o.\(><) ^ da' ' " E.
c = + 0.596 -|- dc " E.
/\T = — qI' 28'" i6«.62l + dl.
whence da' = + 0.079
da "= — o.oio
dc ^= — 0.036
dt = — 0.007
42
TELEGRAPniO DETERMINATION OF LONGITUDES
Transits of stars observed at La Libertad, Salvador, by Lien/. J. A. Norris, U. S. Navy, with transit No. r^os, to determine the correction of sidereal chronometer
Negus No. i2gS-
Date.
Name of Star.
u
'^
n
dj
^-.
d
Transit over
mean of threads.
Flexure
and in-
equality
of pivots.
Level.
Azimuth.
Aberra-
tion and
coUi-
mation.
Rate.
Seconds
of corr.
transit.
R. A.
Chronometer
correction.
V.
J 889.
iMar. 14
1^
Geminorum
E.
li. m. s.
6 44 25. 754
s,
+0.337
s.
— 0. 195
s.
— 0. 039
s.
+0. 701
— 0. 135
s.
26. 423
A. m. 1
6 16 14
539
//. ?«. J.
-0 28 11.884
+0.025
8
Monocerotis . .
6 46 4. 289
+0.312
— 0. 185
+0. 035
+0. 649
— 0. 130
4.970
6 17 S3
051
II. 919
+0. 060
a
Argus
6 49 40. 186
-\-o. 210
— 0. 131
+0. 345
+ 1.066
— 0. 117
41-559
6 21 29
616
[11-943]
. . .
23
H. Camelop. . .
6 55 26. 393
+0.711
— 0. 483
— I. 170
+3-613
-U.097
28. 967
6 27 16
895
[12.072]
. . .
y
Geminorum
6 59 29. 001
+0. 328
— 0. 235
—0.012
+u. 675
—0. 084
29- 673
6 31 17
869
1 1 . 804
-0- 055
IS
Monocerotis
7 3 3-013
+0.319
-0. 238
+0.014
+0. 657
—0.071
3-694
6 34 51
831
11.863
+0. 004
t
Geminorum
7 5 17-153
+0. 341
— 0. 262
— 0. 052
+0. 716
— 0. 064
17.832
637 6
054
11-778
—0.081
s
Geminorum
7 7 14-641
+0. 323
-0. 254
+0. 002
+0. 664
-0. 057
15-319
6 39 3
491
11.828
— 0. 031
43
Camelop. . .
7 9 54-521
+0. 498
—0. 405
— 0. 528
+ ,.807
— 0. 048
55- 845
6 41 44
134
[11-711]
. . .
24
II. Camelop.
E.
7 12 2.686
-)-o. 627
-0. 522
— 0. 920
+2. 902
— 0. 041
4-732
6 43 52
604
— 28[I2. 128]
C
Geminorum
W.
7 25 44-419
—0- 334
+0. 032
+0. 028
— 0. 734
+0. 006
43-417
6 57 31
584
— 28 11.833
— 0. 026
-5
Camelop.
7 35 59- 564
-0.873
+0. 222
+ i.49o
-5- 348
-|-o. 041
55-096
7 7 43
578
[11-518]
'A.
Geminorum
7 39 55-740
-0.328
+0. 097
-f-o. 012
-0.717
+0. 054
54-858
7 II 42
929
1 1 . 929
-|-o. 070
Piazzivii, 67
7 47 33-814
-0. 495
+0. 174
+0. 463
—I. 891
+0. 080
32- 145
7 19 20
300
[11.845]
. . .
P
Canis Minoris .
7 49 20. 730
-0.317
+0. IIS
— 0. 018
— 0. 695
+0. 086
19. 901
7 21 8
106
11-795
— 0. 064
25
Monocerotis . .
7 59 58-417
-0. 301
-f-o. 109
— 0.061
— 0. 688
+0. 123
57-599
7 31 45
698
II. 901
+0. 042
a
Canis Minoris
8 I 42. 360
-0.313
-|-o. Ill
— 0. 029
— 0. 6go
-)-o. 129
41. 568
7 33 29
732
11.836
-U.023
IC
Geminorum
8 5 57-733
—0. 340
+0. 112
+0. 044
-0.756
+0. 143
56.936
7 37 44
995
1 1. 941
+0. 082
Groom. 1374 .
W.
8 15 9. 221
— 0. 566
+0. 137
+0.657
-2.525
+0. 175
7.099
7 46 55
054
— 28[l2. 045]
(o = -
NORMAL EQUATIONS,
-o. 392 + 5-734 a^«'
— 3. 917 at — 0.645*
Assuming a' = -f- o. 196 -|- da' circle E
«'/= — o. i74 + rf«" " W. J +0.387 +4.534rfa"+ 4.852^',:- 1.089*^
c =-\-o.yig-\-dc " E. ] + 1.614 — 3.9i7a'a:/-)-4. 852<&" + 2S.8i3(f(r+ o. 945 / f
AT = — o'i28'"n".869 + *. l_ +0.083—0. 645 rfa'— i. 089 rfa" + o. 945ar,r+ 13. 329^/^ J
a' — + o'.229 (circle east); a" ^= — o'.205 (circle west); c = 08.667 (+ with circle east).
Chronometer No. 1295 at 7I' 24™ .0 chron. time, o'' 28'" 1 1''.859 ± o'.oi i fast, losing o».205 per hour
s,
whence da' = + o. 033
da" ^ — o. 031
dc = — 0.052
dt = — o. 004
Mar. 16
/'
Geminorum
E.
6
44 16. 611
+ "■337
— 0. 138
— 0. 041
+0. 740
— 0. no
17-399
6 16 14. 503
— 28 2.896
— 0. no
V
Geminorum
6
50 24. 346
+0.333
-0- 133
— 0. 030
+0. 728
— 0. 092
25. 152
6 22 22. 115
3-037
+0.031
23
H. Camelop.
7
6
55 17-036
+U.711
— 0. 280
— I. 216
+ 3-815
—0.078
19. 988
6 27 16. 673
[3-315]
7
Geminorum . .
6
59 20. 037
+0. 328
— 0. 128
—0.013
+0.712
— 0. 066
20. 870
6 31 17-833
3-037
+0.031
15
Monocerotis . .
2 53-964
+■^-319
— 0. 123
+0.01S
+ 0. 693
— 0. 056
54.812
6 34 51-795
3-017
+0. on
£■
Geminorum
■7
5 8. 164
+0- 341
— 0. 130
— 0. 054
+0. 755
— 0. 049
9.027
6 37 6. 016
3. on
+0. 005
f
Geminorum
7 5- 639
+"- 323
— 0. 123
+0. 002
+0.701
— 0. 044
6.498
6 39 3-455
3-043
+ 0.037
43
Camelop. . . .
9 45- 343
+0. 498
— 0. 188
-0. 548
+ 1.908
— 0. 036
46. 977
6 41 44. 012
[2- 965]
. .
24
H. Camelop.
E.
II 52.771
+0. 627
-0. 235
-0.957
+3. 064
-0. 030
55- 240
6 43 52. 408
-0 28 [2. 832]
C
Geminorum
W.
25 35-559
— 0. 334
+0. 105
+0. 009
-0. 773
+0. 010
34- 576
6 57 31-550
— 28 3. 026
+0. 020
25
Camelop.
35 51-893
-0. 873
+0- 335
+0. 502
-5.628
+0. 040
46. 269
7 7 43- 284
[2.985]
7.
Geminorum
39 46. 720
— 0. 328
+^- 134
+0. 004
-0. 755
+0.051
45- 826
7 II 42. 898
2.928
— 0. 078
fS
Geminorum
41 33-667
-0. 337
+0. 141
+0. on
—0.781
+0. 056
32-757
7 13 29.699
3.058
+0. 052
Piazzi vii, 67
47 25. 229
-0. 495
+0. 223
+u. 156
— 1.990
+0.073
23. 196
7 19 20. 204
[2.992]
.
/?
Canis Minoris . .
49 11.820
-0.317
+0. 145
— 0. 006
—0.731
+0.078
10. 989
7 21 8.078
2. 911
— 0. 095
25
Monocerotis
59 49- 520
— 0. 301
+0. 150
— 0. 021
— 0. 724
+0. 109
48. 733
7 31 45.666
3.067
+0.061
a
Canis Minoris . .
8
I 33-517
—0.313
+0. 158
— 0. 010
-0. 727
+0. 114
32. 739
7 33 29. 702
3-037
+0. 031
Groom. 1374 . .
\\'.
8
15 0. 486
— 0. 566
+0. 300
+0. 221
-2.657
+"■ 153
57-937
7 46 54-936
— 28 [3.001]
Assuming
ro=-
NORMAL EQUATIONS,
-o. 528 +4. 504 da'
5-543'^^-
n' = + 0. 166 + rt'rt' circle E.
«'' — — o. 022 + rt'rj" " W. j +0.420 +4.si6fl'«"+ 5.324(/f— 1.039^^ I
c = + 0. 74i+«'f " E. ) + 1.582 — 5. 543 «■' + 5.324 «'^" + 24. 435 <-+ 0.140 o'i' I
1\T: = — oil 28"! 3=.oio + fl'A (_ +0. 022— I. 737 (/«' — 1.039 fl'rt" + o. 140 ot+ 12. 790 n7 J
a' = -\- o».238 (circle east) ; a" ^ — 0^069 (circle west) ; c := os.703 (+ with circle east).
Chronometer No. 1295, at 7I1 22^.2 chron. time, o*" 28™ 3».oo6 J- o».oi2 fast, losing OM74 per hour,
I- 737 * 1 whence da' ^ + o. 072
da" = — o. 047
de = — o. 038
dt = + o. 005
l]Sr MEXICO, CENTRAL AMERICA, THE WEST INDIES, ETC.
43
Transits of stars observed at La Lihniad, Salvador, by l.irut. J. A. Norris, U. S. Navy, with transit No. 1503, to determine the correctionof ujereal ehronometer
N'ei^iis No. I2gs.
Date.
Name of Star.
»^
d
Transit over
mean of threads.
Flexure
and in-
equality
of pivots.
J.
— 0. 469
Level.
Azimuth.
Aberra-
tion and
colli-
mation.
Rate.
Seconds
of corr.
transit.
R. A.
Chronometer
correction.
V.
1SS9.
Mar. 17
36 H. Camelop. .
w.
h. m. J.
6 29 41. 864
s.
+0. 022
s.
— 0. 260
s.
-1.711
s.
-0. 135
39-3"
h. 711. i.
6 I 40. 301
h. 111. s.
— 27[59. 010]
s.
22 H. Camelop. . .
6 34 38. 343
— 0. 501
+0. 059
-0.317
— 1.994
— 0. 121
35-469
6 6 36.093
[59. 376]
ri Geminorum . .
6 36 10.496
-o- 337
+0. 046
—0. 023
-u. 761
-0. 117
9-304
6 8 10.372
58.932
+0. 025
H Geminorum. . .
6 44 14- 463
-0. 337
+0. 083
— 0.023
— 0. 761
-0. 094
13-331
6 16 14.485
58. 846
— 0. 061
8 Monocerotis . .
6 45 52.923
—0.312
+0. 085
+0. 021
-0. 705
—0. 090
51.922
6 17 52.997
58.925
+0.018
1' Geminonmi. . .
6 50 22. 094
-o. 333
+0. Ill
— 0. 017
-0. 749
—0,077
21. 029
6 22 22, 096
58.933
+0.026
23 H. Camelop.
6 55 19-714
— 0. 711
+0. 284
—0. 690
-3. 926
— 0. 064
14. 607
6 27 16. 562
[58.045]
. .
; Geminorum . .
6 59 17.671
-0. 32S
+0. 149
— 0. 007
—^- 733
— 0. 052
16. 700
6 31 17.815
58.885
—0.022
15 Monocerotis .
w.
7 2 51.614
-0.319
+0. 162
+0. 008
—0.714
— 0. 042
50. 709
6 34 51.777
-0 27 58. 932
+0. 025
43 Camelop. . .
E.
7 941-050
+0. 498
-0.073
-0- 433
+ 1.852
—0. 023
42.871
6 41 43. 947
— 27[58. 924]
24 H. Camelop.
7 II 48. 671
+0.627
— 0. 092
— 0. 756
+2.974
—0.017
51.407
6 43 52. 305
[59. 102]
fl Canis Majoris.
7 16 59-893
f 0.291
— 0. 042
+0. 082
+u. 678
— 0. 002
60. 900
6 49 1. 968
58.932
+0. 025
f Geminorum . .
7 25 29.371
+0. 334
— 0. 049
— 0. 025
+0. 709
+0. 021
30. 361
6 57 31-533
58.828
— 0. 079
X Geminorum .
7 39 40- 774
+0.328
—0. 044
— 0. on
+0. 692
+0. 061
41. 800
7 II 42. 882
58.918
+0. on
6 Geminorum
7 41 27.486
+0. 336
— 0. 044
—0. 03 1
+ 0.716
+u. 066
28.529
7 13 29.682
58. 847
— 0. 060
,3 Canis Minoris.
7 49 5- 801
+0-3J7
— 0. 037
+0.017
+0. 670
+0. 087
6-855
7 21 8. 064
58.791
— 0. 116
25 Monocerotis . .
7 59 43-633
+0. 301
— 0. 029
+0. 056
+0. 664
+0. 117
44. 742
7 31 45-650
59.092
+0. 185
a Canis Minoris
E.
.S I 27. 521
+0.313
— 0. 028
+0. 026
+0. 666
+0. 122
28. 620
7 33 29.687
-u 27 58. 933
+0. 026
Assuming a'
a'
AT =
NORMAL EQUATIONS.
0= + o. 214 + 4. 039 rfn' + 4.964(/. I2()^.
Date.
Name of Star.
1889.
Mar. 30
Groom. 200 1
^
Virginis
Groom. 2029 . .
r
Cootis
89
Virginis
Bootis ....
Virginis . .
d
Bootis . . .
4
Urea; Minoris .
'/-
Virginis .
5
Ursa; Minoris .
C
Bootis .
/'
Virginis
109
Virginis
8
I.ilira-
cfi
I.ibnc
■Si
■u
c
y.
Transit over
mean of threads.
Flexure
and in-
e(|uaUty
of pivots.
Level.
Azimuth.
Aberra-
tion and
colli-
mation.
Rate.
Seconds
of corr.
transit.
R. A.
Chronometer
correction.
V.
It. in. s.
J.
s.
i.
J.
a.
.V.
//. VI. s.
//. in. s.
s,
1:.
7
13 35 38.579
+0.510
— 0. 210
— 1.292
+ 0-559
— 0. 136
38. 410
13 23 21.868
— I3[i6. 542]
. . .
7
13 42 19-236
+0- 309
—0.157
+0. 084
+0. 281
— 0. 120
19- 633
13 29 3.170
16. 463
+0. 127
7
13 47 50.871
+0. 496
-0. 2S8
-I. 198
-|-o. 900
—0. 105
50. 676
13 34 34- 468
[16.208]
. . .
7
13 5S 16.320
+0. 329
~o. 218
-0.0S3
-f-o. 296
— 0. 084
16,590
13 42 0. 222
16.368
+0. 032
5
13 S7 7-166
+0. 2S9
-0. 197
+0. 21S
4-0. 295
—0.079
7.692
13 43 51-431
16. 261
-0. 07s
7
\\ 2 40.944
+0. 330
-~o. 239
— 0. 061
+0. 297
— 0. 064
41.207
13 49 24. 960
16. 247
— 0. 089
7
14 9 16. 780
+0.311
— 0. 232
+0. 06S
+0.281
— 0. 046
17. 162
13 56 0.740
16.422
+0. 0S6
Is.
7
14 18 37.221
+0, 33S
-0. 253
— 0. 118
+0.312
— 0. 020
37.480
14 5 21. 240
— 13 16. 240
— 0. 096
\V.
7
14 22 40. 221
—0. 600
— 0. 149
+0. 636
-I-S53
— 0. 009
38. 546
14 9 22. 490
— I3[i6. 056]
7
14 35 46- 7S6
—0. 307
—0. 056
— 0. 032
— 0. 321
+0. 027
46. 097
14 22 29. 847
16. 250
— 0. 086
7
14 41 8. 243
-0- 559
—0. 085
+0. 543
-1-345
+0. 042
6.839
14 27 50.300
[16.539]
. .
7
14 49 8. 749
— u. 324
-0. 03s
-|-o. 008
-0-331
-f 0. 064
8. 131
14 35 51-652
16.479
+0. 143
7
14 50 30. 370
—0. 303
—0. 030
— 0. 041
—0.322
+0. 068
29. 742
14 37 13-448
16. 294
— 0. 042
7
14 S3 55-903
— u. 312
— u. 026
— 0. 022
—0.321
+0.077
55- 299
14 40 39. 018
16.281
-0. 055
7
14 57 50.659
- 0. 292
—0. oiS
— 0. 067
-0. 333
+0. 08S
50- 037
14 44 33- 659
16.378
-)-o. 042
\v.
7
14 58 2. 096
— u. 292
— u. 018
— 0. 067
— 0. 333
+0. 088
1-474
14 44 45. 120
-0 13 16.354
+O.OI8
NORMAL EQUATION.S. s.
Assuming a' ^- -\- o. 41 ^ -\- da' circle E. (o^ — o. 127 -)- 3. 222(/rt' — 2.889«'c — 0.645n'/'| whence ,'/«' =-|-o.oi7
" = — o. 112 -ff/f?" '■ W.J -(-0.163 +3.772«'rt"+ i.899fl'
Ursx Majoris .
n-
Urs.e Majoris .
e
Hydra:
S3
Cancri
I
Draconis, H. . .
e
Leonis . .
Leonis
w.
w.
Transit uvor
noan of tlnx-ad.s.
Flexure
aiitl in-
equality
ui pivots.
Level.
/i. in. J
805
086
s.
-0.558
s.
-0.55S
S 5 23
929 1—0. 418
—0.412
8 9 52
229 ,— u. 342
-0.372
8 14 56
593 — u. 468
— 0. 520
8 19
S74 i-o. 329
-0. 368
« 23 39
S19 ,—0.319
-0. 358
8 33 17
004 -u. 305
— 0. 329
8 39 27
513 —0.332
-0. 340
8 46 7
559 —0.313
-0. 294
9 37
440
+0. 346
— 0.092
9 2 40
650 +0. 316
—0.096
9 5 41
736 : +0.461
— u. 160
9 13 47
000 i-f 0. 458
-0. 199
9 21 44
SOI 1+0.312
— 0. 154
9 25 56
321 +0.329
— 0. 1 68
9 34 25
S'4 +0.737
-0. 393
9 48 ^-^-
824 1+9.320
— 0. 162
9 52 42
■S3
+0.337
— 0. 162
Azimuth
— o. 072
-0.034
— o. 007
— o. 051
— o. 003
+0. 001
+0. 006
— o. 004
+0. 003
—0.071
+0.015
— o. 403
— o. 392
-|-o. 026
— o. 023
—'•193
+0. 003
— o. 044
Aberra-
tion and
coUi-
mation.
Kate.
Seconds
of coir.
transit.
s.
s.
s.
— 0. 533
— 0. 105
3. 200
— 0. 296
—0. 150
22.589
— 0. 164
— 0. 136
5 1 . 208
— 0. 401
— 0. 122
55.031
-0. 152
— u. no
59.912
— 0. 147
— 0. 096
38. 900
-0. 145
— 0. 068
16. 163
-0.155
-u. 051
26. 631
— 0. 145
— 0. 031
6.779
+0. 123
+0. on
37-757
+0. 106
+0.017
41. 008
+0. 281
+0. 025
41.940
+0. 275
+0. 049
47. 191
+0. 105
+0.072
44. 862
+0. no
+0. 084
56.653
+0. 738
+ Q. 108
25.511
+0. 107
+ 0. 149
23. 241
+0. IIS
+0. 162
42.591
K. A.
Chronometer
correction
h. in. s.
7 46 53- 876
7 52 13.530
7 56 42.057
8 I 46.«So
8 5 50.829
8 10 29. 831
8 20 7.018
8 26 17. 609
8 32 57.680
8 47 28. 630
8 49 31.892
8 52 32.697
9 o 38. 176
9 8 35.772
9 12 47.592
921 16. 499
9 35 14.097
9 39 ii- 575
h. in.
13 [9
324]
[y
"59]
9
151
[8
951]
9
083
9
069
9
145
9
022
13 9
099
13 9
127
9
116
[9
243]
[9
015]
9
090
9
061
[9
0.2]
9
144
13 9
016
+0.057
o. on
o. 025
0.051
— o. 072
o. 005
+0. 033
+0.022
— o. 004
-o. 033
+0. 050
— o. 078
: + o. 028 + da' circle \V.
+ 0. 1 88 + ,/<;'' " K.
0.128 -{-de " E.
-qI" 13m 98.093 + dt.
XURALVL EQUATIONS.
(• o = + u. 037 + 3. 910 i/rt' + 4.6i2de-
I +0.018 +4. 4S2a'rt" — 5.3961!'^-
] + o. 058 + 4 652 da' — 5. 396 da" + 24. oog ,/c
I — 0.020 — 1. 80S 13"' 98.094 + o'.oog fast, losing 0».I74 per hour.
April 2
n Geminorum 1 E.
7
7 50 49. 626
+0. 337
— 0. 163
—0. 035
+0. 091
— 0. 129
49. 727
7 37 44- 658
— 13 5. 069
+0. 093
Groom. 1374 . .
7
7 59 58. 943
+0.558
— 0. 278
—0. 452
+0. 305
— 0. 103
58
973
7 46 53. 80s
[5
168]
53 Camelop. .
7
8 5 18.464
+0.418
— 0. 2 1 6
— 0. 213
+0. 169
—0. 088
18
534
7 52 13.488
[5
046]
(,)i Cancri . . .
7
8 7 17.744
+0. 338
— 0. 179
—0. 038
+0, 092
—0. 082
17
875
7 54 12.899
4
976
0.000
X Geminorum
7
8 9 46.816
+0. 342
-0. 187
-0. 04s
+0. 094
-0.075
46
945
7 56 42. 039
4
906
—0. 070
3 Ursce Majoris, H.
7
8 14 50. 750
+0. 468
—0. 276
— 0. 322
+0. 230
— u. 061
50
789
8 I 46. 030
[4
759]
f Cancri . . .
7
8 i8 55.627
f 0.329
— 0. 2og
— 0. 017
+0. 087
— 0. 049
55
768
8 5 50.813
4
955
— 0. 021
20 Navis .
7
8 21 18.826
+0. 293
— 0. 19s
+0. 064
+0. 086
—0. 042
19
032
8 8 14.028
5
004
+0. 028
■i Cancri
E.
7
8 23 34. 590
+0.319
— 0. 223
+0. 004
-(-0. 084
-0. 03s
34
739
8 10 29. 816
— 13 4
923
-0. 053
Urste Majori.s
W.
7
8 34 7- 993
— 0. 420
— 0. 025
+0. 441
— 0. 254
—0. 005
7
730
8 21 2. 610
— 13 [5
120]
Groom. 1446 . .
7
8 40 26. 693
— 0. 524
-0. 033
+0. 901
— 0. 447
+0.013
26
603
8 27 21.887
[4
716]
T Hydric . .
7
8 46 2. 979
-0.313
— 0. 022
— 0. 037
— 0. 123
+0. 029
2
513
8 32 57. 665
4
848
— 0. 128
-y Cancri ....
7
8 49 57. 426
-0. 334
— 0. 024
+0. OSS
— 0. 133
+0. 041
57
031
8 36 51.972
5
059
+0. 083
'i Cancri ....
7
8 SI 28.274
-0. 330
— 0. 025
+0.037
— 0. 130
t- 0.045
27
871
8 3S 22. 833
S
038
{ 0.062
£ Hydra." . .
7
8 S3 59.561
—0. 316
— 0. 025
— 0. 022
— 0. 124
4-0. 052
59
126
8 40 54. 145
4
981
+0. 005
p Ursae Majoris
7
9 5 37.729
— 0. 461
— 0. 044
+0. 62s
-0. 329
+0. 086
37
606
8 52 32.644
[4
962]
K Cancri
7
9 14 49. 864
—0.321
— 0. 036
— u. OOI
-0. 125
+ 0. 112
49
493
9 I 44.488
5
005
+0. 029
Hydraa ....
W.
7
9 21 41.086
—0.312
— 0. 038
-u. 041
-0. 123
+ 0.132
40
704
9 8 35.758
-0 13 4
946
— 0. 030
NORM A I, EQUATIONS.
'0= +0. 07s +4. iS5(/«' — 4.953((V— 2. 079 ((V) whence «' =
+ 0.230 +3.743rt'rt"+ 4.35or/6- 1.574,/H da" =
+ 0.416 — 4. 9531/rt' + 4. 3S0(/a" + 23. 745 (/ir+ 0.2661// j dc ■=
— o. 114 — 2.079^/3' — I. 574(/rt"+ o. 266(/i:+ 13. S20(// J ■// =
«' = + o-. 138' (circle east); ,/' = — o».279 (circle west); c = o'.lo^ (+ with circle east).
Chronometer No. 1295, at 8'' 35'". 8 chron. time, o'' 13'" 4".976 + o''.oi3 fast, losing 0M80 per hour.
Assuming a' -.= -\- o. l'jg-\- da' circle E.
a" = — o, 238 + da" " W
e z=-\-o. 122 -\- de " E.
^T = — oi'i3"'4».97S+<*.
— o. 041
— o. 041
— o. 019
— O. 002
46
TELEGRAPHIC DETEliMINATlON OF LONGITUDES
Tramits of stun observed at Si. .Vifo/as Mole, Hayti, by Lieut. J. A.
Norris, U. S. Naw, with transit No. 130;^, to determine the lorreelion of sidereal ehronoiueter
Negus No. izgs-
Date.
Name of Stai'.
4
t
-a
6
"A
Transit over
mean of threads.
Fle.\ure
and in-
equality
of pivots.
Level.
Azimuth.
Aberra-
tion and
colli-
mation.
Rate.
Seconds
of corr.
transit.
R.A.
Chronometer
correction.
V.
18S9.
h. in. s.
s.
s.
s.
.t.
s.
s.
h. nt. s.
s.
Nov. 27
«
Pegasi .
w.
21 49 44. 236
-0. 307
— 0. 100
+0. 055
— 0. 204
— 0. 032
43. 648
22 4 37- 545
+0
14 53
897
—0.052
^4
Cepliei ....
21 52 48-943
— 0. 621
— 0. 225
-0. 565
— 0. 650
-0. 030
46. 852
22 7 40. 680
[53
828]
e
Aquarii . . ^
21 56 6.921
-0. 281
— 0. no
+0. 107
— 0. 205
—0.027
6.405
22 II 0. 184
S3
779
-|- 0.066
y
Aquarii
22 I 3.731
— 0. 293
— 0. 123
+0. 083
— 0. 203
— 0. 024
3- 171
22 15 56. 964
53
793
-f-o. 052
TT
Aquarii . . .
22 4 44. 774
— 0. 298
— 0. 130
+0. 073
— 0. 203
—0.021
44- 195
22 19 38. 114
S3
919
— 0. 074
7
Aquarii
22 14 47- 509
-0. 295
— 0. 124
-1-0. 07S
— 0. 203
— 0. 014
46.951
22 29 40. 825
53
874
—0. 029
31
Cephei
22 18 II. 107
— 0. 647
— 0. 259
— 0. 616
-0. 697
— 0. on
8.877
22 33 2. 735
[53
858]
I
Pegasi . .
22 26 19. 620
— 0. 341
— 0. 113
—0.013
— 0. 220
— 0. oo5
18. 927
22 41 12.731
S3
804
-)-o. 041
I
Cephei . .
\v.
22 30 52. 893
-0- 532
— 0. 147
— 0. 389
-0. 492
— 0. 002
51-331
22 45 45- 178
+0
i4[53
847]
rr
Cephei . . .
E.
22 49 30. 114
-|-o. 690
— 0. 166
— 1,012
-|-o. 622
-f-o. on
30. 259
23 4 24- 1 10
+0
i4[53
851]
(p
Aquarii
22 53 41.961
-f 0. 284
^0. 051
+0. 145
-|-o. 164
-|-o. 014
42.517
23 8 36.355
S3
838
-\-o. 007
y
Piscium . . .
22 56 32. 243
-1-0. 301
— 0. 047
-|-o. 096
-ho. 163
-|-o. 016
32. 772
23 1 1 26. 602
S3
830
+0.015
Cephei ....
22 59 12. 107
+0. SS4
— 0. 072
— 0. 627
-|-o. 426
-1-0. 018
12. 406
23 14 6.365
[S3
959]
V
Pegasi . . .
23 4 57- 949
+0. 341
-0. 038
— 0. oi8
-1-0. 177
-|-o. 022
58.433
23 19 52. 296
53
863
—0.018
-ft
Piscium . .
23 6 22. 099
+0. 297
— o- 033
-)-o7 106
+0. 163
+0. 023
22. 655
23 21 16.477
53
822
-|-o. 023
Piscium
23 7 27. 747
+0. 307
— 0. 035
+0. 079
-|-o. 164
-|-o. 024
28. 286
23 22 22. 198
SZ
912
— 0. 067
70 Pegasi
23 8 40. 079
+o.3'9
—0. 036
+0. 044
+0. 167
-|-o. 025
40. 598
23 23 34-405
S3
807
+0. 038
41
H. Cephei . .
E.
23 27 45-064
+0-550
~o. 180
— 0. 615
+0.421
+0. 038
45. 278
23 42 38-990
+0
I4[S3
712]
• ■ •
NORMAL EQUATIONS.
Assuraingu' =-|-o. 193 -(- tifa' circleW. f = — o. 143 -j- 3. 840(fe' -|-
a" = -\-o. 348 -f da" " E. I -f o. 1 12 + 3- 631 da" -
C := -f O. 173 -|-i/(r " E. I O. 371 -|- 2.413 (/(j' 2. 708 (&''' -(-
AT = -f oiJ 14m 53S.846 -(- ^^. I ' -1-0. oio + o. 330rtfe'-|-o. 003afe''-f-
a' = -1- o>i.224 (circle west) ; a" = -\- os.324 (circle east) ; c -
Chronometer N0.1295, at 22'" 34™. 2 chron. time, o'» 14"' 53^845 J-
■l.^iTidcJf- 0.3300'/'^ wh
2. 708 dc -(- o. 003 dt I
23. 178^1: -|- o. 043(* I
o. 043 dc -{- 13. 269 dt j
= 0M83 ( -|- with circle east).
0^^.009 slow, losing 01.043 per hour.
s
da'
=
+
031
da"
;=
—
024
dc
=
+
010
dt
^=
002
Nov. 28
01 Ceti ' .
38 Cassiop.
V Piscium
40 Cassiop.
43 Cassiop.
f Piscium
o Piscium
y Arietis
fl Arietis
55 Cassiop.
^1 Ceti
Arietis
o Ceti
c Cassiop.
f» Ceti .
V Arietis .
-f- da' circle E. f o = -f o. 093 -1- 3. 499 da'
+ 0.231
-I- o. 300 — 3. 053
- o. 160 — o. 363 da' — o. 373 da"
//— _)_ o. 314 -I- da" " W. I + o. 231 -|- 3. 129 da" -f 2. 667 dc -- o. 373 dt
1 _j_ r> ^r^r^ -> r^ e -, ^^ij/ _^ 2 . SSj da" -\- 2 3 . 246 dc — o. iS6 dt
I
3.0^,3 dc — o. 363 dt"\ whence da' = — 0.034
da" =r — 0.064
dc
AX = -|- o'' 14" 55". 356 -\- dt 1 — o. 160 — o. 363 da' — o. 373 da" — o. 186 dc -\- 13. 444 dt J
a' -— 4- o».434 (circle east) ; a" = ^ 0^.250 (circle west); 43'". 2 chron. time, o^ 14m 55^.365 -J- o''.oi2 slow, losing o".o67 per hour.
— o.oio
dt = -|- 0.009
IN MEXICO, CENTRAL AMERICA, THE WEST INDIES, ETC.
47
Transits a/stun observed at
St. Xu/whis J/i<-, Hayli, by Liciil. J. A. Norris, U. S. Navy, with CraiisU No. is^'j>^^ ilcleniuHL' Ike curn'ilioii of nJcrcal cJironurnelci'
Date.
1889.
Nov. 29
tj Aquari
3 1 Cephei
30 Cephei
C Pegasi .
X Pegasi .
T Aquarii
fi Pegasi .
X Aquarii
TT Cephei
ip Aqviarii
y Piscium
o Cephei
V Pegasi .
K Piscium
ft Piscium
70 Pegasi .
J Cephei
T1
nt
J3
a>
u
/>
w.
w. ,
E.
7
7
E.
7
Transit uvcr
mean of threads.
//. ffl. s.
22 14 44. 497
22 iS 7.400
22 19 48. 250
22 21 o. 850
22 26 16. 520
22 28 48. 289
22 29 44. 170
22 31 54-796
22 49 26. 714
22 S3 39-034
22 56 29.339
22 59 8. 757
23 4 55- 120
23 6 19. 250
23 7 24-933
23 837.131
23 19 54-257
Flexure
and in-
equality
of pivots.
-o. 295
— o. 647
— o. 506
— u. 316
-o- 341
— o. 269
-u- 344
— u. 281
-^o. 690
+0. 2S4
+0. 301
+0- 554
+0-341
+0- 297
+0- 307
+0.319
-|-o. 760
ivcvel.
— 0.071
o. 138
o. 103
o. 061
o. 053
o. 036
o. 046
0-034
— o. 250
o. 118
— o- 137
o. 269
o. 191
— o. 171
■0. 181
o. 194
o. 577
Azimuth.
+0. 026
— u. 204
— o. 112
-|-o. 012
— o. 004
+"■ 043
— o. 006
+0- 035
— o. 684
"|-o. 098
+0. 065
— o. 424
— o. 012
-|-o. 072
+0- 053
+0. 030
—0.819
Aberra-
tion and
colli-
mation.
s.
-o. 18O
— o. 639
— o. 410
— o. 189
— o. 202
— o. 192
— o. 204
-o. 188
+0-557
+0. 147
+0. 146
+0. 382
+u. 158
+0. 146
+0. 147
+0- 149
+0. 650
Rate
s.
-o. 034
— o. 030
— o. 028
— o. 027
— o. 021
— o. 018
— o. 017
— o. 014
4-0. 006
-fo. on
+0. 014
+0. oi8
-f-o. 024
-|-o. 026
-|-o. 027
-f-o. 028
-f o. 042
Seconds
of corr,
transit.
K. A.
Chronometer
correction.
V.
S'.
A. III. s.
h. in. s.
J.
43- 937
22 29 40. 801
-\-o 14 56.864
-|-o. 004
5-742
22 33 2.572
[56.830]
47.091
22 34 44.012
[56.921]
0. 269
22 35 57.222
56.953
■— 0. 085
15-899
22 41 12.703
56. 804
-|-o. 064
47.817
22 43 44. 654
56.837
+0.031
43-553
22 44 40. 426
56- 873
— 0. 005
54-3'4
22 46 51. 211
+0 14 56. 897
—0. 029
27-033
23 4 23. 959
+0 i4[56-926]
39- 456
23 8 36.331
56-875
— 0. 007
29. 728
23 II 26.577
56. 849
-1-0. 019
9. 018
23 14 6. 269
[57-251]
55- 440
23 19 52.265
56.825
+0- 043
19. 620
23 21 16.455
56. 835
+0- 033
25. 286
23 22 22. 176
56. 890
— 0. 022
37-463
23 23 34- 381
56.918
— 0. 050
54-313
23 34 SO- 617
+0 I4[56.304]
NORMAL EQUATIONS.
Assuming a' = -)- o. 078 -|- t/a' circle W. f o^ — o. 001 -|- 2. 666 (/«' -|- \.\'~,(idc^ o. 489 (A ") whence i/a' = — 0.004
a" = -f O. 272 -f a'a'-' " E. J -f-0.228 -f 4. 047 a'a'-' — T,.0\i,dc-\- o.l-}f>dt\ da" =: — O. 053
c =-|-o. 161 -t-tZir " E. I — o. 264-I- I. I56a'<7' — 3. 044(/a" -|- 21. 772 Pegasi . .
w Piscium
Br. 6
Assuming a' ^ -)- o,
c
AT
= -)-o.
w.
18 2.871
-f-o. 647
— 0. 156
-0. 033
-f-o. 670
— 0. 036
3-963
20 58. 409
+0.316
— u. 094
-(-0. 002
-t-u. 198
— 0. 033
58- 798
26 13.910
+0. 341
-0. 132
— 0. 001
-f-o. 212
— 0. 027
14- 303
28 45-954
-f-o. 269
— 0. 114
-f-o. 007
-f-o. 201
— 0. 025
46. 292
29 41-587
+0. 344
— 0. 151
—0. 001
+0.214
—0. 024
41.969
31 52.390
-f-o. 281
— u. 132
-f-o. 006
+0. 197
— 0. 022
52.720
44 16. 856
+0. 324
-0. 175
-f-o. 001
+0. 201
—0. 009
17. ig8
49 24.615
-|-o. 690
— 0. 370
-0. 037
+0. 744
— 0. 004
25- 638
56 27.807
+0. 301
-0. 153
-|-o. 004
+0- 195
+0. 003
28.157
4 54- 333
-0- 341
-f-o. 062
-f-o. 001
-0. 255
+0. on
S3- 8n
6 18.486
— 0. 297
+0. 055
— 0. 008
-0. 235
-^0.013
1S.014
7 24.217
— 0. 307
+0- 057
— 0. 006
-0. 236
+0.014
23- 739
8 36- 437
-0. 319
-f-o. 060
— 0. 003
— 0. 240
+0.015
35-950
19 53-479
— 0. 760
+0- 154
-f-o. 090
-I. 046
+0. 026
5'- 943
27 41-236
-0. 550
-|-0. 121
-f-o. 046
— 0. 606
f 0. 034
40. 281
31 54-679
-0. 332
+0.075
— 0. 001
—0. 248
+0. 038
54-211
38 40.807
— 0. 308
+0. 073
— 0. 006
— 0. 236
+0. 045
40- 375
SS 3- 693
-0. 736
-f-o. 196
-f-o. 085
— 0. 995
+0. 062
2.305
22
33
2
498
22
35
57
210
22
41
12
689
22
43
44
638
22
44
40
406
22
46 51
199
22
59
15
691
23
4
23
8S3
23
II
26
5^1
23
19
52
246
23
21
16
444
23
22
22
165
23
23
34
368
23
34 50
533
23
42
38. 869
23
46 52
546
23
53
38-831
10
358
+0 i4[58-535]
58.412
58.386
58. 346
58.437
58.479
58. 493
[58. 245]
14 58.404
+0 14 58.435
58. 430
58.426
58.418
[58. 590]
[58, 5SS]
58.335
58.456
+0 I4[58.0S3]
+0. 008
0.034
+0. 074
—0.017
— o. 059
— o. 073
+0. 016
— o. 015
— o. 010
— o. 006
+0. 002
-o. 085
-o. 036
NORMAL EQUATIONS.
= + o. 083 + 3. 065 da' — 1 . 446 dc + o. 658 (//
— 0.165' +3. 879fl'a'M- 3.S82(i'^- o. 325 rA
— 0.421 -- 1.446 5
— 0.012
,i
Aquarii
22
33 45
436
-1-0. 265
0. 000
+0. 344
+0. 337
—0. 029
46-353
22
48 47- 294
0.941
+0. 012
a
Pegasi . . .
22
44 14
001
+0- 324
0. 000
+0. 053
+0- 334
—0.021
14. 691
22
59 15-667
0.976
— 0. 023
TT
Cephei
22
49 22
786
-|-o. 690
0. 000
-1.746
+ 1-2 -,2
—0.017
22. 945
23
4 23.731
[0. 786]
•
Assuming a' = + 0. 531 + <&' circle E. f 0= -o. 097 + 3. Ii7 i5'"o''.955+<*. (^ .-0.029 + 0. 975 ^«' +0.636 «"— o. 24c(^/f + 13. ooo/ J
a' = '\- 0^559 (circle east) ; a" = + os.487 (circle west) ; <: = 08.343 (+ with circle east).
Chronometer No, i295,aL23ii 1 1 '".I chron. time, oh 1 5" 08,953 -j- o».od6 slow, losing 08.047 per hour.
de = — o. 010
dt ^ + o. ooi
IN MEXICO, CENTRAL AMERICA,
Transits of stars observed at St. Nicolas MoU, Hayti, l,y [Jrid.J. A. Morris, U. S. Navy.
Nci^iis A\i. I2g^
THE WEST INDIES, ETC. 49
, with transit No. 150J, to delennim: the correction of sidereal chronometer
Date.
Dec.
Name of Star.
if> Aquarii
) Piscium
Cephei
4 Cassiop.
K. Piscium
6 Piscium .
70 Pegasi .
1 Piscium
41 H. Cephei
(p Pegasi . .
(J Piscium
33 Piscium .
} Pegasi . .
( Ceti .
44 Piscium
K Cassiop.
Transit over
mean of threads.
h. III. J.
^2 53 34- 59G
22 56 24. 964
22 59 5.964
23 + 56.214
23 6 14.884
23 7 20. 606
23 8 32. 854
23 19 14.867
23 27 36.021
23 31 49- 763
23 38 35- 993
23 44 38.451
23 52 30-637
23 58 45-603
o 4 42. 187
o II 42. 236
Flexure
and in-
equality
of pivots.
—0
284
—0
301
—0
554
—
494
—
297
—
307
—
319
—
306
+0
550
+0
332
+0
308
+0
284
+0
324
+0
27S
+0
299
+0
500
Level.
Azimuth
+ o. 103
-fo. no
+0. 204
+0. 188
+0. 113
+0. 118
+0- 124
o. 125
— o. 119
-0. 081
-0. 090
-0. 096
-0. 128
— O. 123
o. 144
-0. 265
+0. 146
-f-o. 096
— o. 633
— o. 460
+0. 107
-|-o. 080
+0. 044
f o. 084
—0.81 1
4-0. 010
O. lOI
+0. 190
-|-o. 041
-|-0. 212
+0. 135
— o. 621
Aberra-
tion and
coUi-
mation.
Rate.
Seconds
of corr.
transit.
s.
J.
J.
—0. 428
— 0, 025
34. 108
—0. 425
-0. 023
24.421
— 1. HI
— 0. 021
3-849
-0. 896
—0.017
54- 535
-0. 425
— 0. 016
14.366
—0. 427
—0.015
20. 055
-0. 435
— 0. 014
32. 254
—0. 427
— 0. 006
14- 337
+0. 993
-|-o. 001
36. 635
-f 0. 406
-f 0. 004
50. 434
+0. 387
-(-0. 009
36. 708
+0. 387
-|-o. 014
39. 230
+0. 398
-(-0. 020
31.292
+0. 390
+0. 024
46. 384
+0. 385
+0. 029
42. 891
+0. 829
-l-o. 034
42.713
R.A.
h. m.
23 8
23 II
23 14
23 19
23 21
23 22
23 23
23 34
23 42
23 46
23 53
23 59
o 7
o 13
o 19
o 26
36. 283
26.513
6.077
56-551
16. 411
22. 132
34- 333
16. 472
38-736
52-513
38. 801
41-351
33-411
48. 498
44. 960
44. 824
Chronometer
correction.
h. m. s.
+0 15 2- 175
2. 092
[2. 228]
[2.016]
2.045
2.077
2.079
+0 15 2.135
-|-o 15 [2. 101]
2.079
2.093
2, 121
2. 119
2. 114
2. 069
+0 15 [2.111]
-o. 07s
-o. 008
+0.055
+0.023
— o. 021
- o- °35
-f 0.021
-)-o. 007
o. 02 1
— 0.019
o. 014
+0.031
NORMAL EQUATIONS.
Assuming a' = 4- o. 335 -(- «' circle \V. f = + o. oio-(- 2. 221 «' -f- 0.663 at + o. 698 a"/ 'I whence «'
«" = + o. 383 -|- o'a" " E. j —0.085 +2.302^a"— o. 764,/t-4- o. 599(// I da'-
c = -)- o. 388 -|- dc " E. "j — o. 282 -\- o. 663 da' — o. 764 da" + 19. 070 dc -f o. 070 dt j
/\T =-)-o''l5'"2>.io5-f-(/A l^ -1-0.043-1-0.698 (/■;' + 0.599 (/a"-!- o. 070,- -|- 13. 238<* J
«' = -f- o".327 (circle west); a" = -{- o''.427 (circle east); <: = 08.405 (-(- with circle east).
Chronometer No. 1295, at 23'' 26™.8chron. time,oh 15™ 2^.100 -|-oi'.oo7 slow, losing os.046 per hour.
— o. 008
-f 0.044
dc =-(-0.017
d( = — o. 005
Dec. 4
(i Pegasi . .
a Pegasi
■n" Cephei
S7
23 42 38- 178
[15-021]
"P Pegasi . ...
23 31 36.499
+0-332
-|-o. 048
-|-o. 014
-f 0. 402
— 0. 020
37- 275
23 46 52. 360
15.085
-0-053
IS" I5».035 + (/? (^ — o. 008 -f- o. 047 i/a' -|- o. 546 (/a" -|- o. 094 ifc -f- 1 2. 848 lA J
a' = -f- 0^.592 (circle east) ; a" ^ -f- o'i.535 (circle west); if = 0».40l (+ with circle east).
Chronometer No. 1295, at 23'' 51^.3 chron. time, o'' 15"" 15^032 -J- 0^.019 slow, losing o=.o62 per hour.
whence da'
= —
049
da"
= +
0.
053
dc
^ —
004
dt
:=
OOI
Dec. 16
la Piscium
33 Piscium
a Andromeda;
) Pegasi .
i Ceti .
44 Piscium
/c Cassiop.
y Cassiop.
44 Cephei, H.
. Piscium
\i Piscium
55 Cassiop.
f 1 Ceti . .
67 Ceti . .
Ceti . .
« Ceti . .
E.
W.
23 38 21.519
+0. 308
-0. 186
+0. 103
+0.441
— 0. 088
22.097
23 44 24.013
-j-o. 284
-0. 171
-f-o. 194
+0- 441
— u. 081
24. 680
23 47 24.071
+0- 354
— 0. 212
-0. 07s
-1-0. 498
-0.077
24- 559
23 52 16. 200
+0. 3*24
-0. 193
-|-o. 042
+0- 452
—0.071
16. 754
23 58 3'-«76
-1-0. 278
— 0. 165
-f-o. 217
+0-44+
— u. 063
31.887
4 27.774
-f-o, 299
— 0. 177
+0. 139
+0- 438
— 0. 056
28.417
II 27.507
-f-o. 500
— 0. 295
— 0. 636
+0. 943
— 0. 047
27.972.
34 46- 771
+0. 483
-0.285
— 0. 568
-f-o. 880
—0.018
47. 263
47 35- 526
— 0. 850
0. 000
-0.677
— 2. 526
— 0. 002
31.471
50 19.877
-0. 357
-|-o. 012
— 0. 029
— 0. 549
-|-o. 002
18. 956
58 8. 889
— 0. 350
-f-o. 048
— 0. 020
-0- 535
-f-o. Oil
8-043
I 50 37. 107
-0- 536
-f-o. 014
— 0. 265
— I. 176
+0. 077
35.221
I 51 53-911
— 0. 312
-f-o. 010
-f-o. 030
— 0. 483
+0- 079
53-235
I 56 13-547
— 0. 283
-f-o. 025
-j-o. 067
— 0. 481
-f-o. 084
12. 959
I 58 31- 139
— 0. 290
+0.033
-f-o. 059
— 0. 479
-1-0. 087
30- 549
2 7 2.336
— 0. 312
-|-o; 067
+0.031
-0. 483
-f 0. 098
1-737
23 S3 38-
23 59 41-
o 2 41.
o 7 33-
o 13 48.
o 19 44-
o 26 44.
50 3.
1 2 48.
1 5 35-
1 13 24-
2 5 51-
279.
2 II 29.
2 13 46. 988
2 22 18. 297
659
209
092
258
368
831
409
797
157
459
558
575
778
436
+0
+0
+0
15 16. 562
16. 529
16.533
16. 504
16.481
16.414
[16-437]
i5[i6. 534]
I5[i6. 686]
16. 503
16.515
[16-354]
16. 543
16.477
16.439
15 16.560
0.057
o. 024
— o. 028
-f-o. 001
-f-o. 024
-f o. 091
-f-o. 002
— o. 010
— o. 038
-|-o. 028
-f-o. 066
-o. 055
NORMAL EQUATIONS.
'o = -f-o. o54-f- 2. 061 flVz' — 0.744 at -|- o. 382 (// ~
— 0.057 -|- 2. 760 (/a" -f- i.932(/c-f- o. 127 (*
— o. 224 — O. 744 da' -f- 1. 932 da" -\- 19. 858 dc -^ o. 414 dt
-f-o. 021 -f-o. 382 da' -\-o. 127 da" -|- 0.414 dc -\- 13. 103 dt
«' = -f- o».437 (circle east) ; a" ^-\- o'. 149 (circle west) ; ^ = o'.4S8 (-f- with circle east).
Chronpmeter No. 1295, at oi" 49'".o chron. time, oh 15m i6=.505 J- o«.oo9 slow, losing 08.075 per hour.
Assuming a> = -f- o. 459 -f- da' circle E.
«" = -|-o. i3S-f-n'a'' " W
c = + o. 449 -f- de " E.
/\T =-f-oi>i5'"i6».503-|^fl'.^.
whence da'
da"
dc
dt
= ^0. 022
^ -j-o. 014
^ -f- o. 009
= — O. OOI
52
TELEGllAl'UKJ DETI'UiMlNATlON OF LONGITUDES
Transih of s/ars vh,r\;,l at Si. Xi,o/,is Mule, IJayli, by Lieul.J. A.
\o) rh, U. S. A'a-'v, -,ai//i /niini/ jVd. I ^oj, to determine the loricil ion of sidereal chronometer
Nci^iii No. /-'lyj-
Date.
N.imu ot Slar.
'I'raiisit uvcr
mean uf tliri.'ads.
I'lcxuru
and in-
ei]uality
of pivots.
Level.
A/imutli.
Alierra-
tion and
colli-
mation.
Kate.
Seconds
Dfcorr.
transit.
K. A.
Chronometer
correction.
V.
E.
S5
h. III. s.
23 21 40.540
J-.
40. 267
-0.136
|-o. 220
-l-u. 462
— 0. 080
s.
41-273
A. m. s.
23 36 59- 797
+0
1S89.
1.1- Aquarii
III. s.
15 18.524
s.
+0. 087
Dec. 17
41 11. Cephei . . .
23 27 19.057
+0. 550
— 0, 292
-0. '703
+ 1.151
— 0. 072
19. 691
23 42 38. 0S2
[•8.391]
15"> 20=.3i2 + fl'if
a
— o. 773 dc-\- 1 . 195 fl!^ 1 whence da' = — o. 040
+ 2.595a',7"+ i.-]i2,dc-\- o.i88d'/[ ^■^'' = + 0.058
dc ^ + o. 013
dt = + o. 001
IN MEXICO, CBNTEAL AMEEICA, THE WEST INDIES, ETC.
53
Transits of stars observed at St. Nicolas Mole, Hayti, by Lieut. J. A. A'orris.U. S. Navy, tvith trainil No. 1503, to determine the correction of sidereal chronometer
A'cx/ii No. isc^S-
Date.
Dec. 19
Name of Star.
q> Pegasi
20™.8 chron, time, o'' 15"' 2i''.887 -|- 0^.005 slow, losing os.o66 per hour.
Dec. 20
y
Cassiop. . .
W.
7
34 40. 864
-0. 483
+0. 175
— 0. 130
— 0. 231
E
Piscium ....
7
41 49. 914
— 0. 310
+0. 119
+0. 022
— 0. 116
44
Cephei, H. . .
7
47 25. 664
— 0. 850
+0-351
—0. 454
-0. 608
T
Piscium . . .
7
50 12.273
-0.357
+0. 149
— 0. 019
-u. 132
/
Piscium . . .
7
56 43- 430
— 0. 302
+0. 134
+0. 029
-0. 115
V
Piscium ....
7
58 1.243
-0. 350
+0. 157
—0.013
— 0. 129
6"
Ceti
7
I 3 7-53"
- -0. 280
+0. 131
+0. 048
— 0. 116
V
Piscium . .
W.
7
I 10 II. 833
-0. 324
+0. 161
+0. 009
- 0. 119
TT
Piscium ....
E.
7
I IS 51.477
+0.318
— 0. 019
+0. 035
-f 0.077
43
Cassiop. . .
7
I 18 48. 100
+0. 554
— 0. 054
-0.459
+0. 196
Piscium . . .
7
I 24 10. 600
+0.312
— 0. 050
+0. 047
+0, 076
f
Ceti
7
' 30 37- 336
+0. 276
— 0. 064
+0. 124
+0. 076
7
Arietis . . .
7
I 32 5. 126
+0. 333
— 0. 084
+ 0.005
+0. 079
50 Ca.ssiop
7
I 38 39- 571
+0. 623
— 0. 204
— 0. 604
+ 0.241
a
Arietis
7
J 45 33-894
+0. 341
— 0. 141
— 0. 014
+ 0.081
e
Ceti
E.
7
I 51 45-790
+0.312
— 0. 151
+0. 048
+0. 076
-0. 048
40. 147
50
3.669
+0
I5[23-522]
—0. 040
49- 589
57
13.241
23-652
—0. 064
-0. 033
24, 070
I 2
47. 768
[23-698]
—0. 030
11,884
I 5
35-404
23-520
+0. 068
—0. 022
43- '54
I 12
6-743
23.589
— 0. 001
—0. 020
0.888
' 13
24.511
23.623
-0.03s
—0.014
7.300
1 18
30. 831
23-531
+0. 057
—0. 006
11-554
I 25
35-171
+0
15 23.617
— 0. 029
+0. 001
51.889
I 31
15-377
+0
15 23.488
+ 0. 100
+0. 005
48. 342
I 34
11.871
[23- 529]
+0. Oil
10. 996
I 39
34-517
23,521
+0. 067
+0.019
37.761
I 46
■•371
23. 604
—0.016
+0. 020
5-479
I 47
29. 082
23. 603
-0.015
+0. 028
39-655
I 54
3.276
[23. 621]
+0. 037
34- 198
2
57-874
23.676
—0. 088
+ 0. 044
46. 119
2 7
9-752
+0
15 23-633
-0. 045
NORMAL EQUATIONS,
o = — o. 023 + 2. 545 (/<•;' + \.<)Oil dc
+ 0.044 +2.459rfrt" — i.692(A+ 0.082a'/,
— 0.258+ 1.997 (/o' — 1.69^ (/(2" + 20. 226 (/c— o. o54n'/ I
+ 0.013 — O. 079 da' + o. 082 da" — o. 054 dc +12, 900 dt j
a/ = + oMoo (circle west); u'' = + o».238 (circle east); f = o«.095 (+ with circle east).
Chronometer No. 1295, at i'> i5'".o chron. time, oh 15™ 23^.588 -^ o».oi2 .slow, losing o».o72 per hour.
Assuming a' ^ -\- o. 100 -\- da' circle W.
a" = + o. 247 + da" " E.
c = + 0.083 + ^/^ " E.
AT = + oh IS™ 23'.587 + dt.
o. 079 dt ^ whence da' =
I da" =
dc =
dt =
0.000
— o. 009
+ 0.012
— o. 001
54
TELEGRAPHIC DETERMINATION OF LONGITUDES
Transits of stars observed at Santo Domingo City, by Lieut. J. A. Norris, U. S. Navy, with transit Ahi. 1503, to determine the correction of sidereal c/ironometer
Xc\i;-lts No. I2Q^.
Date.
Name of St;
y Ceti .
H Circle.
Transit over
mean of threads.
Flexure
and in-
equality
of pivots.
s.
+0. 304
Level.
s.
+0. 037
Azimuth.
s.
— 0. 033
Aberra-
tion and
coUi-
mation.
Rate.
Seconds
of corr.
transit.
R. A.
Chronometer
correction.
V.
1890.
Jan. I
/?. w. s.
2 7 54.446
s.
+0- 305
J.
— 0. 039
s.
55-020
ft. m. s.
2 37 35- 654
h.
+0
111. s.
29 40. 634
s.
-0. 057
T Celi . . .
2 911. 869
+0. 273
+0. 038
— 0. 069
+o.3>5
— 0. 039
12.387
2 38 52- 946
40. 559
+0. 018
a Arietis .
2 15 43- 536
+o- 325
-l-o. 078
— u. 009
+o-3'5
-0. 035
44.210
2 45 24. 805
40. 595
— 0, oiS
47 Cephei, H.
2 21 46. 986
-1-0. 811
+0. 273
+0.565
+ 1-596
— 0. 032
5°. 199
2 51 30.657
[40. 458]
9 H. Camelop
3 18 3.900
+0.477
4-0-185
-1-0.171
-Lu. 625
— 0. 002
5-356
3 47 45- 992
[40. 636]
. . .
; Eridani .
3 23 12.789
+0. 274
-|-o. 104
— 0. 068
+ 0.314
-l-o.ooi
13-414
3 52 53-978
40. 564
+0. 013
X Tauri . .
3 24 53. 806
-1-0. 320
-|-0. 121
- 0. 014
+0.312
-f 0. 002
54- 547
3 54 35- 086
40. 539
+0. 038
V Tauri
. . E.
3 27 36-987
+0. 309
-|-o. 116
-u. 027
+0. 307
-|-o. 003
37- 695
3 57 18. 266
+0
29 40.571
-f 0. 006
y Tauri . .
. W.
3 43 51- 937
— 0. 326
+0. 114
—0. 009
-0. 358
-|-0. 012
51-370
4 13 32-018
+0
29 40. 648
— 0.071
(5 Tauri . .
3 46 55- 366
^0. 330
+0. 149
—0. 003
— 0. 361
-|-o. 014
54. 835
4 16 35-459
40. 624
— 0. 047
f Tauri . .
3 52 31-500
0-333
-fO. 211
-f 0. 001
— 0. 365
-f 0. 016
31.030
4 22 II. 621
40. 591
— 0. 014
a Tauri . .
3 59 56-476
0.328
fo. 269
—0. 006
— 0. 359
-|-o. 020
56. 072
4 29 36. 576
40. 504
+0. 073
I' Eridani .
4 I 9- 333
-0.293
+0. 245
— 0. 058
— 0. 346
-fo. 021
8. 902
4 30 49- 459
40. 557
+0. 020
T Tauri
.
4 5 58.474
—0.341
-f 0. 308
-|-o. 012
— 0. 374
-f 0. 024
58. 103
4 35 38. 639
40. 536
+0. 041
a Camelop.
4 13 27.823
— 0. 524
+0. 500
-1-0. 280
-0. 854
-fo. 028
27- 253
4 43 7- 823
[40. 570]
10 Camelop.
w.
4 23 58.714
— 0. 473
+0. 434
-fo. 206
— 0. 696
+0. 033
58.218
4 53 38. 798
+0
29[40. 580]
Assuming a' = — O. lig-{- da' circle E.
«" = — o. 148 -!-«" " W.
c =-|-o. 323-1-^^ " E.
/\T = -f- oi> 29'n 40».576 -|- dt.
f =
NORMAL EQUATIONS.
:-|-o. 015 -)-2. 655 rfa' — 0.9590^-1- o.g2e, dt'
-|- 0.006 -|- I. 755 (/a" -|- I.868(/ir — 0.611 dt
— o. 038 — o. 959 rfff' -|- 1 . 868 da" -f 19. 595 (/e — o. 438 dt
— o. 020 ~fo. 925 da' — o. 611 da" — 0.4381/1: -f- 13. 115 a?
whence da' =^ — o. 005
da" ^ — o. 005
dc = -f- o. 002
dt = -j- o. 002
3'=r — 08.124 (circle east); a" :^ — 0».I53 (circle west) ; c = o'.325 (-)- with circle east).
Chronometer No. 1295, at 3I' 21 '".6 chron. time, o'' 29™ 40«.577 -[- o'.ooB slow, losing 0".032 per hour.
Jan. 2
11 Tauri
0' Eridani
y Tauri .
6 Tauri .
e Tauri . .
a Tauri .
Gr. 848 . .
n Camelop.
10 Camelop.
I Tauri . . .
1 1 Orionis . .
19 H. Camelop.
/? Orionis . .
T Orionis .
y Orionis
<5 Orionis . .
E.
E.
W.
_
W.
7
3 27
3 36
3 43
3 46
3 52
3 59
4 4
4 13
4 23
4 26
4 28
4 34
39
4 42
4 49
4 56
36. 036
+0. 309
— 0. 004
-|-o. 008
+0. 366
-.U.037
36.678
47- 679
-l-o. 286
—0.013
-fo. 017
+0. 367
— 0. 029
48. 307
49- 703
+0. 326
— 0. 022
-|-o. 002
+0. 377
— u. 024
50. 362
53- 223
f 0.330
— 0. 025
-\-o. 001
+0. 381
—0.021
53. 889
29. 284
f 0. 333
— 0. 033
0. 000
+0. 385
— u. 016
29. 953
54- 263
+0. 328
— 0. 041
-j-o. 002
+0.379
— 0. 010
54.921
20. 721
-|-o. 692
— 0. 094
— 0. 130
+ 1.478
— 0. 007
22. 660
25- 179
+0. 524
— 0. 088
—0. 069
-fo. 900
+0. 001
26.447
58.057
— 0. 473
— 0. 126
+0. 433
-0.815
-fu. 009
57.085
50. 610
-0. 338
—0. 085
+0.018
-0.434
+0. 012
49- 783
36-417
— 0. 326
-0.079
— 0.019
-0.419
+0.013
35-587
49. 586
—0.816
-0. 171
+ 1.486
—2. 138
+ 0.018
47.965
34- 684
— 0. 284
-0.052
— 0. 147
-0. 408
+ 0. 022
33.815
35- 366
— 0. 286
—0. 048
-0.139
— 0. 407
+0. 024
34.510
33- 273
— 0. 310
— 0. 041
-0. 068
— 0. 406
+0. 030
32.478
42. 676
— -0. 298
— 0. 028
— 0. 104
— 0. 404
+ 0. 036
41.878
3 57
4 6
4 13
4 16
4 22
4 29
4 34
4 43
4 53
4 56
4 58
5 4
5 9
5 12
5 '9
5 26
18
262
29
849
32
016
35
458
ri
620
36
574
4.510
7
813
38
794
31
361
17
124
29.473
IS
391
16
214
14. 050
23
486
+0 29 41
584
41
542
41
654
41
569
41
667
41
653
[41
850]
+0 29[4i
366]
+0 29[4i
709]
41
578
41
537
[41
508}
41
576
41
704
41
572
+0 29 41
608
+0. 020
-|-o. 062
— o 050
+ 0. 035
— o. 063
-o. 049
+0. 026
+0. 067
-I o. 028
— O. 100
+0. 032
— 0.004
Assuming a' = f o. 069 + da' circle E. f o :
rt'/ = — 0.351 +«'«" " W
c = + o. 402 + dc " E.
/^T = + o'" 29"" 4l».6o5 + dt.
^= + o».o38 (circle east
NORMAL EQUATIONS.
: + O. 041 + 2. 530 da' — 2. lOI dc — o. 144 dt
— 0.055 +^.753«'«"+ 1.3460'^+ o.i'j2dt
+ 0.246 — 2. loi ^rt' + I. 346 rfrt" + 19. 863 a'c+ 0.061 dt I
+ o. 002 — O. 144 da' + o. 572 (ta" + o. 061 rf5
313
215]
195
329
268
184
255
377]
258
+0. 064
+0. 092
— o. 087
o. 059
— o. 057
-|-o. 061
-0. 073
— 0.012
-|-o. 072
-f-o. 001
Assuming a'
AT
: + o. 127 -[- rfa' circle E.
: — o. 179 + r/fl" " W.
: -f o. 308 + dc " E.
: + Ol'29'n 455.254+0'/.
NORMAL EQUATIONS,
f o = -(-o. io6-|- 2. 5o3(/«' — i.445fl!(r +
— 0.080 -f- 2. 944 (/«''' -)- 2.i62dC'\-
— o. 106 — 1. 445 (/a' -|- 2. 162 da'' + 18. g2()de —
— o. 002 -)- o. 072 da' -|- o. 239 da" — O. 484 dc ~\-
072 dt \
whence da'
=
—
043
239 dt
da"
^
+
028
4.S4 dt
dc
^=
—
001
I
779 dt)
dt
=
000
n' := -f 0S.084 (circle east); a" = — 0^.151 (circle west); c = 0^.307 (-|- with circle east).
Chronometer No. 1295, at i'" 52"". 2 chron. time, o'> 29™ 45^.256 + o''.oi3 slow, losing o".o64 per hour.
Jan. 6
u. Tauri
W.
Gr.848 ....
\i Eridani ....
;■ Tauri
ir" Orionis . .
10 Camelop.
i Tauri
1 1 Orionis ....
W.
19 H. Camelop. . .
E.
7 Orionis . . .
17 Camelop. .
(5 Orionis ....
■
— 0. 174
— 0. 018
+0. 420
-0. 035
45.809
3 8 34. 409
48. 600
+0. 001
Tauri . . . .
2 49 4. 164
+0-314
— 0. 184
-)-o. 076
+0. 397
— 0. 020
4-747
3 '8 53- 374
48. 627
— 0. 026
2
H. Camelop. . .
2 so 20. 793
+0. 469
— 0. 278
-0. S73
+0. 776
— 0. 018
21. 169
3 20 9.885
[48. 716]
. . .
f
Tauri
E.
2 SI 23.013
+0. 3«S
— 0. 190
+0.071
+0. 398
— 0. 017
23- 590
3 21 12.237
+0
29 48. 647
— 0. 046
Gr. 716 . . .
W.
3 2 50. 564
-0. S02
+0. 097
-0,715
— 0. 949
0. 000
48. 495
3 32 37- 029
+0
29[48. 534]
y
Camelop. H. . .
3 9 0.043
— 0. s88
+0. 172
— I. 158
— 1.329
[-0. 009
57- 149
3 38 45- 844
[48.695]
. . .
1
Tauri . . . .
3 II 8. 6s I
— 0. 343
+0. 109
— 0. 048
-0. 473
-f 0. 012
7.908
3 40 56- 556
48. 648
— 0. 047
27
Tauri . . . .
3 12 49.216
-0. 343
+0. 119
— 0. 048
-0. 473
+0.01S
48. 486
3 42 37- 129
48. 643
— 0. 042
)
Eridani . . . .
3 23 SS8i
— 0. 274
+0. 136
-\-o. 261
—0. 446
+0. 030
5.288
3 52 53- 936
48. 648
— 0. 047
/
Tauri
3 24 47.016
— 0. 320
+0. 167
+0. 053
—0.443
+"• 033
46. 506
3 54 35-058
48. 552
+0. 049
f
Tauri . . . .
3 27 30. 101
-0. 309
+0. 175
-|-o. 104
-0. 435
-to. 037
29. 673
3 57 18. 238
48. 565
+0. 036
A
Tauri . . . .
\V.
3 28 23.S03
— 0. 339
-|-o. 196
— 0. 029
— 0. 466
+0. 038
22. 903
3 58 11.463
—0
29 48. 560
+0. 041
NORMAL
EQUATIONS.
Assuming a' =: -|- 0.
425 H
- da' circle E. f = — 0. 077 -|- 2. 22
3 da' — 2. 131 dc — 0.
306 dt '\ vi'hence da'
= + 0.017
«" = + 0.
457-
-da" " W. J —0.006
-\- 2. ^02 da" -\- 1.951 rt?^— 0.
366 a'/ 1 da"
= + 0.018
c =-fo.
431 H
^dc
" E. )
+ 0.34
7 — 2.13
I da' -{■ I
95ia'«"
■f 18.890
dc— I.
344 a"^ 1
dc
^ — 0.018
/\T = + o'' 29m 48».6o5 + dt.
+ o. 008 — o. 306 fl'a' — o. 366 (&" — 1.3440'^ + 12. on aV J dt = — 0.002
a' ^ + o".442 (circle east) ; a"^ + o=.47S (circle west) ; =^ + o. 845 + a'a' circle E. f = -I-0.040 + 2. 864fl'a' — \.(>Tf)dc^ 0.462a'/ ~\ whence
a" = + o. 692 + a'a" " W. I —0.021 -\- 4. 102 da" -\- l.220dc-\- 1.419a'/ I
c ^ + o.372-fo'f " E. ] _|_o.o76 — i. 636(/a' + i. 22oa'a''' 4- 20. I99a''3o'n7=.4i7 + a'/. [ +0. 006 + 0. 462 0^' + 1. 41 9 (fa'/ + o. 643 a'.r + 1 2. 405 rf/ J
a' = + o".828 (circle east); a" = + 08.699 (circle wrest); ,: =: o'.366 (+ with circle east).
Chronometer No. 1295, at 5'' 43"" .4 chron. time, oii 30™ 7=.4l8 + 0^.006 slow, losing o».o64 per hour.
s
da'
=
017
da"
=
+
0.
007
dc
=
—
006
dt
■=
000
Jan. 21
y Tauri . .
A Tauri . .
E Tauri
a Tauri . .
V Eridani .
Gr. 848
fi Eridani .
.1 Camelop.
n Orionis .
130 Tauri . .
K Orionis
a Orionis
Lai. 1 1 382
66 Orionis
36 Camelop.
22 Camelop.
E.
E.
W.
W.
3 43 22.231
+0. 326
+0- 079
3 46 25. 693
+0- 330
+0- 063
3 52 1.856
+0- 333
+0. 030
3 59 26. 791
+0. 328
—0.017
4 39. 691
+0. 293
—0. 028
4 3 54-436
+0. 692
—0. 092
4 9 50-487
+0. 293
—0. 070
4 12 58.414
-l-u. 524
—0. 152
5 3 S-27?
— 0. 294
— 0. 035
5 10 53.440
-"■331
— 0. 004
5 12 24. 205
— 0. 282
+0- 003
5 '9 4-914
—0.312
+0. 032
5 24 25. 006
-0. 293
+0.051
5 29 1-569
— 0. 306
+0.071
5 3> 41-843
— 0. 520
+0. 140
5 36 39. 186
— 0. 564
+0. 190
0.031
o. 012
o. 004
o. 022
o. 210
1.905
0. 209
1. 020
0.257
o. on
0.342
o. 139
o. 262
0.177
1.275
1.572
+0.415
+0. 419
+0. 423
+0.417
+0. 401
+ 1. 624
+0. 401
+0. 990
— o. 440
— o. 462
-o. 447
— o. 444
— o. 440
—0.441
— 1. 071
—1.248
— 0. 056
23. 026
— o. 053
26. 464
-0. 047
2.591
—0. 039
27. 502
-0. 037
40. 530
—0. 034
54.721
—0. 028
51.292
—0. 025
58. 73>
+0. 029
4.794
+0. 037
52.691
+0. 039
23.861
+0. 046
4-375
+0. 052
24. 638
+0. 057
I. 127
+0. 059
39-J76
+u. 065
36.057
4 13
4 16
4 22
4 29
4 30
4 34
4 40
4 43
5 33
5 41
5 42
5 49
5 54
5 59
6 I
6 6
31.890
35- 338
11.503
36. 473
49. 340
3-756
0.179
7-456
13.681
J-S75
32.712
13- 273
33- 522
10. on
48. 158
44.812
+0 30
+0 30
+0 30
-o 30
8
864
8
874
8
912
8
971
8
811
[9
035]
8
887
[8
725]
8
887
8
884
8
851
8
898
8
884
S
884
[8
982]
[8
755]
+0. 020
+0.010
— o. 028
— 0.087
+0. 073
— 0.003
0.003
0.000
+0- 033
— o. 014
0.000
0.000
Assuming
NORMAL EQUATIONS
+ 0.571+ (/a' circle E. f 0= + o. 020 + 2. 574 a'a'
: + o. 70s + da" " W. I
— 2. 007 dc — o. 048 dt ^ whence da' =
+ 2. 591 a'a"+ o. 968a' 30m 108.398 -j-os.014 slow, losing oi'.o6o per hour.
: + 1 . 360 + da' circle E.
■.+ 1.303 + da" " W.
= + 0.351+^^ " E.
: — oh 30™ iC.jgS + dt.
whence da'
= —
031
da"
= +
028
dc
= +
013
dt
= —
006
Jan. 23
a Tauri .
V Eridani
Gr. 848
r Tauri .
Ii Eridani
a Camelop.
i Tauri . .
TT^ Orionis
1 1 Orionis
/3 Eridani . .
19 H. Camelop.
22 Camelop. .
5 Monocerotis
8 Monocerotis
y Geminorum .
.y Monocerotis
E.
7
7
7
7
7
7
7
E.
7
W.
7
7
7
7
^
7
7
W.
7
3 59 23, 883
+0. 328
— 0. 01 1
+0. 039
+0- 358
— 0. 046
24-551
4 36. 679
+0. 293
— 0. 010
+0. 362
+0. 345
-0. 045
37- 624
4 3 52.893
+0. 692
— 0. 024
—3- 291
+ 1-397
— 0. 041
51.626
4 5 26. 104
+0. 341
—0.012
— 0. 078
+0. 373
-0. 040
26. 688
4 9 47-454
+0. 293
— 0. 010
+0.361
+0- 345
—0. 036
48. 407
4 12 56.4:4
+0. 524
—0.018
—I. 762
+0.851
-0. 033
55-976
4 14 43- 844
+0. 332
—0.012
— 0. 003
+0- 363
—0.031
44- 493
4 18 18.674
+0. 303
— 0. on
+0. 269
+0. 344
— 0. 028
19.551
4 28 5. 794
— 0. 326
+0. 202
+0. 054
-0. 398
— 0. 018
5-308
4 32 14-996
— 0. 290
-f 0. 223
+0. 373
-0. 386
— 0. 014
14. 902
4 34 22.557
—0.816
+0. 689
-4- 263
—2. 032
— 0.012
16.123
5 36 37- 300
— 0. 564
—0. 272
-2. 035
—1.089
-|-o. 048
33- 388
5 39 18.404
— 0. 288
-0. 139
+0. 388
-0. 386
+0.051
18. 030
5 47 45. 486
-0. 307
— 0. 148
+0. 222
-0. 385
+0. 058
44. 926
6 I 10.851
-0. 328
— 0. 158
+0.032
—0. 401
+0. 072
10. 068
6 4 44. 474
— 0. 316
— 0. 153
+0. 138
-0. 390
+0. 075
43- 828
4 29 36.455
4 30 49- 322
4 34 3-646
4 35 38. 520
4 40 o. 163
4 43 7-400
4 44 56- 349
4 48 31.360
4 58 17.048
5 2 26.688
4 28. 564
6 44. 780
9 29. 856
17 56.755
6 31 21. 821
6 34 55.618
+0 30 11.904
1 1 . 698
[12. 020]
11.832
11.756
[11.424]
11.856
+0 30 11.809
+0 30 11.740
11.786
[12.441]
[11.392]
11.826
II. 829
'1-753
+0 30 11.790
-o. 106
-0. 100
-o. 034
+0. 042
— o. 058
— o. 01 1
+0. 058
+0.012
— o. 028
—0.031
+0. 045
+0.008
NORMAL EQUATIONS.
= + o. 026 -f 2.656 (/a' — t.8g2 dc+ 0.0770'/
+ 0.120 +2. gSs da" + I.'j'j2dc+ o. ^g6 dt
+ o. 272 — 1.892 da' + I. 772 da" + 19. 966 dc + o. 246 ■*■
+ o. 076 + 0.077 '*''''' + o. 496 da" + o. 246 dc + 12. 687 dt
a' = +.OB.964 (circle east); a" = + o«.924 (circle west); c — 08.364 ( + with circle east).
Chronometer No. 1295, at 4I' 46m 8 chron. time, o'' 30'" ii«,798 -J- o'.oii slow, losing o».os8 per hour.
Assuming a' = + o. 983 + da' circle E.
a" — + o. 956 + da" " W.
c = + O. 377 + dc " E.
/\T = + o"! 30"! 1 1».793 + dt.
whence
da'
—
s
— 0.
019
da"
=
—
032
dc
=
—
013
dt
==
— 0.
004
60
TELEGRAPHIC DETERMINATION OP LONGITUDES
Transits of stars observed at Santo Domingo City, by Lieut. J. A. Norris, U. S. Navy, with transit No. 1503, to determine the correction of sidereal chronometer
Negus No. i2i)S-
Date.
1890.
Jail. 24
Name of Star.
a Tauri .
vr'' Oiionis
10 Camelop.
( Tauri .
1 1 Orionis
/? Eridani
19 H. Camelop.
T Orionis
17 Camelop.
Groom. 966
circle W
a" = 4- 1. 496 4- da" " E.
c =4-0.303 4- dc " E.
^T =+ oi> 30™ 14^641 -j- A
NORMAL EQUATIONS.
- o. 020 -j- 2. 441 da'
-\- 2. 470 dc — o. 503 dt "
I — 0.013 4" ^- 099 '^3''' - o.ig4dc-\- l.lS;idt
I — o. 176 -f- 2. 47oa'a' — o. I94(&''' -|- 18. 421 rfc — 0.9251/1?
1^ -f-o.03i — o. 5o3
8 43.573
+0,312
— 0. 183
+
0.273
+0- 303
—0,021
44- 257
5 49 13- 150
28, 893
-0.035
Lai. 1 1382 .
7
5 24 3. 661
+0. 293
— 0. 1 96
+
o-5'7
+0, 301
—0.016
4,560
5 54 33-381
28, 821
+0, 037
66 Orionis . .
7
5 28 40. 276
+0. 306
—0. 225
+
0-349
+0, 302
—0.012
40, 996
5 59 9.876
28, 880
— 0, 022
36 Camelop. .
7
5 31 20.643
+0. 520
— 0. 401
—
2.515
+0.733
— 0, 009
18,971
6 I 47.782
[28,811]
. . .
22 Camelop. .
7
5 36 17-757
+0. 564
—0. 480
—
3. 102
+0. 854
— 0, 004
15-589
6 6 44-413
[28. 824]
71 Geminorum
E.
7
5 37 45- 237
+0. 340
— 0, 296
—
0, 108
+0. 326
— 0.003
45- 496
6 8 14.529
+0 30 29, 033
-0. 175
ft (ieminorum
W,
7
5 45 50- 553
—0. 340
0.000
—
0. 107
— 0, 369
+0. 005
49- 742
6, 16 18, 639
+0 30 28.897
— 0. 039
8 Monocerotis
7
5 47 28.113
— 0. 307
+0. 003
+
0-331
— 0. 342
+0, 006
27, 804
6 17 56.675
28.871
— 0. 013
a Argus . . .
7
5 SI 1-493
— 0. 16S
+0. 006
+
2.148
-0, 562
+0.010
2,927
6 21 32. 004
[29.077;
. . .
23 H. Camelop,
7
5 57 10,964
— 0. 848
+0. 067
—
6.741
—1,904
+0,016
1-554
6, 27 30, 426
[28.872]
y Geminorum
7
6 53-510
-0. 328
+0. 034
+
0.048
-0, 356
+0, 019
52-927
6 31 21,767
28. 840
+0.018
5 Monocerotis
7
6 4 27. 151
-0.316
+0. 042
+
0. 205
-0. 346
+0, 022
26, 758
6 34 55-554
28. 796
+0. 062
f Geminorum
•
7
6 8 38. 974
— 0. 322
+0. 052
+
0.134
-0. 350
+0. 026
38,514
6 39 7-273
28.759
+0. 099
18 Monocerotis
7
6 II 39.281
- 0. 303
+0, 056
+
0,378
— 0, 341
+0. 029
39. 100
642 7,904
28. 804
+0. 054
24 H. Camelop, . .
W.
7
6 13 41.986
-0. 735
+0. 142
—
5.278
— 1,529
+0,031
34-617
6 44 3- 837
+0 3o[29. 220]
NORMAL EQUATIONS,
o = + o, 007 + 2. 467 (/a' — 1. 411 dc-\- o. 221 dt
— o. 210 +4. 397 da" + o, 636 dc + o. 881 dt
+ 0. 280— i.4ll(&'+o. 636 da" + 21. S37 dc— o. 349 dt
— o, 162 + o, 221 da'-\- o. 881 da" — o. 349 dc + 13. 209 dt
«' = + I". 408 (circle east); a" = + l», 378 (circle west); ,r = o», 321 (+ with circle east).
Chronometer No. 1295, at 5" 40"".9 chron, time, oh 30'^ 28",858 -^ o=,0I4 slow, losing o».oS7 per hour.
Assuming a' =-{- 1.420 -{- da' circle E,
a"=+ I. 330 + da" " W,
c =+0, 336 + a'i- " E,
/^T = — o" 3oni 28^,859 + dt.
whence da' = — o. 012
da" = + o. 048
dc = — o, 015
dt =: + o. 009
62
TELEGRAPHIC DETERMINATION OF LONGITUDES
Transits of stars observed at Santo Domingo City, by Lieut. J. A. Norris, U. S. Navy, with transit No. 1503, to determine the correction of sidereal chronometer
Negus No. I2gj.
Date.
Name of Star.
G
vi
t
.£
•+-
6
12,
Transit over
mean of threads
Flexure
and in-
equality
of pivots.
Level.
Azimuth.
s.
-2. 123
Aberra-
tion and
colli-
niation.
Rate.
-V.
—0. 036
Seconds
of corr.
transit.
R. A.
Chronometer
correction.
V.
1890.
Feb. 8
17 Camelop. . .
w.
4
h. m. i.
4 49 20. 108
0.
—0. 494
0.
+0.013
.r.
-0. 753
s.
16.715
h. in. s.
5 '9 47-215
h. m. s.
+0 3o[30- 500]
J.
6 Ononis . . .
7
4 55 53-324
— 0. 298
-|-o. 012
+0. 444
— 0. 342
— 0. 031
53- 109
5 26 23.290
30. 181
+0. 056
(p^ Ononis . . .
7
4 S8 17.243
—0.316
+0.014
+U.219
-0. 347
— 0. 029
16.784
5 28 46. 935
30. 151
+0. 086
C Taiiri
7
5 34- 847
-o. 337
+0.016
—0. 066
~o. 367
—0. 027
34- 066
5 31 4.280
30. 214
+0. 023
(! Doradus . . .
6
5 14 3- 792
— 0. 077
+0. 005
+3- 338
-0. 834
—0.016
6.208
5 44 36. 700
[30- 492]
. . .
n Orionis ....
7
S 18 43- 287
-0.312
+0. 020
+0. 267
-0. 345
— 0.012
42. 905
5 49 '3- 140
30. 23s
+0. 002
Lai. 1 1382 . . .
7
5 24 3.261
— 0. 293
+0.017
+0. 505
-0. 342
— 0. 007
3.141
5 54 33- 364
30. 223
+0. 014
V Orionis . . .
6
5 30 48.115
— 0. 325
+0.015
+0.091
— o. 354
— 0. 002
47- 540
6 I 17.740
30. 200
+0. 037
22 Camelop. . .
w.
7
5 36 18. 657
— 0. 564
+0. 020
-3- 030
-0. 970
+0. 003
14. 116
6 6 44. 380
+0 30[30. 264]
5 Monocerotis
E.
7
5 38 58.450
-1-0. 288
— 0. 194
+0. 580
-f 0. 304
+0. 005
59- 433
6 9 29. 724
4-0 30 30. 291
— 0. 054
M Geminorum
7
5 45 47-979
+0. 340
-0. 239
— 0. 108
+0. 327
-|-u. on
48. 310
6 16 18. 630
30. 320
— 0. 083
8 Monocerotis .
7
5 47 25.647
+0. 307
-0.217
+0-332
+0. 303
-l-o. 012
26. 384
6 17 56.667
30. 283
— 0. 046
a Argus . ...
1
5 5° 59- "29
+0. 1 68
—0. 122
+ ^-155
+0. 498
+0.01S
61.843
6 21 31. 980
[30. 137]
23 H. Camelop. .
7
5 57 5.064
+0. 848
—0. 632
-6. 761
+ 1.686
-|-o. 020
0. 225
6 27 30.362
[30- 137]
y Geminorum . .
7
6 51.014
+0. 328
— 0. 250
+0. 048
+0. 315
+0. 023
51-478
6 31 21. 760
30. 282
— 0. 045
S Monocerotis
7
6 4 24. 703
+0.316
—0. 244
4-0. 206
+0.307
-|-o. 026
25-3'4
6 34 55-546
30. 232
+0. 005
f Geminorum .
7
6 8 36. 494
+0. 322
—0. 254
+0. 134
+0.310
+0. 030
37- 036
6 39 7. 266
30. 230
+0.007
43 Camelop. .
E.
7
6 II 23.779
+0. 558
—0. 445
-2. 978
+0. 843
+0. 032
21.789
6 41 52.000
+0 3o[3o.2n]
Assuming a' ^ -f" i . 340 + i/rt' circle W. (o
«'/ = + 1.440-l-a'a" " E. J
c =-fo. 348 + arf " E. \
AT = + oi>30'n30».236 + ^^. [
a' ■= + l».376 (circle
Chronometer No. 1295, at
NORMAL EQUATIONS,
o. 146 -|- 3. 656(!!'a'' — 0.357 at -f- 0.809 a'/"! whence ;/«'
-f 0.228 -\- ^.\/^\da" — o.2Q\dc-\- o.go(>dt I da"
+ 0.595 — o.357a'a' — o. 204 (/«"+ 22. 582^1: -|- o.o\2dt ( dc
— u. 067 + o. 809 ofa' + o. 906 rfa" + o. 0120^ + 13. 6030'/ J dt
west); a" = + l".382 (circle east) ; <: = o^. 322 (-f with circle east),
jh 32"!. 9 chron. time, o'' 30™ 308.327 + os.oioslow, losing o».o5o per hour.
= + o. 036
= ^ o. 058
= — u. 026
= + o. 007
Feb. 9
17 Camelop. .
Groom. g66
cp^ Orionis .
S' Orionis .
Sf- Orionis .
f Tauri . .
(T Orionis
[30 Tauri
(S Doradus .
a Orionis .
Lai. 1 1 382
66 Orionis .
36 Camelop.
22 Camelop.
ri Geminorum
y. Geminorum
8 Monocerotis
a Argus .
E.
•
E.
W.
W.
4 49 17-493
4 54 34- 586
4 58 15. 069
4 59 20. 126
4 59 26. 619
5 o 32. 709
5 2 41-473
5 lo 29. 754
5 14 I- 314
5 18 42. 291
5 24 2. 306
5 28 38. 893
5 31 20.521
5 36 17.993
5 37 44.021
5 45 48. 237
5 47 25.661
5 50 58. 636
+0. 494
— 0- 370
—2. 191
+0. 612
— 0. 024
16. 014
+0.671
—0.541
-4- 568
+ '-072
— 0. 019
31. 201
+0.316
—0. 267
+0. 226
+0. 282
- 0. oi6
15. 610
+u. 289
— 0. 248
+0- 579
+0. 279
— 0.015
21. 010
+0. 289
— 0. 248
+0. 579
+0. 279
— 0.015
27- 503
+0. 337
— 0. 292
— 0. 068
+0. 298
— 0.014
32. 970
+0. 294
— 0. 262
+0.51 1
+0. 278
—0.013
42. 281
+0.331
— 0. 323
+0. 021
+0. 292
—0. 006
30. 069
+0. 077
— 0. 078
+3- 445
+0.678
— 0. 003
5-433
—0.31 1
— 0. 102
+0. 308
— 0. 321
+0. 001
41.866
-0. 293
— 0. 083
+0. 583
—0.318
+0. 006
2. 201
— u. 306
— u. 074
+0. 394
— 0. 319
+0. 009
38- 597
—0. 520
— 0. 114
—2. 838
— 0. 774
+0. on
16. 286
-0. 564
—0. 098
- 3- 499
— 0. 902
+0.015
12. 945
—0. 340
— 0. 055
— 0. 122
— 0. 344
+0.017
43- 177
—0. 340
— 0. 031
— 0. 124
-0.344
+0. 023
47.421
-0. 307
— 0, 024
+0. 38 1
-0. 319
+0. 025
25.417
-0. 168
—0. 008
+^-477
— 0. 524
+0. 028
60. 44 1
5 19 47-
5 25 2.
5 28 46.
5 29 52.
5 29 58.
5 31 4-
5 33 13-
5 41 I-
5 44 36-
5 49 '3-
5 54 33-
5 59 9.
6 I 47-
6 44-
8 14.
6 18.
7 56-
31-
6
6
6
6
6 2
184
589
921
310
891
268
513
423
650
129
348
856
702
344
5"
621
658
955
+0
+0
+0
+0
3o[3i-
[31-
31-
31-
31-
31-
31.
31"
3o[3i-
30 3'-
31-
31.
[31.
[31.
3«-
31-
3'-
3o[3i-
170]
3S8]
3"
300
388
298
232
354
217]
263
147
259
416]
399]
334
200
241
514]
o. 034
— o. 023
— O. 1 1 1
O. 021
+0. 045
o. 077
+0. 014
+0. 130
+0.018
o. 057
+0. 077
+0. 036
Assuming a' = + 1 . 440 -\- da' circle E.
a" = + 1 . 530 + da" " \V.
c ^ + o. 327 + de " E.
^T ;= + 0''30'n3I^ 279 + a'jf
NORMAL EQUATIONS.
+ o. 084 + 4. 300 ife' + o.28g dc-\- l.o'jodt^
— 0.207 +3.6i2a'(r"+ o.37iaV+ o.-j2<)dt
+ 0. 656 + o. 289 a'a' + 0. 371 da" -\-22.S'j6de — o. 3161*
(^ — o. 161 + I. o70i/fl' + o. 729a'a" — o. 3161/^+ 13. 805 (//
+ 1S.420 (circle east); a"^-\- P.530 (circle west); f = 08.298 (+ with circle east).
Chronometer No. I295,at5ii i7i".8 chron. time, o" 30'" 318.277 -J- o8.oi3slow,losing 08.050 per hour.
ro=
I
<
I
whence da' = — o. 020
da" = + o. 059
de =-. — o. 029
dt = + o. OOQ
IN MEXICO, CENTEAL AMERICA, THE WEST INDIES,. ETC.
63
Transits of stars observed at Santo Domingo City, by Lieut. /. A. Morris, U. S. Navy, with transit No. 1503,10 determine the correction of sidereal chronometer
Negus No. I2gj.
Date.
Name ^f Star.
.a
"»-
6
7
Transit over
mean of threads.
Flexure
and in-
equality
of pivots.
Level.
Azimuth.
Aberra-
tion and
coUi-
mation.
Rate.
Seconds
of corr.
transit.
R. A.
Chronometer
correction.
V.
1890.
Feb.io
17 Camelop.
W.
/;./«. s.
4 49 17-900
— 0- 494
J.
0. 000
— z. 114
0.
— 0. 792
s.
— 0. 108
s.
'4- 392
h. m. s.
5 19 47-152
h. m. s.
+0 30[32. 760]
s.
Groom. 966 . .
4
4 54 36.088
—0. 67 1
+0. on
—4. 407
— 1.388
— 0. 103
29- 530
5 25 2. 528
[32. 998]
a Orionis ....
7
5 2 41. 081
— 0. 294
-|-o. 012
+o- 493
— 0. 360
— 0. 096
40. S36
5 33 13-499
32. 663
+0. 080
V Orionis ....
7
5 30 45- 596
-0. 325
-|-o. 025
-|-o. ogo
— 0. 372
—0. 070
44- 944
6 I 17.718
32- 774
—0.031
7 Geminorum . .
5
5 37 42. 755
— 0. 340
-\-o. 624
-0. 105
— 0. 390
—0. 064
41. 880
6 8 14. 502
32. 622
+0. 121
a • Argus . . .
7
5 50 57-657
— 0. 168
"f 0. 005
+2. 136
— 0. 593
— 0. 052
58. 98s
6 21 31. 929
[32- 944]
. . .
10 Monocerotis
4
5 51 59-457
— 0. 290
+0. 007
+0- 540
— 0. 361
—0.051
59- 302
6 22 31. 979
32. 677
4-0. 066
Canis Majoris .
7
6 9 45. 684
— 0. 269
— 0. 022
+0. 821
-0- 375
— 0. 034
45- 80s
6 40 18.658
32. 853
— 0. no
18 Monocerotis
w.
7
6 II 35-433
— 0. 303
— 0. 029
+0- 375
—0. 360
— 0. 033
35- 083
6 42 7. 878
+0 30 32. 795
— 0. 052
26 Monocerotis
E.
7
7 5 26.301
+0. 283
— 0. 218
-|-o. 614
+0. 324
-|-o. 016
27. 320
7 36 0.040
+0 30 32. 720
+0. 023
3 Urs£e Majoris, H
7
7 31 22.971
+0- 556
— 0. 462
—2. 770
fo. 885
-|-o. 040
21. 220
8 I 53-996
[32- 776]
. . .
f 1 Cancri
6
7 35 21.606
+0- 331
— 0. 279
-f 0. 010
+0. 336
+0. 044
22. 048
8 5 54. 810
32. 762
— 0. 019
fi Cancri
7
7 40 0. 230
+0.316
— 0. 270
-|-o. 206
+0. 324
+0. 048
0.854
8 10 33. 569
32-715
-|-o. 028
/? Volantis . . .
7
7 53 58- 586
+0. 077
— 0. 068
+3- 155
+ 0. 780
-\-o. o6i
62. 591
8 24 35.428
[32. 837]
.. HydKE ....
7
8 2 27.681
+0- 305
-0. 277
+0- 330
+0. 321
+0. 069
28. 429
8 33 I- 224
32. 795
-0. 052
f Hydrse
7
8 19 1. 916
+0. 310
— 0. 294
+0- 275
+0- 322
-fo. 084
2. 613
8 49 35- 393
32. 780
— 0. 037
a Cancri
7
8 21 55. 563
+0. 320
— 0. 306
+0- 143
+0. 327
-|-o. 087
S6..134
8 52 28. 894
32. 760
—0.017
(fl Urss Majoris . .
E.
7
8 30 13- 629
•
+0. 540
— 0. 528
-2- 579
+0. 839
+0- 094
11-995
9 44. 828
+0 3o[32. 833]
Assuming a' =: -\- i . 2^0 -\- da' circle. W.
«" = + 1.280-i-^a'' " E.
c = + o. 327 + dc " E.
/\T = + oh 30™ 32".764 -f dt.
NORMAL EQUATIONS.
-0.531 -I- 3.917 (fo' — 0.5880'^+ i.Sgga"-?
-0.082 -\- 4. log da" -\- 0.248^1:+ o. 9i6a'i?
- o. 221 — O. 588 da' -\- o. 248 da" -\- 22. 432 dc — o. 085 dt
-o. 151 -f I. 5991/3' -|- o. 916 (fa" — 0.085 '^e -\- 13. y^Sdt
whence da' = -|- o. 140
a'a" ^ -j" o. 02 1
dc ^ + 0.013
dt = — o. 007
a' = -)- i''.370 (circle west); a" = -{- i°.30i (circle east); c = o'.340 (~|- with circle east).
Chronometer No. 1295, at 6'i47'".4 chron. time, o'' 30"' 32«.743 + os.013 slow, losing 0>.O55 per hour.
Feb. II
e Hydrse . . .
p Ursse Majoris
e Hydrae . .
a Hydrce . .
Leonis . . .
e Leonis ....
y Leonis . .
u Leonis ....
32 Ursse Majoris .
yi Leonis . .
9 Draconis, H. .
35 H. Ursse Majoris
41 Leonis Minoris
/ Leonis . . .
a Ursse Majoris .
;f Leonis ....
(! Leonis ....
a Leonis . . .
E.
W.
8 10
8 22
8 38
851
9 4
9 9
9 30
9 31
9 39
9 43
9 55
10 4
10 6
10 12
10 26
10 28
10 37
10 44
22. 989
+0.311
—0. 090
+0. 179
+0. 361
— 0. 067
23- 683
6. 171
+0. 546
— 0. 166
-1.792
+0- 958
— 0. 058
5-659
4-484
+0- 304
— 0. 107
+0. 238
+0- 358
— 0. 045
5-232
36. 696
+0. 284
— 0. u6
+0. 398
+0. 362
-0- 035
37- 589
42.817
+0.317
— 0. 142
+0. 126
+o- 364
— 0. 025
43- 457
2.647
+0.344
— 0. 157
—0. 098
+0- 393
— 0. 021
3.108
46. 200
+0- 330
-0. 137
+0.018
+ 0.375
— 0. 004
46. 782
56. 794
+0. 321
— 0. 131
+0. 093
+0. 367
— 0. 003
57-441
30. 936
+0. 520
-0- 195
—1.567
+0. 868
+0. 002
30- 564
21. 760
— 0. 336
+0. 154
— 0. 029
— 0. 425
+0. 006
21. 130
19. 086
— 0. 708
+0- 344
—2. 850
-1.678
+ 0.015
14. 209
43- 100
— 0. 568
+0. 288
-I. 790
—I- 145
-fo. 022
39- 907
53- 457
-0. 342
+0. 175
— 0. 080
— 0- 435
+0. 024
52- 799
55-S13
-0.318
+0. 168
+0. 104
^-0. 406
+0. 029
55.090
26.314
-0. 489
+0. 273
-I- 193
-0. 857
+0- 039
24. 087
47- 469
-0.313
40.177
+0. 146
— 0. 402
+0. 041
47- "8
42- 574
-0. 337
f 0. 197
— 0. 039
-u. 427
+0. 048
42. 016
54- 674
—0.31 1
+0. i87_
+0. 165
— u. 401
+0. 054
54. 368
8 40
8 52
9 8
9 22
9 35
9 39
10 I
10 2
10 10
10 13
10 25
10 35
10 37
10 43
10 56
10 59
11 8
II IS
57- 708
+0 30 34.025
39- 573
[33
914]
39- 178
33
946
II. 636
34
047
17-446
33
989
37. 170
34
062
20. 894
34
112
31-491
34
050
4-649
+0 3o[34
085]
55- 168
+0 30 34
038
48.516
[34
307]
13- 890
[33
983]
26. 767
33
968
29- 153
34
063
57-973
[33
886]
21. 114
33
996
16. 117
34
lOI
28. 400
fo 30 34
032
+0.008
+0. 087
0.014
+0. 044
-o. 029
-o. 079
-o. 017
-o. 005
+0. 065
o. 030
+0.037
0.068
40. 00 1
NORMAL EQUATIONS.
f o = — 0.098 + 2. 300 ifa' — I. 507 n't- + 0.06^ dt
J +0.076 + 3- 337 "''i^'^ -f 3-8i4«'f— 1.058^;
] +0 230 — 1.507 (/«' + 3.814 (/«" + 22. 766 a'f+ o.46jdt
[^ +0.055 +0.067 (/«'— 1.058 ^a" + o-463<2t+ 14- 2i3(/^ ,
rt/ = + o»,88o (circle east); a" — + o».799 (circle west); c- = o».378 ( +with circle east) .
Chronometer No. 1 295, at 9" 36"',3 chron. time, oh 30™ 34».033 J^ o»,oo9 slpw, losing o=,047 per hour
Assuming a' = + o. 844 + da' circle E.
a" = + o.SlS + da" " W.
c := + o. 382 + dc " E.
/^T = + oi'30"'34".035+'*-
whence da' = + o. 036
da" = — o. 019
dc = — o. C04
dt = — o, 005
64
TELEGRAPHIC DETEEMINATION OF LONGITUDES
Ti-iinsils of stars observed at Santo Domingo City, by Lieut. J. A. Morris, U. S. Na^y, with transit No. 1303, to determine the correction of sidereal chronometer
Negus Nil. I2^J.
[>ate.
Name o( Star.
U
w.
6
'A
Transit over
mean of threads.
Flexure
and in-
e(|uality
of pivots.
J.
-0. 340
Level.
Azimuth
s.
—0. 079
.Vberra-
tion and
colli-
mation.
Rate.
Seconds
of corr.
transit.
s.
37-852
R.A.
Chronometer
correction.
V.
1889.
Feb. 13
Ti Geminorum . . .
7
h. f/i. s.
5 37 38-566
s.
+0- 139
s.
— 0. 344
s.
—0. 090
h.
6
?«. s.
8 14.471
h. m. s.
+0 30 36. 619
—0. 102
a Argus
6
5 50 54- 343
— 0. 168
-|-o. 069
+ 1-598
-0. 524
-0.077
55-241
6
21 31. 850
[36- 609]
ji Canis Minoris . .
6 so 35. 469
—0.314
+0. 134
+0. 179
— 0. 321
—0.018
35- 129
7
21 II. 604
36. 475
-|-o. 042
Piazzi VII, 116 .
6 52 5.510
—0. 279
+0. 119
+0. 520
—0. 324
—0. 017
5-529
7
22 41- 950
36.421
+0. 096
24 Lyncis
w.
7 3 8- 750
—0. 464
+0. 202
-I. 290
— 0. 617
—0.006
6-575
7
33 43-094
+0 3o[36. 519]
Groom. 1374 , .
E.
7 16 28. 657
+0. 652
-0. 157
—2.562
-|-i. 022
-)-o. 007
27.619
7
47 3-811
+0 30[36.i92]
3 Ursa; Majoris, H.
7 31 17-793
+0- 556
— 0. 178
-1-795
+0. 769
-|-o. 022
17.167
8
I 53-965
[36.798]
fi Cancri . . .
7 35 17-741
+0-331
—0. : 14
-f-o. 007
+0. 292
+0. 026
18.283
8
5 54- 806
36- 523
— 0. 006
20 Navis
7 37 39-837
+0. 272
—0. 096
+0. 488
+0. 289
+0. 028
40. 818
8
8 17-319
36- SOI
+0.016
/3 Cancri . .
7 39 56- 379
+0.316
— 0. u6
+0- 133
+0. 2S2
+0. 030
57. 024
8
10 33-565
36- 541
— 0. 024
30 Monocerotis
E.
7 49 33- "4
+0- 293
— 0. 124
+0-317
+0. 279
+0. 040
33-919
8
20 10. 461
+0 30 36. 542
— 0. 025
NORMAL EQUATIONS.
Assuming a' = + 0. 818 -f rfa' circle W. f o = — o. 435 + 2. 205 «' — o. 9o6(/<:+ 0.8771/^) whence <&' = + 0.207
a" = + o. 892 + afa" " E. j +0.173 +2.8231/0"- i.7S5(/.:+ 0.2I0(*I da" = — 0.049
e = + 0.279 + at " E. I — 0.164 — 0. 9061/0' — I. 755 (;"+ 14. 0490^+ 0.4790^1 dc ^ + 0.019
AT = + oi> 30" 36^.530 + ■*. [ — o. 146 -f 0.877 1/0' + o.2iO(/o"+ o. 479 <■+ 8.3011// J dt =—0.004
«' = + 1^.025 (circle west); a" = + o".843 (circle east); c = 0^298 (+ with circle east).
Chronometer No. 1295, at 711 9'".o chron. time, o'' 30™ 36''.5I7 -|- o».oi6 slow, losing 0^059 per hour.
Transits of stars observed at Vera Cruz, RIexico, by Lieut. Charles Laird, I/. S. Navy, with transit A'o. 1^04, to dctcnninc the correction of sidereal chronometer
• Nems No. i2!'!, dc — O-TJ"] dt
+ 0.236 +3. 8i7(/(j"+ 4. o43rf,:-p o.6gi dt
+ o. 470 — 2. 615 da' + 4. 043 da'^ + 18. 686 dc + 2. 017 dt
+ o. 080 — o. 777 da' + o. 691 da" + 2. 017 dc + 10. 650 dt
n' = + l=.899 (circle east); a" = + I'.I96 (circle west) ; r = o».468 (+ wilJi circle east).
Chronometer No. 1254, at 4'' 44'". 6 chron. time, i'' 13™ 228.155 -j- 08.015 fast; losing o».047 per hour.
whence da' = + 0. on
da"=- — o. 083
dc = — 0.014
dt ^ — o. 002
Dec. 29
/? Tiianguli . .
4 Urs. Minoris, S.P,
d Arietis
5 Urs. Minoris, S. P.
V Arietis
6 Ceti
35 Arietis
/i Ceti
/3 Urs. Minoris, S.P.
6 Arietis . . .
Tauri
f Tauri
f Tauri ....
Gr. 716 . . . .
r) Tauri . . .
27 Tauri . . .
W.
W.
E.
E.
3 16
3 22
3 25
3 40
3 45
3 47
3 SO
3 52
4 4
4 18
4 32
4 34
4 38
4 45
4 54
4 45
17.256
-0. 331
+0. 069
— 0. 277
— 0. 446
— 0. 040
16. 311
27.877
+0. 172
-0. 034
+4. 172
+ 1-779
- 0. 03s
33-831
17- 643
--0. 299
— 0. 058
— 0. 002
— 0. 390
-0. 033
16.861
57- 964
+0. 1 1 1
—0.017
+3- 628
+ I-S4I
— 0. 020
3-207
51.496
— u. 304
+0. 044
— 0- 037
— 0- 395
— 0. 017
SO- 787
7-759
--0. 267
+0. 037
+0. 288
— 0. 368
— 0. 016
7-433
17.197
-0. 365
+0. 042
— 0. 136
—0.414
— 0.013
16. 3n
17- 103
— 0. 283
+0. 036
+0. 146
— 0. 373
— 0. 012
16. 617
17. 022
+0. 070
+0. 058
+2. 748
— 1-23S
— 0, 002
18. 641
36. 060
+0. 300
+0. 240
— 0. OOI
+0. 348
+0. 009
36- 956
9-593
+0. 281
+0.228
+0. 135
+0-331
+0.019
10. 587
28. 454
+0. 282
+0. 227
+0. 127
+0- 333
+0. 021
29- 444
3-986
+0.251
+0. 230
+ 0. 087
+0- 336
+0. 024
4-914
52. 170
+0. 449
+U.491
— I. 106
+0.719
+0. 030
52-753
12. 636
+0. 308
+0. 243
— 0. 063
+0. 358
+0. 036
13-518
53-213
+0, 308
+0. 243
— 0. 062
+0. 358
+0. 038
54- 098
2 2 56. 041
2 9 13. 686
2 n 56. 689
2 27 42. 446
2 32 30. 529
2 33 47- 302
2 36 56.050
2 38 56. 184
2 50 58.518
3 5 16.767
3 18 50.310
3 21 9. 120
3 24 44- 585
3 32 32.402
3 40 53- 179
3 42 33-729
-I 13 20. 270
[20. 145]
20. 172
[20.751]
20. 258
20. 131
20. 261
-I 13 20.433
-I i3[2o. 123]
20. 189
20. 277
20. 320
20. 329
[20.351]
20. 339
-1 13 20.369
-o. 009
-o. 107
-0.021
-O. 148
-0.018
+0- 154
— 0.090
— 0.002
-|-o. 041
+0.050
+0. 060
+0. 090
NORMAL EQUATIONS.
= — o. 150+ I. 501 (/«' + o. 977fl'(r+ o. ic
— o. 039 + 1 . 171 da" — 1 . 293 dc — o. 1 34 dt
+ 0. 907 + 0. <)TJ da' — I. 2g2 da" + 16. 626 at + o. 7080"^
+ 0. 237 + 0. igS da' —o. 134 (/rz" + o. 708 (/ Licul. Charles Laird, U. S. Navy, with tiaiuit Mi. fjO./, to Jeterinine the correction of iidercal chronometer
Ne^us i\'o. J2J4.
Date.
isss.
Dec. 30
Name of Star.
rrt
U
■u
D
^
A
"
C Celi .
V Arietis
,i Arietis
50 Gissiop.
a Arietis
;i Trianguli
t) AriL-tls
I Cassiop.
i^ Ceti .
36 H. Clsm..]..
V Arietis
(! Ceti .
/i Ceti .
41 Arietis.
47 Cepliei, II.
a Ceti ,
/J Persei .
jj I'ersei
d Arietis
\V.
Transit over
mer,n of threads.
h. fu. s,
- 59 16. 249
3 o 44- 257
3 I 4S. 203
3 7 17- 143
3 14 12.917
3 i5 14-54(5
3 25 '4-944
3 33 14.450
3 35 33. 253
3 40 52. 221
3 45 50-094
3 47 6. 569
3 52 15.610
3 56 46. 480
4 4 47- 364
4 9 47. 7S0
4 II 23.671
4 14 16. 7J7
4 iS 35.a'ii
Flexure
and in-
e.|uality
of pivots
Level.
AzinuUh.
Aberra-
tion and
coUi-
niation.
Rate.
Seconds
of corr.
transit.
s.
R. A.
Chronometer
correction.
V.
s.
,
J
0.
//. /;/. s.
h. tit. s.
s.
-1-0. 249
+0. 003
+0. 376
+0. 520
-0.035
17.362
I 45 5S. 320
— I 13 19.042
—0. 076
4-0. 299
+0. 003
-|-o. 007
+o.5jy
-o. 033
45-072
I 47 25. 835
19-237
+0. 119
+0. 302
-|-o. 002
—0.014
+°- 545
—0. 032
49. 006
I 48 29. 990
19. 016
— 0. lO-J
+0.552
0. 000
- 1.888
f 1.644
—0. 027
17.424
I 53 58.420
[19.004]
+0. 307
— 0. 002
— 0. 052
+0.555
— 0. 021
13-704
2 54-550
19. 154
+0. 036
+o. 332
— 0. 004
— 0. 236
-(-0. 620
— 0. 019
15-237
-> 2 56. 030
19. 207
+0. 099
+0. 300
—0. 004
—0. 002
+0. 542
— 0. on
15.769
2 II 56. 685
19. 084
-0. 034
-|-o. 4S6
— 0. 008
-1-394
+ 1-302
—0. 004
14-832
2 19 55.780
[19.052]
+0. 280
— 0. 005
+0. 145
+0.516
—0. 002
34- 1S7
2 22 15. 098
—I 13 19. 0S9
— 0. 029
-0. 559
+0. 484
— 0. 762
—I. 818
+0. 002
49. 568
2 27 30. 528
—I I3[i9.040]
-0. 304
-ho- 333
— 0. 012
-0. 592
+0. 007
49. 526
2 32 30.519
19.007
— 0. 1 1 1
— 0. 267
+w. 311
-\-o. 096
-0.551
+0. oq8
6.266
2 33 47- 294
18.972
— 0. 246
— u. 283
+0.354
-1-0. 048
— 0. 559
+0. 012
15. 182
2 38 56.175
19.007
— 0. Ill
-0.314
+u. 408
-u. 043
—0. 617
+0.016
45-930
2 43 26. Sio
19. 120
+0. 002
—°- 745
+1.007
— I. 306
-2.879
+0. 023
43- 474
2 51 23. 982
[19.491]
. . .
— 0. 273
+0.375
-l-w. 077
-0.551
+0. 028
47- 436
2 56 28. 422
19. 014
— 0. 104
-o. 341
+0. 4C9
— 0. 121
— 0. 702
+0.029
23. 005
2 58 3. 788
19.217
+0. 099
-3- 347
+0. 485
— 0. 13S
-0. 725
+0. 032
16. 104
3 56. 805
19. 299
+0. 181
—0. 300
+ 0. 424
0. OOO
-0.58.
+0. 036
36. 039
3 5 16.759
— 1 13 19. 280
+0. 162
NORMAL EQUATIONS.
fo = — 0.090+2.491^(2' — 2. i83(Z'f
j +0.127 +z. 263fl'«"+ 3.75WA-
l + o. 249 — 2. 183^12' + 3. 751 «'«" + 25. 301 i/f — i.osidt
[^ —0.349 — o.638(/<;' — 1.0921/,/"— I. 051 (/f + 15. 6791// j
a' = + 0^739 (circle east); a'^ ^ + o» 289 (circle west); ^ = o«.53I (+ with circle east).
Chronometer No. 1 254, at 3'' 38"M chron. time, i'l 13"! 19^.118 -j- 0^^.046 fast, losing o».053 per hour.
AboumiiiL; a' ^ + o. 686 + i/a' circle E.
«" = + 0.419 + ■/" " W
c =+0. 5l6+(/
da" ^= — O. 131
dc = -I- o. 014
dt = + o. 0l6
Jan. 12
u Piscium
f Pisci'iin
y And 10m.
a xVrietis
55 Cassiop.
y Trianguli
Arietis
t Cassiop.
£ Arietis
a Auriga:
/i Tauri
a Orionis
a Columbce
6 Leporis
ji Geminorum
w.
7
7
7
7
7
7
7
w.
7
E.
7
7
7
7
7
7
E.
7
-> 48 45. 021
-0. 275
+0. 207
+0. 131
-0. 553
— u. 100
44.431
3 54.410
— 0. 271
+0.039
+ 0. 151
-0.551
— 0. 090
53-788
3 10 II. S90
-0. 350
+0. 119
-0.273
-u. 73»
—0. 082
10.556
3 14 1.204
- -0. 307
+0. 130
— 0. 038
— 0. 598
— 0. 079
0.312
3 18 54.864
— 0. 476
+0. 244
-0. 952
—1-345
— 0. 075
52. 260
3 23 49-441
-c. 328
+0.216
-0. 155
-0. 659
— 0. 070
48. 445
3 25 3-323
— 0. 300
+0. 239
— 0. 001
-0. 584
— 0. 069
2.608
3 33 4- 164
— 0. 486
+0. 390
— I. 001
— 1.404
— 0. 062
I. 6oi
4 5 56.916
+0. 303
— 0. 345
L). 019
+0. 547
- 0. 034
57-368
6 21 34.908
+o. 363
t°- '74
— 0. 391
+0. 734
+0. 079
35-867
6 32 21. 916
+0.318
+u. 050
— u. I I I
+0.581
+0. 080
22. 834
6 46 15-531
+0. 263
+0. 022
+0. 226
+0.511
4-0. loi
16. 654
6 48 43- 157
+0. 204
+ 0.015
+0. 5S7
+0.617
+0. 116
44. 696
6 59 38-137
+0.232
+ 0. 007
+0.417
+0. 547
+0. 125
39-465
7 29 20. 107
+0 306
—0. 020
— 0. 038
+0.553
+0. 129
21.095
I
35
38.
526
I
47
47
844
I
57
4-
645
2
54- 389
2
5 46.454
•^
10
42. 459
2
II
56. 539
2
19 55
261
2
52
51
592
8
29
83s
19
16
816
33
10
757
35
38
680
5 46
30
488
6
16
15
150
I 13 5
905
5
944
5
911
5
923
[5
706]
5
986
6
069
1 13 [6
340]
I 13 5
776
[6
032]
6
028
5
897
6
016
6
023
I 13 5
945
-o. 047
-o. 008
-o. 041
-o. 029
+0. 034
+u. 017
-o. 176
+0. 076
u. 065
+0. 064
+0. 071
— 0.007
Assuming
a'
= +
611
+ da' circle
W.
a"
= + 0.
616
+ da" "
E.
c
= + 0.
561
+ dc "
E.
Z
\T
= — ii'
13" 5''-963 + dt.
I
NORMAL EQUATIONS.
- o. 270 + 2. 275 da'
+ 2. 959 dc — o. 328 dt '] whence da
+ 0.064 +i.862i/a"+ 1.546 (/r— o. 559 i* I
1 + o. 840 + 2. 959 ,/,;' + I. 546 da't + 19. 587 dc — O. 559 a'^ |
(^ — 0.042 — o. 328 a?(z' + 1. 398 £/«" — o. 559 at + 13. 200 (//' I
«/ =^ + 0^.531 (circle west) ; «" ^ + o».6o6 (circle east) ; c = 00.531 (+ with circle east).
Chronometer No. 1254, at 4'' 46"'.y chron, time, i'l 13'" 5'^.952 + 0^009 fast; losing o».05i per hour.
da'
=
—
079
da"
=
—
009
dc
=
—
029
dt
r^
000
IN MEXICO, CEJSTEAL AMEKICA, THE WEST INDIES, ETO .
67
Tranuts of stars observed at I 'e, a Cruz, .W i/a-, Ay Lieut. Charles Lain/, U. S. Navy, with transit No. ijo.f, to Jelermine the curredwu of .ulereal c/ux
Date.
Name ol Star.
Circle.
No, of threads.
'rransil over
mean ot threads.
Flexure
•md in-
ecjuality
ul' pivots.
Level.
^V/iliiuLll.
.Mierra-
tiou and
eoUi-
niatiun.
Kate.
Seconds
of corr.
transit.
K. A.
Clirononieter
correction.
V.
1889.
Jan. IS
V
Pibciimi
1- 7
/i. m. ,1.
•> 48 40, j 1 1
-t 0.275
s.
—0. 047
s.
+ U. lOI
s.
i 0. 381
— u. 038
s.
40. 983
//. w. s.
1 35 38-49'-'
-■ 13 2.493
s.
+0. 197
Piscium
7
2 5-^ 32- 943
-)-o. 281
— 0. 107
+ 0.076
+ 0. 38s
— 0. 035
33-685
I 39 31. 102
2.377
+0.081
I
Arictis . . .
7
3 -7-45&
+0. 299
—0. 206
0. 000
+ 0. 402
— 0. 029
27.922
I 47 25.642
2. 280
— 0. 016
fi
Arielis .
7
3 I 3'-563
+ 0. 302
— 0. 222
— 0. 008
+0. 405
— 0. 028
32. 012
I 48 29. 7,^4
2.228
-0. 068
50
Cassiuj).
7
3 6 sy. 543 ;-fo. 552
—0. 211
— I. 051
+ i.225
— 0. 027
0. 031
I 53 57-504
[2.527]
J
Amlrum. . . .
7
3 10 6. 44S '--0.350
—0. 264
— 0. 212
+O.51I
-0. 022
6. 811
I 57 4-588
2. 223
-0. 073
a
Arictis . . .
7
3 13 56.151
+0. 307
-0. 233
— 0. 029
+ 0.413
—0,019
56. 600
2 54. 347
2.253
— u. 046
)
Trianguli
7
3 23 44- 33«
^0. 32S
-0. 255
--0. 120
+0. 456
— 0. 015
44- 732
2 10 42. 408
2.324
+0. 028
L
Cassiop. .
7
3 32 57-37°
-|-o. 485
-0. 383
—0.775
+0.971
— 0. 004
57 663
2 19 55- 130
[2-533]
•^'
Ccti
E.
7
3 35 16.543
+0. 2S0
—0. 225
+0.081
+0. 385
— 0. 001
17-053
2 22 14. 922
-I 13 2. 131
-0.155
35
Arietis
W.
7
3 49 59- 398
-0.315
-0. 268
— 0.069
-0. 473
40.009
58. 282
2 36 55. 862
— I 13 2.420
+0. 134
"
Ceti . .
7
3 51 59-076
— 0. 2S3
-0. 244
+ 0. 074
-0. 427
+0.010
58. 206
2 38 55-999
2. 207
— 0. 0S9
^7
Cephei, H. . .
7
4 4 29.114
— 0. 745
—0. 656
-1.994
— 2. 200
+0. 020
23- 539
2 51 22. 606
[1-933]
a
Ceti . . .
7
4 931-238
-0. 273
— 0. 266
+0. 118
—0. 422
+0. 024
30.419
2 56 28. 268
2,151
-0. 145
n
Persei . .
7
4 II 7.276
-0.341
-0.333
— 0, 185
-0. 536
+0. 025
5.906
2 58 3-569
2.337
4-0. 041
d
Arietis ....
7
4 iS 19. S90
— 0. 300
— 0. 308
—0. 001
-0. 446
+0. 070
18. 905
3 5 16-599
2. 306
+0. 010
c
Arietis ...
7
4 21 34- 269
—0. 302
—0. 316
- 0. 012
—0. 449
+0. 033
33- 223
3 8 31.000
2.223
-0.073
(f
Tauri . .
7
4 31 53-030
—0. 2S1
0. 000
^ 0, oSi
—0. 426
+0. 041
52.445
3 iS 50. 165
2. 280
—0.016
•3
Tauri ....
7
4 34 12.004
—0. 282
-f 0.013
+0. 076
— 0. 426
+0.044
11.429
3 21 8.997
2-432
+0. 136
/
Tauri , .
7
4 37 47-506
— 0. 258
+0.033
+0.052
-0.431
-|-o. 04S
46. 920
3 24 44-459
2. 461
Gr. 716
\V.
7
4 45 36-314
-0. 449
+ u. 089
—0. 667
-0. 923
+0.055
34-419
3 32 32.013
— 1 13 [2.406]
Assuming a' = + o. 441 + da' circle E.
a" = + o. 437 + da" " W,
e =-\-o.4sS + dc " E.
/\T = — 1 1' 13™ 2'. 293 + dt.
X(.)RMAL EQUATIONS.
-O. 152 + 2. 496 da'
— 3. 199'^''-
, 203 (// ] whence da'
- o. 030
+ 0.098 +2. 6l2
■ 13
-I 12
—I 13
I 12
I 13
—I 13
[o. 536]
59- 899
59. 898
59.881
[o. 293]
59-953
59-771
0.015
o. 018
+0. 022
-|- 0.021
-(-o. 004
-|-o. 076
o. 008
+0. 138
-1-0. 141
— I
i2[57- 277]
59- 760
59. 800
59- 723
59- 723
59- 872
59. 896
59- 920
59- 963
[59-531]
I 12 59.938
o. 117
— o. 077
o. 154
o. 154
— o. 005
+0. 019
+0. 043
-1-0. 086
-4-0.061
Assuming a' ^=-\-0.\y2.-\- da' circle E.
3" = + o. 405 + fl'a" " W.
c = -(- O. 586 -I- (/i: " E.
/\T = — I >■ 1 2m 59".86o + dt.
NORMAL EQUATIONS.
: — o. 275 -f- 2. 439 .o47 fast, losing o".o57 per hour.
70
TELEGRAPHIC DETERMINATION OP LONGITUDES
T,
'■ansits of stars obscrticd at Coatzni-palfos, IMcxito, by Lieut. Charles Laird, U. S. jVavv. luith transit No. 1S04, /" dctet-mine the correction of sidereal chronometer
Negus No. I2S4-
Date.
Name of Star.
E.
i2
rt
7
Transit over
mean of threads.
Flexure
and in-
equality
of pivots.
Level.
Azimuth.
Aberra-
tion and
colli-
mation.
Rate-.
Seconds
of corr.
transit.
R. A.
Chronometer
correction.
V.
1889.
Feb. 10
a
Orionis
h. III. s.
6 54 41-857
s.
+0. 280
s.
— 0. 229
.r.
—0.013
s.
+0. 228
s.
—0. 083
s.
42. 040
5
III. s.
49 9- 926
//. III. s.
-I 5 32-114
s.
-0. 157
66 Orionis .
7
7 4 38. 863
+o- 275
— 0. 225
—0.017
+0. 226
— 0. 072
39- 050
5
59 6.736
32.312
+0. 033
1'
Orionis
7
7 6 46. 238
-f-o. 292
-u. 239
— u. 004
+0. 233
— 0. 069
46- 453
6
I 14-346
32. 107
-0. !74
1
Geminorum . .
7
7 13 43-221
+0- 305
—0. 248
-\-o. 006
+0. 244
— 0. 061
43- 467
6
8 10.939
32. 52S
+0. 247
P
Canis Majoris .
7
7 23 51.157
-f-o. 240
-0. 193
— 0. 044
+0. 237
— 0. 049
21.348
6
17 49- 143
32 -200
-f 0. 076
V
Geminorum
7
7 27 54. 656
+0. 301
— 241
4-u. 003
-f-o. 240
— 0. 043
54.916
6
22 22. 644
32. 268
+0.013
e
Geminorum
7
7 42 38, 656
+0. 310
—0. 242
-|-o. 010
+0. 249
— 0. 023
38. 960
6
37 6.530
32.430
+ 0. 149
24
H. Camelop.
3
7 49 24.968
+0. 654
-0. 505
-|-o. 276
+ 1. 104
— 0. 016
26. 587
6
43 54-828
[31-659]
(S
Geminorum . .
E.
7
8 19 1.957
+0- 305
— 0. 214
+0. 005
+0. 244
-(-0. 020
2.317
7
13 30- >30
—I 5 32. 187
— 0. 094
(T
Hydrfc ....
W.
7
9 38 30. 663
-0. 274
—0. 044
-j-o. 070
■ -0. 266
+0.113
30. 262
8
32 58- 125
-I 5 32.127
— 0. 144
c
Hydr.v . . .
7
9 55 4-936
-0. 279
—0. 025
+0-057
— u. 267
+"■ 136
4-558
8
49 32- 264
32. 294
+0.013
Ilyilr.L^ . .
7
10 14 8. 71 1
— 0. 271
— 0. 002
-|-o. 080
— 0. 266
-\-o. 162
S. 414
9
8 36.094
32. 320
+0. 039
I
Draconis ....
7
10 26 53. 83b
-0. 883
+0. 043
—1.769
-i,868
-fu. 177
49. 196
9
21 19.153
[30- 043]
Gr. 1564 . . .
7
10 38 20. 272
- 0-S15
+o- 050
— 0. 636
-0.768
+0. 191
28. 594
9
32 46.472
[32.122]
e
Leonis
W.
7
to 45 6. 586
— 0. 309
+0. 039
— 0. 027
- -0. 290
-|-u. 200
6. 199
9
39 43- 728
-I 5 32.471
+0. 190
Assuming;
NORMAL EQUATIONS.
: + 0. 286 -|- 1. 1^82 da'
o, 459«'
o. ill-f(/«' circle E. fo:
o. 190 -\-da" " W. I
o. 207 -)- dc " E. I
ii>5"'32».28i +(*. (_
a' = — 0S.072 (circle east) ; a" = -(- 0^.281 (circle -west) ; ;: = 0^.246 (-f- with circle east).
Chronometer No. 1254, at 8'' 2^.9 chron. time, l'' 5'" 328.281 -j- 0^.079 fast, losing o".o74 per hour.
da"--
dc -.
dt -.
— o. 184
+ 0. 091
+ o. 038
+ o. 003
I'eb. 12
:9 H. Camelop. .
n Orionis
7/ Leporis . . .
ri Urs. Minoris .
8 Monocerotis . .
V Geminorum . .
a Canis Minoris .
f Canis Majoris .
I," Geminorum . .
25 Camelop.
A Geminorum
rf fjeminorum
p Geminorum
a^ Gemiaiorum
25 Monocerotis
a Canis Minoris
K Geminorum
B Geminorum
53 Camelop. . .
;C Geminorum
3 Urs. Majoris, H
E.
E.
W.
W.
6 9 46. 986
6 54 39- 723
6 56 50. 848
7-13 13-877
7 23 23.020
7 27 52. 123
7 45 45-468
7 59 45-893
831. 621
8 13 20. 814
8 17 13-856
8 19 o. 640
8 27 29. 540
8 33 2-457
8 37 16. 566
8 39 o. 550
■5 43 15- 970
8 44 2. 711
8 57 46.357
9 2 16. 628
9 7 19-564
+0- 727
+0.362
—2. 108
+2. 142
—0. 045
48. 064
-f 0. 280
-0. 045
+0. 086
+0. 407
— 0. 029
40- 423
+0. 246
-0. 039
+0. 252
+0.417
— 0. 028
51.692
+ I.2I8
— 0. 195
+7-455
—6. 844
-0. 025
IS- 485
+0.276
—0. 044
+0. 107
+0. 406
— 0, 019
23- 746
+0. 301
— 0. 048
— 0. oiS
+ 0.431
-0, 018
52-771
+0. 242
— 0. 039
-l-o. 270
-1-0.422
— 0. on
46- 352
+0. 220
— 0. 092
+0. 380
+0. 462
— 0. 006
46- 857
+0. 302
— 0. 145
—0. 022
+0-433
—0. 005
2. 184
--"- 737
+ 1. 114
— 1. 174
—3- 467
— 0. 002
17-546
-0. 295
+0. 434
+0. 004
— 0. 464
0. 000
13-537
—0. 304
+0. 447
-0. 013
— 0. 482
0. 000
0.288
—0. 324
+0. 469
-0. 047
— 0. 526
+0. 003
29. 081
-0. 324
+0. 501
—0. 048
—0.527
+0. 005
2. 066
—0. 263
+0. 425
-f-o. 063
— 0. 447
+0. 007
16.351
—0. 278
+0. 460
+0. 036
— 0. 448
+0. 007
0.317
-0. 309
+0. 534
—0.021
— 0. 491
+0. 008
15.691
—0. 316
+0- 533
-0-033
— 0. 506
+0.010
2.417
-0. 425
+0.418
— 0. 230
— 0. 909
+0. 014
45.217
-0.316
+0.310
-0-033
-0. 505
+0.015
13.099
—0. 496
+0. 497
-0- 357
—1-233
-f 0. 019
17-994
5 4 17-
5 49 9-
5 51 21.
6 7 56.
6 17 53-
6 22 22.
6 40 16.
6 54 16.
6 57 31-
7 7 47-
7 " 43-
7 13 30-
7 21 58.
7 27 31.
7 31 46-
7 33 30-
7 37 45-
7 38 31-
7 52 14-
7 56 42-
8 I 47-
569
900
196
730
493
626
026
583
944
142
303
118
818
667
051
061
329
996
765
663
162
5 [30- 495]
30. 523
30. 496
[30- 755]
30- 253
30. 145
30. 326
30. 274
5 30- 190
5 [30- 404]
30. 232
30- 170
30. 263
30. 399
30. 300
30. 256
30. 362
30.421
[30- 450]
30- 436
5 [30. 832]
-1-0. 208
-fo. 181
— o. 062
— o. 170
-)-o. oil
— o. 041
— o. 125
- o. 073
-o. 145
— o. 052
+0. 085
— o. 023
-o- 05s
+0. 048
+0. 107
+0. 122
Assumincr
s.
= + 0,
' = + 0.
= + 0,
462 + da' circle E.
102 + da" " W.
414 + «'
+ 2. essfl'r-
— O. 807 dc -
o. 6^2 dt "I whence da
o. 438 dt [
o.2i2-\-de " E. ] -j-o. 374-f- 2. 655fl'«'— o. 8o7rtfe"
AT = — i'^^'^2i)'.ygS-\-dt. [^ — 0.022 — o.6^2da' — o./^-^Sda"
a' ^ -\- o".763 (circle west) ; r?" = -|- o".686 (circle east) ; c =
Chronometer No. 1254, at 6I' 37™. 2 chron. time, l^ 5™ 29».773 -|- o'.
-|- 12. 700«'r-|- 2.223 a'/ I
-|- 2. 223 de 4- 6. 940 dt J
: oi!.3i3 ( — with circle east).
026 fast, losing o".o&9 per hour.
s.
da'
= +
134
da"
= +
054
dc
= —
061
dt
= +
038
Feb. 14
; Tauri
d Tauri .
£ Tauri
m Persei .
Gr. 848
a Caraelop.
i Tauri
IT* Orionis
I AurigjE ,
I Tauri
I I Orionis .
17 Camelop.
Gr. 966
a Leporis
f Tauri
IT Orionis
130 Tauri .
Orionis
W.
E.
5 '8 57. 193
-0- 293
— 0. 216
-\-o. oog
5 22 0. 669
— 0. 296
— 0. 247
+0. 003
5 27 36.828
—0. 299
— 0. 293
—0. 003
5 31 5-570
— 0. 350
—0. 416
— 0. 107
5 39 25-893
— 0. 616
— 0. 900
—0. 644
5 48 31.246
—0. 468
-0. 677
-0. 345
5 50 21-720
— 0. 29S
—0.431
— 0. 002
5 53 56.890
— 0. 271
-0. 392
+0. 054
5 55 15-043
— 0. 326
-0. 471
+0.057
6 I 55-494
-ho. 303
-0. 770
— 0. 022
6 3 41-428
+ "-293
— 0. 810
-1-0. 018
6 25 9. 286
+0- 442
+0. 032
-0.551
6 30 21.557
+0. 597
-|-0. 010
—I. 146
6 33 17-487
-j-o. 240
—0. 002
+0. 219
6 36 28. 136
+0- 303
— 0. 010
— 0. 019
6 38 37-883
-|-o. 265
— 0.013
-|-o. 126
6 46 25. 504
+0. 297
— 0. 028
+0- 003
6 54 37- 328
+0. 280
-0. 039
+0.031
— o. 364
-o. 367
—0.371
—0.478
—1,425
— o. 868
— o- 370
—0.351
— o. 418
+0- 334
+0-332
-|-o. 684
+ 1- 199
+0- 327
+0- 333
+0.3"
+0. 326
+0. 314
— 0. 050
56. 279
-0. 047
59-715
— 0. 042
35-820
-0. 036
4-183
— 0. 027
22. 281
— 0. 018
28. 860
— 0. 015
20. 604
— 0. oil
55-919
— O.OIO
13-875
— 0. 003
55-336
—0. 002
41-249
-|-0. 022
9-918
-1-0. 028
22. 245
+ 0-032
18. 303
+0. 035
28.778
+0- 038
38.610
-(-0. 046
26. I4S
+0.055
37-972
4 13
4 16
4 22
4 25
4 33
4 43
4 44
4 48
4 49
4 56
4 58
5 19
5 24
5 27
5 31
5 33
5 40
5 49
28. 238
31.640
7.768
36. 040
54- 587
o. 900
52. 644
28. 008
45- 744
27.49S
13-434
41.521
54-517
50. 226
0.683
10. 478
57.922
9.874
5 28. 001
28. 075
28. 052
28. 143
[27- 695]
[27.960]
27. 960
27.911
5 28. 131
5 27. 838
27.815
[28. 397]
[27. 728]
28.077
28. 095
7,8 132
28. 226
5 28. 098
o. 039
0.035
0.012
+0. 097
— o. 080
-o. 129
-o. 091
-O. 212
-o. 225
+ 0-037
+ 0-055
■j-0. 092
-1-0. 186
-t-0. 058
NORMAL EQUATIONS
s.
Assuming a' =-{- o. ^oo -\- da' circle E. fo = -|- o. 876 + 2. 817 «'
-j- 3. 69 1 i/c — 1 . 269 dt ") whence da' = — o. 3 1 2
) da" -
I. 606 dc-\- o. 168 dt [
a" == + o. 378 -^ da" " W. J -)- 0.066 +2.
c = -(- o. 328 + ^ " E. I -|- i.047-|-3.69irt'rt' — i.6o6r/a"4-23.446rf^— o. 140,// |'
^T — - |ii 5m28''.o6l +1*. [ —0.407 — i.26gda' -\-o. i6Sda" — o. I40f/ 4'". 9 chron. time, ii' S™ 28«.040 -j- 0^.020 fast, losing o».o67 per hour
da" = — o. 023
dc ^4-0. 003
dt = -)- o. 007
72
TELEGRAPHIC DETERMINATION OF LONGITUDES
Transits of stars observed at Coatzaeoalcos, Mexico, by Lieut. CJiarles Laird, U. S. Navy, ivith transit No. IS04, to de/e.
/^ Negus No. 1254.
iiie the correction of sidereal chronometer
Date.
Name of Star.
ui
■a
0)
J-
"0
6
'A
Transit over
mean of threads.
Flexure
and in-
equality
of pivots.
Level.
Azimuth.
Aberra-
tion and
colli-
mation.
Rate.
Seconds
of corr.
transit.
R. A.
Chronometer
correction.
V.
1889.
Feb. 15
y Tauri
E.
h. m. i.
S 18 54-344
J.
+0- 293
J.
— 0. 141
s.
+0. 027
s.
-1-0. 618
s.
-0.034
s.
55- 103
/;. i/i. s.
4 13 28. 221
tl. 111. s.
— t 5 26.882
s.
+0. 121
(J Tauri
5 21 57-665
-|-o. 296
— 0. 162
-|-o. 008
+0. 625
—0. 026
58-506
4 16 31-623
26. 883
+0. 122
e Tauri . .
5 27 33-904
+0. 299
— 0. 204
—0. 008
+0. 631
— 0. 021
34. 601
422 7.751
26. 850
-f-o. 089
a Tauri
5 34 58- 934
+0. 294
— 0. 254
-|-o. 028
-|-o. 622
— 0. 015
59. 608
4 29 32. 790
26.818
+0.057
Gr. 848 .
S 39 20.821
4-0.616
-0. 594
—1.850
+2-423
— 0. 014
21-459
4 33 54-5'o
[26. 949]
u. Eridani .
5 45 22. 758
-fo. 264
-0, 293
+0. 199
+0.598
—0. 005
23-515
4 39 56-908
26. 607
-0- 154
a Camelop. .
5 48 27.081
+0. 468
-0.557
— 0. 992
+ 1-477
—0. 003
27- 505
4 43 0. 855
[26. 850]
i Tauri . .
5 SO 18.717
+0. 298
-0. 349
— 0. 005
-|-o. 629
- 0. 001
19.289
4 44 52. 628
26. 661
-0. 100
TT* Orionis . .
5 53 54-067
f 0.271
-0-352
-^o. 156
+0. 598
-|-0.00I
54- 737
4 48 28.008
26. 729
-0,032
I Aurigne . .
E.
5 55 11-933
+0. 326
— 0. 400
— 0. 165
+0.711
-|-0. 002
12.407
4 49 45. 726
—I 5 26.681
— 0. 080
17 Camelop. . .
W.
6 25 10. 743
-0. 442
+0. 298
-0. 957
— 1.402
-1-0. 028
8.268
.5 19 41-484
-I 5[26.784]
. . .
Gr. 966 . .
b 30 25. 307
-0- 597
+0. 483
-I 991
—2. 459
+0. 032
20. 775
5 24 54-451
26. 324
. . .
?>' Orionis . .
6 34 II. 123
-0. 283
+0.253
+0. 095
— 0. 646
+0. 036
10.578
5 28 43. 603
26. 975
+0.214
f Tauri . .
6 36 28. 241
-0. 303
+0. 340
— 0. 034
— 0. 683
+0. 038
27.599
5 31 0. 668
26.931
+0. 170
130 Tauri . .
6 46 25.368
-0. 297
+0. 357
-|-o. 005
— 0. 669
+0. 047
24. 811
5 40 57-909
26. 902
-1-0. 141
K Orionis . .
6 47 56.613
— 0. 254
+0.313
-1-0. 292
— 0. 646
-|-o. 048
56. 366
5 42 29. 645
26. 721
— 0. 040
a Orionis
6 54 36. 938
— 0. 280
+0. 373
-|-o. 116
—0. 643
+0.053
36-567
5 49 9-861
26. 706
-0. 055
V Orionis . .
7 641.358
— 0. 292
-1-0. 488
+0- 037
— 0. 658
-|-o. 063
40. 996
6 I 14. 281
26.717
— 0. 044
■q Geminorum
• i 7
7 13 38-454
-0- 305
—0. 098
— 0. 05 1
— 0. 690
-|-o. 070
37-380
6 8 10.880
26. 500
— 0. 261
V Geminorum . .
W. 7
7 27 50. 178
— 0. 301
— 0. 061
— 0. 024
-0.675
-1-0. 082
49- 199
6 22 22.589
—I 5 26.610
-0. 151
o. 478 dt '\ whence da
da
NORMAL EQUATIONS.
= -|-o. 156-f- 2. 644rt'a' — 2.e,lodc
-|- 0.163 +2. 435«'n"+ 2. 032«<: — o.2T,o dt
— 1.774 — 2. $loda' -\- \i.OT,2da" -\- 2^.']()6 dc -\- 0.031 (ft [
— o. loi — Q.^-j^da' — o. 23oa'rt:" -f- o. 031 rfc -f- 16. 868c// I
a' = -(-0S.540 (circle east); a" = -f-o».6i7 (circle west); i-^o».6l7 (-|- with circle east).
Chronometer No. 1254, at6''20"'.9chron. time, ii'5"26s.76i ±o«.023 fast, losing o".o5 2 per hour.
Assuming a' =-{- o. ^22 -\- da' circle E.
a" = -|- o. 709 -|- da" " W,
^ = + O. 536 -I- <: " E.
AT = — l" 5™ 26^.762 -|- dt.
-j-o. 017
— 0.093
dc =-(-0.081
dt =: -(- O. 005
IN MEXICO, CENTRAL AMERICA, THE WEST INDIES, ETC.
73
Transits of stars observed at Coatzacoalcos, Mexico, lsc)-7't\/ at Satina Cni-:, Mexico, t>y Unit. Charles Laird, CL S. A'aTV, "^vith traiisit A^o. 1^04, to dctrrvniir the rorrcction of sidereal chronometer
y\ri,v/.9 No. 12^4.
Date.
Name of Star.
7j
u
6
Transit over
mean of threads.
IHexure
and in-
equality
of pivots.
Level.
Azimuth.
Alierra-
tion and
colli-
mation.
Rate.
Seconds
ofcorr.
transit.
Ts.. A.
Chronometer
correction.
V.
iSgo. ;
Mar. 13 1 ,?
Canis Minoris . .
^^^ i 7
/;. m. s.
8 29 50. 890
s.
— 0. 284
s.
— 0. 091
-1 u. 049
+a 183
— 0. 134
50.613
h.
m. s.
21 8. 120
Ju in. s.
—I 8 42. 493
+0. 012
a-
Geminorum
7
8 36 14. 208
—0.321
— 0. 109
— 0. 117
+0. 216
— 0. 119
I3-758
27 31.297
42.461
— 0. 020
25
Monnccroli.<;
7
8 40 28. 500
— 0. ^fifj
— 0. 104
+ 0. 124
+0. 183
— 0. 108
28. 329
31 45-714
42.615
+0. 134
a
Canis iSIinoris .
7
8 42 12. 466
— 0. 280
— 0. I ID
+0. 067
+0. 184
— 0. 106
12. 221
33 29-747
42. 474
— u. 007
K
C;eminorum . . 1
7
8 4r5 27. 876
— 0. 30S
-0. 124
-0.059
+0. 201
—0. 094
27.492
37 45-012
42.480
+0. 001
3
Geminorum .
7
8 47 14. 469
-0.314
-u. 126
-0. 086
+0. 207
— u. 092
14. 05S
38 31.664
42. 394
—0. 087
Or. 1374 ....
7
8 55 38.72S
-0. 550
— 0. 220
— I. 126
+0. 673
—0. 086
37-419
46 55. Ill
[42. 308]
u>
Cancri .
7
9 2 56. lOI
-0. 309
-0. 109
—0. 066
-t 0. 203
—0. 054
55.766
54 13-239
42.527
+0. 046
X
Geminorum .
7
9 5 25.220
— 0. 314
—0. 108
— 0. 0S5
+0. 207
— 0. 046
24. 874
56 42. 385
42.489
+0. 008
3
Ur5. >[ajoris, H. .
7
9 10 30. 264
— 0. 475
-0.158
-0. 790
+0. 506
-0. 035
29.312
8
I 46. 960
[42. 352]
f
Cancri . . . i W.
7
9 14 33-874
-0. 297
-0. 095
— 0. 012
+0. 192
—0. 025
33-637
8
5 51. 120
—I 842.517
+0. 036
(T
Hydnc . . .
E.
7
9 41 39-910
+0.277
-1-0. 267
+0. 108
—0. 223
+0. 039
40.378
8
32 57-941
— I 8 42. 436
—0. 04s
)'
Cancri . . .
7
9 45 34-413
+0. 304
+ 0.281
— 0. 054
— 0. 239
+0.050
34-755
8
36 52. 265
42. 490
+ u. 009
fi
Cancri .
7
9 47 5- 177
-f 0. 298
+ 0. 268
—0. 022
-0. 235
+0. 056
5-542
8
38 23. 104
42. 448
-0-033
.
Cancri .
7
9 48 41.511
+ 0-315
+0. 282
— 0. 129
-0. 255
+0.057
41.781
8
39 59-354
42. 427
—0. 054
e
riydra;
7
9 49 36. 454
+0. 281
+ 0. 246
+0. 082
—0. 224
+0. 060
36, 899
8
40 54.410
42. 489
—0. 007
02
Cancri (med.).
7
9 56 11.094
+0.319
+ 0.255
r-o. 150
— 0. 260
+u. 076
■1-334
8
47 28. 897
42.437
— 0. 044
C
Hydrre . . .
7
9 58 14. 164
+0. 280
+ 0.213
+ 0.086
—0. 224
+0.081
14. 600
8
49 32- 126
42. 474
—0. 006
83
Cancri . . .
7
10 21 29. 969
+0. 297
+ 0. 220
—0. 019
-0. 234
+0. 137
30. 370
9
12 47. 809
42.561
— 0. 020
A
Urs. Majoris . .
7
1° 31 30-557
+0. 430
+0. 363
—0. 829
— u. 500
+0. i6i
30. 1S2
9
22 47-855
[42. 327]
Gr. 1564 .
t
7
10 41 29. 621
+0.485
+ 0.418
-1. 167
—0. 644
+0. 185
28. 898
9
32 46. 330
[42. 568]
Lennis . . ; 7
10 43 56. 260
+0. 286
+ 0. 264
+0.051
— 0. 227
+0.192
56.726
9
35 14-278
42. 448
-0. 033
e
Leonis . . K. 7
10 48 15. 743
-1-0. 308
+ 0. 297
—0. 078
-u. 244
+0. 202
16.228
9
39 33-752
—I 8 42.476
+0. 005
NORiMAL EQUATIONS.
s.
Assuming a' -= + o. 139 + n'n'' circle W. f o^ + o. 165 + i. 9040(2' + 3.656^'^
„// = + o. 608 + (/(?" " E. J — o. loi +2. 3650'rt"— 3.oi2n'c— I. 291*
c ^-0.042 + 0^ " E.l + 3. 350 + 3.656n'ffl'— 3.0i2a'«"+-28. g62(/,+ 1.350^// j
l\'^ - — ii|g""42».486 + a'A ( +0. 008— I. 2i7n'i2'— I. 29irf«"+ i. 350r/c-+ 19. 9161// J
(2' = + o".36l (circle west) ; a" = -|- o".502 (circle east) ; c = o».203 ( — with circle east)
Chronometer No. 1254, at 9= 25™.o chron. time, i'> 8™ 42".48i -|- o. 005 fast, losing o".i46.
s.
I. 217 dt "I whence da' ^ + o. 222
I da" ^ — o. 161
dc = — o. 1 60
dt =1 + 0.013
76
TELEGRAPHIC DETERMINATION OP LONGITUDES
Transits of stars obseiiicd at Salina Cru^, Mexico, by Lieut. Charles Laird, U, S. Navy, with transit No. 1S04, to dctc,
A'lXiis No. I2j,f.
ine the correction of sidereal chronometer
Date.
1889.
Mar. 14
Name of Star.
^ Canis Minoris .
a' Geniinorum .
o Canis Minoris .
a Geminorum .
7r Geminorinn .
Gr. 1374 .
u' Cancri . .
X Geminorum .
3 Urs. Majoris, H
Urs. Majoris
7; Cancri .
a Hydrce . .
y Cancri . . .
(! Cancri . . .
( Cancri . , .
E Hydree . .
(7^ Cancri .
^ Hydrce . ,
a Cancri .
W.
W.
Transit over
mean of threads.
8 29 46. 774
8 36 9- 970
8 42 8. 338
8 46 23. 587
8 48 59-934
8 55 34. 200
9 2 51-865
9 5 21.076
9 10 25. 893
9 29 43- 284
9 34 57-091
9 41 36- 745
9 45 31-487
9 47 2. 190
9 48 38.571
9 49 33- 394
9 56 8.137
9 58 11.053
10 I 4. 667
Flexure
and in-
equality
of pivots.
-f-o. 284
+0.321
+0. 280
+ 0.308
+0. 324
+0. 550
+0. 309
+0.314
+0.475
—0.414
— o. 301
— o. 277
— o. 304
— o. 298
—0.315
-0.281
-0.319
— o. 280
— o. 289
Level.
+0. 045
+0. 04s
+0. 036
+0. 036
+0. 036
+0. 130
+0. 105
Azimuth,
q-o.
120
+0.
198
+0-
211
+0.
147
+0-
129
+0-
131
+0.
127
+0.
132
+0-
017
+0.
123
+0.
105
+0.
104
+-0.038
— o. 091
+0. 052
— o. 045
— O. lOI
— o. 870
— o. 05 1
-0. 038
o. 611
-o. 923
-o. 05s
+0.073
o. 068
o. 028
o. 163
o. 103
o. 189
+0' 108
+0. 044
Aberra-
tion and
coUi-
mation.
+0. 004
+ 0.005
+0. 004
+0. 004
+0. 005
-|-o. 014
+0. 004
+0. 004
+0. on
— o. 091
— o. 047
— 0.044
— o. 047
— o. 646
— o. 050
— o. 044
—0.051
— o. 044
— o. 045
Kate.
— o. 130
— o. 114
— o. 099
— o. 088
— o. 081
— o. 064
— o. 047
— o. 040
— o. 027
-(-0.019
+0. 034
+0.051
+0.061
-(-o. 065
-I- 0.068
+0.071
+0. 087
+0. 092
■4-0. 100
Seconds
of corr.
transit.
47-015
10. 136
8.611
23. 802
o. 217
33- 960
52. 185
21.436
25-939
42. 086
56.869
36. 677
31. 260
2. 010
38- 243
33- 260
7-788
11.034
4-581
R. A.
h. m. s.
7 21 8. 106
7 27 31-279
7 33 29.732
7 37 44- 995
7 40 21.257
7 46 55- 045
7 54 13.222
7 56 42.369
8 I 46-913
8 21 3. 219
8 26 17. 870
8 32 57-931
8 36 52.239
8 38 23.093
8 39 59- 333
8 40 54. 399
8 47 28. 886
8 49 32. 116
8 52 25.516
Chronometer
correction.
h. m. s.
-i 8 38.
38.
38-
38.
38-
[38-
38-
39-
-1 8[39.
-I 8[38.
38.
38-
39-
38-
38-
38-
38-
38-
-i 8 39.
909
857
879
807
960
915]
963
067
026]
867]
999
746
021
917
910
861
902
918
065
s.
0.015
— o. 067
— o. 04s
— o. 117
— o. 036
+0. 039
+0. 143
+0. 065
0.178
+0.097
— o. 007
o. 014
o. 063
0.022
o. 006
+-0. 141
Assuming
NORMAL EQUATIONS.
= -Ho.2i3-|-i.858rf«'
— 0.282 -\-i.o<)o da"
— 2.212 — 2. i<)2 da' -\- I. tifii) da"
/\T =— ill 8"" 38s.936+-a'A [ —0.019 — i. 882 «'«' -j-o. 377 ofe"
a' = -|- o".279 (circle east) ; a" = -\- o».632 (circle west) ; c =
Chronometer No. 1254, at gii 2i™.4 chron. time, i" %<" 38».924 -|- o"
s,
= +0
' = -Ho
c = — o
222 -)- da' circle E.
497 -I- da" " W.
068 -|- dc " E.
— l.392(/c — 1.8820'/ l whence o'a' =-|-o.0S7
+- I.4i9a'^-|- 0.3770'/ I da" = -\-o.\iS
-j- 24. 024 dc — 1 . 449 de \ dc = -j- o. 092
— I. 449 (/c-(- 16. 749 fl'/ J dt = -f-o. 012
o''.024 (-|- with circle east).
015 fast, losing 0M5I per hour.
Mar. 1 5
25 Camelop. . . .
E.
8 16 14. 186
+0. 879
-1-0. 080
— I. 221
+0. 202
— 0. 724
13.402
7
7 43- 284
-I 8[30. 118]
. . .
/I Geminorum
8 20 13.764
+0. 295
-f-o. 004
— 0. 001
+0, 027
0. 711
14-378
7
n 42.898
30. 480
+0. 012
S Geminorum
8 22 0. 494
+0. 304
0. 000
— u. 019
+0. 028
—0. 706
0. lOI
7
13 29.699
30. 402
— 0. 066
p Leonis . .
II 35 29.065
+0. 285
0. 000
-|-o. 019
+0. 026
-0. 174
29. 221
10
26 58. 822
30- 399
— 0. 069
41 Leonis Minori
s .
II 45 54-011
+0. 306
-|-u. 002
— 0. 025
+0. 028
— 0. 146
54- 176
10
37 23.669
30. 507
+0- 039
46 Leonis Minori
s .
II 55 37-461
+0. 327
+0. 007
— 0. 067
+0. 032
— 0. 119
37-641
10
47 7-176
30- 465
— 0. 003
a Urs. Majoris
12 5 24. 961
+0.422
-j-o. 010
— 0. 265
+0. 056
— 0. 092
25. 092
10
56 54-319
[30- 773]
X Leonis . . .
12 7 48. 547
+0. 283
+0. 007
+0. 025
+0. 026
— 0. 085
48. 803
10
59 18.300
30- 503
+0. 035
f^ Leonis . . .
12 9 45,511
+0- 27s
+0. 007
+-0. 040
+0. 026
— 0. 072
45-787
1 15-371
30.416
— 0. 052
e Leonis . . .
E.
12 17 55-996
+0. 294
+0. 009
0.000
+0. 027
-0. 057
56.269
8 25. 769
—I 8 30. 500
+0. 032
t Leonis . . .
W,
12 26 40.000
— 0, 287
— 0. 121
+0.016
— 0. 067
-0. 037
39- 504
18 9.097
—I 8 30.407
— 0. 061
r Leonis . . .
12 30 45.336
— 0. 289
— 0. 122
+0. 040
—0. 066
— 0. 022
44.877
22 14. fllO
30. 267
— 0. 201
\ Draconis. .
12 33 22. 657
-0. 487
— 0. 207
— 0. 429
— 0. 192
—0.015
21.327
24 SI- 185
[30. 142]
. . .
f Hydrse . . .
12 36 4.354
— 0. 224
-0. 095
+0.157
-0. 077
—0.007
4. 108
27 33. 734
30. 374
— 0. 094
rj Virginis . .
13 22 45.137
-0. 283
— 0. 154
+0.051
— 0. 066
+0. 120
44. 80s
12
14 14-519
30. 286
— 0. 182
6 Canum Venat.
13 29 55-034
-0- 337
— 0. 105
— 0. 094
— 0. 086
+0. 140
S4.SS2
12
20 24. 043
30. 509
+0. 041
20 ComEe . . .
13 32 40- 583
— 0. 303
— 0. 063
—0.018
— 0. 07 1
+0. 148
40. 276
12
24 9. 648
30. 628
+0. 160
24 ComEe (seq.)
13 38 5-507
— 0. 299
— 0. 009
— 0. 010
— 0. 070
+0. 162
5.281
12
29 34.638
30. 643
+0. 17s
76 Urs. Majoris
13 45 16. 486
— 0. 428
+0. lOI
— 0. 297
— 0. 147
1-0. 182
15-897
12
36 44- 983
[30- 914]
. . .
31 Coma; Berenecis
W.
13 54 49-298
— 0. 314
+0. 176
— 0. 043
-0.075
+0. 208
49- 250
12
46 18.555
— I 8 30. 695
+0. 227
NORMAL EQUATIONS
Assuming a' = + 0. 257 + o'a' circle E. ro = + o. 108+ I. 8iS.- . .
f Leonis . . .
y' Leonis
35 n. Urs. Majoris
/ Leonis
a Urs. Majoris .
T^ Leonis . . .
U
w.
E.
Transit over
mean of threads.
h. til. s.
10 9 6. 771
10 17 3.328
10 21 15. 251
10 31 16. 086
10 35 53.610
10 43 41.594
10 48 I. 170
10 54 55-151
11 2 48. 008
II 9 44- 143
n ID 54.813
II 13 37-747
II 18 58.343
II 22 18.537
11 43 36-564
II SI 52.574
12 5 21.364
12 7 44.697
Flexure
and in-
et|iiality
of pivots.
Level.
Azimuth.
AliL-rra-
tion and
colli-
mation.
Rate.
Seconds
of corr.
transit.
J.
—0. 463
s.
— 0. 149
—0. 409
s.
—0. 2S1
s.
— 0. 122
s.
5-327
—0. 276
—0. 046
+0. 046
— 0. 107
— 0. 100
2.845
-0. 297
—0. 047
— 0. 008
— 0. 112
-|-u. ogo
14. 696
-0. 430
^0.076
-0. 328
— 0. 240
—0. 066
14. 946
-0-331
— 0. 067
— 0. 088
— u- 134
—0. 048
52.942
—0. 286
-0. 077
-\-o. 020
—0. 109
- 0. 030
41. 112
—0. 308
—0. 099
— 0. 031
— 0. 117
—0.018
0-597
—0.31 1
— 0. 120
— u. 040
— u. 119
—0. 001
54- 560
+0. 281
+0. 045
+0. 038
+u. 068
+0. 020
48. 460
+0. 296
+0. 043
—0. 006
+0. 070
+0. 039
44- 585
-|-o. 289
+0. 041
+0. 019
+0. 068
-|-o. 042
54.272
f 0. 255
+0. 034
+0. 138
4.U. 068
+u. 049
38. 291
-|-o, 264
+0.031
—0. C43
+0-073
+0. 063
58.731
+0. 301
+0.031
— 0. 023
+0.071
+0.072
18.989
-1-0. 594
— 0. 124
— 0. 666
+0- 193
+u. 129
36. 690
+0. 287
-0. 138
-(-0. 026
-|-o. 068
+O-I51
52. 968
-f-o. 422
—0. 244
— u. 447
+0. 144
+0. 187
21. 426
+0. 283
— 0. 178
+0. 041
-|-o. 067
+0. 193
45- 103
R. A.
//. III. s.
9 o 38- 725
9 8 35.972
9 '2 47-769
9 22 47. 769
9 27 26.145
9 35 14.246
9 39 33- 724
9 46 27. 762
9 54 21.580
10 I 17.682
10 2 28. 376
10 5 11.443
10 10 31. 272
10 13 51-953
1035 9-377
10 43 26. 225
10 56 54.315
10 59 18.301
Chronometer
correction.
h. m.
-I
8[26. 602]
26. 873
26. 928
[27- 177]
26. 797
26. 866
26.873
8 26.798
8 26.880
26. 903
26. 896
26. 848
26. 959
27. 039
[26.313]
26. 743
[27. Ill]
8 26. 802
— o. 002
+0. 057
-o. 074
— o. 005
— o. 002
—0-073
-(-o. 009
+0. 032
-|-o. 025
— o. 023
+0. 088
■\-o. 168
— o. 128
-0. 069
NORMAL EQUATIONS.
Assuming a' ^ + o.l55+fl'a' circle W. ("0 = — o. 021 + 2. 303<^^a' + i.2i,'^dc — l . 485 (/^ "| whence ^/rt' =-(-0.044
3" = -|- o. 348 + (&" " E. j +0.205 -\-2.y1\da"— l.g^6dc — 0.3851*1 da" = — 0.060
c =-|-o. 106 + d'<: " E. ] +0. 150 + 3. 245 rfrt' — \.<)^(>da" -\-22.b2\dc-\- \.-j2gdt'i dc =—0.019
/\T = — I ii 8"! 26».88o + r//. (^ — o. 015 + 1.485 (&'-|-o. 385 £&"+ I. 729«^i--|- 15. i57(& J dt = + 0.005
rt' = + o''.l99 (circle west); a" = + 0^.288 (circle east); f = o".o87 (-|-with circle east).
Chronometer No. 1254, at 10 55"'.ochron. time, i^Sm 26«.87I +0^.0 12 slow, losing o'. 160 per hour.
Mar. 18
25 Camelop. .
L Geminorum .
,3 Canis Minoris.
a^ Geminorum
a Canis Majoris.
K Geminorum
Urs. Majoris
Assuming a' .-=: +
a" = Ar
c = +
AT =
s. .
s. .
E.
7
7
7
7
7
7
7
7
E.
7
W.
7
7
7
7
7
7
7
7
W.
7
8 16 6.547
8 27 12. 920
8 29 30. 854
8 35 54- 104
8 41 52.549
8 46 7- 784
855 5-367
9 o 37. 308
9 2 35-993
9 10 10. 664
9 14 14-451
9 28 30.818
9 34 41-546
9 45 16.026
9 46 46. 784
9 48 23. 168
9 49 17-931
10 o 57.978
+0.879
+0. 848
-3- 193
+0- 833
-0. 133
5.691
+0.314
+0. 188
— 0. 104
+0. 121
— 0. 104
13-335
-|-o. 284
+0. 151
+0. 062
+0. 108
—0. 098
31-361
+0.321
+0. 103
-0. 145
+0. 126
— 0. 081
54.428
-\-o. 280
+0. 143
+0. 083
+0. 107
— 0. 066
53-096
+0. 308
+0. 183
— 0- 073
+0. 118
-0. 054
8.266
+0.312
+0. 258
— 0. 095
+u. 120
—0.031
5-931
+ LI. 412
+0.397
— 0. 638
+0. 2l8
— 0. 016
37.681
+0. 309
+0.318
— 0. 082
+0.119
—0. 009
36. 648
-0. 475
+0. 764
— 0. 562
—0. 406
+0. 009
9-994
-0. 297
+0.477
— 0. 008
-0. 154
+0. 019
14.488
—0. 267
-0. 086
+0. 087
-0. 147
+0. 059
30- 464
—0. 302
— 0. 062
— 0. 022
-0.157
+0.073
41.076
—0. 304
— 0. 01 1
— 0. 027
-0. 158
+0. lOI
15.627
—0. 298
+0. 005
- 0. on
-0- 155
+0. 105
46. 430
-0-315
+0.015
— 0. 066
— 0. 168
+0. 109
22. 743
-0. 281
-1-0. 018
+0. 042
— 0. 148
+0. Ill
17-673
—0. 467
+0. 095
-0. 567
-0- 393
+ u. 142
56. 78S
7 7 42-
7 18 50.
7 21 8.
7 27 31-
7 33 29-
7 37 44-
7 46 42-
7 52 13-
7 54 13-
8 I 46.
8 5 51-
8 20 7.
8 26 17.
8 36 52.
8 38 23.
8 39 59-
8 40 54-
8 52 33-
928
010
050
207
672
927
464
982
154
749
050
237
718
187
044
287
354
234
-I 8[22.763]
23- 325
— 0. 047
23-3"
— 0. 061
23. 221
— 0. 151
23-424
-f 0.052
23- 339
-0. 033
23-467
+0. 095
[23- 699]
-I 8 23.494
+0. 122
-I 8[23.248]
23-438
+0. 066
23.227
— 0- 145
23-358
+0. 014
23- 440
+0. 068
23- 386
+0.014
23-456
+0. 084
23-319
-0. 053
-I 8[23. 554]
NORMAL EQUATIONS.
o^ — o. 002 + 2. 819 (/a' — 3. 946 f/c
— o. 116 -\- 2. o\o da" -\- 2.93412',:-
— 0.914 — 3.9461/17' +2. 9341/11" + 23. 4621/1-
+ 0. 163 — I. 579 1/«' — \.oi%da" — 0.005 dc -\- 14. ?>i)gdt J
a' = + o«.447 (circle east); rt" = + o''.257 (circle west); - =o".i27 (+ with circle east).
Chronometer No. 1254, at 9'' 6". 9 chron. time, l" 8'" 23«.372 -)- o».oi5 fast, losing o«. 158 per hour
o. 373 + da' circle E.
o.2S,i-{- da" " W
073 + 1/. " E.
ih 801238.375-1-1//.
I. 5791// "1 whence da'
1.0781// I da"
O. 005 di I dc
dt
= + o. 074
=: O. 024
= + o. 054
= — o. 001
78
TELEGRAPHIC DETERMINATION OF LONGITUDES
Transits of stars obscnjed at Salina Cruz, .1/ xii o, by Lieut. Charles Lainl, U. S. Navy, with transit .Vo. 1504, to determine the correction of iidcrcal chronometer
Nci^ns No. 12^4.
Date.
Name of Star.
W.
6
"A
Transit over
mean ol tlireads.
Flexure
and in-
equality
of pivots.
Level.
-(-o. 106
Azimuth.
Aberra-
tion and
colli-
mation.
Rate.
Seconds
of corr.
transit.
R.A.
Chronometer
correction.
V.
1S89.
Mar. 30
10 Leonis Miiiori.s .
10
m. s,
35 15-748
s.
-0.331
J.
-1-0. 482
s.
— 0. 156
s,
—0. 115
J.
15. 834
h. III. s.
9 27 25. 980
//. m. a.
— I 7 49. 854
s.
— 0. 044
Leonis
10
43 4.616
— 0. 2S6
-|-o. 091
— 0. 1 1 1
-0.127
— 0. no
4.073
9 35 14. 120
49. 953
+0. 05s
£ Leonis . .
10
47 23.867
-0. 307
+0. 099
\o. 169
-0. 137
—0. 080
23.611
9 39 hi- 600
50. on
+0. 113
fi Leonis . .
10
54 17.753
—0.313
+0. ioi
+0.219
— 0. 140
—0. 064
17.556
9 46 27. 640
49.916
+0.018
ir Leonis . .
2 11.774
— 0. 283
+0. 091
— 0. 145
— 0. 126
— 0. 043
11.268
9 54 21.480
49. 788
— 0. 1 10
T] Leonis . .
9 7- 790
— 0. 296
+0. 095
+0. 023
-0. 131
— 0. 025
7.456
10 I 17.586
49. 870
— 0. 028
a Leonis ...
10 18. 57S
— 0. 289
+0. 093
— 0. 072
-0.128
—0. 020
18. 162
10 2 28. 280
49. 882
— 0. 016
32 Urs. Majoris
w.
17 48.386
—0. 446
+0. 143
+ 2. 010
-0. 303
— 0. 002
49- 738
10 9 59.710
-1 7[5o.o78]
yi Leonis ....
E.
21 41.454
+0. 300
— 0. 036
+ 0. 098
+0. 092
+0. 008
41.916
10 13 51. 870
— I 7 50.046
+ 0, 148
30 IL Urs. Majoris .
24 56. 500
+0. 449
— 0. 071
+ 2. 342
+0. 212
+0.017
59-459
10 16 8. 978
[50.481]
p Leonis ...
34 48. 426
+0. 285
—0. 082
-0. 137
+0. 087
+0. 043
48. 622
10 26 58. 760
49. 862
— 0. 036
41 Leonis Minoris .
45 13.047
+0. 306
-0. 133
+ 0. 178
+0. 094
+0. 070
13.562
10 37 23. 610
49.952
4 0. 054
/ Leonis . . .
51 15.876
-fo. 287
— 0. 149
— 0. 1 1 I
J-0.087
+0.087
16.077
10 43 26. 170
49.907 +0.009
a Urs. Majoris
12
4 41.957
+0.422
-0. 338
+ 1.927
+0. 185
+0. 122
44- 275
10 56 54. 190
[5o.o85]|-o.oii
X Leonis . . .
12
7 8.076
+0. 300
— 0. 254
— 0. 178
+0. 087
+0. 129
8.160
10 59 18.273
49.887
p^ Leonis
E.
12
9 5.141
-f 0. 275
— 0. 267
- 0. 291
+0. 086
+0. 153
5.097
II I 15.340
— 1 7 49.757 -0. 141
Assuming a'
— I. 158 + da' circle W
a" = ~v.\(i\-\-da" " E.
c = + o. 074 + dc " E.
AT =— ih7."49s.9i4 + /.
NORMAL EQUATIONS.
= — o. 152 + I. 459a',z' + (.962a'i; — i.o57(A"| whence «'
I da"
■\-\.C)%bda" + 2.151^6- — O.-Ji'&dt
I +0.092 -r..^„„„.. -p ^. .-,.„. ;-„„. .
I — o. 583 + I. 962 «' — 2. 151 r/r7"+ 19. 544(i'f - o.doddti dc
I — 0.152 — i.057a'«' — o.'j2%da" - o. 6o6(/t+ 13. 929^? J dt
a' = — i".o87 (circle west) ; a" = — I>'.24I (circle east) ; c = o».Io6 (+ with circle east).
Chronometer No. 1254, at ii'' 18™. 6 chror. time, i'' l'"" 491.898 +o''.oi9 fast, losing o'. 160 per hour.
^ + o. 070
= — o. 077
= + o. 032
= + o. 016
Mar. 31
/
Leonis . . .
E.
II
51 11.694
+0. 287
+0. 043
+ 0. 237
+0. 205
— 0. 115
12.351
10
43 26. 164
-I 746.187
+0.015
46
Leonis Minoris .
II
54 53.710
+0. 327
+ 0.052
— I. 029
+0. 245
— 0. 106
53.199
10
47 7-112
46. 087
— 0. 085
a
Urs. Majoris
12
4 43. 600
+0. 422
+0.054
-4. 103
+0. 433
— 0. 083
40. 323
10
56 54- 175
[46. 148]
X
Leonis . , .
12
7 3- 686
+0. 283
+0. 032
+ 0. 380
+0. 203
— 0. 076
4.508
10
59 18. 269
46. 239
+0.057
pz
Leonis . . .
12
9 0.381
+0. 275
+ 0. 02g
-|-o. 620
+ u. 201
— L,.o73
1-433
I 15.338
46. 095
—0.077
»
Leonis .
12
16 11.286
+0. 294
+0. 019
+0. 005
+ 0. 209
—0.055
11-758
8 25. 749
46. 009
— 0. 163
f
Urs. Majoris (med'
12
20 3.153
+0.321
+0. 009
-u. 858
f "• 237
— u. 045
2. 617
12 16. 594
46. 123
— 0. 044
a
Leonis . .
12
23 10.953
+0.281
0. 000
+ 0.438
+ 0. 203
— 0. 039
n.836
15 25.639
46. 197
+0. 025
I
Leonis . . .
12
25 54-563
+0. 287
—0.012
+ ^- 234
+u. 205
—0,031
55- 246
18 9.094
46. 152
— 0. 020
T
Leonis . .
12
29 59-908
+0.276
— 0. 031
+ 0. 580
+0. 201
— 0. 022
0. 912
22 14. 608^
46. 304
+0. 132
A
Draconis .
E.
12
32 42- 536
+0. 486
— U.077
—6. 205
+0. 586
— 0.016
37-310
24 51.074
—I 7 [46. 236]
3
Draconis . . .
W.
12
44 II. 136
— 0. 461
+0.014
-5. 100
— 0. 626
+0. on
4-974
36 19.177
-1 7[45-797]
/^
Leonis . .
12
51 11-447
-0. 293
+ 0. 004
+0. 045
— 0. 250
+0.028
10. 991
43 24.789
46. 202
+0. 030
yi
Virginis .
12
52 41.617
-0. 275
+0. 044
+0. 600
— u. 241
+0.031
40. 776
44 57.710
46. 066
— u. io5
7T"
Virginis . . .
13
2 58.251
-0. 282
+0. 069
+0.393
-0. 243
+0. 056
28. 244
55 12.021
46. 223
+0.051
1
Virginis .
13
22 0. 360
— 0. 272
+u. 096
+0. 703
— 0. 241
+0. IOI
0-747
12
14 14. 602
46. 145
—0. 027
a'
Crucis
13
28 9. 290
— 0. 121
+ 0. 466
+5. 343
— 0. 521
+0.115
14-572
12
20 28. 401
46. 171
— 0. 001
20
Com^ .
13
31 56.540
-0. 303
+0.119
— 0. 252
— 0. 258
+0. 125
35.971
12
24 9.751
46. 220
+0. 048
76
Urs. Majoris
13
44 36.214
— 0. 428
+0.312
-4. 107
-0. 536
+0.155
31.611
12
36 45.121
[46. 390]
31
Comte Berenecis .
13
54 5.726
—0.314
+0. 146
-0. 592
— 0. 272
+0. 181
4.875
12
46 18. 677
46. 198
+0. 026
d
Virginis .
13
57 47.446
— 0. 277
TO. 133
+0. 532
— 0. 241
+0. 186
47- 779
12
50 1.662
46.117
— 0. 055
c
Virginis .
W. 7
14
4 26.371
—0.288
+ 0. 102
-f 0. 207
— 0. 246
+0. 202
26. 348
12
56 40.087
—I 7 46. 261
+0. 089
s, NORMAL EQUATIONS.
Assuming
Urs. Majoris
10 12.4JI
+0.467
4-0. 016
-1-2. 251
+0. 596
— 0. 061
15. 690
8 5^ 32
697
[42
993]
0-
Urs. Majoris .
K.
10 8 18. 064 i-)-o. 463
0.000
+2- 097
+0. 585
— 0. 042
21, 167
9 38
176
— I 7[42
991]
^3
Cancri
\V.
10 20 31. 196 —0. 297
+0. 143
-fo. 048
-0. 277
— 0. 014
30. 799
9 12 47
592
— I 7 43
107
+0
071
: //
Urs. jNIajoris
10 30 29. 0S6 ' -0. 430
~(-o. 200
-\-2. 062
-0. 590
-)-o. 009
30.337
9 42 47
359
[42
978]
.
Leonis
10 42 47. 624 —0. 2S6
+0. 128
— 0. 127
— 0. 267
+0.038
57.110
9 35 14
097
43
013
-0
023
t
Leonis ....
10 47 16.854 -0.307
+0. 137
+ 0. 194
-0. 2S8
-f-o. 048
16.638
9 39 33
575
43
063
i-o
027
i h
Leonis . .
10 54 10,853
-0.311
+0- 143
+0.251
- 0. 294
+0. 065
10. 701
9 46 27
61s
43
086
i-o
050
' —
Leonis ....
u 2 4.957 —0.283
+0. 134
— u. 166
— 0. 266
+0. 083
4-459
9 54 21
460
42
999
—
037
J?
Leonis ....
II 9 0. 918 —0. 296
+0. 144
—0. 026
-0. 275
-l-o. 099
0,564
10 I 17
567
42
997
-0
039
a
Leonis . . .
II 10 n. 574 1—0. 289
+0. I4S
—0. 082
—0. 269
-|-o. 102
II. 1 84
10 2 28
259
42
925
■
III
36
L'rs. Majoris . .
W.
7
II 31 14-543 1 - 0.391
+0. 203
+ 1.462
-0. 477
+0- 152
14- 493
10 23 32
458
-I 7[43
035]
s.
K(
)RMAL
lioUATK
JNS.
i.
Assuming a' = — I. 013 -f da' circle E.
«" = — 1.236 -I- ,/,;'' " W
— ■},. o-]o dc — 1. 222 dt'
-|- O. 064 -|- I. 648 r/(i" -f- 2. 364 (it — 1.20C) dt
o. 26^ -\-dc " E. ] -j- o. 502 — 3. 070 (/<;' -j- 2. 364 r/ij-'' -j- 22, 442 (/(■ — 0.179 (A
/\T = — ii> 7'" 43'.035 -|- dt. I -j- o. 036 — I. 222 '.243 (-|- with circle east).
Chronometer No. 1254, at 10'' 20^.3, chron, time, i'' 7'" 43'.036 -[-o».oi2 fast, losing 0M40 per liour.
whence da' = — o, 005
da" ^^ — o. on
dc = — o, 022
dt = — o, 006
April 2
rr Hydra; .
W.
7
y Cancri ....
7
i Cancri . .
7
a'' Cancri (med.)
7
f Hydra; ....
7
p Urs. Majoris . .
7
K Cancri ....
7
U Hydrae ....
7
/z Urs. Majoris . .
7
10 Leonis Winoris .
7
Leonis
7
// Leonis ....
W.
7
"• Leonis . . .
li. : 7
// Leonis ....
7
a Leonis . . .
7
f Leonis ....
7
y' Leonis ....
7
30 H. Urs, .Majoris ,
7
/) Leonis
7
35 Urs. Majoris . .
7
41 Leonis
!■:,
7
9 40 38. 420
9 44 32. 356
9 47 39- 244
9 55 8. 730
9 57 12.570
10 on. 236
lo 9 24, 908
10 16 16, 231
10 30 26. 071
10 35 5- 844
10 42 54. 546
10 54 7-556
11 2 0.866
II 8 56.663
II 10 7.483
II iS 10.588
II 21 30.776
II 23 45.485
II 34 37.800
II 42 44.514
1 1 45 2. 488
-0.277
— o. 304
— o. 298
-0.319
— o. 280
-o. 467
— o. 287
— o. 276
— o. 430
-o. 330
— o. 286
— u. 311
—0.079
— o. 030
-1-0. 019
— o. on
— o. 015
— o. 038
— o, 046
-0.038
—0.0 17
-0.031
— o. 022
- o. 015
-f-u. 283 i — O. 270
-)-o. 296 — o. 282
+0.289
+0. 307
+0. 301
+0. 449
+0, 285
+0. 594
0,300
-o, 276
-o. 178
-o. 156
-0.213
-0.088
-o. 067
-o. 029
245
+0
122
+0
294
+0
341
—
195
+ 2
5'5
—
104
—
263
+ 1.
883
t-o
505
-0
116
+
229
—
157
+ 0.
025
L>.
078
+0.
176
+0.
093
+ 2.
229
— 0.
131
+2.
729
+0.
170
- o. 343
—0.370
o. 393
— o, 400
— o. 346
— o. 918
-o. 349
-o. 343
— o. 770
— o. 428
0.349
-o- 383
f o. 306
+0.317
+0.310
+0-331
+0.323
+0.748
+0. 307
-1-0.872
+0.331
-o, 139
— o, 129
— o. 118
— u. 104
— o, 100
-o, 093
— u. 071
-o. 055
— O. 022
— o. on
-(-u. 006
+0.032
+0.053
-(-o, 067
-|~o, 070
-1-0,088
+0, 097
-|-0. lOI
4-0. 127
-|-o. 146
+0.151
37.
337
31
645
38
748
8
237
1 1
636
12
235
24.051
15
256
26
968
5
539
53
779
7
loS
I
081
57
086
7.798
II
312
31
434
48
799
38
309
8 32 57-665
8 36 51.972
8 39 59-062
8 47 28, 614
8 49 31-179
8 52 32, 644
9 I 44, 488
9 8 35, 758
9 22 47, 327
9 27 25,933
9 35 14.085
9 46 27. 602
9 54 21. 449
10 I 17.556
10 2 28. 248
10 lo 31, 650
10 13 5 1 , 842
10 16 8, 899
10 20 58, 734
10 35 9,029
3.411 j 10 37 23. 5S9
48,478
-1 7 39.672
39- 673
39. 686
39- 623
39. 757
[39.591]
39. 563
39. 498
[39.641]
39, 606
39- 694
-I 7 39, 506
-I 7 39-632
39-530
39- 550
39- 662
39- 592
[39 900]
39- 565
[39-449]
-I 7 39 8j2-
o.
+0.
+0.
— o.
+0.
— o.
— o,
— o,
+0.
— o.
+0.
— o.
— o.
fo.
+0.
047
04S
061
002
132
062
127
019
069
119
007
095
075
037
033
-o. 060
H-0. 197
^T =— 1"7
NORMAL EQUATIONS. s.
= — 0.022 + 2. 160 (/«' + 3, 420(/f— I. 587(i'i' 1 whence(/«' = + 0,088
+ 0.056 -|- 2. 25s (/(?■" — 2, 878,/c— i.iiydt'. da't—^o.ogi
+ 0, 777 + 3, 420 (/«' — 2, 878 (/«'' + 26, 403 i^dc — o.o^iodt
c = + o.i69 + (/£- " E. I — o. 299 + 1 . 942 (/(z' — I. 484 (/(?'■'+ 26. 067 (/it — 1.026a'/
^T = + o*" 5™ 428.341 + a'/ [ — 0.396 — 0.146 (/a' — 0.080 (/a" — i.o26(/c + 18. 023^/
«' = — 08.195 (circle west) ; a" ^ — o».o8l (circle east); (r^os.183 (+ with circle east).
Chronometer No. 1 254, at 2" 7>n.2 chron. time, oi" 5n' 42=.357 + o^.oi 2 slow, losing OM 19 per hour.
whence da' =r — o. 007
da" ^ + o. 023
dc = + o. 014
dt ^ + o. 023
31194— No. 97-
82
TELEGRAPHIC DETERMINATION OF LONGITUDES
Transits of stars obitrvcd at .Sitit/i2,
—0. 045
0.847
I 54 49. 091
48.244
— 0. 067
a Arietis .
I 55 10.654
— 0. 307
—0.014
—0. 002
— 0. 366
— u. 032
9-933
2 57. 990
48. 057
+ C. 120
f Ceti . .
W.
2 I 22.399
—0. 280
-0.009
+0. 007
— 0. 341
— 0. 020
21.756
2 7 9.838
+0 5 48.082
+0.095
L Cassiop. .
E.
2 14 II. 740
+0. 493
— 0. 158
— 0. 119
+0. 757
+0. 007
12. 720
2 20 0. 895
+0 5[48.i75]
e Ceti . . .
2 16 29. 686
+0.279
—0. 099
+0.014
+ 0. 300
+ 0.012
30. 192
2 22 18. 345
48. 153
+0. 024
36 H. Cassiop. .
2 21 47.060
+0. 570
—0. 242
— 0. 167
+0. 979
+0. 023
48. 223
2 27 36.490
[48. 267]
. . .
V Arietis . .
2 26 45. 296
+0. 304
— 0. 147
— 0. 002
+°-3i9
+0- 033
45. 803
2 32 33. 925
48. 122
+0.055
Br. 366 .
2 29 33. 880
+0. 498
-0. 257
— 0. 122
+0.771
+0. 039
34- 809
2 35 22.883
[48. 074]
a Arietis
2 39 36. 254
+0.291
—0. 169
+0. 006
+o- 307
+0. 059
36- 748
2 45 24.919
48.171
+0.006
7^ Eridani
2 45 14. 387
+0. 250
— 0. 152
+0. 032
+0. 301
+0.071
14. 889
2 51 3. 102
48- 213
— 0. 036
f Arietis
2 47 6. 256
+0. 303
-0. 186
— 0. 001
+0.318
+f?. 075
6.775
2 52 55- 105
48- 330
-0. 153.
6 Arietis .
2 59 31.529
+0. 300
— 0. 191
+0.001
+0. 31S
+0. 101
32-055
3 5 20. 121
48. 066
+0. 1 1 1
f Arietis
E.
3 2 45. 779
+0. 302
— 0. 194
— 0. 001
+0.317
+0. 107
46. 310
3 8 35. 523
+0 5 48. 213
— 0. 036
Assuming
NORMAL EQUATIONS.
: + 0.038 + 1/3' circle W. fo^- + o. 049+ 3. 495 (/«'
:+o. loo + ^a" " E. I +0.083 +3.3I5«'«"— 4.240a' 26>n s8».58i +
58».572 + o».oio slow, losing
o. 503 dt I
o. 745 dt [
13. 189 dt J
circle east).
; 0^.087 per hour.
da" =
dc =
dt =
s.
— o. 015
+ U.031
— o. 009
+ u. 001
Dec. 19
(J Piscium
E.
7
23 26 33. 246
+0. 277
+0. 035
— 0. 232
38 Piscium . . .
7
23 32 35-916
+0. 255
+0. 040
— 0. 435
a Andromedae .
7
23 35 34- 994
+0. 318
+0. 054
+0. 168
Br. 6 ... .
7
23 42 47- 540
+0. 660
+0. 133
+3-470
a Androraedje
•
7
23 45 27- 633
+0. 336
+0.071
+0. 343
K Cassiop. . . .
7
23 59 36. 190
+0.449
+0. 116
+ 1.429
TT Andromedse .
7
3 53- 234
+0. 329
+0. 089
+u. 269
e Andromedse
7
5 37-434
+0.318
+0. 088
+0. 173
21 Cassiop. . .
7
II 12. 290
+0. 610
+0. 172
+2.974
f Andromedae .
E.
7
14 23. 540
+0. 308
+0. 089
+0.072
t Piscium . .
W.
7
30 9- 579
— 0. 278
-0.03s
—0. 226
r Piscium
7
38 31-231
— 0. 321
— 0. 076
+0. 200
/ Piscium
7
45 3. 040
— 0. 27 1
— 0. 079
— 0. 299
V Piscium
7
46 20. 527
—0.314
—0. 092
+0. 139
1/1 Cassiop.
7
051 4.971
— 0. 498
— 0. 151
+2. 004
38 Cassiop.
6
55 58- 248
-0. 525
— 0. 154
+ 2.278
}) Piscium
7
58 31.229
— 0. 291
—0. 082
— 0. 094
T Piscium
.
7
I 4 11.473
— 0. 286
—0. 065
— 0. 151
.oi3 slow, losing o'.o86 per hour.
Assuming a' = — 0.963 +«'' circle E.
3'' = — 1.054 + ^/a'' " W.
c ^ + o. 579 -)- y 27"" 7M66 + fl5?
NORMAL EQUATIONS
(o=— 0.328 + 3. 942 (/a' — 2.ggTdc— 0.053 a'/"
— 0.027 +3-0450^"+ 2. 8i7a'.2 chron. time, oi> 27™ 35=.529 ± os.014 slow, losing o».o7o per hour.
Assuming a' = — o. 293 + da' circle W.
a'' = — o. 162 + ^a" " E-
c = + 0. 452 + i/ 29™.! chron. time, o'' 27™ 37". 173 -[- o».oo8slow, losing os.073 per hour.
Jan. 4
f
Piscium
W.
29 34- 913
— 0. 278
— 0. 009
— 0. 050
— 0. 464
— 0. 048
34- 06 \
57 13. 069
+0
27 39.005
+ 0. 052
44
H. Cephei .
.
35 9- 280
— 0. 764
— 0. 170
+ 1.030
—2. 429
— 0. 040
6.907
I 2 46. 261
[39- 354]
. . .
r
Piscium
37 57-117
— 0. 321
— 0. 093
+u. 044
—0-529
—0. 036
56. 182
I 5 35-211
39. 029
+ 0.028
/
Piscium . . .
44 28.456
— 0. 271
— 0. 104
— 0. 066
— 0. 460
—0. 026
27. 529
I 12 6. 590
39- 061
— 0. 004
V
Piscium
45 46. 166
-0.314
— 0. 121
+0. 030
-u. 515
— u. 024
45. 22:!
I 13 24. 324
39-.I02
— 0.045
fli
Ceti. . .
50 52. 496
-0.251
— 0. 097
— 0. no
-0. 466
— 0. 017
51- 555
I 18 30. 670
39- 115
— 0. 058
38
Cassiop.
55 24.829
-0.525
— 0. 186
+0. 500
-■•325
— L). on
23. 282
I 23 2. 169
[38. 887]
,
V
Piscium . .
W.
57 56.849
— 0. 291
—0. 094
— 0. 021
— 0. 476
— 0. 007
55- 960
I 25 35. on
+0
27 39.051
+ 0. 006
I'
Piscium . .
E.
8 1. 866
+0. 274
0. 000
— 0. 062
+0. 422
+0. 007
2.507
I 35 41. 676
+0
27 39. 169
— 0. n2
Piscium
II 54-517
+0. 281
0. 000
— 0. 047
+ 0. 425
+0.013
55- 189
I 39 34- 366
39- 177
— 0. 120
F
Cassiop. .
18 47. 640
+0. 455
0. 000
+0. 363
+0. 929
+0. 023
49.410
I 46 28. 508
[39- 098]
y
Arietis . . .
19 49- 103
+0. 299
0. 000
— 0. 005
+0. 443
+0. 024
49. 864
I 47 28. 689
38. 825
+ 0. 232
li
Arietis
20 53. 240
+0. 302
0. 000
+0. 002
+0. 448
+0. 026
54. 018
I 48 33- 102
39. 084
— 0. 027
50
Cassiop. . .
26 20. 840
+0. 559
0. 000
+0. 606
+ i-35>
+0. 034
23- 390
I 54 2. 5n
[39- 121]
. . .
a
Arietis . .
E.
33 17- 896
+0. 307
0. 000
+0. 014
+0. 456
+0. 044
18.717
2 57. 722
+0
27 39.005
+ 0. 052
+ 2.32ia'c— 0.0360'/') whence a'a' =
-\- 2.022da" — 2. 170 at — 0.554^'/
NORMAL EQUATIONS
o^ — 0.042 + 2. guda'
+ o. 066
— 0.078 + 2. 321 fl'a'' — 2. I'jo da" -\- i<).:^6:^dc — 0.771a'/ f
— u. 126 — o.oTfi da' — o. ^ii\da" — o.yyi dc -\- 11. 801 dt )
= — o".227 (circle west) ; u" = — o''.239 (circle east) ; c = o=.440 (+ with circle east).
Chronometer No. 1254, at 1^ 2"".8 chron. time,o'' 27™ 39".o57 -(- o'.020 slow, losing 0^086 per hour
Assuming a' = — o. 242 + da' circle W.
a" = — o. 208 + da" " E.
c =: + o. 44l+(/c " E.
/\T = + o"! 27"" 39».048 + (*■.
>
da" =
dc =:
dt =
+ 0.015
— 0.031
— O.OOI
+ 0.009
IN MEXICO, CENTRAL AMEUIOA, TUE WEST INDIES, ETC.
91
Transitsof stars observed at Port Plata, San Domingo, by Lieut. Charles Laird, U. S. Navy, with transit No. 1304, to determine the crorection of sidereal cnronometer
A'egiis No. 12^4-
Date.
Name of Star.
Ceti. . . .
I 39 27. 666
+0. 280
- 0. 096
— 0. 027
+0. 388
+0. 007
28.218
2
7 9. 602
41
384
- 0. 147
y Trianguli . .
I 43 3-881
+0. 329
— 0. 114
+0.037
+0. 460
+0.013
4. 606
2
10 45-937
41
331
— 0. 094
ft Arietis .
I 44 17-634
+0. 300
—0. 104
— 0. 001
+0. 407
+0.015
18.251
2
II 59.827
41
576
- 0. 339
t Cassiop.
E.
I 52 17. 090
+ 0.491
-0. 174
+0. 246
+0. 979
+ 0. 027
18.659
2
19 59-931
+0 27[4i
272]
6 Ceti . .
W.
2 6 9.681
— 0. 266
-f-o. 004
— 0. 035
-0. 424
+0. 047
9.007
2
33 50-261
+0 27 41
254
— 0.017
Br. 366
2 7 42. no
— 0. 496
0.000
+0. 195
— I. lOI
-f 0.049
40. 757
2
35 22.025
[41
268]
35 Arietis
'
2 9 18.846
-0.31S
—0. 004
+0.015
-0. 477
+ 0.052
18. 117
2
36 59- 346
41
229
+ 0.008
p, Ceti .
2 II 18. 704
— 0. 283
— 0. 006
— 0. 018
— 0. 430
+0. 055
18.023
2
38 59- 257
41
234
+ 0.003
41 Arietis
2 15 49-633
-0-315
— 0. 014
-|-o. 014
-0. 475
+0.062
48. 905
2
43 30. 107
41
202
+ 0.03s
y Persei .
.
2 29 9. 380
— 0. 394
— 0. 025
+0- 093
-0. 706
+0. 082
8.430
2
56 49. 656
[41
226]
f Arietis
w.
2 40 53. 801
— 0. 302
-f 0. 004
-|-0. 002
—0.453
+0. 099
53-151
3
8 34- 427
+0 27 41
276
- 0. 039
Assuming a'
a"
c
AT
NORMAL EQUATIONS,
-o. 160 + i:. iSoo'a'' — i.i<^odc — I. 015 (// ~1 whence i/a' = + 0.073
-0.027 + r. 580 «'«'•'+ \.<)OT,dc — 0.755* '. r/rt" ^ + o. 023
: + 0.407 + (/ 27"'43''.38i -J- o'.oi i slow, losing 0^.089 per hour
Assuming a' = — 0.115 + *?' circle W.
a"^ — o. 200 + *2" " E.
e = + o. 390 + *■
/:^T = + o* 27>" 43°-38o + dt.
a'
E.
whence"*?' = + 0.012
da" = — o. 065
* =^ + o. 008
* =: + o. 002
92
TELEGRAPHIC DETERMINATION OF LONGITUDES
Transits of stars observed at Curacao, Hist Indies, by Lieut. Charles Laird, U. S. A\niy, nith transit No. 1504, to dcftriiiine the correction of sidereal chronomtter
Negus No. J2j4.
Date.
Name of Star.
V
Transit over
mean of threads.
Flexure
and in-
equality
of pivots.
Level.
Azimuth.
Aberra-
tion and
colli-
mation.
Rate.
Seconds
of corr.
transit.
R.A.
Chronometer
correction.
V.
1S90.
Jan. 20
17
Tauri .
W.
7
h. m. s.
3 2 53.323
s.
—0- 303
s.
+0. 090
s.
— 0. 05 1
J.
— 0. 498
-0. 183
.f.
52- 378
h. m. s.
3 38 20. 297
h.
+0
m. s.
35 27.919
s.
— 0.040
V
Tauri ....
7
3 5 29.476
-0. 303
+0- 099
—0.050
— 0. 498
— 0. 177
28. 547
3 40 56.428
27.881
— 0.002
1
Tauri . . .
7
3 19 7-891
—0. 289
+0. 123
0.000
— 0. 466
—0. 150
7. IC9
3 54 34- 948
27-839
+ 0.040
V
Tauri . . .
7
3 21 50-971
— 0. 283
-(-0. 122
-\-o. 026
-0.458
— 0. 144
5°- 234
3 57 18.128
27. 894
— 0.015
oi
Eridani . .
•
7
3 31 2.514
— 0. 269
-|-o. 116
+0. 076
— 0. 460
— 0. 127
1.850
4 6 29.711
27.861
+ 0.018
y
Tauri . . .
7
3 38 4- 827
-u. 293
-|-o. 122
-0. 014
-o- 473
— 0. Ill
4.058
4 13 31.900
27. 842
+ 0.037
d
Tauri
7
3 41 8. 320
-0. 295
-fo. 119
— 0. 022
— 0. 477
—0, 105
7.540
4 16 35- 345
27.805
+ 0-074
Gr. 848
7
3 58 38- 970
— 0. 510
+0. 144
-0-833
—I. 851
—0. 069
35-851
4 34 3-810
[27- 959]
f-
Eridani .
7
4 4 32. 891
-0. 273
+0. 065
+0. 062
-0. 457
— 0. 057
32.231
4 40 0. 186
27- 955
— 0. 076
u.
Camelop. .
W.
7
4 7 41. 600
— 0. 411
+0.08
— 0. 458
—1.128
— 0. 050
39- 640
4 43 7- 484
+0
35[27.S44]
22
Camelop. H.
E.
7
5 31 16.430
+0- 434
— 0. 213
— 0. 849
-f I. 180
+0. 121
17. 103
6 6 44. 826
+0
35[27. 723]
. . .
n
Geminorum
7
5 32 46- 050
+0. 501
— 0. 154
— 0. 070
+0.451
+0. 124
46. 702
6 8 14.638
27- 936
— 0. 057
;«
Geminorum
7
5 40 50. 146
+u. 301
-0. 179
— 0. 070
+0.451
+0. 140
50. 789
6 16 18.731
27.942
— 0.063
8
Monocerotis
7
5 42 28. 193
-f-o. 282
— 0. 170
-fo. 046
+0.417
+0. 143
28.911
6 17 56. 760
27. 849
+ 0.030
V
Geminorum
7
5 46 57-731
+0. 298
— 0. 186
— 0. 054
+0. 443
+0. 153
58.385
6 22 26. 260
27. 875
+ 0. 004
23
H. Camelop.
7
5 52 2.350
+o- 603
-0- 383
-I-S37
+2.323
+0. 163
3-219
6 27 31. 196
[27-977]
f^
Canis Majoris .
7
5 54 58-699
+0- 250
— 0. 160
-|-0, 221
+0.451
+0. 169
59- 630
6 30 27. 469
27- 839
+ 0. 040
IS
Monocerotis
7
5 59 27.030
+0. 287
-0. 182
+0.013
+0. 422
+0. 178
27. 748
6 34 55- 620
27.872
+ 0. 007
■5
Geminorum
E.
7
6 3 38-731
-|-o. 290
— 0. 181
— 0. 006
+0. 427
+0. 187
39- 448
6 39 7-330
+0
35 27.882
— 0.003
Assuming a' =
AT
NORMAL EQUATIONS,
fo^ — o. 092 -j- 2. 953 (Aj' -f- ^. 01-] dc
J +0.040 -f 3. 440fl'fl''' — ^.o-]o dc
1 -|-o. 018 + 3. 017 «' — 3.0700'^" + 23. 743 (/c — i.iy>at\
y +0.122 — 0.864^3' — 0.6230'^'' — I. i30fl?^+ 15. 680 a"; J
a' r=-\- o=.229 (circle west) ; a" ^ -\- o».356 (circle eastj ; c -=o».436 (+ with circle east).
Chronometer No. 1254, at 4'" 32™ .3 chron. time, o'' 35™ zy'.Syg + o=.oo7 slow, losing os.123 per
-{- o. I()t -\- da' circle W.
+ 0.377 + ^0:" " E.
+ o.445-ffl'^ " E.
+ oi' 35™ 278.885 + dt
O. 864 dt ']
o. 623 dt I
whence da' = -
da" = -
dc =-
dt =-
hour.
s.
- o. 038
-0.021
- o. 009
- o. 007
Jan. 21
P Ceti . . .
36 H. Cassiop
V Arietis .
d Ceti . .
Br. 3:6
y Ceti . .
/i Ceti . .
a Arietis.
47 Cephei, H
S Arietis . .
f Arietis .
Tauri . .
f Tauri . .
/ Tauri . .
Gr. 716 .
y Camelop. H
27 Tauri . .
W.
I 46
I 52
I 57
I 58
1 59
2 2
2 3
2 9
2 16
i: 29
2 33
2 43
2 45
2 49
2 57
3 3
3 7
48. 229
— 0. 284
-0. 025
+0.018
-0. 433
— 0. 064
47-441
6. no
—0. 463
— 0. 023
— 0. 686
—1.414
-0. 055
3-469
4.046
—0. 300
— 0. 01 1
— 0.042
— 0. 461
— 0. 046
3.186
20. 274
— 0. 276
— 0. 009
+0.051
-0. 429
-0. 043
19. 568
53-214
—0.419
— 0. 013
— 0. 5 1 1
— I. 114
— 0. 040
51. n7
5-654
— 0. 282
— 0. 010
+0. 039
— 0. 429
—0. 036
4-936
29. 460
— 0. 287
— 0. 010
+0. 01 1
-0. 435
—0. 034
28. 707
54- 979
—0. 292
— 0. 021
— 0. on
— 0. 443
— 0. 022
54- 190
2.180
— 0. 582
— 0. 082
-1-154
—2. 246
— 0. on
58. 105
48. 646
+0. 297 ■
+0. 062
— 0. 025
+0.412
+0.014
49. 406
2. 980
+0. 299
+0. 069
— 0. 029
+0.416
+0. 020
3-755
22. 026
+0. 286
+0. 077
+0.011
+0- 393
+0. 039
22. 832
40. 803
+0. 286
+0.077
+0. 009
+0. 394
+0. 043
41. 612
16. 389 .
+0. 290
-|-o. 078
— 0. 001
+0.398
+0. 049
17. 203
5.070
+0- 392
+0. 097
—0.314
+0. 853
+0. 063
6. 161
13-520
+0.449
+0. 095
— 0. 486
+ I-195
+0. 07 s
14. 848
5.729
+0- 303
+0. 053
— 0. 041
+0. 425
+0. 082
6.551
2 22 17.
2 27 34.
2 32 33-
2 33 50-
2 35 21.
2 37 35-
2 38 59-
2 45 24-
2 51 28.
3 5 «9-
3 8 34.
3 18 53-
3 21 12.
3 24 47-
3 32 36-
3 38 45-
3 42 36-
945
285
522
082
348
435
073
572
478
834
243
236
097
602
630
242
994
+0
+0
+0
+0
35 30-
[30.
30-
30-
[30-
30-
30-
30.
35[30-
35 30.
30.
30.
30-
30-
[30.
[30.
35 30-
504
816]
336
514
231]
499
366
382
373]
428
488
404
485
399
469]
3941
443
— o. 067
+
+
+
O. lOI
o. 077
o. 060
0.071
0.05s
o. 009
o. 051
0.033
0.048
0.038
o. 006
NORMAL EQUATIONS.
Assuming a' = + o. 248 -\- da' circle W. f = + o. 055 +4. 3l9(/a' + 4. 558i/ 35m 38. 247 -|- (//. [ —0.075 — I. 158 «'«' — 0.810 rfo"— I. 152 <-f 16. 404 (!? J
a' = -|- o'.o6o (circle west); a" = -f- o=.io7 (circle east); e = o«.40i (~f- with circle east).
Chronometer No. 1254, at 3'J I9n'.4 chron. time, o" 35'" 388.250 -J- o^oio slow, losing oM 16 per hour
I. 158 (// ] w
o.Sio dt I
I. 1521// I
whence da^ =
da" =^
dc =
(// =
— o. 027
+ o. 033
+ 0.013
-f. o. 005
Jan. 25
6 Aricli.s
f Arielis
o Tauri
f Eridani
Gr. 716
7 Tauri .
27 Tauri
9 H. Camelop
X Tauri
0' Eridani
y Tauri .
i Tauri . .
£ Tauri . .
a Tauri
Gr. 848
jx Eridani
a Camelop.
7r6 Orionis .
10 Camelop.
2 29
2 32
2 43
2 52
2 56
3 5
3 6
3 "2
3 '8
3 30
3 37
3 40
3 46
3 53
3 58
4 4
4 7
4 12
4 17
39. 634
— 0. 297
0.000
-|-o. 002
-0. 498
— 0. 101
38
740
54. 090
—0. 299
0. 000
+0. 002
— 0. 502
-0.095
53
196
12.943
— 0. 286
0.000
—0. 001
-0. 475
— 0. 07s '
12
106
4.279
— u. 266
0.000
—0. 005
— 0. 477
— 0. 058
3
473
56.810
— 0. 392
0.000
+0. 024
— I. 030
-u. 049
55
363
16. 261
-0. 303
— 0. 006
+0. 003
—0.514
— 0- 033
15
408
56. 787
-0. 303
— 0. 007
+0. 003
-0.513
— u. 030
55
937
5. 790
-0. 383
—0.016
-|-o. 021
-0. 963
— 0. 020
4
429
54. 701
— 0. 289
-0.017
0. 000
— 0. 481
— 0. 007
53
907
47. 897
-|-o. 269
+0.012
+0. 044
+0. 433
+0.015
48
670
50.021
+0. 293
— 0. 019
— 0. 008
+0. 446
+u. 029
SO
762
53.521
+0. 295 .
— 0. 028
— 0. 013
+0. 450
+0. 034
54
259
29. 681
+0. 294
— 0. 044
—0.017
+0. 454
+0. 045
30
413
54. 664
+0. 294
-0. 047
— 0. 010
+0. 448
+0. 059
55
408
20. 750
+0.510
— 0. 086
— 0. 487
+ ..746
+u. o58
22
501
18.337
+0. 273
-0. 037
+0. 036
+0.431
+0. 079
19
119
25. 220
+0.4H
—0. 048
— 0. 268
+-1.064
+0. 085
26
464
49. 559
+0. 279
— 0. 024
+0. 023
+0. 430
+0. 095
50
362
56. 240
+0. 380
— 0. 023
— 0. 201
+0. 867
+0. 105
57
368
3 5 19
780
3 8 34
187
3 iS 53
185
3 27 44
554
3 32 36
506
3 40 56
366
3 42 36
924
3 47 45
424
3 54 34
892
4 6 29
659
4 13 31
848
4 16.35
296
4 22 II
465
4 29 36
435
4 34 3
532
4 40
146
4 43 7
340
4 48 31
340
4 S3 38
484
+0 35 41.
40.
41.
41-
[41-
40.
40.
[40.
+0 35 40.
+-0 35 40.
41.
41.
41.
41.
[41.
41.
[40.
40.
+0 35[4i.
040
991
079
081
143]
958
987
995]
985
989
086
037
052
027
031]
027
876]
978
116]
+
u. 017
0.032
0.056
0.058
0.065
0.036
+ 0.038
+
0.034
0.063
o. 014
0.029
0.004
— o. 004
+
0.045
0.093
Assuming a' = — o. 024 + da' circle W
a" = + o. 098 + da" " E.
c = -I- o. 464 + de " E.
^T = -j- oil 35'" 4i''.020 -t- dt
NORMAL EQUATIONS.
^^ -(- o. 025 -|- 2. 192 l3«.85o + aC/.
whence da'
da"
— o. 029
+ o. 201
dc = — o. 025
dt = + o. 001
96
TELEGEAPHIC DETERMINATION OP LONGITUDES
Transits of stars obsen'ed at La Guayra, Vcnc-Aiela, by Lieut. Charles Laird, U. S. Navy, with transit No. 1304, to determine the ,
nometer Negus No. 12^4.
rection of sidereal chro-
Date.
Name of Stai.
u
E.
ui
-a
rt
.a
6
"A
Transit over
mean of threads.
Flexure
and in-
equality
of pivots.
Level.
Azimuth.
Aberra-
tion and
colli-
mation.
Rate.
Seconds
of corr.
transit.
R.A.
Chronometer
correction.
V.
1890.
Feb. 9.
19 H. Camelop. .
h. m. s.
4 20 13.240
J.
+0. 549
s. '
-0.033
J.
-J- 954
s.
+0. 804
J.
— 0. 056
s.
12.550
h. m. s.
5 4 27.231
h. m. s
+0 44[H
681]
s.
7 Orionis . . .
4 34 41- 183
+0.276
— 0. 037
+0. 090
+0. 152
— 0, 042
41. 622
5 18 56.766
15
144
+ 0. 122
Gr. 966 .. .
4 40 47- 350
+0. 472
— 0. 023
-1.380
+0. 586
— 0. 037
46. 968
5 25 2.589
[■5
621]
a Leporis . .
4 43 37- 090
+0. 261
— 0. 007
+0. 199
+0. 160
— 0. 034
37- 669
5 27 52.916
15
247
+ 0.019
a Orionis . . .
4 48 57- 794
+0. 276
0. 000
+0.091
+0. 152
— 0. 029
58. 284
5 33 i3-5'3
15
229
+ 0.037
a Orionis.
s s 57.380
+0. 285
— 0. 017
+0.023
+0. 153
—0.013
57.811
5 49 13-129
«5
318
— 0. 052
66 Orionis . . .
S 14 54. 100
+ 0.282
— 0. 033
+0. 045
+0. 152
— 0. 004
54- 542
5 59 9- 856
15
314
— 0.048
V Orionis . . .
E.
5 17 I- 957
+0. 292
— u. 039
— 0. 030
+0.157
— 0. 003
2-334
6 I 17.729
+0 44 15
395
— 0. 129
iU Geminorum
W.
5 32 3-959
— 0. 300
+0. 020
— 0. 140
— 0. 208
+0. on
3- 342
6 16 18.621
+0.44 15
279
— 0.013
8 Monocerotis
5 33 41-726
— 0. 282
+0. 026
+0. 065
— 0. 193
+0. 012
41-354
6 17 56.658
15
304
— 0,038
V Geminorum
5 38 11.466
— 0. 297
+0. 045
— 0. 112
— 0. 205
+0.017
10. 914
6 22 26. 170
15
256
+ 0. 010
8 Lyncis . .
5 43 25.471
— 0. 374
+0. 079
— I. 020
— 0. 403
+0. 021
23- 774
6 27 39.036
['5
262]
P Canis Majoris.
5 46 11.959
— 0. 256
+0. 060
+0- 375
— 0. 208
+0. 024
"-954
6 30 27. 318
15
364
— 0. 098
y Geminorum
5 47 7-007
— 0. 293
+0. 070
— 0. 067
— 0. 200
+0.025
6.542
6 31 21.752
15
210
+ 0.056
15 Monocerotis .
5 50 40. 777
— 0. 287
+0.076
+0. 007
— 0. 195
+0. 028
40. 406
6 34 55- 538
15
132
+ 0. 134
43 Camelop. . .
W.
5 57 38- 864
—0.414
+0. 126
-1.487
-0. 536
+o- 635
36. 587
6 41 51. 964
+o.44[i5
377]
• • •
NORMAL EQUATIONS.
Assuming a' ^ + 0. 418 + (&' circle E. f = + 0. 030 + 3. 598a'rt' — 2.4363^-+ o.2'jldt] whence «' =-
«" = + o. 637 + rf«" " W. j +0.079 +2.730a'rt"+ 2.553(/f— 0.938a'/ i da"^-
c ^ + o.i90 + (/f " E. I -)-o.345 — 2. 436 (/a' — 2. 55 3 (/<;"+ 20. 043 (fc— 0.7501*1 dc := -
AT ^ + oi'44ra I5».259 + ,*. (_ —o. 128 + 0. 271 (&' + 0.938 f^a" — 0.750 a'i-+ 12. 792 y Lieut. J. A. Morris — Conlinucd.
101
Corrections,
Date.
Number and
catalogue.
Apparent dcclinalion.
Half sum of declina-
tions.
Latitude.
Micrometer,
Level.
Ref.
1889.
/ //
/
1/
/ //
//
//
/ //
//
Jan. 16
B.A.C. 1558
1579
+41 5 2.25
— 4 48 27. 73
+ 18
8
17. 26
-|- 26. 66
+ 1-53
+0.01
+ 18
8 45-46
0-73
1558
1593
+41 5 2-25
— 4 36 14. 82
+ 18
14
23.72
- 5 39- 77
+ 1-53
— 0. II
+ 18
8 45-37
0.82
1663
1682
+37 16 51.81
— I 4.39
+ 18
8
23-71
+ 20.74
+ 0.08
+0. 01
+ 18
8 44-54
1.65
1692
1734
+ 17 51 53-75
+ 18 27 33.00
+ .8
9
43-38
— 59. 18
+ 0.92
— 0,02
+ 18
8 45. 10
1.09
1780
1830
— 2 39 57-22
+39 8 32.38
+ 18
14
17-58
- 5 30-33
+ 0-53
—0. 11
+ 18
8 47.67
1.48
1780
1845
— 2 39 57-22
+39 6 53,37
+ 18
13
28.08
— 4 41-49
+ 0.69
—0.09
-fi8
8 47.19
1. 00
1956
2009
+ 19 48 47.16
-(-16 10 30.59
+ 17
59
38.88
+ 9 4-02
+ 3-36
+0. 18
+ 18
8 46. 44
0. 25
2057
2110
+ 3 49 5-74
+32 31 59- °>
+ 18
10
32.38
— I 46. 23
+ 1-53
— 0. 04
+ 18
8 47.64
1-45
2144
B.A.C. 2170
Mean (31 de
+ 7 39 23.85
+28 21 32. 76
terminations) ....
+ 18
28.30
+ 8 16.3s
+ 1-07
+0.17
+ 18
8 45-89
0. 30
+ 18
8 46. 19
+0. 12
Latitude of observing station, Salina Cruz, from zenith telescope observations by Lieut, J. A. A^orris.
Corrections.
Number and
catalogue.
Apparent
declination.
Half sum of declina-
tions.
Latitude.
Date.
Micrometer.
Level.
Ref.
1889.
Feb. 18.
B.A.C. 2022
2047
+ 9
+22
/ //
58 49- 19
34 8. 37
+ .6
/
16
//
28.78
/
— 6
//
21. 24
//
— 0.08
//
—0. 12
+ 16
/
10
//
7-34
//
0. 60
2088
2110
—
+32
12 43-75
32 I. 61
+ 16
9
38-93
+
29.48
— 0.84
+0.01
+ 16
10
7.58
0.84
2211
2238
+ 8
+23
42 8. 52
43 58. 20
+ 16
13
3-36
— 2
51. 60
- 2.52
—0.06
+ 16
10
g. 18
2-44
2304
2313
+ 9
+22
17 51.68
48 7. 25
+ 16
2
59-46
+ 7
3-67
+ 4.58
+0.14
+ 16
10
7-85
I. II
2330
2362
+ '6
+ 16
6 21. 17
20 42. 68
+ 16
'3
31.92
— 3
23-85
- 2.37
—0. 07
+ 16
10
5-63
I. II
2423
2444
-)-20
+ 11
39 5 -.03
53 6.70
+ 16
16
5-86
— 6
2.36
-|- 2. 06
—0, 12
+ 16
10
5-44
1.30
Feb. 19.
1665
1681
+ 3
+28
26 5. OS
30 45.26
+ 'S
58
25. 16
+ 11
38.55
+ 5-49
+0.23
+ 16
10
9-43
2. 69
1828
1852
+ 17
+ '4
41 8.17
16 16. 66
+ •5
58
42.42
+ 11
25.78
— 0.31
+0-23
+ 16
10
8.12
1-38
1880
B.A.C. 1907
+ 19
+ 12
43 34- 04
47 42-59
+ 16
15
38-32
- 5
34-46
+ 0.23
—0. II
+ 16
10
3-98
2.76
102
TELEGRAPHIC DETEEMINATION OF LONGITUDES
Latitude of observing station, Salina Cruz, from zenith telescope observations by Lieut. J. A. iV(7r;7J-— Continued.
Date.
Feb. 19
Number and
catalogue.
Feb. 20
B.A.C. 1934
2012
1986
2012
2622
2047
2304
2313
2330
2362
2423
2444
2493
2522
1689
1 701
1725
1772
1792
1810
1880
1907
1934
2012
Apparent declination.
2022
2047
2304
2313
2330
2362
2423
2444
2493
2522
2493
B.A.C. 2526
o / //
+19 41
+ 12 35
+ 19 48
+12 35
+ 9 58
+22 34
+ 9 17
+22 48
+ 16 6
+ 16 20
+20 39
+ 11 53
+27 8
+ 5 30
+ 16 35
+ 15 46
+ 3 12
+29 9
+ 16 28
+16 2
+ 19 43
+ 12 47
+ 19 41
+ 12 35
Half sum of declina-
tions.
1986 +19
2012 +12 35
+ 9 58
+22 34
+ 9 17
+22 48
+ 16 6
+ 16 20
+20 39
+ 11 53
+27 8
+ 5 30
+27 8
+ 5 29
Mean (28 determinations)
25.91
0.63
50-99
0.63
49-15
8.40
51.64
7.27
21.09
42.67
5-04
6.68
27-37
24.49
56.98
40.76
16. 41
3-59
27.36
8.40
34-01
42-54
25-88
0.59
47.61
0-59
49.10
8.42
51-59
7.27
21.07
42.65
5-04
6.64
27-39
24. 42
27-39
3-05
O / If
+ 16 8 13.27
+ 16 II 55-81
+ 16 16 28.78
+ 16 2 59.46
+ 16 13 31-88
Corrections.
Micrometer.
/ //
+ I 51-05
— I 51-40
— 6 17.31
+ 7 10.43
— 3 27.43
+ 16 16 5.86 - 5 55.75
+ 16 19 25.93
+ 16 II 18.87
-|-i6 10 40.00
+ 16 IS 17.!
+ 16 15 38.28
+ 16 8 13.24
+ 16 II 54.10
+ 16 16 28.76
+ 16 2 59.43
+ 16 13 31.86
+ 16 16 5.84
+ 16 19 25.90
-f-i6 18 45.22
— 9 20. 01
— I 9.65
o 31.76
5 IS- IS
— 5 32-46
-f- I 52.02
I 48.09 + o. 15
Level.
+ 0.15
+ I- 07
-3.66
+ 0.76
— o. 92
0.61
— 0.84
I. 15
+ 2.59
+ 0.38
— 6 24. 48
+ 7 10.36
3 26. 05
5 58- 44
9 20. 14
8 37.38
— 0.15
o. 92
+ 0.23
0.31
0.31
Ref.
+0.
04
— 0.
03
— 0.
13
+0.
14
— 0.
07
— 0.
12
— 0.
19
— 0.
02
—
01
-0.
II
—
II
+0
04
— 0.
04
—
13
+0
14
-
07
—
12
—
19
—
17
Latitude.
o / //
-)-i6 10 4.51
+ 16 10 5.45
+ 16 10 7.68
+ 16 10 8.81
+ 16 10 5. 14
-|-i6 10 9.07
-)-i6 10 5. 12
+ 16 10 8.36
+ 16 10 7.08
+ 16 10 5. 18
-)-i6 10 6.09
+ 16 10 5.30
+ 16 10 6. 12
-|-i6 10 4.00
-(-16 10 9.01
-)-i6 10 7. 19
+ 16 10 7.51
+ 16 10 5.26
+ 16 10 7.36
//
2.23
I. 29
0-94
2.07
1.60
2.33
I. 62
1. 62
0.34
1.56
0.65
1.44
o. 62
2.74
2. 27
0.45
0.77
1.48
o. 62
-|-i6 10 6.74
j-o. 22
IN MEXICO, OEJSTliAL AMEKIOA, THE WEST INDIES, ETC.
Latihide ofoherring staiion, San Juan del Surjrom zenith telescope obsei-vations by Lieut. J. A. Non-is.
103
Date.
Number and
catalogue.
Apparent declination.
Half sum of declina-
tion,s.
Corrections.
.
Micrometer.
Level.
Ref.
1889.
Mar. 31
IS. A. C. 3769
3838
/ //
+ 6 41 45. 64
+ 16 2 6.20
/ //
+ 11 21 55.92
— 6 56. 30
/
+ 5-49
/
— 0. 14
3838
3862
+ 16 2 6.20
+ 6 38 9.30
+ 11 20 7.75
— 5 6-35
+ 5-49
— 0. 09.
Apr. I
3398
3406
+ 9 27 25. 85
+ 12 58 21.58
+ 11 12 53.72
+ 2 11.37
-0-53
+0.04
3663
3671
— I 9 37-0O
+23 46 7-38
+ 11 18 15.19
- 3 9-86
— 0.84
— 0.06
3684
3691
+ 3 4 II- 18
+ 19 28 29.31
+ 11 16 20.24
- I 13-78
— 2. 21
— 0.03
3711
3735
— 3 26 20.35
+26 4 52. 15
+ 11 19 15.90
— 4 8. 42
+ 0.08
—0.08
37"
3751
— 3 26 20. 35
+26 5 31.86
+ 11 19 35.76
— 4 z8. 95
+ 0.08
—0.09
3769
3838
+ 6 41 45.69
+ i6 2 6.29
+ 11 21 55.99
— 6 52.03
+ 2.52
— 0. 14
3838
3862
+ 16 2 6.29
+ 6 38 9-34
+ 11 20 7.82
— 5 3- 32
+ 0.08
' — 0. 10
Apr. 2
3398
3406
+ 9 27 25.41
+ 12 58 21.63
+ 11 12 53.52
+ 2 10. 75
+ 0.53
+0.04
3415
3475
+ 8 34 29.68
+13 54 6.08
+ 11 14 17.88
+ 46. 63
+ I. 22
+0. 02
3534
3544
+ 15 32 1.64
+ 7 6 14.94
+ 11 19 8.29
— 4 3-66
+ "-53
—0.08
3663
3671
— I 9 37- 00
+23 46 7-49
+ 11 18 15.24
— 3 17-04
+ 7-71
— 0. 07
3684
3691
+ 3 4 II. 20
+ 19 28 29.41
-|-li 16 20.30
— I 14. 19
- 1-83
— 0. 03
3711
3735
— 3 26 20.37
+26 4 52.28
+ 11 19 15.96
— 4 II. 04
+ 0-23
—0.08
37"
3751
— 3 26 20. 37
+26 5 31.99
+ 11 19 35.81
— 4 30- 12
+ 0-23
— 0. 09
3769
3838
+ 6 41 45. 72
+ 16 2 6.38
+ 11 21 56.05
— 7 13-18
+25.71
— 0. 14
3838
3862
+ 16 2 6.38
+ 6 38 9. 38
+ U 20 7.88
— 5 29. 09
+ 28. 38
— 0. II
3956
3965
—12 35 36.47
+34 49 41-92
+ 11 7 2.72
+ 8 1.27
0. 00
+0, 16
3982
B. A. C. 399S
Mean (20 <
+ 7 8 59. 55
+15 II 28.52
eterminations) . . . .
+11 10 14.. 04
+ 4 51-96
— 0.08
+0. 10
Latitude.
o / //
+ 11 15 4-97
+ 11 15 6.80
+ 11 15 4.60
+ 11 IS 4-43
+ 11 15 4.22
+ 11 15 7-48
+ 11 IS 6.80
+ 11 15 6.34
+ 11 15 4-48
+ 11 15 4.84
+ 11 15 5-75
+ 11 15 5.08
+ 11 IS 5-84
+11 15 4-25
+11 15 5.07
+ 11 15 5-83
+ 11 15 8.44
+ 11 15 7-o6
+ 11 15 4-15
-)-ii 15 6.02
+ 11 15 5-63
104
TELEGRAPHIC DETERMINATION OP LONGITUDES
Laiihide of olncrvim; station, St. Nicolas Mole, from zenith telescope observations by Lieut. J. A. Norris.
Date.
Number and
catalogue.
Apparent declination.
Half sum of declina-
tions.
Corrections.
Micrometer.
Level.
Ref.
1889.
/
//
/
//
//
//
//
Dec. 10
B.A.C. 8237
8328
+43
— 4
43
10
37-51
5-95
+ 19 46
45-78
+ 2 28. II
— 0.08
+0.05
8350
8370
+26
+ 12
30
47
2.04
0. 61
+ 19 38
31-33
+ 10 40.40
+ 1-75
+0. 16
100
145
+43
— 4
47
12
15-77
2.94
+ 19 47
36.42
+ I 37-55
+ 0.15
+0.03
469
556
+ 17
+21
53
43
53-08
44.84
+ 19 48
48.96
+ 25.14
+ 0-92
+0.01
625
649
+ 2
+37
13
20
50.09
17.09
+ 19 47
3-59
+ 2 11.37
+ 0.76
+0.04
Dec. II
8203
8227
+ 21
+ 17
53
47
31.02
27.50
+ 19 50
29. 26
•
— I 14. 06
+ 0.31
—0. 02
8237
8328
+43
— 4
43
10
37-51
6. 02
+ 19 46
45-75
+ 2 28. 04
+ 2.06
+0.04
8350
8370
+26
+ 12
30
47
2.02
0.56
+ 19 38
31.29
+ 10 44.74
- 1-75
+0. i6
170
214
+20
+ i8
50
58
5.68
38-31
i-i9 54
22. 00
- 5 6. 56
+ 0.08
-0.08
223
250
+ 16
+23
20
I
46.51
57.18
+ 19 41
21.85
+ 7 51-69
— 0.08
+0. 12
307
336
+20
+ '9
53
4
2-54
16.91
+ 19 58
39-73
— 9 26. 96
+ 2.67
— 0. 14
384
425
- 3
+42
4
53
52-53
18.59
+ 19 54
13-03
— 4 54- 50
- ..76
— 0. 09
469
556
+ 17
+21
53
43
53-09
44.86
+ 19 4S
48.98
+ 26.80
— 0. 76
0. 00
580
615
+36
+ 2
42
34
46.55
8.81
+ •9 38
27.68
+ 10 48.05
+ 1.60
+0.19
625
649
+ 2
+37
13
20
50.04
17. 20
+ 19 47
3. 62
+ 2 14.89
— 2. 21
+0.04
67s
745
+29
+ 10
47
6
16. 20
38.62
+ >9 56
57-41
— 7 44-32
+ 0.92
—0. 12
675
755
+29
+ 10
47
4
16. 20
8.21
+ 19 55
42. 20
— 6 29. 23
+ 0.99
—0.09
Dec. 12
62s
649
+ 2
+37
13
20
49-98
17.29
+ 19 47
3-64
+ 2 13-09
- 1-37
+C.04
Dec. 13
307
336
+20
+ 19
53
4
2.49
16.85
+ 19 58
39-67
— 9 26. 28
+ 2. 06
— 0. 14
384
425
- 3
+42
4,
S3
52.70
18.75
+ 19 54
13-03
■ — 4 57 95
+ 1-98
— 0.09
469
556
+ 17
+21
53
43
53-03
44.86
+ 19 48
48.95
+ 25.56
— 0. 99
+0.01
5S0
B.A.C. 615
+36
+ 2
42
34
46.67
8.66
+ 19 38
27.67
+ 10 4c oS
-r 3-97
+c. 18
Latitude.
o / //
+ 19 49 13.86
+ 19 49 13.64
+ 19 49 14. 15
+ 19 49 15.03
+ 19 49 15.76
+ 19 49 15.49
+ 19 49 15.89
+ 19 49 14-44
+ '.9 49 16.68
+ 19 49 15.02
+ 19 49 17.52
+ 19 49 16.34
+ 19 49 13- '
+ 19 49 13.87
+ ig 49 15.40
+ 19 49 15.31
+ 19 49 16.97
+ 19 49 13-53
1.32
0.07
0.80
0-53
0-93
o. 52
+ 19 49 15.44 I 0.48
+ 19 49 13. 58 1.38
+ 19 49 15.30 0.34
I. 72
o. 06
2.56
1.38
1.07
1.09
0.44
0.35
1-43
+ 19 49 12.50 2.46
IN MEXICO, OBNTKAL AMERICA, THE WEST INDIES, ETC.
Lafitiitii- of observing station, St. Nicolas Mole, from zenith telescope observations by Lieut. J. A. jVorra— Continued.
105
Date.
Number and
Catalogue.
Apparent declination.
Half sum of declina-
tions.
Corrections.
Latitude.
Micrometer.
Level.
Ref.
v.
1889.
/
//
/
//
/ //
//
1/
/ //
//
Dec. 13
B. A. C. 675
745
+29
+ 10
47
6
16. 29
38.5s
+ 19 56
57.42
- 7 41. J5
— I. 22
— 0. 12
+ 19 49 14-93
0.03
675
755
+29
+ 10
47
4
16. 29
8.13
+19 55
42. 21
— 6 25.10
— 1.22
—0. 10
+ 19 49 15-79
0.83
808
867
+21
+ 17
29
49
6.84
29.04
+ 19 39
17.94
+ 9 54.31
+ 0.76
+0. IS
+ 19 49 13.16
1.80
Dec. 14
170
214
+20
+ 18
50
58
5-54
38. 16
+ 19 54
21.85
-5 8.76
+ 1.37
—0.08
+ 19 49 14-38
0.58
223
250
+ 16
+23
20
I
46.34
57.08
+ 19 41
21. 71
+ 7 50. 38
+ 1.22
+0. 12
+ 19 49 13-43
1-53
307
336
+20
+ 19
53
4
2.44
16.80
+ 19 58
39.62
— 9 25. 24
+ I. 14
—0. 14
+ 19 49 15-38
0.42
580
615
+36
+ 2
42
34
46.72
8.57
+ 19 38
27.65
-|-io 46.60
— 0.08
+0.18
+ 19 49 14.35
0. 61
625
649
+ 2
+37
13
20
49. 80
17.40
+ 19 47
3-60
+ 2 8.76
+ 0.30
+0.04
+ 19 49 12-70
2.26
67s
745
+29
+ 10
47
6
16. 31
38-49
+ 19. 56
57.40
— 7 45. 14
+ 1.98
—0. 12
+ 19 49 14.12
0.84
675
755
+29
+ 10
47
4
16. 31
8.07
+ 19 55
42.19
— 6 29. 30
■y 1.98
—0. 10
+ 19 49 14-77
0. 19
808
867
+21
+ 17
29
49
6.83
29. 02
+ 19 39
17.93
+ 10 0.38
— 2.75
+0.15
+ 19 49 15.71
0.75
904
929
+31
+ 8
29
28
29. 18
4.57
+ 19 58
46-88
— 9 32. 54
+ 0,76
-0. IS
+ 19 48 14.95
0. 01
986
999
+ 19
+20
18
38
35.41
9.74
+19 58
22.58
- 9 7-54
— 0.23
—0.14
+ 19 49 14.67
0. 29
Dec. 15
307
336
+20
+ 19
53
4
2.37
16.75
+19 58
39.56
— 9 26. 62
+ 1.60
— 0. 14
+ 19 49 14.40
0. 56
469
556
+ 17
+21
53
43
52-94
44.80
+19 48
48.87
-|- 29. 28
— 2. 29
-|-o. 01
+ 19 49 15.87
0.91
Dec. 16
904
929
+31
+ 8
29
28
29.24
4.41
+ 19 S8
46.83
-- 9 32- 13
+ 0.38
-0. IS
+ 19 49 14.93
0.03
986
999
+ 19
-)-20
18
38
35.36
9.70
+19 58
22.53
— 9 5- 54
— 0. 61
-0.13
+ 19 49 16.25
I. 29
1040
1087
+27
+ 12
12
33
46. 61
30.76
+19 53
8.69
- 3 52-09
0. 00
— 0.05
+ 19 49 16.55
1-59
1 132
1202
+33
+ 6
36
12
43.33
ID. 61
+ 19 54
26.97
-5 11.38
+ 1.45
—0.08
+ 19 49 16.96
2.00
1285
1322
+ 5
+34
14
18
6. 10
1-85
+ 19 46
3.98
+ 3 10.89
— 0.76
+0.05
+ 19 49 14. 16
0.80
1346
1367
+ 17
-)-22
17
33
0.57
47.60
+ 19 55
24.09
— 6 7.18
- 3-05
— 0. 09
+ 19 49 13-77
1. 19
1356
B.A.C. 1367
+ '7
+22
II
33
17.02
47.60
+ 19 52
32 3"
-3 15.65
- 3- OS
—0.05
+ 19 49 13-56
I. 40
106 TELEGKAPHIO DETERMINATION OF LONGITUDES
Latiliidi- of niiseyviiii; station, St. Nico/as Mole, from zenith tekscoffe observations by Lieut. J. A. Norris — Continued.
Corrections.
Number and
catalogue.
Apparent declination.
Half .sum of declina-
tions.
Latitude.
V.
Micrometer.
Level.
Kef.
1889.
/
1/
/
ff
1 /r
//
It
/ //
//
Dec. 16
B. A.C. 1429
1445
— 3 34
+43 9
44-03
18.63
+ 19 47
17-30
+ I 59-94
— 0.92
+0.04
+ 19
49 '6. 36
1.40
1476
1508
+37 17
+ 2 19
38.43
31-27
+ 19 48
34-85
+ 41.68
- 0.15
+0.01
+ 19
49 16.39
1-43
1476
1514
+37 17
+ 2 15
38-43
33-04
+ 19 46
35-74
+ 2 39. 82
- 0. IS
+0-05
+ 19
49 15-46
0. 50
Dec. 17
675
745
+29 47
+ 10 6
16-33
38-26
+ 19 56
57-30
— 7 44-46
+ 2.29
— 0. 12
+ 19
49 15.01
0.05
675
755
+29 47
+ 10 4
16-33
7.82
+ 19 55
42.08
— 6 29.09
+ 2.21
—0. 10
+ 19
49 IS- 10
0. 14
808
867
+ 21 29
+ 17 49
6.76
28.91
+ 19 39
17.84
+ 9 54- 86
+ 1-07
+0.15
+ 19
49 13-92
1.04
904
929
+31 29
+ 8 28
29.27
4-33
+ 19 58
46.80
— 9 30.41
0. 00
-o.is
+ 19
49 16.24
1.28
986
B. A. C. 999
Mean (52 d
+ 19 18
+20 38
35-33
9.67
+ 19 s8
22. 50
— 9 6.44
— 0. 69
— 0. 14
+ 19
49 15-23
0. 27
+ 19
49 14- 96
J-O. II
Latitude of observing station. Port Plata, from zenith telescope observations by Lieut. Charles Laird.
Corrections.
Date.
Number and
catalogue.
Apparent declination.
Half sum of declina-
tions.
Latitude.
Micrometer.
Level.
Ref.
1889.
/
//
/
//
/
//
//
//
/ //
//
Dec. 26
B. A. C. 1285
1322
+ 5
+34
'4
18
5-43
2.80
+ 19
46
4.12
+ 2
42.23
0.00
+0.04
-fig 48 46.39
0. 24
1356
1367
+ 17
+22
II
33
16.99
47- 87
+ 19
52
32-43
— 3
53-81
+ 4-73
— 0.06
+ 19 48 43.29
2.86
1429
1445
— 3
+43
34
9
45-24
20.09
+ 19
47
17.42
+ I
23.30
+ 6.08
+0. 02
+ 19 48 46.82
0. 67
1476
1508
+37
+ 2
17
19
39-55
30-32
+ 19
48
34-94
+
9-36
+ 1.22
0. 00
+ 19 48 45-52
0.63
1476
1514
+37
+ 2
17
15
39-55
32.08
+ 19
46
35-82
+ 2
9.08
+ I. 22
+0.04
•f 19 48 46. 16
0. 01
1631
1657
+40
—
31
1.27
38.80
+ 19
44
II. 24
+ 4
24.05
+ 11. IS
+0.08
+ 19 48 46-52
0-37
1631
1660
+40
—
29
1.27
33-96
+ 19
45
13.66
+ 3
21. 56
+ 11. 15
-fo. 06
+ 19 48 46.43
0.28
1 701
1742
+ 15
+23
46
57
47-95
55-23
+ 19
52
21.59
— 3
1.03
—32. 09
— 0.04
+ 19 48 48.43
2.28
1766
1768
+ 9
+30
13
25
47.24
34-74
+ 19
49
40.99
—
46.68
- 6.76
— 0. 01
+ 19 48 47.54
1-39
1880
B. A. C. 1939
+ 19
+20
43
8
37-85
23-99
+ ■9
56
0.92
— 7
10. 17
— 4.05
—0. 10
+ 19 48 46.60
0-4S
IN MEXICO, OEJSTEAL AMERICA, THE WEST INDIES, ETC.
Latihide of observing station. Port Plata, from zenith telescope observations by Lieut. Charles /;»?'«/— Continued.
107
Date.
Number and
catalogue.
Apparent declination.
Half sum of declina-
tions.
Corrections,
Latitude
Micrometer.
Level.
Ref
1889.
Dec. 27
B.A. C. 469
556
/
+ 17 53
+21 43
//
52.71
44.78
+ 19
48
48.74
/
—
12.83
+ 10.47
//
0.00
+ 19
/
48
46.38
1/
0.23
580
61S
+36 42
+ 2 34
47-38
7-73
+ 19
38
27.56
+ IO
9-74
+ 9-12
+0.17
+ 19
48
46.59
0.44
625
649
+ 2 13
+37 20
48.97
18.18
+ 19
47
3-58
+ I
48.06
— 7-09
fo.03
+ 19
48
44.58
1-57
986
999
+ 19 18
+ 20 38
35-46
9.88
+ 19
58
22. 67
— 9
22. 51
—15-54
— 0. 14
+ 19
48
44.48
1.67
1040
1087
+27 12
+ 12 33
47- >S
30-51
+ 19
53
8.83
— 4
8.72
-12.83
— 0.06
+ 19
48
47.22
1.07
1 132
1202
+33 36
+ 6 12
44.28
9-99
+ 19
54
27.14
— 5
35-70
— 6.08
— 0.09
+ 19
48
45-27
0.88
1223
1272
+22 SI
+ 17 2
19. 12
41.36
+ 19
57
u. 24
— 7
59-76
—13-51
—0. 12
+ 19
48
46.8s
0. 70
1285
1322
+ 5 14
+34 18
5-37
2. 90
+ 19
46
4.14
+ 2
47-71
— 8. II
+0.0S
+ 19
48
43-79
2.36
1429
1445
— 3 34
+43 9
45-35
20. 24
+ 19
47
17.44
+ I
23-86
+ 5-40
+ 0.02
+ 19
48
46.72
0-S7
1476
1508
+37 17
+ 2 19
39-67
30.24
+ 19
48
34-96
+
2.08
+ 10.13
0.00
+ 19
48
47.17
1.02
1476
B. A. C. 1514
Mean (21 de
+37 17
+ 2 IS
terminations) . ,
39- 67
32.00
+ 19
46
35-84
+ 2
0.34
+ 10.13
+0.04
+ 19
48
46-35
0. 20
+ 19
48
46.15
-1-0. 19
Latitude of observing station, Santo Domingo City, from zenith telescope observations by Lieut. J. A. Norris.
Corrections.
Date.
Number and
catalogue.
Apparent
declination.
Half sum of declina-
tions.
Latitude.
Micrometer.
Level.
Ref.
V.
1890.
/ //
/
ff
/
//
//
//
/
//
//
Jan. 7
B.A.C. 1332
1362
+ 14
+22
49 49-66
2 28. go
+ 18 26
9.28
+ I
58.42
0.99
+0.03
+ 18
28
6-74
I. 64
1449
1500
+22
+ 14
44 42. 10
3 57-69
+l8 24
19.90
+ 3
39-90
+ 4.20
+0.05
+ .8
28
4-05
I. OS
155 1
1557
+21
+25
25 54-88
'4 58-77
+ i8 20
26.83
+ 7
34-67
+ 2. 14
+0. II
+ 18
28
3-75
1-35
1571
1591
+21
+15
33 29.71
27 20. 30
+ 18 30
25.00
— 2
21.84
+ 1-30
— 0. 04
+ 18
28
4.42
0.68
1611
1636
+ 2
+33
43 42.49
SO 32.93
+ 18 17
7.71
+ 11
1.07
— 3-43
+0.17
+ 18
28
5-52
0.42
1656
1681
+ 8
+28
19 4. 78
30 49.84
+ 18 24
57-31
+ 3
12.06
- 3-05
+0.05
+ 18
28
6.37
1.27
1 701
B.A.C. 1767
+ IS
+21
4# 47-60
4 27.98
+ 18 25
37-79
+ 2
29. 22
- 1-45
+0.04
+ 18
28
5. 60
0.50
108 TELEGRAPBIC DETEEMINATION OF LONGITUDES
Latitude of observing station, Santo Domingo City, from zenith telescope oinervations by Lieut. J. A. Norris —Continued.
Date.
Number and
catalogue.
Apirarent declination.
Half sum of declina-
tions.
Corrections.
Latitude.
Micrometer.
Level.
Ref.
v.
1890.
/
1/
/
//
/
ff
//
//
/
//
//
Jan. 7
B.A. C. 1767
iSio
+21
+ 16
4
2
27.98
13-71
+ 18
23
20.85
- 5
13-17
- 1.83
—0.08
+ 18
28
5-77
0.67
1767
1821
+ 21
+ 15
4
46
27.98
41. 10
+ 18
25
34-54
+ 2
32.04
- 1-83
+0.04
+ 18
28
4-79
0.31
1837
1846
+24
+ 12
31
36
47.10
55-86
+ 18
34
21.48
— 6
20. 20
+ 4-20
—0.09
+ 18
28
S.38
0.28
1863
1928
+ 27
+ 9
35
38
7-77
46.03
+ 18
36
56.90
— 8
52. II
+ 0.76
— 0. 14
+ 18
28
S-4I
0.31
Jan. 8
1087
109s
+ 12
+24
33
5
30.03
41.19
+ 18
19
35-61
+ 8
29.58
— 0. 30
+0-13
+ 18
28
5.02
0.08
"34
1 139
— 5
+42
34
13
6.64
53-97
+ 18
19
53-67
+ 8
IS- 18
— 2.06
+0. 14
+ 18
28
6-93
1.83
1 162
1207
+ 5
+31
42
33
12.78
24.40
+ 18
37
48-59
— 9
39-50
— 2.75
—0.15
+ 18
28
6. 19
1.09
1257
1302
+21
+ 15
46
7
49-34
27.09
+ 18
27
8.22
+
56.83
+ 0.68
+0. 02
+ 18
28
5-75
0.65
1257
1328
+21
+15
46
21
49-34
38- 98
+ 18
34
14. 16
— 6
9. II
+ 1-37
—0.09
+ 18
28
6.33
1.23
1260
1302
+21
+15
42
7
41-25
27.09
+ 18
25
4.17
+ 3
0.28
+ 0.69
+0.04
+ 18
28
5.18
0.08
1260
1328
+21
+ 15
42
21
41-25
38-98
+ 18
32
10. 12
— 4
5-66
+ 1-37
—0.06
+ 18
28
5-77
0. 67
1332
1362
+ '4
+22
49
2
49. 66
28.94
+ 18
26
9-30
+ I
54-50
+ 0.76
+0.03
+ 18
28
4-59
0.51
1449
1500
+22
+ 14
44
3
42- 15
57-69
+ 18
24
19.92
+ 3
44- 10
+ 0. 15
+0. 06
+ 18
28
4-23
0.87
1551
1557
+21
+ 15
25
14
54-93
58-79
+ 18
20
26.86
+ 7
41-15
- 3-59
+0. II
+ 18
28
4-53
0-S7
1571
1591
+21
+ 15
33
27
29.76
20.31
+ 18
30
25-04
— 2
19.09
— 0.84
-0. 03
+18
28
5.08
0.02
1611
1636
+ 2
+33
43
so
42.44
33-05
+ 18
17
7-75
+ 10
56-25
— 0.84
+0. 18
+ 18
28
3-34
1.76
1656
1681
+ 8
+28
19
30
4-75
49-93
+ 18
24
57-34
+ 3
6.42
+ 0.38
+0.05
+ 18
28
4.19
0.91
1701
1767
+ 15
+ 21
46
4
47.62
28.02
+ 18
25
37-82
+ 2
29. 22
- 1.76
+0.04
+ 18
28
5-32
0.22
1767
1810
+21
+ 16
4
2
28.02
13-73
+ 18
33
20.88
- 5
17.58
+ 0.46
—0.08
+ 18
28
3.68
1.42
1767
1821
+21
+ '5
4
46
28.02
41. 12
+ 18
25
34.57
+ 2
29.28
+ 0-46
+0.04
+ 18
28
4-35
0-7S
1837
1846
+24
+ 12
31
36
47- 17
55-85
+ 18
34
21.51
— 6
22.00
+ 7-55
—0. 10
+ 18
28
6.96
1.86
1863
B.A.C. 1928
+27
+ 9
35
38
7-85
46. 00
+ 18
36
56.93
- 8
49-63
— 0. 69
— 0. 14
+ 18
28
6.47
1-37
IN MEXICO, CENTRAL AMERICA, THE WEST INDIES, ETC.
Latitude of observing station, Santo Domingo City, from zenith telescope observations by Lieut. J. .1. Mirris — Continued.
109
Date.
Number and
catalogue.
Apparent declination.
Half sum of declina-
tions.
Corrections.
Latitude.
^-
Micrometer.
Level.
Ref.
n
/
//
1890.
/ //
. /
1/
/
n
//
//
Jan. 9
B. A. C. 966
986
+ 17 27 16. J3
+ 19 18 35-27
+ 18 22
55-80
+ 5
10.00
— 0. 69
+0. oS
fi8
28
5. 19
0. 09
994
looS
— > 36 37- 41
+38 52 48.06
+ 18 38
5-33
— 9
59-48
— 0.30
-0.17
+ 18
28
5-38
0.28
1017
1041
+35 49 9- 35
+ 3 16 37-88
+ 18 32
53-62
— 4
50-37
0. 00
—0.08
+ iS
28
3-17
1-93
1052
1087
+ 24 20 2.04
+ 12 ii 30.00
+ 18 26
46.02
+ I
18.88
+ 0.08
+0. 02
+ 18
28
5.00
0. 10
• 1087
1095
+ 12 33 30.00
+24 5 4I.*20
+ 18 19
35.60
+ 8
27.72
+ 0.46
+0. 13
+ 18
28
3-9'
I. 19
"34
"39
- 5 34 6.72
+42 13 54.07
+ IS 19
53-68
+ 8
10.57
+ 0.84
+0.15
+ 18
28
5-24
0. 14
1 162
1207
+ 5 42 12.73
+31 33 24.46
+ 18 37
48.60
— 9
44-32
+ 1.60
-0.15
+ 18
28
5.73
0.63
I2S7
1302
+21 46 49.36
+ 15 7 27.09
+ i8 27
8.23
+
58-76
- 1.83
+0. 01
+ 18
28
5-17
0.07
1257
1328
+21 46 49.36
+ 15 21 38.98
+ 18 34
14.17
— 6
5.88
- 1.68
—0.09
+ 18
28
6.52
1.42
1260
1302
+ 21 42 41.27
+ 15 7 27.09
+ 18 25
4. 18
+ 3
2.76
- 1.83
+0.05
+ 18
28
5-16
0. 06
1260
1328
+21 42 41.27
+ 15 21 38-98
+ 18 32
10.13
— 4
1.87
— 1.68
—0. 06
+ 18
28
6.52
1.42
1449
ISCX3
+22 44 42. 18
+ 14 3 57-69
+ 18 24
19.94
+ 3
43-48
+ 0.30
+0. 06
+ 18
28
3-78
1.32
iSSi
IS57
+21 25 54.96
+ '5 14 58 79
+ 18 20
26.87
+ 7
29.44
+ 8.24
+0. II
+ 18
28
4.66
0.44
1571
1591
+ 21 33 29. So
+ 15 27 20.32
+ 18 30
25.06
— 2
20.40
+ 0.08
— 0.03
+ 18
28
4.71
0.39
1611
1636
+ 2 43 42. 38
+33 50 33.15
+ 18 17
7-77
+ 10
53.35
+ 1.98
+0. 18
+ 18
28
3-28
1.82
1656
B.A.C. 1681
Mean (45 de
+ 8 19 4.72
+28 30 50. 01
terminations) ......
+ 18 24
57.37
+ 3
6.55
+ 0.23
+0.05
+ 18
28
4. 20
0. 90
+ 18
28
5.10
-j-o. 10
no
TELEGRAPHIC DETERMINATION OF LONGITUDES
Latitude of obscrviiv^ station, Curacao, from zenith telescope observations by Lieut. Charles Laird.
Date.
iSgo.
Jan. 26
Jan. 27
Jan. 2S
Number and
caLalugue.
B. A. C. 1304
1366
1485
1491
1722
1734
1759
1772
1304
1366
1434
1442
1500
1516
1551
1611
1571
lOII
1986
2059
2126
2163
1500
1516
1908
1925
1908
B. A. C. 1970
Mean (14 determinations)
^^parent declination.
Half sum of declina-
tions.
/
//
/
1/
+ 8
+ 15
36
41
54.42
18. II
+ «2
9
•6.26
+ 15
+ 8
42
42
40. 27
34.58
+ 12
12
37-42
+ 5
+ 18
51
27
45-76
38.92
+ 12
9
42-34
— 4
+29
54
9
46.81
11.48
+ 12
7
12.34
+ 8
+>5
36
41
54.34
18.05
+ 12
9
6. 20
+ 12
+ 11
17
58
19.34
49.16
+ 12
8
4.25
+14
+ 9
3
58
57.19
26. II
+ 12
I
H.65
+21
+ 2
25
43
55.07
40. 98
+ 12
4
48.02
+21
+ 2
43
29.93
40. 98
+ 12
8
35-46
+ ■9
+ 4
48
38
49.86
48. 88
+ 12
■3
49-37
+ 7
+ 16
24
29
43.72
31-19
+ "
57
7-46
+ 14
+ 9
3
58
57.13
26.04
+ 12
I
11.59
+ I
+22
49
23
26. 23
48-35
+ 12
6
37-29
+ I
+ 22
49
12
26.23
29.79
+ 12
58-01
Corrections.
Micrometer.
Level.
f
//
//
— 2
49. 66
+ 2.92
- 6
3-31
—12.65
—3
20. 66
0. 00
—
38.70
-12.37
— 2
58.95
+ 15.00
— I
28.02
-'2-37
+ 5
8.72
0.00
+ I
40.85
- 6. 13
— 2
6.37
-6.13
- 7
21. 12
-7-38
+ 9
16.54
— 0. 40
+ 5
5.12
+ 2.29
—
19.07
+ 4-81
+ 5
21.41
+ 4-81
Ref.
-o. 04
-o. 09
— 0.05
-o. 04
+0.08
+0.03
-0.03
+0. 14
+0.07
Latitude.
o / //
+ 12 6 19.
+ 12 6 21.37
+ 12 6 21.03
+ 12 6 21.26
+ 12 6 22.21
+ 12 6 23.84
+ 12 6 20.45
+ 12 6 22. 77
+ 12 6 22.93
+ 12 6 20.76
+ 12 6 23.74
+ 12 6 19.07
+ 12 6 23.02
+ 12 6 24.31
2-44
0-55
o. 29
0.66
o. 29
.92
1.47
0.65
1. 16
1.82
2.85
2.39
+ 12 6 21.92
+0.29
m MEXICO, CENTRAL AMERICA, THE WEST INDIES, ETC.
Latiiude of observing station La Guayra,from wiiilh telescope obsei-vations by Lieut. Cliarles Laird.
Ill
Corrections.
Date
Number and
catalogue.
Apparent declination.
Half sum of declina-
tions.
Latitude.
Micrometer.
Level.
Ref.
1890.
Feb. 8
B.A. C. 1908
1934
/
+ I 49
+ 19 41
//
25.60
29. II
+ 10
/
45
1/
27.36
/
— 8
34-65
II
+ 0-29
II
—0.13
■ +10
/ //
36 52-87
II
0.82
2123
2140
+ 4 55
+ 16 17
57-49
25.04
+ 10
36
41.27
■\
8.05
+ 3-95
0.00
+ 10
26 53.27
0.42
2123
2163
+ 4 55
+ 16 29
57-49
31-22
+ 10
42
44-36
— 5
55- «9
+ 3-95
-0.08
+ 10
36 53- 04
0.65
2123
2184
+ 4 55
-)-i6 29
57-49
56.24
+ 10
42
56.86
— 6
6. 91
■A- 3- 95
— 0.09
+ 10
36 53-81
0. 12
2123
2228
+ 4 55
+ 16 19
57-49
37-64
+ 10
37
47-56
—
57.29
+ 3- 95
-0. 01
+ 10
36 54.21
0. 52
Feb. 1 1
1944
1989
+ 5 25
+ 16 9
26.25
14.99
+ 10
47
20.62
— 10
29.23
— 0.57
—0. 16
+ 10
36 50. 66
3-03
1944
2005
+ 5 25
+ 16 4
26. 25
0.75
+ 10
44
43-50
- 7
S'-79
— 0.57
— 0. 12
+ 10
36 51.02
2. 67
1944
2009
+ 5 25
-|-i6 10
26. 25
32.68
+ 10
47
59.46
— II
4.68
— 0.57
—0. 17
+ 10
36 54- 04
0-35
Feb. 12
'370
i486
+ 14 27
+ 6 46
48.94
0. 62
+ 10
36
54-78
+
2- IS
— 2. 29
0.00
+ 10
36 54- 64
0.95
1409
i486
+ 14 36
+ 6 46
40.83
0. 62
+ 10
41
20. 72
- 4
23.64
— 2.29
— 0. 06
+ 10
36 54-73
I. 04
1493
1514
+ 18 39
+ 2 IS
5.18
28.53
+ 10
27
16.86
+ 9
38.88
- 3-95
+0.15
+ 10
36 51-94
1-75
1647
1685
+ 19 27
+ I 44
52.23
33-84
+ 10
36
13.04
+
42-38
— 1. 14
+0.01
+ 10
36 54. 29
0.60
1651
1685
+ 19 42
+ I 44
8-31
33- 84
+ 10
43
21.08
— 6
23.08
— I. 14
— 0. 10
+ 10
36 56-76
3-07
1834
B. A. C. 1883
Mean (14 d«
+ •3 51
+ 7 23
29.88
4.56
+ 10
37
17. 22
—
19.84
— 0.97
— 0. 01
+ 10
36 56- 40
2.71
10
36 53-69
+0.32
I I
RESULTS.
21124— No, 97 8
114
TELEGRAPHIC DETBKMmATiON OF LONGITUDES
RESULTS.
The results of the foregoing observations are given as follows :
The first two tables show the final clock corrections deduced from the observations made by Lieut.
J. A. Norris and Lieut. Charles Laird.
The third table shows the difference of the chronometer faces on each night as deduced from the
exchange of time signals.
The fourth table gives the difi'erences of longitude between the various stations on each night on
which time signals were exchanged and observations made. The data for this table are taken from the
preceding tables of clock corrections and chronometer comparisons. The last column in this table shows
the wave and armature time, a? — J (A' — A"). In the measurements between Vera Cruz and Coatzacoalcos,
and Coatzacoalcos and Salina Cruz, which were made automatically, this quantity may be regarded as the
true wave and armature time. In the other measurements the comparisons were made by the use of the
mirror galvanometer, and the personal equation of the observers in noting the mirror signals is involved
in the quantity co.
Finally the resulting latitudes and longitudes of the various stations, reduced to the adopted land-
marks at each station, are given.
Final chronometer corrections from observations by Lieut. J. A. Norris, U. S. Navy.
Place.
Date.
Chro-
nometer.
Epoch of
reduction.
AT at epoch of
reduction.
Hourly rate.
Epoch of
comparison.
/\T at epoch of
comparison.
Coatzacoalcos
1888.
Dec. 29
129s
h. m.
3 44-0
h. m. s.
— 48 36. 089
J.
+0.071
k. m.
7 25.8
k. m. s.
—0 48 3S. 826
Dec. 30
1295
5 "-3
—0 48 34. 283
+0. 069
5 25.1
—0 48 34.267
1889.
Jan. 7
1295
4 27.8
— 48 21.892
-f-o. 062
Jan. 12
1295
3 3-8
— 48 14. 650
-)-o. 061
8 27.8
— 48 14.321
Jan. 14
129s
3 21.2
— 48 II. 422
+0. 080
Jan. IS
129s
3 22.5
— 48 9.316
+0. 094
7 52.3
—0 48 8. 893
Jan. 16
1295
3 7-9
—0 48 7. 058
-|-o. 091
7 55.7
—0 48 6.621
Jan. 17
129s
3 i8-5
— 48 5.087
+0. 072
8 24.6
—0 48 4. 720
Salina Cruz
Feb. 9
129s
9 48.8
—0 53 58.103
+0. 188
Feb. 10
129s
6 58.8
-0 53 54.265
+0. 178
5 45-8
—0 S3 54.482
Feb. II
129s
6 42.7
— 53 50. 122
+0. 169
Feb. 12
1295
6 30. 6
—0 53 46. 241
+0. 159
II 31.8
—0 53 45-443
•Feb. 13
1295
6 28.4
—0 S3 42.494
+0. 157
9 24.^
—0 53 42.034
Feb. 14
1295
6 30-5
—0 53 38.596
+0. i6g
9 39-3
-0 53 38.064
Feb. 15
1295
6 53-3
—0 53 34.368
+0. 173
9 39-8
—0 53 33-830
Feb. 16
1295
6 42.9
-0 53 30.316
+0. 165
9 46.2
■-0 S3 29.811
IN MEXICO, OENTKAL AMERICA, THE WEST INDIES, ETC.
115
Final chronometer corrections from observations by Lieut. J. A. Norris, U. S. Navy — Continued.
Place.
Date.
Chro-
nometer.
Epoch of
reduction.
AT at epoch of
reduction.
[lourly rate.
Epoch of
comparison.
AT at epoch of
comparison.
Lq. I_.ili)£rta.(l
1889.
Mar. 9
Mar. 12
129s
1295
h.
8
m.
43-1
h.
—
m.
28
s.
35- 489
21. 426
s.
+0. 210
-fo. 189
h. m .
h.
m. J.
J-JkL Jk.dAI^X^X LKft\.A «■••■•
7
—0
28
12 23.3
- -0
28 20. 456
Mar. 13
1295
8
22.0
—0
28
16. 626
-|-o. 201
II 36. 8
—
28 15-973
Mar. 14
129s
7
24.
—
28
11.859
+0. 205
II 36.4
-0
28 10. 996
Mar. 16
1295
7
22. 2
—
28
3.006
+0. 174
12 34-3
—
28 2. lOI
Mar. 17
1295
7
17.9
—
27
58. 907
+0. 168
8 25.2
—
27 58.719
Mar. 18
1295
7
16.3
—
27
54- 976
-fo. 160
12 50.9
—0
27 54. 083
San Juan del Sur ....
Mar. 30
1295
14
25-9
—0
13
16.336
+0. 165
12 39.6
—
13 16.628
Mar. 31
1295
9
17.7
—
>3
13-153
-fo. 170
10 29.4
—
13 12.949
Apr. I
1295
8
56.9
—
13
9-094
+0. 174
12 21.7
—
13 8. 327
Apr. 2
1295
8
35-8
—
13
4.976
+0. 180
13 43-8
—
13 4-053
St. Nicolas Mole ....
Nov. 27
1295
22
34-2
+0
14
S3- 84s
+0. 043
. . .
Nov. 28
«295
I
43-2
+0
14
55- 365
+0. 067
31.8
+0
14 55-285
Nov. 29
129s
22
44.1
+0
14
56. 868
-f 0. 070
22. 6
+0
14 56.983
Nov. 30
•295
22
53-6
+0
14
58. 420
-f 0. 060
20. I
+0
14 58.507
Dec. I
129s
22
Si-9
+0
14
59.770
+0. 052
43-6
+°
14 59.867
Dec. 2
1295
23
II. I
+0
15
0-9S3
-f 0. 047
2 39.7
+0
15 I. 116
Dec. 3
129s
23
26.8
+0
IS
2. 100
+0. 046
52.7
+0
15 2. 166
Dec. 4
129s
23
19.7
+-
IS
3-172
-f 0.044
. . .
•
. . .
Dec. 13
1295
23
27.6
+0
15
II. 522
+0. 074
. . .
. . .
Dec. 14
129s
23
26. 5
+0
IS
13- 30s
+0. 074
I 13.2
+0
15 13-437
Dec. 15
1295
23
51-3
+0
IS
15-032
-f 0. 062
I 56.2
+5
15 15. 161
Dec. 16
1295
49.0
+0
IS
i6. 505
+0. 075
I 23.9
+0
15 16. 549
Dec. 17
1295
17.8
+0
15
18. 611
+0. 086
. . .
Dec. 18
129s
23
57.2
+0
IS
20. 314
+0. 067
.
Dec. 19
1295
20.8
+0
IS
21.887
+0. 066
2 5.0
+0
15 22. 002
Dec. 20
129s
I
15.0
+0
15
23.588
+0. 072
2 22. 2
+0
15 23-669
Santo Domingo . .
1890.
Jan. I
129s
3
21.6
+0
29
40. 577
+0. 032
. . .
,
. • *
Jan. 2
1295
4
12.6
+0
29
41.604
+u. 049
3 2.
+0
29 41-S46
Jan. 3
1295
3
38.5
+0
29
42. 829
+0. 046
3 8.8
+0
29 42. 806
Jan. 4
1295
3
39-4
+°
29
43. 806
-f 0. 050
3 i-o
+0
29 43-774
Jan. 5
1295
I
52. 2
+0
29
45-^256
-f 0. 064
2 57.8
+0
29 45-326
Jan. 6
1295
4
37-8
+0
29
46. 845
+0. 065
3 23.9
+0
29 46.765
Jan. 7
1295
3
2.7
+0
29
48. 601
-f 0. 089
.
. . .
Jan. 18
1295
4
18.7
+0
30
4-333
+0. 061
. . .
Jan. 20
129s
5
43-4
+0
30
7.418
-f 0. 064
4 49-6
+0
30 7. 361
Jan. 21
1295
4
36.0
+0
30
8.884
+0. 064
4 40.2
+0
30 8. 888
Jan. 22
1295
4
34-6
+0
30
10. 398
-f 0. 060
5 4-4
+0
30 lo. 428
Jan. 23
1295
4
46.8
+0
30
11.798
-f 0. 058
5 10.9
+0
30 11. 821
Jan. 24
•295
4
44-3
+0
30
13- 239
-f 0. 060
5 28.8
+0
30 13.284
Jan. 25
1295
4
IS- 3
+0
30
14. 640
+0. 059
5 28.7
+0
30 14.712
Feb. 5
1295
s
15-2
+0
30
26. 474
+0. 042
. . .
. . .
Feb. 7
129s
5
40.9
+0
30
28. 858
+0. 057
6 30.4
+0
30 28. 905
Feb. 8
1295
5
32.9
+0
30
30. 327
■f 0. 050
6 35-
+0
30 30-379
Feb. 9
1295
S
17.8
+0
30
31.277
-f 0. 050
. . .
. . .
Feb. 10
129s
6
47-4
+0
30
32- 743
+0. 055
6 40.2
+0
30 32.736
Feb. II
1 29s
9
36.3
+0
30
34- 033
+0. 047
6 38.5
+0
30 33-894
Feb. 13
1295
7
9.0
+0
30
36.517
+0. 059
■ • -
116
TELEGRAPHIC DETERMINATION OF LONGITUDES
Final chronometer corrections from observations by Lieut. Charles Laird, U. S. Navy.
Place.
Date.
iSSS.
Dec. 26
Chro-
nometer.
Epoch of
reduction.
/\T at epoch of
reduction.
Hourly
rate.
Epoch of
comparison.
/\T at epoch of
comparison.
Vera Cruz ...
1254
h.
4
VI.
24-3
-t
m.
'3
s.
23. 270
s.
•+-0. 043
h.
m.
h.
»/.
s.
Dec. 27
1254
4
44.6
— I
13
22.155
+0. 041
7
10.
— I
13
22.053
Dec. 29
1254
4
7-4
— I
13
20. 279
+0. 047
7
38.0
—I
13
20. 115
Dec. 30
1254
3
38.1
— I
13
19. 118
+0- 053
5
31.0
-I
13
19.018
1889.
Jan. 1 2
1254
4
46.9
I
13
5-952
+0.051
8
43-0
— I
13
5-752
Jan. 15
1254
3
38.4
— I
13
2. 296
-|- 0. 046
8
9.0
— I
13
2.088
Jan. 16
1254
4
0.6
— I
>3
1. 189
+0. 049
8
8.0
-I
13
0.987
Jan. 17
I 254
4
4-9
— I
12
59-877
+0.057
8
37-0
— I
12
59.618
Coatzaooalcos
Feb. 10
•254
8
2,9
— 1
5
32. 281
+0. 074
5
50.0
—I
5
32. 445
Feb. 12
1254
8
18.6
— I
5
30-315
-fo. 021
II
40.
— i
5
30- 246
Feb. 13
1254
6
37-2
—I
5
29-773
+u. 069
9
39.1
—1
5
29.524
Feb. 14
1254
6
4-9
— I
5
28. 040
+0. 067
9
50.0
-I
5
27. 789
Feb. 15
1254
6
20. 9
5
26. 761
+0.052
9
47.0
-I
5
26.583
Feb. 16
1254
5
52.6
— 1
5
25. 370
4-0. 062
9
57.0
— I
5
25.118
Salina Cruz
Mar. 12
1254
10
IS- 3
—I
8
45- 783
+0. 141
12
40. 2
— I
8
45. 443
Mar. 13
1254
9
25.0
—I
8
42.481
-|-o. 146
II
52.8
— I
8
42. 121
Mar. 14
1254
9
21.4
-I
8
38- 924
+0. 151
II
53-4
— I
8
38- 542
Mar. 16
1254
12
38-9
—I
8
30. 468
+0. 168
12
51.8
—I
8
30- 432
Mar. 17
1254
10
55.0
—I
8
26.871
-|-o 160
8
42.2
— I
8
27. 224
Mar. 18
1254
9
6.9
■-I
8
23-372
+0- 158
13
7.9
-I
8
22.737
Mar. 30
1254
II
18.6
—I
7
49. 898
-)-o. 160
12
56.9
— I
7
49. 636
Mar. 31
1254
12
39-5
— I
7
46. 172
+0. 143
10
47.1
— I
7
46- 439
Apr. I
1254
10
26. 3
—I
7
43- 036
+0. 140
12
39.0
—I
7
42.727
Apr. 2
1254
10
40. I
— I
7
39 625
-}-o. 140
14
I. I
-1
7
2,9- 'S6
Santiago de Cuba . .
ISov. 28
1254
3
15.1
+0
5
39- 583
-|-o. 120
31.2
+0
5
39- 255
Nov. 29
1254
2
7.2
+0
5
42.357
4-0.119
21.9
+0
5
42, 148
Nov. 30
1254
2
I. I
+0
5
45-163
+0. 121
19.5
+0
5
44- 959
Dec. I
1254
2
10. 9
+0
5
48.177
+0. 124
43.0
+0
5
47- 995
Dec. z
1254
2
27.8
+0
5
51.145
+0. 118
2
39-0
+0
5
51.167
Dec. 3
1254
I
23-3
+0
5
53. 692
-|-o. no
52.0
+0
5
53- 635
Port Plata
Dec. 14
1254
3
38.8
+0
26
54- 623
+0. 094
I
12.3
+0
26
54- 394
Dec. 15
1254
23
58.9
+0
26
56.516
+0. 089
I
55-3
+0
26
56. 689
Dec. 16
1254
3-4
+0
26
58. 572
+0. 087
I
23.
+0
26
58. 687
Dec. 19
1254
22. 6
+0
27
4-935
+0. 086
2
4.0
+
27
5.080
Dec. 20
1254
2
37-9
+0
27
7-144
+0. 085
2
21.3
+0
27
7. 120
Dec. 28
1254
1254
2
2-5
33-2
+0
+0
27
27
24- 927
35-529
+0. 088
-]-o. 070
1890.
Jan. 2
3
0.9
+°
27
35-631
Jan. 3
1254
29.1
+0
27
37-173
+0. 073
3
7.6
+0
27
37- 293
Jan. 4
1254
2.8
+0
27
39- 057
+0. 086
2
59.8
+0
27
39- 225
Jan. 5
1254
34-4
+0
27
41-237
-fo. 089
2
56.6
+0
27
41-359
Jan. 6
1254
46.6
+0
27
43- 381
+0. 089
3
22. 2
+0
27
43-523
Crua(;ao
Jan. 20
1254
4
32-3
+0
35
27. 879
+0- 123
4
48.0
+0
35
27.911
Jan. 21
1254
2
22. I
+0
35
30- 437
+0. 109
4
38.6
+0
35
30. 685
Jan. 22
1254
6
13- I
+0
35
33- 263
-j-O. 102
5
2-7
+0
55
33- 143
Jan. 23
1254
3
26. 3
+0
35
35- 505
+0. no
5
9-3
+0
35
35- 694
Jan. 24
1254
3
19.4
+0
35
38. 250
-|-o. 116
5
27. 2
+0
35
38. 497
Jan. 25
1254
3
23-7
+°
35
41.023
+0. 114
5
27.
+0
35
41-257
La Guayra
Feb. 7
1254
4
10. 9
+0
44
12.576
+0.053
6
28.4
+0
44
12.697
Feb. 8
1254
4
14.5
+0
44
13. 842
+0- 055
+0
44
13-971
Feb. 9
1254
S
19- 3
+0
44
15. 266
+0. 055
• •
Feb. 10
1254
4
24.5
+-
44
16.553
-f-o. 061
6
38 3
+0
44
16. 689
Feb. II
1254
4
30.1
+0
44
18. 149
+0. 068
6
36-5
+0
44
18. 292
IN MEXICO, CENTRAL AMERICA, THE WEST INDIES, ETC.
117
Differences of chronometer faces from mean of time signals.
Dale.
Signa
s sent.
Mean difference and probable
error.
Eastern — Western
chronometers.
From —
To—
i888.
Dec. 29
Coatzacoalcos . . .
Vera Cruz
22
h.
—0
m.
17
s.
49-555
s.
-|-o. 000
Vera Cruz
Coatzacoalcos
25
—0
17
49. 478
J-o. 002
Dec. 30
Coatzacoalcos
Vera Cruz
25
—0
17
50. 092
-J-o. 000
1889.
Jan. 12
Vera Cruz
Coatzacoalcos
Coatzacoalcos
Vera Cruz
8
25
—0
17
17
50. 001
5^- 744
-I-O. 002
-I-O. OOI
Vera Cruz
Coatzacoalcos
25
—
17
56. 620
J-O. OOI
Jan. IS
Coatzacoalcos
Vera Cruz
25
—
17
58. 720
-l-O. OOI
Vera Cruz
Coatzacoalcos
25
—
17
58. 607
-I-O. OOI
Jan. 16
Coatzacoalcos
Vera Cruz
25
—
17
59.670
-|-0. OOI
Vera Cruz
Coatzacoalcos
25
—
17
59-55°
-I-O. 000
Jan. 17
Coatzacoalcos
Vera Cruz
25
—0
18
0.438
-I-O. OOI
Vera Cruz
Coatzacoalcos
25
—
18
0.313
-J-O. OOI
Feb. 10
Salina Cruz
Coatzacoalcos . .
IS
+0
14
43- 227
-}-0. OOI
Coatzacoalcos
Salina Cruz
25
+0
14
43- 136
-J-O. OOI
Feb. 12
Salina Cruz
Coatzacoalcos
IS
+0
14
49.817
J-O. 002
Coatzacoalcos
Salina Cruz
25
+0
14
49- 770
-I-O. OOI
Feb. 13
Salina Cruz
Coatzacoalcos
25
+0
14
52. 500
J-O. OOI
Coatzacoalcos
Salina Cruz
25
+0
14
52-427
J-O. OOI
Feb. 14
Salina Cruz
Coatzacoalcos
25
+0
14
55. 296
-J-O. OOI
Coatzacoalcos
Salina Cruz
25
+0
14
55- 247
-J-O. OOI
Feb. IS
Salina Cruz
Coatzacoalcos
25
+0
14
57-933
-J-O. OOI
Coatzacoalcos . .
Salina Cruz •
25
+0
14
57. 899
J-O. 000
Feb. 16
Salina Cruz
Coatzacoalcos
25
+0
15
0-515
J-O. OOI
Coatzacoalcos
Salina Cruz
25
+0
15
0,452
J-O. OOI
Mar. 12
La Libertad
Salina Cruz
70
—0
16
57-967
J-O. 003
Salina Cruz
La Libertad
68
—
i6
57-316
J-O. 004
Mar. 13
La Libertad
Salina Cruz
67
-0
16
59-155
J-O. 003
Salina Cruz
La Libertad
67
—
16
58.561
J-O. 004
Mar. 14
La Libertad
Salina Cruz
74
—
17
0.485
JrO. 003
Salina Cruz
La Libertad
62
—
16
59.891
±0- 003
Mar. 16
La Libertad
Salina Cruz
64
—
17
1-325
J-O. 003
Salina Cruz . ...
La Libertad
67
—
17
0.756
J;0. 002
118
TELEGKAfaiG l)EtEUMliJAWON OF LONGITUDES
Differences of chroHotiuter faces from mean of time signals — Continued.
Date.
Mar. 17
Mar. 18
Mar. 30
Mar. 31
Apr. I
Apr. 2
Signals sent.
From-
La Libertad
Salina Cruz
La Libertad
Salina Cruz
San Juan del Sur
Salina Cruz . .
San Juan del Sur .
Salina Cruz . .
San Juan del Sur .
Salina Cruz . . .
San Juan del Sur
Salina Cruz . .
Nov.
28
Nov.
29
Nov.
30
Dec.
I
Dec.
2
Dec.
3
Dec.
14
Dec.
IS
Dec.
16
Dec.
19
St. Nicolas Mole
Santiago de Cuba .
St. Nicolas Mole .
Santiago de Cuba .
St. Nicolas Mole .
Santiago de Cuba .
St. Nicolas Mole .
Santiago de Cuba ,
St. Nicolas Mole .
Santiago de Cuba .
St. Nicolas Mole .
Santiago de Cuba .
St. Nicolas Mole .
Port Plata ....
St. Nicolas Mole
Port Plata . . .
St. Nicolas Mole
Port Plata . . .
St. Nicolas Mole .
Port Plata
To—
Salina Cruz . .
La Libertad . .
Salina Cruz . .
La Libertad . .
Salina Cruz . .
San Juan del Sur
Salina Cruz . .
San Juan del Sur
Salina Cruz .
San Juan del Sur
Salina Cruz . .
San Juan del Sur
Santiago de Cuba
St. Nicolas Mole
Santiago de Cuba
St. Nicolas Mole
Santiago de Cuba
St. Nicolas Mole
Santiago de Cuba
St. Nicolas Mole
Santiago de Cuba
St. Nicolas Mole
Santiago de Cuba
St. Nicolas Mole
Port Plata . . .
St. Nicolas Mole
Port Plata . . .
St. Nicolas Mole
Port Plata . . .
St. Nicolas Mole
Port Plata . . .
St. Nicolas Mole
71
66
64
73
73
73
72
73
69
73
64
68
71
72
69
71
66
72
62
66
72
72
70
72
73
72
72
66
74
73
71
68
Mean difference and probable
error.
Eastern — Western
chronometers.
h.
— o
— o
— o
— o
— o
— o
— o
— o
— o
— o
— o
+0
4-0
+0
+0
+0
+0
+0
+0
+0
+-^
4-0
— o
— o
— o
— o
— o
— o
— o
— o
m.
17
17
17
17
17
17
17
17
17
17
17
17
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
I- 552
0. go6
1. 6og
1.003
19- 593
18.875
19.946
19-237
20. 567
19.865
21. 630
20. 905
34- 050
34-510
35- 202
35-666
36. 545
37.021
38. 160
38. 660
40- 055
40. 529
41-475
41.961
54.672
55- "5
55-122
55.612
55-833
56. 323
56. 650
57. 125
-J_o. 004
j-o. 003
j-o. 004
-j-o. 002
±0. 003
-1-0. 003
-1-0. 003
j-o. 003
-1-0. 003
_j-o. 003
-1-0. 003
±0- 003
-(-o. 004
-J-O. 002
-j-o. 003
±0. 003
-|-o. 004
-j-o. 002
-|-o. 002
J;0. 002
-J-o. 003
-J-O. 002
-J-O. 002
-j-o. 003
J-o. 004
-J-o. 003
-J-o. 003
-J-o. 004
-J-O. 002
±0. 003
-l-o. 002
J;0. 002
IN MEXICO, CBJSTEAL AMERICA, THE WEST INDIEiS, ETC.
119
Differences of chronometer faces from mean of time signals — Continued.
Date.
Dec. 20
1890.
Jan. 2
Jan. 3
Jan. 4
Jan. 5
Jan. 6
Jan. 20
Jan. 21
Jan. 22
Jan. 23
Jan. 24
Jan. 25
Feb. 7
Feb. 8
Feb. 10
Feb. II
Signals sent.
From —
St. Nicolas Mole
Port Plata . . .
Santo Domingo .
Port Plata .
Santo Domingo .
Port Plata . . .
Santo Domingo .
Port Plata . . .
Santo Domingo .
Port Plata . . .
Santo Domingo .
Port Plata . .
Santo Domingo .
Curasao . . . .
Santo Domingo .
Curasao . . . .
Santo Domingo .
Curasao . .
Santo Domingo .
Curasao . . . .
Santo Domingo .
Curasao . . . .
Santo Domingo .
Curasao ....
Santo Domingo .
La Guayra . . .
Santo Domingo .
La Guayra . . .
Santo Domingo .
La Guayra . . .
Santo Domingo .
La Guayra . . .
To-
Port Plata . .
St. Nicolas Mole
Port Plata . . .
Santo Domingo .
Port Plata . . .
Santo Domingo .
Port Plata . . .
Santo Domingo .
Port Plata . . .
Santo Domingo .
Port Plata . . .
Santo Domingo .
Curasao . . . .
Santo Domingo .
Curasao . . . .
Santo Domingo .
Curagao ....
Santo Domingo .
Curasao ....
Santo Domingo .
Curagao . . . .
Santo Domingo .
Curagoa ....
Santo Domingo .
La Guayra . . .
Santo Domingo .
La Guayra . . .
Santo Domingo .
La Guayra . . .
Santo Domingo .
La Guayra . . .
Santo Domingo .
12;
70
68
67
70
67
73
70
73
67
68
72
69
71
71
70
69
69
72
69
73
72
67
69
73
66
67
69
64
73
73
67
69
Mean difference and probable
error.
Eastern — Western
chronometers.
h.
— o
+°
+0
+0
+0
+0
+0
+0
+0
+0
+0
— o
— o
— o
— o
— o
— o
— o
— o
— o
— o
— o
— o
— o
— o
— o
— o
— o
— o
— o
— o
m.
o
s.
57. 068
57-541
8. 189
8.654
8.617
9. 106
9.421
9.823
10. 354
10. 750
10. 846
11. 320
34- 150
34- 781
35- 335
35. 906
36. 291
36. 866
37- 420
37-991
38. 740
39- 344
40. 099
40. 664
55.782
56. 448
55-754
56-425
56. 042
56. 694
56. 403
57.079
s.
±0-003
J-o. 003
±0.003
±0.003
±0. 003
±0. 003
-|-o. 002
±0.003
±0. 003
±0.004
±0. 003
±0.003
J^o. 002
±0. 003
±0.003
±0. 004
±0. 003
J;0. 004
±0.003
±0.003
±0. 003
±0. 004
±0. 003
J;0. 002
±0.003
±0. 003
±0. 002
±0. 003
-J-o. 002
±o. 003
±0. 003
±0. 003
120
TELEGRAPHIC DBTEEMINATION OF LONGITUDES
Differences of longitude deduced from exchange of time signals.
Eastern and Western
Stations.
I.a Libertad .
Salina Cruz .
La Libertad .
Salina Cruz .
La Libertad .
Salina Cruz .
La Libertad .
Salina Cruz
r,a Libertad .
Salina Cruz .
Date.
Coatzacoalcos
Vera Cruz . .
Coatzacoalcos
Vera Cruz . .
Coatzacoalcos
Vera Cruz . .
Coatzacoalcos
Vera Cruz . .
Coatzacoalcos
Vera Cruz . .
Coatzacoalcos
Vera Cruz . .
Coatzacoalcos
Salina Cruz .
Coatzacoalcos
Salina Cruz .
Coatzacoalcos
Salina Cruz .
Coatzacoalcos
Salina Cruz .
Coatzacoalcos
Salina Cruz .
Coatzacoalcos
Salina Cruz .
La Libertad .
Salina Cruz
Dec. 29 \
30 1
Dec.
188
Jan.
Jan.
Jan.
Jan.
IS
i6<
17-
Feb. 10-
Feb. 12-
Feb. 13 1
Feb. 14/
Feb. 15 I
Feb. 16/
Mar. 1 2-!
Mar. 13 1
Mar. 14 ■[
Mar. 1 6-!
Mar. I7<
Mar. 18
N.
L.
N.
L,
N.
L.
N.
L.
N.
L.
N.
L.
L.
N.
L.
N.
L.
N.
L.
E.
N.
W.
L.
E.
N.
W.
E.
W.
E.
W.
E.
W.
E.
W.
E.
W.
E.
W.
o w
^T^ and l\Tw
h. VI.
-o 48
-« 13
-o 48
-I 13
-o 48
-I 13
-o 48
-I 13
~o 48
-I '3
35.826
20. 115
34.267
19. 018
14.321
S-7S2
8.893
2.088
6. 621
0.987
4.720
59.618
-I 5 32-445
-o 53 54.482
ATc— ATro
-I s
30. 246
-0 S3 45- 443
-I S
29. 524
— S3 42. 034
-I S
27. 789
-0 S3
38. 064
-I S
26. 583
-0 53 33-830
-I 5
25. u8
— S3
29.811
— 28
20. 456
—I 8
45- 443
— 28
15-973
—I 8
42. 121
— 28
10. 996
— I 8
38. 542
— 28
2. lOI
—I 8
30- 432
— 27
58-719
—I 8
27. 224
— 27
54- 083
-I 8
22.737
in. s.
+24 44. 289
+24 44-751
+24 51-431
+24 S3- 195
+24 54-366
+24 54. 898
—II 37-963
—II 44-803
— II 47-490
—II 49-725
— II 52-753
—II 55-307
+40 24. 987
-I-40 26. 148
+40 27. 546
+40 28.331
+40 28. 505
+40 28.554
O w
■2 '-
3 4J
22
25
25
8
25
25
25
25
25
25
25
25
IS
25
IS
25
25
25
25
25
25
25
25
25
70
68
67
67
74
62
64
67
71
66
64
73
T' and 1"
7 49-555
7 49- 478
7 50. 092
7 50. 001
7 56.744
7 55. 620
7 58-720
7 58. 607
7 59-670
7 59- 550
8 0.438
8 0.313
4 43- 227
4 43- 136
4 49-817
4 49- 770
4 52-500
4 52.427
4 55-296
4 55- 247
4 57-933
4 57- 899
0.515
0.452
6 57. 967
6 57.316
6 59. 155
6 58. 561
7 0.485
6 59-891
1-325
0-756
I- 552
0. 906
1. 609
1.003
V and V
A- 6 54
+ 6 54
+ 6 54.
+ 6 54
+ 6 54
+ 6 54.
+ 6 54
+ 6 54
+ 6 54.
+ 654.
+ 6 54
+ 6 54.
+ 3
+ 3
+ 3
+ 3
+ 3
+ 3
+ 3
+ 3
+ 3
+ 3
+ 3
+ 3
734
811
659
750
687
811
475
588
696
816
460
58s
264
173
014
967
010
937
571
522
180
146
208
145
-(-23 27. 020
+23 27.671
+23 26. 993
+23 27. 587
+23 27.061
+23 27.655
+23 27.006
+23 27. 575
+23 26. 953
+23 27. 599
+23*27.045
+23 27.651
\{V-V')
m. s.
+ 6 54. 772
+ 6 54. 704
+ 6 54. 749
+ 6 54. 532
+ 6 54. 756
+ 6 54.522
+ 6 54-672
+ 3 5.218
+ 3 4-990
+ 3 4-974
+ 3 5- 546
+ 3 5- 163
+ 3 5-176
+ 3 5- 178
+23 27.346
+23 27.290
+23 27. 358
+23 27.290
+23 27.276
+23 27. 348
+23 27.318
0.038
0.046
0.062
0.056
0.060
0.062
0.046
0.024
0.036
0.024
o. 017
0.032
o. 326
o. 297
o. 297
o. 284
0.323
0.303
IN MEXICO, CENTK-IL AMEEICA, THE WEST INDIES, ETC,
VJl
Differences of longitude deduced from exchange of time signals — Continued.
Eastern and Western
Stations.
Date.
t
OJ
^1
ATf and /^Tiv
ATf — at™
is
11
I-.
T' and T"
// and 7"
\{V-l")
1
S
3 S
1889.
h.
m. s.
m. s.
m. s.
m. s.
vt. s.
s.
San Juan del Sur . .
Salina Cruz ....
JMar.
3o{
N.
L.
E.
W.
12
13
—
13 16.628
7 49- 636
+54 33-008
73
73
-17 19-593
-17 18.875
+37 13-415
+ 37 14-133
+37 13-774
0-359
San Juan del Sur .
Salina Cruz ....
JMar.
3.{
N.
L.
E.
W.
13
18
-0
13 12.949
7 46- 439
+54 33- 490
72
73
— 17 19-946
— 17 19-237
+37 13-544
+37 14-253
+37 13-898
0-354
San Juan del Sur . .
Salina Cruz
JApr.
■{
N.
L.
E.
W.
12
14
-0
13 8.327
7 42. 727
+54 34- 400
69
73
—17 20.567
— 17 19. 865
+37 13-S33
+ 37 I4-S3S
+37 14- 184
0-351
San Juan del Sur . .
Salina Cruz ....
}Apr.
JNov.
N.
L.
N.
L.
E.
W.
E.
W.
12
17
12
16
—
+0
+0
13 4-053
7 39- 156
14 55- 285
S 39- 255
+54 35- 103
+9 16.030
64
68
71
72
— 17 21. 630
— 17 20. 905
+0 34-050
+0 34-51°
+37 13-473
+37 14- 198
+ 9 50. 080
+ 9 50- 540
+37 13-836
0. 362
+37 13-923
St. Nicolas Mole ....
Santiago de Cuba
+ 9 50.310
0.230
St. Nicolas Mole . . .
Santiago de Cuba . . .
1 Nov.
=H
N.
L.
E.
W.
12
17
+0
+0
14 56- 983
5 42. 148
+9 14-835
69
71
+0 35. 202
+0 35.666
+ 9 50-037
+ 9 50- 501
+ 9 50- 269
0. 232
St. Nicolas Mole . .
Santiago de Cuba . .
JNov.
3o{
N.
L.
E.
W.
13
IS
+0
+0
14 58. 507
5 44- 959
+9 13-548
66
72
+0 36- 545
+0 37-021
+ 9 50-093
+ 9 50- 569
+ 9 50- 331
0.238
St. Nicolas Mole . . .
Santiago de Cuba . .
JDec.
■{
N.
L.
E.
W.
12
14
+0
+0
14 59. 867
5 47-995
+9 11.872
62
66
-(-0 38. 160
+0 38. 660
+ 9 50-032
+ 9 50. 532
+ 9 50. 282
0. 250
St. Nicolas Mole . .
Santiago de Cuba . .
JDec.
K
N.
L.
E.
W.
12
14
+0
+0
IS 1. 116
5 51-167
+9 9-949
72
72
+0 40- 055
+0 40- 529
+ 9 50.004
+ 9 50.478
+ 9 50- 241
0.237
St. Nicolas Mole . . .
Santiago de Cuba . . .
JDec.
JDec.
.4
N.
L.
L.
N.
E.
W.
E.
W.
12
14
12
12
+0
+0
+0
+0
15 2. 166
5 S3- 63s
26 54- 394
IS 13-437
+9 8.531
+ 11 40.957
70
72
73
72
+0 41-475
+0 41.961
—0 54.672
-0 55-115
-f 9 50. 006
+ 9 50.492
+ 10 46.285
+ 10 45-842
+ 9 50- 249
0-243
+ 9 50. 280
Port Plata . . .
St. Nicolas Mole .
+ 10 46.064
0. 222
Port Plata . . .
St. Nicolas Mole .
JDec.
<
L.
N.
E.
W.
7
12
+0
+0
26 56. 689
IS IS- 161
+ 11 41-528
72
66
—0 55. 122
— 55. 612
+ 10 46. 406
+ JO 45-916
+ 10 46. 161
0.24s
Port Plata . . .
St. Nicolas Mole .
JDec.
,.{
L.
N.
E.
W.
12
12
+0
+0
26 58. 687
15 16.549
+ 11 42. 138
74
73
-0 55-833
-0 56.323
+ 10 46-305
+ 10 45-815
+ 10 46.060
0.245
Port Plata . . .
St. Nicolas Mole .
JDec.
■'{
L.
N.
E.
W.
15
14
+0
+0
27 5. 080
15 22. 002
+ 11 43-078
71
68
—0 56.650
—0 57.126
+ 10 46. 428
+ 10 45-952
+ 10 46. 190
0.238
Port Plata . . .
St. Nicolas Mole . .
JDec.
-{
L.
N.
E.
W.
13
12
+0
+0
27 7. 120
15 23. 669
+ 1! 43-451
70
68
-0 57.068
-0 57- 541
+ 10 46.383
+ 10 45.910
+ 10 46. 146
0. 236
+ 10 46. 124
122
TELEGRAPHIC DETEEMINATION OF LONGITUDES
Differences of longitude deduced from exchange of time signals — Continued.
Eastern and Western sta-
tions.
Santo Domingo
Port Plata . .
Santo Domingo
Port Plata . .
Santo Domingo
Port Plata
Santo Domingo
Port Plata . .
Santo Domingo
Port Plata
Curasao. . . .
Santo Domingo.
Curasao. . . .
Santo Domingo.
Curacao ....
Santo Domingo.
Curasao. . . .
Santo Domingo.
Cara^ao . .
Santo Domingo.
Curasao ....
Santo Domingo.
La Guayra . .
Santo Domingo
La Guayra .
Santo Domingo
La Guayra
Santo Domingo
La Guayra
Santo Domingo
Date.
1890.
I Jan. 2
}jan. 3
I Jan. 4
}>n. 5
I Jan. 6
}jan.
I Jan.
}jan.
}jan.
23
an. 24
25
Feb.
. Feb. 8
Feb. 10 >
I Feb. II I
N.
L.
N.
L.
N.
L.
N.
L.
N.
L.
)-4
t
1
c
i2
E.
12
W.
10
E.
13
W.
10
E.
13
W.
II
E.
II
W.
12
E.
12
W.
II
E.
15
W.
12
E.
12
W.
12
E.
14
W.
12
E.
13
W.
12
E.
IS
W.
12
E.
IS
W.
12
E.
14
W.
12
E.
13
W.
12
E.
13
W.
12
E.
13
W.
13
[\^e and l^Tw
+0 29
+0 27
+0 29
+0 27
+0 29
+0 27
+0 29
+0 27
+0 29
+0 27
J.
41. 546
3S-63I
42. 806
37. 293
43- 774
39- 225
45- 326
41-359
46. 765
43- 523
+0 35
+0 30
+0 35
+0 30
+2 35
+0 3°
+0 35
+0 30
+0 35
+0 30
+0 35
+0 30
+0 44
+0 30
+0 44
+0 30
+0 44
-f o 30
+0 44
+0 30
27.911
7-361
30. 68s
33- 143
10. 428
35-694
II. 821
38. 497
13.284
41-257
14.712
697
905
97!
379
689
736
292
894
^T(f — /\T'w
m. s.
+ -i 5- 915
+ 2 5.513
+ 2 4.549
+ 2 3.967
+ 2 3.242
+ 5 20.550
+ 5 21.797
+ 5 22.715
+ 5 23.873
+ 5 25-213
+ 5 26.545
+13 43-792
+ 13 43-592
+ 13 43-953
+ 13 44-398
o E
67
70
67
73
70
73
67
68
72
69
71
71
70
69
69
72
69
73
72
67
69
73
66
67
69
64
73
73
67
69
T' and T"
+ 1 8.189
+ 1 8.654
+ 1 8.617
+ 1 9. 106
+ i 9.421
+ 1 9.823
+ 1 10.354
+ 1 10. 750
+ 1 10.846
-fi 11.320
34- 150
34-781
35-335
35.906
36. 291
36. 866
37.420
37-99'
38. 740
39- 344
40. 099
40. 664
782
448
754
425
042
694
403
079
V and 1"
m. s.
+ 3 14
+ 3 14.
+ 3 14
+ 3 14
+ 3 i3'
+ 3 14
+ 3 14
+ 3 14
+ 3 14
+ 3 14.
104
569
130
619
970
372
321
717
088
562
+ 3 46.400
+ 3 45- 769
+ 3 46-462
+ 3 45- 891
+ 3 46-424
4- 3 45-849
+ 3 46- 453
+ 3 45. 882
+ 3 46-473
+ 3 45- 869
+ 3 46-446
+ 3 45. 881
+11 48
+ 11 47
+ 11 47
+ 11 47
+ 11 47
+ 11 47
+ 11 47
+ 11 47
010
344
838
167
911
259
995
319
% (^'+^'0
m. s.
+ 3 14- 336
+ 3 14-374
+ 3 14-171
+ 3 14-519
+ 3 14-325
+ 3 14-345
+ 3 46.084
+ 3 46. 176
+ 3 46- 136
+ 3 46. 168
+ 3 46- 171
+ 3 46- 164
+ 3 46- 150
+ 11 47.677
+11 47.502
+ " 47.585
+ 11 47.657
+ 11 47.605
s.
0.232
0.244
o. 198
0.237
0.316
0.286
0.288
0.286
o. 302
o. 282
0-333
0.336
0.326
0-338
IN MEXICO, CENTRAL AMEiiiCA, THE WEST INDIES, ETC. 123
RESULTING LATITUDES AND LONGITUDES.
COATZACOALCOS.
The latitude of the Coatzacoalcos transit pier, as determined by thirty-one observations of pairs of
stars, is North i8° 8' 46". 19.
The telegraphic difference of longitude between the transit piers at Vera Cruz and Coatza- h. m. s.
coalcos, the mean of six independent measurements, is - o 6 54.672
The longitude of the pier at Vera Cruz, as determined in 1883 by Commander C. H. Davis,
U. S. Navy, is - - - ^ 24 33.974
Longitude of Coatzacoalcos pier 6 17 39.302
To reduce the position of the transit pier to the position of the liglit-house, a correction of +10". 11
must be applied to the latitude and — o^ 193 to the longitude. (See description of stations.)
Applying these corrections gives —
r Lat. N. 18° 8' 56".3o
Light-house < Long. W. 6'' 1 7"^ 39'. 1 09
( Or in arc 94° 24' 46". 635
SALTNA CRUZ.
The latitude of the Salina Cruz transit pier, as determined by twenty-eight observations of pairs of
stars, is North 16° 10' 6". 74.
The telegraphic difference of longitude between the transit piers at Coatzacoalcos and h. m. s.
Salina Cruz, the mean of six independent measurements, is o 3 5.1 78
The longitude of the pier at Coatzacoalcos is 6 17 39.302
Longitude of Salina Cruz pier 6 20 44.480
To reduce the position of the transit pier to the position of the observation spot on the summit of the
Morro de Salinas, a correction of — 30". 83 must be applied to the latitude and -f 4^.586 to the longitude.
(See description of stations.)
Applying these corrections gives —
C Lat. N. 16° 9' 35".9i
Observation spot on summit of Morro de Salinas < Long. W. 6" 20"" 49^.066
I Or in arc 95° 12' 15" 990
124 TELEGRAPHIC DETERMINATION OF LONGITUDES
LA LIBERTAD.
The lutitude of the transit pier at La Libertad was not determined.
The telegraphic difference of longitude between the transit piers at Salina Cruz and Lg, h. m. s.
Libertad, the mean of six independent measurements, is o .23 27.318
The longitude of the pier at Salina Cruz is - . ^ . . . . 6 20 44 480
Longitude of La Libertad pier 5 57 1 7. 162
To reduce to the position of Lieutenant Laird's pier used in 1884 there must be applied. .+ 0,030
Longitude of Lieutenant Laird's pier, depending on Salina Cruz 5 571 7.192
Longitude of Lieutenant Laird's pier, depending on Panama 5 57 1 7-375
The difference between the two telegraphically determined longitudes of Lieutenant Laird's
pier is o. 1 83
To reduce the longitude of Lieutenant Laird's pier to that of the inshore end of the iron wharf there must
be applied a correction of +0.^098. (See Telegraphic Longitude Report of 1883-84.)
Applying this correction gives —
C Long. W. 5'' 57" i7'.290
■ ^ Or in arc 89° 19' 19". 350
Lishore end of iron wharf \ /^ •__ _ _ o o
SAN JUAN DEL SUR.
The latitude of the San Juan del Sur transit pier, as determined by twenty observations of pairs of
stars, is North 11° 15' 5". 63.
The telegraphic difference of longitude between the transit piers at Salina Cruz and San h. m.
Juan del Sur, the mean of four independent determinations, is. - - .. 037 13.923
The longitude of the pier at Salina Cruz is 6 20 44.480
Longitude of transit pier at San Juan del Sur .. -. 5 43 30.557
To reduce the position of the transit pier to the position of the signal station, a correction of
— 21". 04 must be applied to the latitude and +I^4I3 to the longitude. (See description of stations.)
Applying these corrections gives —
( Lat. N. 11° 14' 44". 59
Signal station .- < Long. W. 5'' 43"" 31' 970
• ( Or in arc 85° 52' 59".550
ST. NICOLAS MOLE.
The latitude of the transit pier at St. Nicolas Mole, as determined by fifty-two observations of pairs
of stars, is North 19° 49' I4".96.
The telegraphic difference of longitude between the transit piers at Santiago de Cuba and h. m. s.
St. Nicolas Mole, the mean of six independent determinations, is. , o 9 50.280
The longitude of the transit pier at Santiago de Cuba, depending on the position determined
by Commander F. M. Green, U. S. Navy, in 1874, is .. . . .* 5 3 21.953
Longitude of transit pier at St. Nicolas Mole _ 4 53 31.673
To reduce the position of the transit pier to that of the flagstaff at Fort St, George, there must be
applied to the latitude a correction of +0" 10 and to the longitude +0^.780.
Applying these correction's gives —
Flagstaff at Fort St. George
Lat. N.
19°
49'
i5".o6
Long. W.
4*'
53""
32'.453
Or in arc
73°
23'
6".795
IN MEXICO, CENTRAL AMEEIOA, THE WEST INDIES, ETC. 125
poirr PLATA.
The latitude of the transit pier at Port Plata, as determined by twenty-one observations of pairs of
stars, is North -19° 48' 46". 15.
The telegraphic difference of longitude between the transit piers at St. Nicolas Mole and h. m. s.
Port Plata, the mean of five independent determinations, is ._ o 10 46.124
The longitude of the transit pier at St. Nicolas Mole is ... . . . 4 53 3 1-673
Longitude of transit pier at Port Plata _ . . . . . 4 42 45.549
To reduce the position of the transit pier to that of the light-house, a correction of -|-4".68 must be
applied to the latitude and +o^2I8 to the longitude. (See description of stations.)
Applying these corrections gives —
{ Lat. N. 19° 48' 5o".83
Light-house < Long. W. 4'' 42"" 43^-7^7
(Or in arc 70° 41' 26". 505
SANTO DOMINGO.
The latitude of the transit pier at Santo Domingo, as determined by forty-five observations of pairs
of stars, is North 18° 28' 5". 10.
The telegi'aphic difference of longitude between the transit piers at Port Plata and Santo h. m. s.
Domingo, the mean of five independent determinations, is . . o 3 14.345
The longitude of the transit pier at Port Plata is ... .... 4 42 45.549
Longitude of transit pier at Santo Domingo 4 39 31.204
To reduce the position of the transit pier to that of the light-house, a correction of — 1 1".46 must be
applied to the latitude and +o''-74^ to the longitude. (See description of stations.)
Applying these corrections gives —
r Lat. N. 18° 27' 53".64
Light-house < Long. W. 4'' 39™ 3 1^952
( Or in arc 69° 52' 59". 280
CURAgAO.
The latitude of the transit pier at Curasao, as determined by fourteen observations of pairs of stars,
is North 12° 6' 2i".92.
The telegraphic difference of longitude between the transit piers at Santo Domingo and h. m. s.
Cura9ao, the mean of six independent measurements, is : o 3 46.150
The longitude of the transit pier at Santo Domingo is 4 39 31.204
Longitude of transit pier at Curasao , 4 35 45.054
To reduce the position, of the transit pier to that of Rif Fort light-house, a correction of — 1".83
must be applied to the latitude and +o^763 to the longitude.
Applying these corrections gives —
Lat. N. 12° 6' 2o".09
Rif Fort light-house- ^ Long. W. 4" 35" 45'-8i7
Or in arc 68° 56' 27". 255
126 TELEGiiAPHIG UETKRMINATION OF LONGITUDES
LA GUAYRA.
Tlie latitude (^f the transit pier at La Guayra, as determined by fourteen observations of" pairs of
stars, is North 10° 36' 53". 69.
The telegraphic difference of longitude between the transit piers at Santo Domingo and h. m. s.
La Guayra, the mean of four independent determinations, is o 11 47.605
The longitude of the transit pier at Santo Domingo is 4 39 3 1.204
Longitude of transit pier at La Guayra 4 27 43.599
To reduce the position of the transit pier to that of the light-house near the breakwater, a correction
of +3". 66 must be applied to the latitude and -f o^772 to the longitude. (See description of stations.)
Applying these corrections gives —
rLat. N. 10° 36' 57"-35
Light-house near breakwater .. .. < Long. W. 4^ 27™ 44^37I
■ ( Or in arc 66^ 56' 5".565
VERA CRUZ
; r-^v
! \
1 •
*r
22
M
yi M-n. ,1)
b^ ^'^
- J JJ tV,ra'
I VcIRf,.
IS
21
^54
k 20
19
ii
li'' iV
i 16 "t;
O.Sh ii'
-■1 «i«,,S' .1»"''.
■Pt Colli a
, '•*
■'H., '*
' V
/r /
,.i S-.
M2i *r-^
."^.CP
9 9"
l4 i.
VERA CRUZ
'ioi
1 ,' ft
X,
6' ^
I't.MoCAJQXl
7<^-ijrn,J{ytlroqrafih.ic Office ChuTrtNo. 9 67
COATZACOALCOS RIVER
4
4l
fne.gy.S.Sh
Frerrrv ^■ctrogrtgihijC! Office Chart J/b.lCUtB
SALINA CRUZ
"A'^.
f'^ "- » 8i JO '
8i 8t fli f.-^ Si ^^ 7^ 1 8 9i / II
i„'''V^- 8* 7i , '^''2/ 11
JJSr^ 9i Cji TJ^y 8i ,\ „, 5? 6 6 ^ '
J' JO
9
^M 9i 9
10
9i »
9r
J2
11
10 i2^ V.
9r^
9?
si , o
9i
8 9i '■' f>1
ig »i si- ^.-
" . si f- 10
10
- _ 9i
30
13
m
12
13
12
16
IS
From HydrograjjTdc Of'f%ce Chart No. 876
LA LIBEETAD
3 ^i 3 i ^ ^ . , 6
31
5i
4i
SSK
2i
6t
7
6i
5i 2i«>'-' 3i
2i
a
5i
Iff'.'bh.S
6i
S 6i
6^
8*
9i
8i
84 84.
94
84
64
84
Ik
6 T
8
8
n
1
84
ni
74
gy.hh. S
8
74
8
^
84
8
ay
M.J
74
84
yy fcfc. A"
8j
84
94
94
95
—.10,^
Ik.S
(4
94
94
84
10
94
94
gy.bh,S
94
9i
9i
..J«-
io4
10.
94
94
-lb
/'' io4
10--..
10.
10"
/
1
\
\
94 \
I
j
.•
10
•To
From JfyAroffrajahic Office CTuiTt -Xb ■ 939.
SAN JUAN DEL SUR
Ftotti Ifydrocfraphic Office Chartl^b 93't
SANTIAGO DE CUBA
4*4
41*' ,
I 11.]^
■otS
'Jp^ ,
o *• -''If. ..."■■•'»'«(» J;t''
Wj,rf«il" \
11 JfjJ ,6^ "-^^t
SkSTIt'I
.it
a*
i? a
H
ii
3f
u
ij «
4i
4?
■??
3^
i f3|^STR0fHj^l|(te»I.OBS SPOT
*!
p
« 4
^.^ life., ' »
••l t
'I t
From Hydro(jraj)hic OFfice Chart ^n 1003
ST. NICOLAS MOLE
^am J^/vtroqrc^hic Office Chcert N'o. B50
PORT PLATA
■ ^
,/'■■-
^.v**''' 6i 5i
/" <'-^t;
3
\ 3?
/^.
\
,.,
' ■■■■V^^..
•2i
.3
TT'o/n. KyArographic Office Chart Wo. 959
SANTO DOMINGO
Basttoit ofLa. ComoerpcW]
5i
54'
5
..4
5.
5
44
■I
54
r.4
54
-.44
54
54
6i
64
^ '
7i
74
^
#^om :HxdTocrraphic Office Cha>t 2^o. 9/J^
SANTA ANA, CURAC^AO
■r^^^jy^'^ ■■'^^^iSk
PoS^
^r^ '' a^^*
- — ^
^ ^° 11^^
m
17 3i0 2? ^^2S
IS 24 JT'
,i ^, .....34
jyanv Hydrop-c^Mc, Office C?uart2^o.lOi9
LA GUAYRA
20
S.Sh
|r^r
, ;i^ii#*iii«»*\ ^ " \ 4 '^ -^ *" *
s=-- t %
■'-H->^V- •
it''
//y^/
F— 7 ,. light :fixe4 while, "visajle. 7 miles
.2%« ce>n,tem.plAtAd' Ttarbor impro\'errtArua
cere- vnjBi>caub&A Jy hroh&rv Ixaes.
FroTTi Hydjro^apMo Office ChcurtJVo, 992
APPENDIX
The Constants of Kew Theodolite Magnetometer, No. 54,
WITH THE
Magnetic Observations and Results of the U. S. Telegraphic Longitude Expeditions
OF 1888 and 1889, AND 1889 AND 1890, OBSERVED BY LIEUTENANT C. LAIRD AND
Ensigns J. H. L Holcombe and L M. Garrett, U. S. N., under
THE COMMAND OF LIEUTENANT J. A. NORRIS, U. S. N.
Prepared for publication by
G. W. LITTLEHALES,
U. S, H YDROGR^^PHIC OFFICE,
Under the direction of
Lieutenant-Commander RICHARDSON CLOVER, U. S. N.,
HYDROGRAPHER.
127
GENERAL INTRODUCTION.
During the year 1884 the U. S. Hydrographic Office was engaged in charting the area covered by
the West Indies and the Caribbean Sea. More data were required for the deduction of the empirical
lormuliv, based on general mathematical views, which would serve for the computation of the declination
(or variation) at any geographical position within that area, and for extending the series of observed values
at the important stations sufficiently to provide for the deduction of equations for predicting values of the
declination and assigning rates of secular change. In accordance with a scheme submitted by Mr. G. W.
Littlehales, C. E., Assistant in charge of the Division of Chart Construction, the commanders of vessels of
tlie North Atlantic Squadron were directed to make observations for the determination of declination at
the ports visited by their vessels, and the expedition for the determination of telegraphic longitudes, then
fitting out, was supplied with magnetic instruments for the determination of declination, dip, and horizontal
force at the astronomical stations to be occupied.
During the winter of 1 888-89, magnetic observations were made at Vera Cruz, Coatzacoalcos, and
Salina Cruz, Mexico ; similar observations were made at Port Plata, San Domingo, and Cura9ao, West
Indies, and at La Gruayra, Venezuela, during the winter of 1889-90.
The observations were made during the first season's work by Lieut. Charles Laird and Ensign J. H.
L. Holcombe. Ensign Holcombe was reheved by Ensign L. M. Garrett in the fall of 1889.
The instruments furnished the expedition were a Kew unifilar magnetometer and a Barrow dip circle.
The magnetometer, when in use, was supported by a tripod stand similar to that used by photogra-
phers; three radial V-grooves supported the leveling screws which form the feet of the instrument. The
dip circle was set up on a solid pier built of brick and cement. At all stations except Vera Cruz the in-
struments, after being mounted, were not dismounted until after the completion of the observations at the
station.
At Vera Cruz and Coatzacoalcos one of the observing tents designed by Lieut. J. A. Norris was used
to cover the instruments. At the other stations a wall tent, the pins and mountings of which were made
of copper, was used.
Independent sets of altitude and time azimuths were taken with a theodolite for the determination
of the azimuth of the mark.
DESCRIPTION OF THE STATIONS,
The site selected at Vera Cruz, Mexico, was in the Plaza Baluarte, near the intersection of the Calle
de Ocampo and the Avenida de la Playa,
Lat. N. 19= 12' 2"
Long.W. 96° 7' 25"
At the other stations the magnetic instruments were set up near the spot at which the astronomical
observations were made. A description of these astronomical observation spots is given in that portion of
the report referring to the telegraphic determination of longitudes.
At Coatzacoalcos, Mexico, the magnetic station bore 207 feet due north of the transit pier,
Lat. N. 18° 8' 48"
Long W. 94° 24' 49"
129
21124—11^0. 97 9
I BO MAGISETIO OBSERVATIONS.
At Salina Cruz, I\[exico, tlie site selected was N. 15° W. distant 278 feet from the astronomical
observation spot,
Lat. N. 16° 10' 8"
Long.W. 95° 11' 8"
At Port Plata, San Domingo, the magnetic instruments were set up 96 feet N. 'T]^ W. from the center
of the transit pier,
Lat. N. 19° 48' 46"
Long.W. 70° 41' 23"
The site selected at Cura9ao, West Indies, was in the open space in front of the governor's mansion ;
the instruments bore W. 24° S. distant 68 feet from the observation spot,
Lat. N. 12° 6' 21"
Long.W. 68° 56' 16"
At La Guayra, Venezuela, the magnetic instruments were set up in the vacant lot to the eastward
of the market, and bore from the center of the ti'ansit pier W. 35° S. distant 210 feet,
Lat. N. 10° 36' 52"
Long.W. 66° 55' 56"
Calculation of the value of the horizontal component of the eartKs magnetic force from observations of vibration
and deflection.
T„r= observed time of one vibration of the magnet.
Ti ^ time of vibration, corrected for rate of chronometer and arc of vibration.
T ^z time of vibration, corrected for rate of chronometer, arc of vibration, temperature, torsion force of
the suspending thread, and induction.
S zr daily rate of chronometer, -|- when gaining, — when losing.
oca' ^semiarc of vibration, at the beginning and end of the observation, expressed in parts of radius.
— — ratio of the force of torsion of the suspending thread to the magnetic directive force. [This is obtained
F h V ^
from the formula — rr where v zz the angle through which the magnet is deflected by
F 90°— z;
a twist of 90° in the thread.]
g-zr the correction for the decrease of the magnetic moment of the magnet pi-oduced by an increase of
temperature of 1° Cent. [This correction is not constant at all temperatures, and the correc-
tion is more exactly expressed by aformula of the form — correction to t^ — qit^ — + 2'(^o~0^
t„ being the observed temperature and t an adopted standard temperature.]
K z= Moment of inertia of the magnet, including its suspending stirrup and other appendages. [This is
constant for the same magnet and suspension, but varies slightly with temperature, owing to
the expansion of the materials.]
3- = ratio of the circumference to the diameter of the circle = 3. 141 5927.
jj. = the increase in the magnetic moment of the magnet produced by the inducing action of a magnetic
force equal to unity of the metric system of absolute measurement.
/„ — apparent distance between the centers of the deflecting and suspended magnets in the observation
of deflection.
rizz distance corrected for error of graduation and temperature [r— r<,{ i +0.0000 18 (^„—o° Cent.)} + cor-
rection for scale error.]
u =. observed angle of deflection.
P =: a constant, depending upon the distribution of magnetism in the deflecting and suspended magnets.
[This is to be determined from several series of observations of deflection at two or more dis-
tances. The most convenient distances to be employed are .3 and .4 of a metre. The correction
is very small and may remain unapplied until the conclusion of the series.]
MAGNETJO OBSERVATIONS. 131
mrzmaonetic moment of the deflecting or vibrating magnet.
II = horizontal component of the earth's magnetic force.
=: approxmiate value oi
Ho II
-,"= value of ^ before the application of the correction ( i — )
\ 86400 16/ V F ''*« /
Wiiizz
ih ir HA ^r/^^^" ^/ H Ii\ nV
Let A = value of -- from deflection at the distance r
H'
and A' z= value of from deflection at the distance r'
then P =
H'
A -A'
A_A/
^'2
r
The quantity K is obtained by observing the time, of vibration of the magnet alternately with its
usual mounting and with its moment of inertia increased by the addition of a gun metal ring or cylinder
of known weight and dimensions.
/ P cP\ f-
When a cylinder is employed the value of K is obtained from the'formula K— Wl 1- — 1
where W is the weight of the cylinder in grammes, / and d its length and diameter expressed in metres, t'
and t being the times of vibration (corrected for torsion, temperature, etc.) of the magnet with and with-
out the additional weight.
Constants, coefficients, and corrections for the unifilar magnetometer No. 54, by Elliot Bros., London.
Graduation of deflection bar :
Apparent distance from center of instrument. True distance at temperature 0° Cent.
0.25 0.24993
0.30 0.29994
0.35 0.34994
0.40 0.39991
0.45 0.44991
Deflection apparatus, angular value of one scale division = 60^.45.
Wlien the scale reading is above the middle point of the scale the correction to the circle reading is
additive, and»when below it is subtractive.
Vibration magnet, angular value of one scale division z= i'.8.
The deflecting magnet employed is marked : 54A.
The suspension magnet employed is marked : 54C.
132
MAGNETIC OBSERVATIONS.
For deflecting magnet :
Correction to o° Cent. = 0.000357 (^„ — 0°) + 0.00000 1 1 2 (^ — 0°)"
Induction coefficient >u — o 000005 ; log. =14.72226.
Log. ;r^K at 0° Cent. =: 9.44474.
Dimensions of inertia cylinder:
Length zz 0.0951 7 metres.
Diameter = 0.00996 metres.
Weight ^ 63.43 grammes.
TABLES TO FACILITATE THE CALCULATION OF THE OBSERVATIONS.
Table I. — / a/i/i.' of for different iniiial and terminal semiarcs of vibration,
16
Semiarc
Semiarc at end of vibra'.ion.
at com-
mencement.
80'
70'
60'
50/
40'
30/
/
100
0. 00004
0.00004
0.00003
0. 00003
0. 00002
0. 00002
90
0. 00004
0. 00003
0.00003
0. 00002
0. 00002
0. OOOOI
80
0. 00003
0. 00003
0.00003
0. 00002
0. 00002
0. OOOOI
70
0. 00003
0. 00002
0. 00002
0. OOOOI
0. OOOOI
60
0. 00002
0. 00002
0. OOOOI
0. OOOOI
50
0. OOOOI
0. OOOOI
0. OOOOI
Table II. — Value of \-\- ^- for different values of the deflection produced in the
F
magnet by a twist of ijo° of the suspension thread.
Effect of
90° of
torsion.
■^1
Effect of
90° of
torsion.
■ + ^:
Effect of
90° of
torsion.
■ + ^
/
/
/
I
1. 00019
6
1. 001 1 1
II
I . 00204
2
0. 00037
7
0. 00130
12
0. 00223
3
0. 00056
8
0. 00148
13
0. 00241
4
0. 00074
9
0. 00167
14
0. 00260
5
0. 00093
10
0. 00185
15
0. 00278
Table III. — Value of i
86400
chronometer employed.
for different rates of the
Daily
Rate.
Chronometer
gaining.
Chronometer
losing.
Sec.
5
0. 99994
1 . 00006
10
0. 99988
0. 00012
IS
0. 99983
0.00017
20
0.99977
0. 00023
25
0.99971
0. 00029
30
0. 99965
0. 00035
35
0. 99959
0. 0004 1
40
o- 99954
0. 00046
45
0. 99948
0.00052
50
0. 99942
0. 00058
Table YM .— Values of i-\-V^ for
different distances.
Distance.
•+-:
)-„»
Metres.
0. 250
1 . 00068
0.300
I . 00039
0-350
1 . 00025
0. 400
1. 00016
0.450
1. 00012
MAGNETIC OBSEEVATIONS.
138
Table V. — Temperature corrections for the magnet 54 A.
Temp.
('0).
( 'en:.
Coireclion to
0° Cent.
Temp.
Co).
Correction lo
0° Cent.
Temp.
Cent.
Correction to
0° Cent.
Cent.
-5
—0. 00176
+ 10
+0. 0036S
25
+0. 00962
— 4
—0. 00141
II
0. 00407
26
0. 01004
— 3
— 0. 00105
12
0. 00445
27
0. 01046
— 2
— 0. 00070
13
0. 00484
28
0. 01088
— I
— 0. 00035
14
0.00522
29
0. 01 130
0. 00000
15
0. 00561
30
0.01172
+ '
-|-o. 00036
16
0. 00600
31
0. 01215
2
0. 00072
17
0. 00640
32
0. 01258
3
0. 00109
18
0. 00680
33
0. 01301
4
0. 00145
19
0.00719
34
0.01344
5
0. ooi8i
20
0. 00759
35
0.0138;
6
0.00219
21
0. 00799
36
0. 01431
7
0. 00256
22
0. 00840
37
0.01475
8
0.00293
23
0.00881
38
0.01519
9
0.00331
24
0. 00922
39
0.01563
Table VI. — Value of Log. t^ K, and of Log. J^ r'^ for different temperatures.
Temp.
Cent.
Log. TT^K.
Log. yi ^.
>-o=:Oi".250.
?-„^o".30o.
7o=ora.350.
ro^o"i.400.
ro = o'".45o
9.44474
7.89240
8. 13007
8. 33095
8. 50486
8. 65835
5
9.44479
7.89251
8. 13019
8. 33107
8. 50498
8. 65847
10
9- 44485
7. 89263
8. 1 303 1
8.33119
8. 50510
8. 65859
15
9. 44490
7.89275
8. 13042
8.33130
8. 50521
8. 65870
20
9. 44496
7. 89287
8. 13054
8.33142
8. 50533
8.65882
25
9.44501
7. 89298
8. 13065
8-33153
8. 50544
8. 65894
30
9. 44507
7.89310
8. 13077
8.33165
8.50556
8. 65906
35
9.44512
7. 89 22
8. 13089
8.33177
8. 50568
8.65917
40
9.44518
7- 89334
8. 13101
8.33189
8. 50580
8. 65929
Metal scale centigrade thermometer belonging to unifilar No. 54, hy Elliot Bros.., London {verified in a vertical
position).
Corrections to be applied to the scale readings, determined by comparison with the standard in-
struments at the Kew Observatory.
At 0° — o°.4
5° -o°.5
10° -o°.5
15° -o^5
20° — o°.5
25° — o°.4
30° -o°.3
Note I. — When the sign of the correction is +, the quantity is to be added to tlie observed reading, and
when — , to be subtracted from it.
134
MAGNETIC OBSERVATIONS.
Note II. — As mercurial thermometers are liable to read too high through age, this instrument ought
to be again tested, at some future date, at the melting point of ice, and if its reading at that point be
found different from the one now given, an appropriate correction should be applied to all the
above points.
Observations for azimuth of mark made at Vera Cruz, Mexico, at 5 p. m. January 7, 1889, by Lieut. Charles Laird, with Fauth instrument.
Formula :
tan» >i A = sin (s - (p) sin ( .; — h)
cos S COS (.f — p)
s = y2{er 24, 1888, by Ensign J. H. L. Holcombe, witli ICew tlieodolite magnetometer No. 54, with
long magnet surpended erect.
Local
time.
u. m.
h, in.
9 00
10
20
30
45
10 00
IS
p. m.
1 53
15
30
45
2 00
15
30
45
50
Scale-
readings.
Left. Right.
d.
40.8
41. o
41. o
41. 2
41. o
30 ! 40- 2
Mean.
d.
41. I
41.2
41-4
41-5
41- I
40. 6
Line of detorsion.
40.
40.8
40.0
40.4
39-8
40.
39-4
40.4
39-8
40.
40.
40.
40.0
40. 2
40.4
40. 6
40.4
40. 2
39-9
39-9
39-9
40. o
40. I
40.5
a / //
Azimuth circle, A 242 44 40
B 62 45 10
Remarks :
Suspended torsion weight.
Suspended magnet.
Suspended torsion weight.
o / //
Azimuth circle, A 242 44 40
B 62 45 20
Remarks :
Suspended magnet.
Determination of scale value
of magnet.
Determination of axis of jjfiagnet.
Scale.
Circle read-
ings, mean of
Value of
10 divi-
Scale.
Scale read-
ings.
Mean.
Alter-
nate
Axis.
verniers.
sions.
mean.
/ //
d.
10
243 40 40
E
40.
40.
40.00
15
32 30
I
14.
13.0
13-50
39.80
26. 65
20
23 10
17 30
E
39-2
40.
39.60
13-70
26. 65
25
14 20
18 10
I
15.0
12.8
13.90
39-40
26.65
30
05 30
17 40
E
37-4
41.
39.20
13-70
26.45
35
242 56 00
18 20
I
15.0
12. 2
13. 60
39-50
25-55
40
45 50
i8 40
E
38.4
41.^
39.80
45
37 20
18 40
50
28 20
18 30
55
19 20
18 00
60
10 00
18 20
65
00 40
18 40
70
241 52 20
17 40
Value of one division of
scale = i'.82.
Scale reading of ax
IS
26.39
40.70
Mean scale reading of east an
d west
magnetic elongation ....
Reduction to axis .
■ • ■
26. 04
152 44.97
^ difference =
14-31
Azimuth circle rear
s ...
/ //
A 158 10 00
B 338 10 40
tions" .
Magnetic meridian reads .
At beginning of a. m. observa
153 II. 01
At end of p. m. observations
Mean reading of mark , . .
A 158 12 00
B 338 12 40
248 n.33
^ 248 1 1 20
Azimuth of mark ^^
r. ofN. .
102 12. 35
145 58.98
7 T2 C\1
Marrnetic declina
tion . .
E
MAGNETiO OBSEKVATIONS.
13'J
Observations for declination made at Vera Cruz, Mexico, December 25, 1888
long magnet
Line of detorsion 110°.
, by Ensign J. H. L. Ilolcombe, wilh Kew theodolite magnetometer IS'o. 54, with
suspended erect.
I.oc.\l
time.
Scale-
readings.
Mean.
/ //
Azimuth circle, A 242 44 40
I? 62 45 10
Determination of scale value
of magnet.
Determination of axis of magnet.
a. m.
Left. ; Right.
Scale.
Circle read-
ings, mean of
verniers.
Value of
10 divi-
sions.
Scale.
Scale read-
ings.
: Alter-
h. m.
8 SO
9 00
,/.
d.
,/.
Remarks :
Suspended torsion weight.
Suspended magnet.
mean.
10
/ //
243 39 40
E
39. 40. 2
39.60
d.
IS
41.2 41.8
41- S
■S
31 20
I 14.5 12.0
13.20 39.65 26.43
30
41. 8 ; 42.
41.9
20
21 50
17 SO
E 39. 2 40. 2
39.70 13.40 26.55
i ''
41.8 ' 42.
41.9
25
12 50
18 30
I 13.0 14.2
13. 60
39. 60 26. 60
10 OO
41. 5 41. 8
41-7
30
03 20
18 30
E , 39. 40.
39-50
13.50 26.50
IS
i
41.2
41.4
41-3
Suspended torsion weight.
35
40
242 54 20
45 00
18 30
18 20
I i 13.8 13.0
13- 40
39-70
39.60
26. 50
E
i9-o
40.4
p.m.
Line of detor
sion
/ //
Azimuth circle, A 242 44 40
B 62 45 10
45
50
55
60
65
70
36 00
27 00
iS 00
09 00
241 59 40
50 20
18 20
18 00
18 00
18 00
18 20
18 40
1 00
IS
30
45
2 00
IS
39-8
40. 2
40.0
40.0
40. 2
40.8
40.4
40.4
40.8
41.
40-3
40.3
40. 2
40.4
40. 6
Remarks : Suspended magnet.
Value of one division of
scale = i'.82
Scale reading of axis .
26.52
Mean scale reading of east a
Reduction to axis ....
nd west magnetic elongation .
41.05
/
26. 59
= difference =
14.53
Azimuth circle rea
ds
152 44.91
tions .
f /f
A 158 II 00
Magnetic meridian reads .
At beginning of a. m. observa
153 11.50
B 338 II 40
At end of p. m, observations
Mean reading of mark .
A 158 12 20
B 338 13 00
\
248 12.00
= 248 12 00
Azimuth of mark W. of N
102 12. 35
True meridian reads . . .
145 59-65
7 1 1. 81;
E.
140
MAGNETIC OBSERVATIONS.
Observations for dip made at Vera Cruz, Mexico, December IJ, 1888, by Lieut. J. A. Norris, and December 16, 1888, by Lieut. Charles Laird, with dip circle
No. 84 and needle No. i.
[Mean by polarities.] [Mean by polarities.]
Polarity of marked end south.
Circle east.
Circle west.
Face east.
Face west.
Face east.
Face west.
S.
N.
S.
N.
S.
N.
s.
N.
/
/
/
/
/
/
/
/
44 31
44 18
4405
44 03
44 43
4440
44 16
44 23
33
18
05
0:
42
38
15
22
32
18
05
02
42.5
39
'5-5
22.5
44° 25'
44° 03'. 5
44° 4o'-7
44° 19'
44° 1 4'. 3
44° 29'.8
Mean, 44° 22''.o
Polarity of marked end north.
Circle west.
Circle east.
Face west.
Face east.
Face west.
Face east.
S.
N.
S.
N.
S.
N.
S.
N.
/
/
/
/
/
/
/
/
44 41
44 39
44 IS
44 23
44 27
44 13
44 00
43 57
44
42
11
iS
27
13
02
44 01
42-S
40.5
13
20.5
27
■3
01
43 59
44° 4I'.5 44° l6'.7
44° 20'
44° 00'
1
Mean, 44° 19^.5
Resulting dip, 44° 2o'.9.
1
December 15,1888.
Circle in Mag. prime vertical.
Local time of beginning, 3:38 p. m.
/
Circle N. Needle N. 82 02
" S. 81 07
Circle S. " N. 82 05
" S.
81 18
Mean,
81 38
Polarity of marked end north.
Circle east.
Circle west.
Face east.
Face west.
Face east.
Face west.
S.
N.
S.
N.
S.
N.
S.
/
44 46
43
N.
/
4400
00
/
43 S9
58
/
44 28
30
/
44 13
18
/
44 19
15
/
44 16
23
/
44 43
49
00
58.5
29
'5-5
17
195
445
46
43° S9'-2
44"^
44° 22'.2 44° l8'.3
io'.7 44°
Mean, 44° 2i''.2
44° 45/2
3i'-7
Polarity of marked end south.
Circle west.
Circle east.
Face west.
Face east.
Face west.
Face cast.
S.
N.
S.
N.
S.
N.
S.
N.
/
4424
20
/
44 23
28
/
44 36
39
/
44 33
35
/
44 06
06
/
44 03
00
/
44 21
26
/
44 06
II
22
2S-S
37-S
34
06
oi.s
23-5
08.5
44° 23'. 7
44'
44° 3S'-8
29'-7
Mean, t
44° 03'.8
44°
4° I9'.8
44° i6'.o
og'.g
Resulting dip, 44° 20^.5.
1
December 16, 1888.
Local time of beginning. 1 1:25 a. m.
Local time of ending, i :oo p. m.
Circle in Mag. prime
. Circle N. Needle N.
" S.
Circle S. " N.
" S.
vertical.
t> /
23 OS
23 58
18 14
19 06
Mean,
21 05
MAGJSETIO OBSERVATIONS.
141
Observations for dip made at Vera Cruz, Mexico, December 26, 1888, by Lieut. Charles Laird, with dip circle No. 84 and needle No. I.
[Mean by polarities.]
Polarity of marked end south.
Circle east.
Ciicle
west.
Face east.
I'^ace west.
Face ea.sl.
Face west.
S.
N.
/
44 17
16
S.
/
44 04
04
N.
S.
N.
44 39
40
S.
N.
/
41 22
26
r
44 32
' 30
/
44 01
01
/
44 40
41
/
44 13
17
31
16. 5
04
01
40- 5
39-5
15
24
44° 23'.8
44' 1
44° 02'.5
3'. I
Mean, 44'
44° 40' 44° I9'-S
44° 29'.8
2 1 '.4
Polarity of marked end north.
Circle west.
Circle east.
Face -west. 1 Face east.
Face west.
Face east.
S. N.
S. ' N.
S.
X.
S.
/
44 02
03
N.
/
44 39
39
/
44 37
36
/
44 15
13
/
44 23
22
/
44 24
22
/
44 07
08
/
43 59
44 01
39
36.5
14 22.5
-3
07-5
02.5
00
44° 37'-8
44° 2
44° lS'.2
S'.o
Mean, 44
44° i5'-2
44° c
° iS'.i
44° c
8'-3
i'-3
Resultii
ig dip, 44°
1 9'. 8
December 26,
Local time of beginning, 1:45 p. m.
Local time of ending, 4:00 p. m.
Circle in Mag. prime vertical.
Circle N. Needle N. 15 46
S. 15 28
Circle S. " N. 15 59
S. 15 04
Mean, 15 34.25
142
MAGNETIC OBSEKVATIONS.
Observations lor ileclination made at Coat^acoalcos, Mexico, February
witli long
Line of detorsion, go°.
4, 1889, by Ensign J. H. L. Holcombe, with Kevv theodolite magnetometer No. 54,
magnet suspended erect.
Local
time.
A. m.
8 35
50
9 05
20
35
p. m.
12 15
30
45
1 00
15
30
45
2 00
15
Scale-
readings.
Left.
il.
38.9
39-4
39-2
39-2
39-0
Right.
40. I
39-6
39-8
39-6
39-4
Mean,
o / //
Azimuth circle, A 238 24 20
B 58 25 00
39.00
39-50
39-50
39-40
39.20
I
Line of detorsion, 40
30.9
31-1
30.4
31-4
31-4
31-2
30.9
31.0
30. s
30.9
30-7
30-9
30-9
31.0
31.0
31-0
31.0
31.0
31.00
30.90
31.10
30-95
30.85
30.80
30.95
31.00
31.00
Remarks :
Suspended magnet 8:20 a. m.
Dismounted magnet. Suspended
torsion weight.
0/1/
Azimuth circle, A 238 24 20
B 58 24 40
Remarks :
Suspended magnet at 11:55 a. m.
Determination of scale value
of magnet.
Determination of axis of magnet.
Scale.
Circle read-
ings, mean of
verniers.
Value of
10 divi-
sions.
Scale.
Scale read-
ings.
Mean.
Alter-
nate
mean.
Axis.
/ //
d.
u
239 20 30
E
40.0
40. I
40.05
10
02 20
iS 10
I
15.0
16. 9
15-95
39-77
27.86
20
238 43 30
18 50
E
39-0
40.
39.50
15.92
27.71
30
25 40
17 SO
I
15.0
16.8
15-90
39-45
27.67
40
07 50
17 SO
E
38-8
40.0
39-40
15.50
27.45
50
237 49 50
18 00
I
14.
16. 2
15. 10
39.20
27.13
60
30 50
19 00
E
38.0
40.0
39.00
70
13 00
17 50
80
236 55 00
18 00
70
237 13 00
i8 00
60
31 00
18 20
SO
49 20
18 00
40
238 07 20
18 30
30
25 50
18 00
20
43 50
18 40
10
239 02 30
17 30
20 00
Value of one division of
scale = I'.Si.
Scale reading of axis
27-57
35- 15
Mean scale reading of east ai
id west magnetic elongation . .
tions .
/
13. 72
148 24.59
= difference =
7-58
Azimuth circle reads . . . .
Magnetic meridian reads .
At beginning of a. m. observa
/ //
A 230 16 40
148 38.31
B 50 17 00
At end of p. m. observations
A 230 14 40
Mean reading of mark .
140 15.91
B 50 IS 20
= 140 15 55
Azimuth of mark E. of N.
178 34.00
True meridian reads . .
141 41.91
M
agnetic decline
ition .
6 56.4
E.
MAGNETIC OliSliKVATlONS.
143
Observations for declination ma.l. at Coatzacoalcos, Mexico, February 5, 1889, by Ensign J. II. L. Ilolcombe, with Kcw theo.lolit. magnetometer No. 54. with
long magnet suspended erect.
Line of detorsion, 90''.
Local
Sc
ile-
"
time.
read
ings.
/ //
Left.
Right.
Mian.
Azinuuli circle, A 2jS 14 00
B 5S 14 40
a. m.
h. III.
d.
d.
U.
Remarks :
8 35
39- «
41.2
40. 15
Swung magnet at 8:20.
50
39-9
40.8
40-35
9 OS
40. I
41. o_
40-55
20
40. 2
41.0
40. 60
Torsion weight hung over night.
35
40. 6
41.0
40. 80
50
40. 8
41.
40.90
10 05
40.8
40.9
40.8s
20
40.5
40.9
40.70
40
40. 2
40.4
40.30
01//
p. in.
Line c
f detorsion, 60
Azimuth circle, A 238 14*20
B 58 14 40
12 30
38-0
40.8
39-40
Remarks : Suspended magnet at 12.25.
45
38-4
39-9
39-15
I 00
38.9
39-2
39-05
15
39-
39-4
39.20
30
39-
l. Holcombe, long magnet deflecting at right angles to short magnet suspended.
Distance r = o'".44o.
Circle readings.
Circle readings.
X,
No.
A.
B.
/ //
Mean.
No.
A.
B.
Mean.
/ //
/ //
/ //
/ //
/ //
E.
I
61 57 00
5640
5650
W.
2
56 06 20
6 20
6 20
E.
3
56 40
56 20
5630
W.
4
06 40
6 20
6 30
E.
S
62 06 20
700
6 10
Mean, 6l° 59' 5°" 56° 06' 25''
W.
6
56 13 40
1340
'3 40
E.
7
62 03 00
300
300
W.
8
13 40
14 00
13 50
■r.
1>
E.
9
61 59 20
5900
59 10
•:^
W.
10
14 40
14 20
1430
Mean, 62° 01' 05" 56° 14' 00"
Computation: — = ^r3sin u {\ — — )
/
Magnet east, 2 w = 5 53. 41
Magnet west, 2 « = 5 47. 08
Mean, 5 50. 33
« = 2 55. 12
Sin u
P
Logarithms.
8. 62822
8- 70743
Time of beginning, 1:15
Time of ending, 2:20
Temp., 24. C.
Temp., 25. 5
I — —
temp., etc.
m
0. 00749
0. 0041 1
Mean, 1:47
/■=24. 7
II
7- 34725
Distance r = o'".465.
Circle readings.
No.
E.
W.
E.
w. :
E. I 5
A.
B.
/
//
/ //
62
32
20
32 20
32
20
32 20
32
20
32 20
Circle readings.
Mean.
No.
A.
B.
Mean.
/ //
/ //
/ //
/ //
32 20
2
57 35 20
35 40
35 30
32 20
4
35 20
35 20
35 20
32 20
Mean,
62° 32' 20''
o ,c/ ,c//
57° 35' 25
W.
E.
W.
E.
W.
62 29 00
29 20
29 20
29 00
29 10
29 to
6 57 34 00
S I 33 40
10 34 00
3420
3400
3400
34 10
Mean, 62° 29' 10'
57° 34' 00"
Computation :
H
= \ r-' sin « (I ■
o /
Magnet east, 2^ = 4 56. 91
Magnet west, 2 » = 4 55.17
Mean, 4 56. 04
« = 2 28. 02
Time of beginning, 8:34
Time of ending, 9:20
Mean, 8:57
Temp., 24. 5 C.
Temp., 25. 6
/=25. o
i'-
:i
Sin
"
P
I -
r'-
temp.
etc.
m
*
II
Logarithms.
8. 70194
8. 63390
o. 00437
o. 00419
7-3444°
150
MAGNETIC OBSERVATIONS.
Observations for horizontal intensity by the method of deflections -with Kew theodolite magnetometer No. 54, at Coatzacoalcos, Mexico, Febi-uary 11 and 12,
1889, by Ensign J. H. L. Holcombe, long magnet deflecting at right angles to short magnet suspended.
Distance r^d^.^So.
Distance y=.o'".385.
■a
c
Circle readings.
Circle readings.
'A
No.
A.
B.
Mean.
No.
A.
B.
Mean.
t It
/ //
/ //
1 /f
/ //
/ //
E.
I
64 35 40
36 00
35 SO
W.
2
55 29 40
2940
2940
^•
E.
3
34 40
3500
3450
C4
W.
4
29 00
29 20
29 10
E.
5
34 40
3500
3450
Mean. 64° 35' \o" 55° 29' 25"
W.
6
55 26 40
26 40
26 40
E.
7
64 27 20
27 20
27 20
W.
8
26 00
26 20
26 10
(LI
E.
9
26 20
26 40
26 30
>
W.
10
26 20
26 40
2630
Mean, 64° 26' 55" 55° 26' 27''
m P
Computation: — = \r''%\Ti.u{\— — )
/
Logarithms,
Magnet east, 2 ?!■ = 9 05. 75
Magnet west, 2 k = 9 00. 47
\r^
8. 43589
Mean, 9 03. II
Sin «
8.89712
« = 4 3J-5S
P
I — —
0. 01037
Time of beginning, 9:45
Temp., 25. C.
temp., etc.
0. 00428
Time of ending, 10:45
Temp., 25. 7
m
Mean, 10:15
(■=25.4
H
7. 34766
0)
C
"A
Circle readings.
Circle readings.
No.
A.
B.
Mean.
No.
A.
B.
Mean.
/ //
/ //
/ //
/ //
/ //
/ //
E.
I
64 25 00
25 00
25 00
W.
2
55 42 20
42 20
42 20
E.
3
24 40
2440
2440
W.
4
42 20
4240
4230
E.
5
24 40
2440
2440
Mean, 64° 24' 47"
55° 42' 25'/
W.
6
57 38 40
3900
3850
E.
7
64 19 40
1940
1940
W.
8
38 40
3900
3850
U5
E.
9
19 20
19 20
19 20
W.
10
39 00
3920
39 10
Mean, 64° 19' 30"
55° 38' 57"
Computation: — = i7-:'sin u
H
<-:.--)
/
Magnet east, 2 » = 8 42. 37
Magnet west, 2 ?< = 8 40. 55
\r^
Logarithms.
8. 45339
Mean, 8 41. 46
« ^ 4 20. 73
Sin u
P
8. 87950
Time of beginning, 12:15
Time of ending, 12:55
Temp., 30
Temp., 30
c.
.8
temp., etc
0. 00636
0. 005 1 6
Mean, 12:35
;■ = 30. 4
H
7- 34441
MAGNETIC OBSERVATIONS.
151
Observations of vibration, made at Coatzacoalcos, Mexico, February 8, 1889, by Ensign J. H. L. Holcombe.
Civil time, a.
m.
Temp, of magnet.
Hor. force magnetometer.
Hor.
force thermometer.
h.
m.
At commencement
3
20
73-4 F.
At end
Means
Correcte
3 45
73-2
73.3
d means .
Scale moving
apparently —
Torsion force.
To the right
To the left.
No. of
Time of
Time of
No. of
Time of
Time of
Torsion.
Scale divi-
-Means and differ-
Vib.
passmg wire.
I So Vib's.
Vib.
passmg wire.
I So Vib's.
sions.
ences.
h. m. s.
m. s.
h. m. s.
VI. s.
9 39 55-
9
9 40 25.
40. 00
180
49 56. 7
10 I. 7
189
50 26. 7
10 1.7
+ 90
41-55
18
40 55.
27
41 25. I
40.50
For 90°.
198
50 57.0
10 2.
207
51 27.0
10 I. 9
— 90
39-40
36
41 55-3
45
42 25.4
40.00
216
51 57- I
10 1.8
225
52 27. I
lo I. 7
+360
44-50
For 360°.
54
42 55- 5
63
43 25. 5
40. 10
For 90°.
234
52 57- 3
10 1.8
243
53 27.3
10 1.8
-360
36.00
Adopted effect 90°.
72
252
43 55- 7
53 57- 4
10 1.7
81
261
44 25.7
54 27. 5
10 I. 8
40.30
Torsion l.loSc.Div.
z'=i'.98
I Sc. Div. = i'.8.
90
44 55-7
99
45 25.9
h
270
54 57- 7
10 2.
279
55 27.7
10 1.8
i + - = i. 00037
90
5 0.7
99
50-9
Vertical scale, 18. 6
9
Time for
1 80th.
49 56.4
Time for
189th.
50 26.8
Mean
10 1.83
Time,
90 Vib.
10. 178
Mean tir
ne — I So vib's
60P.80
Time,
I Vib.
=T„=
3°-343
152
MAGNETIC OBSERVATIONS.
Observations of vibration, made at Coatzacoalcos, Mexico, February 9, 1889, by Ensign J. H. L. Holcombe.
Chro. error, Daily rate, + 2".234-
Civil time.
Temj
. of magnet.
Hor. force magnetometer.
Hor.
force thermometer.
At commencement .
h. m.
2 30
27.5 C.
At end . .
Means
Corrected means .
3 05
30-4
28.95
28.7
Scale moving apparently —
]
To the right.
To the left.
No. of
Vib.
Time of
passing wire.
Time of
180 Vib's.
No. of
Vib.
Time of
passing wire.
Time of
180 Vib's.
Torsion.
Scale divi-
sions.
Means and differ
ences.
h. m. s.
9 II 08.
tn. s.
9
h. m. s.
9 II 38. 2
m. s.
40. 10
180
21 10. 5
10 2. 5
189
21 40. 7
10 2. 5
+ 90
41-30
18
12 08. 2
27
12 38. 3
40. 10
For 90°.
198
22 10. 7
10 2. 5
207
22 40. 9
10 2. 6
— 90
38.95
36
13 08.4
45
13 38. 5
40.05
216
23 II.
10 2. 6
225
23 41.2
10 2. 7
+360
44.90
For 360°.
54
234
14 08. 5
24 II. 2
10 2. 7
63
243
14 39-
24 41. 5
10 2. 5
—360
40.50
37.00
For 90°.
Adopted effect 90°.
72
252
90
270
15 09.
25 II. 7
16 09. 3
26 12. I
10 2. 7
10 2.8
81
261
99
279
15 39-2
25 41.9
16 39- 5
26 42. 2
10 2.7
10 2. 7
40. 10
Torsion 1.03 Sc Div.
z;=l'. 85
I -|— = I. 00034
F
I Sc. Div. =i'.8
90
99
9
Vertical scale, 16
Time for
1 80th.
Time for
1 80th.
Mean
10 2. 63
Time,
90 Vib.
10 02. 61
Mean time — 180 Vib's
602=. 62
Time,
1 Vib.
= To =
3'- 348
MAGNETIO OBSERVATIONS.
153
Observations of vibration, made at Coatzacoalcos, Mexico, February lo, 1889, by Ensign J. H, L. Hokombe.
Chro error. Daily rate, +2'.i.j4.
-
Civil time.
Temp, of magnet.
1 loi". force magnetom
eter.
Hor.
force thermometer.
At commencement .
h.
3
m.
35
26.3 C,
At end
A) cans
Corrected means .
4
12
26. 2
26. 25
25-9
Scale moving
apparently —
Torsion force.
To the right
To the left.
No. of
Vib.
Time of
passing wire.
Tmie of
180 Vib's.
No. of
Vib.
Time of
passing wire.
Time of
180 Vib's.
Torsion.
Scale divi-
sions.
Means and differ-
ences.
h. m. s.
lb 17 36.
2
in. s.
9
A. m. s.
10 18 06. 5
m. s.
40.05
180
27 38-
S
10 2. 3
189
28 08. 4
10 I. 9
+ 90
41. 00
18
18 36.
4
27
19 06. 7
40. 00
For 90°
19S
28 38.
7
10 2.3
207
29 08. 7
jo 2.
- 90
39. 00
36
19 36.
7
45
20 06. 8
39-9°
216
29 39-
10 2.3
225
30 09. I
10 2.3
+360
44-75
For 360°
54
20 36.
8
63
21 07. I
40. 00
For 90°
234
30 39-
3
10 2. 5
243
31 09. 2
10 2. I
—360
35-50
Adopted effect go°
72
252
90
21.37-
3' 39-
22 37.
2
5
3
10 2.3
81
261
99
22 07. 2
32 09. 4
23 07. 4
10 2. 2
40. IS
Torsion 1.13 Sc.Div.
■Z' = 2'.C
h
3
I Sc. Div. = I' 8
270
32 39-
7
10 2. 4
279
IZ 09- 5
10 2. I
Vertical
I. 00037
99
9
scale, 24.
Time for
1 80th.
Time for
189th.
Mean,
10 2. 35
Time,
90 Vib.
10 2. 10
Mean time — 180 Vib's
6o2».225
Time,
I Vib.
= T„ =
3'-346
154
MAGNETIC OBSERVATIOKS.
Observations for declination made at Salina Cruz, Mexico, March 21, 1889, by Ensign J. H. T>. Tlolcombe, with Kew theodolite magnetometer No. 54, with
long magnet suspended erect.
Line of detorsion, iSo**.
l.occil
time.
h. m.
8 35
8 50
9 05
9 20
9 35
9 50
10 05
10 20
•o 35
10 so
11 05
II 20
p. m.
I 00
I 15
1 30
' 45
2 00
Scale
readings.
Left. Right.
d.
40. o
40.0
40. I
40. 2
40.8
40,9
40.8
40.8
40.8
40. 6
40.5
40.4
Mean.
d.
40. o
40. I
40. 2
40.4
41. o
41. 1
41.0
41.0
40.9
40.8
40.8
40-5
d.
40. 00
40.05
40. 15
40.30
40. 90
41. 00
40. 90
40. 90
40.85
40.70
io-65
40.45
Line of detorsion, 200
38.0
38.4
38.0
38.2
38.0
38.2
38.1
38.2
38.5
38.9
38.20
38.10
38.10
38-15
38.70
Azimuth circle, A 248 37 20
B 68 37 40
Remarks ;
Suspended torsion weight at 7:40.
Suspended magnet at 8; 20.
Suspended torsion weight.
Azimuth circle, A 248 37 00
B 68 37 40
Remarks :
Suspended magnet at 12:50.
Change in overhead scale of II div.
In morning read with horizontal
wire at 10 d., now at 21.
Determination of scale value
of magnet.
Determination of axis of magnet.
Scale.
Circle read-
ings, mean of
verniers.
Value of
10 divi-
sions.
Scale.
Scale read-
ings.
Mean.
Alter-
nate
mean.
Axis.
/ //
d.
249 47 40
E
39-9
40. I
40.00
10
29 30
18 10
I
15-9
16. I
16.00
40.25
28.12
20
09 SO
19 40
E
39-8
41.2
40.50
16.45
28.47
30
248 52 50
17 00
I
16.8
17.0
16. 90
40. 20
28.55
40
34 40
18 10
E
39-8
40.0
39-90
16.55
28.28
50
16 20
18 20
I
15.2
17.2
16. 20
40. CO
28. 10
60
247 58 30
17 so
E
39-8
40.4
40. 10
70
39 40
18 so
80
21 40
18 00
70
39 50
18 10
60
58 40
18 50
50
248 17 00
18 20
40
35 00
18 00
30
S3 10
18 10
20
249 II 40
18 30
10
30 00
18 20
47 40
17 40
Value of one division of
scale = i'.82.
Scale reading of axis
28.29
39-55
Mean scale reading of east ai
id west magnetic elongation . . .
/
20.49
158 37-48
= difference =
II. 26
ions .
Azimuth circle reads ....
Magnetic meridian reads .
At beginning of a. m. observat
/ //
A 54 58 20
158 57-97
B 234 58 40
At end of p. m. observations .
A 54 59 20
Mean reading of mark .
144 59- 00
B 234 59 40
= 144 59 00
Azimuth of mark, W. of N.
7 00. 12
True meridian reads . .
151 59.12
M
ignetic declina
tion
6 58. 85
E.
Magnetic observations.
155
Observations for declination mnrle
Line of detorsion aoo°.
at Salina Cruz, Mexico, March 22, 18S9, by Ensign J. H. L. Ilolcombe, with Kew theodolite mapnelonieler, No S4 with
long magnet suspended erect.
Local
time.
a.m.
h. m.
9 25
40
10 10
25
40
p. m.
Scale
reading.
Left.
d.
40. o
40.8
40.9
41. I
41. I
41. I
Right.
40. 2
41. o
41. I
41.4
41.2
41. I
Mean.
d.
40. 10
40. 90
41. 00
41. 25
41. IS
41. 10
Line of detorsion, ig6
o / //
Azimuth circle, A 248 33 00
B 68 34 00
Remarks :
At 9:10, suspended torsion weight.
At 9:20, suspended magnet.
Suspended torsion weight.
12 00
40.8
41- 5
41- IS
30
41. I
41.3
41. 20
45
41.2
41. 6
41.40
I 00
415
41.7
41. 60
JS
41.4
41. 6
41.50
30
41-3
41-5
41.40
45
41. 6
41.8
41.70
2 00
41.7
41.9
41. 80
15
41.9
42.
41- 95
30
42.
42. I
42.05
o / //
Azimuth circle, A 248 33 00
1! 68 34 00
Remarks :
Suspended magnet at 11:50.
Determination of scale value
of magnet.
Scale.
IJeterr
Scale
in
nination of axis of magnet.
Scale.
Circle read-
ings, mean of
verniers.
Value of
10 divi-
sions.
read-
Mean.
Alter
nate
mean
Axis.
/ //
d
249 50 10
E
40.
40.
40. 00
10
32 10
18 00
I
15.0
15.8
15.40
40.25
27.83
20
13 40
18 30
E
40.
41.
40. so
15-25
27-37
3°
248 55 40
18 00
I
15.0
15,2
15. 10
40. 40
27-75
40
46 10
18 30
E
40.
40. 6
40.30
15. 00
27.65
50
18 50
17 20
I
14.8
15.0
14.90
40. 00
27-45
60
00 30
18 20
E
39- 2
40. 2
39-70
70
247 42 20
18 10
80
24 20
18 00
70
42 20
18 00
60
248 00 20
18 00
50
iS 50
18 30
40
46 50
18 00
30
55 20
18 30
20
249 13 30
18 10
10
31 50
18 20
50 00
18 10
Value of one division of |
scale ^ i'. S15.
Seal
e reading of axis
27. 61
41.07
Mean scale reading of, east and west
Reduction to axis .
magnetic elongation .
24. 42
^= difierence^
13-46
Azimuth circle reads . . .
Magnetic meridian reads .
At beginning of 5. m. observations .
158 33- 50
/ //
A 54 58 20
158 57-92
B 234 58 20
At end of p. m. observations .
A 54 57 40
Mean reading of mark
144 58. 17
7 00. 12
B 234 58 20
= 144 58 10
Azimuth of mark W. of N . . .
True meridian reads
151 58.29
Ma
jnetic dcclina
ion
6 59- 63
E.
156
MAGNETIC OBSERVATIONS.
Observations for declination made
Line of detorsion, 246^.
at Salina Cruz, Mexico, March 23, 1889, by Ensign J. H. L. Ilolcombe, witli Kew theodolite magnetometer No. 54, with
long magnet .suspended erect.
Local
time.
h. !/!.
9 40
55
10 10
25
40
55
11 10
25
40
p. m.
12 20
35
40
1 OS
20
35
50
2 05
20
35
50
3 05
20
35
50
Scale
readings.
Left.
Right.
d.
39-8
40. 2
40. 2
40. 6
40.8
40.9
41.
41.0
40.9
41.
41.
41.0
41.
41.
41.
41.2
41.2
41-5
Mean.
40. 00
40.40
40.85
41. 00
40.95
41. 00
41. 00
41. 10
41-35
Line of detorsion, 246
41.4
41. 6
41.
41. 6
41.8
41.
41.7
41.8
41.
41-5
41. 6
41.
41-5
41.6
41.
41.8
41.9
41.
41.8
41.9
41.
42.0
42.
42
42.
42.
42
42.
42. I
42
42. 2
42.4
42.
42. 6
42.9
42.
42.9
43-0
42
42.9
43-
42
43-0
43-0
43
.50
.70
-75
•55
•55
.85
.85
. 00
.00
.05
.30
•75
•95
•95
.00
Azimuth circle, A 24S 34 20
B 68 35 20
Remarks :
Suspended torsion weight at 9:10.
Suspended magnet at 9:30.
Azimuth circle, A 24S 34 20
B 68 35 20
-Remarks: Observations continuous;
magnet not dismounted.
Determination of scale value
of magnet.
Determination of axis of magnet.
Scale.
Circle read-
ings, mean of
Value of
10 divi-
Scale.
Scale read-
Mean.
Alter-
nate
Axis.
verniers.
sions.
mean.
/ //
d.
249 52 10
E
40.0
40. I
40.05
10
34 20
17 50
I
15.0
15- I
15.05
39-70
27^38
20
IS 50
18 30
E
38.9
39-8
39-35
15^ SO
27.42
30
248 57 20
18 30
I
IS- 9
16.0
IS- 95
39- IS
27-55
40
3,9 30
17 50
E
38-9
39-0
38-95
1595
27^45
SO
21 20
18 10
I
15.9
16. u
'5-95
39^42
27.68
60
02 50
18 30
E
39-8
40.
39-90
70
247 44 20
18 30
80
26 20
18 00
70
44 30
i8 10
60
248 02 30
18 00
50
21 00
18 30
40
39 30
18 30
30
57 20
17 50
20
15 3°
18 10
10
34 20
18 50
249 51 20
17 00
i
Value of one division of
scale ^ i'.82.
Scale reading o( ax
is
27 so
41 so
Mean scale reading of east an
Reduction to axis .
Azimuth circle reads . .
Magnetic meridian reads .
At beginning of a. m. cbsen'a
d west magnetic elongation ....
ions .
/
25. 49
158 34-83
= difference =
14 00
/ //
A 54 57 20
159 00.32
B 234 58 00
At end of p. m. observations
A 54 58 20
Mean reading of mark . . .
144 57-95
B 234 58 00
= 144 57 55
Azimuth of mark W. of N.
7 00. 12
True meridian reads . .
*
151 58.03
M
agnetic declina
tion
7 02. 29
E.
MAGNETIC OBSERVATIONS.
157
Observaiions for Jeclinatioii made at Salina Cruz, Me-xicu, March 24, 1889, by [.icut. Cliarle-^ Laird, with Kuw theodolite magnetometer No. 54, with long
magnet suspended erect. -
Line of detorsion, 260°.
Local
Scale
time.
read
ngs.
Right.
Mean.
a.m.
Left.
h. til.
,/.
./.
d.
9 25
39-5
40.
39-75
40
40.0
40. I
40.05
55
40.1
40.3
40. 20
10 10
40. s
40.7
40. 60
25
40.8
40.9
40.8s
40
41.
41.
41.00
55
41.0
41.
41. 00
11 10
41.0
41. I
41.05
25
41. I
41.2
41. IS
40
41.8
42.0
41.90
55
42.0
42.
42. 00
. m. Line of detorsion
12 10
42.0
42. I
42.05
25
42.1
42-3
42. 20
40
42.2
42.4
42.30
50
42.4
42.5
42.45
I 10
42.5
42.7
42. 60
25
42.5
42. 6
42.55
40
42-5
42.7
42. 60
55
42.5
42.7
42. 60
2 10
42.7
42.9
42.80
25
42.8
42.9
42.85
40
42.9
43-
42.95
55
43-
43-
43.00
3 10
43-1
43-4
43.25
25
43-1
43-2
43-15
40
43-
43-1
43.05
Azimuth circle, A 24S ji 40
1! 68 32 20
Remarks :
Suspended torsion weight at 9, mag-
net at 9:10.
Clear pleasant weather, northerly
wind.
Azimuth circle, A 248 31 40
13 68 32 20
Remarks:
Observations continuous, azimuth
circle same, line of detorsion
same as in a. m. observations.
Determination ofscale value
of magnet.
Delcnnination of axis of magnet.
Circle read- Value of
, 1
Alter-
Scale.
ings.meanof
10 divi-
Scale.
Mean.
nate
Axis.
verniers.
sions.
mgs.
mean.
/ //
,/.
249 50 10
E
40.
40. I
40.05
10
32 20
17 50
I
15- 5
16.
15-75
40. 02
27.88
20
14 00
18 20
E
40.
40.0
40. 00
15-95
27 97
30
248 56 00
18 00
I
16.
16,3
16. 15
39-95
28.05
40
37 40
18 20
E
40.
39-8
39-90
16.37
28.03
50
19 20
18 20
I
16. 4
16.8
16. 60
39-97
28.28
60
I 00
18 20
E
40.
40. I
40.05
70
247 42 3°
18 30
80
24 40
17 50
70
42 50
18 10
60
01 10
18 20
50
19 20
18 10
40
37 50
18 30
30
56 10
18 20
20
14 20
18 10
10
32 30
18 10
50 20 ' 17 50
Value uf one division of
scale = i'.82.
Scale reading uf ax
is
28.06
41.40
Mean scale reading of east ai
d west magnetic elongation . .
Reduction to axis .
24. 28
158 32. 00
^ difference =
13-34
tiuns .
Azimuth circle reads
Magnetic meridian reads .
At beginning of a. m. observa
/ //
A 54 57 00
158 56.28
. .
B 234 57 20
At end of p. m. observations
Mean reading of mark .
A 54 58 20
1; 234 58 20
144 57-75
= 144 57 45
Azimuth of mark \\'. of N.
7 00. 12
1
True meridian reads . . .
151 58.87
M
igiietic declina
tion
6 58.41
E.
158
MAGNETIC OBSEIiVATIONS.
Observations for dip made at Salina Cruz, Mexico, March 17 and 18, 1889, by Ensign ]. H. L. Ilolcombe, with dip circle No. 84 and needle No. I.
IMean by polarities.] [Mean by polarities.]
Polarity of marked end north.
Circle east.
Circle west.
Pace east.
Face west.
Face east.
Face west.
S.
N.
S.
N.
S.
N.
S.
N.
/
/
/
/
/
/
/
/
39 47
39 46
40 10
39 58
3958
40 04
40 12
40 12
SI
50
08
55
40 00
07
17
17
49
48
09
56.5
39 59
05. s
145
14.5
39° 48'.5
40° 02'. 7
40° 02^.2
40° H'-S
39° 55'.6
40° 08'. 3
Mean, 40° 01'. 45
Polarity of marked end south.
Circle west.
Circle east.
Face west.
Face east.
Face west.
Face east.
S.
N.
S.
N.
S.
N.
S.
N.
/
/
/
/
/
/
/
/
40 01
40 10
40 01
40 02
39 43
39 40
40 13
40 00
05
t3
10
13
45
41
13
39 59
03
11.5
05-5
07.S
44
40.5
13
S9-S
40° o^'.2
40° 06'. 5
39° 42'.3
40° 06'. 2
40° o6'.8
39° 54'-2
Mean, 40° o'.S
Resulting dip, 40° C/.97.
March 17, 1889.
Circle in Mag. prime vertical.
Local time of beginning, 2: 15.
Local time ol ending, 2:40.
/
Circle N. Needle N. 48 20
" S. 47 SI
Circle S. " N. 48 07
S.
48 36
Mean,
48 13-5
Polarity of marked end south.
Circle east.
Circle west.
Face east.
Face west.
Face east.
Face west.
S.
N.
S.
N.
S.
N.
S.
N.
f
/
/
/
/
/
/
/
4004
3950
39 40
39 38
40 28
4029
3958
40 09
02
48
37
35
28
29
58
09
03
49
38.S
36.5
28
29
58
09
39° S6'
39° 37'-5
40° 28'.5
40° o3'.5
39° 46'.7 1
40° 16'
Mean, 40° oi'.3
Polarity of marked end north.
Circle west.
Circle east.
Face west.
Face east.
Face
west.
F'ace east.
S.
N.
S.
N.
S.
N.
S.
N.
/
/
/
/
/
/
/
/
40 22
40 22
39 45
39 54
40 04
3952
39 39
39 38
20
20
49
58
10
56
41
40
21
21
47 56
07
54
40
39
40° 21'
39° 5i'-5
40° 00'. 5
39° 39'-S
40° 06'. 3
39° 50'
Mean, 39° 58'.!
Resulting dip, 39° 59'. 7
March 18, 1889.
Circle in Mag. prime vertical.
Local time of beginning, 1:30
Local time of ending, 2:30
/
Circle N. Needle N. 48 23
" S. 47 46
Circle S. " N. 48 00
'■' S.
48 43
Mean, 48 13
MAGNJiTlC OBSEEVATIONS.
159
Observations for horizontal intensity by the method of dedections with Kuvv theodolite magnetometer No. 54, at Salina Cruz, Mexico, March iH and 19, 1889,
by Ensign J. H. L. Ilolcomlje, long magnet deflecting al right angles to short magnet suspended.
Distance r = o'".
355-
Distance r -
= 0" 325-
._;
Circle readings.
Circle readings.
c
Circle readings.
Circle readings.
a;
0)
bO
1
No.
A.
B.
Mean.
No.
A.
B.
Mean.
Nu.
A.
B.
Mean.
No.
A.
B.
Mean.
E.
W.
I
/ //
76 30 00
/ //
2940
/ //
2950
2
/ //
65 28 00
/ //
2800
/ //
28 00
E.
W.
I
/ //
78 17 40
/ //
1740
r //
1740
2
/ //
63 55 20
/ //
5540
5530
^
E.
3
29 40
29 20
2930
^
E.
3
17 40
1740
17 40
rt
W.
4
28 20
2820
28 20
W.
4
55 00
5500
5500
E.
5
30 20
30 20
30 20
E.
5
17 00
17
00
17 00
Mean, 76° 29' 53"
65° 28' 10"
Mean, 78° i
7' 2
7" 63° 55' 15"
W.
6
65 23 40
23 40
2340
W.
6
63 47 20
4740
47 30
E.
7
76 20 40
20 40
20 40
E.
7
78 04 20
04 40
430
W.
8
23 20
2340
23 30
W.
8
47 00
4700
4700
1)
E.
9
20 40
20 20
20 30
E.
9
41 20
41 20
41 20
W.
10
08 00
08 20
08 10
.Me:
m, 73° 41' 20" 68° 08' 10"
Computation : — ^|?^sin«(i )
H r-
/
Magnet east, 2 m =i 5 34. 78
Sin u
P
^-^
temp., etc.
Logarithms.
Magnet west, 2 i( = 5 33. 17
Mean, 5 33.97
a = 2 46. 98
Time of beginning, 4:30 p. m.
Time of ending, 5:00
Temp., 29.
Temp., 27. 5
8. 64367
8.68621
9. 99905
0. 00475
»
lean, 4:45
/■=28
2
m
H
7- 33367
Distance r — o'".4is.
E.
W.
E.
W.
E.
Circle readings.
No,
o / //
74 27 00
27 20
27 00
B.
/ //
27 00
27 00
27 00
Mean.
/ //
27 10
27 10
27 00
Circle readings.
No.
o / //
67 34 00
34 00
3400
3400
Mean.
3400
3400
Mean, 74° 27' 03'
67° 34' 00'
W.
E.
W.
E.
W.
74 22 40
23 00
23 00
23 00
22 50
2300
^7 31 20
31 40
32 00
31 20
31 40
32 00
31 20
3' 40
32 00
Mean,
74° 22' ss''
67° 31' 40"
Computation :
— = ^ ;-' sin « ( I .
H r'
Magnet east, 2 a ^ 6 53. 05
Magnet west, 2 « ^ 6 5 J . 25
Mean, 6 52. 15
« = 3 26. 07
Time of beginning, 3:05 p. m.
Time of ending, 3:37
Mean, 3:21
Temp., 31. 2
Temp., 29. 8
/ = 30. 5
Sin u
P
I — —
temp., etc.
m
H
Logarithms.
8.55161
8. 77747
0.00173
0.00516
7- 33597
21124_No. 97 11
162
MAGNETIC OBSERVATIONS.
Observations of vibrations, made at Salina Cruz, Mexico, March 19, 1889, by Ensign J. H. L. Holcombe.
Chro. error, Daily rate + j,'.iij.
Civil time, a.
m.
Temp, of magnet.
Hor. foice
magnetometer.
Hor
. force thermometer.
At commencement .
h.
S
m.
48
32.0 C.
At end . ...
Means
Corrected means .
6
•25
31.8
31.9
31.6
Scale moving apparently —
To the right.
To the left.
No.' of
Vib.
Time of
passing wire.
Time of
l8oVib's.
No. of
Vib.
Time of
passing wire.
Time of
180 Vib's.
Torsion.
Scale divi-
sions.
Means and differ-
ences.
h. m. s.
m, s.
h. m. s.
m. s.
c
\\ 29 7.0
9
II 29 37.0
40.00
180
39 7-6
10 0.6
189
39 37.6
10 0.6
+ 90
41-55
18
30 6.8
27
30 37-
40.00
For 90°
198
40 7.4
10 0. 6
207
40 37. 6
10 0. 6
— 90
38.00
36
31 6.7
45
31 36.8
40.00
216
41 7.6
10 0. 9
225
41 37-6
lo 0.8
+360
47.50
Bor 360°
54
32 6.7
63
32 36. 6
39.60
For 90°
234
42 7.7
10 I.
243
42 37- 5
10 0. 9
— 360
32.50
Adopted effect go°
72
252
90
270
336.6
43 7.6
34 6.6
44 7.6
10 I.O
10 1.0
81
261
99
279
33 36. 6
43 37. 7
34 36. 6
44 37-8
10 I. I
10 I. 2
40.50
Torsion! .88 Sc.Div.
1 + ji=i.ooo63
I Sc. Div.= i'.8
90
99
9
Vertical scale, 25
Time for
i8oth.
Time for
189th.
Mean .
10 0.85
Time,
90 Vib.
10 0. 87
Meantiir
e — iSoVib's
6oo».86
Time,
I Vib.
= T„ =
3''.338
MAGNETIO OBSERVATIONS.
163
Time azimuths taken at Port Plata, San Domingo, December 28, 1889, by Ensign L. M. Garrett, with theodolite ; chronometer 1596, 11- .z'.^i slow
on G. M. T. jy > 3 3
Before. After.
/ // / //
Reading of mark, A 326 05 00 326 05 30
B 146 04 30 146 05 00
Chronometer
time, p. m.
Reading of circle.
Telescope.
Remarks.
A.
B.
A. m. 5.
/ //
/ //
8 29 07
345 OS 30
165 05 30
Direct.
31 17- S
345 23 00
165 23 00
Direct.
36 SO
344 07 30
164 07 c»
Direct.
38 58
344 26 00
164 25 30
Direct.
8 49 44
162 32 30
342 32 30
Inverted.
52 20.5
162 48 00
342 47 30
Inverted.
SS "0
161 54 00
341 54 00
Inverted.
Before, After.
/ // / //
Reading of mark, A 146 02 30 146 02 30
B 326 02 30 326 02 30
Latitude, 19° 49' 29" N. Longitude, 4'' 42™ 47S.6 W.
Solution by: Tan X = sin D cosec S cot i ^") S = i [/ + (90° — 9)]
Tan Y = cos D sec S cot ^ ^ ^ D = i [/ — (90° — 9))]
Az. — X -t Y J
164
MAGNETIC OBSEKVATIONS.
Observations for declination made at Port Plata, San Domingo, December 25, 1889, by Ensign L. M. Garrett, with Kew theodolite magnetometer No. 54, with
long magnet suspended.
Line of detorsion, 20°.
Local
time.
8 15
30
45
9 00
IS
30
45
10 00
15
30
p. m.
12 30
45
1 00
15
30
45
2 00
IS
30
45
3 00
IS
30
Scale
readings.
Left.
Right.
d.
,1.
33-6
46.6
38.4
41.8
39-3
41.5
39-8
40.8
40.3
40.8
40.2
40.9
40. 2
40.5
39-6
40. S
39-6
39-9
Mean.
d.
39. 80
40. 10
40. 10
40.40
4Q. 30
40-SS
40.55
40-3S
40. 20
39-75
Azimuth circle, A 33 22 20
B 22 40-
Line of detorsion, 45
36.1
39-
36.8
37-8
37-2
37-7
37-3
37-7
36.2
38.4
36.8
38.0
35-8
38.0
36.8
37.6
37-
37-2
37-0
37-2
37-2
37-2
37-2
37-7
37-3
37-9
37.60
37-30
37-40
37-50
37-30
37-40
36.90
37.20
37- 10
37-10
37.20
37-40
37.60
Remarks ;
Removed torsion and suspended
magnet at 8:00.
Azimuth circle, A 33 22 20
B 22 40
Remarks :
Replaced magnet at I2;20: moved
torsion head to 45°.
Determined axis and scale value.
Determination of scale value
of magnet.
Determination of axis of magnet.
.Scale.
Circle read-
ings, mean of
verniers.
Value of
10 divi
sions.
Scale.
Scale read-
ings.
Mean.
Alter-
nate
mean.
Axis.
/ //
/ //
d.
34 30 40
E
37-3
37-7
37-50
10
12 40
18 00
I
18.2
15.0
16. 60
37-40
27.00
20
11 54 50
17 50
E
36.2
38-4
37-30
16.62
26. 96
30
36 50
18 00
I
19-7
13-6
16.65
37-35
27.00
40
18 40
18 10
E
36.8
38.0
37-40
16.65
27.02
50
20
18 20
I
19-3
14.
16. 6S
37.22
26.94
60
32 42 10
18 10
E
36.1
38.0
37-05
70
24 10
18 00
80
6 00
18 10
70
24 00
18 00
60
42 10
18 10
50
33 00 20
18 10
40
18 20
18 00
30
36 30
18 10
20
54 30
18 00
10
34 12 40
18 10
30 40
18 00
Value of one division of
scale = I '.808.
Seal
e reading of axis ...
26.98
38.83
Mean scale reading of east ar
id west
magnetic elongation . . .
Reduction to axis .
21. 25
33 22. 30
= difl'erence =
11.85
/ //
A 108 22 40
B 22 20
tions .
Magnetic meridian reads .
At beginning of a. m. observa
33 43- 55
At end of p. m. observations
Mean reading of mark .
A 22 00
B 21 40
108 22. 10
= 108 22 10
ofW. .
75 15-21
33 06. 49
True meridian read
s . . . .
tion . .
• • ■
Me
ignetic declina
37. 06
E.
MAGNETIC OBSERVATIONS.
165
Observations for declination
Line of detorsion 20°.
made at Port Plata, San Domingo, December 26, 1889, by Ensign L. M. Garrett, with Kew theodolite magnetometer No. 54, with
long magnet suspended erect.
Local
time.
a.m.
h. til.
9 15
30
4S
ID GO
15
30
45
II 00
p.m.
2 00
15
3°
45
3 00
15
30
Scale
reading.
Left. Right.
40. I
40-5
40-5
40. 6
40.6
40.4
40. 2
d.
40.7
40.7
40.7
40.6
40. 6
40-5
40-3
Mean.
d.
40.
40.
40.
40.
40.
40.
40-
Line of detorsion 20
35-8
35-8
36.1
36.2
36.1
36.5
36.8
37-8
37-2
36.8
36.5
36.9
36.7
36.8
o / //
Azimuth circle, A 33 22 00
B 22 00
Remarks :
Removed torsion weight and sus-
pended magnet at 9:00 a. m.
After last reading, suspended tor-
sion weight.
Azimuth circle, A 33 22 00
B 22 00
Remarks :
Removed weight and suspended
magnet at 1:55 p. m.
Observed for scale value and axis
after last reading.
Determination of scale value
of magnet.
Determination of axis of magnet.
Scale.
Scale read-
ings, mean of
Value of
10 divi-
Scale.
Scale read-
ings.
Mean.
Alter-
nate
Axis.
verniers.
sions.
mean.
/ //
/ 1/
d
34 29 30
E
36.8
36.8
36.80
10
II 20
18 10
I
19-3
IS- 7
17,50
36.85
27.15
20
33 53 10
18 10
E
34-
39-8
36.90
17-45
27.15
30
35 10
18 00
I
20. 2
14. 6
17.40
36.85
27-15
40
16 50
18 20
E
35-6
38.0
36.80
17.40
27.12
5°
32 58 30
18 20
I
18.9
15-9
17.40
36.85
27-13
60
40 00
18 30
E
36.
37-8
36.90
70
22 20
17 40
80
04 00
18 20
70
22 10
18 10
60
40 10
18 00
SO
58 50
18 40
40
33 17 10
18 20
30
35 40
18 30
20
53 50
18 10
10
34 12 00
18 10
30 00
18 00
Value of one division of
scaler I '.822.
Scale reading of a>
is ....
27.14
38-47
Mean scale reading of east ai
Reduction to axis
id west magnetic elongation
/
20. 63
= difference ^
11-33
Azimuth circle reads ....
Magnetic meridian reads .
At beginning of a. m. observa
tions .
33 22. 00
/ //
A 108 23 00
33 42- 38
B 22 40
At end of p. m. observations
A 21 20
Mean reading of mark . . .
108 22 00
B 21.00
= 108 22 00
Azimuth of mark S. of W .
75 15 21
True meridian reads . . . .
33 06 39
E.
tion . . .
1.^ IJQ
„^...,..
1
166
MAGNETIC OBSERVATIONS.
Observations for dip made at Port Plata, San Domingo, December 19 and 21, 1889, by Lieut. Charles Laird, with dip circle No. 84, and needlt A i.
[Mean by polarities.] [Mean by polarities.]
Polarity of marked end south.
Circle east.
Circle west.
Face east.
Face west.
Face east.
Face west.
S.
N.
S.
N.
S.
N.
S.
N.
/
/
/
/
/
/
f
/
49 58
49 37
49 35
4926
50 21
50 27
49 50
SO 07
58
36
36
26
II
18
48
05
58
36-5
35-5
26
16
22.5
49
06
49° 47'-2
49° 3o'-7'
50° I9'.2
49° 57'-5
49° 39' 1 50° o8'.3
Mean, 49° 53''.6
Polaiity of marked end north.
Circle west.
Circle east.
Face west.
Face east.
Face west.
Face east.
S.
N.
S.
N.
S.
N.
.S.
N.
/
/
/
/
r
/
/
/
50 21
50 22
49 34
49 52
49 59
49 37
49 29
49 20
16
17
37
54
57
35
27
18
18.S
19s
35-5
S3
58
36
28
'9
50° 19'
49° 44'-2
49° 47'
49° 23'.5
50° oi'.6
49° 35'-2
Mean, 49° 48'.4
Resulting dip, 49° Sl'.o.
December 19, 1889.
Circle in Mag. prime vertical.
Local time of beginning, 9:30 a. m.
Local time of ending, 1 1 130 a. m.
/
Circle N. Needle N. 90 30
Magnetic meridian reads 90° 22'
" S. 10
Circles. " N. 15
" s.
35
Mean,
90 22. 5
Polarity of marked end south.
Circle east.
Ciftle west.
Face east.
Face west.
Face east.
Face west.
•S.
N.
S.
N.
s. ■
N.
S.
N.
/
/
/
/
/
/
/
/
SO 04
49 41
4929
49 20
50 19
5023
49 41
49 58
05
43
29 : 20
20
25
44
50 01
04-5
42
29 j 20
«9-5
24
42.5
49 59-5
49° 53'-2
49° 24'-5
50° 21'. 7
49° 5"'
49' 38'.8
50° o6'.3
Mean, 49° S2''.6
Polarity of marked end north.
Circle west.
Circle east.
Face west.
Face east.
Face west.
Face east.
S.
N.
S.
N.
S.
N.
S.
N.
/
/
/
/
/
/
/
/
49 53
50 II
SO 09
50 12
49 57
4929
49 35
49 25
49
06
09
13
54
29
35
25
5'
08.5
09
12,5
55-5
29
35
25
49° 59'-7
50° 10^.7
49° 42^.2
49° 30'
50° OS'.2
49° 36'.!
Mean, 49° y>^ A
Resulting dip, 49° si'-6.
December 21, 1889.
Circle in Mag. prime vertical.
Local time of beginning, 2:30 p. m.
Local time of ending, 4:00 p. m.
/
Circle N. Needle N. 90 15
Magnetic meridian reads 90° 06'
" S. 89 25
Circle S. " N. 90 54
" S. 89 51
Mean, 90 06
MAGNETIC OBSERVATIONS.
167
Observations for dip made at Port Plata, San Domingo, December 20 and 25, 1889, by Lieut. Charles Laird, with dip circle No. 84 and needles A 2 and A 1
[Mean by polariUes.] [Mean by polarities.]
Polarity of marked end south.
Circle east.
Circle west.
Face east.
Face west.
Face east.
Face west.
S.
N.
S.
N.
S.
N.
S.
N.
/
/
/
/
/
/
/
/
4929
49 H
50 04
49 40
49 50
50 01
5038
SO 43
29
14
°3
39
48
49 59
33
38
29
u 03-5
395
49
50.00
35-5
40.5
49° 21'. 5 49 51'- 5
49° 54'- 5
50° 38'.o
49° 36'.S
50° l6'.2
Mean, 49° 56''.3
Polarity of marked end north.
Circle west.
Circle east.
Face west.
Face east.
Face west.
Face east.
S.
N.
S.
N.
S.
N.
S.
N,
/
/
/
/
/
/
/
/
49 37
49 49
50 21
50 28
49 27
49 15
49 26
49 IS
39
50
23
29
28
14
27
14
38
49-5
22
28.5
27.5
14.5
26.5
14-5
49° 43'- 7
50° 25'.2
49° 21'
49° 2o'.5
50° o4'.4
49° 20'. 7
Mean, 49° 42^.5
Resulting dip, 49° 49' .4
December 20, i88g.
Circle in Mag. prime vertical.
Local time of beginning, 2: 10 p. m.
Local time of ending, 4: 10 p. m.
/
Circle N. Needle N. 29 36
Magnetic meridian reads 30° 20'
" S. 32 35
Circle N. " N. 28 23
S,
30 46
Mean,
30 20
Polarity of marked end south.
Circle east.
Circle west.
Face east.
Face west.
Face east.
Face west.
1
S.
N.
S.
N.
S
N.
S.
N.
/
/
/
/
/
/
/
/
49 52
4946
49 20
49 24
50 22
50 11
•49 43
49 44
55
SO
23
25
24
12
42
44
53-5
48
21-5
24-S
23
"•5
42-5
44
49° 5o'.7
49° 23'
50° 17'. 2
49° 43'-2
49° 36'.8
50° O0'.2
Mean, 49° 48^.5
Polarity of marked end north.
Circle west.
Circle east.
Face west.
Face east.
Face west.
Face east.
S.
N.
S.
N.
S.
N.
S.
N.
/
/
/
/
/
/
/
/
50 18
5007
49 SI
49 51
49 51
49 46
49 23
49 25
20
09
52
51
52
47
22
24
19
08
51S
SI
515
46.5
22.5
24-5 i
50° i3'-5
49° 5"'-2
49° 49'
49° 23'.S
50° 02'. 3
49° 36'. 2
Mean, 49° 49'. 2
Resulting dip, 49° 48'.8
December 25, 1889.
Circle in Mag. prime vertical.
Local time of beginning, 9:45 a. m.
Local time of ending, 10:45 a. m.
Magnetic meridian reads 30° 1 2'
/
Circle N. Needle N. 30 23
" S. 29 52
Circle S. " N. 30 32
S.
30 01
Mean,
30 12
168
MAGNETIC OBSEliVATIONS.
Observations for dip made at Port Plata, San Domingo, December 23 and 25, 1S89, by Ensign L. M. Garrett, with dip circle No. 84 and needle No. Al.
[Mean by polarities.] [Mean by polarities.]
Polarity of marked end north.
Circle east.
Circle west.
Face east.
Face west.
Face east.
Face west.
S.
N.
S.
N.
S.
N.
S.
N.
/
/
/
/
/
/
/
/
49 26
49 30
49 47
49 38
39 55
49 54
50 16
50 04
25
30
47
38
57
55
15
03
25-5
30
47
38
56
54-5
15-5
03-5
49° 27'.7
49° 24'-5
49° 55'-2
50° o9'.s
49° 35'- 1
50° 02'.3
Mean, 49° 48^.7
Polarity of marked end south.
Circle west.
Circle east.
Face west.
Face east.
Face west.
Face east.
S.
N.
,S.
N.
S.
N.
S.
N.
/
/
/
/
/
/
/
/
\9 53
•49 52
50 34
50 23
49 >9
49 22
49 53
49 45
52
53
35
22
18
23
54
47
52-5
52.5
34-5
22.5
18.S
22.5
53-5
46
49° 52'.5
50° 28^.5
49° 20^.5
49° 49'- 7
50° io'.5
49° 35'- 1
Mean, 49° 52^.8
Resulting dip, 49° 50^.7.
December 23, 1889..
Circle in Mag. prime vertical.
Local time of beginning, 1:45 p. m.
Local time of ending, 3:45 p. m.
/
Circle N. Needle N. 59 27
S. 60 II
Circle S. " N. 60 06
Magnetic meridian reads 60° 08'.
" S.
60 47
Mean,
60 08
Polarity of marked end north.
Circle east.
Face east.
49 24
23
23-5
N.
49 26
27
26.5
49° 25'
Face west.
S.
4948
50
49
N.
49 43
43
43
49° 46'
49° 35'-5
Circle west.
Face east.
49 54
55
54-5
N.
49 S3
54
53-5
49° 54'
Face west.
5023
23
23
N.
50 II
"•5
50° 17'
50° 05 '.5
Mean, 49° 5o'.5
Polarity of marked end south.
Circle west.
Face west.
49 47
46
46.5
N.
49 46
46
46
Face east.
5030
32
N.
50 19
21
20
49° 46'.2 50° 2S'.5
50° oS'.8
Circle east.
Face west.
IS
14
16
N.
o /
49 18
19
18.5
Face east.
S.
50 00
00
N.
49 52
54
53
49° i7'-2 49° S6'.S
49° 36'.8
Mean, 19° 5i'.3
Resulting dip, 49° So'.9.
December 25, 1889.
Local time of begin'g, 12:35 P- ""■
Local time of ending, i:5op. m.
Mag. meridian reads 30° 09'. 5.
Circle in Mag. prime vertical.
o /
Circle N. Needle N. 69 22
" S. 30 22
Circle S. " N. 30 01
" S. 30 S3
Mean, 30 09
MAGNETIC OBSERVATIONS.
169
Observation for horizontal intensity by the method of deflections with Kew theodolite magnetometer No. 54, at Port Plata, San Domingo, December 19 1889
by iinsign L. M. Garrett, with long magnet deflecting at right ancles to short magnet, susnended.
Distance r= o™,3oo.
ong magnet deflecting at right angles to short magnet, suspended.
Distance r= o"'.2oo.
-a
a
Circle readings.
Circle readings.
1
it
No.
A,
B.
Mean,
No.
A.
B.
Mean.
f //
/ //
/ //
/ //
/ //
/ //
E.
I
1S3 31 20
3' 40
31 30
"\V.
2
163 21 00
21 20
21 10
^
E.
3
31 20
31 40
31 30
rt
Ui
W.
4
21 00
21 20
21 10
E.
S
30 20
3040
3030
Mean, 183° 31' lo" 163° 21' 10"
W.
6
163 13 40
14 20
14 00
E.
7
183 14 20
1440
1430
_;
W.
8
1340
14 20
14 00
1)
E.
9
14 20
1440
1430
W.
10
14 20
15 00
1440
Mean, 183° 14' 30" 163° 14' 13"
m P
Computation: — ^Jr'sin«(l — — )
/
Magnet east, 2 a ^ 20 10. 00
Magnet west, 2 » = 20 00. 1 7
i>^
Logarithms.
8. 13072
Mean, 20 05. 08
Sin «
9.24141
a^ 10 02.34
P
9. 99697
Time of beginning, 9:25 a.m.
Time of ending, 10:20 a.m.
Temp., 28. C.
Temp., 29.
temp., etc.
0. 00490
Mean, 9:52
^■=28. 5
m
H
7. 37400
W
^
S
a
.a
Circle readings.
Circle readings.
No.
A.
B.
Mean.
No.
A.
B.
Mean.
/ //
/ //
/ //
/ //
/ //
/ //
E.
I
210 37 20
37 20
37 20
W.
2
137 18 20
18 20
18 20
E.
3
40 00
40 20
40 10
W
W.
E.
5
41 00
40 40
5040
4
16 40
17 00
1650
Mean,
210° 39' 27" 137° 17/ 35"
W.
6
136 33 40
3340
3340
E.
7
208 50 20
5040
5030
W.
8
31 00
31 00
31 00
0)
E.
W.
9
5040
5040
5040
10
29 00
29 00
29 00
Mean,
208° 50' 35" 136° 31' 13"
Computation :
m . P
-=ir'sm«(i--^ )
Magnet east, 2 « =
Magnet west, 2n =
Mean,
u —
/
= 7321.52
= 72 19. 22
72 50. 37
= 3625 18
4^
Sin u
p
Logarithms.
7. 60225
9. 77358
I— —
,,■2
9.99315
Time of beginning.
Time of ending,
10:50 a.m.
1 1:40 a.m.
Temp., 28. 4 C.
Temp., 29. 4
temp., etc.
m
H
0. 00536
Mean,
11:30
^=28
9
7.
37434
170
MAGNETIC! OBSERVATIONS.
Observation for horizontal intensity by the method of deflections with Kew theodolite magnetometer No. 54, at Port Plata, San Domingo, December 23, 1889,
by Ensign L. M. Garrett, with long magnet deflecting at right angles to short magnet, suspended.
Distance r:=o'".30o.
13
C
Circle readings.
Circle readings.
•a
No.
A.
B.
Mean.
No.
A.
E.
Mean.
/ //
/ //
/ //
/ //
/ //
/ //
E.
I
183 14 00
14 20
14 10
W.
2
163 01 20
I 20
I 20
E.
3
13 20
13 20
13 20
(3
W.
4
01 20
I 00
I 10
E.
5
13 20
13 20
13 20
Mean,
183° 13' 40"
163° 01' 15"
W.
6
162 50 00
49 40
49 50
E.
7
182 54 50
55 00
54 55
W.
8
49 20
49 20
49 20
(A
E.
W.
9
54 20
54 20
54 20
10
49 40
50 CO
49 50
Mean,
182° 54' 37''
162° 49' 40'°
Computation :
m
— ^ i r» sin u {\
H ^ *■
P
)
Magnet east, 2 it -
Magnet west, 2 u =
Mean,
u -
/ //
= 20 12 25
= 20 04 57
20 08 41
= 10 04 20
4^-
Sin «<
P
Logarithms.
8. 13068
9. 24276
Time of beginning
, 3:50 p. m.
Temp., 25. 2 C.
l-r^
9. 99697
Time of ending,
4:30 p. m.
, 4:10
Temp., 25,0
temp., etc.
m
H
0. 00426
Mean
t=2_
;•«
7- 37467
MAGKETIO OBSERVATIONS.
171
Observations of vibrations, made at Port Plata, San Domingo, December 22, 1889, by Ensign L. M. Garrett.
Chro. error, 1 1» 39'.o slow. Daily rate, a'.os losing.
Civil time, u. m.
Temp, of magnet.
Hor. force magnetometer.
Hor. force thermometer.
At commencement
A. m.
10 45
27. s c.
At end
II 05
27.5
Means
27.5
Corrected means .
27.1
Scale moving apparently —
Torsion force.
To the right
To the left.
No. of
Vib.
Time of
passing wire.
Time of
180 Vib's.
No. of
Vib.
Time of
passing wire.
Time of
180 Vib's.
Torsion.
Scalt
sic
; divi-
ms.
Means and differ-
ences.
h. m. s.
m. s.
A. m. s.
m. i.
3 17 45-
9
3 i8 17.
39.20
180
28 24.
10 39.
189
28 55- 9
10 38.9
+ 90
39-5°
18
18 49.
27
19 21.
39-15
For 90°
198
29 27. 8
10 38. 8
207
29 59. 7
10 38.7
— 90
38.90
36
19 53-
45
20 24. 9
39- °5
216
30 31-6
10 38. 6
225
31 03. 5
10 38.6
+360
39-83
For 360
54
20 56. 8
63
21 28. 7
38.57
For 90°
234
31 35- S
10 38.7
243
32 07. 4
10 38.7
—360
37-55
Adopted effect 90°
72
252
90
22 00. 5
32 39- 3
23 04. 5
10 38. 8
81
261
99
22 32.5
33 I'- 3
23 36-4
10 38. 8
38-56
Tors'no.256Sc.Div.
i' = o''.46
I Sc. Div.= I'.S
270
33 43- 3
10 38. 8
279
34 IS- 3
10 38. 9
i+- = i.cxx)09
90
05 19-5
99
5 19-4
Vertical scale, 19.3
Time for
180th.
28 24.
60 232. 7
Time for
189th.
28 55. 8
60 232. 6
Mean .....
10 38.775
638».77S
Time,
90 vib.
Time,
I vib.
3i9».3875
Mean time — 180 vibs.
= T„ =
3'-S497
172
MAGNETIC OBSEKVATIONS,
Observations of vibrations, made at Port Plata, San Domingo, December 22, 1889, by Ensign L. M. Garrett.
Chro. error, 11" agvs slow. Daily rate, 2".o3 losing.
Civil time, p.
m.
Temp, of magnet.
Hor. force magnetometer.
Hor. force thermometer.
At commencement .
h.
3
m.
50
25.8 C.
At end
Means
Correcte
4
30
25.8
25.8
d means .
25-4
Scale moving apparently —
To tlie right
To the left.
No. of
Vib.
Time of
passing wire.
Time of
180 Vib's.
No. of
Vib.
Time of
passing wire.
Time of
180 Vib's.
Torsion.
Scale divi-
sions.
Means and differ-
ences.
//. m. s.
8 24 34. 3
m. s.
9
h. m. s.
8 25 06. 2
m. s.
40.00
180
35 13- I
10 48. 8
189
35 45-1
10 38. 9
+ 90
40. 22
18
25 38- 2
27
26 10. 2
40.00
For 90°
198
36 17. 1
10 38. 9
207
36 49.
10 38. 8
— 90
39- 60
36
26 42. 1
45
27 14.0
40. 20
216
37 21.0
10 38. 9
225
37 53-
10 39.0
+360
41- 13
For 360°
54
27 46.0
63
28 18.0
40. 10
For 90°
234
38 24. 9
10 38. 9
243
38 56. 8
10 38.8
— 360
39.10
Adopted effect 90°
72
28 49. 9
81
29 21. 8
0.
40. 20
Tors'no.261 Sc.Div.
252
90
39 28. 7
29 53-7
10 38. 8
261
99
40 00. 7
30 25.6
10 38. 9
F
7
I Sc. Div. = i'.8
270
40 32- 5
to 38. 8
279
41 04.5
10 38. 9
I. 00009
90
05 19.4
60 233. I
9?
9
05 19-4
60 233. 3
Vertical
scale, 16.8
Time for
1 80th.
35 13- I
10 38. 8s
Time for
189th.
35 45
10 38 88
10 38.865
638».86s
Time,
3i9'-432
= T„ =
Mean tin
ne — 180 vib's.
90 Vib.
Time,
I Vib.
3'-5492
MAGNETIC OBSEliVATIONS.
173
Time azimuths taken at Curasao, West Indies, January 31, 1890, by Ensign L. M. Garrett, with theodolite and chronometer 1596 13™ o7=.24 slow on G. M. T.
Before. After.
o / // o / //
Reading of mark, A 286 18 00 286 17 30
B 106 17 30 106 17 30
Chronometer
time, p. m.
//. m. s.
8 27 25.5
28 42. S
29 48.5
30 49.0
31 390
Reading of circle.
A.
(3
o / //
344 46 30
344 38 30
Q
344 31 00
a
344 24 00
ca
344 20 00
o / //
164 46 00
164 38 00
164 31 00
164 24 30
164 19 30
Telescope.
Remarks.
Latitude, 12° 06' 45" N. Longitude, 4" 35" 48=.: W.
Solution by : Tan X = sin D cosec S cot i /I S = i [/+(90°— ?>)]
Tan Y = cos D sec S cot i A D = i [i>— (90°=?')]
Az = X -t Y J
174
MAGNETIC OBSERVATIONS.
Observations for declination made at Curasao, West Indies, January 28, 18
magnet,
Line of detorsion, 90**.
JO, by Ensign L. M. Garrett, with Kew theodolite magnetometer No. 54, with long
suspended erect.
Local
time.
Scale
readings.
Mean.
/ //
Azimuth circle, A 60 40 00
B 39 40
Determination of scale value
of magnet.
Determination of axis of magnet.
u. m.
Left.
Right.
Scale.
Circle read-
ings, mean of
verniers.
Value of
10 divi-
sions. ■
Scale.
Scale read-
ings.
Mean.
Alter-
nate
mean.
Axis.
h. m.
9 00
15
30
45
ID 00
"5
30
45
11 00
d.
39-
39- I
39-6
39-6
39-4
39-7
38.8
39-5
39-7
d.
40.0
39-7
39-6
40.
40.0
39-9
40. 6
40.
39-9
d.
39-5
39-4
39-6
39-8
39.7
39-8
39-7
39-7
39-8
Remarks :
Removed torsion weight and sus-
pended magnet at 8:45.
Removed magnet and suspended
weight.
10
20
30
40
50
60
70
80
70
60
SO
40
30
20
10
/ //
61 47 30
29 lO
II 00
60 52 50
34 40
16 20
59 58 10
39 40
21 20
39 30
58 00
60 16 10
34 40
52 35
61 10 50
29 10
47 10
18 20
18 10
18 10
18 10
18 20
18 ID
18 30
18 20
E
I
E
I
E
I
E
37-2
15.6
37-
16.6
37-1
16. 1
36.7
37-8
17.8
38.1
17.0
37-7
17-5
38.0
37.50
16.70
37-55
16.80
37- 40
16.80
37-35
37-52
16-75
37-47
16.80
37-37
16.75
37-42
d.
27- '3
27. II
27-13
27.08
27.06
27.08
p.m.
Line of deters
ion, 90.
/ //
Azimuth circle, A 60 40 00
B 39 40
12 30
45
1 00
15
30
45
2 00
15
30
45
38.3
38.3
38.0
38.0
37-8
37-8
37-8
37.8
37-8
37.8
39.2
38.8
39.0
38.2
38.3
38.0
37.8
37.8
37-8
37. s
38.70
38.50
38.50
38.10
38.05
37-9°
37.80
37.80
37.80
37.80
Remarks :
Removed weight and suspended
magnet at 12:15 P- ■"•
No torsion.
Determined scale value and axis.
Value of one division of
scale = I '.826.
Scale reading of ax
is
27. 10
38.80
Mean scale reading of east and west magnetic elongation
Reduction to axis .
Azimuth circle reac
/
21.34
60 39. 83
= difference =
II. 70
Is
/ //
A 181 09 20
B 09 20
A 09 40
B 09 40
Magnetic meridian reads
61 01. 17
At beginning of a. m. observatic
At end of p. m. observations .
ns . .
181 09.50
122 37. 16
58 32. 34
Mean reading of m
Azimuth of mark \1
True meridian reac
Magnetic declina
irk
— 181 00 70
iT.ofN
s
2 28. 83
2° 28' 50"
E.
MAGNETIC OBSERVATIONS.
175
Observations for declination made at Cura(;ao, West Indies, January 29, 18
magnet
Line of detorsion, 70^.
90, by Ensign L. M. Garrett, witli Kew theodolite magnetometer No. 54, with long
suspended erect.
Local
time.
a. m.
h. m.
9 00
IS
20
45
10 00
15
30
45
55
p. m.
12 30
45
1 00
15
30
45
2 00
Scale
readings.
Left. Right.
d.
39-6
39-8
39-9
40. 1
40. o
40.0
39-9
39.8
39-7
d.
40. 6
40. 2
40- 3
40. 6
40.2
40. 2
40-3
40. o
39-9
Mean.
J.
40. 10
40. 00
40. lo
40.35
40. 10
40. 10
40. 10
39-9°
39.80
Line of detorsion
38.7
38.5
38.3
38.1
38.0
37-9
38.0
39- o
38.7
38. 5
38.4
38.2
38.1
38.2
38.8s
38.60
38.40
38.25
38.10
38.00
38.10
Azimuth circle, A 60 38 00
B 37 40
Remarks :
Removed torsion and suspended
magnet at 8:50 a. m.
? Probable disturbance.
Removed magnet and suspended
torsion weight.
Azimuth circle, A
B
o r If
69 38 00
37 40
Remarks :
Removed weight and suspended
magnet at 12:05.
After last reading determined axis
and scale value of magnet.
Determination of scale value
of magnet.
Determination of axis of magnet.
Circle read-
Value of
Scale read-
ings.
Alter-
Scale.
ings, mean of
10 divi-
Scale.
Mean.
nate
Axis.
verniers.
sions.
mean.
/ //
d.
61 47 10
17 50
E
38.0
38.2
38. 10
38.20
27-13
10
29 20
18 20
I
17.2
15.0
16. 10
16.07
27. 12
20
II 00
18 00
E
37.7
38-9
38.30
38.17
27.08
30
60 53 00
I
16.2
15.9
16.05
16. 00
27.05
40
34 30
18 30
18 20
E
38.3
37.8
38.05
38.10
27.06
50
16 10
18 20
I
16. 9
15.0
>5-95
16.02
27.07
60
59 57 50
18 10
E
37-5
38.8
38.15
38.12
70
39 40
18 20
80
21 20
18 30
70
39 50
18 05
60
57 55
18 15
50
60 16 10
18 20
40
34 30
18 15
^0
52 45
18 05
20
61 10 50
18 20
10
29 10
18 10
47 20
Value of one division of
scale= 1^.825.
Scale reading of axis
27.085
39.050
Mean scale reading of east and
Reduction to axis .
west magnetic elonga
tion
/
21.83
^= Difference =
11.965
Azimuth circle reads ....
Magnetic meridian reads .
At beginning of a. m. observati(
ms . .
60 37. 83
/ //
A 181 09 40
60 59. 66
B 09 40
A 09 00
B 09 00
iSi 09. 33
— 181 09 20
122 37, i6
58 32. 17
True meridian reads
Magnetic declination
2 27.49
2° 27' 30'''
E.
176
MAGNETIC OBSERVATIONS.
Observations for dip made at Curasao, West Indies, January 26, 1890, by Lieut. Charles Laird, with dip circle No. 84 and needle No. A I.
[MeaQ by polarities.] [Mean by polarities.]
Polarity of marked end south.
Circle east.
Circle west.
Face east.
Face west.
Face east.
Face west.
S.
N.
S.
N.
S.
N.
S.
N.
/
/
/
/
/
/
/
/
33 "2
39 09
39 00
39 02
40 04
39 42
39 20
39 II
12
09
01
03
OS
43
21
11
12
09
00.5
02.5
04.5
42-5
20 5
II
39° 'o'-5
30° oi'.s
39° 53'-5
39° i5'-7
30° 06'
39° 34'-6
Mean, 39° 20^.3
Polarity of marked end north.
Circle west.
Circle east.
Face west.
Face east.
Face west.
Face east.
S.
N.
S.
N.
S.
N.
S.
N.
/
/
/
/
/
/
/
/
39 43
39 29
39 00
3856
39 08
39 10
3837
3847
44
28
01
57
07
09
40
49
43-5
28.5
. 00-5
S6.5
07- 5
09.5
38.5
48
39° 36'
38° SS'.S
39° o8'.s
38° 43'-5
39° i7'-2
38° 56'
JMean, 39° 06'. i
Resulting dip, 39° I3'.2.
January 26, 1890.
Circle in Mag. prime vertical.
Local time of beginning, 9:45 a. m.
Local time of ending, 11:45 ^- "*•
/
Circle N. Needle N. 30 58
Magnetic meridian reads 30° 58'
S. 30 25
Circle S. " N. 31 24
i(
S. 30 07
>
lean, 30 44
Polarity of marked end north.
Circle east.
Face east.
.S.
o /
3841
41
41
3853
53
53
38° 47'
Face west.
39 19
16
17-5
39 15
13
14
39° i5'-7
39° 01 -3
Circle west.
Face east.
.S.
39 10
10
N.
3906
06
06
Face west.
39 45
42
43-5
N.
39 31
27
29
39° 08' I 39° 36'.:
39° 22'. I
Mean, 39° 11^.7
Polarity of marked end south.
Circle west.
Face west.
S. N
39 20
20
39 15
15
15
Face east.
39 45
43
44
N.
39 29
27
28
39° i7'-5 39° 36'
39° 26'.7
Mean, 39° 13'
Circle east.
Face west.
S. N
3844
44
44
3854
54
54
Face east.
S.
39 13
10
II. 5
39 10
07
08.S
38° 49' 39° 10'
38° S9'-5
Resulting dip, 39° I2'.4.
January 26, 1890.
Local time of beginning, 1 2:45 p.m.
Local time of ending, 2:00 p.m.
Magnetic meridian reads 30° 34'
Circle in Mag. prime vertical.
o f
Circle N. Needle N. 29 58
" S. 31 II
Circle S. " N. 30 08
" S. 30 58
Mean, 30 34
MAGNETIC OBSBEVATIONS.
177
Observatioas for dip made at Curasao, West Indies, January 27, 1890, by Lieut. Charles Laird, with dip circle No. 84 and needle No. A I.
[Mean by polarities.]
Polarity uf ma
rked end
,outh.
Circle east.
Circle west.
P'ace east. i Face west.
Face east.
Face west.
S. N.
S.
N.
S.
N.
S.
N.
or /
/
/
/
/
/
/
39 OS ; 39 OS
38 41
38 S3
39 43
2,9 28
39 '7
39 13
06 [ 05
40
SI
43
28
IS
10
OSS
OS
40.5
S2
43
28
16
"S
39° os'.2 38° 46'.2
39° 3S'So
39° i3'-8
38° 5S'-7
39° 24'.6
Mean, 39° lo'
1
Circle
Polarity of marked end north.
west.
Circle east.
1 Face west.
Face east.
Face west.
Face east.
S.
N.
S.
N.
S.
N.
s.
N.
/
/
/
/
/
/
/
/
39 40
39 26
39 18
39 'S
39 03
39 02
3843
38 S3
40
26
14
1 1
07
OS
43
54
A'J
26
16
13
OS
03- S
43
53-5
39° Zi'
19° H'-S
39° 04^.2
38° 48'.2
39° 23'-7
38° 56/.2
Mean, 39° 09'.9
Resulting clip, 39° IG'
January 27, l8go.
Circle in Mag. prime vertical.
Local time of beginning, 9:00 a. m.
Local time of ending, 11:30 a. m.
/
Circle N. Needle N. 30 S2- S
Magnetic meridian reads 30° 46'
" S. 30 38.0
Circle S. Needle N. 31 26.0
" S. 30 09. s
Mean, 30 47.
21124— No. 97 12
178
MAGNETIC OBSERVATIONS.
observations for horizontal intensity by the method of deflections with Kevv theodolite magnetometer No. 54, at Cuiapao, West Indies, January 26, 1890, by
Ensign L. M. Garrett, with long magnet deflecting at right angles to short magnet, su pended.
Distance
r = o'".30c
a
t;
Circle readings.
Circle readings.
"qj
a
No.
A.
B.
Mean.
No.
A.
B.
Mean.
/ //
/ //
/ //
/ //
/ //
/ //
E.
I
249 43 00
43 20
43 10
W.
2
230 32 00
32 20
32 10
s
3
41 40
42 00
41 50
w
w.
4
31 00
31 20
31 10
E.
5
41 20
41 40
41 30
Mean,
249° 42' 10"
230° 31' 40"
W.
6
230 17 20
17 40
17 30
E.
7
249 24 20
24 40
24 30
_^
W.
8
16 00
16 20
16 10
E.
9
24 20
24 40
24 30
W.
10
16 20
16 40
16 30
Mean,
249° 24' 30"
230° 16' 43"
Computation :
— ^ i r' sm 11 (i ~ —
H ^ 1'
)
Magnet east, 2 it =
Magnet west, 2 it =
Mean,
u =
Time of beginning
Time of ending,
/ //
= 19 10 30
Sin ti
P
I — —
temp., etc.
Ill
Logarithms.
= 19 07 47
19 09 08.5
^ 9 34 34-2
, 3:00 p. m.
3:40 p. m.
Temp., 29.2 C
Temp., 27. 8
8- 13073
g. 22104
9. 99664
0. 00490
Mean,
3:20
/ = 28. 5
H
7-35331
MAGNETIC OBSERVATIONS.
179
Observations fur horizontal intensity by the method of deflections with Ke'w theodolite magnetometer No. 54, at Curagao, West Indies, January 27, 1890, by
Ensign 1.. M, Garrett, with long magnet deflecting at right angles to short magnet, suspended.
Distance r = o"'.4oo
Circle readings.
■a
(3
Circle readings.
tJ : <" 1 ___.
« p No. A. i B. Mcan.Nu.
^ '^' : ; i
A.
U.
Mean.
/ // //////! , c / //
/ //
/ //
1 ^- '
^43 55 40 i 56 00 ss 50 I
W.
1 2 ,235 52 30
5300
5245
. : E-
3
55 00 j 55 40 55 20 ' '•
' 1 ^^'- \ 1 1 , 4 S-i 40
5300
5250
1 E. 5
Mean,
55 20 ! 5.
i 50 55 35 ;
' 35''
243" 55
235° 52' 47"
W.
!
' 6 [2
1
35 49 40
50 10
49 55
E.
7 243 50 00 50 20 50 lo
\V.
1
8
49 40
50 00
4950
y. E.
9 1 50 00 50 20
50 10
IS w.
10
50 00
50 20
50 10
Mean, 243° 50' 10"
235° 49' 58"
Computation: — = | r^ sin ;/ (i — — )
/ //
Logarithms.
1 Magnet east, 2 2< = 8 02 48
i>->
Magnet west, 2 u ^ 8 00 12
8. 50555
Mean, 8 01 30
Sin u
8. 84494
« = 4 00 45
^2
9. 998 1 1
Time of beginning, 3:15 p. m.
Temp., 29.5 C.
temp., etc.
0. 00502
Time of ending, 3:35 p. m.
Temp., 30.0
Mean, 3:25
'■=29-7
m
H
7-35362
Distance r =
o™.30o
13
Circle readings.
Circle readings.
E.
9
18 00
18 40
1820
is
W.
10
II 20 ' II 50
i> 35
Mean, 249° iS' 10'
/
-. i- ,-■■■ sir
230° II' 38"
Computation :
7/ f\
P
V H ^ ^
r»
/ //
Magnet east, 2 .< ^ 19 14 10
Sin u
P
Logarithms.
Magnet west, 2 « = ig 06 3
Mean, 19 10 2
« = 9 35 I
2
I
3
8. 13075
g. 22149
9. 99664
Time of beginning, 4:05 p. m.
Time of ending, 4:45 p. m.
Temp., 29.8 C.
Temp., 2S.8
temp., etc.
0. 00505
Mean, 4:25
/=2g.3
m
H
7- 35393
180
MAGNETIC OBSEEVATIONS.
Observations of vibrations, made at Curagao, West Indies, January 26, 1890, by Ensign L. M. Garrett.
Civil time, p.
m.
//I.
•5
Teni
1. of magnet.
Hor. force magnetometer.
Ilor. force thermometer.
At commencement .
A.
I
28.8 C.
At end
Means
I 45
29. 2
29.
Corrected means .
Scale moving apparently —
To the right.
To the left.
No. of
Vib.
Time of
passing wire.
Time of
180 Vib's.
No. of
Vib.
Time of
passing wire.
Time of
180 Vib's.
Torsion.
Scale divi-
sions.
Means and differ-
ences.
//. m. s.
5 39 08. 5
m. 1.
9
A. m. J.
5 39 39- 7
m. i.
39-7
180
49 3S- 2
10 24.7
189
SO 04. 5
10 24. 8
+ 90
39-8
18
40 1 1 .
27
40 42. I
39-7
For 90°
198
50 35-6
10 24. 6
207
51 06.8
10 24. 7
— 90
39-6
36
41 13- 3
45
41 44-5
39-7
216
51 38.0
10 24. 7
225
52 09. 2
10 24. 7
+ 360
40.5
For 360°
54
42 15.9
63
42 47- I
39-6
For 90°
234
52 40. 5
10 24. 6
243
53 "-7
10 24. 6
— 360
38-4
Adopted effect 90°
72
252
90
270
43 18.5
53 43-
44 21.0
54 45-5
10 24.5
10 24. 5
81
261
99
279
43 49-6
54 14-2
44 52.
55 16.7
10 24.6
10 24. 7
39-6
Torsion 0.225 Sc.Div.
z' = 0^.405
1 -\-tL:=0. 000077
F
I Sc.Div. = i'.8
90
5 12. s
60 147.6
99
9
5 12.3
60 148. I
Vertical scale, 19, 3
Time for
180th.
49 33-5
Time for
189th.
50 04. 3
10 24. 6
Time,
312^32
=T„=
10 24. 68
Mean tii
ne — 180 vib's.
6248 64
90 Vib.
Time,
I Vib.
3«.47o2
MAGNETIC 0BSEEVAT10l!)S.
181
Observations of vibrations, made at Curasao, West Indies, January 26, 1890, l^y Ensign L. M. Garrelt.
Civil time, a. m.
Temp, of magnet.
Hor.
force magnetometer.
llor. force thermometer.
At commencement.
/i.
10
m.
50
29.6 C.
At end
Means .
Correcte
II
30
29.7
29.65
1 means .
Scale moving
apparently —
Torsion force.
To the right.
To the left.
No. of
Vib.
Time of
passing wire.
Time of
180 Vib's.
No. 01
Vib.
Time of
passing wire.
Time of
180 Vib's
Torsion.
Scale divi-
sions.
Means and differ-
ences.
h. m. s.
m. s.
A. m. s.
m.
s.
3 II 47-8
10 24. 7
9
3 12 18.9
39-8
180
22 12.5
i8y
22 43- 5
10
24.6
+90
40.0
18
198
12 50. I
23 14-9
10 24. 8
27
207
13 21.4
23 46.
lo
24. 6
—90
39-7
39-7
For 90°
36
13 52.6
10 24. 6
45
14 23. 9
39-8
216
24 17.2
225
24 48. 5
10
24. 6
+360
40.5
For 360°
54
14 55-4
10 24. 4
63
IS 26.3
39-7
For 90°
234
25 19.8
243
25 Si-o
10
24.7
—360
38-7
Adopted effect 90°
72
252
IS 57-5
26 22. I
10 24. 6
81
261
16 28.7
26 53- 5
10
24.8
39 6
Tors'no.20oSc.Div.
V = 0^.360
I Sc.Div. = i'.S
90
270
90
17 00
24 24. 6
10 24. 6
99
279
17 31- 1
27 55- 7
10
24. 6
i4 _^ 1.000068
05 12.4
60 147.7
9?
9
05 12. 2
60
147.9
Vertical scale, 16. 5
Time for
1 80th.
22 12. 4
10 24.616
Time for
189th.
10
24.65
Mean .
10 24.633
Time,
90 Vib.
3i2».3i6
Mean tin
le — 180 vib's.
624'.633
Time,
I Vib.
=T„=
•
=.4702
182
MAGNETIC 0B8EEVAT10NS.
Time azimuths taken at La Guayra, Venezuela, February 13, l8go, by Ensign L. M. Garrett, with theodolite and chronometer 1596, 13™ 360.4 slow on G. M. T.
Before.
After.
/ //
/ //
Reading of mark, A 356 45 00
356 45 00
B 176 45 30
176 45 30
•
Reading of circle.
Chronometer
time, p. m.
Telescope.
Remarks.
A.
B.
A. m. s.
/ //
/ //
8 23 16.0
181 28 00
I 27 30
24 45.0
181 20 00
I 19 30
25 31-0
i8i IS 00
I 15 00
26 36.
181 09 30
I 09 00
27 34-
181 03 30
I 03 30
28 22. 5
180 59 00
56 00
Latitude, 10° 36' 49" N. Longit
ade, 66° 56' 43'' W.
Solution by : Tan X = sin D cosec S cot |
Tan Y = cos D sec S cot i
Az=X-|-Y
n s=--u/+(9o°-f')]
MAGNETIC OBSERVATIONS.
183
Observations for declination made at La Guayra, Venezuela, February 12, 1890, by Ensign L. M. Garretl , with Kew theodolite magnetometer No. 54, with long
long magnet suspended, erect.
Line of detorsion 100^.
Local
Scale
time.
readings.
Mean.
Azimuth circle, A 29 18 00
Li. m.
Left. 1 Right.
B 18 20
k, fit.
d.
d.
Remarks :
845
39- I
41.2
40.15
At 8:30 removed torsion weight and
9 00
39-9
40.9
40.40
susjiended magnet.
J5
40. 1
40.5
40.30
30
40.4
40.5
40-45
45
40.6
40.7
40.65
10 00
40. 6
40.7
40.65
15
40.7
40.7
40.70
30
40.8
40.8
40. 80
45
40.8
40.8
40. 80
II 00
40.9
41.
40.95
Torsion weight having been sus-
IS
40.9
41.0
40.95
pended all night, did not remove
30
40.9
41.0
40.95
magnet after forenoon observa-
tions.
/ //
p. m.
Line of detors
ion 100
Azimuth circle, A 29 18 00
B 18 00
I 00
39-7
39-7
39-70
15
39-5
39.7
39.60
3°
39-3
39-5
39-40
2 30
39-0
39- I
39-05
45
38.8
39-
38-90
3 00
38.7
38-9
38.80
>5
38-7
38- 9
38.80
30
38.7
38.7
38.70
Remarks : After last reading deter-
45
38.8
38.8
38.80
mined axis and scale value of magnet.
Determination of scale value
of magnet.
Determination of axis of magnet.
Scale.
Circle read-
ings, mean of
verniers.
Value of 10
divisions.
Scale,
Scale read-
ings.
Mean.
Alter-
nate
mean.
Axis.
/ //
d.
30 29 10
17 50
E
38.8
38.8
38.80
38.90
10
II 20
18 20
I
8.7
21. I
l.-|. 90
14.90
26.80
20
29 53 00
18 00
E
38.8
39-3
39-50
39.10
27.00
30
35 00
18 10
I
14. I
15-6
14.85
14.90
27.00
40
16 50
18 30
E
38-2
40.0
39.10
39. 10
27.00
50
28 58 20
18 20
I
14.0
15.8
14.90
14.90
27. CO
60
40 00
17 50
E
39-
39-2
39.10
38.95
26. go
70
22 10
1.8 20
80
03 50
70
22 10
60
40 00
50
58 30
40
29 17 00
30
35 10
20
53 10
10
30 II 30
29 20
Value of one division of
scale = i'.82.
Scale reading of axis ....
26.95
39- 8d
Mean scale reading of east and west magnetic elongation . .
Reduction to axis ... . .
Azimuth circle reads ....
/
23. 30
29 18. 17
= difference =
12.8
Magnetic meridian reads
29 41.47
/ //
A 28
3 59 00
59 20
B
At end of p. m. olDservations ....
A 58 20
Mean reading of mark
280 58.83
B 58 40
^ 280 58 50
Azimuth of mark S. of E . .
105 53-03
True meridian reads
26 51.86
M
rgnetic declina
tion . . .
" 49.61
E.
\
184
MAGNETIC OBSERVATIONS.
Observations for declination made
Line of detorsion, 130°.
at La Guayra, Venezuela, February 13! 1890, by Ensign L. M. Garrett, with Kew theodolite magnetometer No. 54, with long
magnet suspended erect.
Local
time.
h. VI.
9 00
15
3°
45
10 00
15
30
45
1 1 00
15
30
45
Scale
readini'S.
Left.
d.
39-3
.39-8
40. I
40. 2
40.3
40. o
40. 2
40.4
40. 6
40.7
40.7
40.8
p. m.
2.15
30
45
3 00
15
30
45
Right.
26.83
40.42
Mean scale reading of east and west magnetic elonga
tion
Reduction to axis .
/
24- 73
29 18.87
^differences
13-59
ns . .
/ //
A 280 58 20
Magnetic meridian reads . .
At beginning of a. m. observatic
29 43. 60
B 58 40
At end of p. m. observations .
Mean reading of mark , . .
A 58 40
B 59 00
280 58.67
105 53.03
— 280 58 40
Azimuth of mark S. of E. . .
. , .
26 51.70
E.
2
51-54
MAGNETIC OBSERVATIONS.
185
Observations for dip made at La Guayra, Venezuela, February 9 and 10, 1890, by Lieut. Charles Laird, with dip circle No. 84 and needle No. A I.
(Mean by polarities.] [Mean by polarities.]
Polarity of marked end north.
Circle east.
Face east.
o /
^7 09
oS
08.5
N.
37 19
18
iS-S
37° 13'S
Face west.
37 33
33
33
N.
37 31
32
31-5
37° 32'-2
37° 22'
Circle west.
Face east.
o /
37 46
44
45
N.
37 42
41
41.5
37° 43'-2
Face west.
S.
38 09
08
08.5
N.
37 55
S3
54
38° oi'.z
37° 52'.2
Mean, 37° 37'.S
Polarity of marked end south.
Circle west.
Face west.
S.
o I
37 42
44
43
N.
o /
37 38
40
39
37° 41'
Face east.
.S.
o /
3806
06
06
N.
o /
37 S3
52
52.5
37° S9'-3
37° So'i
Circle east.
Face west.
o /
37 II
12
ii.S
N.
o /
37 19
20
19s
37° iS'-S
Face east.
o /
37 29
26
27-S
N.
o /
37 26
22
24
37° 2S'.7
37° 20'.6
Mean, 37° 3S'.3
Resulting dip, 37° 36'.4.
February 9, 1890.
Local time of beginning, 2:30 p. m.
Local time of ending, 4:00 p. m.
Magnetic meridian reads 77° 01^.5
Circle in Mag. prime vertical.
/
Circle N. Needle N, 76 25
" S. 77 09
Circle S. " N. 76 S3
S. 77 39
Mean, 77 01.5
Polarity of marked enc
south.
Circle east.
Circle west.
Face east.
Face west.
Face east.
Face west.
S.
N.
S.
N.
S.
N.
S.
N.
/
/
/
/
/
/
/
/
3738
37 30
37 16
37 24
3809
37 SS
37 46
37 43
31
37
12
20
09
S3
41
38
34
33-5
14
22
09
54
43-S
40.5
37° 34'
37° 18'
38° oi'.s
37° 42'
37° 26'
37° Si'-7
Mean, 37° 38^.8
Polarity of marked end north.
Circle west.
Circle east.
Face west.
Face east.
Face west.
Face east.
S.
N.
S.
N.
S.
N.
S.
N.
/
/
/
/
/
/
/
/
3803
37 46
37 28
37 25
37 25
37 23
37 14
37 20
01
45
25
21
24
22
08
15
02
45-5
26.5
23
24-S
22.5
II
17s
37° S3'-7
37° 24'.7
37° 23'.S
37° i4'-2
37° 39'-2
37° i8'.8
Mean, 37° 29'
Resulting dip, 27° 33''.9.
February 10, 1890.
Circle in Mag, prime vertical.
Local time of beginning, 2; 10 p. m.
Local time of ending, 4:00 p. m.
/
Circle N, Needle N. 7 1 02
Magnetic meridian reads 71" 38''
" S. 72 32
Circle ,S. " N. 71 II
" S.
71 47
Mean,
71 38
186
MAGNETIC OBSERVATIONS.
Observations for dip made at La Guayra, Venezuela, February lo, 1890, l^y Lieut. Charles Laird, with dip circle No. 84 and needle No. Al.
[Mean by polarities.]
Polarity of marked end south.
Circle east.
Circle west.
Face east.
Face west.
Face east.
Face west.
S.
N.
S.
N.
S.
N.
S.
N.
/
/
/
/
/
/
/
/
37 41
37 40
37 21
37 28
37 59
37 44
37 38
37 35
38
37
14
22
58
43
34
29
39-5
38. s
I7-5
25
58.5
43-5
36
32
37° 39'
37° 2I'.2
37° 51'
37° 34'
37° 30'. I
37° 42'.5
Mean, 37° 36''.3
Polarity of marked end north.
Circle west.
Circle east.
Face west.
Face east.
Face west.
Face east.
S.
N.
S.
" N.
S.
N.
.S.
N.
/
/
/
/
/
/
/
/
3803
37 48
37 33
37 29
37, 24
37 20
37 OS
37 14
03
48
34
30
26
23
06
15
03
48
33-5
29. 5
25
21-5
"5-5
14-5
37° SS'-5
37° 3i'-5
37° 23'.2
37° 10'
37° 43'-5
37° 16/.6
Mean, 37° 30^.05
Resulting dip, 37° 33^.2.
February 10, 1890.
Circle in Mag. prime vertical.
Local time of beginning, i:oo p. m.
Local time of ending, 2:00 p. m.
Circle N. Needle N. >.
Magnetic meridian reads 71° 48'
" S. a. m.
Circle S. " N. determination.
s. J
V
MAGNETIC OBSERVATIONS.
187
Observations for horizontal intensity by the method of deflections with Kcw theodolite magnetometer No. 54, at La Guayra, Venezuela, February 10, 1S90, by
Ensign L. M. Garrett, with long magnet deflecting at right angles to short magnet, suspended.
Distance r = o'".3oo.
•a
Circle readings.
Circle readings.
*J
u
s. ^
s
No.
A.
B.
Mean.
No.
A.
B.
Mean.
a r If
/ //
/ //
/ //
/ //
/ //
E.
I
27 39 40
40 00
3950
W.
2
8 22 20
22 20
22 20
i ^
E.
3
39 40
40 00
3950
n
W
W.
4
22 20
22 20
22 20
E.
5
39 40
3940
3940
Mean, 27° 39' 47" 8° 22' 20"
W.
6
8 15 00
15 10
>5 05
E.
7
27 25 20
25 20
25 20
w.
«
15 20
15 40
IS 30
s
^
E.
9
25 20
2530
2525
W.
10
IS 40
16 00
IS so
Mean, 27° 25' 22" 8° 15' 28"
m P
Computation: — =^r-''sin «(l — — )
/ //
Magnet east, 2 ?< ^ 19 17 27
Magnet west,2«= 19 09 54
\ r'
Logarithms.
8. 13073
Mean, 19 13 40
«= 9 36 50
Time of beginning, i :45 p. m.
Time of ending, 2:30 p. m.
Temp., 28. S C.
Temp., 28. 2
Sin u
P
temp., etc.
9. 22274
9. 99636
0. 00487
Mean, 2:04
/ = 28.35
m
H
7- 35470
Distance r = o™.45o.
E.
W.
E.
W.
E.
Circle readings.
No.
o / //
20 47 20
47 00
47 00
B.
/ //
4700
47 00
47 20
Mean.
47 10
4700
47 «°
Circle readings.
No.
o / //
15 07 00
06 40
7 00
6 20
Mean.
7 00
630
Mean,
20° 47' 07''
IS° 06' 4S"
W.
E.
W.
E.
W.
20 44 40
44 40
4420
44 20
4430
4430
IS 06 20
06 20
06 20
06 00
06 00
06 00
06 10
06 10
06 10
Mean,
20° 44' 30"
15° 06' 10"
Computation :
H
^\r^ sin u (l-
c / //
Magnet east, 2 ?< ^ 5 41 22
Magnet west, 2 ?« = S 3^ 20
Mean, 5 49 51
«^2 49 SS
Time of beginning, 2:40 p. m.
Time of ending, 3:12 p.m.
Mean, 2:56
Temp.* 28. o C.
Temp., 28. o
/ = 28. o
Sin u
temp., etc.
H
Logarithms.
8. 9S900
8. 69378
9- 99839
o. 00469
7- 35586
188
MAGNETIC OBSERVATIONS.
Observations for horizontal intensity by the method of deflections with Kew theodol:
Ensign L. M. Garrett, with long magnet deflecting
Distance r = o^.^oo.
Circle readings.
E.
W.
E.
W.
E.
No.
o / //
262 10 40
10 40
10 40
10 50
Mean.
/ //
1045
lo 50
105s
Circle readings.
No.
242 54 00
54 00
5400
54 20
Mean.
5400
54 10
Mean,
262° 10' 50"
o iA' nc"/
242° 54' 05
W.
E.
W.
E.
W.
261 55 40
55 40
56 00
56 GO
5550
55 50
242 48 00
48 00
48 00
48 10
48 10
48 10
4805
4805
4805
Mean,
261° 55' 50"
° A%l cx'
242° 48' C5
Computation :
H
=: \ r'' sin « ( I —
o / //
Magnet east, 2 «< = 19 16 45
Magnet west, 2 k = 19 07 45
Mean, 19 12 15
« = 9 36 08
Time of beginning, 1:15 p. m.
Time of ending, 2: 10 p. m.
Mean, 1:42.5
Temp., 28. 5 C.
Temp., 28. 2
^=28.35
Sin u
P
I -- —
,-■2
temp., etc.
VI
H
Logarithms.
8- 13073
g. 22221
9- 99763
o. 00487
7- 35544
ite magnetometer No. 54, at La Guayra, Venezuela. February 11, 1890, by
at right angles to short magnet, suspended.
Distance r = o'".45o.
•a
c
V,
"■A
Circle readings.
Circle readings.
No.
A.
B.
Mean.
/ //
No.
A.
B.
Mean
/ //
/ //
/ //
/ //
/ /■
E.
I
255 17 30
18 00
1745
W.
2
249 37 30
3800
37 4.'^
^
E.
3
17 40
1800
1750
W.
4
37 40
3800
3750
E.
5
17 30
18 10
1750
Mean, 255° 17' 48" 249° 37' 47"
W.
6 249 36 30
3700
364s
E.
7
255 14 5°
15 20
1505
W.
8
36 50
37 20
3705
to
E.
9
14 40
15 20
15 00
^
W.
10
36 40
37 10
3655
Mean, 255° 15' 02" 249° 36' 55"
m . , P
Computation: — ^\r''smu{\ ^ )
/ //
Logarithms.
Magnet east, 2 ?< = 5 40 01
Magnet west, 2 « ^ 5 38 07
\r>
8. 65900
Mean, 5 39 04
Sin u
8. 69280
« = 2 49 32
-J
9. 99895
Time of beginning, 2:15 p. m.
Temp., 28. C
temp., etc.
0. 00466
Time of ending, 3:10 p.m.
Temp., 27. 5
Mean, 2:42.5
t = 27. 75
m
H
7-35541
MAGNETIC OBSERVATIONS.
189
Observations of vibrations, made at La Guayra, Venezuela, February lo, 1890, by Ensign L. M. Garrett.
Chro. error, 13'" 3i«.2 slow. Daily rate, i-.ss losing.
— -
C
ivil time, a.
m.
Tom
X uf magnet.
Hor. force
nagnetometer.
Hor. force thermometer.
h.
m.
At comurencement .
10
00
28.5 C.
At end ...-.,
Means
Corrected means .
10
35
29.
—
28.7s
Scale moving apparently —
To the right
To the left.
No. of
Vib.
Time of
passing virire.
Time of
180 Vib's.
No. of
Vib.
Time of
passing wire.
Time of
180 Vib's.
Torsion.
Scale divi-
sions.
Means and differ-
ences.
h. m. s.
III. s.
h. III. s.
111. J.
2 33 I4. 5
9
2 33 46.0
40. 5
180
43 40- 5
10 26.0
189
44 11-9
10 25.9
+ 90
41.
18
34 17-3
27
34 48. 5
40.5
For 90°, 0. 5
198
44 43- 2
10 25.9
207
45 14- S
10 26.0
— 90
40.
36
35 19-7
45
35 S«o
40- S
216
45 45- 7
10 26.
225
46 17.0
10 26.0
+ 360
42.5
For 360°, 2. 05
54
36 22.4
63
36 Si- 6
40.5
For 90°, 0. 5 1
234
46 48. 5
15 26. I
243
47 19-5
10 25.9
— 360
38.4
Adopted effect 90°
72
252
90
37 25.0
47 51-
38 27. 6
10 26.
8i
261
99
37 56. 3
48 22. 2
38 59-
10 25.9
40.5
Torsion 0.50 Sc.Div.
h
I Sc. Div. =l'.8
270
48 53- 5
10 25.9
279
49 24.8
10 25.8
l-|— = I. 00017
F
90
OS 13- I
60 15.59
99
9
5 13
60 155- 5
Vertical scale, 20. 7
Time for
1 80th.
2 43 40. 7
10 25.98
Tin
18
Ti
90
lefor
9th.
2 44 12
10 25. 92
Mean,
10 25. 95
me,
Vib.
3i2».975
Mean tin
le — 180 vib's.
625. 95
Time,
I Vib.
=T„=
3'-477S
The computation of the results of the observations for magnetic intensity, dip, and variation gives the following values:
Locality.
Date.
Dec. E.
Dip.
Horizontal
intensity
(British units).
Vera Cruz, Mexico
Coatzacoalcos, Mexico ....
Salina Cruz, Mexico
Port Plata, San Domingo . . .
Curasao, West Indies ....
La Guayra, Venezuela ....
Dec, 18S8
Feb., 1889
Mar., 1889
Dec, 1889
Jan., 1890
Feb., 1S90
1
7 13
6 53
6 59
37
2 28
2 51
/
44 20
43 3
40 2
49 50
39 13
37 35
7. 2890
7. 4300
6. 6667
6. 9841
6. 9496