\y)(x^ ^^ Vllf CORNELL UNIVERSITY LIBRARY BOUGHT WITH THE INCOME OF THE SAGE ENDOWMENT FUND GIVEN IN 1891 BY HENRY WILLIAMS SAGE MATHEMATICS UBRARV Cornell University Library QA 55.H74 Computation rules and logaritlims, with) ta 3 1924 000 095 756 >/ £^ Cornell University Library The original of this book is in the Cornell University Library. There are no known copyright restrictions in the United States on the use of the text. http://www.archive.org/details/cu31924000095756 COMPUTATION RULES AND LOGARITHMS •» Jl^^m COMPUTATION RULES AND LOGARITHMS WITH TABLES OF OTHER USEFUL FUNCTIONS BY SILAS W. HOLMAN Peofessob op Physics at the MASSAOHnSEITS iHSTITUTB OF TEOmfOLOST MACMILLAN AND CO. AND LONDON 1896 All rights reaevoed 7 i /\-%%Q>35' Copyright, 1895, By S. W. HOLMAN. NottoDoB 33rtZ3 J. S. Gushing & Co. - Berwick & Smith Norwood Maes. U.S.A. CONTENTS. PAGE Peefacb vii Computation Kules xi Proper Number of Places of Significant Figures xi Fundamental Principles xii Kules in Detail xiii Rejection . . xiii Multiplication and Division xiii Logarithms xiii Addition or Subtraction xiv Nujnerical Substitution in FormulaB xiv Notation by Powers of Ten xv Statement of the Method xv Symmetrical Grouping of Figures xvi Examples i to ii xvii Logarithms. Nature of xxiv Tables, Description of xxv To Find the Logarithm of a Number xxvii Decimal Point in Logarithmic Tables xxix Antilogarithms : Number Cokresponding xxx Cologarithms .... xxxi Habit in Reading off Numbers and Logarithms xxxii PovsTERs and Roots by Logarithms xxxiv Powers and Roots of Numbers greater than Unity xxxiv Powers of Decimal Fractions xxxiv Roots of Decimal Fractions xxxv Squares and Square Roots xxxvi Reciprocals xxxviii Natural Sines, Cosines, Tangents, and Cotangents . . xxxviii V VI CONTENTS. PAGE Logarithms of Sines, Cosines, Tangents, and Cotangents . xxxix Slide Wire Ratios xl Definitions and Explanations underlying the Computation Rules xli Significant Figures xli Places of I'iguies xli Places of Decimals xlii Accuracy; Reliability xlii Mean ; Average xlii Deviation Measure xlii Rules for Significant Figures xliii Rejection Error xliii Law and Amount of Accumulated Rejection Error xliv TABLES. Logarithms, Four-Place ' 2 Antilogarithms, Four-Place 4 COLOGARITHMS, FoUR-PlACE 6 Logarithms, Five-Place 9 Square Roots and Squares, Four-Place 30 Reciprocals, Four-Place 34 Slide Wire Ratios, Four-Place .36 Natural Sines and Cosines, Four-Place 38 Natural Tangents and Cotangents, Four-Place 40 Logarithms of Sines and Cosines, Four-Place 42 Logarithms of Tangents and Cotangents, Four-Place ... 44 Logarithms of Sines, Cosines, Tangents, and Cotangents, Five-Place 47 Constants 70 PREFACE. It -would probably be within safe limits to assert that one-half of the time expended in computations is wasted through the use of an excessive number of places of figures, and through failure to employ logarithms. . This waste might be almost wholly avoided by follow- ing a few simple computation rules and practising slightly with logarithm tables. The loss from the use of superfluous figures will be appreciated when it is considered that in direct or logarithmic multiplication and division with four, five, and six places of figures the work is respec- tively in the ratio of i : 2 : 3, or perhaps more nearly 2:3:4. Thus contrary to the fallacious excuse so commonly given that it is just about as easy to use six- or seven-place tables as smaller ones,' the work is doubled or trebled by the use of six places instead of four. Even the employment of six- or seven-place tables, and dropping superfluous places when four or five are desired, causes much loss of time. The proper employment of logarithms for work of four or more places effects a saving of one-quarter and upward of the time required for direct multiplication or division, with a lessening of fatigue and a gain of accuracy. The following pages contain simple rules to enable one to answer for himself the question, how many places of figures ought I to use in this computation ? — also, an explanatioii of the use of the nota- tion by powers of ten; certain instructions, more or less novel in form, as to the use of the logarithm and other tables ; and a collection of useful tables. This collection is designed to contain all the mathe- matical tables ordinarily required, and nothing more, in practical work in all branches of the engineering professions, and by students of physics, chemistry, and engineering, for work of any grade not exceeding about one-twentieth of one per cent in accuracy. For Vin PKEPACE. many persons the present volume should, therefore, provide all the logarithmic and trigonometric tables needed for the entire range of their practice. For work of greater precision than the above limit, the more bulky Vega, or some similar reliable seven-place table would be reqmred. It is exceedingly rare that more than six or seven places are necessary, while for most work five are sufficient, although a striking chapter of absurd illustrations might be gleaned from various text-books and tables where ten- and even twenty-place logarithms are given, often for quantities uncertain in their fourth or fifth place. Person^ doing much work with squares, cubes, square roots, cube roots, or reciprocals of more than four places would natu- rally make use of the Barlow Tables. The rules for significant figures (pages xi to xv) are intended to be terse, direct, and simple, so that they may be easily acquired and retained. The strong type emphasizes the leading portions. The ordinary and finer types give details and explanations. Tor the sake of affording still greater prominence to the main working portions, some explanatory matter which will be unnecessary to many per- sons has been transferred from its more logical position of precedence to the latter part of the text. These rules in various forms have been in successful use by large classes of students, in connection with the author's " Physical Laboratory Notes " (printed, but not published, by the Massachusetts Institute of Technology), and his " Precision of Measurements." The recognition of the need of such rules amongst engineers and others whose practical work demands rapid and reliable computations was the cause of their general intro- duction into this laboratory instruction. It is therefore hoped that they may render effective service to others besides the students for whom they have been more directly designed. In the arrangement of the tables, the effort has been exerted to make them correct, legible, systematic, and convenient in use. A new set of tables is, of course, liable to contain mistakes ; notices of errata will therefore be thankfully received. The special indexing of the corners of pages, the use of heavy type at points to be made conspicuous, the employment of spaces rather than rules for the partition of lines and columns, and the style of type, and kind of paper used, are believed to conduce to legibility. As to system of arrangement, there are few novelties other than the insertion of the logs, cologs, and reciprocals of i .000 to 1. 100 at the top of the respective four-place tables, and the division PEBFACB. IX of most of the four-place tables so that the second page begins with 5.0 instead of the customary 4.5. The frequent occurrence of cor rection and reduction factors, ranging from i.o to i.i, renders this by far the most frequently used part of the table ; while at the same time, on account of the large tabular differences, interpolation is here the most laborious. The insertion of logs, cologs, and recipro- cals from 1.0 to I.I with increments of o.ooi and o.oooi, respec- tively, in the four- and five-place tables, obviates this interpolation. In tables of antilogs and square roots the addition would be of little service. In the tables of logarithms and of square roots, heavier type has been used at apparently scattered points throughout the body of the tables. These points, in -the five-place logarithm tables, for instance, are where the first two figures in the mantissa change by one unit in the second place, e.g. 00, 01, 02, etc. The obvious service of this is to aid the eye in finding any desired mantissa in working the table backward to obtain the antilog or number corre- sponding. The object is, of course, the same in the other tables. As to the wisdom of departing from the usual custom of omitting decimal points entirely from logarithm tables, the author believes that the retention of the point promotes clearness of comprehension of the tables by beginners, and lessens mental effort in more experi- enced computers, especially when associated with the notation by powers of 10, as in the explanations here given. It seems unfortu- nate that this simple notation, so useful in computation and so great an aid in the explanation of numerical relations, is not universally incorporated into arithmetical instruction. The rules for the employment of logarithms and of the tables have not been prepared especially to meet the need of those entirely unfamiliar with the principles of logarithms, although they would probably be intelligible to any mature beginner. It is thought, how- ever, that the explanations and instructions given may prove an aid even to those who are already somewhat familiar with the subject. RoGBBS Laboratory of Physics, Massachusetts Institute of Technology. Boston, August, 1895. COMPUTATIOIN^ EULES. o»{o PROPER NUMBER OF PLACES OF SIGNIFICANT FIGURES. The following three pages contain the rules and their underlying principles in a condensed form for ready reference. For readers to whom some of the terms employed are unfamiliar, or who desire fuller proofs and explanations, some additional pages of " Definitions and Explanations " have been appended. These rules should enable a computer to decide at the outset of his work, or at the successive stages of it, what number of places of significant figures he should retain in order to avoid waste of labor on the one hand or sacrifice of accuracy on the other. They provide for a sufficient number of places to assure that (barring mistakes) the accumulated error arising from the rejection of further places shall be always smaller, usually much smaller, than the supposed uncertainty of the data or result, in computations involving not more than about 20 rejections. The retention of more places is worse than useless. It adds nothing to the accuracy of the result, although increasing materially the labor of computing, and the lia- bility to mistake. The aggregate value of the time thus wasted, — obvious enough to any one who has had occasion to perform extended computations, — may be appreciated from the fact that the use of five places where four would suffice, nearly doubles the labor ; using six places instead of four, nearly trebles it ; thus wasting 100 and 200 per cent respectively of the necessary amount of work, and probably a greater proportion of time. Moreover, incongruities in the use of places of figures arouse skepticism as to the competence of the worker in other directions. Xil COMPUTATION EULBS. FUNDAMENTAL PRINCIPLES. Retain everywhere enough places to correspond to two unreliable places in the final result ; the direct object of this is to keep the first place of unreliable figures in the final result substantially free from the accumulated rejection errors. Exceptions. — A final result is seldom stated to more than one uncertain place unless the uncertainty of that place is small (say plus or minus four or less). Example : i, page xvi. Single direct measurements generally yield numbers extending to only one uncertain place. This should not, however, be taken as a reason for relaxing the application of the above rule to subsequent steps of the computation, especially in deducing the mean or average of several single observations. Final zeros occurring in decimal fractions should be retained when any other digit in the same place would be retained. This is of course essential to show that this place is known. The foregoing principles consistently carried out constitute en- tirely sufficient rules. But more detailed instructions are usually required at the outset. These are readily understood in view of the two following propositions, which one can easily verify by algebra or by numerical examples. Proposition I. — In multiplication or division, the percentage accuracy of the product or quotient cannot exceed that of the factor whose percentage accuracy is least. Proposition II. — In addition or subtraction, the result cannot be accurate beyond the first decimal place which is inaccurate in any component. A more general form of statement from which these follow is : If several numbers are multiplied or divided, a given percentage error in any one of them will produce the same percentage error in the result. If several numbers are added or subtracted, a given error or change in the digit in any decimal or other place will produce an. equal error or change in the digit in the same decimal place in the result. COMPUTATION RULES. XUl RULES IN DETAIL. Eejectioi^. — In casting off places of figures, increase by i the last figure retained when the first left-hand rejected figure is 5 or greater ; otherwise leave it unchanged. Example. — If the last two figures are rejected 756827.9 becomes 756830. and 0.00 263 439 becomes 0.00 263 4. A MEAN OK AVERAGE should always be carried to two unreliable figures. A mean is more reliable than the single observation from which it is computed (in proportion to ^^/n, the square root of the number of observations). Thus, as the data frequently extend to only one unreliable figure, the mean will often have to be carried two places further than the single observation. Multiplication or Division. — Ascertain from the object of the work the percentage accuracy desired in the final result ; or, by inspec- tion of the data, find the percentage accuracy of that factor for which this is least, i.e. for which the deviation-measure or the estimated error, expressed as a per cent, is largest. See Example i, page xvii. In direct multiplication or division retain in every factor, product, and quotient throughout the entire process, and in final results, for an accuracy of about One per cent, or worse, four (4) places of significant figures; One-tenth per cent, or worse, five (5) places of significant figures; and so on. In the ordinary and the shortened processes of "long multi- plication," it is best to carry out the partial products one place beyond that yielding the last place required in the result under the above rule. Examples: 2-5, page xvii. Logarithms. — If the multiplication or division is performed by means of logarithms, the mantissa should contain as many places as are required by the foregoing rules for the direct process; i.e. for about One per cent, or worse, use four (4) place tables; One-tenth per cent, or worse, use five (5) place tables. Examples : 2-5, page xvii. xiv COMPUTATION RULES. Addition ob Subtkaction. — Ascertain from the stated object of the work the percentage accuracy desired. If this is about One per cent, or worse, carry the result to four (4) places of signifi- cant figures; One-tenth per cent, or worse, carry the result to five (5) places of significant figures; and so on, and carry each component quantity to that place of decimals which would correspond to this required place in the result, that is, stand in the same column with that place. Examples: 6-8, page xix. When the desired acoukacy is not stated, inspect the data to find the component whose first uncertain place is furthest to the left, i.e. whose deviation measure (page xlii), in units, not percentage or fractional, is greatest. Retain this component to two uncertain places, and all other components to the place which would stand in the same column with this second place. Examples: 6-8, page xix. N. B. — If the number of components approaches 20, care may well be taken in refined work that an unusually large rejection error does not enter through a special combination of rejected figures. The rules are, however, sufficient for the worst possible case. The computer should notice that the percentage precision of a result which is the difference of two or more quantities will usually be smaller, and may be much smaller, than that of any of the component quantities. Numerical Substitution in Formulae. — A large number of formulae may be represented by the type a-b ±c-d± ••• x = - p-q ±r-s ± where a, b, c, d, etc., represent numbers to be multiplied, divided, added, or subtracted, etc., as indicated. Any one or more of the factors and terms may be wanting ; or, there may be several in place of two ; and so on. Obviously, in order that the result x shall be accurate to a speci- fied per cent, both numerator and denominator must be at least of that accuracy, and each should therefore be carried out to the num- ber of places of significant figures needed in x. Then as the numer- ator consists of two or more terms ab and be added or subtracted, COMPUTATION KULES. XV inspection under the foregoing rules for addition or subtraction will show to what decimal place each of these terms must be carried. Further, a and 6 must each be carried to the number of significant figures thus required in the product ab, and so on. In complicated formulae this process of inspection is sometimes slightly troublesome, but is essential unless the necessary precision of the components has been otherwise studied ; as, for example, by the simple applications of the differential calculus as in the author's " Precision of Measurements." Examples: 9-1 1, page xx. Practical examples of substitution in moderately simple formulae. NOTATION BY POWERS OF TEN. Statement of the Method. — Eegard the decimal point as merely an affix whose sole purpose is to indicate which is the units' place of figures. Fix the attention firmly upon the units' place as the centre of symmetry of our customary system of notation. The too universal reference to the decimal point, rather than to the units' place, in arithmetical rules and explanations, has resulted in masking this symmetry and in thus depriving the student of its important aid. In oiu: common decimal system of notation, a digit in the units' place represents so many times unity, i.e. so many times 10° (=1), or so many units. In the first place to the left of the units' place the digit represents so many times 10+^, i.e. so many tens, and in the first place to the right, so many times io~', i.e. so many tenths; in the second place to the left so many times 10+^, i.e. hundreds, and to the right so many times io~^, i.e. hundredths; in the sixth places, so many times 10"'"° and io~^, i.e. millions and millionths, respectively; and so on. The fundamental symmetry of the whole system about the units' place is thus obvious, and should not be lost sight of. In counting up places, whether to right or left, always begin with the units' place as zero. It is clear, then, that we may write numbers in this way : for 90 write 9-10^; for 60G0 write 6.ooo'io' or 6" 10^ as the case may require ; for 345 write S^S'io''; for 0.00 005 write 5-10-'; for 0.00 468 9 write 4.689-10-'; for 850.72 write 8.507210^ ; and so on. That is, Xvi COMPUTATION EULES. Separate the number into two factors, the first being the original number with the decimal point changed in position so as to follow the first figure; the other being lo-", where the sign is plus for a whole number and minus for a fraction, and where n is the number of places the decimal point has been moved. To transform a number expressed in tMs way back into the ordi- nary form, move the decimal point n places, making the number a whole (or a larger) number if n is plus, and a fraction if n is minus. Associate firmly in the mind the plus sign with whole numbers, the minus sign with fractions ; thus avoiding confusion as to the sign of n. In much work, the factoring need not be written out, but may merely be mental. This notation reduces the error and work of locating the decimal point in multiplication or division, especially in expressions containing several terms in the numerator and denominator. It is very helpful in connection with the characteristic of logarithms, and the location of the decimal point in evolution, involution, and finding reciprocals. It saves space and promotes clearness in expressing large numbers or small fractions, and it is the best aid in following the decimal point while using the slide rule. It also enables one to dispense with characteristics in certain parts of computations (see Examples, page xxi). An abbreviated notation helpful in one's own work, but perhaps not to be urged for general adoption, consists in dropping the -lo, thus, instead of 4.507-102 write merely 4.507^ instead of 5.3704-10-3 write merely 5.3704-3 The adoption of the bracket or parenthesis, e.g. (4.507)2, for either notation in cases of possible doubt removes all risk of mistaking these indices for ordinary exponents of powers. Examples 9, 10, 1 1 give incidentally illustrations of the use of the notation by powers of 10. Symmetrical Grouping of Figures. — For writing numbers, adopt the following system of groups and spaces : — Write 143 258.64 796 instead of 143,258.647,96, the usual method. A still clearer method would be to write 143 25864 796 denoting the units' place by the heavy figure, but this is impracti- cable. The proposed system is symmetrical about the units' place, the customary system is not. It groups together the units, tens, and hundreds of thousandths, of millionths, etc., as well as of thou- COMPUTATION EULES. XVU sands, millions, etc. It is clearer and less liable to error by the substitution of spaces for the commas to mark off the groups Exception is usually to be made in the case of a decimal fraction containing only three or four places. Thus write 0.4612 rather than 0.46 12, and 6.382 rather than 6.38 2. EXAMPLES. Example 1. — Suppose that a final result was stated as 298549. ± o.io per cent; this would mean that its uncertainty or deviation-measure or estimated measure of accuracy (see page xlii) was ± o.io per cent. To how many places should it be retained? o-i per cent of the number is 0.00 1 x 300000= 300. Therefore the last three places are uncertain, but as the uncertainty in the first left-hand one is small (3) , two uncertain places should be retained. The result, therefore, should be written 298 550. -± o.io per cent. Suppose a result given as 47.58 243 5 ± 0-0062- This would be an incorrect use of figures. The ± 0.0062 shows that the result is uncertain in the third and fourth, and therefore in all subsequent decimal places.* The fifth and sixth places of significant figures are thus unreliable, so that the seventh and eighth places are entirely valueless, and should, therefore, be rejected. We should be at liberty to -use our judgment as to whether the result should then be written 47.58 24 ±0.00 62 or 47.582 ± 0.006, since the uncertainty in the fifth place is large. The second is more common practice. In this example the uncertainty is ± 0.0062/47. =± 0.00013, °^ ±0.013 Psr cent. It might, therefore, have been expressed as ± 13 parts in 100,000, or ± 0.013 per cent instead of as ± 0.0062 units. It is always expressed in the same unit as the quantity itself, e.g. ft., lbs., etc., except when directly stated to be a percentage. Example 2. — Desired with an accuracy of 2 per cent, the volume of a right circular cylinder whose radius r is 6-0428 inches, and length I 12.653 inches- Volume V= irrH. By the rule for multiplication, since the result is desired to worse than one per cent, the data and all steps should be carried to four places of significant figures- Hence, we should have V= 3-142 X 6.0432 X 12.65 = I4SI' By ordinary multiplication : By shortened multiplication : 6.043 6.043 I8I29 24162 36258 3.142 36.52 6284 1 5710 18852 9426 1 14.7 "4-7 12.65 S73S 6882 2294 1147 145 1. 6.043 6.043 36258 240 18 3.142 36.52 9426 18 84 I SS 6 114.7 1265 "47 2294 690 36.52 36.52 55 "4-7 1451- * This quantity ± 0.0062, or whatever may be its value, is the " average devia- tion" or the "deviation-measure" of the result; that is, the average amount by which several results similarly obtained would differ from their mean. A fuller explanation is given at page xlii. The " probable error," which is nearly identical with the average deviation, is commonly used in its stead. Either suffices. XVIU COMPUTATION EXILES. Observe that the partial products beyond the place standing over the fifth place of the result In each multiplication are useless. Hence the obvious saving of labor in the shortened process, which is also more compact. The process is easily understood by inspection of the example. Multiply first by the first left- hand figure of the multiplier. If the resulting partial product has one more place than is desired in the result, then drop the last figure of the multiplicand when multiplying by the second figure of the multiplier ; drop the last two, when multiplying by the third figure ; and so on. If, however, the first partial product has not the desired number, the dropping of figures must be deferred till the third figure of the multiplier is used. Xizample 3. — Desired the volume V=TrH of a right circular cylinder whose dimensions are in. in. r = 6.0428 ± J per cent, I = 12.653 ± -f^ per cent. The result cannot be more accurate than the least precise factor, which is obviously r. Under the rule, I per cent computations call for five places of significant figures. Hence we should have to find by multiplication or by five- place logarithms, V= 3.1416 X (6.0428)2 X 12.653. Note in this connection that the error in V is proportional to twice the percentage error in r, since r enters in the second power, and that in general where a numberis raised to any power n the percentage error in the result is increased to n times its value in the data. These rules, however, provide suflS- ciently for such cases. See " Definitions and Explanations." Example 4. — Desired the volume V = irrH of a right circular cylinder whose dimensions are given as r = 6.043 ± 0.017 inches, I = 12.653 ± 0.038 inches. Under the general principle of retaining places to correspond to two uncer- tain figures in the result in the data, r should have four places and I five places, judging from their stated precision. But the weaker quantity fixes the number of places in the result, so that we should use but four places : F= 3.142 X (6.043)2 X 12.65. Ezample 5. — Desired the ratio of the diameter to the length in each of the Examples 2, 3, and 4. The number of places of figures to be used would be respectively four, five, and four, just as in the above solutions. A factor in the denominator fol- lows precisely the same rule as to places of significant figures as the one in the numerator. To contrast the ordinary and shortened solutions, the following are given : 12.65)6.043(0.4777 5060 9830 8855 9750 8855 8950 8855 6.043 5060 9830 8855 975 889 "86 91 12.65 0.4777 COMPUTATION RULES. XIX Iizample 6. — Desired the value to 0.6 per cent of 47-34 89 + 174.32 825 - 5.62 147. For o. 1 per cent or worse (page xiv), we must retain places in tlie compo- nents to correspond to five places in the result. By inspection we see that the result will be slightly more than 200. Hence its fifth place will be the second dec- imal place, and we need retain no place beyond that in the components. Thus, 47-35 174-33 221.68 -s-62 216.06 l± an unknown amount as precision-measure]. Example 7. — Desired the algebraic sum of 47'- 34 89 ± 0.0042, i74'.32 825 ± 0.00 089, and — 5'.62 147 ± 0.00 008. By inspection the weaker component, that is, the one whose first uncertain place is furthest to the left, is the first number. Retaining this to two uncertain figures would carry it to the fourth decimal place. It will then be useless to retain the other components beyond that place, and we shall have 47-3489 174-3283 221.67 72 -S-621S 216.0557 [± more than o'.oo 42]. Example 8. — Desired the algebraic sum of 47'. 34 89 ± 0.05 per cent, 174'. 32 825 ± 0.02 per cent, — 5'.62 147 ±0.1 per cent. 0.05 per cent of 47. is 0.024 i 0-02 per cent of 174. is 0.035 > °- ' P^'^ '^^^^ °^ 5.6 is 0.00 56. Hence the weakest component is now the second, and this, and consequently the others, should be retained to three decimal places. Thus, we have 47-349 174-328 221.677 . —5.621 216.056 [± more than o'.035]. Example 9. — The horse-power, HP, which could safely be transmitted by a wrought-iron shaft of diameter d inches, running at a speed N rotations per minute, the safe shearing load of wrought iron being represented by/, is given by the expression ^j,_ 2,r^yjy 16-I2-3300O XX COMPUTATION KTJLES. [Deduced from Lanza's "Applied Mechanics," page 336. The several con- stants 2, 16, 12, and 33000 would of course be combined into a single constant in a working formula, but they are here left separate for purposes of better illustration.] To how many places of significant figures should the quantities, result, and various steps of the computation be carried out to assure against a computation error in the result, sensible as compared to one per cent ? Solution. — In this and all similar problems, where the expression consists merely of a number of factors in the numerator and denominator (either or both), without additions or subtractions, the solution of the significant figure problem can be made without any knowledge of the magnitude of the component quantities, such as d, f, y, etc. In this example, as the result is desired to one per cent, according to the rules it should be carried to four places of significant figures. Hence, according to the rule, page xiii, or to Proposition II, page xii, each factor of the whole expression should be carried to four places. In this expression every quantity is a factor, either in the first or a higher power, viz. 2, ir2, d^, /, JV, 16, 12, and 33000. Each, therefore, should he carried to four figures. Hence, also, if direct multiplication be employed in the solution, each product and quotient must be carried to four places. If logarithms are used (they should be) four-place tables should be chosen. When a quantity enters as a factor of the nth power this is equivalent to its entering n times as a simple factor or as n separate factors, all with the same percentage error of the same sign. See also note under example 3. The constants 2, 16, 12, and 33000 do not require to be carried to more places than they are here given because they are complete as they stand, that is, all further figures are known to be zero as a matter of definition or mathematical fact. If either of them had been an experimental constant , that is, determined by measurement, it should have been carried out to four places even if the last figure or two were zero. For instance, if experimental, the 16 should have been written 16.0, 16.00, 16.000, and so on according to the number of places to which it was known (see rule, page xii). Failure on the part of those who write such formulse to adhere to this convention, or to indicate in some clear way the degree of accuracy possessed by such constants, is a serious source of annoyance and trouble to those who use them. As elsewhere it must not be inferred if certain of the quantities, e.g. d or/, in this expression cannot be carried out to this desired number of figures, that consequently the result will not have the accuracy desired in the given case. The outcome of such a condition would merely be that these factors would be liable to introduce more than a safe computation error. For instance, if /were given as loioo lbs. per square inch, we should have no certainty that it was carried far enough. The presumption would be that it was cori-ect to but three places, and therefore not exact enough. If, however, from a knowledge of tlie subject we were aware that the best known value was loi 10, we should know that the error from using loioo was only i in 1000 or o. i per cent, and hence admissible. On the other hand, if we know that the best value was 10050, we should know that the computation error in tlie result from using loioo was 0.5 per cent, and hence by no means safe in the above problem. More complete methods for ascertaining the exact accuracy needed in each component measured quantity in such formulae, are given in the author's " Precision of Measurements." It is to be remembered that we are now dealing COMPUTATION KULES.- XXI merely with rules for computation errors, and these are not suited to the other problem. They are intended to secure a safe number of places for the worst case, and would, therefore, impose unduly severe requirements as to the accu- racy necessary in the measurement of the components in most cases. Numerical Substitution. — The numerical expression to he solved if written out would he 2-3. 142^- 1. 3642- 10 000-300 1 6- 12- 33 000 2-3.1422-1. 3645- 10^-3-102 . in the ordinary notation ; i.6-ioi'i.2-ioi-3.3-io* 2(3.142)^(1.364)810^-32 in the notation by powers of 10 (page xv); 1.61-1.21-3.3* in the abbreviated notation by powers of 10 (page xv). The first would be worked out in the usual manner by direct multiplica- tion or by logarithms, as shown below. The second would be worked as follows : Multiply together the terms other than 10" of the numerator, i.e. 2 x 3.1422 x 1.364'^ X 3 = 150.3 Multiply together the terms other than 10" of the denominator, i.e. 1.6 x 1.2 x 3.3 = 6.336 Divide numerator by denominator = 23.72 Add together all indices of powers of 10 in numerator, also in denom- inator, and subtract the latter from the former. Or, better, add (algebraically) all the indices, reversing the sign of those in the denominator, thus : 4 + 2 — 1 — 1 — 4 = 0. The result is therefore 23.72'io'' = 23.72 Note distinctly that all this writing out of the fraction and of the several steps is merely for the purpose of this explanation. In an actual solution such of these operations as are essential to the work would be conducted mentally, the actual multiplication and division alone being written out. If the solution were made by logarithms, it might assume either of the two following forms. The first is the usual one, the second shows how the use of the powers of 10 enables us, if we choose, to dispense with writing character- istics in very many places, —a saving of just so much labor. The factor 10" in the second result is, of course, obtained by summing mentally the indices of the factors 10, those in the denominator being taken with reversed sign, as in the preceding paragraph. These indices would not be written out, but taken by direct inspection of the data as originally written. Denorainator. Usual Method. Dropping Characteristics. Numerator. Usual Method. Dropping Dharacterist log 16. = 1. 2041 .2041 log 2. = 0.3010 .3010 log 12. = 1.0792 .0792 2 X log 3.142 = 0-9944 -9944 log 33 000. = 4-5185 •5185 3 X log 1.364 = 0.4044 .4044 log denom. = 6.8018 .8018 log 10 000 log 300. = 4- = 2.4771 ■4771 Result, 8.1769 6.8018 2.1769 .8018 1-3751 23.72 I-3751 23.72-1 XXH COMPUTATION RULES. Example 10. — The crushing load of a hollow, cast-iron pillar of circular section, with concentric surfaces of diameters D and d as given by Hodgkiuson (Lanza, "Applied Mechanics," page 332) is „ ,r(D2 - (22) c = 100 801—^^ -■ 4 Desired to ten per cent the load which a pillar of external and internal diame- ters 4.032 inches and 2.16 inches, respectively, would carry. How many places of figures should he used in the computation ? Ten per cent results call for three figures in all factors (page xiii). The factors in this expression are 109 801, ir, {D^ — d^), and 4, each of which should therefore be carried to three figures. The first two should therefore be 1 10 000 and 3. 14. The 4 is a complete number as it stands. D''—d^=4.d^—2.2^ roughly = 16.0 — 4.8 = 11.2. To have three figures, it should therefore be car- ried to the first decimal place. Then as it is made up of two quantities, one subtracted from the other, each of these should be carried (page xiv) to the decimal place desired in the result, i.e. to the tenths' place. This requires D^ to contain three figures, 16.0, and hence D should contain three figures (since D^ consists of the factors DxD), i.e. should be written 4.03 inches. The require- ment of one decimal place in d^ calls for but two figures, 4.8, and hence two figures, 2.2 inches, in d. The numerical expression to be solved would then be 3.14(4.032 _ 2.2^) c= 1 10 000 -^ ^^^ ^ -, 4 which would be most easily worked by a simple slide rule, or by direct multipli- cation. Example 11. — Desired to o. i per cent the fraction of dry steam in a sample of steam, using the following observations made with the "Barrus Calorimeter" (Peabody's " Themodynamics of the Steam Engine," page 234), the formula being _ TF(g2 -qi)+e- w(q - qs) *- wr where X = fraction of a mixture which is dry steam . . ... JF = weight of cooling water 573 5 lbs. w = weight of condensed water 29.89^3. t = temperature of steam (1 = initial temperature of cooling water 37°-49 ^• f2 = final temperature of cooling water 83°.84F. <3 = temperature of condensed water 304'^. 88 F. qs = "heat of liquid " at t°s, from ig and tables . , . . . . 274.4 q-i = "heat of liquid" at t°2, from t^ and tables 51.91 B. T. U. qi = " heat of liquid " at t°u from ti and tables ... . 5.53 B. T. U. 5 =" heat of liquid " at «°, from f and tables 287.6 B. T. U. e = radiation loss during test 120. B. T. U. r = latent heat of steam at 2°, from tables 891.2 B.T.U. What number of places of figures should be used throughout ? Solution. — For o. i per cent the result, and therefore all factors, should have five places of figures (page xiii). The only factors of the whole expression COMPUTATION RULES. xxiii are the whole numerator, w, and r. They should therefore be carried to five places. Note, however, that w and r are not so given in the data. Whether, however, they are given closely enough must he determined by other means (see remark at foot of page xx). Their product must, however, be carried to five places, and five-place log tables should be employed. The numerator consists of three terms, whose values, roughly, are 570(52. — 6.)= 2600., 120., and 30(288. — 274.)= 420. . •. numerator = 2600. + 120. — 420. = 2300., roughly. To have five places the numerator must be carried to one place of decimals, as also must each of its terms. The first term is composed of two factors, W and (32 — Si), each of which must therefore be carried to five places. Then 36 (Z2 — 8 4533 4548 4564 4579 4594 4609 18 16 14 13 •9 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757 20 18 16 14 3.0 •4771 .4786 .4800 .4814 .4829 •4843 .4857 .4871 .4886 .4900 15 14 13 12 .1 4914 4928 4942 4955 4969 4983 49^7 6011 5024 5038- 2 I I I .2 5051 5065 5079 5092 5105 5"9 5132 5145 5'S9 5172 3 3^3 2 •3 5185 5198 5211 5224 5237 5250 5263 5276 5289 5302 5 4 4.. 4 •4 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428 6 6 5 5 35 •5441 •5453 .5465 •5478 •5490 .5502 •5515 ■5527 -5539 •5551 8776 .6 5563 5575 5587 5599 561 1 5623 5635 5647 5658 5670 9887 ■7 5682 5694 5705 5717 5729 S740 5752 5763 5775 5786 II 10 9 8 .8 5798 5809 5821 5832 5843 5855 5866 5877 5888 5899 12 II 10 10 •9 S9II 5922 5933 5944 5955 5966 5977 5988 5999 6010 14 13 12 II 4.0 .6021 .6031 .6042 •6053 .6064 .6075 .6085 .6096 .6107 .6117 11 10 9 8 .1 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222 I I I I .2 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325 2222 ■3 633s 6345 6355 6365 6375 6385 6395 6405 6415 6425 "3332 •4 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522 4 4 4 3 4-S •6532 .6542 .6551 .6561 •6571 .6580 .6590 .6599 .6609 .6618 6554 .6 6628 6637 6646 6656 6665 6675 6684 6693 6702 6712 7655 ■7 6721 ^^12 6902 6730 6739 6749 6758 6767 6776 6785 6794 6803 8766 .8 6821 6830 6839 6848 6857 6866 6875 6884 6893 9876 •9 691 1 6920 6928 6937 6946 6955 6964 6972 6981 lo 9 8 7 tnc i^'Dl'V' ['>\ LOGS FOUR PLACE LOGARITHMS. 4 PL. LOGS. No. I 2 3 4 5 6 7 8 9 nterpolationI TABLES. 1 5.0 .6990 .6998 .7007 .7016 .7024 •7033 .7042 .7050 .7059 .7067 9 8 7 .1 7076 7084 7093 7101 7H0 7118 7126 7135 7143 7152 I I I .2 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235 2 2 I •3 7243 7251 7259 7267 727s 7284 7292 7300 7308 7316 3 2 ^ •4 7324 7332 7340 7348 7356 7364 7372 7380 7388 7396 4 3 3 5-5 .7404 .7412 .7419 .7427 •7435 •7443 •7451 •7459 .7466 •7474 5 4 4 .6 7482 7490 7497 7505 7513 7520 7528 7536 7543- 7551 5 5 4 •7 . 7559 7566 7574 7582 7589 7597 7604 7612 7619 7627 6 6 5 .8 7634 7642 7649 7657 7664 7672 7679 7686 7694 7701 7 6 6 •9 7709 7716 7723 7731 - ^7738 7745 7752 7760 7767 7774 8 7 6 6.0 .7782 .7789 .7796 .7803 .7810 .7818 .7825 •7832 •7839 .7846 7 6 .1 7853 7860 7868 7875 7882 7889 7896 7903 7910 7917 I I .2 7924 7931 7938 7945 7952 7959 7966 7973 7980 7987 I I •3 7993 8000 8007 8014 8021 8028 8035 8041 8048 8055 2 2 •4 8062 8069 8075 8082 8089 8096 8102 8109 8116 8122 3 2 6.5 .8129 .8136 .8142 .8149 .8156 .8162 .8169 .8176 .8182 .8189 4 3 .6 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254 4 4 •7- 8261 8267 8274 8280 8287 8293 8299 8306 8312 8319 5 4 .8 8325 8331 8338 8344 8351 8357 8363 8370 8376 8382 6 5 ■9 8388 8395 8401 8407 8414 8420 8426 8432 8439 8445 6 5 7.0 .8451 •8457 .8463 .8470 .8476 .8482 .8488 .8494 .8500 .8506 6 5 .1 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567 I I .2 8573 8579 8585 8591 8597 8603 8609 8615 8621 8627 I I •3 8633 8639 8645 8651 8657 8663 8669 8675 8681 8686 2 2 •4 8692 8698 8704 8710 8716 8722 8727 8733 8739 8745 2 2 7-5 .8751 .8756 .8762 .8768 .8774 .8779 .8785 .8791 .8797 .8802 3 3 .6 8808 8814 8820 8825 8831 8837 8842 8848 8854 8859 4 3 .7 8865 8871 8876 8882 8887 8893 8899 8904 8910 8915 4 4 .8 8921 8927 8932 8938 8943 8949 8954 8960 8965 8971 5 4 •9 .8976 8982 8987 8993 8998 9004 9009 9015 9020 9025 5 5 8.0 .9031 .9036 .9042 .9947 •9053 .9058 .9063 .9069 .9074 .9079 6 6 .1 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133 I I .2 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186 I I •3 9191 9196 9201 9206 9212 9217 9222 9227 9232 9238 2 2 •4 9243 9248 9253 9258 9263 9269 9274 9279 9284 9289 2 2 8.5 .9294 .9299 .9304 .9309 •9315 .9320 •9325 •9330 •9335 •9340 3 3 .6 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 4 3 .7 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 4 4 .8 9445 9450 9455 9460 9465 9469 9474 9479 9484 9489 5 4 •9 9494 9499 9504 9509 9513 9518 9523 9528 9533 9538 5 5 9.0 •9542 ■9547 ■9552 .9557 .9562 .9566 •9571 ■9576 .9581 .9586 5 4 .1 959° 9595 9600 9605 9609 9614 9619 9624 9628 9633 I .2 9638 9643 9647 9652 9657 9661 9666 9671 9675 9680 I I •3 9685 9689 9694 9699 9703 9708 9713 9717 9722 9727 2 I ■4 9731 9736 9741 9745 9750 9754 9759 9763 9768 9773 2 2 9-5 •9777 .9782 .9786 .9791 •9795 .98CXJ .9805 .9809 .9814 .9818 3 2 .6 9823 9827 9832 9836 9841 9845 9850 9854 9859 9863 3 2 •7 9868 9872 9877 9881 9886 9890 9894 9899 9903 9908 4 3 .8 9912 9917 9921 9926 9930 9934 9939 9943 9948 9952 4 3 •9 9956 9961 9965 9969 9974 9978 9983 9987 9991 9996 5 4 (3) 4 PL. LOGS. FOUR PLACE ANTILOCARITHMS. ANTILOGS. 4 PL. T H USA N D T H 8. INTERPOLA. 1 Mant. I 2 3 4 567 8 9 TABLES. 1 .00 1. 000 1.002 1.005 '007 1.009 1.012 I.OI4 1.016 1.019 1.021 2 3 .01 1.023 1.026 1.028 1.030 1-033 1.03s '-038 1.040 1.042 1.045 .02 1.047 1.050 1.052 1.054 1.057 1.059 1.062 1.064 1.067 1.069 I ■03 1.072 1.074 1.076 1.079 1.081 1.084 1086 1.089 1.091 1.094 1 .04 1.096 1.099 1.102 1.104 1.107 1.109 I-H2 1.114 1.117 1.119 1 . -05 1. 122 1.125 1.127 I-I30 1.132 1.135 I-I38 1.140 I -143 1. 146 2 .06 1. 148 1.151 1.153 1.156 1-159 1. 161 1.164 1-167 1.169 1.172 2 .07 1. 175 1.178 1. 180 1.183 1.186 1.189 1-191 I-I94 1.197 1.199 2 .08 1.202 1.205 1.208 1.21 1 1.213 1.216 1.219 1-222 1.225 1.227 2 2 •09 1.230 1-233 1.236 1.239 1.242 1.245 1-247 1^250 1-253 1.256 2 3 .lO 1.259 1.262 1.265 '-268 1.271 1.274 1.276 1.279 1.282 1.285 3 4 .11 1.288 1. 291 1.294 1-297 1.300 1.303 1.306 1.309 1.312 I-3I5 .12 I.318 1.321 1.324 1.327 1-33° 1-334 1-337 1-340 1-343 1.346 1 1 •13 1^349 1-352 1-355 1-358 1.361 1.365 1.368 1.371 1-374 1-377 1 1 .14 1.380 1.384 1.387 1.390 1^393 1.396 1.400 1.403 1.406 1.409 1 2 •15 1-413 1.416 1.419 1.422 1.426 1.429 1.432 1-435 1-439 1.442 2 2 .16 1.445 1.449 1.452 1.455 '•459 1.462 1.466 1.469 1.472 1.476 2 2 •17 1-479 1-483 1.486 1.489 1-493 1.496 1.500 1.503 1.507 1.510 2 3 .18 1.514 r.517 1.521 1.524 1.528 1-531 1-535 1-538 1.542 1-545 2 3 .19 1-549 1-552 1.556 1.560 1-563 1.567 1.570 1.574 1.578 1.581 3 4 .20 1.585 1-589 1.592 1.596 1.600 1.603 1-607 i.6n 1.614 1.618 3 4 6 .21 1.622 1.626 1.629 I -633 1-637 1.641 1.644 I-648 1.652 1.656 1 .22 1.660 1.663 1.667 1-671 1675 1.679 1.683 1-687 1.690 1.694 1 1 I •23 1.698 1.702 1.706 1.710 1.714 1.718 1.722 1.726 1-730 1-734 1 1 ■ 2 .24 1-738 1.742 1.746 1.750 1-754 1.758 1.762 1.766 1.770 1-774 I 2 2 •25 1.778 1.782 1.786 1.791 1-795 1.799 1.803 1-807 1.811 1.816 2 2 3 .26 1.820 1.824 1.828 1.832 1-837 1.841 1.845 I-849 1.854 1.858 2 2 3 •27 1.862 1.866 1.871 1.875 1.879 1.884 1-888 1.892 1.897 1.901 2 3 4 .28 1-905 1.910 1-914 i-9>9 1.923 1.928 1.932 1.936 1.941 1-945 2 3 4 •29 1.950 1.954 1-959 1-963 1.968 1.972 1.977 1-982 1.986 1.991 3- 4 5 ■30 1-995 2.000 2.004 2.009 2.014 2.018 2.023 2.028 2.032 2.037 4 5 6 •31 2.042 2.046 2.051 2.056 2.061 2.065 2.070 2.075 2.080 2.084 I I •32 2.089 2.094 2.099 2.104 2.109 2.113 2.118 2.123 2.128 2.133 I 1 1 •33 2.138 2.143 2.148 2.153 2.158 2.163 2.168 2.173 2.178 2.183 1 2 2 •34 2.188 2.193 2.198 2.203 2.208 2.213 2.218 2.223 2.228 2-234 2 2 2 •35 2.239 2.244 2.249 2.254 2.259 2.265 2.270 2.275 2.280 2.286 2 3 3 •36 2.291 2.296 2.301 2.307 2.312 2.317 2.323 2.328 2-333 2.339 2 3 4 •37 2-344 2.350 2.355 2.360 2.366 2-371 2.377 2.382 2-388 2.393 3 4 4 •38 2-399 2.404 2.410 2.415 2.421 2.427 2.432 2.438 2-443 2.449 3 4 5 •39 2.455 2.460 2.466 2.472 2.477 2.483 2.489 2.495 2.500 2.506 4 5 5 .40 2.512 2.518 2.523 2.529 2-535 2.541 2.547 2.553 2-559 2.564 5 6 ' r 8 .41 2.570 2.576 2.582 2.588 2.594 2.600 2.606 2.612 2.618 2.624 1 I 1 .42 2.630 2.636 2.642 2.649 2-655 2.661 2.667 2.673 2.679 2.685 1 I 2 •43 2.692 2.698 2.704 2.710 2.716 2.723 2.729 2.735 2.742 2.748 2 2 : ! 2 ■44 2-754 2.761 2.767 2.773 2.780 2.786 2.793 2.799 2.805 2.812 2 2 ; i 3 •45 2.818 2.825 2.831 2.838 2.844 2.851 2.858 2.864 2.871 2.877 3 3 4 4 .46 2.884 2.891 2.897 2.904 2.911 2.917 2.924 2.931 2.938 2-944 3 4 4 5 •47 2.951 2.958 2.965 2.972 2.979 2.985 2.992 2.999 3.006 3-013 4 4 ; 6 .48 3.020 3.027 3.034 3.041 3.048 3.055 3.062 3:069 3.076 3-083 4566 •49 3.090 3-097 3.105 3.112 3-"9 3.126 3.133 3.141 3.148 3-IS5 556-7 ANTILOGS. 4 PL. (4) FOUR PLACE ANTILOCARITHMS. 4 PL. ANTILOGS. THOUSANDTHS. INTERPOLA. Mant. I 2 3 4 5 6 7 8 9 TABLES. .50 3.162 3-170 3-177 3.184 3.192 3-199 3.206 3-214 3-221 3.228 7 8 9 •SI 3^236 3-243 3-251 3.258 3.266 3-273 3.281 3.289 3.296 3-304 I 1 I .52 3^3 J I 3-319 3-327 3-334 3-342 3-350 3-357 3-365 3-373 3-381 122 •S3 3.388 3-396 3-404 3.412 3.420 3-428 3-436 3-443 3-451 3-459 223 •S4 3-467 3475 3-483 3.491 3.499 3.508 3-516 3-524 3-532 3-540 3 3 4 •SS 3-548 3-556 3-565 3-573 3.581 3-589 3-597 3.606 3.614 3.622 4 4 5 .56 3-631 3-639 3-648 3.656 3.664 3-673 3-681 3.690 3-698 3-707 4 5 5 •57 3-715 3-724 3-733 3-741 3-750 3-758 3-767 3-776 3-784 3-793 566 .58 3.802 3-8 1 1 3-819 3.828 3.837 3.846 3-855 3-864 3-873 3.882 667 •S9 3.890 3-899 3.908 3-917 3-926 3.936 3-945 3-954 3-963 3972 6 7 8 .60 3-981 3-99° 3-999 4.009 4.018 4.027 4.036 4.046 4.055 4.064 9 10 11 12 .6i 4.074 4.083 4-093 4.102 4.111 4.121 4. J 30 4.140 4-150 4-159 I I I 1 .62 4.169 4.178 4.188 4.198 4.207 4.217 4.227 4.236 4.246 4.256 2222 •63 4.266 4.276 4-285 4.295 4.305 4.315 4.325 4-335 4-345 4-355 3 3 3 4 .64 4-365 4-375 4.385 4.395 4.406 4.416 4.426 4-436 4-446 4-457 4 4 4 5 •6S 4.467 4-477 4.487 4.498 4.508 4.519 4-529 4-539 4-550 4.560 5 5 6 6 .66 4-571 4.581 4.592 4.603 4.613 4.624 4-634 4-645 4.656 4.667 5677 .67 4-677 4.688 4-699 4.710 4.721 4-732 4-742 4-753 4.764 4-775 6788 .68 4.786 4-797 4.808 4,819 4.831 4.842 4-853 4.864 4-875 4.887 7 8 9 10 .69 4.898 4.909 4.920 4.932 4.943 4.955 4.966 4-977 4-989 5.000 8 9 10 11 .70 5.012 5-023 5-035 5.047 5.058 5.070 5.082 5 -093 5.105 5.117 12 13 14 15 •71 S.129 5-140 5-152 5.164 5.176 5.188 5.200 5.212 5.224 5-236 1112 •72 5-248 5.260 5.272 5.284 5.297 5 -309 S-321 5-333 5.346 5-358 2333 •73 5-370 5-383 5-395 5.408 5.420 5-433 S-445 5-458 5.470 5-483 4 4 4 5 •74 5-495 5.508 5-521 ,5.534 5-546 5-559 5-57« S-585 5.598 5.610 5566 •75 5-623 5^636 5-649 5-662 5.675 5.689 5-702 S-715 5-728 5-741 6778 .76 5-754 5.768 5.781 5.794 5.808 5-821 5-834 5-848 5.861 5-875 7889 •77 5.888 5.902 5.916 5-929 S-943 5-957 S-970 5-984 5-998 6.0J2 8 9 10 11 .78 6.026 6.039 6.053 6.067 6.081 6.095 6.109 6.124 6.138 6.152 10 10 11 12 •79 6.166 6.180 6.194 6.209 6.223 6.237 6.252 6.266 6.281 6-295 11 12 13 14 .80 6.310 6.324 6-339 6.353 6.368 6-383 6-397 6.412 6.427 6.442 16 17 18 19 .81 6.457 6.471 6.486 6.501 6.516 6-531 6.546 6.561 6.577 6.592 2222 .82 6.607 6.622 6.637 6.653 6.668 6.683 6.699 6.714 6.730 6-745 3 3 4 4 •83 6.761 6.776 6.792 6.808 6.823 6.839 6.855 6.871 6,887 6.902 5556 .84 6.918 6.934 6.950 6.966 6.982 6.998 7.015 7031 7-047 7.063 6778 •8S 7.079 7.096 7. 112 7.129 7.145 7.161 7.178 7- "94 7.211 7.228 8 9 9 10 .86 7.244 7.261 7.278 7-295 7-3" 7-328 7-345 7.362 7.379 7.396 10 1011 11 .87 7-413 7-430 7-447 7.464 7.482 7-499 7-516 7-534 7-551 7.568 II 121313 .88 7.586 7-603 7.621 7.638 7.646 7.674 7.691 7-709 7.727 7-745 13141415 .89 7.762 7.780 7.798 7.816 7.834 7-852 7.870 7.889 7-907 7.925 14 15 16 17 .90 7-943 7.962 7.980 7.998 8.017 8.035 8.054 8.072 8.091 8.110 20 2122 23 .91 8.128 8.147 8.166 8.185 8.204 8.222 8.241 8.260 8.279 8.299 2222 .92 8.318 8-337 8.356 8-375 8.395 8.414 8-433 8-453 ,8.472 8,492 4 4 4 5 ■93 8.5 1 1 8-531 8.551 8.570 8.590 8.610 8.630 8.650 8.670 8.690 6677 •94 8.710 8.730 8.750 8.770 8.790 8.810 8.831 8.851 8.872 8.892 8899 •95 8.913 8.933 8.954 8.974 8.995 9.016 9.036 9.057 9.078 9.099 10 11 11 12 .96 9.120 9.141 9.162 9.183 9.204 9.226 9.247 9.268 9.290 9-3^ J^ 12131314 •97 9-333 9-354 9-376 9-397 9-419 9.441 9.462 9,484 9.506 9.528 1415 15 16 .98 9-550 9-572 9-594 9.616 9.638 9.661 9-683 9-705 9.727 9-750 16 17 18 18 •99 9.772 9-795 9.817 9.840 9.863 9.886 9.908 9-931 9-954 9-977 18 19 20 20 (5) 4 PL. ANTILOGS. FOUR PLACE COLOGARITHMS. COLOGS. 4 PL. NOTE THE CHARACTERISTIC 1. No. 01234 56789 INTERPOLATION TABLES. 1,00 r.9996 T.9991 T.9987 ^-9983 7.9978 7.9974 7.9970 7.9965 7.9961 .01 1-9957 9953 9948 9944 9940 9935 9931 9927 9923 99i8 .02 9914 9910 9905 9901 9897 9893 9887 9884 9880 9876 •03 9S72 9867 9863 9859 9855 9851 9846 9842 9838 9834 .04 9830 9825 9821 9817 9813 9809 9805 9801 9796 9792 Use the flnl ten liDes to avoid in- 1.05 T.9788 T.9784 T.9780 7.9776 T.9772 7.9767 7.9763 7.9759 7.9755 7.9751 terpolating from liOOO .06 9747 9743 9739 9735 9731 9727 9722 9718 9714 9710 to 1,100. .07 9706 9702 -9698 9694 9690 9686 9682 9678 9674 9670 .08 9666 9662 9658 9654 9650 9646 9642 9638 9634 9630 .09 9626 9622 9618 9614 9610 9606 9602 9598 9594 9590 -44-40-36-32 1.0 0.0000 T.9957 7.9914 7.9872 7.9830 7.9788 7.9747 7.9706 7.9666 7.9626 .1 7.9586 9547 9508 9469 9431 9393 9355 93i8 9281 9245 4 4 4 3 .2 9208 9172 9136 9101 9066 9031 8996 8962 8928 8894 9876 •3 8861 8827 8794 8761 8729 8697 8665 8633 8601 8570 13 12 II 10 •4 8539 8508 8477 8447 8416 8386 8356 8327 8297 8268 18 16 14 13 i-S 7.8239 7.8210 7.8182 7.8153 7.8125 7.8097 7.8069 7.8041 7.8013 7.7986 22 20 18 16 .6 7959 7932 7905 7878 7852 7825 7799 7773 7747 772i 26 24 22 19 •7 7696 7670 7645 7620 7595 7570 7545 7520 7496 7471 31 28 25 22 .8 7447 7423 7399 7375 7352 7328 7305 7282 7258 7235 35 32 29 26 •9 7212 7190 7167 7144 7122 7100 7077 7055 7033 7011 40 36 32 29 2.0 7.6990 7.6968 7.6946 7.6925 7.6904 7.6882 7.6861 7.6840 7.6819 7.6799 -28-26-24-22 .1 6778 6757 6737 6716 6696 6676 6655 6635 6615 6596 3322 .2 6576 6556 6536 6517 6497 6478 6459 6440 6421 6402 6554 •3 6383 6364 6345 6326 6308 6289 6271 6253 6234 6216 8877 •4 6198 6180 6162 6144 6126 6108 6091 6073 6055 6038 II 10 10 9 2-S 7.6021 7.60037.59857.59697.5952 7.5935 7.5918 7.5901 7.58847.5867 14 13 12 II .6 5850 5834 5817 5800 5784 5768 5751 5735 5719 5702 17 16 14 13 •7 5686 5670 5654 5638 5622 5607 5591 5575 5560 5544 20 18 17 15 .8 5528 5513 5498 5482 5467 5452 5436 5421 5406 5391 22 21 19 18 ■9 5376 5361 5346 5331 5317 5302 5287 5272 5258 5243 25 23 22 20 3.0 7.5229 7.5214 7.5200 7.5186 7.5 1 71 7.5157 7.5143 7.5129 7.5114 7.5100 -18-16-14r-12 .1 5086 5072 5058 5045 5031 5017 5003 4989 4976 4962 2 2 I I .2 4948 4935 4921 4908 4895 4881 4868 4855 4841 4828 4332 •3 4815 4802 4789 4776 4763 475° 4737 4724 47" 4698 5 5 4 4 •4 4685 4672 4660 4647 4634 4622 4609 4597 4584 4572 7665 3-5 MS59 '■.4547 7-4535 M522 7.4510 7.4498 7.4486 7.4473 7.4461 7.4449 9876 .6 4437 4425 4413 4401 4389 4377 4365 4353 4342 4330 II 10 8 7 .7 4318 4306 4295 4283 4271 4260 4248 4237 4225 4214 13 II 10 8 .8 4202 4191 4179 4168 4157 4145 4134 4123 4112 4101 14 13 II 10 •9 4089 4078 4067 4056 4045 4034 4023 4012 4001 3990 16 14 13 II 4.0 7.3979 7-3969 7-3958 7.3947 7.3936 7.3925 7.3915 7.3904 7.3893 7.3883 -11-10 -9 -8 .1 3872 3862 3851 3840 3830 3820 3809 3799 3788 3778 I I I I .2 3768 3757 3747 3737 3726 3716 3706 3696 3686 3675 2222 .3 3665 3655 3645 3635 3625 3615 3605 3595 3585 3575 3332 •4 3565 3556 3546 3536 3526 3516 3507 3497 3487 3478 4 4 4 3 4-S 7.3468 7.3458 7.3449 7.3439 7.3429 7.3420 7.3410 7.3401 7.3391 7.3382 6 5 5 4 .6 3372 3363 3354 3344 3335 3325 3316 3307 3298 3288 7655 .7 3279 3270 3261 3251 3242 3233 3224 3215 3206 3197 8766 .8 3188 3179 3170 3161 3152 3143 3134 3125 3116 3107 9876 ' 3098 3089 3080 3071 3063 3054 3045 3036 3028 3019 10 9 8 7 COLOGS. 4 PL. (6) FOUR PLACE COLOCARITHMS. 4 PL. COLOGS. No. o I 2 3 4 56789 interpolation! TABLES. 1 5.0 7.3010 T.3002 T.2993 T.2984 T.2976 7.2967 7.2958 7.2950 7.2941 7.2933 -9 -8 -7 .1 2924 2916 2907 2899 2890 2882 2874 2865 2857 2848 1 1 1 .2 2840 2832 2823 2815 2807 2798 2790 2782 2774 2765 2 2 I ■3 2757 2749 2741 2733 2725 2716 2708 2700 2692 2684 3 2 2 •4 2676 2668 2660 2652 2644 2636 2628 2620 2612 2604 4 3 3 5-5 T.2595 T.2588 T.2581 T.2573 T.2565 7.25577.25497.2541 7.25347.2526 S 4 4 .6 2518 2510 2503 2495 2487 2480 2472 2464 2457 2449 S 5 4 ■7 2441 2434 2426 2418 241 1 2403 2396 2388 2381 2373 6 6 5 .8 2366 2358 2351 2343 2336 2328 2321 2314 2306 2299 7 6 6 •9 2291 2284 2277 2269 2262 2255 2248 2240 2233 2226 8 7 6 6.0 T.22I8T.22U 7.2204 T.2197 1.2190 7.2182 7.2175 7.2168 7.2161 7.2154 -7 -6 .1 2147 2140 2132 2125 2I18 2111 2104 2097 2090 2083 I 1 .2 2076 2069 2062 2055 2048 2041 2034 2027 2020 2013 1 1 ■3 2007 2000 1993 1986 1979 1972 1965 1959 1952 1945 2 2 •4 1938 I93I 1925 I918 I9II 1904 1898 1891 1884 1878 3 2 6.5 7.1871 7.1864 7.1858 7.185I 7.1844 7.18387.18317.18247.18187.1811 4 3 .6 1805 1798 1791 1785 1778 1772 1765 1759 1752 1746 4 4 ■7 1739 1733 1726 1720 1713 1707 1701 1694 1688 1681 5 4 .8 1675 1669 1662 1656 1649 1643 1637 '^3° '624 1618 6 5 ■9 1612 1605 1599 1593 1586 1580 1574 1568 1561 1555 6 5 7.0 7.1549 7.1543 7.1537 7.1530 7.1524 7.15187.15127.15067.15007.1494 -6 -5 .1 1487 I481 1475 1469 1463 1457 1451 1445 1439 1433 I I .2 1427 I42I 1415 1409 1403 1397 1391 1385 1379 1373 I I •3 1367 1361 1355 1349 1343 1337 1331 1325 '319 1314 2 2 •4 1308 1302 1296 1290 1284 1278 1273 1267 1261 1255 2 2 7-S 7. 1 249 7. 1 244 7. 1 238 7. 1 232 7. 1 226 7.1221 7.12157.12097.12037.1198 3 3 .6 H92 n86 1 180 1 1 75 1 169 1163 1158 1152 1146 1141 4 3 •7 1135 1129 1124 1118 1113 1107 1101 1096 1090 1085 4 4 .8 1079 1073 1068 1062 1057 1051 1046 1040 1035 1029 s 4 •9 1024 1018 1013 1007 1002 0996 0991 0985 0980 0975 5 5 8.0 7.0969 7.0964 7.0958 7.0953 7.0947 7.0942 7.0937 i^-°93i 7.0926 7.0921 -6 -5 .1 0915 0910 0904 0899 0894 0888 0883 0878 0872 0867 1 I .2 0862 0857 0851 0846 0841 0835 0830 0825 0820 0814 1 I •3 0809 0804 0799 0794 0788 0783 0778 0773 0768 0762 2 2 •4 0757 0752 0747 0742 0737 0731 0726 0721 0716 0711 2 2 8.S 7.0706 7.0701 7.0696 7.0691 7.0685 7.0680 7.0675 7.0670 7.0665 7.0660 3 3 .6 0655 0650 0645 0640 0635 0630 0625 0620 0615 0610 4 3 •7 0605 0600 0595 0590 0585 0580 0575 0570 0565 0560 4 4 .8 0555 0550 0545 0540 0535 0531 0526 0521 0516 0511 5 4 ■9 0506 0501 0496 0491 0487 0482 0477 0472 0467 0462 S 5 9.0 7.0458 7.0453 7.0448 1.0443 7.0438 7.0434 7.0429 7.0424 7.0419 7.0414 -5 -4 .1 0410 0405 0400 0395 0391 0386 0381 0376 0372 0367 I .2 0362 0357 0353 0348 0343 0339 0334 0329 0325 0320 1 1 •3 0315 0311 0306 0301 0297 0292 0287 0283 0278 0273 2 1 •4 0269 0264 0259 0255 0250 0246 0241 0237 0232 0227 2 2 9.5 7.0223 7.0218 7.0214 7.0209 7.0205 7.02007.0195 7.0191 7.01867.0182 3 2 .6 0177 0173 0168 0164 0159 0155 0150 0146 0141 0137 3 2 •7 0132 0128 0123 0119 0114 0110 0106 0101 0097 0092 4 3 .8 0088 0083 0079 0074 0070 0066 0061 0057 0052 0048 4 3 •9 0044 0039 0035 0031 0026 0022 0017 0013 0009 0004 S 4 (7) 4 PL. COLOGS. 5 PL. LOGS. ABBREV, TAB. TABLE OF FIVE PLACE LOGARITHMS, CONTAINING An Abbreviated Table for One and Two Place Numbers ; A Table for Five Place Numbers from 1.0 to I.I Avoiding Interpolation ; A Table for All Four Place Numbers with Interpolation Tables for the Fifth Place. No. log. No. log. No. log. No. log. No. log. — 00 2.0 .30 103 4.0 .60206 6.0 .77815 8.0 .90309 I .ooooo 2.1 .32 222 4-1 .61 278 6.1 •78 533 8.1 .go 849 2 .30 103 2.2 .34242 4.2 •62 325 6.2 •79 239 8.2 .91 381 3 •47 7»2 2.3 •36 173 4-3 •63 347 6^3 •79 934 8.3 .91 908 4 .60206 2.4 .38021 4.4 •64345 6.4 .80618 8.4 .92 428 5 .69 897 2.5 •39 794 4.5 .65 321 6.5 .81 291 8.5 .92 942 6 .77815 2.6 .41 497 4.6 .66 276 6.6 .81 954 8.6 . ^93450 7 .84510 2.7 .43 136 47 .67 210 6.7 .82607 8.7 ■93 952 8 .90309 2.8 .44716 4.8 .68 124 6.8 .83251 8.8 .94448 9 •95 424 2.9 .46 240 4'.9 .69 O30 6.9 .83885 8.9 •94 939 1.0 .00000 3.0 .47712 5.0 .69 897 7.0 .84510 9.0 ■95 424 I.I .04 139 3-1 •49 136 5^1 •70 757. 7^1 .85 126 91 •95 904 1.2 .07 918 32 ■SOS'S 5-2 .71 600 7.2 •85 733 9.2 •96 379 1-3 •"394 3-3 .51851 5^3 .72 428 7.3 .86332 9^3 .96 848 1.4 .14613 3-4 •53 148 5'4 •73 239 7-4 •86 923 9.4 •97313 i-S .17609 3^5 •54407 5^5 •74036 7-5 .87 506 9-5 •97 772 1.6 .20412 3-6 •55 630 5.6 •74819 7.6 .88081 9.6 .98 227 1-7 .23045 3-7 .56 8?o 5-7 •75 587 7-7 .88 649 9^7 •98 677 1.8 .25 527 3^8 •57 978 5.8 •76 343 7.8 .89 209 9.8 •99 123 1-9 •27875 3^9 .59 106 5-9 •77 085 7.9 ■89 763 9-9 ■99 564 (9) 5 PL. LOGS. ABBREV. TAB. 1.0-1.1. LOGS. 5 PL. FIVE PLACE LOGARITHMS. No. 01234 5 6 7 8 9 1.000 .00000 .00004 .00009 .00013 .00017 .00022 .00026 .00030 .00035 .00039 .OOI oo'043 00 048 00 052 00 056 00 o6i 00 065 00 069 00074 00078 00082 .002 00087 00091 00095 00 100 00104 00108 00113 00 117 00 121 00126 .003 00 130 00 134 00 139 00 143 00 147 00 152 00 156 00 160 00 165 00169 .004 00173 00178 00182 00 186 00 191 00 195 00 199 00204 ^00 208 00212 1.005 .QP217 .00221 .00225 .00230 .00234 .00238 .00243 .00 247 .00251 -00255 .006 00 260 00 264 00 268 00 273 00 277 00 281 00 286 00290 00294 00 299 .00/ 00303 00307 00312 00316 00320 00325 00329 00333 00337 00342 .008 00346 00350 00355 00359 00363 00 368 00 372 00376 00381 00385 .009 00 389 00 393 00 398 00 402 00 406 00411 00415 00419 00424 00428 1.010 .00432 .00436 .00441 .00445 -00449 .00454 .00458 .00462 .00467 .00471 .oil 00475 00479 00484 00488 00492 00497 00501 00505 00509 00514 .012 0051& 00522 00527 00531 00535 00 540 00 544 00548 00552 °os57 .013 00 561 00 565 00 570 00 574 00 578 00 582 00 587 00591 00595 00600 .014 00604 00608 00612 00617 00621 00 625 00 629 00634 00638 00642 I.OI5 .00647 -00651 .00655 .00659 .00664 .00668 .00672 .00677 .00681 .00685 .016 00 689 00 694 00 698 00 702 00 706 00711 00715 00719 00724 00728 .017 00 732 00 736 00 741 00 745 00 749 00753 00758 00762 00766 00771 .oi8 . 00 775 00 779 00 783 00 788 00 792- 00 796 00 800 00805 00809 00813 .019 00817 00822 00826 00830 00834 00839 00843 00847 00852 00856 1.020 .00 860 .00 864 .00 869 .00 873 .00 877 .00881 .00886 .00890 .00894 .00898 .021 00903 00907 00911 00915 00920 00924 00928 00932 00937 00941 .022 00945 00949 00954 00958 00962 00966 00971 00975 00979 00983 .023 00 988 00 992 00 996 01 000 01 005 01 009 01 013 01 017 01 022 01 026 .024 01 030 01 034 01 038 01 043 01 047 01051 01055 01 060 01 064 01 068 1.025 .01 072 K)i 077 .01 081 .01 085 .01 089 .01 094 .01 098 .01 102 .01 106 .01 111 .026 01 115 01 119 01 123 01 127 01 132 01 136 01 140 01 144 01 149 01 153 .027 01 157 01 161 01 166 01 170 01 174 01 178 01 182 01 187 01 191 01195 .028 01 199 01 204 01 208 01 212 01 216 01 220 01 225 01 229 01233 01237 .029 01 242 01 246 01 250 01 254 01 258 01 263 01 267 01 271 01275 01 280 1.030 .01 284 .01 288 .01 292 .01 296 .01 301 .01 305 .01 309 .01 313 .01 317 .01 322 .031 01 326 01 330 01 334 01 338 01 343 01347 01351 01 355 01360 01364 .032 01 368 01 372 01 376 01 381 01 385 01389 01393 01397 01 402 01406 •033 01 410 01414 01418 01423 01427 01 431 01435 01439 01444 01 448 ■034 01 452 01 456 01 460 01 465 01 469 01473 01477 oj 481 01 486 01 490 I -035 .01 494 .01 498 .01 502 .01 507 .01 511 .01 515 .01 519 -01 523 .01 528 .01 532 .036 01 536 01 540 01 544 01 549 01 553 01 557 01 561 01565 01570 01574 ■037 01 578 01 582 01 586 01 590 01 595 01 599 01 603 01 607 01 611 01 616 .038 01 620 01 624 oi 628 01 632 01 636 01 641 01 645 01 649 01653 01657 •039 01 662 01 666 01 670 01 674 OI 678 01 682 01 687 01 691 01 695 01699 1.040 .01 703 .01 708 .01 712 .01 716 .01 720 .01 724 .01 728 •01 733 •01 737 .01 741 .041 01 745 01 749 01 753 01 758 01 762 01 766 01 770 01774 01 778 01783 .042 01 787 01 791 01 795 01 799 oi 803 01 808 01 812 01 816 01 820 01 824 ■043 01 828 01 833 01 837 01 841 01 845 01 849 01 853 01858 01862 01866 .044 01 870 01 874 01 878 01 883 01 887 01 891 01 895 01899 01903 01907 I -045 .01 912 .01 916 .01 920 .01 924 .01 928 .01 932 .01 937 .01 941 ■01 945 .01 949 .046 01 953 01 957 01 961 01 966 01 970 01 974 01 978 01 982 01 986 01 991 .047 01995 01999 02003 02007 02 01 1 02015 02020 02024 02028 02032 .048 02036 02040 02044 02049 02053 02057 02061 02065 02069 02073 .049 02 078 02 082 02 086 02 ogo 02 094 02 098 02 102 02 107 02 III 02 115 LOGS. 5 PL. 1.0-1.1. (10) FIVE PLACE LOGARITHMS. 1.0-1.1. ' 5 PL. LOGS. No. 8 1.050 .051 .052 •053 .054 1-055 .056 ■057 .058 •059 1.060 .061 .062 .063 .064 1.065 .066 .067 .068 .069 1.070 ,.071 .072 •073 .074 1.075 .076 .077 .078 .079 1.080 .081 .082 .083 .084 1.08s .086 .087 .088 .089 1.090 .091 .092 ■093 .094 1.095 .096 .097 .098 .099 .02119 .02123 .02127 .02131 .02135 02 160 02 164 02 169 02 173 02 177 02 202 02 205 02 210 02 214 02 2l8 02243 02247 02251 02255 02259 02 284 02 288 02 292 02 296 02 301 .02325 .02329 .02333 .02338 .02342 02366 02371 02375 02379 02383 02407 02412 02416 02420 02424 02449 02453 02457 02461 02465 02 490 02 494 02 498 02 502 02 506 .02531 .02535 .02539 .02543 .02547 02 572 02 576 02 580 02 584 02 588 02612 02617 02621 02625 02629 02 653 02 657 02 661 02 666 02 670 02 694 02 698 02 702 02 706 02 710 .02735 .02739 .02743 .02747 .02751 02 776 02 780 02 784 02 788 02 792 02816 02821 02825 02829 02833 02 857 02 861 02 865 02 869 02 873 02898 02902 02906 02910 02914 .02938 .02942 .02946 .02951 .02955 02 979 02 983 02 987 02 991 02 995 03019 03024 03028 03032 03036 03 060 03 064 03 068 03 072 03 076 03100 03104 03109 03113 03117 •03 157 03197 03238 03278 03318 .03 141 .03 145 .03 149 .03 153 03 181 03 185 03 189 03 193 03 222 03 226 03 230 03 234 03 262 03 266 03 270 03 274 03302 03306 03310 03314 •03 342 03383 03423 03463 03503 •03543 -03 547 •03551 -03555 -03559 03583 03587 03591 03595 03 599 03623 03627 03631 03635 03639 03663 03667 03671 0367s 03679 03703 03707 03711 03715 03719 -03743 -03747 -03751 -03755 -03759 03782 03786 03790 03794 03798 03 822 -03 826 03 830 03 834 03 838 03 862 03 866 03 870 03 874 03 878 03902 03906 03910 03914 03918 .03941 .03945 .03949 .03953 .03957 03981 03985 03989 03993 03997 04021 04025 04029 04033 04036 04060 04064 04068 04072 04076 04100 04104 04108 04112 04116 .03 346 .03 350 .03 354 .03 358 03387 03391 03395 03399 03427 03431 0343s 03439 03467 03471 0347s 03479 03507 03511 03515 03519 -03547 -03551 03587 03591 03627 03631 03667 03671 03707 03711 -03747 -03751 03786 03790 •03 826 03 830 03 866 03 870 03 906 03 910 .02 140 .02 144 .02 148 .02 152 .02 156 02 181 02 185 02 189 02 193 02 197 02 222 02 226 02 230 02 23s 02 239 02 263 02 268 02 272 02 276 02 280 02305 02309 02313 02317 02321 .02 346 .02 350 .02 354 .02 358 .02 362 02387 02391 02395 02399 02403 02428 02432 02436 02440 02444 02469 02473 02477 02481 02485 02510 02514 02518 02522 02526 .02551 .02555 .02559 .02563 .02567 02 592 02 596 02 600 02 604 02 608 02633 02637 02641 02645 02649 02 674 02 678 02 682 02 686 02 690 02715 02719 02723 02727 02731 .02 755 .02 759 .02 763 .02 768 .02 772 02796 02800 02804 02808 02812 02 837 02 841 02 845 02 849 02 853 02 877 02 882 02 886 02 890 02 894 02918 02922 02926 02930 02934 .02 959 02999 03040 03080 03 121 .03 161 03 201 03242 .02 963 03003 03044 03084 03125 .03 165 03205 03246 03 282 03 286 03322 03326 .02 967 03007 03048 03088 03129 .03169 03209 03250 03 290 03330 .02 971 03011 03052 03092 03133 •03 173 03214 03254 03294 03334 -02 975 03015 03056 03096 03137 -03 177 03 218 03258 03298 03338 .03 362 .03 366 .03 371 .03 375 .03 379 03403 03407 03411 03415 03419 03443 03447 03451 03455 03459 03483 03487 03491 03495 03499 03523 03527 03531 03535 03539 •03563 -03567 •03571 •OS 575 -03579 03603 03607 03611 03615 03619 03643 03647 03651 03655 03659 03683 03687 03691 03695 03699 03723 03727 03731 03735 03739 .03 763 -03 767 -03 771 •OS 775 -03 778 03 802 03 806 03 810 03 814 03 818 03842 03846 03850 03854 03858 03 882 03 886 03 890 03 894 03 898 03922 03926 93930 03933 03937 .03961 .03965 .03969 .03973 .03977 04001 04005 04009 04013 04017 04040 04044 04048 04052 04056 04080 04084 04088 04092 04096 04 120 04 123 04 127 04 131 04 135 5 PL. LOGS. 1.0-1.1. 1. LOGS. 5 PL. FIVE PLACE LOGARITHMS. No. 8 1.00 .OI .02 •03 .04 I. OS .06 .07 .08 .09 1.10 .II .13 •13 .14 i.iS .16 •17 .18 .19 1.20 .21 .22 •23 .24 1. 25 .26 .27 .28 .29 1.30 ■31 ■P •33 •34 '•35' •36 ■37 •38 ■39 1.40 .41 .42 ■43 ■44 '•45 .46 ■47 .48 •49 .00 000 00432 00860 01 284 01703 .02 119 02 53-<, 02938 03342 03743 ■04 139 04532 04922 05308 05690 .06 070 06446 06819 07188 0755s .07918 08279 08636 08991 09342 .09691 10037 10380 10 721 II 059 •II 394 11 727 .i?.°S7 12385 12710 •13033 13354 13672 13988 14 301 .00043 00475 00903 01 326 01745 .02 160 02572 02979 03383 03782 .04179 04571 04961 05346 05729 .06 108 06483 06856 07225 07591 .07954. 08314 08672 09026 09377 .09 726 . 10072 10415 10.755 1 1 093 .1 1 428 , II 760 12090 12418 12743 .13066 . 13386 13704 14019 14333 .00087 00518 00945 01 3(18 01 787 .02 202 02 612 03 019 03423 03 822 .04 21^ . 04610 04999 05385 05767 .06 145 . 06 521 06893 07 262 07628 ,00 130 . 00 561 00988 01 410. 01 828 .02 243 , 02653 03060 03463 03862 .08 027 08386 08743 09096 09447 •09 795 10 140 10483 10823 11 160 •II 494 11 826 12 156 12483 12808 • 13 130 13450 13767 14082 14395 .14675. 14983 15 290 15594 15897 .16 197 . 16495 16 791 17085 17377 .00346 00 775 01 199 01 620 02 036 .04 297 04689 05077 05 46 r 05843 .06221 06595 06967 07335 07 700 .08063/ 08 422/ 08778 09 132 09 482 .09 830 10 175 10517 10857 11 193 .11528 11 860 12 189 12516 12840 .13162 13481 13799 14 114 14426 '•14737 : 15045 ' 15 351 15655 ' 15957 .16 256 16554 16 850 17 143 1743s •04 376 04 766 05154 05538 05918 .06 296 06670 07041 07408 07773 .11 561 11893 12 222 12548 12872 •13 194 13 513 13830 14 145 14457 .14768 , 15076 15 381 15685 15987 .16286. 16584 16879 17 173 17464 ■II 594 II 926 12254 12581 12905 .13 226 13545 13862 14176 14489 14 799 15 106 15412 15 715 16 017 16316 16 613 16909 17 202 17493 04415 04805 05 192 05576 05956 ■06 '333 06 707 07078 07445 07809 .08171 08529 08884 I 09237 09587 ■09 934 10278 10 619 ■10 958 11 294 .11628 "959 12287 12 613 12937 .13258 13577 13893 14208 14520 .14829 15137 15442 15746 16047 .16 346 16643 16938 17231 17 522 .04454 04844 05231 05614 05994 ■06371 06744 0711$ 07482 07 846 .08 207 08565 08920 09 272 09621 .09 968 10 312 10653 10992 11327 ,00 389 00817 01 242 01 662 02078 .02 490 02 898 03302 03703 04 100 .04493 04883 05 269 05 652 06032 .08 243 08600 08955 09307 09656 .10 003 10346 10687 11025 II 361 11 661 .11 694 11992 12024 12320 12352 12 646 12 678 12969 13,001 13290.13322 13609 13640 13925 13956 14239 14270 14551 14582 14860 15168 15473 15776 16077 16376 16673 16967 17 260 17 551 .14891 15 198 15503 15806 16 X07 .16406 16 702 16997 17289 17580 INTERPO. lABLES. ForlogLO tologl.l interpolated values are Kiven on thf preceding two pages. 38 36 4 4 8 7 II II 15 14 19 18 23 22 27 25 30 29 34 32 34 33 3 3 7 7 10 ID 14 13 17 17 20 20 24 23 27 26 31 30 32 31 .3 3 6 6 10 9 13 12 16 16 19 19 22 22 26 25 29 28 30 29 3 3 6 6 9 9 12 12 15 15 18^17 21 20 24 23 27 26 LOGS. 5 PL. (12) FIVE PLACE LOGARITHMS. ^_,__ 6 PL. LOGS. No. 01234 56789 INTERPO TABLES. 1.50 .17 609 .17 638 .17 667 .17 696 .17 725 .17 754 .17 782 .17 811 .17 840 .17 869 29 27 .00 •51 17898 17926 17955 17984 18013 18041 18070 18099 18 127 18156 3 3 .30 •52 18 184 18213 18 241 18270 18298 18327 18355 '8384 18 412 18 441 6 5 ■53 18469 18498 18526 18554 18583 18 611 18639 18667 18696 18724 9 8 •54 18752 18780 18808 18837 18-865 18893 18 921 18949 18977 19 008 12 11 "•55 .19033 .19061 .19089 .19117 .19145 .19173 .19201 .19229 .19257 .19285 15 14 •55 19312 19340 19368 19396 19424 19451 19479 19507 19535 19562 17 16 •57 19590 19618^9645 19673 19700 19728 19756 19783 19 811 19838 20 19 •58 19866 19 893° 19 921 19948 19976 20 003 20030 20058 20085 20112 23 22 •59 20140 20167 20194 20222 20249 20276 20303 20330 20358 20385 26' 24 1.60 .20 412 .20 439 .20 466 .20 493 .20 520 .20 548 .20 575 .20 602 .20 629 .20 656 26 25 .61 20683 20710 20737 20763 20790 20817 20844 20371 20898 20925 3 3 .62 20952 20978 21005 21032 21059 21085 21 112 21139 211^5 21192 5 5 •63 21219 21245 21272 21299 21325 21352 21378 21405 21431 21458 8 8. .64' 21484 21 511 21537 21564 21590 21617 21643 21669 21696 21722 10 ih 1.6s , .21 748 .21 775 .21 801 .21 827 .21 854 .21 880 .21 906 .21 932 .21 958 .21 985 13 13 .66 22 011 22037 22063 22089 22115 22 141 22167 221^4 22220 22246 16 15 .67 22272 22298 22324- 22350 22376 22401 22427 22453 22479 22505 18 18 .68. 22531 22557 22583 22608 22634 22660 22686 22712 22737 22763 21 20 .69 22789 22814 22840 22866 22891 22917 22943 22968 22994 23 019 23 23 1.70 .23 045 .23 070 .23 096 .23 121 .23 147 .23 172 .23 198 .23 223 .23 249 .23 274 25 24 •71 23300 23325 23350 23376 23401 23426 23452 23477 23502 23528 3 2 .72 23553 23578 23603 23629 23654 23679 23704 23729 23754 23779 5 5 ■73 23S05 23830 23855 23880 23905 23930 23955 23980 24 005 24030 8 7 ■74 24055 24080 24105 24130 24155 24180 24204 24229 24254 24279 10 10 '•75 .24 304 .24 329 .24 353 .24 378 .24 403 .24 428 .24 452 .24 477 .24 502 .24 527 13 12 .76 ,24551 24576 24601 24625 24650 24674 24699 24724 24748 24773 15 14 •77 24797 24822 24846 24871 24895 24920 24944 24969 24993 25 018 18 17 •78 25 042 25 066 25 091 25 115 25 139 25 164 25 188 25 212 25 237 25 261 20 19 •79 25285 25310 25334 25358 25382 25406 25431 25455 25479 25503 23 22 1.80 ■25 527 ^25 551 ^25 575 ^25 600 .25 624 .25 648 .25 672 .25 696 .25 720 .25 744 24 23 .81 25 768 25 792 25 816 25 840 25 864 25 888 25,9,12 25 935 25 959 25 983 2 2 .82 26 007- 26 031 26055 26079 26102 26126 26150 26174 26198 26221 5 5 •83 26245 26269 26293 26316 26340 '26364 26387 26411 26435 26458 7 7 .84 26482 26505 26529 26553 26576 26600 26623 26647 26670 26694 10 9 1.8s .26717 .26741 .26764 .26788 .26811 .26834 .26858 .26881 .26905 .26928 12 12 .86 26951 26975 26998 27 021 27045 27068 27091 27114 27138 27161 14 14 •87 27 184 27 207 27 231 27 254 27 277 27 300 27 323 27 346 27 370 27 393 17 16 .88 27416 27439 27462 27485 27508 27531 27554 27577 27600- 27 623 19 18 .•89 27646 27669 27692 27715 27738 27761 27784 27807 27830 27852 22 20 1.90 .27 875 .27 898 .27 921 .27 944 .27 967 .27 989 .28 012 .28 035 .28 058 .28 081 22 21 •91 28103 28126 28149 28 171 28194 28217 28240' 28262 28285 28307 2 2 .92 28330 28353 28375 28398 28421 28443 28466 28488 28511 28533 4 4 •93 28556 28578 28601 28623 28646 28668 28691 28713 28735 28758 7 6 ■94 28780 28803 28825 28847 28870 28892 28914 28937 28959 28981 9 8 ■95 .29 003 .29 026 .29 048 .29 070 .29 092 .29 115 .29 137 .29 159 .29 181 .29 203 11 11 .96 29226 29248 292.70 29292 29314 29336 29358 29380 29403 29425 13 13 00 ■97 ■ 29447 29469 29491 29513 29535 29557 29579 29601 29623 29645 15 15 .30 .98 29667 29688 29710 29732 29754 29776 29798 29820 29842 29863 18 17 ■99 29885 29907 29929 29951 29973 29994 30016 30038 30060 30081 20 19 (13) 5 PL .. LOG 1. s. 2. LOGS. 6 PL. FIVE PLACE LOGARITHMS. .30 .47 .80 .47 No. 2.00 .OI .02 •03 .04 2.05 .06 .07 .08 .09 2.10 .II .12 •13 .14 2.15 .16 •17 .18 .19 2.20 .21 .22 •23 .24 2.25 .26 .27 .28 .29 2.30 •31 •32 •33 •34 2-35 •36 •37 .38 •39 2.40 .41 .42 •43 ■44 2-45 .46 ■47 .48 •49 8 LOGS. 2. •30 103 30320 30535 30750 30963 •31 175 31387 31597 31806 32 015 .32 222 32428 32634 32838 33041 •33244 33 445 33646 33846 34044 •34 242 34439 34635 34830 35025 •35 218 35 411 35603 35 793 35984 •36 173 36361 36549 36736 36922 •37 107 37291 37 475 37658 37840 .38 021 38 202 38382 38561 38739 •38917 39094 39270 39 445 39 620 6 PL. ■30 125 30341 30557 30771 30984 •31 197 31408 31 618 31827 32035 ■32 243 32449 32654 32858 33062 •33 264 33465 33666 33866 34064 •34 262 34459 3465s 34850 35044 •35 238 35430 35622 35813 36 003 .30 146 , 30363 30578 30792 31006 .31 218 31429 31639 31848 32056 .32 263 32469 3267s 32879 33082 •33 284 33486 33686 33885 34084 ,34 282 34 479 34674 34869 35064 35 257 35 449 35641 35832 36021 .36 192 .36 211 36380 36399 36568 36754 36940 •37 J2S 37310 37 493 37676 37858 ■38039 38 220 38399 38578 38757 ■38 934 39 III 39287 39463 39637 36586 36773 36959 ■37144 37328 37 5" 37694 37876 •38057 38238 38417 38596 38775 •38 952 3? 129 39305 39480 39655 ,30 168 30384 30 600 30814 31027 •31 239 31450 31 660 31869 32077 .32 284 32490 32695 32899 33102 •33 304 33506 33706 33905 34104 •34 301 34498 34694 34889 35083 •35 276 35468 35660 35851 36040 .36 229 36418 3660s 36791 36977 •37 162 37346 37530 37712 37894 ■3807s 38256 3843s 38614 38792 ■38 970 39146 39322 39498 39672 ■30 190 30406 30621 30835 31048 .31 260 31471 31681 31890 32098 •32305 32510 32715 32919 33122 ■33 325 33526 33726 33925 34124 •34 321 34518 34713 34908 35102 •35 295 35488 35679 35870 36059 .36 248 36436 36624 36810 36996 •37 181 37365 37548 37 731 37912 •38093 38274 38453 38632 38810 .38 987 39164 39340 39515 39690 (14) .30211 , 30428 30643 30856 31069 .31 281 31492 31 702 31 911 32 118 •32 325 32531 32736 32940 33143 •33 345 33546 33746 33 94S 34143 •34 341 34 537 34 733 34928, 35 122 •35 315 35507 35698 35889 36078 •36 267 36455 36642 36829 37 014 ■37 199 37383 37566 37 749 37931 .38112 38292 38471 38650 38828 .39 005 39182 39358 39 533 39707 •30 255 30471 30685 30899 31 112 ■31 323 31534 31744 31952 32 160 .32 366 32572 32777 32980 33183 •33 385 33586 33786 33985 34183 •30 233 30449 30664 30878 31091 .31 302 31 513 31723 31931 32139 ■32 346 32552 32756 32960 33163 •33 365 33566 33766 33965 34163 •34 361 34 557 34 753 34 947 35 141 •35 334 ^35 353 35526 35 545 35717 35736 35908 35927 36097 36 116 .36286 .36305 36474 36493 36661 36680 36847 36866 37033 37051 .37 218 .37 236 37401 37420 37585 ^7603 37 767 1 37 785 37 949 37967 .38 130 .38 148 38310 38328 38489 38507 38668 38686 38846 38863 .39023^.39041 39 199 39217 39 375 39 393 39550 39568 39724 39742 .30 276 30492 30707 30920 31 133 •31 345 31555 31765 31973 32 181 •32 387 32593 32797 33 001 33203 •33405 33606 33806 34 005 34203 •34380 ^34400 34 577 34596 34772 34792 34967 34986 35 160/ 35 180 •35 372 35564 35 755 35946 36135 ■30 298 30514 30728 30942 31 154 ■31 366 31576 31785 31994 32201 •32 408 32613 32818 33021 33224 •33425 33626 33826 34025 34223 .34420 34616 34 81 1 35 005 3S»i99 •35 392 35583 35 774 35965 36154 .36324 ^36342 36511 36530 36698 36717 36884 36903 37070 37088 •37 254 37438 37621 37803 37985 .38 166 38346 38525 38703 38881 •39 058 39235 39410 3958s 39 759 •37 273 37 457 37639 37822 38003 .38 184 38364 38543 38721 38899 .39076 39252 39428 39602 39 777 FIVE PLACE LOGARITHMS. 5 PL. LOGS. No. 8 INTP, TAB. 2.50 •5' •52 •S3 •54 ^•55 •56 ■57 .58 •59 2.60 .61 .62 •63 .64 2.65 .66 .67 .68 •69 2.70 •71 .72 ■73 •74 2^75 .76 ■77 .78 ■79 2.80 .81 .82 ■83 .84 2.85 .86 ■87 •.88 ■89 2.90 .91 ■92 ■93 ■94 2.95 .96 •97 .98 ■99 •39 794 39967 40 140 40312 40483 .40 654 40824 40993 41 162 41330 .41 497 41 664 41830 41996 42 160 •42 325 42488 42651 42813 42975 •43 136 43297 43 457 43616 43 775 •43 933 44091 44248 44404 44560 •44 716 44871 45025 45179 45332 •45 484 45637 45788 45 939 46090 .46 240 46389 46538 46687 46835 .46 982 47129 47276 47422 47567 .39811 39985 40157 40329 40SSP .40671 40841 41010 41 179 41347 .41 514 41 681 41847 42012 42177 .42 341 42504 42-667 42830 42991 •43 152 43313 43 473 43632 43791 •43 949 44107 44264 44420 44576 ■44 731 44886 45040 45194 45 347 •45500 45652 45803 45 954 46 105 ■46 25 s 46404 46553 46702 46850 •46 997 47144 47290 47436 47582 •39 829 40 002 40175 40346 40518 .40 688 40858 41 027 41 196 41363 •41 531 41697 41863 42029 42193 •42 357 42521 42684 42846 43 008 ■43 169 43329 43489 43648 43807 •43 965 44 122 44279 44436 44592 •44 747 44902 45056 45209 45362 ■45 515 45667 45818 45969 46 120 .46 270 46419 46568 46716 46864 .47 012 47159 -47305 47451 47596 ■39 846 40019 40 192 40364 4P535 .40 705 40875 41044 41 212 41 380 ■39 863 40037 40209 40381 40552 .40 722 40892 41 061 41 229 41397 .41 547 .41 564 41 714 41 731 41 880 41 896 42 045 42 062 42 210 42 226 ■42 374 42537 42 700 42862 43024 •43 185 43 345 43505 43 664, 43823 ■43 981 44138 44295 44451 44607 .42 390 42553 42 716 42878 43040 ■43 201 43361 43521 43 680 43838 ■43 996 44154 44 31 1 44467 44623 .44762 .44778 44917 44932 45071 45086 45 225 45 240 45378 45 393 ■45-530 45 682 45834 45984 46135 .46 285 46434 46583 4673" 46879 .47 026 47173 47319 47465 47 61 1 •45 545 45697 45849 46 000 46150 .46300 46449 46598 46746 46894 •47 041 47188 47 334 47480 47625 .39 881 40054 40226 40398 40569 •40 739 40909 41 078 41 246 41414 ••41 581 41747 41 913 42 078 42243 .42 406 42570 42732 42894 43056 •43217 43 377 43 537 43696 43854 .44 012 44170 44326 44483 44638 •44 793 44948 45 102 45255 45408 ■45 561 45712 45864 46015 46165 •46315 46464 46613 46761 46909 ■47 056 47 202 47 349 47 494 47640 ■39 898 40071 40243 40415 40586 .40 756 40926 41095 41263 41430 •41 597 41764 41929 42095 42259 •42 423 42586 42749 42 911 43072 •43 233 43 393 43 553 43712 43870 .44028 44185 44342 44498 44654 .44 809 44963 45117 45271 45423 •45 576 45728 45879 46030 46 180 •46 330 46479 46627 46776 46923 •47 070 47217 47363 47509 47654 •39915 40088 40261 40432 40603 ■40 773 40943 41 III 41 280 41447 .41 614 41 780 41946 42 III 42275 •42 439 42602 42765 42927 43088 •43 249 43409 43569 43727 43886 •44044 44 201 44358 44514 44669 .44 824 44 979 45133 45 286 45 439 ■45 591 45 743 45894 46045 46195 •46 345 46494 46642 46790 46938 .47085 47232 47378 47524 47669 ■39 933 40 106 40278 40449 40620 •40 790 40960 41 128 41 296 41464 ■41 631 41797 41963 42 127 42 292 ■42 455 42619 42781 42943 43104 ■43 265 43425 43584 43 743 43902 •44059 .44075 44217 44232 44 373 44389 44529 44 545 44 685 44 700 •39 950 40123 40295 40466 40637 .40 807 40976 41 145 41313 41 481 .41 647 41 814 41979 42144 42308 ■42 472 42635 42797 42959 43120 .43 281 43441 43600 43 759 43917 .44840 44 994 45148 45301 45 454 .45 606 45758 45 909 46060 46210 .44855 45 010 45 163 45317 45469 .45 621 45 773 45924 46075 46225 (15) •46 359 -46 374 46509 46523 46657 46672 46 805 46 820 46953 46967 .47 100 .47 114 47 246 47 261 47392 47407 47538 47 553 47683 47698 6 PL. LOGS. 2. FIVE PLACE LOGARITHMS. LOGS. 5 PL. No. 8 3.00 .OI .02 •03 .04 305 .06 .07 .oS .09 3.10 .11 .12 •>3 .14 3-«5 .16 •17 .18 •19 3.20 .21 .22 •23 .24 3-25 .26 .27 .28 .29 3.30 ■31 •32 ■33 •34 3-35 ■36 •37 •38 •39 3.40 •4' .42 •43 •44 3-45 .46 •47 .48 •49 LOGS. 3. •47712 • 47857 48 001 48144 48287 •48 430 48572 48714 48855 48996 ■49 136 49276 49415 49 554 49693 •49 831 49969 50 106 5° 243 50379 .50515 50651 50786 50920 51055 .51 188 51322 51455 51587 51720 .51 851 5«983 52 114 52244 52375 ■52 504 52634 52763 52892 53020 ■53 148 53275 53403 53529 53656 ■53 782 53908 54033 54158 54283 6 PL. 47 727 47871 48015 48159 48302 .48444 48586 48728 48869 49 010 •49 150 49290 49429 49568 49707 •49 845 49982 50 120 50256 50393 •50 529 50664 50799 50934 51068 .51 202 51335 51468 51 601 51733 .51865 51996 52127 52257 52388 •52517 52647 52776 52905 53033 ■53 161 53288 53415 53542 53668 ■53 794 53920 54045 54170 54295 ■47 741 47885 48029 48173 48316 .48458 48601 48742 48883 49024 •49 164 49304 49 443 49582 49721 ■49 859 49996 50133 50 270 50406 .50 542 50678 50813 50947 51 081 .51215 51348 51481 51 614 5^746 .51 878 62 009 52140 52270 52401 •52 530 52660 52789 52917 53046 ■53 173 53301 53428 53 555 53681 ■53807 53 933 54058 54183 54307 •47 756 47900 48044 48187 48330 .48473 , 48615 48756 48897 49038 •49 178 49318 49 457 49596 49 734 •49 872 50 010 50147 50284 50420 •50556 50691 50826 50961 51095 .51 228 51362 51495 51627 51759 .51 891 52022 52153 52284 52414 •52 543 52673 52802 52930 53058 •53 186 53314 53441 53567 53694 •53 820 53 945 54070 54195 54320 •47 770 47914 48058 48202 48344 .48487 48629 48770 48 9H 49052 •49 192 49332 49 471 49610 49748 .49 886 50024 50 161 50297 50433 •50 569 50705 50840 50974 51 108 .51 242 51375 51508 51 640 51772 .51 904 52035 52 166 52297 52427 .52556 52686 52815 52943 53071 •53 199 53326 53 453 53580 53706 •53 832 53958 54083 54208 54332 •47 784 47929 48073 48216 48359 .48 501 48643 48785 48926 49066 •47 799 47 943 48087 48230 48373 .48515 48657 48799 48940 49080 •47 813 47958 48 lOI 48 244 48387 .48 530 48671 48813 48954 49094 ,47 828 .47 842 47972 47986 48 116 48 130 48259 48273 48 401 48 416 .48 544 .48 558 48686 48700 48827 48841 48968 48982 49 108 49 122 .49 206 .49 220 49346 49360 49485 49499 49624 49638 49762 49776 .49900 50037 50174 50 3" 50447 •50583 50718 50853 50987 51 121 •51 255 51388 51 521 51 654 51786 .51917 52048 52179 52310 52440 •52 569 52699 52827 52956 53084 .53212 53 339 53466 53 593 53719 ■53 845 53970 54095 54220 54 345 •49 914 50051 50188 50325 50461 .50 596 50732 50866 51001 51135 .51 268 51402 51534 51667 51799 •51 930 52061 52192 52323 52453 •52 582 52711 52840 52969 53097 •53 224 53352 53 479 53605 53732 •53 857 53983 54 108 54233 54 357 .49 234 .49 248 .49 262 49 374 49388 49402 49513 49527 49541 49651 49665 49679 49790 49803 49817 •49927 ^49 941 ^49 955 50065 50079 50092 50202 50215 50229 50338 50352 50365 50474 50488 50501 .50610 50745 50880 51014 51148 .51 282 51 415 51548 51680 51812 •51 943 5-2075 52205 52336 52466 •52 595 52724 52853 52982 53 no •53 237 53364 53491 53618 53 744 •53 870 53 995 54 120 54245 54370 .50 623 50759 50893 51 028 51 162 .51 295 51428 51561 51693 51825 •51 957 52088 52218 52349 52479 .52608 52737 52 866 52994 .53 122 •53 250 53 377 53504 53631 53 757 •S3 882 54008 54133 54258 54382 •50 637 50772 50907 51041 pi75- •51 308 51441 51574 51 706 51838 •51970 52 lOI 52231 52362 52492 .52 621 52750 52879 53 007 53135 •S3 263 53390 53517 53643 53769 •53895 54020 54145 54270 54 394 (16) FIVE PLACE LOGARITHMS. 5 PL. LOGS No. 01234 5 6, 7 8 9 INTP TAB. 3.50 .54407 ^54419 ^54432 ^54 444 .54 456 •54469 ^54481 .54494 .54506 .54518 13 .4' •S' 54 53" 54 543 54 555 54 568 54580 54 593 54605 54617 54630 54642 1 .6C •52 54654 54667 54679 54691 54704 54716 54728 54741 54 753 54765 3 •S3 54 777 54790 54802 54814 54827 54839 54851 54864 54876 54888 4 •54 54900 54913 54925 54 937 54 949 54962 54 974 54986 54998 86 011 5 3-SS •55 023 .55 035 -55 047 •SS 060 .55 072 .55084 .55096 .55 108 .55 121 .55 133 7 •56 55 "45 "^55 157 55169 55182 55194 55206 55218 55230 55242 55255 8 ■57 55267 55279 55291 55303 55315 55328 55340 55352 55364 55376 9 ■58 55388 55400 55413 55425 55437 55 449 55461 55473 55485 55497 10 •59 55509 55522 55534 55546 55558 55570 55582 55594 55606 55618 12 3.60 •55 630 .55 642 .55 654 ^55 666 .55 678 •55 691 -55 703 .55 715 •SS 727 ^55 739 13 .6i 55751 55763 55775 55787 55799 55811 ,55823 55835 55847 55859 I .62 55871 55883 55895 55907 55919 55 931 55 943 55 955 55 967 55 979 2 ■63 55991 56 003 56015 56027 56038 56050 56062 56074 56086 56098 4 .64 56 no 56122 56134 56146 56158 56170 56182 56194 56205 56217 5 3-65 .56 229 .56 241 .56 253 .56 265 .56 277 .56289 .56301 .56312 .56324 .56336 6 .66 56348 56360 56372 56384 56396 56407 56419 56431 56443 56455 7 .67 56467 56478 56490 56502 56514 56526 56538 56549 56561 56573 8 .68 56585 56597 56608 56620 56632 56 644 56 656 56 667 56 679 56 691 10 .69 56703 56714 56726 56738 56750 56761 56773 56785 56797 56808 11 3.70 .56820 .56832 .56844 .56855 .56867 .56879 .56891 .56902 .56914 .56926 12 •71 56937 56949 56961 56972 56984 56996 57 008 57019 57031 57043 I .72 57054 57066 57078 57089 57101 57113 57124 57136 57148 57159 2 ■73 57171 57183 57194 57206 57217 57229 57241 57252 57264 57276 4 •74 57287 57299 57310 57322 57334 57 345 57 357 57 368 57 380 57 392 5 3-75 •57403 ^57415 ^57426 .57438 .57449 ■57461 .57473 .57484 .57496 .57507 6 .76 57S"9 57530 57542 57553 57565 57576 57588 57.600 57 6u 57623 7 •77 57634 57646 57657 57669 57680 57692 57703 57715 57726 57738 8 .78 57 749 57761 57772 57784 57795 57807 57818 57830 57841 57852 10 •79 57864 57875 57887 57898 57910 57 921 57933 57944 57955 57967 11 3.80 ■57978 ^57990 .58 001 .58013 .58024 .58035 .58047 .58058 .58070 .58081 11 .81 58092 58104 58115 58127 58138 58 149 58 161 58 172 58 184 58 195 1 .82 58 206 58 218 58 229 58 240 58 252 58263 58274 58286 58297 58309 2 •83 58320 58.331 58343 58354 58365 58377 58388 58399 58410 58422 3 .84 58433 58444 58456 58467 58478 58490 58501 58512 58524 58535 4 3-85 .58 546 .58 557 .58 569 .58 580 .58 591 .58602 .58 614,. 58 625 .58636 .58647 6 .86 58659 58670 58681 58692 58704 58715 58726 58737 58749 58760 7 .87 58 771 58 782 58 794 "58 805 58 816 58827 58838 58850 58861 58872 8 .88 58883 58894 58906 58917 58928 58939 58950 58961 58973 58984 9 .89 58995 59 006 59017 59028 59040 59051 59062 59073 59084 59095 10 3.90 .59 106 .59 118 .59 129 .59 140 .59 151 .59 162 .59 173 .59 184 .59 195 .59 207 11 .91 59218 59229 59240 59251 59262 59273 59284 59295 59306 59318 1 .92 59329 59340 59351 59362 59 373 59384.59395 59406 59417 59428 2 •93 59 439 59450 5946/ 59472 59483 59 494 59506 59517 59528 59 539 3 .94 59550 59561 59 572 59583 59 594 59605 59616 59627 59638 59649 4 3-95 .59 660 .59 671 .59 682 .59 693 .59 704 ■59 715 -59 726 .59 737 ^59 748 .59 759 6 .96 59770 59780 59791 59802 59813 59824 59835 59846 59857 59868 7 .47 ■97 59879 59890 59901 59912 59923 59 934 59 945 59 956 59 966 59977 8 .60 .98 ■99 59988 59999 60 010 60021 60032 60043 60054 60065 60076 60086 9 60097 60108 60119 60130 60141 60 152 60 163 60 173 60 184 60 195 10 (17) 6 PL. I .OG 3. s. 4. LOGS. 6 PL. FIVE PLACE LOGARITHMS. No. 8 4.00 .01 .02 •03 .04 4-05 .06 .07 .08 .09 4.10 .11 .12 •13 .14 4.15 .16 •17 .18 .19 4.20 .21 .22 •23 .24 4.25 .26 .27 .28 .29 4.30 •3J ■32 •33 •34 4-35 •36 •37 •38 •39 4.40 .41 .42 ■43 •44 4-45 .46 •47 .48 ■49 .60 206 60314 60423 60531 60638 .60 746 60853 60959 61 066 61 172 .61 278 61384 61 490 61595 61 700 .61 805 61 909 62014 62 118 62 221 .62 325 62428 62531 62634 62737 •62 839 62941 63043 63144 63246 •63 347 63448 63548 63649 63 749 •63 849 63949 64048 64147 64246 •64 345 64444 64542 64640 64738 .64836 64933 65031 65 128 65225 ,60217 60325 60433 60 541 60649 .60 756 60863 60970 61 077 61 183 .61 289 61395 61 500 61 606 6i 711 .61 815 61 920 62024 62128 62232 •62.335 62439 62542 62644 62747 .62 849 62951 63053 63155 63256 •63 357 63458 63558 63659 63759 .63 859 63959 64058 64157 64256 •64355 64454 64552 64650 64748 .64 84^ 64943 65040 65137 65234 .60 228 , 60336 60444 60552 60660 .60 767 60874 60981 61087 61 194 .61 300 61 405 61 511 61 616 61 721 .61 826 61930 62034 62 138 62242 .62 346 62449 62552 62655 62757 .62 859 62961 63063 63165 63266 •63 367 63468 63568 63669 63769 ■63 869 63969 64068 64167 64266 .64 365 64464 64562 64660 64758 .64856 64953 65 050 65147 65244 .60 239 60347 60455 60563 60670 .60 778 60885 60991 61 098 61 204 .61 3l[o 61 416 61 521 61 627 61 731 .61 836 61 941 62045 62 149 62252 •62 356 62459 62562 62665 62 767 .62 870 62972 63073 63175 63276 ■63 377 63478 63579 63679 63779 •63 879 63979 64078 64177 64276 ■64 375 64473 64572 64670 64768 .64 865 64963 65 060 65157 65254 .60 249 60358 60466 60574 60681 .60788 60895 61002 61 109 61 215 .61 321 61 426 61532 61637 61 742 .61 847 61 951 62055 62159 62263 .62 366 62469 62572 62675 62778 .62 880 62982 63083 63185 63286 ■63387 63488 63589 63689 63789 .63 889 63988 64088 64187 64286 ■64 385 64483 64582 64680 64777 .64875 64972 65070 65 167 65263 .60 260 60 369 60477 60 584 60692 .60 799 60906 61 013 61 119 61 225 ■61 331 61437 61 542 61648 61 752 .61 857 61 962 62066 62 170 62273 ■62 377 62480 62583 62685 62788 .62 890 62992 63094 63195 63296 •63 397 63498 63599 63699 63799 ■63 899 63998 64098 64197 64296 •64 395 64493 64591 64689 64787 .64 885 64982 65079 65 176 65273 .60 271 60379 60487 60595 60703 .60810 60917 61 023 61 130 61 236 •61 342 61 448 61553 61658 61 763 .61 868 61 972 62076 62 180 62 284 .62 387 62490 62593 62696 62 798 .62900 63 003 63104 63205 63306 .63 407 63508 63609 63709 63809 .63 909 64008 64 108 64207 64306 .64 404 64503 64601 64699 64797 .64 895 64992 65089 65 186 65283 .60 282 60390 60498 60606 60713 .60821 60927 61034 61 140 61247 .61 352 61458 61563 61 669 61773 .61 878 61982 62086 62 190 62294 •62 397 62500 62603. 62 706 62808 .62910 63012 63114 63215 63317 •63417 63518 63619 63 7«9 63819 •63 919 64018 64118 64217 64316 .64414 64513 64611 64709 64807 .64 904 66 002 65099 65 196 65292 .60 304 60412 60520 60627 6073s .60842 60949 61055 61 162 61268 •61 374 61479 61584 61 690 61794 .61 899 62 003 62 107 62 211 62315 .62418 62521 62624 62 726 62829 •62931 63033 63134 63236 63337 .63438 63538 63639 63739 63839 .63929 .63939 64 028 64 038 64 128 64 137 64227 64237 64326 64335 .64424 .64434 64523 64532 64621 64631 64719 64729 64816 64826 .64914 .64924 65011 65021 65 108 65 118 65205 65215 65302 65312 ,60 293 60401 60509 60617 60724 .60 831 60938 61045 61 151 61 257 •61 363 61 469 61574 61 679 6i 784 .61 888 61993 62097 62201 62304 .62 408 62511 .62 613 62 716 62818 .62 921 63022 63124 63225 63327 .63 428 63528 63629 63729 63829 LOGS. 5 PL. 4. (i8) FIVE PLACE LOGARITHMS. . 5 PL. LOGS No. 4.50 01234 56789 INTP TAB. .65 321 .65 331 .65 341 .65 350 .65 360 •65 369 65 379 .65 389 .65 398 .65 408 10 .6( •SI 65418 65427 65437 65447 65456 65466 65475 65485 65495 65504 I .6£ ■52 65514 65523 65533 65543 65552 ■ 65 562 65 571 65 581 65 591 65 600 2 •53 65 610 65 619 65 629 65 639 65 648 65 658 65 667 65 677 65 686 65 696 3 •54 65 706 65 715 65 725 65 734 .65 744 65 753 65 763 65 772 65 782 65 792 4 4-55 .65 8oi .65 81 1 .65 820 .65 830 .65 839 .65 849 .65 858 .65 868 .65 877 .65 887 5 •56 65896 65906 65916 65925 65935 65944 65954 65963 65973 65982 6 •57 65 992 66 001 66 01 1 66 020 66 030 66039 66049 66058 66068 66077 7 •58 66087 66096 66106 66 115 66124 66134 66143 66153 66162 66172 8 •59 66 181 66 191 66200 66210 66219 66229 66238 66247 66257 66266 9 4.60 .66276 .66285 -66295 .66304 .66314 .66323 .66332 .66342 .66351 .66361 9 .61 66370 66380 66389 66398 66408 66417 66427 66436 66445 66455 1 .62 66464 66474 66483 66492 66502 66 511 66521 66530 66539 66549 2 •63 66558 66567 66577 66586 66596 66605 66614 66624 66633 66642 3 .64 66652 66661 66671 66680 66689 66699 66708 66717 66727 66736 4 4-65 .66745 .66755 .66764 .66773 -66783 .66792 .66801 .66811 .66820 .66829 5 .66 66839 66848 66857 66867 66876 66885 66894 66904.66913 66922 5 .67 66 932 66 941 66 950 66 960 66 969 66978 66987 66997 67 006 67015 6 .68 67025 67034 67043 67052 67062 67071 67080 67089 67099 67108 7 .69 67 117 67127 67136 67145 67154 67 164 67 173 67 182 67 191 67 201 8 4,70 .67 210 .'67 219 .67 228 .67 237 .67 247 .67256 .67265 .67274 .67284 .67293 9 •71 67302 67 311 67321 67330 67339 67348 67357 67367 67376 67385 1 .72 67394 67403 67413 67422 67431 67440 67449 67459 67468 67477 2 •73 67486 67495 67504 67514 67523 67532 67541 67550 67560 67569 3 •74 67578 67587 67596 67605 67614 67624 67633 67642 67651 67660 4 4^75 .67 669 .67 679 .67 688 .67 697 .67 706 .67 715 .67 724 .67 733 .67 742 .67 752 5 .76 67 761 67 770 67 779 67 788 67 797 67806 67815 67825 67834 67843 5 ■77 67852 67861 67870 67879 67888 67897 67906 67916 67925 67934 6 .78 67943 67952 67961 67970 67979 67988 67997 68 006 68015 68024 7 •79 68034 68043 68052 68061 68070 68079 68088 68097 68106 68115 8 4.80 .68 124 .68 133 .68 142 .68 151 .68 160 .68 169 .68 178 .68 187 .68 196 .68 205 9 .81 68215 68224 68233 68242 68251 68260 68 269 68 278 68287 68296 I .82 68305 68314 68323 68332 68341 68350 68359 68368 68377 68386 2 •83 68395 68404 68413 68422 68431 68440 68449 68458 68467 68476 3 .84 68485 68494 68502 68511 68520 68529 68538 68547 68556 68565 4 4.85 .68574 .68583 .68592 .68601 .68610 .68 619 .68 628 .68 637 .68 646 .68 655 5 .86 68 664 68 673 68 681 68 690 68 699 68708 68717 68726 68735 68744 5 •87 68753 68762 68771 68780 68789 68797 68806 68815 68824 68833 6 .88 68842 68851 68860 68869 68878 68 886 68895 68904 68913 68922 7 .89 68931 68940 68949 68958 68966 68975 68984 68993 69 002 69011 8 4.90 .69020 .69028 .69037 .69046 .69055 .69064 .69073 .69082 .69090 .69099 8 •91 69108 69 117 69126 69135 69144 69 152 69 161 69 170 69 179 69 188 1 .92 69 197 69 205 69 214 69 223 69 232 69 241 69 249 69 258 69 267 69 276 2 •93 69285 69294 69302 69 311 69320 69329 69338 69346 69355 69364 2 •94 69373 69381 69390 69399 69408 69417 69425 69434 69443 69452 3 4-95 .69 461 .69 469 .69 478 .69 487 .69 496 .69504 -69513 .69522 .69531 .69539 4 .60 .96 69548 69557 69566 69574 69583 69 592 69 601 69 609 69 618 69 627 S .69 •97 69 636 69 644 69 653 69 662 69 671 69 679 69 688 69 697 69 705 69 714 6 .98 69723 69732 69740 69749 69758 69767 69775 69784 69793 69801 6 ■99 69 810 69 819 69 827 69 836 69 845 69854 69862 69871 69880 69888 7 (19) 5 PL. I -OG 4. S. 5. LOGS. 5 PL. FIVE PLACE LOGARITHMS. No. 8 5.00 .OI .02 •°3 .04 5°5 .06 .07 .08 .09 5.10 .11 .12 •13 .14 S-I5 .16 ■>7 .18 •19 5.20 .21 .22 •23 .24 5'2S .26 .27 .28 .29 5.30 •31 •32 •33 •34 5^35 •36 •37 •38 ■39 5.40 .41 .42 ■43 ■44 S-45 .46 •47 ■49 logs! 5. .69 897 69984 70070 70157 70243 •70 329 7041.5 70 501 70586 70672 •70 757 70842 70927 71 012 71 096 .71 181 71265 71349 71433 71517 .71 600 71 684 71767 71850 71933 .72016 72099 72 i8i 72263 72346 .72428 72509 72591 72673 72754 •72 83s 72916 72997 73078 73159 •73 239 73320 73400 73480 73 560 •73 640 73719 73 799 73878 73 957 5 PL. .69 go6 69992 70079 70165 70252 •70 338 70424 70509 70595 70680 .70 766 70851 70935 71 020 71 105 .71 189 71273 71357 71441 71525 ,71 609 71 692 7177s 71858 71941 .72 024 72 107 72 189 72 272 72354 ■72 436 72518 72599 72681 72 762 .72 843 72925 73 006 73086 73167 ■73 247 73328 73408 73488 73568 •73 648 73727 73807 73886 73965 .69914 70 001 70088 70174 70 260 .70 346 70432 70518 70603 70689 ■70 774 70 859- 70944 71 029 71 "3 .71 198 71 282 71366 71450 71533 .71617 71 700 71784 71 867 71950 .72032 72115 72 198 72 280 72362 .72444 72 526 72607 72689 72 770 .72852 72933 73014 73094 73175 ■73255 73336 73416 73496 73576 •73656 73 735 73 815 73894 73 973 ,69 923 70010 70096 70183 70269 •70355 70441 70 526 70612 70697 •70 783 70868 70952 71037 71 122 .71 206 71 290 71374 71458 71542 .71 625 71 709 71792 71875 71958 .72 041 72 123 72206 72288 72370 •72452 72534 72616 72697 72779 ,72860 72941 73022 73102 73183 •73 263 73 344 73424 73504 73584 ■73 664 73 743 73823 73902 73981 .69 932 ,70018 70 105 70191 70 278 ■70 364 70449 70535 70621 70 706 •70 791 70876 70961 71 046 71 130 .71 214 71299 71383 71 466 71550 •71 634 71717 71 800 71883 71 966 .72049 72132 72 214 72296 72378 .72 460 72542 72624 72705 72 787 .72 868 72949 73030 73 III 73 191 ■73 272 73352 73432 73512 73 592 ■73672 73751 73830 73910 73989 .69 940 70027 70 1 14 70 200 70286 •70372 70458 70544 70629 70714 .70800 70885 70969 71054 71 139 .71 223 71307 71 391 71475 71559 .71 642 71725 71 809 71 892 71975 .72057 72 140 72 222 72304 72387 •72 469 72550 72632 72713 72795 .72876 72957 73038 73 "9 73199 .73 280 73360 73440 73520 73600 •73 679 73 759 73918 73 997 ,69 949 70036 70 122 70 209 70295 .70 381 70467 70552 70638 70723 .70 S08 70893 70978 71063 71 147 .71 231 71315 71399 71483 71567 .71 650 71734 71817 71 900 71983 .72066 72 148 72230 72313 72395 .72477 72558 72 640 72 722 72803 .72 884 72965 73046 73127 73207 .73 288 73368 73448 73528 73608 ■73687 Z376Z 73926 74 005 .69958 , 70044 70131 70217 70303 ■70 389 70475 70561 70646 70731 .70817 70902 70986 71 071 71155 .71 240 71324 71 408 71492 71575 .71 659 71742 71825 71 908 71991 .72074 72156 72239 72321 72403 .72485 72567 72648 72730 72811 .72 892 72973 73054 73135 73215 •73 296 73376 73456 73536 73616 •73 695 73 775 73854 73 933 74013 ,69 966 70053 70 140 70226 70312 ■70 398 70484 70569 70655 70740 .70 825 70910 70995 71079 71 164 .71 248 71332 71416 71 500 71584 .71 667 71750 71834 71917 71999 .72 082 72 165 72247 72329 72411 ■72493 72575 72656 72738 72819 .72900 72981 73062 73143 73223 ■73 304 73384 73464 73 544 73624 ■73 703 73783 73862 73941 74020 ■69 975 70 062 70148 70234 70321 .70 406 70492 70578 70663 70749 .70834 70919 71003 71088 71172 •71 257 71341 71425 71508 71592 •71 675 71759 71 842 71925 72 008 .72 090 72173 72255 72337 72419 •72 501 72583 72665 72746 72827 .72 908 72989 73070 73151 73231 •73312 73392 73472 73552 73632 ■73711' 73791 73870 73 949 74028 (20) FIVE PLACE LOGARITHMS. 5 PL. LOGS. No. 8 5.50 •51 •52 •53 •54 5^55 .56 ■57 •58 •59 5.60 .61 .62 •63 .64 5-65 .66 .67 .68 .69 5.70 •7> .72 •73 •74 5-75 .76 •77 .78 •79 5.80 .81 .82 •83 .84 5.85 .86 .87 5.90 •91 .92 •93 •94 5-95 .96 •97 :98 •99 .74036 74 "5 74194 74 273 74351 •74 429 74507 74586 74663 74741 .74819 74896 74974 75051 75128 ■75 205 75282 75358 75 435 75 5" •75 587 75664 75740 75815 75891 •75 967 76042 76 118 76193 76268 ■76 343 76418 76492 76567 76641 .76 716 76 790 76864 76938 77012 •77085 77159 77232 77305 77 379 •77452 77525 77 597 77 670 77 743 .74044 74123 74202 74280 74 359 •74437 745'5 74 593 74671 74 749 •74 827 74904 74981 75059 75136 •75213 75289 75366 75442 75519 ■75 595 75671 75 747 75823 75899 ■75 974 76050 76125 76200 76275 •76 350 76425 76500 76574 76649 •76 723 76797 76871 76945 77019 •77 093 77 166 77 240 77313 77386 •77 459 77532 77605 77677 77750 •74 052 7413J 74 2IO 74288 74367 •74 445 74523 74601 74679 74 757 •74 S34 74912 74989 75066 75143 .75 220 75297 75 374 75450 75526 •75 603 75679 75 755 75831 75906 •75 982 76057 76133 76208 76283 •76358 76433 76507 76582 76656 .76 730 76805 76 879 76953 77026 .77 100 77173 77247 77320 77 393 .77 466 77 539 77 612 77685 77 757 .74 060 74139 74218 74296 74 374 ■74 453 74 531 74609 74687 74764 .74 842 74920 74 997 75074 75151 .75 228 75305 75381 75458 75 534 .75 610 75686 75762 75838 75914 •75 989 76065 76 140 76215 76290 •76365 76440 76515, 76589 76664 •76 738 76812 76886 76960 77034 •77 107 77 181 77254 77327 77401 •77 474 77546 77619 77 692 77764 .74 068 74147 74225 74304 74382 .74461 74 539 74617 74695 74772 ■74 850 74927 75 005 75 082 75159 ■75 236 75312 75389 75465 75542 .75618 75694 75770 75846 75921 ■75 997 76072 76148 76223 76 298 •76 373 76448 76522 76597 76671 ■76 745 76819 76893 76967 77041 ■77 "5 77188 77 262 77 335 77408 ■77481 77 554 77 627 77699 77772 .74076 74155 74233 74312 74390 .74 468 74 547 74624 74702 74780 .74858 74 935 75012 75089 75 i66 •75 243 75320 75 397 75 473 75 549 ■75 626 75702 75778 75853 75929 .76 005 76080 76155 76230 76305 .76 380 76455 76530 76604 76678 ■76753 76827 76901 7697s 77048 ■77 122 77 195 77269 77342 77415 ■77 488 77561 77634 77 706 77 779 .74084 74162 74241 74320 74398 ■74476 74 554 74632 74710 74788 •74865 74 943 75 020 75 097 75174 •75251 75328 75404 75481 75 557 •75 633 75709 75785 75861 75 937 .76012 76087 76 163 76238 76313 .76388 76462 76537 76612 76686 .76 760 76834 76908 76982 77056 ■77 129 77203 77 276 77 349 77422 ■77 495 77568 77641 77714 77786 .74092 74170 74249 74327 74406 •74 484 74562 74 640 74718 74796 •74873 74950 75028 75105 75182 •75 259 75 335 75412 75488 75565 •75 641 75717 75 793 75868 75 944 .76 020 76095 76 170 76245 76320 •76395 76470 76545 76619 76693 .76 768 76842 76916 76989 77063 ■77137 77 210 77283 77 357 77430 •77 503 77576 77648 77721 77 793 74099 .74107 74 178 74 186 74257 74265 74 335 74 343 74414 74421 74492 .74500 74570 74578 74648 74656 74726 74733 74803 74 81 1 .74 881 74958 75035 75 "3 75189 •75 266 75 343 75420 75496 75572 •75 648 75724 75 800 75876 75952 .76027 76 103 76178 76253 76328 .76403 76477 76552 76626 76 701 •76 775 76849 76923 76997 77070 ■77 144 77217 77291 77364 77 437 .74 889 74966 75043 75120 75197 •75 274 75351 75427 75504 75580 ■75 656 75732 75808 75884 75 959 ■76 035 76 110 76185 76 260 7633s .76410 76485 76559 76634 76 708 .76 782 76856 76930 77 004 77078 ■77 151 77225 77298 77371 77 444 .77510 .77517 77583 77590 77656 77663 77728 77735 77 801 77 808 INTP. TAB. (21) 5 PL. LOGS. 5. FIVE PLACE LOGARITHMS. LOGS. 5 PL. No. 01234 56789 INTP. TAB. .77 .84 6.00 .OI .02 •03 .04 .77815 .77822 .77830 .77837 .77844 77887 77895 77902 77909 77916 77960 77967 77974 77981 77988 78032 78039 78046 78053 78061 78104 78 III 78118 78125 78132 .77851 .77859 -77866 .77873 .77880 77924 77931 77938 77945 77952 77996 78 003 78010 78017 78025 78068 78075 78082 78089 78097 78 140 78 147 78 154 78 161 78 168 8 I 2 2 3 6.05 .06 .07 .08 .09 .78 176 .78 183 .78 190 .78 197 .78204 78247 78254 78262 78269 78276 78319 78326 78333 78340 78347 78390 78398 78405 78412 78419; 78462 78469 78476 78483 78490 .78211 .78219 .78226 .78233 .78240 78283 78290 78297 78305 78312 78355 78362 78369 78376 78383 78426 78433 78440 78447.78455 78497 78504 78512 78519 78526 4 5 6 6 7 6.10 .11 .12 •13 .14 -78533 -78540 -78547 -78554 -78561 78604 78611 78618 78625 78633 78675 78682 78689 78696 78704 78746 78753 78760 78767 78774 78817 78824 78831 78838 78845 .78569 .78576 .78583 .78590 .78597 78640 78647 78654 78661 78668 78711 78718 78725 78732 78739 78781 78789 78796 78803 78810 78852 78859 78866 78873 78880 7 1 1 2 3 6.15 .16 ■17 .18 .19 -78888 -78895 .78902 .78909 .78916 78958 78965 78972 78979 78986 79029 79036 79043 79050 79057 79099 79106 79113 79120 79127 79,169 79176 79183 79190 79197 .78923 .78930 .78937 .78944 .78951 78993 79 000 79007 79014 79021 79064 79071 79078^79085 79092 79134 79141 79148 79155 79162 79204 79 2U 79218 79225 79232 4 4 5 6 6 6.20 .21 .22 •23 .24 -79 239 -79 246 -79 253 .79 260 .79 267 79309 79316 79323 79330 79 337 79 379 79386 79 393 79 400 79407 79 449 79456 79463 79470 79 477 79518 79525 79532 79 539 79546 •79 274 -79 281 .79 288 ..79 295 .79 302 79 344 79351 79358 79365 79372 79414 79421 79428 79435 79442 79484 79491 79498 79505 79 511 79 553 79560 79567 79 574 79 581 7 1 I 2 3 6.25 .26 .27 .28 .29 .79 588 .79 595 .79 602 .79 609 .79 616 79657 79664 79671 79678 79685 79727 79 734 79741 79748 79 754 79 796 79 803 79 810 79 817 79 824 79865 79872 79879 79886 79893 •79 623 .79 630 .79 637 .79 644 .79 650 79692 79699 79706 79713 79720 79761 79768 79775 79782 79789 79831 79837 79844 79851 79858 79900 79906 79913 79920 79927 4 4 5 6 6 6.30 ■31 •32 •33 •34 •79 934 -79 941 .79948 -79 955 -79962 80 003 80010 80017 80024 80030 80072 80079 80085 80092 80099 80 140 80 147 80 154 80 161 80 168 80209 80216 80223 80229 80236 •79 969 ^79 975 ^79 982 .79 989 -79 996 80037 80044 80051 80058 80065 80106 80113 80120 80127 80134 80175 80182 80188 80195 80202 80 243 80 250 80 257 80 264 80 271 7 1 1 2 3 6.35 -36 •37 •38 •39 .80 277 .80 284 .80 291 .80 298 .80 305 80346 80353 80359 80366 80373 80414 80421 80428 80434 80441 80 482 80 489 80 496 80 502 80 509 80550 80557 80564 80570 80577 .80312 .80318 .80325 .80332 .80339 80380 80387 80393 80400 80407 80448 80455 80462 80468 80475 80516 80523 80530 80536 80543 80584 80591 80598 80604 80611 4 4 5 6 6 6.40 ■41 .42 •43 •44 .80618 .80625 -80632 .80638 .80645 80686 80693 80699 80706 80713 80 754 80 760 80 767 80 774 80 781 80821 80828 80835 80841 80848 80889 80895 80902 80909 80916 .80652 .80659 .80665 -80672 .80679 80 720 80 726 80 733 80 740 80 747 80787 80794 80801 80808 80814 80855 80862 80868 80875 80882 80 922 80 929 80 936 80 943 80 949 6 I 1 2 2 .77 .84 6-45 .46 -47 .48 -49 .80956 .80963 .80969 .80976 .80983 81023 81030 81037 81043 81050 81090 81097 81104 81111 81117 81 158 81 164 81 171 81 178 81 184 81224 81231 81238 81245 81251 .80990 .80996 .81003 .81010 .81017 81 057 81 064 81 070 81 077 81 084 81 124 81 131 8i 137 81 144 81 151 81191 81198 81204 81 2U 81218 81 258 81 265 81 271 81 278 81 285 3 4 4 5 5 LO e GS. 5 PL. (22) FIVE PLACE LOGARITHMS. 6 PL. LOGS No. 12 3 4 5 6 789 INTP. TAB. 6 6.50 .81 291 .81 298 .81 305 .81311 .81318 .81 325 •81 331 .81338 .81 345 -81351 .7' •5' 81 358 81 365 81 371 81378 81385 81 391 81398 81405 81411 81418 1 .84 •52 81425 81 431 81438 81445 '81451 81458 81465 81471 81478 81485 I •53 81 491 81 498 81 505 81 511 81 518 81525 81 531 81538 81544 81-551 2 •54 81 558 81564 81 571 81 578 81 584 81591 81598 81 604 81 611 81617 2 6.55 .8i 624 .81 631 .81 637 .81 644 .81 651 ■81 657 .81 664 .81 671 .81 677 .81 684 3 .56 81 690 8i 697 81 704 81 710 81 717 81723 81730 81 737 81 743 81 750 4 ■57 81 757 81 763 81 770 81 776 81 783 81790 81796 81 803 81 809 81 816 4 .58 81 823 81 829 81 836 81 842 81 849 - 81856 81862 81 869 81 875 81 882 5 •59 81 889 81 895 81 902 81 908 81 915 81 921 81928 81 935 81 941 81 948 5 6.60 .81 954 .81 961 .81 968 .81 974 .81 981 .81 987 .81 994 .82 000 .82007 -82014 % .61 82020 82027 82033 82 040 82 046 82053 82060 82 066 82 073 82 079 I .62 •63 82 086 82 092 82 099 82 151 82158 82164 82105 82 112 82 171 82178 82 119 82184 82 12£ 82 132 82 138 82 145 I 2 8219^1 82 197 82 204 82 210 .64 82217 82223 82230 82 236 82 243 82 249 82256 82263-82269 82276 3. 6.65 .82282 .82289 .82^295 .82 302 .82 308 .82315 .82321 .82328 .82334 .82341 4 .66 82347 82354 82360 82367 82373 82380 82387 82 393 82 400 82 406 4 .67 82413 82419 82426 82432 82439 82445 82452 82458 82465 82471 5 .68 82478 82484 82491 82 497 82 504 82 510 82517 82523 82530 82536 6 .69 82543 82549 82556 82 562 82 569 82575 82 582 82588 82595 82601' 6 6.70 .82 607 .82 614 .82 620 .82627 .82633 .82 640 .82 646 .82 653 .82 659* .82 666 6 •71 82672 82679 82685 82692 82698 82705 82 71 I 82 718 82 724 82 730 I .72 82737 82743 82750 82756 82763 82 769 82776 82782 82789 82795 I ■73 82802 82808 82814 82821 82827 82834 82840 82847 82853 82860 2 •74 82866 82872 82879 82885 82892 82898 82 905 82911 82918 82924 2 6.75 .'82 930 .82 937 .82 943 .82950 .82956 ■82 963 .82 969 .82975 .82982 .82988 3 .76 82995 83 001 83008 83 014 83 020 ' 83027 83033 83040 83046 83052 4 •77 83059 83065 83072 83078 83085 83091 83097 83104 83110 83117 4 .78 83 123 83 129 83 136 83 142 83 149 83155 83 161 83 168 83 174 83 181 5 •79 83 187 83 193 83 200 83 206 83 213 83219 83225 83232 83238 83245 5 6.80 .83251 .83257 .83264 .83270 .83276 •83 283 .83 289 .83 296 .83 302 .83 308 7 .81 83315 83321 83327 83334 83340 83347 83353 83359 83366 83372 1 .82 83"378 83385 83391 83398 83404 83410 83417 83423 83429 83436 1 •83 83442 83448 83455 83461 83467 83474 83480 83487 83493 83499 2 .84 83506 83512 83518 83525 83531 83537 83544 83550 83556 83563 3 6.85 ■83 569 ^83 575 •SS 582 •83 588 .83 594 .83 601 .83 607 .83613 .83620 .83626 4 .86 83632 83639 83645 83651 83658 83664 83670 83677 83683 83689 ,4 .87 83696 83702 83708 83715 83721 83727 83734 83740 83746 83753 5 .88 83759 83765 83771 83778 83784 83790 83797 83803 83809 83816 6 .89 83822 83828 83835 83841 83847 83853 83860 83866 83872 83879 6 6.90 .83885 .83891 .83897 .83904 .83910 .83916 •83 923 -83 929 -83 935 -83 942 6 •91 83948 83954 83960 83967 83^973 83979 83985 83992 83998 84 004 1 .92 84 on 84017 84023 84 029 84 036 84042 84048 84 055 84 061 84 067 1 ■93 84073 84080 84086 84 092 84 098 84105 84 III 84 117 84123 84130 2 . ■94 84136 84142 84148 84155 84 161 84167 84173 84180 84186 84192 2 6.95 .84198 .84205 .84211 .84217 .84 223 .84 230 .84 236 .84 242 .84 248 .84 255 3 .96 84 261 84 267 84 273 84280 84286 84 292 84298 84305 84311 84317 4 .Ti •97 84323 84330 84336 84342 84348 84354 84361 84367 84373 84379 4 .84 .98 84386 84392 84398 84404 84410 84417 84423 84429 84435 84442 5 ■99 84448 84454 84460 84 466 84 473 84479 84485 84491 84497 84504 5 ^ (23) 6 PL. -OC 6. s 7. LOGS. 6 PL. FIVE PLACE LOGARITHMS. No. 7.00 .OI .02 •03 .04 7-05 .06 .07 .08 .09 7.10 .II .12 •13 .14 7-"5 .16 •17 .18 .19 7.20 .21 .22 •23 .24 7-25 .26 •27 .28 .29 7.30 •31 •32 ■33 •34 7-35 •36 •37 •38 •39 7.40 .41 •42 •43 ■44 7-45 .46 •47 .48 •49 LOGS. 7, 8 .84 510 .84516 S4572 84578 84 634 84 640 84 696 84 702 84757 84763 .84819 .84825 84880 84887 84 942 84 948 85 003 85009 85065 85071 .85 126 85187 85248 85309 85370 •85 431 85491 85552 85612 85673 •85 733 85794 85854 85914 85974 .86 034 86094 86153 86213 86273 •86 332 86392 86451 86510 86570 .86 629 86 688 86747 86806 86864 .86 923 86982 87040 87099 87157 .87216 87274 87332 87390 87448 5 PL. .85 132 85193 85254 85315 85378 85 437 85497 85558 85618 85679 ■85 739 85800 85860 85 920 85 980 ,86 040 86 100 86159 86219 86 279 ,86 338 86398 86457 86516 86576 ,86 635 86694 86753 86812 86870 .86 929 86988 87046 87105 87163 .87 221 87280 87338 87396 87454 .84 522 84584 84646 84708 84770 .84 831 84893 84954 85016 85077 .85 138 85199 85260 85321 85382 ■85443 85503 85564 85625 85685 •85 745 85806 85866 85926 85986 .86 046 86106 86165 86225 86285 .86 344 86404 86463 86522 86581 .86 641 86 700 86759 86817 86876 •86935 86994 87052 87 III 87169 .87 227 87286 87344 87402 87460 .84 528 84590 84652 84714 84776 .84837 84899 84960 85 022 85083 •85 144 85205 85266 85327 85388 ■85449 85509 85570 85631 85691 .85751 85812 85.872 85932 85992 .86052 86 112 86 171 86231 86291 .86 350 86410 86469 86528 86587 .86 646 86705 86764 86823 86882 .86 941 86999 87058 87 116 8717s •87 233 87291 87349 87408 87466 .84 535 84597 84658 84 720 84782 .84844 84905 84967 85028 85089 .85 150 85 211 85 272 85333 85394 •85 455 85516 85576 85637 85697 •85 757 85818 85878 85938 85998 .86058 86 118 86177 86237 86 297 .86356 86415 86475 86534 86593 .86 652 86 711 86 770 86829 86 888 •S6947 87 005 87064 87 122 87 181 •87 239 .87 297 87355 87413 87471 (24) .84 541 84603 84665 84 726 84788 .84850 84 91 1 84973 85034 85095 .85 156 85217 85278 85339 85400 .85 461 85522 85582 85643 85703 •85 763 85824 85884 85944 86 004 .86 064 86 124 86183 86243 86303 .86 362 86421 86481 86540 86599 .86 658 86717 86776 86835 86894 ■86953 87 01 1 87070 87 128 87186 ■87 245 87303 87361 87419 87477 ,84 547 84609 84671 84733 84794 .84 856 84917 84979 85 040 85 101 .85 163 85 224 85285 85345 85406 .85 467 85528 85588 85649 85709 .85 769 85 830 85890 85950 86010 ■84553 84615 84677 84739 84800 .84 862 84924 84985 85046 85107 .85 169 85 230 85291 85352 85 412 •85 473 85534 85594 85655 8571S •85 775 85836 85896 85956 86016 •84 559 84621 84683 84745 84807 .84 868 84930 84991 85 052 85114 •85 17s 85236 85297 85358 85418 •85 479 85540 85 600 85661 85721 .84 566 84628 84689 84751 84813 .84 874 84936 84997 85058 85 120 .85 181 85 242 85303 85364 85425 •85 485 85546 85606 85667 85727 .86070 .86076 86130 86136 86 189 86 195 86 249 86 255 86308 86314 .85 781 .85 788 85842 85848 85 902 85 908 85962 85968 86022 86028 .86082 .86088 86 141 86 147 86 201 86 207 86261 86267 86320 86326 .86 368 86427 86487 86546 86605 .86 664 86723 86782 86841 86900 .86 958 87017 87075 87134 87192 .87 251 87309 87367 87425 87483 .86374 86433 86493 86552 86 61 1 .86 670 86729 86788 86847 86906 .86 964 87023 87081 87 140 87198 .87 256 87315 87373- 87431 87489 ,86 380 86439 86499 86558 86617 .86 676 86735 86794 86853 86 91 1 ,86 970 87029 87087 87146 87204 .87 262 87320 87379 87437 87495 ,86 386 86445 86504 86564 86623 ,86 682 86741 86800 86859 86917 .86976 87035 87093 87 151 87 210 .87 268 87326 87384 87442 87 500 FIVE PLACE LOGARITHMS. 6 PL. LOGS. No. I 2 3 4 5 6 789 INTR TAB. 7.50 .87 506 .87 512 .87518 •87 523 .87 529 •87 535 •87 541 ■87547 -87552 .87558 6 •5' 87564 87570 87576 87581 87587 87593 87599 87 604 87 610 87 616 1 •52 87622 8762S 87633 87639 87645 87651 87656 87662 87668 87674 1 •S3 87.679 87685 87691 87697 87703 87708 87714 87 720 87 726 87 731 2 •54 87737 87743 87749 87754 87760 87766 87772 87777 87783 87789 2 7^55 .87 795 .87 800 .87 806 .87812 .87818 ■87 823 .87 829 .87835 .87841 .87846 3 .56 87852 87858 87864 87869 87875 87881 87887 87892 87898 87904 4 •57 87910 87915 87921 87927 87933 87938 87944 87950 87955 87961 4 ■58 87967 87973 87978 87984 87990 87996 88 001 88007 88013 88018 5 •59 88024 88030 88036 88041 88047 88053 88058 88064 88070 88076 5 7.60 .88081 .88087 .88093 .88 098 .88 104 .88110 .88116 .88 121 .88 127 .88 133 S .61 88138 88144 88150 88156 88161 88167 88173 88 178 88 184 88 190 1 .62 88195 88201 88207 88213 88218 88224 88230 88235 88241 88247 1 •63 88252 88258 88264 88270 88275 88281 88287 88292 88298 88304 2 .64 88309 88315 88321 88326 88332 88338 88343 88349 88355 88360 2 7-65 .88 366 .88 372 ■88 377 .88 383 .88 389 ■88 395 .88 400 .88406 .88412 .88417 3 .66 88423 88429 88434 88440 88446 88451 88457 88463 88468 88474 3 .67 88480 88485 88491 88497 88502 88508 88513 88519 88525 88530 4 .68 88536 88542 88547 88553 88559 88564 88570 88576 88581 88587 4 .69 88593 88598 88604 88610 88615 88621 88627 88632 88638 88-.643 5 7.70 .88649 .88^55 .88 660 .88 666 .88 672 .88 677 !88 683 .88 689 .88 694 .88 700 6 •71 88705 88 711 88717 88722 88728 88734 88739 88745 88750 88756 1 .72 88762 88767 88773 88779 88784 88790 88795 88801 88807 88812 I •73 88818 88824 88829 88835 88840 88846 88852 88857 88863 88 868 2 •74 88874 88880 88885 88891 88897 88902 88908 88913 88919 88925 2 7-75 .88930 .88936 .88 941 .88 947 .88953 .88 958 .88 964 .88969 .88975 .88981 3 .76 88986 88992 88997 89 003 89009 89014 89020 89025 89031 89037 4 •77 89 042 89 048 89053 89059 89064 89070 89076 89081 89087 89092 4 .78 89 098 89 104 89 109 89 115 89 120 89126 89131 89 137 89 143 89 148 5 •79 89154 89159 89165 89 170 89176 89182 89187 89 193 89 198 89 204 5 7.80 .89209 .89215 .89 221 .89 226 .89 232 .89 237 .89 243 .89248 .89254 .89260 5 .81 89 265 89 271 89276 89282 89287 89293 89298 89304 89310 89315 1 .82 89 321 89 326 89.332 89337 89343 89348 89354 89360 89365 89371 1 •83 89376 89382 89387 89393 89398 89404 89409 89415 89421 89426 2 .84 89432 89437 89443 89448 89454 89459 89465 89470 89476 89481 2 7-85 .89 487 .89 492 .89498 .89 504 .89 509 •89515 .89 520 .89 526 .89 531 .89 537 3 .86 89542 89548 89553 89559 89564 89570 89575 89581 89586 89592 3 •87 89597 89 6»3 89609 89614 89 620 89625 89631 89 636 89 642 89 647 4 .88 89653 89658 89664 89669 89675 89680 89686 89 691 89 697 89 702 4 .89 89 708 89 713 89719 89724 89730 89735 89741 89746 89752 89757 5 7.90 .89 763 .89 768 ■89 774 .89 779 •89 785 •89 790 ■89 796 .89 801 .89 807 .89 812 6 •91 89818 89823 89829 89834 89840 89845 89851 89856 89862 89867 1 .92 89873 89878 89883 89889 89894 89900 89905 89911 89916 89922 1 •93 89927 89933 89938 89944 89949 89955 89 960 89966 89971 89977 2 •94 89982 89988 89993 89998 90 00i 90009 90015 90020 90026 90031 2 7^95 .90037 .90042 .90 048 .90053 .90059 .90 064 .90 069 .90075 .90080 .90086 3 .96 90091 90097 90 102 90 108 90 113 90119 90 124 90 129 90 135 90 140 4 •97 90 146 90 151 90157 90 162 90 168 90173 90179 90 184 90 189 90 195 4 .98 90 200 90 206 90 21 1 90 217 90222 90 227 90233 90 238 90 244 90 249 5 ■99 90 255 90 260 90266 90271 90 276 90 282 90287 90 293 90 298 90 304 5 (25) 5 PL. LOGS. 7. 8. LOGS. 5 PL. FIVE PLACE LOGARITHMS. No. 8.00 .OI .02 •03 .04 8.05 .06 .07 .08 .09 8.10 .II .12 •13 .14 8.15 .16 ■17 .18 •19 8.20 .21 .22 •23 .24 8.25 .26 •27 .28 .29 8.30 •31 •32 ■33 •34 8^35 •36 •37 •38 •39 8.40 .41 .42 •43 ■44 8.45 .46 •47 .48 •49 2 8 .90 309 90363 90417 90472 90526 .90 580 90634 90687 90741 90795 .90 849 90902 90956 91 009 91 062 .91 116 91 169 91 222 91275 91328 •91 381 91434 91487 91 540 91593 .91 645 916518 91 751 91803 91855 .91 908 91 960 92012 92 065 92 117 .92 169 92 221 92273 92324 92376 .92428 92480 92531 92583 92634 .92686 . 92737 92788 92 840 92891 .90314 90369 90423 90477 90531 .90 585 90639 90693 90747 90800 •90 854 90907 90961 91 014 91 068 .91 121 91 174 91 228 91 281 91334 •91' 387 91440 91492 91545 91598 .91 651 91703 91756 91 808 91 861 •91 913 91965 92018 92070 92 122 •92 174 92 226 92 278 92330 92381 •92 433 92485 92536 92588 92639 .92 691 92742 92793 92845 92896 .90 320 90374 90428 90482 90536 .90 590 90 644 90698 90752 90806 •90 859 90913 90966 91 020 91073 .91 126 91 180 91233 91286 9>339 .91 392 91445 91498 91 551 91603 .91 656 91709 91 761 91 814 91866 .91 918 91 971 92023 92075 92 127 ■92179 92231 92283 92335 92387 •92 438 92490 92542 92593 92645 .92 696 92747 92799 92 850 92901 .90 325 90380 90434 90488 90542 ■90 596 90650 90703 90757 90 811 .90 865 90918 90972 91 025 91 078 .91 132 91 185 91238 91 291 91344 ■91 397 91450 91503 91556 91 609 .91 661 91714 91 766 91 819 91 871 .91 924 91976 92028 92080 92 132 .92 184 92236 92288 92340 92392 •92 443 92495 92547 92598 92650 .92 701 92752 92804 92855 92906 •90 331 90385 90439 90493 90547 .90 601 90655 90 709 90763 90816 .90 870 90924 90977 91030 91 084 •91 «37 91 190 91243 91297 91350 .91 402 91455 91 508 91 561 91 614 .91' 666 91 719 91 772 91 824 91 876 .91 929 91 981 92033 92085 92137 .92 189 92 241 92293 92345 92397 •92449 92500 92552 92 603 92655 .92 706 92758 92 809 92860 92911 •90 336 90390 90445 90499 90553 .90 607 90660 90714 90768 90822 .90 875 90929 90982 91036 91 089 .91 142 91 196 91249 91302 9135s .91 408 91 461 91 514 91 566 91 619 .91 672 91 724 91 777 91 829 91 882 ■91 934 91 986 92038 92091 92143 .92 195 .92 200 92247 92252 92298 92304 92350 92355 92 402 92 407 ,90 342 90396 90450 90504 90558 .90612 90666 90 720 90773 90827 .90 881 90934 90988 91 041 91094 .91 148 91 201 91254 91307 91360 •91 413 91 466 91519 91572 91 624 .91 677 91 730 91 782 91834 91887 •91 939 91 991 92044 92096 92 148 •92 454 92505 92557 92 609 92 660 .92711 92763 92814 92865 92.916 •92459 92511 92562 92614 92665 .92 716 92 768 92819 92 870 92921 •90 347 90401 90455 90509 90563 .90617 90671 90725 90779 90832 .90 886 90940 90993 91 046 91 100 •91 153 91 206 91259 91 312 91365 .91 418 91471 91524 91577 91630 .91 682 91735 91787 91 840 91 892 .91944 91997 92049 92 lOI 92153 .92 205 92257 92309 92361 92412 .92464 92 516 92567 92619 92 670 .92 722 .92 727 92773 92778 92 824 92 829 92875 92881 92927 92932 •90 352 90407 90461 90515 90569 •90 623 90677 90730 90784 90838 .90 891 90945 90998 91 052 91 105 .91 158 91 212 91 265 91318 91 371 .91 424 91477 91529 91582 91635 .91 687 91740 91793 91845 91897 •90 358 90412 90466 90520 90574 .90 628 90682 90736 90789 90843 •90 897 90950 91004 91057 91 no .91 164 91 217 91 270 91323 91376 .91 429 91 482 91535 91587 91 640 .91 693 91745 91798 91850 91903 .91 950 .91 955 92 003 92007 92054 92059 92106 92 III 92 158 92 163 .92210 .92215 92 262 92 267 92314 92319 92366 92371 92418 92423 .92 469 92521 92572 92624 92675 .92 474 92526 92578 92629 92681 .92 732 92783 92834 92886 92937 LOGS. 5 PL. 8. (26) FIVE PLACE LOGARITHMS. 8. 6 PL. LOGS. No. 8.50 •51 •52 •53 •54 8.55 .56 ■57 .58 •59 8.60 .61 .62 •63 .64 8.65 .66 .67 .68 .69 8.70 •71 .72 ■73 •74 8.75 .76 •77 .78 ■79 8.80 .81 .82 •83 .84 8.85 .86 .87 8.90 .91 .92 •93 ■94 8.95 .96 •97 .98 ■99 8 .92 942 92993 93044 93095 93146 ■93 197 93247 93298 93 349 93 399 •92 947 92998 93049 93 100 93 151 ■93 202 93252 93303 93 354 93404 ■93450.93455 93500 93505 93551 93556 93601 93606 93651 93656 •93 702 93752 93802 93852 93902 •93 952 94 002 94052 94 101 94 151 .94 201 94250 94300 94 349 94 399 ■94 448 94498 94 547 94596 94645 •94 694 94 743 94792 94841 94890 ■94 939 94988 95036 95085 95134 .95 182 95231 95279 95328 95376 ■93 707 93 757 93807 93857 93907 •93 957 94007 94057 94 106 94156 .94 206 94255 94305 94 354 94404 •94 453 94503 94552 94601 94650 •94 699 94748 94 797 94846 94895 •94 944 94 993 95041 95090 95139 •95 187 95236 95284 95332 95381 .92952 93 003 93054 93105 93156 •93 207 93258 93308 93 359 93409 •93 460 93510 93561 93 611 93661 •93 712 93762 93812 93862 93912 •93 962 94012 94062 94 HI 94 161 .94 21 1 94260 94310 94 359 94409 .94458 94507 94 557 94606 94655 •94 704 94 753 94802 94851 94900 •94 949 94998 95046 95095 95143 •95 192 95240 95289 95 337 95386 •92957 93008 93059 93 HO 93 161 ■93 212 93263 93313 93364 93414 •93 465 93515 93566 93616 93666 •93717 93767 93817 94867 93917 •93 967 94017 94067 94 1 16 94 1 56 .94216 94265 94315 94364 94414 •94463 94512 94562 94 61 1 94660 •94 709 94758 94807 94856 94905 ■94 954 95 003 95051 95 loo 95148 •95 197 95245 95294 95342 95390 .92 962 93013 93064 93115 93166 •93217 93268 93318 93369 93420 •93 470 93520 93571 93621 93671 ■93 722 93772 93822 93872 93922 •93 972 94022 94072 94 121 94171 .94 221 94270 94320 94369 94419 .94 468 94517 94567 94616 94665 •94 714 94763 94812 94861 94910 •94 959 95007 95056 95105 95153 .95 202 95250 95299 95 347 95 395 .92 967 93018 93069 93120 93 171 .93 222 93273 93323 93 374 93425 •93 475 93526 93576 93 626 93676 •93 727 93 777 93827 93877 93927 •93 977 94027 94077 94 126 94176 .94 226 94275 94325 94 374 94424 •94473 94522 94571 94621 94670 ■94 719 94768 94817 94866 94915 ■94 963 95012 95061 95 109 95158 ■95 207 95255 95303 95352 95400 ■92 973 93024 93075 93125 93176 ■93 227 93278 93328 93 379 93430 •93 480 93531 93581 93631 93682 •93 732 93782 93832 93882 93932 •93 982 94032 94082 94131 94 181 •94 231 94280 94330 94 379 94429 •94 478 94527 94576 94626 94675 •94 724 94 773 94822 94871 94919 .94 968 95017 95 066 95114 95163 ■95211 95 260 95308 95 357 95405 .92 978 93029 93080 93131 93181 •93 232 93283 93 334 93384 93 435 ■93 485 93536 93586 93636 93687 ■93 737 93787 93837 93887 93 937 ■93 987 94037 94086 94136 94 186 •94 236 94285 94 335 94384 94 433 •94 483 94532 94581 94630 94680 •94 729 94778 94827 94876 94924 •94 973 95 022 95071 95 119 95168 .95 216 95265 95313 95361 95410 .92983 .92988 93034 93039 93085 93090 93 136 93 141 93 186 93 192 •93 237 93288 93 339 93389 93440 •93 490 93541 93591 93641 93692 •93 742 93792 93842 93892 93942 ■93 992 94042 94091 94141 94191 .94 240 94290 94340 94389 94438 .94 488 94 537 94586 94635 94685 ■94 734 94783 94832 94880 94929 •94 978 95027 95075 95 124 95173 .95 221 95270 95318 95366 95415 (27) .93 242 93293 93 344 93 394 93 445 •93 495 93546 93596 93646 93697 •93 747 93 797 93847 93897 93 947 •93 997 94047 94096 94146 94196 •94 245 94295 94 345 94 394 94 443 •94 493 94542 94591 94640 94689 •94 738 94 7.87 94836 94885 94 934 ■94 983 95032 95 080 95 129 95177 .95 226 95274 95323 95371 95419 5 PL. INTP. TAB. LOGS. 8. 9. LOGS. 5 PL. FIVE PLACE LOGARITHMS. No. .01234 5 67 8 9 INTP. TAB. 5 I I 2 2 . 9.00 .OI .02 •03 .04 •95 424 -95 429 -95 434 -95 439 '95 444 95472 95 477 95482 95487 95492 95521 95525 95530 95535 95540 95569 95 574 95578 95583 95588 95617 95622 95626 95631 95636 •95 448 .95 453 •gs 458 .95 463 .95 468 95 497 95501 95506 95511 95516 95 545 95550 95 554 95 559 95564 95 593 95598 95602 95607 95612 95641 95646 95650 95655 95660 9-05 .06 .07 .08 .09 •95 66^ ^95 670 .95 674 ^95 679 ^95 684 95713 95718 95722 95727 95732 95 761 95 766 95 770 95 775 95 78° 95 809 95 813 95 818 95 823 95 828 95856 95861-95866 95871 95875 .95 689 .95 694 .95 698 .95 703 .95 708 95 737 95 742 95 746 95 751 95 756 95785 95789 95 794 95 799 95804 95832 95837 95842 95847 95852 95880 95885 95890 95895 95899 3 3 4 4 5 9.10 .11 .12 ■13 .14 .95904 .95909 .95914 ^95918 .95923 95952 95 957 95961 95966 95971 95 999 96 004 96009 96014 96019 96047 96052 96057 96061 96066 96095 96099 96104 96109 96114 •95 928 .95 933 .95 938 .95 942 .95 947 95976 95980 95985 95990 95995 96023 96028 96033 96038 96042 96071 96076 96080 96085 96090 96 118 96123 96128 96133 96137 4 I 1 2 9.I5 .16 •17 .18 .19 .96 142 .96 147 .96 152 .96 156 .96 161 96190 96194 96199 96204 96209 96237 96242 96246 96251 96256 96 284 96 289 96 294 96 298 96 303 96332 96336 96341 96346 96350 .96166 .96171 .96175 .96180 .96185 96 213 96 2i8 96 223 96 227 96 232 96 261 96 265 96 270 96 275 96 280 96308 96313 96317 96322 96327 96355 96360 96365 96369 96374 2 2 3 3 4- 9.20 .21 .22 ■23 .24 •96 379 96 384 -96 388 .96 393 .96 398 96426 96431 96435 96440 96445 96473 96478 96483 96487 96492 96520 96525 96530 96534 96539- 96567 96572 96577 96581 96586 .96402 .96407 .96412 .96417 .96421 96450 96454 96459 96464 96468 96497 96501 96506 96511 96515 96544 96^48 96553 96558 96562, 96 591 96 595 96 600 96 605 96 609 5 I 1 2 2 9.25 .26 .27 .28 .29 .96 614 .96 619 .96 624 .96 628 .96 633 96 661 96 666 96 670 96 675 96 680 96708 96713 96717 96722 96727 96755 96759 96764 96769 96774 96802 96806 96 811 96816 96820 .96638 .96642 .96647 .96652 .96656 96 685 96 689 96 694 96 699 96 703 96731 96736 96741 96745 96750 96778 96783 96788 96792 96797 96 825 96 830 96 834 96 839 96 844 3 3 4 4 5 9.30 •3' •32 •33 •34 .96848 .96853 .96858 .96862 .96867 96895 96900 96904 96909 96914 96942 96946 96951 96956 96960 96988 96993 96997 97 002 97007 97035 97039 97044 97049 97053 .96872 .96876 .96881 .96886 .96890 96918 96923 96928 96932 96937 96965 96970 96974 96979 96984 97 01 1 97016 97021 97025 97030 97058 97063 97067 97072 97077 4 1 1 2 9-35 •36 •37 .38 ■39 .97081 .97086 .97090 .97095 .97100 97128 97132 97137 97142 97146 97174 97179 97183 97188 97192 97220 97225 97230 97234 97239 97 267 97 271 97 276 97 280 97 285 .97 104 .97 109 .97 114 .97 118 .97 123 97 151 97155 97160 97165 97169 97197 97202 97206 97211 97216 97243 97248 97253 97257 9/262 97290 97294 97299 97304 97308 2 2 3 3 4 9.40 .41 .42 ■43 .44 ■97313 .97317 ^97322 .97327 .97331 97 359 97364 97368 97 373 97 377 97405 97410 97414 97419 97424 97451 97456 97460 97465 97470 97497 97502 97506 97511 97516 •97 336 -97 340 .97 345 ^97 35o .97 354 97382 97387 97391 97.396 97400 97428 97433 97437 97442 97 447 97 474 97 479 97 483 97 488 97 493 97520 97525 97529 97534 97539 6 I 1 2 2 9-45 .46 •47 .48 ■49 •97 543 ^97 548 .97 552 .97 557 ^97 562 97589 97 594 97598 97603 97607 97635 97-640 97644 97649 97653 97681 97685 97690 97695 97699 97727 97731 97736 97740 97745 •97566 .97571 ^97 575 -97580 .97585 97612 97617 97621 97626 97630 97 658 97 663 97 667 97 672 97 676 97704 97708 97713 97717 97722 97 749 97 754 97 759 97 763 97 768 3 3 4 4 5 LOGS. 6 PL. 9. (28) FIVE PLACE LOGARITHMS. 5 PL. LOGS. No. 01234 56789 INTP, TAB. 9.50 •51 •52 ■53 •54 •97 772 -97 777 ^97 782 .97 786 .97 79i 97818 97823 97827 97832 97836 97864 97868 97873 97877 97882 97909 97914 97918 97923 97928 97 955 97 959 97 9^4 97 968 97 973 •97 795 -97800 .97804 ,97809 .97813 97841 97845 97850 97855 97859 97 886 97 891 97 896 97 900 97 905 97932 97 937 97 941 97 946 97 950 97978 97982 97987 97991 97996 4 1 I 2 9-55 .56 •57 •58 •59 .98 000 .98 005 .98 009 .98 014 .98 019 98046 98050 98055 98059 98064 98091 98096 98100 98105 98109 98 137 98 141 98 146 98 150 98 155 9_8 182 98186 98191 98195 98200 .98 023 .98 028 .98 032 .98 037 .98 041 98068 98073 98078 98082 98087 98114 98118 98123 98127 98132 98 159 98 164 98 168 98 173 98 177 98 204 98 209 98 214 98 218 98 223 2 2 3 3 4 9.60 .61 .62 ■63 .64 .98 227 .98 232 .98 236 .98 241 .98 245 98 272 98 277 98 281 98 286 98 290 98318 98322 98327 98331 98336 98363 98367 98372 98376 98381 98408 98412 98417 98421 98426 .98250 .98254 .98259 .98263 .98268 98295 98299 98304 98308 98313 98340 98345 98349 98354 98358 98385 98390 98394 98399 98403 98430 98435 98439 98444 98448 5 1 1 2 2 9-65 .66 .67 .68 .69 .98453 .98457 .98462 .98466 .98471 98498 98502 98507 98511 98516 98543 98547 98552 98556 98561 98588 98592 98597 98601 98605 98 632 98 637 98 641 98 646 98 650 .98475 .98480 .98484 .98489 .98493 98520 98525 98529 98534 98538 98565 98570 98574 98579 98583 98610 98614 98619 98623 98628 98655 98659 98664 98668 98673 3 3 4 4 5 9.70 ■71 .72 •73 •74 .98677 .98682 .98686 .98691 .98695 98722 98726 98731 98735 98740 98767 98771 98776 98 7S0 98784 98 811 98816 98820 98825 98829 98856 98860 98865 98869 98874 .98700 .98704 .98709 .98713 .98717 98744 98749 98753 98758 98762 98789 98793 98798 98802 98807 98834 98838 98843 98847 98851 98878 98883 98887 98892 98896 4 I 1 2 9-75 .76 •77 .78 •79 .98900 .98905 .98909 .98914 ,98918 98945 98949 98954 98958 98963 98989 98994 98998 99 003 99007 99034 99038 99043 99047 99052 99078 99083 99087 99092 99096 .98923 .98927 .98932 .98936 .98941 98967 98972 98976 98981 98985 99012 99016 99021 99025 99029 99056 99061 99065 99069 99074 99100 99105 99109 99 114 99118 2 2 3 3 4 9.80 .81 .82 •83 .84 •99 123 .99 127 .99 131 .99 136 .99 140 99 167 99 171 99 176 99 180 99 185 99 2H 99216 99220 99224 99229 99255 99260 99264 99269 99273 99300 99304 99308 99313 99317 •99 145 ^99 149 -99 154 -99 158 -99 162 - 99 189 99 193 99 198 99 202 99 207 99233 99238 99242 99247 99251 99 277 99 282 99 286 99 291 99 295 99322 99326 99330 99335 99339 5 1 I 2 2 9-85 .86 •87 .88 .89 •99 344 .99348 ^99352 ^99 357 -99 361 99388 99392 99396 99401 99405 99432 99436 99441 99445 99449 99476 99480 99484 99489 99493 99520 99524 99528 99533 99537 •99 366 .99 370 .99 374 ^99 379 -99 383 99410 99414 99419 99423 99427 99 454 99458 99463 99467 99471 99498 99502 99506 99511 99515 99542 99546 99550 99 555 99 559 3 3 4 4 5 9.90 •91 .92 •93 •94 •99564 .99568 .99572 .99 577 ^99581 99607 99612 99616 99621 99625 99651 99656 99660 99664 99669 99695 99699 99704 99708 99712 99 739 99 743 99 747 99 752 99 756 •99 585 ^99 590 .99 594 .99 599 ^99 603 99 629 99 634 99 638 99 642 99 647 99673 99677 99682 99686 99691 99717 99721 99726 99730 99734 99760 99765 99769 99 774 99778 4 1 1 2 9-95 .96 •97 .98 •99 ■99 782 .99 787 ^99 791 .99 795 .99 800 99826 99830 99835 99839 99843 99 870 99 874 99 878 99 883 99 887 99913 99917 99922 99926 99930 99 957 99961 99965 99970 99974 .99804 .99808 .99813 .99817 .99822 99 848 99 852 99 856 99 861 99 865 99891 99896 99900 99904 99909 99 935 99 939 99 944 99 948 99952 99978 99983 99987 99 991 99996 2 2 3 3 4 (29) 5 PL. LOGS. 9. 1.-10. SQ. RTS. 86 SQRS. SQUARE ROOTS AND SQUARES. Note. The table gives roots directly, squares by inverse interpolation. No. Interpola. for Thousandths. 1.0 .1 .2 •3 •4 i-S .6 •7 .8 •9 2.0 .1 .2 •3 ■4 2.5 .6 •9 3.0 .1 .2 •3 •4 3-5 .6 •7 .8 •9 4.0 .1 .2 •3 •4 4-5 .6 ■7 I.OOO 1.049 1.095 1. 140 1. 183 1.225 1.265 1.304 1.342 1-378 1.414 1.449 1.483 1.517 1.549 1.581 1.612 1.643 1-673 1703 1.732 1. 761 1.789 1. 81 7 1.844 1.871 1.897 1.924 1.949 1-975 2.000 2.025 2.049 2.074 2.098 2.121 2.145 2.168 2. 191 2.214 .005 .054 .100 .145 .187 .229 .269 .308 •345 .382 .418 -453 .487 .520 -552 .584 .616 .646 .676 .706 ■735 .764 •792 .819 .847 -873 .900 .926 .952 -977 2.027 2.052 2.076 2.100 2.124 2.147 2.170 2.193 2.216 .010 -058 .105 .149 .192 -233 •273 ■3" -349 -386 .421 .456 .490 -523 ■556 .587 .619 .649 .679 .709 -738 .766 ■794 .822 .849 .876 -903 .929 •954 .980 2.005 2.030 2.054 2.078 2.102 2.126 2.149 2-173 2^i95 2.218 1.015 1.063 1. 109 1^153 1. 196 1^237 1.277 '•315 '•353 i^389 1.425 '•459 '•493 1.526 '■559 1.591 1.622 1.652 1.682 1. 712 1-741 1.769 1.797 1.825 1.852 1.879 1.905 1-931 1-957 1.982 2.007 2.032 2.057 2.081 2.105 2.128 2.152 2-175 2.198 2.220 .020 .068 .114 .158 .200 .241 .281 -319 -356 •393 .428 •463 ■497 -530 .562 •594 .625 .655 .685 •715 •744 -772 .800 .828 -855 .881 .908 -934 .960 •985 2.010 2.035 2.059 2.083 2.107 2.131 2.154 2.177 2.200 2.223 1.025 1.072 1.118 1.162 1.204 1.245 1.285 1-323 1.360 1.396 1.432 1.466 1.500 1-533 1.565 1-597 1.628 1.658 1.688 1.718 1.746 1-775 1.803 1.830 1-857 1.884 1.910 1-936 1.962 1-987 2.012 2.037 2.062 2.086 2.110 2-133 2.156 2.179 2.202 2.225 1 .030 ] -034 -039 1 1.077 .082 .086 1 1.122 1 .127 ] -131 1 1.166 .170 -175 I 1.208 ] .212 .217 1 1.249 -253 •257 1 1.288 .292 .296 1 1-327 -330 -334 1 1.364 -367 -371 1 1.400 .404 .407 I 1-435 1 -439 .442 I 1.470 -473 .476 1 i-5°3 .507 .510 1 1-536 -539 •543 1 1.568 '•572 •575 1 1.600 -603 .606 1 1.631 •634 -637 1 1.661 .664 .667 1 1.691 .694 -697 1 1.720 1 -723 .726 1 1-749 -752 •755 1 1.778 .780 •783 I 1.806 [.808 [.8n 1 1-8.33 -836 .838 I 1.860 .863 .865 I 1.887 ' .889 1 .892 I 1-913 .916 .918 I 1-939 .942 ■944 I 1.965 1 .967 ] .970 1 1.990 .992 -995 1 2.015 2.040 2.064 2.088 2.112 2.135 2.159 2.182 2.205 2.227 2.017 2.042 2.066 2.090 2.114 2.138 2.161 2.184 2.207 2.229 2.020 2.045 2.069 2.093 2.117 2.140 2.163 2.186 2.209 2.232 .044 .091 .136 -179 .221 .261 .300 -338 -375 .411 .446 .480 -513 -546 -578 .609 .640 .670 .700 .729 •758 .786 .814 .841 .868 •895 .921 •947 •972 -997 2.022 2.047 2.071 2.095 2.119 2.142 2.166 2.189 2.211 2.234 SQ. RTS. & SQRS. 1.-10 (30) SQUARE ROOTS AND SQUARES. i.-io. SQ. RTS. & SQRS. No. I 2 3 4 5 6 7 8 9 Interpola. for 1 Thousandths. 1 5.0 2.236 2.238 2.241 2.243 2.245 .2.247 2.249 2.252 2-254 2.256 3 2 .1 2.258 2.261 2.263 2.265 2.267 2.269 2.272 2.274 2.276 2.278 .2 2.280 2.283 2.285 2.287 2.289 2.291 2.293 2.296 2.298 2300 I •3 2.302 2.304 2.307 2.309 2.311 2.313 2.315 2.317 2-319 2.322 1 •4 2.324 2.326 2.328 2.330 2.332 2.335 2.337 2.339 2.341 2.343 1 S-S 2-345 2.347 2-349 2.352 2.354 2.356 2.358 2.360 2.362 2.364 2 .6 2.366 2.369 2-371 2-373 2-375 2.377 2.379 2.381 2.383 2-385 2 •7 2-387 2.390 2.392 2-394 2.396 2.398 2.400 2.402 2.404 2.406 2 .8 2.408 2.410 2.412 2.415 2.417 2.419 2.421 2.423 2.425 2.427 2 2 •9 2.429 2-431 2.433 2.435 2.437 2.439 2.441 2.443 2.445 2.447 3 2 6.0 2.449 2.452 2.454 2.456 2.458 2.460 2.462 2.464 2.466 2.468 3 2 .1 2.470 2.472 2.474 2.476 2.478 2.480 2.482 2.484 2.486 2.488 .2 2.490 2.492 2.494 2.496 2.498 2.500 2.502 2.504 2.506 2.508 1 •3 2.510 2.512 2.514 2.516 2.518 2.520 2.522 2.524 2.526 2.528 1 •4 2.530 2-532 2-534 2.536 2.538 2-540 2.542 2.544 2.546 2.548 I 6.5 2.550 2.551 2-553 2-555 2-557 2-559 2.561 2-563 2.565 2.567 2 .6 2.569 2-571 2-573 2-575 2-577 2-579 2.581 2.583 2.585 2.587 2 •7 2.588 2.590 2.592 2.594 2.596 2.598 2.600 2.602 2.604 2.606 2 .8 2.608 2.610 2.612 2.613 2.615 2.617 2.619 2.621 2.623 2.625 2 2 •9 2.627 2.629 2.631 2.632 2.634 2.636 2.638 2.640 2.642 2.644 3 2 7.0 2.646 2.648 2.650 2.651 2-653 2.655 2.657 2.659 2.661 2.663 2 1 .1 2.665 2.666 2.668 2.670 2.672 2.674 2.676 2.678 2.680 2.681 .2 2.683 2.685 2.687 2.689 2.691 2.693 2.694 2.696 2.698 2.700 ■3 2.702 2.704 2.706 2.707 2.709 2.711 2.713 2.71S 2.717 2.718 ■4 2.720 2.722 2.724 2.726 2.728 2.729 2.731 2-733 2.735 2.737 7-5 2.739 2.740 2.742 2.744 2.746 2.748 2.750 2-751 2.753 2.755 .6 2.757 2.759 2.760 2.762 2.764 2.766 2.768 2.769 2.771 2.773 •7 2-775 2.777 2.778 2.780 2.782 2.784 2.786 2-787 2.789 2.791 , .8 2-793 2.795 2.796 2.798 2.800 2.802 2.804 2.805 "2.807 2.809 2 •9 2.81 1 2.8l2 2.814 2.816 2.818 2.820 2.821 2.823 2.825 2.827 2 8.0 2.828 2.830 2.832 2.834 2.835 2837 2.839 2.841 2.843 2.844 2 1 ■ .1 2.846 2.848 2.850 2.851 2.853 2.855 2.857 2.858 2.860 2.862 .2 2.864 2.865 2.867 2.869 2.871 2.872 2.874 2.876 2-877 2.879 •3 2.881 2.883 2.884 2.886 2.888 2.890 2.891 2.893 2.895 2.897 ■4 2.898 2.900 2.902 2.903 2.905 2.907 2.909 2.910 2.912 2-914 8.S 2.915 2.917 2.919 2.921 2.922 2.924 2.926 2.927 2.929 2.931 .6 2-933 2.934 2.936 2.938 2-939 2.941 2.943 2.944 2.946 2.948 •7 2.950 2.951 2.953 2-955 2.956 2.958 2.960 2.961 2.963 2.965 .8 2.966 2.968 2.970 2.972 2.973 2-975 2.977 2.978 2.980 2.982 2 •9 2.983 2.985 2.987 2.988 2.990 2.992 2.993 2.995 2.997 2.998 2 9.0 3.000 3.002 3-003 3.005 3.007 3.008 3.010 3.012 3-013 3015 2 1 .1 3-017 3-Oi8 3.020 3.022 3.023 3.025 3.027 3.028 3030 3.032 .2 3-033 3-035 3-036 3-038 3.040 3-041 3.043 3-045 3-046 3.048 ■3 3.050 3-051 3-053 3-055 3-056 3.058 3.059 3.061 3-063 3-064 •4 3.066 3.068 3-069 3-071 3.072 3-074 3.076 3-077 3-079 3.081 9-S 3.082 3.084 3.085 3.087 3.089 3.090 3.092 3-094 3.095 3097 .6 3.098 3.100 3.102 3-103 3.105 3.106 3.108 3.110 3.1 11 3-113 •7 3- "4 3.116 3.118 3-119 3.121 3.122 3.124 3.126 3.127 3.129 .8 3-130 3-132 3-134 3-135 3.137 3-138 3.140 3.142 3-143 3-145 2 •9 3.146 3.148 3-150 3-151 3.153 3.154 3.156 3-158 3-159 3.161 2 (31) SQ. RTS. 86 SQRS. 1.-10. lO.-lOO. SQ. RTS. & SQRS. SQUARE ROOTS AND SQUARES. No. I 2 3 4 5 6 7 8 9 Interpola. 1 for Hundredths. | 10. 3.162 3-178 3-194 3.209 3-225 3.240 3.256 3-271 3.286 3-302 16 14 II. 3-317 3-332 3-347 3-362 3-376 3-391 3-406 3-421 3-435 3450 2 I 12. 3464 3-479 3-493 3.507 3-521 3-536 3-550 3564 3-578 3-592 3 3 13- 3.606 3-619 3-633 3-647 3-661 3-674 3.688 3-701 3-715 3-728 5 4 14. 3-742 3-755 3.768 3.782 3-795 3.808 3.821 3-834 3-847 3.860 6 6 15- 3-873 3.886 3-899 3.912 3-924 3-937 3-950 3.962 3-975 3-987 8 7 16. 4.000 4.012 4.025 4-037 4.050 4.062 4-074 4.087 4-099 4.1 1 1 10 8 17- 4-123 4-135 4.147 4-159 4.171 4.183 4-195 4.207 4-219 4-231 II 10 18. 4-243 4.254 4.266 4.278 4.290 4.301 4-313 4-324 4-336 4-347 13 II 19. 4-359 4-370 4.382 4-393 4.405 4.416 4-427 4-438 4-450 4.461 14 13 20. 4-472 4483 4-494 4.506 4-517 4.528 4-539 4-550 4.561 4-572 12 10 21. 4-583 4-593 4.604 4.615 4.626 4-637 4.648 4.658 4.669 4.680 I I 22. 4.690 4.701 4.712 4.722 4-733 4-743 4-754 4-764 4-775 4-785 2 2 23. 4.796 4.806 4.817 4.827 4-837 4.848 4.858 4.868 4.879 4.889 4 3 24. 4-899 4-909 4.919 4-930 4.940 4.950 4.960 4.970 4.980 4.990 5 4 25. 5.000 5.010 5.020 5.030 5-040 5.050 5.060 5.070 S-079 5.089 6 5 ■ 26. S-099 5.109 5. 119 5.128 5-138 5.148 5-158 5.167 5-177 5.187 7 6 27. 5.196 5.206 5.215 5-225 5-235 5-244 5-254 5-263 5-273 5.282 . 8 7 28. 5.292 S-301 5-310 5-320 5-329 5-339 5-348 5-357 5-367 5-376 10 8 29. 5-385 5-394 5.404 5-413 5-422 5-431 5-441 5.450 5-459 5.468 II 9 30. 5-477 5.486 5-495 5.505 5-514 5-523 5-532 S-541 5-550 5-559 9 8 31- 5.568 5-577 5-586 5-595 5,604 5.612 5.621 5.630 S-639 5.648 I I 32. 5-657 5.666 5-675 5.683 5.692 5-701 5.710 5.718 5-727 5-736 2 2 33- 5-745 5-753 5-762 5-771 5-779 5-788 5-797 5.805 5.814 5.822 3 2 34- 5-831 5-840 5-848 5-857 5.865 5-874 5.882 5.891 5-899 5.908 .4 3 35- 5-916 5-925 5-933 5-941 5-950 5-958 5-967 5-975 5-983 5.992 5 4 36. 6.000 6.008 6.017 6.025 6-033 6.042 6.050 6.058 6.066 6-075 5 5 37- 6.083 6.091 6.099 6.107 6.1:6 6.124 6.132 6.140 6.148 6.156 6 6 38- 6.164 6-173 6.181 6.189 6.197 6.205 6.213 6.221 6.229 6.237 7 6 39- 6.245 6.253 6.261 6.269 6.277 6.285 6.293 6.301 6.309 6.317 8 7 40. 6-325 6-332 6.340 6.348 6.356 6.364 6.372 6.380 6.387 6-395 8 7 41. 6.403 6.41 1 6.419 6.427 6.434 6.442 6.450 6.458 6.465 6.473 I I 42. 6.481 6.488 6.496 6.504 6.512 6.519 6.527 6-535 6.542 6.550 2 I 43- 6-557 6.56s 6-573 6.580 6.588 6.595 6.603 6.61 1 6.618 6.626 2 2 44. 6.633 6.641 6.648 6.656 6.663 6.671 6.678 6.686 6.693 6.701 3 3 45- 6.708 6.716 6.723 6.731 6.738 6.745 6.753 6.760 6.768 6-775 4 4 46. 6.782 6.790 6-797 6.804 6.812 6.819 6.S26 6.834 6.841 6.848 5 4 47- 6.856 6.863 6.870 6.877 6.885 6.892 6.899 6.907 6.914 6.921 6 5 48. 6.928 6-935 6.943 6.950 6.957 6.964 6.971 6-979 6.986 6.993 6 6 49. 7.000 7.007 7.014 7.021 7.029 7.036 7-043 7.050 7-057 7.064 7 6 "rt S. & SQRS. (32) lO.-lOO. SQUARE ROOTS AND SQUARES. 10.-100. SQ. RTS. & SQRS. No. I 2 3 4 5 6 7 8 9 Interpola. for 1 Hundredttis. 1 50. 7.071 7.078 7.085 7.092 7.099 7.106 7-"3 7.120 7.127 7-"34 7 6 51- 7-141 7-148 7-155 7.162 7.169 7.176 7-183 7.190 7-197 7.204 I 1 52. 7.2II 7.218 7.225 7.232 7-239 7-246 7-253 7.259 7.266 7-273 1 1 53- 7.280 7.287 7.294 7-301 7-308 7-314 7-321 7-328 7-335 7-342 2 2 54- 7-348 7-355 7-362 7-369 7-376 7.382 7-389 7-396 7403 7.409 3 2 55- 7.416 7.423 7.430 7-436 7-443 7-450 7-457 7-463 7.470 7-477 4 3 56. 7-483 7.490 7.497 7.503 7.510 7-517 7-523 7-530 7-537 7-543 4 4 57- 7-55° 7.556 7.563 7.570 7.576 7-583 7-589 7-596 7-603 7.609 5 4 58- 7.616 7.622 7.629 7-635 7.642 7.649 7-655 7.662 7.668 7.675 6 5 59- 7.681 7.688 7.694 7.701 7.707 7-7H 7.720 7.727 7-733 7.740 6 5 60. 7.746 7-752 7.759 7-765 7-772 7.778 7-785 7.791 7-797 7.804 7 6 61. 7.810 7.817 . 7.823 7.829 7.836 7.842 7.849 7-855 7.861 7.868 I 1 62. 7.874 7.880 7.887 7-893 7.899 7.906 7.912 7.918 7-925 7-931 1 1 63- 7-937 7-944 7-950 7-956 7.962 7-969 7-975 7.981 7.987 7-994 2 2 64. 8.000 8.006 8.012 8.019 8.025 8.031 8.037 8.044 8.050 8.056 3 2 65. 8.062 8.068 8.07s 8.081 8.087 8.093 8.099 8.106 8.112 8.118 4 3 66. 8.124 8.130 8.136 8.142 8.149 8-155 8.161 8.167 8-173 8.179 4 4 67. 8.185 8.191 8.198 8.204 8.210 8.216 8.222 8.228 8.234 8.240 5 4 68. 8.246 8.252 8.258 8.264 8.270 8.276 8.283 8.289 8.295 8.301 6 5 69. 8.307 8.313 8.319 8.325 8-331. 8.337 8-343 8-349 8-355 8-361 6 S 70. 8.367 8-373 8.379 8-385 8.390 8-396 8.402 8.408 8.414 8.420 6 5 71- 8.426 8.432 8.438 8.444 8.450 8.456 8.462 8.468 8-473 8.479 1 I 72- 8.485 8.491 8.497 8.803 8.509 8-515 8.521 8.526 8-532 8.538 1 I 73- 8.544 8.550 8.556 8.562 8.567 8-573 8-579 8.585 8.591 8-597 2 2 74- 8.602 8.608 8.614 8.620 8.626 8.631 8-637 8.643 8.649 8.654 2 2 75- 8.660 8.666 8.672 8.678 8.683 8.689 8-695 8.701 8.706 8.712 3 3 76. 8.718 8.724 8.729 8-735 8.741 8.746 8-752 8.758 8.764 8.769 4 3 77- 8-77S 8.781 8.786 8.792 8.798 8.803 8.809 8.815 8.820 8.826 4 4 78. 8.832 8.837 8.843 8.849 8.854 8.860 8.866 8.871 8.877 8.883 5 4 79- 8.888 8.894 8.899 8.905 8.911 8.916 8.922 8.927 8-933 8-939 5 5 80. 8.944 8.950 8.955 8.961 8.967 8.972 8-978 8.983 8.989 8.994 6 5 8i. 9.000 9.006 9.01 1 9.017 9.022 9.028 9-033 9-039 9.044 9.050 1 1 82. 9-055 9.061 9.066 9.072 9-077 9.083 9.088 9.094 9.099 9.105 1 1 83. 9.110 9.116 9.121 9.127 9.132 9-138 9-143 9.149 9.154 9.160 2 2 84. 9- 1 65 9.171 9.176 9.182 9.187 9.192 9.198 9.203 9.209 9-214 2 2 85. 9.220 9.225 9.230 9.236 9.241 9.247 9.252 9-257 9.263 9.268 3 3 86. 9.274 9.279 9.284 9.290 9-295 9-301 9.306 9-3II 9-317 9.322 4 3 87. 9-327 9-333 9-338 9-343 9-349 9-354 9-359 9-365 9-370 9-375 4 4 88. 9-381 9.386 9.391 9-397 9402 9-407 9-413 9.418 9-423 9-429 5 4 89. 9-434 9-439 9-445 9.450 9-455 9.460 9.466 9-471 9-476 9.482 5 5 90. 9.487 9.492 9.497 9.503 9.508 9-513 9-518 9-524 9-529 9-534 5 91- 9-539 9-545 9-550 9-555 9.560 9-566 9-571 9-576 9.581 9.586 I 92. 9.592 9.597 9.602 9.607 9.612 9.618 9-623 9.628 9-633 9-638 I 93- 9.644 9.649 9.654 9-659 9.664 9.670 9-675 9.680 9.685 9.690 2 94- 9-695 9.701 9.706 9-7" 9.716 9.721 9.726 9-731 9-737 9.742 2 95- 9-747 9.752 9.757 9.762 9.767 9.772 9.778 9-783 9-788 9-793 3 96. 9-798 9.803 9.808 9-813 9.818 9-823 9.829 9-834 9-839 9.844 3 97- 9.849 9.854 9.859 9.864 9.869 9.874 9-879 9.884 9.889 9-894 4 98. 9.899 9-905 9-9IO 9-915 9.920 9-925 9-930 9-935 9.940 9-945 4 99- 9.950 9.955 9.960 9-965 9.970 9-975 9.980 9.985 9.990 9-995 5 (33) SQ. RTS. & SQRS. 10.-100. RECIPROCALS. RECIP. No. 01234 56789 INTERPOLATION TABLES. 1.00 .01 .02 •03 .04 0.9990 0.9980 0.9970 0.9960 0.9901 9891 9881 9872 9862 9804 9794 9785 9775 9766 9709 9699 9690 9680 9671 9615 9606 9597 9588 9579 0.9950 0.9940 0.9930 0.9921 0.991 1 9852 9843 9833 9823 9814 9756 9747 9737 9728 9718 9662 9653 9643 9634 9625 9569 9560 9551 9542 9533 -85- 9 17 26 34 75-65-65 876 15 13 II 23 20 17 30 26 22 1.05 .06 .07 .08 .09 0.9524 0.95 1 5 0.9506 0.9497 0.9488 9434 9425 9416 9407 9399 9346 9337 9328 9320 93" 9259 9251 9242 9234 9225 9174 9166 9158 9149 9141 0.9479 0.9470 0.9461 0.9452 0.9443 9390 9381 9372 9363 9355 9302 9294 9285 9276 9268 9217 9208 9200 9191 9183 9132 9124 9116 9107 9099 43 38 33 28 51 45 39 33 60 53 46 39 68 60 52 44 77 68 59 50 -45-35-25-22 5432 9 7 5 4 14 n 8 7 18 14 10 9 1.0 .1 .2 •3 •4 0.9901 0.9804 0.9709 0.9615 0.9091 9009 8929 8850 8772 8333 8264 8197 8130 8065 7692 7634 7576 7519 7463 7143 7092 7042 6993 6944 0.9524 0.9434 0.9346 0.9259 0.9174 8696 8621 8547 8475 8403 8000 -7937 7874 7813 7752 7407 7353 7299 7246 7194 6897 6849 6803 6757 67 I I I -5 .6 •7 .8 •9 0.6667 0.6623 0-6579 0.6536 0.6494 6250 621 1 6173 6135 6098 5882 5848 5814 5780 5747 5556 5525 5495 5464 5435 5263 5236 5208 5181 5155 0.6452 0.6410 0.6369 0.6329 0.6289 6061 6024 5988 5952 5917 5714 5682 5650 5618 5587 5405 5376 5348 5319 5291 5128 5102 5076 5051 5025 23 27 32 36 41 18 13 II 21 15 13 25 18 15 28 20 18 32 23 20 2.0 .1 .2 •3 4 0.5000 0.4975 0.4950 0.4926 0.4902 4762 4739 4717 4695 4673 4545 4525 4505 4484 4464 4348 4329 4310 4292 4274 4167 4149 4132 4115 4098 0.4878 0.4854 0.4831 0.4808 0.4785 4651 4630 4608 4587 4566 4444 4425 4405 4386 4367 4255 4237 4219 4202 4184 4082 4065 4049 4032 4016 -18-16-14-12 2211 4332 5 5 4 4 7665 2-5 .6 •7 .8 •9 0.4000 0.3984 0.3968 0.3953 0.3937 3846 3831 3817 3802 3788 3704 3690 3676 3663 3650 357« 3559 3545 3534 3521 3448 3436 3425 3413 3401 0.3922 0.3906 0.3891 0.3876 0.3861 3774 3759 3745 373i 371? 3636 3623 3610 3597 3584 3509 3497 3484 3472 3460 3390 3378 3367 3356 3344 9 II 13 14 16 876 10 8' 7 11 10 8 13 II 10 14 13 II 3.0 .1 .2 •3 •4 0.3333 0.3322 0.331 1 0.3300 0.3289 3226 3215 3205 3195 3185 3125 31 15 3106 3096 3086 3030 3021 3012 3003 2994 2941 2933 2924 2915 2907 0.3279 0.3268 0.3257 0.3247 0.3236 3175 3165 3155 3145 3135 3077 3067 3058 3049 3040 2985 2976 2967 2959 2950 2899 2890 2882 2874 2865 -11 I 2 3 4 -9 -8 -7 1 I I 2 2 I 3 2 :i 4 3 3 3-5 .6 7 .8 •9 0.2857 0.2849 0.2841 0.2833 0.2825 2778 2770 2762 2755 2747 2703 2695 2688 2681 2674 2632 2625 2618 261 1 2604 2564 2558 2551 2545 2538 0.2817 0.2809 0.2801 0.2793 0.2786 2740 2732 2725 2717 2710 2667 2660 2653 2646 2639 2597 2591 2584 2577 2571 2532 2525 2519 2513 2506 6 7 8 9 10 5 4 4 5 5 4 6 6 5 766 8 7 6 4.0 .1 .2 •3 •4 0.2500 0.2494 0.2488 0.2481 0.2475 2439 2433 2427 2421 2415 2381 2375 2370 2364 2358 2326 2320 2315 2309 2304 2273 2268 2262 2257 2252 0.2469 0.2463 0.2457 0.2451 0.2445 2410 2404 2398 2392 2387 2353 2347 2342 2336 2331 2299 2294 2288 2283 2278 2247 2242 2237 2232 2227 -6 I 2 2 -5 -4 I 1 I 2 I 2 2 4-S .6 •7 .8 •9 0.2222 0.2217 0.22120.22080.2203 2274 2169 2165 2160 2155 2128 2123 2119 2114 2110 2083 2079 2075 2070 2066 2041 2037 2033 2028 2024 0.21980.21930.21880.21830.2179 2151 2146 2141 2137 2132 2105 2101 2096 2092 2088 2062 2058 2053 2049 2045 2020 2016 2012 2008 2004 3 4 4 5 5 3 2 3 2 4 3 4 3 5 4 RECIP. (34) RECIPROCALS. RECIP. No. 12 3 4 56789 interpolation! for thous. 1 5.0 .1 .2 •3 •4 0.2000 0.1996 0.1992 0.1988 0.1984 I96I 1957 1953 1949 1946 1923 I919 1916 I9I2 1908 1887 1883 1880 1876 1873 1852 1848 1845 1842 1838 0.1980 0.1976 0.1972 0.1969 0.1965 1942 1938 1934 1931 1927 1905 1901 1898 1894 1890 1869 1866 1862 1859 1855 1835 1832 1828 1825 1821 -A 1 1 2 -3 I I 1 5-5 .6 •7 .8 •9 O.1818 0.1815 O.1812 0.1808 0.1805 1786 1783 1779 1776 1773 1754 1751 1748 1745 1742 1724 I72I I718 I715 I712 1695 1692 1689 1686 1684 0. 1 802 0. 1 799 0. 1 795 0. 1 792 0. 1 789 1770 1767 1764 1761 1757 1739 1736 1733 1730 1727 1709 1706 1704 1701 1698 1681 1678 1675 1672 1669 2 2 3 3 4 2 2 2 2 3 6.0 .1 .2 ■3 ■4 0.1667 0.1664 O.I66I 0.1658 0.1656 1639 1637 1634 163I 1629 1613 1610 1608 1605 1603 1587 1585 1582 1580 1577 1563 1560 1558 1555 1553 0. 1 653 0. 1 650 0. 1 647 0. 1 645 0. 1 642 1626 1623 1621 1618 1616 1600 1597 1595 1592 1590 1575 1572 1570 1567 1565 1550 1548 1546 1543 1541 -3 1 I I -2 6-S .6 ■7 .8 •9 0.1538 0.1536 0.1534 O.I53I 0.1529 I515 I513 I5II 1508 1506 1493 1490 1488 i486 1484 1471 1468 1466 1464 1462 1449 1447 1445 1443 1441 0.1527 0.1524 0.1522 0.1520 0.1517 1504 1502 1499 1497 1495 1481 1479 1477 1475 1473 1460 1458 1456 1453 145 I 1439 1437 1435 1433 1431 2 2 2 2 3 2 2 7.0 .1 .2 •3 ■4 0.1429 0.1427 0.1425 0.1422 0.1420 1408 1406 1404 1403 I4OI 1389 1387 1385 1383 I381 1370 1368 1366 1364 1362 1351 1350 1348 1346 1344 0.1418 0.1416 0.14140.1412 0.1410 1399 1397 139s 1393 1391 1379 1377 1376 1374 1372 1361 1359 1357 1355 1353 1342 1340 1339 1337 1335 -2 -1 7-S .6 ■7 .8 ■9 0.1333 O.I332 0.1330 0.1328 0.1326 1316 1314 1312 1311 1309 1299 1297 1295 1294 1292 1282 1280 1279 1277 1276 1266 1264 1263 1261 1259 0.1325 0.1323 0.1321 0.1319 0.1318 1307 1305 1304 1302 1300 1290 1289 1287 1285 1284 1274 1272 1271 1269 1267 1258 1256 1255 1253 1252 2 2 8.0 .1 .2 •3 •4 0.1250 0.1248 0.1247 0.1245 0.1244 1235 1233 1232 1230 1229 1220 1218 1217 1215 1214 1205 1203 1202 1200 1199 1190 1189 1188 1186 1185 0.1242 0.1241 0.1239 0.1238 0.1236 1227 1225 1224 1222 1221 1212 1211 1209 1208 1206 1198 1196 1195 1193 1192 1183 1182 1181 1179 1178 -3 8-5 .6 •7 .8 •9 0.11760.11750.11740.11720.1171 1163 1161 1160 1159 1157 H49 1148 1147 1145 1144 1136 1135 1134 1133 1131 1124 1122 1121 1120 1119 0.1 170 0.1 168 0.1 167 0.1 166 0.1 164 1156 1155 1153 1152 1151 1143 1142 1140 1139 1138 1130 1129 1127 1126 1125 1117 1116 1115 1114 1112 2 2 9.0 .1 .2 •3 •4 iiii 0.11100.1109 0.H07 0.1106 1099 1098 1096 1095 10.94 1087 1086 1085 1083 1082 1075 1074 1073 1072 1071 1064 1063 1062 1060 1059 0.1105 0.11040.11030.1101 0.1100 1093 1092 1091 1089 1088 ro8i 1080 1079 1078 1076 1070 1068 1067 1066 1065 1058 1057 1056 1055 1054 -3 9-S .6 •7 .8 •9 0.1053 0.1052 0.1050 0.1049 0.1048- 1042 1041 1040 1038 1037 1031 1030 1029 1028 1027 1020 1019 1018 1017 1016 1010 1009 1008 1007 1006 0.1047 0.1046 0.1045 0.1044 0.1043 1036 1035 1034 1033 1032 1026 1025 1024 1022 1021 1015 1014 1013 1012 1011 1005 1004 1003 1002 1001 2 2 (35) RECIP. SLIDE-WIRE RATIOS. S. W. RATIOS. cm. Qinm. jmm. 2^^* omm. ^mm. gmm. gmm. nmm. gmm. gnun. 0.0000 0.00 10 0.0020 0.0030 0.0040 0.0050 0.0060 0.0071 0.0081 0.0091 I oioi oiii 0122 0132 0142 0152 0163 0173 0183 0194 2 0204 0215 0225 0235 0246 0256 0267 0278 0288 0299 3 0309 0320 0331 0341 0352 0363 0373 0384 0395 0406 4 0417 0428 0438 0449 0460 0471 0482 0493 0504 0515 5 0.0526 0.0537 0.0549 0.0560 0.0571 0.0582 0.0593 0.0605 0.0616 0.0627 6 0638 0650 0661 0672 0684 0695 0707 0718 0730 0741 7 0753 0764 0776 0788 0799 081 1 0823 0834 0846 0858 8 0870 0881 0893 0905 0917 0929 0941 0953 0965 0977 9 0989 looi 1013 1025 1038 1050 1062 1074 1087 1099 10 o.iiii 0.1124 0.1136 0.1148 0.1161 0.1173 0.1186 0.1 198 0.1211 0.1223 II 1236 1249 I26I 1274 1287 1299 1312 1325 1338 1351 12 1364 1377 1390 1403 I4I6 1429 1442 H55 1468 I48I 13 1494 1508, 1521 1534 1547 1561 1574 1588 1601 I6I4 14 1628 1641 1655 1669 1682 1696 1710 1723 1737 I75I IS 0.1765 0.1779 0.1793 0.1806 0.1820 0.1834 0.1848 0.1862 0.1877 0.I89I i6 1905 I9I9 1933 1947 1962 1976 1990 2005 2019 2034 17 2048 2063 2077 2092 2107 2121 2136 2151 2166 2180 i8 2195 2210 2225 2240 2253 2270 2285 2300 2315 2331 19 2346 2361 2376 2392 2407 2422 2438 2453 2469 2484 20 0.2500 0.2516 0.2531 0.2547 0.2563 0.2579 0.2595 0.2610 0.2626 0.2642 21 2658 2674 2690 2707 2723 2739 2755 2771 2788 2804 22 2821 2837 2854 2870 2887 2903 2920 2937 2953 2970 23 2987 3004 3021 3038 3055 3072 3089 3106 3123 3I4I 24 3'58 3175 3193 3210 3228 3245 3263 3280 3298 3316 25 0-3333 0.3351 0.3369 0.3387 0.3405 0.3423 0.3441 0.3459 0.3477 0.3495- 26 3514 3532 3550 3569 3587 3605 3624 3643 3661 3680 27 3699 3717 3736 3755 3774 3793 3812 3831 3850 3870 28 3889 3908 3928 3947 3967 3986 4006 4025 4045 4065 29 4085 4104 4124 4144 4164 4184 4205 4225 4245 4265 30 0.4286 0.4306 0.4327 0.4347 0.4368 0.4389 0.4409 0.4430 0.4451 0.4472 3' 4493 4SH 4535 455^ 4577 4599 4620 4641 4663 4684 32 4706 4728 4749 4771 4793 4815 4837 4859 4881 4903 33 4925 4948 4970 4993 5015 5038 5060 5083 5106 5129 34 5152 5175 5198 5221 5244 5267 5291 5314 5337 5361 35 0.5385 0.5408 0.5432 0.5456 0.5480 0.5504 0.5528 0.5552 0.5576 0.5601 36 5625 5650 5674 5699 5723 5748 5773 5798 5823 5848 37 5873 5898 5924 5949 5974 6000 6026 6051 6077 6103 38 6129 6155 6181 6208 6234 6260 6287 6313 6340 6367 39 6393 6420 6447 6475 6502 6529 6556 6584 661 1 6639 40 0.6667 0-5695 0.6722 0.6750 0.6779 0.6807 0.6835 0.6863 0.6892 0.6921 4' 6949 6978 7007 7036 7065 7094 7123 7153 7182 7212 42 7241 7271 7301 7331 7361 7391 7422 7452 7483 7513 43 7544 7575 7606 7637 7668 7699 7731 7762 7794 7825 44 7857 7889 7921 7953 7986 8018 8051 8083 8116 8149 45 0.8182 0.8215 0.8248 0.8282 0.8315 0.8349 0.8382 0.8416 0.8450 0.8484 46 8519 8553 8587 8622 8657 8692 8727 8762 8797 8832 47 8868 8904 8939 8975 901 I 9048 9084 9121 9157 9194 48 9231 9268 9305 9342 9380 9418 9455 9493 9531 9570 49 9608 9646 9685 9724 9763 9802 9841 9881 9920 9960 S. W. RATIOS. (36) SLIDE-WIRE RATIOS. S. W. RATIOS. cm. qUUII* jnun. 2iiiin. 3"™- ^mm. gum. gmm. wmm. gmm. 50 1. 000 1.004 1.008 1.012 1.016 1.020 1.024 1.028 1-033 1-037 51 1.041 1.045 1.049 1-053 1.058 1.062 1.066 1.070 1-075 1.079 52 1.083 1.088 1.092 1.096 1. 101 1.105 1. 110 1.114 1.119 1.123 53 I.I28 1. 132 I-137 r.141 1.146 1.151 1-155 i.i6o 1.165 1.169 54 1-174 1.179 1-183 1.188 1-193 1.198 1-203 1.208 1.212 1.217 55 1.222 1.227 1.232 1-237 1.242 1-247 1.252 1-257 1.262 1.268 56 1'273 1.278 1.283 1.288 1.294 1.299 1.304 1-309 1-315 1.320 57 1.326 1-331 1-336 1-342 1-347 1-353 1-358 1.364 1-370 1-375 58 1-381 1-387 1.392 1-398 1.404 1.410 1-415 1.421 1.427 1-433 59 1-439 1-445 1.451 1-457 1.463 1.469 1-475 1.481 1.488 1.494 60 1.500 1.506 I-SI3 1.519 1-525 1-532 1-538 1-545 1-551 . i;558 6i 1.564 1.571 1-577 1.584 1.591 1-597 1.604 1.611 1.618 1.625 62 1.632 1-639 1.646 1-653 1.660 1.667 1-674 1.681 1.688 1-695 63 1-703 1.710 1.717 1-725 1-732 1.740 1.747 1-755 1.762 1.770 64 1.778 1.7S6 1-793 1.801 1.809 1.817 1.825 1-833 1.841 1.849 65 1-857 1.865 1.874 1.882 1.890 1.899 1.907 1.915 1.924 1-933 66 1. 941 1-950 1-959 1.967 1.976 1.985 1.994 2.003 2.012 2.021 67 2.030 2.040 2.049 2.058 2.067 2.077 2.086 2.096 2.106 2.115 68 2.125 2-I3S 2.145 2-155 2.165 2-175 2.185 2.195 2.205 2.215 69 2.226 2.236 2.247 2.257 2.268 2-279 2.289 2.300 2.311 2.322 70 2-333 2.344 2-356 2-367 2-378 2.390 2.401 2-413 2-425 2.436 71 2.448 2.460 2.472 2.484 2.497 2.509 2.521 2-534 2.546 2-559 72 2-571 2.584 2-597 2.610 2.623 2.636 2.650 2.663 2.676 2.690 73 2.704 2.717 2-731 2-745 2-759 2-774 2.788 2.802 2.817 2.831 74 2.846 2.861 2.876 2.891 2.906 2.922 2.937 2-953 2.968 2.984 75 3.000 3.016 3032 3049 3.065 3.082 3.098 3-115 3132 3-149 76 3-167 3.184 3.202 3.219 3-237 3-255 3-274 3.292 3-310 3-329 77 3-348 3-367 3-386 3-405 3-425 3-444 3464 3-484 3-505 3-525 78 3-545 3-566 3-587 3.608 3-630 3-651 3-673 3-695 3-717 3-739 79 3.762 3-785 3.808 3-831 3-854 3-878 3.902 3-926 3-950 3-975 80 4.000 4.025 4.051 4.076 4.102 4.128 4-155 4.181 4.208 4.236 81 4.263 4.291 4-319 4-348 4-376 4.405 4-435 4-465 4-495 4.525 82 4-556 4-587 4.618 4.650 4.682 4-714 4-747 4.780 4.814 4.848 83 4.882 4-917 4-952 4.988 5.024 5.061 5.098 5-135 5-173 5.211 84 5.250 5-289 5-329 5-369 5-410 5.452 5-494 5-536 5-579 5.623 85 5.667 5-7" 5-757 5.803 5.849 5-897 5-944 5-993 6.042 6.092 86 6.143 6.194 6.246 6.299 6-353 6.407 6.463 6.519 6-576 6.634 87 6.692 6.752 6.813 6.874 6-937 7.000 7.065 7-130 7.197 7.264 88 7-333 7-403 7-475 7-547 7.621 7.696 7.772 7.850 7.929 8.009 89 8.091 8.174 8.259 8-346 8-434 8.524 8.615 8-709 8.804 8.901 90 9.000 9.101 9-204 9309 9-417 9-526 9.638 9.753 9.870 9.989 91 10. 1 1 10.33 10.36 10.49 10.63 10-77 10.90 11.05 11.20 11-35 92 11.50 11.66 11.82 11.99 12.16 12-33 12.51 12.70 12.89 13.08 93 13.29 13-49 13-71 13-93 14-15 14-38 14-63 14.87 15-13 15-39 94 15.67 15-95 16.24 16.54 16.86 17.18 17-52 17.87 18.23 18.61 95 19.00 19.41 19-83 20.28 20.74 21.22 21-73 22.26 22.81 23-39 96 24.00 24.64 25.32 26.03 26.78 27-57 28.41 29.30 30.25 31-26 97 32-33 33-48 34-71 36-04 37-46 39.00 40.67 42.48 44-45 46.62 98 49.00 51.6 54-6 57-8 61.5 65.7 70.4 75-9 82.3 89.9 99 99.0 110. 124. 142. 166. 199- 249. 332- 499- 999. (37) s. w. RATIO NAT. SIN. 4 PL. NATURAL SINES AND COSINES TO FOUR PLACES. Note. For cosines use right-hand column of degrees and lower line of tenths. Deg. ".0 ".I ".2 ".3 °.4 °.5 °.6 °.7 °-8 ".9 Interpola. for h'dth! 0° 0.0000 0.0017 0.0035 0.0052 0.0070 0.0087 0.0105 0.0122 0.01400.0157 89 18 17 I 0175 0192 0209 0227 0244 0262 0279 0297 0314 0332 88 2 2 2 0349 0366 0384 0401 0419 0436 0454 0471 0488 0506 87 4 3 3 0523 0541 0558 0576 0593 o6io 0628 0645 0663 0680 86 5 5 4 0698 0715 0732 0750 0767 0785 0802 0819 0837 0854 85 -7 7 S 0.0872 0.0889 0.0906 0.0924 0.0941 0.0958 0.0976 0.0993 0.1011*0.1028 84 9 9 6 1045 1063 1080 1097 I I 15 1132 1149 1167 1184 1201 83 II 10 7 1219 1236 1253 1271 1288 1305 1323 1340 1357 1374 82 13 12 8 1392 1409 1426 ii\i\/\ 1461 1478 1495 1513 1530 1547 81 14 14 9 1564 1582 1599 1616 1633 1650 1668 1685 1702 1719 80° 16 15 10° 0.17360.17540.17710.17880.1805 0.1822 0.1840 0.1857 0.1874 0.1891 79 17 16 II 1908 1925 1942 1959 1977 1994 201 I 2028 2045 2062 78 2 2 12 2079 2096 2113 2130 2147 2164 2181 2198 2215 2232 77 3 3 '3 2250 2267 2284 2300 2317 2334 2351 2368 2385 2402 76 5 5 14 2419 2436 2453 2470 2487 2504 2521 2538 2554 2571 75 7 6 IS 0.2588 0.2605 0.2622 0.2639 0.2656 0.2672 0.2689 0.2706 0.2723 0.2740 74 9 8 i6 2756 2773 2790 2807 2823 2840 2857 2874 2890 2907 73 10 10 17 2924 2940 2957 2974 2990 3007 3024 3040 3057 3074 72 12 II i8 3090 3107 3123 3140 3156 3173 3190 3206 3223 3239 7« 14 13 19 3256 3272 3289 3305 3322 3338 3355 3371 3387 3404 70° 15 14 20° 0.3420 0.3437 0.3453 0.3469 0.3486 0.3502 0.3518 0.3535 0.3551 0.3567 69 16 15 21 3584 3600 3616 3633 3649 3665 3681 3697 3714 3730 68 2 2 22 3746 3762 3778 3795 381 I 3827 3843 3859 3875 3891 67 3 3 23 3907 3923 3939 3955 397' 3987 4003 4019 4035 4051 66 5 5 24 4067 4083 4099 4115 4131 4147 4163 4179 4195 4210 65 6 6 25 0.4226 0.4242 0.4258 0.4274 0.4289 0.4305 0.4321 0.4337 0.4352 0.4368 64 8 8 26 4384 4399 4415 443' 4446 4462 4478 4493 4509 4524 63 10 9 27 4540 4555 4571 4586 4602 4617 4633 4648 4664 4679 62 II II 28 ^4695 4710 4726 4741 4756 4772 4787 4802 4818 4833 61 13 12 29 4848 4863 4879 4894 4909 4924 4939 4955 4970 4985 60° 14 14 30° 0.5000 0.5015 0.5030 0.5045 0.5060 0.5075 0.5090 0.5105 0.5120 0.5135 59 U 13 31 5150 5165 5180 5195 5210 5225 5240 5255 5270 5284 58 I I 32 5299 5314 5329 5344 5358 5373 5388 5402 5417 5432 57 3 3 33 5446 5461 5476 5490 5505 5519 5534 5548 5563 5577 56 4 4 34 5592 5606 5621 5635 5650 5664 5678 5693 5707 5721 55 6 5 35 0-5736 05750 0-5764 0.5779 0-5793 0.5807 0.5821 0.5835 0.5850 0.5864 54 7 7 36 5878 5892 5906 5920 5934 5948 5962 5976 5990 6004 53 8 8 37 6018 6032 6046 6060 6074 6088 6101 6115 6129 6143 52 10 9 38 6157 6170 6184 6198 6211 6225 6239 6252 6266 6280 51 II 10 39 6293 6307 6320 6334 6347 6361 6374 6388 6401 6414 50° 13 12 i°.o ".9 °-8 °.7 °.6 °.5 °.4 ".3 °.2 °.i Deg. Interpola. for h'dth! NAT. COS. 4 PL. (38) NATURAL SINES AND COSINES. 4 PL. NAT. SIN. Oeg. °.o °.I °.2 ^.3 °.4 ^.5 °.6 °.7 °-8 ;.9 Interpola. for h'dths 40° 0.6428 0.6441 0.6455 0.6468 0.6481 0.64940.65080.6521 0.65340.6547 49 13 12 41 6561 6574 6587 6600 6613 6626 6639 6652 6665 6678 48 I I 42 6691 6704 6717 6730 6743 6756 6769 6782 6794 6807 47 3 2 43 6820 6833 6845 6858 6871 6884 6896 6909 6921 6934 46 4 4 44 6947 6959 6972 6984 6997 7009 7022 7034 7046 7059 -45 5 5 45 0.7071 0.7083 0.7096 0.7108 0.7120 0.7133 0.7145 0.7157 0.7169 0.7181 44 7 6 46 7193 7206 7218 7230 7242 7254 7266 7278 ,7290 7302 43 8 7 47 73*4 7325 7337 7349 736i 7373 7385 7396 7408 7420 42 9 8 48 7431 7443 7455 7466 7478 7490 7501 7513 7524 7536 41 10 10 49 7547 7559 757° 7S8i 7593 7604 7615 7627 7638 7649 40° 12 II 50° 0.7660 0.7672 0.7683 0.7694 0.7705 0.7716 0.7727 0.7738 0.7749 0.7760 39 11 9 51 7771 7782 7793 7804 7815 7826 7837 7848 7859 7869 38 I I 52 7880 7891 7902 7912 7923 7934 7944 7955 7965 7976 37 2 2 53 7986 7997 8007 8018 8028 8039 8049 8059 8070 8080 36 3 3 54 .8090 8100 81H 8121 8131 8141 8151 8161 8171 8181 35 4 4 55 0.8192 0.8202 0.821 1 0.8221 0.8231 0.8241 0.8251 0.8261 0.8271 0.8281 34 6 5 56 8290 8300 8310 8320 8329 8339 8348 8358 8368 8377 33 7 5 57 8387 8396 8406 84fs 8425 8434 8443 8453 8462 8471 32 8 6 58 8480 8490 8499 8508 8517 8526 8536 8545 8554 8563 31 9 7 59 8572 8581 8590 8599 8607 8616 8625 8634 8643 8652 30° 10 8 60° 0.8660 0.8669 0.8678 0.8686 0.8695 0.8704 0.8712 0.8721 0.87290.8738 29 8 7 61 8746 8755 8763 8771 8780 8788 8796 8805 8813 8821 28 I I 62 8829 8838 8846 8854 8862 8870 8878 8886 8894 8902 27 2 I 63 8910 8918 8926 8934 8942 8949 8957 8965 8973 8980 26 2 2 64 8988 8996 9003 901 I 9018 9026 9033 9041 9048 9056 25 3 3 6s 0.9063 0.9070 0.9078 0.9085 0.9092 0.91000.91070.91140.9121 0.9128 24 4 4 66 9135 9143 915° 9157 9164 9171 9178 9184 9191 9198 23 5 4 67 9205 9212 9219 9225 9232 9239 9245 9252 9259 9265 22 6 5 68 9272 9278 9285 9291 9298 9304 -9311 9317 9323 9330 21 6 6 69 9336 9342 9348 9354 9361 9367 9373 9379 9385 939i 20° 7 6 70° 0.9397 0.9403 0.9409 0.9415 0.9421 0.9426 0.9432 0.9438 0.9444 0.9449 19 6 4 71 9455 9461 9466 9472 9478 9483 9489 9494 9500 9505 18 I 72 95H 9516 9521 9527 9532 9537 9542 9548 9553 9558 17 I I 73 9563 9568 9573 9578 9583 9588 9593 9598 9603 9608 16 2 I 74 9613 9617 9622 9627 9632 9636 9641 9646 9650 9655 15 2 2 75 0.9659 0.9664 0.9668 0.9673 0.9677 0.9681 0.9686 0.9690 0.9694 0.9699 14 3 2 76 9703 9707 971 1 9715 9720 9724 9728 9732 9736 9740 13 4 2 77 9744 9748 9751 9755 9759 9763 9767 9770 9774 9778 12 4 3 78 9781 9785 9789 9792 9796 9799 9803 9806 9810 9813 II 5 3 79 9816 9820 9823 9826 9829 9833 9836 9839 9842 9845 10° 5 4 80° 0.9848 0.9851 0.9854 0.9857 0.9860 0.9863 0.9866 0.9869 0.9871 0.9874 9 3 2 81 9877 9880 9882 9885 9888 9890 9893 9895 9898 9900 8 82 9903 9905 9907 9910 9912 9914 9917 9919 9921 9923 7 I 83 9925 9928 9930 9932 9934 9936 9938 9940 9942 9943 6 I I 84 9945 9947 9949 995 i 9952 9954 9956 9957 9959 9960 5 I I 85 0.9962 0.9963 0.9965 0.9966 0.9968 0.9969 0.9971 0.9972 0.9973 0.9974 4 2 I 86 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 3 2 I 87 9986 9987 9988 9989 9990 9990 9991 9992 9993 9993 2 2 I 88 9994 9995 9995 999^ 999^ 9997 9997 9997 9998 9998 I 2 2 89 9998 9999 9999 9999 9999 1. 000 1. 000 1. 000 1. 000 1. 000 0° 3 2 i°.o ".9 °.8 °.7 °-6 °.5 °.4 -.3 °.2 °.i Deg. Interpola. for h'dths (39) 4 PL. NAT. COS. NAT. TAN. 4 PL. NATURAL TANGENTS AND COTANGENTS TO FOUR PLACES. Note. For cotangents use right-hand column of degrees and lower line of tenths Deg. ".0 \i ".2 °.3 °.4 ".5 °-6 °.7 °.8 ''.9 Interpola. for h'dthi 0° 0.00000.0017 0.0035 0.0052 0.0070 0.0087 0.0105 O.OI22 0.0140 0.0157 89 17 18 I 0175 0192 0209 0227 0244 0262 0279 0297 0314 0332 88 2 2 2 0349 0367 0384 0402 0419 0437 0454 0472 0489 0507 87 3 4 3 0524 0542 055^ 0577 0594 o6i2 0629 0647 0664 0682 86 5 5 7 7 4 0699 0717 0734 0752 0769 0787 0805 0822 0840 0857 85 S 0.0875 0.0892 0.0910 0.0928 0.0945 0.09630.0981 0.0998 O.IOI6 0.1033 84 9 9 6 1051 1069 1086 1104 1122 "39 1157 1175 1192 1210 83 10 II 7 1228 1246 1263 1281 1299 1317 1334 1352 1370 1388 82 12 13 8 1405 1423 1441 1459 1477 1495. 1512 1530 1548 1566 81 14 14 9 1584 1602 1620 1638 1655 1673 1691 1709 1727 1745 80° 15 16 10° 0.1763 0.1781 0.1799 0.1817 0.1835 0.18530.18710.18900.19080.1926 79 19 30 II 1944 ici2 1980 1998 2016 2035 2053 2071 2089 2107 78 2 2 12 2126 2144 2162 2180 2199 2217 2235 2254 2272 2290 77 4 4 13 2309 2327 2345 2364 2382 2401 2419 2438 2456 2475 76 6 6 14 2493 2512 2530 2549 2568 2586 2605 2623 2642 2661 75 8 8 IS 0.2679 0.2698 0.2717 0.2736 0.2754 0.2773 0.2792 0.281 1 0.2830 0.2849 74 10 10 16 2867 2886 2905 2924 2943 2962 2981 3000 3019 J038 73 II 12 17 3057 3076 3096 31:5 3134 3153 3172 3191 3211 3230 72 13 14 18 3249 3269 3288 3307 3327 3346 3365 3385 3404 3424 71 15 16 19 3443 3463 3482 3502 3522 3541 3561 3581 3600 3620 70° 17 18 20° 0.3640 0.3659 0.3679 0.3699 0.3719 0-3739 0.3759 0.3779 0.3799 0.3819 69 22 24 21 3839 3859 3879 3899 3919 3939 3959 3979 4000 4020 68 2 2 22 4040 4061 4081 4101 4122 4142 4163 4183 4204 4224 67 4 5 23 4245 4265 4286 4307 4327 4348 4369 4390 44" 4431 66 7 7 24 4452 4473 4494 45iS 453^ 4557 4578 4599 4621 4642 65 9 10 25 0.4663 0.4684 0.4706 0.4727 0.4748 0.4770 0.4791 0.4813 0.4834 0.4856 64 11 12 26 4877 4899 4921 4942 4964 4986 5008 5029 5051 5073 63 13 14 27 5095 5117 5139 5161 5184 5206 5228 5250 5272 5295 62 15 17 28 5317 5340 5362 5384 5407 5430 5452 5475 5498 5520 61 18 19 29 5543 5566 5589 5612 5635 5658 5681 5704 5727 5750 60° 20 22 30° 0-5774 0-5797 0-5820 0.5844 0.5867 0.5890 0.5914 0.5938 0.5961 0.5985 59 26 28 31 6009 6032 6056 6080 6104 6128 6152 6176 6200 6224 58 3 3 32 6249 6273 6297 6322 6346 6371 6395 6420 6445 6469 57 6 6 33 6494 6519 6544 6569 6594 6619 6644 6669 6694 6720 56 8 8 34 6745 6771 6796 6822 6847 6873 6899 6924 6950 6976 55 10 II 35 0.7002 0.7028 0.7054 0.7080 0.7107 0.7133 0.7159 0.7186 0.7212 0.7239 54 13 '4 36 7265 7292 7319 7346 7373 7400 7427 7454 7481 7508 53 16 17 37 7536 7563 7590 7618 7646 7673 7701 7729 7757 7785 52 18 20 38 7813 7841 7869 7898 7926 7954 7983 8012 8040 8069 51 21 22 39 8098 8127 8156 8185 8214 8243 8273 8302 8332 8361 50° 23 25 i°.o ".9 °.8 °7 °-6 "■5 °.4 °.3 ".2 ".I Deg. Interpola. or h'dtha NAT. COT. 4 PL. (40) NATURAL TANGENTS AND COTANGENTS. 4 PL. NAT. TAN. Deg. °.o ".I ".2 °.3 °.4 °.S °.6 °.7 °-8 °.9 Interpol a, forh'dths 40° 0.8391 0.8421 0.8451 0.8481 0.85 1 1 0.8541 0.8571 0.8601 0.8632 0.8662 49 30 40 41 8693 8724 8754 8785 8816 8847 8878 8910 8941 8972 48 3 4 42 9004 9036 9067 9099 9131 9163 9195 9228 9260 9293 47 6 8 43 9325 9358 9391 9424 9457 9490 9523 9556 9590 9623 46 9 12 44 9657 9691 9725 9759 9793 9827 9861 9896 9930 9965 45 12 16 45 i.oooo 1.0035 1.0070 1.0105 1.0141 1.0176 1.0212 1.0247 1.0283 1.0319 44 ' 15 20 46 0355 0392 0428 0464 0501 0538 0575 0612 0649 0686 43 18 24 47 0724 0761 0799 0837 0875 0913 0951 0990 1028 1067 42 21 28 48 1106 1145 1184 1224 1263 1303 1343 1383 1423 1463 41 24 32 49 1504 1544 1585 1626 1667 1708 1750 1792 1833 1875 40° 27 36 50° 1. 1918 1. 1960 1.2002 1.2045 i-2o88 1.2131 1.2174 1.22l8 1.2261 1.2305 39 50 60 ^ 2349 2393 2437 2482 2527 2572 2617 2662 2708 2753 38 5 6 52 2799 2846 2892 2938 2985 3032 3079 3127 3175 3222 37 10 12 S3 3270 3319 3367 3416 3465 3514 3564 3613 3663 3713 36 15 18 54 3764 3814 3865 3916 3968 4019 4071 4124 4176 4229 35 20 24 55 1.4281 1.4335 14388 1.4442 1.4496 1.4550 1.4605 1.4659 1.4715 1.4770 34 25 30 56 4826 4882 4938 4994 5051 5108 5166 5224 5282 5340 33 30 36 57 5399 5458 5517 5577 S637 5697 5757 5818 5880 5941 32 35 42 58 6003 6066 6128 6191 6255 6319 6383 6447 6512 6577 31 40 48 59 6643 6709 6775 6842 6909 ■6977 7045 7113 7182 7251 30° 45 54 60° 1.73211.73911.7461 1.7532 1.7603 1.7675 1-7747 1.7820 1.7893 1.7966 29 70 80 61 8040 81 1 5 8190 8265 8341 8418 8495 8572 8650 8728 28 7 8 62 8807 8887 8967 9047 9128 9210 9292 9375 9458 9542 27 14 16 63 1.9626 1.9711 1-9797 1.9883 1.9970 2.0057 2.0145 2.0233 2.0323 2.0413 26 ,21 24 64 2.0503 2.0594 2.0686 2.0778 2.0872 2.0965 2.10602.1155 2.1251 2.1348 25 28 32 65 2.1445 2.1543 2.1642 2.1742 2.1842 2.1943 2.2045 2.2148 2.2251 2.2355 24 35 40 66 2460 2566 2673 2781 2889 2998 3109 3220 3332 3445 23 42 48 67 3SS9 3673 3789 3906 4023 4142 4262 4383 4504 4627 22 49 56 68 4751 4876 5002 5129 5257 5386 5517 5649 5782 5916 21 56 64 69. 6051 6187 6325 6464 6605 6746 6889 7034 7179 7326 20° 63 72 70° 2.7475 2.7625 2.7776 2.7929 2.8083 2.8239 2.8397 2.8556 2.8716 2.8878 19 90 71 2.9042 2.9208 2.9375 2.9544 2.9714 2.9887 3.0061 3.0237 3.0415 3.0595 18 9 72 3.0777 3.0961 3.1146 3.1334 3.1524 3.1716 3.1910 3.2106 3.2305 3.2506 17 18 73 2709 2914 3122 3332 3544 3759 3977 4197 4420 4646 16 27 74 4874 5105 5339 5576 5816 6059 6305 6554 6806 7062 15 36 75 3.7321 3.7583 3.7848 3.81 18 3.8391 3.8667 3.8947 3.9232 3.9520 3.9812 14 45 76 4.0108 4.0408 4.0713 4.1022 4.133s 4.1653 4.1976 4.2303 4.2635 4.2972 13 54 77 4.3315 4.3662 4.4015 4.4374 4.4737 4.5107 4.5483 4.5864 4.6252 4.6646 12 63 78 4.7046 4.7453 4.7867 4.8288 4.8716 4.91524.9594 5.0045 5.0504 5.0970 11 72 79 5.1446 5.1929 5.2422 5.2924 5.3435 5.3955 5-4486 5.5026 5.5578 5.6140 10° 81 80° 5.6713 5.7297 5.7894 5.8502 5.9124 5.9758 6.0405 6.1066 6.1742 6.2432 9 81 6.3138 6.3859 6.4596 6.5350 6.6122 6.6912 6.7720 6.8548 6.9395 7-0264 ■ 8 82 7.1154 7.2066 7.3002 7.3962 7.4947 7-5958 7.6996 7.8062 7.9158 8.0285 7 83 8.1443 8.2636 8.3863 8.5126 8.6427 8.7769 8.9152 9.0579 9.2052 9.3572 6 84 9.5144 9.677 9.845 10.02 10.20 10.39 10.58 10,78 10.99 11-20 5 8s 11.43 11.66 11.91 12.16 12.43 12.71 13.00 13.30 13.62 13.95 4 86 14.30 14.67 15.06 15.46 15,89 16.35 16.83 17.34 17.89 18-46 3 87 19.08 19.74 20.45 21.20 22.02 22.90 23.86 24,90 26.03 27.27 2 88 28.64 30.14 31.82 33.69 35.80 38.19 40.92 44.07 47.74 52.08 I 89 57.29 63.66 71.62 81.85 95.49 114.6 143.2 191.0 286.5 5730 0° i°.o ".9 °.8 °.7 °.6 ".5 °.4 ^.3 °.2 °.I Deg, Interpola, for h'dths (41) 4 PL. NAT. COT. LOG. SIN. 4 PL. LOGARITHMS OF SINES AND COSINES TO FOUR PLACES. Note. For log. cos. use right-hand column of degrees and lower line of tenths. Deg. °.o ".I •'.7. \z °.4 °.S °-6 °.7 °.8 °.9 Interpola. for h'dths 0° -00 3.24193.54293.71903.8439 3.9408 5.0200 5.0870 5.1450 5.1961 89 35 25 I 2.2419 2.2832 2.3210 2.3558 2.3880 2.4179 5.4459 5.4723 5.49^1 5.5206 88 4 3 2 2.5428 2.5640 2.5842 2.6035 26220 2.6397 2.6567 2.6731 2.6889 2.7041 87 7 5 3 2.7188 2.7330 2.7468 2.7602 2.7731 2.7857 2.7979 2.8098 2.8213 2.8326 86 II 8 4 2.8436 2.8543 2.8647 2.8749 2.8849 2.8946 2.9042 2.9135 2.92265.9315 85 14 10 S 5.9403 5.9489 5.9573 2.9655 29736 5.9816 2.9894 5.9970 7.0046 7.01 20 84 18 13 6 1.0192 1.0264 '•0334 1-0403 1.0472 1 -0539 7.0605 7.0670 7.0734 7.0797 83 21 15 7 7.0859 T.0920 7.0981 7.10407.1099 1.1157 1.12147.1271 1.13267.1381 82 25 18 8 7.1436 7.1489 7.1542 7.1594 7.1646 1^.16971.17471.17977.18477.1895 81 28 20 9 1. 1943 1.1991 1.2038 1.2085 1^-2131 1. 2176 1.2221 1.2266 1.2310 1.2353 80° 32 23 10° 7.2397 7.2439 7.2482 7.2524 7.2565 7.2606 7.2647 7.2687 7-2727 7.2767 79 21 18 II 2806 2845 2883 2921 2959 2997 3034 3070 3107 3143 78 2 2 12 3179 3214 3250 3284 3319 3353 3387 3421 3455 3488 77 4 4 '3 3521 3554 3586 3618 3650 3682 3713 3745 3775 3806 76 6 5 "4 3837 3867 3897 3927 3957 3986 4015 -4044 4073 4102 75 8 7 '5 7.4130 7.4158 7.4186 7.4214 7.4242 7.4269 7.4296 7.4323 7.4350 7.4377 74 II 9 i6 4403 4430 4456 4482 4508 4533 4559 4584 4609 4634 73 13 II '7 4659 4684 4709 4733 4757 4781 4805 4829 4853 4876 72 15 13 i8 4900 4923 4946 4969 4992 5015 5037 5060 5082 5104 71 17 14 19 5126 5148 5170 5192 5213 5235 5256 5278 5299 5320 70° 19 16 20° I-S34I i'.536i 7.53827.54027.5423 7.5443 7.5463 7.5484 7.5504 7.5523 69 IS 13 21 5543 5563 5583 5602 5621 5641 5660 5679 5698 5717 68 2 1 22 5736 5754 5773 5792 5810 5828 5847 5865 5883 5901 67 3 3 23 5919 5937 5954 5972 599o 6007 6024 6042 6059 6076 66 5 4 24 6093 6110 6127 6144 6161 6177 6194 6210 6227 6243 65 6 5 2S 7.6259 7.6276 7.6292 7.6308 7.6324 7.6340 7.6356 7.6371 7.6387 7.6403 64 8 7 26 6418 6434 6449 6465 6480 6495 6510 6526 6541 6556 63 9 8 27 6570 6585 6600 6615 6629 6644 6659 6673 6687 6702 62 II 9 28 6716 6730 6744 6759 6773 6787 6801 6814 6828 6842 61 12 10 29 6856 6869 6883 6896 6910 6923 6937 6950 6963 6977 60° 14 12 30° 7.6990 7.7003 7.7016 7.7029 7.7042 7.7055 7.7068 7.7080 7.7093 7.7106 59 11 9 31 7118 7131 7144 7156 7168 7181 7193 7205 7218 7230 58 I I 32 7242 7254 7266 7278 7290 7302 7314 7326 7338 7349 57 2 2 33 7361 7373 7384 7396 7407 7419 7430 7442 7453 7464 56 3 3 34 7476 7487 7498 7509 7520 7S3I 7542 7553 7564 7575 55 4 4 35 7.7586 7.7597 7.7607 7.761 8 7.7629 7.76407.76507.7661 7.7671 7.7682 54 6 5 36 7692 7703 7713 7723 7734 7744 7754 7764 7774 7785 S3 7 5 37 7795 7805 7815 7825 7835 7844 7854 7864 7874 7884 52 8 6 38 7893 7903 7913 7922 7932 7941 7951 7960 7970 7979 S> 9 7 39 7989 7998 8007 8017 8026 8035 8044 8053 8063 8072 50° 10 8 i°.o °.9 °.8 °.7 °.6 °.5 °.4 °.3 °.2 =.i Deg. Interpola. for h'dth! LOG. COS. 4 PL. (42) LOGARITHMS OF SINES AND COSINtS. 4 PL. LOG. SIN. Deg. °.o °.i °.2 °.3 °.4 ".5 °.6 °.7 °-8 °.9 Interpola. tables. 40^ T.8081 T.8090T.8099T.8108T.8117 7.8125 T.8134 7.8143 7.8152 7.8161 49 9 8 7 41 8169 8178 8187 8195 8204 8213 8221 8230 8238 8247 48 1 1 I 42 8255 8264 8272 8280 8289 8297 8305 8313 8322 8330 47 2 2 1 43 8338 8346 8354 8362 8370 8378 8386 8394 8402 8410 46 322 44 8418 8426 8433 8441 8449 8457 8464 8472 8480 8487 45 4 3 3 45 7.8495 1-8502 T.8510 1.8517 1.8525 7.8532 7.8540 7.8547 7.8555 7.8562 44 5 4 4 46 8569 8577 8584 8591 8598 8606 8613 8620 8627 8634 43 5 5 4 47 8641 8648 8655 8662 8669 8676 8683 8690 8697 8704 43 665 48 871 I 8718 8724 8731 8738 8745 8751 8758 8765 8771 41 766 49 8778 8784 8791 8797 8804 8810 8817 8823 8830 8836 40° 876 50° T.8843 T.8849 1-8855 'f-8862 7.8868 7,8874 7.8880 7.8887 7.8893 7-8899 39 6 5 4 SI 8905 8911 8917 8923 8929 8935 8941 8947 8953 8959 38 1 I 52 8965 8971 8977 8983 8989 8995 9000 9006 9012 9018 37 1 I 1 53 9023 9029 9035 9041 9046 9052 9057 9063 9069 9074 36 2 2 I 54 go8o 9085 9091 9096 9101 9107 9112 9118 9123 9128 35 .222 55 7.9134 7.9139 7.9144 7.9149 7.915s 7.91607.9165 7.9170 7.9175 7.9181 34 332 56 9186 9191 9196 9201 9206 9211 9216 9221 9226 9231 33 432 57 9236 9241 9246 9251 925s 9260 9265 9270 9275 9279 32 4 4 3 58 9284 9289 9294 9298 9303 9308 9312 9317 9322 9326 31 5 4 3 59 9331 9335 9340 9344 9349 9353 9358 9362 9367 937' 30° 5 5 4 60° I 9375 7.9380 7.9384 7.9388 7.9393 7-9397 7.9401 7.9406 7.9410 7.9414 29 4 3 2 6i 9418 9422 9427 9431 9435 9439 9443 9447 945' 9455 28 000 62 9459 9463 9467 9471 9475 9479 9483 9487 9491 9495 27 1 I 63 9499 9503 9506 9510 95 '4 9518 9522 9525 9529 9533 26 1 I 1 64 9537 9540 9544 9548 955' 9555 9558 9562 9566 9569 25 2 1 I 65 i'-95 73 I -95 76 1-9580 7.9583 7.9587 7.95907.95947.9597 7.9601 7.9604 24 221 66 9607 9611 9614 9617 9621 9624 9627 9631 9634 9637 23 2 2 1 67 9640 9643 9647 9650 9653 9656 9659 9662 9666 9669 22 3 2 1 68 9672 9675 9678 9681 9684 9687 9690 9693 9696 9699 21 322 69 9702 9704 9707 9710 9713 9716 9719 9722 9724 9727 20° 432 70° 7.9730 7.9733 "'-9735 T.9738 i'.974i 7.9743 7.9746 7.9749 7.9751 7.9754 19 3 2 1 71 9757 9759 9762 9764 97^7 9770 9772 9775 9777 9780 18 000 72 9782 9785 9787 9789 9792 9794 9797 9799 9801 9804 17 100 73 9806 9808 9811 9813 9815 9817 9820 9822 9824 9826 16 I 1 74 9828 9831 9833 9835 9837 9839 9841 9843 9845 9847 15 1 1 75 7.9849 7.9851 7.9853 7.9855 7.9857 7.9859 7.9861 7.9863 7.9865 7.9867 14 2 1 1 76 9869 9871 9873 9875 9876 9878 9880 9882 9884 9885 13 211 77 9887 9889 9891 9892 9894 9896 9897 9899 9901 9902 12 2 1 I 78 9904 9906 9907 9909 9910 9912 9913 9915 9916 9918 11 2 2 1 79 9919 9921 9922 9924 9925 9927 9928 9929 9931 9932 10° 3 2 I 80° 7.9934 7.9935 7-9936 1-9937 1-9939 7.9940 7.9941 7.9943 7.9944 7.9945 9 2 1 81 9946 9947 9949 9950 9951 9952 9953 9954 9955 9956 8 82 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 7 83 9968 9968 9969 9970 9971 9972 9973 9974 9975 9975 6 1 84 9976 9977 9978 9978 9979 9980 9981 9981 9982 9983 5 I 85 7.9983 7.9984 7.9985 7.9985 7.9986 7.9987 7.9987 7.9988 7.9988 7.9989 4 I I 86 9989 9990 9990 9991 9991 9992 9992 9993 9993 9994 3 I 1 87 9994 9994 9995 9995 9996 9996 9996 9996 9997 9997 2 1 1 88 ■ 9997 9998 9998 9998 9998 9999 9999 9999 9999 9999 I 2 I 89 9999 9999 zero zero zero zero zero zero zero zero 0° 2 I i°.o °.9 °.8 °.^ °.6 °.5 °.4 ".3 "-2 ".I Deg. Interpola. for h'dths (43) 4 PL. LOG. COS. LOG. TAN. 4 PL. LOGARITHMS OF TANGENTS AND COTANGENTS TO FOUR PLAGES. Note. For log. cot. use right-hand column of degrees and lower line of tenth Deg. °.o ".I °.2 °.3 °.4 °.5 °-6 °.7 °-8 °.9 Interpola. For h'dths 0° -00 3.2419 3.5429 3.7190 3.8439 3.9409 2.0200 2.0870 2.1450 2.1962 89 35 27 I 2.2419 2.2833 2.3211 2.3559 2.3881 2.4181 2.4461 2.4725 2.49732.5208 88 4 3 2 2.5431 2.5643 2.5845 2.6038 2.6223 2.6401 2.6571 2.67362,68942.7046 87 7 5 3 2.7194 2.7337 2.7475 2.7609 2.7739 2.7865 2.7988 2.8107 2.8223 2.8336 86 II 8 4 ,2.8446 2.8554 2.8659 2.8762 2.8862 2.8960 2.9056 2.9150 2.9241 2.9331 85 14 11 5 2.9420 2.9506 2.9591 2.96742.9756 2.9836 2.9915 2.9992 7.0068 7.0143 84 18 14 6 1 .02 1 6 1 .0289 1 .0360 1 .0430 1 .0499 £.0567 1.0633 1.06997.07647.0828 83 21 16 7 T.0891 7.09547.10157.10761.1135 1.11941.12521.13107.13677.1423 82 25 19 « 8 7.1478 7.1533 7.1587 7.1640 7.1693 1. 1745 1.1797 1.1848 1.18987.1948 81 28 22 9 1. 1997 1.2046 1.2094 1. 2142 1. 2189 1 .2236 1 .2282 7.2328 7.2374 7.2419 80° 32 24 10° 7.24637.25077.2551 7.25947.2637 7.2680 7.2722 7.2764 7.2805 7.2846 79 25 23 II 2887 2927 2967 3006 3046 3085 3123 3162 3200 3237 78 3 2 12 327s 3312 3349 3385 3422 3458 3493 3529 3564 3599 77 5 5 "3 3634 3668 3702 3736 3770 3804 3837 3870 3903 3935 76 8 7 H 3968 4000 4032 4064 4095 4127 4*58 4189 4220 4250 75 10 9 IS 7.4281 7.431 1 7.4341 1.4371 7.4400 7.4430 7.4459 7.4488 7.4517 7.4546 74 13 12 i6 4575 4603 4632 4660 4688 47 '6 4744 477' 4799 4826 73 «s 14 17 4853 4880 4907 4934 4961 4987 5014 5040 5066 5092 72 18 16 i8 5118 5143 5169 5195 5220 5245 527° 5295 5320 5345 71 20 18 19 5370 5394 5419 5443 5467 5491 5516 5539 5563 5587 70° 23 21 20° 7.5611 7.56347.56587.5681 7.5704 ^•5727 7.5750 1-5773 7.5796 7.5819 69 21 19 21 5842 5864 5887 5909 5932 5954 5976 5998 6020 6042 68 2 2 22 6064 6086 6108 6129 6151 6172 6194 6215 6236 6257 67 4 4 23 6279 6300 6321 6341 6362 6383 6404 6424 6445 6465 66 6 6 24 6486 6506 6527 6547 6567 6587 6607 6627 6647 6667 65 8 8 25 7.6687 7.6706 7.6726 7.6746 7.6765 7.6785 7.6804 7.6824 7.6843 7.6863 64 II 10 26 6882 6901 6920 6939 6958 6977 6996 7015 7034 7053 63 13 11 27 7072 7090 7109 7128 7146 7165 7183 7202 7220 7238 62 15 13 28 7257 727s 7293 731 1 7330 7348 7366 7384 7402 7420 61 17 15 29 7438 7455 7473 7491 7509 7526 7544 7562 7579 7597 60° 19 17 30° 7.7614 7.7632 7.7649 7.7667 7.7684 7.7701 7.7719 7.7736 7.7753 7.7771 59 17 15 3> 7788 7805 7822 7839 7856 7873 7890 7907 7924 7941 58 2 2 32 7958 7975 7992 8008 8025 8042 8059 8075 8092 8109 57 3 3 33 8125 8142 8158 8175 8191 8208 8224 8241 8257 8274 56 5 5 34 8290 8306 8323 8339 8355 8371 8388 8404 8420 8436 55 7 6 35 7.8452 7.8468 7.8484 7.8501 7.85 1 7 7.8533 7.8549 7.8565 7.8581 7.8597 54 9 8 36 8613 8629 8644 8660 8676 8692 8708 8724 8740 8755 53 10 9 37 8771 8787 8803 8818 8834 8850 8865 8881 8897 8912 52 12 II 38 8928 8944 8959 8975 8990 9006 9022 9037 9053 9068 5' 14 12 39 9084 9099 9115 9130 9146 9161 9176 9192 9207 9223 50° 15 14 i°.o ".9 °.8 °.7 ".6 ".5 °.4 ".3 ■'■2 ''.I Deg. Interpola, for h'dths LOG. COT. 4 PL. (44) LOGARITHMS OF TANGENTS AND COTANGENTS. 4 PL. LOG. TAN. Deg. °.0 °.I °.2 ".3 °.4 .5 .0 .7 -8 -9 Interpola. for hdths 40° T.9238 T.9254 T.9269 T.9284 T.9300 T.931S 1.9330 T.9346T.9361 T.9376 49 15 16 41 1.9392 1.9407 1.9422 T.9438 7.9453 1.9468 1.9483 1.9499 1. 95 14 1-9529 48 2 2 42 1.9544 1.9560 1.9575 I-9S90 1-9605 1.9621 1.9636 1.9651 1.9666 1.9681 47 3 3 43 1.9697 1.9712 1.9727 1.9742 1.9757 T.9772 T.9788 T.9803 T.9818 T.9833 46 5 5 44 1.9848 1.9864 1.9879 1.9894 1.9909 r.9924 T.9939 T.9955 1-9970 ^-9985 45 6 6 45 0.0000 0.0015 0-0030 0.0045 0.0061 0.00760.0091 0.01060.0121 0.0136 44 8 8 46 0152 0167 0182 0197 0212 0228 0243 0258 0273 0288 43 9 10 47 0303 0319 0334 0349 0364 0379 0395 0410 0425 0440 42 11 II 48 0456 0471 0486 0501 0517 0532 0547 0562 0578 0593, 41 12 13 49 ■ 0608 0624 0639 0654 0670 0685 0700 0716 0731 0746 40° 14 14 50° 0.0762 0.0777 O-0793 0.0808 0.0824 0.0839 0.0854 0.0870 0.0885 0.0901 39 17 18 S« 0916 0932 0947 0963 0978 0994 1010 1025 1041 1056 38 2 2 52 1072 1088 1 103 1 1 19 1 135 1150 1166 1182 1197 1213 37 3 4 S3 1229 1245 1260 1276 1292 1308 1324 1340 1356 1371 36 5 5 S4 1387 1403 1419 1435 1451 1467 1483 1499 1516 1532 35 7 7 SS 0.1548 0.1564 0.1580 0.1596 0.1612 0.1629 0.1645 0.1661 0.1677 0.1694 34 9 9 56 1710 1726 1743 1759 1776 1792 1809 1825 1842 1858 33 lo 11 57 1875 1891 1908 1925 1941 1958 1975 '992 2008 2025 32 12 13 S» 2042 2059 2076 2093 21 10 2127 2144 2161 2178 2195 31 14 14 59 2212 2229 2247 2264 2281 2299 2316 2333 2351 2368 30° 15 16 60° 0.2386 0.2403 0.2421 0.2438 0.2456 0.2474 0.2491 0.2509 0.2527 0.2545 29 21 23 61 2562 2580 2598 2616 2634 2652 2670 2689 2707 2725 28 2 2 62 2743 2762 2780 2798 2817 2835 2854 2872 2891 2910 27 4 5 63 Z928 2947 2966 2985 3004 3023 3042 3061 3080 3099 26 6 7 64 3118 3137 3157 3176 3196 3215 3235 3254 3274 3294 25 8 9 65 0.3313 0.3333 0.3353 0.3373 0.3393 0.3413 0.3433 0.3453 0.3473 0.3494 24 11 12 66 3514 3535 3555 357^ 3596 3617 3638 3659 3679 3700 23 13 14 67 3721 3743 3764 3785 3806 3828 3849 3871 3892 3914 22 15 16 68 3936 3958 3980 4002 4024 4046 4068 4091 4113 4136 21 17 18 69 4158 4181 4204 4227 4250 4273 4296 4319 4342 4366 20° 19 21 70° 0.4389 0.4413 0.4437 0.4461 0.4484 0.4509 0.4533 0.4557 0.4581 0.4606 19 25 27 71 4630 4655 4680 4705 4730 4755 4780 4805 4831 4857 18 3 3 72 4882 4908 4934 4960 4986 5013 5039 5066 5093 5120 17 5 5 73 S'47 5174 5201 5229 5256 5284 5312 5340 5368 5397 16 8 8 74 5425 5454 5483 55 "2 5541 5570 5600 5629 5659 5689 15 10 11 75 0.5719 0.5750 0.5780 0.581 1 0.5842 0.5873 0.5905 0.5936 0.5968 0.6000 14 13 14 76 6032 6065 6097 6130 6163 6196 6230 6264 6298 6332 *3 15 i6 77 6366 6401 6436 6471 6507 6542 6578 6615 6651 6688 12 18 19 78 6725 6763 6800 6838 6877 6915 6954 6994 7033 7073 11 20 22 79 7113 7154 7195 7236 7278 7320 7363 7406 7449 7493 10° 23 24 80° 0-7537 0.7581 0.7626 0.7672 0.7718 0.7764 0.781 1 0.7858 0.7906 0.7954 9 35 45 81 0.8003 0.8052 0.8102 0.8152 0.8203 0.8255 0.83070.83600.84130.8467 8 4 5 82 0.8522 0.8577 0.8633 0.8690 0.8748 0.8806 0.8865 0.8924 0.8985 0.9046 7 7 9 83 0.91090.91720.92360.9301 0.9367 0.9433 0.9501 0.9570 0.9640 0.971 1 6 11 14 84 0.97840.9857 0.9932 1.0008 1.0085 1.0164 1.0244 1.0326 1.0409 1.0494 5 14 18 85 1.0580 1.6669 1-0759 1.0850 1.0944 1.1040 1.1138 1.1238 1.1341 1.1446 4 18 23 86 1.1554 1.1664 I-I777 1-1893 I-20I2 1.2135 1.2261 1.2391 1.2525 1.2663 3 21 27 87 1.2806 1.2954 1.3106 1.3264 1.3429 1-3599 1-3777 1-3962 1.4155 1-4357 2 25 32 88 1.4569 1.4792 1.5027 1.5275 1.5539 1.5819 1.6119 1.6441 1.6789 1.7167 1 28 36 89 1.7581 1.8038 1.8550 1.9130 1.9800 2.0591 2.1561 2.28102.4571 2.7581 0° 32 41 i°.o °.9 °.8 °.7 °.6 -.5 °.4 "-3 '-2 ".1 Deg. Interpola. for h'dths (45) 4 PL. LOG. COT. LOG SIN, etc. LOGARITHMS OF TRIGONOMETRIC FUNCTIONS TO FIVE PLACES. Note. The table gives the log of the natural value of the function, and hence the char- acteristic is negative when that value is fractional. The common practice of adding 10. to avoid the negative characteristic is not recommended. 0° log cos 0° log COS o'-i6' .i7'-28' 29'-36' 37'-43' 0.00 000 T.99 999 1.99998 1.99997 44'-6o' 32'-43' 24'-3i' i7'-23' 44'-49' 5o'-54' S5'-59' 60' 1.99 996 1-99 995 1.99994 1-99 993 Ii'-i6' 6'-io' I'-S' 0' log sin 89° log sin * 89° 0° 0° r log sin log tan log cot / log sin log tan log oot 0' 00" 00 00 60' 30' 3-94 084 3.94086 2.05 914 30' I 4-46 373 4-46 373 3-53 627 59 31 95508 95510 04490 29 2 4.76476 4.76476 3-23 524 58 32 96887 96889 03 III 28 3 494085 4-94 085 3-05 915 57 33 98223 - 98 225 01775 27 4 3.06 579 3.06 579 2.93 421 56 34 3.99 520 3-99 522 2.00478 26 s 3.16 270 3.16270 2.83 730 55 35 2.00 779 2.00 781 1.99 219 25 6 24188 24188 75812 54 36 02002 02004 97996 24 7 30882 30822 69 118 53 37 03192 03194 96806 23 8 36682 36682 63318 52 38 04350 04353 95647 22 9 41797 41797 58203 51 39 05478 05481 94519 21 10 3-46 373 346 373 2.53 627 50 40 2.06 578 2.06 581 1-93419 20 II 50512 50512 49488 49 41 07 650 07653 92347 19 12 54291 54291 45709 48 42 08696 08 700 91300 18 13 57767 57767 42233 47 43 09718 09722 90278 17 14 60985 60986 39014 46 44 10 717 10720 89280 16 15 3.63 982 3-63982 2.36018 45 45 2.11693 2. 1 1 696 1.88304 15 16 66784 66785 33215 44 46 12647 12 651 87349 14 17 69417 69418 30582 43 47 13581 13585 86415 13 18 71 900 71900 28 100 42 48 14495 14500 85 500 12 19 74248 74248 25 752 41 49 15 391 15395 84605 II 20 3-76475 3.76476 2.23 524 40 50 i.i6 268 2.16 273 1.83 727 10 21 78594 78595 21405 39 51 17 128 17 133 82867 9 22 80615 80615 19385 38 52 17971 17976 82024 8 23 82545 82546 17454 37 53 18798 18804 81 196 7 24 84393 84394 15606 36 54 19 610 19 616 80384 6 25 3.86 166 3.86 167 2.13833 35 55 2.20 407 2.20413 1-79587 5 26 87870 87871 12 129 34 56 21 189 21 195 78805 4 'I 89509 89510 10490 33 57 21958 21 964 78036 3 28 91088 91089 08 91 1 32 58 22 713 22 720 77280 2 29 92 612 92613 07 387 31 59 23456 23462 76538 I 30' 3.94084 3.94 086 2.05 914 30' 60' 2.24 186 2.24 192 1.75 808 0' log cos log cot log tan r log oos log oot log tan r 89^ (47) ftQo LOG SIN, etc. w 89° LOG SIN, etc. 1° 2° / log sin log tan log cot log cos log sin log tan log cot log cos 0' 2.24186 2.24192 1.75808 1-99 993 2.54282 2.54308 7.45692 7.99974 60' I 24903 24910 75090 99 993 54642 54669 45331 99973 59 2 25 609 25 616 74 384 99 993 54 999 55027 44 973 99 973 58 3 26304 26312 73688 99 993 55 354 55382 44618 99972 57 4 26 988 26 996 73 004 99992 55705 55 734 44266 99972 56 5 2.27661 2.27669 7.72331 1.99992 2.56054 2.56083 1.43 917 1.99 971 55 6 28324 28332 71668 99992 56400 56429 43571 99971 54 7 28977 28986 71 014 99992 56743 56773 43227 99970 53 8 29621 29629 70371 99992 57084 57 114 42886 99970 52 9 30 255 30 263 69 737 99991 57421 57452 42548 99969 5' 10 230879 2.30888 1.69112 7.99 991 2-57 757 2.57788 7.42212 7.99969 50 II 31495 31505 68495 99991 58089 58 121 41879 99968 49 12 32103 32 112 67888 99990 58419 58451 41549 99968 48 >3 32702 32 711 67289 99990 58 747 58 779 41 221 99 967 47 14 33 292 33 302 66 698 99990 _ 59 072 59105 40895 99967 46 'S 2-33875 2.33886 1.66 114 1.99990 2-59 395 2.59428 1.40572 1.99967 45 i6 34450 34461 65539 99989 59715 59 749 40251 99966 44 '7 35 018 35 029 64 971 99989 60033 60068 39932 99966 43 i8 35578 35590 64410 99989 60349 60384 39616 99965 42 19 36 131 36143 63857 99989 60 662. 60 698 39 302 99 964 41 20 2.36678 2.36689 T.63311 7.99 988 2.60973 2.61009 7.38991 7.99964 40 21 37217 37229 62771 99988 61282 61319 38681 99963 39 22 37 750 37 762 62 238 99988 61 589 61 626 38 374 99 963 38 23 38276 38289 61 711 99987 61894 61931 38069 99962 37 24 38 796 38 809 61 191 99987 62 196 62 234 37 766 99 962 36 25 2.39310 2.39323 T.60677 1.99987 2.62497 2.62535 1-37465 T.99961 35 26 39818 39832 60168 99986 62795 62834 37166 99961 34 27 40 320 40 334 59 666 99986 63091 63131 36869 99960 33 28 40816 40830 59170 99 986 63385 63426 36574 99960 32 29 41 307 41 321 58 679 99985 63678 63718 36282 2P959 31 30 2.41 792 5.41 807 7.58 193 7.99 985 2.63968 2.64009 7.35991 7.99959 30 3' 42272 42287 57713 99985 64256 64298 35702 99958 . 29 32 42 746 42 762 57 238 99984 64543 64585 35415 99958 28 3i 43216 43232 56768 99984 64827 64870 35130 99957 27 34 43 680 43 696 56 304 99984 65110 65154 34846 99 956 26 35 2.44139 2.44156 1.55844 1.99983 2.65391 2.65435 1.34565 1-99956 25 36 44594 44 61 1 55389 99983 65670 65715 34285 99955 24 37 45044 45061 54 939 99983 65947 65993 34007 99955 23 38 45489 45507 54 493 99982 66223 66269 33731 99 954 22 39 45930 45948 54052 99982 66497 66543 33457 99954 21 40 2.46 366 2.46 385 T.53 615 7.99 982 2.66769 2.66816 7.33184 7.99953 20 4' 46799 46817 53183 99981 67039 67087 32913 99952 19 42 47 226 47 245 52 755 99981 67308 67356 32644 99952 18 43 47 650 47 669 52 331 99981 67575 67624 32376 99951 "7 44 48069 48089 51 911 99980 67841 67890 32110 99951 16 45 5.48485 2.48505 7.51495 1.99980 2.68 104 2.68 154 7.31 846 7.99 950 •15 46 48896 48917 51083 99 979 68367 68417 31583 99949 '4. 47 49 304 49 325 50 675 99 979 68627 68678 31322 99949 13 48 49 708 49 729 50 271 99 979 68 886 68938 31062 99948 12 49 50 108 50 130 49 870 99978 69 144 69 196 30 804 99 948 11 50 2.50504 2.50527 1.49473 1.99978 2.69400 2.69453 7.30547 7.99947 10 51 50 897 50 920 49 080 99 977 69654 69708 30292 99946 9 52 51 287 51 310 48690 99 977 69907 69962 30038 99946 8 53 51673 51696 48304 99 977 70159 70214 29786 99945 7 54 52055 52079 47921 99976 70409 70465 29535 99944 6 55 2.52434 2.52459 1.47541 1.99976 2.70658 2.70714 1.29286 1.99944 5 56 52810 52835 47165 99 975 70905 70962 29038 99943 4 57 53 183 53 208 46 792 99 975 71 151 71208 28792 99942" 3 58 53552 53578 46422 99 974 71395 71453 28547 99942 2 59 53919 53 945 46055 99 974 71638 71697 28303 99941 I 60' 2.54282 2.54308 1.45692 1.99974 2.71880 2.71940 1.28060 1.99940 0' log 00s log cot log tan log sin log cos log cot log tan log sin > LO 8 G SI 6°-8 N, etc. 88° go '-"-' (4 8) Q>;fo 3° 40 10.40 LOG SIN, etc f log sia log tan log cot log COS log sin log tan log oof log COS 2.71 880 2.71940 1.28060 1,99940 2.84 358 2.84 464 1-15536 T.99 894 60 I 72 120 72181 27819 99940 84539 84646 15354 99893 5g 2 72359 72420 27580 99 939 84718 84826 15174 99892 58 .3 72597 72659 27341 99938 84897 85006 14994 99891 57 4 72834 72896 27104 99938 85075 85185 14815 99891 56 5 2.73069 2-73 132 1.26 868 1-99 937 2.85 252 2.85 363 1-14637 1 .99 890 55 6 73303 73366 26634 99936 85429 85540 14460 99889 54 7 73 535 73600 26400 99936 85605 85717 14283 99888 53 8 73767 73832 26168 99 935 85780 ll^V' 14107 99887 52 9 73 997 74063 25937 99 934 85955 86069 13931 99886 51 10 2.74 226 2.74 292 1.25 708 7.99 934 2.86 128 2.86 243 1-13 757 r.99 88s 50 II 74 454 74521 25479 99 933 86301 86417 13583 99884 49 12 74680 74748 25252 99932 86474 86591 13409 99883 48 13 74906 74 974 25026 99932 86645 86763 13237 99882 47 H 75130 75199 24801 99931 86816 8693s 13065 99881 46 15 2-75 353 2.75 423 1.24577 1.99930 2.86 987 2.87 106 1. 12 894 r.99 880 45 i6 75 575 75645 24355 99929 87156 87277 12 723 99879 44 17 75 795 75867 24133 99929 87325 87447 12553 99879 43 18 76015 76087 23913 99928 .87 494 87616 12384 99878 4» 19 76234 76306 23694 99927 87661 87785 12 215 99877 41 20 2.76451 2.76 525 1-23 475 1.99 926 2.87 829 2-87953 1. 12 047 T.99 876 40 21 76667 76742 23258 99926 87995 88120 II 880 99875 39 22 76883 76958 23042 99925 88 161 88287 11713 99874 38 23 77097 77173 22 827 99924 88326 88453 "547 99873 37 24 77310 77387 22 613 99923 88490 88618 11382 99872 36 25 2.77 522 2.77 600 1.22400 1.99923 2.88 654 2.88 783 I. II 217 1-99871 35 26 77 733 77 81 1 22 189 99922 88817 88948 II 052 99870 34 27 77 943 78022 21978 99921 88980 89 in 10889 99869 33 28 78152 78232 21 768 99 920 89 142 89274 10 726 99868 32 29 78360 78441 21559 99920 89304 89437 , 10563 99867 31 30 2.78 568 2.78 649 1.21351 1-99919 2.89 464 2.89 598 1. 10 402 T.99 866 30 31 78774 78855 21 145 99918 89625 89760 10240 99865 29 32 78 979 79061 20939 99917 89784 89920 10080 99864 28 33 79183 79 266 20734 99917 89943 90080 09 920 99863 27 34 79386 79470 20530 99916 90 102 90240 09 760 99862 26 35 2.79 588 2.79 673 1.20 327 1-99915 2.90 260 2.90 399 1.09 601 T.99 861 25 36 79789 7987s 20 125 99914 90417 90557 09443 99860 24 37 79990 80076 19924 99913 90574 90715 09 285 99859 23 38 80189 80277 19723 99913 90730 90872 09 128 99858 22 39 80388 80476 19524 99912 90885 91 029 08971 99857 21 40 2.80 585 2.80 674 1. 19 326 T-99911 2.91 040 2.91 185 1.08815 1.99 856 20 41 80782 80872 19 128 99910 91 195 91340 08660 99855 19 42 80978 81068 18932 99909 91349 9149s 08 505 99854 18 43 81 173 81264 18736 99909 91502 91 650 08350 99853 17 44 81367 81459 18541 99908 9165s 91803 08197 99852 16 45 2.81 560 2.81 653 1.18347 1-99907 2.91 807 2.91 957 1.08043 1.99 851 IS 46 81752 81 846 18 154 99906 91959 92 no 07 890 99850 14 47 81944 82038 17962 99905 92 no 92 262 07738 99848 13 48 82134 82230 17770 99904 92261 92414 07586 99847 12 49 82324 82420 17580 99904 92 41 1 92565 07435 99 846 II 50 2.82513 2.82 610 1-17390 1.99903 2.92 561 2.92 716 1.07 284 T.99 845 10 51 82 701 82799 17 201 99902 92 710 92866 07134 99844 9 52 82888 82987 17013 95901 92859 93016 06984 99843 8 53 83075 83175 16825 99900 93007 93165 06835 99842 7 54 83261 83361 16639 99 899 , 93154 93313 06687 99841 6 55 2.83 446 2.83 547 1-16453 1.99898 2.93 301 2.93 462 1.06 538 1 .99 840 5 56 .83630 83732 16268 99898 93448 93609 06391 99839 4 57 83813 83916 16084 99897 93 594 93756 06244 99838 3 58 83996 84 100 15900 99896 93740 93903 06097 99837 2 59 84177 84282 15718 99895 93885 94049 05951 99836 I 60 2.84 358 2.84464 1-15536 1.99894 2.94 030 2.94 195 1.05 805 1 .99 834 log cos log cot log tan log sin log oos log cot log tan log sin f m ) (4 9) 86° LOG S 85 IN, e °-89° tc LOG SIN, etc. 6= t log sin log tan log cot log cos log sin . log tan log oot log COS 0' 2.94030 2.94 195 1.05 805 T.99 834 i.oi 923 T.02 162 1.97838 T.99 761 60' I 94174 94340 05 660 99833 02043 02283 97717 99760 59 2 94317 94485 05515 99832 02 163 02404 97596 99 759 58 3 94461 94630 05370 99831 02283 02525 97475 99 757 57 4 94603 94 773 05 227 99830 02402 02645 97 355 99756 56 5 2.94 746 2:94917 1.05 083 1.99829 T.02 520 T.02 766 1.97 234- 1-99 755 55 6 94887 95060 04940 99828 02 639 02885 97115 99 753 54 7 95029 95202 04798 99827 02757 03005 96995 99752 53 8 95170 95 344 04656 99825 02874 03124 96876 99751 52 9 95 310 95486 04514 99824 02992 03242 96758 - 99 749 51 10 2.95 450 2.95 627 1-04373 T.99 823 T.03 109 T.03 361 1.96639 1.99748 50 II 95589 95767 04233 99822 03226 03479 96521 99 747 49 12 95728 95908 04092 99821 03342 03597 96403 99 745 48 13 95867 96047 03953 99 820 03458 03714 96286 99 744 47 14 96005 96187 03813 99819 03574 03832 96168 99742 46 '5 2.96 143 2.96 325 1.03 675 199817 1.03690 1.03948 1.96052 1 .99 741 45 44 16 96280 96464 03536 99816 03805 04065 95 935 99740 17 96417 96602 03398 99815 03920 04 181 95819 99738 43 18 96553 96739 03 261 99814 04034 04297 95703 99 737 42 19 . 96 689 96877 03123 99813 04149 04413 95587 99736 41 20 2.96 825 2.97013 1.02987 T.99 812 T.04 262 T.04 528 1-95 472 i^-99 734 40 21 96960 97150 02850 99810 04376 04643 95 357 99 733 39 22 97095 97285 02715 99809 04490 04758 95242 99731 38 23 97229 97421 02579 99808 04603 04873 95127 99730 37 24 97363 97556 02444 99807 04715 04987 95013 99728 36 25 2.97 496 2.97 691 1.02 309 1.99806 1.04828 1.05 lOI 1.94899 1.99 727 35 26 97629 97825 02175 99804 04940 05214 94786 99726 34 ^7 97762 97 959 02041 99803 05052 05328 94672 99724 33 28 97894 98092 01 908 99802 05 164 05441 94 559 99723' 32 29 98026 98 225 01775 99801 05275 05553 94 447 99721 31 30 2.98 157 2.98 358 1. 01 642 1.99800 1.05 386 1 .05 666 1-94 334 1 .99 720 30 31 98288 98490 01 510 99798 05497 05778 94222 99718 29 32 98419 98622 01378 99797 05 607 05 890 94 no 99717 28 33 98549 9f753 01247 99796 05717 06002 93998 99716 27 34 98679 98884 01 116 99 795 05827 06 113 93887 99714 26 35 2.98 808 2.99015 1.00985 1-99 793 1-05937 1.06224 1-93 776 1-99713 25 36 98937 99145 00855 99792 06046 06335 93665 99711 24 37 99066 99275 00725 99791 06155 06445 93 555 99710 23 38 99194 99405 00595 99790 06 264 06556 93 444 99708 22 39 99322 99 534 00466 99788 06372 06666 93 334 99707 21 40 2.99 450 2.99 662 1.00338 1.99787 T.06 481 T.06 775 1.93 225 T.99 705 20 41 2.99 577 2.99 791 1. 00 209 99786 06589 06885 93115 99704 19 42 2.99 704 2.99919 1. 00 081 99785 06696 06994 93006 99702 18 43 2.99 830 1 .00 046 0.99954 99783 06804 07103 92897 99701 17 44 2.99 956 T.oo 174 0.99 826 99782 06911 07 211 92789 99699 16 45 1.00082 T.oo 301 0.99 699 1-99 781 T.07 018 T.07 320 1.92680 1.99698 IS 46 00207 00427 99 573 99780 07124 07428 92572 99696 14 47 00332 00553 99 447 99778 07231 07536 92464 99695 13 48 00456 00679 99321 99777 07337 07643 92357 99693 12 49 00581 00805 99195 99776 07442 07751 92249 99692 II 50 T.oo 704 T.oo 930 0.99 070 1.99775 1.07548 1.07858 1.92 142 1.99690 10 51 00828 01055 98945 99 773 07653 07964 92036 99689 9 52 00951 01 179 98821 99772 07758 08071 91929 99687 8 53 01 074 01303 98697 99771 07863 08177 91823 99686 7 54 01 196 01427 98573 99769 07968 08283 91 717 99684 6 55 T.oi 318 1. 01 550 0.98 450 1.99 768 T.08 072 T.08 389 1.91 6n 1.99683 5 56 01 440 01673 98327 99767 08176 08495 91505 99681 4 57 01 561 01 796 98204 99765 08280 08600 91 400 99680 3 58 01682 01 918 98082 99764 08383 08705 91295 99678 2 59 01 803 02040 97960 99763 08486 08810 91 190 99677 I 60' 1. 01 923 T.02 162 0.97 838 1.99761 1.08589 1 .08 9 14 1. 9 1 086 1.99675 0' log COB log oot log tan log sin log cos log cot log tan log sin r LOG SIN, etc. 84° 81°-84° (SO) 83= 8^ 5°-8° LOG SIN, etc. 1 log sin ogtan log cot log cos log sin log tan log cot log cos ■-^^^^^ 0' 1.08589 I. 08914 0.91 086 r.99 675 T.14356 T 14780 0.85 220 1-99 575 60' I 08692 09019 90981 99674 14 445 14872 85 128 99 574 59 2 08 795 09123 90877 99672 14 535 14963 85037 99572 58 3 08 897 09227 90773 99670 14 624 15054 84946 99570 57 4 08999 39330 90670 99669 14714 15 145 84855 99568 56 5 T.09 lOI I.( 39434 0.90 566 1.99667 1.14803 1 15236 0.84 764 1.99 566 55 6 09 202 39 537 90463 99 666 14891 15327 84673 99565 54 7 09 304 09 640 90360 99 664 14 980 15417 84583 99563 53 8 09 405 ( 09742 90258 99663 15069 15508 84492 99561 52 9 09 506 ( 39845 90155 99 661 15 157 15598 84402 99 559 51 10 r.09 606 T.( 39947 0.90053 T.99 659 1.15245 I 15688 0.84312 1-99 557 50 II 09707 10049 ?9 95i 99658 IS 333 15777 84223 99556 49 12 09807 10 150 89850 99656 15421 15867 84133 99 554 48 13 09907 10252 89748 9965s 15508 15956 84044 99552 47 14 10006 10353 89647 99653 15596 16046 83954 99550 46 IS T.io 106 T. 10454 0.89 546 1-99651 1.15683 1 16 135 0.83 865 1-99548 45 i6 10205 10 555 89445 99650 15770 16/224 83776 99546 44 17 10304 10656 89344 99648 15857 16 312 83688 99 545 43 18 10402 10 756 89244 99647 15944 16401 83599 99 543 -42 19 10 501 10856 89144 99645 16030 16489 835" 99 541 41 20 T.IO 599 I. 10956 0.89 044 T.99 643 T.16116 T 16577 0.83423 1-99 539 40 21 10697 II 056 88944 99642 16203 16665 83335 99 537 39 22 10795 "155 88845 99640 16289 16753 83247 99 535 38 23 10893 II 254 88746 99638 16374 16841 83159 99 533 37 24 10990 "353 88647 99637 16460 16928 83072 99 532 36 25 T.I I 087 T. 11452 0.88 548 1.99635 T.16545 T 17016 0.82 984 1.99530 35 26 II 184 "551 88449 99 633 16631 17103 82897 99528 34 27 II 281 1 1 649 88351 99632 16 716 17 190 82810 99526 33 28 "377 "747 88253 99630 16801 17277 82723 99524 32 29 1 1 474 11845 881SS 99629 16886 17363 82637 99522 31 30 T.11570 I. "943 0.88057 1.99627 T.16970 T 17450 0.82 550 T.99 520 30 31 II 666 12040 87960 99625 17055 17536 82464 99518 29 32 II 761 12 138 87862 99624 17 139 17 622 82378 99517 28 33 "857 . 12235 87765 99622 17223 17708 82292 99515 27 34 11952 12332 87668 99620 17307 17794 82206 99513 26 35 1. 12 047 I. 12428 0.87 572 T.99 618 1-17391 I 17880 0.82 120 1-99 5" 25 36 12 142 12525 87475 99617 17474 17965 82035 99509 24 3r 12236 12621 87379 99615 17558 18 051 81949 99507 23 38 12 331 [2 717 ^7283 99613 17641 18136 81864 99505 22 39 12425 [2813 87187 99612 17724 18221 81779 99503 21 40 1.12519 I. 12909 0.87091 T.99 610 1.17807 I 18306 0.81 694 1-99 501 20 41 12 612 13004 86996 99608 17890 18 391 81609 99 499 19 42 12 706 13099 86901 99607 17973 18475 81525 99 497 18 43 12799 13194 86806 99605 18055 18560 81 440 99 495 17 44 12892 13289 86711 99603 18 137 18644 81356 99 494 16 45 T.I 2 985 T. 13384 0.86 616 1.99 601 1. 18 220 I 18728 0.81 272 1.99492 15 46 13078 13478 86522 99600 18 302 18 812 81 188 99490 14 47 13 171 13573 86427 99598 18383 18896 81 104 99488 13 48 13263 13667 86333 99596 18465 18979 81 021 99486 12 49 13355 13761 86239 99 595 18547 19063 80937 99484 II 50 113447 I- 13854 0.86 146 I-99 593 1. 18 628 1 19 146 0.80 854 T.99 482 10 51 13 539 13948 86052 99 591 18709 19 229 80771. 99480 9 52 13630 14041 85959 99589 18 790 19312 80688 99478 8 53 13722 14134 85866 99588 18871 19395 80605 99476 7 54 13 813 14227 85773 99586 18952 19478 80522 99 474 6 55 1. 13 904 I. 14320 0.85 680 1.99584 1.19033 I 19 561 0.80 439 1-99472 5 56 13994 14 412 85588 99582 19 113 19643 80357 99470 4 57 14085 14504 85496 99581 19 193 19725 80275 99468 3 S8 1417s 14597 85403 99 579 19273 19807 80193 99 466 2 59 14 266 14688 85312 99 577 19353 19889 80 HI 99464 1 60' 1.14356 I. 14 780 0.85 220 1-99 575 I.I9 433 I 19971 0.80 029 1.99 462 0' log cos log cot log tan log sin log 00s log cot log tan log sin t 82° (sO QI0 LOG SIN, etc. wj. 8r-84° LOG SIN, etc. 9= 10= / log sin log tan log oot log ooa log sin log tan log oot log cos 0' 1-19 433 1. 19971 3.80029 [.99462 T.23 967 1.24 632 0.75 368 1-99 335 60' I 19513 20053 79 947 99460 24039 24706 75294 99 333 59 2 19592 20134 79866 99458 24 110 24779 75221 99331 58 3 19672 20 216 79784 99456 24 181 24853 75147 99328 57 4 19751 20297 79703 99 454 24253 24926 75074 99326 56 5 1.19830 1.20378 0.79 622 1.99452 1.24324 T.25000 0.75000 1-99324 55 6 19909 20459 79541 99450 24395 25073 74927 99322 54 7 19988 20 540 79460 99448 24466 25 146 74854 99319 53 8 20067 20 621 79 379 99446 24536 25 219 74781 99317 52 9 20145 20 701 79299 99 444 24607 25292 74708 99315 51 10 T.20 223 T.20 782 0.79 218 7.99442 1.24677 T.25 365 0.74635 1-99313 50 II 20302 20862 79138 99440 24748 25 437 74563 99310 49 12 20380 20942 79058 99438 24818 25510 74490 99308 48 13 20458 21 022 78978 99436 24888 25582 74418 99306 47 14 20535 21 102 78898 99 434 24958 25655 74 345 99304 46 15 1.20613 7.21 182 0.78818 1.99432 1.25028 1.25 727 0.74 273 1-99301 45 i6 20691 21 261 78739 99429 25098 25799 74201 99299 44 17 20768 21341 78659 99427 25 168 25871 74129 99297 43 i8 20845 21 420 78580 99425 25237 25943 74057 99294 42 19 20922 21499 78501 99423 25307 26015 73985 99292 41 20 T.20 999 7,21 578 0.78 422 1-99 421 1-25376 T.26086 0-73914 T99 290 40 21 21 076 21657 78343 99419 25 445 26158 73842 99288 39 22 21153 21736 78264 99417 25514 26229 73771 99285 38 23 21 229 21 814 78186 99415 25583 26301 73699 99283 37 24 21 306 21893 78107 99413 25652 26372 73628 99281 36 25 1.21 382 1.21 971 0.78 029 1-99411 1.25 721 T.26 443 0-73 557 1.99278 35 26 21458 22049 77951 99409 25790 26514 73486 99276 34 27 21534 22 127 77873 99407 25858 26585 73415 99274 33 28 21 610 22205 77 795 99404 25927 26655 73 345 99271 32 29 21 685 22283 77717 99402 25995 26726 73274 99269 31 30 7.21 761 7.22 361 0.77 639 1 .99 400 1.26063 T.26 797 0.73 203 T.99 267 30 31 21836 22438 77562 99398 26 131 26867 73133 99264 29 32 21 912 22516 77484 99396 26199 26937 73063 99262 28 33 21987 22593 77407 99 394 26267 27008 72 992 . 99260 27 34 22062 22670 77330 99392 26335 27078 72922 99257 26 35 7.22 137 7.22 747 0.77253 1.99390 1.26403 1.27 148 0.72 852 1-99255 25 36 22 211 22824 77176 99388 26470 27 218 72782 99252 24 37 22286 22901 77099 99385 26538 27288 72712 99250 23 38 22361 22977 77023 99383 26605 27357 72643 99248 22 39 22435 23054 76946 99381 26672 27427 72573 99245 21 40 7.22 509 1.23 130 0.76 870 1-99 379 7.26 739 1.27496 0.72 504 T.99 243 20 41 22583 23206 76794 99 377 26806 27 566 72434 99241 'i 42 22657 23283 76717 99 375 26873 27635 72365 99238 18 43 22731 23359 76641 99372 26940 27704 72296 99236 17 44 22805 23435 76565 99370 27007 27773 72227 99233 16 45 7.22 878 1.23 510 0.7.6 490 1.99368 1.27073 1.27842 0.72 158 1.99231 IS 46 22952 23586 76414 99366 27140 27 911 72089 99229 14 47 23025 23661 76339 99364 27206 27980 72020 99226 13 48 23098 23737 76263 99362 27273 28049 71 951 99224 12 49 23171 23812 76188 99 359 27339 28117 71883 99221 II 50 1.23244 7.23 887 0.76 113 i'-99 357 7.27 405 T.28 186 0.71 814 T.99 219 10 51 23317 . 23 962 76038 99 355 27471 28254 71746 99217 9 52 23390 24037 75963 99 353 27537 28323 71677 99214 8 53 23462 24 112 75888 99351 27602 28391 71 609 99212 7 54 23535 24186 75814 99348 27668 28459 71541 99209 6 55 1.23607 7.24 261 0.75 739 1.99346 1-27734 1.28 527 0.71 473 1 .99 207 5 56 23679 24335 75665 99 344 27799 28595 71405 99204 4 57 23752 24410 75590 99342 27864 28662 71338 99 202 3 58 23823 24484 75516 99340 27 930 28730 71270 99200 2 59 23895 24558 75442 99 337 27995 28798 71 202 99197 I 60' 1.23967 1.24632 0.75 368 1-99 335 1.28060 T.28 865 0.71 13s 199195 0' log G03 log cot log tan log sin log 003 log oot log tan log sin r LOG SIN, etc. 80^ 77°-80° (52) 79= ir 100 ^°-12 12 LOG SIN, !° etc f log sin log tan log cot log 00a log sin log tan log cot log cos 1 0' ¥ 1.28060 1.28865 0-71135 1-99 195 28 125 28 933 71 067 99 192 28190 29000 71000 99190 28254 29067 70933 99187 28319 29134 70866 99185 1.31788 1.32747 0.67253 T.99040 60' 1 A 31 847 32 810 67 190 99 038 59 1 2 3 31907 32872 67128 99035 31966 32933 67067 99032 58 57 4 _ 32 025 32995 67005 99030 56 s 1.28384 1.29 201 0.70799 T.99182 1.32084 1.33057 0.66943 1.99027 55 54 53 52 6 28448 29268 70732 99180 32143 33 119 66881 99024 7 28512 2933s 70665 99177 32 202 33 180 66 820 99 022 8 28577 29402 70598 99175 32261 33242 66758 99019 9 28641 29468 70532 99172 32319 33303 66697 99016 51 10 1.28705 1.29535 0.70465 T.99170 1.32378 T.33365 0.66635 1-99013 50 II 28769 29601 70399 99167 32437 33426 66574 99 on 49 12 28833 29668 70332 99165 32495 33487 66513 99008 48 13 28896 29734 70266 99162 32553 33548 66452 99005 47 14 28960 29800 70200 99160 _ 32612 33609 66391 99002 46 '5 1.29024 T.29 866 0.70134 T-99 157 1.32670 1.33670 0.66330 1.99000 45 i6 29087 29932 70068 99155 32728 33 731 66269 98997 44 17 29150 29998 70002 99152 32786 33792 66208 98994 43 18 29214 30064 69936 99150 32844 33853 66147 98991 42 19 29277 30130 69870 99147 32902 33913 66087 98989 41 20 1.29340 1.30195 0.69805 T.99145 1.32960 T.33974 0.66026 T.98986 40 21 29403 30261 69739 99142 33018 34034 65966 98983 39 22 29 466 30 326 69 674 99 140 33075 34095 65905 98980 38 23 29529 30391 69609 99137 33133 34155 65845 98978 37 24 29591 30457 69543 99135 33190 34215 65785 98975 36 25 1.29654 1.30522 0.69478 1.99 132 1-33248 1-34,276 0.65724 1.98972 35 26 29716 30587 69413 99130 33305 34336 65664 98969 34 ^? 29779 '30652 69348 99127 33362 34396 65604 98967 33 28 29841 30717 69283 99124 33420 34456 65544 98964 32 29 29 903 30 782 69 218 99 122 33 477 34516 65484 98961 31 30 r.29966 r. 30 846 0.69154 Y.99119 1-33 534 T-34576 0.65424 T.98958 30 31 30028 30911 69089 99 117 33591 34635 65365 98955 29 32 30090 30975 69025 99 114 33647 34695 65305 98953 28 33 30151 31040 68960 99 112 33704 34 755 65245 98950 27 34 30 213 31 104 68 896 99 109 33761 34814 65186 98947 26 35 1.30275 1.31 168 0.68832 T.99106 1.33818 1..34874 0.65126 7.98944 25 36 30336 31233 68767 99104 33874 34 933 65067 98941 24 37 30 398 31 297 68 703 99 loi 33931 34992 65008 98938 23 38 30459 31 361 68639 99099 33987 35051 64949 98936 22 39 30521 31425 68575 99096 34043 35 III 64889 98933 21 40 1.30582 T.31489 0.68 511 1.99093 T.34 100 1.35 170 0.64 830 1.98 930 20 41 30643 31552 68448 99091 34156 35229 64771 98927 19 42 30704 31 616 68384 99088 34212 35288 64712 98924 18 43 30765 31679 68321 99086 34268 35 347 64653 98921 17 44 30826 31743 68257 99083 34324 35405 64595 98919 16 '^l 1.30887 1. 3 1 806 0.68194 1.99080 1.34380 1.35464 0.64536 1.98916 15 46 30947 31870 68130 99078 34436 35523 64477 98913 14 H 31008 31933 68067 99075 34491 35581 64419 98910 13 48 31068 31996 68004 99072 34 547 35640 64360 98907 12 49 31 129 32 059 67 941 99 070 34602 35698 64302 98904 II 50 1.3 1 189 1.32 122 0.67878 T.99067 T.34 658 1.35757 0.64243 T.98901 10 SI 31250 32185 67815 99064 34713 35815 64185 98898 9 52 31310 32248 67752 99062 34769 35873 64127 98896 8 53 31370 32 311 67689 99059 34824 35931 64069 98893 7 54 _ 31 430 32373 67627 99056 34879 35989 64011 98890 5 55 1.31490 1.32436 0.67564 1.99054 1.34934 1-36047 0.63953 1.98887 5 56 31549 32498 67502 99051 34989 36105 63895 98884 4 57 31609 32561 67439 99048 35 044 36 163 63 837 98 881 3 58 31 669 32 623 67 377 99 046 35099 36221 63779 98878 2 ^1, 31728 32685 67315 99-043 _ 35 154 _ 36 279 63721 98875 I . 60' 1.31788 1.32747 0.67253 1.99040 1.35209 1.36336 0.63664 1.98872 0' r 1 log 00a log cot log tan log sin log 003 log cot log tan log sin r 78° (5: ) 77° LOG SI N, e1 -80° tc. i3^-ie? LOG SIP), etc. 13° 14° t log sin log tan log cot log cos log sin log tan log cot log oob 0' 1.35209 1.36336 0.63664 1.98872 1.38368 1.39677 0.60323 T.98 690 60' I 35263 36 394 63 606 98 869 38418 39731 60269 98687 59 2 35318 36452 63548 98867 38469 39785 60215 986S4 58 •3 35 373 36509 63491 98864 38519 39838 60162 98681 57 4 35427 36 566 63 434 9-8 861 38570 39892 60108 98678 56 s 1-35481 1.36624 0.63376 1.98858 1.38620 1.39945 0.60055 1-98675 55 54 53 52 51 6 35536 36681 63319 98855 38670 39999 60001 98671 7 35590 36 738 63 262 98 852 38721 40052 59948 98668 8 35644 36 795 63 205 98 849 38771 40106 59894 98665 9 35698 36 852 63 148 98 846 38821 40159 59841 98662 10 1 '35 752 T.36 909 0.63091 1.98843 1.38871 T.40212 0.59788 T.98 659 50 4Q II 35806 36 966 63 034 98 840 38921 40266 59 734 98656 12 35860 37023 62977 98837 38971 40319 59.681-— TfS^ya- t7 -48 13 35914 37 080 62 920 98 834 39021 40372 59628 98649_ 47 46 14 35968 37137 62863 98831 39071 40425 59575 98646 IS 1.36022 1-37193 0.62807 1-98828 1.39121 1.40478 0.59522 1.98643 45 44 43 42 16 36075 37 250 62 750 98 825 39170 40531 59469 98640 17 36129 37 306 62 694 98 822 39220 40584 59416 98636 18 36182 37 363 62 637 98 819 39270 40636 59364 98633 19 36236 37419 62581 98816 39319 40689 59311 98630 41 20 T.36 289 T.37476 0.62524 T.98813 1-39369 T.40742 0.59258 T.98 627 40 21 36342 37532 62468 98810 39418 40795 59205 98623 39 22 36395 37588 62412 98807 39467 40847 59153 98620 ^8 23 36449 37 644 62 356 98 804 39517 40900 59100 98617 36 24 36502 37 700 62 300 98 8oi 39566 40952 59048 98614 25 1-36555 1-37756 0.62244 1.98798 1-39 615 I-4J005 0.58995 T.98 610 35 34 26 36608 37 812 62 188 98 795 39664 41057 58943 98607 27 36660 37 868 62 132 98 792 39 7«3 41109 58891 98604 33 28 ^Vll 37 924 62 076 98 789 39 762 41 161 58 839 98 601 32 29 36766 37 980 62 020 98 786 39811 41214 58786 98597 31 30 r.36 819 T.38035 0.61965 r.98783 T.39 860 T.41 266 0.58 734 T.98 594 30 31 36871 38 091 61 909 98 780 39909 41 318 58682 98591 29 32 36924 38 147 61 853 98 777 39958 41370 58630 98588 28 33 36976 38 202 61 798 98 774 40006 41422 58578 98584 27 34 37028 38 257 61 743 98 771 40055 41474 58526 98581 26 35 T.37081 1.38 313 0.61687 1-98768 1.40103 1.41526 0.58474 1.98578 25 36 37133 38 368 61 632 98 765 40152 41578 58422 98574 24 37 37185 38423 61577 98762 40200 41629 58371 98571 23 38 37237 38479 61 521 98759 40 249 41 681 58 319 98 568 22 39 37289 38 534 6i 466 98 756 40 297 41 733 58 267 98 565 21 40 1-37 341 1.38589 0.61 411 T.98753 T.40346 T.41 784 0.58216 T.98 561 20 41 37 393 38 644 61 356 98 750 40394 41836 58164 98558 19 42 37 445 38 699 ^61 301 98 746 40442 41887 58113 98555 18 43 37 497 38 754 61 246 98 743 40490 41939 58061 98551 17 44 37 549 38 808 61 192 98 740 40538 41990 58010 98548 16 45 1.37600 T.38 863 0.61 137 T.98 737 T.40586 T.42041 0.57959 T.98 545 15 46 37652 38918 61082 98734 40634 42093 57907 98541 14 47 37703 38972 61028 98731 40 682 42 144 57 856 98 538 13 48 37 755 39027 60973 98728 40730 42195 57805 98535 12 49 37806 39 082 60 918 98 725 40778 42246 57754 98531 11 50 7-37 858 T.39 136 0.60864 1.98722 1.40825 1.42297 0.57703 1.98528 10 51 37909 39 190 60 810 98 719 40873 42348 57652 98525 9 52 37960 39 245 60 755 98 715 40921 42399 57601 98521 8 53 38 01 1 39299 60701 98712 40968 42450 57550 98518 7 54 38062 39 353 60 647 98 709 41016 42501 57499 98515 6 55 T-38113 1.39407 0.60593 1.98706 1.41063 1.42552 0.57448 1.98511 5 56 38164 39 461 60 539 98 703 41111 42603 57397 98508 4 57 38215 39515 60485 98700 41 158 42 653 57 347 98 505 3 58 38266 39569 60431 98697 41 205 42 704 57 296 98 501 2 59 38317 39 623 60 377 98 694 41252 42755 57245 98498 1 60 1.38368 1-39677 0.60323 1.98690 1.41300 1.42805 0.57195 1.98494 0' log cos log cot log tan log sin log cos log cot log tan log sin 1 LOG SIN. etc. 76= (54) 76= 15° ^^0 13°-16° lb LOG SIN, etc t log Bin log tan logoot log 00a log sin log tan logoot logoos 0' I 2 1.41300 1.42805 0.57195 1.98494 41347 42856 57144 98491 41394 42906 57094 98488 1.44034 1.45750 0.54250 1.98284 44 078 45 797 54 203 98 281 44122 45845 54155 98277 60' 59 58 3 41441 42957 57043 98484 44 166 45 892 54 108 98 273 % 4 41488 43007 56993 98481 44210 45940 54060 98270 5 141 535 1-43057 0.56943 1.98477 1-44253 1.45987 0.54013 T.98 266 55 54 6 41582 43108 56892 98474 41628 43158 56842 98471 44297 46035 53965 98262 7 44341 46082 53918 98259 S3 52 8 41675 43208 56792 98467 44385 46130 53870 98255 9 41 722 43 258 56 742 98 464 44428 46177 53823 98251 51 10 1.41 768 T.43 308 0.56 692 T.98 460 1.44472 1.46224 0.53776 T.98 248 50 II 41 815 43358 56642 98457 4451& 46271 53729 982^^ 49 12 41861 43408 56592 98453 44 559 46319 53681 98240 48 13 41908 43458 56542 98450 44602 46366 53634 98237 47 14 41954 43508 56492 98447 44646 46413 53587 98233 46 'S 1.42 001 1.43558 0.56442 1.98443 1.44689 1.46460 0.53540 1.98229 45 i6 42047 43607 56393 98440 44 733 46507 53 493 98226 44 17 ,42093 43657 56343 98436 44776 46554 53446 98222 43 18 42140 43707 56293 98433 44819 46601 53399 98218 42 19 42186 43756 56244 98429 44862 46648 53352 98215 41 20 1.42232 T.43 806 0.56194 T.98 426 T.44905 T.46694 0.53306 T.98 211 40 21 42278 43855 56145 98422 44948 46741 53259 98207 39 22 42324 43905 56095 98419 44992 46788 53212 98204 38 23 42370 43954 56046 98415 45035 46835 53165 98200 37 24 42416 44004 55996 98412 _ 45 077 46881 53 119 98196 36 ^5 1.42 461 T.44053 0.55947 T.98 409 1.45 120 1.46928 0.53072 1.98192 35 26 42507 44102 55898 98405 45163 46975 53025 98189 34 27 42553 44 151 55849 98402 45206 47021 52979 98185 33 28 42599 44 20I 55 799 98398 45249 47068 52932 98 181 32 29 42644 44250 55750 98395 45292 47 114 52886 98177 31 30 1.42690 T.44299 0.55701 T.98 391 1-45 334 T.47160 0.52840 T.98 174 30 31 42735 44348 55652 98388 45 377 47207 52793 98170 29 32 • 42781 44 397 55603 98384 45419 47253 52747 98166 28 33 42826 44446 55554 98381 45 462 47 299 52 701 98 162 27 34 42872 44495 55505 98377 45504 47346 52654 98159 26 3| 1.42 917 1-44 544 0.55456 1.98373 1.45547 1.47392 0.52608 1.98 155 25 36 42962 44592 55408 98370 45589 47438 52562 98151 24 37 43008 44641 55359 98366 45632 47484 52516 98147 23 38 43053 44690 55310 98363 45674 47530 52470 98144 22 39 43098 44738 55262 98359 45716 47576 52424 98140 21 40 1-43143 7-44787 0.55213 T.98 356 1-45758 T.47622 0.52378 T.98 136 20 41 43188 44836 55164 98352 45801 47668 52332 98132 19 42 43233 44884 55 "6 98349 45843 47714 52286 98129 18 43 43278 44 933 55067 98345 45885 47760 52240 98125 17 44 43323 44981 55019 98342 _ 45 927 47806 52194 98121 16 45 1.43367 1.45029 0.54971 1.98338 1.45969 1.47852 0.52148 1.98 117 15 46 43 4*2 45078 54922 98334 46 01 1 47897 52103 98 113 14 47 43 457 45126 54874 98331 46053 47943 52057 98 no 13 48 43502 45174 54826 98327 46095 47989 52 01 1 98106 12 49 43546-- 45222 54778 98324 46136 48035 51965 98102 II 50 1.43591 1.45 271 0.54729 T.98 320 T.46178 T.48080 0.51920 T.98 098 10 51 43635 45319 54681 98317 46220 48126 51874 98094 9 52 43680 45367 54633 98313 46262 48 171 51829 98090 8 S3 43 724 45 415 54 585 • 98 309 46303 48217 51783 98087 7 54 43769 45463 54 537 98306 46345 48262 51738 98083 6 ^\ 1-43813 1.45 5" 0.54489 1.98302 T.46386 T.48307 0.51693 T.98 079 5 56 43857 45 559 54441 98299 46428 48353 51647 98075 4 5^ 43901 45606 54 394 98295 46469 48398 51602 98071 3 58 43946 45654 54346 98291 46511 48443 51557 98067 2 59 43 990 45 702 54 298 98 288 46552 48489 51511 98063 I 60' 1.44034 1.45750 0.54250 1.98284 1.46594 1.48534 0.51466 1.98060 0' log cos log cot log tan log sin log COS log cot log tan log sin t 74 (5- 730 LOG^Sl N, e1 '-76° tc. 1 7°-20° LOG SIN, etc. 17° 18° r log sin log tan log cot log ooa log sin log tan log cot log cos 0' 1.46 594 1.48534 0.51466 1.98060 1.48998 1.5 1 178 0.48822 7.97821 60' I 46635 48579 51 421 98056 49037 51221 48779 97817 59 2 46 676 48624 51376 98052 49076 51264 48736 97812 58 3 46717 48669 51 331 98048 49 115 51306 48694 97808 57 4 46758 48 714 51 286 98044 49153 51349 48651 97804 56 s 1.46800 7.48759 0.51 241 7.98040 1.49 192 1.51392 0.48608 1.97800 55 54 53 52 51 6 46841 48804 51 196 98036 49231 51435 48565 97796 7 46882 48849 51151 98032 49269 51478 48522 97792 8 46923 48894 51 106 98029 49308 51520 48480 97788 9 46964 48939 51061 98025 49 347 51563 48437 97784 10 7.47 005 7.48984 0.51 016 7.98021 1.49385 1.51606 0.48394 7.97779 50 II 47045 49029 50971 98017 49424 51648 48352 97775 49 12 47086 49073 50927 98013 49462 51 691 48309 97771 48 '3 47127 49 "8 50882 98009 49500 51734 48266 97767 47 46 H 47168 49163 50837 98005 49 539 51776 48224 97763 '5 1.47209 1.49207 0.50793 1.98001 '•49 577 1.51819 0.48181 7.97759 45 44 i6 47249 49 252 50 748 97 997 49615 51 861 48139 97754 17 47290 49 296 50 704 97 993 49654 51903 48097 97750 18 47330 49 341 50 659 97 989 49692 51946 48054 97746 42 19 47371 49385 50615 97986 49730 51988 48012 97742 41 20 1.47 41 1 7.49430 0.50570 7.97982 T.49768 7.52031 0.47969 7.97738 40 21 47452 49 474 50 526 97 978 49806 52073 47927 97734 39 22 47492 49519 50481 97 974 49844 52115 47885 97729 38 23 47 533 49563 50437 97970 49882 52157 47843 97725 37 24 47 573 49 607 50 393 97 966 49920 52200 47800 97721 36 ^1 1-47613 1.49652 0.50348 1.97962 1.49958 1.52242 0.47758 1.97 717 35 34 26 47654 49 696 50 304 97 958 49996 52284 47716 97713 27 47694 49 740 50 260 97 954 50034 52326 47674 97708 33 28 47 734 49 784 50 216 97 950 50072 52368 47632 97704 32 29 47 774 49828 50172 97946 50110 52410 47590 97700 31 30 T.47814 7.49872 0.50128 1.97942 7.50148 1.52452 0.47548 7.97696 30 ' 3> 47854 49916 50084 97938 50185 52494 47506 97691 29 32 47894 49 960 50 040 97 934 50223 52536 47464 97687 28 • 33 47 934 50004 49996 97930 50261 52578 47422 97683 27 34 47 974 50 048 49 952 97 926 50298 52620 47380 97679 26 35 1.48 014 7.50092 0.49908 7.97922 1.50336 1.52 661 0.47339 1.97674 25 36 48054 50 136 49 864 97 918 50374 52703 47297 97670 24 ^2 48094 50 180 49 820 97 914 50411 52745 4725s 97666 23 38 48133 50 223 49 777 97 910 50449 52787 47213 97662 22 39 48173 50 267 49 733 97 906 50486 52829 47 171 97657 21 40 T.48 213 7.50 31 1 0.49689 7.97902 7.50523 7.52870 0.47130 7.97653 20 41 48252 50 355 49 645 97 898 50561 52912 47088 97649 19 42 48292 50 398 49 602 97 894 50598 52953 47047 97645 18 43 48332 50442 49558 97890 50635 52995 47005 97640 "7 44 48371 50485 49 5 '5 97886 50673 53037 46963 97636 16 45 1.48 41 1 1.50529 0.49471 1.97882 1.50 7 10 1.53078 0.46922 1.97632 IS 46 48450 50572 49428 97878 50 747 53 120 46 880 97 628 14 47 48490 50616 49384 97874 50784 53 161 46839 97623 13 48 48529 50659 49341 97870 50821 53202 46798 97619 12 49 48568 50 703 49 297 97 866 50858 53244 46756 97615 . II 50 7.48 607 7.50 746" 0.49 254 7.97 861 7.50896 1.53285 0.46715 1.97 610 10 5« 48647 50789 49 21 1 97857 50933 53327 46673 97606 9 52 48686 50833 49167 97853 50 970 53 368 46 632 97 602 8 53 48725 50876 49 124 97849 51007 -53409 46591 97 597 7 54 48764 50919 49081 97845 51043 53450 46550 97593 6 55 1.48803 7.50 962 0.49 038 7.97 841 1. 5 1 080 1.53492 0.46508 1.97589 5 56 48842 51005 48995 97837 5H17 53 533 46467 97584 4 57 48881 51048 48952 97833 5« 154 53 574 46426 97580 3 58 48 920 51092 48908 97829 51 191 53615 46385 97576 2 59 1 48959 51 135 48 865 97 825 51227 53656 46344 97571 I LO 6 60' 1.48998 [.51 178 0.48822 1.97 821 1-51264 1.53697 0.46303 1.97567 0' log cos log cot log tan log sin log cos log oot log tan log sin > G SI 9°-7: M, etc. 1° 72° (5^ 710 19° »U LOG SIN, etc f logsm log tan log cot log 00s log sin log tan log oot log 00a 0' 1.51264 1.53697 0.46303 1.97567 1-53405 1.56 107 0.43893 r.97299 60' I 5' 301 53738 46262 97563 51338 53 779 46221 97558. 53440 56 146 43 854 97 294 59 2 53 475 56185 43815 97289 58 3 51374 53820 46180 97 554 SI 411 53861 46139 97550 53509 56224 43776 97285 57 4 53 544 56 264 43 736 97 280 56 6 1-51447 1-53 902 0.46098 1.97545 51484 53943 46057 97541 1-53578 1.56303 0.43697 1.97276 55 S3 613 56 342 43 658 97 271 ';4 7 51520 53984 46016 97536 53647 56381 43619 97266 S3 8 51557 54025 45975 97532 53682 56 420 43 580 97 262 52 9 5' 593 54065 45935 97528 53716 56459 43541 97257 51 10 1.51629 T.54106 0.45894 T.97523 1-53 751 1.56498 0.43502 1.97252 50 II 51666 54147 45853 97519 53785 56 537 43 463 97 248 49 12 51702 54187 45813 97515 53819 56576 43424 97243 48 13 51738 54228 45772 97510 53854 56 615 43 385 97 238 47 14 51774 54269 45731 97506 53888 56 654 43 346 97 234 46 '1 1.51811 1.54309 0.45691 1.97 501 1-53922 1.56693 0.43307 1.97229 45 16 51847 54350 45650 97 497 S3 957 56 732 43 268 97 224 44 17 51883 54390 45610 97492 53991 56 771 43 229 97 220 43 18 51919 54431 45569 97488 . 54025 56810 43190 97215 42 19 51955 54471 45529 97484 54059 56849 43 151 97210 41 20 T.51991 T.54512 0.45488 T.97479 1-54093 T.56887 0.43113 T.97206 40 21 52027 54552 45448 97475 54127 56 926 43 074 97 201 39 22 52063 54593 45407 97470 54161 56965 43035 97196 38 23 52099 54633 45367 97466 54195 57 004 42 996 97 192 37 24 52135 54673 45327 97461 54229 _ 57 042 42958 97187 36 25 1.52 171 1.54714 0.45286 1.97457 1-54263 1.57081 0.42919 1.97182 35 26 52207 54754 45246 97453 54297 57120 42880 97178 34 27 52242 54794 45206 97448 54 331 57158 42842 97173 33 28 52278 54835 45165 97444 54365 57197 42803 97168 32 29 52314 5487s 45125 97439 54 399 57 23s 42 765 97 163 31 30 1-52350 1-54915 0.45085 T.97435 1-54 433 1.57274 0.42726 1.97159 30 31 52385 54955 45045 97430 54466 57312 42688 97154 29 32 52421 54 995 45005 97426 54500 57351 42649 97149 28 33 52456 55035 44965 97421 54 534 57389 42611 97145 27 34 52492 55075 44925 97417 54567 57428 42572 97140 26 ^l 1.52527 1.55 115 0.44885 1.97412 1.54601 1.57466 0.42534 1.97 135 25 36 52563 55155 44845 97408 54635 57504 42496 97130 24 37 52598 55195 44805 97403 54668 57 543 42457 97126 23 38 52634 55235 44765 97 399 54702 57581 42419 97121 22 39 52669 55275 44725 97394 54 735 57619 42381 97116 21 40 1.52705 1.55315 0.44685 T.97390 1.54 769 T.57658 0.42342 T.97111 20 41 52740 55 355 44645 97385 54802 57 696 42 304 97 107 19 42 52775 55 395 44605 973S1 54836 57 734 42 266 97 102 18 43 52811 55434 44566 97376 54869 57772- 42228 97097 17 44 52846 55474 44526 97372 54903 57810 42190 97092 16 45 1.52 881 1.55514 0.44486 1.97367 1-54936 r.57849 0.42151 T.97087 15 46 52916 55554 44446 97363 54969 57887 42113 97083 14 47 52951 55 593 44407 97358 55003 57925 42075 97078 13 48 52986 55633 44367 97 353 55036 57963 42037 97073 12 49 53021 55673 44327 97349 55069 58 001 41 999 97 068 II 50 1.53056 7.55712 0.44288 T.97344 1.55 102 T.58039 0.41961 1.97063 10 SI 53092 55752 44248 97340 55136 58077 41923 97059 9 52 53126 55 791 44209 97335 55169 58115 41885 97054 8 53 53161 55831 44169 97331 55202 58 153 41 847 97 049 7 54 53196 55870 44130 97326 _ 55 23s 58 191 41 809 97044 6 55 1-53 231 1.55910 0.44090 1.97322 1.55 268 1.58229 0.41 771 1.97039 5 56 53266 55949 44051 97317 55 301 58 267 41 733 97 035 4 H 53301 55989 44 01 1 97312 55 334 58 304 41 696 97030 3 58 53336 56028 43972 97308 55367 58 342 41 658 97 025 2 59 _ 53 370 56067 43933 97303 55400 58 380 41 620 97 020 1 60 1-53405 1-56107 0.43893 1.97299 I -55 433 1.58418 0.41582 1.97015 0' log 00s log oot log tan log sin log 00s log oot log tan log sin 1 70° (s ?) 69° LOG s " 69 N, el °-72° tc. 2 1 °-24° LOG SIN, etc. 2r 22° t log aiu log tan log oot log COS log sin log tan log oot log cos 0' > -55 433 f. 58 418 0.41 582 1-97015 1-57 358 T.60 641 0.39 359 T.96 717 60' I 55466 58 455 41545 97010 57389 60 677 39323 96 711 59 2 55 499 58493 41507 97005 57420 60714 39286 96 706 58 3 55532 58531 41469 97001 57451 60 750 39250 96 701 57 4 55564 58569 41431 96996 57482 60 786 39214 96696 56 s 1-55 597 1.58606 0.41 394 T.96 991 1-57 514 T.60 823 0.39 177 T.96 691 55- 6 55630 58644 41356 96986 57 545 60859 39 141 96686 54 7 55663 58681 41 319 96981 57576 60895 39105 96681 53 8 55695 58719 41 281 96976 57607 60931 39069 96676 52 9 55728 58757 41243 96971 57638 60967 39033 96670 5J 10 1.55761 1-58794 0.41 206 T.96 966 1.57669 T.61 004 0.38 996 T.96 665 50 II 55 793 58832 41 168 96962 57700 61 040 38960 96660 49 12 "f^^ 58869 41 131 96957 57731 61 076 38924 96655 48 13 55858 58907 41093 96952 57762 61 112 38888 96650 47 14 55891 58944 41 056 _ 96 947 57 793 61 148 38852 96645 46 '5 1-55923 1.58 981 0.41 019 1 .96 942 1.57824 T.61 184 0.38816 1.96640 45 i6 55956 59019 40981 96937 57855 61 220 38780 96634 44 17 55988 59056 40944 96932 57885 61 256 38744 96629 43 18 56021 59094 40906 96927 57916 61 292 38708 96 624 42 19 56053 59 131 40869 96922 57 947 61328 38672 96619 41 20 1.56085 1.59 168 0.40 832 T.96 917 1-57978 T.61 364 0.38 636 T.96 614 40 21 56 118 59205 40795 96912 58008 61 400 38600 96608 39 22 56150 59243 40757 96907 58039 61436 38564 96603 38 23 56 182 59 280 40720 96903 58070 61472 38528 96598 37 24 56215 59317 40683 96898 58101 61508 38492 96593 36 ^1 1.56247 1-59 354 0.40 646 1.96893 T.58 131 T.61 544 0.38 456 1.96588 35 26 56279 59391 40609 96888 58162 61579 38421 96582 34 27 563" 59429 40571 96883 58192 61 615 38385 96577 33 28 56343 59466 40534 96878 58223 61651 38349 96572 32 29 56375 59503 40497 96873 58253 61687 38313 96567 31 30 1.56408 1.59540 0.40 460 1.96868 1.58284 T.6i 722 0.38 278 T.96 562 30 31 56440 59 577 40423 96863 58314 61758 38242 96556 29 32 56472 59614 40386 96858 58345 61794 38206 96551 28 33 56504 59651 40349 96853 58375 61830 38170 96546 27 ■ 34 56536 59688 40312 96848 58406 61865 38135 96541 26 35 T.56 568 1-59725 0.40 275 T.96 843 T.58 436 1.61 901 0.38099 1.96535 25 36 56599 59762 40238 96838 58467 61 936 38064 96530 24 37 56631 59 799 40 201 96833 58497 61972 38028 96525 23 38 56663 59835 40 165 96828 58527 62008 37992 96520 22 39 56695 59872 40 128 96823 58557 62043 37 957 96514 21 40 1.56727 1.59 909 0.40091 T.96 818 1.58588 T.62 079 0.37 921 T.96 509 20 41 56759 59946 40054 96813 58618 62114 37886 96504 19 42 56790 59983 40017 96808 58648 62 150 37850 96498 18 43 56822 60019 39981 96803 58678 62 185 37815 96493 17 44 56854 60056 39 944 96798 58709 62 221 37 779 96488 16 45 T.56 886 T.60 093 0.39 907 1.96793 1-58739 T.62 256 0-37 744 T.96 483 '5 46 56917 60 130 39870 96788 58769 62 292 37708 96477 14 47 56949 60 166 39834 96783 58799 62327 37673 96472 '3 48 56980 60203 39 797 96778 58 829 62 362 37638 96467 12 49 57012 60240 39760 96772 58859 62398 37602 96461 II 50 1.57044 1.60 276 0.39 724 1.96767 T.58 889 1.62433 0.37 567 T.96 456 10 51 57075 60313 39687 96 762 58919 62468 37532 96451 9 52 57107 60349 39651 96757 58949 62504 37496 96445 8 53 57138 60386 39614 96752 58979 62539 37461 96440 7 54 57169 60422 39578 96747 59009 62574 37426 96435 6 55 1.57 201 T.60 459 0.39 54« T.96 742 1.59039 1.62 609 0.37 391 1.96429 5 56 57232 60495 39505 96737 59069 62645 37 355 96424 4 57 57264 60532 39468 96732 59098 62680 37320 96419 3 58 57295 60568 39432 96727 59128 62715 37285 96413 2 59 57326 60605 39 395 96 722 59158 62 750 37250 96408 I 60' 1-57358 1.60 641 0.39 359 1.96717 1.59188 1.62 785 0.37215 1 .96 403 0' log 00s log oot log tan log sin log cos log oot log tan log sin t LOG SIN, etc. 68<= 66°-68° (58) 67^ 23= 21°-24° 24° LOG SIN, etc log sin log tan log cot log ops 1-59 188 59 2i» 59247 59277 _ 59 307 1-59336 59366 59396 59425 _ 59 455 T.59 484 59514 59 543 59 573 59602 7.59 632 59661 59690 59720 59 749 1-59 778 59808 59837 59866 _ 59 895 1-59924 59 954 59983 60012 60041 Y.60 070 60099 60128 60 157 60186 7.60 215 60244 60273 60302 60331 T.60 359 60388 60417 60446 _ 60 474 1.60503 60532 60561 60589 60618 7.60 646 60675 60704 60732 60761 T.60 789 60818 60846 60875 _ 60 903 1.60931 1.62 785 62820 6285s 62890 62926 T.62 961 62996 63031 63066 63101 7-63 13s 63170 63 205 63240 _ 63 275 1-63310 63345 63379 63414 63449 7.63 484 63519 63553 63588 63623 7.63 657 63692 63 726 63761 63796 7.63 830 63865 63899 63934 _ 63 968 1.64003 64037. 64072 64 106 64 140 7.6417s 64209 64243 64278 _ 64 312 1 .64 346 64381 64415 64449 _ 64 483 1.64517 64552 64586 64620 64654 1 .64 688 64 722 64756 64790 64824 7.64 858 0.37 215 37180 3714s 37 no 37074 0.37 039 37004 36969 36934 -36 899 0.36 865 36830 36795 36 760 36725 0.36 690 36655 36621 36586 36551 0.36516 36481 36447 36412 36377 0.36 343 36308 36274 36239 36204 0.36 170 36135 36101 36066 36032 0-35 997 35963 35928 35894 35860 0.35 825 35791 ■ 35 757 35722 35688 0.35 654 35619 35585 35551 35517 0.35 483 35448 35414 35380 35346 0.35 312 35278 35244 35210 35 176 0.3s '42 1.96403 96397 96392 96387 _ 96 381 1.96376 96370 96365 96360 96354 7.96 349 96343 96338 96333 _ 96 327 1.96322 96316 96311 96305 96300 7.96 294 96289 96284 96278 96273 1.96 267 96262 96256 96251 9624s T.96 240 96234 96229 96223 96218 7.96212 96207 96 201 96 196 96 190 7.96 185 96179 96174 96168 96 162 1.96 157 96151 96 146 96 140 _ 96 135 1.96 129 96 123 96118 96 112 96 107 7.96 lOI 96095 96090 96084 _ 96 079 1.96073 log sis log tan log oot log cos 1.60 931 60960 60988 61 016 _ 61 045 ' 1. 61 073 61 loi 6i 129 61 158 61 186 7.61 214 61 242 61 270 61298 61 326 T-6i 354 61382 61 411 61438 61 466 7.61 494 61 522. 61550 61578 61 606 7.61 634 61 662 61689 61 717 61745 7.61 773 61 800 61828 61856 61883 7.61 911 61939 61 966 61994 62021 7.62 049 62076 62 104 62 131 62 159 7.62 186 62 214 62241 62268 62 296 7.62 323 62 350 62377 62405 _ 62 432 1.62459 62486 62513 62 541 _ 62 568 1-62595 1.64 858 64892 64 926 64960 •_ 64 994 1.65 028 65 062 65 096 65130 65 164 7.6s 197 65231 65 265 65299 _ 65 333 1.65 366 65 400 65434 65467 _ 65 501 165535 65568 65 602 65636 _ 65 669 1.65 703 65736 65770 65803 _ 65 837 1.65 870 65904 65937 65971 66004 7.66 038 66071 66 104 66138 66 171 7.66 204 66238 66 271 66304 _ 66 337 1.66371 66404 66437 66470 _ 66 503 1.66537 66 570 66603 66636 66669 7.66 702 66735 66768 66801 66834 7.66 867 0.35 142 35108 35074 35040 35006 0.34 972 34938 34904 34870 34836 0.34 803 34769 34 735 34701 34667 0.34 634 34600 34566 34 533 34499 0.34 465 34432 34398 34364 34331 0.34 297 34264 34230 34197 34163 0.34 130 34096 34063 34029 33996 0.33 962 33929 33896 33862 33829 1.96073 96067 96062 96056 96050 7.96 045 96039 96034 96028 96022 7.96017 96 on 96005 96000 95 994 7.95 988 95982 95 977 95971 95965 T-95 960 95 954 95948 95942 _ 95 937 1-95931 95925 95920 95914 95908 7.95 902 95897 95891 95885 _ 95 879 1-95873 95868 95 862 95856 95850 0.33 796 1-95844 33762 95839 33729 95833 33696 95827 33663 95821 0.33 629 1-95 815 33596 95 810 33563 95804 33530 • 95 798 33 497 95792 0.33463 1.95786 33430 95780 33 397 95 775 33364 95769 33331 95763 0.33 298 1-95 757 33265 95751 33232 95 745 33199 95 739 33166 95 733 0.33 133 1.95728 log COS log cot log tan log sin | log cos log cot log tan log sin 60' 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 3' 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 «S 14 13 12 11 10 9 8 7 6 5 4 3 2 66° (59) Afio LOG SIN, etc. 25°-28^ LOG SIN, etc. 26*^ 26^ t log sin log tan log cot log cos log sin log tan log oot log cos ^^^" 0' T.62 595 r.66 867 0-33 133 7.95 728 T.64 184 7.68818 0.31 182 7-95 366 60' I 62622 66900 33100 95722 64210 68850 31 150 95 360 59 2 62649 66933 33067 95716 64 236 68882 31 118 95 354 - -58- 3 62676 66966 33034 95710 64262 68914 31086 95348 57 4 62703 66999 33 001- 95704 64288 68946 3' 054 95341 56 5 1.62730 T.67 032 0.32 968 1.95 698 7.64313 7.68 978 0.31 022 1-95 335 55 6 62757 67065 32935 95692 64339 69010 30990 95329 54 7 62784 67098 32902 95686 64365 69042 30958 95323 53 8 62 8u 67 131 32869 95680 64391 69074 30926 95317 52 9 62838 67163 32837 95674 64417 69 ie6 30894 95310 51 10 r.62 865 1.67 196 0.32 804 7.95 668 T.64 442 7.69 138 0.30 862 7.95 304 50 n 62892 67229 32771 95663 64468 69 170 30830 95298 49 12 62918 67 262 32738 95657 64494 69 202 30798 95292 48 '3 62945 67295 32705 95651 64519 69234 30766 95286 47 14 62972 67327 32 673 95645 64545 69266 30734 95279 46 IS Y.62 999 1.67360 0.32 640 1.95639 1.64 571 1.69 298 0.30 702 1-95273 45 i6 63026 67393 32607 95633 64596 69329 30671 95267 44 17 63052 67426 32574 95627 64622 69361 30639 95261 43 18 63079 67458 32542 95621 64647 69393 30607 95254 42 19 63 1 06 67491 32509 95615 64673 69425 3057s 95248 41 20 7.63 133 T.67 524 0.32476 1.95609 T.64 698 7.69457 0-30 543 7.95 242 40 21 63159 67556 32444 95603 64724 69488 30512 95236 39 22 63186 67589 32 411 95 597 64749 69 520 30480 95229 38 23 63213 67 622 32378 95591 64775 69552 30448 95223 37 24 63239 67654 32346 95585 64800 69584 30416 95217 36 25 1.63 266 1.67687 0.32313 1-95 579 T.64 826 1.69 615 0.30 385 1.95211 35 26 63292 67719 32281 95 573 64851 69647 30353 95204 34 27 63319 67752 32248 95567 64877 69679 30321 95198 33 28 63345 67 785 . 32215 95561 64902 69 710 30290 95192 32 29 63372 67817 32183 95 555 64927 69742 30258 95185 31 30 1-63398 1.67850 0.32 150 1-95 549 7.64 953 T.69 774 0.30 226 1-95 179 30 31 63425 67882 32 118 95 543 64978 69805 30195 95173 29 32 63451 67915 32085 95 537 65003 69837 30163 95167 28 2i 63478 67947 32053 95531 65029 69868 30132 95 160 27 34 63504 67980 32020 95525 65054 69900 30100 95154 26 . 35 1-63531 T.68012 0.31 988 1-95 5'9 1.65079 7.69 932 0.30 068 1.95 148 25 36 63557 68044 31956 95513 65 104 69963 30037 95141 24 37 63583 68077 31923 95507 65130 69995 30005 95135 23 38 63 610 68109 31 891 95500 65155 70026 29974 95129 22 39 63636 68142 31858 95 494 65 180 70058 29942 95 122 21 40 T.63 662 T.68174 0.31 826 . 7.95 488 7.65 205 7.70 089 0.29911 7.95 116 20 41 63689 68206 31 794 95482 65 230 70 121 29879 -95 no 19 42 63715 68239 31761 95476 6525s 70152 29848 95 103 18 43 63741 68271 31729 95470 65281 70 184 29816 95097 17 44 63767 68303 31697 95464 65306 70215 29785 95090 16 45 1-63794 7.68 336 0.31 664 1-95458 1-65331 1.70247 0.29 753 1.95084 '5 46 63820 68368 3' 632 95452 65 356 70278 29722 95078 «4 47 63846 68400 31 600 95446 65381 70309 29691 95071 13 48 63873. 68432 31568 95440 65 406 70341 29659 95065 12 49 63898 68465 31535 95 434 65431 70372 29628 95059 11 50 T.63 924 T.68 497 0-31 503 1-95427 1.65456 1.70404 0.29 596 7.95 052 10 51 63950 68529 3' 47' 95421 65481 70435 29565 95046 9 52 63976 68561 31439 95415 65 506 70466 29534 95039 8 S3 64002 68593 3t4 32 80 382 91 662 08 338 88 720 81 284 93 201 06 799 88 083 28 33 80 397 91 688 08 312 88 709 81299 93227 06773 88072 27 34 80 412 91 713 08 287 88 699 81314 93252 06748 88061 26 35 T.80428 T.91 739 0.08261 T.88 688, 1. 8 1 328 1.93278 0.06722 7.88051 25 36 80443 91765 08235 88678 81343 93303 06697 88040 24 27 80458 91791 08209 88 668 81358 93329 06671 88029 23 38 80473 91 816 08184 88657 81372 93 354 06646 88018 22 39 80489 91842 08158 88647 81387 93380 06620 88007 21 40 T.80504 T.91868 0.08132 T.88636 7.81402 7.93406 0.06594 7.87996 20 4J 80519 91893 08107 88626 81417 93431 06569 87985 19 42 80534 91919 08081 88615 81 431 93 457 06543 87975 18 43 80 550 91 945 08 055 88 605 81446 931^82 06518 87964 17 44 80565 91 971 08029 88594 81 461 93508 06492 87953 16 4| 1.80580 1. 91 996 0.08004 T.88584 1.81475 1-93 533 0.06467 7.87942 15 46 80595 92022 07978 88573 81490 93 559 06441 87931 14 '^l 80610 92048 07952 88563 81505 93584 06416 87920 13 48 80625 92073 07927 88552 81 519 93610 06390 87909 12 49 80641 92099 07901 88542 81 534 93 636 06 364 87 898 . II 50 T.80656 T.92125 0.07875 7.88531 7.81 549 7.93 661 0.06 339 7.87 887 10 SI 80671 92150 07850 88521 81563 93687 06313 87877 9 52 80686 92176 07824 88510 81578 93712 06288 87866 8 53 80701 92202 07798 88499 81 592 93 738 06 262 87 855 7 54 80716 92227 07773 88489 81 607 93 763 06 237 87 844 6 5| 1.80 731 1.92253 0.07747 7.88478 1.81622 1.93789 0.06211 1.87833 5 56 80746 92279 07721 88468 81 636 93 814 06 186 87 822 4 57 .80762 92304 07696 88457 81651 93840 06160 8y8ii 3 58 80777 92330 07670 88447 81665 93865 06135 87800 2 59 80 792 92 356 07 644 88 436 81 680 93 891 06 109 87 789 I 60' 1.80807 1.92 381 0.07619 1.88425 1.81694 1.93 916 0.06084 1-87778 0' log cos log cot log tan log sin log 00s log oot log tan log sin r - - ■ ao° ^^ 7) 49° LOG 1 N, e °-62° tc. 41°-44° LOG SIN, etc. 4r 42° / log sin log tan log cot log 00s log sin log tan log cot log cos 0' 1. 81 694 r.93916 0.06 084 T.87 778 T.82 551 1-95 444 0.04 556 T.87 107 60' I 81709 93942 06058 87767 82565 95469 04531 87096 59 2 81 723 93967 06033 87756 82579 95 495 04505 87085 58 3 81738 93 993 06007 8774s 82593 95520 04480 87073 57 4 81752 94018 05 982 87734 82607 95 545 04455 87062 56 S 1. 81 767 T.94 044 0.05 956 1.87 723 T.82 621 1-95571 0.04 429 T.87 050 55 6 81 781 94069 05931 87712 82635 95596 04404 87039 54 7 81 796 94095 05905 87701 82649 95622 04378 87028 53 S 81 810 94 120 05880 87 690 82663 95647 04353 87016 52 9 81825 94146 05854 87679 . 82677 95672 04328 87005 51 10 T.81 839 T.94 171 0.05 829 T.87 668 1.82 691 T.95 698 0.04 302 1.86993 50 II 81854 ■94197 05803 87657 82705 95723 04277 86982 49 12 81868 94222 05778 87646 82719 95748 04252 86970 48 13 81882 94248 05752 87635 82733 95 774 04226 86959 47 14 81897 94273 05727 87624 82747 95 799 04201 86947 46 'S 1. 81 911 1.94299 0.05 701 1.87 613 1.82 761 1-95 825 0.04175 1.86936 45 i6 81926 94324 05 676 87601 82775 95850 04 150 86924 44 17 81 940 94350 05 650 87590 82788 95875 04125 86913 43 18 81955 94 375 05625 87579 82802 95901 04099 86902 42 19 81969 94401 05599 87568 82816 95926 04074 86890 41 20 T.81 983 T.94 426 0.05 574 1-87 557 T.82 830 1-95952 0.04 048 T.86 879 40 21 81998 94452 05548 87546 82844 95 977 04023 86867 39 22 82012 94 477 05523 87535 82858 96002 03998 86855 38 23 82026 94503 05497 87524 l^lV 96028 03972 86844 37 24 82041 94528 05472 87513 82885 96053 03947 86832 36 25 T.82 055 1.94 554 0.05 446 1.87 501 1.82899 1.96078 0.03 922 1.86821 35 26 82069 94 579 05421 87490 82913 96 104 03896 86809 34 27 82084 94604 05396 87479 82927 96 129 03871 86798 33 28 82098 94630 05370 87468 82941 96155 03845 86786 32 29 82 112 9465s 05345 87457 82955 96180 03820 86775 31 30 T.82 126 T.94 681 0.05 319 1.87446 1.82968 T.96 205 0.03 795 1.86763 30 31 82 141 94706 05294 87434 82982 96231 03769 86752 29 32 8215s 94732 05268 87423 82996 96256 03744 86740 28 33 82169 94 757 05243 87412 83010 96 281 03719 86728 27 34 82184 94783 05217 87401 83023 96307 03693 86717 26 35 1.82 198 T.94 808 0.05 192 T.87 390 .1.83037 1.96332 0.03 668 T.86 705 25 36 82212 94834 05 1 66 87378 83051 96357 03643 86694 24 37 82226 94859 05141 87367 83065 96383 03617 86682 23 38 82240 94884 05 116 87356 83078 96408 03592 86670 22 39 8225s 94910 05090 87345 83092 96433 03567 86659 21 40 1.82 269 T-94 935 0.05 065 1.87334 T.83 106 1-96459 0.03 541 T.86 647 20 41 82283 94961 05039 87322 83 120 96484 03516 86635 19 42 82297 94986 05014 87311 83133 96510 03490 86624 18 43 82 311 95 012 04988 87300 83J47 96535 03465 86612 '? 44 82326 95037 04963 87288 83161 96560 03440 86600 l6 45 1.82340 1.9s 062 0.04 938 1.87277 T.83 174 T.96 586 0.03 414 1.86589 15 46 82354 95088 04912 87266 83188 96 611 03389 86577 14 47 82368 95 "3 04887 87255 83 202 96636 03364 86565 13 48 82382 95139 04861 87243 83 215 96662 03338 86554 12 49 82396 95164 04836 87232 83229 96687 03313 86542 II 50 1.82 410 T.95 190 0.04 810 T.87 221 T.83 242 T.96 712 0.03 288 T.86 530 10 51 82424 95 215 04785 87 209 83256 96738 03 262 86518 9 52 82439 95240 04 760 87198 83270 96763 03 237 86507 8 53 82453 95 266 04734 87187 83283 96788 03 212 86495 7 54 82467 95291 04709 87>7S 83297 96 814 03186 86483 6 55 1.82 481 1-95317 0.04 683 1.87 164 1.83 310 T.96 839 0.03 161 1.86472 5 56 82495 95342 04658 87153 83324 96864 03136 86460 4 57 82509 95368 04632 87 141 83338 96890 03 no 86448 •3 58 82523 95 393 04607 87130 83351 96915 03085 86436 2 59 82537 95418 04582 87119 83365 96940 03060 86425 1 60' 1.82 551 1.95444 0.04 556 1.87 107 1-83378 1.96966 0.03 034 1.86413 0' log cos log cot log tan logain log cos log cot log tan log sin t LOG SIN, etc. ILK" 45°-48° (68) 47° 43^^ 41°-44° 44° LOG SIN, etc. 9 log sin log tan log cot log cos log sin log tan log cot log cos 0' 7.83 378 T.96 966 0.03 034 T.86413 T.84 177 1.98484 0.01 516 T.85 693 60' I 83392 96991 03009 86401 84190 98 509 01 491 85 681 59 2 83405 97016 02984 86389 84203 98 534 01 466 85 669 58 3 83419 97042 02958 86377 84216 98 560 01 440 85 657 57 4 83432 97067 02933 86366 84229 98585 01415 85645 56 5 1.83446 1.97092 0.02 908 1.86354 T.84 242 1.98 610 O.OI 390 1.85632 55 6 83459 97118 02882 86342 84255 98 635 oi 365 85 620 54 7 83473 97143 02857 86330 84269 98 66i 01 339 85 608 53 8 83486 97168 02832 86318 84282 98686 01 314 85596 52 9 83500 97193 02807 86306 84295 98711 01289 85583 51 10 1-83513 ^.97 219 0.02 781 T.86 295 T.84 308 T.98 737 0.01 263 T.85 571 50 II 83527 97244 - 02756 86283 84321 98 762 01 238 85 559 49 12 83540 97269 02731 86271 84334 98 787 01 213 85 547 48 13 83554 97295 02 705 86259 84347 98812 01 i88 85 534 47 14 83567 97320 02 680 ■ 86247 84 360 98838 01162 85522 46 15 1.83581 1-97 345 0.02 655 T.86 235 1-84 373 1.98863 0.01 137 T.85 510 45 16 f3 594 97371 02629 86223 84385 98888 01112 85497 44 17 83608 97396 02604 86211 84398 98 913 01 087 85 485 43 18 83621 97421 02579 86 200 84411 98 939 01 061 85 473 42 19 83634 97 447 02553 86188 84424 98 964 01 036 85 460 41 20 1.83648 T.97 472 0.02 528 T.86 176 T.84 437 T.98 989 o.oioii T.85 448 40 21 83661 97 497 02503 86164 84450 99015 00985 85436 39 22 83674 97523 02477 86152 84463 99 040 00 960 85 423 38 23 83688 97548 02452 86 140 84476 99065 00935 85411 37 24 83701 97 573 02427 86128 84489 99090 00910 85399 36 ^1 'o^ 7'S 1.97598 0.02 402 1.86116 1 .84 502 1.99116 0.00884 T.85 386 35 26 83728 97624 02376 86 104 84515 99 141 00 859 85 374 34 27 83741 97649 02351 86092 84528 99166 00834 85361 a 28 i3 7SS 97674 02326 86080 84540 99 191 00809 85349 32 29 8-3768 97700 02 300 86068 84553 99217 00783 85337 31 30 1.83 781 T.97 725 0.02 275 T.86 056 1.84566 1.99242 0.00758 T.85 324 30 3" 83795 97750 02250 86044 84579 99267 00733 85312 29 32 83808 97776 02 224 86032 84592 99 293 00 707 85 299 28 33 83821 97 801 02 199 86020 84605 99 318 00 682 85 287 27 34 83834 97826 02 174 86008 84618 99 343 00 657 85 274 26 35 T.83 848 7.97851 0.02 149 T.85 996 T.84 630 1.99368 0.00632 1.85262 25 36 83861 97877 02 123 85984 84643 99 394 00 606 85 250 24 37 83874 97902 02098 85972 84656 99419 00581 85237 23 38 83887 97927 02073 85960 84669 99 444 00 556 85 225 22 39 83901 97 953 02047 85948 84682 99469 00531 85212 21 40 1.83914 T.97 978 0.02 022 1-85936 T.84 694 1^-99 495 0.00 505 T.85 200 20 41 83927 98003 01997 85924 84707 99520 00480 85187 19 " 42 83940 98029 01971 85912 84 720 99 545 00455 85175 18 43 83954 98054 01 946 85 900 84733 99 570 00430 85 162 «7 44 83967 98079 01 921 85888 84745 99 596 00404 85 150 16 45 1.83980 1.98 104 o.oi 896 T.85 876 T.84 758 T.99 621 0.00 379 T.85 137 15 46 47 83993 98130 01 870 85864 84771 99 646 00 354 85 125 14 . 84006 98155 01 845 85851 84784 99 672 00328 85 112 13 48 84020 98180 01 820 85839 84796 99 697 00 303 85 100 12 49 84033 98206 01794 85827 84809 99 722 00 278 • 85 087 11 50 1.84046 T.98 231 0.01 769 1.85815 . T.84 822 T.99 747 0.00253 T.85 074 10 51 84059 98256 01 744 85 803 84835 99 773 00 227 85 062 9 52 84072 98281 oi 719 85791 84847 99 798 00 202 85 049 8 53 84085 98307 01693 85779 84860 99823 00177 85037 7 54 84098 98332 01668 85766 84873 99848 00152 85024 6 55 T.84 112 1-98357 0.01 643 1.85754 1.84885 T.99 874 0.00126 T.85 012 5 56 84125 98383 01 617 85742 84898 99 899 00 101 84 999 4 57 84138 98408 01 592 85730 84911 99 924 00 076 84 986 3 58 84 151 98433 01567 85718 84923 99949 00051 84974 2 59 84 164 98458 01542 85706 84936 1-99 975 00025 84961 I 60' 1.84177 1 .98 484 0.01 516 1.85693 1.84949 0.00000 0.00000 1.84949 0' log cos log cot log tan log sin log cos log cot log tan log sin t w (69) 450 LOG SIN, etc. 45°-48° CONSTANTS. CONSTANTS. MATHEMATICAL CONSTANTS. Quantity. Numerical Common Talue. LOGABITHM. 2.71 828 18 Base of Napierian, natural, or hyperbolic logarithms. 0.43 429 45 l/lOgl0£ 2.30 258 5 Factor to multiply into comTnon logs to convert into Napierian logs. 0.36 221 57 lOgioe 0434294s Factor to multiply into Napierian logs to convert into common logs. 7.6377843 ic 3.14 159 26s Ratio of circumference to diameter. 0.4971499 ir! 9.86 960 44 Square of ir. 0.99 429 97 I radian 57° 17' 45" 57.° 29 58 = 206265." = arc equal to radius. UNITED STA1 •ES, BRITISH, AND METRIC UNITS. Note. — Th e foUowingr ratios are given on the authority of the U. S. Coast and Geodetic Surrey, | "Tables of W sights and Measures. Washington, D. C, 1890." I metre 39.37 inches. This is the legalized ratio for the U. S. The U. S. and the British inch are equal. By comparisons to date (July, 1895), it appears probable that this value is smal- ler than the real ratio of the "Metre des 1-5951654 Archives ' ' to the thirty-sixth part of the "Imperial Standard Yard" by one or two parts in one million. I metre 1.09 361 I yard. The U. S. and the British yard are 0.03 886 29 equal. • I metre 3.28 08 33 feet. 0.5159842 I kilometer 0.62 13 70 mile of 5280 feet. 1-7933503 I mile 1.60 934 7 kilom. 0.20 664 97 I yard 0.91 440 2 metre. T.9611371 I foot 0.30 480 I metre. 7.48 401 58 I inch 25.40 005 mm. Deduced from above legalized ratio of yard and metre in TJ. S. 1.4048346 zinch 25.40 000 mm. is more convenient besides being proba- bly more exact. It is probably about one part in one million too small, as 1.4048337 the reciprocal of 0.0254 is 39.37 008. CONSTANTS. (70) CONSTANTS. QUASTITT. I pound Av. I pound Av. 1 ounce Av. I ounce Troy I grain I kilogramme I gramme I litre I litre I litre I quart, XJ. S. I gallon, U. S. I fluid ounce I bushel, U. S. I British gallon I British bushel numekioal Talhe. 7000 grains. 453-59 242 77 grammes. 28.34 953 grammes. 31.10348 grammes. 0.06 479 892 gramme. 2.20 462 2 pounds Av. 1543 235 639 grains. 1.05 668 U. S. quarts. 0.26417 U. S. gallon. 33.814 U. S. fluid oz. 0.94 636 litre. 3.78 544 litres. 0.02 957 3 litre. 231 cu. inches. 4.54 346 litres. 36.34 77 litres. CONSTANTS. The pound avoirdupois is the same in Great Britain and the U.S. Avoirdupois and Troy grains are the same. By original definition one litre was the volume of one cubic decimetre, but at present the accepted definition is that pro- visionally adopted by the Inter- national Bureau of Weights and Measures in 1880, viz. ; the volume of one kilogramme of water at its maximum density. The experimental determina- tion with high accuracy of the relation between this volume and the cubic decimetre is still unfinished. The following val- ues assume this ratio to be unity. ZZ 7 Common LOGAllITHM. 3.84 509 80 2.65 666 58 1.45 254 59 1.49 280 91 2.81 156 78 0-34 333 42 1. 18 843 22 0.023944 1.42 1884 1.52 910 T.97 605 6 0.57 811 6 2.47 090 2.36 361 20 0-65 738 67 1.5604769 MECHANICAL OR DYNAMICAL EQUIVALENT OF HEAT. The best values of this quantity (usually denoted by J') at present attainable (Novem- ber, 1895) are the following. The values are uncertain by only about ± one twentieth of one per cent. 427.3 kilogrammetres of work or energy are required at latitude 45°, sea-level {g = 980.6 c.g.s.), to raise i kilogramme of water through 1° C. at 15° C. 778.8 ft. lbs. of work or energy are required at latitude 45"-", sea-level {g = 980.6 c.g.s.), to raise i lb. of water through i" Tahr. at 59° Fahr. (= 15° C). For most engineering purposes 779 ft. lbs. would be near enough. (70 CONSTANTS. CONSTANTS. CONSTANTS. 140a ft. lbs. of work or energy are required at latitude 45°, sea-level (g = 980.6), to raise i lb. of water througb 1° Cent, at 15° C. For most engineering purposes 1400 ft. lbs. would be near enough. 4.i90"io' ergs of work or energy are required to raise i gramme of water through 1° C. at 15° C. To reduce these values to any given locality, multiply by the ratio gu '■ Ci where gis is the value (980.6) of the acceleration of gravity at latitude 45°, sea-level, and g is the value at the given place. The latter may be obtained from the latitude and altitude of the place by the formula given upon the next page, unless otherwise better known. The altitude correction is but six one-thousandths of one per cent (0.00 006) for each 1000 ft. of elevation, and therefore quite negligible. Within the limits of uncertainty of the quantities involved the latitude correction for places between 30° and 60° may be applied thus : — 778.8 For each degree of latitude north of 45° subtract For each degree of latitude south of 45" add 427-3 0.04 kgm. 0.04 kgm. 0.07 ft. lbs. 0.07 ft. lbs. 1402 0.13 ft. lbs. 0.13 ft. lbs. Note. — The persistence with ■which the time-honored values, 772 ft. lbs. and 424 fegm., of this most impor- tant constant are adhered to in practice, although known to be nearly one per cent too small, is due largely to the flagrant negligence of the authors of text-books of both physics and engineering. No attention is paid to the fact that Joule's original data have been amended acceptaMy to Mm, and that his work has been supple- mented by the elaborate researches of at least three other independent observers with radically diverse methods. How remarkably these new results check each other and confirm Joule's amended results may be seen from the following table, which is given to indicate the source of the foregoing values. OEiapjAL Data. Reduced TO Lat. 45° Sea- Level. D1FF8. FROM Mean. Bate. ATTTHOErrv. J. kgm. ff- t°.C. Refeeehoe. JoTJLE (as correclied and See quotations in the reduced to Baltimore by Rowland and GrifSths Rowland.) [Assigning eq. referenceSo wts. to all methods.] 427.99 980.05 iS-° [Assigning Rowland's arbi- trary wts.] 426.66 980.05 iS-° Mean of both. 427-33 980.05 i5-° 427.08 -.16 1847-7B Rowland [at Baltimore]. 427.4 980.05 15-° 427.16 -.08 1879 Proc. Am. Acad. A. and S. XV. 75 (1880). Gbutiths [at Greenwichl. 4.194.10' 981.17 l5-° 427.70 -I-.46 1892 Phil. Transac. cbcxxiv. (In ergs.) 496 (1893). MiOFLESOlJ [at Paris]. 426.84 981.00 15-° 427.01 -23 1892 Ann. de Ch. et de Ph. - xxvii. 237 (1892). Mean of all. 427.24 ±.23 Mean omitting Joule. 427.29 The specific heat of water, and therefore the value of J, diminishes slightly with rise of temperature. The rate of this diminution is not yet satisfactorily determined, but about as nearly as it is now known the true specific heat St at any temperature t° not far from 15° C, may be expressed in terms of true specific heat su at 15° C. by St = S16 [i. - 0.00 030 (S - 15)]. Hence Jt, the number of kgm. or ergs necessary to raise i kgr. of water from t° to t° + 1°, will be J, = Ju [I. - 0.00 030 (t - 15)] [Range 13° - 20°], CONSTANTS. (72) CONSTANTS. CONSTANTS. or for I lb. of water i° Fahr. Jt=Jaali- o.ooo3o(t - 59)] [Range 56° - 68°]. _ The values of Ji^ and J^a are given on pages 71 and 72. For further discussion of this subject consult Griffiths, Phil. Mag. xi. 431 (1895). The scale of temperature in which these results are expressed is the hydrogen scale of the International Bureau of Weights and Measures, which represents, as nearly as it is known, the Thomson absolute scale. VALUE OF g AT DIFFERENT LATITUDES AND ELEVATIONS. 9 = 9iS 0(1 — 0.00 259 cos 2 X — 0.00 000 020 S). gufi =■ 980.6 — - approx. This is the approximate average value of g at latitude 45°, sec^ sea-level. The experimental values vary widely in the next place of figures. X = latitude of place. H = altitude of place above sear level in metres. Note. — Very recent observations render it probable that near the earth's surface the coefficient of R is more nearly 0.00 000 030. BROWN AND SHARPE WIRE GAUGE. The diameter corresponding to any gauge number above zero (i.e. of any size less than that of a No. o wire) may be found to within one hundred-thousandth of an inch (five decimal places) by the expression Diam. in inches of i „. „ } = 0.32 486 X 0.89 052 5", gauge number m J or, Log of diam. in inches =7.51 170 -|- 1.94 964 5 w, or, " " " " " — 9.51 170 — 10. -1- (9.94 9645 — io.)n. The diameter corresponding to any gauge numbers o, 00, 000, and so on, may simi- larly be computed by the following expressions in which N is the number of zeros. Diam. in inches = 0.28 930 x 1.12 293^, or, Log of diam. in inches = T.46 1348 -|- 0.05 035 3 N. The two primary sizes on which the gauge is based are No. 0000, diameter 0.46 inch exactly, and No. 36, diameter 0.005 ^^'^^ exactly. PHYSICAL AND CHEMICAL CONSTANTS. For very reliable and extended tables consult Landolt und Bornstein, Physikalisch — Chemische Tabellen. (73) CONSTANTS. A HISTORY OF MATHEMATICS. BY FLORIAN CAJORI, PH.D. Formerly Professor of Applied Mathematics in the Tulane University of Louisiana ; now Professor of Physics in Colorado College. 8vo. Cloth. $3.50, net. NOTICES. " The author presents in this volume a very interesting review of the development of mathematics. The work throughout has been written with care and evident understanding, and will doubtless be of intrrest and value to students of mathematics. Professor Cajori treats his sub- ject, not only with a certain enthusiasm, but with a masterful hand." — Philadelphia Evening Bulletin. " We have nothing but commendation to bestow." — Scientific American. " The best we can say of the work is that it is more interesting than any novel." — Queen's Quarterly. "After having read this admirable work, I take great pleasure in recommending it to all students and teachers of mathematics. The development and progress of mathematics have been traced by a master pen. Every mathematician should procure a copy of this book. The book is written in a clear and pleasing style." — Dr. Halsted, in American Mathematical Monthly. "A scholarship both wide and deep is manifest." — Journal of Edu- cation. " A clear, concise, and critical account. Its style is so clear, concise, and so enlivened by anecdote as to interest even the young reader." — The School Review. MACMILLAN & CO., 66 FIFTH AVENUE, NEW YORK. ARITHMETIC FOR SCHOOLS. BY Rewritten and revised by CHARLES SMITH, M.A., CHARLES L. HARRINGTON, Master of Sidney Sussex College^ Head Master of Dr. J, Sack's School for Cambridge, Boys^ New York. l6mo. Cloth. 90 cents, neU A thorough and comprehensive High School Arithmetic, containing many good examples and clcfir, well-arranged explanations. ^ There are chapters on Stocks and Bonds, and on Exchange, which are of more than ordinary value, and there is also a useful collection of miscellaneous examples. ELEMENTARY ALGEBRA FOR THE USE OF PREPARATORY SCHOOLS. BY Revised and adapted to American Schools CHARLES SMITH, M.A., By IRVING STRINGHAM, Ph.D., Author of*^A Treatise on Algebra" "An Professor of Mathematics and Dean of the Elementary Treatise on Conic College Faculties in the University Sections" etc. of California. (6mo. Cloth. BRIEFER EDITION (408 pages), $1.10, net. COMPLETE EDITION (584 pages), $1.20, net. A carefully revised course in elementary algebra, comprising the matter specified by nearly all American colleges as" the requirement for admission. It will prove especially helpful to students preparing for such colleges as require the use of Mr. Smith's "Treatise on Algebra" for advanced work. Among these may be mentioned Harvard University, University of Pennsylvania, Cornell University, University of Michigan, University of Wisconsin, University of California, Stanford Uni- versity, University of Missouri, etc., etc. ELEMENTARY ALGEBRA. By H. S. HALL, B.A., and S. R. KNIGHT, B.A. Revised and Enlarged, for Use of American Scliools, By FRANK L. SEVENOAK, A.M., M.D., Professor of Mathematics and N'atural Sciences, and Assistant Principal of Stevens School, Hoboken, N.y. I6mo. Cloth. $1.10, net. ALGEBRA FOR BEGINNERS. By H. S. HALL, M.A., and S. R. KNIGHT, B.A. Revised by F. L. SEVENOAK, A.M., n.D. l6mo. Cloth. 60 cents. MACMILLAN & CO., 66 FIFTH AVENUE, NEW YORK.