BOUGHT WITH THE INCOME
FROM THE
SAGE ENDOWMENT FUND
THE GIFT OF
1891
1.3.p.5L..i(>.i i).nj.i>.
Cornell University
Library
The original of this book is in
the Cornell University Library.
There are no known copyright restrictions in
the United States on the use of the text.
http://www.archive.org/details/cu31 924031 221 1 65
TABLE OF CONTENTS.
-CHAPTER I.— GENEEAL INSTRUCTIONS.
Page
Field Work 1
Care of Field Equipment 2
Field Notes 6
OfBce Work 12
CHAPTER II.— THE CHAIN AND TAPE.
Units of Measure 13
Linear Measuring Instruments 14
Use of Chain and Tape 16
Perpendiculars 17
Parallels 18
Angles 19
Location of Points 19
Location of Objects 31
The Line Surveys 21
Ranging in Lines 21
Signals 33
Stakes and Stake Driving 23
Problem A 1. Length of Pace 34
A 2. Distances by Pacing 34
A 3. Axemen and Flagmen Practice 34
A 4. Range Pole Practice 34
A 5. Standardizing Chain or Tape 36
A 6. Distances with Surveyors' Chain 36
A 7. Distances with Engineers' Chain 37
A 8. Distances with 100-foot Steel Tape 38
A 9. Horizontal Distance on Slope 38
AlO. Angles of Triangle with Tape 30
All. Survey of Field with Tape 30
A 13. Area by Perpendiciilar Method 33
A13. Area by Three-Side Method 33
2 ix
X TABLE OF CONTENTS.
Pago
A14. Area by Angle Method 33
A15. Area from Plat 34
A16. Survey of Field with Curved Boundary. . 33
A17. Area of Field with Curved Boundary. ... 33
A18. Area (of same) from Plat 36
A19. Passing an Obstacle with Tape 36
A30. Obstructed Distance with Tape 38
A31. Running in Curve with Tape 38
A33. Discussion of Errors of Chaining 40
A33. Testing Standard of Length 40
A34. Constants of Steel Tape 43
A35. Making a Standard Wire Tape 43
A36. Comparison of Chains and Tapes 43
CHAPTER III.— THE COMPASS.
Types of Magnetic Compass 45
Declination of the Needle 46
Variation of the Declination 47
Local Attraction 48
The Vernier .' 49
Use of the Compass 49
Adjustments and Tests of Compass 50
Problem B 1. Declination of Needle 51
B 3. Angles of Triangle with Compass 52
B 3. Traverse of Field with Compass 53
B 4. Area of Field with Compass 54
B 5. Adjustment of Compass 56
B 6. Comparison of Compasses 56
CHAPTER IV.— THE LEVEL.
Types of Level ' 57
The Telescope 58
Line of Collimatioh 58
Objective 5S
Chromatic Aberration 58
Spherical Aberration 60
Eyepiece 60
Definition 61
Illumination 61
Aperture of Objective 61
TABLE OF CONTENTS. xi
Page
Size of Field 61
Mag-nifying Power 61
Parallax 61
Cross-Hairs 63
The Bubble Vial 63
Leveling Eods 64
Use of tte Level 65
Differential Leveling 66
Profile Leveling 68
Eeciprocal Leveling , 68
Contour Leveling 69
Grade Lines 69
Cross-sectioning 69
Running Lines 70
Practical Hints 70
Adjustment of Wye Level 72
Adjustment of Dumpy Level 75
Problem C 1. Differential Leveling with Hand Level. . . 76
C 3. Differential Leveling, Engineers' Level.. 77
C 3. Profile Leveling for Drain 77
C 4. Eailroad Profile Leveling 81
C 5. Vertical Curve 83
C 6. Establishing Grade Line : 83
C 7. Setting Slope Stakes ; 85
C 8. Calculation of Quantities 85
C 9. Staking Out a Borrow Pit 85
CIO. Levels for Street Paving : 86
Cll. Coiitour Leveling 88
C13. Use of Contour Map 1 89
C13. Eeciprocal Leveling '. 89
C14. Delicacy of Bubble Vial ; 90
C15. Comparison of Level Telescopes 91
C16. Tests of Wye Level 91
C17. Adjustment of Wye Level 93
C18. Sketching Wye Level 93
C19. Tests of Dumpy Level 93
C20. Adjustment of Dumpy Level 93
C21. Sketching Dumpy Level 93
C33. Stretching Cross-Hairs 93
C33. Error of Setting Level Target 94
C34. Making a Leveling Rod 95
C35. Comparison of Engineers' Levels 95
xii TABLE OF CONTENTS.
Page
CHAPTER v.— THE TRANSIT.
Types of Transit 97
Use of the Transit 99
Prolongation of Lines 99
Horizontal Angles 100
Azimuth 100
Deflection 100
Vertical Angles 100
Traversing 1 00
Compass Bearings 101
Leveling with Transit 101
Grade Lines 101
Adjustment of Transit 102
Problem D 1. Angles of Triangle with Transit 106
D 2. Prolongation of Line with Transit 106
D 3. Intersection of Lines with Transit 108
D 4. Referencing Out a Point 109
D 5. Triangulation Across River 110
D 6. Passing Obstacle with Transit 110
D 7. Traverse of Field with Transit 113
D 8. Area of Field with Transit 113
D 9. Staking Out Building 114
DIO. Height of Tower with Transit 114
Dll. Survey of Line Shafting 116
D12. Survey of Race Track 117
D13. Angles of Triangle by Repetition 118
D14. True Meridian by Polaris at Elongation 119
D15. True Meridian by Polaris at Any Time.. 121
D16. True Meridian by Solar Transit 127
D17. True Meridian by Direct Observation ... 131
D18. Comparison of Transit Telescopes 132
D19. Test of a Transit 132
D20. Adjustment of a Transit 133
D21. Sketching a Transit 133
D22. Error of Setting Flag Pole 134
D33. Comparison of Engineer's Transits 135
CHAPTER VI.— TOPOGRAPHIC SURVEYING.
Topography 137
The Stadia 139
The Plane Table 143
The Sextant 146
TABLE OF CONTENTS. xiii
Problem E 1. Stadia Constants, with Fixed Hairs 148
E 2. Stadia Reduction Table 143
E 3. Azimutt Traverse witli Stadia 150
E 4. Plane Table Survey by Radiation 151
E 5. Plane Table Survey of Traversing 152
E 6. Plane Table Survey of Intersection 152
E 7. Three Point Problem with Plane Table 153
E 8. Angles of Triangle with Sextant 153
E 9. Coefficients of Standard Tape 153
ElO. Measurement of Base Line 155
Ell. Calculation of Triangulation System . . . 156
E13. Sketching Topography 156
E13. Topography with Transit and Stadia . . . 157
E14. Topography with Plane Table and Stadia 159
E15. Topographic Survey 159
CHAPTER VII.— LAND SURVEYING.
Functions of a Surveyor 161
United States Rectangular System 163
Surveys by Metes and Bounds 173
Problem F 1. Investigation of Land Corner 173
F 3. Perpetuation of Land Corner 174
F 3. Reestablishing Quarter-Section Corner.. 175
F 4. Reestablishing Section Corner 176
F 5. Resurvey of Section 176
F 6. Resurvey of City Block 179
F 7. Resurvey by Metes and Bounds 179
F 8. Partition of Land 180
F 9. Design and Survey of Town Site 180
CHAPTER VIII.— RAILROAD SURVEYING.
Organization 183
Transit Party 184
Level Party 191
Topography Party 194
Office Work 197
Cross-Sectioning Party 203
Land-Line Party 307
Bridge and Masonry Party 207
Resurvey Party 209
Problem G 1. Review of Instrumental Adjustments ... . 208
G 2. Use of Field Equipment 209
xiv TABLE OF CONTENTS.
Page
G 3. Preliminary Field Curve Practice 310
G 4. Indoor Curve Problems 310
CHAPTER IX.— EEEOES OF SURVEYING.
Probable Error 811
Tests of Precision 315
Linear Errors 315
Angular Errors 316
Traverse Errors 316
Leveling Errors 333
CHAPTER X.— METHODS OF COMPUTING.
Consistent Accuracy 333
Logarithmic Calculations 234
Arithmetical Calculations 335
Reckoning Tables 334
Computing Machines 334
CHAPTER XI.— TOPOGRAPHIC DRAWING AND FREE-
HAND LETTERING.
Practice Plates 237
Freehand Titles 245
Topographic Symbols 349
FIELD AND OFFICE TABLES.
Table 1. Logarithms of Numbers 254
Table 2. Logarithmic Functions of Angles 277
Table 3. Natural Functions of Angles 323
Table 4. Squares, Cubes and Roots 367
Table 5. Trigonometric Functions 380
Explanation of Tables 382
Index 385
SPECIFICATIONS FOR A GOOD ENGINEER.
" A good engineer must be of inflexible integrity, sober,
truthful, accurate, resolute, discreet, of cool and sound
judgment, must have command of his temper, must have
courage to resist and repel attempts at intimidation, a firm-
ness that is proof against solicitation, flattery or improper
bias of any kind, must take an interest in his work, must
be energetic, quick to decide, prompt to act, must be fair
and impartial as a judge on the bench, must have experi-
ence in his work and in dealing with men, vsrhich implies
some maturity of years, must have business habits and
knowledge of accounts. Men who combine these qualities
are not to be picked up every day. Still they can be found.
But they are greatly in demand, and when found, they are
worth their price ; rather they are beyond price, and their
value can not be estimated by dollars." — Chief Engineer
Starling's Report to the Mississippi Levee Commissioners.
" Be sure you are right, and then go ahead." — D. Crockett.
CHAPTER I.
GENERAL INSTRUCTIONS.
FIELD WORK.
Habitual Correctness. — Habitual correctness is a duty.
Error should be looked upon as probable, and every precau-
tion taken to verify data and results. Unchecked work may
always be regarded as doubtful. A discrepancy which is
found by the maker in time to be corrected by him before
any damage is done is not necessarily discreditable, pro-
vided the error is not repeated. However, habitual error
is not only discreditable but dishonorable as well, and noth-
ing except intentional dishonesty injures the reputation of
the engineer more quickly or permanently.
Consistent Accuracy. — The degree of precision sought
in the field measurements should be governed strictly by the
dictates of common sense and experience. Due considera-
tion of the purposes of the survey and of the time available
will enable one to avoid extreme precision when ordinary
care would sufBce, or crudeness when exactness is required,
or inconsistency between the degrees of precision observed
in the several parts of the survey. It is a very common
practice of beginners, and of many experienced engineers
as well, to carry calculated results far beyond the consistent
exactness.
Speed. — Cultivate the habit of doing the field work
quickly as well as accurately. True skill involves both
quantity and quality of results. However, while the habit
of rapid work can and should be acquired, the speed at-
tempted in any given problem should never be such as to
cast doubt upon the results. Slowness due to laziness is
intolerable.
Eamiliarity with Instructions. — The instructions for
the day's work should be read over carefully, and prelim-
inary steps, such as the preparation of field note forms,
should be taken so as to save time and make the work in
2 GENERAL INSTEUCTIONS.
the field as effective as possible The ability and also the
desire to understand and obey instructions are as essential
as the skill to execute them.
Inferior Instruments. — Should a poor instrument or
other equipment be assigned, a special eilort should be made
to secure excellent results. In actual practice, beginners
often have to work vifith defective instruments, but they
should never seek, nor are they permitted, to justify poor
results by the character of the field equipment. The stu-
dent should therefore welcome an occasional opportunity to
secure practice with poor instruments.
Alternation of Duties. — The members of each party
should alternate in discharging the several kinds of service
involved in the field problems, unless otherwise instructed.
Training in the subordinate positions is essential whether
the beginner is to occupy them in actual practice or not,
for intelligent direction of work demands thorough knowl-
edge of all its details.
Field Practice Decorum. — The decorum of surveying
field practice should conform reasonably to that observed
in other laboratory work.
THE CAEE OF FIELD EQUIPMENT.
RESPONSIBILITY. — The student is responsible for the
proper use and safe return of all equipment. All cases of
breakage, damage, loss or misplacement must be reported
promptly. The equipment should be examined when as-
signed and a report made at once of any injury or de-
ficiency found, so that responsibility may be properly
fixed.
PRECAUTION'S.— Careful attention to the following
practical suggestions will save needless wear to the equip-
ment and reduce the danger of accidents to a minimum,
besides adding to the quality and speed of the work.
Tripod. — Inspect the tripod legs and shoes. The leg is
of the proper tightness if, when lifted to an elevated posi-
tion, it sinks gradually of its own weight. The tripod
shoes should be tight and have reasonably sharp points.
Setting' Up Indoors. — In setting up the instrument in-
doors press the tripod shoes firmly into the fioor, prefer-
ably with each point in a crack. Avoid disturbing other
instruments in the room.
Instrument Case. — Handle the instrument gently in re-
moving it from and returning it to the case. It is always
THE CAKE OF FIELD EQUIPMENT. 3
best to place the hands beneath the leveling base in hand-
ling the detached instrument. Considerable patience is
sometimes required to close the lid after returning the in-
strument ; if properly placed the lid closes freely.
Mounting the Instrument. — See that the instrument
is securely attached to the tripod before shouldering it.
Undue haste in this particular sometimes results in costly
accidents. When screwing the instrument on the tripod
head, it should be turned in a reverse direction until a slight
jar is felt, indicating that the threads are properly engaged.
Sunshade. — ^Always attach the sunshade regardless of
the kind of weather. The sunshade is a part of the telescope
tube and the adjustment of a delicate instrument naay
sometimes be affected by its absence. In attaching or re-
moving the sunshade or object glass cap, always hold the
telescope tube firmly with one hand and with the other
twist the shade or cap to the right to avoid unscrewing the
object glass cell.
Carrying the Instrument. — Do not carry the instru-
ment on the shoulder in passing through doors or in climb-
ing fences. Before shouldering the instrument, the prin-
cipal motions should be slightly clamped ; with the transit,
clamp the telescope on the line of centers ; and with the
level, when the telescope is hanging down. In passing
through timber with low branches, give special attention
to the instrument. Before climbing a fence, set the instru-
ment on the opposite side with tripod legs well spread.
Setting XTp in the Field. — When setting up in the field,
bring the tripod legs to a firm bearing with the plates ap-
proximately level. Give the tripod legs additional spread
in windy vsreather or in places where the instrument may
be subject to vibration or other disturbance. On side-hill
work place one leg up hill. With the level, place two
tripod shoes in the general direction of the line of levels.
Exposure of Instrument. — Do not expose the instru-
ment to rain or dampness. In threatening weather the
water proof bag should be taken to the field. Should the
instrument get wet, wipe it thoroughly dry before return-
ing it to the case. Protect the instrument from dust and
dirt, and avoid undue exposure to the burning action of the
sun. Avoid subjecting it to sudden changes of tempera-
ture. In cold weather when bringing an instrument in-
doors cover the instrument with the bag or return it to
the case immediately to protect the lenses and graduations
from condensed moisture.
4 GENERAL INSTRUCTIONS.
Guarding tte Instrument. — ^Never leave an instrument
unguarded in exposed situations such as in pastures, near
driveways, or where blasting is in progress. Never leave
an instrument standing on its tripod over night in a room.
Manipulation of Instrument. — Cultivate from the very
beginning the habit of delicate manipulation of the instru-
ment. Many parts, when once impaired, can never be re-
stored to their original condition. Rough and careless
treatment of field instruments is characteristic of the un-
skilled observer. Should any screw or other part of the in-
strument work harshly, call immediate attention to it so
that repairs may be made. Delay in such matters is very
destructive to the instrument.
Foot Screws. — In leveling the instrument, the foot screws
should be brought just to a snug bearing. If the screws are
too loose, the instrument rocks, and accurate work can not
be done ; if too tight, the instrument is damaged, and the
delicacy and accuracy of the observations are reduced. Much
needless wear of the foot screws may be avoided if the
plates are brought about level when the instrument is set
up. With the level, a pair of foot screws should be shifted
to the general direction of the back or fore sight before
leveling up.
Eyepiece. — Before beginning the observations, focus the
eyepiece perfectly on the cross-hairs. This is best done by
holding the note book page, handkerchief, or other white
object a foot or so in front of the object glass so as to illum-
inate the hairs ; and then, by means of the eyepiece slide,
focus the microscope on a speck of dust on the cross-hairs
near the middle of the field. To have the focusing true for
natural vision, the eye should be momentarily closed sev-
eral times between observations in order to allow the
lenses of the eye to assume their normal condition. The
omission of this precaution strains the eye and is quite cer-
tain to cause parallax. After the eyepiece is focused on the
cross-hairs, test for parallax by sighting at a well defined
object and observing whether the cross-hairs seem to
move as the eye is shifted slightly.
Clamps. — Do not overstrain the clamps. In a well de-
signed instrument the ears of the clamp screw are purpose-
ly made small to prevent such abuse. Find by experiment
just how tight to clamp the instrument in order to prevent
slipping, and then clamp accordingly.
Tangent Screws. — Use the tangent screws for slight
motions only. To secure even wear the screws should
THE CAKE OF FIELD EQUIPMENT. 5
be used equally in all parts of their length. The use of the
wrong tangent movement is a fruitful source of error with
beginners.
Adjusting Scre'ws. — Unless the instrument is assigned
expressly for adjustment, do not disturb the adjusting
screws.
XEagnetic Keedle. — Always lift the needle before should-
ering the instrument. Do not permit tampering with the
needle. If possible, avoid subjecting the needle to mag-
netic influence, such as may exist on a trolley car. Should
the needle become reversed in its polarity or require re-
magnetization, it may be removed from the instrument and
brought into the magnetic field of a dynamo or electric
motor for several minutes, the needle being jarred slightly
during the exposure; or a good horseshoe magnet may
be used for the same purpose. The wire coil counterbalance
on the needle will usually require shifting after the fore-
going process.
Lenses. — Do not remove or rub the lenses of the tele-
scope. Should it be absolutely necessary to clean a lens, use
a very soft rag with caution to avoid scratching or marring
the polished surface. Protect the lenses from flying sand
and dust, which in time seriously affect the definition of
the telescope.
Plumb Bob. — Do not abuse the point of the plumb bob
and avoid needless knots in the plumb bob string.
Cleaning Tripod Shoes. — Eemove the surplus soil from
the tripod shoes before bringing the instrument indoors.
Leveling Rods. — Leveling rods and stadia boards should
not be leaned against trees or placed where they may fall.
Avoid injury to the clamps, target and graduations. Do not
mark the graduations with pencil or otherwise. Avoid
needless exposure of the rod to moisture or to the sun.
Flag Poles. — Flag poles should not be unduly strained
and their points should be properly protected.
Chains and Tapes. — Chains should not be jerked. Avoid
kinks in steel tapes, especially during cool weather. When
near driveways, in crowded streets, etc., use special care to
protect the tape. Band tapes will be done up in 5-foot
loops, figure 8 form, unless reels are provided. Etched tapes
should be wiped clean and dry at the end of the day's work.
Axes and Hatchets. — Axes and hatchets will be em-
ployed for their legitimate purposes only. Their wanton
use in clearing survey lines is forbidden, and their use at all,
6 GENERAL INSTEUCTIONS.
for such purpose, on private premises must be governed
strictly by the rights of the owner.
Stakes. — The consumption of stakes should be controlled
by reasonable economy, and surplus stakes returned to
the general store. For the protection of mowing machines
in meadows, etc., hub stakes should be driven flush with
the surface of the ground, and other stakes should be left
high enough to be visible. Whenever practicable, stakes
which may endanger machines should be removed after
serving the purpose for which they were set.
FIELD NOTES.
Scope of Field Notes. — The notes should be a complete
record of each day's work in the field. In addition to the
title of the problem and the record of the data observed,
the field notes should include the date, weather, organiza-
tion of party, equipment used, time devoted to the prob-
lem, and any other information which is at all likely to be
of service in connection with the problem. No item prop-
erly belonging to the notes should be trusted to memory.
Should the question arise as to the desirability of any item,
it is always safe to include it. The habit of rigid self criti-
cism of the field notes should be cultivated.
Character of Notes. — The field notes should have char-
acter and force. As a rule, the general character of the
student's work can be judged with considerable certainty
by the appearance of his field notes. A first-class page of
field notes always commands respect, and tends to estab-
lish and stimulate confidence in the recorder. The notes
should be arranged systematically.
Interpretation of Notes. — The field notes should have
one and only one reasonable interpretation, and that the
correct one. They should be perfectly legible and easily
understood by anyone at all familiar with such matters.
Original Notes. — Each student must keep complete notes
of each problem. Field notes must not be taken on loose
slips or sheets of paper or in other note books, but the
original record must be put in the prescribed field note
book during the progress of the field work.
Field Note Book. — The field record raust be kept in the
prescribed field note book. For ease of identification the
name of the owner will be printed in bold letters at the
top of the front cover of the field note book.
FIELD NOTES. 7
Pencil. — To insure permanency all notes will be kept
with a hard pencil, preferably a 4H. The pencil should be
kept well sharpened and used with sufficient pressure to
indent the surface of the paper somewhat.
Title Page. — ^An appropriate title page will be printed
on the iirst page of the field note book.
Indexing and Cross Referencing. — A systematic index
of the field notes will be kept on the four pages following
the title page. Eelated notes on different pages will be lib-
erally and plainly cross referenced. The pages of the note
book will be numbered to facilitate indexing.
Methods of Recording Field Notes. — There are three
general methods of recording field notes, namely : ( 1 ) by
sketch, (2) by description or narration, and 1[3) by tabula-
tion. It is not uncommon to combine two or perhaps all
three of these methods in the same problem or svirvey.
Porm of notes. — All field notes must be recorded in a
field note book ruled as shown below, except where cir-
cumstances require modification. If no form is given, the
student will devise one suited to the particular problem.
Lettering. — Field notes will be printed habitually in the
" Engineering News " style of freehand lettering, as treated
in Eeinhardt's " Freehand Lettering." The body of the field
notes will be recorded in the slanting letter and the head-
ings will be made in the upright letter. The former slants
to the right 1 : 2.5 and the so-called upright letter is made
to slant to the left slightly, say 1 : 25. Lower case letters
will be used in general, capitals being employed for initials
and important words, as required. In the standard field
note alphabet the height of lower case letters a, c, e, i, m,
n, etc., is %o ™ch, and the height of lower case b, d, f,
g, h, etc., and of all capital letters and all numerals is
I^Q (1^) inch; lower case t is made four units (%o) inch
high. This standard accords with best current practice and
is based upon correct economic principles. Sample pages
of field notes with letters and figures drawn full size are
' given on page 9. The student is expected to make the most
of this opportunity to secure a liberal amount of practice
in freehand lettering.
Field Note Sketches. — Sketches will be used liberally
in the notes and will be made in the flcU. If desired, a ruler
may be used in drawing straight lines, but the student is
urged to acquire skill at once in making good plain free-
hand sketches. The field sketches should be bold and clear,
in fair proportion, and of liberal size so as to avoid con-
8 GENERAL INSTKUCTIONS.
fusion of detail. The exaggeration of certain details in a
separate sketch sometimes adds greatly to the clearness of
the notes. The sketches should be supplemented by de-
scriptive statements when helpful, and important points of
the sketch should be lettered for reference. The precise
scaling of sketches in the field note book, while sometimes
necessary is usually undesirable owing to the time con-
sumed. It is also found that undue attention to the draft-
ing of the sketch is very apt to occupy the mind and cause
/•
>!
V
J
omissions of important numerical data. Since recorded
figures and not the size of the field sketch itself must usual-
ly be employed in the subsequent use of the notes, it is im-
portant to review the record 'before leaving the field to detect
omissions or inconsistencies. Making sketches on loose
sheets or in other books and subsequently copying them
into the regular field book is very objectionable practice
and will not be permitted in the class work. Copies of field
notes or sketches are never as trustworthy as the original
record made (luring the progress of the field work. In very
rapid surveys where legibility of the original record must
perhaps suffer somewhat, it is excellent practice to tran-
scribe the notes at once to a neighboring page, thus pre-
serving the original rough notes for future reference. The
original has more weight as evidence, but the neat copy
FIELD NOTES.
Station Value oF Anqle
Amgles or Triangle 5-6-7
^ndlieas.
88''5I'
4.7°4.7'
Mean
88°50'50"
47°47W'
43'r3W
m'00'30"
(D/'FFerence in measurements not to exceed /')
Left Hand Paqe.
Observers, J. Doe & R. l?oe.
With Engineers' TransIt.
lioy./5J9l4, (2 hours). Warm and quiet
Used He/lar& Brightly TrJnsit lioJO.
Riqht Hand Vac\e.
10 GENERAL INSTRUCTIONS.
made before the notes are " cold " is of great help in inter-
preting them.
Numerical Data. — The record of numerical data should
be consistent with the precision of the survey. In obser-
vations of the same class a uniform number of decimal
places should be recorded. When the fraction in a result
is exactly one-half the smallest unit or decimal place to be
observed, record the even unit. Careful attention should
be given to the IcgihUity of numerals. This is a matter in
which the beginner is often very weak. This defect can be
corrected best by giving studious attention and practice to
both the form and vertical alinement of tabulated numerals.
Erasures. — Erasures in the field notes should be avoided.
In case a figure is incorrectly recorded, it should be
crossed out and the correct entry made near by. The neat
cancellation of an item in the notes inspires confidence,
but evidence of an erasure or alteration easts doubt
upon their genuineness. When a set of notes becomes so
confused that erasure seems desirable, it should be tran-
scribed, usually on another page. Rejection of a page of
notes should be indicated by a neat cross mark, and cross
reference should be made between the two places.
Office Copies. — Office copies of field notes will be sub-
mitted promptly, as required. These copies must be actiial
transcripts from the original record contained in the field
note book of the individual submitting the copy. When
office copies are made, a memorandum of the fact should
be entered on the page of the field note book. When so
specified, the office copies will be executed in India ink.
Criticism of Field Notes. — The field notes must be kept
in shape for inspection at any time, and be submitted on
call. All calculations and reductions must be kept up to
date. The points to which chief attention should be di-
rected in the criticism of the field notes are indicated in the
following schedule. The student is expected to criticise his
own notes and submit them ,in as perfect condition as pos-
sible. For simplicity the criticisms will be indicated by
stamping on the note book page the reference letters and
numbers shown in the schedule.
SCHEDULE OF POINTS. 11
SCHEDULE OF POINTS FOR THE CRITICISM OF
FIELD NOTE BOOKS.
A. SUBJECT MATTER.
(1) General:
(a) Descriptive title of problem.
(b) Date.
(c) Weather.
(d) Organization of party.
(e) Equipment used.
(f ) Time devoted to the problem.
(g) Indexing and cro.ss referencing.
(h) Page numbering.
( i ) Title page.
(j) Identification of field note book.
(2) Becord of Data:
(a) Accuracy.
(b) Completeness.
(c) Consistency.
( d) Arrangement.
(e) Originality.
B. EXECUTIDIT.
(1) Lettering:
(a) Style. ("Engineering News")
(b) Size, (a, c, e, i, etc., %o in<^'^ high; b, d, f, g, etc.,
A, B, C, etc., and 1, 2, 3, etc., %o (%) "ich high; t, %o
inch.)
(c) Slant. (In body of notes, "slanting," 1:2.5 right;
in headings, " upright," about 1 : 25 to left.)
(d) Form. ( See Reinhardt's " Freehand Lettering." )
(e) Spacing. (Of letters in words; of numerals; of
words; balancing in column or across page.)
(f) Alinement. (Horizontal ; vertical.)
(g) Permanency. (Use sharp hard pencil with pressure.)
(2) Sketches.
"(a) To be bold, clear and neat.
(b) To be ample in amount.
(c) To be of liberal size.
(d) To be in fair proportion.
(e) To be made freehand.
( f ) To be made in the field.
12 QENERAIi INSTRUCTIONS.
OFFICE WORK.
Importance of Office Work. — Capable office men are
comparatively rare. Skill in drafting and computing is
within the reach of most men who will devote proper time
and effort to the work. Men who are skillful in both field
and office work have the largest opportunity for advance-
ment.
Calculations. — All calculations and reductions of a per-
manent character must be shown in the field note book in
the specified form. Cross references between field data and
calculations should be shown. Consistency between the
precision of computed results and that of the observed data
should be maintained. Computed results should be verified
habitually, and the verified results indicated by a check
mark. Since most computers are prone to repeat the same
error, it is desirable in checking calculations to employ in-
dependent methods and to follow a different order. A
fruitful source of trouble is in the transcript of data, and
this should be checked first when reviewing doubtful cal-
culations. Skilled computers give much attention to
methodical arrangement, and to contracted methods of
computing and verifying results. Familiarity with the
slide rule and other labor saving devices is important.
(See Chapter X, Methods of Computing.)
Drafting Boom Equipment. — The student is respon-
sible for the proper use and care of drafting room furni-
ture and equipment provided for his use.
Drafting. — The standard of drafting is that indicated in
Reinhardt's " Technic of Mechanical Drafting."
Drafting Boom Decorum. — The decorum of the student
in the drafting room will conform to that observed in first-
class city drafting offices.
CHAPTER II.
THE CHAIN AND TAPE.
METHODS OF FIELD WORK.
Units of IVEeasure. — In the United States the foot is used
by civil engineers in field measurements. Fractions of a
foot are expressed decimally, the nearest 0.1 being taken
in ordinary surveys, and the nearest 0.01 foot (say y^
inch) in more refined work.
In railroad and similar " line " surveys by which a station
stake is set every 100 feet, the unit of measure is really 100
feet instead of the foot. The term " station " was originally
applied only to the actual point indicated by the numbered
stake, but it is now universal practice in this country to
use the word station in referring to either the point or the
100-foot unit distance. A fractional station is called a
" plus " for the reason that a plus sign is used to mark the
decimal point for the 100-foot unit, the common decimal
point being reserved for fractions of a foot. The initial or
starting stake of such a survey is numbered 0.
The 100-foot chain is commonly called the " engineers'
chain " to distinguish it from the 66-foot or lOO-link chain
which is termed the " surveyors' chain " because of its
special value in land surveys involving acreage. The latter
is also called the Gunter chain after its inventor, and is
otherwise known as the four-rod or four-pole chain.
British engineers use the Gunter chain for both line and
land surveys. The " surveyors' " or Gunter chain, while
no longer used in actual surveying, is described in this book
for the reason that the United States rectangular surveys
were made throughout with the 66-foot chain.
In the Spanish-American countries the vara is generally
used in land surveys. The Castilian vara is 32.8748 inches
long, but the state of California has adopted 32.372 inches,
and Texas 331^ inches, as the legal length of the vara.
While the metric system is used exclusively, or in part, in
13
14
THE CHAIN AND TAPE.
each of the several United States government surveys, ex-
cept those for public lands, little or no progress has been
made towards its introduction in other than government
surveys.
Linear Measuring Instruments. — Two general types of
linear measuring devices are used by surveyors, viz., the
common chain and the tape. There are several kinds of
each, according to the length, material, and method of
graduation.
Fig. 1.
The common chain is made up of a series of links of
wire having loops at the ends and connected by rings so as
to afford flexibility. The engineers' chain is shown in (a),
Fig. 1, the illustration being that of a 50-foot chain, or one-
METHODS OF FIELD WOEK. 15
half the length generally used. The surveyors' or Gunter
chain is shown in (b), Fig. 1. In the common chain the
end graduation is the center of the cross bar of the handle,
and every tenth foot or link is marked by a notched brass
tag. In the 100-foot or 100-link chain the number of points
on the tag indicates the multiple of ten units from the nearer
end, and a circular tag marks the middle of the chain.
The chain is done up hour-glass shape, as shown in the cut.
Chaining pins made of steel wire are used in marking the
end of the chain or tape in the usual process of linear
measurement. A set of pins usually numbers eleven, as
indicated at (c). Fig. 1. The pins are carried on a ring
made of spring steel wire.
The flat steel band, shown in (d) and (e), Fig. 1, is the
best form of measuring device for most kinds of work. The
band tape is usually 100 feet long. The end graduations of
the band tape are usually indicated by brass shoiilders,
w^hich "should point in the same direction, as shown in (f),
Fig. 1. The 100-foot band tape is commonly graduated
every foot of its length, and the end foot to every 0.1 foot,
every fifth foot being numbered on a brass sleeve. Brass
rivets are most commonly used in graduating this tape.
The band tape may be rolled up on a special reel, as indi-
cated in (d) and (e), although some engineers dispejise
with the reel and do up the tape in the form of the figure 8
in loops of five feet or so.
The steel tapes shown in (g) and (h) have etched gradu-
ations. This style of tape is commonly graduated to 0.01
foot or yg inch. It is more fragile than the band tape and
is commonly used on inore refined work. The form of the
case shown in (h) has the advantage of allowing the tape
to dry if wound up while damp.
The " metallic " tape (i) , Fig. 1, is a woven linen line hav-
ing fine brass wire in the warp.
The steel tape is superior to the common chain chiefiy
because of the permanency of its length. The smoothness
and lightness of the steel tape are often important advan-
tages, although the latter feature may be a serious draw-
back at times. The tape is both easier to break and more
difiicult to mend than the common chain.
Tapes for measuring base lines with great precision have
recently been made of Invar steel. Invar steel has a very
small coefBcient of expansion. Invar steel tapes are very
expensive.
16 THE CHAIN AND TAPE.
Chaining. — In general, the horizontal distance is chained.
Two persons, called head and rear chainmen, are required.
The usual process is as follows :
The line to be chained is first marked with range poles.
The head chainman casts the chain out to the rear, and
after setting one marking pin at the starting point and
checking up the remaining ten pins on his ring, steps
briskly to the front. The rear chainman allows the chain
to pass through his hands to detect kinks and bent links.
Just before the full length is drawn out, the rear chainman
calls " halt," at which the head chainman turns, shakes out
the chain and straiglitens It on the true line under the
direction of the rear chainman. In order to allow a clear
sight ahead, the front chainman should hold the chain
handle with a pin in his right hand well away from his
body, supporting the right elbow^ on the right knee, if de-
sired. The rear chainman holds the handle in his left hand
approximately at the starting point and motions with his
right to the head chainman, his signals being distinct both
as to direction and amount. Finally, when the straight
and taut chain has been brought practically into the true
line, the rear chainman, slipping the handle behind the pin
at the starting point with his left hand, and steadying the
top of the pin with his right, calls out " stick." The head
chainman at this instant sets his pin in front of the chain
handle and responds " stuck," at which signal and not before
the rear chainman pulls the pin.
Both now proceed, the rear chainman giving the prelim-
inary " halt " signal as he approaches the pin just set by
the head chainman. The chain is lined up, stretched, the
front pin set, and the rear pin pulled on signal, as described
for the first chain length. This process is repeated until
the head chainman has set his tenth pin, when he calls
" out " or " tally," at which the rear chainman walks ahead,
counting his ping as he goes and, if there are ten, transfers
them to the head chainman who also checks them up and
replaces them on his ring. A similar check in the pins may
be made at any time by remembering that the sum, omit-
ting the one in the ground, should be ten. This safeguard
should be taken often to detect loss of pins. The count of
tallies should be carefully kept.
When the end of the line is reached, the rear chainman
steps ahead, and reads the fraction at the pin, noting the
units with respect to the brass tags on the chain. The
number of pins in the hand of the rear chainman indicates
METHODS OF FIELD WORK. 17
the number of applications of the chain since the starting
or last tally point. A like method is used in case inter-
mediate points are to be noted along the line.
On sloping ground the horizontal distance may be ob-
tained either by leveling the chain and plumbing down
from the elevated end, or by measuring on the slope and
correcting for the inclination. In ordinary work the for-
mer is preferred, owing to its simplicity. In " breaking
chain " up or down a steep slope, the head chainman first
carries the full chain ahead and places it carefully on the
true line. A plumb bob, range pole or loaded chaining pin
should be used in plumbing the points up or down. The
segments of the chain should be in multiples of ten units,
as a rule, and the breaking points should be " thumbed "
by both chainmen to avoid blunders. Likewise, special cau-
tion is required to avoid confusion in the count of pins dur-
ing this process.
The general method of measuring with the band tape is
much the same as with the common chain. The chief dif-
ference is due to the fact that the handle of the tape extends
beyond the end graduation, so that it is more convenient
for the head chainman to hold the handle in his left hand
and rest his left elbowr on his left knee, setting the pin with
his right hand. Another difEerence is in the method of
reading fractions. It is best to read the fraction first 'by
estimation, as with the chain, making sure of the feet; then
shifting the tape along one foot, getting. an exact decimal
record of the fraction by means of the end foot graduated
to tenths ; the nearest 0.01 foot is estimated, or in especially
refined work, read by scale.
In railroad and similar line surveys, chaining pins are
usually dispensed with and the ends of the chain are indi-
cated by numbered stakes. The stake marked corre-
sponds to the pin at the starting point, and the station
stakes are marked thence according to the number of
100-foot units laid off.
Perpendiculars. — Perpendiculars may be erected and let
fall with the chain or tape by the following methods :
(a) By the 3:4:5 method, shown in (a). Pig. 2, in which
a triangle having sides in the ratio stated, is constructed.
(b) By the chord bisection method, shown in (b), Fig. 3,
in which a line is passed from the bisecting point of the
chord to the center of the circle, or vice versa.
3
18
THE CHAIN AND TAPE.
(c) By the semicircle method, shown in (c). Fig. 2, in
which a semicircle is made to contain the required perpen-
dicular.
The first method corresponds to the use of the triangle
in drafting. Good intersections are essential in the second
and third methods. Eesults may be verified either by using
another process, or by repeating the same method with the
measurements or position reversed, as indicated in (d),
rig. 2.
(^)
^.^5 3
4-
(b)
— ^. —
!d)
\/
(e) ,<
(A
(b)
Cc)
/
t
\ /
V
(d)
le)\
(s) ^
Fig. 2
Fig. 3.
Fig. 4.
In locating a perpendicular from a remote point, the
ratio method shown in (e). Fig. 2, may be used; or a care-
ful trial perpendicular may be erected at a point estimated
by placing the heels squarely on line and swinging the
arms to the front, then proving by precise method.
Parallels. — Parallels may be laid off with the chain in
various ways, a few of the simpler of which are :
(a) By equal distances, as in (a). Fig. 3, in which two
equal distances are laid off, usually at right angles to the
given line.
METHODS OP FIELD WOEK. 19
(b) By similar triangles, as in (b) and (o), Fig. 3. The
ratio may, of course, have any value.
(c) By alternate angles, as in (d). Fig. 3, in which tvi^o
equal angles are laid off in alternation.
The first method is adapted to laying ofE a rectangle, as
in staking out a building, in which case a good check is
found in the equality of the diagonals. Precision of aline-
ment is important, especially where a line is prolonged.
Angles. — Angles may be determined by linear measure-
ments in the following ways :
(a) By the chord method, shown in (a). Fig. 4, in which
the radius is laid off on the two lines forming the angle,
and the chord measured.
(b) The tangent method, shown in (b), Fig. 4, in which
a perpendicular is erected at one end of the radius, and the
length of the perpendicular intercepted by the two lines
measured.
(c) The sine-cosine method, (c), Fig. 4, which is better
suited to constructing than to measuring angles.
The chord method is usually the most satisfactory. The
tangent method may be applied to the bisected angle when
its value approaches a right angle. Measurement of the
supplementary angle affords an excellent check. A 100-foot
radius is commonly used, although good results may be had
with the 50-foot tape. Careful alinement is of the first im-
portance in angular measurements.
It is sometimes necessary to determine angles, at least
approximately, when no tables are at hand. Fair results
may be had on smooth ground by measuring the actual arc
struck off to a radius of 57.3 feet.
For very small angles, the sine, chord, arc and tangent,
(d). Fig. 4, are practically equal. Thus, sin 1° is .017452
and tan 1°, .017455, or either (say) .01745, or 1% per cent.
Also, arc 1' is .000291, or (say) .0003 (three zeros three) ;
and, arc 1" is .00000485, (say) .000005 (five zeros five).
Location of Points. — Points are located in surveying
field practice in the following seven ways.
(a) By rectangular coordinates, that is, by measuring
the perpendicular distance from the required point to a
given line, and the distance thence along the line to a
given point, as in (a). Fig. 5.
(b) By focal coordinates or tie lines, that is, by meas-
uring the distances from the required point to two given
points, as in (b), Fig. 5.
20
THE CHAIN AND TAPE.
(c) By polar coordinates, that is, by measuring the angle
between a given line and a line drawn from any given point
of it to the required point ; and also the length of this
latter line, as in (c). Fig. 5.
(d) By modified polar coordinates, that is, by a distance
from one known point and a direction from another, as in
(d),Fig. 5.
(e) By angular intersection, that is, by measuring the
angles made with a given line by two other lines starting
from given points upon it, and passing through the re-
quired point, as in (e). Fig. 5.
(f) By resection, that is, by measuring the angles made
with each other by three lines of sight passing from the
required point to three points, whose positions are known,
as in (f). Fig. 5.
is) By diagonal intersection, that is, by two lines joining
two pairs of points so as to intersect in the required point,
as in (g). Fig. 5.
Stake
//ai w/t/>""' ""•
Guard Stake
Fig. 9.
Signals. — There is little occasion for shouting in survey-
ing field work if a proper system of sight signals is used.
Each signal should have but one meaning and that a per-
fectly distinct one. Signals indicating motion should at
once show clearly both the direction and amount of motion
desired. Some of the signals in common use are as follows :
(a) " Eight " or " left," — the arm is extended distinctly in
the desired direction and the motion of the forearm and
hand is graduated to suit the lateral motion required.
(b) " Up " or " down," — the arm is extended laterally and
raised or lowered distinctly with motions to suit the magni-
tude of the movement desired. Some levelers use the left
arm for the " up " signal and the right for " down."
(c) "Plumb the pole (or rod)," — If to the right, that
arm is held vertically with hand extended and the entire
body, arm included, is swung distinctly to the right, or
vice versa.
(d) "All right," — both arms are extended full length
horizontally and waved vertically.
METHODS or FIELD WORK. 23
(e) "Turning point" or "transit point," — the arm is
swung slowly about the head.
(f ) " Give line," — the flagman extends both arms upward,
holding the flag pole horizontally, ending with the pole in
its vertical position. If a. precise or tack point is meant,
the signal is made quicker and sharper.
(g) Numerals are usually made by counted vertical swings
with the arm extended laterally. A station number is
given with the right hand and the plus, if any, with the
left ; or a rod reading in like manner. The successive
counts are separated by a momentary pause, emphasized,
if desired, by a slight swing with both hands.
Stakes and Stake Driving. — ^A flat stake is used to
mark the stations in a line survey, and a square stake or
hub to mark transit stations, (a) and (b), Eig. 9. The
station stake is numbered on the rear face, and the hub is
witnessed by a flat guard stake driven slanting 10 inches
or so to the left, Eig. 9. The numerals should be bold and
distinct, and made with keel or waterproof crayon, pressed
into the surface of the wood.
Having located a point approximately vyith the flag pole,
the stake should be driven truly plumb in order that the
final point may fall near the center of its top. In driving
a stake, the axeman should watch for signals. It is better
to draw the stake by a slanting blow than to hammer the
stake over after it is driven. Good stake drivers are scarce.
PROBLEMS WITH THE CHAIN AND TAPE.
General Statement. — Each problem is stated under the
following heads :
(a) Equipment. — In which are specified the articles and
instruments assigned or required for the proper perform-
ance of the problem. A copy of this manual and of the
regulation field note book, with a hard pencil to keep the
record, form part of the equipment for every problem as-
signed.
(b) Problem. — In which the problem is stated in general
terms. The special assignments will be made by program.
(c) Methods. — In which the methods to be used in the as-
signed work are described more or less in detail. In some
problems alternative methods are suggested, and in others
the student is left to devise his own.
24 THE CHAIN AND TAPE.
PKOBLEM Al. LENGTH OF PACE.
(a) Equipment. — (No instrumental equipment required.)
(b) Problem. — Investig-ate the length of pace as follows:
(1) the natural pace; (2) an assumed pace of 3 feet; and
(3) the effect of speed on the length of the pace.
(c) Methods. — (1) On an assigned course of known length
count the paces while walking at the natural rate. Observe
the nearest 0.1 pace in the fraction at the end of the course.
Secure ten consecutive results, with no rejections, varying
not more than 3 per cent. (3) Repeat (1) for an assumed
3-foot pace. (3) Observe (in duplicate) time and paces for
four or fi\e rates from very slow to very fast, with paces to
nearest 0.1 and time to neare.st second. Record data and
make reductions as in the form.
PROBLEM A3. DISTANCES BY PACING.
(a) Eqiiiiiiiieiit. — (No instrumental equipment required.)
(b) Problem. — Pace the assigned distances.
(c) Methods. — (1) Standardize the pace in duplicate on
measui'ed base. (3) I'ace each line in duplicate, results dif-
fering not more than 3 per cent. Record and reduce as in
form.
PROBLEM A3. AXEMAN AND FLAGMAN PRACTICE.
(a) Equipment. — Flag pole, axe, 4 flat stakes, 1 hub, tacks.
(b) Problem. — Practice the correct routine duties of axe-
man and flagman.
(c) Metliocls. — (1) Number three station stakes to indi-
cate representative cases and drive them properly. (2)
Drive a hub flush with ground and tack it ; number a wit-
ness stake and drive it properly. (3) Arrange program of
signals with partner, separate 1.000 feet or so and practice
same. (4) Signal say flve station numbers to each other
and afterwards compare notes. Make concise record of
the foregoing steps.
PROBLEM A4. RANGE POLE PRACTICE.
(a) Equipment. — 4 flag poles.
(b) Problem. — Given two hubs approximately 1,000 feet
apart, interpolate a flag pole say 100 feet from one hub.
PROBLEMS.
25
^
5spM3,^4,(S Jfrs-J CJeir and Cool ■
"^
lN\
ESTIS
/^TION
OF
LEN6TH OF Pace •
J-Doe, Surveyor- 1
Kind
Races p<
r 400 Ft.
Lengfh
Rem
;rks
EFFECT OF SPEED Or LEN6TH OF PACE- |
oF Pace
Mean
of Pace
Sepm.
■Clear
Kind Paces tn 400 Ff.
Mean
Time
Speed of
Hi
Paces
Paces
Ft.
Smooth
ground'
oF Pace
Obscrv'd Mean
Pace.P
40OFt
Pacing, 5
ttltwsH
J5gl>
mtirt.
eWfnd.
Paces
Paces
Ft-
Sec-
FhptrSec
Z
137-4
Ag.
inst "
Veryshvi
714-6
(s)
(B)
3
159-0
ft
't
tt >r
717-8
Zll-70
t-fS
If7
Z-^O
4
137-1
n »
Slow
16S-0
(k)
(h)
S
131-0
n
f*
n
167-S
le7-7S
7-3i
111
3-60
(
139-0
It Pf
mara/
139-4
ra
re)
7
137-3
tt
ti
"
137-S
13S-4S
Z-S9
71
S-63
!
J39-0
M n
3'Focf
133-3
I'd)
0J
9
J3S-0
f
ff
T,
1S3-6
133-4!
3-00
77
S-ZO
10
S-FictI
2
139-3
I3S-T(
Z-S9
With tl
A,,
'nsf- "
Fast
174-7
lZS-3
IZS-OO
fe)
3-ZO
SS
(e)
e-90
(jl-e)
J3J
1
I3Z-6
o:*
}
J 33-0
}*
d
^
■-t
e
4
S
6
7
t
9
K
I3i-^
134-0
133-3
13Z-0
133-0
133-3
132->(S
W
ft tr
b
-
\
m J.
S^
«j
^
a
/
t
M)
1 Z $ 4 5 e 7 1
II
133-0
133-02
3-01
"
n
Speed oF Wal
ing, Ft- per Sec>;S* |
(lO-l)
y
r
DiSTA
ICES
BY ?A
CINS
Line
Length
iF Pace
Len(
th oF
-ine
J- Doe, Survey&j
-
No
flirWOft
Ft.
Obarvtd
Mean
Length
Sepl-14,' 14 fulfil
Ts) Clear ^ Coo/'
Paces,
Paces
Ft-
/
i44-0
z
MZ-a
143-0
zsa
i--#
/
134-0
1 \
/
"^
11
z
1340
134-0
37S
1
\
e-9
1
Z17-0
1
\ /
n
2
Zlg-S
Z17S
eio
1
\/
/
z
M/scot/nf- 1
mo
tt
3
llS-5
Ug-Z
331
1
/ \
HI
1
Z7a-o
1 /
/ /
S
»
Z
ZtO-E
Z7S-g
7S5
^■^y
1-9
t
Z09-0
/ /
""'^ /
If
Z
ZIO-0
Z09-S
saz
1 / ^'
/
s-s
1
zse-0
/--^'
/
If
z
ZMS
Z87-Z
g04-
9
/
s-i
1
140-0
/ "
tt
z
141-0
140-S
393
/ /
k
t-l
1
ies-0
/
tt
z
me
117- g
sze
/
W-
-E
/
i
II
26 THE CHAIN AND TAPE.
remove the distant pole, prolong the line by successive 100-
foot sights and note the error at distant hub. Bepeat
process for 200-foot and 300-foot sights.
(c) Mctlwds. — (1) Set distant flag pole precisely behind
hub and hold spike of pole on tack of near hub ; lying on
ground back of near hub, line in pole 100 feet (paced) dis-
tant ; remove pole from distant hub, and prolong by 100-
foot sights up to distant hub, noting error to nearest 0.01
foot. (2) Eepeat in reverse direction, using 200-foot sights.
(3) Eepeat with 300-foot sights. Avoid all bias. Record
data in suitable form, describing steps concisely.
PROBLEM A5. STANDARDIZING CHAIN OR TAPE.
(a) Equipment. — Chain or tape assigned in any problem
where standard length of chain may be of value.
(b) ProMem. — Determine the length of the assigned
chain or tape by comparison with the official standard
under the conditions of actual use.
(c) Metliods. — In standardizing tape, reproduce the con-
ditions of actual use as regards tension, support, etc., bring
one end graduation of chain or tape to coincide with one
standard mark, and observe fraction at the other end with
a scale. As a general rule, observe one more decimal place
than is taken in the actual chaining.
PROBLEM A6. DISTANCES WITH SURVEYORS' CHAIN.
(a) Equipment. — Surveyors' chain, set of chaining pins, 2
plumb bobs, 2 flag poles (unless instructed otherwise).
(b) Problem. — On an assigned chaining course about one
mile long measure distances with the surveyors' chain to
the nearest 0.1 link, and repeat the measurements in the
opposite direction.
(c) Methods. — (1) Standardize the chain before and after,
as prescribed in A5. (3) Chain along the assigned course,
noting the distances from the starting point to the several
intermediate points and to the end station. Observe frac-
tions to the nearest 0.1 link by estimation. (3) Repeat the
chaining in the opposite direction, noting the distances from
the end point, as before. The difference between the totals
in the two directions should not exceed 1 : 3,000. Retain the
same party organization throughout the problem. Record
the data as in the prescribed form.
PROBLEMS.
27
Line
Chdin
A-B
A-C
A-D
A-B
e-D
B-C
E-B
B-A
Note:
Direction
Cfiained
Befhre
After
B-
DISTjlMCES
Obtrred Dif f- of
Length Total
Ch- Ch.
W-
The
st/hs
the
7■3^7
30-306
eO-3S7
79-g3S
19-473
4AS5I
7M06
73-133
svbsi ^uenf
/ Tea
WITH
Ratio
l:d
^0-OOS
have c 7t3 wL
proble *7?
I-ISS70
crc
(3ee D. a^rsn^
f be i/sed irT3
In t?> 'scuss/pp
-■/sj^n or c bs/mn ^-
CoeF-
C
Lk-
p-oe
Surveyor's CiJai'n
/fff3(f Ch3m/nsj?rJ-l oe^
SepfJS, 'l4-frffourt .
Used &iipferCfr3i'ir\ff~^fO,
haia
Compared Ghain fv/ ^/f
' ''t before and Kiftercf^.
bsfh
Chained 3foi?0 Chan *in0
te^jj7/?m03f
A on ffuard stake,
of W' br/ck w^M
curb J/he
!ll-;thei?ce£'ly
N'brfck side wa.
es to nearest 0-1
marked B, C,
from stsrtmff pi fnfA
Chained same
d/recfion carrying
from Hub ^
fractions of^i/nk
ruie tvas used in
W-^
A B
r/ ^earChalnman, R-Rae,
Ciear^nd Cool-
1 J locker /f^35
off/ciaisfandsrd
'^ chain ing.
Course ''A",
fvifh fack, market^
J, f0C3tetf3tS.-&^
on (freenSt- atf'
•; Urbana^
^lon^ said 5- line of
'kf obsen/^ing distanc-
ik- to tacked hubs
■f the totai distance
being noted-
in therei^rse
total distances
of Oat. 'lews Ave-
Dat'dE,
were estimated- ibcht
standardizing Chain-
PROBLEM A7. DISTANCES WITH THE ENGINEERS'
CHAIN.
(a) Equipment. — Engineers' chain, set of chaining pins, 3
plumb bobs, 2 flag poles (unless instructed otherwise).
(b) Problem. — On an assigned chaining course about one
mile long measure distances with the engineers' chain to
the nearest 0.1 foot, and repeat the measurements in the
opposite direction.
(c) Methods. — (1) Standardize the chain before and after,
as prescribed in A5. (2) Chain along the assigned course,
noting the distances from the starting point to the several
intermediate points and to the end station. Observe frac-
tions to the nearest 0.1 foot by estimation. (3) Repeat the
chaining in the opposite direction, noting the distances from
the end point, as before. The difference between the totals
in the two directions should not exceed 1 : 3,000. Retain
the same party organization throughout the problem. Re-
cord the data as in the form.
28 THE CHAIN AND TAPE.
PROBLEM A8. DISTANCE WITH 100-FOOT STEEL
TAPE.
(a) Equipment. — 100-foot steel band tape with end foot
graduated to tenths, set of chaining- pins, 3 plumb bobs, 2
flag poles (unless instructed otherwise).
(b) Problem. — On an assigned chaining course about one
mile long measure distances with the 100-foot steel band
tape to the nearest 0.01 foot, and repeat the measurements
in the opposite direction.
(c) Methods. — (1) Standardize before and after, as pre-
scribed in A5. (2) Chain along the assigned course, noting
the distances from the starting point to the several inter-
mediate points and to the end station. In observing the
fractions, first determine the foot units, then estimate the
nearest 0.1 foot, then shift the tape along one foot and read
the exact fraction on the end of the tape, estimating the
nearest 0.01 foot. (3) llepeat the mea.surement in the op-
posite direction, noting the distances from the end point, as
before. The diiference between the totals in the two direc-
tions should not exceed 1 : 5,000. Retain the same party
organization. Record data as in the form.
PROBLEM A9. HORIZONTAL DISTANCE ON SLOPE
WITH STEEL TAPE.
(a) Equipment. — 100-foot steel tape with etched gradua-
tions to 0.01 foot, set of chaining pins, 3 plumb bobs, 3 flag
poles, axe, supply of pegs, engineers' level and rod (unless
otherwise instructed).
(b) Problem. — Determine the horizontal distance between
two assigned points on a steep slope, ( 1 ) by direct horizon-
tal measurement, and (3) by measurement on the slope
and reduction to the horizontal.
(c) Methods. — (1) Standardize the tape for each method,
as prescribed in A5, both before and after the day's chain-
ing. (3) In chaining down hill, rear chainniaii lines in flag
pole in hand of head chainman, then holds tape end to tack
on hub ; flagman stands 50 feet or more from line opposite
middle of tape and directs head chainman in leveling front
end, then supports middle point of tape under direction of
head chainman; head chainman, with spring balance at-
tached to tape and using pole as help to steady pull, brings
tension to 13 pounds ; recorder plumbs down front end, and
sets pin slanting sidewise. After checking th? pin, proceed
PROBLEMS.
29
DlST/
NCES
WITI
>
Ensiheer's Chain-
Line
Direction
Obstred
DiFf-of
Ratio
CoeF-
Held Chainman, R-Roe - Rear Chamman, JDk-
Chained
Length
Total
I'd
C
SepMS, '/4-CZ Hours) C/mdyS- Con/-
Ft-
Ft-
Ft
Used WO Ft- Chain ffSS, Locker miS-
Cham
Befire
/iVx/0
Compared chain with official standard
ti
AFfer
WO-IZ
both before and after days chaining
AS
e-
4U0
Chained alonp ciiainlnff course "A",
A-C
tt
ZODZ-Z
beffinninff at hub with tack^ marked
A-D
»'
3Sg7-S
A on^uardstake^ Iff cared 3tS-
A-E
ft
'J
5274-6
\
edge off/' brick waJk on Sreen
St- ate- curt line ofNathewsAve-,
e-D
r
1/86-3
\
llrbana, Hi-; thence f 'iy alon0 said
e-c
ij
il7Z-4
1
5-iine of It- brick walk, observing
e-B
rj
4730-Z
4
distances to nearest O-f ft- to
e-A
r>
SZ74-3
I=/7SSP
0-04
tacked hubs S, C, D and E, the total
1='
n
" e
distances from starting point A
SZ-743
e=
cYlor
^=#
being noted-
(SeeDj
igramy
iJ
Chained same course in tile reverse
Note:
T/ie s
^aye d
?/(? wL
( be ui
ed in
direction, carrying total distances
3 sub
•^e^uer,
tproi
/er^end/cu!3re
Length
Sfandarel
Length
and shlftlni
'3S required- 5ef /}e0s
Ft-
Ft-
Ft-
at points a.
h and c-
5eptZS
Measi/redanp fsASf, EBD and DBC m'fh
Tape
99-99Z
tape by cAof 1 metJiodflO^ft-j-adlc/s,
and cheeked
lymeasurj'n^ snffle be-
Tape
99-SgO
fweenASaadi
dfjme CB profarfaed)
AB
i}6-8i
-0-07
33e-7e
5ept-?6, '99 (ZM, ars) Prlzz'Ung ds are given
6x6'll'tl*l^
= 0-00lKZ95t96Ac
30Z-10
feet'
Ac-''
■he apf llcallo/.
OF
Multipli-
cation
FliLO
4m-t
sesze
2S6
I4SI16
3S69B
133
'J 7 Square
4-3560
one ^ the i lethods
opfios ''te
Logar-
ithms
Z-6MIS
Z-ZIOM
Sept-Z7,14- Compuh r,
A-B-tD-E, Perpendi
Double Area^
5q- Ft.
4-90S49
(81190)
Z-71995
2-410IS
5-pOIO
2-18459
Z-5m9
5-Zt59S
(J1450S)
de by
I elow
chains-
Ac-
Data fromfff>-
Transcript
81190
■■hecked-
(Hesult i t nearest 10 5^- Ft-)
186 ZSO
184 500
Z)45l 940
llTZSMIO_
B )37isi-B&l
lijlnrm
11 1570-631
(Result
5-lllAc-
Contract d Div'n
Used
ZZS9701
znBoo
8170
435&
SB14-
34-85
323
305
Z4
Z£
J-Doe. ^
ULAR Method.
Area- -Lab'
'<7 nearest 0-001 Ac-}
Contracted Mult'n
41191-
4513
Z034
113
15
S-I876
34 THE CHAIN AND TAPE.
culations by logarithms, as a check. (4) Combine the
checked results. Follow the form.
PROBLEM A15. AEEA OF FIELD FROM PLAT.
(a) Equipment. — Drafting- instruments, paper, etc., pla-
nimeter (as assigned).
(b) Prohlem. — Determine the area of the assigned field
directly from the plat.
(c) Methods. — (1) Make an accurate plat of the field from
the notes secured in All, using a prescribed scale. (2) De-
termine the area of the field by resolving the polygon into
an equivalent triangle. (3) Determine the area from the
plat by the polar planimeter and by one of the following
" home-made " planimeters : " bird shot " planimeter, " jack
knife " planimeter, cross-section paper, parallel strip,
weighing, etc. (4) Prepare on the plat a tabulated com-
parison of results secured by the several methods. (5)
Finish the plat, as required.
PROBLEM A16. SURVEY OF FIELD WITH CURVED
BOUNDARY.
(a) Equipment. — 100-foot tape, 50-foot metallic tape, set
of chaining pins, 2 plumb bobs, 4 fiag poles.
(b) Problem. — Make survey with tape of an assigned tract
having a curved boundary, collecting all data required for
plotting the field and calculating its area.
(c) Methods. — (1) Standardize the tape once to nearest
0.01 foot. (2) Examine the tract carefully and plan the
survey so as to secure a simple laj'out of base lines de-
signed to give short offsets to the curved boundaries. (3)
Locate the perpendiculars, if any, and chain all lines ; on
the curved sides, take offsets so as to secure a definite loca-
tion, and as a riile take equal intervals on the same line.
Follow the form.
PROBLEM A17. AREA OF FIELD WITH CURVED
BOUNDARY.
(a) Equipment. — (No instrumental equipment required).
(b) Problem-. — Calculate the area of the assigned field
with curved boundary by " Simpson's one-third rule," using
the data collected in Problem A16.
PROBLEMS.
35
Com
Triangle
ABB
BOB
BCP
Data
PUTAT
Sid
Line
AB=3
SB'-b
BA'C
i)
ON
es
Length
Ft-
336-70
4?S-g4
^41-14
F ARI
ka»b«)
Ft-
50Z-Zi
740-49
(93-00
Tra'nsc
A OF
(S-B)
Ft-
10S-46
30J-SS
ZZS-0S
-!pt cl
Field
(s-b)
Ft-
70-3S
JZ3-90
Z09-94
ecked-
Sept-2S
A-B-C
Ft
Z0O-3S
3J4-05
ZSS-OS
*/4- Compute
D-E, 3 SlDl
Area oF Triangle
r,J-Doe-
■-. Metho
Areas
5-9t
BC=3
CD^b
Db=c
740-49
404-91
'4I3-7Z
431-01
I3!7-3I
From f
093-00
a-
S-3S447
-i-eisog-*-
Z20J9O
-■l- 43 300
0-71338
Triangle
ABB
Part
CoMfUTATipH OP
Value
Ft- or"
330-70
423-14
34'33'
BOB
BCD
AB-a
BB^b
ABB=e
BE'a
BD'b
BBD-e
SC=b
pic=e
425-84
438-61
90°S9'
Are>,
Multip
aSin-C
438-61
4l*-9l
64'39'
OF
ication
abSin-C
16S5S
^02
IflELC
Logar-
itiitns
2-S273Z
2-02920
9-7B3S0
J703JZ
12773
3-^06
ZSB
±
4-9m7
(SI30II)
2-12923
2-64,
9-99994
5-21127
166 750
IS8SS2
23783
1586
357
2-64208
2-66743
9-936113
S-265S4
(114310)
S-3S446
4-63909-
Sepf-22, '14'
A-B-C-D-E, Ahsle
Double Areas
Sq-Ft.
Data From
Transcript
81300
110 750
184 310
2)452 360
pp.
checked-
(Resultto
■-(■r 43500)
(5-I92Ac)
'»-, J-Doe-
Method-
Area^-^absin-C-
nearest lOSij-Ft.)
5-192 Ac-
(Result t J nearest 0-001 Ac-)
36 THE CHAIN AND TAPE.
(c) Methods. — (1) Prepare form for calculation; tran-
scribe data in convenient form for calculation, and carefully
check copy. (2) Calculate the area of the polygon formed
by the base lines, preferably by the perpendicular method.
(3) Calculate the areas of the curved figures by " Simpson's
one-third rule," which is as follows : " Divide the base line
into an errii itumhrr of equal parts and erect ordinates at
the points of division ; then add together the first and last
ordinates, twice the sum of all the other odd ordinates, and
four times the sum of all the even ordinates ; multiply the
sum by one-third of the common distance between ordi-
nates." (The field notes might have been taken with special
reference to the rule, but it is better to take from the notes
the largest cren number of equal segments, assuming the re-
maining portion to be trapezoid or triangle.) (4) Give
signs to the several results by reference to the field sketch,
and combine them algebraically to get the net area, as
shown in the accompanying form.
PROBLEM A18. AKEA OP PTELD WITH CUEVED
BOUNDARY FROM PLAT.
(a) Equipment. — Drafting instruments, paper, etc., pla-
nimeter (as assigned).
(b) Problems. — Determine the area of the field with
curved boundary directly from the plat.
(c) Methods. — (1) Make an accurate plat of the field from
the notes obtained in Al6, tising a prescribed scale. (3)
Determine its area directly from plat by two methods men-
tioned in (3) of A15, other than those used in that problem.
(3) Prepare on the plat a tabulated comparison of the re-
sults by the several methods. (4) Pinish the plat, as re-
quired.
PROBLEM A19. PASSING AN OBSTACLE WITH TAPE.
(a) Equipment. — 100-foot steel tape, set of chaining pins,
plumb bobs, 4 flag poles.
(b) Problem. — Prolong an assigned line through an as-
sumed obstacle by one method and prove by another, finally
checking on a precise point previously established.
(c) Methods. — Given two hubs, A and B, 200 feet apart
prolong line and establish C 200 feet from B : (1) by con-
structing a 200-foot square in one direction; and (2) by lay-
PKOBLEMS.
37
c
Su
RVEY
OF F\
:LD V
ITH
Curved Boundary Line-
Offiiet L-
Dist-
OfFsd-l!'
OffsetL
Dist-
Offset R
HKit)Cl!smjmn,R-K(ie- Re^rChsinimn, J-Vae-
Ft-
ff
Ft-
Ff-
Ft-
Ft-
Oct-2, '14. (3 Hours) Clear and y^arm-
26Z-S
= d
Tspe H136I, locker H^SS = lOO^OI
ll-B
Z4-0
Sketch shows obseri/ed lengths- Final
30-3
too
es
309-1
area resuJt corrected For standard-
39-0
160
300
2-1
39- 1-
IZO
2S0
!S
il-S
go
260
13-2
d
IS- 6
40
240
14-7
^^^lr~>,<'•»^_,
■0
220
lB-0
Line C
CcfoJ.
200
ISO
I4-S
10-0
# %^^
4IS-4
= c
160
2-S
3-S
400
JS4-3
/ .. V.'-'' //
?4-6
iS-4
39-3
360
3Z0
ZSO
7-2
IS-0
■i9-7
MO
120
100
40-7
240
20-8
SO
e
40-3
37-4
200
160
20-2
JS-4
60
40
"^
30-1
no
ja-3
20
»M
<^^ ~~-kj
10 -g
SO
40
LineD
Cdtoe)
/LineA(B09-ih]l,
Line B
= b
I'll toe)
Tepf
Octl't'i
100-01
, Clear
'rWjrm
a
{
^ssdVp)
gesdUp.
\
\
Com >utation of Area of Field
Data for Calculation of Areas
Part
3be
bee
cde
LineB
LineC
LIneP
Chain
TrueA
Triangle, Base' 290-0, Alt ^ 145-3
•• '4IS-'4, i ^5^^5«)i ii^?,
•9-1 ftoTTyxxtJi ^z-
(.'
K-6i'?0''l20'->\ _,--■
WO-'OI
■ea = Computed Area "-(H-O-OOOI)
{l+0-00ai)'-(ltll-0ll02) Cnearly)-
Oct-3, 14- Computer, J-Doi^-
WITH Curved Boundary
Indicated Calculations
OafaFrompp- Transcr^t
i[290-C ■-'-'
i(4IS-4
i(404.
\^[(0t9-S)
< +2f2l-l-f37-4t4S-7t32-4)
1 ^■4(|0.8■^3e■l■^40^3t39-5^■24^ii
^^i(9-S>-l8-4)
(^[(0tl3-S;
{ +2(31-8 i-39-O)
\t 4(19-6 ■t39-4 -tSO-S)]
■ i(l3-S'-22-5)
'^[(OtlS-0)
t2(l8■4■^20■S)
\f 4(10-3 +20-2 + 19-7)]
i [20(15-0 +7-2) +(7-2*14-3)]
m[(2-8+8-S)
l+2(l4-8+l4-7)
\+4(IO-0+IS-0+l3-2)J
--i (2-8 "5-7)
^i 1(2-1'- 9-1) + 20(2-l +8-5) J
{98352 -*>
Chain Cor. K2000-0_
tAreas
■.ed-
21068
S6024
40328
(98352 ■
'. 1 2000-0
1487
8
116
II903I
20679
98351
-Areas
II37S
87
6831
152
1961
273
2-?5l^
38 THE CHAIN AND TAPE.
ing off a 200-foot equilateral triangle on the opposite side
using pins to mark points thus established. (3) Prolong
the line by each method to the hub D, 200 feet from C, and
record discrepancies in line. (4) Interpolate a point at G
on true line between B and D, and note errors of prolonga-
tion at G. Record as in the form.
PEOBLEM A20. OBSTRUCTED DISTANCE WITH TAPE.
(a) Equipment. — 100-foot steel tape, set of chaining pins,
2 plumb bobs, 4 flag poles.
(b) Problem. — Determine the distance between two as-
signed points through an assumed obstruction to both vision
and measurement, using two independent methods, and
finally chain the actual distance.
(c) Methods. — (1) Standardize the tape. (2) Determine
the distance between the assigned points by constructing a
line parallel to the given line, and equal or bearing a
known relation to it. (3) Secure a second result by running
a random line from one hub past the other so that a per-
pendicular less than 100 feet long may be let fall, measur-
ing the two sides and calculating the hypothenuse. (4)
After securing two results differing by not more than
1 : 1,000, chain the actual distance. Follow the form.
PROBLEM A21. RUNNING IN CURVE WITH TAPE.
(a) Equipment. — 100-foot steel tape, 50-foot metallic tape,
set of chaining pins, 2 phimb bobs, 3 hubs, 6 flat stakes,
marking crayon, tacks, five-place table of functions.
(b) Prolyicm. — Lay out two lines making an assigned
angle with each other, and connect them with a prescribed
curve by the " chord offset " method.
(c) Methods. — (1) Calculate the radius, R, for the given
degree of curve, D. (2) Calculate the tangent distance, T,
for the given radius, B, and angle of intersection, I. (3)
Calculate the chord offset, d, and tangent offset, t, for the
known radius, R, chord, c and degree, D. (4) At the given
point intersection (P. I.), A, lay off the given angle, /, by
the chord method. (5) Erom the P. I. lay off T along the
two tangent lines and locate point tangent (P. T.) and
point curve (P. G.), setting hubs at P. C. and P. T., with
guard stake at each hub. (6) Run in the curve, by chord
offsets, beginning at P. G. and checking at P. T. Calling P.
PEOBLEMS.
Passing am Obstacle
Oct- 4,*!4 , [2 Hours) Chsr 3f7d W3rm-
Tape ffo'iej, Uckffr /fo-3S, leir^fh ^ WO-OI •
d/vjs/7 thref /ruts, Csef on true //he i>y
transit), B ^Off/'t-frcnr A,3n P
400 Ft- beyend 3j. g/f on smostA ^rom<^-
Assumed otst^cle as sJrown j'n sketch,
and then (fgnorfn^ P) passed" ohst^cfe
by ZOO ft- equifaterel triangle to r/^ht
and by t^^ ft- square to left' Resumed
Ii'ne by each method and prolonged to
point D- Used p/ns marked by sJ/ps
of paper to /'nd/cate po/'ntS'
Also interpolated Con BD carefu//y ty
eye-
Results are given ih diagram below »
D
WITH Steel Tape -
Chai'nmen^ J-Pue and J^'^oe-
A (Hub)
Obstructed Distahce
OcfS, */4 fZ Hours) Cloudy a/7d eooJ-
Tape Ho-36/, locker /^o-3S, length $9-99
Ci'ven tkvo hubs A and B an unknown dis-
tance aparf, on smooth grouncf-
Assumed an ebs/ruction to vi'sfoji and
measurement, asshouv/i /n sketch •
Selected point C visible from A andB, chain-
ed CA and CBf obser\>'inj nearest C-Ifty
and bisected CA at D snd CSatE-
Chained DB- Then ca/cu/ated AB hy
doubiihg fD- ^6o■yx^='^^i'4
^an random line from A as c/ose as
pract/cah/e to obstruct/'ojr so as to reduce
, SF to a minimum • let fait perpendi'cuJar
BF from B on random fine- iieasured
Bf and fA to nearest O'lff- Calculat-
ed hy pothenase AB '
AS' VS0-8^-tSl9-4^ = SZl-0
finally, after securing the above results,
chained the actual distance AB- The
three results are sumarized below
Method-
Obs-Dist. 5td-Cor. Red-Dist-
By similar triangles
By right triangle
By actual measurement
SZl-4
SZhO
SZl-S
-O-l
-O-l
-O-l
SZl-3
SZO-9
5ZI-4
Total range = I tl040 -
WITH Steel Tape .
Chainmen, J-Poe ffnd ^'^off'
pP\^BfHub)
«A (Hub)
40 THE CHAIN AND TAPE.
C. Station 0, establish Station 1 by laying off tangent offset,
t, and chord, c Having one station on the curve, the next
is located by prolonging the chord and forming an isosceles
triangle having the chord offset as a base. Check on the
P. T., noting the discrepancy of distance and line. Also
establish the tangent again by tangent offset and observe
the error of line. Follow the form.
PROBLEM A23. DISCUSSION OF EREOES OF CHAINING
(a) Equipment. — (No instrumental equipment, unless
further data are desired, in which case Problems A6, A7
and A8 may be assigned again).
(b) Prohlein. — Investigate the errors of linear measure-
ment with the several kinds of chains and tape, with the
view to determine practical working tests or coefficients
of precision for actual use.
(c) Methods. — Assume that the conditions in Problems
A6, A7 and A8 are practically coniitant in the same problem,
and that the actual differences between observed lengths
of the several segments when chained in opposite dirc-
tions, represent the normal errors with the particular chain
and chainmen ; then tabulate: (1) the measured lengths of
all possible segments of the chaining course, either from
direct observation or by subtraction; (2) the actual errors
or differences between the two results, giving signs; (3)
the chaining ratios, I: d, and the decimal expressions of the
same to six places; (4) the " coefficients of precision" for
each case, calculated by formula, or more quickly, taken
from the diagram in the chapter on errors of surveying ; (5)
the mean decimal chaining ratio and its equivalent; and
(6) the mean coefficient of precision. Follow the form.
PEOBLEM A23. TESTING (OE ESTABLISHING) AN OF-
FICIAL STANDARD OF LENGTH.
(a) Equipment. — Standard tape (with certified length
given), turnbuckle adjustments with bolts, spring balance,
standard steel rule graduated to 0.01 inch, 2 thermometers,
2 microscopes, strips of wood, a watch.
(b) Problem. — Make a series of ten observations with a
standardized steel tape for the purpose of testing (or estab-
lishing) an official standard of length, observing the near-
est 0.0001 foot. (The Bureau of Standards, Washington,
D. C, will standardize a tape for a small fee.)
PEOBLEMS.
41
Location of Curve
Dcf-e, '/4 ■ f3 tnurs) Clear an J ceo/-
100 ft- Steel Tape f/e-Bl/, IpeJier/fa-JS'/Hi'-ill
ff/fen hub stA and a i/istant Ai/b B, l-a
/ay off a h'ne A-C making an angle I of
so' m'th BApro/onffed, and connect the
tm lines mtli a ^O'ciirve, t/iatis, a
curve having a central angle of ZO '
siiitended fy a W ft- chord, c-
The radii/s was calculated thus : Since the
chord of an arc Is tmce the sine of half
the arc, chords ^rad-xsin-P
'chord . so ,a-F<, -
rad-' __ ^
Calculated tangent distance thus .' In right
triangle (O-P-C-Fl)
Tan-Ast- - Mad-x tan -y /
=ZS7'9xO-i39lff = Z4l'e
Calculated chord offset d, and tangent off-
set t, thus : By simitar triangles ^: c =
'/''. ''•■%'=^,'34'-97,t'id=l7-^!
(An approx- formula is d-I^D'3S;t-p'l7S)
from A f/hlnt Intersection) laid off Tan-Pist-
(T), locating /hint Curve Cf-C) and Piint
Tangent (P-T-)- Began at PC- and ran
' in curve, asshoivn In sketch' Error of
Closure at P-T- was O^'Z in line and. tl-'l
^ in distance-
WITH Steel Ta
Had-
so- 000
34730
ISZ70
I3S91
1378
lie
•A s
'\ -A-if^
tn-9
0-I938-O
ZiOii
164-
?S9
3
2'H-St
Hd Chain, J-Doe-
PE. P'r Chain , S-Koe-
Axeman, B-f-Keen-
flagman, fi-W-Sura-
'i-^/V Chd-Offset-
1/
moo 287-9
IIS2
211
202
9
Line
A-B
B-A
A-C
C-A
A-D
D-A
A-e
f-A
B-C
C-S
B-P
D-S
B-f
e-B
C-D
D-C
c-e
f-c
D-£
E-D
Direction
Chained
E-
m
e-
w-
£■
HI-
E-
w-
E-
W-
E-
W-
E-
W-
E-
W-
E-
W-
E-
Discu
Observed
Length
Ft..
41-f-SS
4l4--(l
zm-79
3991-19
3991-74
S179-4I
K79-S7
ISI9-II
IS19-14
3SII2-II
3Sm3
4794-90
4794-96
1987-90
I987-S9
3Z7S-(9
327S-71
1217-79
I2S7-73
(L-ln
m-ft-
imits)\£,
SSION
Differ-
ence, E
f=t-.
-0-03\
-0-06
-0-OS'
-0.09
-0-03'
-0.02
OF El.RORS
Chaining
Ratio
l-.d
■f.f3<
Hun
;-etT
(Suilf.
Coef' of
Precision
W,ft
/■v
l:i»QO
a-
1:79130
i-.siseo
i-irnms
IU7S3S0
D-miii
i-.niso
i-tmos
1:01790
l:mi90
1:32920
1:41300
<>/■,«:■
■j4^
0-014
0-013
0-00/
0-012
0-OOS
0-003
0-009
0-002
O-OII
0-OIS
0-OOS
E
n
Oct-9, 14 - Computer, J -Doe •
WITH Steel Tape.
Pata from pp- Transcript 0-K-
ABC D E
O- ^ u o
Distances by Subtraction*
S-A 5279-37
e-B 4794-9G
B-A 484-m
A-C 2003-79
A-B
S-C 1519-21
E-B 4794-96
E-B 1217-13
D-B }B07-I3
B-C 327S-72
E-D 1287-83
E-A
5279-57
EC
327S-72
C-A
2003-85
E-B
■4794-96
E-C 3275-72\
C-B
ISI9-24i
A-E 5279-4^
A-B
4£4-S8\
B-E 4794-90\
A-E
S278-4l\
A-C 2003-79
C-E 3279-69
B-A 5279-57
E-D 1217-83
D-A 5991-74
A-D 3991-99
A-B 484-58
B-D 3507-11
A-D 3991-69
A-C 2003-79
C-D 1987-90
A-E 5279-48
A-D 3991-69
D-E 1217-79
D-C 1917-89
Designating Et and W- f4th Column) It Is
seen that the returning results (except
C-D) are greater- This Is explained by
standard tape lengi-ha, vlz-f before
=100-011, after '100-008, l-e- the tape
gradually decreased In length, causing
greater observed lengths- J
42
THE CHAIN AND TAPE.
(c) Methods. — (If a new official standard is being estab-
lished, one standard mark may be made permanent, and the
precise distance taken to an approximate temporary point
on the other bolt, the exact correction being applied after
a sufficient number of results have been obtained. If the
sun is shining, the tape should be protected by a wooden
box or other covering throughout its length. Cloudy days
or night time give best results. The observations should be
made briskly so as to have slight range of temperature.
Ccf/t! '14- Chiicly smf Cool-
Test of 100-Ft- Standard
Selec-f&d c/oi/c/y dsy ivifh s/i'ghf r3nge of
Used Sfanc/srd Tspe Jio-417, msrkeii "US-
3t 62° F- mfh J2- lb- pull, tspe supporte\l,
(-i'ltlt
^^5ffmz•
5 "
6 >•
V
5^-
<-/^
^^.
i>^
p?^i
::^^^
h
J"*
s
\\ /
^
J _
^
-ss
^
'. — ■
„..^
^
-is=d
L^
-
^
/V
c
k
V^s;
k^
'S
^P l-Ko
^0,^
^'^1
Maqnetic
-^
•~~.
s,
s
"-Sa
^^
^f
- Northern United States
>
^^
6' 5' 4' 3' Z' I' 0' I' t 5' 4' 5' 6'
Fig. 11.
(For additional data see bulletin of Department of Com-
merce, U. S. Coast and Geodetic Survey, entitled " Principal
Facts of the Earth's Magnetism.")
MAGNETIC DECLINATION.
47
Variation of the Declination. — The declination of the
needle is not a constant at any place. The change or
fluctuation is called the variation of the declination. The
variations of the magnetic needle are of several kinds:
48
THE COMPASS.
secular, daily, annual, lunar, and irregular variations aueto
magnetic storms. The most important of these is the
secular variation which is illustrated in the upper diagram
of Fig. 11 for a series of representative points in the United
States. This diagram shows that the extreme range or
swing of the needle is roughly 6° or 7°, and that the period
of time between extreme positions is about a century and a
half. Also that the wave of magnetic influence progresses
across the continent alike in successive cycles. In 1900 the
needle was at its extreme western position at Eastport,
Me., and at its extreme eastern position at San Diego, Cal.
The 3° East isogenic line passed through western Indiana,
and was moving westward at the rate of about 4' per year.
This rate of change was general throughout the central
part of the United States, and is represented by the straight
sections of the curve in the upper diagram of Fig. 11.
The daily variation of the magnetic declination is shown
graphically in the lower part of Fig. 11, the scale being
greatly magnified laterally. It is seen that the needle un-
dergoes each day a vibration similar in a general way to the
grand swing of three centuries or so shown in the upper
diagram. The magnitude of the daily movement in north-
ern United States ranges from 5' in winter to nearly 12'
in summer time. The needle is in its mean daily position
between 10 and 11 a. m. for all seasons. The diagram rep-
resents the normal magnetic day, of which there are per-
haps five or six per month.
Local Attraction. — The pointing of the needle is af-
fected by the close proximity of magnetic substances, such
5_\ ^!
a\
^
PhleLevenhey,/_ J \
(C)
Fig. 13.
USE OF THE COMPASS. 49
as iron ore, wire fences, railroad rails, etc. However, local
attraction does not prevent correct work, provided back
and fore sights are taken withont change of magnetic condi-
tions. It is therefore especially important to avoid disturb-
ances of the needle by the chain, axe, passing vehicles, elec-
tric wires, etc., or by articles on the person of the observer,
such as keys, knife, spectacle frame, wire in the hat rim,
reading glass case, etc. Also the glass cover may become
electrified by friction and attract the needle, in which case
it may be discharged with the moistened finger, or by
breathing on it.
The Vernier. — The vernier is an auxiliary scale used
to read fractional parts of the divisions of the main scale or
limb. Verniers are retrograde or direct, according as the
divisions on the vernier are larger or smaller than those on
the limb. The vernier used on compasses for the setting ofE
of the declination is direct, and is usually of the type shown
in (c) of Fig. 13. In reading a vernier of any kind, blunders
may be avoided by first estimating the fraction by eye be-
fore noting the matched lines on the two scales.
USE OF THE COMPASS.
TJse. — The compass is used: (1)" to determine the bear-
ings of lines ; (2) to measure the angle formed by two lines ;
(3) to retrace old lines. The bearing of a line is the hori-
zontal angle between the line and a meridian through one
end of it. Bearings are measured from the north or south
point 90° each way. The angle between two lines is the
difEerence in their directions as indicated by the bearings.
Having the true bearings of one side of a polygon, the true
bearings of the others may be obtained by algebraic addi-
tion of the angles ; or by using the declination vernier so
as to read the true bearing direct on the fore sights.
Practical Hints. — Point the north end of the compass
box along the line and read the north end of the needle.
Protect the pivot from needless wear by turning the needle
in about the proper direction before releasing it. Always
lift the needle before disturbing the compass. Habitually
obtain duplicate needle readings on each sighting. Kead
the needle by estimation to the nearest five minutes, that
is, to the one-sixth part of one-half degree, which is the
usual subdivision of the compass box. Care should be
taken to avoid parallax in reading the needle.
5
50 THE COMPASS.
ADJUSTMENTS AND TESTS.
Elementary Lines. — The elementary Mnes of the compass,
shown in (a) of Fig. 10, are : (1) the line of sight; (3) the
vertical axis; (3) the plate level lines.
The maker should see: (1) that the needle is strongly-
magnetized; (3) that the magnetic axis corresponds with
the line joining the two ends; (3) that the metal in the
compass box is non-magnetic; (4) that the line of sights
passes through the center of graduation; (5) that the
plates are perpendicular to the vertical axis; (6) that the
zero of the vernier coincides with the line of sights.
The needle may be magnetized with a bar magnet or by
putting it into the magnetic field of a dynamo. The metal
of the compass box may be tested by reading the needle,
then moving the vernier and noting if the needle has moved
the same amount, this process being repeated at intervals
around the full circle.
The Principle of Reversion. — In adjusting surveying
instruments, the presence, direction and amount of the er-
ror are made evident by the method of reversions which
doubles the apparent error. If there is no difEerence after
reversion, there is no error.
Plate Levels. — To make the plane of the plate level lines
perpendieular to the vertical axis. — Level up the instrument
by means of the plate levels and reverse the compass box
in azimuth, that is, turn it through a horizontal angle of
180°. Correct one-half the error, if any, by means of the
adjusting screws at the end of the level tube, and bring the
bubble to the center by the ball and socket joint. The rea-
sons for this process are shown in (a) of Eig. 13.
Sights. — To make the plane of sights normal to the plane
of the plate level lines. — With one sight removed and the
instrument leveled, range in with the remaining sight two
points as far apart vertically as possible, say on the side of
a building. Eeverse in azimuth and bring the bottom of the
sight in range with the lower point ; if the upper point is
then in range, the sight is in adjustment. If not, correct
one-half the error by putting paper under one side, or by
filing oif the other side. Repeat process for the other sight.
The Pivot. — To adjust the pirot to the center of the gradu-
ated eircle. — Set the south end of the needle to read zero,
and read the north end of the needle ; reverse the compass
box in azimuth, repeat the observations, and correct one-
half the difEerence between the two readings of the north
PEOBLEMS.
51
end of the needle by bending the pivot, using the special
wrench for the purpose. Turn the compass box 90° and
repeat. See (b), Fig. 13.
The Needle. — To straighten the needle. — Having adjusted
the pivot, set the north end of the needle to read zero and
bend the needle so that the south end reads zero also. Turn
the compass box and test for other graduations.
PEOBLEMS WITH THE COMPASS.
PEOBLEM Bl.
DECLINATION OP THE MAGNETIC
NEEDLE.
(a) Equipment. — Surveyors' compass, flag pole, reading
glass.
(b) Problem. — At a point on the true meridian determine
the mean magnetic declination with the surveyors' compass.
(c) Methods. — (1) Set the compass over one point and a,
flag pole at another on the true meridian. (3) Lower the
needle and sight at the flag pole carefully with the north
end of the compass box to the front. (3) When the vibra-
DCCLII ATION
Hcedic Mean
Undiaq
nims'e-
IHiS'E-
3 mtuid^as IVesff
thr
most p. vhabJe
jtaf/ffn
OF
Time
PM-
Z'OS
Z=/l
Z-/S
Z:ZZ
Z:Z7
2:31
Z--3S
Z:42
Z:4S
Z.-S4
IHeedl
Mean
P-M-
for da. '/y var^ '9f/ci1
Asstf/tf. 'Tff tfiai fhe m^nef/c
^I't/ejis sre nt\m3/ fqr f/7f
ibf cer.
fy PIffi rvjff of Oa/Iy V, *rf3t/OA
a^detf
'e-aa
tbee
JfJ'Jl'
va/vg o.
fftvei ■ .
fifr thi r part/iff lar Mia/rff~
Z--3C
fo
■Jiff
vJj-
/ esf/m ^t/on
WITH SUBVEVOI^
OcflZ.'m.fZHours)
i/sffef 0ur/ey Ccmpi
reeejtf/y rema^nfi i
Sef- cffmpass on true
Unafi'ff/l
S/ffi^af f/aypo/^ef
a dManoe ofZPfiFf-
neetffe ty
Cdue s/xt/j part
carefuJfy avoi'di't ^ paraJ/ax
magnetic d/sforbi mces
f/me fo nearesf
PJsfvri'et^ neei^Je
pi'vofaatf vei
yi/fien osc//fafm -s
rereatf fJie neeiflff
Cffaf/at/ttt^ fhe prt
utive reatfmpSf
ra/T^e ofaofm
irf'es-f were oht^n7ed-
's Compass-
'Jearanif Coo/-
■sH^Ze-ff/eeaJe
I'zeo^f ant/ ^Vatc/r-
mer/t/jan mff? i/ec-
toread zero •
on n7er/i//an sf"
•f and read
fo Sm/niftes
'oj?e-/i3/F decree) f
and
Observed
m/nt/te •
iy ///^ft'ny if from
*; t/ren
had ceased
^r/f 'ed slff/7f/n^;
on/// /en consec-
'lavlng 3 majcfmum
^re f/jan ten min—
62 THE COMPASS.
tions of the needle have ceased, move the vernier by means
of the tangent screw so that the north end of the needle
reads zero, and check the sighting of the compass. (4)
Read the declination on the vernier to the nea,rest minute.
(5) Lift the needle, verify the zero needle reading and the
sighting, read the vernier and record; repeat the process
until ten satisfactory consecutive values of the declination
are obtained. Observe the time of each reading to the near-
est minute. (6) Correct the mean of the ten values for
daily variation by reference to the diagram. Fig. U, using
the mean time. Record and reduce the data as in the form.
( Note that the values in the form were obtained by estimat-
ing the nearest five minutes. Which is better? Try both
if time allows.)
PROBLEM B3. ANGLES OF TRIANGLE WITH COMPASS.
(a) Equipment. — Survej'ors' compass, two flag poles,
reading glass.
(b) rrobtcni. — Measure the angles of a given triangle
with the surveyors' compass.
(c) Methods. — (1) Set the compass over one of the vertices
of the triangle and a flag pole behind each of the other two.
(2) Lower the needle and sight at one of the flag poles care-
fully, with the north end of the box to the front. (3) AVhen
the vibrations have ceased, read the north end of the needle
to the nearest five minutes by estimation. (4) Lift the
needle, verify the sighting and also the reading. (5) Turn
the compass box to the other point and determine the bear-
ing, as before. The required angle is the difference between
the two bearings. (6) Measure the other two angles in
like manner. The error of closure mvist not exceed 5
minutes. Follow the form.
PROBLEM B3. TRAVERSE OF FIELD WITH COMPASS.
(a) Equipment. — Surveyors' compass, 2 flag poles, engi-
neers' chain, set of chaining pins.
(b) I'rohiem. — Determine the bearings of the sides of an
assigned field with the surveyors' compass and measure the
lengths of the sides with an engineers' chain.
(c) Mcthod-i. — (1) Set the compass over one of the corners
of the fielfl which is free from local attraction, and set off
the declination with the vernier. (2) Take back sight on
the last point to the left and fore sight to the next point
PROBLEMS.
53
A
Statfon
S
8
6
NSLI5
Line
S-6
S-g
S-5
e-6
6-g
6-S
OF Tl
ObMrvEd
Bearing
5-g3'js')V
hsWe
V49'm
M9°M'£
ilAMSL
Needle
Angle
77'3S'
S4'4S'
47'4S'
z 5-6
-8
WITH Surveyors
Observerfi, R-Roe
0cf/3//4-fZ//our£^
Used hurley Comf
£sch bearing w&
(fup/j'cafe, the /
turbed 3/?d tJn
hettveen read/.
(P/screpency not i
Compass ■
fed/e being d/'S"
JSD'HS'
9 ejtceed S m/nufes^
\
^x — r
X
*.5
a
/
>,
7RAVE
RSE • FlEU
A-B-C
D-E
WITH Compass At
D Chain-
station
Line
Observed! Inten'or
Adjusted
Distance
Observers : J- Doe &
'K-^ae-
Bearing
Angle
Bearing
Ft-
0ct-J6, '14. f 3 Naurs)
Clears Windy
A
A-E
5-6s'sm
03'15'
Used Si/r/eyCompa
^s, locker if^Z4-
A-S
i-3Z'4S'f-
iJ2'45i
33e-£
Made needJeread ..
era wiief7 poinfing
B
B-A
mi'fsh
/SdW
trae fiar/h hysej
fin0 off declination
B-C
V43'/Si'
54i'K'B
4e4-e
m'fJj vernier an o
iciinai-iar7 arc oF
C
C-B
f43'^f'n
SS'fS'
Jf3'36'F-
C-D
ss/'j5'n
w'si'n
4n-3
Read bean'nffs tvi
th a- E/?d af{ffjnpaff&
D
D-C
fs/is'e
m'ss'
. ,
toward tiie fanv
ird station and
p-e
vzr^m
m'm
6J6-0
read H- End oF
Heedls-
£
E-P
iZZ^S'i
S7'S0'
£-A
IfSO'jf^
mWe
241.6
N A
S4S'PS'
E?rti/^efrjgg = Oisfance "Cosine Bearing ■
'^"^^■'ho/ A N Depdrfure (pnyech'ononEandW line)
~ Disiance '^ Sine Bearing ■
\Mendian Disfance of a point is itb
E distance Eor Wofan assumed
reference meridian ■
' Meridian d/sfance of a line is fhe
Compass % Merid-Disf of ifs middle poinh
(c) Methods. — (1) Prepare forms for calculations; tran-
scribe data, and carefully verify copy. (2) Compute lati-
tudes and departures by contracted multiplication, preserv-
ing results to the nearest 0.1 foot. (3) Make the same cal-
culations by logarithms, as a check. (4) Determine the ac-
tual linear error of closure. (5) Determine the permissible
error of closure (see chapter on errors of surveying). (6)
If consistent, distribute the errors in proportion to the sev-
eral latitudes and departures, respectively, repeating the
additions as a check. (7) Transcribe field notes and ad-
justed latitudes and departures, and verify transcript. (8)
Calculate the meridian distances of the several stations and
lines. (9) Calculate the latitude coordinates. (10) Calcu-
late the partial trapezoidal areas by multiplying the merid-
ian distances of the lines by the respective latitudes, pre-
serving consistent accuracy, and observing algebraic signs.
(11) Determine the area by taking the algebraic sum of the
partial areas. Reduce to acres, and correct for standard.
PROBLEMS.
55
ComiIass T(iaver4e
Observed
Distance
Line
Adjusted
Bearing
AB
CD
DE
ff/inW
£A H-eaWf. T4I-S
Ft-
3}e-s
464-6
4S3-3
OF
Compdtation
Multipli ■
cation
(Lat-Oisi
HTlesyi 616-0
Distribution oF Error
Line Lat. Dep<
AB . -- • '-
BC
CO
ne
-h^h -^^
Field
Logar-
ithms
xCos-Bg]
2-52$9i
9-$248l
U5ISQ
(2S5-0I)
2-B6708
9-86355
4-£3Ji
e/e-0
123Z
370
\-B-C-D
oF Lati
Computed
Latitude
Ft.
S-ZS3.0
S-330.3
2-S3KI
(33$3i)
2-6S4Z2
9-ISZ4S
zisin
(6S-6S}
2-7S9SS
i-7S64}
(nasi)
Z-3!3I0
■M3«
M71S3
Erro
tudes'
/■ 6S-6
S-6.
s- o-t
- oF C
£rror
fO-S'
Oct-n, '/4 Compt/fer, J-Poe-
P3t3 rrom pp- Jrsnscripf 0-K-
E Latitudes and Departures-
Adjusted
Latitude
Ft-
s-^g^-g
Multipli-
cation
[Deji-^Dist
5- 61-6
itni-i
lf-M-4
tl.6)C-S
3-190-S
Computation of Departures_
Logar-
itnme
KSinBs)
Z-5Z191
9-733IS
2-?eoie
(m-M)
2-66701
■S34tl
S5
Z31-S8
J4SO
217
Computed
Departure
Ft-
E-|g^■0
2-50IS4
(3ms)
2-11422
9-39S57
2-17979
(471-40)
2-7!9Sg
9-S7SI4
2-3(472
(231-59)
2-3g3IO
9-93934
2-32244
m47!-4
W-231-6
£-70S-S
»7IO-0
W- OS
Adjusted
Departure
Fh
E-lgZ-0
-0-2
W-47g-2
W-23/-S
e-7e9-7
0709-7
(See Distrain)
Pu-misasUe £rnr= -^S,
1/1 nnn -^ * ^''
Ocf- 77,14 ■ Compufer, J-Ooe.
lljtj frompp- Tr3nscr/pf 0-K-
C-D-E, Compass Traverse.
56 THE COMPASS.
Follow the form. (13) Make plat of field, using total rect-
angular coordinates, and checking by polar planimeter.
PROBLEM B5. ADJUSTMENT OF THE COMPASS.
(a) Equipment. — Surveyors' compass, adjusting pin, small
screw driver.
(b) Prolilem. — Make the necessary tests and adjustments
of the surveyors' compass.
(c) Methods. — Observe the following program: (1) test
the magnetism of the needle; (2) test the metal of the
compass box; (3) test and adjust the plate levels; (4) test
the sights; (5) test the pivot; (6) test the needle.
PROBLEM B6. COMPARISON OF DIFFERENT MAKES
AND TYPES OP COMPASSES.
(a) Equipment. — Department equipment, catalogs of rep-
resentative makers of compasses.
(b) Prohlem. — Make a critical comparison of the several
types of compasses.
(c) Methods. — Examine the department equipment and
study the several catalogs carefully, noting the character-
istic features, prices, etc. The following items, at least,
should be included in the tabulated report : name of instru-
ment, length of needle, length of alidade, vernier, tripod,
weight, price, etc.
CHAPTER IV.
THE LEVEL.
Description. — The engineers' level consists of a line of
sight attached to a bubble vial and a vertical axis. Two
types of level, the wye and dumpy, Fig. 14, are used by engi-
neers. In the former the telescope rests in Y-shaped sup-
ports, from which it may be removed. In the dumpy level
the telescope is fixed. The dumpy is a favorite with IJritish
Engineers' Wye Level.
Fig. 14.
Dumpy Level.
Fig. 15. — Types of Levels.
57
58 THE LEVEL.
and the wye level with American engineers. (The dumpy
level with erecting eye-piece has been adopted as standard
by the Division of Valuation, Interstate Commerce Com-
mission.) The two types differ chiefly in the methods of
adjustment. A third type, not shown in the cuts, is called
the level of precision because of its use solely for work of
extreme refinement.
In Fig. 15 are shown: (a) an architects' or builders' level
of the wye type; (b) a road builders' level of the dumpy
type; (c) a reconnaissance level with a decimal scale for
reading horizontal distances direct; (d) a water level some-
times used in locating contours; (e) a Locke hand level;
(f) a clinometer; (g) a binocular hand level.
THE TELESCOPE.
Principles. — The telescope used in the engineers' level
and transit, shown in section in Figs. 16 and 23, consists
of an objective or ohject glass which collects the light and
forms an image in the plane of the cross-hairs, and an ocular
or eyepiece which magnifies the image and cross-hairs. The
cross-hairs are thus at the common focus of the oujective
and eyepiece. The principle of this type of telescope, both
optically and mechanically, may be illustrated by the photo-
graphic camera if cross lines be ruled on the ground glass
focusing plate and a microscope be used in viewing the
image formed by the lens. Telescopes of the above class are
called measuring telescopes, while those of the opera glass
type are termed seeing telescopes. The latter have no real
image formed between the object glass and eyepiece.
Line of Colliniation. — The telescope of the level or tran-
sit may be represented by a line, called the line of collima-
tion, which joins the optical center of the objective and the
intersection of the cross-hairs. The optical center is a point
such that a ray of light passing through it emerges from
the lens parallel to its original direction. The line of coUi-
mation is independent of the eyepiece.
Objective. — The objective is a double convex or plano-
convex lens. In all good telescopes the objective is com-
pound, that is, made up of two lenses, with the view to cor-
rect two serious optical defects to which a simple lens is
subject. These defects are called chromatic aberration and
spherical aberration.
Chromatic aberration is the separation, by the objective,
of white light into its component colors. A lens which is
Tangent Line of level Tube
Optical Center
: oF Objective
Intersection of
Cross Hairs^f
(a)
ObjeclCkss
(forms imaqe in plane
oFeross-hairs)
Vertical Axisf.
Clip^....,^ ..'rising
Tangent to Bubble
/Azimuth 5crew5 1^
I eye I Bar-
(b)
i''^l?imj5 fgual -'■""<{
Line oF 'WoliimationMxis oFW&derJ
Bottom \ElementoFFin(f3 i
Tangent Y ~VtoBubbIe "T l
W Eyepiece'r
(MagniFiesimaqe
and cross-hairs)
-""Vertical Axis
Clip^-:.^jrl?inff
WyeMs
'^Altitude Screirs
footScrem
^;_Bj.q^J
^«i-
L>L
(C) \
I
,_ True Line of Collimalion
True Level Line from Target
i- — Length oFBack Sight egaa/j
True Level Line Through
' Bottom\FkmentoF things jf ^
Tanaeni:V ~\"to Bubble 1 f
(d) j
SI
_ TrueJJnejf Collima2ion_ l^
toTargetiSase oFCone)
^■fo Length of foresight -—
S\ Top oF Peg.
(e) Correct Levels by Equal Sights.
^ True Line oFCollimation
hi He t hod.
1 True Line oFCollimation.
True Level line fnd-^
^indfleiho'd.
60 THE LEVEL.
free from this defect is called achromatic. A telescope is
tested for the chromatic defect by focusing on a bright ob-
ject, such as a piece of paper with the sun shining on it,
and noting the colors on the edge of the object and es-
pecially at the edge of the field of view as the focus is
slightly deranged. Yellow and purple are the characteris-
tic colors indicating good qualities in the lens.
Spherical aberration is a defect which prevail? to a serious
extent in a simple lens having spherical surfaces. It is due
to a difference in the focal distance for different concentric
or annular spaces of the objective, so that the plane of focus
for rays passing through the outer edges of the lens is dif-
ferent from that of the middle portion. A telescope is
tested for this defect by focusing on a well defined object,
such as a printed page, with the raj's of light cut off alter-
nately from the middle and the edge of the lens. This is
best done by means of a circular piece of paper with a
small round hole in it.
As a rule, the object glass in good levels and transits con-
sists of a double convex lens of crown glass fitted to a con-
cavo-convex or a plano-concave lens of flint glass, the
former to the front. The defects described above are
avoided through the different dispersive and refractive
powers of the two kinds of glass, and by grinding the sur-
faces of the two lenses to the proper curvatures.
Eyepiece. — As in the camera, the image formed by the
objective is inverted, so that if a simple microscope be used
as an eyepiece, the observer sees objects inverted. Such
an eyepiece is commonly used on the dumpy level, as shown
in rig. 14. This form of eyepiece consists of two plano-
convex lenses with their convex sides facing each other.
The form of eyepiece most used in American instruments is
the erecting eyepiece in which two plano-convex lenses re-
place each of the two in the simpler form. The erecting
eyepiece is much longer than the simple one, as may be
seen at a glance in Fig. 14. While the simple eyepiece
causes a little confusion at first, owing to the inversion of
objects, it is much siiperior to the erecting eyepiece in the
matter of clearness and illumination.
The chief inherent defect in the eyepiece is a lade of
flatness of the field. A single lens usually causes a distor-
tion or curving of straight lines in the image, especially to-
wards the edge of the field. A telescope is tested for this
defect by observing a series of parallel right lines, prefer-
THE TELESCOPE. 61
ably a series of concentric squares, which fill the entire
field of view.
In the best achromatic eyepieces, one or more of the sep-
arate lenses may be compounded, the curvatures being sucli
as to eliminate the color defect and give rectilinear qualities
to the lens or combination of lenses.
Definition. — The definition of a telescope depends upon
the finish and also the accuracy of the grinding of the
curved surfaces of the lenses. It may be tested by reading
the time on a watch or a finely printed page at some dis-
tance from the instrument.
Illumination. — Illumination and definition are apt to
be confused. Poor definition causes indefinite details, while
poor illumination causes faintness in the image. The latter
may be tested about dusk, or in a room which can be grad-
ually darkened, and can be best appreciated if two tele-
scopes of different illuminating qualities be compared.
Aperture of Objective. — The aperture or effective di-
ameter of the objective is determined by moving the end of
a pencil slowly into the field and noting the point where it
first appears to the eye when held say 8 or 10 inches back
from the eyepiece. The process should be repeated in the
reverse order. The annular space is deducted from the
actual diameter to obtain the real aperture.
Size of Field. — The field of the telescope is determined by
noting the angle between the extreme rays of light which
enter the effective aperture of the objective. With the tran-
sit telescope, the limiting points may be marked on the side
of a building and the angle measured directly with the
plates ; or with either level or transit the angle may be cal-
culated from the measured spread in a given distance. For
simplicity, a distance of 57.3 feet may be taken, and the re-
sult reduced to minutes.
Magnifying Power. — The magnifying power of a tele-
scope is expressed in diameters, or as the multiplication of
linear dimension. It is determined most readily by making
an observation with both eyes open, one looking through
the telescope and the other by natural vision. The com-
parison may be made by means of a leveling rod, or the
courses of brick or weather-boarding on the side of a house
may be used in like manner.
Parallax. — Parallax is the apparent movement of the
cross-hairs on the object with a slight movement of the ej'e,
and is due to imperfect focusing of the eyepiece on the
cross-hairs before focusing the objective. The eyepiece
62
THE LEVEL.
should be focused tritli the eye normal, the cross-hairs being
illuminated by holding the note book page or other white
object a few inches in front of the objective.
(/) (2)
e©
(5) f4)
(b)
Fig. 17.
Cross-Hairs. — The cross-hairs are attached to a ring or
reticule ■n'hich is held by two pairs of capstan headed
screws. The hairs usually consist of spider lines, although
some makers use platinum wires for the purpose. To re-
move the reticule the eyepiece is taken out, one pair of
screws is removed and a sharpened stick is inserted in a
screw hole. The best spider lines are obtained from the
spider's e.^^ nest.
In Fig, 17, (a) shows the usual arrangement of the cross-
hair ring and the method of attaching the hairs ; (b) shows
the number and positions of hairs used, (1) being the most
common, (2) the form for stadia work with the transit and
also for estimating the lengths of sights with the level, (3)
a form used by some makers with the level, and (4) a style
found in English levels ; (c) shows the e^^ pod or case of
the large brown spider (about half size) which yields the
best lines for engineering instruments; (d) illustrates a
convenient vest pocket outfit for replacing cross-hairs in
the field, consisting of a supply of spider lines and some
adhesive paper (bank note repair paper) each in a capsule
or tin tube, and several sharpened sticks for stretching the
hairs. Cross-hairs stretched in this manner may last indefi-
nitely, or they may be fastened on permanently with shel-
lac at the first opportunity.
THE BUBBLE VIAL.
Principle. — The spirit level consists of a sealed glass
tube nearly filled ^^■ith ether or other liquid, and bent or
ground so that the action of gravity on the liquid may indi-
THE BUBBLE VIAL.
63
cate a level line by means of the bubble. The delicacy of the
buble depends upon the radius of the curvature in a verti-
cal plane, the greater the radius the more delicate the level.
Thus, for example, a perfectly straight tube could not be
used as a level.
Curvature of Bubble Vials. — Good bubble vials are now-
made by grinding or polishing the interior surface of a se-
lected glass tvibe by revolution, as indicated in exaggerated
form at (a) Pig. 18. As a general rule, only one side of
the vial is actually used, it being customary to encase it in
Tophnqent_ Line_ _
J Axh ofLevelTabe_
i\ b \\
(9> \
i r-4d
tfsecfienk)
Fig. 18.
a brass tube having a slot or race on one side. However,
both sides of the vial may be utilized, as in (b) and (c),
Fig. 18, which show the reversion level adapted to the tran-
sit and wye level, respectively. Bubble vials of several sizes
are shown in (d), Fig. 18. It was formerly customary to
grind out only a portion of the upper side of the glass tube,
as shown at (e). The cheap vial, consisting merely of a
bent tube, used mostly in carpenters' and masons' levels, is
64 THE LEVEL.
shown at (f) ; and a method of increasing the precision of
the bent tube by tilting it is indicated at (g), Fig. 18.
Delicacy. — The delicacy of the bubble vial is designated
either by the radius, usually in feet, or by the central angle
in seconds corresponding to one division or one inch of the
bubble scale. Two methods are employed to determine the
delicacy of level vials, (1) by the optical method, as at (h),
Fig. 18, where the radius is calculated from an observed tar-
get movement at a given distance for an observed bubble
movement, the two triangles being similar; and (2) by the
level tester, as at (i), by means of which the angular move-
ment is read from the micrometer head for a given move-
ment of the bubble. The engineer usually employs the radial
designation, while the maker expresses the delicacy in an-
gular units. As shown at (h) and (i),Pig. 18, the radius in
feet is equal to 17,189 divided by seconds per inch of bubble.
Bubble Line. — The relations of the bubble to the other
parts of the instrument are best understood by representing
the vial by a line. This line may be either the axis of the
surface of revolution in (a). Fig. 18, or to provide for either
of the three forms of vial shown, it may be taken as the
tangent line at the middle or top point. This tangent line
will be meant hereafter in referring to the bubble line.
LEVELING EODS.
Types. — There are two classes or types of leveling rods ;
(1) target rods, having, a sliding target which is brought
into the line of sight by signals from the leveler ; and (2)
aclf -reading or speaking rods which are read directly by
the leveler.
In Fig. 19, (a) is the Philadelphia rod ; (b) the New York
rod; and (c) the Boston rod. The first is either a target
or self-reading rod ; the second is a target rod, but may be
read from the instrument when the rod is " short " ; the
Boston rod is strictly a target rod. The Philadelphia rod is
perhaps the favorite for most purposes, and the Boston rod
is used least. A folding self-reading rod is shown at (d).
Fig. 19 ; (e) is a woven pocket device which may be tacked
to a strip of wood and used as a leveling rod; (f) is a rail-
road contouring rod with an adjustable base ; (g) is a plain
rod graduated to feet, for use with the water level.
Targets. — The targets shown on the Philadelphia and
Xew York rods, (a) and (b). Fig. 19, are called quadrant
targets. That on the Boston rod, (c), is a modified form of
USE OF THE LEVEL.
65
^
2
6.
4
do
6,
±
.2.
4
6.
PC
4
a
pzi
4
6^
lS,
4
6.
. .a.
4
6
a
r/)
D
Pig. 19.
the diamond target. A special form, called the corner tar-
get, is bent to fit two sides of the rod to assist in plumb-
ing it, and another target has two parallel planes for
the same purpose. A detachable rod level is shown at (h).
The target on rod (b), with the zero of the vernier 0.09 foot
below the center of the target, frequently causes blunders.
USE OF THE LEVEL.
Use. — The engineers' level is used: (1) to determine dif-
ferences of elevation; (2) to make profile surveys; (3) to
locate contours; (4) to establish grade lines; (5) to cross
section; (6) to run lines.
66 THE LEVEL.
Differential Leveling. — Differential leveling consists of
finding the difference of elevation between two or more
points. In the simplest case the difference of elevation be-
tween two points may be found from a single setting of
the level, the leveling rod being used to determine the
vertical distance from the plane of the instrument to each
of the two points, and the difference between the rod read-
ings taken. When the distance between the two points is
too great, either vertically or horizontally, or both, to ad-
mit of this simple process, two or more settings of the level
are taken so as to secure a connected series of rod read-
ings, the algebraic sum of which gives the desired differ-
ence of elevation. This difference may be expressed either
by the numerical result of the algebraic sum of the rod
readings, or by assuming an elevation for the beginning
point and calculating the elevation of the closing point by
means of the observed rod readings.
A haelc sight is a rod reading taken to determine the height
of the instrument. A fore sight is a rod reading taken to de-
termine the height of a point. A hench mark is a point se-
lected or established for permanent reference in leveling
operations. A turning point is a temporary reference point
used in moving the instrument ahead to a new setting. The
same point is often both a turning point and bench mark.
The datum is the plane or surface of reference from which
the elevations are reckoned ; it may be sea level, or an arbi-
trary local datum. A level line is a line parallel to the sur-
face of a smooth body of water. A horizontal line is
tangent to a level line at any point. The curvature varies
as the square of the distance from the point of tangeney,
and is 0.001 foot in 304 feet, or 8 inches in one mile.
In Fig. 19, (i) shows a metal and also a wooden peg com-
monly used for turning points. Several forms of bench
marks are shown in Fig. 19 ; ( j) is a mark on the corner
of a stone water-table ; (k) a rivet leaded into a hole
drilled in a stone slab ; (1) a railroad spike driven into a
wooden post or telegraph pole ; (m) a projection cut on the
root of a tree, preferably with a spike driven vertically into
the top of the bench, and usually with a blaze above
marked " B. M. No. — ." All bench marks and also turning
points should be clearly described in the notes.
Fig. 19a shows the essential details of differential level-
ing. In practice the calculations are made mentally.
Two chief essentials in correct differential leveling are :
(1) that the 'bu'bl)le lie in exactly the same position (usu-
USE OF THE LEVEL.
67
ally the middle) on hoth hack and fore sight; and (2) that
the length of hack sight and fore sight, horizontally, shall
be balanced. It is seen at (e), Fig. 16, that with the bubble
always in the middle, the line of collimation generates a
horizontal plane when in perfect adjustment, but a cone
with axis vertical when out of adjustment; so that in tak-
ing equal distances in the opposite directions, the base of
the cone is used, this base being parallel to the true colli-
ejf.l.
level Line from B.M.Iio.I
5ta.
B.5.
H,l.
F5.
Elev.
Di5t.
Calculations
Description of 6.(1.5 and 05.
B.ni.
mo.oo
s.in
100.00 mi
t4U B.i.
CilylbtmmBo/i.H.mciin,
mtertible, litM.BankBld'q
Ad)
^■442
lOUl
HO
10447 /f/
-1.16 F.5.
ei
-1.16
103.26
340
10320 01
H37.B.5.
107.63 /^Z
Peq, KEcanJ. 6reen'3 lot.
m)
t4V
ior.B
m
\
-3.551:5.
01
-}.U
104.01
1300
104.08 ez
fi.9l B.5.
5i'c/em/k,F. qatepost.J.Doe.
m)
■fISI
lOSJ}
ml
105.93 H3
-2.47) F.5.
mi
-Z.40
I03JS
300
103.59 mi
n.W.bolt, (nickeJ)H3terplaa
+10.70
■ -7.11
100.00
940
S.E. car. Hiqh and East Sts .
(Bal3ifcedB.5.andF.5 0/st.
-7.11
<^'J-- ►
t3.!9
\\
+ -i.i3
-«-'";'
m
0,ecJtedF/er.iyI(B.5.,F5.IJ
Fig. 19a. — Details of Differential Leveling.
mation plane. In the best leveling practice the instrument
is adjusted as perfectly as possible and then used so that
the residual errors balance each other.
The three common styles of leveling rods may be read to
0.001 foot by vernier or by estimation on a scale to 0.005
foot. However, for most kinds of leveling, it is an absurd
refinement to read the rod closer than 0.01 foot, especially
with the usual maximum length of sight of 350 to 400 feet,
and with the more or less sluggish bubbles supplied in the
general run of leveling instruments. Furthermore, the
horizontal hair usually covers 0.01 foot or so of the target
at the maximum length of sight, that is, the target can
move that amount without being noticed by the observer.
68 THE LEVEL.
Profile Leveling. — Profile leveling consists of finding
the relative elevations of a series of representative points
along a surveyed line, for the purpose of constructing a pro-
file or vertical section. The skeleton of profile leveling, that
is, the precise bench marks and turning points with the
successive heights of instrument, is identical with differen-
tial leveling, already described. Having determined the
height of instrument by taking a back sight on a bench
mark of known or assumed, elevation, rod readings are
taken at proper intervals along the measured and staked
line. These readings are fore sights, but they are usually
termed intermediate siplits to distinguish them from the
more precise rod readings taken on turning points and
bench marks. On railroad surveys intermediate sights are
taken usually to the nearest 0.1 foot on the ground ; but in
other cases, such as tile and sewer surveys, intermediates
are often read to the nearest 0.01 foot on small pegs driven
beside the station stakes flush with the surface of the
ground. In railroad work, the benches, turning points,
and intermediates of special importance are commonly read
to 0.01 foot, although some engineers persist in the ques-
tionable practice of taking the nearest 0.001. In drainage
surveys the nearest 0.01 foot is usually taken on bench
marks, although more carefully than on the intermediate
peg points, and the nearest 0.1 foot is read on ground points.
The errors of profile leveling are balanced on turning
points by equal back and fore sights, as in differential lev-
eling. If the instrument is seriously out of adjustment, an
error is made in the case of odd bench marks with unbal-
anced sights, and also on all intermediate sights. However,
the error is usually unimportant when ground readings are
taken to the nearest 0.1 foot. In important leveling, such
as canal and drainage work, it is customary to run a line of
check levels to prove benches, before construction begins.
The profile is plotted to an exaggerated scale vertically
on a special paper, called profile paper. Three kinds, known
as plates A, B and C, are in general use. The most common
is plate A, which is ruled in ^4"iiich squares with a further
subdivision to %o inch vertically. In railroad profiles the
scales most used are 400 feet to the inch horizontally and
20 feet vertically. A still greater exaggeration is generally
used in drainage profiles.
Reciprocal Leveling. — The application of differential
leveling to the determination of the difference of elevation
between two bench marks separated by a wide river or gorge
USE OF THE LEVEL. 69
is termed reciprocal leveling. A setting of the level is
taken on each side of the river, and the mean of the two re-
sults is taken. The necessary unbalancing of distances in
one setting is balanced \ip in the other. Each back or fore
sight should be the mean of a series of careful observations.
In best practice, simultaneous readings are taken with two
levels. .
Contour Leveling. — Contour leveling is an application
of the methods of profile leveling to the location of contour
lines, that is, lines having the same elevation. Two methods
are employed: either (1) actually establishing points on
the adopted contour planes on the ground and then locat-
ing these points; or (2) taking random elevations at rep-
resentative points and interpolating the contour lines from
the plotted data. The latter is the more common. Tlie
chief ptirpose of contour leveling is to make a contour map,
and the process is essentially a part of topographic survey-
ing, where it will be more fully considered.
Grade Lines. — The establishment of grade lines is usu-
ally the concluding part of profile leveling. After making
the profile, the grade line is established by stretching a fine
thread through the ruling points, taking into account the
controlling conditions, such as maximum gradient or earth-
work quantities on a railroad profile, the carrying capacity
or the scour in the case of a ditch, etc. After laying the
grade line on the profile, notes are made of the data, and
the actual grade line is established. Two methods are used :
(1) the height of instrument is determined as usual, and
stakes are driven at measured intervals with their tops to
match calculated rod readings; and (2) a limited number
of ruling points are established by the first method or
otherwise, and the remaining stakes are " shot in " by con-
structing a line parallel to the ruling line used. The latter
is more rapid, since a constant rod reading is used ; how-
ever, the method is unreliable unless the foresight be
checked frequently on a fixed target.
Cross-Sectioning. — Cross-sectioning consists of staking
out the limits of the transverse section of an excavation or
embankment for the purpose of construction, and usually
includes the collection of data for the calculation of the
quantities. This may be done either with the engineers'
level, rod and tape line, or with special rods called cross-
section rods. The notes are taken as rectangular coordi-
nates, usually with reference to the center of the finished
70 THE LEVEL.
roadbed. The slope stakes are set where the side slope
lines pierce the surface of the ground.
Running Lines. — Lines are sometimes run with the en-
gineers' level, provision being made in most good levels for
the attachment of a plumb bob. A line may be prolonged
by sighting in two points ahead. A clamp and tangent
movement are necessary. Some builders' levels have a
needle and also a roughly divided horizontal circle for use
in staking out buildings.
Practical Hints. — The following practical suggestions
apply more or less directly to all kinds of leveling, and
also in a general sense to transit work.
Speed. — Cultivate the habit of briskness in all the de-
tails of the work. While undue haste lowers the standard
of the results, an effort should be made to gain speed
steadily without sacrificing precision. Gain time for the
more important details by moving rapidly from point to
point. On rapid surveys both leveler and rodman often
move in a trot. Neither rodman nor leveler should delay
the other needlessly.
Care of Instruments. — Do not carry the level on the shoul-
der in climbing fences. Clamp the telescope slightly when
hanging down Keep the tripod legs at the proper tight-
ness, and avoid looseness in the tripod shoes. Avoid undue
exposure to the elements, and guard the level from injury.
Do not leave the instrument standing on the tripod in a
room over night.
Setting Up — In choosing a place to set the level up, con-
sider visibility and elevation of back point and probable
fore sight. Set up with plates about level. On side-hill
ground place one leg up hill. In general, place two tripod
shoes parallel to the general line of the levels.
Leveling Up. — A pair of foot screws should be shifted to
the general direction of the back or fore sight before level-
ing up. Set the foot screws up just to a snug bearing and
no tighter. If either pair of screws binds, loosen the other
pair a little The bubble moves with the left thumb. Level
up more precisely in the direction of the sight than trans-
verse to it, but do not neglect the latter. Inspect the bubble
squarely to avoid parallax, and also to prevent such blun-
ders as reading the bubble iive spaces off center.
Observations. — Adjust the eyepiece for parallax with the
eye unstrained. It is much easier on the eye to observe
with both eyes open. Read at the intersection of the cross-
hairs, since the horizontal hair may be inclined. Set the
USE OF THE LEVEL. 71
target approximately, check the bubble, and repeat the proc-
ess several times before approving the sight. Be certain
that the bubble is exactly in the middle at the instant of
approving the target. If the level has horizontal stadia
lines, beware of reading the wrong hair (the reticule may be
rotated one-quarter so as to have the extra hairs vertical,
or a filament may be attached to the middle horizontal hair
to assist in identifying it) . Avoid disturbance of the tripod
by stepping about the instrument. Assist the rodman in
plumbing the rod. Let signals be perfectly definite both as
to direction and amount, using the left hand for " up " and
the right for " down," or vice versa.
The leveler can work much more intelligently if he knows
the space covered on the rod by one division of the bubble
scale at the maximum length of sight, and also the space
on the rod hidden by the cross hair.
Adjustments. — Keep the instrument in good adjustment
and then use it as though it were out of adjustment.
Balancing Sights. — Balance the length of back sight and
fore sight, and record the approximate distances. The dis-
tances in the two directions may be made equal roughly by
equality of focus, but it is better on careful work to pace
the distances or determine them by means of the stadia
lines in the level. If necessary to unbalance the sights,
they should be balanced up at the first opportunity, and in
general they should be in balance when closing on import-
ant benches. When leveling up or down steep slopes, fol-
low a zigzag course to avoid short sights. Take no sights
longer than 350 or 400 feet.
Leveling Rod. — The rod should be carefully plumbed, to
accomplish which the rodman should stand squarely behind
the rod and support it symmetrically between the tips of
the extended fingers of the two hands. In precise work
wave the rod to and fro towards the observer and take
the minimum reading of the target. With " short " rods
avoid the somewhat common blunder of 0.09 foot when the
vernier slot is below the center of the target. With " long "
rods, see that the target has not slipped from its true set-
ting before reading the rod. Read the rod at least twice,
and avoid blunders of 1 foot, 0.1 foot, etc. Careless rodinen
sometimes invert the rod. Each rod reading on turning'
points and bench marks should, when practicable, be read
independently by both rodman and leveler.
Bench Marks and Turning Points. — Wooden pegs or other
substantial points shoiild be used to turn the instrument
72 THE LEVEL.
on. Select bench marks with reference to ease of identifica-
tion, the balancing of sights, freedom from disturbance, etc.
As a rule, each bench mark should be used as a turning
point so that the final closure of the circuit may prove the
bench. Mark the benches and turning points and describe
them in the notes so plainly that a stranger may readily
find them. Green rodmen sometimes hammer at turning
point pegs with the rod. When leveling near a still body
of water, its surface may be used to save time and check
the work.
Record and Calculations. — Describe bench marks and turn-
ing points clearly. It is good practice to apply algebraic
signs to the back and fore sight rod readings. The eleva-
tions should be calculated as fast as the rod readings are
taken, and calculations on turning points should be made
independently by leveler and rodman, and results compared
at each point. The rodman may keep turning point notes
in the form of a single column. The calculations should be
further verified by adding up the columns of back sights
and fore sights for each circuit, or page, or day's work, and
the algebraic sum of the two compared with the difference
between the initial and last calculated elevation.
Error of Closure. — A circuit of levels run with a good
level by careful men, observing all the foregoing pre-
cautions, should check within 0.05 foot into the square root
of the length of the circuit in miles (equivalent to 0.007 foot
into the square root of the length of the circuit in 100-foot
stations). In closing a circuit, the error should be care-
fully determined, as above indicated, and the value of the
coefficient of precision found. (See discussion of errors of
leveling and precision diagrams in Chapter IX, Errors of
Surveying.)
ADJUSTMENT OE THE WYE LEVEL.
Elementary Lines. — The principal elementary lines of
the wje level, as shown in Fig. 16, are: (1) the line of col-
limation ; (2) the bubble line; (3) the vertical axis. For
the purpose of adjustment there should be added to these :
(4) the axis of the rings; (5) the bottom element of the
rings. The following relations should exist between these
lines ; (a) the line of collimation and bubble line should be
parallel ; (b) the bubble line should be perpendicular to the
vertical axis. The first of these relations involves two
steps, viz., (1) to make the bubble line parallel to the bot-
ADJUSTMENT OF WYE LEVEL. 73
torn element of the rings, and (2) to make the line of col-
limation coincide with the axis of the rings. The other
relation involves the wye adjustment, and is similar to the
plate level adjustment described in the chapter on the com-
pass.
Bubble. — To make the 'bubble line parallel to the bottom
element of the rings. — Two steps are involved, (a) to place
the bubble line in the same plane with the bottom element,
and (b) to make the two lines parallel.
Azimuth Screws. — To make the bubble line in the same
plane with the bottom element of the rings. — Clamp the
level over a pair of foot screws, loosen the wye clips, and
level up ; rotate the telescope through a small angle, and
if the bubble mov^s away from the middle, bring it back
by means of the aximuth adjusting screws. Test by rotat-
ing in the opposite direction. Leave the screws snug.
Altitude Screws. — To make the bubble line and the bottom
element of the rings parallel. — Jlake the element level with
the foot screws and bring the bubble to the middle by
means of the altitude adjusting screws. The element is
made level by the method of reversions as follows : With
the level clamped over a pair of foot screws, as above, lift
the clips and level up precisely ; cautiously lift the tele-
scope out of the wyes, turn it end for end, and very gently
replace it in the wyes ; if the bubble moves, bring it half
way back by means of the foot scretvs. Before disturbing
adjusting screws make several reversals, and conclude the
adjustment with screws snug. This end for end reversal
is similar to that made with the carpenter's level, the
straight edge of the level corresponding to the element of
the rings. The lines involved are shown in Fig. 16.
Line of CoUimation. — To make the line of collimation co-
incide with the axis of the rings. — Loosen clips, sight on a
point, say a nail head or the level target, more distant than
the longest sight used in leveling; rotate the telescope half
way and note the movement of the hair, if any. The line
of collimation generates a cone, the axis of which is that
of the rings, and the apex of which is at the optical center
of the objective. Correct one-half the observed error by
means of the capstan headed screws which hold the cross-
hair ring. Gradually perfect the adjustment until the in-
tersection of the cross-hairs remains fixed on the same
point when reversed by rotation with reference to either
hair. The adjustment should be concluded with the screws
at a snug bearing.
74 THE LEVEL.
After collimating the instrument for a long distance, the
adjustment should be checked for a short distance, say 50
or 100 feet, so as to test the motion of the optical center
of the objective.
Bings. — The theory of the wye level demands perfect
equality of the rings, that is, the parallelism of the axis and
element, as in (c), Fig 16. Should the rings be unequal,
either from poor workmanship or uneven wear in service,
they form a cone instead of a cylinder, and the axis is not
parallel to the element, as in (d), Fig. 16. Under the latter
conditions, the principle of the wye level fails, and an in-
dependent test is demanded. This is known as the two-peg
test, the details of which are shown in (e) and (f). Fig. 16,
and described in the adjustments of the dumpy level. If,
after making the wye level adjustments above described,
the two-peg test shows that the line of collimation and
bubble line are not parallel, the rings are probably unequal
and the instrument should thereafter be adjusted as a
dumpy level. However, hasty conclusions should be guarded
against.
In case the instrument has a reversion level, shown at
(c), Fig. 18, the equality of the rings may be tested by
first adjusting the top tangent line of the bubble vial par-
allel to the bottom element of the rings, and then after ro-
tating the telescope half way round in the wyes, compare
the bottom (now above) tangent line of the vial with the
top (now below) element of the rings, all by the end for
end reversion. However, the exact parallelism of the top
and bottom tangent lines of the reversion level should first
be proven by the two-peg method.
Wyes. — To make bttihle line perpendicular to the vertical
axis. — Make the vertical axis vertical and bring the bubble
to the middle by means of the wye nuts. The vertical axis
is made vertical by reversion thus : With clips pinned, level
up ; reverse over the same pair of screws, and bring the
bubble half way back with the foot screws. When adjusted,
the bubble will remain in the middle during a complete rev-
olution. This adjustment is identical in principle with the
plate level adjustment of the compass and transit, illus-
trated in (a). Pig. 13. The wye adjustment should follow
the adjustment of the bubble line parallel to the element
of the rings. The wye adjustment is a convenience, not
a necessity.
Centering the Eyepiece. — After collimating the level,
the cross-hairs should appear in the center of the field.
ADJUSTMENT OF DUMPY LEVEL. 75
The eyepiece is centered by moving its ring held by four
screws. This adjustment is desirable, but not essential.
ADJUSTMENT OP THE DUMPY LEVEL.
Elementary Lines. — The principal elementary lines of
the dumpy level are identical vvith those of the wye level
(1) the line of coUimation; (2) the bubble line; (3) the
vertical axis. As in the wye level, the bubble line should be
(1) perpendicular to the vertical axis, and (2) parallel to
the line of coUimation. However, owing to the difference
in the construction of the two types of instrument, the
auxiliary elementary lines are not recognized in the dumpy
level. The transit with its attached level is identical in
principle with the dumpy level.
Bubble. — To make the iuhhle line perpendicular to the
vertical axis. — Make the vertical axis vertical ty the method
of reversions, and adjust the Jtuhhle to the middle. This
adjustment is identical in principle with the plate level
adjustment, shown in (a). Fig. 13. The bubble should re-
main in the middle through a complete revolution.
Line of CoUimation. — To make the line of coUimation
parallel to the iuiile line. — Construct a level line, and ad-
just the cross-hairs to agree with it. The level line is de-
termined either by using the surface of a pond of water, or
by driving two pegs at equal distances in opposite directions
from the instrument, and taking careful rod readings on
them with the bubble precisely in the middle, as shown at
(e). Fig. 16. For simplicity, the two pegs may be driven to
the same level, or two spikes may be driven at the same
level in the sides of two fence posts, say 400 feet apart.
Otherwise, determine the precise difference of elevation, as
indicated in (e). Fig. 16. Then set the level almost over
one of the pegs, level up, and as in the first method of (f).
Fig. 16, set the target of the leveling rod at the line of col-
limation, as indicated by the center of the object glass or
eyepiece (this can be done more precisely than most levels
will set the target at 400 feet distance) ; now with the rod
on the other peg, sight at the target (shifted to allow for
the difference if the two pegs are not on the same level) ;
adjust the cross-hair to the level line so constructed. If
preferred, the second method shown in (f). Fig. 16, mgy be
used ; the level is set back of one peg, rod readings are
taken on both pegs, allowance made for the difference in
level of the two pegs, if any, the inclination of the line of
76 THE LEVEL.
collimation determined, correction made for the small
triangle from the level to the first peg, and finally the level
line constructed by means of the calculated rod readings.
The second method is simplified and made practically
equivalent to the first by setting the level at minimum
focusing distance from the first peg. The small corrective
triangle is thus practically eliminated. Strictly speaking
the rod readings should be corrected for the earth's curva-
ture (0.001 foot in about 200 feet, or say 0.004 foot in 400
feet distance). However, the effect of curvature is reduced
by atmospheric refraction ; and with errors of observation,
sluggishness of bubble, etc., to contend with, the curvature
correction should be ignored, especially when the rod is
read to the nearest 0.01 foot.
(The foregoing process is known as the "two-peg adjust-
ment." Although exceedingly simple, this adjustment is
commonly regarded as a " bug-bear " by many American
engineers. But for it, the dumpy level would have the ex-
tended use in this country which it merits. It is said that
" the wye level is easy to adjust and usually needs adjust-
ment." Many good levelers employ the " two-peg test " to
prove the wye level adjustments. Time may be saved by
establishing an adjusting base. The adjustments of a good
dumpy level are very stable.)
Uprights. — In some dumpy levels the uprights which
connect the telescope with the level bar are adjustable,
similar to the wyes of the wye level. This adjustment is
designed to bring the bubble line perpendicular to the ver-
tical axis in case the bubble is first adjusted parallel to the
line of collimation. However, the best order is that already
described, viz., first adjust the bubble line perpendicular
to the vertical axis, and then the line of collimation par-
allel to the bubble line, in which case the adjustable up-
rights are unnecessary.
PROBLEMS WITH THE LEVEL.
PROBLEM CI. DIFFERENTIAL LEVFILING WITH THE
HAND LEVEL (OR WATER LEVEL).
(a) Eqvipwent. — Hand level (or water level), rod gradu-
ated to feet.
(b) ProMem. — Run an assigned level circuit with the
hand level (or water level), observing the nearest 0.1 foot
by estimation, and closing baclt on the starting point.
PKOBLEMS. 7Y
(c) Methods. — (1) Determine the correct position of the
bubble of the hand level by sighting along a water table,
or sill course of a building, or by the principles of the two-
peg test. (If the water level is used, fill the tube so as to
have a good exposure of the colored water in the glass up-
rights.) (2) Take sights of 100 feet or so (paced), estimat-
ing the rod reading to the nearest 0.1 foot; balance back
and fore sights ; assume the elevation of the starting point,
and keep the notes in a single column by addition and sub-
traction, as in the 7th column. Fig. 19a. (3) Check back
on the first point. Determine coefficient of precision. (The
error of closure in feet should not exceed 0.5 Vdistance in
miles.)
PROBLEM C3. DIFFERENTIAL LEVELING WITH EN-
GINEERS' LEVEL (OR TRA^'SIT WITH ATTACHED
LEVEL).
(a) Equipment. — Engineers' level (or transit with at-
tached level), leveling rod, hatchet, pegs, spikes.
(b) Problem. — Run the assigned level circuit, observing
the nearest 0.01 foot, and closing back on the initial point.
(c) Methods. — Follow the practical suggestions given at
the conclusion of the " Use of the Level," giving special at-
tention to the following points: (1) eliminate parallax of
the eyepiece; (2) balance back and fore sight distances;
(3) have the bubble precisely in the middle at the instant
of sighting ; (4) both rodman and leveler read each rod and
also make the calculations independently; (5) calculate ele-
vations as rapidly as rod readings are obtained; (6) plumb
the rod; (7) avoid blunders; (8) determine coefficient of
precision; (9) no sights longer than 350 or 400 feet. Fol-
low the first form shown to begin with, — ^the other after
several circuits have been run.
PROBLEM C3. PROFILE LEVELING FOR A DRAIN.
(a) Equipment.— ^ngmeers' leveling instrument, leveling
rod, 100-foot steel tape, stakes, pegs, axe.
(b) Problem. — Make a survey, plat and profile, with esti-
mate of cuts and quantities for a drain under assigned con-
ditions.
78
THE LEVEL.
(c) Methods. — (1) Examine the ground, determine the
head and outlet of the drain, and select the general route.
(3) Stake out the line, set stakes every 50 feet, or oftener
if required to get a good profile, and drive a ground peg
flush, say 2 feet to the right (or left) of each stake ; record
data for mapping the line. (3) Starting with the assigned
datum or bench mark, run levels over the line of the pro-
posed drain, observing the nearest 0.01 foot both on turning
points and ground pegs, the former somewhat more care-
fully ; take rough ground levels, as required, to the nearest
0.1 foot; locate and determine the depth of intersecting
drains or pipe lines, or other objects which may influence
the grade line of the drain, and secure full data for placing
the same on the profile ; observe due care with the back and
Pig. 19b.
fore sights, as in differential leveling, and conclude the
leveling work with a line of check levels back to the initial
bench mark ; a permanent bench mark should be established
at each end of the drain, and if the length is considerable,
at one or more intermediate points as well. (4) Make plat
and profile of the drain line ; lay the grade line, taking into
account all ruling points ; calculate the cuts, both to the
nearest 0.01 foot, and also to the nearest 14"ii'ch; mark the
latter on the stakes for the information of the ditcher,
using waterproof keel and plain numerals ; make estimate
of the quantity of drain pipe, and of the cost of the job.
Follow the form and the profile in Eig. 19b.
PROBLEMS.
79
^,
Levskr J-Doe ; Rodmi
n, R-/fot. '^
Lev
;L Cm
UIT, 5
:A LE
/EL I
•M- T(
EN6S Hall B-M- 1
AND Return
5ta-
P-S-
H-I-
F-S-
Elev-
Sights
llct-ZH'/4- fZ/foi/rs)
C/esr JP Warm-
B-J'
F-5
eXB-Pumpyleyef, . ir-Jfod, Uder IS-
SLBM-
7ZM0.
/*?,
talt, e-end, S-Ctfing,
'^■^nfrance^
Kll)
^■^■et>
7ZT-M
'ISO
UnJversify Tfa/t-
el
-7se
7l!!-04
ZO0,
weni/,/1- Coping, W
entrance,
Mi)
*ZHff
in-04
Z/0
TfafursJ Hisfory
VaJ/-
tHS-m
-3-4Z
713-$Z
ZSO^
B<>lt,lvend,l^SI-e.
>,S- entrance.
A 13)
1-S-S4-
TI9-S»
771)
^ngineenng Hai
BZ
-0-30
719-Z6
so.
Cament walk, ZO' li-e;H£nfrsnce,
M4)
1-3-87
7ii-a
-314
V9-39
■SO
Umvers/ty'/falf
Baltf starflng point < yhove descritjed-
HJM-
H4-4I
-I4-4Z
I'M-S
flfrmfssahla error
■■(IOI!7-/L=l>-OZ7et-
H4-4I
7Z(I-I!S
Actt/af srror of C/o
S-
Chsnt'lsb-
- OOI
(Ch
!cJc)
Um-v-Hal/
^^''
i V
MifHafHBll \
\
i
1
ersen U ! 5f.
E-HB-M-,
-*^^
In j- Hall '
^
\
>
^
HH-Shermn.ltnltr. C-l-Bcytr, godman- ^
Leve
.S FR
>M k
:YNOL
[IS T(
Lafayette, Ind-
Sta.
)f.
H-1-
F-S-
Etev.
lf(!vZ0,'ia.Clei/ily,Ciii!/-gSS-l>umpyLevel-
BM-I
094-l>Z
~
ei9-!Z
m
flsnna-/7-g-£-M-,M-f^Z7,driven rail Clftls
ei
S-9S
B9e-30
}-a
690-3S
l(S,
740
Pep- direct from tide ffaae ^t-
ez
S70
Ml-JS
3-8Z
69Z-41
740.
740
•• Sandy Hock, /f-T-]
03
493
e9S-74
4-37
(93-H
Z4t.
1(5
" {5ou//i alonff /fcnon X-X-)
B4-
4Z3
693-7!
3-ZZ
69S-5Z
zto
■Z40
ir
95
4Z4
t99-04
4-95
614--80
740.
740
n
66
4-73
099-33
4-44
694-60
740,
Z40
n
67
4-44
m-61
4-ie
695-17
300.
340
» opposite eatliollc Cliureli,Reyni7ds-
»S
SIS
t99-39
i-40
694^ZI
m.
m
fi
99
4S4
197-ie
(-07
(93-3Z
300,
300
" e side tr'k, iff men M- poles ZZ83-9e-
ajff
411
e9S-iz
4-SS
(93-31
300.
300
it
»//
48Z
69S-86
4-08
694-04
300,
TOO
neiidstr'k,l,etivMn fefipole3ZZ56-57
BIfZ.
0-7&
((95-10.
\
po.
3-tf-onoBk,MlpoleZZ9S, SO' e- track-
Peg 3t tel.'pole Z30ff.
BIZ
410
(91-00
4-96
693-90
300.
300
ai3
3-6S
69113
B-SZ
69Z48
3(0.
300
It ri 17 ft Z305-
el4-
Z-71
69Z-9Z
S-9Z
690-ZI
ilO,
xo
11
eJS
3ZI
690-03
6-10
686-az
360
3(0
11 11 II /> Z313,e-side track-
BM-3
Q-IJ)
(6l(-Si.
\
'l5i
H£-car.parapet ivall, Bridge //s ^7-4-
»I6
4(S
(90-13
3-lS
6S6-IS
w
W
'^'nonJ^-K-B-7l-{'f^,-lfi-^^P''\ ^^^^
Peg \iO'e-trk;a—figg-IZ
8/r-4-
t/7
4SI
691-21
&-Z9)
4-13
(eis-5i.
(se-zo
V
360.
3(0
til
file
(91-37
S-00
eie-zi
300,
3(0
II
BI9
S-13
6lt-Z4
300
n at tell pole Z33a-
J
ss-7e
89-34
85-76
689-8Z
=B-M-I
.-3-58
'Check
^
-3-S8-
_
80
THE LEVEL.
5t3
Ml
m
■tfP-S
SMZi
■flM
■H41
m-B
Mi
tTO
fi4
■tS4(
Survey for a Drain from
Description
Bed eF Btreafl? •
SuitsUs eufUf-furdrsln, /f'fV- af
tV-face of sUne 3rch lirfdge-
Break of N-bankj Boneyard Branch'
5- edge oF 7' drive-
Crosses drain from Con^erv^i-oty-
5 team pipe iine fo Conseri^^hiry-
Cenfar J^drive fo ConsarvsfOry-
}kaih of main track, U-^C-Sf-fiy-
(Cafoff f/irouff/i University frOt/ntfe^
1 Rslis ofsidefrackf Urt^ans and
Cframpaign Fiectric Ry-
firainis 2 L-Cf) of sfake-
liims 5- in iV-parJeinfff Bcrrr/iiAve-
'iZ'Asfi tree 6' to JK-
Cement watk ^-s/de Svrriil Avff-
Crosses tf/Iiiary tiaii Steam Pipe Line-
/point 3'W-SZ'3-of//WCor- of^
frt^lad- Line ri/ns firence W~
parallel to S 9'S-of S-Jine oP
Spring field Ave- StaJcas are set
Z'fo rig/it c/^ pirofosed frvttch
for drain J wifii ieveiirfff pe^s
flirsij with ground Beside sfakes-
Ensineerins Laboratory-
fiead Cfiainman, J-Doe^
Rear C//ainman, ^-Moe -
Apr 2e, im. (Z Hours) CJoi/dy S Cod/-
idCft- Stee/Tape, HiZ7S, ioclcerJf^3S-
<4
Steam Pipe
StRyCvtoff
Springfieid A ve
r
leveier, R-Roe- Rodman, J-Poe- \
Ll
VEL 1
lOTES
FOR
A Dl
;Am
FROM ENSINEERINS LABORATORY-
5t8.
B-5-
H-I-
F-5-
Elev-
loo-ao
Srade
Cut
Oct 23, '14^ CZItrsj Clear and Cool-
S-Endslvnesiif, IV-door, Fn^- Lab-
;r
f-i-Z3
ICi-Zi
Station stakes-are Z'R- proposed trench-
iOS
9S-IS
9400
418
Peg drii/en flush mth gremd Besidesfake.
t^O
iZZ
0S-CI
93-20
481
n
tS4i
3-Z
SSC
93-13
4-9
Oroiiitd, 6'Sfeami'ipe,10'cBsmg,Jop 2!6 deep-
t$i
3-Zi
SSCH
9Z-94
S-16
Cement ivalkf P-side Burr/IiAve-
1
3-38
97-SS
92-40
S-4S
Peg-
tZi-B
}-7Z
nsi
9206
S4S
Oralntums S-in IV- parking Surrii/Ave-
tso
41S
n-ss
91-eo
498
Peg
z
5-71
9SSZ
90SO
4-72
tSO
6-3i
94-92
9000
492
}*
etss
-s-ss
9S-3S
S9Se
552
{Turnrngfei/rj ff-Rai/, Main Track, l/-d£C-/?y.
w
tO-13
95-51
i
ZHg
9343
8920
423
Peg
tss
3-fB
nci0
ISM
see
)7 Fauth Wye lei/e/-
4
4-3-I-
9117
S7-60
3S7
?' Phils- Rod, Ikr-ZO-
fSt
s-so
9001
lllO
3-21
f»
5
SSZ
3999
» seoo
3-99
37
t4Zi
»■!
19-4-
SS91
3-5
Sr
718
10-3
713-6
ft »
?I9.
9-22
6
721-64
JI-4S
12-2
711-7
In Corn Field
Stake, St3-219-
Corn Fj'e/d-
eftakt
(712-41
2?0
713-0
221
■4-4
717-2
'•
222
2-7
718-9
M
223
2-9
711-7
t«
224
2-3
719-3
t1
22S
3-4
718-2
Timber Pasture-
t-m
12-4
709-2
Sully
226
ll-Z
710-4
r3S
6-0
71S-6
Break eF bank, Plum Rji/er-
g-M-27
2-04
7/3-S2
7IS-33
10-/6
-tl-SS
1-18-05
6-0
Check
{711-41
B-M-,nol-,U'elm,72'e., Sta-?2e-t6S-
,„, Cs,- station- - = fDre S/s/tt-
K, J" . <■ ■ 6ack Sielit R- gtd (Umptilalw)
i-SO
707-S
+ia.os
-4-S,
^
.-4-B,
Pron/e of Locat/on Line.
A.B.&.C.RR.
-Blue. Water level; notes relative to same.
^lack. 5ui^race line, station nurr?erals, etc.-
210 ' '
SI-..
Z£0
'^roocx'F^z^d-
19c.
PKOBLEMS. 83
cent. It is usual to give the alinement notes and prominent
topography, as shown in Fig. 19c.
(The complete series of steps involved in railroad and
similar leveling for location and construction purposes is :
(1) setting the station stakes ; (2) running the levels ; (3)
making the profile; (4) laying the grade line on profile;
(5) calculating vertical curves; (6) cross-sectioning for
earthwork; (7) calculating earthwork quantities; (8) set-
ting grade stakes.)
PEOBLEM C5. VERTICAL CURVE.
(a) Equipment. — Drafting instruments, profile paper.
(b) ProMem. — Connect two grade lines by a parabolic
curve, as assigned.
(e) Methods. — (1) Plot the given grade lines, station
numbers, etc., on a sheet of profile paper. (2) Pind the
grade angle, i. e. the algebraic difference of the two rates
of grade. (3) Determine the length of the vertical curve by
dividing the grade angle by the assigned or adopted change
of grade per station (notice the analogy to simple circular
curves). (4) Calculate the apex correction. (5) Determine
the corrections at the several stations or fractional stations
(as assigned), and tabulate the stations and elevations.
(6) Plot the vertical curve from the data so determined,
as in Fig. 19d. (7) Also compute and plot the same curve
by the method of chord gradients.
PROBLEM C6. ESTABLISHING A GRADE LINE.
(a) Equipment. — Leveling instrument, leveling rod, flag
pole, 100-foot steel tape, stakes, axe.
(b) Problem. — Establish an assigned grade line, (1) by
measured distances and calculate rod readings, and (2) by
" shooting in " the same line, for comparison..
(c) Methods. — (1) Stake oflE the distance between ruling
points, and drive stakes to the required grade, or if desir-
able, parallel to it, by dividing up the fall in proportion to
the distance. (2) Set the level over one ruling point and
determine the height from the point to the line of collima-
tion by means of the leveling rod ; set the flag pole behind
the other ruling point and establish a target, consisting of a
rubber band holding a strip of paper wrapped about the
84
THE LEVEL.
Vertfcd/ Curve.
■(J) ^ x Tangent Correct fans y.
COMPARISOM OF RESULTS
Elevation
By Tanijer?
rCorrfclitms
By Chord Grad
ients.
Sbabion.
oF Grade
Tanqenb
Curve
Chord 6ra
dienfcs.
Curve
Tanqent .
Correction.
Elevation.
DifF.
Oradient.
Elevation.
Fb.
Fb.
Fb.
Percent.
Percent.
Fb.
84
108.00
f-I.OO)
d5(P.Q
107.00
tO.OO
107.00
+0.10
-0.90
107.00
86
106.00
i-O.IO
106.10
+0.20
-0.70
106.10
87
10^.00
f0.40
105.40
fO.ZO
-0.50
105.40
88
m.OB
+0.90
104.90
+0.20
-O.iO
104.90
89
JOi.OO
+ 1.60
104.60
+0.20
-0.10
m.60
90(Apex)
102.00
+i.50
104.50
+0.20
+010
104.50
91
103.00
+ 1.60
104.60
+0.20
+0.30
104.60
9Z
I04.OO
+ 0.90
104.90
+0.20
+0.50
104.90
di
105.00
+ 0.40
105.40
+0.20
+0.70
105.40
94
MOO
+ 0.10
106.10
+ 0.20
■ +0.90
106.10
95(P.T.)
96
107.00
708.00
tP.oo
107,00
+0.10
l+I.OO)
107.00
+ 2:00=A
Fig. 19d.
pole at a height equal to the rod reading ; having thus con-
structed a line parallel to the desired grade line, direct the
telescope on the fore sight target, and with the same rod
reading, " shoot in " the same stakes. Make careful record
of data and comparative results.
PEOBLEMS. 85
PROBLEM C7. SETTING SLOPE STAKES.
(a) Equipment. — Leveling instrument, self-reading level-
ing rod, 50-foot metallic tape, stakes, axe, marking crayon.
(Or, instead of levelling instrument and rod, use special
cross-sectioning rods, if assigned.)
(b) Prohlcm. — Set slope stakes for the construction of a
railroad, canal, etc., as assigned.
(c) Methods. — (Follow the methods described in Chap-
ter VTII, "Eailroad Surverying," under the head of " Cross-
Sectioning.")
PROBLEM C8. CALCLTjATION OF QUANTITIES.
(a) Equipment. — (No' instrumental equipment imless pla-
nimeter is assigned.)
(b) ProMem.. — Compute the quantity of earthwork for
an assigned set of cross-section notes.
(c) Methods. — (1) Transcribe the notes and carefully
verify the copy. (2) Calculate the sectional area for each
station and intermediate in the notes, and prove the re-
sults. ( 3 ) Calculate the volume by the " average end area "
method, results to nearest 0.1 cubic yard, and check the
same. (4) If so instructed, plot the notes on cross-section
paper and determine the areas by means of the planimeter
as a check. Record the results.
PROBLEM C9. STAKING OUT A BORROW PIT.
(a) Equipm,ent. — Engineers' level or transit with at-
tached bubble, leveling rod tape, stakes, axe.
(b) Problem. — Stake out a borrow pit and take notes re-
quired for calculation of earthwork quantities.
(c) Methods. — (1) Select a base line, preferably outside
the limits of the proposed borrow pit, set substantial station
stakes say 50 or 100 feet apart along this base ; designate
these stakes A, B, C, etc. (2) Establish auxiliary refer-
ence lines by erecting perpendiculars to the base line at the
several stakes, driving temporary stakes for pegs at suit-
able distances on these lines. (3) Establish a permanent
bench mark and run levels, as in profile leveling, along
lines starting at A, B, C, etc., noting elevations both at
pegs and at marked intermediate changes of slope. (4) In
86
THE LEVEL.
case actual construction is undertaken, repeat the levels
along- the same auxiliary lines from time to timie and cal-
culate the quantities. (5) Eecord complete data.
r
Leve
Shtlen
4-K>t
*76
3
7!
t
Z
/
f
7!
7!
7!
.5 FDt
B-S-
JforfA / raperfy
Center
South
Line,
iYoper^
Hcrfh
3-Ii
Ml
3-Qi
PROF|iLE AMp QUAHTlTIEf
T-P-
H-l-
' fy.
PfldofB
7li-0S
line J / saly Si
/{eely
Line,
'dge
South Ciil sF Br,
t/trfh a operty Wne, S/ ren
OSS
7/e-u
7Z0-/1
7?}- kmll.
AO
II*
}S-i
Srovnd' (All leve/s From si'/y/e- settih^-)
AJ
14
S$i
AH-4S
Alt4S
C46'»)
e-9
SS-4
A
1 2 3 4 fSO
A
Ai
9-7
}!-0
%,
, /I'velK
Ai
Ai'SO
K!
S
47
27-0
34-4
4-0
4-1
$1-4
e
S7
31-5
30-0
43
4-4
6I-B
1 \ .'
7
67
SS-S
ZB-7
4-3
4-3
61-S
J?:D='b:t
I
17
40-Z
ZI-0
4-4
4-7
ei-z
'
R=^D'
8
77
^0-0
Zl-Z
61-Z
i
\ \
Tarqet Movement (b)
7
67
35-S
ZB-S
4-S
4-3
Bl-C
at 100 ft- (D)
e
57
21-1
iO-Z
4-4
47
ei-3
For Bubble Movement
5
4-7
76-7
341
4-4
4-4
SI-S
\ >'
(b) of 1 inch (0-013 ft)
■f
37
??-3
3S-S
4-4
4-Z
ei-1
r i
No-
Rods, (Ft.)
b(Ft)
3
17
JSZ
4Z.S
4-J
4-1)
61-D
/
4-03]
4-lSI
O-04i
z
17
J4-0
47-1
4-Z
4-3
U-l
Z
4-SSt
4-346
0-040
1
(*Lsv
Ten d
7
:! scala
U TOHi
visions
9-S
inch)
p micro.
SIS
Me3n =
4-5
4-4
61-0
-..on It 100
0.042
= in Ft.
i
4
4-S4
4-S9.
' 4-S9I
F 4-634
0-044
0-041
4-36
ZOtlls
•rew C6
ei-i
'nch.
'respan
Mem =
0-04Z
JfolS
Z seconds ofar
r, .so Hiaf 'one division
cf
fca/e c
^■36
■4secon
is, ano
one div
'sign on bubble lube (f
nlhs oFffn inch)
= i
S secon
dSf or
^Ssseon
^s per
inch-
Radiv
9 in fee
.
17112
-.1-1
JS2 _
19S feel.
sees
perinc
i
IS "
J
PKOBLEM C14. TEST OF DELICACY OF BUBBLE VIAL.
(a) Equipment. — Engineers' leveling instrument, leveling
rod, tape, level tester.
(b) Prohlem. — Determine the radius of curvature of the
assigned bubble vial. (1) by means of the optical test, and
(3) by the level tester.
(c) Methods. — (1) Measure off a base line say 100 feet
long, set level at one end and hold rod on a peg driven at
the other end ; note the target movement corresponding to a
given bubble movement, both in the same linear unit ; cal-
culate the radius by the method shown at (h). Fig. 18. (3)
Set the level tester on a solid base and place the instru-
ment on it, a? jjDd.icated at (i), Fig. 18; by means of the
PROBLEMS. 91
micrometer head and known relations of the level tester,
determine the angular equivalent in seconds for one divi-
sion and also one inch movement of the bubble, from which
calculate the radius of curvature of the vial in feet. Fol-
low the form.
PROBLEM C15. COMPARISON OF LEVEL TELESCOPES.
(a) Equipment. — Five (or other specified number) engi-
neers' levels (both wye and dumpy), leveling rod, metallic
tape.
(b) Prohlem. — ^Malce a critical examination and compari-
son of the telescopes of the assigned instruments.
(c) Methods. — Carefully read the discussion of the tele-
scope in the text. Then compare the telescopes with refer-
ence to : (1) magnifying power ; (2) chromatic aberration ;
(3) spherical aberration ; (4) definition; (5) illumination;
(6) flatness of fields; (7) angular width of field; (8) effec-
tive aperture of objective. Make tabulated record of com-
parisons, giving in separate columns; (a) locker number;
(b) kind of level; (c) name of maker; (d) magnifying
power, and so on for the other points examined.
PROBLEM C16. TESTS OF THE WYE LEVEL.
(a) Equipment. — ^Wye level, leveling rod, tape.
(b) Problem. — Test the essential relations and adjust-
ments of the wye level.
(c) Methods. — Carefully note the construction of the as-
signed level and the positions of the elementary lines. Then
following the methods outlined in the text, test the fol-
lowing adjustments (but do not disturb the adjusting
screws) : (1) The bubble, both as to the azimuth and alti-
tude movements ; find the position of the bubble when par-
allel to the element of the rings. (2) The line of collima-
tion ; its deviation from the axis in 400 feet. (3) The wyes ;
finding the position of the bubble when the vertical axis is
vertical. Keep a neat and systematic tabulated record of
observed numerical data, with explanation of the several
adjustments.
92 THE LEVEL.
PEOBLEM C17. ADJUSTMENT OF THE WYE LEVEL.
(a) Equipment. — Wye level (reserved expressly for ad-
justment), leveling rod, tape, adjusting pin.
(b) ProMem. — Make the full series of adjustments 'of the
wye level.
(c) Methods. — Follow the methods detailed in the text
according to the following program: (1) Adjust the bubble
line (a) into the same plane with the bottom element of
the rings, and (b) parallel to that element. (3) Adjust the
line of collimation to coincide with the axis of the rings,
first on a long distance ; and then, to test the object glass
slide, try it for a short distance ; if necessary, shift the
reticule in rotation to make the horizontal hair horizontal,
and also center the eyepiece. (3) Adjust the bubble line
perpendicular to the vertical axis by means of the wye
nuts. (4) Test the rings of the wye level by the two-peg
test ; if the level has a reversion bubble, first test the paral-
lelism of the top and bottom tangent lines, and then test
the rings. Keep a, clear and systematic record. In each
case, state (a) the desired relation, (b) the test, and (c)
the adjustment.
PEOBLEM C18. SKETCHING THE WYE LEVEL.
(a) Equipment. — Wye level.
(b) Pro6?e)».— Make a first-class freehand sketch of the
assigned wye level.
(c) MetlKidt^'. — The sketch should be correct in proportion
and clear in detail. The essential parts should be desig-
nated in neat and draftsmanlike form, and the elementary
lines clearly indicated.
PEOBLEM C19. TESTS OF THE DUMPY LEVEL.
(a) Equipment. — Dumpj' level, leveling rod, tape.
(b) Prohlem. — Test the essential relations and adjust-
ments of the dumpy level.
(c) Methods. — Carefully note the construction of the as-
signed level and the position of the elementary lines. Then,
following the methods outlined in the text, test the follow-
ing adjustments: (1) the bubble line, whether perpendicu-
lar to the vertical axis ; and if not, what is the angular
inclination of the vertical axis when the bubble is in the
PROBLEMS. 93
middle? (3) The line of collimation, whether parallel to
the bubble line. Record the errors and observations sys-
tematically.
PROBLEM C30. ADJUSTMENT OP THE DUMPY LEVEL.
(a) Equipment. — Dumpy level (reserved expressly for ad-
justment), leveling- rod, tape, peg-s, axe, adjusting pin.
(b) Pro6?c»).— Make the essential adjustments of the as-
sig-ned dumpy level.
(c) Methods. — (1) Adjust the bubble line perpendicular
to the vertical axis. (2) Adjust the line of collimation par-
allel to the bubble line by the two-peg method. In describ-
ing the adjustments, the record should state (a) the desired
relation, (b) the test, and (c) the adjustment.
PROBLEM C21. SKETCHING THE DUMPY LEVEL.
(See Problem C18.)
PROBLEM C33. STRETCHING CROSS-HAIRS.
(a) Equipment. — Engineers' level or transit (or cross-
hair reticule), pocket cross-hair outfit, reading glass.
(b) ProMem. — Renew the cross-hairs in a level or transit
instrument by a method applicable to field use.
(c) Methods. — (If instrument is provided, follow the
complete program outlined below ; otherwise, merely stretch
the lines on the reticule and test same.) (1) Remove the
eyepiece, carefully preserving the screws from loss. (2)
Remove one pair of the capstan headed reticule screws ;
turn the ring edgewise and insert a sharpened stick in the
exposed screw hole, take out the other two screws and re-
move reticule from telescope tube. (3) Clean the cross-hair
graduations, and support the reticule on a sharpened stick,
or (if a transit) place it on the object glass with a piece of
paper interposed to protect the lens. (4) Select from the
capsule (see (d), Eig. 17) two spider lines 3 inches or more
long, and fasten a stick to either end of each hair by means
of glue from the adhesive paper. ( 5 ) Put the hairs in place,
(with the bits of wood hanging loose), shifting them as
desired with a pin point or knife blade. (6) Apply a bit of
the moistened adhesive paper to the reticule over each hair.
94
THE LEVEL.
and after a few minutes cut or break the sticks loose. (7)
Test the hairs by blowing- on them full force. (8) If they
stand this test, replace the reticule, and adjust the instru-
ment. Make a record of the process.
PROBLEM C33. ERROR OF SETTING A LEVEL TARGET.
(a) Equipment. — Engineers' leveling instrument, leveling
rod (preferably a New York or Boston rod), tape, pegs.
(b) Protlem. — Determine the probable error of setting
the level target at distances of 100 and 300 feet (or such
other distances as may be assigned).
>(7W7 lew/. y^
BosCon/fod.Lr.lZ.
i 'loudy, cool, breezy.
' .Metallic Tape.
Error
Disbance 100 feet
Raadinq
" Ft.
i.l69
i.m
3.170
i.l69
i./7l
i
Ft.
0.000
.001
.001
.001
.000
.001
.002
.00!
.000
.001
P/lsn Me3fi=f 5u/n-l
Frob.frror Single Ods.
[=0.67]/id.':0.0007i
' 1/7'/
Apprax.Pwb. imgkfmr
Ob3.=0.8SF=0.00068
Freli.Errtfr /jfHean
l,/,-fy=o.ooon
ofSettims
Distance 300 Feet.
Keadinq
Ft.
mi
mi
1837
v
Placed pair offa/t s
of pegs and le, '
snug.
Focused eyepj'eceon
Fuiiy,hep/nf eye i
5et target ten time
careFulJy veriFyio
bubble each time be
Peiernr/ined magnlF
hy comparing 77.1/, .
with one eye a/j, '
ifitliothereye.
28diameters.
Found radius oFcur
K=hD=MlxlOi
t 0.0/13
Pidm.hor.h3ir,h=
lelteredplace^measured
anddr/JV ^peg. Same at 500 Ft.
•reivs on general line
7,leamgscremjust
=0.OO00ZH.
crosshairs very care-
normal condition.
at each distance,
'Fyin y the posiiio/? oFche
ne be 'ore apprm'n/i sight,
^gnit 'Jng power or telescope
0.1/, . on rod natural size
'dw^gnlFied l]y telescope
roL idMag.Poivertolie
'atore oFdudb/e
=/4S.'s
r. ff.ff/xD.S
'■" 400
0.1^024/n. rod-.
(c) Methods. — (1) Determine the magnifying power of
the telescope. .(2) Determine the radius of curvature of
the level vial by the field method. (3) Determine the space
on the rod covered by the diameter of the hair. (4) Drive
a peg at 100 feet from the level, level up, and secure ten sat-
isfactory consecutive rod readings with rod held truly plumb
on the peg ; shift the target several inches between read-
PEOBLEMS. 95
ings, and reset without bias ; reject no readings ; watch the
bubble closely, but work briskly. (4) Repeat the series at
300 feet. (5) Determine for each distance the mean rod,
the probable error of a single reading, and of the mean, as
indicated in the form.
PROBLEM C24. MAKING A LEVELING ROD.
(a) Equipment. — Piece of straight dressed clear white
pine of proper dimensions, steel tape graduated to 0.01 foot,
carpenter's tri-square, paint, etc.
(b) Proilem. — Make a self-reading leveling rod.
(c) Methods. — (To be devised by the student. See Fig. 27
for suggested graduations.)
PROBLEM C25. COMPARISON OE DIEEERENT MAKES
AND TYPES OF ENGINEERS' LEVELS.
(a) Equipment. — Department equipment, catalogs of rep-
resentative engineering instrument makers.
(b) Problem. — Make a critical comparison of the several
types and makes of engineers' levels.
(c) Methods. — Examine the department equipment and
stiidy the several catalogs carefully, noting the usual and
special features, prices, etc., and prepare a systematic sum-
mary or digest of the same. Prepare brief specifications
for a leveling instrument, and also suggest the preferred
make.
CHAPTER V.
THE TRANSIT.
Description. — The engineers' transit consists of an ali-
clade, carrying the line of sight, attached to an inner verti-
cal spindle (or upper motion) which turns in an outer an-
nular spindle (or lower motion). The latter carries the
horizontal graduated circle or limb, and is supported by the
tripod head. The alidade includes the telescope, magnetic
needle with its graduated circle, and the vernier ; it may be
revolved while the graduated limb remains stationary. The
horizontal limb is graduated to degrees and half degrees
and sometimes to twenty minutes, and is numbered prefer-
ably from zero to 360° in both directions.
The complete transit differs from the plain transit, Fig.
20, in having a vertical arc and level bubble attached to
the telescope.
Complete Transit,
Plain Transit.
Fig. 30.
97
998
THE TRANSIT.
(h)
USE OF THE TRANSIT. 99
In Fig. 21 are shown: (a) the English theodolite; (b)
the shifting plates and foot screws of a transit ; (c) the
Saegmuller solar attachment to the transit; (d) the gra-
dienter; (e) tripods ;•(£) reflectors; (g) reading glass ; (h)
flagpoles; (i) plumb bobs; (j) the Brunton pocket transit.
The Vernier. — The vernier is an auxiliary scale used to
read fractional parts of the main graduated scale or limb.
The least count of a direct vernier is found by dividing the
value of one division of the limb by the number of divisions
on the vernier. With a limb graduated to half degrees and
a direct vernier reading to single minutes 30 divisions on
the vernier cover 29 divisions on the limb.
In reading a direct vernier observe the following rule :
Bead from the zero of the limb to the zero of the vernier,
then along on the vernier until coincident lines are found.
Add the reading of the vernier to the reading of the limb.
In setting the vernier to a given reading, as for example
a zero reading for measuring an angle, the tangent move-
ment should be given a quick short motion to secure the
last reflnement, since a slow movement is not noticed by
the eye. Notice adjacent and end graduations.
In Pig. 23, (c) is a vernier reading to single minutes, (d)
to half minutes (30"), and (e) to thirds of minutes (20").
The slant in the numerals on the limb corresponds with
that on the vernier.
USE OP THE TRANSIT.
Use. — The complete transit is used: (1) to prolong lines;
(2) to measure horizontal angles; (3) to measure vertical
angles; (4) to run levels ; (5) to establish grade lines. The
plain transit is conflned to the flrst two uses, unless it has
a vertical clamp and tangent movement, when it may be
used to " shoot in " grade lines.
Prolongation of Lines. — If the instrument is in adjust-
ment a line can be prolonged by sighting at the rear sta-
tion and reversing the telescope in altitude. It is, however,
not safe to depend on the adjustments of the transit, and
important lines should always be prolonged by the method
of " double sights," as given in Problem D2. Lines may be
prolonged with the plates by sighting at the rear station
with the A vernier reading 180°, reversing the alidade in
azimuth and locating stations ahead with the A vernier
reading zero. A third method employs two points ahead
of the instrument.
100 THE TRANSIT.
Measurement of Horizontal Angles. — Horizontal angles
are measured as described in Problem Dl. If greater ac-
curacy is required, angles may be measured by series or
by repetition.
By Series. — In measuring an angle by series all the
angles around the point are read to the right, both verniers
being read to eliminate eccentricity. The instrument is
then reversed in altitude and azimuth and all the angles
around the point are read to the left. The readings are
checked by sighting back gn the first point in each case.
These observations constitute one " set." The vernier is
shifted between sets 360° divided by the number of sets.
The arithmetical mean of the observed values is taken as
the true value.
By Repetition. — Angles are measured by repetition as
described in Problem D13. This method is especially suited
to the accurate measurement of angles with an ordinary
transit, and is to be preferred to the series method, which is
a favorite where precise instruments are used. In the repe-
tition method all the instrumental errors are eliminated
and the error of reading is very much reduced. It is doubt-
ful if it is ever consistent to make more than 5 or 6 repe-
titions.
Azimuth.. — The azimuth of a line is the horizontal angle
which it makes with a line of reference through one of its
ends, the angles being measured to the right from 0° to
360°, as in (f) Fig. 23. It is usual to assume that the true
meridian is the line of reference, the south point being
taken as zero in common surveying.
Deflection. — The deflection of a line is the angle that it
makes with the preceding line produced, and is called de-
flection right or left depending upon whether the angle is
on the right or left side of the line produced, as in (h).
Fig. 23.
Vertical Angles. — Vertical angles are referred to the
horizon determined by the plane of the level under the
telescope, and are angles of depression or elevation relative
to that plane. In measuring vertical angles the instrument
should be leveled by means of the level under the telescope
and correction should be made for index error of the ver-
nier. With a transit having a complete vertical circle, the
true vertical angle may be obtained by measuring the
angle with the telescope normal and reversed and taking
the mean.
Traversing. — A traverse is a series of lines whose
USE OF THE TEx\NSIT. 101
lengths and relative directions are known. Traverses are
used in determining' areas, locating highways, railroads, etc.
Azimuth Traverse. — In an azimuth traverse the azimuths
of the lines are determined, nsiially passing around the
field to the right. In orienting the transit at any station
the A vernier is set to read the azimuth of the preceding
cotirse, the telescope is reversed, directed towards the pre-
ceding station and the lower motion clamped ; the telescope
is then reversed in altitude. The reading of the A vernier
with telescope normal will then give the azimuth of any line
sighted on. If there is any error in collimation the transit
may be oriented by sighting back ^vith the A vernier read-
ing the back azimuth of the preceding course. In a closed
traverse the last front azimuth should agree with the first
back azimuth. The azimuth traverse is especially adapted
to stadia and railroad work. Azimuths can be easily
changed to bearings, if desired.
Deflection Traverse. — In a deflection traverse the de-
flection of each line is determined, usually passing around
the fleld to the right. To avoid discrepancies due to error
in collimation, the transit may be oriented by sighting at
the preceding station with the A vernier set at 180°, the
telescope being in its normal position, and the lower mo-
tion clamped. The reading of the A vernier will then give
the deflection of any line sighted on.
Compass Bearings. — Compass bearings should always
be read on an extended traverse as a check against such
errors as using the wrong motion or an erroneous reading
of the vernier. To guard against errors due to local attrac-
tion, back and front bearing's should always be read, and
the angle thus determined compared with the transit angle.
Leveling ■with the Transit. — The transit with an at-
tached level is the complete equivalent for the engineers'
level. The instrument is leveled up with the plate levels
first, after which the position of the attached bubble is con-
trolled by means of the vertical tangent movement.
Grade Lines. — Grade lines may be established with the
transit either by means of known distances and calculated
rod readings, or by " shooting in " a parallel line by means
of the inclined telescope, as described under the use of the
engineers' level. For the latter purpose the transit is
rather more convenient than the level.
Setting up the Transit. — To set the transit over a point,
spread the legs so that they will make an angle of about
30°, place them symmetrically about the point with two legs
102 THE TRANSIT.
down hill. Bring one plate level parallel to two of the legs,
force these legs firmly into the ground and bring the plumb
bob over the point and the plates approximately level with
the third leg, changing the position of the plumb bob with
a radial motion and leveling the plates with a circular mo-
tion of the leg. Finish the centering with the shifting
plates. In leveling up, the bubbles mo^'e with the left
thumb. Use care to bring the foot screws to a proper
bearing.
Parallax. — Before beginning the observations the eye-
piece should be carefully focused on the cross-hairs so as to
prevent parallax.
Back Sight With Transit. — Ahrays check the bacTc sight
icfore moving the transit to see that the instrument has not
been disturbed or that a wrong motion has not been used.
Instrumental Errors. — The transit should be kept in as
perfect adjustment as possible, and should be used habit-
ually as though it were out of adjustment, that is, so that
the instrumental errors will balance. No opportunity
should be lost to test adjustments.
ADJUSTJIENTS OF THE TRANSIT.
Elementary Lines. — Fig. 22 shows the elementary lines
of the transit, viz., (1) line of coUimation ; (2) horizontal
axis; (3) vertical axis; (4) plate level lines; (5) attached
level lines. These lines should have the following relations :
(a) the plate levels should be perpendicular to the vertical
axis ; (b) the line of collimation should be perpendicular to
the horizontal axis; (c) the horizontal axis should be per-
pendicular to the vertical axis; (d) the attached level line
should be parallel to the line of collimation. The following
additional relations should exist : (e) the vertical axes of
the upper and lower motions should be coincident; (f) the
optical center of the objective should be projected in the
line of collimation ; (g) the center of the graduated circle
should be the center of rotation, i. e., there should be no
eccentricity.
Plate Levels. — To make the plate levels perpendicular to
the vertical axis. — Make the vertical axis vertical and ad-
just the bubbles to the middle of their race. The vertical
axis is made vertical by leveling up, reversing in azimuth,
and if the bubbles move, bring them half way back with
the foot screws. The adjustment is the same as for the
compass, and the reasons are shown in (a). Fig. 13.
ADJUSTMENTS OF THE TRANSIT.
103
After adjusting the plate levels with reference to say the
upper motion, test them with the lower motion to prove
the coincidence of the vertical axes.
Op tied I Center
(^^ oFObiective,
fntersectior? oF
Cro55-Hair5
line ofCollimatioi^'':.,
cc:i ^ J')
ffrrkr liot . v exe^d /O
At 9I1
OP Tr
F
Si'Sl'
47%7'
43'Z3'
ANGLI: 5-«i-8
Mean
Observers, J-Doe cF
WITH Engineers'
Nov-]B,imj(Z hears).
Used Mellar^ Brightly
The Jst- measuremeni
on Sta-g y^ifh the
phfes clamped di
on Sfj-S with the
re3dw0 the
The
sigi}tin0 on St3-
Used trans/f poies
them very
mentS'
Sketch siiows
f plafi s
f second measure, ffenf
Transit-
Warm and ijuiet.
Transit No- 10-
was made by siglitfng
'ower motion^ the
xero} then sf^ht/n^
i^per matio/j, and
fvas mads by
^nd then on Sta- 8-
targets f piumbtn^
careA 'i/y over the monu-
obsej '^ed angles-
DOUBLE SIGHTINGS-^
Pbolonsation of Line--
i^JSh^/Sh
I
'Setupaf-B "double
sightedbF- /few
tsck F is'o-OI left-
of anginal f^ck-
(Alhweble error is
t'oiymSigM/ngs
For 3aO's/0hts)
I ^"'X syhted" toE.
^,'iK^a)fSef up 3fC, "double
a \
a ^
I
e/e'
Did'
A/
'Set up sfB," double
sighted to C/ ss
FoUoiVsjfSee^ote-*-)
(g) Back sighted on A
(b)Plungedto c'
^(c) Rotated to A
Cd) Plunged to c"
fe) Bisected c'c" to
' l^ locffte tack C-
{'Set up fft A; sighted
on Flag 3t Ff dnve hub
Bi removed Flag F-
.(Brvxe MsA 3ndF
Obsermsl-'"" "-'^-''f-C^hrs) Cool.doudy^
Vl-goe UsedK-S-F- Transit NS4-
WITH Ensineers' Transit
-Interpolation of Point.
\Biseeted pp' St P- Set
•K ■<: ^ •*,
k,«.||l
■■^5S
1-^ ^^
up 3tA and checked Pf
error, 0-02 to right-
[Reversed in azimuth ?
„e
K
C4)
m
shlFted transit so it ^ .-
would again plunge *i /
exactly on A and B ^ /
Drove hub p" to bob- \i ,
'Set up and shIFted P\0-I1
transit laterally ^.
until it would \
plunge exactly ^.
on A and B-(/eelfoh:)-^ \
Drove hub p* to plumb ii;b-^\ ^
{'Set Flags on tacks ah \ \
A and B, and determined
point P- by lining in two ri
poles- successively by eye-(See p-dS-J
. Drove temporary peg-
(Drove hubs A and B about 61X>' apart,
(l)\ assumed to have hill between them^
I both visible From desired hub P-
\
\
ohi\p"
'i
HOTE. Watched plate leveis cioseiyj
especially transverse bubble' ^J
108 THE TRANSIT.
flag pole plumbed over tack in hub F, drive hub B about
300 feet from the transit and locate a tack in line very
carefully. Eemove the flag pole from hub F. (3) Set the
transit over hub B, back sight on hub A and clamp the ver-
tical axis. (4) Reverse the telescope, drive hub C at a dis-
tance of about 300 feet and mark line very carefully with a
pencil. (5) Reverse the transit in azimuth, sight on hub A;
reverse the telescope and locate a second point on hub C.
Drive a tack midway between these two points. (6) Set the
transit over the mean point on hub C, back sight on hub
B, prolong 300 feet and set hub D by double sights. (7) Set
over hub D, back sight on hub C, prolong, 300 feet and set
hub E, as before. (8) Finally prolong from hub E, with
back sight on D, and establish mean tack at terminal hub
/''. Record the collimation errors at G, D, E, and the final
error at F. Follow the form.
PROBLEM D3. INTERSECTION OP LINES BY TRANSIT.
(a) Equipment. — Transit, 3 flag poles, plumb bob string,
axe, 6 hubs, 6 flat stakes, tacks, marking crayon.
(b) Proileni. — Determine the intersection of the bisect-
ing lines of two angles of a triangle and check by bisect-
ing the third angle.
(c) Methods. — (1) Drive and tack three hubs so as to
form a triangle approximately equilateral and having sides
about 400 feet long ; properly witness the hubs with guard
stakes. (2) Set the transit over one of the vertices of the
triangle, and measure the angle as in Problem Dl. (3) Set
two hubs on the bisecting line, about 6 feet apart, so that
the point of intersection of the bisecting lines will come
between them, and mark the line by stretching a string be-
tween the hubs. Check by measuring each half angle inde-
pendently. (4) Set the transit over one of the other ver-
tices of the triangle, measure the angle and determine the
bisecting line as at the first point. (5) Drive a hub at the
intersection of the two bisecting lines and mark the exact
point with a tack ; check by measuring each half angle in-
dependently. (6) Set the transit over the third vertex and
determine the angular and linear error of intersection. (7)
As a final check measure the angles around the point of in-
tersection of the bisectors. The angular error of closure of
any triangle should not exceed one minute. Follow the
form.
PROBLEMS.
109
static
/
3
Z
Station
v_
Whole
Angle
ez'is'
73'm'
44'4S'
An
I-Q-i
i-o-z
Z-0-}
Alliiwsli: ?
INTEP
L'HalF
Angle
ii'n'jo'
zz'zzin'
SE
RHa:F
Angle
3/WX'
}6'Mk'
ZZ'ziW
ilhwah.
Chick
iiz'zi'm
IZS'Sl'lO
izMn
m't.
er/vr
CT ON OlF LiH
■or
Distance
•dJ'-O
Er
Angle
■ OJ-'O
:S
0-C3f1
WITH TRAN
/t
PEOBLEM D4. KEFEEENCING OUT A POINT.
(a) Equipment. — Transit, 2 flag poles, 100-foot steel tape,
axe, 6 hubs, 6 flat stakes, marking crayon, tacks.
(b) Problem. — Eeference out a point with a transit and
tape.
110 THE TKANSIT.
(c) Methods. — (1) Drive two hubs about 500 feet apart
and mark them with guard stakes. (2) Set the transit
over one of the hubs and reference it out as shown in the
diagram. All hubs should be driven flush with the ground,
and the exact points should be marked by means of tacks
driven into the tops of the hubs. Record in proper form.
PROBLEM D5. TEIANGULATION ACROSS RIVER.
(a) Equipment. — Transit, 3 flag poles, 100-foot steel tape,
axe, 4 hubs, 4 flat stakes, tacks.
(b) Proilem. — Determine the distance across an imag-
inary river by triangulating with the transit arid check by
direct measurement.
Simpfe and Rapid Methods oFTrianquIation.
l\\\\\\\ WWW!
///7g oF Survey Prolonged Across Fiver. .1
-m
:^\\\v ..*-^"'*
AB=;rT^^j=BC-Coseo5°U''=BCxl0.0l'(BCxH>hl^§Jr^x0.l)
Sin544 il'l'
'Rule oFTen'.' (DWithtrsnsitatA, line in liubstBon opposite side of river.
(ilTurnoFFangle 5°44'3ndwitlioneendoFtapeheldatB locate C by
swinqinq on arc under direction oF transttman; IF the Front Flaqrnan be provid-
ed with a metallic tape , he may locate C alone by hooking the ring oF the tape
on 3 projecting tack in hul? B.
The desired distance ABmaybe
taken roughly as ten times the meas -
ured distance BC. For greaterexact-
nessj add 0. 1 Foot For each 100 Foot
unit in the distance ABbs Found by
the simple " rale oF ten "juststated.
Leveling ^
Instrument
AB:AD::BC:DF
(c) Methods. — (To be devised by the student. Use this
and the next problem to learn the relative merits of several
good methods. The " rule of ten " method in the sketch be-
low is very rapid and also quite accurate.)
PROBLEM D6. PASSING OBSTACLE WITH TRANSIT.
Ca) Equipment. — Transit, 100-feet steel tape, 2 flag poles,
axe, hubs, flat stakes, tacks.
PROBLEMS.
Ill
Tri.insuution 'Vcros ; a E iver
station
B
C
Distance
Ft-
Ill-tS
UjB-
D-B-C
S-C-D
Co leulatii n
I Cxtar SO
lo0-B-'D=lc}-
' - - 2.
III
s-.>
3-D='i<-
Chalped dii tance
Dift vrence
Per. tiiessb.
AnjJe
Value
0°3O
B-D
'0- ,
ltf09+Itt-CIS39l
SH-ffff* Ug- ti nSOJi ■
Z.r993
CM
M/-06
J.W-t
1 tsulf-
isd
fj:d
Sff'Jl
■Zli/0
/■f-
/tl-9e
mis
Ft
ft-
Transit
» R-Rae-
i) CaJdiilCItar-
lacker H^8;
■ert{233-
B.sethabefD
Li ckt
WITH ENSINEERS'
Observers - J- Dot
Mciv-Z7,'r4 -fZJfi
Used f3uth
and Chai'mng .
Kth transit ove.\
by "Method cF Double Sights',
tvifh A asa ba
Set /fab ate,.
care,
Checked -
chaining 8'D-
length cF Tape, il9-9SFt- ffisrrved
distances ract rded'
^9°iO'(Complemait)
■ksight.
iB-CwIth
, andmeashred /. B<-D-
computet' distance by
Imaginary .
r
station
A
e
D
A-D
A
B
C
D
A-D
A
P
S
A-e
Pass
Distance
Ft.
"E,u
m-t>o
ZOO-OS
101-03
199-93
"Ri^
ZO-00
ZOO-00
loose
200- OS
izo-00
izo-00
ZOi-SS
Z39-0S
MS /N 08 5TACIE
An]g
lateral
N-A-F
A-e-D
e-D-H
B^f 'ectii n
if-A-F
a-F-6
F-S-H
le
Value
Triang
60W
bO'OO'
S9°S9'
Error
Pish Ft.
Meth
:iht Andle Of fs|[t Metljod
ff-A-B
A-S-C
B-C-D
C-B-H
90 '00'
90'00'
eo'oi'
Met
s'oo'
lO'OO'
s'oo'
of Closure
Line Ft.
od
-0-07
tO-OS
lod"
0-09R-
0-tOL-
0-03R-
WITH' EHSIHEERS'
Observers :J-Dat
Hovl7,i9/4,
Used Soriey
chaining
Wth tlie'transit
end a, in tbe line
and prolonged tl
lateral Triangle
Angle OFFset
"DtFlection
f/V
t,
Transit
S R-Roe-
CZifo vrs) iVarm ff cloudy-
~, and.
HS3Z-
il
^■^M
AssuiTied thatA-S
was 3 frue jj7er/(/Zan^
B
A
lO'/l'L
5-33'ilSi
C3refi/7/y checker
f eachsngle^
c
4(4-9!
S43iS'i
joi^l
S-/t!'/3'E
Bahile dcwrr on 3. t sights- I
C
B
B
4S3-7t
IZ4i3'x
543^^'B
SIJ'JB'H/
lU'sSR
IflSln't
£ei7fffh of Tspe -
^ fiec/aced measure.
JOO^CIFf-
77enfs recordacf-
D
C
7f'llfji
s^f/'Ssk
A//cwab7e error o
"closure = J'-
e
116-Sl
mi'zm
7e't^/i
lfll7U3'£
L
e
D
A
Z42-14
Slili'lt
HZl^s'lli
SZ'33'R
ss('3;'e
i
E
i2
A
r
— r
i70'J3'
370'JS'
.*•''
jfn'
(Cluck)
IfW
1
/
1
\
30W
iS9'3S'
Calcula
ion oF
Bearin
gs— '
'
\
R
AS
swWe
P-E
HII)'43'e
\
Y
B
JO'li'L
e
/??*>
\
\
B-C
SD'B'e
e-A
iH'3l'E
A
\
C
im'si'r
A
W'JJ'R
(Check,
)
}'ji
^\
. \
D-e-
M'4}'e
>l.
V
/^
l1ov-ZI,}9I4 C0777pufer, J -Doe. ^\
Data frompp- Transcr/pt 0-JC- 1
TRAt
SIT t
RAVES
SE, Fl
:LD A
B-C-D-I
Latitudes and Departure?,-
Line
Adjostci)
Eefced
COMPl
TATlOt
OF L/
fit
UDE3
COWh
TATIOt
OF DE
PAR
rUEES
Bearmg
Distance
Multipli-
Lo^ar-
Computed
Lat.
Adjusted
Multipli-
Logar-
ithms
Computed
Dep.
Adjusted
cation
itlims
Latitude
Cor.
Latitude
cation
)eparfure
Cor.
)eparture
Ft.
Ft.
Ft-
Ft-
Ft.
Ft.
Ft.
AB
S-OCV
33S-05
S-33S-Ci
■10
5-334^93
OMO
-00^
00-00
SC
5-J0'l3'E
464-SB
"'Vv
9-9330i
5-457-1}
■To
5-437-31
t«|?.
Z-i(744
9-Z4m
B-iZ-fl
-f3
l-SZ-SO
HM
i-eeoso
I-9I63Z
je
(4S7-6J)
■i-
:ikk
(SZ-47)
*B7-iiie
CD
/t-6sisi/
413.7Z
^S
US459
9-eiill
H-20I-Z4
■OS
H-Z0I-Z9
4eB-7Z
Z-6S4SS
S-9SS73
W43}-n
■18
m39-l9
ZSOZ^
1-30370
(70I-Z4
■f-
'II
Z-64330
(439-87)
^
zoisW
f-3S-S7S
DE
H-I0'43B
ew-si
■",m
Z-7199S
9-99Z}l
17-61378
■IS
H-60S-91
lil'/f.
Z-7S99S
S-Z6940
f-m-64
■OS
E-II46S
7-78731
Z-OSSiS
■'Sf
(6BS-71)
+
TT?:i-fir
(114-64)
■I-
61IS-777
EA
5-!6'3li.
Z4Z-S4
'/5
7-3SS3Z
8-78361
5- 1476
■00
5- 14-76
%'M
Z-38S3Z
9-9S9Z0
BZ4Z-40
-10
£Z4Z-S0
H6S93
(J4-76)
Z-384SZ
F.
/f-7se
^^Iff
(Z4Z-40)
2143-n
H-S07-OZ
H-807-ZZ
5439-31
1-430,6}
Error
Actu
Perm'
op Clos
.1
ure
55 ft.
6 Ft.
Line
AB
ec
CO
2
2
1
Cor
-/O
-/a
■OS
5-107-K
■40
S-807-2Z
Line
AS
BC
CO
I
10
Cor.
-00
•03
-11
W-43M1
■36
W-43M3
5- 0-40
0-00
W- 0-36
0-00
(St
Pisgrs
«;
PS
£A
}
■IS
■f-
,-i>t-^
116
THE TRANSIT.
the transit over the second hub, sight at the top of the
tower and read the vertical angle, as before. (7) Eead the
level rod on the base of the tower as before. Each angle
and rod reading is to be based on duplicate readings. Fol-
low the form.
PROBLEM Dll. SURVEY OP LINE SHAFTING.
(a) Equipment. — Engineers' transit with attached bubble,
leveling rod (or instead of these engineers' instruments, a
16-foot metal-bovmd straight-edge with an adjustable bubble
of say 20-foot radius, a long braided fishing line, and 3 long
metal' suspenders made exactly alike, from which to sus-
pend straight-edge from line of shafting), 2 good plumb
bobs, 50-foot etched steel tape, copper tacks, hatchet.
(b) Problem. — Make a survey of a line of shafting in a
machine shop, and establish a true alinement for it, both
vertically and transversely.
Eesuryey oF North Line ShdFtinq, F/etal Shop.
leveJs. :■■■?
Line
Hangers
wmmmm4m
(c) Methods. — (1) Establish a reference line for lateral
deviations and carefully mark the same. (2) Select a suit-
able permanent bench mark to which the levels may be re-
ferred. (3) Determine the horizontal distance from the
vertical reference plane to the line shafting at selected
points, say at each hanger. (4) Determine the elevations
of the same points by the methods of profile leveling. (5)
Plot the data as suggested in the diagram. (6) Note the
ruling points and permissible change both laterally and
vertically at each hanger, and record the data. (7) Lay
grade lines, and prepare data to shift the line shafting tp a
ti'se position. (8) Make complete record of results.
PROBLEMS.
117
PEOBLEM D12. SUEVEY OP EACE TEACK.
Outfit for transit party (instrument
ire, say No. 20, spring balance, ther-
race track, as in-
(a) Equipment.
assig-ned, a long
mometer, etc.).
(b) Problem. — Make the survey for a
structed.
(c) Methods. — (1) Standardize steel tape, noting temper-
ature and pull. (3) Make a careful examination of the tract
of land with a view to secure the best location for the race
Requlah'on One-Mile and Half-Mile Trottinq Tracks.
I Grand Stand \
The standard distance kmeasured ona line 3 Feet From t/?e
hub-board. The inner edge of tiie trsck is thus 2Tr-3=i8.85feeb
shorter than the standard distance. The trac/c is banlted 'on
curves Fron?l:iZtoi:i5, and, to provide drair7aqe, shouid be sioped
one Foot on the straight stretches. The ends of curves are some -
times Flattened.
track as regards visibility, drainage, economy of construc-
tion and maintenance, etc. (3) After fixing the ruling
points, establish the principal axis of the track by locating
the centers of the two semi-circles and the intersections of
the axis with the curves ; also establish the ends of the
curves, preferably on the true measured line (3 feet from
the hub plank for a sulky track, and 18 inches from the
inner edge for a bicycle track). (4) Eun in each quadrant,
118
THE TEANSIT.
either by the deflection angle method, or, if trees or other
obstructions do not prevent, by using the wire as a radius
with observed pull ; set points 16 feet apart unless in-
structed otherwise. (5) After locating the true line, check
up the total distance very carefully. (6) Make plat and
complete record of survey.
PROBLEM D13. ANGLES OE TRIANGLE BY REPETITION.
(a) Equipment. — Transit, reading glass, 3 chaining pins,
2 tripods with plumb bobs (if necessary).
(b) Probletn. — Measure the angles of a prescribed tri-
angle with transit by repetition.
/'
Observers : John Doe t
■ Richard Kos- \
At
ISLES
IF Tri
ANSLE
5-6
-8
BY Repetition. Bi
■ffifBerger Transit''9-\
station
BubDirec
Object
Vern-A-
Vern-B-
Mean
Difference
Angle
Mean Angle
Remarks
ble
tion
Ae
hm
msh
AS
mh'u
o'mW
osW
HovSD,').
tfZJfours) .
'ooI^^t/U
/••
AS
m'47h>
'47'47'2II
'47'ZI!"
47'47'ZD"
Si'ng/e
ss'si'zt
za'si'n
' S6'20'
ISI'SI'Z^'
47'47'I6"
SXaps-
lip
UF)
AS
fWdn'
mVis
' OO'M"
AS
*7'4T6l
'ZZf47'll)
' 47'0(l'
47'47'm"
..iffje
l3Si(ifi
SS'JlW
■ S^'4<)"
73S'S6'4I>"
47'47'Zll"
47'4:'lg"
SKeps-
AS
a
R
AB
oWss''
7!th'm
' rn'os"
J>ecI,'9S-
''3//mrs) I
y^rm^iiv
ref.
AS
43'IZ'ZII
mirit
'Z2V
4i'ZZ'Z0"
5/ngfc-
2ieViv
36i7'0
■ sm'
zis'sz'do"
43°ZZ'Z4"
S£°
S/ngJe
it'siki
iW'SI^
' Sl'40'
ZJ6'Sl'4l!"
43'ZZ'Z^''
43'ZZ'ZZ"
SXrps-
A3
D
R
AS
i^'tsii!''
rn'mit
me^
Ae
n'mii'
m'siit
' so'zs'
H'SI!'ZI>''
Single
l4'lZ'0
'ze4V4i
' jz'4e>
444'JZ'4(>''
Sf'Sl'SZ'
SReps-
u
L
Ae
mVit'
t'ltio'
u'mi'
AS
m'si'a
'sfy'zti
' Sl'Zl'
s/'so'zo"
Single
Z64'/l'Zhri3,Dec-7,19/S S ZJ-Z
Correction far Psi'lroad Tfme - 7-0
g-RTfmeV-C-PaJsnXDec.7,l9/S S ZD-Z
kaducf-ion for Western flongatfon + 5 55'0
RslJroad Time i> a z''jS-o"
Calculation of Azimutli of Polaris at Elon^'n
Az!miifhPt>raris,Btons'f'n,Jsn-J,Wi l'Z9'9
CorrecHon far Pec- T, 1913 - 0-8
A:iimutj7 Polaris, flong't'n, Pec^T, 1913 l'Z9't
Time of Elongation of Polaris'
For Western flongsfion scfd S''SS'"- fa
time U-C- Polaris • far Eastern flon^ation
subtract S''SS'"- from time U-C-
Observers, J-Oae ^ R-Roe-
BY Ob's on Polaris at Elongatioh-
Pec.7,l9ISfZ Hours), CIe.sr 3nc^ warm-
duffSBer^er Transit lia-S, ZLanferns,
Inbs, Zflatstalces,plank lS"t4''Z', 4-
Sd nails, axe, watch settalceep Railroad
time-
Set transit over hvi> 3t i!40A'i^; si^iited
at Polaris, depressed file teiescape and
estabjisiied target about 500 ft- fn>m
instrament- The pianic was placed af-
r/^iit 3n0ies to Jine and fjai/ed to
3 Stake driven s--f-Z4^ff(^'"~Mean SoJarT/Jne,
U-C-foJ3rJs CZ3^Z6^J
T//7?e armament = /four An^/e of P/3r/s
(ore3^3£-I^-JfourAff^/eJ
Asfro/Tom/cal Time (local Mean SoJarJ
J3 reckoned from /? o'clock Jfoo/? Qn
\fhe CM/ I>ay of f/ie same cfafs--
Obs- on Polaris at any Time .
Apr/IZI, J915 (2/fours) Clear 3? Warm.
Buff 3? Ber^dr Transit If ^9j Z lanterns,
hubs, Zf/at stakes, p/ank3e'x4'x 21
4~i(f-n3iJs, watch set to keep ^all"
road or Standard T/mCj axe-
Set transit aver hub at S'lS P-ff;
sighted gt Polar/s, depressed teles-*
cope and established target SOO ft'
from Instrument, the plank was
placed at right angles to line and
nailed to a stake driven at each end-
Set vertical hair on star, noted
time, depressed the telescope
and marked line en target with
pencil-
Apr 22, 19/5 (2 Ifrs^
f educed obsfra-
-tlons using Azi-
muth Tables'
laid off Azimuth
fa the fast and
measured angle
with the True
tferld/an-
Polaris at Time
oF Observation
Ir
^'6
fO-'»
fO-'7
Setting
fff'SF3
Hl'SSi
tJ9'SS-'?
m'iS'7
f/9'SS'6
W'JS-'S
H3'i9-'Z
Azi-
riufh
tZ'll'
ZZ'IZ'
Z2'ja'
zz'ji
ZZ'JI'
zz'ts'
z?'/o'
zz'os'
ZZ'll'
ZZ'P9'
ZZ'JO'i
zzWi.
o'm
True Atiffiufh of Line
MIoivabJe error 01'- frrorA
Calculation of Setting fApf-Bedil 8!'30'"AM-
LetltUife 40'(!6'tl; langifude SS'JS'W-
App-Pecliffafion ffreenivlch Mean /foon.
(etllT^ AM- ltere),l1syZt>,J90J, fJS'Si'S
Correction for Z''Z3'"=Z-4i<)-S}, * Ol-'S
tecJinat-Jon ofJunstf--3l>AM- = i-l9'£4'-S
Xefracl-hn Cor^-3''30'ie/iremi'n-+ 0-7
Apii-Dccl-3tS:3Ci\M- - f/S'SS^S
Apparent- Pec/- (^ett/n^) for f/je other
times was eaJci/fsfeet in JiMe manner-
WITH Solar Transit-
Observers, J- Doe if B- Roe-
MayZO,190/. C4 ffrs-) C/ear i^ warm-
SuffifSergerTrans/f/i^S, ty/fh Saeg-
muiler SffJarAttacIimentjItubs, ajie^
watch settolceep JSaJiroad Time, Se/ar
fphemeris CMsndbmk for Enqineers,
By 6eo./1.S3egr/7Uller, Bausch&Lomb
OpticdICo. Rochester,/1.Y.)
Tested Transitand SolarAttacbment
and found both in perfect- adjustment.
Set tran sit over hubj JeveJedup very
carefui/y yvit/i ianf bt/bbJej found
Index frror of Vert- Circle ='Zerff-
Setoff -i9-°SS'S (-App-Pecl-) on Vertical
circie-and Jeve/ed solar tet escape by
means of its attached bubble-
Set off t49'S4' Cfo-lafJ on Vertical
circle-TeJescopff pointed S-bo/tr times-
Set A vernierat zero and sighted af
5ta-3 with Jower rnotion-
Unclamped upper motion, moved transif-
on vertical axis andsoiar on its
polar axis, and brought image of sun
into center of solar = 3 x-iS-S" = l'47-4" N-
Dedinafion at 9 A-M- = /f'47'43-SV.
Average Vertical Angle liy Otservetfort 4e'o3'PO"
(^rrecffon for PeFr3cf:or7 00'36' '
True Altifi/da
Latitude of Obseri^atoryj U- of I-
Station JOO'tl-
Latitude of Stafian
4e'0Z'04"
40' 06' 00"
40' 06' 00"
Co, J- P2S=. }/^'"i S- xSin-dS'PoleDist^
Cos-^PZS- \l 5A7. CoAlt-r. Sin- Ca-Laf-
where S=Pole Plot. + Co-Alt--t Co-laf-
Pole Dist- = 7/" 12' 16"
Co-Alt = 43'STS6''
Co-Lat- = 49° £4' 00"
S = ies°04'ie"
is = SZ'32'06"
Pole Diet- = 7J'IZ'IG"
^5- Pole Dist- = ll'J9'S0"
Log-Sln-82'3Z'0e'= 3-99630
Log- Sin- II'I9'S0"= 9-29313
Co-lag- Sin- 43°S7'S6"= 0-ISSSO
Co-log- Sin- 49'S4'00"=' 0-11638
2)l9-S6441 -20
Log-Cos-iPZS = 3-78224
iPZS= 32 '4-5 'IS"
, PIS = IOS'26'36"
Azimuth of Sun from the North
Angle between Sun and Mark
Observed Azimuth from Harth Station to Mark
True Azimuth from Iforth Sfatj'on to Mark-
Error
PROBLEM D17. DETERMHSTATION OF TRUE MERIDIAN
BY DIRECT OBSERVATION ON THE SUN.
(a) Equipment. — Complete transit, reading glass, hub,
axe, colored eyepiece or colored shade to fit over objective,
good watch set to keep standard time, solar ephemeris.
132 THE TRANSIT.
(b) Problem. — Determine a true meridian by a direct ob-
servation on the svin with a transit.
(c) Methods. — (1) Set the transit over a hub and level up
very carefully with the attached bubble. (3) Test the ad-
justments of the transit very carefully, and determine the
index error of the vertical circle. (3) Sight on a horizontal
mark and read the horizontal plates. (4) Sight at the sun
directly, by the aid of the colored eyepiece or colored glass
shade, and bring his image tangent to the horizontal and
vertical wires. (5) Read vertical circle and horizontal
plates. (6) Reverse the telescope and make a second ob-
servation the same as the first except that the sun should
be in the opposite quarter of the field of view. (7) The
mean of the vertical and horizontal circle readings will
give the apparent altitude and plate reading of the sun's
center. (8) Observe the standard time of the observation
and reduci to mean solar time by adding or subtracting 4
minutes for each degree that the place of observation and
reduce to mean solar time by adding or subtracting 4
minutes for each degree that the place of observation is
.>ast or west of the standard meridian. (9) Calculate the
angle PZS in the P Z S triangle as shown in the accom-
panying form. Refraction makes the sun appear too high
and it should therefore be subtracted. (10) Determine the
azimuth of the line from the hub to the mark and check
the observed azimuth. (The data for this problem may be
obtained from Saegmuller's " Solar Ephemeris and Refrac-
tion Tables,'' or from the " Ephemeris of the Sun and
Polaris, and Tables of Azimuths of Polaris," by the General
Land Office, mentioned in Problem D16. Mean refraction
of the sun for different altitudes is given in Table V.) (11)
Where considerable accuracy is desired, make a second ob-
servation when the sun is about the same distance on the
opposite side of the meridian. The error of the determina-
tion should not exceed 1 minute.
PROBLEM D18. COMPARISON OF TRANSIT TELESCOPES.
(a) Equipment. — Eive engineers' transits.
(b) Prohlem. — Make a critical comparison of the tele-
scopes of five engineers' transits.
(c) Methods. — Follow the methods outlined in the com-
parison of level telescopes.
PROBLEMS. 133
PROBLEM D19. TEST OF A TRANSIT.
(a) Equipment. — Transit, reading glass, leveling rod,
chaining pins, foot rule.
(b) Proilem. — Test the following adjustments of an as-
signed transit: (1) Test the graduation for eccentricity.
(2) Test the plate levels to see if they are perpendicular to
the vertical axis. (3) Test the line of collimation to see if
it is perpendicular to the horizontal axis. (4) Test the
horizontal axis to see if it is perpendicular to the vertical
axis. (5) Test the level under the telescope to see if the
tangent to the tube at the center is parallel to the line of
collimation. (6) Test the vertical circle to see if the
vernier reads zero when the line of sight is horizontal.
(c) Methods. — Make the tests as described in the first
part of this chapter but do not make any of the adjust-
ments or tamper with any of the parts of the instrument.
Check each test. Make a careful record of the methods and
errors, including a statement of the manner of doing cor-
rect work with each adjustment out.
PROBLEM D20. ADJUSTMENT OF A TRANSIT.
(a) Equipment. — Transit, reading glass, leveling rod,
chaining pins, adjusting pin, small screw driver.
(c) Methods. — Make the following tests and adjustments
of an assigned transit that has been thrown out of adjust-
ment by the instructor: (1) Test the graduation for eccen-
tricity. (2) Adjust the plate levels perpendicular to the
vertical axis. (3) Adjust the line of collimation perpendicu-
lar to the horizontal axis. (4) Adjust the horizontal axis
perpendicular to the vertical axis. (5) Adjust the level
nnder the telescope parallel to the line of collimation. (6)
Adjust the zero of the vertical circle to read zero when the
line of sight is horizontal. (7) Center the eyepiece.
(c) Methods. — Make the tests and adjustments as de-
scribed in the first part of this chapter. Use extreme care
in manipulating the screws and if any of the parts stick
or work harshly, call the instructor's attention before pro-
ceeding. Repeat the tests and adjustments. Make a care-
ful record of methods and errors.
PROBLEM D21. SKETCHING A TRANSIT.
(a) Equipment. — Engineers' transit.
(b) Prohletn. — Make a first-class sketch of an engineers'
transit.
(c) Methods.- — (See similar problem with the level.)
134
THE TRANSIT.
PROBLEM D33. ERROR OF SETTING FLAG POLE WITH
TRANSIT.
(a) Equipment. — Transit, iron flag pole, flat stake l"x
2"x 15", foot rule.
(b) Prohlem. — Determine the probable error of setting a
flag pole with the transit at a distance of 300 feet. Repeat
for 600 feet.
^
Observers, J-Doe c
R^Roe- ^
Err
OR OF
SET-
IHG I
UA6
'OLE
WITH ENSINEER
>' Transit-
)Ht3nce
No.oF
Distance
d
d^
Dec-6,m4.(2hiiun
1 Cool and Quiet-
Ft-
StHlnj
In-
In-
Used Suff S Seiyar
Transit, LocJcer/io^^i
300
/
I-/S
0-JS
0'03Z4
f/afsfake,/'"?'
^lS"and iron flagpole-
Z
J-3S
■02
■0004
Sighted 3 f- /ran F/ag
poie set- on stake
3
/■}0
■06
■0036
which had been }
laced on ground /"
*
I-S3
■17
■0219
ab.out 300 ft- fn
m ti?e Tr,ynsiff 3nd
S
I-3Z
■04
■0016
clamped bot-h pj.
^tes; then measured
6
I-3S
■02
■0004
The distance in i
iches from ling
7
JZS
■07
■0049
dr^wn across t
he beared'
e
1-46
■10
■0100-
With tct/i plates cl.
'mped, lined in the
9
M6
■10
■0100
rod 10 times in a
'if the flagman not-
w
Nean
1-30
■06
■0036
-td^
ing the distance
The pole tvas sh.
fram the line-
'f ted each time-
1-36
O-OSSS
Repeated test For
00 ft-
600
1
I-J4
0^25
0^0623
Probable Error for
300 Ft-
?
3
1-56
1-14
■J7
■2S
■0219
■062S
e,-c.usi^,^
H74?l'-^ =0-105 in
5
1-76
■)7
■37
■02S9
■136S
--#=^
^i- = 0-032 in.' 0-0027 ft-
6
hSS
■16
■0236
£m (Angle) =
.,„- 0^^ ,:i.
7
1-23
■/6
■0256
Probable trror Fo
■ 600 Ft.
S
HO
I-5S
■23
■16
■OSH
■0256
£,' 0-6745 f^
■ = 0-247 !n-
JO
Mean
I-6S
•26
■0676
=Zd^.
^'"- no -
0-O7Sin. = e-OO6Sft-
1-39
0^5472
^-—J
Bm (Angte}A
tan-">-Zf=2rz
600 J
(c) Methods. — (1) Set the transit up and sight at the flag
pole plumbed near the middle of the stake at a distance of
about 300 feet. (2) Measure the distance from the point of
the flag pole to a mark on the stake. (3) Keep the vertical
axis clamped, and move the pole to one side. (4) Set the
pole with the transit, and measure the distance from the
first line. (5) Repeat until at least ten consecutive satis-
factory results are obtained. (6) Compute the probable
error of a single observation and of the mean of all the
observations (see chapter on errors of surveying), and re-
duce the mean error to its angular value. (7) Repeat
for 600 feet. Determine distances by pacing. Follow the
form.
PROBLEMS. 135
PROBLEM D23. REPORT ON DIFFERENT MAKES AND
TYPES OP TRANSITS.
(a) Equipment. — Department equipment, catalogs of the
principal makers of engineers' transits.
(b) Prolileni. — Make a critical comparison of the several
types of transits made by the different makers.
(c) Methods. — (See similar problem with the level.)
CHAPTER VI.
TOPOGRAPHIC SURVEYING.
Topographic Map. — A topographic map is one which
shows with practical accuracy all the drainage, culture, and
relief features that the scale of the map will permit. These
features may be grouped under three heads as follows :
(1) the culture, or features constructed by man, as cities,
villages, roads; (2) the hypsography, or relief of surface
forms, as hills, valleys, plains; (3) the hydrography, or
water features, as ponds, streams, lakes. The culture is
usually represented by conventional symbols. The surface
forms are shown by contours (lines of equal height), (a).
Fig. 24, or hachures, (b), Fig. 24. The -water features are
shown by soundings, conventional signs for bars, etc.
Fig. 24.
Topographic maps may be divided into two classes de-
pending upon the scale of the map. Small scale topographic
maps are made by the U. S. Coast and Geodetic Survey and
the U. S. Geological Survey, and are drawn to a scale of
1 : 62,500, 1 : 125,000 or 1 : 250,000 with corresponding contour
intervals of 5 to 50, 10 to 100, and 200 to 250 feet. These
maps show the streams, highways, railroads, canals, etc., in
1.W
138 TOPOGRAPHIC SURVEYING.
outline but do not show any features of a temporary char-
acter. For topographic symbols, see Chapter XI.
Large scale topographic maps are drawn to a scale of 400
feet to 1 inch ( 1 . 4800) , or greater, with contour intervals
from 1 to 10 feet depending upon whether the ground is iiat
or hilly Roads, streets, dwellings, streams, etc., are drawn
to scale. Features too small to be properly represented
when drawn to scale are drawn out of proportion to the
scale of the map.
Topographic Survey. — The object of a topographic sur-
vey is the production of a topographic map, and hence
neither time nor money should be wastefully expended in
obtaining field data more refined than the needs of the map-
ping demand. A topographic survey may be divided into
three parts: (1) the reconnaissance; (2) the skeleton of
the survey; (3) filling in the details.
Reconnaissance. — The reconnaissance is a rapid prelim-
inary survey to determine the best methods to use in mak-
ing the survey and the location of the principal points of
control. A careful reconnaissance enables the topographer
to choose methods that are certain to result in a better map
and a distinct saving of time.
Skeleton. — There are three general methods of locating
the skeleton of a topographic survey: (1) tie line survey
with chain only, (2) traverse method with transit or com-
pass; (3) triangulation system, (f), Fig. 30. The first
method is used for the survey of small tracts. The second
method, in which the distances are measured with the
chain, tape, or stadia, is used on railroad and similar sur-
veys. The third method, in which ■ triangulation stations
are connected with each other and with a carefully meas-
ured base line and base of verification, is used on surveys
for small scale maps and on detailed or special surveys,
such as surveys of cities and reservoir sites.
Filling in Details. — There are three general methods em-
ployed for filling in the details : ( 1 ) with transit or compass
and chain; (2) with transit and stadia; (3) with plane
table and stadia. The transit and stadia are used by the
Mississippi and Missouri River Commissions. The plane
table and stadia are used by the TJ. S. Coast and Geodetic
and the U. S. Geological Surveys.
Topographic City Survey. — A topographic city survey is
one of the best examples of a survey for a large scale map.
It is usually based on a system of triangulation executed
with precision and connected with carefully measured base
THE STADIA. 139
lines. The details of the survey are usually taken up in the
following- order: (1) reconnaissance and location of trian-
gulation stations ; (2) measurement of base line and base of
verification; (3) measurement of angles by repetition ; (4)
establishment of bench marks by running duplicate levels ;
(5) adjustment of angles of triangulation system; (6) com-
putation of sides, azimuths and coordinates; (7) filling in
details, usually with transit and stadia; (8) plotting of
triangulation and other important points on the map by
rectangular coordinates; (9) plotting the details and com-
pleting the map. The instructions given on the succeeding
pages are for a survey of this type.
Hydrographic Survey. — Hydrographic surveying is di-
vided into river and marine. The first includes the location
of bars and obstructions to navigation, and the determina-
tion of the areas of cross-section, the amount of sediment
carried, etc. The second includes the making of soundings,
location of bars, ledges, buoys, etc. The depth of the water
is determined by making soundings with a lead or rod,
and the velocity is gaged by means of fioats or a current
meter, (d). Fig. 31.
Soundings are located: (1) by two angles read simulta-
neously from both ends of a line on the shore, (f). Fig. 31;
(2) by keeping the boat in line with two flags on shore, and
determining the position on the line by means of an angle
read on the shore, or by a time interval ; ( 3 ) by intersecting
ranges, (g). Fig. 31 ; (4) by stretching a rope or wire across,
the stream; (5) by measuring with a sextant in the boat
at the instant that the sounding is taken two angles to three
known points on the shore, (c). Fig. 31 ; the point is located
by solving the three point problem graphically with the
three arm protractor, (e). Fig. 31 ; (6) by locating the posi-
tion of the boat at the instant that the soundings are taken
with transit and stadia. The first three methods are used
on small river or lake surveys. The fourth method is used
where soundings are taken at frequent intervals. The fifth
method has been used almost exclusively in locating sound-
ings in harbors, lakes, and large rivers. The sixth method
is rapidly coming into general use and promises to be the
favorite method.
THE STADIA.
Description. — The stadia is a device for measuring dis-
tances by reading an intercept on a, graduated rod. The
stadia-hairs, shown in (g) , Fig. 27, are carried on the same
140
TOPOGEAPHIC SURVEYING.
reticule as the cross-hairs and are placed equidistant from
the horizontal hair. The stadia-hairs are sometimes placed
on a separate reticule and made adjustable. It is, how-
ever, considered better practice by most engineers to have
the stadia-hairs fixed and use an interval factor, rather
than try to space the hairs to suit a rod or to graduate
a rod to suit an interval factor.
Stadia Rods. — Stadia rods are always of the self reading
type. In Fig. 27, (a) and (b) are the kind used on the U.
S. Coast Survey; (c) on the U. S. Lake Survey; (d) and
(c) by the U. S. Engineers. A target for marking on the
rod the height of the horizontal axis of the transit above
the station occupied is shown in (f), Fig. 27.
Theory of the Stadia. — In Fig. 25, by the principles of
optics, rays of light passing from points A and B on the
rod through the objective so as to emerge parallel and pass
through the stadia-hairs a and 6, respectively, must inter-
Fig. 25.
sect at the principal focal point (J in front of the objective ;
therefore the rod intercept, s is proportional to the dis-
tance, g from the principal focal point in front of the ob-
jective.
Stadia Formula For Horizontal Line of Sight and Ver-
tical Rod. — In Fig. 25, from similar triangles we have
From which
:: i : f
g^ rS = k. S
(1)
(2)
and
D = k. s + (c -f f )
(3)
Stadia Formula For Inclined Line of Sight and Vertical
Rod. — In Fig. 26 we have
and
but
also
THE STADIA. 141
BD=iAE. cosa (approx.) (4)
D =k. s. cos a + (c + f ) (5)
H ^ D. cos a
k. s. cos2 a + (c + f ) cos a (7)
= k. s — k. s. sin2 a -(- (c -|- f ) cos a (8)
V = D. sin a (9)
= k. s. sin a. cos a +(c + f) sin a (10)
= l,^k. s. sin 2 a+(c+f) sin a (11)
Use of the Stadia. — The transit is set up over a station
of known elevation and with a given direction or azimuth
to another visible station ; the height of the line of coUima-
tion above the top of the station Is determined either by-
holding the rod beside the instrument and setting the
target, or preferably by graduating one leg of the tripod
and using the plumb bob ; then with the transit oriented on
a given line, " shots " are taken to representative points,
and record made of the rod intercept, vertical angle and azi-
muth. In reading the intercept the middle hair is first set
roughly on the target, then one stadia-hair is set at the
nearest foot-mark on the rod and the intercept read with
the other stadia-hair, after which the precise vertical angle
is taken, and tUe azimutli is read,
142
TOPOGRAPHIC SURVEYING.
Beducing' the UTotes. — The notes may be reduced by
means of tables, diagrams, or a special slide rule. The
slide rule is the most rapid. There are several forms of
stadia slide rule that are very accurate and are convenient
for field use.
<
i
<
4
i
<
4
<
(3J
X
X
(b)
>
>
CCJ (d)
Fisr. 27.
M
M
(6)
r ^
(f)
THE PLANE TABLE.
Description.^The plane table consists of an alidade, car-
rying a line of sight and a ruler with a fiducial edge. The
alidade is free to move on a drawing board mounted on a
tripod. The drawing board is leveled by means of plate
levels. The line of sightf should make a fijced horizontal
angle with the fiducial edge of the ruler. The complete
plane table is a transit in which the horizontal limb has
been replaced by a drawing board.
There are three general types of plane tables: (1) the
Coast Survey plane table, (a). Fig. 28; (2) the Johnson
planB table, (b), Fig. 28; (3) the Gannet plane table, (d),
Fig. 39.
TTse of the Plane Table. — In making a survey with the
plane table the angles are measured graphically and the
THE PLANE TABLE.
143
lines and points are plotted in the field. The principal
methods of making a survey with a plane table are: (1)
radiation; (3) traversing; (3) intersection; (4) resection.
Radiation. — In this method a convenient point on the
Complete Plane Tables.
Fig. 38.
paper is set over a selected point in the field, and the table
clamped. The line of sight is then directed towards each
point to be located in turn and a line is drawn along the
Eg. 39.
144
TOPOGKAPHIC SUKVEYING.
fiducial edge of the ruler. The distances, which may be de-
termined by measuring with chain, tape or stadia, are
plotted to a convenient scale, (a). Fig. 30.
Traversing. — This method is practically the same as
traversing with a transit, (b). Fig. 30. Care should be used
in orienting the plane table to get the point on the paper
over the corresponding point on the ground as nearly as
the character of the work requires.
C
m--:
^D
A
E
f3)
'K'
-y^R
I
r^j
3 --^bl
Kg. 30.
THE PLANE TABLE. 145
Intersection. — In this method the points are located by
intersecting lines drawn from the ends of a measured base
line, (c), Kg. 30.
Resection. — In the resection method the plane table is set
up at a random point and oriented with respect to either
three or two given points, which gives rise to two methods
known respectively as the three-point and two-point prob-
lems.
Three Point Problem. — Where three points are located on
the map and are visible but inaccessible, the plane table is
oriented by solving the " three point problem." There are
several solutions, the best known of which are: (1) the
mechanical solution; (3) the Coast Survey solution; (3)
Bessel's solution; (4) algebraic solution. The problem is
indeterminate if a circle can be passed through the four
points.
In the mechanical solution the two angles subtended by
the three points are plotted graphically on a piece of trac-
ing paper, and the point is located by placing the tracing
paper over the plotted points.
In Bessell's solution, (d), Fig. 30, a, 6, c are three points
on the map corresponding to the three points, A, B, C on
the ground, and D is the random point at the instrument
whose location, d, it is desired to find on the map. Con-
struct the angle 1 with vertex at point c as follows : Sight
along the line ca at the point A, and clamp the vertical axis.
Then center the alidade on c and sight at B by moving the
alidade, and draw a line along the edge of the ruler. Con-
struct the angle 3 with vertex at a in the same manner. The
line joining 6 and e will pass through the point d required.
Orient the board by sighting at B with the line of sight
along the line e 6, and locate d by resection.
Two Point Prohlem. — To orient the board when only two
points are plotted, proceed as follows : Select a fourth
point, C, that is visible, and with these two points as the
ends of a base line, (e). Fig. 30, laid off to a convenient
scale, locate two points a' and 6' on the map by intersec-
tion. The error of orienting the board will be the angle
between the lines o-6 and a'-h'. The table can now be
oriented and the desired point located on the board by re-
section.
Adjustments. — The adjustments of the plane table are :
(1) the plate levels; (3) the line of collimation; (3) the
horizontal axis; (4) the attached level. These adjustments
are practically the same as those for the transit.
11
146
TOPOGRAPHIC SUEVEYING.
THE SEXTANT.
Description. — The sextant consists of an arc of 60°,
with each half degree numbered as a, whole degree, (a),
Fig. 31, combined with mirrors so arranged that angles can
be measured to 120°.
Boat Boaf
Boaf
Boat
(9)
%^.
^>C-.viC<-.-
Fig. 31.
THE SEXTANT. 147
Theory. — The principle upon which the sextant is con-
structed is that if a ray of light is reflected successively be-
tween two plane mirrors, the angle between the first and
last direction of the ray is twice the angle of the mirrors.
In (b), Fig. 31, the angles of incidence and reflection
are equal,
i = r and i' :^r', and
E = (i-|-r) _(i' + r')=2(r-r')
C = (90° — i') _ (90° — r) = (r — r')
and therefore E ^ 2 C
but C = angle CIC, by geometry, since the
mirrors are parallel for a zero reading.
TTse of the Sextant. — To measure an angle between two
objects with a sextant, bring its plane into the plane of
the two objects ; sight at the fainter object with the tele-
scope and bring the two images into coincidence. The
reading is the angle sought. The angle will not be the true
horizontal angle between the objects unless the objects are
in the same level with the observer. Since the true vertex
of the measured angle shifts for different angles, the sex-
tant should not be used for measuring small angles be-
tween objects near at hand.
Adjustments, Index Glass. — To make the index glass, 1,
perpendicular to the plane of the limb, bring the vernier to
about the middle of the arc and examine the arc and its
image in the index glass. If the glass is perpendicular to
the plane of the limb, the image of the reflected and direct
portions will form a continuous curve. Adjust the glass by
means of the screws at the base.
Horizon Glass. — To make the horizon glass, H, parallel
to the index glass, I, for a zero reading. With the vernier
set to read zero, sight at a star and note if the two images
are in exact coincidence. If not, adjust the horizon glass
until they are. If the horizon glass cannot be adjusted,
bring the images into coincidence by moving the arm and
read the vernier. This reading is the index error which
must be applied with its proper sign to all the angles
measured.
Line of Collimation. — To make the line of collimation
parallel to the limb. Place the sextant on a plane surface
148 TOPOGRAPHIC SURVEYING.
and sight at a point about 20 feet away. Place two objects
of equal height on the extreme ends of the limb, and note
whether both lines of sight are parallel. If not, adjust the
telescope by means of the screws in the ring that carries it.
PROBLEMS IN TOPOGRAPHIC SURVEYING.
PROBLEM El. DETERMINATION OP STADIA CON-
STANTS OF TRANSIT WITH FIXED STADIA-HAIRS.
(a) Equipment. — Complete transit, stadia rod, steel tape,
set chaining pins, foot rule.
(b) Prohlem. — Determine the stadia constants c, f and Ic
for an assigned transit.
(c) Methods. — (1) Set up the transit and set ten chaining
pins in line about 100 feet apart on level ground. (2)
Plumb the stadia rod by the side of the first pin. (3) Set the
lower hair on an even foot or half foot mark keeping the
telescope nearly level, and read the upper stadia-hair. (4)
Record the intercept. (5) Read the intercept on the rod at
the remaining pins. (6) Measure the distance from the
center of the transit to each pin with the steel tape. (7)
Focus the objective on a distant object, measure /' (the dis-
tance from the plane of the cross-hairs to the center of the
objective), and c (the distance from the center of the ob-
jective to the center of the instrument). (8) Calculate the
value of the stadia ratio, /r, for each distance by substitut-
ing in the fundamental stadia formula. (9) Take the arith-
metical mean of the ten determinations as the true value.
(10) Compute the probable error of a single observation
and of the mean of all the observations. The interval factor
should be determined by the instrument man under the con-
ditions of actual work. The determination should be
checked at frequent intervals during the progress of the
field work. Follow the prescribed form.
PROBLEM E2. STADIA REDUCTION TABLE.
(a) Equipment. — (No instrumental equipment required.)
(b) ProTjlem. — Compute a stadia reduction table giving
the horizontal distances from a point in front of the objec-
tive equal to the principal focal distance for the stadia in-
tervals from 0.01 feet to 10 feet, for the transit used in
Problem El.
PROBLEMS.
149
DlTERMIHATIO )
Ho. S
Ft.
IS/
• 2-70
• 3-SS
: 4-)S
■' S-61
' 6-Sll.
! 7-90
1 ill
ieM-71
D
Ft.
m-4I
Z6S-4I>
iS5-3Z
4gZ-S0
sse-io
e4i-ss
7S6-93
■.7m t
' n-'
m
mz4
Z67-S3
iS4-15
399-7Z
4gMi
SS5-J3
e4Z-4I
71S-76
m-Z3
m}-S4
= 0-6
= 0-e
0-47 f't-
0-70
1-17
OP
k
Ft.
39-lPZ
Sg-96
91-0Z
93-71
S9-J/
99-ZO
91S4
9S-47
9S-9!
99Ze
3TADl>fi
i
S9-1/4
ft-
0-0 I
O-OS
0-n
0-3Z
0-07
o-je
o-z:!
M3
0-J3
0-ZZ
0(!M4
(/■0064
11.0144
0-J0Z4
M049
o-ozse
0-04C0
0-IS45
M163
II-0484
0-4443
0-lBff
H-OSfr
Cot|sTAHTS - Fixed Iairs-
Obseri'ers, J-Poe ■ F ^-Rae-
DecJ4, '14-CZHmn ■) Cau/ iS C/ni/dy-
Used Buffs Berffs r 7r3nsifj Lacker J2,
and Chaining Loc. -.er f{^3S'
Ssf JO chaining /jfns m fins alra^f/ff^f/-
apart on leveJ t around'
Wjfh felescopff af 'fr,5i7sjf J7ear/y
level and defff. •/Pined Intercepf
"s"3Teach pm 4 'Seff/jj^ Joiver
Jiair an a fotffar ha'/f fafft mark
and reading i/p^ ^er hafr-
Measured d/sfanci from cenfer af
frans/f fo eacJ ' p/n tvifb sfeeS
tape fa nearas/- d-07 ft-
Wif/i objecfff/assj'ocusedo/jad/sfani'
ohject defermin 'd c apd jf By
measi/r//?^ d/sA 'nee frojn center
of objecfj'ye fc center of the
horJzonfaJ sx/i - -and tfiep/ane
of the cross-wires respectively-
i/etermined tl7e different vaiues
of ic by sui>sfj
formuJa D=icS
^uij/?ffij7 file
■tctf-
Station
Imt. Obj.
A
F
3
A
C
B
D
C
E
D
F
E
A
frroi •
Allows
AXIMITH TiAVERSE WITH
hmv^
I6°B'
227'I6'
47°I6'
O'Oi'
ISOW
6'I4'
ISe°J4'
ze9°4e'
no'oi'
= o'or
bte erro.
M33-
6e3rin9
/l-4-'00%
S-aVM-
H-IZVC-
H3'/ijV-
usVe.
H-4°0W-
MWe-
ti-z'zsi-
M'ZlfW-
i-is'is'n
S4'0SB-
Distance
Ft.
43Z
6?t
iZ4
499
7SS
7S6
eis
473
47S
434
Vertical
Angle
to'zo'
-0'40'
*0°3S'
f-O'SO'
-O'SO'
-I'W
tl'iz'
-C'S6'
i-0°S4'
-0'S4'
-o'zo'
Elevation
Ft.
7/g-OO
(-7-Z)
Error
Alhnsifle Erroh
7I0-!
12:31
7IS-I
70Z-7
9-/0-I)
712-8
tlA
7za.z
(-Z-B)
7/7-7
711-0
0-i
S-Sft-
' Soar t
Observers, J^Doe il? R-
Transit and
Pec-/5,/m,f3fiou
Used BofF S Bergi
and Stadia
Stadia Constants
5i^/7tedat target i
Angle.
Oriented tiie transij
1
l^oe- >
Stadia-
<) Clear and Warm-
Transit^ Locker /fo-lZ,
'/lo-6-
\tF=H7ft., k= 100-00
itatM-I-,for Vert-
hyAzimuti? reversals-
150
TOPOGRAPHIC SURVEYING.
(c) Methods. — (1) Prepare form for calculation. (3)
Compute the horizontal distances by substituting the dif-
ferent values of s in the stadia formula. Compute D' for
values of s varying from 0.01 foot to 0.1 foot varying by
0.01 foot ; from 0.1 foot to 1 foot varying by 0.1 foot ; and
from 1 foot to 10 feet varying by 1 foot.
Stadia Reduction Table I
(c+F)= 1-20 Feet-
k=ll5-,75
D=kS + (c+F) = D'+Cc+F) 1
Stadia
Reading
Distance
D'=kS
Stadia
Reading
Distance
D'=k.5
Stadia
Reading
»3
[)ist^nce
D'=k.5
0-0/
l-Z
0-1
//■6
hO
IIS-S
■OZ
Z-i
■Z
25-Z
z
2ih5
■03
3-5
•3
34-7
3
347-Z
■04
4^6
■4
46^3
4
463-0
■05
5-8
■B
S7^3
S
S78-8
•06
£■3
■6
6S^4
6
634-5
■07
8-1
■7
Sl-0
7
SW-Z
■08
3-2
■8
3Z^6
S
9Z6-0
■09
I0^4
■3
104-Z
3
1041 -S
■10
11-6
1-0
1I5-8
10
JI57-S
(To use the table, take the sum of the values of D' cor-
responding to the units, tenths and hundredths of s as given
in the table. To the value of D' thus obtained add c plus /.)
PROBLEM E3.
AZIMUTH TRAVERSE WITH TRANSIT
AND STADIA.
(a) Equipment. — Complete transit, stadia rod, steel
pocket tape.
(b) Problem. — Make a traverse of the perimeter of an
assigned field with a transit and stadia.
(c) Metlwds. — (1) Set the transit over one corner of the
field and set the A vernier to read the back azimuth of the
preceding course. (2) Sight at a stadia rod held edgewise on
the last station to the left with the telescope normal, and
clamp the lower motion. (3) Read the intercept on the rod
to the nearest 0.01 foot. (4) Sight at the target set at height
of first station and read the vertical angle to the nearest
minute. (The observer should measure the height of the
horizontal axis above the station with the steel pocket tape,
or one tripod leg may be graduated and the instrument
height determined by swinging the plumb bob out against
PROBLEMS. 161
tHe leg.) (5) Unclamp the upper motion, sight at the next
station to the right and clamp the upper motion. (6) Read
the A vernier, (this will be the azimuth of the course) . (7)
Read the intercept on the rod. (8) Measure the vertical
angle by sighting at the target set at the height of the hori-
zontal axis as before. (9) Set the transit over the next
station to the right and determine the intercepts and ver-
tical angles as at the first station. (10) Determine the
stadia intercepts and vertical angles at the remaining sta-
tions, passing around the field to the right. (11) Reduce
the intercepts to horizontal distances before recording.
(12) Compute the vertical differences in elevation using
mean distances and vertical angles. (13) Compute latitudes
and departures to the nearest foot using a traverse diagram
or traverse table. FoUow^ form B4. (14) Compute the per-
missible error of closure of the traverse by means of Baker's
formula (see Chapter IX "Errors of Surveying") ; using
" a " equals one minute times square root of number of
sides, and " 6 " equal 1 : 500. If consistent, distribute the
errors in proportion to the several latitudes and departures,
respectively. (15) Compute the area by means of latitudes
and departures, and reduce to acres.
PROBLEM E4. SURVEY OP FIELD WITH PLANE TABLE
BY RADIATION.
(a) Equipment. — Plane table, stadia rod, 2 flag poles,
engineers' divided scale, drawing paper, 6H pencil.
(b) Problem. — ^Make a survey of an assigned field by
radiation with the plane table.
(c) Methods. — (1) Set the plane table up at some conven-
ient point in the field and select a point on the drawing
board that will allow the entire field to be plotted on the
paper. (2) Sight at one of the stations with the ruler cen-
tered on the point on the paper. (3) Draw a line along the
fiducial edge of the ruler towards the point. (4) Measure
the distance to the point with the stadia. (5) Lay ofE the
distance on the paper to the prescribed scale. (6) Locate
the remaining points in the same manner. (7) Complete
the map in pencil. The map should have a neat title, scale,
meridian, etc. (8) Trace the map on tracing linen. (9)
Compute the area by the perpendicular method, scaling the
dimensions from the map.
152 TOPOGRAPHIC SURVEYING.
PROBLEM E5. SURVEY OF A FIELD WITH PLANE
TABLE BY TRAVERSING.
(a) Equipment. — Plane table, stadia rod, 2 flag poles,
engineers' divided scale, drawing paper, 6H pencil.
(b) Prohlem. — Make a survey of an assigned field by tra-
versing with the plane table.
(c) Methods. — Follow the same general methods as those
given for traversing with the transit. Adjust the plane
table before beginning the problem. Complete the map and
compute the area as in Problem E4.
PROBLEM E6. SURVEY OF FIELB WITH PLANE TABLE
BY INTERSECTION.
(a) Equipment. — Plane table, 3 flag poles, engineers' di-
vided scale, drawing paper, 6H pencil.
(b) Prohlem. — Make a survey of an assigned field with
the plane table by intersection.
(c) Methods. — (1) Select and measure a base line having
both ends visible from all the stations in the field. (3) Set
the plane table over one end of the base line, sight at the
other end of the base line and at each one of the stations
of the field. (3) Se't the plane table over the other end of
the base line, orient the instrument by sighting at the
station first occupied and sight at all the stations in the
field. (4) Complete map and compute area as in E4.
PROBLEM E7. THREE POINT PROBLEM WITH PLANE
TABLE.
(a) Equipment. — Plane table, 2 flag poles, engineers' di-
vided scale, 6H pencil.
(b) Problem. — Having three points plotted on the map,
required to locate a fourth point on the map by solving
the " three point problem " with the plane table.
(e) Methods.— (1) Use Bessell's solution. (2) Check by
using the mechanical solution.
PROBLEM E8. ANGLES OP TRIANGLES WITH SEXTANT.
(a) Equipment. — Sextant, 3 flag poles.
(b) Problem. — Measure the angles of an assigned tri-
angle with the sextant.
(c) Methods.— (To determine index error, sight at a d.is-
PEOBLEMS.
153
<
Angle
5 OF
[■rian
3LE )
:-G-N WITH SEXT/
NT
station
Sextant
Observed
Index
lorrected
Mean
Olfservers : J-Doe tP
e-JSoe-
Angle
Error
Angle
Angle
Ncli-ZSjm-C^ffoiiril CdaJ^C/ear.
6
II'M^C"
£ncf
3'M'
3ZWM
7
To (fetermfnff I'ffdex
^rror; s/phfect
ZS'X'JO'
Inverted
It
}2W3t
32'JI>'!!!>'
3t f/s^ staff Im
'leawaysnd
K
IS'll'OO'
frecf
n
es'46'M'
made refjecfeifm
?ge traincide
IS19'30'
/averted
„
mi'si'
ef4S'4S'
w/tf7 (f/recf j'magt
■ TJie reading
H
TB'Zt'OI"
Brecf
It
7}'OZ'0'
of the verrt/er^a
vearr index
ISWKl"
Inverted
tt
T}'/IZ'3S
73'tlZ'jS'
error of tJ'Je' ■
SetfJa^potes ifacj
m'ss'ii)
orKandN-
Actual t
rroreF
closure
oz'
tieJtt sexta/if over (fc s/^tt/-e stK
Allfiratj
7 error
ofclos
i/rt
Oi'
and movecf sexfai
jma^es eff/agpt
coirtcicted-
'i-srm unfiJ
lesafKandJf
Inverfed sextant^ si^At-ed sftC and
moved sexfajit Si
■m tomakeOnagee
comade-
/Repeated at o/tien
fatioas-
UsedSsxfanf/fi-j?-
/z/oz'*"
V
1"%^
s?V
/ ^-
,^ ^S».
\
,7 ^
^ \?
taut object and bring the direct and reflected images into
coincidence. The reading of the vernier will give the index
error, which, with proper sign, must be applied to all angles
measured.) (1) Set the flag poles behind the monuments
at two of the vertices of the triangle and stand on the
monument at the third. (2) Hold the plane of the sextant
horizontal, siglit at one flag pole directly with the tele-
scope and bring the image of the other flag pole into coin-
cidence by moving the arm. (3) Kead the vernier, and cor-
rect the angle for index error. (4) Repeat the measure-
ment with the sextant inverted. Take the mean of the two
readings, which should not differ more than 2', as the true
value of the angle. (5) Measure the other angles in the
same manner. The error of closure should not exceed 3'.
Eecord the data in the form.
PEOBLEM E9. DETERMINATION OE COEFFICIENTS
OF A TAPE.
(a) Equipment. — Steel tape, spring balance, 3 thermom-
eters, steel rule, 3 stout stakes, axe, 3 pieces sheet zinc 3 by
3 inches.
12
154 TOPOGRAPHIC SURVEYING.
(b) Problem. — Determine the coefficients of expansion,
stretch, and sag of an assigned tape. Make three deter-
minations of each, and take the arithmetical mean as the
true value.
(Standard Tapes. — In laying ofE a standard or measuring
a base line where a high degree of precision is required it
is important that all measurements be referred to the same
standard. The Bureau of Standards, Washington, D. C,
will compare a tape with the government standard for a
small fee. The tape tested is certified to be of a given
length for a given temperature and pull. Por example the
standard tape marked " U. S. W. & M. 215 " used in laying
off the 100-ft. standard in Problem A23, was certified to be
99.9967 feet long at a temperature of 62° P. and a pull of
12 pounds, when tested on a plane surface. The coefficient
of expansion of this tape was 0.0000061 per degree P. Tapes
for measuring base lines with great precision have recently
been made of Invar Steel.)
(c) Methods. — (1) Correction for Expansion. — Measure
the length of the tape on a plane surface at two different
temperatures but with a constant pull determined by a
spring balance. Then substitute the lengths, { and L, and
temperatures, t and T, in the formula
l — L = e{t — T)l
where e is the coefficient of expansion. Repeat the test
and obtain three values of the coefficient e. As large a
range of temperatures as possible should be secured. Take
the arithmetical mean of the three determinations as the
true value.
(2) Correction for Stretch. — Measure the length of the
tape on a plane surface with two different pulls but at a
constant temperature. Determine the pull with a spring
balance. Then substitute the lengths, I and L, and the pulls
/) and P, in the formula
l — L = s{p~P)l
where s is the coefficient of stretch. Repeat the test and
obtain three values of the coefficient s. The pulls should
range from 10 to 40 pounds. Take the arithmetical mean
of the three determinations as the true value.
(3) Correction for Sag. — Remove the handles from the
tape and determine its weight very carefully. Divide the
weight by the length to obtain the weight per foot, w.
PROBLEMS. 155
Drive two stout hubs a little less than 100 feet apart and
fasten a piece of sheet zinc with a line ruled at right angles
to the line on the top of each stake. With a pull of 10
pounds, as determined by the spring balance, measure the
distance between the stakes. Calculate the correction for
sag by substituting the lengths, I and L, pull p, and weight
per foot w, in the formula.
'--'i
(t-T
Repeat the measurements using a pull of 20 and 30 pounds,
respectively. Add the corrections for sag to each measure-
ment and compare the results. The temperature should re-
main constant during the tests. To remove the possibility
of an error due to temperature, observe the temperature at
the time of each observation and correct the observed
length for e pansion before substituting in the formula.
Eeport the methods, data, computations and results on a
suitable form.
PEOBLEM ElO. MEASUREMENT OF BASE LINE.
(a) Equipment. — Standard tape, transit or level, stakes
(number and size to be specified by instructor), axe, spring
balance, 2 thermometers, lath stakes, 8-d nails, steel rule,
pieces sheet zinc 2 by 2 inches.
(b) Problem. — Measure an assigned base line with a stan-
dard tape.
(c) Methods. — (1) Set the transit over one end of the base
line, sight at the other end and determine the difference
in elevation and grade. (2) Drive stout square stakes to
grade, by " shooting " them in with the instrument in true
line, a little less than a full tape length apart. The top
of the lowest stake should not be less than 6 inches above
the ground. (3) Fasten a piece of sheet zinc, with a fine
line ruled at right angles to the direction of the base line,
on the top of each stake. (4) Drive lath stakes in line
about 20 feet apart. (5) Drive an 8-d nail through each
lath stake at grade to support the tape. (6) Measure from
stake to stake, the men working as follows : No. 1 plumbs
up from the rear monument or holds the zero on the raark
on the rear stake ; No. 2 takes the spring balance and puts
a pull of 16 pounds on the tape ; No. 3 reads the tape and
measures the fraction of a tenth with a steel rule to 0.001
156 TOPOGRAPHIC SUEVEYING.
feet ; No. 4 records the reading of the tape and reads the
two thermometers placed at the quarter points of the tape.
(7) Obtain at least three determinations of the length of
the base line. (8) Correct each measurement of the base
for standard, expansion, sag, stretch, and slope (see prob-
lein on coefficients of a tape). The three measurements
should not differ more than 1 : 100,000. Report methods,
computations and results on a suitable form.
PROBLEM Ell. CALCULATION OF TRIANGULATION
SYSTEM.
(a) Equipment. — Seven-place table of logarithms.
(b) Problem. — Adjust and calculate an assigned triangu-
lation system and plot the skeleton.
(c) Methods. — Observe the following program: (1) pre-
pare forms for calculations and transcribe data; (2) adjust
the angles of the triangulation system (see chapter on er-
rors of surveying) ; (3) calculate the front and back azi-
muths of each line; (4) beginning with the base line com-
pute the sides, to the nearest 0.001 foot; (5) calculate the
latitudes and departures to the nearest 0.001 foot (6) cal-
culate the coordinates of the triangulation stations to the
nearest 0.001 foot. In computing the coordinates of the
stations take the mean of the values found by taking the
different routes from the base line as the true value. (7)
Plot the skeleton of the triangulation system to the pre-
scribed scale by means of the coordinates of the points.
Check by lengths of sides. Use a steel straight edge.
PROBLEM E13. SKETCHING TOPOGRAPHY.
(a) Equipment. — Small drawing board or plane table,
plat of assigned field, 4H pencil.
(b) Problem. — Sketch in the roads, walks, buildings and
five-foot contours on the plat of the assigned field by eye
having given the elevations of the ruling points.
(c) Methods. — (1) Transfer from the level notes to the
plat the elevations of the ruling points of the field. (3)
Locate the roads, buildings, etc., on the map as nearly as
possible in their relative positions (the topographers' esti-
mate of distance should be frequently checked by pacing).
(3) Estimate the slopes and locate the contour points be-
tween the points of known elevation. (4) Join these points
by smooth curved lines. (5) Finish the map in pencil, put-
PROBLEMS.
157
ting on a neat title, the scale of the map and a meridian.
(6) Compare the finished map with a contour map fur-
nished by the instructor, i
PEOBLEM E13, FILLING IN DETAILS WITH TRANSIT
AND STADIA.
(a) Equipment. — Complete transit, 2 stadia rods, pocket
tape.
(b) Problem. — Locate the topographic details of an as-
signed area with the transit and stadia.
/■
Observer, O-B- QacJ^
gecarder, A-M- Sure
[J.Doe-
(Top
)eEAP
lY BY
TRA^
SIT- Stadia Met
HOD.)
51-3.
Vsr.A-
Var-B-
Ots-Pfet.
Cor-Piat
VerMnj
WfF EI-
Elev.
Desiription of Poini--
AT A7
Eha
A7=6i
:s, H-i
(A!iB-r
rsnsif;
/(-/oo-
OO) 11-6-14 Hear.
AS
JS2'SJ
lii'SI'
S?i-2
523-2
- ('//'
- /■&
6Z/-9
tid. e/-&S=63/.g CC/ieck)
S/aM^
SS'ZS'
S24
520
* S'/3'
■h 47-i
6 SOS
/ ^
i'cfge Hff.l-
2
SS'/g'
3SB
333
+ S'4S'
t 35-5
669.0
?.
1* n
3
SOW
29i
290
t 5'27'
* 27-6
66/.I
3
»» »»
4
m'js'
23S
Z5S
* l'23'
¥■ S-S
639.3
4
n 11
S
JM'SO'
24S
?4S
+ 0'3l'
/■ 2-3
635-8
S
ti V
S
liZ'Si'
223
220
- Tsr
-30-4
603./
6
V 11
7
IS2'S7'
221
202
-/s'ss'
- 69-2
5643
7
It 11
S
7S'04'
277
273
f 5'20'
t 25-5
659-0
8 A
I'd^e //o-Z
3
6I>'40'
245
24S
i- 4'06'
i- 17-6
65/./
9
It ft
JO
46'SS'
221
226
4- /'12'
t- 6-0
6395
10
^^ 11
11
4I°S1'
218
2/8
* 0'44'
/■ 2-7
636.2
1/
11 n
K
34'00'
214
2/4
- /'20'
- 5-0
628-5
/2
It n
li
IJ'SS'
217
2/0
- 9V
-34-4
599-/
15
11 11
14
4°/0'
221
221
- S'34'
-37-S
596-0
/4
11 11
JS
15S'4S'
2S0
231
- //'4S'
-45-9
£17-6
/S
11 11
16
3SZ'40'
212
136
- IS°I2'
- S3'S
sio.o
/6 a
il/y No-I
n
SW
JSS
177
- //'SS
- 37-4
««•/
17
It It
11
3l°2l'
IS3
153
- 1/°00'
- 2S-7
603-8
18
II It
13
4J°1S'
746
/42
- S'Z/'
- 21-0
6/2-S
/9
It It
TO
67'SS'
JS2
182
t Ao'
<• 3-7
6i7-2
20
11 11
21
Sl'4l'
743
145
+ O'ST
f- 2-4
635-9
2/
l/yNc.Z
22
104'Sl'
J24
J19
- /2'02
- 25./
608-4
22
It II
\2i
ISi'SZ'
/!0
1S3
-22'55
- 69.2
564-3 \23
" "
(c) Methods. — (1) Set transit up over assigned triangu-
lation or other point. (2) Orient instrument, i. e., set
plates to given azimuth and sight at given back sight. (3)
Measure height of axis above station hub with tape or by
graduations on tripod leg, and set target to correspond.
(4) Take shot on given back sight and reduce results as a
check before proceeding. (The program for each shot is:
(a) set middle hair roughly on target, then set one stadia
158
TOPOGRAPHIC SURVEYING.
hair on nearest foot-mark and read intercept ; (b) set
middle hair precisely on target and signal rodman " all
right"; (c) read vertical angle; (d) read azimuth.) (5)
Take side shots to representative points, keeping in mind
the scale of the proposed map. Select points according to
a systematic plan, following along ridges, gullies, etc. Con-
tour points should be taken with reference to change of
slope. (6) Reduce and plot the notes, and interpolate the
contours, as in the accompanying diagram. (This topo-
raphy sheet should be carefully preserved for use in Prob-
lem E15.) (7) After completing the survey at the assigned
station, move the instrument ahead to a new stadia station,
taking both fore and back sights. (8) Lose no opportunity
to take check sights at other triangulation stations, tra-
verse points, etc.
PROBLEMS.
159
PROBLEM E14. PILLING IN DETAILS WITH PLANE
TABLE AND STADIA.
(a) Equipment. — Complete plane table (preferably with
prismatic eyepiece), 2 stadia rods, engineers' divided scale,
drawing paper, 6H pencil, pocket tape.
(b) Problem. — Locate the topographic details of an as-
signed area with the plane table and stadia.
(c) Methods. — Follow the same methods as in Problem
E13 except that the notes are to be plotted on the drawing
paper in place of being recorded m the field book. Mark
the points by number and write the elevation of each point
imder the number in the form of a fraction. Locate the
contour points by interpolation on the map and connect the
points by smooth curves. Complete the map in pencil and
make a tracing if required.
PROBLEM E15. TOPOGRAPHIC SURVEY.
(a) Equipment. — Complete transit, 2 stadia rods, stakes,
hubs, spring balance, pocket tape, stadia slide rule, seven-
place logarithm table, (extra tripods, stadia reduction
table, stadia reduction diagrams, etc., as required).
(b) Problem. — Make a complete topographic survey of an
assigned area and make a topographic map.
(c) Methods. — (1) Make a reconnaissance and locate the
triangulation stations. Care should be used to select the
triangulation stations so that the sights will be clear and
the triangles well formed. A system composed of quad-
rilaterals or more complicated figures will give more con-
ditions and checks than a simple string of triangles. A
system composed of simple triangles is sufBcient for this
survey. (2) Mark the triangulation stations with gas pipe
160 TOPOGRAPHIC SURVEYING.
monuments about 4 feet long, the exact point being marked
by a hole drilled in a bolt screwed into a cap on the top of
the gas pipe. (3) Measure the base line and base of veri-
fication as described in Problem ElO. (4) Measure the
angles by repetition as described in Problem D13. (5) Cal-
culate the skeleton as described in Problem Ell. (6) Es-
tablish permanent bench marks and determine their eleva-
tions and the elevation of the stations of the triangulation
system by running duplicate levels with the engineers' level,
reading the rod to 001 foot. (7) Fill in the details with
either the transit and stadia or the plane table and stadia,
or both, as described in Problems E13 and E14. (8) Com-
plete the map in pencil on manila paper, and after it has
been approved by the instructor trace it on tracing linen.
The title, meridian, scale, lettering and border should re-
ceive careful attention.
CHAPTER VII.
LAND SURVEYING.
Kinds of Surveys. — Surveys of land are of two kinds :
(a) original surveys ; (b) resurveys.
Original Surveys. — An original survey is made for the
purpose of establishing monuments, corners, lines, bound-
aries, dividing land, etc. The survey of a townsite and the
government survey of a section are examples of original
surveys.
Resurveys. — A resurvey is made for the purpose of iden-
tifying and locating corners, monuments, lines and bound-
aries that have been previously established. The resurvey
of a city block, or a survey to relocate a section corner are
examples of resurveys.
Functions of a Surveyor. — In an original survey it is
the function of the surveyor to make a perfect survey, es-
tablish permanent monuments and true markings, and
make a correct record of his work in the form of field
notes and a plat.
In a resurvey it is the function of the surveyor to find
where the monuments, courses, lines and boundaries orig-
inally were, and not where they ought to have been. Fail-
ing in this it is his business to reestablish them as nearly
as possible in the place they were originally placed. No
reestablished monument, no matter how carefully relocated,
will have the same weight as the original monument if the
latter can be found. In making resurveys the surveyor has
no ofHcial power to decide disputed points. He can act only
as an expert witness. If the interested parties do not agree
to accept his decision the question must be settled in the
courts.
Also see Problem F6, " Eesurvey of a City Block."
Responsibility of the Stirveyor for the Correctness of
His Survey. — An engineer in the discharge of his profes-
sional duties requiring an exercise of judgment can be held
liable only for failure to exercise reasonable care and skill,
or :^or negligence or fraud. A surveyor is liable not only
161
162 LAND SURVEYING.
for negligence or fraud but for want of skill. A surveyor
agrees to not only do his work carefully, honestly, dili-
gently, but skillfully as well. The precision required in
making any particular survey in order to satisfy the re-
quirement for skill will depend upon the conditions ; greater
accuracy being required for making a survey of an ex-
pensive city lot than for a survey of a farm. Surveying is
a trade and the precision required in any particular case
to show proper skill is a matter to be decided by the court
after evidence has been submitted.
Ownership of Surveyors' Notes. — Survey notes, data,
maps, plats and records obtained by a surveyor while in
the employ of a city, state, railroad or other corporation,
or of a consulting or independent engineer belong to the
employer. A city engineer or a county surveyor has no
ownership rights in the notes, data, maps, plats and records
which he prepares or obtains, or are prepared or obtained
by him or by his assistants, in the exercise of the duties of
his olBce as city engineer or county surve3'or. Survey notes,
data, maps, plats and records obtained by a consulting or
independent engineer in preparing a report or plans for a
client, belong to the consulting or independent engineer.
The client, whether it be an individual, city, state, or cor-
poration, is entitled only to the finished report or plans,
and is not entitled to the notes and data used in the prep-
aration of the report or the plans.
Bules for Besurveys. — The following rules may be
safely observed in making resurveys.
(1) The description of boundaries in a deed are to be
taken as most strongly against the grantor.
(2) A deed is to be construed so as to make it effectual
rather than void.
(3) The certain parts of a description are to prevail over
the uncertain.
(4) A conveyance by metes and bounds will convey all
the land included within.
(5) Monuments determine boundaries and transfer all
the land included.
(6) When a survey and a map disagree the survey pre-
vails.
(7) Marked lines and courses control courses and dis-
tances.
(8) The usual order of calls in a deed is; natural ob-
jects, artificial objects, coiirse, distance, quantity.
(9) A long established fence line is better evidence of
SYSTEM OF PUBLIC LAND SURVEYS. 163
actual boundaries than any survey made after the monu-
ments of th^ original survey have disappeared.
(10) A resurvey made after the monuments have disap-
peared is to determine where the monuments were and not
where they should have been.
(11) All distances measiired between known monuments
are to be pro rata or proportional distances.
If the above rules do not cover the ease in question spe-
cial court decisions on that particular point should be con-
sulted.
THE UNITED STATES EECTANGULAE SYSTEM OE
PUBLIC LAND SUEVEYS.
Historical. — The United States rectangular system of
subdividing lands was adopted by congress May 20, 1785.
The first public land surveys were made in the eastern part
of the present state of Ohio under the direction of Capt.
Thomas Hutchins,* Geographer of the United States, and
were known as the " Seven Eanges." The townships were
six miles square, and were laid out in ranges extending
northward from the Ohio river ; the townships were num-
bered from south to north, the ranges from east to west.
In these initial surveys only the exterior lines of the town-
ships were run, but mile corners were established on the
township lines, and sections one mile square were marked
on the plat and numbered from 1 to 36, commencing with
section 1 in the southeast corner and running from south
to north in each tier to 36 in the northwest section.
The act of congress approved May 18, 1796, provided for
the appointment of a surveyor general and changed the law
relating to the surveys of public lands. Under this law the
townships were subdivided into sections by running paral-
lel lines two miles apart each way and setting a corner at
the end of each mile. This law also provided that the sec-
tions be numbered beginning with section 1 in the north-
east corner of the township, thence west and east alter-
nately to 36 in the southeast corner. This is the method
of numbering still in use, shown in Figs. 33 and 34.
* The earliest published reference to the rectangular sys-
tem of land surveys is found in an appendix to " Bouquet's
March," published in Philadelphia, 1764. Hutchins was en-
gineer with this expedition to the forks of the Muskingum
river, and wrote the appendix. (See reprint by Eobt.
Clarke, Cincinnati.)
164
LAND SURVEYING.
The act of congress approvefl May 10, 1800, required that
townships be subdivided by running parallel lines through
the same from east to west and from south to north at a
distance of one mile from each other. Section corners and
half section corners on the lines riinning from east to west
were required to be set. The excess or deficiency was to be
thrown into the north and west tiers of sections in the
townships.
Initial
Point
Standard P/ji
First Standard Parallel North.
T4N-,
R IE.
T3N-,
RIE-
T-2N-,1
IN-.
IE.
T4N-.
R2E-
T3N.,
R2E-,
_ B|
r
T-?N-, ■
R£E-
T- 1 N-,
R.£E.
T-4N-,
R3E-
I T-
R-
T-3N-,
R-3E. ,
T-?N-,
R-3E-
4N-,
4E.
3N-.
4E-
At-
±
T- I N-,
R-3E-
i T-
1K-.
4-E.
Base Line
rig. 33.
The act of congress approved February 11, 1805, required
that interior section lines be run every mile ; that corners
be established every half mile on both township and sec-
tion lines ; that discrepancies be thrown on the north and
west sides of the township. This act of congress further
provided " that all corners marked in the original surveys
shall be established as the proper corners of sections, or
subdivisions of sections ; and that corners of half and
quarter sections not marked shall be placed as nearly as
possible ' equidistant ' from those two corners which stand
on the same line. The boundary lines actually run and
marked shall be established as the proper boundary lines
of the sections or subdivisions for which they were intended ;
and the length of such lines as returned by the surveyor
shall be held and considered as the true length thereof, and
SYSTEM OF PUBLIC LAND SUEVEYS. 165
the boundary lines which shall not have been actually run
and marked as aforesaid shall be ascertained by running'
straight lines from the established corners to the opposite
corresponding- corners." Under this law, which is still the
established rule of procedure, each reported distance be-
tween established monuments is an independnt unit of
measure.
The revised instructions issued in 1855 required that the
sections be subdivided as shown in Fig. 33. The full lines
representing " true " lines, are parallel to the east exterior
line of the township, and the dotted lines, representing
" random " lines, close on corners previously established.
The order of the survey of the interior section lines is in-
dicated by the small niimerals. Double corners on the
north and west township lines, which were common in the
earlier surveys, were thus avoided in the revised practice.
Laws Inconsistent. — It is obviously impossible to pre-
serve a true rectangular system on a spherical surface, ow-
ing to the convergency of meridians.* To harmonize the
methods of making surveys, the General Land Office has
issued instructions for the survey of public lands from
time to time.
DETAILS OF SURVEY.— The details of the survey are
taken up in the following order: (1) selection of initial
points; (3) establishment of the base line; (3) establish-
ment of the principal meridian; (4) running standard par-
allels; (5) running the guide meridians; (6) running the
township exteriors; (7) subdividing the township; (8)
meandering lakes, rivers, streams, etc. See Figs. 33 and 33.
Initial Points. — Initial points from which to start the
survey are established whenever necessary under special
instructions prescribed by the Commissioner of the General
Land Office.
Base Line. — The base line is extended east and west
from the initial point on a parallel of latitude. The proper
township, section and quarter comers are established and
meander corners at the intersection of the line with all
meanderable streams, lakes, or bayous. Two sets of chain-
* The angular convergency, a, of two meridians is m. sin L,
where m is the angular difEerence of longitude of meridians
and L is the mean latitude of the two positions. The linear
convergency, c, for a length, t, is t. sin a. Latitude 40°,
the difference between the north and south sides of a town-
ship is 0.60 chains.
166
LAND SURVEYING.
men are employed and the mean of the two measurements
is taken as the true value. When the transit is used, the
base line — which is a small circle parallel to the equator —
is run by making offsets from a tangent or secant line, the
direction of the line being frequently checked by an obser-
vation of Polaris.
t
6 5^
i^zzlL
Random K
1 ♦
1 . '
r'43-^
1 *!l *
1 ^
Random)^
SS-:^
Randon?!^
9 ^
4/ — >-
Random^
30-^
Random^
"A
Random
8 >-
" ^
-<—S5
k" ^
" h
" h
15 si,
28— >-
■' A
J7—>-
13
6 >-
1 " ^
•^49--^
" h
37—^
" A
" \
" \
24—^
15— >■
ff
z- — ^
-<--47
^ " h
" A
" A
55 1
" h
35 1
1
rr
36
Fig. 33.
Principal Meridian. — The principal meridian is extended
either north or south, or in both directions from the initial
point on a true meridian. The same precautions are ob-
served as in the measurement of the base line.
Standard Parallels. — Standard parallels, which are also
called correction lines, are extended east and west from the
principal meridian, at intervals of 24 miles north and south
of the base line. They are surveyed like the base line.
Guide Meridians. — Guide meridians are extended north
from the base line, and standard parallels, at intervals of
24 miles east and west from the principal meridian, in the
SYSTEM OF PUBLIC LAND SURVEYS.
167
manner prescribed for running the principal meridian.
When existing conditions require that guide meridians shall
be run south from the base or correction lines, they are
initiated at properly established closing corners on such
lines.
Township Exteriors. — The township exteriors in a tract
24 miles square, bounded by standard lines, are surveyed
successively through the block, beginning with the south-
TowTUhip yo. 5 yorth, Ran&e Nil. 9 Weat, of a Principat Meridian
Eatt
I'.l "l«
s '"tsef. 7
*!&,< . M__. i
iiBiMj, \jj , .iBo:ao]; tjA t iii|ni; t^ « ijsoiooij ij^ « iiaotooi. ijj t iiw^ii i
^
5-1*
67
^
3-fIO
'M St!p. St__
f^~63 ijH' ti
! Weat
--^k'-
I JVest
oo
West
West
g Sec It
M "ft •) '
W fc-
West
a;
West
00
ei
80|00
g SecllO
S 6^0
[ West
"mJoo
I
3 "*io"
Scd f 7__g
g e^
80)00
sojoo
Sec 25
P See
TFe^t
00
/A
I
iS West In-iT^
^ ' Kr«( Standard Parailei
Sees I £ce. £ I Sec. 4 | £ec. 5
«<0 3
West
« g
» ^3
To
fi-c
3 rdo~ s
Sec. 8 I Asc. r I
Th« abovo plot represents a tfteoreticeU toton~hip tUth perfect subd-'.visfcne,
eonliffwrus to the tiorHi side of a Stimd^ard .Parallel; ,fn atsumtC I
ieiS'jr.. ^ Lm jUiide IQOOOO' W. of Or. Aria£S0ai.J6 A.'
Fig. 34.
western township. The meridional boundaries are run first
from south to north on true meridians with permanent cor-
ners at lawful distances ; the latitudinal boundaries are run
from east to west on random or trial lines and corrected
back on true lines. Allowance for the convergency of
meridians is made whenever necessary.
168
LAND SURVEYING.
Township Subdivisions. — A true meridian is established
at the southeast corner of the township and the east and
south boundaries of section 36 are retraced. Then begin-
ning' at the corner to sections 35 and 36 on the southern
boundary, a line is run north parallel to the township line,
corners are established at a distance of 40 and 80 chains ;
from the last named corner a random line is run eastward,
parallel to the south boundary line of section 36, to its
intersection with the east boundary of the township. A
temporary corner is set at a distance of 40 chains, and a
permanent corner is afterwards established midway be-
Tti'04
to-ooi
40-00
— o
o
o
o
1
1
■--t
1
1
1
o
o
o
o
o
o
o
4
lzo-10
ro-oo.
40-00
1
rcj
Zl-O0\ ZO-OO'. 40-00 s'
I
-^ — -
f ^Z\-OV,Z0-0Oi 40-00
f<^J
Fig. 35.
tween the two permanent corners. The other corners are
located in a similar manner, as shown in Pig. 33. The lines
closing on the north and west boundary lines of the town-
ship are made to close on the section corners already es-
tablished. A theoretical township with perfect subdivisions
is shown in Fig. 34.
Meandering. — Navigable rivers and other streams hav-
ing a width of three chains and upwards are meandered on
both banks, at the ordinary high water line by taking the
general course and distances of their sinuosities. The
SYSTEM OF PUBLIC LAND SUEVEYS.
169
meanders of all lakes, navigable bayous, and deep ponds of
the area of twenty-five acres and upwards are surveyed as
directed for navigable streams. Meander corners are estab-
lished where meander lines cross base lines, township lines,
or section lines. ,
Subdivision of Sections. — In Kg. 35, (a) gives the sub-
division of an interior section, (b) of section.2 on the north
side, (c) of section 7 in the west tier, and (d) of section 6
in the northwest corner.
Pig. 36.
Description of Land. — Land is described in the rectan-
gular system by giving its location in a civil township ; for
example, in Kg. 36, the northeast quarter, containing
160 acres, would be described as: N E 14, Sec. 8, T 19 N,
R 9 E, 3 P. M. The ten acre lot indicated in the northwest
quarter would be described as: S E %, N W ^, N W %,
Sec 8, T 19 N, R 9 E, 3 P. M.
Corners. — The corner monuments may be as follows :
(a) stone with pits and earthen mound; (b) stone with
mound of stone ; (c) stone with bearing trees ; (e) post in
mound of earth; (f) post in mound of stone ; (g) post with,
bearing trees ; (h) simple mount of earth or stone ; (i) tree
without bearing trees ; (j) tree with bearing trees ; (k) rock
in place, etc. The trees on line are required to be blazed.
The size, markings and proper corners to be used in any
particular case and all other details are given in the
170 LAND SUEVEYING.
" Manual of Surveying Instructions for the Survey of Pub-
lic Lands of the United States," issued by the General Land
Office, Washington, D. C.
The last edition of the " Manual of Surveying Instruc-
tions for the Survey of Public Lands " was issued in 1902
and may be obtained from the Superintendent of Docu-
ments, Government Printing Office, Washington, D. C, price
75 cents per copy. A new edition of the Manual is prom-
ised for 1915. The circular on the " Restoration of Lost
and Obliterated Corners " mentioned in the next paragraph
gives instructions for malting resurveys, and may be ob-
tained free by addressing the Department of Interior, Gen-
eral Land Office, Washington, D. C.
Bestoration of Lost or Obliterated Corners.* — "An ob-
literated corner is one where no visible evidence remains
of the work of the original surveyor in establishing it. Its
location maj', however, have been preserved beyond all
question by acts of landowners, and by the memory of
those who knew and recollect the true position of the
original monument. In such cases it is not a lost corner.
" A lost corner is one whose position can not be deter-
mined beyond reasonable doubt, either from original marks
or reliable external evidence."
General Bales. — The following rules are derived from a
brief synopsis of congressional legislation relating to sur-
veys.
" (1) The boundaries of the public lands established and
returned by the duly appointed government surveyors, when
approved by the surveyor general and accepted by the gov-
ernment, are unchangeable.
" (2) The original township, section, and quarter-section
corners established by the government surveyors must
stand as the true corners which they were intended to rep-
resent, whether the corners be in place or not.
" (3) Quarter-quarter corners not established by the gov-
ernment surveyors shall be placed on the straight line
joining the section and quarter-section corners and mid-
way between them, except on the last half mile of section
lines closing on the north and west boundaries of the
townships, or on other lines between fractional sections.
" (4) All subdivisional lines of a section running between
corners established in the original survey of a township
* Circular on the " Restoration of Lost and Obliterated
Corners and Subdivision of sections," Department of In-
terior, General Land Office, Washington, D. C.
SYSTEM OF PUBLIC LAND SURVEYS. 171
must be straight lines, rtmning from the proper comer in
one section line to its corresponding corner in the opposite
section line.
" (5) That in a fractional section where no opposite cor-
responding corner has been or can be established, any re-
quired subdivision line of such section must be run from the
proper original corner in the boundary line due east and
west, or north and south, as the case may be, to the water
course, Indian reservation, or other boundary of such sec-
tion, with due parallelism to section lines."
" From the foregoing it will be plain that extinct cor-
ners of the government surveys must be restored to their
original locations, whenever it is possible to do so ; and
hence resort should always be first had to the marks of the
survey in the field. The locus of the missing corner should
be first identified on the ground by the aid of the mound,
pits, line trees, bearing trees, etc., described in the field
notes of the original survey.
" The identification of mounds, pits, buried memorials,
witness trees, or other permanent objects noted in the field
notes of survey, affords the best means of relocating the
missing corner in its original position. If this can not be
done, clear and convincing testimony of citizens as to the
place it originally occupied should be taken, if such can be
obtained. In any event, whether the locus of the corner be
fixed by the one means or the other, such locus should
always be tested and confirmed by measurements to known
corners. No definite rule can be laid down as to what shall
be sufficient evidence in such cases, and much must be left
to the skill, fidelity, and good judgment of the surveyor in
the performance of his work.
" Actions or decisions by county surveyors which may re-
sult in changes of boundaries of tracts of land and involve
questions of ownership in connection therewith, are sub-
ject to review by the local courts in proceedings instituted
in accordance with the local statutes governing such
matters."
The pamphlet also contains much additional informa-
tion of value.
liOcations of Principal Meridians. — Principal meridians
have been established as the needs of the surveys war-
ranted. There are twenty-four principal meridians in all,
the locations of which are given in the " Manual of In-
structions," mentioned above.
172
LAND SURVEYING.
Abridging Field Notes. — The government surveyors use
the method of abridging field notes shovpn in Fig. 38. Cor-
ners in the township boundary are referred to by letter;
interior section corners are referred to by giving the num-
bers of the sections meeting at the corner ; interior quarter
section corners are referred to by giving the number on the
section lines produced.
OfFeEdDcCbBaA
h -
M
m
6-
7-
I
\6
^19--^
— F-
I
-31-
16
'--5-
8--
-^-9
's
-^-16-
-f
1^
---II—-
-4--
4-
zi-
t
\
I
'-11-
I
-5--'
-10-
I
13
-"-15-
?-■
-"-1
II-
— li-
|3
-^-3'4-
13
■14-
12
-26-
I
-+-
^-12-
1/
^-15-
I
"2,5-^
;/
-36-
1/
1^
y
N n o P p Q cj R
Fig. 38.
r 5
SURVEYS BY METES AND BOUNDS.
That portion of the United States settled before the adop-
tion of the rectangular system was surveyed by the method
of metes and bounds. For the most part these surveys were
very irregular and often involved complex and conflicting
conditions. The entire eastern portion of the United States,
and the state of Kentucky, were surveyed in this manner,
PROBLEMS.
173
and further examples are found in tlie French, surveys in
the states of IMichigan, Indiana, Illinois, Missouri, Louisiana,
etc., and the Spanish surveys of Texas, California, etc. The
general principles underlying the questions of ownership,
priority of survey, the restoration of lost corners, etc., are
identical whatever the system of survey used,
PEOBLEMS IN LAND SURVEYING.
PROBLEM Fl. INVESTIGATION OF A LAND CORNER.
(a) Equipment. — Digging outfit, tape, etc., as required.
(b) ProMem. — Collect complete evidence relative to an as-
signed land corner, and after giving due w^eight to the same,
laake a decision as to the true corner,
(c) Methods. — (1) Make careful examination of the offi-
cial field notes and records pertaining to the land corner in
question and make extracts from the same for further ref-
erence. (3) Seek oral evidence from those acquainted with
the history of the corner. (3) Make a survey of fence lines
and other physical evidence, such as witness trees or their
stumps, etc., near the corner under investigation. (4) Make
? ^sAv /
INVESTISATIOH OF S-W- CORNER.,
On'gingl UnifeiJ States Field Notes, on fl/e
the S-W' Cor-, Sec-S, T-!9N.,R'9E; 3 P-M-_
Jocated on the Prairis remote from
other three corners of the sect ton-
On 0ct-tB,/g96, Col-S-T-Susey, when
mvest/gat/on, stated that &bout 1850.
ifvas then County Surveyor, was calfed
the time mentioned the section lines
fence' CohSusey says that hfs Fathe.
surveyor near the fence corner evi
the ar/0/ha/ U' 5- Survey comer- I^r-
spot and found the decayed jooi'nt
marked the true posit/on of the ^Po
or more previous to Campbells resurve^
the boulder which was set in place t
section come/} and that this monuir.
pisced iy 3 much iar^er stone when
iines'
This stone stood /S^orso shove the ievel
it was carefully towered by the Stree.
Cify Engineer of Urban a- Resurveys
that its present posit/on is fdenticai
Conclusion- in view of Coi- Buseys
other credible soi/rceSf and the enttn •
character, it is conduced that the
recognized is the true S'W- corner of
Ca. npbej
n ade i
J-.Ooe. Survsyori >
SECTIOH 8,T-19K.,R-9E-,3D:P-M-
at Courfffousa &f Urbana, Hi-, describe
as "^Post in Mound" the corner being
the heavyxtimber which surrounds the
Originai surxvey was made about JSZZ'
' for /nfo/:ai& tio/7 about the corner under
when he vwa^ a boy, i^r- Campbeii, who
on to re-est36. 'ish the SW- Cor, Sec-S- At
near the cojux, " were occupied by rail
fa pioneer setj Ver) pointed out to the
?s of a motrnd which he believed marked
'c/if the j9sarvi yor dug cere fully at the
<7 sassafr^^s sft jJce which unquestiorrably
•t in Plound **esti biished some TS years
'- CohBusey sfai es that he himself carried
/ the County Surv eyor to pepetuate the
'nt was not cfistur bed until it was re-
''he roads wj^re op\ ''ned up on the section
of the road . ^or ma. 7/ years- About IS94-
' Commission sr undei ' the direction of the
since thet stone was /owered^ indicate
with that previous -to the change •
'le statenoe m« with fh*. ' corroborat/on from
abscence o,P conflicting evidence of any
ihonument > tow and fof ft, any years so
Sections, 7'i$H,,!i-$£^:$l P'M-
• ^ : , ^ A >
174
LAND SURVEYING.
careful examination of the site of the corner with the dig-
ging outfit ; the digging should be done cautiously so as to
avoid disturbance of existing stakes or other monuments.
(5) If more than one monument be found, make due record
of their character and positions, and make further inquiry-
respecting them. (6) If no monument of any sort be found
at first, continue the search diligently and do not give up
finding the true corner as long as there is a remote chance
of locating it. In any event, avoid wanton disturbance of
any object or evidence that may have a bearing on the
same. Keep a clear and concise record.
PEOBLEM E3. PERPETUATION OF A LAND CORNER.
(a) Equipment. — Digging outfit, a large boulder or other
permanent monument, cold chisel, hatchet, plumib bob,
string, stakes.
(b) Problem. — Replace a temporary land corner by a per-
manent monument.
(c) Methods. — (1) Uncover the identified temporary mon-
ument and carefully determine the true point with consist-
Ar
Survey of SeoH,T-2S-,R10W.
C^/nmB/iced ef the 5B. cor. oF .^ec-/4:
fcr the ccr. which //ujh f/^aftsr says
//aeSf vnqbesfionedf as fhs cor- for otf
mafije, Suis- d/sm.,S-4a'W., 77 Iks-
Inirr ask J2Ins. cl/sm.,/f>f3'm,J?3 Iks
J sef up a fall flag on the cor- and
temporary stakes every JO chi ■
^ sec- cor. lasf: i
Intersected the W-lfee oFSec-14; 4Z
correctpoint, Il-t6'£;l04 Iks
bearing tree of- (/-$• $t/rveyj havl
piece of steel T rail ^S /hs- long
locust 16 ins- diam; 5-ZS'Mf
iarroakIS " " ,N-7S'E.
CHAINS
40-00
eO-24
4!K
60-1$
S-F-Kingsley, Head Cliainman' F-Hotigmanj Trausif/m
C-Rowland . ^ear w 5-fom'/)gs,f/ajm3n.
FOR. J-R- Comings ahd H- Rowland-
Fi ^und apiece of strap railroad iron driven
knows to have Ireen kept in the sama
■30 years' Ftsrkecl:
d/st.
disf.
then ran W- or} random,var.Z°l5'e;setting
in fine-
Ran thence F- on corrected line
Found cedar stake J ft- belowsurface
Ho other evidence oF cor- to lie
top of the stake For^ sec- cor.^
Planted granite toulder ZOi^Kxi
cor., in true line hot ween qr-
maple, IZins- diam., S-IS^F.
ittrroak,l6 " it ll'34''F.
'ks' S- of the cor. Found rotten stake aF
Fj om stump oF wh- oakj 24 ins- diam.f
^g surveyor^ mark distinct on it' Seta
For cor. Marked:
, lie Iks- disf.
ISZ /« »»
(lO!30A-M)
at single sight will} transitfFrom con to for. l^rZ'^ST.
oF road crossing and Zz Iks- 5 of line •
. -ound' Put a piece oF T rail Z4" long on
SBIks-SoFS. rail oF tt-e-k-B. Ifo tree near-
ins, f with cross + mark For ^ quan^ec.
Poland sec- cor. and marked:
' SS iks-dist.
IIS n It .
PKOBLEMS. 175
cut exactness. (2) Keference out the point by driving' two
pairs of stakes with strings stretched so as intersect
squarely over the corner. (3) After carefully checking the
referencing, dig out the old monument to a depth suiKcient
to receive the boulder and permit its top to set several
inches beneath the natural surface if located in a road or
where disturbance is probable. (4) Cut a plain cross mark
on the top of the stone, and set it in place in the hole,
packing the earth about it, testing the position of the
mark by means of the reference stakes and strings and
plumb bob ; finally leave the boulder set firmly in the cor-
rect position. (5) Make reference measurements to suitable
permanent points such as marks on curbing, gas pipes, wit-
ness trees, etc., selected with respect to good intersections,
and make reliable record of the witness notes after check-
ing the same. (Other forms of permanent monuments are :
gas pipe ; fish plate ; section of T-rail ; farm tile or vitrified
pipe filled with cement mortar ;. post hole filled with mor-
tar ; special solid monument burned like farm tile ; special
casting similar to a gas main valve box, with hole in top
to receive flag pole ; etc.)
PROBLEM F3. REESTABLISHING A QUARTER-SECTION
CORNER.
(a) Equipment — Transit party outfit, digging tools, etc.
(b) Problem. — Reestablish a quarter-section corner that
has been obliterated or lost.
(c) Methods. — (1) Collect and record all the available
evidence which may assist in the discovery and identifica-
tion of the corner. Examine the field notes of the original
survey, the surveyors' plat book and the county atlas on file
at the court house, and make diligent inquiry for credible
and competent information, either written or oral as to the
location of the corner. (3) Make a careful search for the
monument. Trace all the lines of the original survey, pay-
ing particular attention to bearing and sight trees. Dig in
all the places indicated by the different lines and give up
the search only after you have exhausted every possible
clue. (3) If the corner cannot be found, reestablish it, giv-
ing due weight to all the evidence. The surveyor should
remember that the corner should be reestablished where it
originally was and not where it ought to be. After having
located a stake at the supposed location of the original
monument, reference it out and renew the search. (4)
176 LAND SURVEYING.
After the monument has been relocated, mark it in a per-
manent manner as indicated in Problem F3, by a stone
with a cross cut in its top or with a gas pipe well driven
into the ground. Reference it out to at least two perma-
nent objects selected with a view to securing a first class
intersection. Make a careful record and preserve con-
sistent accuracy in the work.
PROBLEM r4. REESTABLISHING A SECTION CORNER.
(a) Equipment. — Transit party outfit, digging tools, etc.
(b) Problem. — Reestablish an obliterated or lost section
corner.
(c) Methods. — Follow the various methods described in
Problem P3, giving special attention to the search for the
original corner ; upon failing to find trace of it, run out
lines with reference to the section, quarter, and quarter-
quarter corners in the four directions, with linear measure-
ments from the same and finally reach the most consistent
decision with reference to such survey lines, ownership
lines, fences, hedges, road centers, etc. (A fruitful cause
of disturbance of section and other corners is careless use
of road graders, or the failure to lower the corner sufB-
ciently below the surface of the road.)
PROBLEM F5. EESURVEY OF A SECTION.
(a) Equipment. — Transit party outfit, digging tools, etc.
(b) Problem. — Make a resurvey of an assigned section.
(c) Methods. — (1) Make extracts from the field notes of
the original survey and of all resurveys on file at the court
house, and other notes that may be of value. Make dili-
gent inquiry among the property owners for evidence as to
the location of corners. (2) Retrace the lines, recording
the location of old fences, timber markings and other evi-
dences as to prior recognition of lines and corners. Use
consistent accuracy. Record the original notes as given in
the forms. Record the field notes in narrative style using
the designation of corners as given in the resurvey plat in
the form. Make a plat of the section in the manner pre-
scribed by state law for a resurvey.
PROBLEMS.
177
/^
iHVESTIGATIO^ OF lAND CORHERS
■COLLECTION OF EVIDENCE
Extracts from Surveyors Plat Book
Nov-Sf IS97, Found in the County Recorder's
offi'ce fff UrBsna, J//., the '^Surveyors Plat Sook"
containing plats offownsfiips showing exist-
ing monaments and st/bdivisfons oF sections
made by the County Surveyor, with cerf/F/'-^ -
cafes oF various resurveyS' /fade ff?eFoffow~
/ng exfrscfs refating to Sec-8 , T'J9fii^-9F;
^HD- P'M' :-
(From P-/S6)
"l>sc-S,Jg7$, Surveyed at the reijuesf of
F-Adams tlie east fine oFSec-B- Beginning
atasf^ne prev/ousfy planted stJff cor' a/'
said sectioHf and running thence S--to S'B'
Cor' oFsame, wf)ere f Found a stone previous-
ly set by Jofin Tfirasher and lewis Sommers,
divided tfie distance pro rata ^ndsef Cor*
sf/ffCar-oFS-f^: oFsame.'*
• (Signed) T/?os-S-Xyfe
Co' Surveyor.
(From p' IS?)
"Apr- if, IS84' Surveyed by reguesF oP
5-T-Susay the W- fines oF Sees- 8 and S •■
Seginnfng survey at S'W- Cffr- Sec- S wfyere
Surveyor, J-Poe-
OF 5EC-8,T.19N.,F-
Apr.?5,IS99-
oF Resurveys oF Ch
a sfonq ispfanfedand
running thence ff- to
fiW-Cor-5ec-B, Found
an excess oF40 Ilis.,
corrected back, came
on fo^a stone planted
by lewis Sommers at
^Sec-Can on fine be-
fweei? Sees- Sand 6 •
iafso pfanteda stone
atSec.Cor'(S'e-7-S)
and made theFoHow-
ihg witnesses to tfie
corner, VIZ-: Adoubfe
burr oak, fS "dfam-
bearing ft- $0;^"^,
lOZiiks-jafsoa Wfi-
Oak, f4"di3m., bear-
ing ff-SSi^fSgfks.
fafso set a stone aF
them Cor. oFtbeSlV^
oFtfie5Wi,a'FSec.£*
(Signed) Tffss-B'Kyfe
Co-Surveyor'
smpaign County-
(portion oF Plat o/7
p-fSS, strewing exist-
ing monuments-)
9E.,5rd. P-M-
Stona
5fone
' 'Stcine
T"
stone
Stone
Stone
Stone
N
8
j^
r
Surveyor, J-Doe- ^
INVESTISATIOH OF LANB CORNERS
F Sec.8,T-I9N.,R-<
iE.,3rdPM-
COLLECTION OF EVIDENCE (Contmued)
Aor. 2S,
I8S9.
Extracts prom FieM Motes of Origin;
I Unitad States 5urv<
>"
Hov-^,1897, found in the CotinfyTressunsrs
(5^c.6)
' (Sec
£) ^
(Sec-4)
Office It Urbsns, III-, tlie Pl^ Book contain -
in} Plots sn(/ Abstracts of Field Hotss of
'l^^ ''"
00
Y'*^
\\
s
'-'■*■ H
Original United States Survey of Champaign
Coonty, and made the following extracts
v\
relating to Sec S, TISfi.,ll-SB, 3eo PM- .—
DESCRIPTIONS OF ORISIHAL CORNERS (P-30)
(Sec-7)
1 Se
Xs
/(Sec-9)
s %e4
\^^
Corners
WitnCK
Trees
Inches
Courses
Lints
)Mi5i«tipn
K
3d
Diameter
they Bear
Distant
%
^\^>=
5cc-Cor5-
^k
4,S,S,S
p5A
XBOak
[W-Oak
\w-Oak
24
14
S-S8°e-
N-64'W
M-U'E-
is
230
(5ec-ll),
798
m
mi ,
(Secie)
Y^ (S"-
^
S,l,7,8
ZO
H-16%
zn
DESCRIPTIONS OF "OBJE
CTS OK THE LINE5"(P-75)
WVt
Pastil.
Mound
DESIGNATION
DiSTAKCES
PE5CRIPTI0K
(fiWali
\S-IVol.
lit
24-
n-sz'B-
44
Chs- Lies
i,%ieji
'Ut
Z4-
S-IO'W-
42
H-betwimSSS
ZS-00
Broak leading If- thence
iSecdr-
slang the channel of the
HhYatS
[am
eim
IZ
s-ei'w-
?l>
same 13 chs- then leaving
S
N-78'B-
30
it running B'ly.
T'X«S
[W-Oak
\w-ll3k
6
MSB'S-
Z3
SO- 19
Ash IZ'diam.
6
S-Wf-
20
e - S'i7
Z4-50
SmkSlks-rs-X-f'ly-
R-CnS
[Ash
\eim
n
s 7'e-
IB
3$-00
fnfered timber bs-HS5.
8
H-IO-E-
13
£■ ' S'S
4- 00
gntemit fimber Is-lf-fS.
\^«B'S
Pastil
Mound
16-SO
S/aokeoiks-ii- S'ly-J
13
178
LAND SURVEYlIsra.
RESURVfiY OF 5E<;-t7,TltN-,R.l6W-,3D,
CHAINS
Se^an ■?/ 7' found sfske inpUee snd both
bearing frets sfsndfng- Planted stoji£
ZS"^$"* 6'; marked-^ for oer*
Thence 1} on random, var-Z^O'f-f setting
temp, stakes every 10 etis-
Intersected sec t/he T£Iks.W-af£.
At S found rotten stake at correct point,
5-tS'W; eSlks- from stamp ofwti- oak,
hearfng free of l/S-Survey • Prcve
stake for con and put broken
.earthenware and glass around ff'
ftkd. wh-oak^/Z^dfam, tfS6^e.j
i4Ztks; diso wh- oak /S'd/am-j
if-S^'m, 63 Iks-
from S ran B- on random, setting temp-
stakes every 10 chs-
Intersected sec- line 12 Iks- It- of Z-
At Z Found earthen post in correct-
position snd bearing trees of
resurvey standing-
Thence W- on corrected line.
Set stake on true line-
on neKtpage")
to-n
39-9Z
0-98
(Cont
V_
5H-5mith, Head^ainmen' L-B-Brow/7, Axman-
/■£■ Wilson, Pear tf ^-W-Smifh, Flagman.
PM- FOR. THE Estate of Johh W. Smith.
JuIyiZ, '^Z- Cloudy with showers-
RESURVEY REFERENCE PLAT*
e
a
F
'' /•
b
h
c
9
14 J /3 3
<
Resurvey. Sec-H, Smith
Estate (comtihued)
CHAINS
)M6
(Line S-Z cont'd} At to set stake with
stones around it and marked :
pine, IZ"diam.,ti46'W., 79 Iks.
redo3k,Z4'di3m.,5:I$^°W; 7ZIks.
?3-}4-
Set stake on true line-
from 10 ran S- on random, vanZ'tS^B-,
and set temp- stakes at Z0gnd40 chs-
Then went fo &• found post 3nd 6eant\£
trees of resurvey sfandinq.
Ran thence Wen random, var-Z'ZO'f.
Z0-OZ
Intersected random line from N- 6Jks.
S- of temp- stake -
4C-IS
Intersected random ^ line Slks-t^of
temp- stske.
gtl-04-
Intersected sec- line 10 Iks- S- ofS-
Cor- post dug out in road- Set Iron ptorr
besm for con, 5-79'y/., 76 Iks.,
from bearing tree of U-S-Sur^^y.
Thence B- on corrected line-
!9-$3
At intersectton ofquarhsr ii>?ej set-
^_
post
1 1 1 1 1 II 1 1 1^
PROBLEMS. 179
PROBLEM F6. RESURVEY OP A CITY BLOCK.
(a) Equipment. — Transit, 100-foot steel tape, chaining'
pins, axe, hubs, stakes, 4 pieces one-inch gas pipe 2 feet
long, notes of previous surveys, etc.
(b) Problem. — Make a resurvey of an assigned city block.
(c) Methods. — (1) Procure full notes of all the surveys
and resurveys of the assigned block from the records at the
court house and from any other source available. (2) Make
a resurvey of the block, using the notes, and drive hubs for
temporary corners. (3) Compute the latitudes and depar-
tures of the courses, and if consistent balance the survey.
(4) If the corners of the block as located are consistent
with the existing property and street lines, drive gas pipes
as permanent corners. (5) Subdivide the block into lots as
shown in the notes. (6) Make a plat of the block on manila
paper to the prescribed scale, showing block and lot lines,
distances and angles obtained in making the survey, the
names of the owners of the property and the names of the
streets. Prepare a surveyors' certificate as provided by law.
Trace the map if required. (The accuracy attained should
be based on the valuation and other local conditions. Be-
fore beginning the survey use every possible care to find
the corners with reference to which the original survey was
made. When lots are sold by number, the excess or de-
ficiency should be divided pro rata. However, when lot lines
have been long acquiesced in, it is doubtful if the courts
will uphold the surveyor in interfering with the ancient
lines of ownership. It then becomes necessary either to
make a compromise survey that will be satisfactory to the
owners, or to make a survey that is strictly according to
the letter of the law, and submit the map and certificate to
the courts for settlement. The surveyor should remember
that he is simply an expert witness and that he had no final
judicial powers.)
PROBLEM F7. RESURVEY BY METES AND BOUNDS.
(a) Equipment. — Transit party outfit, digging tools, etc.
(b) Prohlem. — Make a resurvey of an assigned tract
whose original survey was made by metes and bounds.
(c) Methods. — (1) Collect full notes and data relating to
the monuments, magnetic bearings, magnetic variation,
date of survey, lengths of lines, etc. (2) Make a careful
investigation of the lines and corners on the ground and
180 LAND SURVEYING.
make notes of any evidence there found. (3) Locate and
identify witli certainty as many as possible of the original
monuments ; where double or contested corners exist, locate
each definitely for further reference ; if corners are gen-
erally lacking or doubtful, concentrate attention on at least
two which give most promise of definite relocation, and re-
establish these corners as carefully as possible. (4) Having
at least two corners, retrace by random line the perimeter
of the tract, according to the original description, begin-
ning at one and closing on the other corner ; set temporary
corner stakes at the several points ; note the linear and an-
gular error of closure of the random traverse on the last
monument. (5) Calculate the latitudes- and departures of
the random survey, and determine the angular and linear
relations between the random and the original survey ; also
fix the position of the several random stakes relative to
the supposed true positions of the respective corners. (6)
Set stakes in the true positions, as calculated, reference
them out, and renew the search for the original monu-
ments. (7) Finally reestablish each corner in the most
consistent position, put permanent corners in place, and
take witness notes for each, making comiplete notes of the
proceedings. Follow the form.
PEOBLEM F8. PAETTTION OF LAND.
(a) Equipment. — Transit party and digging outfits, etc.
(b) ProMetn. — Make a partition of an assigned tract of
land in accordance with instructions.
(c) Methods. — (1) Make the necessary resurveys of the
assigned tract, Identifying original monuments, and rees-
tablishing lost corners as required. (2) JViake a plat of the
partition. (3) Subdivide the land and set permanent cor-
ners ; carefully establish witnesses to the corners and se-
cure witness notes. (4) Prepare and file plat and descrip-
tion as required by law.
PEOBLEM FO. DESIGN AND SUEVEY OF A TOWN SITE
(OE ADDITION).
(a) Equipment. — Equipment for topographic survey for
both field and office.
(b) Problem. — Make a preliminary topographic survey
of the proposed town site (or addition), design the plat,
and make the surveys for blocks, lots, etc.
PROBLEMS.
181
Resurvey of "Mission Rid6e"
Consulted Cot/nty Records snd con Firmed
Following Meander Notes fvr cenfer
line oF highway ss descnbed in J-W-Msrt/n^s
deed fo J-D-Clsrk-
"H-eZ'B; 14-ch.; Il-43i% 8ch.; N-S'lV., 12 ch.;
l1-7Zi'£;ll!-2Sch-; S-!2'W; e-43ch."
Descriph'on referred fo sfones ef hegin--
ning and ending points-
Fai'nd First- stone projecting above road,
but could not locate last corner.
Began at First monument ani^ ran on
random according to meander notes,
with Z'n'E' as magnetic declination-
Drove temporary stake at each deFlect/on
point and made careful search For monu-
ments- Found no corners at infermediefz
points, but identiFied marked boulder"
as true corner at closing point SZ links
due west of last sf alee oF r-andom •
Made careFul calculation oF notes For
shiFting over From random to true
corners- (See plat opposite and cal-
culations on next pair oF pa^es-)
J-Doe, Surveyor- Mar- 10, 191S'
Public Road for J-D-Clark-
TransFerred corners sccording fo
calculations and renetved searct?
For original -monuments, keeping
close watch For decayed stakes,
but without success -
Set stone at each true corner.
Sta
('iandoi 1
A
1
A'
B'
C
D'
£''
F'
Hate.
CALClfLATIOfIS
Dist-
Ch.
14-00
8-00
l?-00
loss
e-43
Line)
H-ezio'e.
H-43'il'B
ns'm'w-
H-nii'i-
s-iik'if.
al Sun
irms ol
H-ei'u'e-
U-42'4t'B.
lt-S'4Zk
H-ll'4t'B-
S-II'IS'W-
The abi
0-ilch
AF anc
needle
ey in
Reau
13-SO
7-lS
11-8S
10-10
e-34
ve solu
atFF
AF'
Lat-
ch-
H-6-S7
tl-S-gO
H-11-9S
11-3-08
S-e-Z9
R^SURV^Y
Dep.
I1-Z7-40
S e-zs
lt-Zl-11
ifvey)
11-6-33
N-S-7S
11-11-77
11-2 IB
S- e-ii
H-Z7-3i
S- 6-?Z
H-il-ll
\on J3
Is due
d englt
corrections-
Ch
B-IMS
E- S-Sl
W- MS
B- 978
W-1-34
E-?7-lS
W- B-31
E-mO
E- S3S
Hi- 1-17
E- 9-0!
W- 1-14-
E-n-os
W- Ml
B-24-B4
\
. -<.
I ased
to dlFf^rence
HAF
OF
Tot- Lat-
ch- (N)
6-S7
li-ij
24-32
27-40
21-11
-/
/
e-es
lZ-41
24-18
27-ii
21-1!
/
:/
Data transcribed From pp- Copy OK-
"MissioH Ridse" Road.
Tot-Dep
Ch-(E)
12-il
17-87
16-82
26-60
2S-26
12-10
17-4S
16-28
ZS-ll
24.64
/
N
kt?i
f 24.64'—
Notss For Shifting from
Random to True Coi;pers
Lat-
Dep-
Lks-
Lks-
SB'
I1-6
W-26
CC'
H-4
W-42
DD'
S14
W-S4
£E'
5- 7
W-72
FF'
W-62
Dist-
Lks-
26-7
42-2
SS-'l
72-i
62-0
Bearing
H-77'^Om
H-84'3fk
s-isifm
S-84'27'U-
w.
sumption that the error oF closure oF
> ;
I'M'
I'OO'
I'OO'
H45'4Sk
mW
4
;'
65
I^T.
64- o
i-50
63
Pfe?
S40'
r40',
3'40'
//
64*66.4
J. K. Brown
+SII
62
2-40',
I'OO'
IW
I'OQ'
(1
1
Swampy^
m
P.C.
040
oW
OUO'f
m4sk
mm
N\
ffeavyfimier
61
^
'fC.4°00'C.f.
6ltl0.4
60
60
IS a
(Repeated from toppreceedinqpfqes)
/
'/ ^
188 EAILROAD SURVEYING.
of commencement and completion, etc., should be prepared.
The notes will be kept in the prescribed form. The field
notes are to be returned at the close of the day's work.
All estimated data should be noted as such.
Completeness and neatness of notes and records, facility
and accuracy in handling- the instrument, and promptness
in advancing the progress of the survey will count in the
estimate of the work of the transitman.
Head Chainman. — (Flag pole.) The progress of the
chaining depends chiefly on the activity of the head chain-
man. After setting a stake he should move off briskly (pre-
ferably at a trot) and be prepared for the " halt " signal as
he approaches the next station. When the full chain length
is pulled out, the head chainman turns, holding the flag pole
in one hand and the chain handle in the other, and sets the
pole in line by signal from the rear chainman or transit-
man. Much time can be saved in this process if the head
chainman habitually walks about on line and if he sights
back over the two stakes last set. If on curve location, he
should line himself in on the prolongation of the preceding
station chord, and then offset by. pacing or with flag pole
a distance in feet equal to 1% times the degree of the
curv& ; the calculation is made mentally and the pole can
usually be set within a few inches of the correct position
by the time a speedy transitman has the deflection angle
set off. Having the line established, the pole is shifted to
the correct distance, and the stake is driven plumb in the
hole made by the flag pole spike. If the survey is a rapid
preliminary line, the head chainman hastens ahead the in-
stant the stake is started at the proper point, although in
a more careful preliminary the chainmen check the dis-
tance to the driven stake. On location surveys it is custo-
mary for the chainmen to wait until the stake is driven
and mark the exact distance on the top of the stake with
the axe blade, and the exact line of signal from the transit-
man. In this process the head chainman should keep in
mind the convenience of the transitman, and in case the
line is being run to a front flag, the chainman should be
careful to clear the liMe frequently to allow check sights
ahead. In breaking chain on steep slopes the full length
of chain should usually be pulled out ahead and the chain
thumbed at the breaking points so as to avoid blunders ; a
plumb bob or flag pole should be iised in the process. In
passing over fences it often saves time to drive a 10-d nail,
with " butterfly " attached, in the top plank to serve as a
TRANSIT PAETY. 189
check back sight from the next transit point. The chain-
men should carefully avoid obstructing the transitman's
view, to which end they should walk on the outside when
locating curves.
Bear Chainman. — (100-foot chain or tape, chaining pins
(if allowed) , figuring pad or note book.) As the rear chain-
man approaches the stake just set, he calls out " halt " and
holds the end of the chain approximately over the stake,
quickly lines in the flag pole in the hand of the head chain-
man (or the pole is lined in by the transitman), the precise
distance is given, and the chainmen move on briskly. As a
rule, pluses should be read by the rear chainman, the front
end being held at the point to be determined. Fractions
will usually be taken to the nearest 0.1 foot, although 0.01
foot may at times be properly noted. It is the duty of the
rear chainman to keep a record of pluses and topographic
details when the transitman is not at hand. This record
may be kept on a figuring pad and the memoranda handed
at the first opportunity to the transitman, who transfers
the data to his book and carefully preserves the slips for
future reference. It is usually better, however, to keep
the auxiliary notes in a memorandum book instead of on
the loose slips. The chainmen should carefully avoid dis-
turbing the transit legs.
The responsibility for correct numbering of the station
stakes rests chiefly on the rear chainman. It is his duty
to remember the number of the previous station so as to
catch blunders on the part of the stakeman. As he reaches
the stake just driven, he mentally verifies its number and
repeats it distinctly for the guidance of the stakeman in
marking the stake to be driven ; the stakeman responds by
calling the new number, and each repeats his number as
a check before final approval. The rear chainman then
charges his mind with the numbers and checks the newly
set stake on reaching it. In case of dovibt he returns to
the preceding stake and notes its numljer.
Stakeman. — (Sack of flat and hub stakes, marking
crayon, handaxe.) The stakeman with his supply of flat
and hub stakes in a sack, should keep up with the head
chainman and be standing, with stake and marking keel
in hand, ready to number the new station stake on hearing
the rear chainman call out the preceding station number ;
the numbering is repeated, as already explained, before the
.stake is driven. Chaining pins are not used, but their
equivalent in checking tallies may be had by numbering the
190 RAILROAD SURVEYING.
stakes ahead and tieing them up in sets of ten. By num-
bering stakes at slack moments the stakeman gains time
to assist the axeman in clearing the line, etc. However,
special care should be taken to avoid omissions and dupli-
cates. The stakeman should finish numbering the stake
and hand it to the axeman by the time the head chainman
has fixed the exact station point. The stakes should be
numbered in a bold and legible manner, the keel being
pressed into the wood for permanency. The number should
read from the top of the stake downward. Stakes on an
offsetted line should be so marked as 4'L or 3'R, beneath
the station number. When survey lines are lettered, the
serial letter should precede the station number. Guard
stakes for P. I., P. C, P. T., reference points (R. P.), etc.,
should be clearly marked. The stakeman should assist the
axeman in clearing the line and should drive stakes when
the axeman is delayed. He should carefully avoid obstruct-
ing the transitman's view. The stakeman is under the di-
rection of the head chainman.
Axeman. — (Axe, tacks, (and if so instructed) an extra
sack of stakes with marking keel.) It is the duty of the
axeman to drive stakes, remove underbrush from the line,
clear an ample space about the transit station, etc. He is
expressly warned, however, in student field practice, not to
hack or cut trees or damage other property in any way,
and in general, not to trespass on the rights of owners of
premises entered in the progress of the survey.
The flat station stakes are driven firmly crosswise to the
line with the numbered face to the rear. Hubs are driven
about flush and usually receive a tack ; they are properly
witnessed by a flat guard stake driven 10 inches or so to the
left, the marked face slanting towards the hub, as shown
in Fig. 9, Chapter II. The axeman receives the marked
stake from the stakeman and drives it plumb at the point
marked by the spike of the flag pole. On location or careful
preliminary surveys when the stakes are being lined in
by transit, the axeman should stand on one side when driv-
ing and keep a lookout for signals from the transitman.
In shifting the stake as signaled he should use combined
driving and drawing blows with the axe. When the precise
point comes much to one side of the top of the hub, an-
other hub should be driven alongside and the first one
driven out of sight before the tack is set. The axeman
should move ahead briskly and avoid delay to the chaining.
The stakeman should, when necessary, drive the stake with
LEVEL PAETY. 191
the spare handaxe. When the field force is scant, one
man may serve in both capacities. The axeman is under
the direct charge of the head chainman.
Front Flagman. — (Flag pole, small supply of hubs and
guard stakes in stake sack, handaxe, a few 10-d nails.) It
is the duty of the front flagman to establish hub points
ahead of the chaining party under the direction of the chief
and transitman. In selecting transit stations he should
keep in mind visibility and length of both fore sight and
back sight, and to this end, points should be taken on ridge
lines and where underbrush, etc., is least in the way. The
practice of planting the flag pole behind the hub may be
warranted occasionally, as for example, when the field
party is shorthanded, but never when the regular flagman
is not specially detailed for other duties. The front flag-
man should keep close watch on the transitman and should
habitually stand with the spike of the flag pole on the tack
head and plumb the pole by standing squarely behind it
and supporting it between the tips of the fingers of the two
hands. Should the front flagman be flagging for an inter-
polated point depending on a foresight which his pole would
conceal, he should clear the line for a check sight by lean-
ing the pole to one side. When crossing fences he should,
when convenient, establish check sights on the top plank
by driving a spike and attaching a " butterfly "
Bear Flagman. — (Flag pole, hatchet, slips of paper.)
The rear flagman gives back sight on the preceding transit
station. The details of his duties are much the same as
those of the front flagman. It is an excellent plan for him
to cut a straight sapling or limb and plant it exactly be-
hind the hub when signaled ahead. This picket pole is
made more visible by splitting the top and inserting a slip
of paper, to make a " butterfly." A series of such pickets
on a long tangent line often afEords a flne check on the
work when an elevated transit point is reached.
LEVEL PARTY.— It is the purpose- of the level party to
secure data concerning the elevations of the points along
the line so that an accurate proflle may be made and the
grade line established. The leveling party should be on the
alert to detect errors in the work of the transit party, such
as omitted or duplicated stations, etc. The party consists of
two members: (1) leveler, (2) rodman. In very brushy
country an axeman may be added, but this is usually un-
necessary if the line cleared by the transit party is fol-
lowed.
192
EAILROAD SUEVEYING.
Cl
EVEL
Note
5 FO!
. Railroad SuEvgy-) Hen, uveier/^
s
t
.7l
—
E
o
0cfl3,llS3. Cocl.
iwlft, Hodmsn-
B-M
712-33
Spike inncfch si- r kI- oF Elm frss,eS'R-
A
ta-zi
iis-eo.
af S1S-15-I-4S, 2'
S- sf r^iJ feiij:e-
K
S-4-
711-2
Grounc/
n
7-2
112-4
*t
JS
£■4
714.2
«]
13
6-4-
713-2
n
zo
4-S
7IB-I
»
+30
■2-1
717-S
n
21
0-Z
7IS-4
^1
s
•3
-0-15
713-45
On hub ^l-SfJ-ZJ-
K
i-s-ss
7ZS-Zg
22
8-4-
71^-9
Oround
+2S
6-6
721-7
-■> p-c- j'ao'c-
IZ-
23
4-S
723-5
fi
24
3-S
724-S
ti
2S
3-7
724-6
')
26
IS
726-7
M
OS-M-
-J -17
726-71
Tap of grj/Jile hmS/sr, 74'X;Sh-26-H7-
7!
■/■S-32
7iS-63.
21
S-B
730-0
Grouncl
tn
5-7
723-3
„ p-r.
?S
3-g
731-S
n
7J
3-7
7il-S
.1
50
4-3
731-3
n
31
S-2
730-f
Profile
3bov&-
fi (dheckec^ o's
B-/i-'s srnf H-l-'i with
- i-n
73S-63
712-33
-1-72
Ueck
fej.Baok;).
\
m-24
i-23-ZI-
^
Leveler. — (Level, adjusting pin, level note book.) The
leveler should follow the most approved methods described
under the head of differential and profile leveling' in Chap-
ter IV. The nearest 0.01 foot should be observed on turn-
ing points and bench mark rod readings and elevations and
on occasional inaportant profile points. The fore sight rod
readings on ground profile points are to be taken only to
the nearest 0.1 foot and the nearest 0.1 foot in the height of
instrument is to be used in calculating the elevation. (Be-
ginners sometimes calculate elevations to 0.01 foot when
the rod readings are taken only to the nearest 0.1 foot.)
The leveler should be rax^id with his level as well as with
figures. He should calculate elevations as fast as the rod
readings are taken and should systematically cheek up the
turning point and instrument heights as the work proceeds.
As results are verified the same should be indicated by check
marks. Each page of notes should be checked by summing
up turning point back and fore sight rod readings, and com-
paring -their difference with the difference between the first
and last elevations or instrument heights, as the case may
be, on the page. Follow the prescribed form. As far as
LEVEL PARTY. 193
possible, bench, marks should be cheeked by including them
in the circuit as turning points. Balance back and fore
sight distances on turning points. Permanent bench marks
should be established at least every 1500 feet, and located
in places at once convenient and free from disturbance
during construction. Later levels should check within
0.05 foot into the square root of the length of circuit in
miles. When a discrepancy is found, a line of check levels
must be run to fix responsibility for the error. In cross-
ing streams, secure high water elevations, with dates, es-
pecially of extraordinary floods, also low water level. In
crossing highways obtain elevations each side for some
distance with a view to avoid grade crossings. In going up
or down steep slopes, gain all the vertical distance possible
each setting, and follow a zig-zag course. The bottom of
deep gullies may be determined by hand level. Assist the
rodman in plumbing the rod, and on turning points and
benches have the rod gently swung in a vertical plane to
and from the instrument and take the minimum reading.
The self-reading rod is to be preferred. Many levelers use
the Philadelphia rod without target. If the target is used
on turning points, the leveler should check the rod read-
ing when practicable.
Completeness, correctness and neatness of notes and rec-
ords, and facility and accuracy in handling the level will
be given chief weight in fixing the merit of the leveler's
work. The level notes are to be returned at the end of the
day's work.
Biodman. — (Leveling rod, peg book, hatchet, turning
point pegs, spikes, keel.) The rodman holds the rod at
station stakes and at such plus points as may be required
to make a representative profile. It is his duty to identify
each station point and be on the lookout for duplicated or
omitted stations. To this end he should habitually pace in
each station, especially in grass or underbrush, and call out
or signal the station number to the leveler. Should a blun-
der in station numbering appear, he should positively con-
firm the fact by retracing several stations, and then carry
the corrected stationing ahead. The rod should be held
truly plumb, which is best done by standing squarely be-
hind the rod and supporting it with the tips of the fingers
of both hands. On turning points, the rod should be waved
gently in a vertical plane to and from the instrument. The
rodman should pay special attention to placing the target
right for long rods and examine it to note if it has slipped
194 RAILEOAD SURVEYING.
before reading the rod. Errors of 1 foot, 0.1 foot, etc.,
should be carefully guarded against. Turning points should
be selected with special reference to their solidity, and care
should be taken not to disturb them. Station pegs and
hubs are often used for turning points ; when so used, the
precise fore sight to 0.01 foot should follow the usual ground
rod reading to the nearest 0.1 foot. The rodman should use
good judgment in selecting bench marks, locating them out
of reach of probable disturbance during construction and
describing them so as to be easily found. He should be ac-
tive and do his best to keep close up with the transit party.
The rodman should keep a peg book for recording turning
points and instrument heights, and check his computations
independently and compare results with the leveler.
TOPOGKAPHY PARTY.— It is the purpose of the
topography party to secure full data for mapping contours,
property lines, buildings, roads, streams, and other import-
ant topographic details. The width of territory to be em-
braced in the survey depends on local conditions ; in places
it may be as much as one-fourth or one-half mile from the
line, although it is usually better to run alternate lines when
the distance to be included becomes so great. The topog-
raphy party often consists of only two men, but a party
of four is much more efficient. Sometimes no regular topog-
raphy party is provided, but after running a few miles of
line ahead, the transit and level parties are formed into
several parties to bring the topography up to the end of the
preliminary line. For student practice the topography
party will consist of four members: (1) topographer, (2)
assistant topographer, (3) topography rodman, (4) tape-
man.
Topographer.- — (Topography board, topography sheet (or
several sheets), hard pencil, compasses, eraser, etc.) The
topography sheet should be prepared before going to the
field, showing the alinement and other data needed from
the transit notes, and elevations of all stations and pluses
from the level notes. Cross-section paper is to be preferred.
The center line may be plotted to one side of the center
line of the sheet, when the topography is to be taken far-
ther in one direction than the other. In order to secure
full details, the scale of the field plat may well be double
(or even more) that of the finished map. The topography
sheet should show local conditions, such as gravel banks,
rock ledges, etc., suitable for ballast or other constructive
use ; out-croppings of rock or other material which may
TOPOGKAPHY PAKTl. 195
affect the classification of the graduation; character of
substrata at sites of bridge or other masonry work ; springs,
wells, streams, etc., suitable for water supply ; approximate
flood levels and other data relating to waterways or surface
drainage ; location of streams, especially with reference to
desirable crossings, freedom from probable change of chan-
nel, etc. ; location of highways including elevations some
distance either way with special reference to avoiding
grade crossings ; other railroad lines, with the same point
in view ; character and condition of crops and other farm
improvements, names of owners, etc., — in short, any and all
information that is at all likely to be of service in mapping
the route, projecting the location, during construction, etc.
In locating a group of buildings some distance from the
line, fix the principal one by tie lines, by intersection or
polar coordinates, and the others by measurement and
sketch from it. Locate buildings near the line by rectangu-
lar offsets, or by intersections of the principal outlines
with the survey line. Contours are located by means of
the hand level used by the assistant topographer. The con-
tour interval should be five feet ordinarily, but niay be in-
creased to ten or more feet on very steep slopes. The con-
tour data should be selected with special reference to
ridge and gully lines (see problem and plat on contour level-
ing. Chapter IV). Ordinarily hand level lines may be run
out at right angles ; angling lines along gulches and ridges
may be located by estimation, pocket compass or tie lines.
The plat is made by the topographer from data collected by
the other members of the party. A common fault with the
beginner in such work is the omission from the plat of im-
portant numerical data, such as station numbers of land-
line crossings, etc., owing to an undue attention to the
minute details of the drafting work. A good topography
record with contour notes on the left hand page and field
sketch showing all numerical data on the right, is shown
in the accompanying form.
Assistant Topographer. — (Hand level, pocket compass,
topography note book.) It is the duty of the assistant
topographer to collect data for the use of the topographer
in making the plat. He uses the hand level, notes station
numbers, distances, bearings, etc., and makes such record
of the same as may be required to fit local conditions. In
contouring, a special rod with adjustable base (see Fig. 19,
Chapter IV.), if available, may be used; otherwise, an or-
dinary flag pole with alternate feet red and white is em-
196
EAILEOAB SURVEYING.
r
Sta.
I3e
138
131
136
I3B
J34-
133
I3S
131
130
129
128
(RAILROAD
Left Contours
420 -tzs f
J*'* ptf? y73 .
2S0 J8S tzi 'a'
Center
Elev.
43hl
T0P(t)6RAPHY.)
RightContours
43S 4^40 44S
107 eSB 369
42S 430 43S .£40
77 $7 Sa3 -406
^■*- ^
4io4ZS4S0^3S
420 4gS 430 43S
~SS'lt2 B13 309
420 ^?S 430 *SS
SB loe J03 J¥S
f
417-6
f
41SS
■I-30-7
"A
437' P
4f3-4
(Obsfrucied)
44s ^ ^^
413 \
4ZS430 435 440
S4 J03 175 ZaO
\
Pasf-ura
, /?5i i5i Owelltng I
13S Open Timber I
; I ; ' I
/ iPaature /
' / / / '
Fence
BRW^ence.SKLini ^*'
joFs^toSfane.mCar.Setlg* '
I I . AbBncfotiecf /
/ ^r^^i'ick Yard I «
' -S^ ^^""^ ■>"'
Bniffr Timber \/ ^
■n
■^ Si* '^ ill *
\,'k\
130/^
' \ 1/
ployed. BeginniBg with the known profile elevation, as ex-
tracted from the leveler's record, even five-foot contours are
located, as a rule, nominally every 200 to 500 feet at right
angles to the line, except as ruling ridges or gullies may
suggest other directions. His record should be ample and
legible, and include data and information which may not
properly be placed on the plat. All estimated elevations,
distances or dimensions should be noted as such. The as-
sistant topographer works under the direction of the topog-
rapher, but is expected to take the initiative in the collec-
tion of data so as to permit his superior to devote proper
attention to the field plat.
Topography Bodman. — (Topography rod with adjust-
able base (see (f). Fig. 19, Chapter IV.) or flag pole,
hatchet.) It is the duty of the rodman to hold the topog-
raphy rod as directed by the assistant topographer. He
should be active and continually on the alert for informa-
tion or data which the record book or sheet should contain.
The rodman holds the zero end of the tape in measuring
the distances. He should acquire skill in pacing on rough
as well as smooth ground, and when sufficiently exact es-
OFFICE WOKK. 197
pecially on ground remote from the surveyed line, lie should
gain time by pacing in the distances to contour lines.
Tapeman. — (Metallic (or band) tape, set of chaining
pins, flag pole.) It is the duty of the tapeman to deter-
mine distances with the help of the rodman. He should
be vigilant in checking up tallies, reading fractions, level-
ing the tape, breaking chain, plumbing down ends, etc.,
and should never be the cause of needless delay in the
work. When required, he should measure angles, take tie
lines, etc., with the tape.
OFFICE WOBK.— The office work of each student in-
cludes : (1) reconnaissance map, profile and report; (2)
map showing preliminary lines with topography and pro-
jected location lines; (3) preliminary profile with grade
lines, approximate estimate of quantities, etc.; (4) final lo-
cation map (traced from preliminary map) ; (5) location
profile; (6) copies of field notes; (7) cross-section notes
and estimate of graduation quantities; (8) estimate of
cost of constrution ; (9) monthly estimates, progress pro-
file, haul, prismoidal and curvature corrections, vouchers,
etc., final estimate.
B>econnaissance Report. — The reconnaissance map show-
ing the area examined will be based upon such maps of the
route as may be available. It should show the several
ruling points and general routes selected for actual survey.
The profile should be based upon barometric or hand level
observations and distances scaled from the map or deter-
mined roughly by pacing or otherwise on the ground. The
report should refer to the map and profile and state the
general scheme, the several ruling considerations or condi-
tions, the details of the examination, a rough comparison
of the several alternative routes, and a final summary
and conclusion with definite recommendations. The report
should be made in accordance with best usage as to form,
composition, etc.
(Considering the limited point of view of the beginner,
the reconnaissance reports may not be required until the
actual surveys are well along. In such case, however, the
student is not to draw data from sources other than those
above outlined.)
Preliminary Hap. — The mapping should be the best
product of the student's skill as a draftsman, and should
conform closely to the department standards, which are
based upon best current usage of leading American rail-
roads. Unless otherwise instructed, the preliminary map
198
EAILEOAD SUKVEYIJNU.
/
PL
ITTIN
3 Sh
iET,
='REL1
UNARY Line "A
1
^
Sta-
DeFl-
Cal-Brg-
Dist-
Lstl
■udes
Deparlures
Total Lat-
Total Dep. {
Ft.
H-
S-
E
W
N-
w.
s
ll-32'3^n
m9-i
2097-7
1339-1
0-0
0-0
3
t Zff/}'
JZVl.-
H-UVW-
7S-S
33-6
71-0
20S7-7
1339-1
b
cznas
71'IS'R-
HJiVw
414-1
373-4
27S-6
2131-3
1410-S
c
dmsfi
IO'3S'li-
KS'4iW-
2tS-S
ZOi-O
9S-I
Z504-7
1686-4-
d
e K*S7l
ZWR-
im'n'w-
436-7
400-9
m-i
T707-7
ns4-s
e
fum'-
iiWr-
lt-4'4l'>V-
J64-1
164-2
13-B
310S-6
I9S7-6
F
} ?w-'
4l'S9'L-
li-siVw-
JS7-9
94-S
119-9
3272-S
1971-1
9
h 4IHli
17'OSA-
m'}!'w-
776-0
170-3
44-3
3167-6
2091-0
h
iHIwi
le'nx-
tt-l'32'E-
3I0-I
209-9
S-3
3537-3
2I3B-3
1
j 44m
Zl'27'l-
ifn'ss'n/-
IOS-9
93-6
36-1
3S47-S
Z127-0
J
k4efl!i
i'n'L-
KeVw-
307-1
276-2
J3S-3
3947-4
ZI63-0
k
1 «9nn
IS'06'L-
S-7l°4l'W-
331-9
63-0
32S-S
4223-6
2299-0
I
mSr*43i
73 VR-
KllK'lf-
ZD2-7
l7!-9
9S-4
47S8-B
2624-S
m
,iUt4li
ZI'ZS'L-
to'js'it-
JS6-4
lOI-S
113-0
4337-5
2719-9
n
SM2i
iZ'SS'L-
lt-ll'3t'lV-
332-6
41-4
329-1
4439-0
2838-9
p 5S'SS!
3i'S2'Jl-
li-44'4iH.
301-7
2J9-2
217-4
44S7-4
3168-0
p
q 6H43i
ll°54'L-
H-K'4t>k
IZS-I
70-4
107-0
4706-6
3385-4
?
r I3f7d
kWl
s-iiWw-
ZSI-S
39-4
24S-7
4777-0
3492-4
r
sfffHi
S0'I!3'R-
K-4t'j7'n-
33-4-2
2J9-S
2S2-0
4737-6
3741-1
s
t-eiwi
3B'/I'L-
mViv-
266-9
27-3
Z6S-B
4957-1
3993-1
f
u //*»-'
Z'OB'R-
m'sin-
317-0
43-!
313-S
■4914-4-
42BS-6
u
V 7SHfi
I'n'L-
n-is^a'w-
SS7S
S-7
SS7-S
BOZS-Z
4B72-4
^
wumi
43'lS'R-
H-4('lO'H/.
1067-6
739-4
770-1
SOii-9
^£773-3
9 — Che
5130-2
fS900-3
w
X
9167-1
5/77-7
104-4
^104-4
S-3
5908-6
S-3
5900-3^
5773-3
;> J
^ Plo-
From
5ta.
Tsnger,
A.
L
26
4ftise-
6ffilSL
9}'h5
102*ilZ
143790
issmi
170'hf3
I8lt^jj.
114/iOi
193H9£
Z/3'm
zzoTsci
23fii4i
Z4Zt4Sl
2SZt3Sl
TING
To
Sta-
tMsin
T
26
4f*isi
6M!-!-
93*65
102*511
143190
IBSfXT-
I7M3
ISlihl
l!47sOS.
IS3fJfS.
Tispe*
zzoSoi
zjofm
24z'f^»
252*322
\
Check.-
Sheet
Length
Tangts
Ft-
Tr^ck.,.
1755-6
3196-9
4138-3
1466-3
320-9
1986-9
963-8
986-0
LOCATIO^
Length
Curve
Ft-
t-e-j!-c
100-0
2500-0
18J2-B
S86-7.
1186-7
1086-7
168-9
714-4
1195-0
517-1
/0938-0
Olieck-
Angle
I
7°3t}'R-
zs'oo'e-
36°1S'R-
13'IS'l-
23°44'L
zMr-
13'02'R-
ll°4i'L-
23'S4'R
3g'47'L-
I27J5R-
lf3S'L
39'50'R-
MS'lS'g
5-4'!S%
SUR".
EY,
Belt R-R- Extension-
■\
Degrea
Radius
Tan- DM
Dist-
Calc.
(Lat.
\D.p.
frot.Lat
\Tot-I)ep
P.
R-
T
P-l-toPl
Besring
Ft.
Ft.
Ft-
5-3s'/5'e
Ft.
Ft,
0-0
7'30'
764-1
SO-}
liZO-4
(s-z7isi
5.
iW
S730-0
1270-3
Pl-=
3363-7
s-z^fs
^
ZW
2865-0
937-8
P-l-=
>l
4SS0-1
S-33'3llW
s-
l'30'
38Z0-0
445-4
PI-
;S-S!
5185-7
MO'lZ'W
S'
"C-s
Z'OO'
2865-0
602-0
p-l-=.
y if
2618-3
s-BVe-
'^
^ J.
z'oo'
286S-0
550-0
p-r-=
II
1307-3
SIS'lZ'W-
5.
1'30'
38Z0-0
436-4
P-I-'
Z816-9
isMw-
s
f "S
I'30'
3820-0
395-6
PI-
!:^
1963-8
s-nii'w-
s-
•^
-2'm'
2865-0
606-4
'p-l-^
IS6J-3
Hi'22'n
5.
4
(Check
7°30'
764-1
268-9
S-4'35'm
(See
p-l-=
Tan^l-llaln Trk-
f.-Y-lil-R-B-
5560-9
« 2
Z5617-S
*
III2I-8
last-
(MT*lastT).'
-313-0
1
I
1
check
h5th
column)
totals
byZ)
J
Z Tangenfs -
IOS02-S
I4II4-7
Check.
25617-5
OFFICE WOEK. 199
will be made on eggshell or paragon paper. There are
three ways to plot the skeleton of the preliminary survey :
(1) by laying ofE each successive deflection angle and dis-
tance from the preceding line; (2) by laying ofE the suc-
cessive calculated courses and distances from a precisely
drawn meridian or other reference line; and (3) by rect-
angular coordinates. The first method should not be used,
since cumulative errors are probable. The second is rapid
and free from serious objection ; if preferred, a modified
base line may be assumed and the calculated bearings
transferred to the same ; the angles may be laid ofE by
means of scale and table of natural trigonometric functions
from a precisely drawn base line and then transferred, as
required, by parallel ruler or triangle ; this method is used
most in practice. The third method is the most exact, and
will be used by the student unless the second is specified.
It involves the calculation of a plotting sheet, as shown in
the accompanying form. The axis is usually a meridian
line, but any line may be taken and the courses changed
to suit. In making the plotting table, the data, calculated
bearings, distances, etc., should be carefully checked through
to the last point in the skeleton before the plotting is be-
gun. Only one axis should be plotted, preferably the one
having greater totals, so as to give short perpendiculars.
Starting from the origin, 1000-foot points are pricked in
along the axis to the specified scale, and marked 0, 10, 20,
etc. ; the totals are interpolated on the axis and lettered ;
exact perpendiculars about the right length are erected ;
the second point is established by scaling the perpendicu-
lar and the line is checked back on the preceding point ; if
correct, the stations are pricked in and every fifth station
and deflection points are enclosed in a small circle and
neatly numbered ; the next course is so located and checked
back by length of hypothenuse, the stations fixed and num-
bered, and so on to the end of the line ; the courses should
be taken in their order and none passed without checking
satisfactorily. After the skeleton is completed, the topog-
raphic details are penciled in, and the map finished and
inked. The title, border, meridian (both true and mag-
netic), etc., should be first-class in quality and in keeping
with the rest of the map. Crude or careless lettering or
other details of the map will cause its rejection. The title
of the map, profile, etc., should be given in brief on the
outside of the sheet or roll at each end.
200 KAILEOAD SURVEYING.
Preliminary Profile. — Use Plate A profile paper in mak-
ing the profiles. The level notes should first be carefully
verified and then one person should read off while another
plots the data. A hard pencil, 6H or 7H, sharpened to a
long needle point should be used. The stations are first
numbered along the bottom from left to right (or the re-
verse, as prescribed) ; leaving six inches or so at the left for
a title, and beginning at a prominent line with station 0,
every tenth station is so numbered. The notes are exam-
ined for lowest and highest elevation and a prominent line
is assumed as an even 50 or 100-foot value relative to the
datum. The horizontal scale is 400 feet and the vertical
scale 20 feet to the inch. Points should be plotted no
heavier than necessary, since the surface of profile paper
will not permit much erasing. The surface line should be
traced in close up to the plotted points, owing to the
danger of overlooking abrupt breaks such as streams,
ditches, etc. Pluses should be fixed by estimation. The
surface line when completed should be inked with a ruling
pen used freehand ; the weight of the line should be about
the average of the ruled lines on the profile paper. (A
special profiling" or contouring pen is much used for this
purpose.) The profile should show the grade line, grade
intersection, elevations and rates of grade in red ; water
levels, and data relative to same in blue ; surface line, sta-
tion numerals, etc., in black ; the alinement, important land-
lines, streams, etc., should be shown at the bottom of the
profile in black. The grade line should be laid nominally
with a view to balance the cut and fill quantities, but this
should be varied to suit local conditions, such as drainage,
the elimination of grade crossings, classification of ma-
terials, etc. The maximum gradients, the rate of compen-
sation for curvature, etc., will be made to suit the specified
conditions. The compensation for curvature will be al-
lowed for on the preliminary profile by dropijing the grade
line on maximum gradients at each deflection point. Grade
intersection elevations and rates of grade will be given to
the nearest 0.01 foot.
Approximate Estimates. — Rapid estimates of earthwork
quantities may be made direct from the profile either
by reference to a table of level sections, or preferably by
means of an earthwork scale. Estimates made in this way
from the profile of a careful preliminary survey, often do
not vary more than five per cent from the final construction
quantities.
OFFICE WORK. 201
Iiocation Map. — The location map may be traced from
the preliminary map and should include the topography
and such details as usually appear in the iinal record map
of the located line. Contoiir lines may be traced in cad-
mium yellow to insure satisfactory blue printing.
Location Profile. — The location profile should be exe-
cuted according to the standard specimen, and should in-
clude estimates of earthwork as determined from the ac-
tual cross-section notes, and quantities of other construc-
tion materials. Curvature compensation will be shown on
the location profile by reduced maximum gradients. Verti-
cal curves will be calculated at a rate of change not to ex-
ceed 0.05 foot per station, except at summits where it may
be 0.10 foot or more per station. It should be prepared as
the final record profile. Approximate profiles of projected
lines, determined from the contour map, with rough esti-
mates of quantities will also be prepared, as specified.
Office Copies of Notes. — The complete level and transit
notes, and topography notes as assigned, must be copied
in the individual books by each student. These copies will
be in pencil (or ink if so specified) and will be executed in
a faithful and draftsmanlike manner according to the de-
partment standards of lettering, etc.
Estimates of Quantities. — The cross-section notes will
be copied and the quantities of excavation and embankment
calculated, as assigned. The cross-sectional areas will be
calculated arithmetically and checked, especially on rough
ground, by means of planimeter. The quantities will be
calculated by average end areas, by tables, and by diagrams,
so as to afford ample practice for the student in all the cur-
rent methods. The estimate will also include all the other
materials of construction.
Bstlmate of Cost. — Each student will make a detailed
summary of the quantities, fix prices, and estimate the
probable total cost of the work, or of the assigned section.
The prescribed form will be followed. The prices should
be based on local conditions as far as possible.
Construction Estimates. — Monthly estimates, estimates
of haul, borrow^ pit estimates, classification, prismoidal and
curvature corrections, progress profile, vouchers, force ac-
count, etc., and final estimate will be prepared by each
student in accordance with prescribed forms and standards.
Right of Way Records. — Each student will be assigned
a share of work in the preparation of right of way deeds
and record maps. The following forms (from the " Engi-
202 RAILROAD SURVEYING.
neering Rules and Instructions," Northern Pacific R. R.)
will be used as models in preparing right of way descrip-
tions.
(Through government subdivisions) : " A strip, piece or
parcel of land one hundred feet in width, situated in the
northwest quarter of the northwest quarter of section ten,
in township two north, range one west (S. 10, T. 2 N., R.
1 W.), Madison county, Montana, and having for its bound-
aries two lines that are parallel with and equidistant from
the center line of the railroad of the Railway Com-
pany, as the same is now located (and constructed). For a
more particular description, reference may be had to the
plat drawn upon and made a part of this deed."
(Lots in platted tracts) : "Lot seven (7), block six (6),
in Smith's addition to Helena, Lewis and Clark county,
Montana, according- to the recorded plat thereof."
CROSS-SECTIONING PARTY.— It is the duty of the
cross-sectioning party to set slope stakes for the proposed
roadbed and to secure data for the calculation of earth-
work quantities. The data should first be transcribed from
the location level notes and profile into the cross-section
book, including station numbers, surface and grade eleva-
tions, rates of grade, bench mark record, etc. In order to
avoid confusion in relation to directions right and left, the
station numbers should run up the page, and plenty of
space left for pluses in the notes, especially on rough
ground. As shown in the form, the left hand page should
be used for data and the other for the cross-section notes.
The organization and equipment of the cross-sectioning
party when using the engineers' level is: (1) recorder
(note book), (3) leveler (engineer's level), (3) rodman
(self-reading leveling rod, 50-foot tape), (4) axemen (axe,
sack of flat stakes, marking keel). The usual routine is:
(1) Determine height of instrument by back sight on iden-
tified bench or turning point. (When a bench mark is re-
mote and an original turning point can not be found, it may
suffice in an emergency to check on the ground at several
stations to the nearest 0.1 foot and use the mean height of
instrument. Such places .should be verified later.) (2)
Having the height of instrument, check the original eleva-
tion of the station about to be cross-sectioned, reading the
rod and checking off the elevation if it does not difl'er more
than 0.1 foot or so ; in case of a new plus, take a rod read-
ing and record the elevation. (3) Determine the "grade
rod " for the station by subtracting the height of Instru-
CEOSS-SECTIUJN IWU
203
Sta.
130
*40
129
HO
+3i
Mlfl9
T-e-fOS
Kt-fSS
it-SO
fJ3
K7
tei
*;i
■fSO
-ts*
KS
TJl-
Elev
74ZS
73es
732-3
72S9
72II-S
720-B
720-1
712-2
727g
73/-S
73e-S
739-2
741-4-
741-7
742-2
74i-l
SratJe
neso
736-SO
73M0
J3S-S0
736-SO
73(30
neso
731-30
w-so
731-30
731-30
731-SO
731-30
TSe-SO
736-SO
7X-S0
736-30
fORM
Notes
R
sm%i
i7-a
J6-0
Renrar-kft
(i-levei section //i cuf')
(Level secf-f9n In cvf)
(Orade point, L, Csmtl)
{2 leveJ sect/on in Fill)
{Levd sect/on in fill)
li-and stringer, 8r.0J8-
(Head of Dump)
(Toe of Dump)
Bridge its IS ]jtS*34
6,J4sp3/?3 \{B7+£0
(Head oF Dump)
S-end sMngeri Sr-IKIS
Ditch 2-'4'-4'T- 33'-
(3 level section In Fill)
(Srsde point- right)
(Srade point center)
(Srsde point leFt)
(3 level section In ct/f)
(level section in cut)
(4 level section in cut)
(S level section in cut)
Cijk,tl',li:I, Fillsll',lhl-J
Typical Cases
L^vel Sections.
-\{760)
Grade PoinbCw/th Diaijonal Contour)
Riqht. Center. Lefi^
5iac-HiJI5ectioi}. FndofFillatTrestle.
H.D.
-.^
-H700)-
204
EAILEOAD SUEVEYING.
Cross-SectionatSlatm /E7-f-53
headofDump
TT — \ ?
"k- -30.S ->^- Z^.6 —^.
'"'7^^ Cros5-5ectio/?3l5tatio/7/E7
x^-d-^-IQ-*'/ ' OradeFoJnt
'Station
■T^Rav/ne \<:-/7.0—^
Srade FoM-^-S '^Jl£^
Station Z.O^,^i-^\' ; %
IZ6f37 \-^II.O^^/0.0^
r='Z.O
126
/:s
station '■Rra dp Point —
(^> lZ6tl8 ^^---^fa^^ri-s
OrossSection at Station iZ6^
; \<-/0--^-iO-^, \
'^-/3.4--^—Z0.Z-—^
Cross-Section at Station J25
V-IO-^-IO-^
\ ■'<-i6.4--^6Z^.
M Z9I- -->^-—/9.6-
CEOSS-SECTIONING 205
ment from the grade elevation ; then note that cut or fill at
any point of the cross-section is equal to surface rod minus
grade rod (counting rods as minus when downward from
the plane of the level dnd those upward as plus, this rule
gives results always plus for cut and minus for fill, which
agrees with the conception that cross-section notes are
rectangular coordinates of the sectional area referred to
the center of the finished roadbed as an origin) . (4) If the
ground is level transversely, that is, does not vary more
than 0.1 foot or so within the limits of the proposed grad-
ing, then the distance from the center out to each side
slope stake is half width of roadbed plus center cut or fill
times rate of side slope; (thus for 20-foot roadbed, side
slopes 1 to 1, and a cut of 18.6 feet, the distance out to slope
stake on a level section would be 28.6 feet, or with a slope
of 11.^ to 1, the distance out would be 10 plus 1% times 18.6,
or 37.9 feet. Calculations of this sort should be done men-
tally in an instant). (5) On three-level ground estimate
the rise or fall of the surface from the center to about
where the side slope stake should come, and add the same
to, or subtract it from the center cut or fill, as the case
may be ; compute the distance out to the point where the
side slope line would pierce the ground surface and test
the same with tape, rod and level by the foregoing rule for
cut or fill ; continue to construct points on the side slope
line until the common point is found. (6) The axeman
marks " S. S." (slope stake) on one side of the stake with
the cut or fill to the nearest 0.1 foot (as C 6.8 or F 10.2)
and the station number on the other side ; the stake is
driven slanting towards or away from the center line ac-
cording as it is cut or fill. (7) On five-level ground or, in
general, on ground involving any number of points or
angles in the section, the cut or fill is taken at each break.
(8) Should there appear to be danger of land slips, the
cross-sectioning should be carried well beyond the limits
of the slope stake points. (9) The cross-section notes are
recorded as in the accompanying form, expressing the co-
ordinates of each point in the form of a fraction, and dis-
tinguishing the slope stake points by enclosure in a circle.
(10) Having completed the cross-sectioning^ at the station,
the same program is followed at the next point, first check-
ing the elevation obtained in the original location levels ;
the grade rod should be determined as before by subtract-
ing the height of instrument from the grade elevation, and
then checked by applying to the preceding grade rod th?
206 RAILEOAD SUEVEYING.
rise or fall of grade from, the preceding point. (H)
Cross-sections should be taken as a general rule at every
station and at such intermediate points as will insure a
reliable measurement of the earthwork quantities. It is
not necessarily the lowest and highest points that are re-
quired, but those points which, when joined by straight
lines, will give the contents as nearly as possible equal to
the true volume ; if the " average end areas " method is to
be used in calculating the quantities, sections should be
taken every 50 feet when the difference of center height is
as much as 5 feet ; as a rule, slope stakes need not be set
at cross-seclions taken between stations. (12) "Grade
point" stakes (marked 0.0), should be set where the center
line and each edge of the roadbed pierce the ground ; and
also in side-hill sections in both cut and fill, where the road-
bed plane cuts the ground line ; if the width of road-
bed is different in cut and fill, the greater half-width is
commonly used in locating the side grade point ; in the
simplest case a contour line is perpendicular to the center
line and the three grade points are at the same cross-sec-
tion, forming two wedges ; in the more usual case the con-
tour line is diagonal, and the three grade points are not
in the same section, so that two pyramids are formed ;
if the station numbers of the two side grade points differ
by only a few feet, it is usual to simplify the record by
taking the notes as for a wedge at the station number of
the center grade point, although the side grade point stakes
are set in their true positions ; as a rule, a complete cross-
section is taken at each grade point. (13) In cross-section-
ing for the end of an embankment at a wooden trestle the
end slope is made the same as the side slope, and the end
and side planes are joined by conical quadrants ; the dis-
tance between " heads of dump " (H. D.) is usually 10 feet
(5 feet at each end) less than the total length of stringers;
a complete cross-section is taken at the " head of dump,"
and the "toe of dump" (T. D.) on each edge of the end
slope is located and recorded ; on level ground the volume
of the wedge-like solid so formed is found by dividing it
into a triangular prism and two right conical quadrants ;
on ground sloping transversely the end of dumip is made up
of a middle prismoid and two conical quadrants, each of
the latter being generated by a variable triangle revolved
about a vertical axis through a corner of the top roadbed
plane at " head of dump."
The calculations in the foregoing method of cross-section-
207
ing may be simplified by preparing a table of distances out
for the standard roadbed widths and slopes, or by using a
special tape having the zero graduation at a distance from
the end equal to the half-width of roadbed, and the re-
maining graduations modified to suit the side slope ratio.
The calculations may be further simplified by using a, spe-
cial rod having an endless sliding tape graduation. The
student will be given practice with these labor saving
devices after he has first acquired familiarity with the
principles of cross-sectioning without these aids.
Cross-sectioning with rods alone is done in much the
same manner as that described above. Two rods are used.
The usual length of the rods is ten feet, and each is gradu-
ated to tenths and has a bubble vial in one or both ends.
The slope stake point is determined by leveling out from
the ground at the center stake with reference to the center
cut or fill, each rod being held alternately level and plumb.
Other points in the cross-section, as well as grade points,
etc., are determined in tEe same manner. The notes are
kept as in the other method. On very rough ground, the
rod method is usually the more rapid. Some engineers
cross-section on rough ground by taking the elevation of
each point and plotting the notes on cross-section paper,
then using the planimeter to determine the areas. Borrow
pits are often cross-sectioned by taking elevations at the
intersections of two series of parallel lines forming squares.
Laud-Line Party. — It is the duty of the right of way
party to secure data for the preparation of right of way
deeds. The party should consist of at least four: (1) re-
corder, (2) transitman, (3) head chainman, (4) rear chain-
man, (the chainmen also to serve as axemen and flagmen
as required). Their equipment is the usual one of a transit
party for such work. The party should secure ties with
all section and other laud lines whenever crossed. The
notes should show station numbers and angles of intersec-
tion and distance along land line to the nearest identified
land corner and also to important fences. As a rule, make
the intersection by running through from one corner to the
other. Where the line passes through a town, tie the cen-
ter line to the plats, block lines, monuments, etc. Secure
any records and make tracings of any plats, etc., at the
recorder's office, that may be of service in preparing deeds.
Bridge and Masonry Party. — The bridge and masonry
survey party will determine drainage areas for culverts and
other waterways, prospect for foundations, and stake out
208 KAILEOAD SUKVEYING.
trestles, masonry work, etc. The usual organization will
be four men : (1) recorder (in charge), (2) transitman or
leveler, (3) chainman, rodman, flagman, etc., (4) chainman,
axeman, flagman, etc., as the work assigned may demand.
Besurvey Party. — The resurvey party will be assigned
to such duties as the resurvey of yards, the collection of
data for crossings frogs, running centers on old track, in-
cluding spiraling, etc. It will usually be a, party of four.
PROBLEMS IN RAILROAD SURVEYING.
PROBLEM Gl. ADJUSTMENTS OF LEVEL AND TRANSIT.
(a) Equipment. — Engineers' level and transit, adjusting
pin.
(b) Problem. — Test the essential adjustments of the as-
signed instruments and correct any discrepancies found.
(c) Methods. — This problem is designed to freshen the
student's knowledg'e of the adjustments of the instruments,
as well as to place the equipment in condition for accurate
work. The adjustments will be made under the persona]
direction of the instructor. The student should attempt to
be speedy as well as accurate in testing and making the
adjustments.
PROBLEM G2. USE OF FIELD EQUIPilENT.
(a) Equipment. — Complete equipment for railroad transit
and level party, as specified in foregoing pages.
(b) Prohlem. — Practice the detailed duties of each posi-
tion in the transit and level party.
(c) Methods. — This problem is designed as a "breaking
in " exercise preparatory to engaging in the regular field
work qf railroad location. With the manual in hand the
duties of each position will be studied and practiced in
turn.
For example, each student will go through the following
exercise with the transit as briskly as possible: (1) set
transit over tack in hub, (2) level up, (3) set plate to zero,
(4) reverse telescope and sight on back flag, (5) release
needle, (6) phmge telescope, (7) read and record needle on
back line prolonged, \8) sight at front flag pole, (9) read
and record deflection angle right or left, (10) read and
record needle on front line, (11) lift needle, (13) plunge
telescope and check on back flag, (13) calculate needle
PKOBLEMS.
209
angle and compare with plate reading, and if checked,
shoulder transit; now repeat entire process at the same
hub, more briskly than at first, if practicable, avoiding ref-
erence to preceding record until the full series of steps is
completed.
Problem 2. Calculation* of Curve Elemen+s.
DM'n'):sl337.6^ \^ (b) By Tails I'C.
.,TandE.
, tn'go.
tan 3efo8.'s= o-seoes
•exsec jd'o8.'s=0. /Sffjff
Wf7'= eo°.S833-t-
tl'n'= 4? 2833 +
{Results to 0.0/-fti)
Msthod.
I4.07SS
776.71
109. IS
D'lff.
776.77
209.17
Indicated WorK-
Calculations.
Leng th of Curve , i. ,
I — SO' 17'
*-■" ■*V7'
'"' = ^^. = (etszS^
eo'.2»33 _,^7Z^
f6) =
2T7\^c n)r4.0739
g-gy a*.
10^7
to 38
laoo
1799
loio
Z330
ea!S33 )*.SB333
Tangent Pi'stanee . T.
(at 7-= n tan-kZ
— '337.e sx a.s8»se
=<^ff.77)
lb) r=
776.71
cH.
Titecfie) = 33as.a
^Ko'/si = 33saj_
r, fea'n'j = 33s 7. /s )^se33(S)
2998.33 776.77
3Batz o,k.
2.9983
2899
2370
776.77
776.7/
O.06
Di-f^ due to approK.
basis of method Cb),
JS9
300
External Distance , £.
-^^^^V9x'lO-^«"-3
The weights of these mean values vary inversely as the
squares of the probable errors, or in this ease the weights
are as — ^ to r-^ or as 13 to 5. The most probable value
4.0 D.o
of the angle measured with the two transits will be the
weighted mean.
Z= 34° 55' +
33X12" + 36X5"
17
= 34° 55' 33". 9
The probable error of this result from (5) since
Substituting r^'^i^-r^ we have
iJ, = ± 4. "3 VTI = ± 3".6.
214 ERRORS IN SURVEYING.
Eor other examples in the use of probable error see prob-
able error of measuring a base line, probable error of set-
ting a level target, probable error of setting a flag pole.
Angle Measurement. — The measurement of an angle re-
quires two pointings and two readings. If r^ and r., are the
probable errors of reading and pointing, respectively ; the
probable error of the measurement of an angle will from
(5) be
If i\ is the probable error of a single reading
If the value of an angle is determined by n separate meas-
urements the probable error due to reading will be
nV2
If the value of an angle is determined by measuring the
angle n times by repetition the probable error due to read-
ing will be
ni/2
It will thus be seen that the probable error due to reading
is very much reduced by measuring an angle by the method
of repetition. The errors of pointing, etc., however, make
it doubtful whether it is ever advantageous to make n ex-
ceed 5 or 6 with an engineers' transit.
Angle Adjustment. — When the three angles of a triangle
have been measured with equal care they should be adjusted
by applying one-third of the error as a correction to each
angle.
When the interior angles of a polygon having n sides
have been measured with equal care they should be adjusteJ
by applying oiic-iith of the error as a correction to each
angle.
When n — 1 angles and their sum angle at a point have
been measured with equal care they should be adjusted by
applying one-nth part of the error as a correction to each
angle.
In a quadrilateral the triie values of the angles fulfil the
following geometrical conditions : (1) the sum of the angles
of each triangle is equal to 180° plus the spherical excess
TESTS OF PEECISION. 215
(the spherical excess in seconds of arc is equal approxi-
mately to the area in square miles divided by 78) ; (2) the
computed length of any side when obtained from any other
side through two independent sets of triangles is the same
in both cases.
When the angles of a quadrilateral have been measured,
errors are certain to be present and the corrections that
satisfy one of these conditions will not satisfy the other.
The most probable values of the corrections to the angles
are then determined by the Theory of Least Squares.
TESTS OF PRECISION.
Practical Tests. — In careful surveying where blunders
are eliminated and the systematic and accidental errors are
small and under control, it is found that the magnitude of
the errors increases in close accord with the foregoing
rational basis, tliat is, as the square root of the number of
observations. The following practical tests of precision are
based on this truth.
Linear Errors. — Cumulative or systematic errors usually
increase directly as the length of the line chained, while
compensating or accidental errors vary about as the square
root of the length. While both kinds of errors afEect all
linear measurements, the former chiefly control the results
of crude and the latter of accurate chaining. It is thus
fairly consistent to express the precision of chaining in
crude work in terms of the simple ratio of the length ; but
as the chaining becomes more and more exact, the varia-
tion of the differences between duplicate measurements
approximates more and more closely to the law of square
roots.
Coefficients of precision derived from the latter relation
may be based on either 100-foot units or foot units in the
distance chained, as preferred. The former basis is used in
the chaining diagram while the latter is found in the last
paragraph of the explanatory matter on the second page
referring to the precision of traverse surveys.
The diagram of chaining errors shows chaining ratios by
right lines radiating from the origin, and the law of square
roots by means of parabolas. The coefficient of precision
for a given observed difference between duplicate chainings
is determined by inspection from the diagram, interpolat-
ing between curves if an additional decimal place is desired
in the result. In actual practice a pair of careful chain-
216 ERRORS IN SURVEY J JNU.
men may determine the coefficient corresponding to a given
degree of oare, and then vise this value either in testing
their duplicate results, or in estimating the probable uncer-
tainty of the lengths chained.
For accurate chaining with the steel tape, duplicate
measurements reduced for temperature, etc., or made under
sensibly identical conditions, should not diifer more than
0.05 foot into the square root of the distance in 100-foot
iniits. Careful work with the common chain- (estimating
fractions to 0.1 foot) should not differ more than 0.1 foot
into the square root of the distance in 100-foot units.
Angular Errors. — In measuring deflection angles by alti-
tude reversals, as in railroad traversing, there is, of course
a cumulative discrepancy due to the collimation error, but
generally speaking, careful angular measurements with
good instruments are subject only to compensating or ac-
cidental errors. Under the latter conditions the magnitude
of the error of closure in a series of angles, either in a
closed polygon or about a point, varies about as the square
root of the number of angles. This relation is indicated
graphically in the diagram of angular errors.
In measuring angles with a transit reading to the nearest
minute, the compensating uncertainty of a single reading is
probably somewhat under 0.5 minute per angle, or about
one minute for the closure of a triangle. If a reading glass
be used and the vernier reads to the nearest half minute,
the uncertainty is still further reduced.
Again, in estimating the needle reading of a compass to
the nearest 5 minutes (one-sixth part of a half-degree), the
uncertainty of reading alone is perhaps 3 minutes, although
this is increased by other conditions such as sluggishness
of needle, etc., probably causing an uncertainty of as much
as 5 minutes per angle, which later limit would produce an
error of closure of a triangle of say 10 minutes, and of a,
five-sided polygon of perhaps the same amount. (See dia-
gram.)
Traversing Errors. — The errors of traversing are made
lip of the combined errors of linear and angular measure-
ments. If the error of closure as determined from the lati-
tudes and departures is large, the work should be scanned
closely to detect blunders such as the substitution of sine
for cosine, errors of 100 feet in chaining, misplacing deci-
mal point, etc. After establishing the consistency of the
residvial errors, they should be distributed either in propor-
tion to the lengths of the several courses, as in the more
TESTS OF PRECISION.
217
THE PRECISION OF CHAINING.
10 10 ^0 40
Lcn^h of Line Chained, l, in tOO'
THE PRECISION OF ANGULAR MEASUREMENTS.
"0 5 10
Number of An^Us in PoIy^^*^ °^
IS
Series, W.
to
£5
16
21S
ERIiOES IN SURVEYING.
THE PRECISION OF TRAVERSE SURVEYS.
The error of cfosure of a traverse /'s usually expressed as the
ratio of the calculated linear error tt> the length of the perimeter of the
fie/ol or polygon. The following table shows the h'mits prescribed by
various author/ ties
PrescHbed Limits For C/osure Of Traverses
Authority.
Conditions.
Limits.
Gillespie, (lassj.
"Suri^eying,' p. 149.
Compass Surveys.
1:300 to i:iooo
A/sop. (I8S7).
Compass Surveys.
I.SOO
"Surveying" p. 199.
Transit Surveys.
i.iooo to risoo
Davi'es. (/S70>.
"Surveying" p. 137.
Farm Surveys-
i:soo to I.IOOO
Jordan. 0877).
German Gov't Surveys.
"Handbuch der
Baden Instructions.
/:400
Vermessungs-
Prussian Instructions.
1:333 to l-.IOOO
kunde;' Vol.1, p.a96.
Stviss Gov't Surveys.
Ordinary Country.
1:400 to 1:800
Mountainous Country,
i:S67 to I: S3 3
Hodgnian. OS8SJ.
"Surveying" p. 119.
Compass Surveys.
1:300 to 1:1000
Johrjson. 0886).
Farm Surveys.
i:300
"Sur veyi'ng" p. 301.
City Surveys.
1:1000 to ItSODO
Baker. * (1888).
"Engineers' Surveying
/ns trum ents" p. S3.
(See Foottiote).
(See Footnote).
Carhart. 0888).
"Surveying' p. ISI.
Ordinary Farm Surveys.
i:Soo
Level Ground.
1:1000
Rougit Ground.
1:200 to l:3O0
Average Transit Surveys.
i:i200
Wood.
(See Footnote).
(See Footnote).
(Roanoke, Va., 1692).
_' Precise Traverses wit/A
Repeated /Ingles. J
1:10 000
(Baltimore, Md-, 1394)
1:15 000 -^.04 Ft.
Raymond. (/396J.
"Surveying," p. 144.
Ordinary Farm Surveys.
nsoo
Good Farm Surveys.
1:2000
Baker derives the fortnu/a E.
= -/]
where
' d^ ~^ /2 000 000
E IS the permissible /inear error of c/osure, P the /erjgth of the
perimeter, I'd the ratio of the chaining error, and a the angular
error of closure in minutes. A thorough te^t of this formula under
a wide range of conditions proves if to be trustworthy'
However, the use of a chaining rcrtio^ /:d, presumably of fixe'd
value for the same chainmen, does not accord tv^th th& resu/ts of
experience in careful ivarHj for it is found that the differences
between duplicate chainings yary about as the square foot of the
iength of fine.
On the fo/low/n^ poge a sftnpfifred fhrmufa }s oisr^amed by as-
suming the more cot7sistent re/a/ion Just stated for fhe chaitving
errors. The resu/ts are about fhe^ame as thos^ obtained yv^ith
Batter's formuta^ and the fbmt of the express iOf> is icfejrticaf
tvith that used by iVood in the &t/titr?ore Surrey.
TESTS OF PRECISION.
219
THE PRECISION OF TRAVERSE SURVEYS.
The reasonable or perm/ssibte error of closure of a traverse
Survey may he determined by the formula derived Leiotv, provided
the errors of ff'e/d tvorft are under oorttrol and their magn/ttida
is ftnotn/n, at /east apfsroxrmarely.
Let P= length of perimeter.
L= calculated error of latitudes.
D~ calculated error of departures.
E^ actual or calculared linear error of cfoSurG offravcr^c
c = coefficient of precision of chaitring.
C = linear error of closure due to chai/ilng errors.
a= angular error of closure in miriutes.
A •= //near error of closure due fo angular errors.
Ef^ permissible or reasonable linear error of closure cfue fo
errors of chaining and angle.
In the triang/e of error the hypothenuse is y^="v/-*+D".
In Dtagram A oe/otv lvalues of Eg may he read close enough for
most cases. Diagram A may also serve as a crude grap/iical rrav~
erse table, and blunders in r/ye fie/d v^r/f may be /ocated by ir.
/n careful chaining by men of some training, the error Marie's about
as the sguare root of the distance, ff^c be the compensating error
for the unit d/sfance, f/rei? C= cifp ,
The angu/ar error of closure in careful surveys prt^ai>/y occurs
arrrong the sides in proportion to t/?eir /engths. Assuming this To be
the case, the resulting linear error is A — aP.arc !=> .OOOSaP.
In good worM the errors are snjalf in amount and egual/y
If able to be plus and minds. Hence, the probable error of c/osarc
due t-o the tirvo causes, i.e. thi> reasonali/e or pern?issib/e //near er-
ror of closure is Ep=l/A'-*-C' —^/'.OOff'SaePJ'-t-c^P
This formula may be much simp/if led by completing the sguarc
and dropping rhe negative tern? under the radical, whence vvirh
sufficient exactness, there resu/ts the genera/ formti/a
Ep^.0003af*-^ I700c^ s • • • -fl)
The very exact standard, P-^/SOOO-*:ad-ft.,used of Baltitporc,
(see table_, preceding page), may be obtained from (O by tnatdng tt
somewhat less than y- minute, and cs.oosft., these va/uas oeing
chnsistent wit/^ the fie/d vnorH of that survey.
The va/ue of c may be def-ermihed for the given ehoin/nen, or
The chaining term of (I) may be taMen as fol/otvs:~ for heat tvarf^
(c^oos-ft.), .OSft} for dverage worH (c^.OIOft.),,Zft.; for fair
worH CcK.O'SJ, ,•? ft.' and for poor nvorH (ci^.OZO), .8 ft. /n care*'
ful traverse Surveys the angle ternf a/one affords a rigid test, so that
formula (B) maybe used except vrhen a='0. Diagrcing 3 gives f£J
for the genera/ run of traverse prob/err^s.
Ep=.0003aP=.^sPg. f£,
A. Actual Error.
0* S; 10' 15* 20" IV 30" 35'
1
ifi i^
^^p
1
1
1
B. Permissible Error.
Sse Formula (2)
rpgro
8 9 10
Error of Deporture, O.
tDOO SOW 3000 4000 5000 6000 7000 6000 9000 now
Length of Perimeter. /? Feet (or LinKsJ
220
EREORS IN SURVEYING.
THE PRECISION OF LEVEL CIRCUITS.
(For Good Average Practice.)
when the length of the level circuit is known in lOO-ft stations,
or when merely the number of settings of the Instrument and the approx-
imate average distarjce covered per setting are hnown, the following
modlficatiofjs of the preceding lest are valuable.
Let £= maximum permissible error of closure of level circuit.
M = length of level circuit it) miles.
L= lOD-ft. stations.
L'~ approximate average tdisfartce covered per setting
of the instrument in WO-ff: staflotis.
5 = number of instrumental settings in the circuit
f^or ^ood average worH with the engmeers' level
E = 0.05ft?fM
from which E = 0.007 fhl/L
and E = 0.007 fffES
Substituting for 100 -ft. average sights, L'=8, E = O.OISS ft.VJ
. 350— ■ - L'=7, E=O0lBZft.TlS
• 300-- • ■ 11=6, E= 0.0163 fi.iS
■ SSO- ■ ■ L=S, E=0.0IS4ft.l/S
For a very rapid approximate check under ordirtary conditions, it may
be assumed that E^O.OlftYS. A graphical representation of these
formulas is given belorv.
Permissible Error of Closure of Level Circuits
For Careful WorK with a Good Engineers' Level.
Length of Circuit Given In Miles (Upper Curye); Or in
the Number of Insfromental Settings fMialc/le Group of
Curves); or in 100-Foot Units (Lower Carre in Diagram^.
Length of Level Circuit, M, Miles.
5 10 15 20
035
0.30
iJo.JS
1 0.20
S0.I5
J 0.00
30
40
«
10
Length of
EO 30
Level Circuit, L,
50
i
:
; : :; ::
-M M ;;;::;-;;
:
:
:: :^
::: :
:
:^
\
:
1 ^lili j ;[ iiMj|:j
y
1
1
::
llllllmlllllliraaairfiliTtiJITfflTlilUI^
%
&
ilMIIMtHi 1 111 1
'.
::
;:g
II
lHjiLUiliJIll liWfi|Hr*Ki
-U-U-
■ ■
i: ;Ji ■ ■■■■■■■■ fflB
1
\ ; : :::-
0.35
0.25
40 50 60 70 80 90 100
100-Foot 5tation5; or Number of Level Seftinq5,5-
TESTS OF PRECISION.
221
THE PRECISION OF LEVEL CIRCUITS.
The precision of spirit leveling is expressed by the formula
Error of Closure =s Constant 1/ Length of Circuit
In the fallonlnj summary of practice in representative surveys of
The United States^ E is the majrimum limit of error of closure of a
level circuit having a length of K kilometers or M miles.
Precision of Leveling in Representative Surveys.
MAXIMUM PERMISSIBLfi ERROR OF CLOSURE,
Metric Unifi British Units.
Coefficient to Coefficient to nearest
nearest mm. O.OOIft. OiOlft.
E=3mm?/K'=0.0ISftiM =0.om.'iM
E= imm?/si<= 0.018 ft.iM\
Mississippi Piver Commission. (Ml). E= imm'SER-= 0.018 ft.T/M V= O.oiftiM
Mississippi Kiver Com'nlBefore 1890. E= 5mm:>flf = O.OSI ff.W)
United States Coast Survey. E= Smm^lZK = 0.0^9 ff.l/M -O.OiftM
United States Lake Survey E=IOmm?[K = 0.012^.^^ =O.O^ft.iM
Vnlted States Geological Survey. E= O.OSO ft.T/M = 0.05 ft.iM
A simple practical test of the degree of precision attained in spirit
leveling is found In the last column of the above table. This graduated
scale of precision is given below graphically for distances to ten miles.
NAME OF SURVEY.
Chicaijo Sanitary District.
Missouri River Commission.
Precision Diagram for Level Circuits.
I 2 3 4
Length (f Level Circuit M, Miles>
222 EEEORS IN SUEVEYING.
common usage, or in the proportion of the respective lati-
tudes and departures, as would seem to be more consistent.
If the several courses have not been surveyed with like
precision, weights should be assigned in distributing the
errors. Absurd refinement should be avoided in making
the distribution of errors.
Leveling Errors. — Perhaps in no phase of surveying
measurements is it more clearly established that accidental
errors follow the law of square roots than in careful level-
ing. The precision diagrams are based on best current
usage.
CHAPTER X.
METHODS OF COMPUTING.
Introduction. — To no one is the ability to make calcula-
tions accurately and rapidly of more value than to the engi-
neer. Many fail to appreciate the value of rapid methods
of calculation, and have no conception of the amount of
time that can be saved by the skillful use of arithmetic,
logarithms, reckoning tables and computing machines.
In the field the engineer has to depend upon the ordinary
methods of arithmetic, or a table of logarithms for his
results. The use of these aids should therefore receive
special attention, for the engineer cannot afford to lose the
time of his assistants while he makes unnecessary or ex-
tended computations.
In the ofBce tables of squares, reckoning tables, slide
rules and computing machines can be used in many cases
with profit.
Consistent Accuracy. — It is safe to say that at least one-
third of the time expended in making computations is
wasted in trying to attain a higher degree of precision than
the nature of the work requires.
In making arithmetical computations where decimals are
involved it is a common practice to carry the result out to
its farthest limit and then drop a few figures at random.
In using logarithms time and labor are lost by using
tables that are more extensive than the data will warrant.
The relative amount of work In using four, five', six and
seven-place tables is about as 1, 2, 3 and 4. Besides the
extra labor involved, the computer has u, result that is
liable to give him an erroneous idea of the accuracy of his
work.
In making computations, in general, calculate the result
to one more place than it is desired to retain.
If several numbers are multiplied or divided, a given
percentage of error in any one of them will produce the
same percentage of error in the result.
223
224 METHODS OP COMPUTING.
In taking the mean of a series of quantities it is consist-
ent to retain one more place than is retained in the quan-
tities themselves.
In direct multiplication or division retain four places of
significant figures in every factor for an accuracy of about
one per cent ; retain five places of significant figures in
every factor for an accuracy of about one-tenth of one per
cent.
LOGAEITHMIC CALCULATIONS.
Iiogarithm Tables. — Logarithm tables contain the deci-
mal part of the logarithm called the mantissa, the integral
part called the characteristic is supplied by the computer.
Four-place tables give the mantissa to four decimal
places of numbers from 1 to 999, and by interpolation give
the mantissa of numbers from 1 to 9,999. Four-place log-
arithms should be used where four significant figures are
sufficient, and should not be xised where an accuracy
greater than one-half of one per cent is required.
Five-place tables give the mantissa to five decimal places
of numbers from 1 to 9,999, and by interpolation give the
mantissa of numbers from 1 to 99,999. Five-place loga-
rithms should be used where five significant figures are
sufficient, and should not be used where an accuracy greater
than one-twentieth of one per cent is required. Five-place
tables are sufficiently accurate for most engineering work.
Six-place tables give the mantissa to six decimal places
of numbers from 1 to 9,999, and by interpolation give the
mantissa of numbers from 1 to 99,999, the same as the five-
place tables. Six-place tables give practically no gain in
precision over fi.ve-place tables since the same numbers of
significant figures are given in both tables, and in addition
the labor of using a six- instead of a five-place table is
about as 3 to 2, due to interpolation with larger diffier-
ences. For the above reasons five-place tables have been
selected for use in this book as being the most suitable
tables for use in surveying.
Seven-place tables give the mantissa to seven decimal
places of numbers from 1 to 99,999, and by interpolation
of numbers from 1 to 999,999. Seven place tables are
rarely needed in engineering work, except in triangulation
work where the angles are measured by repetition.
ARITH^iIETICAL CALCULATIONS. 225
AEITHMETICAL CALCULATIONS.
Requirements. — To become a rapid computer the follow-
ing requirements are essential :
(1) A good memory for retaining certain standard num.-
bers for reference.
(3) The power of performing the ordinary simple arith-
metical operations of multiplication, division, etc., on num-
bers with facility, quickness and accuracy.
(3) The power of registration, i. e., of keeping a string
of numbers in the mind and working accurately upon them.
(4) The power of devising instantly the best method of
performing a complicated problem as regards facility,
quickness and certainty.
It is obvious that all do not have the ability to become
rapid computers, but even these can become fairly skillful
by constant practice and perseverance. The ordinary pro-
cesses of arithmetic should be performed with numbers in
all possible positions. No more figures should be put down
than necessary, and all operations should be performed
mentally whenever possible. In the mental part the results
should alone be stated, much time being lost by repeating
each separate figure.
Checks. — In order to check his work the computer should
keep the following well known properties of numbers well
fixed in his mind :
(1). The sum or difference of two even or of two odd
numbers is even.
(3) The sum or difference of an even and odd number is
odd.
(3) The product of two even numbers is even.
(4) The product of two odd numbers is odd.
(5) The product of an even number and an odd number
is even.
(6) Checking results by the familiar operation of east-
ing out the 9's depends upon the following properties of
numbers :
(a) A number divided by 9 leaves the same remainder
as the sum of the digits divided by 9. For example :
4384 -H 9 = 487 -|- 1
(4-t-3H-8-l-4)^9 = 3-Fl
(7)) The excess of 9's in the product equals the excess of
9's in the product of the excesses of the factors.
226 ilETHODS OF COMPUTING.
473,295 Excess = 3
4,235 Excess = 5
15 Excess = 6
2,004,404,325 Excess =
Check
(e) The excess of 9's in the dividend equals the excess
of 9's in the product of the excesses in tlie di%'isor and quo-
tient, plxis the excess in the remainder :
56)2443 Excess in divisor ^2
43 -)- 35 Excess in quotient = 7
Excess in remainder := 8
Excess in (2 X 7 + 8) =41
Excess in dividend —4j-^'^eck
(7) Results should be checked by taking aliquot parts
wherever possible, and by performing the operations in
inverse order or performing inverse operations. Computa-
tions performed by means of logarithms should be checked
by making the computations roughly by means of arith-
metic. Tlie prohahility of error should be recognized and
precaution fallen, to verify results.
ADBITIOUr. — Since the eye is accustomed to pass from
left to right time can be saved, where the cohimns are not
too long, by adding in the same way. The device of in-
creasing or diminishing the numbers to make them mul-
tiples of ten and then subtracting or adding to the result
is very convenient, especially where several columns are
added at one time.
Ex. 1. — 96
47 143
212 69
32
87 331
49
380
The mental work in detail is as follows :
100 + 47 = 147 ; 147 — 4 = 143 ; 143 + 70 =: 213 ; 213 — 1 ^
212; 212 + 30 + 90 = 332; 332 — 1 = 331; 331 + 50 = 381;
381 — 1=:380.
Expert accountants use the method of adding columns
in groups of 10, 20, 30, etc., small figures, indicating the
mimlier of the group, being placed along the column at in-
tervals depending upon the computer. This method is well
MULTIPLICATION. 227
adapted to the addition of long columns where one is liable
to be called away from his work. The progress of the
work being then shown by the number of the group, plus
the excess.
MULTIPLICATIOUr. — In order to make the best use of
the methods given, the computer should have perfect com-
mand of the multiplication table as far as 20 at least.
(1) When the tens differ by unity and the sum of the
units equals 10, numbers may be multiplied by the follow-
ing rule : Prom the squares of the tens of the larger number
subtract the square of the units of the larger number.
For the numbers may be represented by (a -\- i) and
(a — 6), and the product will be (a + 6) {a — 6)^o^ — 6^
E.T. i.— (93 X87)=90= — 3= =8,100 — 9 = 8,091.
(3) The product of composite numbers is best obtained
mentally by resolving them into their factors and taking
the products of the factors.
ESB. 2.— 26 X 36 = 9 X 13X 8 — 936.
Ex.3.— 48 X24=(24)^X 3 = 1,152.
Multiples of 10. — To multiply by some number which is
a factor of 10 or some multiple of 10, for example: Multi-
ply
CIO"
A by B, where B = — —
a
Annex n ciphers to A, multiply by C and divide by d.
Ex. i.— 4,324 X 625 = 4,334 ^ =(4,324,000 X 5)-H 8
= 3,702,500.
Ex. 2.-7,924 X 25 = 792,400 H- 4 = 198,100.
Squaring Small Numbers. — Numbers may be squared
mentally by the following rule : Add to or subtract from
one factor enough to make its units figure zero. Subtract
from or add to the other factor tne same amount. Multiply
together this sum and difEerence, and to the product add
the square of the amount by which the factors were in-
creased or diminished.
Proof.— a^ — B^=(a-f6)(a— 6)
a= = (a + 6)((i — 6)+6'.
Ex. i.— (76) = = (73X80) + 4- = 5,776.
228 METHODS OF COMPUTING.
Ex. 2.— (137) = = (124 X 130) + 3^ = 16,139.
Ex. S.— ( 61/i) ^ = ( 6 X 6%) + (1/4) ^ = 39%e-
Ex. J,.— (61^)^ = (6 X 7) + (1^)^ = 421/4.
Ex.5.— (7.5)^ = (7x8) + (-5)' = 56.25.
It will be seen that the process is very simple where the
units place Is 5.
(3) Having- the square of any number the square of the
number next higher is obtained by the following rule : To
the known square add the number and the next higher and
the result will be the square of the next higher number.
Ex.6.— (25)^=635. (26)^ = 635 + 35 + 36 = 676.
(3) A very close approximation to the square of a quan-
tity which is very near unity is obtained by adding algebra-
ically two times the difference between the quantity and
unity to the quantity.
Proof. — (1 + 6)''= 1 + 36 + 6^ = 1 + 26, (approximate).
Ex. 7.— (1.05) = = 1 + 2(1.05 — 1)=1+ 10=110.
Ex. 8.— (.94)^=1 — 2(1 — .94)=1 — .12= 88.
E.r. 9.— (2.034) = = 2=(1 + 2 X .017)= 4(1.034)= 4.136.
Cross-Multiplication. — This consists in taking the prod-
uct of each digit in the multiplicand by each digit in the
multiplier and taking the sums, products of the same de-
nomination being determined thus : units X units gives
units ; tens X units and units X tens gives tens ; units X
hundreds, tens X tens and hundreds X units give hundreds
etc. All products are added mentally, only the final result
being put down.
Ex. i.— (2,347) = = 5,508,409 the final result being all that
it is necessary to write down. The mental work is as
follows, the figures in heavy t pe being figures in the prod-
uct ; 7X7 = 49; 4 + 2(7X4)=60; 6 + 2(7X3) + 4= =
64; 6 + 3(3 X 7)+3(3 X 4)=58; 5 + 3(2 X 4) + 3= = 30;
3 + 2(3 X 2)= 15; 1 + 3==5.
Ex. 2. — The product of any two numbers may be found
in the same manner.
9,433
3,583
24,362,856
CEOSS-MULTIPLICATION. 229
The mental work is as follows :3X2 = 6;3X3 + 8X2
:=:25; 3 + 3X4 + 8X3 + 5X2 = 48; 4 + 3X9 + 8X4
+ 5X3 + 2X3 = 82; 8 + 8X9 + 5X4 + 3X3 = 106;
10 + 5X9 + 3X4 = 63; 6 + 2X9 = 34.
Ear.. 3. — The process of cross-multiplication may be sim-
plified as follows : Eequired to multiply 4,338 by 736 ; write
the multiplier on a slip of paper in inverse order and place
it below the multiplicand with the left hand figure below
the units place of the multiplicand thus :
IMultiply together the figures in the same vertical column
6 X 8 ^ 48 ; set down the 8 and carry the 4 ; then move the
slip one space to the left thus :
4,338
I ^37"!
8
Multiplying together the figures in the same vertical col-
umns and taking the sum, 4 + 6X2 + 3 X8 = 40; set
down the and carry the 4 ; then move the slip one space
to the left, multiplying together the figures in the same
vertical columns, adding, etc., we will finally have the work
standing thus :
4,338
I 637 I
3,185,408
Removing the slip we have
4,328
736
3,185,408
The multiplier may be written on the bottom of a sheet
in inverse order and placed above the multiplicand instead
as above described. The work, however, is very much
simplified by simply writing the multiplier in inverse order
without using the slip :
4,328
637
3,185,408
230 ilETHODS OF GOAli'UTlJNCi.
The mental work being as follows : 6X8^ 48; 4 + 6X
3 + 3X8 = 40; 4 + 6X3 + 3X3 + 7X8 =84 ; 8 + 6 X
4+3X3+7X3 = 55 ;5 + 3X4 + 7X3 =38 ; 3 + 7 X 4
= 31. It will be seen that this device removes most of the
mental strain, there being no cross-products.
CONTBACTED MULTIPLICATION.— In multiplying
decimals, when the product is required to a few places of
decimals, the work may be shortened as follows : Kequired
a product correct to the nth decimal place. Write the multi-
plier with its figures in reverse order, its units place under
the nth decimal place of the multiplicand. Multiply the
multiplicand by the figures in the multiplier, beginning
with the right hand figure ; rejecting those figures in the
multiplicand which are to the right of the figure used as a
multiplier, increasing each product by as many units as
would have been carried from the rejected part of the mul-
tiplicand, taking the nearest unit in each case ; place the
right hand figure of each partial product in the same col-
umn, and add as in common multiplication.
In most cases it is best to compute one more place than
required. The following examples illustrate the process :
Ex. 1. — The radius of a circle is 420.17 ft. What is its
semicircumference to nearest 0.01 ft.? (vr^S. 14159265.)
In the work below the partial products in the contracted
multiplication are seen to correspond to the partials of the
common method, taken in reverse order, the part to the
right of the vertical line being rejected. The contracted
multiplication is carried one more place than required. A
dot is j)laced above each figure when it is rejected from the
multiplicand.
4 2 0.1 7 O 4 3 0.1 7
5 6 2 9 5 1 4 1.3 S.1 4 1 5 9 3
!«0510 112 6051
42017 37 8153
16807 210|0 85
4 2 4 2 017
210 16 8 6 8
3 8 4 2 17
1 126051 I
1 3 2 0.0 O 3 1 3 2 0.0 3|1 3 8 1
Ex. 2. — The observed length of a line is 2231.63 ft. with
a tape having a length of 100.018 ft. Required the reduced
length of the line to the nearest 0.01 ft.
CONTKACTED DIVISION. 231
Noting that each foot of the tape = 1.00018 ft.
2 2 3 1.6 3 2 2 3 1.6 3
8 1 0.1 1.0 1 8
223163 1785304
22 223163
18 - 223163000
2 2 3 2.0 3 2 2 3 2.0 3|1 6 9 3 4
Ex. 3. — Same observed length with a tape 99.982 ft. long.
Required the reduced length.
Each foot of the tape = 0.99983 =(1 — 0.00018) ft.
2 2 3 1.6 3
8 10 0.0-
22
18
— 0.4
2 3 3 1.6 3
0.9 9 8 3
4 4 6 3 2 6
1785304
200S467
2008467
2008467
2 2 3 1.2 3
223 1.2 283066
Ex. Jt. — To compare contracted multiplication with log-
arithmic work, calculate 861.3 ft. X sin 17° 19' to the
nearest 0.1 ft.
log. 8 6 1.3 = 2.9 3 5 1 5
log. sin 17° 19' = 9.4 7 3 7 1
log. (2 5 6.4) =2.4 8 8 6
2 5 6.4
CONTBACTED DIVISION.— If the quotient is desired
correct to the nth decimal place, the following method may
be used : Find one-half of the desired figures in the quotient
in the usual way and do not bring down a figure for the
last remainder. Drop a figure from the right of the divisor
and find another figure in the quotient. Then without
bringing down any more figiires continue to discard figures
from the divisor until the required places are obtained.
Ex 1. — Divide 443.9425 by 24.311 to nearest hundredth.
There will be four figures in the quotient, so we will find
8 6 1.3
5 6 7 9 2.0
1723
776
60
5
232 METHODS OF COMPUTING.
the first two in the ordinary way. A dot is placed over
each figure in the divisor when it is rejected.
2 4.3 2 ) 4 4 3.9 4 2 5 ( 1 8.2 5
2432
20074
10456
618
486
132
122
10
Divisor Near Unity. — '\A'hen the divisor is near unity a
very close approximation is given by the method shown in
the following problems :
EJ!. i.— , „„^. ,, = 5(1 — .003554)= 5 X .996746 = 4.98373
1.003204
correct to within one unit in the fifth place.
E^- 2.— -^=7(1+(1 — .9982))=7 X 1.0018 = 7.0126
correct to the last place.
CONTBACTED SQTTAIIE ROOT. — A result correct to a
required number of decimal places may be found by a
process similar to the method employed for contracted divi-
sion.
Ex. 1. — Required the square root of 12,598.87325 correct
to thousandths. We see by inspection that the root will
contain six figures. Find in the ordinary way the first
three figures. Form a new trial divisor in the usual way,
1 2 5 » S.S 7 3 2 5 ( 1 1 2.2 4 5
1
21)35
21
222 ) 498
444
224)548
448
100
89
11
11
CONTRACTED SQUARE ROOT. 233
and bring down only one figure for the dividend in place of
two. Eind the remaining figures by contracted division.
The last figure brought down is not increased whatever it
may be followed by, since the contracted process tends to
make the result a little too large. This method may be ap-
plied to the extraction of cube roots, where it saves much
work in finding long trial divisors.
Square Koot of Small Numbers. — The approximate
square roots of small numbers may be found by means of
the following rule : Divide the given number by the number
whose square is nearest the given number. The arith-
metical mean of the quotient and divisor will be the ap-
proximate square root of the number. The nearer the
number is to a perfect square the less the error. For
example,
Ex. i.— V~35=(35/g -I- 6) -=- 3 = 5.93.
Ex. 2.— V~8=(% + 3)-=-3 = 3.83.
Ex 3.— V"^ =(7% -1-9)-:- 2 = 8.89.
Ex. 4.— V128=(12%i + ll)-=-3n=11.31.
Square B.oot by Subtraction. — ^While it possesses no
points of merit in this connection, it would not be proper to
pass the subject of square root without presenting the novel
method of extracting square roots used with the Thomas
Computing machine. The method depends upon the rela-
tion existing between odd numbers and squares in the sys-
tem of numbers having a radix ten. If we sum up the odd
numbers, beginning at 1, we will observe the following
relation :
1 = 1=; 1-1- 3 = 4 = 3=; 1-1- 3 -I- 5 = 9 = 3^; 1 -1-3 -f-S-f- 7
= 16 = 4", etc. It will be seen that the square root of the
sum in each case is the number of the group.
The method of extracting square roots is as follows :
Point off in periods of two figures each. Subtract from
the left hand period the odd numbers in order, beginning
at unity, until a remainder is obtained less than the next
odd number. Write for the first figure in the root the
number which represents the number of subtractions made.
Double the root already found and annex unity. Subtract
as before, using for subtrahends the successive odd num-
bers, the root figure being the number of subtractions
made.
234 METHODS OF COMPUTING.
Ex. 1. — Extract the square root of 53,824.
r. 3834(232
_1
4
3 2 Hiibtractinns.
41)138
41
97
43
54
4 5 3 subtractions.
401)924
461
463
4 6 3 ... 2 subtractions.
RECKONING TABLES. — Tables for use in computing
are so numerous and well known that it would be useless
to try to refer to them by name. Two valuable tables for
obtaining products of numbers — which are well known in
Germany, but comparatively unknown in this country — are,
'■ Crelle's Eechentafeln," which gives the products of num-
bers of three significant figures by three significant figures
to 999 by 999 ; and " Zimmerman's Eechentafeln," which
gives the products of numbers of two places of significant
figures by numbers of three significant figures to 100 by
999. .
COMPUTING MACHINES.— In Fig. 40, (a) is a Kutt-
ner reckoning machine ; (b) a Thomas computing machine ;
(c) a Fuller slide rule; (d) a Thacher slide rule; (e) an
ordinary slide rule; (f) a Colby Stadia slide rule; (g) a
Colby sewer slide rule; (h) a Grant calciilating machine;
(i) a full circle protractor; (j) a Crozet protractor; (k) a
protractor tee square ; (1) a polar planimeter ; (m) a " jack
knife "' planimeter ; (n) a pantagraph ; (o) a, section liner ;
(p) a spherical planimeter.
In using the " jack knife " planimeter, the point is placed
at the center of gravity, and the knife edge is placed on a
line passing through the center of gravity of the figure.
The point is then made to traverse the perimeter of the
figure to be measured ; passing out to the perimeter and
returning to the center of gravity of the figure on the same
line. The distance from the final position of the knife edge
to the line through the center of gravity, multiplied by the
COMPUTING INSTRUMENTS.
ra)
235
236 METHODS OF COMPUTING.
length of the arm of the planimeter will give the area of
the figure. The arm of the planimeter is usually made ten
inches long and the distance measured in inches.
The correct area may be obtained by means of the hatchet
planimeter, without using the center of gravity of the
figure, as follows: (1) Draw a tangent to the figure. (2)
Trace the figure with the point starting with the hatchet on
the tangent and the point at the point of tangency. (3)
Trace the figure as before except that the point is to move
around in the opposite direction. (4) The arithmetical
mean of the two areas will be the true area. That this
method is correct can be easily proved by the student.
The other machines are described in the instructions ac-
companying them when purchased.
CHAPTER XI.
TOPOGRAPHIC DRAWING AND LETTERING.
LETTERING. — A magnified scale is used in the first six
plates to giFB familiarity with form of letter and numeral,
and also to produce freedom of hand motion. The six
plates should first be made with a soft pencil sharpened
to a needle point, and afterward with pen and india ink. In
Plate 7 the height of letter is that prescribed in Chapter I.
This standard size is not only well adapted to field notes
and general drafting, but is economical of execution.
The student should train the eye and acquire a " swing " of
the hand by industrious practice in such exercises as the fol-
lowing: (1) Pass a line freehand through two points; first
sketch in the line roughly by a free swing of the forearm ;
then partially erase and retrace ; finally test result with
ruler. (2) Pass a circular arc through three points free-
hand; follow sketch method just described and, after per-
fecting the arc, sketch in the chords and locate the center
freehand; test result mechanically. (3) Inscribe a circle
in a square. (4) Inscribe an ellipse in a rectangle. (5)
Inscribe an ellipse in an oblique parallelogram. (In the
last three exercises give particular attention to points and
lines of tangency and axes of symmetry.) After making
the line or figure satisfactorily with pencil, it should be
executed freehand in India ink.
Practice should include spacing of letters and words, and
for this purpose it is suggested that the student use the
" specifications for a good engineer " following the preface.
The student should not be content until he can make
letters freehand so well that a close inspection is required
to determine that they were not made mechanically.
Freehand Titles. — Good freehand titles suffice for most
drawings. In a good title consistent emphasis is given to
the several parts, and the title as a whole accords with the
purpose and character of the drawing. Elaborate and or-
namental titles have a limited application, and should not
be attempted at all unless the draftsman has special skill
237
238 TOPOGltiU'HIC DKAWING AND LETTEEING.
FKEE HAND LETTEIUNG.
239
240 TOPOGKAPHIC DRAWING AND LETTERING.
FKEE HAND LETTERING. 241
3^:
iiiiiiii
lllllll
iiiiiiii
iliiiliB
iliUliil
17
242 TOPOGEAPHIC DEAWING AND LETTERING.
s
i
-5^1
m
m
||
li^i
I
I
I
w
I
i^^
H
m
m
m
m
FKEE HAND LETTERING. 243
244 TOPOGRAPHIC DEAWING AJSfD LETTERING.
/
/
/
/
7
/
1
/
/
c [ 3 /
1
1
7 -'
1
/
/
TECzztmr
II H
1
Ml
)()
P
^
■i
/
//
7 7
1
/
IM^UtEJl'Bi
IK
/
fHI
10
P
K
'i
/
^
X
^^ ^^
/
/
TELfTEMlL
IK
//
Ml
i()
^t^
H
•i
//
WY
/
/
_
^
cLinU'E.^'niii
j-kt
f
fr,i
ITt
77
7
I'
""f
r
77
V
7
^ 1
1
/
]_
/
zAaH^^TfE^T-
T't
t
ih(
777
77
?7
-J-'
T
t
TT"
'/
/
J
whTLU-EJEirELTi
frK
7
-rr);/
) 1)
77
f?/
r
77
t
W^
r
""
-L d d
T^
/
y
.(
t^jit'Bznt
()\
/
f-
u
^
^
1
H
9
/;
rV
/
/
/
I
JZZlfEET^R
()\
f
/'
^4
6^
IH
,y
^
/
/
-
-
!
SBLDIEEHI
,IK
\
Mr
\{)
P
(^
K
S
1
11
V
SEEDIEEII
IK
\
Ml
\{)
P
Q
i
S
1
w
y
1
5:3i:dei5hi
IK
\
Ml
10
F
(^
{
s
1
Y
7
— -1-
—
h: icdEtqin
T"^
T
THT
1
TT
n
r
"S-
T:
TT
T
—
,r
1
nJJnBsJiqSi
--\
T
TTl
1
TT
n
r
"=T
t
TT
■^r
—
\
zzi'icdErqiin:
T"t^
T
m 1
n
T7"
"n
rr"
^
t
W
V
—
i
1
;
115251122
()<\
\
'(
'A
s
b
»
^
h
135255155
\\h
\
'( '
^4
b
f)
(
H
4
h
T
115255125
{)h
1
'( '
4
b
h
/
«
<)
.
DRAWING PENS.
245
in sueli work. In designing titles, whether freehand or
mechanical, skill in sketching in the outlines, guide lines,
axes of symmetry, etc., is of much importance. On the
following pages are a few examples of good titles.
W
Ei
1
^
I
:s
a
s
z
DBA WING PENS. — The following pens, arranged in
order of fineness, will give sufficient variety for ordinary
work.
Gillott's 170, very fine, for very small lettering.
Gillott's 303, extra fine, for small lettering.
Gillott's 404, fine, for small lettering.
Hunt 21, medium, for ordinary lettering.
Hunt 513, Shot Point, for ordinary lettering.
Leonardt 510, E. E. Ball Point, for large lettering and
titles.
Hunt 513, Round Point, for large lettering and titles.
Leonardt 516, E. E. Ball Point, for large lettering and
titles.
Leonardt 516 E., Ball Point, for very large lettering and
titles.
Payzant Pens, K. & E. Co., Nos. 6, 5, 4, 3, 2, 1, for titles.
The following rules should be observed in making letters
on drawings free hand.
Use the quill in inking the pen.
Never dip the pen in the ink bottle.
Keep the pen clean.
Ink must not be allowed to dry on the pen and spread the
points.
Before rising a new pen moisten the points and wipe it
dry to insure a free flow of ink.
TOPOGRAPHIC SYMBOLS.— The standard symbols for
topographic drawings adopted by the American Railway
Engineering Association are given on pages 248 to 351.
246 TOPOGRAPHIC DEAWING AND LETTERING.
Right-of-way Map
liEwYoRK AMD Denver R.R.
Shahion 551+55 to Station 54Z+75
Scale lin.=400 Ft. January 3, 1915
Of Fice 0? ChieF Engineer
Denver,Colorado.
Right°of=Way Map
NewYork and Denver RR
station 351+55 to Station 511+10
Scale 1 in =400 ft. January 30,1915
Office oF Chief Engineer
Denuer, Colorado.
•(oPOGRAPH/c Map
OFTHE
City OF Boulder,Colorado
Surveyed by the
Class in Topographic Surveying
University of Colorado
First Semester I9I4-I?
Scale lin= 500 Ft.
MAP TITLES DRAWING AND LETTEKING. 247
Right-of-WayMap
flEWYORKAMDDEflVERR.R.
Station 55k55 to Station 54^+75
ScaielinrMFL January3J9i5
' Office of Chief fnqineer
Denver, Coiorado.
RmihitofWay Map
New YORK& Denver KK
St a tion 33U55 to Station 511 f 10
Scatelin-rdOOft. January 1,1915
Office of Chief Engineer
Denver, Colorado.
lojjographic Map
ClTYOFBOULDER,COLORADO
teucrsifg of (Hofora^o
¥ir$f0'tmtshr 1914-15
JcaU iMrSQOfJt.
248 TOPOGRAPHIC DRAWING AND LETTERING.
HVDROfeRAPHY.
Stream
Springs and Sinks
Lakes and Ponds
Falls and Rapids
Water Line
Marsh
Canals
Ditches
Contour System
Sand
Cliffs
Cut
Embanhment
Top of Slope
Bottom of Slope
Name
Relief.
tuiiuiiijiiiiiiKliiuir:
uuuimuiuiiiiiifiiii.
TOPOGRAPHIC SYMBOLS. 249
-■^Railways (Topographical Maps.)
Steam t — i — i — t-n — i — i — i — i — i — i
Electric i i i i i i i i i i i
Street Railways mimi »■ i
« Railway Tracks (Track Maps.)
Railway Track or Old Track to Remain —
Old Track to he Taken up rz^-jin^-.^-.^-.^z
Proposed Tracks —
Proposed (Future) Tracks ~-:rz^z^rz^rL:n^rz
_ . -^ , Color o ther than Reef or
Foreign Tracks ~
■^ dloc/i with Initials of Road
Alinement rj"^^^^*^^^ I
12" ■ Left- )
4'C.R. Z'C.L
Boundary and Survey Lines.
( Political Divisions -, State, County Bethel T wp.-w.v ne Co.,Mich.
1 or Township Lines. pS^Tw7^TOcl!>d"
J Government Surveys, Base, Meridian, sec i6.t. i zn.,r. i e..5"' pm^
"l Township,6ection or Harbor Line 5eoi3.T iiTT^ifir^p'M
Street, Block or other Property Line
Survey Lines -^ 4^^
-' Location
oenrer l ineb if Monumented, Show Location
and Proper Symbol
Company Property Line
_ State Kind and Height
Fence (on Street Line ) ' ■ ' ■ '-
_ , - -, , , State Hind and Height
Fence (on Company Property Line) ■■ ' ■ •_--.-.
5H For Railway Trach and Yard Stvdiei Use
Single or Double Linei^
18
250 TOPOGRAPHIC DRAWING AND LETTERING.
City
!□□□□□!
Village
■ Jr 1
• ir>
City Lim
its
k^;^f^/^;^3;^3i
Fire Limits
\Ica}A/,/\£^Aa7\.£ZU.
Section
Corner
17 1 16
20 1 11
Section Center —-.^q.^-
Triangulafion Station or Transit Point A
Bench l^arl< B.M.Xl23H
Stone Monument u
Iron /Monument ■
Ml
SCELLANEOUS.
Pole Wire Lines
Railway Tunnel
Dimension Lines
'ndicaieNcofWim ^Ownership
-^ — f — r
=^
^^
~Blas,U
True and
Magnetic l^eridian
I Graphic
'■^ CO let/
50' 100
TOPOGRAPHIC SYMBOLS. 251
Culverts, Sewers, etc.
Masonry Arch or Flat Top Culvert \v.V.'.Z'.'~S~~"^
„. .,, I n V- , ^^ . JSrafe Kind and Lengihjjnd,
Pipe or Wood Boj! Culvert or Dram \:-~:r---r::.:.":\
'^ ' Kind af Walls, If any.) '
Catch Basin D'
C.B.
Manhole -p-
M. M
Sump Qsump
Water Supply and Pipe Lines.
Give /f-v
Water Tank o.STS^C^"'-^-
OiveSite
Water Column o 1
Track Pan u-uo-uoaxxaj
Company Water Pipe 'Give'Siie
Other Water Pipe ->-*->-->-->->-»-->->->-*->
^, r Oive Size
Steam or Oas - —
Give Size
Compreaed Air <■-■• ■■ •' '■-' ' •
Highways and Crossings.
Pub/ic and Mam Roada 7-/
Private and Secondary Roads
Trails
Street and Public Road Crossings - // //'
Pnvate Road Crossing //
Bridges.
Girder ^
Truss ^—
Trestle . )— 1— ' i
SURVEYING MANUAL
PAKT II
FIELB AND OFFICE TABLES FOB TTSE IN
SURVEYING.
BY
WILLIAM D. PENCE
AND
MILO S. KETCHUM
Table 1. Logarithms of Numbers.
Table 2. Logarithmic Functions of Angles.
Table 3. Natural Functions of Angles.
Table 4. Squares, Cubes, Square Roots, Cube Roots and
Circles.
Table 5. Trigonometric Functions.
Explanation of Tables.
The authors wish to thank the J. B. Lippincott Company
for the use of Tables 1 and 2 taken from Suplee's " Five
Place Logarithms," and Table 3 taken from Suplee's " Me-
chanical Engineers' Reference Book " ; and the McGraw-
Hill Book Company for the use of Tables 4 and 5, taken
from Harger and Bonney's " Highway Engineers' Hand-
book."
All of the above tables are fully protected by copyright.
253
254
LOGARITHMS OF NUMBERS.
Table 1.
N
um.
100 to
139.
Log
. 000 to
145.
N
L
0,
1
2
3
4
5
6
7
8 9
P. P.
100
00
000
043
087
130
173
217
260
303
346 389
44
43
101
432
475
518
661
604
647
689
732
776 817
1
2
4.4
8.8
4.3
8.6
102
860
903
945
988 *030
*072 *1]5 *157 *199 *242
103
01
284
326
368
410
462
494
536
578
620 662
3
13.2
12.9
104
703
745
787
828
870
912
953
995 *086 *078
4
5
17.6
22.0
17.2
21.5
105
02
119
160
202
243
284
325
366
407
449 490
6
7
8
26.4
30.8
85.2
25.8
30.1
34.4
106
531
572
612
663
694
735
776
816
857 898
107
938
979 *019 *060 *100
*141 *181 *222 *262 *302
9
89.6
38.7
108
03
342
383
423
463
503
543
583
623
663 703
42
41
109
743
782
822
862
902
941
981 *021 *060*100
110
04
139
179
218
258
297
336
376
416
454 493
1
2
4.2
8.4
4.1
8.2
111
532
571
610
660
689
727
766
805
844 883
3
12.6
12.3
112
922
961
999 *038 *077
*115 *154 *192 *231 *269
4
5
6
16.8
21.0
26.2
16.4
20.5
24.6
113
05
308
346
385
423
461
500
538
576
614 652
114
06
690
070
729
108
767
145
806
183
843
221
881
258
918
296
956
333
994 *032
371 408
7
8
9
29.4
33.6
37.8
28.7
32.8
36.9
116
446
483
521
558
595
633
670
707
744 781
Jf\ tn
117
819
856
893
930
967
*004 *041 *078 *115 *151
4U
ov
118
07
188
225
262
298
835
372
408
415
482 518
1
4.0
3.9
119
555
591
628
664
700
787
773
809
846 882
2
3
8.0.
12.0
7.8
117
120
121
08
918
279
954
314
990 *027 *063
350 386 422
*099 *135
468 493
*171 *207 *243
529 565 600
4
5
6
16.0
20.0
24.0
16.6
19.5
23 4
122
636
672
707
743
778
814
849
884
920 955
7
28.0
27.3
123
991 *026 *061 *096 *132
*167 *202 *237 *272 *307
8
32.0
36.0
31.2
124
09
342
377
412
447
482
517
662
587
621 656
9
86.1
125
691
726
760
795
830
864
899
934
968 *003
38
37
126
10
037
072
106
140
176
209
243
278
812 346
1
3.8
3.7
127
380
415
449
483
617
551
585
619
653 687
2
7.6
7.4
128
721
755
789
823
857
890
924
968
992 *025
3
4
11.4
15.2
11.1
14.8
129
130
11
059
391
093
428
126
461
160
494
193
528
227
561
261
594
294
628
827 361
661 694
5
6
7
19.0
22.8
26.6
18.5
22.2
25.9
131
727
760
793
826
860
893
926
959
992 *024
8
30.4
29.6
132
12
057
090
123
166
189
222
254
287
320 352
9
34.2
33.3
133
385
418
450
483
516
548
581
613
646 678
36
35
134
710
743
775
808
840
872
905
937
969 *001
1
3 6
3.5
135
136
13
033
354
066
386
098
418
130
450
162
481
194
613
226
545
268
577
290 822
609 640
2
3
4
7!2
10.8
14 4
7!o
10.5
14
137
672
704
735
767
799
830
862
893
925 956
5
18.0
17.5
138
988 *019 *051 *082 *1U
*146 *176 *208 *239 »270
6
21.6
21.0
139
14
301
333
364
396
426
467
489
520
551 582
7
8
25.2
28.8
24.5
28.0
140
613
644
675
706
737
768
799
829
860 891
9
32.4
31.5
N
L
1
2
3
4
5
6
7
8 9
P. P.
Table 1.
LOGAEITHMS OF NUMBERS.
255
Num. 140 to 179. Log. 146 to 255.
N
L
1
2
3
4
5
6
7 8 9
P. P.
140
14 613
644
675
706
737
768
799
829 860 891
34
33
141
922
953
983 *014 *045 1
*076 *106 *137 *168 *198
1
2
3.4
6.8
3.3
6.6
142
15 229
259
290
320
351
381
412
442 473 503
143
534
564
594
625
655
685
715
746 776 806
3
10.2
9.9
144
836
866
897
927
957
987 *017 *047 *077 *107'
4
6
13.6
17.0
13.2
16.5
145
16 137
167
197
227
256
286
316
346 376 406
6
7
8
20.4
23.8
27.2
19.8
23.1
26.4
146
4S5
465
495
524
554
684
613
643 673 702
147
732
761
791
820
860
879
909
938 967 997
9
30.6
29.7
118
17 026
056
085
114
143
173
202
231 260 289
32
31
149
319
348
377
406
435
464
493
522 551 580
150
609
638
667
696
725
754
782
811 840 869
1
2
3.2
6.4
3.1
6.2
151
898
926
955
984 *013
*041 *070 *099 *127 *156
3
9.6
9.3
152
18 184
213
241
270
298
327
355
384 412 441
4
5
6
12.8
16.0
19.2
12.4
15.5
18.6
153
469
498
526
554
583
611
639
667 696 724
154
752
780
808
837
865
893
921
949 977 *005
7
8
22.4
26.6
21.7
24.8
155
19 033
061
089
U7
145
173
201
229 267 285
9
28.8
27.9
156
312
340
368
396
424
451
479
507 535 562
30
29
157
590
618
645
673
700
728
758
783 811 838
158
866
893
921
948
976
*003 *030 *058 *085 *112
1
3.0
2.9
159
20 140
167
194
222
249
276
303
330 358 385
2
3
6.0
9.0
5.8
8.7
160
412
439
466
493
520
548
675
602 629 656
4
5
6
12.0
15.0
18.0
11.6
14.5
161
683
710
737
763
790
817
844
871 898 926
17^4
162
952
978 *005 *032 *059
*086 *112 *139 *165 *192
7
21.0
20.3
163
21 219
245
272
299
325
352
378
405 431 458
8
9
24.0
27.0
23.2
26.1
164
484
511
537
564
590
617
643
669 696 722
165
748
775
801
827
854
880
906
932 958 986
28
27
166
22 Oil
037
063
089
115
141
167
194 220 246
1
2.8
2.7
167
272
298
324
350
376
401
427
453 479 505
2
3
5.6
8 4
5.4
8 1
168
531
557
583
608
634
660
686
712 737 763
4
ll!2
io!8
169
789
814
840
.866
891
917
943
968 994 *019
5
6
14.0
16.8
13.5
16.2
170
23 045
070
096
121
147
172
198
223 249 274
7
19.6
18.9
171
172
300
553
325
578
350
603
376
629
401
654
426
679
452
704
477 502 528
729 754 779
8
9
22.4
25.2
21.6
24.3
173
805
830
865
880
905
930
955
980 *005 *030
26
25
174
24 055
080
105
130
155
180
204
229 254 279
1
2.6
2.5
175
304
329
353
378
403
428
462
477 602 527
2
3
5.2
7.8
5.0
7 5
176
551
576
601
625
650
674
699
724 748 773
4
io!4
io!o
177
797
822
846
871
895
920
944
969 993 *018
5
13.0
12.5
178
25 042
066
091
115
139
164
188
212 237 261.
6
7
15.6
18 2
15.0
17.5
179
285
310
334
358
382
406
431
455 479 503
8
20.8
20.0
180
527
551
575
600
624
648
672
696 720 744
9
23.4
22.5
N
L
1
2
3
4
5
6
7 8 9 1 P. P.
256
LOGAKTTHMS OF Nx^T^rp.ERS.
Table 1.
Num.
180 to 219.
Log.
255 to 342.
N
L
1
2
3
4
S
6
7 8 9
P. P.
ISO
25 527
551
575
600
624
648
672
696 720 744
24
181
768
792
816
840
864
888
912
935 959 983
1
2.4 ■
182
26 007
031
055
079
102
126
150
174 198 221
2
4.8
183
245
269
293
316
340
364
387
411 435 458
3
7.2
184
482
505
529
553
576
600
623
647 670 694
4
5
9.6
12.0
185
717
741
764
788
811
834
858
881 905 928
6
7
14.4
16 8
186
951
975
988 *021 *045
*068 *091 *114 *138 *161
8
19 2
187
27 184
207
231
254
277
300
323
346 370 393
9
21.6
188
410
439
462
485
508
531
554
57Z, 600 623
23
189
646
669
692
715
738
761
784
807 830 852
IPO
875
898
921
944
967
989 *012 *035 *058 *081
1
2
4.6
191
28 103
126
149
171
194
217
240
262 285 307
3
6.9
192
330
353
375
398
421
443
466
488 511 533
4
5
9.2
11.5
193
556
578
601
6'23
616
668
691
713 735 758
6
13!8
194
780
803
825
847
870
892
914
937 959 981
7
8
16.1
18.4
195
29 003
026
048
070
092
115
137
169 181 203
9
20.7
196
226
248
270
292
314
336
358
380 403 425
22
197
447
469
491
513
535
557
579
601 623 045
198
667
688
710
732
7.51
776
798
820 842 863
1
2.2
199
885
907
929
951
973
994 *016 *038 *060 *081
2
3
4.4
6.6
200
30 103
125
146
168
190
211
233
265 276 298
4
5
8.8
11.0
201
320
811
363
384
406
428
449
471 49? 514
6
13^2
202
535
557
578
600
621
643
664
685 707 728
7
15.4
203
750
771
792
814
835
856
878
899 920 942
8
g
17.6
19.8
204
963
984 *006 *027 *048
*069 *091 *112 *133 *154
205
31 175
197
218
239
260
281
302
323 346 366
Zl
206
387
408
429
450
471
492
613
534 555 576
1
2.1
207
597
618
639
660
681
702
723
744 765 785
2
3
4.2
6.3
208
806
827
848
869
890
911
931
952 973 994
4
8!*
209
32 015
035
056
077
098
118
139
160 181 201
6
6
10.5
12.6
210
222
243
263
2K4
305
325
346
366 387 408
7
14.7
211
428
449
469
490
510
531
552
572 593 613
8
9
16.8
18.9
212
634
664
675
695
715
736
756
777 797 818
213
838
858
879
899
919
940
960
980 *001 *021
20
19
214
33 041
062
082
102
122
143
163
183 203 224
1
2.0
1.9
215
24-1
264
284
304
325
345
365
385 405 425
2
3
4
4.0
6.0
8.0
3.8
5.7
7.6
216
445
465
486
506
626
546
566
586 606 626
217
646
666
686
706
726
746
766
786 806 826
5 1
0.0
9.5
218
846
866
885.
905
925
945
965
985 *005 *025
6 1
7 1
8 1
2.0
4.0
6.0
11.4
13 3
15.2
219
34 044
064
084
104
124
143
163
183 203 223
220
212
262
282
301
321
341
361
380 400 420
9 1
8.0
17.1
N
L
1
2
3
4
S
6
7 8 9
P. P.
Table 1.
LOGARITHMS OF JNUMBiiKa.
vn
Num. 220 to 259. Log. 342 to 414.
N
L
1
2
3
4
5 6 7 8 9
P. P.
220
34 242
262
282
301
321
341 361 380 400 420
221
439
459
479
498
518
537 657 677 596 616
20
222
635
655
674
694
713
733 753 772 792 811
1
2.0
223
830
850
869
889
908
928 947 967 986 *005
2
4.0
224
35 025
044
061
083
102
122 141 160 180 199
3
4
6.0
8.0
225
218
238
^7
276
295
315 334 353 372 392
5
6
10.0
12
226
411
430
449
468
488
607 526 545 564 583
7
iiio
227
603
622
■641
660
679
698 717 736 755 774
8
16.0
228
793
813
832
851
870
889 908 927 946 985
9
18.0
229
984 *003 *021 *04D *D59
*078 *097 *116 *135 *154
230
36 173
192
211
229
248
267 286 305 324 342
19
231
361
380
399
418
436
455 474 493 611 530
232
519
568
586
605
624
642 661 680 698 717
1
1.9
233
736
754
773
791
810
829 847 866 884 903
2
3
4
3.8
5.7
7.6
234
922
940
959
977
996
*014 *033 *051 *070 *088
235
37 107
125
144
162
181
199 218 236 254 273
5
6
9.5
11.4
236
291
310
328
316
365
383 401 420 438 457
7
13.3
237
475
493
511
530
548
566 585 603 621 639
8
9
15.2
17.1
238
658
676
694
712
731
749 767 786 803 822
239
840
858
876
894
912
931 949 967 985 *003
240
38 021
039
057
076
093
112 130 148 166 184
241
202
220
238
266
274
292 310 328 346 364
•
18
242
382
399
417
435
453
471 489 507 525 543
243
561
578
596
614
632
650 668 686 703 721
1
1.8
214
739
757
775
792
810
828 846 863 881 899
2
3
3.6
5.4
245
917
934
952
970
987
*005 *023 *041 *058 *076
1
5
7.2
9
246
39 094
111
129
146
161
182 199 217 235 262
6
io!8
247
270
287
305
322
340
358 375 393 410 428
7
12.6
248
445
463
480
498
515
533 650 668 685 602
8
9
14,4
Ifl 9.
249
620
637
655
672
690
707 724 742 759 777
250
794
811
829
846
863
881 898 915 933 960
251
967
985 *002 *019 *037
*064 *071 *088 *106 *123
262
40 140
157
175
192
209
226 243 261 278 295
253
312
329
346
361
381
398 415 432 449 466
17
254
483
600
518
535
652
569 586 603 620 637
1
1.7
255
654
671
688
705
722
739 756 773 790 807
2
3
3,4
5.1
266
824
841
858
875
892
909 926 943 960 976
4
6.8
257
993 *010 *027 *044 *061
*078 *095 *111 *128 *145
5
6
7
8.5
10.2
11.9
258
41 162
179
196
212
229
246 263 280 296 313
259
260
330
497
347
514
363
531
380
547
397
564
414 430 447 464 481
581 597 614 631 647
8
9
13.6
15.3
N
L
1
2
3
4
S 6 7 8 9
P. P.
258
LOGARITHMS OP NUMBEliS.
Table 1.
Num
260 to 299.
Log. 414 to 476.
N
L
1
2
3
4
5 6 7 8 9
P. P.
260
41 497
514
531
547
564
581 697 614 031 047
261
604
681
697
714
731
747 764 780 797 814
262
830
847
863
880
896
913 929 946 963 979
263
996 *012 *029 *045 *002
*078 *095 *111 *127 144
264
42 100
177
193
210
226
243 259 275 292 308
17
205
325
341
367
374
390
406 423 439 455 472
1 1 "7
260
488
504
521
537
653
570 580 602 619 635
2
3.4
207
651
667
684
700
716
732 749 766 781 797
3
5.1
208
813
830
846
862
878
894 911 927 943 959
4
6
6
6.8
8.5
10.2
269
975
991 *008 *024 *040
*056 *072 *088 *1(M *120
270
43 136
152
169
185
201
217 233 249 265 281
7
8
11.9
13.6
271
297
313
329
345
361
377 393 409 425 441
9
15.3
272
457
473
489
505
521
637 553 509 584 600
273
616
632
648
664
680
696 712 727 743 769
274
775
791
807
823
838
854 870 886 902 917
275
933
949
965
981
996
*012 *028 *044 *059 *075
270
44 091
107
122
138
154
170 185 201 217 232
16
277
248
264
279
295
311
326 342 358 373 389
278
404
420
436
451
467
483 498 514 529 545
1
1.6
279
560
576
592
607
623
638 654 669 685 700
2
3
3.2
4.8
280
7}6
731
747
762
778
793 809 824 840 855
4
5
6
6.4
8.0
9.6
281
871
886
902
917
932
948 963 979 994 *010
282
43 025
040
056
071
086
102 117 133 148 163
7
11.2
283
179
194
209
225
240
255 271 286 301 317
8
9
12.8
14.4
284
332
347
362
378
393
408 423 439 454 469
285
484
500
515
530
545
561 576 591 606 621
280
637
652
667
682
697
712 728 743 758 773
287
788
803
818
834
849
864 879 894 909 924
288
939
954
969
984 *000
*015 *030 *045 *060 *075
289
40 090
105
120
135
150
166 180 195 210 226
15
290
240
255
270
286
300
315 330 345 359 374
1
1.5
291
389
404
419
434
419
464 479 494 609 523
2
3
4
3.0
4.5
6.0
292
538
553
508
683
598
613 627 642 667 672
293
687
702
716
731
716
761 776 790 805 820
5
7.5
294
835
850
864
879
894
909 923 938 953 967
6
7
9.0
10.6
295
982
997 *012 *020 *041
*066 *070 *086 *100 *114
8
9
12.0
13.5
296
47 129
144
159
173
188
202 217 232 246 261
297
276
290
305
319
334
349 363 378 392 407
298
422
430
451
465
480
494 609 624 538 553
299
567
582
596
611
625
640 654 669 683 698
300
712
727
741
756
770
784 799 813 828 842
N
L
1
2
3
4
S 6 7 8 9
P. P.
Table 1.
LOGARITHMS OF NUMBERS.
259
Num. 300 to 339. Log. 477 to 531.
1
8
P. P.
47 712 727 741 756 770
857 871 885 900 914
48 001 015 029 044 058
144 159 173 187 202
287 302 316 330 344
430 444 458 473 487
572 586 601 615 629
714 728 742 756 770
855 869 883 897 911
996 *010 *024 *038 *052
49 136 150 164 178 192
276 290 304 318 332
415 429 443 457 471
•554 568 582 596 610
693 707 721 734 748
831 845 859 872 886
969 98? 996 *010 *024
50 106 120 133 147 161
243 256 270 284 297
379 393 406 420 433
515 529 542 556 569
651 664 678 691 705
786 799 813 826 840
920 934 947 961 974
51 055 068 081 095 108
188 202 216 228 242
322 335 348 362 375
455 468 481 495 508
587 601 614 627 640
720 733 746 759 772
851 865 878 891 904
983 996 *009 *022 *035
52 114 127 140 153 166
244 257 270 284 297
375 388 401 414 427
504 617 530 543 556
634 647 660 673 686
763 776 789 802 815
892 905 917 930 943
53 020 033 046 058 071
148 161 173 186 199
784 799 813 828 842
929 943 958 972 986
073 087 101 116 130
216 230 244 259 273
359 373 387 401 416
501 515 530 544 558
643 657 671 686 700
785 799 813 827 841
926 940 964 968 982
*066 *080 *094 *108 *122
206 220 234 248 262
346 360 374 388 402
486 499 513 527 541
624 638 651 665 679
762 776 790 803 817
900 914 927 941 965
*037 *051 *066 *079 *092
174 188 202 215 229
311 326 338 362 365
447 461 474 488 501
583 596 610 623 637
718 732 746 759 772
853 866 880 893 907
987 *001 *014 *028 *041
121 136 148 162 175
255 268 282 295 308
388 402 415 428 441
521 534 548 561 574
654 667 680 693 706
786 799 812 825 838
917 930 943 957 970
*048 *a61 *075 *088 *101
179 192 205 218 231
310 323 336 349 362
440 463 466 479 492
569 582 595 608 621
699 711 724 737 750
827 840 853 866 879
956 969 982 994 *007
084 097 110 122 135
212 224 237 250 263
P. P.
260
LOGARITHMS OF NUMBERS.
Table l.
Num
340 to 379.
Log
531
to
579.
N
L
1
2
3
4
5
6
7
8 9
p. p.
340
63 148
161
173
186
199
212
224
237
250 203
311
275
2XS
301
314
326
339
352
364
377 390
312
403
415
428
441
453
400
479
491
504 517
313
529
542
555
667
580
593
605
618
631 643
344
656
668
081
694
706
719
732
744
757 769
13
345
782
794
807
820
832
845
857
870
882 895
1
2
1.3
2.6
340
908
920
933
945
958
970
983
995 *008 *020
347
54 033
046
058
070
083
095
108
120
133 145
3
3.9
348
158
170
183
195
208
220
233
245
258 270
4
5
5.2
6 5
349
283
295
307
320
332
345
357
370
:«2 394
7^8
350
407
419
432
444
456
469
481
494
506 518
7
8
9.1
10.4
361
531
543
555
568
580
593
605
617
630 042
9
11.7
352
654
667
679
691
704
716
728
741
753 765
353
777
790
802
814
827
839
851
804
876 888
354
900
913
925
937
949
902
974
986
998 *011
365
55 023
036
047
060
072
084
096
108
121 133
356
145
157
169
182
194
206
218
230
242 255
12
367
267
279
291
303
315
328
340
352
364 376
358
388
400
413
425
437
449
401
473
485 497
1
1.2
359
509
522
534
546
558
570
582
594
606 618
2
3
2.4
3.0
360
630
642
654
666
678
691
703
715
727 739
4
5
6
4.8
6.0
7.2
361
761
763
775
787
799
811
823
835
847 859
362
871
883
895
907
919
931
943
955
967 979
7
8.4
363
991 *003 *015 *027 *038
*050 *062
*074 *080 *098
8
9
9.6
10.8
3G4
56 110
122
134
146
158
170
182
194
205 217
365
229
241
253
265
277
289
301
312
324 336
366
348
360
372
384
396
407
419
431
443 465
367
467
478
490
502
514
526
538
549
601 673
368
585
597
608
620
632
044
056
667
679 691
369
703
714
726
738
750
761
773
785
797 808
11
370
820
832
844
855
807
879
891
902
914 920
1
1.1
371
937
949
961
972
984
990 *008 *019 *031 *043
2
3
2.2
3.3
4.4
372
57 054
066
078
089
101
113
124
130
148 159
4
373
171
183
194
200
217
229
241
252
264 276
6
5.5
374
287
299
310
322
334
345
367
308
380 392
6
7
0.0
7.7
375
403
415
426
438
449
401
473
484
196 507
8
9
8.8
9.9
376
519
530
512
553
5(,5
570
,688
000
Oil 623
377
634
646
057
669
080
692
703
715
726 738
378
749
761
772
784
795
807
818
830
841 852
379
864
875
887
898
910
921
933
944
955 967
380
978
990 »001 *013 *0a4
*035 *047 *058 TO70 *081
N
L
i
2
3
4
S
6
7
8 9
P. P.
Table 1.
LOGARITHMS OF NUMBERS.
2111
Num.
380 to 419.
Log.
579 to 623.
N
L
1
2
3
4
S
6
7
8 9
P. P.
380
67 978
990 *001 *013 *024
*035 *047 *058 *070 *081
381
58 092
104
115
127
188
149
161
173
184 196
382
206
218
229
240
252
263
274
286
297 309.
383
320
331
343
354
365
377
388
399
410 422
384
433
444
456
467
478
490
501
612
524 535
1 1
385
546
557
569
580
591
602
614
625
636 647
386
659
670
681
692
704
715
726
737
749 760
1 ■* ■*
2
1.1
2.2
387
771
782
794
805
816
827
838
860
861 872
3
3.3
388
883
894
906
917
928
939
950
961
973 984
4
6
6
4.4
6.5
6.6
389
995 *006 *017 *028 *040
*051 *062 *073 *084 *095
390
59 106
118
129
140
151
162
173
184
196 207
7
8
7.7
8.8
391
218
229
240
251
262
273
284
295
306 318
9
9.9
392
329
340
351
362
,373
384
395
406
417 428
393
439
450
461
472
483
494
606
517
628 539
394
550
561
572
583
594
605
616
627
638 649
395
660
671
682
693
704
715
726
787
748 759
396
770
780
791
802
813
824
835
846
857 868
10
397
879
890
901
912
923
934
945
956
966 977
398
988
999 *010 *021 *032
*043 *054 *066 *076 *086
1
1.0
399
60 097
108
119
130
141
152
163
173
184 195
2
3
2.0
3.0
400
206
217
228
239
249
260
271
282
293 304
4
6
6
4.0
6.0
6.0
401
314
325
336
347
358
369
379
390.
401 412
402
423
433
444
455
466
477
487
498
809 520
7
7.0
403
531
541
552
563
574
584
595
606
617 627
8
9
8.0
9.0
404
638
649
660
670
681
692
703
713
724 735
405
746
756
767
778
788
799
810
821
831 842
406
853
863
874
885
895
906
917
927
938 949
407
959
970
981
991 *002
*013 *023 *034 *045 *055
408
61 066
077
087
098
109
119
130
140
151 162
409
172
183
194
204
215
225
236
247
257 268
410
278
289
300
310
321
331
342
352
363 374
411
384
395
405
416
426
437
448
458
469 479
412
490
500
511
521
532
512
563
563
574 584
413
595
606
616
627
637
648
658
669
679 690
414
700
711
721
731
742
752
763
773
784 794
415
805
815
826
836
847
857
868
878
888 899
416
909
920
930
941
951
962
972
982
993 *003
417
62 014
024
034
045
055
066
076
086
097 107
418
118
128
138
149
169
170
180
190
201 211
419
221
232
242
262
263
273
284
294
304 315
420
325
335
346
356
366
377
387
397
408 418
N
L
1
2
3
4
S
6
7
8 9
P. P.
262
LOGARITHMS OF NUMBERS.
Table 1.
Num
. 420 to 459.
Log
. 623 to 662.
N
L
1
2
3
4
S
6 7 8 9
P. P.
420
62 325
335
346
356
366
377
387 397 408 418
421
428
439
449
459
469
480
490 500 511 521
422
531
542
552
562
572
583
593 603 613 624
423
634
644
655
665
675
685
696 706 716 726
424
737
747
757
767
778
788
798 808 818 829
425
839
849
859
870
880
890
900 910 921 931
426
941
951
961
972
982
992 *002 *012 *022 *033
427
63 043
053
063
073
083
094
104 114 124 134
428
144
155
165
175
185
195
205 215 225 236
10
429
246
256
266
276
286
296
306 317 327 337
430
347
357
367
377
387
397
407 417 428 438
1 ' '
2
1.0
2.0
431
448
458
468
478
488
498
508 518 528 538
3
3.0
432
548
558
568
579
589
599
609 619 629 639
4
5
6
4.0
5.0
6.0
433
649
659
669
679
689
699
709 719 729 739
434
435
749
849
759
859
769
869
779
879
789
889
799
899
809 819 829 839
909 919 929 939
7
8
9
7.0
8.0
9.0
436
949
959
969
979
988
998 *008 *018 *028 *038
437
64 048
058
068
078
088
098
108 118 128 137
438
147
157
167
177
187
197
207 217 227 237
439
246
256
266
276
286
296
306 316 326 335
440
345
355
365
375
385
395
404 414 424 434
441
444
454
464
473
483
498
503 513 523 532
442
512
552
562
572
582
591
601 611 621 631
443
640
650
660
670
680
689
699 709 719 729
444
738
748
758
768
777
787
797 807 816 826
445
836
846
856
865
875
885
895 904 914 924
9
446
933
943
953
963
972
982
992 *002 *011 *021
1
0.9
447
65 031
040
050
060
070
079
089 099 108 118
2
3
4
1.8
2.7
3.6
448
128
137
147
157
167
176
186 196 205 215
449
4S0
225
321
234
331
244
341
254
350
263
360
273
369
283 292 302 312
379 389 398 408
5
6
7
4.5
6.4
6.3
451
418
427
437
447
456
466
475 485 495 504
8
9
7.2
8.1
452
514
523
533
543
552
562
571 581 591 600
453
610
619
629
639
648
.658
667 677 686 696
454
706
715
725
734
744
753
763 772 782 792
455
801
811
820
830
839
849
868 868 877 887
456
896
906
916
925
935
944
954 963 973 982
457
992 *001 *011 *020 *030
*039 *049 *058 *068 *077
458
66 087
096
106
115
124
134
143 153 162 172
459
181
191
200
210
219
229
238 247 257 266
460
276
285
295
304
314
323
332 342 351 361
N
L
i
2
3
4
S
6 7 8 9
P. P.
Table 1.
LOGARITHMS OF NUMBERS.
263
Num
460 to 499.
Log.
662 to 698.
N
L
1
2
3
4
5
6
7 8 9
P. P.
460
66 276
285
295
304
314
323
332
342 351 361
461
370
380
389
398
408
417
427
436 445 455
462
464
474
483
492
502
511
521
530 539 549
463
558
567
577
586
596
605
614
624 633 642
464
652
661
671
680
689
699
708
717 727 736
465
745
755
764
773
783
792
801
811 820 829
466
839
848
857
867
876
885
894
904 913 922
467
932
941
950
960
969
978
987
997 *006 *015
468
67 025
034
043
052
062
071
080
089 099 108
10
469
117
127
136
145
154
164
173
182 191 201
470
210
219
228
237
247
256
265
274 284 293
1
2
1.0
2.0
471
302
311
321
330
339
348
357
367 376 385
3
3.0
472
394
403
413
422
431
440
449
459 468 477
4
5
6
4.0
5.0
6.0
473
486
495
504
514
523
532
511
550 560 569
474
475
578
669
587
679
596
688
605
697
614
706
624
715
633
724
642 651 660
733 742 752
7
8
9
7.0
8.0
9.0
476
761
770
779
788
797
806
815
825 834 843
477
852
861
870
879
888
897
906
916 925 934
478
943
952
961
970
979
988
997 *006 *015 *024
479
68 034
043
052
061
070
079
088
097 106 115
480
124
133
142
151
160
169
178
187 196 205
481
215
224
233
242
251
260
269
278 287 296
482
305
314
323
332
341
350
359
368 377 386
483
395
404
413
422
431
440
449
458 467 476
484
485
494
502
511
520
529
538
547 556 565
485
574
683
592
601
610
619
628
637 646 655
9
486
664
673
681
690
699
708
717
726 735 744
1
0.9
487
753
762
771
780
789
797
806
815 824 833
2
3
4
1.8
2.7
3.6
488
842
851
860
869
878
886
895
904 913 922
489
490
931
69 020
-7108
940
028
949
037
958
046
966
055
975
064
984
073
993 *002 *011
082 090 099
5
6
7
4.5
5.4
6.3
491
117
126
135
144
152
162
170 179 188
8
9
7.2
8.1
492
197
205
214
223
232
241
249
268 267 276
493
285
294
302
311
320
329
338
346 366 364
494
373
381
390
399
408
417
425
434 443 452
495
461
469
478
487
496
504
513
522 531 539
496
548
557
566
574
583
592
601
609 618 627
497
636
644
653
662
671
679
688
697 705 714
498
723
732
740
749
758
767
775
784 793 801
'
499
810
819
827
836
845
854
862
871 880 888
SCO
897
906
914
923
932
940
949
958 966 975
N
L
1
2
3
4
5
6
7 8 9
P. P.
264
LOGARITHMS OF NUMBERS.
Table 1.
Num
. 500 to 539.
Lo^
. 698 to 732.
N
L
1
2
3
4
5
6
7
8 9
P. P.
soo
69 897
906
914
922
932
940
949
958
966 975
501
984
992 *001 *010 *018
*027 *036 *044 *053 *062
502
70 070
079
088
096
105
114
122
131
140 148
503
157
165
174
183
191
200
209
217
226 234
504
243
252
260
269
278
286
295
303
312 321
505
329
338
346
355
361
372
381
389
398 406
506
415
424
432
441
449
458
467
475
484 492
507
501
509
518
526
535
544
552
561
569 578
508
^586
595
603
612
621
629
638
646
655 663
9
509
' 672
680
689
697
706
714
723
731
740 749
510
757
766
774
783
791
800
808
817
825 834
1
2
0.9
1.8
511
842
851
859
868
876
885
893
902
910 919
3
2.7
512
927
935
944
952
961
969
978
986
995 *003
4
5
6
3.6
4.5
5.4
513
71 012
020
029
037
046
054
063
071
079 088
511
515
096
181
105
189
113
198
122
206
130
214
139
223
147
231
155
240
164 172
248 257
7
8
9
6.3
7.2
8.1
516
265
273
282
290
299
307
315
324
332 341
517
349
357
366
374
383
391
399
408
416 4'25
518
433
441
450
458
466
475
483
492
500 508
519
517
525
533
542
550
559
567
575
584 592
520
600
609
617
625
634
642
650
659
667 675
521
684
692
700
709
717
725
734
742
750 759
522
767
775
784
792
800
809
817
825
834 842
623
850
858
867
875
883
892
900
908
917 925
521
933
941
950
958
966
975
983
991
999 *008
525
72 016
0'24
032
041
049
057
066
074
082 090
8
526
099
107
115
123
132
140
148
156
165 173
1
0.8
527
181
189
198
206
214
222
230
239
247 265
2
3
4
1.6
2.4
3.2
528
263
272
280
288
296
304
313
321
329 337
529
530
346
428
351
436
362
444
370
452
378
460
387
469
395
477
403
485
411 419
'493 501
5
6
7
4.0
4.8
6.6
531
509
518
526
534
542
550
558
567
575 583
8
9
6.4
7.2
532
591
599
607
616
624
632
640
648
656 665
533
673
681
689
697
705
713
722
730
738 746
534
754
762
770
779
787
795
803
811
819 827
535
835
843
852
860
868
876
884
892
900 908
536
916
925
933
941
949
957
965
973
981 989
537
997 *006 *0U *D22 *030
*038 *046 *054
062 *070
538
73 078
086
094
102
HI
119
127
135
143 151
539
159
167
175
183
191
199
207
215
223 231
540
239
247
255
263
272
280
288
296
304 312
N
L
1
2
3
4
5
6
7
8 9
P. P.
Table 1.
LOGARITHMS OF NUMBEKS.
265
Num. 540 to 579. Log. 732 to 763.
N
L
1
2
3
4
5 6 7 8 9
P.
P.
540
73 239
247
255
263
272
280 288 296 304 312
541
^20
328
336
344
352
360 368 376 384 392
542
400
408
416
424
432
440 448 456 464 472
543
480
488
496
504
512
520 528 536 544 552
544
560
568
576
584
592
600 608 616 624 632
545
640
648
656
664
672
679 687 695 703 711
546
719
727
785
743
751
759 767 775 783 791
547
799
807
815
823
830
838 846 854 862 870
548
878
886
894
902
910
918 926 933 941 949
8
-549
957
965
973
981
989
997 *005 *013 *020 *028
550
74 036
044
052
060
068
076 084 092 099 107
1
2
0.8
1.6
551
115
123
131
139
147
155 162 170 178 186
3
2.4
552
194
202
210
218
225
233 241 249 257 265
4
5
6
3.2
4.0
4.8
553
273
280
288
296
304
312 320 327 335 343
554
555
351
429
359
437
367
445
374
453
382
461
390 398 406 414 421
468 476 484, 492 600
7
8
9
5.6
6.4
7.2
556
507
515
523
531
539
547 554 562 570 578
557
586
593
601
609
617
024 632 610 648 656
558
663
671
679
687
695
702 710 718 726 733
559
741
749
757
764
772
780 788 796 803 811
560
819
827
834
842
850
858 865 873 881 889
561
896
904
912
920
927
935 943 950 958 966
562
974
981
989
997 *005
*012 *020 *028 *035 *043
563
75 051
059
066
074
082
089 097 105 113 120
564
128
136
143
151
159
166 174 182 189 197
565
205
213
220
228
236
243 251 259 266 274
7
566
282
289
297
305
312
320 328 335 343 351
1
0.7
567
358
366
374
381
389
397 404 412 420 427
2
3
4
1.4
2.1
2.8
568
435
442
450
458
465
473 481 488 496 504
569
511
519
526
534
542
549 557 565 572 580
5
6
7
3.5
4.2
4,9
570
587
595
603
610
618
626 633 641 648 656
571
664
671
679
686
694
702 709 717 724 732
8
9
5.6
6.3
572
740
747
755
762
770
778 785 793 800 808
573
815
823
831
838
846
853 861 868 876 884
574
891
899
906
914
921
929 937 944 952 959
575
967
974
982
989
997
*005 •012 *020 *027 *035
576
76 042
050
057
065
072
080 087 095 103 110
577
-118
125
133
140
148
155 163 170 178 185
578
193
200
208
215
223
230 238 245 253 260
579
268
275
283
290
298
305 313 320 328 335
580
343
350
358
365
373
380 388 395 403 410
N
L
J
2
3
4
5 6 7 8 9
P.
P.
266
liOGAEITHMS OP NUMBERS.
Table 1.
Num. 580 to 619. Log;. 763 to 792.
N
L
1
2
3
4
S
6
7
8 9
P. P.
580
76 343
360
358
365
373
380
388
395
403 410
8
581
418
425
433
440
448
455
462
470
477 485
1
2
0.8
1.5
582
492
500
507
515
523
530
537
545
552 659
583
567
574
582
589
697
604
612
619
626 634
3
2.4
684
641
649
666
664
671
678
686
693
701 708
4
5
3.2
4
585
716
723
730
738
745
753
760
768
775 782
6
7
8
4.8
5.6
6.4
686
790
797
805
812
819
827
834
842
849 856
587
864
871
879
886
893
901
908
916
923 930
9
7.2
688
938
945
963
960
967
975
982
989
997 *004
589
77 012
019
026
034
041
048
056
063
070 078
590
085
093
100
107
115
122
129
137
144 151
591
159
166
173
181
188
196
203
210
217 226
592
232
240
247
264
262
269
276
283
291 298
593
305
313
320
327
335
342
349
367
364 371
594
379
386
393
401
408
415
422
430
437 444
595
452
469
466
474
481
488
495
503
610 517
596
525
532
539
646
654
561
568
576
583 590
697
697
605
612
619
627
634
641
648
656 663
7
598
670
677
685
692
699
706
714
721
728 735
599
743
760
767
76i
772
779
786
793
801 808
1
2
0.7
1.4
600
815
822
830
837
844
861
859
866
873 880
3
4
5
2!l
2.8
3.6
601
887
895
902
909
916
924
931
988
946 952
602
960
967
974
981
988
996 *003 *010 *017 *025
6
4.2
603
78 032
039
046
053
061
068
075
082
089 097
7
4.9
604
104
111
118
125
132
140
147
154
161 168
8
9
5.6
6.3
606
176
183
190
197
204
211
219
226
233 240
606
247
254
262
269
276
283
290
297
305 312
607
319
326
333
340
347
355
362
369
376 383
608
390
398
405
412
419
,426
433
440
447 456
609
462
469
476
483
490
497
504
512
519 626
610
633
540
647
554
561
669
576
583
690 597
611
604
611
618
626
633
640
647
654
661 668
612
675
682
689
696
704
711
718
725
732 739
613
746
753
760
767
774
781
789
796
802 810
614
817
824
831
838
845
852
859
866
873 880
015
888
895
902
909
916
923
930
937
944 951
616
958
965
972
979
986
993 *000 *007 *014 *021
617
79 029
036
043
060
057
064
071
078
085 092
618
099
106
113
120
127
134
141
148
155 162
619
169
176
183
190
197
204
211
218
226 232
620
239
246
253
260
267
274
281
288
295 302
N
L
1
2
3
4
5
6
7
8 9
P. P.
Table 1.
LOGAEITHMS OP NUMBEKS. .
267
Num. 620 to 659. Log;. 792 to 819.
N
L
1
2
3
4
5
6
7
8
9
P. P.
620
79 239
246
253
260
267
274
281
288
295
302
621
309
316
323
330
337
344
351
358
365
372
622
379
386
393
400
407
414
421
428
435
442
623
449
456
463
470
477
484
491
498
505
511
624
518
525
532
539
546
553
560
567
574
581
625
588
595
602
609
616
623
630
637
644
660
626
657
664
671
678
685
692
699
706
713
720
627
727
734
741
748
754
761
768
775
782
789
628
796
803
810
817
824
831
837
844
851
858
629
865
872
879
886
893
900
906
913
920
927
630
934
941
948
955
962
969
975
982
989
996
631
80 003
010
017
024
030
037
044
051
058
065
632
072
079
085
092
099
106
113
120
127
134
633
140
147
154
161
168
175
182
188
195
202
634
209
216
223
229
236
243
250
257
264
271
635
277
284
291
298
305
312
318
325
332
339
636
346
353
359
366
373
380
387
393
400
407
7
637
414
421
428
434
441
448
455
462
468
475
638
482
489
496
502
509
516
523
530
536
543
1
0.7
639
550
557
564
570
577
584
591
598
604
611
2
3
1.4
2.1
640
618
625
632
638
645
652
659
665
672
679
4
5
6
2.8
3.5
4.2
641
686
693
699
706
713
720
726
733
740
747
642
754
760
767
774
781
787
794
801
808
814
7
4.9
643
821
828
835
841
848
855
862
868
875
882
8
9
5.6
6.3
644
889
895
902
909
916
922
929
936
943
949
645
956
963
969
976
983
990
996 *003 *010 *017
646
81 023
030
037
043
050
057
064
070
077
084
647
090
097
104
111
117
124
131
137
144
151
648
158
164
171
178
184
191
198
204
211
218
649
224
231
238
245
251
258
265
271
278
285
650
291
298
305
311
318
325
331
338
345
351
651
358
365
371
378
385
391
398
405
411
418
652
425
431
438
445
451
458
465
471
478
485
653
491
498
505
511
518
525
531
538
544
551
654
558
564
571
578^584
591
598
604
611
617
655
624
631
637
644
651
657
664
671
677
684
656
690
697
704
710
717
723
730
737
743
750
657
757
763
770
776
783
790
796
803
809
816
658
823
829
836
842
849
856
862
869
875
882
659
889
895
902
908
915
921
928
935
941
948
660
954
961
968
974
981
987
994 *000 *007 *014
N
L
I
2
3
4
5
6
7
8
9
P. P.
268
LOGARITHMS OP NUMHilJltS.
^um
. 660 to 699.
Log
. 819 to 845.
N
L
1
2
3
4
5
6
7
8
9
P. P.
660
81 954
961
968
974
981
987
994 *000 *007 *014
7
661
82 020
027
033
040
046
053
060
066
073
079
662
086
092
099
105
112
119
125
132
138
146
1
u. /
1.4
663
151
158
164
171
178
184
191
197
204
210
3
2.1
664
217
223
230
236
243
249
256
263
269
276
4
6
2.8
3.5
665
282
289
295
302
308
315
321
328
334
311
6
7
8
4.2
4.9
5.6
666
347
354
360
367
373
380
387
393
400
406
667
413
419
426
432
439
445
452
458
465
471
9
6.3
668
478
484
491
497
504
510
517
523
530
536
669
543
549
556
562
569
575
682
588
596
601
670
607
614
620
627
633
640
646
653
659
666
671
672
679
685
692
698
705
711
718
724
730
672
737
743
750
756
763
769
776
782
78?
795
673
802
808
814
821
827
834
840
847
853'
860
674
866
872
879
886
892
898
905
911
918
924
675
930
937
943
950
956
963
969
975
982
988
676
995 *001 *008 *014>
*020
*027 *033 *040 *046 *052
677
83 059
065
072
078
085^
091
097
104
110
117
6
678
123
129
136
142
149
155
161
168
174
181
679
187
193
200
206
213
219
225
232
238
215
1 ; 0.6
2l 1.2
680
251
257
264
270
276
283
289
296
302
308
3 1.8
4 2.4
5 3.0
681
315
321
327
334
340
347
353
369
366
372
682
378
385
391
398
404
4le> 417
423
429
436
6 3.6
683
442
448
455
461
467
474'
480
487
493
499
7 4.2
8 ! 4.8
9 1 5.4
684
506
512
518
625
531
637
.544
650
556
563
685
569
675
582
588
694
601
607
613
620
626
686
632
639
645
651
658
664
670
677
683
689
687
696
702
708
715
721
727
734
740
746
753
688
769
765
771
778
7Si
790
797
803
809
816
689
822
828
835
841
847
853
860
866
872
879
690
885
891
897
904
910
916
923
929
935
942
691
948
954
960
967
973
979
985
992
998 *004
692
84 Oil
017
023
029
036
042
048
055
061
067
693
073
080
086
092
098
105
111
117
123
130
694
136
142
148
155
161
167
173
180
186
192
695
198
205
211
217
223
230
236
242
218
255
696
261
267
273
280
286
292
298
305
311
317
697
323
330
336
342
348
354
361
367
373
379
698
386
392
398
404
410
417
423
429
435
442
699
448
451
460
466
473
479
485
491
497
504
700
510
516
522
528
636
541
647
653
559
566
9
N
L
1
2
3
4
S
6
7
8
P. P.
Table 1.
LOGARITHMS OF NUMBERS.
269
Num. 700 to 739. Log. 845 to 869.
85
510 516 522 528 535
572 578 584 590 597
634 640 6^16 652 658
696 702 708 714 720
757 763 770 776 782
819 825 831 837 814
880 887 893 899 905
942 948 954 960 967
003 009 016 022 028
065 071 077 083 089
126 132 138 144 150
187 193 199 205 211
248 254 260 266 272
309 315 321 327 333
370 376 382 388 394
431 437 443 449 455
491 497 503 509 516
552 558 664 570 576
612 618 625 631 637
673 679 685 691 697
733 739 745 751 757
794 800 806 812 818
854 860 866 872 878
914 920 926 932 938
974 980 986 992 998
86 034 040 046 052 058
094 100 106 112 118
153 159 165 171 177
213 219 225 231 237
273 279 285 291 297
332 338 344 350 356
392 398 404 410 415
451 457 463 469 475
510 516 522 528 534
570 576 581 587 593
629 635 611 646 652
688 694 700 705 711
747 753 759 764 770
806 812 817 823 829
864 870 876 882 888
923 929 935 941 947
L 1 2 3 4
541 547 553 559 666
603 609 615 621 628
665 671 677 6S3 689
726 733 739 715 751
788 794 800 807 813
860 856 862 868 874
911 917 924 930 936
973 979 985 991 997
034 040 046 052 058
095 101 107 114 120
166 163 169 175 ISl
217 224 230 236 242
278 285 291 297 303
339 345 362 358 364
400 406 412 418 425
461 467 473 479 485
522 528 634 540 546
582 588 594 600 600
643 649 655 661 667
703 709 715 721 727
763 769 775 781 788
824 830 836 842 848
884 890 896 902 908
944 950 956 962 968
*004 *010 *016 *022 *028
064 070 076 082 088
124 130 136 141 147
183 189 195 201 207
243 249 255 261 267
303 308 314 320 326
362 368 374 380 386
421 427 433 439 445
481 487 493 499 504
540 546 562 558 564
599 605 611 617 623
658 664 670 676 682
717 723 729 735 741
776 782 788 794 800
835 841 847 853 859
894 900 906 911 917
953 968 964 970 976
P. P.
0.6
1.2
1.8
2.4
3.0
3.6
4.2
4.8
P. P.
270
LOGARITHMS OP NUMBERS.
Table 1.
Num
. 740 to 779.
Log
. 869 to 892
N
L
(
2
3
4
S
6
7
8
9
P. P.
740
8ti 923
929
935
941
947
953
958
964
970
976
741
982
988
994
999 *005
*011 *017 *023 *029 *035
742
87 040
046
052
058
064
070
075
081
087
093
743
099
105
111
116
122
128
134
140
146
151
744
157
163
169
175
181
186
192
198
204
210
745
216
221
227
233
239
245
251
256
262
268
746
274
280
286
291
297
303
309
315
320
326
747
332
338
344
349
855
361
367
373
379
384
748
390
396
402
408
413
419
425
431
437
442
749
448
454
460
466
471
477
483
489
495
500
7S0
506
512
518
523
529
535
541
547
552
568
751
564
570
576
581
687
593
599
604
610
616
752
622
628
633
639
645
651
656
662
668
674
753
679
685
691
697
703
708
714
720
726
731
754
737
743
749
754
760
766
772
777
783
789
755
795
800
806
812
818
823
829
835
841
846
756
852
858
864
869
876
881
887
892
898
904
757
910
915
921
927
933
938
944
960
965
961
6
758
967
973
978
984
990
996 *001 *007 *013 *018
759
88 024
030
036
041
047
053
058
064
070
076
1 " '^
2
u.o
1.2
760
081
087
093
098
104
110
116
121
127
133
3
4
1.8
2.4
761
138
144
150
156
161
167
173
178
184
190
5
3.0
762
195
201
207
213
218
224
230
235
241
247
6
7
8
3.6
4.2
4.8
763
252
268
264
270
275
281
287
292
298
304
764
309
315
321
326
332
338
343
349
356
360
9
5.4
765
366
372
377
383
389
395
400
406
412
417
766
423
429
434
440
446
451
457
463
468
474
767
480
485
491
497
502
508
513
519
625
530
768
536
542
547
553
559
564
570
576
581
687
769
593
598
604
610
615
621
627
632
638
643
770
649
655
660
666
672
677
683
689
694
700
771
705
711
717
722
728
734
739
745
750
756
772
762
767
773
779
784
790
795
801
807
812
773
818
824
829
835
840
846
852
857
863
868
774
874
880
885
891
897
902
908
913
919
925
775
930
936
941
947
953
958
964
969
975
981
776
986
992
997 *003 *009
*014 *020 *025 *031 *037
777
89 042
048
053
059
064
070
076
081
087
092
778
098
104
109
115
120
126
131
137
143
148
779
154
159
165
170
176
182
187
193
198
204
780
209
215
221
226
232
237
243
248
254
260
N
L
1
2
3
4
5
6
7
8
9
P. P.
Table 1.
LOGAEITHMS OF NUMBERS.
271
Num
780 to 819.
Log
892 to 913.
N
L
1
2
3
4
S
6
7
8
9
P. P.
780
89 209
215
221
226
232
237
243
248
254
260
781
265
271
276
282
287
293
298
304
310
315
782
321
326
332
337
343
348
354
360
365
371
783
376
382
887
393
398
404
409
415
421
426
784
432
437
443
448
454
459
465
470
476
481
785
487
492
498
504
509
515
620
526
531
537
786
542
548
553
559
564
570
575
581
586
592
787
597
603
609
614
620
625
631
636
642
647
788
653
658
664
669
675
680
686
691
697
702
789
708
713
719
724
730
735
741
746
752
757
790
763
768
774
779
785
790
796
801
807
812
791
818
823
829
834
840
845
851
856
862
867
792
873
878
883
889
894
900
905
911
916
922
793
927
933
938
944
949
955
960
966
971
977
794
982
988
993
998 *004
*009 *015 *020 *026 *031
795
90 037
042
048
053
059
064
069
075
080
086
796
091
097
102
108
113
119
124
129
135
140
797
146
151
157
162
168
173
179
184
189
195
5
798
200
206
211
217
222
227
233
238
244
249
1
2
0.5
1.0
799
255
260
266
271
276
282
287
293
298
304
800
309
314
320
325
331
336
342
347
352
358
3
4
1.5
2.0
801
363
369
374
380
385
390
396
401
407
412
5
2.5
802
417
423
428
434
439
445
450
455
461
466
6
7
8
3.0
3.5
4.0
803
472
477
482
488
493
499
504
509
515
520
804
526
531
536
542
547
553
558
563
569
574
9
4.5
805
580
585
590
596
601
607
612
617
623
628
806
634
639
644
650
655
660
666
671
677
682
807
687
693
698
703
709
714
720
725
730
736
808
741
747
752
757
763
768
773
779
784
789
809
795
800
806
811
816
822
827
832
838
843
810
849
854
859
865
870
875
881
886
891
897
811
902
907
913
918
924
929
934
940
945
950
812
956
961
966
972
977
982
988
993
998 *004
813
91 009
014
020
025
030
036
041
046
052
057
814
062
068
073
078
084
089
094
100
105
110
815
116
121
126
132
137
142
148
153
158
164
816
169
174
180
185
190
196
201
206
212
217
817
222
228
233
238
243
249
254
259
265
270
818
275
281
286
291
297
302
307
312
318
323
819
328
334
339
344
350
355
360
365
371
376
820
381
387
392
397
403
408
413
418
424
429
N
L
1
2
3
4
S
6
7
8
9
P. P.
272
LOGARITHMS OF NUMBERS.
Table 1.
Num. 820 to 859. Log. 91-3 to 934.
8
P. P.
93
381 387 392 397 403
431 440 445 450 455
487 4'.I2 498 503 508
540 545 531 556 561
593 598 603 609 614
645 651 656 661 666
698 703 709 714 719
751 756 761 766 772
803 808 814 819 824
855 861 866 871 876
908 913 918 924 929
960 965 971 976 981
012 018 023 028 033
065 070 075 080 085
117 122 127 132 137
169 174 179 184 189
221 226 231 236 241
273 278 283 288 293
324 330 335 340 345
376 381 387 392 397
428 433 438 443 449
480 485 490 495 500
531 536 542 547 552
583 588 593 598 603
634 639 645 650 655
686 691 696 701 706
737 742 747 752 758
788 793 799 804 809
840 845 850 855 860
891 896 901 906 911
942 947 952 957 962
993 998 *003 *008 *013
044 049 054 059 064
095 100 105 110 115
146 151 156 161 166
197 202 207 212 217
247 252 258 263 268
298 303 308 313 318
349 354 359 364 369
399 404 409 414 420
450 455 460 465 470
408 413 418 424 429
461 466 471 477 482
514 519 524 529 535
566 572 577 582 587
619 624 630 635 640
672 677 6S2 687 693
724 730 735 740 745
777 782 787 793 798
829 834 840 845 850
882 887 892 897 903
934 939 944 950 955
986 991 997 *002 *007
038 044 049 054 059
091 096 101 106 111
143 148 153 158 163
195 200 205 210 215
247 252 257 262 267
298 304 309 314 319
350 355 361 366 371
402 407 412 418 423
454 459 464 469 474
505 511 516 521 526
557 562 567 572 578
609 614 619 624 629
660 665 670 675 681
711 716 722 727 732
763 768 773 778 783
814 819 824 829 834
865 870 875 881 886
916 921 927 932 937
967 973 978 983 988
*018 *024 *029 *034 *039
069 075 080 085 090
120 125 131 136 141
171 176 181 186 192
222 227 232 237 242
273 278 283 288 293
323 328 334 339 344
374 379 384 389 394
425 430 435 440 445
475 480 485 490 495
1
0.5
2
1.0
3
1.5
4
2.0
5
2.5
6
3.0
7
3.5
8
4.0
9
4.5
P. p.
Table 1.
LOGAEITHMS 0¥ NUMBERS.
273
Num. 860 to 899. Log. 934 to 954.
N
L
1
2
3
4
5
6
7
8
9
P. P.
860
93 450
455
460
465
470
475
480
485
490
495
861
500
505
510
515
520
526
531
536
541
546
862
551
556
561
566
571
576
581
586
591
696
863
601
606
611
616
621
626
631
636
641
646
864
651
656
661
666
671
676
682
687
692
697
865
702
707
712
717
722
727
732
737
742
747
866
752
757
762
767
772
777
782
787
792
797
867
802
807
812
817
822
827
832
837
842
847
868
852
857
862
867
872
877
882
887
892
897
869
902
907
912
917
922
927
932
937
942
947
870
952
957
962
967
972
977
982
987
992
997
871
94 002
007
012
017
022
027
032
037
042
047
872
052
057
062
067
072
077
082
086
091
096
873
101
106
111
116
121
126
131
136
141
146
874
151
156
161
166
171
176
181
186
191
196
875
201
206
211
216
221
226
231
236
240
245
876
250
255
260
265
270
275
280
285
290
295
877
300
305
310
315
320
325
330
335
340
345
S
878
349
354
359
364
369
374
379
384
389
394
1
2
0.5
1.0
879
399
404
409
414
419
424
429
433
438
443
880
448
453
458
463
468
473
478
483
488
493
3
4
1.5
2.0
881
498
503
507
512
517
522
527
532
537
542
5
2.5
882
547
552
557
562
567
671
576
581
586
591
6
7
8
3.0
3.5
4.0
883
596
601
606
611
616
621
626
630
635
640
884
645
650
655
660
665
670
675
680
685
689
9
4.6
885
694
699
704
709
714
719
724
729
734
738
886
743
748
753
758
763
768
773
778
783
787
887
792
797
802
807
812
817
822
827
832
836
888
841
846
851
856
861
866
871
876
880
885
889
890
895
900
905
910
915
919
924
929
934
890
939
944
949
954
959
963
968
973
978
983
891
988
993
998 *002 *007
*012 *017 *022 *027 *032
892
95 036
041
046
051
066
061
066
071
075
080
893
085
090
095
100
105
109
114
119
124
129
894
134
139
143
148
153
158
163
168
173
177
895
182
187
192
197
202
207
211
216
221
226
896
231
236
240
245
260
255
260
265
270
274
897
279
284
289'
294
299
303
308
313
318
323
898
328
332
337
342
347
352
357
361
366
371
899
376
381
386
390
395
400
405
410
415
419
900
424
429
434
439
444
448
463
458
463
468
N
L
1
2
3
4
5
6
7
8
9
P. P.
19
274
LOGARITHMS OF NUMBERS.
Table 1.
Num
900 to 939.
Log
954 to 973.
N
L
i
2
3
4
5
6
7
8
9
P. P.
900
95 424
429
434
439
444
448
463
458
463
468
901
472
477
4S2
487
492
497
501
506
511
616
902
521
5'26
530
535
540
645
650
654
669
564
903'
569
571
578
583
588
693
698
602
607
612
904
617
622
626
631
636
641
646
650
655
660
905
665
670
674
679
684
689
694
698
703
708
906
713
718
722
727
732
737
742
746
751
756
907
761
766
770
775
780
785
789
794
799
801
908
809
813
818
823
828
832
837
842
847
852
909
856
861
866
871
875
880
886
890
896
899
910
904
909
914
918
923
928
933
938
942
947
911
952
957
961
966
971
976
980
985
990
995
912
999 *004 *009 *014 *019
*023 *028 *033 *038 *042
913
96 047
052
057
061
066
071
076
080
085
090
914
095
099
104
109
114
118
123
128
133
137
915
142
147
152
156
161
166
171
175
180
185
916
190
194
199
204
209
213
218
223
227
232
917
237
242
246
251
256
261
265
270
275
280
S
918
284
289
294
298
303
308
313
317
322
327
1
2
0.5
1.0
919
332
336
341
346
350-
355
360
365
369
374
920
379
384
388
393
398
402
407
412
417
421
3
4
1.5
2.0
921
426
431
43ft
440
445
450
454
459
464
468
5
2.5
922
473
478
483
487
492
497
601
506
511
615
6
7
8
3.0
3.5
4.0
923
520
525
530
534
539
544
548
553
658
562
924
667
572
677
681
586
591
695
600
606
609
9
4.5
925
614
619
624
628
633
638
612
647
652
656
926
661
666
670
675
680
686
689
694
699
703
927
708
713
717
722
727
731
736
741
745
750
928
765
759
764
769
774
778
783
788
792
797
929
802
806
811
816
820
825
830
834
839
844
930
848
853
858
862
867
872
876
881
886
890
931
896
900
904
909
914
918
923
928
932
937
932
942
946
951
956
960
965
970
974
979
981
933
988
993
997 *002 *007
*011 *016 *021 *026 *030
934
97 035
039
044
049
053
058
063
067
072
077
935
081
086
090
095
100
104
109
114
118
123
936
128
132
137
142
146
151
165
160
165
169
937
174
179
183
188
192
197
202
206
211
216
938
220
225
230
234
239
243
248
263
257
262
939
267
271
276
280
285
290
294
299
304
308
940
313
Sl7
322
327
331
336
340
345
850
354
N
L
1
2
3
4
S
6
7
8
9
P.
P.
Table 1.
LOGARITHMS OF NUMBERS.
275
Num. 940 to 979. Log. 973 to 991.
P. P.
313 317 322 327 331
359 364 368 373 377
405 410 414 419 424
451 456 460 465 470
497 502 506 511 516
548 548 552 557 562
589 594 598 603 607
635 640 644 649 653
681 685 690 695 699
727 731 736 740 745
772 777 782 786 791
818 823 827 832 836
864 868 873 877 882
909 914 918 923 928
955 959 964 968 973
000 005 009 014 019
046 050 055 059 064
091 096 100 105 109
137 141 146 150 155
182 186 191 195 200
227 232 236 241 245
272 277 281 286 290
318 322 327 331 336
363 367 372 376 381
408 412 417 421 426
453 457 462 466 471
498 502 507 511 516
543 547 552 556 561
588 592 597 601 605
632 637 641 646 650
677 682 686 691 695
722 726 731 735 740
767 771 776 780 784
811 816 820 825 829
856 860 865 869 874
900 905 909 914 918
945 949 954 958 963
989 994 998 *003 *007
034 038 043 mj 052
078 083 087 092 096
123 127 131 136 140
336 340 345 350 354
382 387 391 396 400
428 433 437 442 447
474 479 483 488 493
520 525 529 534 539
566 571 575 580 585
612 617 621 626 630
658 663 667 672 676
704 708 713 717 722
749 754 759 763 768
795 800 804 809 813
841 845 850 855 859
886 891 896 900 905
932 937 941 946 950
978 982 987 991 996
023 028 032 037 041
068 073 078 082 087
114 118 123 127 132
159 164 168 173 177
204 209 214 218 223
250 254 259 263 268
295 299 304 308 313
340 345 349 354 358
385 390 394 399 403
430 435 439 444 448
475 480 484 489 493
520 525 529 534 538
565 570 574 579 583
610 614 619 623 628
655 659 664 668 673
700 704 709 713 717
744 749 753 758 762
789 793 798 ■ 802 807
834 838 843 847 851
878 883 887 892 896
923 927 932 936 941
967 972 976 981 985
*012 *016 *021 *025 *029
056 061 065 069 074
100 105 109 114 118
145 149 154 158 162
P. P.
276
LOGARITHMS OP NUMBERS.
Table 1.
N
um.
980 to 1
000.
Log
99
to 999.
N
L
1
2
3
4
5
6
7
8
9
P. P.
980
99 123
127
131
136
140
145
149
154
158
162
981
167
171
176
180
185
189
193
198
202
207
982
211
216
220
224
229
233
2:B8
242
247
251
983
255
260
261
269
273
277
282
286
291
295
984
300
304
308
313
317
322
326
330
335
339
985
344
348
352
357
361
366
370
374
379
383
986
388
392
396
401
405
410
414
419
423
427
987
432
436
411
445
449
454
458
463
467
471
988
476
480
481
489
493
498
602
506
611
516
989
520
624
528
533
537
642
646
550
555
569
4
990
564
568
572
577
581
685
590
594
599
603
1
0.4
991
992
607
651
612
656
616
660
621
664
625
669
629
673
634
677
638
682
642
686
647
691
2
3
4
0.8
1.2
1.6
993
695
699
704
708
712
717
721
726
730
734
6
2.0
994
739
743
747
752
756
760
765
769
774
778
6
7
2.4
2.8
995
782
787
791
795
800
804
808
813
817
822
8
9
3.2
3.6
995
826
830
835
839
843
848
862
856
861
865
997
870
874
878
883
887
891
896
900
904
909
998
913
917
922
926
930
935
939
944
948
952
999
957
961
965
970
974
978
983
987
991
996
1000
000 000
043
087
130
174
217
260
304
347
391
N
L
1
2
3
4
S
6
7
8
9
P. P.
Logarithms of Im
portant Numbers.
Number.
Logarithm.
TT
== 3.141 .593
0.497 150
i^
= 4.188 790
0.622 089
i^
= 0..523 599
1.718 999
1
TT
= 0.318 310
1.502 850
TT-
= 9.869 604
0.994 300
1
TT-
= 0.101 321
1.005 700
)n
« 1.772 4M
0.248 675
\n
= 0.564 190
T.751 425
r";
=- 1.464 592
0.165 717
fn
= 0.682 784
1.834 283
»/6
A'1
= 1.240 701
0.093 667
Table 2. LOGAEITHMIC ANGULAR FUNCTIONS.
277
0°
Logarithms.
179°
M.
Sine.
Cosecant.
Tangent.
Cotangent.
Secant.
Cosine.
M.
Inf. Neg.
Infinite.
Inf. Neg.
Infinite.
10.00000
10.00000
60
1
6.46373
13.53627
6.46373
13.53627
00000
00000
59
2
76476
23524
76476
23524
00000
00000
58
3
94085
05915
94085
05915
00000
00000
57
4
7.06579
12.93421
7.06579
12.93421
00000
00000
56
5
7.16270
12.83730
7.16270
12.83730
10.00000
10.00000
55
6
24188
75812
24188
75812
00000
OuOOO
54
7
30882
69118
30882
69118
00000
00000
53
8
36682
63318
36682
63.318
00000
00000
52
9
41797
58203
41797
58203
00000
00000
51
10
7.46373
12.53627
7.46373
12.53627
10.00000
10.00000
50
11
50512
4948S
50512
49488
00000
00000
49
12
54291
45709
54291
45709
■ 00000
00000
48
13
57767
42233
57767
42233
00000
00000
47
14
60985
39015
60986
39014
00000
00000
46
15
7.63982
12.36018
7.63982
12.36018
10.00000
10.00000
45
16
66784
33216
66785
33215
00000
00000
44
17
69417
30583
69418
30582
00001
9.99999
43
18
71900
28100
71900
28100
00001
99999
42
19
74248
25752
74248
25752
00001
99999
41
20
7.76475
12.23525
7.76476
12.23524
10.00001
9.99999
40
21
78594
21406
78595
21405
00001
99999
39
22
80615
19385
80615
19385
00001
99999
38
23
82545
17455
82546
17454
00001
99999
37
24
81393
15607
84394
15606
00001
99999
36
25
7.86166
12.13834
7.86167
12.13833
10.00001
9.99999
35
26
87870
12130
87871
• 12129
00001.
99999
34
27
89509
10491
89510
10490
00001
99999
33
28
91088
08912
91089
08911
00001
99999
32
29
92612
07388
92613
07387
00002
99998
31
30
7.94084
12.05916
7.94086
12.05914
10.00002
9.99998
30
31
95508
04192
95510
04490 .
00002
99998
29
32
96887
03113
96889
03111
00002
99998
28
33
98223
01777
98225
01775
00002
99998
27
34
99520
00480
99522
00478
00002
99998
26
35
8.00779
11.99221
8.00781
11.99219
10.00002
9.99998
25
36
02002
97998
02004
97996
00002
99998
24
37
03192
96808
03194
96806
00003
99997
23
38
04350
95650
04353
95647
00003
99997
22
39
05478
94522
05481
94519
00003
99997
21
40
8.06578
11.93422
8.06581
11.93419
10.00003
9.99997
20
41
07650
92350
07653
92347
00003
99997
19
42
08696
91304
08700
91300
00003
99997
18
43
09718
90282
09722
90278
00003
99997
17
44
10717
89283
10720
89280
00004
99996
16
45
8.11693
11.88307
8.11696
11.88304
10.00004
9.99996
15
40
12647
87353
12651
87349
00004
99996
14
47
13581
86419
13585
86415
00004
99996
13
48
14495
85505
14500
85500
00004
99996
12
49
15.391
84609
15395
84605
00004
99996
11
50
8.16268
11.83732
8.16273
11.83727
10.00005
9.99995
10
61
17128
82872
17133
82867
00005
99995
9
52
17971
82029
17976
82024
00005
99995
8
53
18798
81202
18804
81196
00005
99995
7
54
19610
80390
19616
80384
00005
99995
6
55
8.20407
11.79593
8.20413
11,79587
10.00006
9.99994
5
66
21189
78811
21195
78805
00006
99994
4
57
21958
78042
21964
78036
00006
99994
3
58
22713
77287
22720
77280
00006
99994
2
59
23456
76544
23462
76538
00006
99994
1
60
24186
75814
24192
75808
00007
99993
M.
Cosine.
Secant.
Cotangent
Tangent.
Cosecant.
Sine.
M.
90°
89°
278 LOGARITHMIC ANGULAR FUNCTIONS. TaUe 2.
1°
Logarithms.
178=
M.
Sine.
(!osi_'<"int.
Tangent.
Cotani^ent.
Secant.
10.00007
Co.sine.
9.99993
M.
8.24186
11.76814
8.24192
11.75808
60
1
24903
75097
24910
75090
00007
99993
59
2
25609
74391
25616
74384
00007
99993
58
3
26304
73696
26312
73688
00007
99993
57
4
26988
73012
26996
73004
00008
99992
56
5
8.27661
11.72339
8.27669
11.72331
10.00008
9.99992
55
6
28324
71676
28332
71668
00008
99992
54
7
28977
71023
28986
71014
00008
99992
53
8
29621
70379
29629
70371
00008
99992
52
9
30265
69745
30263
69737
00009
99991
51
10
8.30879
11.69121
8.30888
11.69112
10.00009
9.99991
50
11
31495
68506
31605
68498
00009
99991
49
12
32103
67897
32112
67888
00010
99990
48
13
32702
67298
32711
67289
00010
'99990
47
14
33292
66708
33302
66698
00010
99990
46
15
8.33875
11.66125
8.33886
11.66114
10.00010
9.99990
45
16
34450
65550
34461
65839
00011
99989
44
17
36018
64982
. 36029
64971
00011
99989
43
18
35678
64422
35590
64410
00011
99989
42
19
36131
63869
36143
63857
00011
99989
41
20
8.36678
11.63322
8.36689
11.63311
10.00012
9.99988
40
21
37217
62783
37229
62771
00012
99988
39
22
37760
62250
37762
62238
00012
99988
38
23
38276
61724
38289
61711
00013
99987
37
24
38796
61204
38809
61191
00013
99987
36
25
8.39310
11.60690
8.39323
11.60677
10.00013
9.99987
35
26
39818
60182
39832
60168
00014
99986
84
27
40320
59680
40334
59666
00014
99986
33
28
40816
59184
40830
69170
00014
99986
32
29
41307
58693
41321
58679
00015
99985
31
30
8.41792
11.58208
8.41807
11.58193
10.00015
9.99985
30
31
42272
57728
. 42287
67713
00015
99985
29
32
42746
57254
42762
57238
00016
99984
28
33
43216
56784
43232
56768
00016
99984
27
34
43680
56320
43696
56304
00016
99984
26
35
8.44139
11.55861
8.4415G
11.55844
10.00017
9.99983
25
36
44594
65406
44611
56389
00017
99983
24
37
45044
54956
45061
54939
00017
99983
23
38
48489
54511
46507
54493
00018
99982
22
39
45930
54070
46948
54052
00018
99982
21
40
8.46366
11.53634
8.46385
11.83616
10.00018
9.99982
20
41
46799
53201
46817
63183
00019
99981
19
42
47226
52774
47245
52755
00019
99981
18
43
47660
52350
47669
52331
00019
99981
17
44
48069
51931
48089
51911
00020
99980
16
45
8.48486
11.61515
8.48505
11.51495
10.00020
9.99980
15
46
48896
51104
48917
51083
00021
99979
14
47
49304
60696
49326
80675
00021
99979
13
48
49708
60292
49729
80271
00021
99979
12
49
60108
49892
50130
49870
00022
99978
11
50
8.60604
11.49496
8.60627
11.49473
10.00022
9.99978
10
51
50897
49103
50920
49080
00023
99977
9
62
51287
48713
51310
48690
00023
99977
8
63
51673 i
48327
51696
48304
00023
99977 -
7
64
52055
47945
52079
47921'
00024
99976
6
55
8.62434
11.47566
8.52459
11.47541
10.00024
9.99976
5
56
52810
47190
6'2835
47165
00025
99975
4
67
53183
46817
63208
46792
00026
99976
3
68
53552
46448
63578
46422
00026
99974
2
59
53919
46081
53945
46056
00026
99974
1
60
54282
46718
64308
46692
00026
99974
M.
Cosine.
Secant.
Cotangent.
Tangent
Cosecant.
Sine.
M.
91°
88="
Table 2. LOGARITHMIC ANGULAR FUNCTIONS. 279
2=
Logarithms.
77°
M.
Sine.
Cosecant.
Tangent.
Cotangent.
Recant.
Cosine.
M.
8.54282
11.45718
8.54308
11.46692
10.00026
9.99974
60
1
54642
45358
64669
45331
00027
99973
59
2
54999
45001
55027
44973
00027
99973
58
3
55354
44646
65382
44618
00028
99972
57
4
55705
44295
65734
44266
00028
99972
56
5
8.56054
11.43946
8.56083
11.43917
10.00029
9.99971
55
6
56400
43600
56429
43571
00029
99971
64
7
56743
43257
56773
43227
00030
99970
53
8
57084
42916
57114
42886
00030
99970
52
9
57421
42579
67462
42548
00031
99969
61
10
8.57757
11.42243
8.57788
11.42212
10.00031
9.99969
60
11
58089
41911
58121
41879
00032
99968
49
12
58419
41581
6S451
41549
00032
99968
48
13
58747
41253
68779
41221
00033
99967
47
14
59072
40928
59105
40895
00033
99967
46
15
8.59395
11.40605
8.59428
11.40572
10.00033
9.99967
45
16
59715
40285
59749
40251
00034
99966
44
17
60033
39967
60068
3993,2
00034
99966
43
18
60349
39651
60384
39616
00035
99965
42
19
60662
39338
60698
39302
00036
99964
41
20
8.60973
11.39027
8.61009
11.38991
10.00036
9.99964
40
21
61282
38718
61319
38681
00037
99963
39
22
61589
38411
61626
38374
00037
99963
38
23
61894
38106
61931
38069
00038
99962
37
24
62196
37804
62234
37766
00038
99962
36
25
8.62497
11.37503
8.62535
11.37466
10.00039
9.99961
35
26
62795
37205
62834
37166
00039
99961
34
27
63091
36909
63131
36869
00040
99960
33
28
63385
36615
63426
36574
00040
99960
32
29
63678
36322
63718
36282
00041
99959
31
30
8.63968
11.36032
8.64009
11.35991
10.00041
9.99959
30
31
64256
35744
64298
36702
00042
99958
29
32
64543
35457
64685
35416
00042
99958
28
33
64827
36173
64870
351.S0
00043
99957
27
34
65110
34890
65154
34846
00044
99956
26
35
8.66391
11.34609
8.65435
11.34565
10.00044
9.99966
25
36
65670
34330
65715
34286
00045
99955
24
37
65947
34053
66993
34007
00045
99955
23
38
66223
33777
66269
33731
00046
99954
22
39
66497
33603
66543
33467
00046
99954
21
40
8.66769
11.33231
8.66816
11.33184
10.00047
9.99953
20
41
67039
32961
67087
32913
00048
99952
19
42
67308
32692
67356
32644
00048
999.52
18
43
67575
32426
67624
32376
00049
99951
17
44
67841
32159
67890
32110
00049
99951
16
45
8.68104
11.31896
8.68154
11.31846
10.00050
9.99960
15
46
68367
31633
68417
31583
00051
99949
14
47
08627
31373
68678
31322
00051
99949
13
48
68886
31114
68938
31062
00062
99948
12
49
69144
30856
69196
30804
00062
99948
11
50
8.69400
11.30600
8.69453
11.30547
10.00053
9.99947
10
51
69654
30346
69708
30292
00054
99946
9
52
69907
30093
69962
30038
00054
99946
8
53
70159
29841
70214
29786
00065
99945
1
54
70409
29591
70466
29636
00056
99944
6
55
8.70658
11.29342
8.70714
11.29286
10.00056
9.99944
5
56
70905
29095
70962
29038
00057
99943
4
57
71151
28849
71208
28792
00068
99942
3
58
71395
28605
71453
28647
00058
99942
2
59
71638
28362
71697
28303
00059
99941
1
60
71880
28120
71940
28060
ooOeo
99940
M.
Cosine.
Secant.
Cotangent,
Tangent.
Cosecant.
Sine.
M.
87°
280
LOGARTTHMTC ANGULAR FUNCTIONS. Table 2.
3°
Logarithms.
176°
M.
Sine.
Cosecant.
Tangent.
Cotangent
Secant.
Ctirtine.
M.
8.71880
11.28120
8.71940
11,28060
10.00060
9.99940
60
1
72120
27880
72181
27819
00060
99940
59
2
72359
27641
72420
27580
00061
99939
58
3
72597
27403
72659
27341
00062
99938
57
4
72834
27166
72896
27104
00062
99938
66
5
8.73069
11.26931
8,73132
11,26868
10.00063
9.99937
55
6
73303
26697
73366
2B634
00064
99936
54
7
73635
26465
73600
26400
00064
99936
53
8
73767
26233
73832
26168
00066
99935
52
9
73997
26003
74063
25937
00066
99934
51
10
8.74226
11.25774
8,74292
11.25708
10.00066
9.99934
50
11
74454
25546
74521
25479
00067
99933
49
12
74680
2,5320
74748
25252
00068
99932
48
13
74906
26094
74974
26026
00068
99932
47
14
75130
24870
76199
24801
00069
99931
46
15
8.75353
11.24647
8.75423
11.24577
10,00070
9.99930
45
15
75576
24426
75645
24355
00071
99929
44
17
76796
24206
75867
24133
00071
99929
43
18
76015
23985
76087
23913
00072
99928
42
19
76234
23766
76306
23694
00073
99927
41
20
8.76451
11.23549
8.76626
11,23475
10.00074
9,99926
40
21
76667
23333
76742
23258
00074
99926
39
22
76883
23117
76958
23042
00075
99925
38
23
77097
22903
77173
22827
00076
99924
37
24
77310
22690
77387
22613
00077
99923
36
25
8.77522
11.22478
8.77600
11.22400
10,00077
9,99923
36
26
77733
22267
77811
22189
00078
99922
34
27
77943
22057
78022
21978
00079
99921
33
28
78152
21848
78232
21768
00080
99920
32
29
78360
21640
78441
215,59
00080
99920
31
30
8.78568
11,21432
8.7,8649
11,21351
10.00081
9,99919
30
31
78774
21226
78855
21145
00082
99918
29
32
78979
21021
79061
20939
00083
99917
28
33
79183
20817
79266
20734
00083
99917
27
34
79386
20614
79470
20530
00084
99916
26
35
8.79588
11.20412
8.79673
11,20327
10.00085
9,99915
25
36
79789
20211
79875
20125
00086
99914
24
37
79990
20010
80076
19924
00087
99913
23
38
80189
19811
80277
19723
00087
99913
22
39
80388
19612
80476
19524
00088
99912
21
40
8.80585
11.19415
8,80674
11.19326
10,00089
9.99911
20
41
80782
19218
80872
19128
00090
99910
19
42
80978
19022
81068
18932
00091
99909
18
43
81173
18827
81264
18736
00091
99909
17
44
81367
18633
81459
18641
00092
99908
16
45
8.81660
11.18440
8,81653
11,18347
10,00093
9.99907
16
46
81752
18248
81846
18154
00094
99906
14
47
81944
18056
82038
17962
00095
99905
13
48
82134
17866
82230
17770
00096
99904
12
49
82324
17676
82420
17580
00096
99904
11
60
8.82613
11.17487
8.82610
11.17390
10.00097
9.99903
10
61
82701
17299
82799
17201
00098
99902
9
52
82888
17112
82987
17013
00099
99901
8
53
83075
16925
83176
16825
00100
99900
7
54
83261
16739
83361
16639
00101
99899
6
56
8.83446
11.16554
8.83647
11,16453
10.00102
9.99898
5
56
83630
16370
83732
16268
00102
99898
4
57
83813
16187
83916
16084
00103
99897
3
58
83996
16004
84100
16900
00104
99896
2
59
84177
1.5823
84282
16718
00105
99895
1
60
84358
15642
84464
15636
00106
99894
mTI'
Cosine.
Secant.
Cotangent.
Tangent,
Cosecant.
Sine.
M.
86"
■Table 2. LOGARITHMIC ANGULAR FUNCTIONS.
281
4°
Logarithms.
175°
M.
Sine.
Cosecant.
Tangent.
Cotangent.
Secant.
Coeine.
M.
8.84358
11.15642
8.84464
11.15536
10.00106
9.99894
60
1
84539
15461
84646
15S54
00107
99893
59
2
84718
15282
84826
15174
00108
99892
58
3
84897
15103
86006
14994
00109
99891
57
4
85075
14925
85185
14815
00109
99891
56
5
8.85262
11.14748
8.85363
11.14637
10.00110
9.99890
55
6
85429
14571
86540
14460
00111
99889
54
7
85605
14395
85717
14283
00112
99888
63
8
85780
.., 14220
85893
14107
00113
99887
52
9
85955
■ ' 14045
86069
13931
00114
99886
51
10
8.86128
11.13872
8.86243
11.13757
10.00115
9.99885
50
H
86301
13699
86417
13583
00116
99884
49
12
86474
13526
86591
13409
00117
99883
48
13
86645
13355
86763
13237
00118
99882
47
14
86816
13184
86935
13065
00119
99881
46
15
8.86987
11.13013
8.87106
11.12894
10.00120
9.99880
45
16
87156
12844
87277
12723
00121
99879
44
17
87325
12675
87447
12553
00121
99879
43
18
87494
12506
87616
12384
00122
. 99878
42
19
87661
12339
87785
12215
00123
99877
41
20
8.87829
11.12171
8.87953
11.12047
10.00124
9.99876
40
21
87995
12005
88120
11880
00125
99875
39
22
88161
11839
88287
11713
00126
99874
33
23
88326
11674
88453
11547
00127
99873
37
24
88490
11510
88618
11382
00128
99872
36
25
8.88654
11.11346
8.88783
11.11217
10.00129
9.99871
35
26
88817
11183
88948
11052
00130
99870
34
27
88980
11020
89111
10889
00131
99869
33
28
89142
10858
89274
10726
00132
99868
32
29
89304
10696
89437
10563
00133
99867
31
30
8.89464
11.10536
8.89598
11.10402
10.00134
9.99866
30
31
89625
10375
89760
10240
00135
99865
29
32
89784
10216
89920
10080
00136
99864
28
33
89943
10057
90080
09920
00137
99863
27
34
90102
09898
90240
09760
00138
99862
26
35
8.90260
11.09740
8.90399
11.09601
10.00139
9.99861
25
36
90417
09583
90557
09443
00140
99860
24
37
90574
09426
90715
09285
00141
99859
23
38
90730
09270
90872
09128
00142
99858
22
39
90885
09115
91029
08971
00143
99857
21
40
8.91040
11.08960
8.91185
11.08815
10.00144
9.99856
20
41
91195
08805
91340
08660
00145
99855
19
42
91349
08651
91495
08505
00146
99854
18
43
91502
08498
91650
08350
00147
99853
17
44
91655
08345
91803
08197
00148
99852
16
45
8.91807
11.08193
8.91957
11.08043
10,00149
9.99861
15
46
91959
08041
92110
07890
00150
99850
14
47
98110
07890
92262
07738
00152
99848
13
48
92261
07739
92414
07586
00153
99847
12
49
92411
07589
92565
07435
00164
99846
11
50
8.92561
11.07439
8.92716
11.07284
10.00155
9.99845
10
•51
92710
07290
92866
07134
■ 00156
99844
9
52
' 92859
07141
93016
06984
00157
99843
8
53
93007
06993
93165
06835
00158
99842
7
5J
93154
06846
93313
06687
00159
99841
6
55
8.93301
11.06699
8.93462
11.06538
10.00160
9.99840
5
56
93448
06552
93609
06391
00161
99839
4
57
93594
06406
93756
06244
00162
99838
3
58
93740
06260
93903
06097
00163
99837
2
59
93885
06115
94049
05951
00164
99836
1
60
94030
05970
94195
05805
00166
99834
M.
Cosine.
Secant.
Cotangent.
Tangent.
Cosecant.
Sine.
M.
20
282 LOGARITHMIC ANGULAK FUNCTIONS. Table 3.
5°
Logarithms.
74°
M.
Sine.
Cosecant.
Tangent.
Cotangent,
Scran t.
Cosine.
M.
8.94030
11.06970
8.94195
11.05805
10.00166
9.99834
60
1
94174
06826
94340
05660
00167
99833
69
2
94317
05683
94486
06516
00168
99832
58
3
944G1
05539
94630
06370
00169
99831
57
4
94603
05397
94773
05227
00170
99830
56
5
8.94746
11.06254
8.94917
11.06083
10.00171
9.99829
66
6
94887
06113
95060
04940
00172
99828
64
7
96029
04971
96202
04798
00173
99827
63
8
95170
04830
95344
04656
00175
99825
52
9
9.5310
04690
95486
04614
00176
99824
51
10
8.95450
11.04650
8.95627
11.04373
10.00177
9.99823
50
11
95589
04411
95767
04233
00178
99822
49
12
95728
04272
95908
04092
00179
99821
48
13
95867
04133
96047
03953
00180
99820
47
14
96005
03995
96187
03813
00181
99819
46
16
8.96143
11.03857
8.96326
11.03676
10.00183
9.99817
45
16
96280
03720
96464
03536
00184
99816
44
17
96417
03583
96602
03398
00185
99815
43
18
965.53 .
03447
96739
03261
00186
99814
42
19
96689
03311
9(i»77
03123
00187
99813
41
20
8.96825
11.03175
8.97013
11.02987
10.00188
9.99812
40
21
96960
03040
97150
02850
00190
99810
39
22
97095
02905
97285
02715
00191
99809
38
23
97229
02771
97421
02679
00192
99808
37
24
97363
02637
97556
02444
00193
99807
36
25
8.97496
11.0'2501
8.97691
11.02309
10.00194
9.99806
35
26
97629
02371
97825
02175
00196
99804
34
27
97762
02238
97959
02041
00197
99803
33
28
97894
02106
98092
01908
00198
99802
32
29
98026
01974
98225
01775
00199
9^801
31
30
8.98157
11.01843
8.98358
11.01642
10.00200
9.99800
30
31
98288
01712
98490
01510
00202
99798
29
32
98419
01681
98622
01378
00203
99797
28
33
98649
01451
98753
01247
00204
99796
27
34
98679
01321
98884
01116
00205
99795
26
35
8.98808
11.01192
8.99015
11.00985
10.00207
9.99793
25
36
98937
01063
99145
00855
00208
99792
24
37
99066
00934
99275
00726
00209
99791
23
38
99194
00806
99405
00596
00210
99790
22
39
99322
00678
99534
00466
00212
99788
21
40
8.99450
11.00550
8.99662
11.00338
10.00213
9.99787
20
41
99577
00423
99791
00209
00214
99786
19
42
99704
00296
99919
00081
00215
99785
18
43
99830
00170
9.00046
10.99954
00217
99783
17
44
99966
00044
00174
99826
00218
99782
16
45
9.00082
10.99918
9.00301
10.99699
10.00219
9.99781
15
46
00207
99793
00427
99573
00220
99780
14
47
00332
99668
00553
99447
00222
99778
13
48
00456
99544
00679
99321
00223
99777
12
49
00681
99419
00805
99196
00224
99776
11
50
9.00704
10.99296
9.00930
10.99070
10.00225
9.99775
10
51
00828
99172
01055
98945
00227
99773
9
62
00951
99049
01179
98821
00228
99772
8
53
01074
98926
01303
98697
00229
99771
7
54
01196
98804
01427
98673
00231
99769
6
55
9.01318
10.98682
9.01650
10.984.50
10.00232
9.99768
5
56
01440
98560
01673
98327
00233
99767
4
57
01661
98439
01796
98204
00236
99765
3
68
01682
98318
01918
98082
00236
99764
2
69
01803
98197
02040
97960
00237
99763
1
60
01923
98077
02162
97838
00239
99761
M.
Cosine.
Secant.
Cotangent.
Tangent.
Cosecant.
Sine.
M.
84°
Table 2. LOGAEITHMIC ANGULAR FUNCTIONS.
283
6°
Logarithms.
173°
M.
Sine.
Cosecant.
Tangent.
Cotangent.
Secant.
Cosine.
M.
9.01923
10.98077
9.02162
10.97838
10.00239
9.99761
60
1
02043
97957
02283
97717
00240
99760
59
2
02163
97837
02404
97596
00241
99759
58
3
02283
97717
02525
97475
00243
99757
57
4
02402
97598
02645
97355
00244
99756
56
5
9.02520
10.97480
9.02766
10.97234
10.00248
9.99755
55
6
02639
97361
02885
97115
00247
99753
54
7
02757
97243
03005
96995
00248
99752
53
8
02874
97126
03124
96876
00249
99751
52
9
02992
97008
03242
96758
00261
99749
51
10
9.03109
10.96891
9.03361
10.96639
10.00252
9.99748
50
U
03226
96774
03479
96621
00253
99747
49
12
03342
96668
03597
96403
00285
99745
48
13
03458
96542
03714
96286
00266
99744
47
14
03674
96426
03832
96168
00268
99742
46
15
9.03690
10.96310
9.03948
10.96052
10.00259
9.99741
45
16
03805
96198
04065
95935
00260
99740
44
17
03920
96080
04181
95819
00262
99738
43
18
04034
95966
04297
96703
00263
99737
42
19
04149
95861
04413
95587
00264
99736
41
20
9.04262
10.95738
9.04528
10.95472
10.00266
9.99734
40
21
04376
96624
04643
95357
00267
99733
39
22
04490
9.5510
04768
95242
00269
99731
38
23
04603
95397
04873
95127
00270
99730
37
24
04715
9.5286
04987
95013
00272
99728
36
25
9.04828
10.95172
9.05101
10.94899
10.00273
9.99727
35
26
04940
9.5060
05214
94786
00274
99726
31
27
05052
94948
05328
94672
0)270
99724
33
28
05164
94836
05441
94559
00277
99723
32
29
05275
94725
05653 .
94447
00279
99721
31
30
9.05386
10.94614
9.05666
10.94334
10.00280
9.99720
30
31
05497
94503
05778
91222
00282
99718
29
32
05607
94393
05890
94110
00283
99717
28
33
05717
94283
06002
93998
00284
99716
27
34
05827
94173
06113
93887
00286
99714
26
35
9.05937
10.94063
9.06224
10.93776
10.00287
9.99713
25
36
06046
93954
06335
93665
00289
99711
24
37
06155
93845
06445
93565
00290
99710
23
38
06264
93736
06566
93144
00292
99708
22
39
06372
93628
06666
93334
00293
99707
21
40
9.06481
10.93519
9.06775
10.93225
10.00295
9.99705
20
41
06589
93411
06885
93115
00296
99704
19
42
06696
93304
06994
93006
00298
99702
18
43
06804
93196
07103
92897
00299
99701
17
44
06911
93089
07211
92789
00301
99699
16
45
9.07018
10.92982
9.07320
10.92680
10.00302
9.99698 •
15
46
07124
92876
07428
92572
00304
99696
14
47
07231
92769
07536
92464
00305
99695
13
48
07337
92663
07643
92357
00307
99693
12
49
07442
92568
07751
92249
00308
99692
11
50
9.07548
10.92452
9.07858
10.92142
10.00310
9.99690
10
51
07653
92347
07964
92036
00311
99689
9
52
07768
92242
08071
91929
00313
99687
8
53
07863
92137
08177
91823
00314
99686
7
54
07968
92032
08283
91717
00316
99684
6
55
9.08072
10.91928
9.08389
10.91611
10.00317
9.99683
5
66
08176
91821
08495
91505
00319
99681
4
57
08280
91720
08600
91400
00320
99680
3
58
08383
91617
08705
91295
00322
99678
2
59
08486
91514
08810
91190
00323
99677
1
60
08689
91411
08914
91086
00325
99675
M.
Cosine.
Secant.
C^5 tangent.
Tangent.
Cosecant.
Sine.
M.
83°
284 LOGARITHMIC ANGULAR FUNCTIONS. Tables.
7°
Logarithms.
72°
M.
Sine.
9.0S5S9
Cosocant.
Tangent.
Cotangent.
Recant.
Cosine.
M.
10.91411
9.08914
10.91086
10.00325
9.99675
60
1
08692
91308
09019
90981
00326
99674
69
2
08795
91205
09123
90877
00.328
99672
58
3
08897
91103
09227
90773
00330
99670
57
4
08999
91001
09330
90670
00331
99669
,56
6
9.09101
10.90899
9.09434
10.90666
10.00333
9.99667
,55
e
09202
90798
09537
90463
00334
99666
54
7
09304
90696
09610
90360
00336
99664
53
8
09105
90595
09742
90258
00337
99663
52
9
09506
90494
09845
90155
00339
99661
51
10
9.09606
10.90394
9.09947
10.900.53
10.00341
9.99659
■50
H
09707
90293
10049
89961
00342
99658
49
12
09807
90193
10150
89850
00344
99656
48
13
09907
90093
10252
89748
00345
99655
47
1-1
10006
89994
10353
89647
00347
99663
46
15
9.10106
10.89894
9.10464
10.89,546
10.00349
9.99651
45
16
10205
89795
10565
89445
00350
99650
44
17
10304
89696
10656
89344
003.52
99648
43
18
10402
89598
10756
89244
00353
99647
42
19
10501
89499
108.56
89141
00355
99646
41
20
9.10.599
10.89401
9.10966
10.89044
10.00.357
9.99643
40
21
10697
89303
11066
88944
00368
99642
39
22
10795
89205
11155
88845
00360
99640
38
23
10893
89107
11254
88746
00362
99638
37
24
10990
89010
11353
88647
00363
99637
36
25
9A1087
10.88913
9.114.52
10.88548
10.00365
9.99635
35
26
11184
88816
11.561
88449
00367
99633
34
27
11281
88719
11649
88351
00368
99632
33
28
11377
88623
11747
88253
00370
99630
32
29
11474
88526
11845
88155
00371
99629
31
30
9.11570
10.88430
9.11943
10.88067
10.00373
9.99627
30
31
11666
88334
12040
87960
00375
99625
29
32
11761
88239
12138
87862
00376
99624
28
33
11857
88143
12235
87765
00378
99622
27
34
11952
88048
12332
87668
00380
99620
26
35
9.12047
10.87953
9.12428
10.87572
10.00382
9.99618
25
36
12142
87858
1'2525
87475
00383
99617
24
37
12236
87764
12621
87379
00386
99615
23
38
12331
87669
12717
87283
00387
99613
22
39
12425
87575
12813
87187
00388
99612
21
40
9.12619
10.87481
9.12909
10.87091
10.00390
9.99610
20
41
12612
.S73SM
13004
86996
00392
99608
19
42
12706
87294
13099
86901
00393
99607
18
43
12799
87201
13194
86806
00395
99605
17
44
12892
87108
13289
86711
00397
99603
16
45
9.12985
10.87015
9.13384
10.86616
10.00399
9.99601
15
46
13078
86922
13478
86522
00400
99600
14
47
13171
86829
l;5573
86127
00402
99598
13
48
13263
86737
13667
86333
00404
99596
12
49
13355
86645
13761
86239
00405
99595
11
60
9.13447
10.86553
9.13864
10.86146
10.00407
9.99593
10
51
13539
86461
13948
86052
00409
99.591
9
52
13630
86370
11041
8.5959
00411
99.589
8
53
13722
86278
141.34
85866
00412
99.588
7
54
13813
86187
14227
85773
00414
996S6
6
55
9.13904
10.86096
9.14320
10.a5680
10.00416
9.99684
5
56
13994
86006
14412
85588
00418
99,-82
4
57
14085
85915
14504
85496
00419
99581
3
58
14175
85825
14597
86403
00421
99579
2
69
14266
8.5734
14688
8.5312
00423
99577
1
60
14356
85644
14780
85220
00425
99575
sr.
Cosine.
Secant.
Cotangent
Tangent.
Cosecant.
Sine.
M.
Table 2. LOGARITHMIC ANGULAR FUNCTIONS.
285
8°
Logarithms.
171°
M.
Sine.
Cosecant.
Tangent.
Cotangent.
Secant.
Co.siue.
M.
9.14356
10.85644
9.14780
10.86220
10.00425
9.99675
60
1
14445
85655
14872
85128
00426
99574
59
2
14535
85465
14963
85037
00428
99572
68
3
14624
85376
16054
849-16
00430
99570
,57
4
14714
85286
15145
84866
00432
99568
56
5
9.14803
10.85197
9.16236
10.84764
10.004.34
9.99566
55
6
14891
85109
16327
84673
00435
99565
64
7
14980
85020
15417
84583
00437
99563
53
8
15069
84931
16508
84492
00439
99561
52
9
15157
84813
1.5698
84402
00441
99559
51
10
9.15245
10.84765
9.15688
10.84312
10.00443
9.99657
50
11
15333
84667
15777
84223
00444
99556
49
12
15421
84579
15867
84133
00446
99554
48
13
15608
84492
15966
84044
00448
99552
47
14
15596
84404
16046
83954
004,50
99550
46
15
9.15683
10.84317
9.16136
10.83865
10.00462
9.99548
45
16
15770
84230
16224
83776
004.51
99546
44
17
15857
84143
16312
83688
00465
99545
43
18
15944
84056
16401
83599
00457
99513
42
19
16030
83970
16489
83611
00459
99641
41
20
9.16116
10.83884
9.16577
10.83423
10.00461
9.99539
40
21
16203
83797
16665
83336
00463
99537
39
22
16289
83711
16753
83217
00465
99536
38
23
16374
83626
16841
83169
00467
99633
37
24
16460
83640
16928
83072
00468
99632
36
25
9.16545
10.83466
9.17016
10.82984
10.00470
9.99530
35
26
16631
83369
17103
82897
C0472
99528
34
27
16716
83284
17190
82810
00474
99526
33
28
16801
83199
17277
82723
00476
99524
32
29
16886
83114
17.363
82637
00478
99522
31
30
9.16970
10.83030
9.17450
10.82550
10.00480
9.99520
30
31
17055
82945
17536
82464
00482
99518
29
32
17139
82861
17622
82378
00483
99617
28
33
17223
82777
17708
82292
00485
99515
27
3-t
17307
82693
17794
822C6
00487
99613
26
35
9.17391
10.82609
9.17880
10.82120
10.00489
9.99511
25
36
17474
82626
17965
82035
00491
99509
24
a^7
17558
82442
18051
81949
00493
99507
23
^8
17641
82359
18136
81864
00495
99505
22
39
17724
82276
18221
81779
00497
99503
21
40
9.17807
10.82193
9.18306
10.81694
10.00499
9.99501
20
41
17890
82110
18391
81609
00501
99499
19
42
17973
82027
18475
81525
00503
99497
18
43
18065
81945
18560
81440
00605
99495
17
44
18137
81863
186U
J1356
00506
99494
16
45
9.18220
10.81780
9.18728
10,81272
10.00.508
9.99492
15
46
18302
81698
18812
81188
00510
99490
14
47
18383
81617
18896
81104
00512
99488
13
48
18465
81535
18979
81021
00614
99486
12
49
18547
81453
19063
80937
00516
99484
11
50
9.18628
10.81372
9.19146
10.80851
10.00518
9.99482
10
51
18709
81291
19229
80771
00520
99480
9
52
18790
81210
19312
80688
00522
99478
8
53
18871
81129
19395
80605
00524
99476
7
54
18952
81048
19478
80622
00526
99474
6
55
9.19033
10.80967
9.19661
10.80439
10.00628
9.99472
5
56
19113
80887
19643
803,57
00630
99470
4
57
19193
80807
19725
80276
00532
99468
3
58
19273
80727
19807
80193
00534
99466
2
59
19353
80647
19889
80111
. 00.536
99464
1
60
19433
80567
19971
80029
00538
99462
M.
Cosine.
Secant.
Cotangent.
Tangent.
Cosecant.
Sine.
M.
81°
^86
LOGARITHMIC ANGULAR FUNCTIONS. Table 3.
9°
Logarithms.
170°
M.
Sine.
Cosecant.
Tangent.
Cotangent
Secant.
Cosine.
M.
9.19433
10.80507
9.19971
10.80029
10.00538
9.99462
60
1
19513
804S7
20053
79947
00540
99460
59
2
19592
80408
20134
79866
00542
99468
58
3
19672
80328
20216
79784
00544
99456
67
i
19751
80249
20297
79703
00546
994.54
56
5
9.19830
10.80170
9.20378
10.79622
10.00548
9.99452
65
6
19909
80091
20459
79541
00550
99450
54
7
19988
80012
20540
79460
C0552
99448
63
8
20067
79933
20621
79379
00554
99446
52
9
20145
79855
20701
79299
00666
99444
51
10
9.20223
10.79777
9.20782
10.79218
10.00558
9.99442
50
11
20302
79698
20862
79138
00560
99440
49
12
20380
79620
20912
79058
00562
99438
48
13
20458
79542
21022
78978
00564
99436
47
14
20535
79465
21102
78898
00666
99434
46
15
9.20613
10.79,387
9.21182
10.78818
10.00568
9.99432
45
16
20691
79309
21261
78739
00571
99429
44
17
20768
79232
21341
78659
00573
99427
43
18
20845
79155
21420
78580
00575
99425
42
19
20922
79078
21499
78501
00677
99423
41
20
9.20999
10.79001
9.21578
10.78422
10.00579
9.99421
40
21
21076
78924
21657
78343
00581
99419
39
22
21153
78847
21736
78264
00583
99417
38
23
21229
78771
21814
78186
00585
99415
37
24
21306
78694
21893
78107
00587
99413
36
25
9.21382
10.78618
9.21971
10.78029
10.00589
9.99411
35
26
21458
78642
22049
77951
00691
99409
34
27
21534
78466
22127
77873
00593
99407
33
28
21610
78390
22205
77795
00596
99404
32
29
21685
78315
22283
77717
00598
99402
31
30
9.21761
10.78239
9.22361
10.77639
10.00600
9.99400
30
31
21836
78164
22438
77562
00602
99398
29
32
21912
78088
22516
77484
00604
99396
28
33
21987
78013
22593
77407
00600
99394
27
34
22062
77938
22670
77330
00608
99392
26
35
9.22137
10.77863
9.22747
10.77253
10.00610
9.99390
25
36
22211
77789
22824
77176
00612
99388
24
37
22286
77714
22901
77099
00615
99385
23
38
22361
77639
22977
77023
00617
99383
39
22435
77665
23054
76946
00619
99381
21
40
9.22509
10.77491
9.23130
10.76870
10.00621
9.99379
20
41
22583
77417
23206
76794
00623
99377
19
42
22667
77343
23283
76717
00625
99375
18
43
22731
77269
23359
76641
00628
99372
17
44
22805
77195
23435
76565
00630
99370
16
45
9.22878
10.77122
9.23510
10.76490
10.00632
9.99368
15
46
22952
77048
23586
76414
00634
99366
14
47
23025
76975
23661
76339
00636
99364
13
48
23098
76902
23737
76263
00638
99362
12
49
23171
76829
23812
76188
00641
99359
11
50
9.23244
10.76756
9.23887
10.76113
10.00643
9.99357
10
51
23317
76683
23902
76038
00645
99355
9
52
23390
76610
24037
75963
00647
99353
8
53
23462
76538
24112
75888
00649
99361
7
54
23535
76465
2J1S0
75814
00652
99348
6
55
9.23607
10.76393
9.24261
10.7.5739
10.00654
9.99346
5
56
23679
76321
24335
75665
00656
99344
4
57
23752
76248
24410
75590
00658
99342
3
58
23823
76177
•2US-1
75516
00660
99340
2
59
23895
76105
24 .WS
75442
00663
99337
1
CO
23967
76833
24632
75368
00665
99335
M.
Cosine.
Seciint.
Cotangent.
Tangent.
Cosecant.
Sine.
M.
pp.
80°
Table 2. LOGARITHMIC ANGULAR FUNCTIONS.
287
10°
Logarithms.
J 69°
M,
Sine.
Cosecant.
Tangent.
9.24632
Cotangent.
10.75368
Secant.
Cosine.
M.
9.23967
10.76033
10.0066.5
9.99336
60
1
24039
75961
24706
75294
00667
99333
69
2
24110
76890
24779
76221
00669
99331
58
3
21181
75819
24853
75147
00672
99328
57
4
24253
75747
24926
76074
00674
99326
56
5
9.24324
10.75676
9.26000
10.76000
10.00676
9.99324
56
6
24395
75605
25073
74927
00678
99322
54
7
24466
7.5534
25146
74854
00681
99319
53
8
21536
75464
25219
74781
00683
99317
52
9
24607
75393
25292
74708
00685
99315
51
10
9.24677
10.75323
9.26305
10.74635
10.00687
9.99313
50
11
24748
76252
25437
74563
00690
99310
49
12
24818
76182
25510
74490
00692
99308
48
13
21888
76112
25682
74418
00694
99306
47
14
24958
75042
25665
74345
00696
99304
46
15
9.25028
10.74972
9.25727
10.74273
10.00699
9.99301
46
16
25098
74902
25799
74201
00701
99299
44
17
25168
74832
26871
74129
00703
99297
43
18
25237
74763
26943
74057
00706
99294
42
19
25307
74693
26016
73985
00708
99292
41
20
9.25376
10.74624
9.26086
10.73914
10.00710
9.99290
40
21
25445
74566
26168
73842
00712
99288
39
22
25514
74486
26229
73771
00715
99285
38
23
25583
74417
26301
73699
00717
99283
37
24
25652
74348
26372
73628
00719
99281
36
25
9.25721
10.74279
9.26443
10.73557
10.00722
9.99278
35
26
25790
74210
26514
73486
00724
99276
34
27
26858
74142
26585
73115
00726
99274
33
28
25927
74073
26655
73345
00729
99271
32
29
25995
74006
26726
73274
00731
99269
31
30
9.26063
10.73937
9.26797
10.73203
10.00733
9.99267
30
31
26131
73869
26867
731.33
00736
99264
29
32
26199
73801
26937
73063
00738
99262
28
33
26267
73733
27008
72992
00740
99260
27
34
26335
73666
27078
72922
00743
99257
26
35
9.26403
10.73597
9.27148
10.72852
10.00745
9.99255
25
36
26470
73530
27218
72782
00748
99252
24
37
26638
73462
27288
72712
00760
99250
23
38
26605
73395
27357
72643
00762
99248
22
39
26672
73328
27427
72573
00755
99245
21
40
9.26739
10.73261
9.27496
10.72504
10.00757
9.99243
20
41
26806
73194
27566
72434
00759
99241
19
42
26873
73127
27635
72365
00762
99238
18
43
26940
73060
27704
72296
00764
99236
17
44
27007
72998
27773
72227
00767
99233
16
45
9.27073
10.72927
9.27842
10.72168
10.00769
9.99231
15
46
27140
72860
27911
72089
00771
99229
14
47
27206
72794
27980
72020
00774
99226
13
48
27273
72727
28049
71951
00776
99224
12
49
27339
72661
28117
71883
00779
99221
11
50
9.27405
10.72596
9.28186
10.71814
10.00781
9.99219
10
51
27471
72529
28254
71746
00783
99217
9
52
27537
72463
28323
71677
00786
99214
8
53
27602
72398
28391
71609
00788
99212
7
64
27668
72332
28459
71641
00791
99209
6
55
9.27734
10.72266
9.28527
10.71473
10.00793
9.99207
5
56
27799
72201
28595
71405
00796
99204
4
57
27864
72136
28662
71338
00798
99202
3
58
27930
72070
28730
71270
00800
99200
2
59
27995
72005
28798
71202
00803
99197
1
60
28060
71940
28865
71135
00806
99195
M.
Cosine.
Secant.
Cotangent.
Tangent.
Cosecant.
Sine.
M.
100°
79°
288 LOGARITHMIC ANGULAR FUNCTIONS. Table 3.
11°
Logarithms.
68°
M.
Sine.
Cosecant.
Tangent.
Cotangent.
Secant.
Cosine.
M.
9.28060
10.71940
9.28865
10.711.36
10.00806
9.99195
60
1
28125
71875
28933
71067
00808
99192
69
2
28190
71810
29000
71000
00810
99190
58
3
28254
71746
29067
70933
00813
99187
57
4
28319
71681
29134
70866
00816
99185
56
5
9.28384
10.71616
9.29201
10.70799
10.00818
9.99182
55
6
28448
71652
29268
70732
00820
99180
64
7
28512
71488
29335
70665
00823
99177
53
8
28677
71423
29402
70598
00826
99175
52
9
28641
71359
29468
70532
00828
99172
51
10
9.28705
10.71295
9.29536
10.70405
10.00830
9.99170
60
n
28769
71231
29601
70399
00833
99167
49
12
28833
71167
29668
70332
00835
99165
48
13
28896
71104
29734
70266
00838
99162
47
14
28960
71040
29800
70200
00840
99160
46
15
9.29024
10.70976
9.29866
10.70134
10.00843
9.99157
45
16
29087
70913
29932
70068
00845
99156
44
17
29150
70850
29998
70002
00848
99152
43
18
29214
70786
30064
69936
00850
99160
42
19
• 29277
70723
30130
69870
00853
99147
41
20
9.29340
10.70660
9.30196
10.69805
10.00856
9.99145
40
21
29403
70597
30261
69739
00858
99142
39
22
29466
70534
30326
69674
00860
99140
38
23
29529
70471
30391
69609
00863
99137
37
24
29591
70409
30457
69643
00865
99135
36
25
9.29654
10.70346
9.30522
10.69478
10.00868
9.99132
35
26
29716
70284
30587
6941.3
00870
99130
34
27
29779
70221
30&52
69348
00873
99127
33
28
29841
70169
30717
69283
00876
99124
32
29
29903
70097
30782
69218
00878
99122
31
80
9.29966
10.70034
9.30846
10.69154
10.00881
9.99119
30
31
30028
69972
30911
69089
00883
99117
29
32
30090
69910
30976
69026
00886
99114
28
33
30151
69849
31040
68960
00888
99112
27
34
30213
69787
31104
68896
00891
99109
28
35
9.30275
10.6972.5
9.31168
10.68832
10.00894
9.99106
25
36
30336
69664
31233
68767
00896
99104
24
37
30398
69602
31297
68703
00899
99101
23
38
30459
69541
31361
68639
00901
99099
22
39
30621
69479
31425
68675
00904
99096
21
40
9.30582
10.69418
9.31489
10.68511
10.00907
9.99093
20
41
30643
69357
31552
68448
00909
99091
19
42
30704
69296
31616
CS3M4
00912
99088
18
43
30766
69235
31679
68321
00914
99086
17
44
30826
69174
31743
68267
00917
99083
16
45
9.30887
10.69113
9.31806
10.68194
10.00920
9.99080
15
46
30947
69053
31870
68130
00922
99078
14
47
31008
68992
31933
68067
00925
99076
13
48
31068
68932
31996
68004
00928
99072
12
49
31129
68871
32059
679J1
00930
99070
11
50
9.31189
10.68811
9.32122
10.67878
10.00933
9.99067
10
51
31250
68750
32185
67815
00936
99064
9
52
31310
68690
32248
67752
00938
99062
8
53
31370
68630
32311
67689
00941
99059
7
54
31430
68570
32373
67627
00944
99056
6
65
9.31490
10.68510
9.32436
10.67564
10.00946
9.99064
5
56
31649
68451
32498
67502
00949
99061
4
57
31609
68391
32561
67439
00952
99048
3
58
31669
68331
32623
67377
00954
99046
2
59
31728
68272
32685
67315
00957
99043
1
60
31788
68212
32747
67253
00960
99040
M.
Coeiiie.
Secant.
Cotangent,
Tangent.
Cosecant.
Sine.
M.
10i°
78°
Table 2. LOGARITHMIC ANGULAR FUNCTIONS. 289
12°
Logarithms.
167°
M-.
Sine.
CofMicant.
Tangent.
Cotangent
Secant.
Cosine.
M.
9.31788
10.68212
9.32747
10.67253
10.00960
9.99040
60
1
31847
68153
32810
67190
00962
99038
59
2
31907
68093
32872
67128
00965
99035
58
3
31966
68034
32933
67067
00968
99032
57
4
32025
67975
32995
67005
00970
99030
56
5
9.32084
10.67916
9.33057
10.66943
10.00973
9.99027
56
6
32143
67857
83119
66881
00976
99024
54
7
32202
67798
33180
66820
00978
99022
53
8
32261
67739
33242
66758
00981
99019
52
9
32319
67681
38303
66697
00984
99016
51
10
9.32378
10.67622
9.33365
10.66635
10.00987
9.99013
50
11
32437
67563
83426
66574
00989
99011
49
12
32495
67505
33487
66513
00992
99008
48
13
32553
67447
33548
66452
00995
99005
47
14
32612
67388
33609
66391
00998
99002
46
15
9.32670
10.67330
9.33670
10.66330
10.01000
9.99000
45
16
32728
67272
33731
66269
01003
98997
44
17
32786
67214
33792
66208
01006
98994
43
18
32844
67156
33853
66147
01009
98991
42
19
32902
67098
33913
66087
01011
98989
41
20
9.32960
10.67040
9.33974
10.66026
10.01014
9.98986
40
21
83018
66982
34034
65966
01017
98983
89
22
33075
66925
84095
65905
01020
98980
38
23
33133
66867
341,55
65845
01022
98978
37
24
33190
66810
34215
65785
01025
98975
86
25
9.33248
10.667.52
9.34276
10.65724
10.01028
9.98972
35
26
33305
66695
34336
65664
01031
98969
34
27
33362
66638
34.396
65604
01083
98967
38
28
33420
66580
34456
65544
01036
98964
32
29
33477
66523
34516
65484
01039
98961
31
3D
9.33534
10.66466
9.34576
10.65424
10.01042
9.98958
30
31
33.591
66409
34635
65365
01045
98955
29
32
33647
66353
34695
65305
01047
98953
28
33
33704
66296
34755
6.5245
01060
98950
27
34
33761
66239
34814
65186
01063
98947
26
35
9.33818
10.66182
9.34874
10.65126
10.01056
9.98944
25
36
33874
66126
34933
65067
01059
98941
24
37
339.31
66069
34992
66008
01062
98938
23
38
33987
66013
35051
64949
01064
98936
22
39
34043
65957
35111
64889
01067
98933
21
40
9.34100
10.65900
9.35170
10.64830
10.01070
9.98980
20
41
34156
65844
35229
64771
01073
98927
19
42
34212
65788
35288
64712
01076
98924
18
43
34268
65732
35347
64663
01079
98921
17
44
34324
6.5876
35405
64696
01081
98919
16
45
9.34380
10.65620
9.35464
10.64536
10.01084
9.98916
15
46
34436
65564.
35523
64477
01087
98913
14
47
34491
65509
35581
64419
0109U
98910
13
48
34547
65453
,35640
64360
01093
98907
12
49
34602
65398
3.5698
64302
01096
98904
11
50
9.34658
10.65342
9.35757
10.64243
10.01099
9.98901
10
51
34713
65287
35815
64185
01102
98898
9
52
34769
65231
35873
64127
01104
98896
8
53
34824
66176
35931
64069
01107
98893
7
54
34879
65121
35989
64011
OHIO
98890
6
55
9.34934
10.65066
9.36047
10.63953
10.01113
9.98887
5
56
34989
65011
36105
63895
01116
98884
4
57
35044
64956
36163
63837
01119
98881
3
58
35099
64901
36221
63779
01122
98878
2
59
351.54
64846
36279
63721
01125
98875
1
60
35209
64791
36336
63664
01128
98872
M.
Cosine.
Secant.
Cotangent
Tangent.
Cosecant.
Sine.
M.
102°
77°
290 LOGARITHMIC ANGULAR FUNCTIONS. Table 3.
13°
Logarithms.
166°
M,
Sine.
Cosecant.
Tangent.
Cotangent,
Secant.
Cosine.
M,
9.35209
10.64791
9.36336
10.63664
10.01128
9.98872
60
1
35263
64737
36394
63606
01131
98869
69
2
35318
64682
36452
63548
01133
98867
68
3
35373
64627
36509
63491
01136
98864
57
4
36427
64573
36566
63434
01139
98861
66
5
9.36481
10.64519
9.36624
10.63376
10.01142
9.98858
55
6
36536
64464
36681
63319
01115
98855
54
7
36590
61410
36738
63262
01148
98852
63
8
35644
04356
36795
63205
01161
98849
52
9
35698
61302
36852
63148
01154
98846
51
10
9.35752
10.64248
9.36909
10.63091
10,01157
9.98843
50
11
35806
64194
36966
63034
01160
98840
49
12
35860
64140
37023
62977
01163
98837
48
13
35914
64086
.37080
62920
01166
98834
47
14
35968
64032
37137
62863
01169
98831
46
15
9.36022
10.63978
9.37193
10.62807
10,01172
9.98828
45
16
36075
03925
37250
62750
01175
98825
44
17
30129
63871
37306
62694
01178
98822
43
18
36182
63818
37363
62637
01181
98819
42
19
36236
63764
37419
62581
01184
98816
41
20
9.36289
10.63711
9.37476
10.6'2521
10.01187
9.98813
40
21
36342
63658
37532
62468
01190
'98810
39
22
36395
63606
37688
62412
01193
98807
38
23
36449
63551
37644
62356
01196
98804
37
24
36502
63498
37700
62300
01199
98801
36
26
9.36555
10.63445
9.37766
10.62214
10.01202
9.98798
36
26
36608
63392
37812
62188
01205
98795
34
27
36660
63340
37868
62132
01208
98792
33
28
36713
63287
37924
62076
01211
98789
32
29
36766
63234
.37980
62020
01214
98786
31
30
9.36819
10.63181
9.38035
10.61965
10.01217
9.98783
3D
81
36871
63129
38091
61909
01220
98780
29
32
36924
63076
38147
61853
01223
98777
28
33
36976
63024
38202
61798
01226
98774
27
34
37028
62972
38257
61743
01229
98771
26
35
9.37081
10.62919
9.38313
10.61687
10.01232
9.98768
25
36
37133
62867
38368
01632
01235
98765
24
37
37185
62815
38423
61677
01238
98762
23
38
37237
62763
38479
61521
01241
98759
22
39
37289
62711
38534
61466
01244
98756
21
40
9.37341
10.62659
9.38589
10.61411
10.01247
?, 98753
■20
41
37393
62607
38644
61356
01250
98760
19
42
37445
6-2555
38699
61301
01254
98746
18
43
37497
6'2603
38754
61246
01257
98743
17
44
37549
6'2451
38808
61192
01260
98740
16
45
9,37600
10.62400
9.38863
10.61137
10.01263
9,98737
15
46
37652
62348
38918
61082
01266
98734
14
47
37703
62297
38972
61028
01269
98731
13
48
37755
62245
39027
60973
01272
98728
12
49
37806
62194
39082
60918
01275
98725
11
60
9.37858
10.62142
9.39136
10,60864
10.01278
9,98722
10
51
37909
62091
39190
60810
01281
98719
9
62
37960
62040
39245
607.55
01285
98715
8
63
38011
61989
39299
60701
01288
98712
7
54
38062
61938
39353
60647
01291
98709
6
55
9.38113
10.61887
9.39407
10.60593
10.01294
9,98706
5
56
38164
61836
39461
60.539
01297
98703
4
57
38215
61785
39516
60485
01300
98700
3
58
38266
61734
39569
60431
01303
98697
2
69
38317
61683
39623
60377
01306
98694
1
60
38368
61632
39677
60323
01310
98690
mT
CoBiue.
Secant.
Cotangent.
Tangent.
Cosecant.
Sine,
M.
103°
76°
Table 2. LOGARITHMIC ANGULAR FUNCTIONS. 291
J4°
Logarithms.
165°
M.
Sine.
Cosecant.
Tangent.
Cotangent,
Secant.
Cosine.
M.
9.38368
10.61632
9.39677
10.60323
10.01310
9.98690
60
1
38418
61582
39731
60269
01313
98687
59
2
38469
01531
39785
60215
01316
98684
58
3
38519
61481
39838
60162
01319
■98681
57
4
38570
61430
39892
60108
01322
98678
56
5
9.38620
10.61380
9.39945
10.60055
10.01325
9.98675
55
6
38670
61330
39999
60001
01329
98671
54
7
38721
61279
40052
59948
01332
98668
53
8
38771
61229
40106
59894
01335
98665
52
9
38821
61179
40159
59841
01338
98662
51
10
9.;^8871
10.61129
9.40212
10.59788
10.01341
9.98659
50
11
38921
61079
40266
59734
01344
98656
49
12
38971
61029
40319
59681
01348
98652
48
13
39021
60979
40372
59628
01351
98649
47
H
39071
60929
40425
59575
01354
98646
46
15
9.39121
10.60879
9.40478
10.59522
10.01357
9.98643
45
16
39170
60830
40531
59469
01360
98640
44
17
39220
60780
40584
59416
01864
98636
43
18
39270
60730
40636
59364
01367
986.33
42
19
39319
60681
40689
59311
01370
98630
41
20
9.39369
10.60631
9.40742
10.59258
10.01373
9.98627
40
21
39118
60582
40795
59205
01377
98623
39
22
39467
60533
40847
59163
01380
98620
38
23
39517
60483
40900
59100
01383
98617
37
24
39566
60434
40952
59048
01386
98614
36
25
9.39615
10.60385
9.41005
10.58995
10.01390
9.98610
35
26
39664
60336
41057
58943
01393
98607
34
27
39713
60287
41109
58891
01396
98604
33
28
39762
60238
41161
58839
01399
98601
32
29
39811
60189
41214
58786
01403
98597
31
30
9.39860
10.60140
9.41266
10.58734
10.01406
9.98594
30
31
39909
60091
41318
58682
01409
98591
29
32
39958
60042
41370
58630
01412
98588
28
33
40006
59994
41422
58578
01416
98584
27
34
40055
59945
41474
58526
01419
98581
26
35
9.40103
10.59897
9.41526
10.58474
10.01422
9.98578
25
36
40152
59848
41578
58422
01426
98574
24
37
40200
59800
41629
58371
01429
98571
23
38
40249
59751
41681
58319
01432
98568
22
39
40297
59703
41733
58267
01435
98565
21
40
9.40346
10.59654
9.41784
10.58216
10.01439
9.98561
20
41
40394
59606
41836
58164
01442
98558
19
42
40442
59658
41887
58113
01445
98555
18
43
40490
59510
41939
58061
01449
98551
17
44
40538
59462
41990
58010
01452
98548
16
45
9.40586
10.59414
9.42041
10.57959
10.01455
9.98545
15
46
40634
59366
42093
57907
01459
98541
14
47
40682
59318
42144
57856
01462
98538
13
48
40730
59270
42195
57805*
01465
98536
12
49
40778
59222
42246
57754
01469
98531
11
50
9.40825
10.59175
9.42297
10.57703
10.01472
9.98528
10
51
40873
59127
42348
57652
01475
98525
9
52
40921
59079
42399
57601
01479
98521 ■•
8
53
40968
59032
42450
57550
01482
98518
7
54
41016
58984
42501
57499
01485
98515
6
55
9.41063
10.58937
9.42552
10.57448
10.01489
9.98511
5
56
41111
58889
42603
67397
01492
98508
4
57
41158
58842
42653
57347
01495
98505
3
58
41205
58795
42704
57296
01499
98501
2
59
41252
58748
42755
57245
01502
98498
1
60
41300
58700
42805
57195
01506
98494
M.
Cosine.
Secant.
Cotangent.
Tangent.
Cosecant.
Sine.
M.
104°
7S°
292 LOGARITHMIC ANGULAR FUNCTIONS. Table 2.
IS':
Logarithms.
J 64°
M.
Sine.
Cosecant.
Tangent.
Cotangent
1 Secant.
Cosine.
M.
9.41300
10.58700
9.42805
10.57195
10.01506
9.98494
60
1
41347
58653
42855
57144
01509
98491
59
2
41394
58606
42906
57094
01512
98488
58
3
41441
58559
42957
67043
01516
98484
57
4
41488
58512
43007
56993
01619
98481
56
6
9.41535
10.58465
9.43057
10.56943
10.01523
9.98477
55
6
41,=.82
.584 1,S
43108
56892
01526
98474
.54
7
41(iiS
.58372
43158
56842
01529
98471
63
8
JlC.To
58325
43208
56792
01533
98467
52
9
41722
58278
43268
56742
01536
98464
51
10
9.417I-.S
10.58232
9.43308
10.56692
10.01540
9.98460
60
11
41815
.58185
43.3.58
56642
01543
98457
49
12
41861
58139
43408
66592
01547
98463
48
13
41908
.58092
43458
56542
01650
98450
47
14
419.54
58046
43508
56492
01553
98447
46
15
9.42001
10.57999
9.43.558
10.56442
10.01557
9.98443
45
16
42047
57953
43607
56393
01560
98440
44
17
42093
57907
43657
56343
01564
98436
43
18
42140
57860
43707
56293
01667
98433
42
19
42186
57814
43756
66244
01571
98429
41
20
9.42232
10..57768
9.43806
10.56194
10.01674
9.98426
40
21
42278
57722
43855
66145
01578
98422
39
22
42324
57676
43906
56095
01581
98419
38
23
42370
57630
43964
56046
01586
98415
37
24
42416
57584
44004
55996
01688
98412
36
25
9.42461
10.57539
9.44063
'10.56947
10.01691
9.98409
35
26
42507
57493
44102
,55898
01.595
98405
34
27
42553
57447
44151
55849
01598
98402
33
28
42599
67401
44201
65799
01602
98398
32
29
42644
57356
44250
55760
01605
98396
31
30
9.42690
10.57310
9.44299
10..55701
10.01609
9.98391
30
31
42735
57265
44348
55652
01612
98388
29
32
42781
57219
44397
66603
01616
98384
28
33
42826
57174
44446
.55654
01619
98381
27
34
42872
57128
44495
56505
01623
98377
26
35
9.42917
10.57083
9.44.544
10.56456
10.01627
9.98373
25
3G
42962
57038
44592
55408
01630
98370
24
37
43008
56992
44641
66359
01634
98366
23
38
43053
56947
44690
55310
016.37
98363
22
39
43098
56902
44738
6.5262
01641
98369
21
40
9.43143
10.56857
9.44787
10.55213
10.01644
9.98356
20
41
43188
56812
44836
55164
01648
98352
19
42
43233
56767
44884
55116
01661
98349
18
43
43278
56722
44933
55067
01655
98345
17
44
43323
56677
44981
55019
01658
98342
16
45
9.43367
10.56033
9.45029
10.54971
10.01662
9.98338
15
46
43412
56.588
45078
54922
01666
98334
14
47
43457
66543
45126
54874
01669
98831
13
48
43502
66498
46174
54826
01673
98327
12
49
43546
564,54
45222
54778
01676
98324
11
60
9.43591
10.56409
9.46271
10.54729
10.01680
9.98320
10
51
43635
66365
45319
54681
01683
98317
9
52
43680
56320
45367
54633
01687
98313
8
53
43724
56276
45415
54.585
01691
98309
7
64
43769
56231
45463
54537
01694
98306
6
55
9.43813
10.56187
9.45511
10.,54489
10.01698
9.98302
5
56
43857
56143
45559
64441
01701
98299
4
57
43901
56099
45606
54394
01705
98295
3
58
43946
56054
45654
54346
01709
98291
2
59
43990
56010
4.5702
54298
01712
98288
1
60
44034
55966
45750
54250
01716
98284
M.
Cosine.
Secant.
Cotangent.
Tangent.
Cosecant.
Sine.
M.
105°
74°
Table 2. LOGARITHMIC ANGULAR FUNCTIONS.
293
16°
Logarithms.
163°
M.
Sine.
Cosecant.
Tangent.
Cotangent.!
Secant.
Ci>.''Ule.
M.
9.44034
10.56966
9.45750
10.54250
10.01716
9.98284
60
1
44078
55922
45797
54203
01719
982S1
59
2
44122
55878
45845
541.55
01723
98277
68
3
44166
55834
45892
54108
01727
98273
57
4
44210
55790
46940
54060
01730
98270
56
5
9.44253
10.55747
9.45987
10.54013
10.01734
9.98266
55
6
44297
55703
46035
53965
01738
98262
54
7
44341
55659
46082
53918
01741
98269
53
8
44385
55615
46130
53870
01745
982.65
52
9
44428
55572
46177
53823
0]74'9
98251
51
10
9.44472
10.55528
9.46224
10.53776
10.01752
9.98248
50
11
44516
55484
46271
53729
01756
98244
49
12
44559
55441
46319
53681
01760
98240
48
13
44602
55398
46366
63634
01763
98237
47
14
44646
55354
46413
5.3587
01767
98233
46
15
9.44689
10.55311
9.46460
10.5.3540
10.01771
9.98229
45
16
44733
55267
46507
63493
01774
98226
44
17
44776
55224
46554
53446
01778
98222
43
18
44819
55181
46601
53399
01782
98218
42
19
44862
55138
46648
53352
01785
98215
41
20
9.44905
10.55095
9.46694
10.53306
10.01789
9.98211
40
21
44948
55052
46741
53259
01793
98207
39
2^^
44992
55008
46788
63212
01796
98204
38
23
45035
54965
46835
63165
01800
98200
37
24
45077
54923
46881
53119
01804
98196
36
25
9.45120
10.54880
9.46928
10.53072
10.01808
9.98192
35
26
45163
54837
46975
53025
01811
98189
34
27
45206
54794
47021
52979
01815
98185
33
28
45249
54751
47068
62932
01819
98181
32
29
45292
54708
47114
52886
01823
98177
31
30
9.45334
10.54666
9.47160
10.52840
10.01826
9.98174
30
31
45377
54623
47207
52793
01830
98170
29
32
45419
54581
47263
52747
01834
98166
28
33
45462
54538
47299
52701
01838
98162
27
34
45504
54496
47346
52654
01841
98159
26
35
9.45547
10.54453
9.47392
10.52608
10.01845
9.98165
25
36
45589
54411
47438
52562
01849
98151
24
37
45632
54368
47484
52516
01853
98147
23
38
45674
54326
47530
52470
01856
98144
22
39
45716
54284
47576
62424
01860
98140
21
40
9.45758
10.54242
9.47622
10.52378
10.01864
9.98136
20
41
45801
54199
47668
52332
01868
98132
19
42
45843
54157
47714
52286
01871
98129
18
43
45885
64115
47760
62240
01875
98125
17
44
45927
54073
47806
52194
01879
98121
16
45
9.45969
10.54031
9.47852
10:52148
10.01883
9.98117
15
46
46011
53989
47897
52103
01887
98113
U
47
46053
53947
47943
52057
01890
98110
13
48
46095
53905
47989
52011
01894
98106
12
49
46136
53864
48035 ■
51965
03898
98102
11
50
9.46178
10.53822
9.48080
10.51920
10.01902
9.98098
10
51
46220
53780
48126
61874
01906
98094
9
52
46262
53738
48171
51829
01910
98090
8
53
46303
53697
48217
51783
01913
98087
7
54
46345
53655
48262
61738
01917
98083
6
55
9.46386
10.53614
9.48307
10.51693
10.01921
9.98079
5
56
46428
53672
48353
51647
01925
98075
4
57
46469
53531
48398
51602
01929
98071
3
58
46511
53489
48443
51557
01933
98067
2
59
46552
53448
48489
51511
01937
98063
1
60
46594
53406
48534
51466
01940
98060
M.
Cosine.
Secant.
Cotangent.
Tangent.
Cosecant.
Sine.
M.
106°
73°
294
LOGARITHMIC ANGULAR FUNCTIONS. Table 2.
Logarithms.
162°
M.
Sine.
Coaecant..
Tangent.
Cotangent.
Secant.
Cosine.
M.
9.46594
10.53406
9.48534
10.51466
10.01940
9.98060
60
1
46635
53365
48579
51421
01944
98056
59
2
46676
53.324
48624
51376
01948
98052
68
3
46717
53283
48669
61331
01952
98048
57
4
46758
53242
48714
61286
01956
98044
56
5
9.41K00
10.53200
9.48759
10.51241
10.01960
9.98040
55
6
iimi
53159
48804
51196
01964
98036
54
7
46,H82
53118
48849
51151
01968
98032
63
8
46923
53077
48894
51106
01971
98029
52
9
46964
53036
48939
51061
01975
98025
51
10
9.47005
10.52995
9.48984
10.61016
10.01979
9.98021
50
11
47045
52955
49029
60971
01983
98017
49
12
47086
52914
49073
50927
01987
98013
48
13
47127
52873
49118
50882
01991
98009
47
14
47168
5'2832
49163
60,837
01996
98005
46
15
9.47209
10.52791
9.49207
10.60793
10.01999
9.98001
45
16
47249
52751
49252
50748
02003
97997
44
17
47290
52710
49296
50704
02007
97993
43
18
47330
52670
49341
50659
02011
97989
42
19
47371
52629
49385
60615
02014
97986
41
20
9.47411
10.52589
9.49430
10.50570
10.02018
9.97982
40
21
47452
52548
49474
50626
02022
97978
39
22
47492
52508
49.519
60481
02026
97974
38
23
47533
52467
49563
50437
02030
97970
37
24
47573
52427
49607
50393
02034
97966
36
25
9.47613
10.52387
9.49652
10..50348
10.02038
9.97962
35
26
47654
62346
49696
60304
02042
97958
34
27
47694
52306
49740
50260
02046
97964
33
28
47734
52266
49784
50216
02050
97960
32
29
47774
52226
49828
50172
02054
97946
31
30
9.47814
10.52186
9.49872
10..50128
10.02058
9.97942
30
31
47854
52146
49916
50084
02062
97938
29
32
47894
52106
49960
50040
02066
97934
28
33
47934
52066
50004
49996
02070
97930
27
34
47974
52026
50048
49952
02074
97926
26
35
9.48014
10.51986
9.50092
10.49908
10.02078
9.97922
25
36
48054
51946
50136
49864
02082
97918
24
37
48094
51906
50180
49820
02086
97914
23
38
48133
51867
50223
49777
02090
97910
22
39
48173
51827
50267
49733
02094
97906
21
40
9.48213
10.51787
9.50311
10.49689
10.02098
9.97902
20
41
48252
51748
50355
49645
02102
97898
19
42
48292
51708
50398
49602
02106
97894
18
43
48332
51668
50442
49558
02110
97890
17
44
48371
51629
50485
49515
02114
97886
16
45
9.48411
10.51589
9.50529
10.49471
10.02118
9.97882
15
46
48450
51550
,50572
49428
02122
97878
14
47
48490
51510
50616
49384
02126
97874
13
48
48529
51471
60659
49341
02130
97870
12
49
48568
51432
50703
49297
02134
97866
11
50
9.48607
10.51393
9.60746
10.49254
10.02139
9.97861
10
51
48647
51353
60789
49211
02148
97857
9
52
48686
51314
60833
49167
02147
97853
8
53
48725
51275
50876
49124
02151
97849
7
54
48764
51236
50919
49081
02155
97845
6
55
9.48803
10.51197
9.50962
10.49038
10.021,59
9.97841
5
56
48842
51158
51006
48995
02163
97837
4
57
48881
51119
,51048
48962
02167
97833
3
58
48920
51080
51092
48908
02171
97829
2
59
48959
51041
51136
48865
02175
97826
1
60
48938
51002
51178
48822
02179
97821
M.
Cosine.
Secant.
Cotangent.
Tangent.
Cosecant.
Sine.
M.
107°
Table 2. LOGARITHMIC ANGULAR FUNCTIONS.
295
18°
Logarithms.
161°
M.
Sine.
CoBGcant.
Tangent.
Cotangent.
Secant.
Cosine.
M.
9.48998
10.51002
9.51178
10.48822
10.02179
9.97821
60
1
49037
50963
51221
48779
02183
97817
59
2
49076
50924
51264
48736
02188
97812
68
3
49115
60885
51306
48694
02192
97808
57
4
49153
50847
51349
48651
02196
• 97804
56
5
9.49192
10.50808
9.51392
10.48608
10.02200
9.97800
56
6
49231
50769
51435
48565
02204
97796
54
7
49269
50731
51478
48522
02208
97792
53
8
49308
50692
51620
48480
02212
97788
52
9
49347
50653
51563
48437
02216
97784
51
10
9.49385
10..50615
9.51606
10.48394
10.02221
9.97779
50
11
49424
50576
51648
48352
02226
97775
49
12
49462
50538
61691
48309
02229
97771
48
13
49500
50500
51734
48266
02233
97767
47
14
49539
50461
61776
48224
02237
97763
46
15
9.49577
10.50423
9.51819
10.48181
10.02241
9.97769
45
16
49615
50385
51861
48139
02246
97754
44
17
49654
50346
61903
48097
02250
97750
43
18
49692
60308
61946
48064
02254
97746
42
19
49730
50270
51988
48012
02258
97742
41
20
9.49768
10.60232
9.62031
10.47969
10.02262
9.97738
40
21
49806
50194
62073
47927
02266
97734
39
22
49844
50156
52115
47886
02271
97729
38
23
49882
50118
52157
47843
02275
97725
37
24
49920
50080
62200
47800
02279
97721
36
25
9.49958
10.50042
9.52242
10.47758
10.02283
9.97717
35
26
49996
50004
52284
47716
02287
97713
34
27
50034
49966
52326
47674
02292
97708
33
28
50072
49928
52368
47632
02296
97704
32
29
50110
49890
52410
47590
02300
97700
31
30
9.50148
10.49852
9.52452
10.47548
10.02304
9.97696
30
31
50185
49815
52494
47506
02309
97691
29
32
50223
49777
52536
47464
02313
97687
28
83
50261
49739
52678
47422
02317
97683
27
34
50298
49702
52620
47380
02321
97679
26
35
9.50336
10.49664
9.62661
10.47339
10.02326
9.97674
25
86
50374
49626
52703
47297
02330
97670
24
37
50411
49589
52745
47255
02334
97666
23
38
50449
49551
52787
47213
02338
97662
22
39
50486
49514
62829
47171
02343
97657
21
40
9.50523
10.49477
9.62870
10.47130
10.02347
9.97663
20
41
50561
49439
52912
47088
02351
97649
19
42
50598
49402
52953
47047
02355
97645
18
43
50635
49365
52995
47005
02:360
97640
17
44
50673
49327
53037
46963
02364
97636
16
45
9.50710
10.49290
9.53078
10.46922
10.02368
9,97632
16
46
50747
49253
53120
46880
02372
97628
14
47
50784
49216
53161
46839
02377
97623
IS
48
50821
49179
63202
46798
02381
97619
12
49
50858
49142
53244
46756
02385
97616
11
50
9.50896
10.49104
9.53285
10.46715
10.02390
9.97610
10
51
50933
49067
53327
46673
02394
97606
9
52
50970
49030
53368
46632
02398
97602
8
53
51007
48993
53409
46591
02403
97697
7
54
51043
48957
53450
46560
02407
97593
6
55
9.51080
10.48920
9.63492
10.46508
10.02411
9.97689
5
56
51117
48883
53633
46467
02416
97684
4
57
51154
48846
53574
46426
02420
97580
3
58
51191
48809
53615
46385
02424
97576
2
59
51227
48773
53666
46344
02429
97571
1
60
51264
48736
53697
46303
02433
97567
M.
Cosine.
Secant.
Cotangent.
Tangent. |
Cosecant.
Sine.
M.
71°
296
LOGAEITHMIC ANGULAR FUNCTIONS. Table 2.
19°
Logar
thms.
Si'cant.
10.024:53
60°
M.
Sine.
CnSCCilllt. i
10.48730
Tiingent.
9.,53697
Cotangent.!
10.46303
Cosine.
9,97567
M.
9.51264
60
1
51301
48699
53738
46262
024:17
97563
59
2
51338
48602
53779
46221
024 12
97558
53
3
51374
48626
53820
46180
0214(1
97584
57
i
51411
18,689
5;3861
46139
02 160
97,550
56
5
9.51447
10.486,63
9..63902
10.46098
10.024:66
9.97545
55
6
51484
4861li
53943
46057
02459
97,641
54
7
51620
484S0
53984
46016
02464
97536
53
8
.^1557
4.S4-13
.64025
4.5975
02468
97632
52
9
51593
48407
54065
45935
01^172
97528
51
10
9..51(i29
10.48371
9.64106
10.45894
10.02477
9.97523
50
11
51666
483: M
54147
4,5853
02481
97519
49
12
51702
48298
,64187
45813
02485
97515
48
13
51738
482C.2
,54228
45772
02490
97510
47
14
51774
48226
,64269
45731
02494
97506
46
15
9..51S11
10.48189
9.,>4309
10.45691
10.02499
9.97501
45
16
51847
48163
54350
45650
0'2503
97497
44
17
51883
48117
54390
45610
02508
97492
43
18
51919
48U81
64431
45569
02512
97488
42
19
51955
48046
,54471
4.5529
02516
97484
41
20
9.61991
10.48009
9.64612
10.4,648S
10.0'2521
9.97479
40
21
.62027
47973
54552
4:6418
02626
97475
39
22
62063
47937
54593
4.6407
02630
97470
38
23
.62099
47901
54633
46:167
02634
97466
37
24
,62136
47865
,54673
46:127
02,639
97461
36
25
9..62171
10.47829
9,54714
10. 1.6286
10.02,643
9.974,57
35
26
."v>2()7
17793
64764
4.6246
02647
974.63
34
27
.62242
477,68
64794
462011
0'2552
97448
33
28
.62278
47722
64H36
45166
02556
97444
32
29
,62314
4768i;
,61876
45126
02.561
97439
31
30
9.62360
10.476,60
9..14916
10.4.6086
10.0'2565
9.97435
30
31
52385
47615
54966
46046
02570
97430
29
32
52421
47579
54996
4.6006
0'2574
974-26
28
33
52456
47,644
. .65035
44966
02579
97421
27
34
52492
47508
55075
44926
02583
97417
26
35
9..62527
10.47473
9.,65115
10.44886
10.02588
9.97412
25
36
.626Ci:!
47437
551,65
44846
02592
97408
24
37
52598
47402
55195
44,S06
0-2697
97403
23
38
52634
47366
,65235
44766
02601
97399
22
39
52669
47331
55275
44725
02606
97394
21
40
9.52705
10.47295
9.,65315
10.446,S6
10.02610
9.97390
20
41
52740
47260
65355
44645
02615
97385
19
42
52775
47225
55395
44605
02619
97381
18
43
52811
47189
55434
44566
02624
97376
17
44
62846
47154
56474
44526
02628
97372
16
45
9.52881
10.47119
9.,55,514
10.44486
10.02633
9.97367
15
46
52916
47084
56554
44446
02637
97363
14
47
52951
47049
55593
44407
02642
97358
13
48
52986
47014
55633
44:l{;7
02647
97353
12
49
63021
46979
,66673
44:127
02651
97,349
11
50
9..63056
10.46944
9,55712
]0.442,S8
10.02656
9.97344
10
51
53092
46908
55752
44248
02660
97340
9
52
53126
46874
,55791
44209
02665
97335
8
53
53161
46839
55831
44169
02669
97331
7
54
53196
46804
,65870
44130
02674
97:326
6
55
9.53231
10.46769
9.56910
10.44090
10.02678
9.97322
5
56
,53266
46734
5.6949
440.51
02683
97317
4
57
53301
46699
55989
44011
02688
97312
3
58
,53336
46664
56028
43972
02692
97308
2
59
53370
46630
56067
43933
02697
97303
i
60
53405
46,595
56107
43893
02701
97299
M.
Cosine.
Set-ant.
Colaiipent.
Tangent.
Cosecant.
Sine,
M.
109°
70°
Table 2. LOGAKITHMIC ANGULAR FUNCTIONS.
297
20°
Log:arithins.
159°
M.
Sine.
Cosecant.
Tangent.
Cotangent
Secant.
Cosine.
M.
9.53405
10.46595
9.56107
10.43893
10.02701
9.97299
00
1
53440
46560
56146
43854
02706
97294
59
2
53475
46525
56186
43815
02711
97289
58
3
53509
46491
56224
43776
02716
97285
57
4
53544
46456
66264
43736
02720
97'280
56
5
9.53578
10.46422
9.56303
10.43697
10.02724
9.97276
55
6
53613
46387
56342
43658
02729
97271
54
7
53647
46353
56381
43619
02734
97266
53
8
53682
46318
56420
43580
02738
97262
62
9
53716
46284
66159
43541
02743
97257
51
10
9.53751
10.46249
9.56498
10.43502
10.02748
9.97252
50
11
53785
46215
66537
43463
02762
97248
49
12
53819
46181
56676
43424
02757
97'243
48
13
53854
46146
56615
43385
02762
97238
47
14
53888
46112
66654
43346
02766
97234
46
15
9.53922
10.46078
9.56693
10.43307
10.02771
9.97229
45
16
53957
46043
56732
43268
02776
97224
44
17
53991
46009
66771
43229
02780
97220
43
18
54026
45975
66810
43190
02785
97216
42
19
.54059
45941
56849
43151
02790
97210
41
20
9.54093
10.45907
9.56887
10.43113
10.02794
9.97206
40
21
54127
45873
56926
43074
02799
97201
39
22
54161
45839
56965
43035
02804
97196
38
23
54195
45805
57004
42996
02808
97192
37
24
54229
45771
57042
42958
02813
97187
36
25
9.54263
10.45737
9.67081
10.42919
10.02818
9.97182
85
26
54297
43703
67120
42880
02822
97178
34
27
54331
45669
57168
42842
02827
97173
33
28
51365
4.5635
57197
42803
02832
97168
32
29
54399
45601
67236
42765
02837
97163
31
30
9.54433
10.45567
9.57274
10.42726
10.02841
9.97159
30
31
54466
45534
57312
42688
02846
97164
29
32
54500
45500
57361
42649
02851
97149
28
33
54534
45466
57389
42611
0'2855
97145
27
34
54567
4.W33
57428
42572
02860
97140
26
35
9.54601
10.45399
9.57466
10.42584
10.02865
9.97136
25
36
54635
45365
57504
42496
02870
97130
24
37
54668
45332
57543
42457
02874
97126
23
38
54702
45298
57581
42419
02879
97121
22
39
54735
45265
57619
42381
02884
97116
21
40
9.54769
10.45231
9.57658
10.42342
10.02889
9.97111
20
41
54802
45198
57696
42304
02893
97107
19
42
54836
45164
57734
42266
02898
97102
18
43
54869
45131
67772
42228
02903
97097
17
44
54903
45097
57810
42190
02908
97092
16
45
9.54936
10.45064
9.67849
10.42151
10.02913
9.97087
15
46
54969
45031
67887
42113
02917
97083
14
47
55003
44997
57925
42075
02922
97078
13
48
55036
44964
57963
42037
02927
97073
12
49
55069
44931
58001
41999
02932
97068
11
50
9.55102
10.44898
9.58039
10.41961
10.02937
9.97063
10
51
55136
44864
58077
41923
02941
97059
9
52
55169
44831
68115
41885
02946
97064
8
53
55202
44798
58153
41847
02961
97049
7
54
55235
44765
68191
41809
02966
97044
6
55
9.55268
10.44732
9.58229
10.41771
10.02961
9.97039
5
56
55301
44699
58267
41733
02965
97035
4
57
55334
44666
58304
41696
02970
97030
3
58
55367
44633
58342
41658
02975
97026
2
59
55400
44600
58380
41620
02980
97020
1
60
55433
44567
58418
41582
02985
97015
31.
CosJDe.
Secant.
Cotangent.
Tangent.
Cosecant.
Sine.
M.
110°
69°
298 LOGARITHMIC ANGULAR FUNCTIONS. Table 2.
21°
Logarithms.
158°
M.
Sine.
CoHecunt.
Tangent.
Cotangent.
Secant.
Cosine.
M.
9.55433
10.44567
9.58418
10.41682
10.02985
9.97015
60
1
55466
44534
58456
41645
02990
97010
59
2
55499
44501
58493
41607
02995
97005
58
3
55532
44468
58531
41469
02999
97001
57
4
65564
44436
68569
41431
03004
96996
56
5
9.65697
10.44403
9.68606
10.41394
10.03009
9.96991
.55
6
65630
44370
58644
41356
03014
96986
64
7
55663
44337
58681
41319
03019
96981
53
8
55695
44306
58719
41281
03024
96976
52
9
55728
44272
68767
41243
03029
96971
61
10
9.55761
10.44239
9.58794
10.41206
10.03034
9.96966
50
11
65793
44207
58832
41168
03038
96962
49
12
65826
44174
58869
41131
03043
96967
48
13
55858
44142
68907
41093
03048
96952
47
14
65891
44109
58944
41056
03053
96947
46
15
9.56923
10.44077
9..58981
10.41019
10.03068
9.96942
46
16
66956
44044
69019
40981
03063
96937
44
17
56988
44012
.59056
40944
03068
96932
43
18
56021
43979
69094
40906
03073
96927
42
19
56053
43947
59131
40869
03078
96922
41
20
9.56086
10.43915
9.59168
10.40832
10.03083
9.96917
40
21
56118
43882
69206
40795
03088
96912
39
22
66160
43850
59243
40757
03093
96907
38
23
56182
43818
59280
40720
03097
96903
37
24
56215
43785
69317
40683
03102
96898
36
25
9.56247
10.43753
9.69354
10.40646
10.03107
9.96893
85
26
56279
43721
59391
40609
03112
96888
34
27
66311
43689
59429
40571
03117
90883
33
2«
66343
43657
59466
40534
03122
96878
32
29
56375
43626
59603
40497
03127
96873
31
30
9.56408
10.43592
9..595-10
10.40460
10.03132
9.96868
30
31
56440
43660
59577
40423
03137
96863
29
32
56472
43528
69614
40386
03142
96858
'28
33
66604
4;i490
69651
40349
03147
96858
27
34
66536
4:3464
69688
40312
03152
96848
26
35
9.56568
10.43432
9.59725
10.40276
10.03157
9.96843
25
36
56599
43401
69762
40238
03162
96838
24
37
56631
43369
59799
40201
03167
96833
23
38
66663
43337
69836
40165
03172
96828
22
39
66695
43305
59872
40128
03177
96823
21
40
9.66727
10.43273
9.59909
10.40091
10.03182
9.96818
20
41
,56759
43241
59946
40054
03187
96813
19
42
56790
43210
59983
40017
03192
96808
18
43
56822
43178
60019
39981
03197
96803
17
44
56864
43146
60056
39944
03202
96798
16
45
9.66886
10.43114
9.60093
10.39907
10.03207
9.96793
15
46
56917
43083
60130
39870
03212
96788
14
47
56949
43051
60166
39834
03217
96783
13
48
56980
43020
60203
39797
03222
96778
12
49
67012
42988
60240
39760
03228
96772
11
50
9.67044
10.42966
9.60276
10.39724
10.03233
9.96767
10
51
67076
42925
60313
39687
03238
96762
9
52
57107
4'2893
60349
396.51
03243
96757
8
53
67138
42862
60386
39614
03248
96762
7
54
57169
4'2831
60422
39578
03253
96747
6
65
9.57201
10.42799
9.60469
10.39541
10.03258
9.96742
5
56
57232
42768
60495
39505
03263
96737
4
57
67264
42736
60532
39468
03268
96732
3
58
67296
42706
60568
39432
03273
96727
2
59
67326
42674
60605
39396
03278
96722
1
60
57368
42642
60641
39369
03283
96717
M.
Cosine.
Secant.
Cotangent.
Tangent.
Cosecant.
Sine.
M.
111°
68°
Table 2. LOGARITHMIC ANGULAR FUNCTIONS. 299
22°
Logarithms.
IS?"^
M.
Sine.
Cosecant.
Tangent.
Cotangent.
Secant,
Cosine,
M.
9.57358
10.42642
9.60641
10.39359
10,03283
9.96717
60
1
57389
42611
60677
39323
03289
96711
59
2
57420
42580
60714
39286
03294
96706
88
3
57451
42549
60750
39250
03299
96701
57
4
57482
42518
60786
39214
03304
96696
56
6
9,57514
10.42486
9.60823
10.39177
10,03309
9,96691
55
6
57545
4'2455
60859
39141
03314
96686
54
7
57576
42424
60895
39105
03319
96681
53
8
57607
42393
60931
39069
08324
96676
52
9
57638
42362
60967
39033
03380
96670
61
10
9.57669
10.42331
9.61004
10.38996
10,03335
9,96665
50
11
57700
42300
61040
38960
03340
96660
49
12
57731
42269
61076
38924
03345
96655
48
13
57762
42238
61112
38888
03350
96650
47
14
57793
42207
61148
38852
03355
96645
46
15
9.57824
10.42176
9.61184
10.38816
10,03360
9,96640
45
16
57855
42145
61220
38780
03366
96634
44
17
57885
42115
61266
38744
03371
96629
43
18
57916
42084
61292
38708
03376
96624
42
19
57947
42053
61328
38672
03381
96619
41
20
9.57978
10.42022
9.61364
10.38636
10,03386
9,96614
40
21
58008
41992
61400
38600
03392
96608
39
22
58039
41961
61436
38564
03397
96603
38
23
58070
41930
61472
38528
03402
96598
37
24
58101
41899
61508
38492
03407
96593
36
25
9.58131
10.41869
9.61544
10.38456
10,03412
9,96588
35
26
58162
41838
61579
38421
03418
96582
34
27
58192
41808
61615
38385
03423
96577
33
28
.58223
41777
61651
38349
03428
96572
32
29
58253
41747
61687
38313
03433
96667
31
30
9.58284
10.41716
9.61722
10.38278
10,03438
9.96562
30
31
58314
41686
61758
38242
03444
96556
29
32
58345
41655
61794
38206
03449
96551
28
33
58375
41625
61830
38170
03454
96546
27
34
58406
41594
61865
38136
03159
96541
26
35
9.58436
10.41564
9.61901
10.38099
10,03465
9.96536
26
36
58467
41533
61936
38064
03470
96530
24
37
58497
41503
61972
38028
03475
96525
23
38
58527
41473
62008
37992
03480
96520
22
39
58557
41443
62043
37957
03486
96514
21
40
9.58588
10.41412
9.62079
10.37921
10,03491
9.96509
20
41
58618
41382
62114
37886
03496
96504
19
42
58648
41352
62150
37850
03502
96498
18
43
58678
41322
62185
37815
03507
96493
17
44
58709
41291
62221
37779
03512
96488
16
45
9.58739
10.41261
9.62266
10.37744
10,03517
9.96483
15
46
58769
41231
62292
37708
03523
96477
14
47
58799
41201
62327
37673
03528
96472
13
48
58829
41171
62362
37638
03533
96467
12
49
58859
41141
62398
37602
03539
96461
11
50
9.58889
10.41111
9.62433
10.37567
10,03544
9.96466
10
51
58919
41081
62468
37532
03549
96451
9
52
58949
41051
62604
37496
03555
96445
8
53
58979
41021
62539
37461
03560
96440
7
54
59009
40991
62574
37426
03565
96435
6
55
9.59039
10.40961
9.62609
10.37391
10,03571
9.96429
5
56
59069
40931
62645
37355
03576
96424
4
57
59098
40902
62680
37320
03581
96419
3
58
59128
40872
62715
37285
03587
96413
2
59
59158
40842
62750
37250
03592
96408
1
60
59188
40812
62785
37215
03597
96403
M.
Cosine.
Secant.
Cotangent.
Tangent,
Cosecant,
Sine.
M.
J 12°
67°
300
LOGAEITHMIC ANGULAE FUNCTIONS. Table 2.
23°
Logarithms.
1S6°
M.
Sine.
CuStTilllt.
10.40812
Tangent.
Cotangent
Secant.
Cosine.
M.
9.59188
9.62785
10.37215
10.03597
9.96403
60
1
59218
40782
628'20
37180
03603
96397
59
2
59247
40753
62855
87145
03608
96392
58
3
59277
40723
62890
37110
03613
96387
57
4
59307
40693
62926
37074
03619
96381
56
5
y..'.933ll
10.40664
9.62961
10.37039
10.03624
9.96376
66
6
59361!
40634
62996
37004
03630
96370
64
7
.■.93911
40604
63031
36969
03636
96365
53
8
59-l-i'i
40575
63066
369.34
03640
96360
52
9
59455
40M6
63101
36899
03646
96364
51
10
»..59484
10.40516
9.63135
10.36865
10.03651
9.96349
50
11
59514
40486
63170
36830
03657
96343
49
12
59M3
40457
63205
36795
03662
96338
48
13
59573
40427
63240
36760
03667
96333
47
1-1
69602
40398
63275
30725
03673
96327
46
15
9.59632
10.40368
9.63310
10.30690
10.03678
9.96322
45
16
59661
40339
63345
36655
03684
96316
44
17
59690
40310
6.3379
36621
03689
96311
43
18
59720
40280
63414
36686
03695
96305
42
19
59749
40261
63449
36551
03700
96300
41
20
9.5977S
10.40222
9.63484
10.36516
10.03706
9.96294
40
21
59h08
40192
63619
36481
03711
96289
39
22
59837
40163
63653
36447
03716
96284
38
23
5986(1
40134
63588
36412
03722
96278
37
24
59895
40105
63623
36377
03727
96273
36
25
9.59924
10.40076
9.63657
10.36343
10.03733
9.96267
35
26
59964
40046
63692
36308
03738
96262
34
27
59983
40017
63726
36274
03744
96256
33
28
60012
39988
63761
36239
03749
96261
32
29
60041
39959
63796
36204
03755
96246
31
30
9.60070
10.39930
9.63830
10.36170
10.03760
9.96240
30
31
60090
39901
63865
36135
03766
96234
29
32
60128
39872
63899
36101
03771
96229
28
33
60157
39843
63934
36066
03777
96223
27
34
60186
39814
63968
36032
03782
96218
26
35
9.60215
10.39785
9.64003
10.36997
10.03788
9.96212
25
36
(10244
39766
64037
35963
03793
96207
24
37
60273
39727
64072
35928
03799
96201
23
38
60302
39698
64106
85894
03804
96196
22
39
60331
39669
64140
35860
03810
96190
21
40
9,60359
10.39641
9.64175
10.35825
10.03815
9.96185
20
41
60388
39612
64209
36791
03821
96179
19
42
60417
39583
64243
36757
03826
96174
18
43
60446
396.54
64278
35722
03832
96168
17
44
60474
39626
64312
35688
03838
96162
16
46
9.60503
10.39497
9.64346
10.35654
10.03843
9.96157
15
46
60532
39468
64381
36619
03849
96151
14
47
60581
39439
64416
35585
o:«54
96146
13
48
60589
39411
64449
35551
03860
96140
12
49
60618
39382
64483
35517
03865
96136
11
50
9.60646
10.39354
9.64517
10.35483
10.03871
9.96129
10
51
60675
393'26
64.552
35448
03877
96123
9
52
60704
39296
64586
35414
03882
96118
8
53
60732
392 J8
64620
35380
03888
96112
7
64
60761
39239
64664
35346
o;«93
96107
6
65
9.60789
10.39L'l
9.64688
10.36312
10.03899
9.96101
5
56
60818
39182
64722
36278
03905
96096
4
57
60846
39154
64756
35244
03910
96090
3
58
60875
39125
64790
35210
03916
96084
2
59
60903
39097
64824
35176
03921
96079
1
60
60931
33069
P4858
35142
03927
96073
M.
Cosine.
Secant.
Cotangent.
Tangent.
Cosenint.
Sine.
M.
U3°
66°
Table 3. LOGARITHMIC ANGULAR FUNCTIONS. 301
24°
Logarithms.
1SS°
M.
Sine.
Cosecant.
Tangent.
Cotangent.
Secant.
Cosine.
M.
9.60931
10.39069
9.64858
10.35142
10.03927
9.96073
60
1
60960
39040
64892
35108
03933
96067
69
2
60988
39012
64926
35074
03938
96062
58
3
61016
38984
64960
35040
03944
96056
67
4
61045
38955
64994
35006
03950
96050
56
5
9.61073
10.38927
9.65028
10.34972
10.03955
9.96045
56
6
61101
38899
65062
34938
03961
96039
54
7
61129
38871
65096
34904
03966
96034
63
8
61188
38842
66130
34870
03972
96028
62
9
61186
38814
65164
34836
03978
96022
51
10
9.61214
10.38786
9.65197
10.34803
10.03983
9.96017
50
11
61242
38768
G5231
34769
03989
960H
49
12
61270
38730
66265
34735
03995
96005
48
13
61298
38702
65299
34701
04000
96000
47
14
61326
38674
65333
34667
04006
95994
46
15
9.61364
10.38646
9.66366
10.34634
10.04012
9.95988
46
16
61382
38618
65400
34600
04018
95982
44
17
61411
38589
65434
34566
04023
95977
43
18
61438
38562
65467
34533
04029
95971
42
19
61466
38684
65601
34499
04035
95965
41
20
9.61494
10.38606
9.65636
10.34466
10.04040
9.95960
40
21
61522
38478
65568
S4432
04046
96954
39
22
61560
38460
66602
34398
04052
95948
38
23
61578
38422
65636
34364
04058
96942
37
24
61606
38394
65669
34331
04063
96937
36
25
9.61634
10.38366
9.65703
10.34297
10.04069
9.95931
35
26
61662
38338
66736
34264
04075
95925
34
27
61689
38311
66770
34230
04080
95920
33
28
61717
38283
65803
34197
04086
95914
32
29
61745
38255
66837
34163
04092
95908
31
30
9.61773
10.38227
9.66870
10.34130
10.04098
9.95902
30
31
61800
38200
66904
34096
04103
96897
29
32
61828
38172
65937
34063
04109
96891
28
33
61856
38144
65971
34029
04115
96886
27
34
61883
38117
66004
33996
04121
95879
26
35
9.61911
10.38089
9.66038
10.33962
10.04127
9.95873
25
36
61939
38061
66071
33929
04132
96868
24
37
61966
38034
66104
33896
04138
96862
23
38
61994
38006
66138
33862
04144
95856
22
39
62021
37979
66171
33829
04150
95850
21
40
9.62049
10.37951
9.66204
10.33796
10.04156
9.95844
20
41
62076
37924
66238
33762
04161
95839
19
42
62104
37896
66271
33729
04167
96833
18
43
62131
37869
66304
33696
04173
96827
17
44
62169
37841
66337
33663
04179
95821
16
45
9.62186
10.37814
9.66371
10.33629
10.04185
9.95815
15
46
62214
37786
66404
33596
04190
95810
14
47
62241
37769
66437
33563
04196
95804
13
48
62268
37732
66470
33630
04202
95798
12
49
62296
37704
66503
33497
04208
95792
11
50
9.62323
10.37677
9.66637
10.33463
10.04214
9.95786
10
51
62360
37650
66570
33430
04220
96780
9
52
62377
37623
66603
33397
04226
96776
8
63
62405
37595
66636
33364
04231
95769
7
54
62432
37668
66669
33331
04237
95763
6
65
9.62469
10.37541
9.66702
10.33298
10.04243
9.95767
6
56
62486
37514
66735
33266
04249
95751
4
57
62613
37487
66768
33232
04255
96746
3
58
62541
37459
66801
33199
04261
96739
2
69
6'2668
37432
66834
33166
04267
9.5733
1
60
62596
37405
66867
33133
04272
95728
M.
Cosiue.
Secant.
Cotangent.
Tangent.
Cosecant.
Sine.
M.
114°
302
LOGARITHMIC ANGULAE FUNCTIONS. Table 2.
25°
Logarithms.
154°
M.
Sine.
Cosecant.
Tangent.
Cotangent.
Secant.
Cosine.
M.
9.62595
10.37405
9.66867
10.33138
10.04272
9.95728
60
1
62622
37378
66900
33100
04-278
95722
69
2
62649
37351
66938
83067
04284
95716
58
3
62676
37324
66966
33034
04290
95710
57
4
6-2703
37297
66999
38001
04296
95704
56
5
9.62730
10.37270
9.67032
10.32968
10.04302
9.96698
55
6
62757
37243
67065
32985
04308
95692
54
7
62784
87216
67098
32902
04314
95686
53
8
62811
37189
671.81
82869
04320
95680
52
9
62838
37162
67163
32837
04326
96674
51
10
9.62865
10.37135
9.67196
10.32804
10.04332
9.95668
50
11
62892
37108
67229
32771
04337
95663
49
12
62918
37082
67262
3-2788
04343
98657
48
13
62945
.37055
67295
32705
M349
95661
47
14
62972
37028
67827
8-2673
04355
95645
46
15
9.62999
10.37001
9.67360
10.32640
10.04361
9.95639
45
16
68026
36974
67393
32607
04367
95633
44
17
63052
36948
67426
32574
04378
95627
43
18
63079
36921
67458
3-2542
04379
956-21
42
19
63106
36894
67491
32509
04385
95615
41
20
9.63138
10.36867
9.67524
10.32476
10.04391
9.95609
40
21
63159
36841
67,556
32444
04397
95603
39
22
63)86
86814.
67689
32411
04403
96597
38
23
68213
86787
67622
3'2378
04409
95.591
37
24
68239
36761
67654
32346
04415
95585
36
25
9.68266
10.36734
9.67687
10.32313
10.04421
9.95579
35
26
68292
^ 36708
67719
8-2281
04427
96578
34
27
63319
A 36681
67752
32-248
04433
96567
33
28
63345
36655
67785
32215
04439
96661
82
29
63372
36628
67817
82183
04445
95565
31
30
9.68398
10.36602
9.67850
10.32150
10.04451
9.95549
30
81
68426
36575
67882
3'2118
04457
95543
29
32
63451
36.549
67915
32085
04463
96537
28
33
63478
36522
67947
32053
04469
96531
•27
34
63504
36496
67980
32020
04476
955-25
26
35
9.63531
10..36469
9.68012
10.81988
10.04481
9.95519
25
36
63557
36448
68044
81956
04487
95518
24
37
63588
86417
68077
81928
04493
95507
23
88
63610
36890
68109
81891
04500
96500
22-
39
63636
36864
68142
31858
04506
95494
21
40
9.63662
10.86838
9.68174
10.31826
10.04512
9.9.5488
20
41
63689
86811
68206
31794
04518
9.5482
19
42
63715
36285
68-289
31761
04524
95476
18
43
63741
86259
68-271
31729
04530
95470
17
44
63767
86233
68303
31697
04536
96464
16
45
9.63794
10.86206
9.68386
10.31664
10.04542
9.95458
15
46
63820
86180
68368
81682
04548
95462
14
47
63846
86154
68400
81600
04554
95446
13
48
63872
86128
68432
81568
04560
95440
12
49
63898
86102
68465
31535
04566
96484
11
50
9.63924
10.36076
9.68497
10.31503
10.04573
9.96427
10
51
63960
36050
685-29
31471
' 04579
95421
9
52
63976
36024
68.561
81439
04585
95415
8
53
64002
85998
68598
81407
04591
95409
7
54
64028
35972
68626
31374
04597
95403
6
55
9.64054
10.85946
9.68658
10.31342
10.04603
9.95397
5
56
64080
85920
68690
81310
04609
95391
4
57
64106
35894
68722
31-278
04616
95384
3
58
64132
35868
68754
31246
04622
95378
2
59
64158
35842
68786
31214
04628
95372
i
60
64184
35816
68818
31182
04634
95366
M.
Cosine.
Secant.
Cotangent.
Tangent.
Cosecant.
Sine.
M.
115°
Table 2. LOGARITHMIC ANGULAK FUNCTIONS.
303
26°
Logarithms.
153°
M.
Sine.
Cosecant.
Tangent.
Cotangent,
Secant,
Cosine.
M,
9.64184
10.35816
9.68818
10.31182
10.04634
9.95366
60
1
64210
35790
68850
311.50
04640
95360
59
2
64236
35764
68882
31118
04646
95354
58
3
64262
35738
68914
■ 81086
04652
95348
57
4
64288
35712
68946
31054
046,59
95341
56
5
9.64313
10.35687
9.68978
10.31022
10,04665
9.9.5335
55
6
64339
35661
69010
30990
04671
95329
54
7
64365
35635
69042
.30958
04677
95323
53
8
64391
35609
69074
30926
04683
9.5317
.52
9
64417
35583
69106
,30894
04690
95310
51
10
9.64442
10.35558
9.69138
10.30862
10,04696
9.95.304
50
11
64468
35532
69170
30830
04702
95298
49
12
64494
35506
69202
30798
04708
95292
48
13
64519
35481
69234
30766
04714
95286
47
14
61545
35455
69266
30734
04721
95279
46
15
9.64571
10.35429
9.69298
10.30702
10.04727
9.9.5273
45
16
64596
35404
69329
30671
04733
95267
44
17
64622
35378
69361
30639
047.39
95261
43
18
61647
35353
69393
30607
04746
95254
42
19
64673
35327
69125
30.575
04752
95248
41
20
9.64698
10.35302
9.69457
10.30.543
10.047.58
9.95242
40
21
64724
35276
69488
30512
04764
95236
39
22
64749
35251
69520
30480
04771
95229
38
23
64775
35225
69552
30448
04777
95223
37
24
64800
35200
69584
80416
04783
95217
36
25
9.64826
10.35174
9.69615
10.30385
10,04789
9.95211
35
26
64851
35149
69647
30353
04796
95204
34
27
64877
35123
69679
30321
04802
95198
33
28
64902
35098
69710
30290
04808
95192
32
29
64927
35073
69742
30258
04815
95185
31
30
9.64953
10.35047
9.69774
10.30226
10,04821
9.95179
30
31
64978
35022
69805
30195
04827
95173
29
32
65003
34997
69837
30163
04833
95167
28
33
65029
34971
69868
30132
04840
95160
27
34
65054
34946
69900
30100
04846
95154
26
35
9.65079
10.34921
9,69932
10.30068
10,04852
9,95148
25
36
65104
34896
69963
30037
04859
95141
24
37-
- '>6.5130
34870
69995
30005
01865
95135
23
38
65155
34845
70026
29974
04871
95129
22
39
65180
34820
70058
29942
04878
95122
21
40
9.65205
10.34795
9.70089 •
10.29911
10,04884
9,95116
20
41
65230
34770
70121
29879
04890
95110
19
42
65255
34745
70152
29848
04897
95103
18
43
65281
34719
70184
29816
04903
9.5097
17
44
65306
34694
70215
29785
04910
95090
16
45
9.65331
10.34669
9.70247
10,29753
10,04916
9,95084
15
46
65356
34644
70278
29722
04922
95078
14
47
65381
34619
70309
29691
04929
95071
13
48
65406
34594
70341
29659
04935
95065
12
49
65431
34569
70372
29628
04941
95059
11
50
9.65456
10.34544
9.70404
10.29596
10,04948
9,95052
10
51
65481
34519
70435
29565
049.54
95046
9
52
65506
34494
70466
29.534
04961
95039
8
53
65531
34469
70498
29502
04967
9.5033
7
54
65556
34444
70529
29471
04973
95027
6
55
9.65580
10.34420
9,70.560
10,2944r
10.0498f^
9.95020
5
56
65605
34395
70592
29408
04986
95014
4
57
65630
34370
70623
29377
04993
95007
3
58
65665
34345
70654
29346
04999
95001
2
59
65680
34320
70685
29315
05005
94995
1
60
65705
34295
70717
29283
05012
94988
M.
Cosine.
Secant.
Cotangent
Tangent,
Cosecant.
Sine,
M,
116°
63°
304
LOGAETTHMTC ANGULAR FUNCTIONS. Table 2.
27°
Logarithms.
52°
M,
Sine.
Cosecant.
Tangent.
Cotangent,
Secant.
Cosine.
M.
9.65705
10.34295
9.70717
10,29283
10.05012
9.94988
60
1
65729
34271
70748
29252
06018
94982
59
2
65754
34246
70779
29221
0,5026
94975
58
3
65779
34221
70810
29190
05031
94969
57
4
6.M14
34196
70841
29159
05038
94962
66
5
9,li5SiH
10.34172
9.70873
10.29127
10,05044
9.94956
55
6
li.iSS;!
31147
70904
29096
05051
94949
54
7
65878
34122
70935
29065
05057
94943
53
8
65902
34098
70966
29034
05064
94936
52
9
65927
34073
70997
29003
06070
94930
51
10
9.65952
10.34048
9.71028
10.28972
10,06077
9.91923
50
11
65976
34024
71059
28941
05083
94917
49
12
66001
33999
71090
28910
05089
94911
48
13
66025
33975
71121
28879
05096
94904
47
14
660.10
33950
71153
28847
05102
94898
46
15
9.66075
10.33925
9.71184
10.28816
10,05109
9.94891
45
16
66099
33901
71215
28785
05115
94885
44
17
66124
33876
71216
28754
05122
94878
43
18
66148
33852
71277
28723
05129
94871
42
19
66173
33827
71308
28692
05135
94865
41
20
9.66197
10.33803
9.71339
10.28(i61
10.06142
9.94868
40
21
66221
33779
71370
28630
05148
94852
39
22
66216
33754
71401
28599
05155
94845
38
23
66270
33730
71431
28569
05161
94839
37
24
66295
33705
71462
2,S53,H
05168
94832
36
26
9.66319
10.33681
9.71193
10.28507
10.05174
9.94826
35
26
66343
33657
71524
28476
05181
94819
34
27
66368
33632
715.55
28146
05187
94813
33
28
66392
33608
71586
28414
05194
94806
32
29
66416
S3584
71617
28383
06201
94799
31
30
9.66441
10.335.59
9.71648
10.28352
10.05207
9.94793
30
31
66465
33536
71679
28321
05214
94786
29
32
66489
33511
71709
28291
05220
94780
28
33
66513
33487
71740
28260
05227
94773
27
34
66537
33463
71771
28229
062:B
94767
26
35
9.66.562
10.33438
9.71802
10.28198
10.06240
9.94760
25
36
66586
33414
71833
28167
06247
94753
24
37
66610
33390
71863
28137
05253
94747
23
38
66634
33366
71894
28106
05260
94740
22
39
66658
3,3342
71926
28075
05266
94734
21
40
9.66682
10.33318
9.71955
10.2.><0J5
10.05273
9.94727
20
41
66706
33294
71986
28014
05280
94720
19
42
66731
33269
72017
27983
05286
94714
18
43
66765
33245
72048
27952
05293
94707
17
44
66779
33221
72078
27922
05300
94700
16
45
9.66S03
10.33197
9.72109
10.27891
10.05306
9.94694
15
46
66827
33173
72140
27860
06313
94687
14
47
66861
33149
72170
27830
05320
94680
13
48
66875
331'25
72201
27799
0,5326
94674
12
49
66899
33101
72231
27769
0,5333
94667
11
50
9.66922
10.33078
9.72262
10,27738
10.05340
9.94660
10
51
66946
33054
72293
27707
06346
94654
9
52
66970
33030
72323
27677
05353
94647
8
53
66994
33006
723,54
27646
06360
94640
7
54
67018
32982
72384
27616
05366
94634
6
55
9.67042
10.32958
9.72415
10.27,585
10.05373
9.94627
5
56
67066
32934
72445
275,55
05380
94620
4
57
67090
32910
72476
27524
08386
94614
3
58
67113
32887
725Uli
27191
06393
94607
2
59
67137
32863
72537
27463
0.5400
94600
1
60
67161
32839
72567
27433
06407
91593
M.
Cosine.
Secant.
Cotangent,
Tangent.
Cosecant.
Sine.
M.
Table 3. LOGARITHMIC ANGULAR FUNCTIONS.
305
28°
Logarithms.
1S1°
M.
Sine.
Cosecant.
Tangent.
Cotangent.
Secant.
Cosine.
M.
9.67161
10.32839
9.72567
10.27433
10.05407
9.94593
60
1
67185
32815
72598
27402
05413
94587
59
2
67208
32792
72628
27372
05420
94580
58
3
67232
32768
72659
27341
05427
91573
57
4
67256
32744
72689
27311
06433
94567
56
5
9.67280
10.32720
9.72720
10.27280
10.06440
9.94860
55
6
67303
32697
72760
27260
05447
94553
54
7
67327
32673
72780
27220
05454
94516
63
8
67350
32650
72811
27189
05460
94640
52
9
67374
32626
72841
27169
05467
94533
51
10
9.67398
10.32602
9.72872
10.27128
10.05474
9.94526
60
11
67421
32679
72902
27098
06481
94519
49
12
67445
32655
72932
27068
05487
94513
48
13
67468
32532
72963
27037
05494
94506
47
14
67492
32508
72993
27007
05601
94499
46
15
9.67515
10.32486
9.73023
10.26977
10.05508
9.94492
45
16
67539
32461
73054
26946
06515
94485
41
17
67562
32438
73084
26916
05521
94479
43
18
67586
32414
73114
26886
06528
94472
42
19
67609
32391
73144
26866
05535
94465
41
20
9.67633
10.32367
9.73175
10.26826
10.05642
9.94468
40
21
67666
32344
73205
26795
06549
94451
39
22
67680
32320
73235
26765
06556
94446
38
23
67703
32297
73265
26735
05562
94438
37
24
67726
32274
73295
26705
05669
94431
36
25
9.67750
10.32250
9.73326
10.26674
10.05576
9.94424
35
26
67773
32227
73356
26644
05583
94417
34
27
67796
32204
73386
26614
06590
94410
33
28
67820
32180
73416
26584
05596
94404
32
29
67843
32157
73446
26554
05603
94397
31
30
9.67866
10.32134
9.73476
10.26524
10.05610
9.94390
30
31
67890
32110
73507
26493
05617
94383
29
32
67913
32087
73637
26463
05624
94376
28
33
67936
32064
73567
26433
05631
94369
27
34
67959
32041
73597
26403
05638
94362
26
35
9.67982
10.32018
9.73627
10.26373
10.0O646
9.9ii355
26
36
68006
31994
73657
26343
05651
94349
24
37
68029
31971
73687
26313
0o658
9*342
23
38
68052
31948
73717
26283
05666
94335
22
39
68075
31925
73747
26263
0o672
9*328
21
40
9.68098
10.31902
9.73777
10.26223
10.0O679
9.94321
20
41
68121
31879
73807
26193
O0686
94314
19
42
68144
31856
73837
26163
0o693
94307
18
43
68167
31833
73867
26133
06700
94300
17
44
68190
31810
73897
26103
06707
94293
16
45
9.68213
10.31787
9.73927
10.26073
10.0D714
9.94286
15
46
68237
31763
73957
26043
05721
94279
14
47
68260
31740
73987
26013
05727
94273
13
48
68283
31717
74017
25983
05734
94266
12
49
68305
31695
74047
25953
06741
94259
11
50
9.68328
10.31672
9.74077
10.26923
10.06748
9.94252
10
51
68351
31649
74107
26893
05755
94246
9
52
68374
31626
74137
25863
05762
94238
8
53
68397
31603
74166
26834
05769
94231
7
54
68420
31580
74196
26804
05776
94224
6
55
9.68443
10.31.557
9.74226
10.25774
10.06783
9.94217
5
56
68466
31534
74256
25744
05790
94210
4
57
68489
31511
74286
25714
05797
94203
3
58
68512
31488
74316
25684
05804
94196
2
59
68534
31466
74345
26666
05811
94189
1
60
68557
31443
74375
26626
05818
94182
M.
Cosine.
Secant.
Cotangent.
Tangent.
Cosecant.
Sine.
M.
118°
21
61°
306
LOGARITHMIC ANGULAR FUNCTIONS. Table 3.
29°
Logarithms.
150°
M.
Sine.
("'itKLTailt.
Tangent.
Cotangent.
Secant.
CoBJne.
M.
9.68557
10.31443
9.74375
10.25625
10.0,5818
9.94182
60
1
e.'^.wo
31420
74406
2.5595
05825
94175
59
2
fisco:)
31397
74435
25565
05832
94168
58
3
6S625
:!i:i75
7-1465
25535
05839
94161
57
4
fism.s
3l:l.'-i2
74494
2.5506
0.5846
94154
56
5
9.liSli71
10.:n;)29
9.74524
10.25476
10.05863
9.94147
55
6
(■„Sli94
;-ii;;o«
74554
25446
05860
94140
54
7
twn;
31284
74683
25417
0.5867
94133
53
8
(;s7n9
31261
74613
26387
05874
94126
52
9
(iS7l'i2
31238
74643
25357
05881
94119
61
10
O.CWSl
10.31216
9.74673
10.25327
10.05888
9.94112
50
11
6.SS07
31193
74702
2.5298
05895
94105
49
12
C,SX29
31171
74732
25268
06902
94098
48
13
iisK-a
31148
74762
25238
05910
94090
47
14
6S,S7.')
31125
74791
26209
05917
94083
46
15
9.6S.S97
10.31103
9.74821
10.25179
10.05924
9.94076
45
16
|;,S920
31080
74851
25149
0,6931
94069
44
17
68942
310.68
74880
25120
05938
94062
43
18
68965
31035
74910
25090
0,5945
94055
42
19
68987
31013
74939
25061
05952
94048
41
20
9.69010
10.30990
9.74969
10.25031
10.05959
9.94041
40
21
69032
30968
74998
25002
05966
94034
39
22
69055
30945
75028
24972
05973
94027
38
23
69077
30923
750.58
24942
06980
94020
37
24
69100
30900
76087
24913
06988
94012
36
25
9.69122
10.30878
9.75117
10.24883
10.05996
9.94005
35
26
69144
308.56
75146
248,54
06002
93998
34
27
69167
30833
75176
24824
06009
93991
33
28
69189
30811
75205
24796
06016
93984
32
29
69212
30788
75235
24765
06023
93977
31
30
9.69234
10.30766
9.75264
10.24736
10.06030
9.93970
30
31
69266
30744
75294
24706
06037
93963
29
32
69279
30721
75323
24677
06045
93955
28
33
69301
30699
75353
24647
06052
93948
27
34
69323
30677
7,5382
24618
06059
93941
26
35
9.69345
10.30655
9.754n
10.24589
10.06066
9.93934
25
36
69368
30632
75441
24.559
06073
93927
24
37
69390
30610
75470
24530
06080
93920
23
88
69412
30588
75500
24500
06088
93912
22
39
69434
30566
75529
24471
06095
93905
21
40
9.69466
10.30.544
9.75558
10.24442
10.06102
9.93898
20
41
69479
30521
75588
24412
06109
93891
19
42
69501
30499
75617
24383
06116
93884
18
43
69523
30477
75647
24:!63
00124
93876
17
44
69545
30455
75676
24324
06131
93869
16
45
9.69567
10.30433
9.75705
10.24295
10.06138
9.9.3862
15
46
69.589
30411
75735
24265
06145
93855
14
47
69611
30389
75764
24236
08153
93847
13
48
69633
30367
75793
24207
06160
93840
12
49
69655
30345
75822
24178
06167
93833
11
50
9.69677
10.30323
9.75862
10.24148
10.06174
9.93826
10
51
69699
30301
76881
24119
06181
93819
9
52
C9721
30279
76910
24090
06189
93811
8
53
69743
30257
76939
24061
06196
93804
7
54
69705
30236
76969
24031
06203
93797
6
55
9.69787
10.30213
9.76998
10.24002
10.06211
9.93789
5
56
69809
30191
76027
23973
06218
93782,
4
57
69831
30169
76056
23944
06225
93776
3
58
69S53
30147
76086
23914
06232
93768
2
59
69875
30125
76116
23,SS5
06240
93760
1
60
C9897
30103
76144
23856
06247
93753
M.
t'l>MJH\
Secant.
Cotangent.
Tansent.
1 Cosecant.
Sine.
M.
119°
60°
Table 2. LOGAKITHMIC ANGULAR FUNCTIONS.
307
30°
Logarithms.
49°
M.
Sine.
Cosecant.
Tangent.
Cotangent,
Secant.
Cosine.
M.
9.69897
10.30103
9.76144
10.23856
10.06247
9.93763
60
1
B9919
30081
76173
23827
06254
93746
59
2
69941
30059
76202
23798
06262
93738
58
3
69963
30037
76231
23769
06269
93731
67
4
69984
30016
76261
23739
. 06276
93724
66
5
9.70006
10.29994
9.76290
10.23710
10.06283
9.93717
55
6
70028
29972
76319
23681
06291
93709
64
7
70050
29950
76348
23652
06298
93702
53
8
70072
29928
76377
23623
06305
93695
52
9
70093
29907
76406
23594
06313
93687
61
10
9.70115
10.29885
9.76435
10.23565
10.06320
9.93680
60
11
70137
29863
76464
23536
06327
93673
49
12
70159
29841
76493
23507
06335
93665
48
13
70180
29820
76522
23478
06342
93668
47
14
70202
29798
76551
23149
06350
93650
46
15
9.70224
10.29776
9.76580
10.23420
10.06357
9.93643
45
16
70245
29755
76609
23391
06364
93636
44
17
70267
29733
76639
23361
06372
93628
43
18
70288
29712
76668
23332
06379
93621
42
19
70310
29690
76697
23303
06386
93614
41
20
9.70332
10.29668
9.76725
10.23275
10.06394
9.93606
40
21
70353
29647
76754
23246
06401
93599
39
22
70375
29625
76783
23217
06409
93591
38
23
70396
29604
76812
23188
06416
93584
37
24
70418
29582
76841
2.3159
06423
93577
36
25
9.70439
10.29561
9.76870
10.23130
10.06431
9.93669
35
26
70461
29539
76899
23101
06438
93562
34
27
70482
29518
76928
23072
06446
93554
33
28
70504
29496
76957 ■
23043
06453
93547
32
29
70525
29475
76986
23014
06461
93539
31
30
9.70547
10.29453
9.77015
10.22985
10.06468
9.93532
30
31
70568
29432
77044
22956
06475
93525
29
32
70590
29410
77073
22927
06483
93517
28
33
70611
29389
77101
22899
06490
93510
27
34
70633
29367
77130
22870
06498
93502
26
35
9.70654
10.29346
9.77159
10.22841
10.06505
9.93495
25
36
70675
29325
77188
22812
06513
93487
24
37
70697
29303
77217
22783
06520
93480
23
38
70718
29282
77246
22764
06528
93172
22
39
70739
29261
77274
22726
06535
93465
21
40
9.70761
10.29239
9.77303
10.22697
10.06543
9.93467
20
41
70782
29218
77332
22668
06550
93450
19
42
70803
29197
77361
22639
06558
93442
18
43
70824
29176
77390
22610
06565
93435
17
44
70846
29154
77418
22582
06573
93427
16
45
9.70867
10.29133
9.77447
10.22553
10.06680
9.93420
15
46
70888
29112
77476
22524
06588
93412
14
47
70909
29091
77505
22495
06695
93405
13
48
70931
29069
77533
22467
06603
93397
12
49
70952
29048
77562
22438
06610
93390
11
50
9.70973
10.29027
9.77591
10.22409
10.06618
9.93382
10
51
70994
29006
77619
22381
06625
93375
9
52
71015
28985
77648
22352
06633
93367
8
53
71036
28964
77677
22323
06640
93360
7
54
71058
28942
77706
22294
06648
93352
6
55
9.71079
10.28921
9.77734
10.22266
10.06656
9.93,344
5
56
71100
28900
77763
22237
06663
93337
4
57
71121
28879
77791
22209
06671
93329
3
68
71142
28858
77820
22180
06678
93322
2
59
71163
28837
77849
22161
06686
93314
1
60
71184
28816
77877
22123
06693
93307
M.
Cosine.
Secant.
Cotangent.
Tangent.
Cosecant.
Sine.
M.
120°
59°
308
LOGAEITHMIC ANGULAR FUNCTIONS. Table 2.
31°
Logarithms.
J48°
M.
Sine.
Cosecant.
Tangent.
Cotangent.
Secant.
Cosine.
M.
9.71184
10.28816
9.77877
10.22123
10.06693
9.93307
60
1
71205
28795
77906
22094
06701
93299
69
2
71226
28774
77935
22065
06709
93291
58
3
71247
28753
77963
22037
06716
93284
57
4
71268
28732
77992
22008
06724
93276
66
5
9.71289
10.28711
9.78020
10.21980
10.06731
9.93269
55
6
71310
28690
78049
21951
06739
93261
54
7
71331
28669
78077
21923
06747
93253
53
8
71352
28648
78106
21894
06754
93246
52
9
71373
28627
78135
21865
06762
93238
51
10
9.71393
10.28607
9.78163
10.21837
10.06770
9.93230
50
11
71414
28586
78192
21808
06777
93223
49
12
71435
28565
78220
21780
06785
93216
48
13
71456
28544
78249
21751
06793
93207
47
14
71477
28523
78277
21723
06800
93200
46
15
9.71498
10.28502
9.78306
10.21694
10.06808
9.93192
46
16
71519
28481
78334
21666
06816
93184
44
17
71539
28461
78363
21637
06823
93177
43
18
71560
28440
78391
21609
06831
93169
42
19
71581
28419
78419
21581
06839
93161
41
20
9.71602
10.28398
9.78448
10.21562
10.06846
9.93154
40
21
71622
28378
78476
21524
06854
93146
39
22
71643
28367
78505
21495
06862
93138
38
28
71664
28336
78533
21467
06869
93131
37
24
71685
28315
78562
21438
06877
93123
36
25
9.71705
10.28295
9.78590
10.21410
10.06885
9.93115
35
26
71726
28274
78618
21382
06892
93108
34
27
71747
28253
78647
21353
06900
93100
33
28
71767
28233
78675
21325
06908
93092
32
29
71788
28212
78704
21296
06916
93084
31
30
9.71809
10.28191
9.78732
10.21268
10.06923
9.93077
30
31
71829
28171
78760
21240
06931
93069
29
32
71860
28150
78789
21211
06939
93061
28
33
71870
28130
78817
21183
06947
93063
27
34
71891
28109
78845
21165
06954
93046
26
35
9.71911
10.28089
9.78874
10.21126
10.06962
9.93038
25
36
71932
28068
78902
21098
06970
93030
24
37
71952
28048
78930
21070
06978
93022
23
38
71973
28027
78959
21041
06986
93014
22
39
71994
28006
78987
21013
06993
93007
21
40
9.72014
10.27986
9.79015
10.20985
10.07001
9.92999
20
41
72034
27966
79043
20967
07009
92991
19
42
72065
27945
79072
20928
07017
92983
18
43
72075
27925
79100
20900
07024
92976
17
44
72096
27904
79128
20872
07032
92968
16
45
9.72116
10.27884
9.79156
10.20844
10.07040
9.92960
15
46
72137
27863
79185
20815
07018
92952
14
47
72157
27843
79213
20787
07066
92944
13
48
72177
27823
79241
20769
07064
92936
12
49
72198
27802
79269
20731
07071
92929
11
50
9.72218
10.27782
9.79297
10.20703
10.07079
9.92921
10
51
72238
27762
79326
20674
07087
92913
9
52
72259
27741
79354
20646
07095
92906
8
53
72279
27721
79382
20618
07103
92897
7
54
72299
27701
79410
20690
07111
9'2889
6
65
9.72320
10.27680
9.79438
10.20562
10.07119
9.92881
5
56
72340
27660
79466
20534
07126
92874
4
57
72360
27640
79495
20505
07134
92866
3
58
72381
27619
79523
20477
07142
92858
2
59
72401
27599
79551
20449
07150
92850
1
60
72421
27579
79579
20421
07158
92842
M.
Cosine.
Secant.
Cotangent.
Tangent.
Cosecant.
Sine.
M.
121°
58°
Table 3. LOGARITHMIC ANGULAR FUNCTIONS.
309
32°
Logarithms.
147°
M.
Sine.
Cosecant.
Tangent.
Cotangent.
Secant.
Cosine.
M.
9.72421
10.27579
9.79579
10.20421
10.07158
9.92842
60
1
72441
27559
79607
20393
07166
92834
59
2
72461
27539
79635
20365
07174
92826
58
3
72482
27518
79663
20337
07182
92818
57
4
72502
27498
79691
20309
07190
92810
56
5
9.72522
10.27478
9.79719
10.20281
10.07197
9.92803
56
6
72642
27458
79747
20253
07205
92795
54
7
72562
27438
79776
20224
07213
92787
53
8
72582
27418
79804
20196
07221
92779
52
9
72602
27398
79832
20168
07229
92771
51
10
9.72622
10.27378
9.79860
10.20140
10.07237
9.92763
50
11
72643
27357
79888
20112
07245
92765
49
12
72663
27337
79916
20084
07253
92747
48
13
72683
27317
79944
20056
07261
92739
47
14
72703
27297
79972
20028
07269
92731
46
15
9.72723
10.27277
9.80000
10.20000
10.07277
9.92723
45
16
72743
27257
80028
19972
07285
92715
44
17
72763
27237
80056
19944
07293
92707
43
18
72783
27217
80084
19916
07301
92699
42
19
72803
27197
80112
19888
07309
92691
41
20
9.72823
10.27177
9.80140
10.19860
10.07317
9.92683
40
21
72843
27157
80168
19832
07325
92675
39
22
72863
27137
80195
19805
07333
92667
38
23
72883
27117
80223
19777
07341
92659
37
24
72902
27098
80251
19749
07349
92661
36
25
9.72922
10.27078
9.80279
10.19721
10.07357
9.92643
35
26
72942
2'7058
80307
19693
07365
92635
34
27
72962
27038
80335
19665
07373
92627
33
28
72982
27018
80363
19637
07381
92619
32
29
73002
20998
80391
19609
07389
92611
31
30
9.73022
10.26978
9.80419
10.19581
10.07397
9.92603
30
31
73041
26959
80447
19553
07405
92595
29
32
73061
26939
80474
19526
07413
92587
28
83
73081
26919
80502
19498
07421
92579
27
84
73101
26899
80530
19470
07429
92571
26
35
9.73121
10.26879
9.80558
10.19442
10.07437
9.92563
25
36
73140
26860
80586
19414
07445
92555
24
37
73160
26840
80614
19386
07454
92546
23
88
73180
• 26820
80642
19358
07462
92538
22
39
73200
26800
80669
19331
07470
92530
21
40
9.73219
10.26781
9.80697
10.19303
10,07478
9.92622
20
41
73239
26761
80725
19275
07486
92614
19
42
73259
26741
80753
19247
07494
92506
18
43
73278
26722
80781
19219
07502
92498
17
44
7329S
26702
80808
19192
07510
92490
16
45
9.73318
10.26682
9.80836
10.19164
10.07518
9.92482
15
46
73337
26663
80864
19136
07527
92473
14
47
73357
26643
80892
19108
07535
92465
13
48
73377
26623
80919
19081
07543
92467
12
49
73396
26604
80947
19053
07551
92449
11
50
9.73416
10.26584
9.80975
10.19025
10.07559
9.92441
10
51
73435
26565
81003
18997
07567
92433
9
52
73455
26545
81030
18970
07575
92425
8
53
73474
26526
81058
18942
07584
92416
7
54
73494
26506
81086
18914
07592
92408
6
55
9.73513
10.26487
9.81113
10.18887
10.07600
9.92400
5
56
73533
26167
81141
18859
07608
92392
4
57
73652
26448
81169
18831
07616
92384
3
58
73572
26428
81196
18804
07624
92376
2
59
73591
26409
81224
18776
07633
92367
1
60
73611
26389
81252
18748
07641
92359
M.
CosinG.
Secant.
Cotangent.
Tangent.
CoBecant.
Sine.
M.
122°
57°
110
LOGARITHMIC ANGULAR FUNCTIONS. Table 2.
3°
Logarithms.
146°
9.
Sine.
Cosecant.
Tangent.
Cotangent,
Secant.
Cosine.
M.
9.73611
10.26389
9.81252
10.18748
10.07641
9.92359
60
1
73630
26370
81279
18721
07649
92351
59
2
73650
26360
81307
18693
07657
92343
58
3
73069
26331
813.35
18665
07665
92335
57
4
73689
26311
81362
18638
07674
92326
56
5
9.73708
10.26292
9.81390
10.18610
10.07682
9.92:318
55
6
73727
26273
81418
ia5S2
07690
9-2310
54
7
73747
26253
81445
18556
07698
92302
53
8
73766
26234
81473
18627
07707
92293
52
9
73785
26215
81500
18500
07715
92285
51
10
9.73805
10.26196
9.81628
10.18472
10.07723
9.922/7
50
LI
73824
20176
81656
18444
07731
92269
49
L2
73843
26167
81683
18417
07740
922b0
48
13
73863
26137
81611
18389
07748
92262
47
14
73882
26118
81638
18362
07756
92244
46
15
9.73901
10.26099
9.81666
10.18334
10.07765
9.92236
45
16
73921
26079
81693
18307
07773
92227
44
17
73940
26060
81721
18279
07781
92219
43
18
73959
26041
S1748
18262
07789
92211
42
19
73978
26022
81776
18224
07798
92202
41
20
9.73997
10.26003
9.81803
10.18197
10.07806
9.92194
40
21
74017
25983
81831
18169
07814
92186
39
22
74036
25964
81868
18142
07823
92177
38
23
74055
25945
81886
18114
07831
92169
37
24
74074
25926
81913
18087
07839
92161
36
25
9.74093
10.25907
9.81941
10.18059
10,07848
9.92152
35
26
74113
25887
81968
18032
07856
92144
34
27
74132
25868
81996
18004
07864
92136
33
28
74161
25849
82023
17977
07873
92127
32
29
74170
25830
82051
17949
07881
92119
31
3D
9.74189
10.25811
9.82078
10.17922
10.07889
9.92111
30
31
74208
25792
82106
17894
07898
92102
29
32
74227
25773
82133
17867
07906
92094
28
33
74246
25754
82161
17839
07914
92086
27
34
74265
25735
82188
17812
07923
92077
26
35
9.74284
10.25716
9.82216
10.17785
10.07931
9.92069
25
36
74303
25697
82243
17757
07940
92060
24
37
74322
26678
82270
17730
07948
92052
23
38
74341
25659
82298
17702
07956
92044
22
39
74360
26640
82325
17676
07965
92035
21
10
9.74379
10.26621
9.82352
10.17648
10.07973
9.92027
20
41
74398
25602
82380
17620
07982
92018
19
12
74417
25583
82407
17593
07990
92010
18
13
74436
25564
82436
17566
07998
92002
17
14
74455
25645
82462
17538
08007
91993
16
15
9.74474
10.25526
9.82489
10.17511
10.08015
9.91985
15
16
74493
25607
82517
17483
08024
91976
14
17
74512
25488
82544
17456
08032
91968
13
18
74531
26469
82671
17429
08041
91969
12
19
74649
25451
82699
17401
08049
91951
11
50
9.74568
10.25432
9.82626
10.17374
10.08068
9.91942
10
51
74587
26413
82653
17347
08066
91934
9
52
74606
25394
82681
17319
08076
91925
8
53
74625
25375
82708
17292
08083
91917
7
54
74644
26356
82735
17266
08092
91908
6
55
9.74662
10.25338
9.82762
10.17238
10.08100
9.91900
6
56
74681
25319
82790
17210
08109
91891
4
57
74700
25300
82817
17183
08117
91883
3
58
74719
25281
82844
17156
08126
91874
2
59
74737
25263
82871
17129
08134
91866
1
60
74756
26244
82899
17101
08143
91857
M.
Cosine.
Secant.
Cotan{?ent.
Tangent.
Cosecant.
Sine.
M:
23°
Table 2. LOGARITHMIC ANGULAR FUNCTIONS.
311
54°
Logarithms.
145°
M.
Sine.
Cosecant.
Tangent.
Cotangent.
Secant,
Cosine.
M.
9.74756
10.25244
9.82899
10.17101
10.08143
9.91857
60
1
74775
25225
82926
17074
08151
91849
59
2
74794
25206
82953
17047
08160
91840
58
3
74812
25188
82980
17020
08168
91832
57
4
74831
25169
83008
16992
08177
91823
66
5
9.74850
10.25150
9.83035
10.16965
10.08185
9.91815
55
6
74868
25132
83062
16938
08194
91806
54
7
74887
25113
83089
16911
08202
91798
53
8
74906
25094
83117
16883
08211
91789
52
9
74924
25076
83144
16856
08219
91781
51
10
9.74943
10.25057
9.83171
10.16829
10.08228
9.91772
50
11
74961
25039
83198
16802
08237
91763
49
12
74980
25020
83225
16775
08245
91755
48
13
74999
25001
83252
16748
08254
91746
47
14
75017
24983
83280
16720
08262
91738
46
15
9.75036
10.24964
9.83307
10.16693
10.08271
9.91729
45
16
75054
24946
83334
16666
08280
91720
44
17
75073
24927
83361
16639
08288
91712 ■
43
18
75091
24909
83388
16612
08297
91703
42
19
75110
24890
83415
16585
08305
91695
41
20
9.75128
10.24872
9.83442
10.16558
10.08314
9.91686
40
21
75147
24853
83470
16530
08323
91677
39
22
75165
24835
83497
16503
08331
91669
38
23
75184
21816
83524
16476
08340
91660
37
24
75202
24798
83551
16449
08349
91651
36
25
9.75221
10.24779
9.83578
10.16422
10.08357
9.91643
35
26
75239
24761
83605
16395
08366
91634
34
27
75258
24742
83632
16368
08375
91625
33
28
75276
21724
83659
16341
08383
91617
32
29
75294
24706
83686
16314
08392
91608
31
30
9.75313
10.24687
9.83713
10.16287
10.08401
9.91599
30
31
75331
24669
83740
16260
08409
91691
29
32
75350
24650
83768
16232
08418
91682
28
33
75368
24632
83795
16205
08427
91573
27
34
75386
24614
83822
16178
08435
91665
26
85
9.75405
10.21595
9.83849
10.16151
10.08444
9.91656
25
36
75423
24577
83876
16124
08453
91547
24
37
75441
24559
83903
16097
08462
91538
23
38
75459
24541
83930
16070
08470
91530
22
39
75178
24522
83957
16043
08479
91521
21
40
9.75496
10.24504
9.83984
10.16016
10.08488
9.91612
20
41
75514
24486
84011
15989
08496
91604
19
42
75533
24467
84038
15962
08505
91495
18
43
75551
24449
84065
15935
08514
91486
17
44
75569
24431
84092
15908
08523
91477
16
45
9.75587
10.21413
9.84119
10.15881
10.08531
9.91469
15
46
75605
24395
84146
15854
08540
91460
14
47
75624
24376
84173
15827
08549
91451
13
48
75642
24358
84200
15800
08558
91442
12
49
75660
24340
84227
15773
08567
91433
11
50
9.75678
10.24322
9.84254
10.15746
10.08575
9.91425
10
51
75696
24304
84280
15720
08584
91416
9
52
75714
24286
84307
15693
08593
91407
8
53
75733
24267
84334
15666
08602
91398
7
54
75751
24249
84361
15639
08611
91389
6
55
9.75769
10.24231
9.84388
10.15612
10.08619
9.91381
5
56
75787
24213
84415
15585
08628
91372
4
57
75805
24195
84442
15568
08637
91363
3
5S
75823
24177
84469
15531
08646
91354
2
59
76841
24159
84496
15504
■08655
91345
1
60
75859
24141
84523
15477
08664
91336
M.
Cosine.
Secant.
Cotangent
Tangent.
Cosecant.
Sine.
M.
124°
J12 LOGARITHMIC ANGULAR FUNCTIONS. Table 2.
(5°
Logarithms.
144°
M.
Sine.
Cosecant.
Tangent.
Cotangent.
Secant.
Cosine.
M.
9.75859
10.24141
9.84523
10.15477
10.08664
9.91336
60
1
75877
24123
84650
15460
08672
91328
59
2
75895
21105
84576
15424
08681
91319
58
3
75913
24087
84603
15397
08690
91310
57
4
75931
24069
84630
15370
08699
91301
56
5
9.75949
10.24051
9.84657
10.15343
10.08708
9.91292
65
6
75967
24033
84684
15316
08717
91283
54
7
75985
24015
84711
15289
08726
91274
53,
8
76003
23997
84738
15262
08734
91266
52
9
76021
23979
84764
15236
08743
91257
51
10
9.76039
10.23961
9.84791
10.15209
10.08752
9.91248
50
11
76057
23943
84818
15182
08761
91239
49
n
76076. .
23925
84845
15155
08770
91230
48
13
76093
23907
84872
15128
08779
91221
47
14
76111
23889
84899
15101
08788
91212
46
15
9.76129
10.23871
9.8-1925
10.15075
10.08797
9.91203
.45
16
76146
23854
84952
15048
08806
91194
44
17
76164
23836
84979
16021
08815
91185
43
18
76182
23818
86006
14994
08824
91176
42
19
76200
23800
86033
14967
08833
91167
41
20
9.76218
10.23782
9.85059
10.14941
10.08842
9.91158
40
21
76236
23764
85086
14914
08851
91149
39
22
76253
23747
85113
14887
08859
91141
38
23
76271
23729
8.5140
14860
08868
91132
37
24
76289
23711
85166
14834
08877
911^^
36
25
9.76307
10.23693
9.85193
10.14807
10.08886
9.91114
35
26
76324
23676
85220
14780
08895
91105
34
27
76342
23658
85247
14753
08904
91096
33
28
76360
23640
85273
14727
08913
91087
32
29
76378
23622
85300
14700
08922
91078
31
)0
9.76395
10.23606
9.86327
10.14673
10.08931
9.91069
30
Jl
76413
23587
85364
14646
08940
91060
29
!2
76431
2:3569
86380
14620
08949
91051
28
i3
76448
23652
86407
14693
08958
91042
27
!4
76466
23534
85434
14566
08967
91033
26
!5
9.76484
10.23516
9.85460
10.14540
10.08977
9.91023
25
56
76501
23499
85487
14513
08986
91014
24
57
76519
23481
86514
14486
08995
91005
23
!8
76537
23463
85540
14460
09004
90996
22
i9
76554
23446
85567
14433
09013
90987
21
10
9.76672
10.23428
9.85594
10.14406
10.09022
9.90978
20
11
76690
23410
86620
14380
09031
90969
19
12
76607
23393
85647
14.363
09040
90960
18
13
76625
23375
85674
14326
09049
90961
17
14
76642
23368
85700
14300
09058
90942
16
15
9.76660
10.23340
9.85727
10.14273
10.09067
9.90933
15
16
76677
23323
86754
14246
09076
90924
14
17
76695
23305
86780
14220
09085
90915
13
18
76712
23288
85807
14193
09094
90906
12
19
767.30
23270
85834
14166
09104
90896
11
lO
9.76747
10.23253
9.85860
10.14140
10.09113
9.90887
10
p1
76765
23235
85887
14113
09122
90878
9
i2
76782
23218
85913
14087
09131
90869
8
.3
76800
23200
85940
14060
09140
90860
7
.4
76817
23183
86967
14033
09149
90851
6
.5
9.76835
10.23165
9.85993
10.14007
10.09158
9.90842
5
i6
76852
23148
86020
13980
09168
90832
4
i7
76870
23130
86046
13954
09177
90823
3
iS
76887
23113
86073
13927
09186
90814
2
i9
76904
23096
86100
13900
09195
90805
1
iO
76922
23078
86126
13874
09204
90796
I.
Cosine.
Secjlnt.
Cofcmgent.
Tangent.
Cosecant.
Sine.
M.
25°
Table 2. LOGAEIJHMIC ANGULAR FUNCTIONS. 313
36°
Logarithms.
143°
M.
Sine.
Cosecant.
Tangent.
Cotangent.
Secant.
Cosine.
M.
9.76922
10.23078
9.86126
10.13874
10.09204
9.90796
60
1
76939
23061
86153
13847
09213
90787
59
2
76957
23043
86179
13821
09223
90777
58
3
76974
23026
86206
13794
09232
90768
67
4
76991
23009
86232
13768
09241
90769
66
5
9.77009
10.22991
9.86259
10.13741
10.09250
9.90750
55
6
77026
22974
86285
13716
09269
90741
54
7
77043
22957
86312
13688
09269
90731
63
8
77061
22939
86338
13662
09278
90722
52
9
77078
22922
86365
13635
09287
90713
51
10
9.77095
10.22905
9.86392
10.13608
10.09296
9.90704
50
11
77112
22888
86418
13,582
09306
90694
49
12
77130
22870
86445
13555
09315
90685
48
13
77147
22853
86471
13529
09324
90676
47
14
77164
22836
86498
13502
09333
90667
46
16
9.77181
10.22819
9.86524
10.13476
10.09343
9.90667
45
16
77199
22801
86551
13449
09352
90648
44
17
77216
22784
86577
13423
09361
90639
43
18
77233
22767
86603
13397
09370
90630
42
19
77250
22750
86630
13370
09380
90620
41
20
9.77268
10.22732
9.86656
10.13344
10.09389
9.90611
40
21
77285
22715
86683
13317
09398
90602
39
22
77302
22698
86709
13291
09408
90592
38
23
77319
22681
86736
13264
09417
90683
37
24
77336
22664
86762
13238
09426
90574
36
25
9.77353
10.22647
9.86789
10.13211
10.09435
9.90665
35
26
77370
22630
86815
13185
09445
90556
34
27
77387
22613
86842
13168
09464
90546
33
28
77405
22595
86868
13132
09463
90537
32
29
77422
22578
86894
13106
09473
90627
31
30
9.77439
10.22561
9.86921
10.13079
10.09482
9.90618
30
31
77456
22544
86947
13053
09491
90509
29
32
77473
22527
86974
13026
09501
90499
28
33
77490
22510
87000
13000
09610
90490
27
34
77507
22493
87027
12973
09520
90480
26
35
9.77524
10.22476
9.87053
10.12947
10.09529
9.90471
25
36
77541
22459
87079
12921
09538
90462
24
37
77558
22442
87106
12894
09548
90452
23
38
77575
22425
87132
12868
09557
90443
22
39
77592
22408
87158
12842
09666
90434
21
40
9.77609
10.22391
9.87185
10.12815
10.09676
9.90424
20
41
77626
22374
87211
12789
09685
90415
19
42
77643
22357
87238
12762
09595
90405
18
43
77660
22340
87264
12736
09604
90396
17
44
77677
22323
87290
12710
09614
90386
16
45
9.77694
10.22306
9.87317
10.12683
10.09623
9.90377
15
46
77711
22289
87343
12657
09632
90368
14
47
77728
22272
87369
12631
09642
90358
13
48
77744
22-256
87396
12604
09651
90349
12
49
77761
22239
87422
12678
09661
90339
11
50
9.77778
10.22222
9.87448
10.12652
10.09670
9.90330
10
51
77795
22205
87475
12525
09680
90320
9
52
77812
22188
87501
12499
09689
90311
8
53
77829
22171
87527
12473
09699
90301
7
54
77846
22154
87564
12446
09708
90292
6
55
9.77862
10.22138
9.87680
10.12420
10.09718
9.90282
5
56
77879
22121
87606
12394
09727
90273
4
57
77896
22104-
87633
12367
09737
90263
3
58
77913
22087
87669
12341
09746
90254
2
59
77930
22070
87685
12315
09766
90244
1
60
77946
22054
87711
12289
09765
90235
M.
Cosine.
Secant.
Cotangent.
Tangent.
Cosecant.
Sine.
M.
126°
22
53°
514
LOGARITHMIC ANGULAR FUNCTIONS. Table 3.
Logarithms.
142°
M.
Sine.
Cosecant.
Tangent.
Cotangent,
Secant.
Cosine.
M.
9.77946
10.22054
9.87711
10.12289
10.09765
9.90235
60
1
77963
22037
87738
12262
09776
902'2,5
59
2
77980
22020
87764
12236
09784
90216
58
3
77997
22003
87790
12210
09794
90200
57
4
78013
21987
87817
12183
09803
90197
66
6
9.78030
10.21970
9.87843
10.12167
10.09813
9.90187
55
6
78047
21953
87869
12131
09822
90178
54
7
78063
21937
87895
12106
09832
90168
53
8
78080 .
21920
87922
12078
09841
90169
52
9
78097
21903
87948
12052
09851
90149
61
10
9.78113
10.21887
9.87974
10.12026
10.09861
9.90139
50
11
78130
21870
88000
12000
09870
90130
49
12
78147
21853
88027
11973
09880
90120
48
13
78163
21837
88053
11947
09889
90111
47
14
78180
21820
88079
11921
09899
90101
46
15
9.78197
10.21803
9.88105
10.11896
10.09909
9.90091
45
16
78213
21787
88131
11869
09918
90082
44
17
78230
21770
88158
11842
09928
90072
43
18
78246
21764
88184
11816
09937
90063
42
19
7«263
21737
88210
11790
09947
90063
41
20
9.78280
10.21720
9.88236
10.11764
10.09957
9.90043
40
21
78296
21704
88262
11738
09966
90034
39
22
78313
21687
88289
11711
09976
90024
38
23
78329
21671
88315
11686
09986
90014
37
24
78346
21654
88341
11659
09995
90005
36
25
9.78362
10.21638
9.88367
10.11633
10.10005
9.89995
36
26
78379
21621
88393
11607
10015
89985
34
27
78395
21606
88420
11680
10024
89976
33
28
78412
21588
88446
11664
10034
89966
32
29
78428
21572
88172
11628
10044
89956
31
30
9.78445
10.21555
9.88498
10.11.602
10.10063
9.89947
30
31
78461
21539
88524
11476
10063
89937
29
32
78478
21522
88660
11460
10073
89927
28
33
78494
21506
88677
11423
10082
89918
27
34
78510
21490
88603
11397
10092
89908
26
35
9.78527
10.21473
9.88629
10.11371
10.10102
9.89898
26
36
78543
21457
88655
11346
10112
89888
24
37
78560
21440
88681
11319
10121
89879
23
38
78576
21424
88707
11293
10131
89869
22
39
78592
21408
88733
11267
10141
89859
21
40
9.78609
10.21391
9.88759
10.11241
10.10151
9.89849
20
11
78625
21375
88780
11214
10160
89840
19
12
78642
21358
88812
11188
10170
89830
18
13
78658
21342
88838
11162
10180
89820
17
14
78674
21326
88864
11136
10190
89810
16
16
9.78691
10.21309
9.88890
10-11110
10.10199
9.89801
16
16
78707
21293
88916
11084
10209
89791
14
17
78723
21277
88942
11058
10219
89781
13
18
78739
21261
88968
11032
10229
89771
12
19
78756
21244
88994
11006
10239
89761
11
)0
9.78772
10.21228
9.89020
10.10980
10.10248
9.89752
10
)1
78788
21212
89046
10954
10258
89742
9
)2
78805
21195
89073
10927
10268
89732
8
)3
78821
21179
89099
10901
10278
89722
7
)4
78837
21163
89125
10875
10288
89712
6
)5
9.78853
10.21147
9.891.51
10.10849
10.10298
9.89702
5
)6
78869
21131
89177
10823
10307
89693
4
i7
78886
21114
89203
10797
10317
89683
3
i8
78902
21098
89229
10771
■ 10327
89673
2
.9
78918
21082
89255
10746
10337
89663
1
;o
78934
21066
StTunt.
89281
10719
10347
89653
I.
Cosine.
Cotangent.
Tangent. |
Cosecant.
Sine.
M.
27°
52°
Table 2. LOGARITHMIC ANGULAR FUNCTIONS.
315
38°
Logarithms.
141°
M.
Sine.
CoBecaut.
Tangent.
Cotangent.
Secant.
Cosine.
M.
9.78934
10.21066
9.89281
10.10719
10.10347
9.89653
60
1
78950
21050
89307
10693
10357
89643
59
2
78967
21033
89333
10667
10367
89633
58
3
78983
21017
89359
10641
10376
89624
57
4
78999
21001
89385
10615
10386
89614
56
5
9.79015
10.20985
9.89411
10.10589
10.10396
9.89604
56
6
79031
20969
89437
10563
10406
89594
54
7
79017
20953
89463
10537
10416
89584
53
8
79063
20937
89489
10511
10426
89574
52
9
79079
20921
89515
10485
10436
89564
51
10
9.79095
10.20905
9.89541
10.10459
10.10446
9.89554
50
U
79111
20889
89567
10433
10466
89544
49
12
79128
20872
89593
10407
10466
89534
48
13
79144
20856
89619
10381
10476
89624
47
14
79160
20840
89515
10365
10486
89614
46
15
9.79176
10.20824
9.89671
10.10329
10.10496
9.89504
45
16
79192
20808
89697
10303
10505
89495
44
17
79208
20792
89723
10277
10515
89486
43
18
79224
20776
89749
10251
105'2.5
89476
42
19
79240
20760
89775
10225
10536
89465
41
20
9.79256
10.20744
9.89801
10.10199
10.10546
9.89455
40
21
79272
20728
89827
10173
10655
89445
39
22
79288
20712
89853
10147
10665
89435
38
23
79304
20696
89879
10121
10575
89426
37
24
79319
20681
89905
10095
10585
89416
36
25
9.79335
10.20665
9.89931
10.10069
10.10595
9.89406
35
26
79351
20649
89957
10043
10606
89395
34
27
79367
20633
89983
10017
10616
89385
33
28
79383
20617
90009
09991
10625
89375
32
29
79399
20601
90035
09965
10636
89364
31
30
9.79415
10.20585
9.90061
10.09939
10.10646
9.89354
30
31
79431
20569
90086
09914
10656
89344
29
32
79447
20553
90112
09888
10666
89334
28
33
79463
20537
90138
09862
10676
89324
27
34
79478
20522
90164
09836
10686
89314
26
35
9.79494
10.20506
9.90190
10.09810
10.10696
9.89304
25
36
79510
20490
90216
09784
10706
89294
24
»
79526
20474
90242
09758
10716
89284
23
38
79542
20458
90268
09732
10726
89274
22
39
79558
20442
90294
09706
10736
89264
21
■40
9.79573
10.20427
9.90320
10.09680
10.10746
9.89254
20
41
79589
20111
90346
09664
10756
89244
19
42
79605
20395
90371
09629
10767
89233
18
43
79621
20379
90397
09603
10777
89223
17
44
79636
20364
90423
09577
10787
89213
16
45
9.79652
10.20348
9.90449
10.09551
10.10797
9.89203
16
46
79668
20332
90475
09526
10807
89193
14
47
79684
20316
90501
09499
10817
89183
13
48
79699
20301
90527
09473
10827
89173
12
49
79715
20285
90553
09447
10838
89162
11
50
9.79731
10.20269
9.90578
10.09422
10.10848
9.89152
10
51
79746
20254
90604
09396
10858
89142
9
52
79762
20238
90630
09370
10868
89132
8
53
79778
20222
90656
09344
10878
89122
7
64
79793
20207
90682
09318
10888
89112
6
55
9.79809
10.20191
9.90708
10.09292
10.10899
9.89101
5
56
79825
20175
90784
09266
10909
89091
4
57
79840
20160
90759
09241
10919
89081
3
58
79856
20144
90785
09215
10929
89071
2
59
79872
20128
90811
09189
10940'
89060
1
60
79887
20113
90837
09163
10950
89060
M.
CoBioe.
Secant.
Cotangent.
Tangent,
Cosecant.
Sine. ,
M.
128°
51°
;16 LOGARITHMIC ANGULAR FUNCTIONS. Table 3.
9°
Logar
thms.
140°
H.
Sine.
Cosecant.
Tangent.
Cotangent.
Secant.
10.10950
Cosine.
M.
9.79887
10.20113
9.90837
10.09163
9.89050
60
1
79903
20097
90863
09137
10960
89040
59
2
79918
20082
90889
09111
10970
89030
58
3
79934
20066
90914
09086
10980
89020
67
4
79950
20050
90940
09060
10991
89009
56
5
9.79965
10.20035
9.90966
10.09034
10.11001
9.88999
55
6
79981
20019
90992
09008
11011
88989
64
7
79995
20004
91018
08982
11022
88978
53
8
80012
19988
91043
08957
110.32
88968
52
9
80027
19973
91069
08931
11042
889.58
51
10
9.80043
10.19957
9.91095
10.08905
10.110.52
9.88948
.60
11
80058
19942
91121
08879
11063
88937
49
12
80074
19926
91147
08853
11073
88927
48
13
80089
19911
91172
08828
11083
88917
47
14
80105
19895
91198
08802
11094
88906
46
15
9.80120
10.19880
9.91224
10.08776
10.11104
9.88896
45
Ifi
80136
19864
91250
08750
11114
88886
44
17
80151
19849
91276
08724
11125
88875
43
18
80166
19834
91301
08699
11135
88865
42
19
80182
19818
91327
08673
11145
88855
41
20
9.80197
10.19803
9.91353
10.08647
10.111.56
9.88844
40
21
80213
19787
91.379
08621
11166
88834
39
22
80228
19772
91404
08696
11176
88824
38
23
80244
19756
91430
08570
11187
88813
37
24
80259
19741
91456
08.544
11197
88803
36
25
9.80274
10.19726
9.91482
10.08518
10.11207
9.88793
35
26
80290
19710
91507
08493
11218
88782
34
27
80305
19695
91533
08467
11228
88772
33
28
80320
19680
91559
08441
11239
88761
32
29
80336
19664
91585
08416
11249
88761
31
30
9.80351
10.19649
9.91610
10.08390
10.11259
9.88741
30
31
80366
19634
91636
08364
11270
88730
29
32
80382
19618
91662
08338
11280
88720
28
33
80397
19603
91688
08312
11291
88709
27
34
80412
19588
91713
08287
11301
88699
26
35
9.80428
10.19572
9.91739
10.08261
10.11312
9.88688
25
36
80443
19.157
91765
08235
11322
88678
24
37
80458
19.V12
91791
08209
11332
88668
23
38
80473
19527
91816
08184
11343
88657
22
39
80489
19511
91842
08158
11353
88647
21
40
9.80504
10.19496
9.91868
10.08132
10.11364
9.88636
20
41
80519
19481
91893
08107
11374
88626
19
42
80534
19466
91919
08081
11385
88616
18
43
80550
19450
91945
08056
11395
88605
17
44
80565
19435
91971
08029
11406
88594
16
45
9.80580
10.19420
9.91996
10.08004
10.11416
9.88584
15
46
80595
19405
92022
07978
11427
88573
14
47
80610
19390
92048
07952
11437
88563
13
48
80626
19375
92073
07927
11448
88552
12
49
80641
19359
92099
07901
114.58
88542
11
50
9.80656
10.19344
9.92126
10.07875
10.11469
9.88531
10
61
80671
19329
92150
07850
11479
88521
9
52
80686
19314
92176
07824
11490
88510
8
53
80701
19299
92202
07798
11501
88499
7
54
80716
19284
92227
07773
11.511
88489
6
55
9.80731
10.19269
9.92253
10.07747
10.11522
9.88478
5
56
80746
19254
92279
07721
11532
88468
4
57
80762
19238
92304
07696
11543
88467
3
58
80777
19223
92330
07670
11553
88447
2
59
80792
19208
92356
07644
11564
&84a6
1
60
80807
19193
92381
07619
11575
88426
M.
Cosine.
Secant.
Cotangent.
Tangent.
Cosecant.
Sine.
M.
29°
50°
Table 2. LOGARITHMIC ANGULAE FUNCTIONS. 317
40°
Logarithms.
39°
M.
Sine.
Cosecant.
Tangent.
Cotangent.
Secant.
Cosine.
M.
9.80807
10.19193
9.92381
10.07619
10.11575
9.88425
60
1
80822
19178
92407
07593
11585
88415
59
2
80837
19163
92433
07667
11596
88404
58
3
80a62
19148
92158
07542
11606
88394
57
4
80867
19133
92484
07516
11617
88383
66
5
9.80882
10.19118
9.92510
10.07490
10.11628
9.88372
66
6
80897
19103
92635
07466
11638
88362
54
7
80912
19088
92561
07439
11649
88361
53
8
80927
19073
92687
07413
11660
88340
62
9
80942
19058
92612
07388
11670
88330
51
10
9.80957
10.19043
9.92638
10.07362
10.11681
9.88319
50
11
80972
19028
92663
07337
11692
88308
49
12
80987
19013
92689
07311
11702
88298
48
13
81002
18998
92716
07285
11713
88287
47
14
81017
18983
92740
07260
11724
88276
46
15
9.81032
10.18968
9.92766
10.07234
10.11734
9.88266
45
16
81047
18953
92792
07208
11745
88266
44
17
81061
18939
92817
07183
11766
88244
43
18
81076
18924
92843
07167
11766
88234
42
19
81091
18909
92868
07132
11777
88223
41
20
9.81106
10.18894
9.92894
10.07106
10.11788
9.88212
40
21
81121
18879
92920
07080
11799
88201
39
22
81136
18864
92945
07065
11809
88191
38
23
81161
18849
92971
07029
11820
88180
37
24
81166
18834
92996
07004
11831
88169
36
25
9.81180
10.18820
9.93022
10.06978
10.11842
9.88158
36
26
81195
18805
98048
06952
11852
88148
34
27
81210
18790
93073
06927
11863
88137
33
28
81226
18775
93099
06901
11874
88126
32
29
81240
18760
93124
06876
11886
88115
31
30
9.81254
10.18746
9.93160
10.06850
10.11896
9.88106
30
31
81269
18731
93175
06825
11906
88094
29
32
81284
18716
93201
06799
11917
88083
28
33
81299
18701
93227
06773
11928
88072
27
34
81314
. 18686
93262
06748
11939
88061
26
35
9.81328
10.18672
9.93278
10.06722
10.11949
9.88061
26
36
81343
18657
93303
06697
11960
88040
24
37
81358
18642
93329
06671
11971
88029
23
38
81372
18628
93354
06646
11982
88018
22
39
81387
18613
93380
06620
11993
88007
21
40
9.81402
10.18598
9.93406
10.06594
10.12004
9.87996
20
41
81417
18583
93481
06569
12015
87986
19
42
81431
18569
93467
06543
12025
87976
18
43
81446
18554
93482
06618
12036
87964
17
44
81461
18639
93508
06492
12047
87963
16
46
9.81475
10.18526
9.93633
10.06467
10.12068
9.87942
16
46
81490
18610
93559
06441
12069
87931
14
47
81506
18495
93584
06416
12080
87920
13
48
81519
18481
93610
06390
12091
87909
12
49
81534
18466
93636
06364
12102
87898
11
50
9.81549
10.18451
9.93661
10.06339
10.12113
9.87887
10
51
81563
18437
93687
06313
12123
87877
9
52
81578
18422
93712
06288
12134
87866
8
53
81692
18408
93738
06262
12145
87866
7
54
81607
18393
93763
06237
12166
87844
6
55
9.81622
10.18378
9.93789
10.06211
10.12167
9.87833
6
66
81636
18364
93814
06186
12178
87822
4
57
81661
18349
93840
06160
12189
87811
3
58
81665
18335
93865
06135
12200
87800
2
59
81680
18320
93891
06109
12211
87789
1
60
81694
18306
93916
06084
12222
87778
M.
Cosine.
Secant.
Cotangent.
Tangent.
Cosecant.
Sine.
M.
130°
49°
!18 LOGARITHMIC ANGULAR FUNCTIONS. Table 2.
i°
Logarithms.
38°
M.
Sine.
Cosecant.
Tangent.
Cotangent.
■Secant,
Cosine,
M.
9.81694
10.18306
9.93916
10.06084
10,12222
9,87778
60
1
81709
18291
93942
06058
12233
87767
59
2
81723
18277
93967
06033
12244
87766
58
3
81738
18262
93993
06007
12255
87746
S'
4
81752
18248
94018
05982
12266
87734
56
5
9.81767
10.18233
9.94044
10.0,5966
10,12277
9,87723
65
6
81781
18219
94069
05931
12288
87712
54
-7
S1796
18204
94095
05906
12299
87701
53
8
81810
18190
94120
06880
12310
87690
52
9
8182.5
18175
94146
osse-i
12321
87679
51
10
9.81839
10.18161
9.94171
10.06829
10,12332
9.87608
50
11
81854
18146
94197
05803
12343
87657
49
12
81868
18132
94222
05778
12354
87640
48
13
81882
18118
94248
05752
12365
87635
47
14
81897
18103
94273
06727
12376
87624
46
15
9.81911
10.18089
9.94299
10,05701
10,12387
9,87613
45
16
81926
18074
94324
05676
12399
87601
44
17
81940 V
18060
94350
06650
12-110
87590
43
18
81955
18045
94375
0,5625
12421
87579
42
19
81969
18031
94401
05699
12432
87668
41
20
9.81983
10.18017
9.94426
10,0,5574
10,12443
9,87667
40
21
81998
18002
94462
05.548
124.54
87546
39
22
82012
17988
94477
05523
12465
87535
38
23
82026
17974
94503
05497
12476
87624
37
24
82041
17959
94.528
0.5472
12487
87513
36
25
9.82055
10.17945
9.94,564
10,05446
10.12499
9,87501
35
26
82069
17931
94579
05421
12.510
87490
34
27
82084
17916
94604
05396
12521
87479
33
28
82098
17902
94630
05370
12532
87468
32
29
82112
17888
94G55
05345
12513
874,57
31
30
9,82126
10.17874
9.94681
10,05319
10.12.554
9,87446
30
SI
82141
17859
94706
05294
125ri6
87434
29
32
82155
17845
94732
0.5268
12577
87423
28
33
82169
17831
94757
05'243
12588
87412
27
34
S21S1
17816
94783
0,5217
12599
87401
26
36
9.K219X
10.17802
9.94808
10,05192
10,12610
9.87390
25
36
.S2212
17788
94834
05166
12622
87378
24
37
82226
17774
94859
05141
121 ;33
87367
23
38
82240
17760
94884
06116
12644
87356
22
39
82255
17745
94910
05090
126.55
87346
21
10
9.82269
10.17731
9.94935
10,06065
10,12666
9.87334
20
41
82283
17717
94961
0,5039
12678
87322
19
42
82297
17703
94986
05014
12689
87311
18
43
82311
17689
95012
04988
12700
87300
17
44
82326
17674
95037
04963
12712
87288
16
45
9.8'2340
10.17660
9.95062
10,04938
10,12723
9-87277
15
le
82354
17646
96088
04912
12734
87266
14
17
82368
17632
95113
04887
12745
87255
13
18
82382
17618
95139
04861
12757
87243
12
19
82396
17604
95164
04836
12768
87232
11
50
9.82410
10.17690
9,95190
10,04810
10,12779
9,87221
10
51
82424
17576
95216
04786
12791
87209
9
52
8'2439
17561
95240
04760
12802
87198
8
53
82453
17647
95266
04734
12813
87187
7
54
82467
17533
95291
04709
12825
87175
6
55
9.82481
10.17519
9.95317
10,04683
10,12836
9,87164
5
56
82495
17505
9.5342
04658
12847
87153
4
57
8'2509
17491
95368
04632
12859
87141
3
58
82523
17477
95393
04607
12870'
87130
2
59
82637
17463
95418
04.582
12881
87119
1
30
82651
17449
95444
04556
12893
87107
H.
Coaine.
Secant.
Cotangent.
Tangent,
Cosecant,
Sine,
M,
31°
48°
ile 2. LOGAEITHMIC ANGULAR FUNCTIONS.
319
Logarithms.
137°
Sine.
Cosecant.
Tangent.
Cotangent,
Secant.
Cosine.
M,
9.82551
10.17449
9.95444
10.04556
10.12893
9.87107
60
82565
17435
95469
04531
12904
87096
89
82579
17421
95495
04505
12915
87085
58
82593
17407
95520
04480
12927
87073
57
82607
17393
95545
04455
12938
87062
56
9.82621
10.17379
9.95571
10.04429
10.12950
9 87050
55
82635
17365
95596
04404
12961
87039
54
82649
17351
95622
04378
12972
87028
53
82663
17337
95647
04353
12984
87016
52
82677
17323
95672
04328
12995
87005
51
9.82691
10.17309
9.95698
10.04302
10.13007
9.86993
50
82705
17295
95723
04277
13018
86982
49
82719
17281
95748
04252
13030
86970
48
82733
17267
95774
04226
13041
86959
47
82747
17253
95799
04201
13053
86947
46
9.82761
10.17239
9.95826
10.04175
10.13064
9.86936
45
82775
17225
95850
04150
13076
86924
44
82788
17212
95875
04125
13087
86913
43
82802
17198
95901
01099
13098
86902
42
82816
17184
95926
04074
13110
86890
41
9.82830
10.17170
9.95952
10.04048
10.13121
9.86879
40
82844
17166
95977
04023
13133
86867
39
82858
17142
96002
03998
13145
86855
38
82872
17128
96028
03972
13156
86844
37
82885
17115
96053
03947
13168
86832
36
9.82899
10.17101
9.96078
10.03922
10.13179
9.86821
35
82913
17087
96104
03896
13191
86809
34
82927
17073
96129
03871
13202
86798
S3
82941
17059
96155
03845
13214
86786
32
82955
17045
96180
03820
13225
86775
31
9.82968
10.17032
9.96205
10.03795
10.13237
9.86763
30
82982
17018
96231
03769
13248
86752
29
82996
17004
96256
03744
13260
86740
28
83010
16990
96281
03719
13272
86728
27
83023
16977
96307
03693
13283
86717
26
9.83037
10.16963
9.96332
10.03668
10.13295
9.86705
25
83051
16949
96357
03643
13306
86694
24
83065
16935
96383
03617
13318
86682
23
83078
16922
96408
03592
13330
86670
22
83092
16908
96433
03567
13341
86669
21
9.83106
10.16894
9.96459
10.03541
10.13353
9.86647
20
83120
16880
96484
03516
13365
86635
19
83133
16867
96510
03490
13376
86624
18
83147
16853
96535
03465
13388
86612 -,
17
83161
16839
96560
03440
13400
86600
16
9.83174
10.16826
9.96586
10.08414
10.13411
9.86589
15
83188
16812
96611
03389
13423
86577
14
83202
16798
96636
03364
13435
86665
13
83215
16785
96662
03338
13446
86554
12
83229
16771
96687
03313
13458
86542
11
9.83242
10.16758
9.96712
10.03288
10.13470
9.86530
10
83256
16744
98738
03262
13482
86518
9
83270
16730
96763
03237
13493
86507
8
83283
16717
96788
03212
13505
86495
7
83297
16703
96814
03186
13517
86483
6
9.83310
10.16690
9.96839
10.03161
10.13528
9.86472
5
83324
16676
96864
031.36
13.540
86460
4
83338
16662
96890
03110
13552
86448
3
83351
16649
96915
03085
13564
86436
2
83365
16635
96940
03060
13575
86425
1
83378
16622
96966
03034
13587
86413
Cosine.
Secant.
Cotangent.
Tangent.
Cosecant.
Sine.
M.
47°
320 LOGARITHMIC ANGULAR FUNCTIONS. Table 3.
43°
Logarithms.
1
36°
M.
Sine.
Cosecant.
Tangent.
Cotangent.
Secant.
Cosine.
M.
9.83378
10.16622
9.96966
10.03031
10.13587
9.86413
60
1
83392
16608
96991
03009
13599
86401
59
2
83405
16595
97016
02981
13611
86389
58
3
83419
16581
97012
02958
13623
86377
57
4
83432
16568
97067
02933
13634
86366
50
5
9.83446
10.16551
9.97092
10.02908
10.13646
9.86354
.56
6
83459
16511
97118
02882
13658
86342
54
7
83173
16527
97143
02857
13670
86330
53
8
83486
16511
97168
02832
13682
86318
52
9
83500
16500
97193
02807
13694
85306
51
10
9.83513
10.16187
9.97219
10.02781
10.13705
9.86295
50
11
83527
16173
97211
02756
13717
86283
49
12
83510
16160
97269
02731
13729
86271
48
13
83554
16116
97295
02705
13741
86259
47
U
83567
16133
97320
02680
13753
86247
16
15
9.83581
10.16119
9.97315
10.02655
10.13765
9.86235
45
16
83591
16406
97371
02629
13777
86223
14
17
83608
16392
97896
02601
13789
86211
43
18
83621
16379
97121
02679
13800
86200
42
19
83634
16366
97117
02553
13812
86188
41
20
9.83648
10.16352
9.97172
10.02528
10.13824
9.86176
40
21
83661
16339
97197
02503
13836
86164
39
22
83674
16320
97523
02177
13848
86162
38
23
83688
16312
97518
02452
13860
86140
37
24
83701
16299
97573
02127
13872
86128
36
25
9.83715
10.16285
9.97598
10.02102
10.13884
9.86116
35
26
83728
16272
97621
02376
13896
86101
34
27
83741
16259
97649
02351
13908
86092
33
28
83755
16245
97674
02326
13920
86080
32
29
83768
16232
97700
02300
13932
86068
31
30
9.83781
10.16219
9.97725
10.02275
10.13944
9.86056
30
31
83795
16205
97750
02250
13966
86044
29
32
83808
16192
97776
02221
13968
86032
28
33
83821
16179
97801
02199
13980
86020
27
34
83831
16166
97826
02171
13992
86008
26
35
9.83848
10.16152
9.97851
10.02119
10.14004
9.86996
25
36
83861
16139
97877
02123
14016
85984
24
37
83874
16126
97902
02098
14028
85972
23
38
83887
16113
97927
02073
14040
86960
22
39
83901
16099
97953
02047
11052
85948
21
40
9.83914
10.16086
9.97978
10.02022
10.14064
9.85936
20
41
83927
16073
98003
01997
14076
85924
19
42
83940
16060
98029
01971
14088
85912
18
43
83951
16046
98054
01946
14100
85900
17
44
83967
16033
98079
01921
14112
85888
16
45
9.83980
10.16020
9.98101
10.01896
10.14124
9.85876
16
46
83993
16007
98130
01870
11136
85864
14
47
84006
15994
98155
01815
11119
85851
13
48
84020
15980
98180
01820
11161
85839
12
49
84033
15967
98206
01794
11173
85827
11
50
9.84046
10.15954
9.98231
10.01769
10.11185
9.85815
10
51
84059
15911
98256
01744
11197
85803
9
52
84072
15928
98281
01719
11209
85791
8
53
84086
15915
98307
01693
11221
85779
7
54
81098
15902
98332
01668
14234
85766
6
55
9.81112
10.15888
9.98357
10.01643
10.14246
9.85754
5
56
81125
15875
98383
01617
14268
85742
4
57
81138
15862
98108
01592
14270
86730
3
58
81151
15819
98133
01567
14'282
85718
2
59
81164
15836
9S4.')S
01542
14294
85706
1
60
81177
15823
984 Si
Cotan^^ent.
01516
14307
85693
M.
CoBine.
Secant.
Tangent.
Cosecant.
Sine.
M.
Table 2. LOGARITHMIC ANGULAR FUNCTIONS.
321
44°
Logarithms.
135°
M.
■ Sine.
Cosecant.
Tangent.
Cotangent.
Secant.
Cosine.
M.
9.84177
10.15823
9.98484
10.01616
10.14307
9.85693
60
1
81190
35810
98609
01491
14319
85681
59
2
84203
15797
98534
01466
14331
85669
58
3
84216
1,5784
98560
01440
14343
85667
67
4
84229
15771
98585
01415
14356
85645
56
5
9.84242
10.15758
9.98610
10.01390
10.14368
9.85632
56
6
84255
15745
98635
01365
14380
85620
54
7
84269
15731
98661
01339
t 14392
8.5608
53
8
84282
15718
98686
01314
14404
85696
62
9
84295
15705
98711
01289
14417
85583
61
10
9.84308
10.15692
9.98737
10.01263
10.14429
9.85571
50
11
84321
15679
98762
01238
14441
86559
49
12
84334
15666
98787
01213
14463
86547
48
13
84347
15653
98812
01188
14466
85534
47
14
84360
15640
98838
01162
14478
86522
46
15
9.84373
10.15627
9.98863
10.01137
10.14490
9.85510
46
16
84385
15615
98888
01112
14503
85497
44
17
84398
15602
9S913
01087
14515
86485
43
18
84411
15589
98939
01061
14527
85473
42
19
84424
15576
98964
01036
145-10
85460
41
20
9.84437
10.15563
9.98989
10.01011
10.14652
9.85448
40
21
84450
15550
99016
00985
14564
85436
39
22
84463
16537
99010
00960
14577
85423
38
23
84476
16524
99065
00935
14589
85411
37
24
84489
16511
99090
00910
14601
85399
36
25
9.84502
10.15498
9.99116
10.00884
10.14614
9.85386
35
26
84515
15485
99141
00859
14626
85374
34
27
84528
15472
99166
00834
14639
85361
33
28
84540
16460
99191
00809
14651
85349
32
29
84553
16447
99217
00783
14663
86337
31
3D
9.84566
10.16434
9.99'242
10.00768
10.14676
9.86324
30
31
&lo79
15421
99267
00733
14688
86312
29
32
84592
15408
99293
00707
14701
85299
28
33
84605
15395
99318
00682
14713
86287
27
34
84618
15382
99343
00667
14726
85274
26
35
9.84630
10.15370
9.99368
10.00632
10.14738
9.85262
26
36
84643
15357
99394
00606
14750
85250
24
37
84656
15344
99419
00581
14763
85237
23
38
84669
15331
99444
00656
14776
85225
22
39
84682
15318
99469
00531
14788
86212
21
40
9.84694
10.15306
9.99495
10.00505
10.14800
9.86200
20
41
84707
16293
99620
00480
14813
85187
19
42
84720
16280
99545
00155
14825
85175
18
43
84733
15267
99570
00430
14838
86162
17
44
84745
1.5255
99696
00404
14850
86150
-16
45
9.84758
10.15242
9.99621
10.00379
10.14863
9.86137
16
46
84771
16229
99646
00354
14875
86125
14
47
84784
16216
99672
00328
14888
85112
13
48
84796
15204
99697
00303
14900
86100
12
49
84809
1.5191
99722
00278
14913
85087
11
50
9.84822
10.15178
9.99747
10.00263
10.14926
9.85074
10
61
84835
15165
99773
00227
14938
85062
9
52
84847
15153
99798
00202
14951
85049
8
53
84860
15140
99823
00177
14963
86037
7
54
84873
16127
99848
00152
14976
86024
6
55
9.84885
10.15116
9.99874
10.00126
10.14988
9.85012
5
56
84898
15102
99899
00101
15001
84999
4
57
84911
15089
99924
00076
16014
84986
3
68
84923
15077
99949
00051
16026
84974
2
59
84936
15064
99975
00025
15039
84961
1
60
84949
16051
10.00000
00000
15051
84949
M.
Cosine.
Secant.
Cotangent.
Tangent.
Cosecant.
Sine.
M.
134°
122
NATURAL FUNCTIONS.
Table 3.
Natural Trigonometrical Functions.
179°
rl.
Sine.
Vrs. cos.
Cosec'nt
Tang.
Co tang.
Secant.
Vrs. ein.
Cosine,
M.
.00000
1.0000
Infinite,
.00000
Infinite.
1.0000
.00000
1,0000
60
1
. 0029
.99971
3437,7
. 0029
3437,7
.0000
. 0000
,0000
59
2
. 0058
. 9942
1718.9
. 0058
1718.9
.0000
. 0000
.0000
58
3
. 0087
. 9913
1145.9
. 0087
1146.9
.0000
. 0000
.0000
57
4
. 0116
. 9884
859.44
. 0116
869,44
.0000
. 0000
.0000
66
5
.00145
.99854
687.55
.00145
687.55
1,0000
.00000
1.0000
55
6
. 0174
. 9826
572.96
. 0174
572.96
.0000
. 0000
.0000
54
7
. 0204
. 9796
491.11
. 0204
491.11
.0000
. 0000
.0000
53
8
. 0233
. 9767
429.72
. 0233
429.72
.0000
. 0000
.0000
62
9
. 0262
. 9738
381.97
. 0262
381.97
.0000
. 0000
.0000
51
.00291
.99709
313.77
.00291
343.77
1.0000
.00000
.99999
50
1
. 0320
. 9680
312.52
. 0320
312.52
.0000
. 0000
. 9999
49
2
. 0349
. 9651
286,48
. 0349
286.48
.0000
. 0001
. 9999
48
3
. 0378
. 9622
64,14
. 0378
64.44
.0000
. 0001
. 9999
47
4
. 0407
. 9593
45.55
. 0107
45.65
.0000
. 0001
. 9999
46
5
.00436
.99564
229.18
.00436
229,18
1,0000
.00001
.99999
45
6
. 0465
. 9534
14.86
. 0465
11,86
.0000
. 0001
. 9999
44
7
. 0194
. 9505
02.22
. 0494
02,22
.0000
. 0001
. 9999
43
8
. 0524
. 9476
190.99
. 0524
190.98
.0000
. 0001
. 9999
42
9
. 0553
. 9447
80.93
. 0553
80.93
.0000
. 0001
. 9998
41
.00582
.99418
171.89
.00582
171.88
1.0000
.00002
.99998
40
1
. OGll
. 9389
63.70
. 0611
63.70
.0000
. 0002
. 9998
39
2
. 0640
. 9360
56.26
. 0640
56.26
.0000
. 0002
. 9998
38
3
. 0669
. 9331
49.47
. 0669
49.46
.0000
. 0002
. 9998
37
i
. 0098
. 9302
43.24
. 0698
43.24
.0000
. 0002
. 9997
36
5
.00727
.99273
137.51
.00727
137,51
1.0000
.00003
.99997
36
6
. 0756
. 9244
32.22
. 0756
32,22
.0000
. 0003
. 9997
34
7
. 0785
. 9215
27.32
. 0785
27,32
.0000
. 0003
. 9997
33
8
. 0814
. 9185
22.78
. 0814
22.77
.0000
. 0003
. 9997
32
9
. 0843
. 9156
18.54
. 0844
18.64
.0000
. 0003
. 9996
31
.00873
.99127
114,59
.00873
114.59
1.0000
.00004
.99996
30
1
. 0902
. 9098
10,90
. 0902
10,89
.0000
. 0004
. 9996
29
2
. 0931
. 9069
07,43
. 0931
07,43
.0000
. 0004
. 9996
28
3
. 0960
. 9040
04.17
. 0960
04,17
.0000
. 0005
. 9995
27
■1
. 0989
. 9011
01,11
. 0989
01.11
.0000
. 0005
. 9995
26
5
.01018
.98982
98.223
.01018
98.218
1.0000
.00005
.99995
25
6
. 1047
. 8953
5.495
. 1047
6.489
.0000
. 0005
. 9994
24
7
. 1076
. 8924
2.914
. 1076
2.908
.0000
. 0006
. 9994
23
8
. 1105
. 8895
0.469
. 1105
0.463
.0001
. 0006
. 9994
22
9
. 1134
. 8865
88,149
. 1134
88.143
.0001
. 0006
. 9993
21
.01163
.98836
85.946
.01164
85.940
1,0001
.00007
.99993
20
1
. 1193
. 8807
3.849
. 1193
3.843
.0001
. 0007
. 9993
19
2
. 1222
. 8778
1.853
. 1222
1.847
.0001
. 0007
. 9992
18
3
. 1251
. 8749
79.950
. 1261
79.943
.0001
. 0008
. 9992
17
i
. 1280
. 8720
8.133
. 1280
8.126
.0001
. 0008
. 9992
16
5
.01309
.98691
76.396
.01309
76.390
1.0001
.00008
.99991
15
6
. 1338
. 8662
4.736
. 1338
4.729
.0001
. 0009
. 9991
14
7
. 1367
. 8633
3.146
. 1367
3,139
.0001
. 0009
. 9991
13
8
. 1396
. sr,04
1.622
. 1396
1.615
.0001
. 0010
. 9990
12
9
. 1425
. S575
0.160
. 1125
0.153
.0001
. 0010
. 9990
11
.01454
.9X546
68.757
.01454
68.750
1.0001
.00010
.99989
10
1
. 1183
. 8.)16
7.409
. 1184
7,102
.0001
. 0011
. 9989
9
2
. 1512
. S4N7
6.113
. 1513
6,105
.0001
. 0011
. 9988
8
3
. 1512
. 8458
4,866
. 1542
4,858
.0001
. 0012
. 9988
7
i
. 1571
. 8429
3.664
. 1571
3,657
.0001
. 0012
. 9988
6
5
.01600
.98400
62.507
.01600
62,499
1.0001
.00013
.99987
5
6
. 1629
. 8371
1,891
. 1629
1,383
.0001
. 0013
. 9987
4
7
. 1658
. 8342
0,314
. 1668
0,306
.0001
. 0014
. 9987
3
3
. 1687
. 8313
59.274
. 1687
59,266
.0001
. 0014
. 9986
2
9
. 1716
. 8284
8.270
. 1716
8,261
.0001
. 0015
. 9985
1
. 1745
. 8265
7.299
. 1745
7,290
.0001
. 0015
. 9985
I.
Cosine.
Vrs. sin.
Secant.
Cotang.
Tang,
Cosec'nt
Vrs. COS.
Sine.
M.
Table 3.
NATURAL FUNCTIONS.
323
1°
Natural Trigonometrical Functions.
178°
M.
Sine.
Vrs. COS.
Cosec'nt
Tang.
Cotang.
Secant,
Vra. sin.
Cosine.
M.
.01745
.98255
57.299
.01745
57.290
1.0001
.00015
.99985
60
1
. 1774
. 8226
6.359
. 1775
6.350
.0001
. 0016
. 9984
59
2
. 1803
. 8196
5.450
. 1804
5.441
.0001
. 0016
. 9984
58
3
. 1832
. 8167
4.570
. 1833
4.561
.0002
. 0017
. 9983
67
i
. 1861
. 8138
3.718
. 1862
3.708
.0002
. 0017
. 9983
56
5
.01891
.98109
52.891
.01891
52.882
1.0002
.00018
.99982
55
6
. 1920
. 8080
2.090
. 1920
2.081
.0002
. 0018
. 9981
54
7
. 1949
. 8051
1.313
. 1949
1.303
.0002
. 0019
. 9981
63
8
. 1978
. 8022
0.568
. 1978
0.548
.0002
. 0019
. 9980
62
9
. 2007
. 7993
49.826
. 2007
49.816
.0002
. 0020
. 9980
51
10
.02036
.97964
49.114
.02036
49.104
1.0002
.00021
.99979
60
11
. 2065
. 7935
8.422
. 2066
8.412
.0002
. 0021
. 9979
49
12
. 2094
. 7906
.7.750
. 2095
7.739
.0002
. 0022
. 9978
48
13
. 2123
. 7877
7.096
. 2124
7.085
.0002
. 0022
. 9977
47
14
. 2152
. 7847
6.460
. 2163
6.449
.0002
, .,0023
. 9977
46
15
.02181
.97818
46.840
.02182
45.829
1.0002
.00024
.99976
45
16
. 2210
. 7789
5.237
. 2211
5.226
.0002
. 0024
. 9975
44
17
. 2240
. 7760
4.650
. 2240
4.638
.0002
. 0026
. 9975
43
18
. 2269
. 7731
4.077
. 2269
4.066
.0002
. 0026
. 9974
42
19
. 2298
. 7702
3.520
. 2298
3.608
.0003
. 0026
. 9974
41
20
.02327
.97673
42.976
.02327
42.964
1.0003
.00027
.99973
40
21
. 2356
. 7644
2.445
. 2367
2.433
.0003
. 0028
. 9972
39
22
. 2385
. 7615
1.928
. 2386
1.916
.0003
. 0028
. 9971
38
23
. 2414
. 7586
1.423
. 2415
1.410
.0003
. 0029
. 9971
.37
24
. 2443
. 7557
0.930
. 2444
0.917
.0003
. 0030
. 9970
36
25
.02472
.97528
40.448
.02473
40.436
1.0003
.00030
.99969
35
26
. 2501
. 7499
39.978
. 2502
39.966
.0003
. 0031
. 9969
34
27
. 2530
. 7469
9.518
. 2531
9.506
.0003
. 0032
. 9968
33
28
. 2559
. 7440
9.069
. 2560
9.057
.0003
. 0033
. 9967
32
29
. 2589
. 7411
8.631
. 2589
8.618
.0003
. 0033
. 9966
31
30
.02618
.97382
38.201
.02618
38.188
1.0003
.00034
.99966
30
31
. 2647
. 7353
7.782
. 2648
7.769
.0003
. 0036
.. 9966
29
32
. 2676
. 7324
7.371
. 2677
7.358
.0003
. 0036
. 9964
28
33
. 2705
. 7295
6.969
. 2706
6.966
.0004
. 0036
. 9963
27
34
. 2734
. 7266
6.676
. 2736
6.663
.0004
. 0037
9963
26
35
.02763
.97237
36.191
.02764
36.177
1.0004
.00038
.99962
25
36
. 2792
. 7208
5.814
. 2793
5.800
.0004
. 0039
. 9961
24
37
. 2821
. 7179
5.445
. 2822
5.431
.0004
. 0040
9960
23
38
. 2850
. 7150
5.084
. 2851
5.069
.0004
. 0041
. 9959
22
39
. 2879
. 7121
4.729
. 2880
4.715
.0004
. 0041
. 9958
21
40
.02908
.97091
34.382
.02910
34.368
1.0004
.00042
.99958
20
41
. 2937
. 7062
4.042
. 2939
4.027
.0004
. 0043
. 9957
19
42
. 2967
. 7033
3.708
. 2968
3.693
.0004
. 0044
. 9966
18
43
. 2996
. 7004
3.381
. 2997
3.366
.0004
. 0046
. 9955
17
44
. 3025
. 6975
3.060
. 3026
3.046
.0004
. 0046
. 9954
16
45
.03054
.96946
32.746
.03055
32.730
1.0005
.00046
.99963
15
46
. 3083
. 6917
2.437
. 3084
2.421
.0005
. 0047
. 9962
14
47
. 3112
. 6888
2.134
. 3113
2.118
.0005
. 0048
. 9961
13
48
. 3141
. 6869
1.836
. 3143
1.820
.0005
. 0049
. 9951
12
49
. 3170
. 6830
1.544
. 3172
1.528
.0005
. 0050
. 9950
11
50
.03199
.96801
31.267
.03201
31.241
1.0005
.00051
.99949
10
61
. 3228
. 6772
• 0.976
. 3230
0.960
.0005
. 0052
. 9948
9
52
. 3267
. 6743
0.699
. 3259
0.683
.0005
. 0053
. 9947
8
53
. 3286
. 6713
0.428
. 3288
0.411
.0005
. 0054
. 9946
7
54
. 3315
. 6684
0.161
. 3317
0.145
.0005
. 0065
. 9945
6
55
.03344
.96665
29.899
.03346
29.882
1.0005
.00056
.99944
5
56
. 3374
. 6626
9.641
. 3375
9.624
.0006
. 0057
. 9943
4
57
. 3403
. 6597
9.388
. 3405
9.371
.0006
. 0058
. 9942
3
58
. 3432
. 6668
9.139
. 3434
9.122
.0006
. 0069
. 9941
2
69
. 3461
. 6539
8.894
. 3463
8.877
.0006
. 0060
. 9940
1
60
. 3490
. 6510
8.664
. 3492
8.636
.0006
. 0061
. 9939
M.
Cosine.
Vrs. sin.
Secant.
Cotong.
Tang.
Cosec'nt
Vrs. cos.
Sine.
M.
91°
88°
324
NATURAL FUNCTIONS.
Table 3.
2°
Natural Trigonometrical
Functions.
177°
M.
Sine.
Vrs. COS.
Cosec'nt
Tang.
Cotang.
Secant.
Vra. sin.
Cosine.
M.
.03490
.96510
28.654
.03492
28.636
1.0006
.00061
.99939
60
1
. 3519
. 6481
8.417
. 3521
8.399
.0006
. 0062
. 9938
69
2
. 3548
. 6452
8.184
. 3550
8.166
.0006
. 0063
. 9937
58
3
. 3577
. 6423
7.955
. 3579
7.937
.0006
. 0064
. 9936
57
4
. 3606
. 6394
7.730
. 8608
7.712
.0006
. 0065
. 9935
56
5
.03635
.96365
27.508
.03638
27.490
1.0007
.00066
.99934
55
C
. 3664
. 6336
7.290
. 3667
7.271
.0007
. 0067
. 9933
54
7
. 3693
. 6306
7.075
. 3696
7.066
.0007
. 0068
. 9932
53
8
.3722
. 6277
6.864
. 3725
6.845
.0007
. 0069
. 9931
52
9
. 3751
. 6248
6.655
. 3754
6.637
.0007
. 0070
. 9930
51
10
.03781
.96219
26.450
.03783
26.432
1.0007
.00071
.99928
50
11
. 3810
. 6190
6.249
. 3812
6.230
.0007
. 0073
. 9927
49
12
. 3839
. 6161
6.050
. 3842
6.031
.0007
. 0074
. 9926
48
13
. 3868
. 6132
5.354
. 3871
5.835
.0007
. 0075
. 9925
47
14
. 3897
. 6103
5.661
. 3900 ■
6.642
.0008
. 0076
. 9924
46
15
.03926
.96074
25.471
.03929
25.452
1.0008
.00077
.99923
45
16
. 3955
. 6045
6.284
. 3968
5.264
.0008
. 0078
. 9922
44
17
. 3984
. 6016
8.100
. 3987
5.080
.0008
. 0079
. 9921
43
18
. 4013
. 5987
4.918
. 4016
4.898
.0008
. 0080
. 9919
42
19
. 4042
. 5968
4.739
. 4046
4.718
.0008
. 0082
. 9918
41
20
.04071
.95929
24.562
.04075
24.642
1.0008
.00083
.99917
40
21
. 4100
. 5900
4.388
. 4104
4.367
.0008
. 0084
. 9916
39
22
. 4129
. 5870
4.216
. 4133
4.196
.0008
. 0085
. 9915
38
23
. 4158
. 5841
4.047
. 4162
4.026
.0009
. 0086
. 9913
37
24
. 4187
. 5812
3.880
. 4191
3.859
.0009
. 0088
. 9912
36
25
.04217
.95783
23.716
.04220
23.694
1.0009
.00089
.99911
35
26
. 4246
. 5754
3.553
. 4249
3.532
.0009
. 0090
. 9910
34
27
. 4275
. 5725
3.393
. 4279
3.372
.0009
. 0091
. 9908
33
28
. 4304
. 5696
3.235
. 4308
3.214
.0009
. 0093
. 9907
32
29
. 4333
. 5667
3.079
. 4337
3.068
.0009
. 0094
. 9906
31
30
.04362
.95638
22.925
.04366
22.904
1.0009
.00095
.99905
30
31
. 4391
. 5609
2.774
. 4395
2.752
.0010
. 0096
. 9903
29
32
. 4420
. 6580
2.624
. 4424
2.602
.0010
. 0098
. 9902
28
33
. 4449
. 5551
2.476
. 4453
2.454
.0010
. 0099
. 9901
27
34
. 4478
. 5622
2.330
. 4483
3ie08
.0010
. 0100
. 9900
26
35
.04507
.95493
22.186
.04512
22.164
1.0010
.00102
.99898
25
30
. 4536
. 5464
2.044
. 4541
2.022
.0010
. 0103
. 9897
24
37
. 4565
. 5435
1.904
. 4570
1.881
.0010
. 0104
. 9896
23
38
. 4594
. 5405
1.765
. 4599
1.742
.0010
. 0106
. 9894
22
39
. 4623
. 6376
1.629
. 4628
1.606
.0011
. 0107
. 9893
21
40
.04652
.96347
21.494
.04657
21.470
1.0011
.00108
.99892
20
41-
. 4681
. 6318
1.360
. 4687
1.337
.0011
. 0110
. 9890
19
42
. 4711
. 5289
1.228
. 4716
1.205
.0011
. 0111
. 9889
18
43
. 4740
. 5260
1.098
. 4745
1.075
.0011
. 0112
. 9888
17
44
. 4769
. 5231
0.970
. 4774
0.946
.0011
. 0114
. 98S6
16
45
.04798
.95202
20.843
.04803
20.819
1.0011
.00115
.99885
15
46
. 4827
. 5173
0.717
. 4832
0.693
.0012
. 0116
. 9883
14
47
. 4856
. 5144
0.593
. 4862
0.569
.0012
. 0118
. 9882
13
48
. 4885
. 5115
0.471
. 4891
0.446
.0012
. 0119
. 9881
12
49
. 4914
. 6086
0.350
. 4920
0.325
.0012
. 0121
. 9879
11
50
.04943
.96057
20.230
.04949
20.205
1.0012
.00122
.99878
10
51
. 4972
. 6028
0.112
. 4978
0.087
.0012
. 0124
. 9876
9
62
. 5001
. 4999
19.995
. 5007
19.970
.0012
. 0125
. 9875
8
53
5030
4970
9.880
. 5037
9.854
.0013
. 0127
. 9873
7
54
. 6059
. 4941
9.766
. 5066
9.740
.0013
. 0128
. 9872
G
65
.05088
.94912
19.653
.05095
19.627
1.0013
.00129
.99870
5
66
. 5117
. 4883
9.541
. 5124
9.515
.0013
. 0131
. 9869
4
57
. 5146
. 4853
9.431
. 6153
9.405
.0013
. 0132
. 9867
3
58
. 5175
. 4824
9.322
. 6182
9.296
.0013
. 0134
. 9866
2
59
. 5204
. 4795
9.214
. 6212
9.188
.0013
. 0135
. 9864
1
60
. 5234
. 4766
9.107
. 5241
9.081
.0014
. 0137
. 9863
M.
Cosine,
Vrs. sin.
Secant.
Co tang.
Tang.
Cosec'nt
AVs. cos.
Sine.
M.
92°
87°
lies.
NATUEAL FUNCTIUJNS.
325
Natural Trigonometrical P|fnctions.
176°
Sine.
Yra. COB.
Cosec'nt
Tang.
Co tang.
Secant.
Vrs. sin.
Cosine.
M.
.05234
.94766
19.107
.05241
19.081
1.0014
.00137
.99863
60
. 5263
. 4737
9.002
. 5270
8.975
.0014
. 0138
. 9861
59
. 6292
. 4708
8.897
. 5299
8.871
.0014
. 0140
. 9860
58
. 5321
. 4679
8.794
. 5328
8.768
.0014
. 0142
. 9868
57
. 5350
. 4650
8.692
. 5357
8.665
.0014
. 0143
. 9857
56
.05379
.94621
18.591
.05387
18.564
1.0014
.00145
.99865
55
. 5408
. 4592
8.491
. 5416
8.464
.0016
. 0146
. 9854
64
. 5437
. 4563
8.393
. 5445
8.365
.0015
. 0148
. 9852
53
. 5466
. 4534
8.295
. 5474
8.268
.0016
. 0149
. 9850
62
. 5495
. 4505
8.198
. 5503
8.171
.0015
. 0151
. 9849
51
.05524
.94476
18.103
.05532
18.075
1.0015
.00153
.99847
50
. 5553
. 4447
8.008
. 5562
7.980
.0015
. 0154
. 9846
49
. 5582
. 4418
7.914
. 5591
7.886
.0016
. 0156
. 9844
48
. 5611
. 4389
7.821
. 5620
7.793
.0016
. 0157
. 9842
47
. 5640
. 4360
7.730
. 5649
7.701
.0016
. 0159
. 9841
46
.05669
.94331
17.639
.05678
17.610
1.0016
.00161
.99839
45
. 5698
. 4302
7.549
. 5707
7.520
.0016
. 0162
. 9837
44
. 5727
. 4273
7.460
. 5737
7.431
.0016
. 0164
. 9836
43
. 5756
.4244
7.372
. 5766
7.343
.0017
. 0166
. 9834
42
. 6785
. 4214
7.285
. 5795
7.256
.0017
. 0167
. 9832
41
.05814
.94185
17.198
.05824
17.169
1.0017
.00169
.99831
40
. 5843
. 4156
7.113
. 5853
7.084
.0017
. 0171
. 9829
39
. 4127
7.028
. 5883
6.999
.0017
. 0172
. 9827
38
5^02
. 4098
6.944
. 5912
6.915
.001?
. 0174
. 9826
37
! 5931
. 4069
6.861
. 5941
6.832
.0018
. 0176
. 9824
36
.05960
.94040
16.779
.05970
16.750
1.0018
.00178
.99822
35
. 5989
. 4011
6.698
. 5999
6.668
.0018
. 0179
. 9820
34
. 6018
. 3982
6.617
. 6029
6.587
.0018
. 0181
. 9819
33
. 6047
. 3953
6.538
. 6053
6.507
.0018
. 0183
. 9817
32
. 6076
. 3924
6.459
. 6087
6.428
.0018
. 0186
. 9815
31
.06105
.93895
16.380
.06116
16.350
1.0019
.00186
.99813
30
. 6134
. 3866
6.303
. 6145
6.272
.0019
. 0188
. 9812
29
. 6163
. 3837
6.226
. 6175
6.195
.0019
. 0190
. 9810
28
. 6192
. 3808
6.150
. 6204
6.119
.0019
. 0192
. 9808
27
. 6221
. 3777
6.075
. 6233
6.043
.0019
. 0194
. 9806
26
.06250
.93750
16.000
.06262
15.969
1.0019
.00196
.99804
25
. 6279
. 3721
5.926
. 6291
6.894
.0020
. 0197
. 9803
24
. 6308
. 3692
5.853
. 6321
6.821
.0020
. 0199
. 9801
23
. 6337
. 3663
5.780
. 6350
6.748
.0020
. 0201
. 9799
22
. 6366
. 3634
5.708
. 6379
5.676
.0020
. 0203
. 9797
21
.06395
.93605
15.637
.06408
15.605
1.0020
.00205
.99795
20
. 6424
. 3576
5.566
. 6437
5.534
.0021
. 0206
. 9793
19
. 6453
. 3547
5.496
. 6467
6.464
.0021
. 0208
. 9791
18
. 6482
. 3518
5.427
. 6496
5.394
.0021
. 0210
. 9790
17
. 6511
. 3489
5.358
. 6525
5.325
.0021
. 0212
. 9788
16
.06540
.93460
15.290
.06554
16.267
1.0021
.00214
.99786
15
. 6569
. 3431
5.222
. 6583
5.189
.0022
. 0216
. 9784
14
. 6598
. 3402
5.155
. 6613
5.122
.0022
. 0218
. 9782
13
. 6627
. 3373
5.089
. 6642
5.066
.0022
. 0220
. 9780
12
. 6656
. 3343
5.023
. 6671
4.990
.0022
. 0222
. 9778
11
.06685
.93314
14.958
.06700
14.924
1.0022
.00224
.99776
10
. 6714
. 3285
4.893
. 6730
4.860
.0023
. 0226
. 9774
9
. 6743
. 3256
4.829
. 6759
4.795
.0023
. 0228
. 9772
8
. 6772
. 3227
4.765
. 6788
4.732
.0023
. 0230
. 9770
7
. 6801
. 3198
4.702
. 6817
4.668
.0023
. 0231
. 9768
6
.06830
.93169
14.640
.06846
14.606
1.0023
.00233
.99766
5
. 6859
. 3140
4.578
. 6876
4.644
.0024
. 0235
. 9764
4
. 6888
. 3111
4.517
. 6905
4.482
.0024
. 0237
. 9762
3
. 6918
.3082
4.456
. 6934
4.421
.0024
. 0239
. 9760
2
. 6947
. 3053
4.395
. 6963
4.361
.0024
. 0241
. 9758
1
. 6976
. 3024
4.335
. 6993
4.301
.0024
. 0243
. 9766
Cosine.
Vrs. sin.
Secant.
Cotang.
Tang.
CoBBC'nt
Vrs. cos.
Sine.
86°
326
NATURAL FUNCTIONS.
Table 3.
4°
Natural Trigonometrical Functions.
175°
M.
Sine.
Vrs. C08.
Cosec'nt
Tang.
Cotang.
Secant.
Vrs. sin.
Cosine.
M.
.06976
.93024
14.335
.06993
14.301
1.0024
.00243
.99756
60
1
. 7005
. 2995
4.276
. 7022
4.241
.00'25
. 0246
. 9754
59
2
. 7034
. 2966
4.217
. 7051
4.182
.0025
. 02'18
. 9752
58
3
. 7053
. 2937
4.159
. 7080
4.123
.0026
. 0250
. 9750
57
4
. 7092
. 2908
4.101
. 7110
4.065
.0025
. 0252
. 9748
66
5
.07121
.92879
14.043
.07139
14.008
1.0025
.00254
.99746
65
6
. 7150
. 2850
3.986
. 7168
3.961
.0026
. 0256
. 9744
54
7
. 7179
. 2821
3.930
. 7197
3.894
.0026
. 0268
. 9742
53
8
. 7208
. 2792
3.874
. 7226
3.838
.0026
. 0260
. 9740
,52
9
. 7237
. 2763
3.818
. 7256
3.782
.0026
. 0262
. 9738
61
10
.07266
.92734
13.763
.07285
13.727
1.0026
.00264
.99736
50
11
. 7295
. 2705
3.708
. 7314
3.672
.0027
. 0266
. 9733
49
12
. 7324
. 2676
3.654
. 7343
3.617
.0027
. 0268
. 9731
48
13
. 7353
. 2647
3.600
. 7373
3.563
.0027
. 0271
. 9729
47
l-l
. 7382
. 2618
3.547
. 7402
3.510
.0027
. 0273
. 9727
46
15
.07411
.92589
13.494
.07431
13.457
1.0027
.00276
.99725
45
16
. 7440
. 2560
3.441
. 7460
3.404
.0028
. 0277
. 9723
44
17
. 7469
. 2.531
8.389
. 7490
3.351
.0028
. 0279
. 9721
43
18
. 7498
. 2502
3.337
. 7.519
3.299
.0028
. 0281
. 9718
42
19
. 7527
. 2473
3.286
. 7648
3.248
.0028
. 0284
. 9716
41
20
.07556
.92444
13.235
.07.577
13.197
1.0029
.00286
.99714
40
21
. 7585
. 2415
3.184
. 7607
3.146
.0029
. 0288
. 9712
39
22
. 7614
. 2386
8.134
. 7636
3.096
.0029
. 0290
. 9710
38
23
. 7643
. 2357
3.084
. 7665
3.046
.0029
. 0292
. 9707
37
24
7672
. 2328
3.034
. 7694
2.996
.0029
. 0295
. 9705
36
2.>)
.07701
.92299
12.985
.07724
12.947
1.0030
.00297
.99703
35
26
7730
. 2270
2.937
. 7763
2.898
.0030
. 0299
. 9701
34
27
. 7759
. 2241
2.888
. 7782
2.849
.0030
. 0301
. 9698
33
28
. 7788
. 2212
2.840
. 7812
2.801
.0030
. 0304
. 9696
32
29
7817
. 2183
2.793
. 7841
2.764
.0031
. 0306
. 9694
31
30
.07846
.92154
12.745
.07870
12.706
1.0031
.00308
.99692
30
31
. 7875
. 2125
2.698
. 7899
2.659
.0031
. 0310
. 9689
29
32
. 7904
. 2096
2.052
. 7929
2.612
.0031
. 0313
. 9687
28
83
. 7933
. 2067
2.006
. 7968
2.566
.0032
. 0315
. 9685
27
34
. 7962
. 2038
2.560
. 7987
2.520
.0032
. 0317
. 9682
26
35
.07991
.92009
12.614
.08016
12.474
1.0032
.00320
.99680
25
36
. 802O
. 1980
2.469
. 8046
2.429
.0032
. 0322
. 9678
24
37
. 8049
. 1951
2.424
. 8075
2.384
.0032
. 0324
. 9675
23
38
. 8078
. 1922
2.379
. 8104
2.339
.0033
. 0327
. 9673
22
39
. 8107
. 1893
2.335
. 8134
2.295
.0033
. 0329
. 9671
21
40
.08136
.91864
12.291'
.08163
12.250
1.0033
.00331
.99668
20
41
. 8165
. 1835
2.248
. 8192
2.207
.0033
. 0334
. 9666
19
42
. 8194
. 1806
2.204
. 8221
2.163
.0034
. 0336
. 9664
18
43
. 8223
. 1777
2.161
. 8251
2.120
.0034
. 0339
. 9661
17
44
. 8282
. 1748
2.118
. 8280
2.077
.0034
. 0341
. 9659
16
45
.08281
.91719
12.076
.08309
12.035
1.0034
.00343
.99656
15
46
. 8310
. 1690
2.034
. 8339
1.992
.0035
. 0346
. 9654
14
47
. 8339
. 1661
1.992
. 8368
1.950
.0035
. 0348
. 9652
13
48
. 8368
. 1632
1.960
. 8397
1.909
.0035
. 0351
. 9649
12
49
. 8397
. 1603
1.909
. 8426
1.867
.0035
. 0353
. 9647
H
50
.08426
.91574
11.868
.08466
11.826
1.0036
.00356
.99644
10
51
. 8455
1545
1.828
. 8485
1.785
.0036
. 0358
. 9642
9
52
. 8484
. 1516
1.787
. 85i4
1.746
.0036
. 0360
. 9639
8
53
. 8513
. 1487
1.747
. 8544
1.704
.0036
. 0363
. 9637
7
54
. 8542
1468
1.707
. 8.573
1.664
.0037
. 0365
. 9634
6
55
.08571
.91429
11.668
.08602
11.625
1.0037
.00368
.99632
5
66
. 8600
. 1400
1.628
. 8632
1.685
.0037
. 0370
. 9629
4
67
. 8629
1371
1.589
. 8661
1.546
.0037
. 0373
. 9627
3
58
. 8658
1342
1.560
. 8690
1.507
.0038
. 0376
. 9624
2
69
. 8687
. 1313
1.512
. 8719
1.468
.0038
. 0378
. 9622
1
60
. 8715
. 1284
1474
. 8719
1.430
.0038
. 0380
. 9619
M.
CuBilin.
Vrs. sin.
Secant.
Cotang.
Tang.
Cosec'nt
Vra. COS.
Sine.
M.
40
85°
Table 3.
NATURAL FUNCTIONS.
327
s°
Naturcl Trigonometrical Functions,
174°
M,
Sino.
Vra. COS.
CoBec'nt
Tang.
Co tang.
Secant.
Vrs. sin.
Cosine.
M.
.08715
.91284
11.474
.08749
11.430
1.0038
.00380
.99019
60
1
. 8744
. 1255
1.436
. 8778
1.392
.0038
. 0383
. 9017
59
2
. 8773
. 1226
1.398
. 8807
1.354
.0039
. 0386
. 9614
68
3
. 8802
. 1197
1.360
. 8837
1.316
.0039
. 0388
. 9612
57
4
. 8831
. 1168
1.323
. 8866
1.279
.0039
. 0391
. 9609
56
5
.08800
.91139
11.286
.08895
11.242
1.0039
.00393
.99607
55
6
. 8889
. 1110
1.249
. 8925
1.205
.0010
. 0396
. 9604
54
7
. 8918
. 1082
1.213
. 8954
1.1G8
.0040
. 0398
. 9601
53
8
. 8947
. 1053
1.176
. 8983
1.132 .
.0040
. 0401
. 9599
52
9
. 8976
. 1024
1.140
. 9013
1.095
.0040
. 0404
. 9596
51
10
.09005
.90995
11.104
.09042
11.059
1.0041
.00106
.99594
50
11
. 9031
. 09G6
1.069
. 9071
1.024
.0011
. 0109
. 9591
19
12
. 9063
. 0937
1.033
. 9101
0.988
.0011
. 0111
. 9588
18
13
. 9092
. 0908
0.998
. 9130
0.953
.0041
. 0111
. 9586
17
14
. 9121
. 0879
0.963
. 9159
0.918
.0042
. 0117
. 9583
16
15
.09150
.90850
10.929
.09189
10.883
1.0042
.00119
.99580
15
16
. 9179
. 0821
0.894
. 9218
0.848
.0012
. 0122
. 9578
14
17
. 9208
. 0792
0.860
. 9247
0.814
.0013
. 0125
. 9575
13
18
. 9237
. 0763
0.826
. 9277
0.780
.0013
. 0127
. 9572
42
19
. 9266
. 0734
0.792
. 9306
0.746
.0013
. 0130
. 9570
11
20
.09295
.90705
10.758
.09335
10.712
1.0013
.00133
.99567
40
21
. 9324
. 0676
0.725
. 9365
0.678
.0014
. 0436
. 9564
39
22
. 9353
. 0647
0.692
. 9394
0.645
.0011
. 0138
. 9562
38
23
. 9382
. 0618
0.659
. 9423
0.612
.0011
. 0111
. 9559
37
24
. 9411
. 0589
0.626
. 94.53
0.579
.0011
. 0144
. 9556
36
25
.09440
.90560
10.593
.09482
10.546
1.0045
.00416
.99553
35
26
. 9469
. 0531
0.561
. 9511
0.514
.0045
. 0149
. 9551
34
27
. 9498
. 0502
0.529
. 9541
0.481
.0045
. 0152
. 9548
33
28
. 9527
. 0473
0.497
. 9570
0.449
.0046
. 0155
. 9545
32
29
. 9556
. 0444
0.465
. 9599
0.417
.0046
. 0158
. 9542
31
80
.09584
.90415
10.433
.09629
10.385
1.0046
.00160
.99M0
30
81
. 9613
. 0386
0.402
. 9658
0.354
.0046
. 0163
. 9537
29
32
. 9642
. 0357
0.371
. 9088
0.322
.0047
. 0466
. 9534
28
33
. 9671
. 0328
0.340
. 9717
0.291
.0047
. 0169
. 9531
27
34
. 9700
. 0300
0.309
. 9746
0.260
.0017
. 0472
. 9528
26
35
.09729
.90271
10.278
.09776
10.229
1.0048
.00171
.99525
25
86
. 9758
. 0242
0.248
. 9805
0.199
.0048
. 0177
. 9523
24
37
. 9787
. 0213
0.217
. 9834
0.168
.0048
. 0180
. 9520
23
38
. 9816
. 0184
0.187
. 9864
0,138
.0048
. 0183
. 9517
22
39
. 9845
. 0155
0.157
. 9893
0.108
.0049
. 0486
. 9514
21
40
.09874
.90126
10.127
.09922
10.078
1.0049
.00489
.99511
20
41
. 9903
. 0097
0.098
. 9952
0.048
.0049
. 0191
. 9508
19
42
. 9932
. 0068
0.068
. 9981
0.019
.0050
. 0494
. 9505
18
43
. 9961
. 0039
0.039
.10011
9.9893
.0050
. 0197
. 9503
17
44
. 9990
. 0010
0.010
. 0010
.9601
.0050
. 0500
. 9500
16
45
.10019
.89981
9.9812
.10069
9.9310
1.0050
.00503
.99497
15
46
. 0048
. 9952
.9525
. 0099
.9021
.0051
. 0506
. 9494
14
47
. 0077
. 9923
.9239
. 0128
.8734
.0051
. 0509
. 9191
13
48
. 0106
. 9894
.8955
. 0158
.8448
.0051
. 0512
. 9188
12
49
. 0134
. 9865
.8672
. 0187
.8164
.0052
. 0515
. 9185
11
50
.10163
.89836
9.8391
.10216
9.7882
1.0052
.00518
.99182
10
51
. 0192
. 9807
-..8112
. 0246
.7601
-.0052
. 0521
. 9179
9
52
. 0221
■. 9779
.7834
. 0275
.7322
.0053
. 0524
. 9176
8
53
. 0250
. 9750
.7558
. 0305
.7044
.0053
. 0527
. 9473
7
54
. 0279
. 9721
.7283
. 0334
.6768
.0053
. 0530
. 9470
6
55
.10308
.89692
9.7010
.10363
9.6493
1.0053
.00533
.99467
5
56
. 0337
. 9663
.6739
. 0393
.6220
.0051
. 0536
. 9461
4
57
. 0366
. 9634
.6469
. 0422
.5949
.0054
. 0539
. 9161
3
58
. 0395
. 9605
.6200
. 0452
.5679
.0054
. 0542
. 9458
2
59
. 0424
. 9576
.5933
. 0481
.5411
.0055
. 0545
. 9455
1
60
. 0453
. 9547
.5668
. 0510
.5144
.0055
. 0548
. 9152
M.
Coaine.
Vre. sin.
Secant.
Cotang.
Tang.
Cosec'nt
Vrs. COS.
Sine.
M.
95°
84°
328
NATURAL FUNCTIONS.
Table a.
6°
Natural Trigonometrical Functions.
173°
M.
Sine.
Vrs. COS.
Cosec'nt
Tang.
Co tang.
Secant.
Vro. sin.
Cosine.
31.
.10453
.89547
9.5668
.10510
9.5144
1.0056
.00548
.99452
60
1
. 0482
. 9518
.5404
. 0540
.4878
.0055
. 0561
. 9449
69
2
. 0511
. 9489
.5141
. 0569
.4614
.0056
. 0554
. 9446
58
3
. 0540
. 9460
.4880
. 0599
.4351
.0056
. 0557
. 9443
57
4
. 0568
. 9431
.4020
. 0628
.4090
.0056
. 0560
. 9440
56
5
.10597
.89402
9.4362
.10657
9.3831
1.0057
.00563
.99437
55
6
. 0626
. 9373
.4105
. 0687
.3572
.0057
. 0666
. 9434
64
7
. 0655
. 9345
.3850
. 0716
.3315
.0057
. 0569
. 9431
53
8
. 0684
. 9316
.3596
. 0746
.3060
.0057
. 0.i72
. 9428
52
9
. 0713
. 9287
.3343
. 0775
.2806
.0058
. 0575
. 9424
51
10
.10742
.89258
9.3092
.10805
9.2553
1.0058
.00579
.99421
50
11
. 0771
. 9229
.2842
. 0834
.2302
.0068
. 0582
. 9418
49
12
. 0800
. 9200
.2593
. 0863
.2051
.0059
. 0585
. 9415
48
13
. 0829
. 9171
.2346
. 0893
.1803
.0059
. 0588
. 9412
47
14
. 0858
. 9142
.2100
. 0922
.1655
.0069
. 0591
. 9409
46
15
.10887
.89113
9.1855
.10952
9.1309
1.0060
.00594
.99406
45
16
. 0916
. 9084
.1612
. 0981
.1064
.0060
. 0597
. 9402
44
17
. 0944
. 9055
.1370
. 1011
.0821
.0060
. 0601
. 9399
43
18
. 0973
. 9026
.1129
. 1040
.0579
.0061
. 0604
. 9396
42
19
. 1002
. 8998
.0890
. 1069
.0338
.0061
. 0607
. 9393
41
20
.11031
.88969
9.0651
.11099
9.0098
1.0061
.00610
.99390
40
21
. 1060
. 8940
.0414
. 1128
8.9860
.0062
. 0613
. 9386
39
22
. 1089
. 8911
.0179
. 1158
.9623
.0062
. 0617
. 9383
38
23
. 1118
. 8882
8.9944
. 1187
.9387
.0062
. 0620
. 9380
37
2i
. 1147
. 8853
.9711
. 1217
.9152
.0063
. 0623
. 9377
36
25
.11176
.88824
8.9479
.11246
8.8918
1.0063
.00626
.99373
35
26
. 1205
. 8795
.9248
. 1276
.8686
.0063
. 0630
. 9370
34
27
. 1234
. 8766
.9018
. 1305
.8455
.0064
. 0633
. 9367
33
28
. 1262
. 8737
.8790
. 1335
.8225
.0064
. 0636
. 9364
32
29
. 1291
. 8708
.8663
. 1364
.7996
.0064
. 0639
. 9360
31
30
.11320
.88680
8.8337
.11393
8.7769
1.0065
.00643
.99357
30
31
. 1349
. 8651
.8112
. 1423
.7542
.0005
. 0646
. 9354
29
32
. 1378
. 8622
.7888
. 14.52
.7317
.0065
. 0649
. 9350
28
33
. 1407
. 8593
.7665
. 1482
.7093
.0066
. 0653
. 9347
27
34
. 1436
. 8564
.7414
. 1511
.6870
.0066
. 0656
. 9344
26
35
.11465
.88535
8.7223
.11641
8.6648
1.0066
.00659
.99341
25
36
. 1494
. 8506
.7004
. 1570
.6427
.0067
. 0663
. 9337
24
37
. 1523
. 8477
.6786
. 1600
.6208
.0067
. 0666
. 9334
23
38
. 1551
. 8448
.6569
. 1629
.5989
.0067
. 0669
. 9330
22
39
. 1580
. 8420
.6353
. 1659
.5772
.0068
. 0673
. 9327
21
40
.11609
.88391
8.6138
.11688
8.6555
1.0068
.00676
.99324
20
41
. 1638
. 8362
.5924
. 1718
.5340
.0068
. 0679
. 9320
19
42
. 1667
. 8333
.5711
. 1747
.5126
.0069
. 0683
. 9317
18
43
. 1696
. 8304
.5499
. 1777
.4913
.0069
. 0686
. 9314
17
44
. 1725
. 8272
.5289
. 1806
.4701
.0069
. 0690
. 9310
16
45
.11754
.88246
8.5079
.11836
8.4489
1.0070
.00693
.99307
15
46
. 1783
. 8217
.4871
. 1865
.4279
.0070
. 0696
. 9303
14
47
. 1811
. 8188
.4603
. 1895
.4070
.0070
. 0700
. 9300
IS
48
. 1840
. 8160
.4457
. 1924
.3862
.0071
. 0703
. 9296
12
49
. 1869
. 8131
.4251
. 1954
.3655
.0071
. 0707
. 9293
11
50
.11898
.88102
8.4046
.11983
8.3449
1.0071
.00710
.99290
10
51
. 1927
. 8073
.3843
. 2013
.3244
.0U72
. 0714
. 9286
9
52
. 1956
. 8044
.3640
. 2042
.3040
.0072
. 0717
. 9'283
8
53
. 1985
. 8015
.3139
. 2072
.2837
.0073
. 0721
. 9279
7
54
. 2014
. 7986
.3238
. 2101
.2635
.0073
. 0724
. 9276
6
65
.12042
.87957
8.3039
.12131
8.2434
1.0073
.00728
.99272
5
56
. 2071
. 7928
.2840
. 2160
.2234
.0074
. 0731
. 9269
4
67
. 2100
. 7900
.2642
. 2190
.2035
.0074
. 0735
. 9265
3
58
. 2129
. 7871
.2446
. 2219
.1837
.0074
. 0738
. 9262
2
69
. 2158
. 7842
.2250
. 2249
.1640
.0075
. 0742
. 9258
1
.60
2187
. 7813
.20.55
. 2278
.1443
.0075
. 0745
. 9265
M.
Cosine.
Vrs. sin.
Secant.
Co tang.
Tang.
Cosec'nt
Vrs. COB.
Sine.
M.
96°
83°
Table 3.
NATUKAL FUNCTIONS.
329
7°
Natural Trigonometrical Functions.
172°
M.
Sine.
Vre. COS.
Cosec'nt
Tang.
Co tang.
Secant.
Vrs. siu.
Cosine.
M.
.12187
.87813
8.2055
.12278
8.1443
1.0075
.00745
.99255
60
1
. 2216
. 7787
.1861
. 2308
.1248
.0075
. 0749
.9251
59
2
. 2245
. 7755
.1668
. 2337
.1053
.0076
. 0752
. 9247
58
3
. 2273
.7726
.1476
. 2367
.0860
.0076
. 0756
. 9244
.57
4
. 2302
. 7697
.1285
. 2396
.0667
.0076
. 0760
. 9240
56
5
.12331
.87669
8.1094
.12426
8.0476
1.0077
.00763
.99237
55
6
. 2360
. 7640
.0905
. 2456
.0285
.0077
. 0767
. 9233
.54
7
. 2389
. 7611
.0717
. 2485
.0095
.0078
. 0770
. 9229
53
8
. 2418
. 7582
.0529
. 2515
7.9906
.0078
. 0774
. 9226
52
9
. 2447
7553 :
.0342
. 2544
.9717
.0078
. 0778
. 9222
51
10
.12476
.87524
8.0156
.12574
7.9.130
1.0079
.00781
.99219
50
11
. 2504
. 7495
7.9971
. 2603
.9.344
.0079
. 0785
. 9215
49
12
. 2533
. 7467
.9787
. 2633
.9158
.0079
. 0788
. 9211
48
13
. 2662
. 74.38
.9604
. 2662
.8973
.0080
. 0792
. 9208
47
14
. 2591
. 7409
.9421
. 2692
.8789
.0080
. 07%
. 9204
46
15
.12620
.87:380
7.9240
.12722
7.8606
1.0080
.00799
.99200
45
16
. 2G49
. 7351
.9059
. 2751
.8424
.0081
. 0803
. 9197
44
17
. 2678
. 7322
.8879
. 2781
.8243
.0081
. 0807
. 9193
43
18
. 2706
. 7293
.8700
. 2810
.8062
.0082
. 0810
. 9189
42
19
. 2735
. 7265
.8522
. 2840
.7882
.0082
. 0814
. 9186
41
20
.12764
.87236
7.8344
.12869
7.7703
1.0082
.00818
.99182
40
21
. 2793
. 7207
.8168
. 2899
.7525
.0083
. 0822
. 9178
39
22
. 2822
. 7178
.7992
. 2928
.7348
.0083
. 0825
. 9174
38
23
. 2851
. 7149
.7817
. 2958
.7171
.0084
. 0829
. 9171
37
24
. 2879
7120
.7642
. 2988
.6996
.0084
. oass
. 9467
36
25
.12908
.87091
7.7469
.13017
7.6821
1.0084
.00837
.99163
35
26
. 2937
. 7063
.7296
. 3047
.6646
.0085
. 0840
. 9160
34
27
. 2966
. 7034
.7124
. 3076
.6473
.0085
. 0844
. 9156
33
28
. 2995
. 7005
.6953
. 3100
.6300
.0085
. 0848
. 9152
32
29
. 3024
. 6976
.6783
. 3136
.6129
.0086
. 0852
. 9148
31
30
.13053
.86947
7.6613
.13165
7..5957
1.0086
.00855
.99144
30
31
. 3081
. 6918
.6414
. 3195
.5787
.0087
. 0859
. 9141
29
32
. 3110
. 6890
.6276
. 3224
.5617
.0087
. 0863
. 9137
28
33
. 3139
. 6861
.6108
. 3254
.5449
.0087
. 0867
. 9133
27
34
. 3168
. 6832
.5942
. 3284
.5280
.0088
. 0871
9129
26
35
.13197
.86803
7.5776
.13313
7.5113
1.0088
.00875
.99125
25
36
. 3226
. 6774
..5611
. 3343
.4946
.0089
. 0878
. 9121
24
37
. 3254
. 6745
.5446
. 3372
.4780
.0089
. 0882
. 9118
23
38
. 3283
. 6717
.5282
. 3402
.4615
.0089
. 0886
. 9114
22
39
. 3312
. C688
.5119
. 3432
.4451
.0090
. 0890
. 9110
21
40
.13341
.86659
7.4957
.13461
7.4287
1.0090
.00894
.99106
20
41
. 3370
. G630
.4795
. 3491
.4124
.0090
. 0898
. 9102
19
42
. 3399
. 6601
.4634
. 3520
.3961
.0091
. 0902
. 9098
18
43
. 3427
. 6572
.4474
. 3550
;3800
.0091
. 0905
. 9094
17
44
. 3456
. 6544
.4315
. 3580
.3639
.0092
. 0909
. 9090
16
45
.13485
.86515
7.4156
.13609
7.3479
1.0092
.00913
.99086
15
46
. 3514
. 6486
.3998
. 3639
.3319
.0092
. 0917
. 9083
14
47
. 3543
. 6457
.3840
. 3669
.3160
.0093
. 0921
. 9079
13
48
. 3571
. 6428
.3683
. 3698
.3002
.0093
. 0925
. 9075
12
49
. 3600
. 6400
.3527
. 3728
.2844
.0094
. 0929
. 9070
11
50
.13629
.86371
7.3372
.13757
7.2687
1.0094
.00933
.99067
10
51
. 3658
. 6342
.3217
. 3787
.2531
.0094
. 0937
. 9063
9
52
. 3687
. 6313
.3063
. 3817
.2375
.0095
. 0941
■ . 9059
8
53
. 3716
. 6284
.2909
. 3846
.2220
.0095
. 0945
. 9055
7
54
. 3744
. 6255
.2757
. 3876
.2066
.0096
. 0949
. 9051
6
55
.13773
.86227
7.2604
.13906
7.1912
1.0096
.00953
.99047
5
56
. 3802
. 6198
.2453
. 3935
.1759
.0097
. 0957
. 9043
4
57
. 3831
. 6169
.2302
. 3965
.1607
.0097
. 0961
. 9039
3
58
. 3860
. 6140
.2152
. 3995
.1455
.0097
. 0965
. 9035
2
59
. 3888
. 6111
.2002
. 4024
.1304
.0098
. 0969
. 9031
1
60
. 3917
. 6083
.1853
. 4054
.1154
.0098
. 0973
. 9027
M.
Cosine.
Vrs. Bin.
Secant.
Cotang.
Tang.
CoBec'nt
Vrs. COS.
Sine.
M.
P7°
82°
330
NATURAL FUNCTIONS.
Table 3.
8°
Natural Trigonometrical Functions.
171°
M.
Sine.
Vrs. COS.
Cosec'nt
Tiing.
Cotang.
Secant.
Vrs. Bin.
Cosine.
M.
.13917
.86083
7.1853
.14054
7.1154
1.0098
.00973
.99027
60
1
. 3946
. 6054
.1704
. 4084
.1004
.0099
. 0977
. 9023
59
2
. 3975
. 6025
.1557
. 4113
.0854
.0099
. 0981
. 9019
58
3
. 4004
. 5996
.1409
. 4143
.0706
.0099
. 0985
. 9015
.57
4
. 4032
. 5967
.1263
. 4173
.0558
.0100
. 0989
. 9010
56
5
.14001
.85939
7.1117
.14202
7.0410
1.0100
.00993
.99006
55
6
. 4090
. 5910
.0972
. 4232
.0264
.0101
. 0998
. 9002
54
7
. 4119
. 5881
.0827
. 4262
.0117
.0101
. 1002
. 8998
63
8
. 4148
. 5852
.0683
. 4291
6.9972
.0102
. 1006
. 8994
62
9
. 4176
. 5823
.0539
. 4321
.9827
.0102
. 1010
. 8990
51
10
.14205
.85795
7.0396
.14351
6.9682
1.0102
.01014
.98986
50
11
. 4234
. 5766
.0254
. 4;wo
.9538
.0103
. 1018
. 8982
49
12
. 4263
. 5737
.0112
. 4410
.9395
.0103
. 1022
. 8978
48
13
. 4292
. 5708
6.9971
. 4440
.9252
.0104
. 1026
. 8973
47
14
. 4320
. 5679
.9830
. 4470
.9110
.0104
. 1031
. 8969
46
15
.14349
.85651
6.9690
.14499
6.8969
1.0104
.01035
.98965
45
16
. 4378
. 5622
.9550
. 4529
.8828
.0105
. 1039
. 8961
44
17
. 4407
. 5593
.9411
. 4.559
.8687
.0105
. 1043
. 8957
43
18
. 4436
. 5564
.9273
. 4588
.8547
.0106
. 1047
. 8952
42
19
. 4464
. 5536
.9135
. 4618
.8408
.0106
. 1052
. 8948
41
20
.14493
.85507
6.8998
.14048
6.8269
1.0107
.01056
.98944
40
21
. 4522
. 5478
.8861
. 4677
.8131
.0107
. 1060
. 8940
39
22
. 4551
. 5449
.8725
. 4707
.7993
.0107
. 1064
. 8936
38
23
. 4579
. 5420
.8589
. 4737
.7856
.0108
. 1068
. 8931
37
24
. 4608
. 5392
.8454
. 4767
.7720
.0108
. 1073
. 8927
36
25
.14637
.85363
6.8320
.14796
6.7584
1.0109
.01077
.98923
35
26
. 4666
. 5334
.8185
. 4826
.7448
.0109
. 1081
. 8919
34
27
. 4695
. 5305
.8052
. 4856
.7313
.0130
. 1085
. 8914
33
28
. 4723
. 5277
.7919
. 4886
.7179
.0110
. 1090
. 8910
32
29
. 4752
. 5248
.7787
. 4915
.7045
.0111
. 1094
. 8906
31
SO
.14781
.85219
6.7655
.14945
6.6911
1.0111
.01098
.98901
30
31
. 4810
. 5190
.7523
. 4975
.6779
.0111
. 1103
. 8897
29
32
. 4838
.5161
.7392
. 5004
.6646
.0112
. 1107
. 8893
28
33
. 4867
. 5133
.7262
. 5034
.6514
.0112
. nil
. 8889
27
34
. 4896
. 5104
.7132
. 5064
.6383
.0113
. 1116
. 8884
28
35
.14925
.85075
6.7003
.15094
6.0262
1.0113
.01120
.98880
25
36
. 4953
. 5046
.6874
. 5123
.6122
.0114
. 1124
. 8876
24
37
. 4982
. 6018
.6745
. 5153
.5992
.0114
. 1129
. 8871
23
38
. 5011
. 4989
.6617
. 5183
.6863
.0115
. 1133
. 8867
22
39
. 5040
. 4960
.6490
. 5213
.5734
.0116
. 1137
. 8862
21
40
.15068
.84931
6.6363
.15243
6.5605
1.0U6
.01142
.98858
20
41
. 5097
. 4903
.6237
. 5272
.5478
.0116
. 1146
. 8854
19
42
. 5126
. 4874
.6111
. 5302
.5350
.0116
. 1151
. 8849
18
43
. 5155
. 4845
.5985
. 5332
.5223
.0117
. 1155
. 8845
17
44
. 5183
. 4816
.5860
. 5362
.5097
.0117
. 1159
. 8840
16
45
.15212
.84788
6,5736
.15391
6.4971
1.0118
.01164
.98836
15
46
. 5241
. 4759
.6612
. 5421
.4845
.0118
. 1168
. 8832
14
47
. 5270
. 4730
.5488
. 5451
.4720
.0119
. 1173
. 8827
13
48
. 5298
. 4701
.5365
.5481
.4696
.0119
. 1177
. 8823
12
49
. 5328
. 4672
.5243
. 5511
.4472
.0119
. 1182
. 8818
11
50
.15356
.84644
6.6121
.15540
6.4348
1.012U
.01186
.98814
10
51
. 5385
. 4615
.4999
. 5570
.4225
.0120
. 1190
. 8809
9
52
. 5413
. 4586
.4878
. 5600
.4103
.0121
. 1195
. 8805
8
53
. 5442
. 4558
.4757
. 5630
.3980
.0121
. 1199
. 8800
7
54
. 5471
. 4529
.4637
. 5659
.3859
.0122
. 1204
. 8796
6
55
.15500
.84500
6.4517
.15689
6.3737
1.0122
.01208
.98791
5
66
. 5528
. 4471
.4398
. 5719
.3616
.0123
. 1213
. 8787
4
57
. 6557
. 4443
.4279
. 5749
.3496
.0123
. 1217
. 8782
3
58
. 5586
. 4414
.4160
. 5779
.3376
.0124
. 1222
. 8778
2
59
. 5615
. 4385
.4042
. 5809
.3257
.0124
. 1227
. 8773
1
60
. 5643
. 4366
.3924
. 6838
.3137
.0125
. 1231
. 8769
M.
Cosine.
Vrs. sin.
Secant.
Cotang.
Tang.
Cosec'nt
Sine.
Vrs. COS.
M.
Table 3.
NATURAL FUNCTIONS.
331
90
Natural Trigonometrical Functions.
170°
M^
Sine.
Vrs. COS.
Cosec'nt
Tang.
Cotang.
Secant.
Vrs. Bin.
Cosine.
M.
.15643
.84356
6.3924
.15838
6.3137
1.0125
.01231
.98769
60
1
. 5672
. 4328
.3807
. 5868
.3019
.0125
. 1236
. 8764
59
2
. 5701
. 4299
.3690
. 5898 -
.2901
.0125
. 1240
. 8760
58
3
. 5730
. 4270
.3574
. 5928
.2783
.0126
. 1245
. 8755
57
4
. 5758
. 4242
.3458
. 5958
.2665
.0126
. 1249
. 8750
56
5
.15787
.84213
6.3343
.15987
6.2548
1.0127
.01254
.98716
56
6
. 5816
. 4184
.3228
. 6017
.2432
.0127
. 1259
. 8741
54
7
. 5844
. 4155
.3113
. 6047
.2316
.0128
. 1263
. 8737
53
8
. 5873
. 4127
.2999
. 6077
.2200
.0128
. 1268
. 8732
52
9
. 5902
. 4098
.2885
. 6107
.2085
.0129
. 1272
. 8727
51
10
.15931
.84069
6.2772
.16137
6.1970
1.0129
.01277
.98723
50
11
. 6959
. 4041
.2659
. 6167
.1856
.0130
. 12S2
. 8718
49
12
. 5988
. 4012
.2546
. 6196
.1742
.0130
. 1286 ■
. 8714
48
IS
. 6017
. 3983
.2434
. 6226
.1628
.0131
. 1291
. 8709
47
14
. 6045
. 3954
.2322
. 6256
.1515
.0131
. 1296
. 8704
46
15
.16074
.83926
6.2211
.16286
6.1402
1.0132
.01300
.98700
46
16
. 6103
. 3897
.2100
. 6316
.1290
.0132
. 1305
. 8695
44
17
. 6132
. 3868
.1990
. 6346
.1178
.0133
. 1310
. 8690
43
18
. 6160
. 3840
.1880
. 6376
.1066
.0133
. 1314
. 8685
42
19
. 6189
. 3811
.1770
. 6405
.0955
.0134
. 1319
. 8681
41
20
.16218
.83782
6.1661
.16435
6.0844
1.0134
.01324
.98676
40
21
. 6246
. 3753
.15.52
. 6465
.0734
.0135
. 1328
. 8671
39
22
. 6275
. 3725
.1443
. 6495
.0624
.0135
. 1333
. 8lili7
38
23
. 6304
. 3696
.1335
. 6525
.0514
.0136
. 1338
. 8i;(i2
37
24
. 6333
. 3667
.1227
. 6555
.0405
.0136
. 1343
. 8657
36
26
.16361
.83639
6.1120
.16585
6.0296
1.0136
.01347
.9Si;52
35
26
. 6390
. 3610
.1013
. 6615
.0188
.0137
. 1352
. 8648
34
27
. 6419
. 3581
■ .0906
. 6644
.0080
.0137
. 1357
. 8643
33
28
. 6447
. 3553
.0800
. 6674
5.9972
.0138
. 1362
. 8638
32
29
. 6476
. 3524
.0694
. 6704
.9865
.0138
. 1367
. 8633
31
30
.16505
.83495
6.0588
.16734
5.9758
1.0139
.01371
.98628
30
31
. 6533
. 3466
.0483
. 6764
.9651
.0139
. 1376
. 8624
29
32
. 6562
. 3438
.0379
. 6794
.9545
.0140
. 1381
. 8619
28
33
. 6591
. 3409
.0274
. 6824
.9439
.0140
. 1386
. 8614
27
34
. 6619
. 3380
.0170
. 6854
.9333
.0141
. 1391
. 8609
26
35
.16648
.83852
6.0066
.16884
5.9228
1.0141
.01395
.98604
25
36
. 6677
. 3323
5.9963
. 6911
.9123
.0142
. 1400
. 8600
24
37
. 6706
. 3294
.9860
. 6944
.9019
.0142
. 1405
. 8595
23
38
. 6734
. 3266
.9758
. 6973
.8915
.0143
. 1410
. 8590
22
39
. 6763
. 3237
.9655
. 7003
.8811
.0143
. 1415
. 8585
21
40
.16791
.83208
5.9554
.17033
5.8708
1.0144
.01420
.98580
20
41
. 6820
. 3180
.9452
. 7063
.8605
.0144
. 1425
. 8575
19
42
. 6849
. 3151
.9351
. 7093
.8602
.0145
. 1430
. 8570
18
43
. 6878
. 3122
.9250
. 7123
.8400
.0145
. 1434
. 8566
17
44
. 6906
. 3094
.9150
. 7153
.8298
.0146
. 1439
. 8560
16
45
.16935
.83065
5.9049
.17183
5.8196
1.0146
.01444
.98556
15
46
. 6964
. 3036
.8950
. 7213
.8095
.0147
. 1449
. 8551
14
47
. 6992
. 3008
.8850
. 7243
.7994
.0147
. 1454
. 8546
13
48
. 7021
. 2979
.8751
. 7273
.7894
.0148
. 1459
. 8541
12
49
. 7050
. 2950
.8652
. 7803
.7793
.0148
. 1464
. 8536
11
50
.17078
.82922
5.8554
.17333
5.7694
1.0149
.01469
.98531
10
61
. 7107
. 2893
.8456
. 7363
.7594
.0150
. 1474
. 8526
9
52
. 7136
. 2864
.8358
. 7393
.7495
.0150
. 1479
. 8521
8
53
. 7164
. 2836
.8201
. 7423
.7396
.0151
. 1484
. 8516
7
54
. 7193
. 2807
.8163
. 7463
.7297
.0151
. 1489
. 8511
6
55
.17221
.82778
5.8067
.17483
5.7199
1.0152
.01494
.98506
6
56
. 7250
. 2750
.7970
. 7513
.7101
.0152
. 1499
. 8501
4
67
. 7279
. 2721
• .7874
. 7543
.7004
.0153
. 1604
. 8496
3
58
. 7307
. 2692
.7778
. 7573
.6906
.0153
. 1509
. 8491
2
59
. 7336
. 2664
.7683
. 7603
.6809
.0154
. 1514
. 8486
1
60
. 7365
. 2635
.7588
. 7633
.6713
.0154
. 1519
. 8481
M.
Cosine.
Vra. ein.
Secant.
Cotang.
Tang.
Cosec'nt
Vrs. COS.
Sine.
M.
332
NATURAL FUNCTIONS.
Table 3.
10°
Natural Trigonometrical Functions.
«69<^
M.
Sine.
Vra. C03.
Cosec'nt
Tang.
Cotang.
Secant.
Vrs. sin.
Cosine.
M.
.17365
.82635
5.7588
.17633
5.6713
1.0164
.01519
.98481
60
1
. 7393
. 2606
.7193
. 7663
.6616
.0155
. 1524
. 8476
59
2
. 7422
. 2578
.7398
. 7693
.6520
.0155
. 1529
. 8471
58
3
. 7451
. 2549
.7304
. 7723
.6126
.0156
. 1534
. 8465
57
4
. 7479
. 2521
.7210
. 7753
.6329
.0156
. 1539
. 8460
56
5
.17508
.82192
6.7117
.17783
5.6234
1.0157
.01544
.98455
55
6
. 7537
. 2463
.7023
. 7813
.6140.
.0167
. 1550
. 8450
54
7
. 7565
. 2435
.6930
. 7813
.6045
.0158
. 1656
. 8445
53
8
. 7594
. 2106
.6838
. 7873
.5951
.0158
. 1.560
. 8140
52
9
. 7622
. 2377
.6745
. 7903
.6867
.0169
. 1566
. 8435
51
10
.17651
.82349
5.6653
.17933
5.6764
1.0169
.01570
.98130
50
11
. 7680
. 2320
.6561
. 7963
.5670
.0160
. 1575
. 8425
49
12
. 7708
. 2291
.6470
. 7993
.5578
.0160
. 1680
. 8419
48
13
. 7737
. 2263
.6379
. 8023
.5186
.0161
. 1686
. 8414
47
14
. 7766
. 2234
.6288
. 8063
.6393
.0162
. 1591
. 8109
46
15
.17794
.82206
5.6197
.18083
5.5301
1.0162
.01596
.98404
46
16
. 7823
. 2177
.6107
. 8113
.6209
.0163
. 1601
. 8399
44
17
. 7852
. 2148
.6017
. 8113
.5117
.0163
. 1C06
. 8394
43
18
. 7880
. 2120
.6928
. 8173
.5026
.0161
. 1611
. 8388
42
19
. 7909
. 2091
.5838
. 8203
.4936
.0164
. 1617
. 8383
41
20
.17937
.82062
5.5719
.18233
5.1845
1.0166
.01622
.98378
40
21
. 7966
. 2031
.6660
. 8^63
.4755
.0165
. 1627
. 8373
39
22
. 7995
. 2005
.5672
. 8293
.1665
.0166
. 1632
. 8368
38
23
. 8023
. 1977
.5184
. 8323
.4575
.0166
. 1638
. 8362
37
24
. 8052
. 1948
.5396
. 8363
.4186
.0107
. 1613
. 8367
36
25
.18080
.81919
6.5308
.18383
5.1396
1.0167
.01618
.98352
36
26
. 8109
. 1891
■ .6221
. 8413
.4308
.0168
. 1653
. 8347
34
27
. 8138
. 1862
.5134
. 8144
.1219
.0169 ■
1659
. 8341
33
28
. 8166
. 1834
.5017
. 8474
.1131
.0169
. 1661
. 8336
32
29
. 8195
. 1805
.1960
. 8501
.4043
.0170
. 1669
. 8331
31
30
.18223
.81776
6.1874
.18531
6.3955
1.0170
.01674
.98326
30
31
. 8252
. 1748
.1788
. 8561
.3868
.0171
. 1680
. 8320
29
32
. 8281
. 1719
.1702
. 8591
.3780
.0171
. 1685
. 8315
28
33
. 8309
. 1691
.1617
. 8624
.3691
.0172
. 1690
. 8309
27
34
. 8338
. 1662
.1532
. 8654
.3607
.0172
. 1696
. 8304
26
35
.18366
.81633
6.4117
.18684
5.3521
1.0173
.01701
.98299
26
36
. 8395
. 1605
.4362
. 8714
.3134
.0174
. 1706
. 8293
24
37
. 8424
. 1576
.4278
. 8745
.3349
.0174
. 1712
. 8288
23
38
. 8452
. 1518
.1194
. 8775
.3263
.0176
. 1717
. 8283
22
39
. 8481
. 1519
.4110
. 8805
.3178
.0175
. 1722
. 8277
21
40
.18509
.81190
5.4026
.18836
5.3093
1.0176
.01728
.98272
20
41
. 8538
. 1162
.3943
. 8866
.3008
.0176
. 1733
. 8267
19
42
. 8567
. 1133
.3860
. 8896
.2923
.0177
. 1739
. 8261
18
43
. 8595
. 1405
.3777
. 8926
.2839
.0177
. 1714
. 8266
17
44
. 8624
. 1376
.3695
. 8955
.2755
.0178
. 1719
. 8250
16
45
.18652
.81318
6.3612
.18985
5.2671
1.0179
.01756
.98245
15
46
. 8681
. 1319
.3530
. 9016
.2588
.0179
. 1700
. 8240
14
47
. 8709
. 1290
.3449
. 9046
.2606
.0180
. 1766
. 8234
13
48
. 8738
. 1262
.3367
. 9076
.2422
.0180
. 1771
. 8229
12
49
. 8767
. 1233
.3286
. 9106
.2339
.0181
. 1777
. 8223
11
50
.18795
.81205
5.3205
.19136
6.2'257
1.0181
.01782
.98218
10
51
. 8824
. 1176
.3124
. 9166
.2174
.0182
. 1788
. 8212
9
52
. 8852
. 1117
.3044
. 9197
.2092
.0182
. 1793
. 8207
8
53
. 8881
. 1119
.2963
. 9227
.2011
.0183
. 1799
. 8201
7
54
. 8909
. 1090
.2883
. 9257
.1929
.0181
. 1804
. 8196
6
55
.18938
.81062
5.2803
.19287
5.1818
1.0184
.01810
.98190
5
56
. 8967
. 1033
.2721
. 9317
.1767
.0185
. 1815
. 8185
4
57
. 8995
. 1005
.2615
. 9347
.1686
.018S"
. 1821
. 8179
3
58
. 9024
. 0976
.2566
. 9378
.1606
.0186
. 1826
. 8174
2
59
. 9052
. 0918
.2487
. 9108
.1525
.0186
. 1832
. 8168
1
00
. 9081
. 0919
.2108
. 9138
.1145
.0187
. 1837
. 8163
M.
CoBiue.
Vrs. sin.
Secant.
Cotaug.
Tang.
Cosec'nt
Vrs. COS.
Sine.
M.
100°
79°
Table 3.
NATTJRAL FUNCTIONS.
333
11°
Natural Trigonometrical Functions,
168°
mT
Sine.
Vrs. COS.
Cosec'nt
Tang.
Cotang.
Secant.
Vrs. Bill.
Cosine.
M.
.19081
.80919
6.2408
.19438
5.1445
1.0187
.01837
.98163
60
1
. 9109
. 0890
.2330
. 9468
.1366
.0188
. 1843
. 8157
59
2
. 9138
. 0862
.2262
. 9498
.1286
.0188
. 1848
. 8152
58
3
. 9166
.0833
.2174
. 9629
.1207
.0189
. 1854
. 8146
57
4
. 9195
. 0805
.2097
. 9559
.1128
.0189
. 1859
. 8140
56
5
.19224
.80776
5.2019
.19589
5.1049
1.0190
.01866
.98135
55
6
■. 9252
. 0748
.1942
. 9619
.0970
.0191
. 1871
. 8129
54
7
. 9281
.0719
.1866
•. 9649
.0892
.0191
. 1876
. 8124
53
8
. 9309
. 0691
.1788
. 9680
.0814
.0192
. 1882
. 8118
52
9
. 9338
. 0662
.1712
. 9710
.0736
.0192
. 1887
. 8112
61
10
.19366
.80634
5.1636
.19740
5.0658
1.0193
.01893
.98107
50
11
. 9395
. 0605
.1560
. 9770
.0581
.0193
. 1899
. 8101
49
12
. 9423
. 0576
.1484
. 9800
.0504
.0194
. 1904
. 8096
48
13
. 9452
. 0548
.1409
. 9831
.0427
.0196
. 1910
. 8090
47
14
. 9480
. 0519
.1333
. 9861
.0350
.0196
. 1916
. 8084
46
15
.19509
.80491
5.1268
.19891
5.0273
1.0196
.01921
.98078
45
16
. 9637
. 0462
.1183
. 9921
.0197
.0196
. 1927
. 8073
44
17
. 9566
. 0434
.1109
. 9952
.0121
.0197
. 1933
. 8067
43
18
. 9595
. 0406
.1034
. 9982
.0045
.0198
. 1938
. 8061
42
19
. 9623
. 0377
.0960
.20012
4.9969
.0198
. 1944
. 8066
41
20
.19652
.80348
5.0886
.20042
4.9894
1.0199
.01950
.98060
40
21
. 9680
. 0320
.0812
. 0073
.9819
.0199
. 1956
. 8044
39
22
. 97C9
. 0291
.0739
. 0103
.9744
.0200
. 1961
. 8039
38
23
. 9737
. 0263
.0666
. 0133
.9669
.0201
. 1967
. 8033
37
24
. 9766
. 0234
.0593
. 0163
.9694
.0201
. 1973
. 8027
36
25
.19794
.80206
5.0520
.20194
4.9520
1.0202
.01979
.98021
35
26
. 9823
. 0177
.0447
. 0224
.9446
.0202
. 1984
. 8016
34
27
. 9861
. 0149
.0375
. 0254
.9372
.0203
. 1990
. 8010
33
28
. 9880
. 0120
.0302
. 0285
.9298
.0204
. 1996
. 8004
32
29
. 9908
. 0092
.0230
. 0315
.9225
.0204
. 2002
. 7998
31
30
.19937
.80063
5.0158
.20345
4.9151
1.0206
.02007
.97992
30
31
. 9965
. 0035
.0087
. 0375
.9078
.0205
. 2013
. 7987
29
32
. 9994
. 0006
.0015
. 0406
.9006
.0206
. 2019
. 7981
28
83
.20022
.79978
4.9944
. 0436
.8933
.0207
. 2025
. 7975
27
34
. 0051
. 9949
.9873
. 0466
.8860
.0207
. 2031
. 7969
26
35
.20079
.79921
4.9802
.20497
4.8788
1.0208
.02037
.97963
25
36
. 0108
. 9892
.9732
. 0527
.8716
.0208
. 2042
. 7957
24
37
. 013B
. 9863
.9661
. 05C7
.8644
.0209
. 2048
. 7952
23
38
. 0165
. 9835
.9591
. 0688
.8573
.0210
. 2054
. 7946
22
39
. 0193
. 9807
.9621
. 0618
.8501
.0210
. 2060
. 7940
21
40
.20222
.79778
4.9452
.20648
4.8430
1.0211
.02066
.97934
20
41
. 0250
. 9760
.9382
. 0679
.8359
.0211
. 2072
. 7928
19
42
. 0279
. 9721
.9313
. 0709
.8288
.0212
. 2078
. 7922
18
43
. 0307
. 9693
.9243
. 0739
.8217
.0213
. 2084
. 7916
17
44
. 0336
. 9664
.9175
. 0770
.8147
.0213
. 2089
. 7910
16
45
.20364
.79636
4.9106
.20800
4.8077
1.0214
.02095
.97904
15
46
. 0393
. 9607
.9037
. 0830
.8007
.0215
. 2101
. 7899
14
47
. 0421
. 9679
.8969
. 0861
.7937
.0216
. 2107
. 7893
13
48
. 0450
. 9660
.8901
. 0891
.7867
.0216
. 2113
. 7887
12
49
. 0478
. 9622
.8833
. 0921
.7798
.0216
. 2119
. 7881
11
50
.20506
.79493
4.8765
.20952
4.7728
1.0217
.02125
.97875
10
61
. 0535
. 9466
.8697
. 0982
.7659
.0218
. 2131
. 7869
9
52
. 0563
. 9436
.8630
. 1012
.7691
.0218
. 2137
. 7863
8
53
. 0592
. 9408
.8563
. 1043
,7522
.0219
. 2143
. 7857
7
64
.0620
. 9379
.8496
. 1073
.7453
.0220
. 2149
. 7851
6
55
.20649
.79361
4.8429
.21104
4.7385
1.0220
.02165
.97845
6
66
. 0677
. 9323
.8362
. 1134
.7317
.0221
. 2161
. 7839
4
57
. 0706
. 9294
.8296
. 1164
.7249
.0221
. 2167
. 7833
3
58
. 0734
. 9266
.8229
. 1196
.7181
.0222
. 2173
. 7827
2
69
. 0763
. 9237
.8163
. 1226
.7114
.0223
. 2179
. 7821
1
60
. 0791
. 9209
.8097
. 1256
.7046
.0223
. 2185
. 7815
m7
Cosine.
Vra. an.
Secant.
Cotang.
Tang.
Cosec'nt
Vrs. COS.
Sine.
M.
101°
78°
334
NATURAL FUNCTIONS.
Table b.
12
D
Natural Trigonometrical Functions.
167°
M.
Sine.
Vrs. COS.
Cosec'nt
Tang.
Co tang.
Secant.
Vrs. sin.
Cosine.
M.
.20791
.79209
4.8097
.21256
4.7046
1.0223
.02185
.97815
60
1
. 0820
. 9180
.8032
. 1286
.6979
.0224
. 2191
. 7809
69
2
. 0848
. 9152
.7966
. 1316
.6912
.0225
. 2197
. 7803
68
3
. 0876
. 9123
.7901
. 1347
.6845
.0225
. 2203
. 7806
57
4
. 0905
. 9105
.7835
. 1377
.6778
.0226
. 2209
. 7790
56
5
.20933
.79006
4.7770
.21408
4.0712
1.0226
.02215
.97784
55
6
. 0962
. 9038
.7706
. 1438
.6646
.0227
. 2222
. 7778
54
7
. 0990
. 9010
.7641
. 1468
.6580
.0228
. 2228
. 7772
53
8
. 1019
. 8981
.7576
. 1499
.6514
.0228
. 2234
. 7766
62
9
. 1047
. 8953
.7512
. 1529
.6448
.0229
. 2240
. 7760
51
10
.21076
.78924
4.7448
.21560
4.6382
1.0230
.02246
.97754
50
U
. 1104
. 8896
.7384
. 1590
.6317
.0230
. 2252
. 7748
49
12
. 1132
. 8867
.7320
. 1621
.6252
.0231
. 2258
. 7741
48
13
. 1161
. 8839
.7257
. 1651
.6187
.0232
. 2264
. 7735
47
14
. 1189
. 8811
.7193
. 1682
.6122
.0232
. 2271
. 7729
46
15
.21218
.78782
4.7130
.21712
4.6057
1.0233
.02277
.97723
45
16
. 1246
. 8754
.7067
. 1742
.5993
.0234
. 2283
. 7717
44
17
. 1275
. 8726
.7004
. 1773
.5928
.0234
. 2289
. 7711
43
18
. 1303
. 8697
.6942
. 1803
.5864
.0235
. 2295
. 7704
42
19
. 1331
. 8668
.6879
. 1834
.5800
.0235
. 2302
. 7698
41
20
.21360
.78640
4.6817
.21864
4.5736
1.0236
.02308
.97692
40
21
. 1388
. 8612
.6754
. 1895
.6673
.0237
. 2314
. 7686
39
22
. 1117
. 8583
.6692
. 1925
.6609
.0237
. 2320
. 7680
38
23
. 1445
. 8555
.6631
. 1956
.6546
.0238
. 2326
. 7673
37
24
. 1473
. 8526
.6569
. 1986
.5483
.0239
. 2333
. 7667
36
25
.21502
.78508
4.6507
.22017
4.5420
1.0239
.02339
.97661
35
26
. 1530
. 8470
.6446
. 2047
.5357
.0240
. 2345
. 7655
34
27
. 1.559
. 8441
.6385
. 2078
.5294
.0241
. 2351
. 7648
33
28
. 1587
. 8413
.6324
. 2108
.5232
,0241
. 2358
. 7642
32
29
. 1615
. 8384
.6263
. 2139
.5169
.0242
. 2364
. 7636
31
30
.21644
.78356
4.6202
.22169
4.5107
1.0243
.02370
.97630
30
31
. 1672
. 8328
.6142
. 2200
.5045
.0243
. 2377
. 7623
29
32
. 1701
. 8299
.6081
. 2230
.4983
.0244
. 2383
. 7617
28
33
. 1729
. 8271
.6021
. 2261
.4921
.0245
. 2389
. 7611
27
34
. 1757
. 8242
.5961
. 2291
.4860
.0245
. 2396
. 7604
26
35
.21786
.78214
4.5901
.22322
4.4799
1.0246
.02402
.97598
25
36
. 1814
. 8186
.5841
. 2353
.4737
.0247
. 2408
. 7592
24
37
. 1843
. 8154
.5782
. 2383
.4676
.0247
. 2415
. 7585
23
38
. 1871
. 8129
.5722
. 2414
.4615
.0248
. 2421
. 7.579
22
39
. 1899
. 8100
.5663
. 2444
.4555
.0249
. 2427
. 7573
21
40
.21928
.78072
4.5C04
.22475
4.4494
1.0249
.02434
.97566
20
41
. 1956
. 8043
.55J5
. 2505
.4434
.0250
. 2440
. 7560
19
42
. 1985
. 8015
.5486
. 2536
.4373
.0251
. 2446
. 7553
18
43
. 2013
. 7987
.5428
. 2566
.4313
.0251
. 24.53
. 7547
17
44
. 2041
. 7959
.5369
. 2597
.4263
.0252
. 2459
. 7541
16
45
.22070
.77930
4.5311
.22628
4.4194
1.0253
.02466
.97634
15
46
. 2098
. 7902
.5253
. 2658
.4134
.0253
. 2472
. 7528
14
47
. 2126
. 7873
.5195
. 2689
.4074
.0254
. 2479
. 7521
13
48
. 2155
. 7845
.5137
. 2719
.4015
.0265
. 2485
. 7515
12
49
. 2183
. 7817
.5079
. 2750
.3956
.0255
. 2491
7608
11
50
.22211
.77788
4.5021
.22781
4.3897
1.0256
.02498
.97502
10
51
. 2240
. 7760
.4964
. 2811
.3838
.0257
. 2504
. 7495
9
52
. 2268
. 7732
.4907
. 2842
.3779
.0257
. 2511
. 7489
8
63
. 2297
. 7703
.4850
. 2872
.3721
.0268
. 2517
. 7483
7
64
. 2325
. 7675
.4793
. 2903
.3662
.0259
. 2524
. 7476
6
55
.22353
.77647
4.4736
.22934
4.3604
1.0260
.02530
.97470
5
56
. 2382
. 7618
.4679
. 2964
.3646
.0260
. 2537
. 7463
4
57
. 2-110
7590
.4623
. 2995
.3488
.0261
. 2543
. 7457
3
58
2438
. 7561
.4566
. 3026
.3430
.0262
. 2550
. 7450
2
59
. 2467
. 7533
.4510
. 3056
•.3372
.0262
. 2556
. 7443
1
60
. 2495
. 7505
.4454
. 3087
.3315
.0263
. 2563
. 7437
C
M.
Cosine.
Vrs. sin.
Secant.
Co tang.
Tang.
Cosec'ntl
Vrs. COB.
Sine.
M.
102°
77"
Table 3.
NATUEAL FUNCTIONS.
335
13°
Natural Trigonometrical Functions.
166°
M.
Sine.
Vrs. COS.
Cosec'nt
Tang.
Cotang.
Secant.
Vrs. sin.
Cosine.
M.
.22495
.77505
4.4454
.23087
4.3315
1.0263
.02563
.97437
60
1
. 2523
. 7476
.4398
. 3137.
.3257
.0264
. 2569
. 7430
59
2
. 2552
. 7448
.4312
. 3118
.3200
.0264
. 2576
. 7424
58
3
. 2580
. 7420
.4287
.3179
.3143
.0265
. 2.583
. 7417
57
4
. 2608
. 7391
.4231
. 3209
.3086
.0266
. 2589
. 7411
66
5
.22637
.77363
4.4176
.23240
4.3029
1.0266
.02596
.97404
65
6
. 2665
. 7335
.4121
. 3270
.2972
.0267
. 2602
. 7398
54
7
. 2693
. 7306
.4065
. 3301
.2916
.0268
. 2609
. 7391
63
8
. 2722
. 7278
.4011
. 3332-
.2859
.0268
. 2616
. 7384
52
9
. 2750
. 7250
.3956
. .3363
.2803
.0269
. 2622
. 7378
51
10
.22778
.77221
4.3901
.23393
4.2747
1.0270
.02629
.97371
50
11
. 2807
. 7193
.3847
. 3424
.2691
.0271
. 2635
. 7364
49
12
. 2835
. 7165
.3792
. 3455
.2635
.0271
. 2642
. 7368
48
13
. 2863
. 7136
.3738
. 3485
.2579
.0272
. 2649
. 7351
47
14
. 2892
. 7108
.3684
. 3516
.2524
.0273
. 2655
. 7344
46
15
.22920
.77080
4.3630
.23547
4.2468
1.0273
.02662
.97338
45
16
. 2948
. 7052
.3676
. 3577
.2413
.0274
. 2669
. 7331
44
17
. 2977
. 7023
.3522
. 3608
.2358
.0275
. 2675
. 7324
43
18
. 3005
. 6995
.3469
. 3639
.2303
.0276
. 2682
. 7318
42
19
. 3033
. 6967
.3415
. 3670
.2218
.0276
. 2689
. 7311
41
20
.23061
.76938
4.3362
.23700
4.2193
1.0277
.02695
.97304
40
21
. 3090
. 6910
.3309
. 3731
.2139
.0278
. 2702
. 7298
39
22
. 3118
. 6882
.3256
. 3762
.2084
.0278
. 2709
. 7291
38
23
. 3146 ■
. 6853
.3203
. 3793
.2030
.0279
. 2716
. 7284
37
24
. 3175
. 6825
.3150
. 3823
.1976
.0280
. 2722
. 7277
36
25
.23203
.76797
4.3098
.23854
4.1921
1.0280
.02729
.97271
35
26
. 3231
. 6769
.3045
. 3885
.1867
.0281
. 2736
. 7264
34
27
. 3260
. 6740
.2993
. 3916
.1814
.0282
. 2743
. 7257
33
28
. 3288
. 6712
.2941
. 3946
.1760
.0283
. 2749
. 7250
32
29
. 3316
. 6684
.2888
. 3977
.1706
.0283
. 2756
. 7244
31
30
.23344
.76655
4.2836
.24008
4.1663
1.0284
.02763
.97237
30
31
. 3373
. 6627
.2785
. 4039
.1600
.0285
. 2770
. 7230
29
32
. 3401
. 6599
.2733
. 4069
.1516
.0285
. 2777
. 7223
28
33
. 3429
. 6571
.2681
. 4100
.1493
.0286
. 2783
. 7216
27
34
. 3458
. 6542
.2630
. 4131
.1440
.0287
. 2790
7210
26
35
.23486
.76514
4.2579
.24162
4.1388
1.0288
.02797
.97203
25
36
. 3514
. 6486
.2527
. 4192
.1335
.0288
. 2804
. 7196
■24
37
. 3542
. 6457
.2476
. 4223
.1282.
.0289
. 2811
. 7189
23
38
. 3571
. 6129
.2425
. 4254
.1230
.0290
. 2818
. 7182
22
39
. 3599
. 6401
.2375
. 4285
.1178
.0291
. 2824
. 7175
21
40
.23627
.76373
4.2324
.24316
4.1126
1.0291
.02831
.97169
20
41
. 3655
. 6344
.2273
. 4346
.1073
.0292
. 2838
. 7162
19
42
. 3684
. 6316
.2223
. 4377
.1022
.0293
. 2846
. 7165
18
43
. 3712
. 6288
.2173
. 4408
.0970
.0293
. 2852
. 7148
17
44
. 3740
. 6260
.2122
. 4439
.0918
.0294
. 2869
. 7141
16
45
.23768
.76231
4.2072
.24470
4.0867
1.0295
.02866
.97134
15
46
. 3797
. 6203
.2022
. 4501
.0815
.0296
. 2873
. 7127
14
47
. 3825
. 6175
.1972
. 4531
.0764
.0296
. 2880
. 7120
13
48
. 3853
. 6147
.1923
. 4562
.0713
.0297
. 2886
. 7113
12
49
. 3881
. 6118
.1873
. 4693
.0662
.0298
. 2893
. 7106
11
50
.23910
.76090
4.1824
.24624
4.0611
1.0299
.02900
.97099
10
51
. 3938
. 6062
.1774
.4655
.0560
.0299
. 2907
. 7092
9
52
. 3966
. 6034
.1725
.4686
.0509
.0300
. 2914
. 7086
8
5S
. 3994
. 6005
.1676
. 4717
.0458
.0301
. 2921
. 7079
7
54
. 4023
. 5977
.1627
. 4747
.0408
.0302
. 2928
. 7072
6
55
.24051
.75949
4.1578
.24778
4.0368
1.0302
.02935
.97065
5
66
. 4079
. 5921
.1529
. 4809
.0307
.0303
. 2942
. 7058
4
57
. 4107
. 5892
.1481
. 4840
.0257
.0304
. 2949
. 7051
3
58
. 4136
. 5864
.1432
. 4871
.0207
.0305
. 2956
. 7044
2
59
. 4164
. 5836
.1384
. 4902
.0157
.0305
. 2963
. 7037
1
60
. 4192
. 5808
.1336
. 4933
.0108
.0306
. 2970
. 7029
M.
CosiDe.
Vrs. sin.
Secant.
Cotang.
Tang.
Cosec'nt
Vrs. COS.
Sine.
M.
103°
76°
336
NATURAL FUNCTIONS.
Table 3.
14°
Natural T
rigonometrical
Functions.
1
55°
5L
Sine.
Vrs. COS.
Cosec'nt
Tang.
Cotang,
Secant.
"Vrs. sin.
Cosine.
m!
.24192
.75808
4.1336
.24933
4.0108
1.0306
.02970
.97029
60
1
. 4220
. 5779
.1287
. 4964
.0058
.0307
. 2977
. 7022
59
2
. 4249
. 5751
.1239
. 4995
.0009
.0308
. 2984
. 7015
58
3
. 4277
. 5723
.1191
. 5025
3.9959
.0308
. 2991
. 7008
57
4
. 4305
. 5695
.1144
. 5056
.9910
.0309
. 2999
. 7001
56
5
.24333
.75667
4.1096
.25087
3.9861
1.0310
.03006
.96994
55
6
. 4361
. 5638
.1048
. 5118
.9812
.0311
. 3013
. 6987
54
7
. 4390
. 5610
.1001
. 5149
.9763
.0311
. 3020
. 6980
53
8
. 4418
. 5582
.0953
. 5180
.9714
.0.312
. 3027
. 6973
.52
9
. 4146
. 5564
.0906
. 5211
.9665
.0313
. 3034
. 6966
51
10
.24474
.75526
4.0859
.25242
3.9616
1.0314
.03041
.96959
50
11
. 4602
. 5497
.0812
. 6273
.9.668
.0314
. 3048
. 6952
49
12
. 4531
. 5469
.0765
. 6304
.9520
.0315
. 3055
. 6944
48
13
. 4559
. 5441
.0718
. 5336
.9471
.0316
. 3063
. 6937
47
14
. 4587
. 5413
.0672
. 5366
.9423
.0317
. 3070
. 6930
46
15
.24615
.75385
4.0625
.25397
8.9375
1.0317
.0.3077
.96923
45
16
. 4643
. 6366
.0579
. 5128
.9327
.0318
. 3084
. 6916
44
17
. 4672
. 6328
.0532
. 6459
.9279
.0319
. 3091
. 6909
43
18
. 4700
. 6300
.0486
. 5490
.9231
.0320
. 3098
. 6901
42
19
. 4728
. 5272
.0440
. 5521
.9184
.0320
. 3106
. 6894
41
20
.24756
.75244
4.0394
.25562
3.9136
1.0321
.03113
.96887
40
21
. 4784
. 5215
.0348
. 5583
.9089
.0322
. 3120
. 6880
39
22
. 4813
. 6187
.0302
. 5614
.9042
.0323
. 3127
. 6873
38
23
. 4841
. 5159
.0266
. 5645
.8994
.0323
. 3134
. 6865
37
24
. 4869
. 5131
.0211
. 5676
.8947
.0324
. 3142
. 6858
36
26
.24897
.75103
4.0165
.25707
3.8900
1.0.326
.03149
.96851
35
26
. 4925
. 5075
.0120
. 5738
.8853
.0326
. 3166
. 6844
34
27
. 4963
. 5046
.0074
. 5769
.8807
.0327
. 3163
. 6836
33
28
4982
. 6018
.0029
. 5800
.8760
.0327
. 3171
. 6829
32
29
. 5010
. 4990
3.9984
. 5831
.8713
.0328
. 3178
. 6822
31
30
.25038
.74962
3.9939
.25862
3.8667
1.0329
.03185
.96815
30
31
5066
. 4934
.9894
. 5893
.8621
.0330
. 3192
. 6807
29
32
. 6094
. 4906
.9850
. 5924
.8574
.0330
. 3200
. 6800
28
33
. 5122
. 4877
.9805
. 5965
.8528
.0331
. 3207
. 6793
27
34
. 5151
. 4849
.9760
. 5986
.8482
.0332
. 3214
. 6785
26
35
.25179
.74821
3.9716
.26017
3.8436
1.0333
.03222
.96778
26
36
. 5207
. 4793
.9672
. 6048
.8390
.0334
. 3229
. 6771
■24
37
. 5235
. 4765
.9627
. 6079
.8345
.0334
. 3236
. 6763
23
38
. 5263
. 4737
.9583
. 6110
.8299
.0335
. 3244
. 6766
22
39
. 5291
. 4709
.9539
. 6141
.8254
.0336
. 3251
. 6749
21
40
.25319
.74680
3.9495
.26172
3.8208
1.0337
.03258
.96741
20
41
. 5348
. 4652
.9451
. 6203
.8163
.0338
. 3266
. 6734
19
42
. 5376
. 4624
.9408
. 6234
.8118
.0338
. 3273
. 6727
18
43
. 6404
. 4596
.9364
. 6266
.8073
.0339
. 3281
. 6719
17
44
. 6432
. 4568
.9320
. 6297
.8027
.0340
. 3'288
. 6712
16
45
.26460
.74540
3.9277
.26328
3.7983
1.0341
.03295
.96704
15
46
. 5488
. 4612
.9234
. 6369
.7938
.0341
. 3303
. 6697
14
47
. 5516
. 4483
.9190
. 6390
.7893
.0342
. 3310
. 6690
13
48
. 5544
. 4465
.9147
. 6421
.7848
.0343
. 8318
. 6682
12
49
. 5573
. 4427
.9104
. 6462
.7804
.0344
. 3325
. 6675
11
50
.25601
.74399
3.9061
.26483
3.7759
1.0345
.03332
.96667
10
51
. 5629
. 4371
.9018
. 6514
.7715
.0345
. 3340
. 6660
9
52
. 5657
. 4344
.8976
. 6546
.7671
.0346
. 3347
. 6652
8
53
. 6685
. 4315
.8933
. 6577
.7027
.0347
. 3355
. 6645
7
54
. 5713
. 4287
.8890
. 6608
.7583
.0348
. 3362
. 6638
6
55
.25741
.74269
3.8848
.26639
3.7539
1.0349
.03370
.96630
6
56
. 5769
. 4230
.8805
. 0670
.7495
.0349
. 3377
. 6623
4
57
. 6798
. 4202
.8763
. 6701
.7461
.0360
. 3385
. 6615
3
58
. 6826
. 4174
.8721
. 6732
.7407
.0361
. 3392
. 6608
2
59
. 5864
. 4146
.8679
. 6764
.7364
.0352
. 3400
. 6600
1
60
. 5882
. 4118
.8637
. 6796
.7320
.0353
. 3407
. 6592
U.
Cosine.
Vrs. siu.
Secant.
Co tang.
Taug.
Cosec'ntI
Vre. COS.
Sine.
M.
104°
75°
Table 3.
NATURAL FUNCTIONS.
337
15
3
Natural Trigonometrical Functions.
164°
m7
Sine.
Vts. cos.
Ooeec'nt
Tang.
Ootting.
Secant.
■Vrs. Bin.
Cosine.
M.
.25882
.74118
3.8637
.26795
3.7820
1.0353
.03407
.96592
60
1
. 5910
. 4090
.8595
. 6826
.7277
.0353
. 3115
. 6585
59
2
. 5938
. 4062
.8553
6857
.7234
.0354
. 3422
. 6577
58
3
. 5966
. 4034
.8512
. to88
.7191
.0355
. 3430
. 6570
57
4
. 5994
. 4006
.8-170
. 6920
.7117
.0356
. 3438
. 6562
56
5
.26022
.73978
3.8428
.26951
3.7104
1.0367
.03445
.96.555
55
6
. 6050
. 3949
.WS7
. 6982
.7062
.0368
. 3453
. 6.547
54
7
. 6078
. 3921
.8346
. 7013
.7019
.0358
. 3460
. 6540
53
8
. 6107
. 3893
.8304
. 7044
.6976
.0359
. 3468
.6532
52
9
. 6135
. 3865
.8263
. 7076
.6933
.0360
. 3475
. 6524
51
10
.26163
.73837
3.8222
.27107
3.6891
1.0361
.03483
.96517
50
U
. 6191
. 3809
.8181
. 7138
.6848
.0362
. 3491
. 6609
49
12
. 6219
. 3781
.8140
. 7169
.6806
.0362
. 3498
. 6502
48
13
. 6247
. 3753
.8100
. 7201
.6764
.0363
. 3506
. 6494
47
M
. 6275
. 3725
.8059
. 7232
.6722
.0364
. 3514
. 6486
46
15
.26303
.73697
3.8018
.27263
3.6679
1.0365
.03521
.96479
45
16
. 6331
. 3669
.7978
. 7294
.6637
.0366
. 3529
. 6471
44
17
. 6359
. 3641
.7937
. 7326
.6596
.0367
. 3536
. 6463
43
18
. 6387
. 3613
.7897
. 7357
.6554
.0367
. 3544
. 6456
42
19
. 6415
. 3585
.7857
. 7388
.6512
.0368
. 3552
. 6448
41
20
.26443
.73556
3.7816
.27419
3.6470
1.0369
.03560
.96440
40
21
. 6471
. 3528
.7776
. 7451
.6429
.0370
. 3567
. 6433
39
22
. 6499
. 3500
.7736
. 7482
.6387
.0371
. 3575
. 6425
38
23
. 6527
. 3472
.7697
. 7513
.6346
.0371
. 3583
. 6117
37
24
. 6556
. 3444
.7657
. 7544
.6305
.0372
. 3590
. 6409
36
25
.26584
.73416
3.7617
.27576
3.6263
1.0373
.03598
.96402
35
26
. 6612
. 3388
.7577
. 7607
.6222
.0374
. 3606
. 6394
34
27
. 6640
. 3360
.7538
.7638
.6181
.0375
. 3614
. 6386
33
28
. 6668
. 3332
.7498
. 7670
.6140
.0376
. 3621
. 6378
32
29
. 6696
. &304
.7459
. 7701
.6100
.0376
. 3629
. 6371
31
30
.26724
.73276
3.7420
.27732
3.6059
1.0377
.03637
.96363
30
31
. 6752
. 3248
.7380
. 7764
.6018
.0378
. 3645
. 6355
29
32
. 6780
. 3220
.7341
. 7795
.5977
.0379
. 3652
. 6347
28
83
. 6808
. 3192
.7302
. 7826
.5937
.0380
. 3660
. 6340
27
34
. 6835
. 3164
.7263
. 7858
.6896
.0381
. 3668
. 6332
26
35
.26864
.73136
3.7224
.27889
3.5856
1.0382
.03676
.96324
25
36
. 6892
. 3108
.7186
. 7920
.5816
.0382
. 3684
. 6316
24
37
. 6920
. 3080
.7147
. 7952
.5776
.0383
. 3691
. 6308
23
38
. 6948
. 3052
.7108
. 7983
.5736
.0384
. 3699
. 6301
22
39
. 6976
. 3024
.7070
. 8014
.5696
.0385
. 3707
. 6293
21
40
.27004
.72996
3.7031
.28046
3.5656
1.0386
.03715
.96285
20
41
. 7032
. 2968
.6993
. 8077
.5616
.0387
. 3723
. 6277
19
42
. 7060
. 2940
.6955
. 8109
.5576
.0387
. 3731
. 6269
18
43
. 7088
. 2912
.6917
. 8140
.5536
.0388
. 3739
. 6261
17
44
. 7116
. 2884
.0878
. 8171
.5497
.0389
. 3746
. 6253
16
45
.27114
.72856
3.6810
.28203
3.5457
1.0390
.03754
.96245
15
46
. 7172
. 2828
.6802
. 8234
.5418
.0391
. 3762
. 6238
14
47
. 7200
. 2800
.6765
. 8266
.5378
.0392
. 3770
. 6230
13
48
. 7228
. 2772
.6727
. 8297
.5339
.0393
. 3778
. 6222
12
49
. 7256
. 2744
.6689
. 8328
.5300
.0393
. 3786
. 6214
11
50
.27284
.72716
3.6651
.28360
3.5261
1.0394
.03794
.96206
10
51
. 7312
. 2688
.6614
. 8391
.5222
.0395
. 3802
. 6198
9
52
. 7340
. 2660
.6576
. 8423
.5183
.0396
. 3810
. 6190
8
53
. 7368
. 2632
.6539
. 84S4
.5144
.0397
. 3818
. 6182
7
54
. 7396
. 2604
.6502
. 8486
.5105
.0398
. 3826
. 6174
6
55
.27424
.72576
3.6464
.28517
3.5066
1.0399
.03834
.96166
5
56
. 7452
. 2548
.6427
. 8519
.5028
.0399
. 3842
. 6158
4
57
. 7480
. 2520
.6390
. 8580
.4989
.0400
. 3850
. 6150
3
58
. 7508
. 2492
.6353
. 8611
.4951
.0401
. 3858
. 6142
2
59
. 7536
. 2464
.6316
. 8643
.4912
.0402
. 3866
. 6134
1
60
. 7564
. 2436
.6279
. 8674
.4874
.0403
. 3874
. 6126
M.
Cosine.
Vrs. Bin.
Secant.
Cotang,
Tang.
Cosec'nt
Vrs. COS.
Sine.
M.
105°
23
74°
338
NATURAL J<'U^'CT1UJN«.
16°
Natural Trigonometrical
Functions.
163°
M.
Sine.
Vrs. COB.
Cosec'nt
Tang.
Cotang,
Secant.
Vrs. sin.
Cosine.
M.
.27564
.72436
3.6279
.28674
3,4874
1,0403
.o;k-4
.96126
60
1
. 7592
. 2408
.6243
. 8706
.4836
.0404
. 3,882
. 6118
59
2
. 7620
. 2380
.6206
. 8737
.4798
.0405
. 3890
. 6110
58
3
. 7648
. 2352
.6109
. 8769
.4760
.0406
. 3898
. 6102
57
4
. 7675
. 2324
.6133
. 8800-
.4722
.0406
. 3906
. 6094
56
5
.27703
.72296
3.6096
.28832
3,4684
1.0407
.03914
.90086
55
6
. 7731
. 2268
.6060
. 8863
.46-16
.0108
. 3922
. 6078
54
7
. 7759
. 2240
.6024
. 8895
.4608
.0409
. 3930
. 6070
53
8
. 7787
. 2213
.5987
. 8926
.4.570
.0410
. 39.38
. 6062
52
9
. 7815
. 2185
.5951
. 8958
.4533
.0411
. 3946
. 6054
51
10
.27843
.72157
3.5915
.28990
3.4495
1.0412
.03954
.96045
60
11
. 7871
. 2129
.5879
. 9021
.4458
.0413
. 3962
. 6037
49
12
. 7899
. 2101
.5843
. 9053
.4420
.0413
. 3971
. 6029
48
13
. 7927
. 2073
.5807
. 9084
.4383
.0414
. 3979
. 6021
47
14
. 7955
. 2045
.5772
. 9116
.4346
Mlb
. 3987
. 6013
46
15
.27983
.72017
3.5736
.29147
3,4308
1.0416
.03995
.96005
45
16
. 8011
. 1989
.5700
. 9179
.4271
.0417
. 4003
. 5997
44
17
. 8039
. 1961
.5665
. 9210
.4234
.0418
. 4011
. 5989
43
18
. 8067
. 1933
.5629
. 9242
.4197
.0419
. 4019
. 5980
42
19
. 8094
. 1905
.5594
. 9274
.4160
.0420
. 4028
. 5972
41
20
.28122
.71877
3.5559
.29305
3,4124
1.0420
.04036
.95964
40
21
. 8150
. 1849
.5523
. 9337
.4087
.0421
. 4014
. 5956
39
22
. 8178
. 1822
.5488
. 9368
.4050
.0422
. 4052
. 5948
38
23
. 8206
. 1794
.5453
. 9400
.4014
.0123
. 4060
. 5940
37
24
. 8234
. 1766
.5418
. 9432
.3977
.0124
. 4069
. 5931
36
25
.28262
.71738
3.5383
.29463
3.3941
1,0125
.04077
.95923
36
26
. 8290
. 1710
.5348
. 9495
.3904
.0426
. 4085
. 5915
34
27
. 8318
. 1682
.5313
. 9526
.3868
.0427
. 4093
. 5907
33
28
. 8346
. 1654
.5279
. 9558
.3832
.0428
. 4101
. 5898
32
29
. 8374
. 1626
.5244
. 9.590
.3795
.0428
. 4110
. 5890
31
30
.28401
.71608
8,5209
.29621
3.3759
1,0429
.04118
.9.5882
30
31
. 8429
. 1570
.5175
. 9653
.3723
,0430
. 4126
. 6874
29
32
. 8457
. 1543
.5140
. 9685
.3687
,0431
. 4131
. 5865
28
33
. 8485
. 1515
.5106
. 9716
.3651
,0432
. 4143
. 5857
27
34
. 8513
. 1487
.5072
. 9748
.3616
,0433
. 4151
. 5849
26
35
.28541
.71459
3,5037
.29780
3,3580
1,04.34
.04159
.9.5840
25
36
. 8569
. 1131
.5003
. 9811
,3514
,0135
. 4168
. 5832
24
37
. 8597
. 1403
.4969
. 9843
.3509
.0436
. 4176
. 5824
23
38
. 8624
. 1375
.4935
. 9875
.3473
.0437
. 4184
. 5816
22
39
. 8652
. 1347
.4fl01
. 9906
.3438
,0438
. 4193
. 5807
21
40
.28680
.71320
8,4867
.29938
3.3402
1,0438
.04201
.95799
20
41
. 8708
. 1292
.4833
. 9970
.3367
,0439
. 4209
. 5791
19
42
. 8736
. 1204
.4799
.30001
.3332
.0440
. 4218
. 5782
18
43
. 8764
. 1236
.4766
. 0033
.3296
.0441
. 4226
. 5774
17
44
. 8792
. 1208
.4732
. 0065
.3261
.0442
. 4234
. 5765
16
45
.28820
.71180
3.4698
.30096
3.3226
1,0443
.04243
.96757
15
46
. 8847
. 1152
.4665
. 0128
.3191
,0144
. 4251
. 5749
14
47
. 8875
. 1125
.4632
. 0160
.3156
,0445
. 4260
. 5740
13
48
. 8903
. 1097
.4598
. 0192
.8121
,0446
. 4268
. 5732
12
49
. 8931
. 1069
.4565
. 0223
.3087
.0447
. 4276
. 5723
U
50
.28959
.71041
3.4532
.30255
3.3052
1.0448
.04285
.95715
10
51
. 8987
. 1013
.4498
. 0287
.3017
.0448
. 4293
. 5707
9
52
. 9014
. 0985
.4465
. 0319
.2983
.0449
. 4302
. 5698
8
53
. 9042
. 0958
.4432
. 0350
.2948
.0150
. 4310
. 5690
7
64
. 9070
. 0930
.4399
, 0382
.2914
.0451
. 4319
. 5681
6
55
.29098
.70902
3.4366
,30414
3,2879
1,04.52
.04327
.95673
6
56
. 9126
. 0874
.4334
0446
,2845
,0453
. 4335
. 5664
4
57
. 9154
. 0846
.4301
. 0178
.2811
,0454
. 4344
. 5656
3
58
. 9181
. 0818
.426S
. 0509
,2777
,0455
. 43.52
. 5647
2
59
. 9209
. 0791
.42:-;o
. 0541
.2712
.0456
. 4361
. 5639
I
60
. 9237
. 0763
.4203
. 0573
.2708
.0457
. 4369
. 5630
M.
Cosine.
Vrs. sin.
Secant.
Co tang.
Tung,
Cosec'nt
Vrs. COS.
Sine.
M.
106°
73°
Table 3.
NATUEAL FUNCTIONS.
339
,70
Natural Trigonometrical Functions.
162°
M.
Sine.
Vra. COB.
Cosec'nt
Tang.
Cotang.
Secant.
Vrs. sin.
Cosine.
M.
.29237
.70763
3.4203
.30573
3.2708
1.0457
.04369
.95630
60
1
. 9265
. 0735
.4170
. 0605
.2674
.0468
. 4378
. 6622
59
2
. 9293
. 0707
.4138
. 0637
.2640
.0459
. 4386
. 5613
58
3
. 9321
. 0679
.4106
. 0668
.2607
.0460
. 4395
. 5606
67
4
. 9348
. 0651
.4073
. 0700
.2573
.0461
. 4404
. 5596
55
5
.29376
.70624
3.4041
.30732
3.2639
1.0461
.04412
.96688
55
6
. 9404
. 0596
.4009
. 0764
.2605
.0462
. 4421
. 6579
54
7
. 9432
. 0568
.3977
. 0796
.2472
.0463
. 4426
. 6671
63
8
. 9460
. 0540
.3945
. 0828
.2438
.0404
. 4438
. 5562
.52
9
. 9487
. 0512
.3913
. 0859
.2405
.0465
. 4446
. 5564
51
10
.29515
.70485
3.3881
.30891
3.2371
1.0466
.04455
.95545
50
11
. 9543
. 0457
.3849
. 0923
.2338
.0467
. 4463
. 5536
49
12
. 9571
. 0429
.3817
. 0955
.2305
.0468
. 4472
. 5628
48
13
. 9598
. 0401
.3785
. 0987
.2271
.0469
. 4481
. 5519
47
14
. 9626
. 0374
.3754
. 1019
.2238
.0470
. 4489
. 5511
46
15
.29654
.70346
3.3722
.31051
3.2205
1.0171
.04498
.95502
45
16
. 9682
. 0318
.3690
. 1083
.2172
.0472
. 4507
. 5493
44
17
. 9710
. 0290
.3669
. 1115
.2139
.0473
. 4615
. 5485
43
18
. 9737
. 0262
.3627
. 1146
.2106
.0474
. 4624
. 5476
42
19
. 9765
. 0235
.3596
. 1178
.2073
.0475
. 4532
. 5467
41
20
.29793
.70207
3.3565
.31210
3.2041
1.0476
.04541
.96469
40
21
. 9821
. 0179
.3534
. 1242
.2008
.0477
. 4550
. 5450
39
22
. 9848
. 0151
.3502
. 1274
.1975
.0478
. 4558
. 6441
38
23
. 9876
. 0124
.3471
. 1306
.1942
.0478
. 4567
. 5433
37
24
. 9904
. 0096
.3440
. 1338
.1910
.0479
. 4576
. 5424
36
25
.29932
.70068
3..S409
.31370
3.1877
1.0480
.04585
.96416
35
26
. 9959
. 0040
.3378
. 1402
.1845
.0481
. 4593
. 5407
34
27
. 9987
. 0013
.3347
. 1434
.1813
.0482
. 4602
. 5398
33
28
.30015
.69982
.3316
. 1466
.1780
.0483
. 4611
. 5389
32
29
. 0043
. 9967
.3286
. 1498
.1748
.0484
. 4619
. 5380
31
30
.30070
.69929
3.3265
.31530
3.1716
1.0486
.04628
.95372
30
31
. 0098
. 9902
.3224
. 1662
.1684
.0486
. 4637
. 6363
29
32
. 0126
. 9874
.3194
. 1594
.1652
.0487
. 4646
. 5354
28
33
. 0154
. 9846
.3163
. 1626
.1620
.0488
. 4654
. 6345
27
34
. 0181
. 9818
.3133
. 1658
.1588
.0489
. 4663
. 5337
26
35
.30209
.69791
3.3102
.31690
3.1556
1,0490
.04672
.95328
25
36
. 0237
. 9763
.3072
. 1722
.1524
.0491
. 4681
. 5319
24
37
. 0265
. 9735
.3042
. 1754
.1492
.0192
. 4690
. 5310
23
38
. 0292
. 9707
.3011
. 1786
.1460
.0493
. 4698
. 5301
22
39
. 0320
. 9680
.2981
. 1818
.1429
.0494
. 4707
. 5293
21
40
.30348
.69652
3.2951
.31850
3.1397
1.0496
.04716
.96284
20
41
. 0375
. 9624
.2921
. 1882
.1366
.0496
. 4725
. 5276
19
42
. 0403
. 9597
.2891
. 1914
.1334
.0497
. 4734
. 6266
18
43
. 0431
. 9569
.2861
. 1946
.1303
.0498
. 4743
.5257
17
44
. 0459
. 9541
.2831
. 1978
.1271
.0499
. 4751
. 6248
16
45
.30486
.69513
3.2801
.32010
3.1240
1.0500
.04760
.95239
15
46
. 0514
. 9486
.2772
. 2042
.1209
.0501
. 4769
. 5231
14
47
. 0542
. 9458
.2742
. 2074
.1177
.0502
. 4778
. 5222
13
48
. 0569
. 9430
.2712
. 2106
.1146
.0503
. 4787
. 5213
12
49
. 0597
. 9403
.2683
. 2138
.1115
.0604
. 4796
. 5204
11
50
.30625
.69375
3.2653
.32171
3.1084
1.0505
.04805
.95195
10
51
. 0653
. 9347
.2624
. 2203
.1053
.0506
. 4814
. 5186
9
52
. 0680
. 9320
.2594
. 2235
.1022
.0507
. 4823
. 5177
8
53
. 0708
. 9292
.2565
. 2267
.0991
.0508
. 4832
. 5168
7
54
. 0736
. 9264
.2535
. 2299
.0960
.0509
. 4840
. 6169
6
55
.30763
.69237
3.2506
.32331
3.0930
1.0510
.04849
.95150
5
56
. 0791
. 9209
.2477
. 2363
.0899
.0511
. 4868
. 5141
4
57
. 0819
. 9181
.2448
. 2395
.0868
.0612
. 4867
. 5132
3
58
. 0846
. 9154
.2419
. 2428
.0838
.0513
. 4876
. 5124
2
59
. 0874
. 9126
.2390
. 2460
.0807
.0514
. 4885
. 6115
1
60
. 0902
. 9098
.2361
. 2492
.0777
.0515
. 4894
. 5106
M.
Cosine.
Vrs. sin.
Secant.
Cotang.
Tang.
Cosec'nt
Vrs. cos.
Sine.
iT
107°
72°
340
NATURAL FUNCTIONS.
Table 3.
18
o
Natural Trigonometrical
Functions.
161°
M.
Sine.
Vrs. COB.
Cosec'nt
Tanpr.
Cotang.
Secant.
Vrs. sin
Cosine.
M.
.30902
.69098
3.2361
.32492
3.0777
1.0515
.04894
.96106
60
1
. 0929
. 9071
.2332
. 2524
.0746
.0516
. 4903
. 5097
59
2
. 0957
. 9043
.2303
. 2656
.0716
.0517
. 4912"
. 5088
58
3
. 0985
. 9015
.2274
. 2588
.0686
.0518
. 4921
. 5079
bl
4
. 1012
. 8988
.2245
. 2621
.0655
.0519
. 4930
. 5070
56
5
.31040
.68960
3.2216
.32653
3.0625
1.0520
.04939
.95061
55
6
. 1068
. 8932
.2188
. 2685
.0595
.0521
. 4948
. 5051
54
7
. 1095
. 8905
.2159
. 2717
.0565
.0622
. 4957
. 5042
53
8
. 1123
. 8877
.2131
. 2749
.0535
.0523
. 4966
. 5033
52
9
. 1160
. 8849
.2102
. 2782
.0505
.0524
. 4975
. 5024
51
10
.31178
.68822
3.2074
.32814
3.0475
1.0525
.04985
.95015
60
11
. 1206
. 8794
.2045
. 2846
.0445
.0626
. 4994
. 5006
49
12
. 1233
. 8766
.2017
. 2878
.0415
.0.527
. 5003
. 4997
48
13
. 1261
. 8739
.1989
. 2910
.0385
.0528
. 5012
. 4988
47
14
. 1289
. 8711
.1960
. 2943
.0356
.0529
. 5021
. 4979
46
15
.31316
.68684
3.1932
.32975
3.0326
1.0530
.05030
.94970
45
16
. 1344
. 8656
.1904
. 3007
.0296
.0531
. 5039
. 4961
44
17
. 1372
. 8628
.1876
. 3039
.0267
.0532
. 5048
. 4952
43
18
. 1399
. 8601
.1848
. 3072
.0237
.0533
. 5057
. 4942
42
19
. 1427
. 8573
.1820
. 3104
.0208
.0534
. 6066
. 4933
41
20
.31151
.68645
3.1792
.33136
3.0178
1.0535
.06076
.94924
40
21
. 1482
. 8518
.1764
. 3169
.0149
.0536
. 5085
. 4915
39
22
. 1510
. 8190
.1736
. 3201
.0120
.0537
. 5094
. 4906
38
23
. 1537
. 8163
.1708
. 3233
.0090
.0538
. 5103
. 4897
.37
24
. 1565
. 8435
.1681
. 3265
.0061
.0539
. 5112
. 4888
36
25
.31592
.68407
3.1653
.33298
3.0032
1.0540
.06121
.94878
35
26
. 1620
. 8380
.1625
. 3330
.0003
.0641
. 5131
. 4869
34
27
. 1648
. 8352
.1598
. 8362
2.9974
.0642
. 5140
. 4860
33
28
. 1675
. 8325
.1570
. 3395
.9945
.0543
. 6149
. 4851
32
29
. 1703
. 8297
.1543
. 3427
.9916
.0544
. 6158
. 4841
31
30
.31730
.68269
3.1615
.33459
2.9887
1.0645
.05168
.94832
30
31
. 17S8
. 8242
.1488
. 3492
.9858
.0546
. 5177
. 4823
29
32
. 1786
. 8214
.1461
. 3524
.9829
.0547
. 5186
. 4814
28
S3
. 1813
. 8187
.1433
. 3557
.9800
.0648
. 5195
. 4805
27
34
. 1841
. 8159
.1106
. 3589
.9772
.0549
. 5205
. 4795
26
35
.31868
-68132
3.1379
.33621
2.9743
1.0560
.05214
.94786
25
36
. 1896
. 8104
.1352
. 3654
.9714
.0561
. 5223
. 4777
24
37
. 1923
. 8076
.1325
. 3686
.9686
.0552
. 5232
. 4767
23
38
. 1951
. 8049
.1298
. 3718
.9657
.0553
. 5242
. 4758
22
39
. 1978
. 8U21
.1271
. 37.61
.9629
.0654
. 5251
. 4749
21
40
.32006
.67994
3.1244
.33783
2.9600
1.0555
.05260
.94740
20
41
. 2034
. 7966
.1217
. 3816
.9672
.0556
. 5270
. 4730
19
42
. 2061
. 7939
.1190
. 3848
.9544
.0557
. 5279
. 4721
18
43
. 2089
. 7911
.1163
. 3880
.9515
.0658
. 5288
. 4712
17
44
. 2116
. 7884
.1137
. 3913
.9487
.0559
. 5297
. 4702
16
45
.32144
.67866
3.1110
.33945
2.9459
1.0660
.05307
.94693
15
46
. 2171
. 7828
.1083
. 3978
.9431
.0561
. 5316
. 4684
14
47
. 2199
. 7801
.1057
. 4010
.9403
.0562
. 5326
. 4674
13
48
. 2226
. 7773
.1030
. 4043
.9375
.0563
. 5335
. 4665
12
49
. 2254
. 7746
.1004
. 4075
.9347
.0565
. 5344
. 4655
11
60
.32282
.07718
3.0977
.34108
2.9319
1.0566
.05354
.94646
10
51
. 2309
. 7691
.0951
. 4140
.9291
.0.567
. 6363
. 4637
9
52
. 2337
. 7663
.0925
. 4173
.9263
.0568
. 5373
. 4627
8
53
. 2364
. 7636
.0898
. 4205
.9235
.0569
. 5382
. 4618
7
64
. 2392
. 7008
.0872
. 4238
.9208
.0570
. 5391
. 4608
Q
55
.32419
.67581
3.0846
.34270
2.9180
1.0571
.05401
.94599
5
56
. 2447
. 7653
.0820
. 4303
.9162
.0672
. 5410
. 4590
4
57
. 2474
. 7526
.0793
. 4335
.9326
.0573
. 5420
. 4580
3
58
. 2502
. 7498
.0767
. 4368
.9097
.0574
. 5429
. 4571
69
2529
7471
.0741
. 4400
.9069
.0575
. 5439
4561 i
60
. 2557
. 7443
.0715
. 4433
.9042
.0576
,6448
.' 4552
M.
Cosine.
Vrs. sin.
Secant.
Colang.
Tang.
;Josec'nt
Vrs. cos.
Sine. Im.
108
o
7
1°
Table 3.
NATURAL FUNCTIONS.
341
19°
Natural Trigonometrical Functions.
160°
M.
Sine.
Vra. COS.
Cosec'nt
Tang.
Cotang.
Secant.
Vrs. sin.
Cosine.
M.
.32557
.67443
3.0715
.34433
2.9042
1.0576
.06448
.94552
60
1
. 2584
. 7416
.0690
. 4465
.9015
.0577
. 6458
. 4542
59
2
. 2612
. 7388
.0664
. 4498
.8987
.0578
. 6467
. 4533
68
3
. 2639
.7361
.0638
. 4530
.8960
.0579
. 5476
. 4523
57
4
. 2667
. 7383
.0612
. 4563
.8933
.0580
. 5486
. 4614
56
5
.32694
.67306
3.0586
.34595
2.8905
1.0581
.05495
.94604
55
6
. 2722
. 7278
.0561
. 4628
.8878
.0582
. 5505
. 4495
54
7
. 2749
. 7251
.0535
. 4661
.8851
.0584
. 5515
. 4485
63
8
. 2777
.7223
.0509
. 4693
.8824
.0585
. 5524
. 4476
52
9
. 2804
. 7196
.0484
. 4726
.8797
.0586
. 5534
. 4466
51
10
.32832
.67168
3.0458
.34758
2.8770
1.0587
.05643
.94467
60
11
. 2859
. 7141
.0433
. 4791
.8743
.0588
. 5553
. 4447
49
12
. 2887
. 7113
.0407
. 4824
.8716
.0589
. 5562
. 4438
48
13
. 2914
. 7086
.0382
. 4856
.8689
.0590
. 5572
. 4-128
47
14
. 2942
. 7058
.0357
. 4889
.8662
.0591
. 6581
. 4418
46
15
.32969
.67031
3.0331
.34921
2.8636
1.0392
.05591
.94409
45
16
. 2996
. 7003
.0306
. 4954
.8609
.0693
. 5601
. 4399
44
17
. 3024
. 6976
.0281
. 4987
.8582
.0594
. 6610
. 4390
43
18
. 3051
. 6948
.0256
. 5019
.8555
.0695
. 5620
. 4380
42
19
. 3079
. 6921
.0281
. 5052
.8529
.0596
. 5629
. 4370
41
20
.33106
.66894
3.0206
.35085
2.8502
1.0598
.06639
.94361
40
21
. 3134
. 6866
.0181
. 5117
.8476
.0599
. 6649
. 4351
39
22
. 3161
. 6839
.0156
. 5150
.8449
.0600
. 6658
. 4341
38
23
. 3189
. 6811
.0131
. 5183
.8423
.0601
. 5668
. 4332
37
24
. 3216
. 6784
.0106
. 5215
.8396
.0602
. 6678
. 4322
36
25
.33243
.66756
3.0081
.35248
2.8370
1.0603
.05687
.94313
35
26
. 3271
. 6729
.0066
. 5281
.8344
.0604
. 6697
. 4303
34
27
. 3298
. 6701
.0081
. 6314
.8318
.0605
. 6707
. 4293
33
28
. 3326
. 6674
.0007
. 5346
.8291
.0606
. .5716
. 4283
32
29
. 3353
. 6647
2.9982
. 5379
.8265
.0607
. 5726
. 4274
31
30
.33381
.66619
2.9957
.35412
2.8239
1.0608
.05736
.94264
30
31
. 3408
. 6592
.9933
. 5445
.8213
.0609
. 6745
. 4254
29
32
. 3435
. 6564
.9908
. 5477
.8187
.0611
. 5766
. 4245
28
33
. 3463
. 6537
.9884
. 5510
.8161
.0612
. 5765
. 4285
27
34
. 3490
. 6510
.9859
. 5543
.8136
.0613
. 5776
. 4225
26
35
.33518
.66482
2.9835
.35576
2.8109
1.0614
.05784
.94215
25
36
. 3545
. 6455
.9810
. 6608
.8083
.0615
. 6794
. 4206
24
37
. 3572
. 6427
.9786
. 5641
.8057
.0616
. 6804
. 4196
23
38
. 3600
. 6400
.9762
. 5674
.8032
.0617
. 5814
. 4188
22
39
. 3627
. 6373
.9738
. 5707
.8006
.0618
. 5823
. 4178
21
40
.33655
.66345
2.9713
.35739
2.7980
1.0619
.05833
.94167
20
41
. 3682
. 6318
.9689
. 5772
.7964
.0620
. 5843
. 4157
19
42
. 3709
. 6290
.9665
. 5805
.7929
.0622
. 6853
. 4147
18
43
. 3737
. 6263
.9641
. 6838
.7903
.0623
. 5863
. 4137
17
44
. 3764
. 6236
.9617
. 5871
.7878
.0624
. 6872
. 4127
16
45
.33792
.66208
2.9593
.35904
2.7852
1.0626
.06882
.94118
15
46
. 3819
. 6181
.9569
. 5936
.7827
.0626
. 5892
. 4108
14
47
. 3846
. 6153
.9545
. 5969
.7801
.0627
. 5902
. 4098
13
48
. 3874
. 6126
.9521
. 6002
.7776
.0628
. 5912
. 4088
12
49
. 3901
. 6099
.9497
. 6035
.7751
.0629
. 6922
. 4078
11
50
.33923
.66071
2.9474
.36068
2.7726
1.0630
.06932
.94068
10
51
. 3956
. 6044
.9450
. 6101
.7700
.0632
. 6941
. 4058
9
52
. 3983
. 6017
.9426
. 6134
.7675
.0633
. 5951
. 4049
8
53
. 4011
. 5989
.9402
. 6167
.7650
.0634
. 5961
. 4039
7
54
. 4038
. 5962
.9379
. 6199
.7625
.0636
. 6971
. 4029
6
55
.34065
.65935
2.9355
.36232
2.7600
1.0636
.05981
.94019
5
56
. 4093
. 5907
.9332
. 6265
.7574
.0637
. 5991
. 4009
4
57
. 4120
. 5880
.9308
. 6298
.7549
.0638
. 6001
. 3999
3
58
. 4147
. 5853
.9285
. 6331
.7524
. .0639
. 6011
. 3989
2
59
. 4175
. 5825
.9261
. 6364
.7500
.0641
. 6021
. 3979
1
60
. 4202
. 5798
.9238
. 6397
.7475
.0642
. 6031
. 3969
mT
Cosine.
Vrs. sin.
Secant.
Ootang.
Tang.
Cosec'nt
Vrs. cos.
Sine.
M^
109°
70°
342
NATURAL FUNCTIONS.
Table 3.
20
3
Natural Trigonom
etrical Functions.
159°
M.
Sine.
Vrs. COS.
Cosec'nt
Tang.
Cofcing.
Secant.
Vrs. gin
Cosine.
M.
.34202
.65798
2.9238
.36397
2.7475
1.0642
.06031
.93969
60
1
. 4229
. 5771
.9215
. 6430
.7450
.0643
. 6041
. 3959
59
2
. 4257
. 5743
.9191
. 6463
.7426
.0644
. 6051
. 3949
58
3
. 4284
. 5716
.9168
. 6196
.7400
.0645
. 6061
. 3939
57
4
. 4311
. 5689
.9115
. 6529
.7376
.0646
. 6071
. 3929
56
5
.34339
.65661
2.9122
.36562
2.7351
1.0647
.06080
.93919
55
6
. 4366
. 5634
.9098
. 6595
.7326
.0643
. 6090
. 3909
54
7
. 4393
. 5607
.9075
. 6628
.7302
.0650
. 6100
. 3899
53
8
. 4421
. 5579
.9052
. 6661
.7277
.0651
. 6110
. 3889
52
9
. 4448
. 5552
.9029
. 6694
.7262
.0652
. 6121
. 3879
61
10
.34475
.65525
2.9006
.36727
2.7228
1.0653
.06131
.93869
50
11
. 4502
. 5497
.8983
. 6700
.7204
.0654
. 6141
. 3859
49
12
. 4530
. 5470
.8960
. 6793
.7179
.0655
. 6151
. 3849
48
13
. 4557
. 5443
.8937
. 6826
.7155
.0656
. 6161
. 3839
47
14
. 4584
. 5415
.8915
. 6859
.7130
.0658
. 6171
. 3829
46
15
.34612
.65388
2,8892
.36892
2.7106
1.0659
.06181
.93819
45
16
. 4639
. 5361
.8869
. 6925
.7082
.0660
. 6191
. 3809
44
17
. 4666
. 5334
.8846
. 6958
.7058
.0661
. 6201
. 3799
43
18
. 4693
. 5306
.8824
. 6991
.7033
.0662
. 6211
. 3789
42
19
. 4721
. 5279
.8801
. 7024
.7009
.0663
. 6221
. 3779
41
20
.34748
.05252
2.8778
.37057
2.6985
1.0664
.06231
.93769
40
21
. 4775
. 5226
.8756
. 7090
.6961
.0666
. 6241
. 3758
39
22
. 4803
. 5197
.8733
. 7123
.6937
.0667
. 6251
. 3748
38
23
. 4830
. 5170
.8711
. 7156
.6913
.0668
. 6262
. 3738
37
24
. 48.57
. 5143
.8688
7190
.6889
.0669
. 6272
. 3728
36
25
.34884
.65115
2.8666
.37223
2.6865
1.0670
.06282
.93718
35
26
. 4912
. 5088
.8644
. 7256
.6841
.0671
. 6292
. 3708
34
27
. 4939
. 5061
.8621
. 72X9
.6817
.0673
. 6302
. 3698
33
28
. 4966
. 5034
.8599
. 7322
.6794
.0674
. 6312
. 3687
32
29
. 4993
. 5006
.8577
. 7356
.6770
.0675
. 6323
. 3677
31
30
.35021
.64979
2.8554
.37388
2.6746
1.0676
.06333
.93667
30
31
. 5048
. 4952
.8532
. 7422
.6722
.0077
. 6343
. 3657
20
82
. 5075
. 4926
.8510
. 7155
.6699
.0678
. 6353
. 3647
28
33
. 5102
. 4897
.8488
. 7488
.6675
.0679
. 6363
. 3637
27
34
. 5130
. 4870
.8466
. 7521
.6652
.0681
. 6373
. 3626
26
35
.35157
.6-1843
2.8444
.37554
2.6628
1.0682
.06384
.93616
25
36
. 5184
. 4816
.8422
7587
.6604
.0683
. 6394
. 3606
24
37
. 5211
. 4789
.8400
7G21
.6581
.0681
. 6404
. 3596
23
38
. 5239
. 4761
.8378
. 7654
.6558
.0686
. 6414
. 3585
22
39
. 5266
. 4734
.8356
7687
.6534
.0686
. 6425
. 3575
21
40
.35293
.64707
2.8334
.37720
2.6511
1.0688
.06435
.93565
20
41
. 5320
. 4680
.8312
77M
.6487
.0689
. 6445
. 3555
19
42
. 5347
. 4652
.8290
. 7787
.6464
.0690
. 6456
. 3544
18
43
. 5375
. 4625
.8269
. 7820
.6441
.0691
. 6466
. 3534
17
44
. 5402
. 4598
.8247
. 7853
.6418
.0692
. 6476
. 3524
16
45
.35429
.64571
2.8225
.37887
2.6394
1.0694
.06486
.93513
15
46
. 5456
. 4544
.8204
. 7920
.6371
.0695
. 6497
. 3503
14
47
. 5483
. 4516
.8182
. 7953
.6348
.0696
. 6507
. 3493
13
48
. 5511
. 4489
.8160
. 7986
.6325
.0697
. 6517
. 3482
12
49
. 5538
. 4462
.8139
. 8020
.6302
.0698
. 6528
. 3472
11
50
.35665
.64435
2.8117
.38053
2.6279
1.0699
.06638
.93462
10
51
. 5592
. 4408
.8096
. 8086
.6266
.0701
. 6548
. 3451
9
52
. 5619
. 4380
.8074
. 8120
.6233
.0702
. 6559
. 3441
8
53
. 5647
. 4353
.8053
. 8153
.6210
.0703
. 6569
. 3431
7
54
. 5674
. 4326
.8032
. 8186
.6187
.0704
. 6579
. 3420
6
55
.35701
.64299
2.8010
.38220
2.6164
1.0705
.06590 ■
.93410
5
56
. 5728
. 4272
.7989
. 8263
.6142
.0707
. 6600
. 3400
4
57
. 5755
. 4245
.7968
. 8286
.6119
.0708
. 6611
. 3389
3
58
. 5782
4217
.7947
. 8320
.6096
.0709
. 6621
. 3379
2
59
. 5810
. 4190
.7925
. 8353
.6073
.0710
. 6631
. 3368
1
60
. 5837
. 4163
.7904
. 8386
.6051
.0711
. 6642
. 3358
M.
Cosine.
Vrs. sin.
Secant.
Cotang.
Tang.
('osec'nt
Vrs. COS.
Sine.
M.
110
o
X
no
Table 3.
NATURAL FUNCTIONS.
343
21°
Natural Trigonometrical Functions.
158°
mT
Sine.
Yre. C06.
Cosec'nt
Tang.
Cotang.
Secant.
Vrs. bin.
Cosine.
M.
.35837
.64163
2.7904
.38386
2.6051
1.0711
.06642
.93368
60
1
. 5864
. 4136
.7883
. 8420
.6028
.0713
. 6652
. 3348
59
2
. 5891
. 4109
.7862
. 8453
.6006
.0714
. 6663
. 3337
58
3
. 5918
. 4082
.7841
. 8486
.5983
.0715
. 6673
. 3327
57
4
. 5945
. 4055
.7820
. 8520
.5960
.0716
. 6684
. 3316
66
5
.35972
.64027
2.7799
.38553
2.5938
1.0717
.06694
.93306
55
6
. 6000
. 4000
.7778
. 8587
.5916
.0719
. 6705
. 3295
54
7
. 6027
. 3973
.7757
. 8620
.6893
.0720
. 6715
. 3285
53
8
. 6054
. 3946
.7736
. 8654
.5871
.0721
. 6726
. 3274
52
9
.6081
. 3919
.7715
. 8687
.5848
.0722
. 6736
. 3264
51
10
.36108
.63892
2,7694
.38720
2.6826
1.0723
.06747
.93253
50
11
. 6135
. 3865
.7674
. 8754
.5804
.0725
. 6757
. 3243
49
12
. 6162
. 3837
.7653
. 8787
.5781
.0726
. 6768
. 3232
48
13
. 6189
. 3810
.7632
. 8821
.5759
.0727
. 6778
. 3222
47
14
. 6217
. 3783
.7611
. 8854
.5737
.0728
. 6789
. 3211
46
15
.36244
.63756
2.7591
.38888
2.5715
1.0729
.06799
.93201
45
16
. 6271
. 3729
.7570
. 8921
.5693
.0731
. 6810
. 3190
44
17
. 6298
. 3702
.7550
. 8955
.6671
.0732
. 6820
. 3180
43
18
. 6325
. 3675
.7629
. 8988
.5640
.0733
. 6831
. 3169
42
19
. 6352
. 3648
.7609
. 9022
.5627
.0734
. 6841
. 3158
41
20
.36379
.63621
2.7488
.39055
2.5605
1.0736
.06862
.93148
40
21
. S406
. 3593
.7468
. 9089
.5583
.0737
. 6863
. 3137
30
22
. 6433
. 3566
.7447
. 9122
.5661
.0738
. 6873
. 3127
30
23
. 6460
. 3539
.7427
. 9156
.5639
.0739
. 6884
. 3116
37
24
. 6488
. 3512
.7406
. 9189
.5517
.0740
. 6894
. 3105
36
26
.36515
.63485
2.7386
.39223
2.6496
1.0742
.06905
.93095
36
26
. 6542
. 3458
.7366
. 9267
.6473
.0743
. 6916
. 3084
34
27
. 6569
. 3431
.7346
. 9290
.6451
.0744
. 6926
. 3074
33
28
. 6596
. 3404
.7325
. 9324
.5430
.0746
. 6937
. 3063
32
29
. 6623
. 3377
.7305
. 9357
.5408
.0747
. 6947
. 3052
31
30
.36660
.63360
2.7285
.39391
2.5386
1.0748
.06958
.93042
30
31
. 6677
. 3323
.7265
. 9425
.6366
.0749
. 6969
. 3031
29
32
. 6704
. 3296
.7216
. 9468
.6343
.0750
. 6979
. 3020
28
33
. 6731
. 3269
.7226
. 9492
.5322
.0751
. 6990
. 3010
27
34
. 6758
. 3242
.7205
. 9525
.5300
.0753
. 7001
. 2999
26
35
.36785
.63214
2.7185
.39559
2.5278
1.0754
.07012
.92988
25
36
. 6812
. 3187
.7165
. 9593
.5257
.0756
. 7022
. 2978
24
37
. 6839
. 3160
.7145
. 9626
.5236
.0756
. 7033
. 2967
23
38
. 6866
. 3133
.7126
. 9660
.5214
.0758
. 7044
. 2956
22
39
. 6893
. 3106
.7106
. 9694
.5193
.0769
. 7054
. 2946
21
40
.36921
.63079
2.7085
.39727
2.6171
1.0760
.07065
.92935
20
41
. 6948
. 3052
.7065
. 9761
.6150
.0761
. 7076
. 2924
19
42
. 6975
. 3025
.7046
. 9796
.5129
.0763
. 7087
. 2913
18
43
. 7002
. 2998
.7026
. 9828
.5108
.0764
. 7097
. 2902
17
44
. 7029
. 2971
.7006
. 9862
.5086
.0765
. 7108
. 2892
16
45
.37056
.62944
2.6986
.39896
2.5066
1.0766
.07119
.92881
15
46
. 7083
. 2917
.6967
. 9930
.5044
.0768
. 7130
. 2870
14
47
. 7110
. 2890
.6947
. 9963
.5023
.0769
. 7141
. 2859
13
48
. 7137
. 2863
.6927
. 9997
.5002
.0770
. 7151
. 2848
12
49
. 7164
. 2836
.6908
.40031
.4981
.0771
. 7162
. 2838
11
50
.37191
.62809
2.6888
.40065
2.4960
1.0773
.07173
.92827
10
51
. 7218
. 2782
.6869
. 0098
.4939
.0774
. 7184
. 2816
9
52
. 7215
. 2755
.6849
. 0132
.4918
.0775
. 7195
. 2805
8
53
.7272
. 2728
.6830
. 0166
.4897
.0776
. 7205
. 2794
7
54
. 7299
. 2701
.6810
. 0200
.4876
.0778
. 7216
. 2784
6
55
.37326
.62674
2.6791
.40233
2.4855
1.0779
.07227
.92773
5
56
. 7353
. 2647
.6772
. 0267
.4834
.0780
. 7238
. 2762
4
57
. 738C
. 2620
.6762
. 0301
.4813
.0781
. 7249
. 2751
3
68
. 7407
. 2593
.6733
. 0336
.4792
.0783
. 7260
. 2740
2
59
. 7434
. 2566
.6714
. 0369
.4772
.0784
. 7271
. 2729
1
CO
. 7461
. 2539
.6695
. 0403
.4761
.0785
. 7282
. 2718
M.
Cosine.
Vrs. Bin.
Secant.
Cotang.
Tang.
Cosec'nt
Vrs. COS.
Sine.
M.
11°
68°
344
NATUEAL FUNCTIONS.
Table 3.
22°
Natural Trigonometrical Punctions.
1
57°
M.
Sine.
Vra. coa.
Cosec'nt
Tang.
Co tang.
Secant.
Vrs. sin
Cosine.
il.
.G7461
.62639
2.6695
.40103
2.4761
1.0785
.07282
.92718
60
1
. 7488
. 2612
.6675
. 0136
.4730
.0787
. 7292
. 2707
69
2
. 7614
, 2485
.6656
. 0470
.4709
.0788
. 7303
. 2696
58
3
. 7641
. 2458
.6637
. 0504
.4689
.0789
. 7314
. 2686
57
4
. 7568
. 2431
.6618
. 0538
.4668
.0790
. 7325
. 2675
56
5
.37595
.62404
2.6599
.40572
2.4647
1.0792
.07336
.92664
55
6
. 7622
. 2377
.6680
. 0606
.4627
.0793
. 7347
. 2653
54
7
. 7649
. 2351
.6561
. 0640
.4606
.0794
. 7358
. 2642
63
8
. 7676
. 2324
.6542
. 0673
.4586
.0795
. 7369
. 2631
62
9
. 7703
. 2297
.6523
. 0707
.4566
.0797
. 7380
. 2620
51
10
.37730
.62270
2.6504
.40741
2.4515
1.0798
.07391
.92609
50
11
. 7757
. 2243
.6485
. 0775
.4525
.0799
. 7402
. 2598
49
12
. 7784
. 2216
.6466
. 0809
.4504
.0801
. 7413
. 2587
48
13
. 7811
. 2189
.6447
. 0843
.4484
.0802
. 7424
. 2676
47
14
. 7838
. 2162
.6428
. 0877
.4463
.0803
. 7436
. 2565
46
15
.37865
.62135
2.6410
.40911
2.4443
1.0804
.07446
.92554
45
16
. 7892
. 2108
.6391
. 0945
.4423
.0806
. 7457
. 2543
44
17
. 7919
. 2081
.6372
. 0979
.4403
.0807
. 7468
. 2532
43
18
. 7946
. 2054
.6353
. 1013
.4382
.0808
. 7479
. 2521
42
19
. 7972
. 2027
.6335
. 1047
.4362
.0810
. 7490
. 2610
41
20
.37999
.62000
2.6316
.41081
2.4342
1.0811
.07501
.92499
40
21
. 8026
. 1974
.6297
. 1116
.4322
.0812
. 7512
. 2488
39
22
. 8063
. 1947
.6279
. 1119
.4302
.0813
. 7523
. 2477
38
23
. 8080
. 1920
.6260
. 1183
.4282
.0815
. 7534
. 2466
37
24
. 8107
. 1893
.6242
. 1217
.4262
.0816
. 7546
. 2455
36
25
.38134
.61866
2.6223
.41251
2.4242
1.0817
.07556
.92443
35
26
. 8161
. 1839
.6206
. 1285
.4222
.0819
. 7567
. 2432
34
27
. 8188
. 1812
.6186
. 1319
.4202
.0820
. 7679
. 2421
33
28
. 8214
. 1786
.6168
. 1353
.4182
.0821
. 7690
. 2410
32
29
. 8241
. 1758
.6150
. 1387
.4162
.0823
. 7601
. 2399
31
30
.38268
.61732
2.6131
.41421
2.4142
1.0824
.07612
.92388
30
31
. 8295
. 1705
.6113
. 1465
.4122
.0825
. 7623
. 2377
29
32
. 8322
. 1678
.6095
. 1489
.4102
.0826
. 7634
. 2366
28
33
. 8349
. 1651
.6076
. 1524
.4083
.08'28
. 7645
. 2354
27
34
. 8376
. 1624
.6058
. 1558
.4063
.0829
7667
. 2343
26
35
.38403
.61597
2.6040
.41592
2.4043
1.0830
.07668
.92332
25
36
. 8429
. 1570
.6022
. 1626
.4023
.0832
. 7679
. 2321
24
37
. 8456
. 1514
.6003
. 1660
.4004
.0833
. 7690
. 2310
23
38
. 8483
. 1617
.6985
. 1694
.3984
.0834
. 7701
. 2299
22
39
. 8510
. 1490
.5967
. 1728
.3964
.0836
. 7712
. 2287
21
40
.38537
.61463
2.6919
.41762
2.3945
1.0837
.07724
.92276
20
41
. 8564
. 1436
.6931
. 1797
-.3925
.0838
. 7735
. 2265
19
42
. 8591
. 1409
.6913
. 1831
.3906
.0840
. 7746
. 2254
18
43
. 8617
. 1382
.6895
. 1865
.3886
.0841
. 7757
. 2242
17
44
. 8644
. 1366
.6877
. 1899
.3867
.0842
. 7769
. 2231
16
45
.38671
.61329
2.6859
.41933
2.3847
1.0814
.07780
.92220
15
46
. 8698
. 1302
.5841
. 1968
.3828
.0846
7791
. 2209
14
47
. 8725
. 1275
.5823
. 2002
.3808
.0816
. 7802
. 2197
13
48
. 8751
. 1248
.5805
. 2036
.3789
.0817
. 7814
. 2186
12
49
. 8778
. 1222
.5787
. 2070
.3770
.0849
. 7826
. 2175
11
50
.38805
.61195
2.5770
.42105
2.3760
1.0850
.07836
.92164
10
61
. 8832
. 1168
.5762
. 2139
.3731
.0861
. 7847
. 2152
9
52
. 8869
. 1141
.6734
. 2173
.3712
.0863
. 7869
. 2141
8
53
. 8886
. 1114
.6716
. 2207
.3692
.0854
. 7870
. 2130
7
54
. 8912
. 1088
.5699
. 2242
.3673
.0855
. 7881
. 2118
6
55
.38939
.61061
2.5681
.42276
2.3654
1.0857
.07893
.92107
5
66
. 8966
. 1034
.5663
. 2310
.3636
.0858
. 7904
. 2096
4
57
. 8993
. 1007
.5646
. 2344
.3616
.0859
. 7915
. 2084
3
68
. 9019
. 0980
.6628
. 2.379
.3597
.0861
. 7927
. 2073
2
59
. 9046
. 0954
.6610
. 2413
.8677
.0862
. 7938
. 2062
1
60
. 9073
. 0927
.6593
. 2447
.3558
.0864
. 7949
. 2050
M.
Cosine.
Vrs. sin.
Secant.
Co tang.
Tang.
Cosec'nt
Vrs. COS.
Sine.
M.
Table 3.
NATURAL FUNCTIONS.
345
23°
Natural Trigonometrical Functions.
156°
M.
Sine.
Vr8. COS.
Oosec'nt
Tang.
Cotang.
Secant.
Vrs. sin.
Cosine.
M.
.39073
.60927
2.5593
.42447
2.3658
1.0864
.07949
.92050
60
1
. 9100
. 0900
.5575
. 2482
.3539
.0865
. 7961
. 2039
59
2
. 9126
. 0873
.5558
. 2616
.3520
.0866
. 7972
. 2028
58
3
. 9153
. 0846
.5540
. 2550
.3501
.0868
. 7984
. 2016
67
4
. 9180
. 0820
.5523
. 2581
.3482
.0869
. 7995
. 2005
56
5
.39207
.60793
2.5506
.42619
2.3463
1.0870
.08006
.91993
65
6
. 9234
. 0766
.5488
. 2654
.3445
.0872
. 8018
.1982
54
7
. 9260
. 0739
.5471
. 2688
.3426
.0873
. 8029
. 1971
53
8
. 9287
. 0713
.5453
. 2722
.3407
.0874
. 8041
. 1959
52
9
. 9314
. 0686
.5436
. 2757
.3388
.0876
. 8052
. 1948
51
10
.39341
.60659
2.5419
.42791
2.3369
1.0877
.08063
.91936
50
11
. 9367
. 0632
.5402
. 2826
.3350
.0878
. 8075
. 1925
49
12
. 9394
. 0606
.5384
. 2860
.3332
.0880
. 8086
. 1913
48
13
. 9421
. 0579
.5367
. 2894
.3313
.0881
. 8098
. 1902
47
14
. 9448
. 0552
.5350
. 2929
.3294
.0882
. 8109
. 1891
48
15
.39474
.60526
2.5333
.42963
2.3276
1.0884
.08121
.91879
45
ii;
. 9501
. 0499
.5316
. 2998
■• .3257
.0885
. 8132
. 1868
44
17
. 9528
. 0472
.5299
. 3032
.3238
.0886
. 8144
. 1856
43
18
. 9554
. 0445
.5281
. 3067
.3220
.0888
. 8155
. 1845
42
19
. 9581
. 0419
.5264
. 3101
.3201
.0889
. 8167
. 1833
41
20
.39608
.60392
2.5247
.43136
2.3183
1.0891
.08178
.91822
40
21
. 9635
. 0365
.5230
. 3170
.3164
.0892
. 8190
. 1810
39
22
. 9661
. 0339
.5213
. 3205
.3145
.0893
. 8201
. 1798
38
23
. 9688
. 0312
.5196
. 3239
.3127
.0895
. 8213
. 1787
37
24
. 9715
. 0285
.5179
. 3274
.3109
.0896
. 8224
. 1775
36
25
.39741
.60258
2.5163
.43308
2.3090
1.0897
.08236
.91764
35
26
. 9768
. 0232
.5146
. 3343
.3072
.0899
. 8248
. 1752
34
27
. 9795
. 0205
.5129
. 3377
.3053
.0900
. 8259
. 1741
33
28
. 9821
. 0178
.5112
. 3412
.3035
.0902
.8271
. 1729
32
29
. 9848
. 0152
.5095
. 3447
.3017
.0903
. 8282
. 1718
31
30
.39875
.60125
2.5078
.43481
2.2998
1.0904
.08294
.91706
80
31
. 9901
. 0098
.5062
. 3516
.2980
.0906
. 8306
. 1694
29
32
. 9928
. 0072
.5045
. 3550
.2962
.0907
. 8317
. 1683
28
33
. 99f)5
. 0045
.5028
. 3585
.2944
.0908
. 8329
. 1671
27
34
. 9981
. 0018
.6011
. 3620
.29-26
.0910
. 8340
. 1659
26
sr-,
.40008
.59992
2.4995
.43654
2.2907
1.0911
.08352
.91648
25
36
. 0035
. 9965
.4978
. 3689
.2889
.0913
. 8364
. 1636
24
37
. 0061
. 9938
.4961
. 3723
.2871
.0914
. 8375
. 1625
23
38
. 0088
. 9912
.4945
. 3758
.2853
.0915
. 8387
. 1613
22
39
. 0115
. 9885
.4928
. 3793
.2835
.0917
. 8399
. 1601
21
40
.40141
.59858
2.4912
.43827
2.2817
1.0918
.08410
.91590
20
41
. 0168
. 9832
.4895
. 3862
.2799
.0920
. 8422
. 1578
19
42
. 0195
. 9805
.4879
. 3897
.2781
.0921
. 8434
. 1566
18
43
. 0221
. 9778
.4862
. 3932
.2763
.0922
. 8445
. 1554
17
44
. 0248
. 9752
.4846
. 3966
.2745
.0924
.8457
. 1643
16
45
.40275
.59725
2.4829
.44001
2.2727
1.0925
.08469
.91631
15
4G
. 0301
. 9699
.4813
. 4036
•2709
.0927
. 8480
. 1519
14
47
. 0328
. 9672
.4797
. 4070
.2691
.0928
. 8492
. 1508
13
48
. 0354
. 9645
.4780
. 4105
.2673
.0929
. 8504
. 1496
12
49
. 0381
. 9619
.4764
. 4140
.2655
.0931
. 8516
. 1484
11
50
.40408
.59592
2.4748
.44176
2.2637
1.0932
.08527
.91472
10
51
. 0434
.9566
.4731
. 4209
.2619
.0934
. 8639
. 1461
9
52
. 0461
. 9539
.4715
. 4244
.2602
.0935
.8551
. 1449
8
53
. 0487
. 9512
.4699
. 4279
.2584
.0936
. 8563
. 1437
7
54
. 0514
. 9486
.4683
. 4314
.2566
.0938
. 8575
. 1425
6
55
.40541
.59459
2.4666
.44349
2.2548
1.0939
.08586
.91414
6
66
.0567
. 9433
.4660
. 4383
.2531
.0941
. 8598
. 1402
4
57
. 0594
. 9406
.4634
. 4418
.2513
.0942
. 8610
. 1390
3
58
. 0620
. 9379
.4618
4453
.2495
.0943
. 8622
.1378
2
59
. 0647
. 9353
.4602
. 4488
.2478
.0945
. 8634
. 1366
1
60
. 0674
. 9326
.4586
. 4523
.2460
.0946
. 8646
. 1354
M.
Cosine,
Vrs. sin.
Secant.
Cotang.
Tang.
Cosec'nt
Vrs. COS.
Sine.
M.
346
NATURAL FUNCTIONS.
Table 3.
24°
Natural Trigonometrical Functions.
iSS°
M.
Sine.
Vrs. COS.
Cosec'nt
Tang.
Cotang.
Secant.
Vra. sin.
Cosine.
M.
.40674
.59326
2.4586
.44523
2.2460
1.0946
.08645
.91354
60
1
. 0700
. 9300
.4570
. 4558
.2443
.0948
. 8657
. 1343
59
2
. 0727
. 9273
.4554
. 4593
.2425
.0949
. 8669
. 1331
58
3
. 0753
. 9247
.4538
. 4627
.2408
.0951
. 8681
. 1319
57
4
. 0780
. 9220
.4622
. 4662
.2390
.0952
. 8693
. 1307
56
5
.40806
.59193
2.4506
.44697
2.2373
1.0953
.08705
.91295
55
6
. 0833
. 9167
.4490
. 4732
.2355
.0955
. 8716
. 1283
54
7
. 0860
. 9140
.4474
. 4767
.2338
.0956
. 8728
. 1271
53
8
. 0886
. 9114
.4458
. 4802
.2320
.0958
. 8740
. 1260
62
9
. 0913
. 9087
.4442
. 4837
.2303
.0959
. 8752
. 1248
51
10
.40939
.59061
2.4426
.44872
2.2286
1.0961
.08764
.91236
50
11
. 0966
. 9034
.4411
. 4907
.2268
.0962
. 8776
. 1224
49
12
. 0992
. 9008
.4395
. 4942
.2251
.0963
. 8788
. 1212
48
13
. 1019
. 8981
.4379
. 4977
.2234
.0965
. 8800
. 1200
47
14
. 1045
. 8955
.4363
. 5012
.2216
.0966
. 8812
. 1188
46
15
.41072
.58928
2.4347
.45047
2.2199
1.0968
.08824
.91176
45
16
. 1098
. 8901
.4332
. 5082
.2182
.0969
. 8836
. 1164
44
17
. 1125
. 8875
.4316
. 5117
.2165
.0971
. 8848
. 1152
43
18
. 1151
. 8848
.4300
. 5152
.2147
.0972
. 8860
. 1140
42
19
. 1178
. 8822
.4285
. 5187
.2130
.0973
. 8872
. 1128
41
20
.41204
.58795
2.4269
.45222
2.2113
1.0975
.08884
.91116
40
21
. 1231
. 8769
.4254
. 5257
.2096
.0976
. 8896
. 1104
39
22
. 1257
. 8742
.4238
. 5292
.2079
.0978
. 8908
. 1092
38
23
. 1284
. 8716
.4222
. 5327
.2062
.0979
. 8920
. 1080
37
24
. 1310
. 8689
.4207
. 5362
.2045
.0981
. 8932
. 1068
36
25
.41337
.58663
2.4191
.45397
2.2028
1.0982
.08944
.91056
36
26
. 1363
. 8636
.4176
. 5432
.2011
.0984
. 8956
. 1044
34
27
. 1390
. 8610
.4160
. 5467
.1994
.0985
. 8968
. 1032
33
28
. 1416
. 8584
.4145
. 5502
.1977
.0986
. 8980
. 1020
32
29
. 1443
. 8557
.4130
. 5537
.1960
.0988
. 8992
. 1008
31
30
.41469
.58531
2.4114
.45573
2.1943
1.0989
.09004
.90996
30
31
. 1496
. 8504
.4099
. 5608
.1926
.0991
. 9016
. 0984
29
32
. 1522
. 8478
.4083
. 6643
.1909
.0992
. 9028
. 0972
28
33
. 1549
. 8451
.4068
. 5678
.1892
.0994
. 9040
. 0960
27
34
. 1575
. 8425
.4053
. 5713
.1875
.0995
. 9052
. 0948
26
35
41602
.58398
2.4037
.45748
2.1S59
1.0997
.09064
.90936
25
36
. 1628
. 8372
.4022
. 5783
.1842
.0998
. 9076
. 0924
24
37
. 1654
. 8345
.4007
. 5819
.1825
.1000
. 9088
. 0911
23
38
. 1681
. 8319
.3992
. 5854
.1808
.1001
. 9101
. 0899
22
39
. 1707
. 8292
.3976
. 5889
.1792
.1003
. 9113
. 0887
21
40
.41734
.58266
2.3961
.45924
2.1775
1.1004
.09125
.90875
20
41
. 1760
. 8240
.3946
. 5960
.1758
.1005
. 9137
. 0863
19
42
. 1787
. 8213
.3931
. 5995
.1741
.1007
. 9149
. 0851
18
43
. 1813
. 8187
.3916
. 6030
.1725
.1008
. 9161
. 0839
17
44
. 1839
. 8160
.3901
. 6065
.1708
.1010
. 9173
. 0826
16
45
.41866
.58134
2.3886
.46101
2.1692
1.1011
.09186
.90814
15
46
. 1892
. 8108
.3871
. 6136
.1675
.1013
. 9198
. 0802
14
47
. 1919
. 8081
.3856
. 6171
.1658
.1014
. 9210
. 0790
13
48
. 1945
. 8055
.38'11
. 6205
.1642
.1016
. 9222
. 0778
12
49
. 1972
. 8028
.3826
. 6242
.1625
.1017
. 92.34
. 0765
11
50
.41998
,58002
2.3811
.46277
2.1609
1.1019
.09247
.90753
10
51
. 2024
. 7975
.3796
. 6312
.1592
.1020
. 9259
. 0741
9
52
. 2051
. 7949
.3781
. 6348
.1576
.1022
. 9271
. 0729
8
53
. 2077
. 7923
.3766
. 6383
.1559
.1023
. 9283
. 0717
7
54
. 2103
. 7896
.3751
. 6418
.1543
.1025
. 9296
. 0704
6
55
.42130
.57870
2.3''36
.46454
2.1.527
1.1026
.09308
.90692
5
56
. 2156
. 7844
.3'21
. 6-189
.1510
.1028
. 9320
. 0680
4
57
. 2183
. 7817
.3706
. 6524
.1494
.1029
. 93.32
. 0668
3
58
. 2209
. 7791
.3691
. 6560
.1478
.1031
. 9.S45
. 0655
2
59
. 2235
. 7764
.3677
. 6595
.1461
.1032
. 9357
. 0643
1
60
. 2262
. 7738
.3662
. 6631
.1445
.1034
. 9369
. 0631
M.
CoKine.
Vrs. Bin.
Secant.
Cotang.
Tang.
Coeec'nt
Vrs. COB.
Sine.
M.
114°
65°
Table 3.
NATUKAL FUNCTIONS.
347
25°
Natural Trigonometrical Functions.
J 54°
M.
Sine.
Vrs. COS.
Cosec'nt
Tang.
Cotang.
Secant.
Vrs. sin.
Cosine.
M.
.42262
.57738
2.3662
.46631
2.1445
1.1034
.09369
.90631
60
1
. 2288
. 7712
.3647
. 6666
.1429
.1035
. 9381
.n618
59
2
. 2314
. 7685
.3632
. 6702
.1412
.1037
. 9394
. 0606
58
3
. 2341
. 7659
.3618
. 6737
.1396
.1038
. 9106
. 0594
67
4
.2367
. 7633
.3603
. 6772
.1380
.1040
. 9118
. 0681
56
5
.42394
.57606
2.3588
.46808
2.1364
1.1041
.09131
.90569
55
C
. 2420
. 7580
.3574
. 6843
.1348
.1013
. 9413
. 0557
54
7
. 2446
. 7554
.3559
. 6879
.1331
.1044
. 9165
. 0611
53
8
. 2473
. 7527
.3544
. 6914
.1315
.1046
. 9468
. 0532
52
9
. 2499
. 7501
.3530
. 6950
.1299
.1047
. 9180
. 0520
51
10
.42525
.57475
2.3515
.46985
2.1283
1.1049
.09192
.90507
50
U
. 2552
. 7418
.3601
. 7021
.1267
.1050
. 9605
. 0195
49
12
. 2578
. 7422
.3486
. 7056
.1251
.1062
. 9617,
. 0183
48
13
. 2604
. 7396
.3472
. 7092
.1235
.1053
. 9530
. 0170
47
14
. 2630
. 7369
.3457
. 7127
.1219
.1056
. 9542
. 0458
46
15
.426.57
.57343
2.3443
.47163
2.1203
1.1056
.09551
.90115
45
16
. 2683
. 7317
.3428
. 7199
.1187
.1058
. 9567
. 0433
44
17
. 2709
. 7290
.3414
. 72.34
.1171
.1059
. 9579
. 0421
43
18
. 2736
. 7264
.3399
. 7270
.1155
.1061
. 9592
. 0408
42
19
. 2762
. 7238
.3385
. 7306
.1139
.1062
. 9604
. 0396
41
20
.42788
.57212
2.3371
.47341
2.1123
1.1061
.09617
.90383
40
21
. 2815
. 7185
.3356
. 7376
.1107
.1065
. 9629
. 0371
39
22
. 2841
. 7159
.3342
. 7412
.1092
.1067
. 9641
. 0358
3S
23
. 2867
. 7133
.3328
. 7448
.1076
.1068
. 9661
. 0316
37
24
. 2893
. 7106
.3313
. 7483
.1060
.1070
. 9666
. 0333
36
25
.42920
.57080
2.3299
.47519
2.1014
1.1072
.09679
.90321
35
26
. 2946
. 7054
.3285
. 7555
.1028
.1073
. 9691
. 0308
34
27
. 2972
. 7028
.8271
. 7590
.1013
.1075
. 9704
. 0296
33
28
. 2998
. 7001
.3256
. 7626
.0997
.1076
. 9716
. 0283
32
29
. 3025
. 6975
.3242
. 7662
.0981
.1078
. 9729
. 0271
31
30
.43051
.66949
2.3228
.47697
2.0966
1.1079
.09741
.90258
30
31
. 3077
. 6923
.3214
. 77.S3
.0950
.1081
. 9764
. 0216
29
32
. 3104
. 6896
.3200
. 7769
.0934
.1082
. 9766
. 0233
28
33
. 3130
. 6870
.3186
. 7805
.0918
.1081
. 9779
. 0221
27
34
. 3156
. 6844
.3172
. 7810
.0903
.1085
. 9792
. 0208
26
35
.43182
.56818
2.3158
.47876
2.0887
1.1087
.09804
.90196
25
36
. 3208
. 6791
.3143
. 7912
.0872
.1088
. 9817
. 0183
24
37
. 3235
. 6765
.3129
. 7948
.0856
.1090
. 9829
. 0171
23
38
. 3261
. 6739
.3115
. 7983
.0840
.1092
. 9842
. 0158
22
39
. 3287
. 6713
.3101
. 8019
.0825
.1093
. 9854
. 0115
21
40
.43313
.56685
2.3087
.18055
2.0809
1.1095
.09867
.90133
20
41
. 3340
. 6660
.3073
. 8091
.0794
.1096
. 9880
. 0120
19
42
. 3366
. 6634
.3069
. 8127
.0778
.1098
. 9892
. 0108
18
43
. 3392
. 6608
..3046
. 8162
.0763
.1099
. 9905
. 0095
17
44
. 3418
. 6582
.3032
. 8198
.0747
.1101
. 9917
. 0082
16
45
.43444
.56555
2.3018
.48234
2.0732
1.1102
.09930
.90070
15
46
. 3471
. 6529
.3004
. 8270
.0717
.1101
. 9913
. 0057
14
47
. 3497
. 6503
.2990
. 8306
.0701
.1106
. 9956
. 0014
13
48
. 3523
. 6477
.2976
. 8342
.0686
.1107
. 9968
. 0032
12
49
. 8549
. 6451
.2962
. 8378
.0671
.1109
. 9981
. 0019
11
SO
.43575
.56424
2.2949
.48414
2.0655
1.1110
.09993
.90006
10
61
. 3602
. 6398
.2936
. 8449
.0640
.1112
.10006
.89991
9
52
. 3628
. 0372
. .2921
. 8485
.0625
.1113
. 0019
. 9981
8
53
. 3654
. 6346
.2907
. 8521
.0609
.1115
. 0031
. 9968
7
54
. 3680
. 6320
.2894
. 8557
.0891
.1116
. 0044
. 9956
6
55
.43706
.56294
2.2880
.48593
2.0579
1.1118
.10057
.89943
5
56
. 3732
. 6267
.2866
. 8629
.0564
.1120
. 0070
. 9930
4
57
. 3759
. 6241
.2853
. 8665
.0518
.1121
. 0082
. 9918
3
58
. 3^85
. 6215
.2839
. 8701
.0633
.1123
. 0095
. 9905
2
59
. 3811
. 6189
.2825
. 8737
.0518
.1124
. 0108
. 9892
1
60
. 3837
. 6163
.2812
. 8773
.0503
.1126
. 0121
. 9879
mT
Cosine.
Vrs. sin.
Secant.
Cotang.
Tang.
Cosec'nt
Vrs. coo.
Sine.
M.
348
NATURAL FUNCTIONS.
Table 3.
26<:
Natural Trigonometrical Functions.
153°
M.
Sine.
Vre. CO.S.
Cosec'nt
Tang.
Co tang.
Secant.
Vrs. Bin.
Cosine.
M.
.4S837
.56163
2.2812
.48773
2.0503
1.1126
.10121
.89879
60
1
. 3863
. 6137
.2798
. 8809
.0488
.1127
. 0133
. 9867
59
2
. 3aS9
. 6111
.2784
. 8845
.0473
.1129
. 0146
. 9854
58
8
. 3915
. 0084
.2771
. 8881
.0458
.1131
. 0159
. 9841
57
4
. 3942
. 0058
.2757
. 8917
.0443
.1132
. 0172
. 9828
56
5
.43968
.56032
2.2744
.48953
2.0427
1.1134
.10184
.89815
55
6
. 3994
. 6006
.2730
. 8989
.0412
.1135
. 0197
. 9803
54
7
. 4020
. 5980
.2717
. 9025
.0397
.1137
. 0210
. 9790
53
8
. 4046
. 5954
.2703
. 9062
.0382
.1139
. 0223
. 9777
52
9
. 4072
. 5928
.2690
. 9098
.0367
.1140
. 0236
. 9764
51
10
.44098
.55902
2.2676
.49134
2.0352
1.1142
.10248
.89751
50
11
. . 4124
. 5875
.2663
. 9170
.0338
.1143
. 0261
. 9739
49
12
. 4150
. 5849
.2650
. 9206
.0323
.1145
. 0274
. 9726
48
IS
. 4177
. 5823
.2636
. 9242
.0308
.1147
. 0287
. 9713
47
14
. 4203
. 5797
.2623
. 9278
.0293
.1148
. 0300
. 9700
46
15
.44229
.55771
2.2610
.49314
2.0278
1.1150
.10313
.89687
45
16
. 4255
. 5745
.2.596
. 9351
.0263
.1151
. 0326
. 9674
44
17
. 4281
. 5719
.2583
. 9387
.0248
.1153
. 0338
. 9661
43
18
. 4307
. 5693
.2570
. 9423
.0233
.1155
. 0351
. 9619
42
19
. 4333
. 5667
.2556
. 9459
.0219
.1156
. 0364
. 9636
41
20
.14359
.55641
2.2543
.49495
2.0204
1.1158
.10377
.89623
40
21
. 4385
. 5615
.2530
. 9.532
.0189
.1159
. 0390
. 9610
39
22
. 4411
. 5S89
.2517
. 9668
.0174
.1161
. 0403
. 9697
38
23
. 4437
. 5562
.2503
. 9604
.0159
.1163
. 0416
. 9684
37
24
. 4463
. 5536
.2490
. 9640
.0145
.1164
. 0429
. 9571
36
25
.44489
.55510
2.2477
.49077
2.0130
1.1166
.10442
.89658
35
26
. 4516
. 5484
.2464
. 9713
.0115
.1167
. 0455
. 9515
34
27
. 4542
. 5458
.2451
. 9749
.0101
.1169
. 0468
. 9532
33
28
. 4568
. 5432
.2438
. 9785
.0086
.1171
. 0481
. 9519
32
29
. 4594
. 5406
.2425
. 9822
.0071
.1172
. 0493
. 9.506
31
30
.44620
.55380
2.2411
.49858
2.0058
1.1174
.10606
.89493
30
31
. 4646
. 5354
.2398
. 9894
.0042
.1176
. 0619
. 9480
29
32
. 4672
. 5328
.2385
. 9931
.0028
.1177
. 0532
. 9467
28
33
. 4698
. 6302
.2372
. 9967
.0013
.1179
. 0545
. 9454
27
34
. 4724
. 5276
2359
.50003
1.9998
.1180
. 0558
. 9441.
26
35
.44750
.65250
2^2346
.50040
1.9984
1.1182
.10571
.89428
25
36
. 4776
. 5224
.2333
. 0076
.9969
.1184
. 0584
. 9415
24
37
. 4802
. 5198
.2320
. 0113
.9955
.1185
. 0598
. 9402
23
38
. 4828
. 6172
.2307
. 0149
.9940
.1187
. 0611
. 9389
22
39
. 4854
5146
.2294
. 0185
.9926
.1189
. 0624
. 9376
21
40
.44880
.55120
2.2282
.50222
1.9912
1.1190
.10637
.89363
20
41
. 4906
. 6094
.2269
. 0258
.9897
.1192
. 0650
. 9350
19
42
. 4932
. 5068
.2256
. 0295
.9883
.1193
. 0663
. 9337
18
43.
. 4958
. 5042
.2243
. 0331
.9868
.1195
. 0676
. 9324
17
44
. 4984
. 5016
.2230
. 0368
.9854
.1197
. 0689
. 9311
16
45
.45010
.54990
2.2217
.50404
1.9840
1.1198
.10702
.89298
15
46
5036
. 4964
.2204
. 0441
.9825
.1200
. 0715
. 9285
14
47
. 5062
. 4938
.2192
. 0477
.9811
.1202
. 0728
. 9272
13
48
5088
4912
.2179
. 0514
.9797
.1203
. 0741
. 9258
12
49
. 5114
. 4886
.2166
. 0550
.9782
.1206
. 0754
. 9215
11
50
.45140
.54860
2.2153
.50587
1.9768
1.1207
.10768
.89232
10
51
. 5166
. 4834
.2141
. 0623
.9754
.1208
. 0781
. 9219
9
52
. 5191
. 4808
.2128
. 0660
.9739
.1210
. 0794
. 9206
8
53
. 5217
. 4782
.2115
. 0696
.9725
.1212'
. 0807
. 9193
7
54
. ,5243
. 4756
.2103
. 0733
.9711
.1213
. 0820
. 9180
6
65
.45269
.54730
2.2090
.50769
1.9697
1.1215
.10833
.89166
5
56
. 6295
. 4705
.2077
. 0806
.9683
.1217
. 0846
. 9153
4
57
. 5321
. 4679
.2065
. 0843
.9668
.1218
. 0860
. 9140
3
58
5347
. 4653
.2052
. 0879
.9654
.12-20
. 0873
. 9127
2
59
. 5373
. 4627
.2039
. 0916
.9640
12,22
. 0886
. 9114
1
60
. 5399
. 4601
.2027
. 0952
.9626
.1223
. 0899
. 9101
M.
Cosine.
Vrs. sin.
Secant.
Co tang.
Tang.
Cosec'nt
VrB. cos.
Sine.
M.
116°
63°
Table 3.
NATURAL FUNCTIONS.
349
27°
Natural Trigonometrical Functions.
152"
M.
Sine.
Vre. COB.
Cosec'nt
Taug.
Co tang.
Secant.
Vi-a. sin.
Cosine.
M.
.45399
.54601
2.2027
.50952
1.9626
1 1223
.10899
.89101
60
1
. 5425
. 4575
.2014
. 0989
.9612
.1225
. 0912
. 9087
59
2
. 5451
. 4549
.2002
. 1026
.9598
.1226
. 0926
. 9074
58
3
. 5477
. 4523
.1989
. 1062
.9684
.1228
. 0939
. 9061
57
4
. 5503
. 4497
.1977
. 1099
.9570
.1230
. 0952
. 9048
56
5
.45528
.54-171
2.1964
.51136
1.9656
1.1231
.10965
.89034
55
6
. 6554
. 4145
.1962
. 1172
.9542
.1233
. 0979
. 9021
54
7
. 5580
. 4420
.1939
. 1209
.9528
.1235
. 0992
. 9008
53
8
. 5606
. 4394
.1927
. 1246
.9514
.1237
. 1005
. 8995
52
9
. 5632
. 4368
.1914
. 1283
.9500
.1238
. 1018
. 8981
51
10
.45658
.51342
2.1902
.51319
1.9486
1.1240
.11032
.88968
50
11
. 6684
. 4316
.1889
. 1356
.9472
.1242
. 1045
. 8955
49
12
. 5710
. 4290
.1877
. 1393
.9458
.1243
. 1058
. 8942
48
13
. 5736
. 4264
.1865
. 1430
.9444
.1245
. 1072
. 8928
47
14
. 5761
. 4238
.1852
. 1466
.9430
.1247
. 1085
. 8915
46
15
.45787
.54213
2.1840
.51603
1.9416
1.1248
.11098
.88902
45
16
. 6813
. 4187
.1828
. 1540
.9402
.1250
. 1112
. 8888
44
17
. 5839
. 4161
.1815
. 1677
.9388
.1252
. 1125
. 8875
43
18
. 6865
. 4135
.1803
. 1614
.9375
.1253
. 1138
. 8862
42
19
. 6891
. 4109
.1791
. 1651
.9361
.1255
. 1152
. 8848
41
20
.45917
.54083
2.1778
.51687
1.9347
1.1267
.11165
.88835
40
21
. 5942
. 4057
.1766
. 1724
.9333
.1258
. 1178
, 8822
39
22
. 5968
. 4032
.1754
. 1761
.9319
.1260
. 1192
. 8808
38
23
. 5994
. 4006
.1742
. 1798
.9306
.1202
. 1205
. 8795
37
24
. 6020
. 3980
.1730
. 1835
.9292
.1264
. 1218
. 8781
36
25
.46046
.53954
2.1717
.51872
1.9278
1.1265
.11232
.88768
35
26
. 6072
. 3928
.1705
. 1909
.9264
.1267
. 1245
. 8765
34
27
. 6097
. 3902
.1693
. 1946
.9251
.1269
. 1259
. 8741
33
28
. 6123
. 3877
.1681
. 1983
.9237
.1270
. 1272
. 8728
32
29
. 6149
. 3851
.1669
. 2020
.9223
.1272
. 1285
. 8714
31
30
.46175
.53825
2.1657
.52057
1.9210
1.1274
.11299
.88701
30
31
. 6201
. 3799
.1645
. 2094
.9196
.1275
. 1312
. 8688
29
32
. 6226
. 3773
.1633
. 2131
.9182
.1277
. 1326
. 8674
28
33
. 6252
. 3748
.1620
. 2168
.9169
.1279
. 1339
. 8661
27
34
. 6278
. 3722
.1608
. 2205
.9155
.1281
. 1353
. 8647
26
35
.46304
.53696
2.1596
.52242
1.9142
1.1282
.11366
.88634
25
36
. 6330
. 3670
.1584
. 2279
.9128
.1284
. 1380
. 8620
24
37
. 6355
. 3645
.1572
. 2316
.9115
.1286
. 1393
. 8607
23
38
. 6381
. 3619
.1560
. 2353
.9101
.1287
. 1407
8593
22
39
. 6407
. 3593
.1548
. 2390
.9088
.1289
. 1420
. 8580
21
40
.46433
.53567
2.1536
.52427
1.9074
1.1291
.11434
.88666
20
41
. 6458
. 3541
.15'25
. 2464
.9061
.1293
. 1417
. 8563
19
42
. 6484
. 3516
.1513
. 2501
.9047
.1294
. 1461
. 8539
18
43
. 6510
. 3490
.1501
. 2638
.9034
.1296
. 1474
. 8526
17
44
. 6536
. 3464
.1489
. 2675
.9020
.1298
. 1488
. 8512
16
45
.46561
.53438
2.1477
.52612
1.9007
1.1299
.11501
.88499
15
46
. 6587
. 3413
.1465
. 2660
.8993
.1301
. 1515
. 8485
14
47
. 6613
. 3387
.1453
. 2687
.8980
.1303
. 1528
. 8472
13
48
. 6639
. 3361
.1441
. 2724
.8967
.1305
1642
. 8458
12
49
. 6664
. 3336
.1430
. 2761
.8953
.1306
. 1555
. 8444
11
60
.46690
.53310
2.1418
.52798
1.8940
1.1308
.11569
.88431
10
51
. 6716
. 3284
.1406
. 2836
.8927
.1310
. 1583
. 8417
9
52
. 6741
. 3258
.1394
. 2873
.8913
.1312
. 1596
. 8404
8
63
. 6767
. 3233
.1382
. 2910
.8900
.1313
. 1610
. 8390
7
64
. 6793
. 3207
.1371
. 2947
.8887
.1315
. 1623
. 8376
6
55
.46819
.53181
2.1359
.52984
1.8873
1.1317
.11637
.88363
5
66
. 6844
. 3156
.1347
. 3022
.8860
.1319
. 1651
. 8349
4
67
. 6870
. 3130
.1335
. 3059
.8847
(1320
. 1664
. 8336
3
68
. 6896
. 3104
.1324
. 3096
.8834
.1322
. 1678
. 8322
2
59
. 6921
. 3078
.1312
. 3134
.8820
.1324
. 1691
. 8308
1
60
. 69J7
. 3053
.1300
. 3171
.8807
.1326
. 1705
. 8295
M^
Cosine.
Vrs. sin.
Secant.
Cotang.
Tang.
Cosec'nt
Yrs. cos.
Sine.
M.
Ii7°
62°
S50
NATDEAL FUNCTIONS.
Table 3.
28<^
Natural Trigonometrical Functions.
JS1°
M.
Sine.
Vrs. COS.
Cosec'ut
Tang.
Cotang.
Secant.
Vrs. sin.
Cosine,
M.
.46947
.53053
2.1300
.53171
1.8807
1.1326
.11705
,88295
60
1
. 6973
. 3027
.1289
. 3208
.8794
.1327
. 1719
. 8281
59
2
. 6998
. 3001
.1277
. 3245
.8781
.1329
. 1732
. 8267
58
3
. 7024
. 2976
.1266
. 3283
.8768
.1331
. 1746
. 8254
57
4
. 7050
. 2950
.1264
. 3320
.8754
.1333
. 1760
. 8240
56
5
.47075
.52924
2.1242
.63358
1.8741
1.1334
.11774
.88226
55
6
. 7101
. 2899
.1231
. 3395
.8728
.1336
. 1787
. 8213
54
7
. 7127
. 2873
.1219
. 3432
.8715
.1338
. 1801
. 8199
5S
8
. 7152
. 2847
.1208
. 3470
.8702
.1340
. 1815
. 8185
52
9
. 7178
. 2822
.1196
. 3507
.8089
.1341
. 1828
. 8171
51
10
.47204
.52796
2.1185
.53545
1.8676
1.1343
.11842
.88158
50
11
. 7229
. 2770
.1173
. 3582
.8603
.1345
. 1856
. 8144
49
12
. 7255
. 2745
.1102
. 3619
.8650
.1347
. 1870
. 8130
48
13
. 7281
. 2719
.1150
. 3657
.8637
.1349
. 1883
. 8117
47
14
. 7306
. 2694
.1139
. 3694
.8624
.1350
. 1897
. 8103
46
15
.47332
.62668
2.1127
.53732
1.8611
1.1362
.11911
■88089
45
16
. 7367
. 2642
.1116
. 3769
.8598
.1364
. 1925
. 8075
44
17
. 7383
. 2617
.1104
. 3807
.8585
.1356
. 1938
. 8061
43
18
. 7409
. 2591
.1093
. 3844
.8572
.1357
. 1952
. 8048
42
19
. 7434
. 2565
.1082
. 3882
.8569
.1359
. 1966
. 8034
41
20
.47460
.52540
2.1070
.53919
1.8546
1.1361
.11980
.88020
40
21
. 7486
. 2514
.1069
. 3957
.8533
.1363
. 1994
. 8006
39
22
. 7511
. 2489
.1048
. 3996
.8520
.1365
. 2007
. 7992
38
23
. 7537
. 2463
.1036
. 4032
.8507
.1366
. 2021
. 7979
37
24
. 7562
. 2437
.1025
. 4070
.8495
.1368
. 2035
. 7965
36
25
.47588
.52412
2.1014
.51107
1.8482
1.1370
.12049
.87951
35
26
. 7613
. 2386
.1002
. 4145
.8469
.1372
. 2063
. 7937
34
27
. 7639
. 2361
.0991
4183
.8456
.1373
. 2077
. 7923
33
28
. 7665
. 2335
.0980
. 4220
.8443
.1375
. 2090
. 7909
32
29
. 7690
. 2310
.0969
. 4268
.8430
.1377
. 2104
. 7895
31
30
.47716
.52284
2.0957
.54296
1.8418
1.1379
.12118
.87882
30
31
. 7741
. 2258
.0946
. 4333
.8405
.1381
. 2132
. 7868
29
32
. 7767
. 2233
.0935
. 4371
.8392
.1382
. 2146
. 7854
28
33
. 7792
. 2207
.0924
. 4409
.8379
.1384
. 2160
. 7840
27
34
. 7818
. 2182
.0912
. .4446
.8367
.1386
■ . 2174
. 7826
26
36
.47844
.52156
2.0901
.54484
1.8354
1.1388
.12188
.87812
25
36
. 7869
. 2131
.0890
. 4522
.8341
.1390
. 2202
. 7798
24
37
. 7895
. 2105
.0879
. 4659
.8329
.1391
. 2216
. 7784
23
38
. 7920
. 2080
.0868
. 4597
.8316
.1393
. 2229
. 7770
22
39
. 7946
. 2054
.0867
. 4635
.8303
.1395
. 2243
. 7756
21
40
.47971
.52029
2.0846
.54673
1.8291
1.1397
.12257
.87742
20
41
. 7997
. 2003
.0835
. 4711
.8278
,1399
. 2271
. 7728
19
42
. 8022
. 1978
.0824
. 4748
.8265
.1401
. 2285
. 7715
18
43
. 8048
. 1952
.0812
. 4786
.8253
.1402
. 2299
. 7701
17
44
. 8073
. 1927
.0801
. 4824
.8240
.1404
. 2313
. 7687
16
45
.48099
.51901
2.0790
.54862
1.8227
1.1406
.12327
.87673
16
46
. 8124
. 1876
.0779
. 4900
.8215
.1408
. 2341
. 7659
14
47
. 8160
. 1850
.0768
. 4937
.8202
.1410
. 2355
. 7645
13
48
. 8175
. 1825
.0757
. 4975
.8190
.1411
. 2369
. 7631
12
49
. 8201
. 1799
.0746
. 5013
.8177
.1413
. 2383
. 7617
11
50
.48226
.61774
2.0736
.55051
1.8165
1.1415
.12397
.87603
10
61
. 8252
. 1748
.0726
6089
.8152
.1417
. 2411
. 7688
9
52
. 8277
. 1723
.0714
. 6127
.8140
.1419
. 2425
. 7574
8'
63
. 8303
. 1697
.0703
. 6165
.8127
.1421
. 2439
. 7560
7
64
. 8328
. 1672
.0692
. 5203
.8115
.1422
. 2453
. 7546
6
85
.48354
.51646
2.0681
.55241
1.8102
1,1424
.12468
.87532
5
66
. 8379
. 1621
.0670
. 5279
.8090
.1426
. 2482
. 7518
4
67
. 8405
. 1695
.0659
. 5317
.8078
.1428
. 2496
. 7504
3
58
. 8430
. 1670
.0648
. 5355
.8065
.1430
. 2510
. 7490
2
59
. 8455
. 1644
.0637
. 6393
.8063
,1432
. 2524
. 7476
1
60
. 8481
. 1519
.0627
. 6431
.8040
.1433
. 2538
. 7462
M.
Cosine.
Vrs, sin.
Secant.
Ootang.
Tang.
Gosec'nt
Vrs, cos.
Sine.
jE
118°
6J°
Table 3.
NATURAL FUNCTIONS.
351
29°
Natural Trigonom
etrical Functions. .
J 50°
M.
Sine.
Vrs. COS.
Cosfc'nt
Tang.
Cotang.
Secant.
Vrs. sin.
Cosine.
M.
.48481
.51519
2.0627
.55431
1.8040
1.1433
.12538
.87462
60
1
. 8506
. 1493
.0616
. 5469
.8028
.1435
. 2552
. 7448
59
2
. 8532
. 1468
.0605
. 5507
.8016
.1437
. 2566
. 7434
58
3
. 8557
. 1443'
.0594
. 5545
.8003
.1439
. 2580
. 7420
57
4
. 8583
. 1417
.0683
. 5583
.7991
.1441
. 2594
. 7406
66
5
.48608
.51392
2.0573
.55621
1.7979
1.1443
.12609
.87391
55
6
. 8533
. 13G6
.0562
. 6659
.7966
.1445
. 2623
. 7377
64
7
. 8659
. 1341
.0551
. 5697
.7964
.1446
. 2637
. 7363
53
8
. 8684
. 1316
.0540
. 5735
.7942
.1448
. 2661
. 7349
52
9
. 8710
. 1290
.0530
. 5774
.7930
.14,50
. 2665
. 7335
51
10
.48735
.51265
2.0519
.55812
1.7917
1.1452
.12679
.87320
50
11
. 8760
. 1239
.0508
. 6850
.7905
.1454
. 2694
. 7,306
49
12
. 8786
. 1214
.0498
. 5888
.7893
.1456
. 2708
. 7292
48
13
. 8811
. 1189
.0487
. 5926
.7881
.1458
. 2722
. 7278
47
14
. 8837
. 1163
.0476
. 6964
.7868
- .1459
. 27,36
. 7264
46
15
.48862
.51138
2.0466
.56003
1.7866
1.1461
.127.50
.87250
45
16
. 8887
. 1112
.0465
. 6041
.7844
.1463
. 2765
. 7235
44
17
. 8913
. 1087
.0444
. 6079
.7832
.1465
. 2779
. 7221
43
18
. 8938
. 1062
.0434
. 6117
.7820
.1467
. 2793
. 7207
42
19
. 8964
. 1036
.0423
. 6156
.7808
.1469
. 2807
. 7193
41
20
.48989
.51011
2.0413
.66194
1.7795
1.1471
.12821
.87178
40
21
. 9014
. 0986
.0402
. 6232
.7783
.1473
. 2836
. 7164
39
22
. 9040
. 0960
.0.392
. 6270
.7771
.1474
. 2850
. 7150
38
23
. 9065
. 0935
.0381
. 6309
.7759
.1476
. 2864
. 7136
37
24
. 9090
. 0910
.0370
. 6347
.7747
.1478
. 2879
. 7121
36
25
.49116
.60884
2.0360
.66385
1.7735
1.1480
.12893
.87107
35
26
. 9141
. 0859
.0349
. 6424
.7723
.1482
. 2907
. 7093
34
27
. 9166
. 0834
.0339
. 6462
.7711
.1484
. 2921
. 7078
33
28
. 9192
. 0808
.0329
. 6500
.7699
.1486
. 2936
. 7064
32
29
. 9217
. 0783
.0318
. 6539
.7687
.1488
. 2950
. 7050
31
30
.49242
.60758
2.0308
.56577"
1.7675
1.1489
.12964
.87035
30
31
. 9268
. 0732
.0297
. 6616
.7663
.1491
. 2979
. 7021
29
32
. 9293
. 0707
.0287
. 6654
.7651
.1493
. 2993
. 7007
28
33
. 9318
. 0682
.0276
. 6692
.7639
.1495
. 3007
. 6992
27
34
. 9343
. 0656
.0266
. 6731
.7627
.1497
. 3022
. 6978
26
35
.49369
.50631
2.0256
.66769
1.7615
1.1499
.13036
.86964
25
36
. 9394
. 0606
.0245
. 6808
.7603
.1501
. 3050
. 6949
24
37
. 9419
. 0580
.0235
. 6846
.7591
.1503
. 3065
. 6935
23
38
. 9445
. 0565
.0224
. 6886
.7579
.1505
. 3079
. 6921
22
39
. 9470
. 0530
.0214
. 6923
.7567
.1607
. 3094
. 6906
21
40
.49495
.50505
2.0204
.66962
1.7565
1.1608
.13108
.86892
20
41
. 9521
. 0479
.0194
. 7000
.7544
.1610
. 3122
. 6877
19
42
. 9M6
. 0454
.0183
. 7039
.7532
.1512
. 3137
. 6863
18
43
. 9571
. 0429
.0173
. 7077
.7520
.1614
. 3151
. 6849
17
44
. 9596
. 0404
.0163
. 7116
.7608
.1516
. 3166
. 6834
16
45
.49622
.50378
2.0152
.67165
1.7496
1.1518
.13180
.86820
15
46
. 9647
. 0363
.0142
. 7193
.7484
.1520
. 3194
. 6805
14
47
. 9672
. 0328
.0132
. 7232
.7473
.1522
. 3209
. 6791
13
48
. 9697
. 0303
.0122
. 7270
.7461
.1524
. 3223
. 6776
12
49
. 9723
. 0277
.0111
. 7309
.7449
■ .1526
. 3238
. 6762
11
50
.49748
.60252
2.0101
.67.348
1.7437
1.1528
.13252
.86748
10
51
. 9773
. 0227
.0091
. 7386
.7426
.1530
. 3267
. 6733
9
52
. 9798
. 0202
.0081
. 7425
.7414
.1531
. 3281
. 6719
8
53
. 9823
. 0176
.0071
. 7464
.7402
.1633
. 3296
. 6704
7
54
. 9849
. 0151
.0061
. 7602
.7390
.1535
. 3310
. 6690
6
55
.49874
.50126
2.00.50
.57541
1.7379
1.1637
.13325
.86675
5
56
. 9899
. 0101
.0040
. 7580
.7367
.1539
. 3339
. 6661
4
57
. 9924
. 0076
.0030
. 7619
.7365
.1541
. 3354
. 6646
3
58
. 9950
. 0050
.0020
. 7657
.7344
.1543
. 3368
. 6632
2
69
. 9975
. 0025
.0010
. 7696
.7332
.1645
. 3383
. 6617
1
60
.50000
. 0000
.0000
. 7735
.7320
.1547
. 3397
. 6602
mT
Cosine.
Vrs. sin.
Secant.
Cotang.
Tang.
Cosec'nt
Vrs. COS.
Sine.
M.
U9°
60°
352
NATURAL FUNCTIONS.
Table 3.
30
3
Natural Trigonometrical Functions.
149°
M.
Sine.
Vrs. COS.
Cosec'nt
Tang.
Co tang.
Secant.
Vrs. sin.
Cosine.
M.
.50000
.50000
2.0000
.57735
1.7320
1.1547
.13397
.86602
60
1
. 0025
.49975
1.9990
. 7774
.7309
.1549
. 3412
. 6588
69
2
. 0050
. 9950
.9980
. 7813
.7297
.1551
. 3426
. 6573
58
S
. 0075
. 9924
.9970
. 7851
.7286
.1553
. 3441
. 6559
67
4
. 0101
. 9899
.9960
. 7890
.7274
.1565
. 3456
. 6544
56
5
.50126
.49874
1.9950
.57929
1.7262
1.1567
.13470
.86630
55
6
. 0151
. 9849
.9940
. 7968
.7261
.1559
. 3485
. 6516
54
7
. 0176
. 9824
.9930
. 8007
.7239
.1561
. 3499
. 6500
53
8
. 0201
. 9799
.9920
. 8046
.7228
.1562
. 3514
. 6486
62
9
. 0226
. 9773
.9910
. 8085
.7216
.1564
. 3529
. 6171
61
10
.60252
.49748
1.9900
.58123
1.7205
1.1666
.13543
.86457
.50
11
. 0277
. 9723
.9890
. 8162
.7193
.1568
. 3568
. 6442
49
12
. 0302
. 9698
.9880
. 8201
.7182
.1570
. 3572
. 6427
48
13
. 0327
. 9673
.9870
. 8240
.7170
.1672
. 3587
. 6413
47
14
. 0352
. 9648
.9860
. 8279
.7169
.1574
. 3602
. 6398
46
15
.50377
.49623
1.9850
.58318
1.7147
1.1576
.13616
.86383
45
16
. 0402
. 9597
.9840
. 8357
.7136
.1578
. 3631
. 6369
44
17
. 0428
. 9572
.9830
. 8396
.7124
.1680
. 3646
. 6354
43
18
. 0453
. 9547
.9820
8435
.7113
.1582
. 3660
. 6339
42
19
. 0478
. 9522
.9811
. 8474
.7101
.1584
. 3675
. 6325
41
20
.50503
.49497
1.9801
.58513
1.7090
1.1.586
.13690
.86310
40
21
. 0528
. 9472
.9791
. 8552
.7079
.1588
. 3704
. 6295
39
22
. 0553
. 9447
.9781
. 8591
.7067
.1590
. 3719
. 6281
38
23
. 0578
. 9422
.9771
. 8630
.7056
.1592
. 3734
. 6266
37
24
. 0603
. 9397
.9761
. 8670
.7044
.1594
. 3749
. 6251
36
25
.50628
.49371
1.9752
.58709
1.7033
1.1596
.13763
.86237
35
26
. 0653
. 9346
.9742
. 8748
.7022
.1698
. 3778
. 6222
34
27
. 0679
. 9321
.9732
. 8787
.7010
.1600
. 3793
. 6207
33
28
. 0704
. 9296
.9722
. 8826
.6999
.1602
. 3807
. 6192
32
29
. 0729
. 9271
.9713
. 8865
.6988
.1604
. 3822
. 6178
31
30
.50754
.49246
1.9703
.58904
1.6977
1.1606
.13837
.86163
30
31
. 0779
. 9221
.9693
. 8944
.6965
.1608
. 3852
. 6148
29
32
. 0804
. 9196
.9683
. 8983
.6954
.1610
. 8867
. 6133
28
33
. 0829
. 9171
.9674
. 9022
.6943
.1612
. 3881
. 6118
27
34
. OS.'M
. 9146
.9664
. 9061
.6931
.1614
. 3896
. 6104
26
35
.50879
.49121
1.9654
.59100
1.6920
1.1616
.13911
.86089
25
36
. 0904
. 9096
.9645
. 9140
.6909
.1618
. 3926
. 6074
24
37
. 0929
. 9071
.9635
. 9179
.6898
.1620
. 3941
. 6059
23
38
. 0954
. 9040
.9625
. 9218
.6887
.1622
. 3955
. 6044
22
39
. 0979
. 9021
.9616
. 9258
.6875
.1624
. 3970
. 6030
21
40
.6a0O4
.48996
1.9006
.59297
1.6864
1.1626
.13985
.86015
20
41
. 1029
. 8971
.9596
. 93.36
.6853
.1628
. 4000
. 6000
19
42
. 1054
. 8946
.9587
. 9376
.6842
.1630
. 4015
. 5985
18
43
. 1079
. 8921
.9577
. 9415
.6831
.1632
. 4030
. 5970
17
44
. 1104
. 8896
.9568
. 9454
.6820
.1634
. 4044
. 5965
16
45
.51129
.48871
1.9558
.59494
1.6808
1.1636
.14059
.85941
16
46
. 1154
. 8846
.9549
. 9533
.6797
.1638
. 4074
. 5926
14
47
. 1179
. 8821
.9539
. 9572
.6786
.1640
. 4089
. 5911
13
48
. 1204
. 8796
.9530
. 9612
.6775
.1642
. 4104
. 5896
12
49
. 1229
. 8771
.9520
. 9651
.6764
.1644
. 4119
. 6881
11
60
.51254
.48746
1.9510
.59691
1.6753
1.1646
.14134
.85866
10
51
. 1279
. 8721
.9501
. 9730
.6742
.1648
. 4149
. 5851
9
52
. 1304
. 8696
.9491
. 9770
.6731
.1650
. 4164
. 5836
8
53
1329
. 8671
.9482
. 9809
.6720
.1652
. 4178
. 5821
7
54
. 1354
. 8646
.9473
. 9849
.6709
.1654
. 4193
. 5806
6
55
.51379
.48621
1.9463
.59888
1.6698
1.1656
.14208
.85791
5
56
. 1404
. 8596
.9454
. 9928
.6687
.1658
. 4223
. 5777
4
57
. 1429
. 8571
.9444
. 9967
.6676
.1660
4238
. 5762
3
58
. 1454
. 8546
.9435
.60007
.6665
.1662
. 4253
. 5747
2
69
. 1479
. 8521
.9425
. 0046
.6654
.1664
. 4268
. 5732
1
60
. 1504
. 8496
.9416
. 0086
.6643
.1666
. 4283
. 5717
M,
Cosine.
Vrs. sin.
Secant.
Co tang.
Tang.
Cosec'nt
Vrs. COS.
Sine.
M.
120°
59°
Table 3.
NATURAL FUNCTIONS.
353
31°
Natural Trigonometrical Functions.
148°
M.
Sine.
Vrs. COS.
CoBoc'nt
Tang.
Co tang.
Secant.
Vrs. sin.
Cosine.
M.
.51504
.48496
1.9416
.60086
1.6643
1.1666
.14283
.85717
60
1
. 1529
. 8471
.9407
. 0126
.6632
.1668
. 4298
. 5702
59
2
.1554
. 8446
.9397
. 0165
.6621
.1670
. 4313
. 5687
58
3
. 1578
. 8421
.9388
.0205
.6610
.1672
. 4328
. 5672
57
4
. 1603
. 8396
.9378
. 0244
.6599
.1674
. 4343
. 5657
56
5
.51628
.48371
1.9369
.60284
1.6588
1.1676
.14358
.85642
55
6
. 1653
. 8347
.9360
. 0324
.6577
.1678
. 4373
. 5627
54
7
. 1678
. 8322
.9350
. 0363
.6566
.1681
. 4388
. 5612
53
8
. 1703
. 8297
.9311
. 0403
.6555
.1683
. 4403
. 6597
52
9
. 1728
. 8272
.9332
. 0443
.6544
.1685
. 4418
. 5582
51
10
.51753
.48247
1.9322
.60483
1.6534
1.1687
.14433
.85566
50
11
. 1778
. 8222
.9313
. 0522
.6523
.1689
. 4418
. 5551
49
12
. 1803
. 8197
.9304
. 0562
.6512
.1691
. 4163
. 5536
48
13
. 1827
. 8172
.9295
. 0602
.6501
.1693
. 4479
. 5521
47
14
. 1852
. 8147
.9285
. 0642
.6490
.1695
. 4494
. 5606
46
15
.51877
.48123
1.9276
.60681
1.6479
1.1697
.14509
.85491
45
16
. 1902
. 8098
.9267
. 0721
.6469
.1699
. 4524
. s-ne
44
17
. 1927
. 8073
.9258
. 0761
.6468
.1701
. 4539
. 5461
43
18
. 1962
. 8048
.9248
. 0801
.6447
.1703
. 4554
. 5446
42
19
. 1977
. 8023
.9239
. 0841
.6436
.1705
. 4569
. 5431
41
20
.52002
.47998
1.9230
.00881
1.6425
1.1707
.14581
.86416
40
21
. 2026
. 7973
.9221
. 0920
.6415
.1709
. 4599
. 6400
39
22
. 2051
•. 7949
.9212
. 0960
.6404
.1712
. 4615
. 5385
38
23
. 2076
. 7924
.9203
. 1000
.6393
.1714
. 4630
'. 5370
37
24
. 2101
. 7899
.9193
. 1040
.6383
.1716
. 4645
. 5355
36
25
.52126
.47874
1.9184
.61080 -
1.6372
1.1718
.14660
.85340
35
26
. 2151
. 7849
.9175
. 1120
.6361
.1720
. 4675
. 5325
34
27
. 2175
. 7824
.9166
. 1160
.6350
.1722
. 4690
. 5309
33
28
. 2200
. 7800
.9157
. 1200
.6340
.1724
. 4706
. 5294
32
29
. 2225
. 7775
.9148
. 1240
.6329
.1726
. 4721
. 5279
31
30
.52250
.47760
1.9139
.61280
1.6318
1.1728
.14736
.85264
30
31
. 2275
. 7725
.9130
. 1320
.6308
.1730
. 4751
. 5249
29
32
. 2299
. 7700
.9121
. 1360
.6297
.1732
. 4766
. 5234
28
33
. 2324
. 7676
.9112
. 1400
.6286
.1734
. 4782
. 5218
27
34
. 2349
. 7651
.9102
. 1440
.6276
.1737
. 4797
. 6203
26
35
.52374
.47626
1.9093
.61480
1.6265
1.17.39
.14812
.86188
25
36
. 2398
. 7601
.9084
. 1520
.6255
.1741
. 4827
. 6173
'24
37
. 2423
. 7577
.9075
1560
.6244
.1743
. 4842
. 5157
23
38
. 2448
. 7552
.9066
. 1601
.6233
.1745
. 4858
. 5142
22
39
. 2473
. 7527
.9057
. 1611
.6223
.1747
. 4873
. 5127
21
40
.52498
.47502
1.9048
.61681
1.6212
1.1749
.14888
.85112
20
41
. 2522
. 7477
.9039
. 1721
.6202
.1751
. 4904
. 6096
19
42
. 2547
. 7453
.9030
. 1761
.6191
.1753
. 4919
. 6081
18
43
. 2572
. 7428
.9021
. 1801
.6181
.1756
. 4934
. 6066
17
44
. 2597
. 7403
.9013
. 1842
.6170
.1758
. 4949
. 6050
16
45
.52621
.47379
1.9004
■ .61882
1.6160
1.1760
.14965
.85035
15
46
. 2616
. 7354
.8995
. 1922
.6149
.1762
. 4980
. 6020
14
47
. 2671
. 7329
.8986
. 1962
.6139
.1764
. 4995
. 5004
13
48
. 2695
. 7304
.8977
. 2004
.6128
.1766
. 5011
. 4989
12
49
. 2720
. 7280
.8968
. 2043
.6118
.1768
. 5026
. 4974
11
50
.52745
.47255
1.8959
.62083
1.6107
1.1770
.15041
.84959
10
61
. 2770
. 7230
.8950
. 2123
.6097
.1772
. 5067
. 4943
9
52
. 2794
. 7205
.8941
. 2164
.6086
.1775
. 6072
. 4928
8
53
. 2819
. 7181
.8932
. 2204
.6076
.1777
. 5087
. 4912
7
54
. 2844
. 7156
.8924
. 2244
.6066
.1779
. 5103
. 4897
6
55
.52868
.47131
1.8915
■ .62285
1.6055
1.1781
.15118
.84882
5
56
. 2893
. 7107
.8906
. 2325
.6045
.1783
. 6133
. 4806
4
57
. 2918
. 7082
.8897
. 2366
.6034
.1785
. 5149
. 4851
3
58
. 2942
. 7057
.8888
. 2406
.6024
.1787
. 5164
. 4836
2
59
. 2967
. 7033
.8879
. 2416
.6014
.1790
. 5180
. 4820
1
60
. 2992
. 701'S
.8871
. 2487
.6003
.1792
5195
. 4805
mT
Cosine.
Vrs, Bin,
Secant.
Co tang.
Tang.
Coeec'nt
Vrs. cos.
Sine.
M.
121°
58°
354
NATURAL FUNCTIONS.
Table 3.
32<:
Natural Trigonometrical Functions.
147°
M.
Sine.
Vrs. COS.
Cosec'nt
Tang.
Co tang.
Secant.
Vrs. sin.
Cosine.
M.
.52992
.47008
1.8871
.62487
1.6003
1.1792
.15195
.84805
60
1
. 3016
. 6983
.8862
. 2627
.5993
.1794
. 5211
4789
59
2
. 3041
. 6959
.8853
. 2568
.5983
.1796
. 5226
. 4774
58
3
. 3066
. 6934
.8844
. 2608
.5972
.1798
. 5241
. 4758
57
4
. 3090
. 6909
.8836
. 2649
.5962
.1800
. 5267
. 4743
56
5
.53115
.46885
1.8827
.62689
1.5952
1.1802
.15272
.84728
'55
6
. 3140
. 6860
.8818
. 2730
.5941
.1805
. 5288
. 4712
54
7
. 3164
. 6835
.8809
. 2770
.5931
.1807
. 5303
. 4697
53
8
. 3189
. 6811
.8801
. 2811
.5921
.1809
. 5319
. 4681
62
9
. 3214
. 6786
.8792
. 2851
.5910
.1811
. 5334
. 4666
51
10
.53238
.46762
1.8783
.62892
1.5900
1.1813
.15350
.84650
50
11
. 3263
. 6737
.8775
. 2933
.5890
.1815
. 5365
. 4635
49
12
. 3288
. 6712
.8766
. 2973
.5880
.1818
. 5381
. 4619
48
13
. 3312
. 6688
.8757
. 3014
.5869
.1820
. 5396
. 4604
47
14
. 3337
. 6663
.8749
. 3056
.5869
.1822
. 5412
. 4588
46
15
.53361
.46638
1.8740
.63095
1.5849
1.1824
.15427
.84673
45
16
. 3386
. 6614
.8731
. 3136
.5839
.1826
. 5443
. 4557
44
17
. 3111
. 6589
.8723
. 3177
.5829
.1828
. 5458
. 4542
43
18
. 3435
. 6565
.8714
. 3217
.5818
.1831
. 5474
. 4526
42
19
. 3460
. 6540
.8706
. 3258
.5808
.1833
. 5489
. 4511
41
20
.53484
.46516
1.8697
.63299
1.5798
1.1835
.16505
.84495
40
21
. 3509
. 6191
.8688
. 3339
.5788
.1837
. 5520
. 4479
39
22
. 3533
. 6466
.8680
. 3380
.5778
.1839
. 5536
. 4464
38
23
. 3558
. 6442
.8671
. 3121
.5768
.1841
. 5582
. 4448
37
24
. 3583
. 6417
.8663
. 3462
.5757
.1844
. 5567
. 4433
36
25
.53607
.40393
1.8654
.63603
1.5747
1.1846
.15583
.84417
35
26
. 3632
. 6368
.8646
. 8643
.5737
.1848
. 6698
4402
,34
27
. 3656
. 6344
.8637
. 3684
.5727
.1850
. 5614
4386
33
28
. 3681
. 6319
.8629
. 3625
.5717
.1862
. 5630
. 4370
32
29
. 3705
. 6294
.8620
. 8666
.6707
.1865
. 5645
. 4355
31
30
.53730
.46270
1.8611
.63707
1.5697
1.1857
.15661
.84339
30
31
. 3754
. 6245
.8603
. 3748
.5687
.1859
. 5676
. 4323
29
32
. 3779
. 6221
.8595
. 3789
.5677
.1861
. 5692
. 4308
28
33
. 3803
. 6196
.8586
. 3830
.5667
.1863
. 5708
. 4292
27
34
. 3828
. 6172
.8578
. 3871
.6657
.1866
. 5723
. 4276
26
35
.53852
.46147
1.8569
.63912
1.5646
1.1868
.15739
.84261
25
36
. 3877
. 6123
.8561
. 3953
.5636
.1870
. 5755
. 4245
24
37
. 3901
. 6098
.8552
. 3994
.5626
.1872
. 5770
. 4229
23
38
. 3926
. 6074
.8544
. 4035
.6616
.1874
. 5786
. 4214
22
39
. 3950
. 6049
.8535
. 4076
.6606
.1877
. 5802
. 4198
21
40
.53975
.46025
1.8527
.64117
1.5596
1.1879
.15817
.84182
20
41
. 3999
. 6000
.8519
. 4168
.5586
.1881
. 5833
. 4167
19
42
. 4024
. 5976
.8510
. 4199
.6577
.1883
. 5849
. 4151
18
43
. 4048
. 5951
.8502
. 4240
.5567
.1886
. 5865
. 4135
17
44
. 4073
. 5927
.8493
. 4281
.5557
.1888
. 5880
. 4120
16
45
.54097
.45902
1.8485
.64322
1.5547
1.1890
.16896
.84104
15
46
. 4122
. 5878
.8477
. 4363
.5537
.1892
. 5912
. 4088
14
47
. 4146
. 5854
.8468
. 4404
.5527
.1894
. 5927
. 4072
13
48
. 4171
. 5829
.8460
. 4446
.5517
.1897
. 5943
. 4057
12
49
. 4195
. 5805
.8452
. 4487
.5607
.1899
. 5959
. 4041
11
50
.54220
.45780
1.8443
.64528
1.5497
1.1901
.15975
.84025
10
51
. 4244
. 5756
.8435
. 4569
.5487
.1903
. 5991
. 4009
y
52
. 4268
. 5731
.8427
4610
.5477
.1906
. 6006
. 3993
8
53
. 4293
. 5707
.8418
. 4052
.6467
.1908
. 6022
. 3978
7
54
. 4317
. 5682
.8410
. 4693
.5458
.1910
. 6038
. 3962
6
55
.54342
.45658
1.8402
.64734
1.5448
1.1912
.16064
.83946
5
66
. 4366
. 5634
.8394
. 4775
.5438
.1915
. 6070
. 3930
4
57
. 4391
. 5609
.8385
. 4817
.5428
.1917
. 6085
. 3914
3
58
. 4415
. 5585
.8377
. 4868
.5418
.1919
. 6101
. 3899
2
59
. 4439
. 5560
.8369
. 4899
.5408
.1921
. 6117
. 3883
1
60
. 4464
. 5536
.8361
. 4941
.6399
.1922
. 6133
. 3867
H.
Cosine.
Vre. sin.
Secant.
Cotang.
Tang.
Cosec'nt
Vrs. COB.
Sine.
M.
122°
57°
Table 3.
NATURAL FUNCTIONS.
355
33°
Natural Trigonometrical Functions.
146°
M.
Sine.
Vrs. COS.
Oosec'nt
Tang.
Cotang.
Secant.
Vrs. Bin.
Cosine.
M.
.54464
.45536
1.8361
.64941
1.5399
1.1924
.16133
.83867
60
1
. 4488
. 5512
.8352
. 4982
.5389
.1926
. 6149
. 3851
59
2
. 4513
. 5487
.8344
. 5023
.5379
.1928
. 6165
. 3835
58
3
. 4537
. 5463
.8336
. 6065
.5369
.1930
. 6180
. 3819
57
4
. 4561
. 5438
.8328
. 5106
.5359
.1933
. 6196
. 3804
56
5
.54586
.45414
1.8320
.65148
1.5350
1.1935
.16212
.83788
55
6
. 4610
. 5390
.8311
. 5189
.5340
.1937
. 6228
. 3772
54
7
. 4634
. 5365
.8303
. 5231
.5330
.1939
. 6244
. 3756
53
8
. 4659
. 5341
.8295
. 5272
.5320
.1942
. 6260
. 3740
52
9
. 4683
. 5317
.8287
. 5314
.5311
.1944
. 6276
. 3724
51
10
.54708
.45292
1.8279
.65355
1.5301
1.1946
.16292
.83708
50
11
. 4732
. 5268
.8271
. 5397
.5291
.1948
. 6308
. 3692
49
12
. 4756
. 5244
.8263
. 5438
.5282
.1951
. 6323
. 8676
48
13
. 4781
. 5219
.8255
. 5480
.5272
.1953
. 6339
. 3660
47
14
. 4805
. 5195
.8246
. 5521
.5262
.1955
. 6355
. 3644
48
15
.54829
.45171
1.8238
.65563
1.5262
1.1958
.16371
.83629
45
10
. 4854
. 5146
.8230
. 5604
.5243
.1960
. 6387
. 3613
44
17
. 4878
. 5122
.8222
. 5646
.5233
.1962
. 6403
. 3597
43
18
. 4902
. 5098
.8214
. 5688
.5223
.1964
. 6419
. 3581
42
19
. 4926
. 5073
.8206
. 5729
.5214
.1967
. 6435
. 3565
41
20
.54951
.45049
1.8198
.65771
1.6204
1.1969
.16451
.83549
40
21
. 4975
. 5025
.8190
. 5813
.5195
.1971
. 6467
. 3533
39
22
. 4999
. 5000
.8182
. 5864
.6185
.1974
. 6483
. 3617
38
23
. 5024
. 4976
.8174
. 5896
.5175
.1976
. 6499
. 3601
37
24
. 5048
. 4952
.8166
. 5938
.5166
.1978
. 6515
. 3485
36
25
.55072
.44928
1.8158
.65980
1.6156
1.1980
.16531
.83469
35
26
. 5097
. 4903
.8150
. 6021
.5147
.1983
. 6547
. 3453
34
27
. 5121
. 4879
.8142
. 6063
.6137
.1985
. 6563
. 3437
33
28
. 5145
. 4855
.8134
. 6105
.6127
.1987
. 6679
. 3421
32
29
. 5169
. 4830
.8126
. 6147
.6118
.1990
. 6595
. 3405
31
30
.55194
.44806
1.8118
.66188
1.5108
1.1992
.16611
.83388
30
31
. 5218
. 4782
.8110
. 6230
.6099
.1994
. 6627
. 3372
29
32
. 5242
. 4758
.8102
. 6272
.6089
.1997
. 6643
. 3356
28
33
. 5266
. 4733
.8094
. 6314
.6080
.1999
. 6660
. 3340
27
34
. 5291
. 4709
.8086
. 6356
.5070
.2001
. 6676
. 3324
26
35
.55315
.44685
1.8078
.66398
1.5061
1.2004
.16692
.83308
25
3G
. 5339
. 4661
.8070
. 6440
.5051
.2006
. 6708
. 3292
24
37
. 5363
. 4637
.8062
. 6482
.5042
.2008
. 6724
. 3276
23
38
. 5388
. 4612
.8054
. 6524
.5032
.2010
. 6740
. 3260
22
39
. 5112
. 4588
.8047
. 6666
.6023
.2013
. 6756
. 3244
21
40
..55436
.44564
1.8039
.66608 ■
1.5013
1.2015
.16772
.83228
20
41
. 5460
. 4540
.8031
. 6650
.5004
.2017
. 6788
. 3211
19
42
. 5484
. 4515
.8023
. 6692
.4994
.2020
. 6804
. 3195
18
43
. 5509
. 4491
.8015
. 6734
.4985
.2022
. 6821
. 3179
17
44
. 5533
. 4467
.8007
. 6776
.4975
.2024
. 6837
. 3163
16
45
.55557
.44443
1.7999
.66818
1.4966
1.2027
.16853
.83147
15
46
. 5581
. 4419
.7992
. 6860
.4957
.2029
. 6869
. 3131
14
47
. 5605
. 4395
.7984
. 6902
.4947
.2031
. 6885
. 3115
13
48
. 5629
. 4370
.7976
. 6944
.4938
.2034
. 6901
. 3098
12
49
. 5654
. 4346
.7968
. 6986
.4928
. 6918
. 3082
11
50
.55678
.44322
1.7960
.67028
1.4919
1.2039
.16934
.83066
10
51
. 5702
. 4298
.7953
. 7071
.4910
!2041
. 6950
. 3050
9
52
. 5726
. 4274
.7945
. 7113
.4900
.2043
. 6966
. 3034
8
53
. 5750
. 4250
.7937
. 7155
.4891
.2046
. 6982
. 3017
7
54
. 5774
. 4225
.7929
. 7197
.4881
.2048
. 6999
. 3001
6
55
.55799
.44201
1.7921
.67239
1.4872
1.2050
.17015
.82985
5
56
. 5823
. 4177
.7914
. 7282
.4863
.2053
. 7031
. 2969
4
57
. 5847
. 4153
.7906
. 7324
.4853
.2055
. 7047
. 2962
3
58
. 5871
. 4129
.7898
. 7366
.4844
.2057
. 7064
. 2936
2
59
. 5895
. 4105
.7891
. 7408
.4835
.2060
- 7080
. 2920
1
60
. 5919
. 4081
.7883
. 7451
.4826
.2062
. 7096
. 2904
M.
Cosine.
Vrs. sin.
Secant.
Cotang.
Tang.
Cosec'nt
Vrs. cos.
Sine.
M.
356
NATUnAL FUNCTIONS.
Table 3.
34°
Natural Trigonometrical Functions.
145°
M.
Sine.
Vrs. C08.
Cosec'nt
Tang.
Cotang.
Secant.
Vre. sin.
Cosine.
M.
.55919
.44081
1.7883
.67451
1.4826
1.2062
.17096
.82904
60
1
. 5943
. 4057
.7875
. 7493
.4816
.2064
. 7112
. 2887
59
2
. 5967
. 4032
.7867
. 7535
.4807
.2067
. 7129
. 2871
58
3
. 5992
. 4008
.7860
. 7578
.4798
.2069
. 7145
. 2855
57
4
. 6016
. 3984
.7852
. 7620
.4788
.2072
. 7161
. 2839
56
5
.56040
.43960
1.7844
.67663
1.4779
1.2074
.17178
,82822
55
6
. 6064
. 3936
.7837
. 7705
.4770
.2076
. 7194
. 2806
54
7
. 6088
. 3912
.7829
. 7747
.4761
.2079
. 7210
. 2790
53
8
. 6112
. 8888
.7821
. 7790
.4751
.2081
. 7227
. 2773
52
9
. 6136
. 3864
.7814
. 7832
.4742
.2083
. 7243
. 2757
51
10
.56160
.43840
1.7806
.67875
1.4733
1.2086
.17259
.82741
50
11
. 6184
. 3816
.7798
. 7917
.4724
.2088
. 7276
. 2724
49
12
. 6208
. 3792
.7791
. 7960
.4714
.2091
. 7292
. 2708
48
13
. 6232
. 3768
.7783
. 8002
.4705
.2093
. 7308
. 2692
47
14
. 6256
. 3743
.7776
. 8045
.4696
.2095
. 7325
. 2675
46
15
.56280
.43719
1.7768
.6S087
1.4687
1.2098
.17341
.82659
45
16
. 6304
. 3695
.7760
. 8130
.4678
.2100
. 7357
. 2643
44
17
. 6323
. 3671
.7753
. 8173
.4669
.2103
. 7374
. 2626
43
18
. 6353
. 3647
.7745
. 8215
.4659
.2105
. 7390
. 2610
42
19
. 6377
. 3623
.7738
. 8258
.4650
.2107
. 7406
. 2593
41
20
.56101
.43599
1.7730
.68301
1.4641
1.2110
.17423
.82,577
40
21
. 6425
. 3575
.7723
. 8343
.4632
.2112
. 7439
. 2561
39
22
. 6449
. 3551
.7715
. 8386
.4623
.2115
. 7456
. 2544
38
23
. 6473
. 3527
.7708
. 8429
.4614
.2117
. 7472
. 2528
37
24
. 6497
. 3503
.7700
. 8471
.4605
.2119
. 7489
. 2611
36
25
.56521
.43479
1.7093
.68514
1.4,595
1.2122
.17505
.82495
35
26
. 6545
. 3455
.7685
. 8.557
.4586
.2124
. 7521
. 2478
34
27
. 6569
. S4S1
.7678
. 8600
.4577
.2127
. 7538
. 2462
33
28
. 6593
. 3407
.7670
. 8642
.4568
.2129
. 7554
. 2445
32
29
. 6617
. 3383
.7663
. 8685
.4559
.2132
. 7571
. 2429
31
30
.56641
.43359
1.7655
.68728
1.4550
1.2134
.17587
.82413
30
31
. 6664
. 3335
.7648
. 8771
.4541
.2136
. 7604
. 2396
29
32
. 6688
. 3311
.7640
. 8814
.4532
.2139
. 7620
. 2380
28
33
. 6712
. 3287
.7633
. 8857
.4523
.2141
. 7637
. 2363
27
34
. 6736
. 3263
.7625
. 8899
.4514
.2144
. 7653
. 2.347
26
35
.56760
.43239
1.7618
.68942
1.4505
1.2146
.17670
.82330
25
36
. 6784
. 3216
.7610
. 8985
.4496
.2149
. 7686
. 2314
24
37
. 6808
. 3192
.7603
. 9028
.4487
.2151
. 7703
. 2297
23
38
. 6832
. 3168
.7596
. 9071
.4478
.2153
. 7719
. 2280
22
39
. 6856
. 3144
.7588
. 9114
.4469
.2156
. 7736
. 2264
21
40
.56880
.43120
1.7581
.69157
1.4460
1.2158
.17752
.82247
20
41
. 6904
. 3096
.7573
. 9200
.4451
.2161
. 7769
. 22,31
19
42
. 6928
. 3072
.7566
. 9243
.4442
.2163
. 7786
. 2214
18
43
. 6952
. 3048
.7559
. 9286
.4433
.2166
. 7802
. 2198
17
44
. 6976
. 3024
.7551
. 9329
.4424
.2168
. 7819
. 2181
36
45
.57000
.43000
1.7514
.69372
1.4415
1.2171
.17835
.82165
15
46
. 7023
. 2976
.7537
. 9415
.4406
.2173
. 7852
. 2148
14
47
. 7047
. 2952
.7529
. 9459
.4397
.2175
7868
. 2131
13
48
. 7071
. 2929
.7522
. 9502
.4388
.2178
. 7885
. 2115
12
49
. 7095
. 2905
.7514
. 9.545
.4379
.2180
. 7902
. 2098
11
50
.57119
.4'2881
1.7507
.69588
1.4370
1.2183
.17918
.82082
10
61
. 7113
. 2857
.7500
. 9631
.4361
.2185
. 7935
. 2066
9
52
. 7167
. 2833
.7493
. 9674
.4352
.2188
. 7951
. 2048
8
63
. 7191
. 2809
.7485
. 9718
.4343
.2190
. 7968
. 2032
7
54
. 7214
. 2785
.7478
. 9761
.4335
.2193
. 7985
. 2015
6
55
.57238
.42761
1.7471
.69804
1.4326
1.2195
.18001
.81998
5
56
. 7262
. 2738
.7463
. 9847
.4317
.2198
. 8018
. 1982
4
57
. 7286
. 2714
.7456
. 9891
.4308
.2200
. 8035
. 1965
3
68
. 7310
. 2690
.7449
. 99.S4
.4299
.2203
. 8051
. 1948
2
59
. 7334
. 2666
.7412
. 9977
.4290
.2205
. 8068
. 1932
1
60
. 7358
. 2642
.7434
.70021
.4281
.2208
. 8085
. 1915
M.
Cosine.
ViB. sin.
Secant.
Co tang.
Tang.
CoBec'nt
Vrs. COB.
Sine.
M.
J 24°
55°
Table 3.
NATURAL FUNCTIONS.
357
35'
Natural Trigonometrical Functions.
144°
M.
Sine.
Vre. COS.
CoBec'nt
Tang.
Cotang.
Secant.
Yrs. Bin.
Cosine.
M.
.57358
.42642
1.7434
.70021
1.4281
1.2208
.18085
.81915
60
1
. 7:«1
. 2618
.7427
. 0064
.4273
.2210
. 8101
. 1898
59
2
. 7405
. 2595
.7420
. 0107
.4264
.2213
. 8118
. 1882
58
3
. 7429
. 2571
.7413
. 0151
.4255
.2215
. 8135
. 1865
57
4
. 7453
. 2547
.7405
. 0194
.4246
.2218
. 8151
. 1848
56
5
.57477
.42523
1.7398
.70238
1.4237
1.2220
.18168
.81832
55
6
. 7500
. 2499
.7391
. 0281
.4228
.2223
. 8185
. 1815
54
7
. 7524
. 2476
.7384
. 0325
.4220
.2225
. 8202
. 1798
53
8
. 7548
. 2452
.7377
. 0368
.4211
22?«
. 8218
. 1781
52
9
. 7572
. 2428
.7369
. 0412
.4202
.2230
. 8235
. 1765
51
10
.57596
.42404
1.7362
.70455
1.4193
1.2233
.18252
.81748
50
11
. 7619
. 2380
.7355
. 0499
.4185
.2235
. 8269
. 1731
49
12
. 7643
. 2357
.7348
. 0542
.4176
.2238
. 8285
. 1714
43
13
. 7667
. 2333
.7341
. 0586
.4167
.2240
. 8302
. 1698
47
14
. 7691
. 2309
.7334
. 0629
.4158
.2243
. 8319
. 1681
46
15
.57714
.42285
1.7327
.70673
1.4150
1.2245
.18336
.81664
45
16
. 7738
. 2262
.7319
. 0717
.4141
.2248
. 8353
. 1647
44
17
. 7762
. 2238
.7312
. 0760
.4132
.2250
. 8369
. 1630
43
18
. 7786
. 2214
.7305
. 0804
.4123
.2253
. 8386
. 1614
42
19
. 7809
. 2190
.7298
. 0848
.4115
.2255
. 8403
. 1597
41
20
.57833
.42167
1.7291
.70891
1.4106
1.2258
.18420
.81580
40
21
. 7857
. 2143
.7284
. 0935
.4097
.2260
. 8437
. 1563
39
22
. 7881
. 2119
.7277
. 0979
.4089
.2263
. 8453
. 1546
38
23
.7904
. 2096
.7270
. 1022
.4080
.2265
. 8470
. 1530
37
24
. 7928
. 2072
.7263
. 1066
.4071
.2268
. 8487
. 1513
36
25
.57952
.42048
1.7256
.71110
1.4063
1.2270
.18504
.81496
35
26
. 7975
. 2024
.7249
. 1154
.4054
.2273
. 8521
. 1479
34
27
. 7999
. 2001
.7242
. 1198
.4045
.2276
. 8538
. 1462
33
28
. 8023
. 1977
.7234
. 1241
.4037
.2278
. 8555
. 1445
32
29
. 8047
. 1953
.7227
. 1285
.4028
.2281
. 8571
. 1428
31
30
.58070
.41930
1.7220
.71329
1.4019
1.2283
.18588
.81411
30
31
. 8094
. 1906
.7213
. 1373
.4011
.2286
. 8605
. 1395
29
32
. 8118
. 1882
.7206
. 1417
.4002
2?88
. 8622
. 1378
28
33
. 8141
. 1859
.7199
. 1461
.3994
.2291
. 8639
. 1361
27
84
. 8165
. 1835
.7192
. 1505
.3985
.2293
. 8656
. 1344
20
35
.58189
.41811
1.7185
.71549
1.3976
1.2296
.18673
.81327
25
36
, 8212
. 1788
.7178
. 1593
.3968
.2298
. 8690
. 1310
24
37
. 8236
. 1764
.7171
. 1637
.3959
.2301
. 8707
. 1293
23
38
. 8259
. 1740
.7164
. 1681
.3951
.2304
.8724
. 1276
22
39
. 8283
. 1717
.7157
. 1725
.3942
.2306
. 8741
. 1259
21
40
.58307
.41693
1.7151
.71769
1.3933
1.2309
.18758
.81242
20
41
. 8330
. 1669
.7144
. 1813
.3925
.2311
. 8775
. 1225
19
42
. 8354
. 1646
.7137
. 1857
.3916
.2314
. 8792
. 1208
18
43
. 8378
. 1622
.7130
. 1901
.3908
.2316
. 8809
. 1191
17
44
. 8401
. 1599
.7123
. 1945
.3899
.2319
. 8826
. 1174
16
45
.58425
.41575
1.7116
.71990
1.3891
1.2322
.18843
.81157
15
46
. 8448
. 1551
.7109
. 2034
.3882
.2324
. 8860
. 1140
14
47
. 8472
. 1528
.7102
. 2078
.3874
.2327
. 8877
. 1123
13
48
. 8496
. 1504
.7095
. 2122
.3865
.2329
. 8894
. 1106
12
49
. 8519
. 1481
.7088
. 2166
.3857
.2332
. 8911
. 1089
11
60
.58543
.41457
1.7081
.72211
1.3848
1.2335
.18928
.81072
10
51
. 8566
. 1433
.7075
. 2'255
.3840
.2337
. 8945
. 1055
9
62
. 8990
. 1410
.7068
. 2299
.3831
.2340
. 8962
. 1038
8
53
. 8614
. 1386
.7061
. 2344
.3823
.2342
. 8979
. 1021
7
54'
. 8637
. 1363
.7054
. 2388
.3814
.2345
. 8996
. 1004
6
55
.58661
.41339
1.7047
.72432
1.3806
1.2348
.19013
.80987
5
56
. 8684
. 1316
.7040
. 2477
.3797
.2350
. 9030
. 0970
4
57
. 8708
. 1292
.7033
. 2521
.3789
.2353
. 9047
. 0953
3
58
. 8731
. 1268
.7027
. 2565
.3781
.2355
. 9064
. 0936
2
59
. 8755
. 1245
.7020
. 2610
.3772
.2358
. 9081
. 0919
1
60
. 8778
. 1221
.7013
. 2654
.3764
.2361
. 9098
. 0902
jr.
CosiDe.
Vrs. sin.
Secant.
Cotang.
Tang.
Cosec'nt
Vrs. COS.
Sine. M.
125°
358
NATURAL FUNCTIONS.
Table 3.
36°
Natural Trigonometrical Functions.
143°
M.
Sine.
Vrs. coe.
Coscc'nt
Tang.
Cotang.
Secant.
Vrs. sin.
Cosine.
M.
.58778
.41221
1.7013
.72654
1.3764
1.2361
.19098
.80902
60
1
. 8802
. 1198
.7006
. 2699
.3755
.2363
. 9115
. 0885
59
2
. 8825
. 1174
.6999
. 2743
.3747
.2366
. 9132
. 0867
58
3
. 8849
. 1151
.6993
. 2788
.3738
.2368
. 9150
. 0850
57
4
. 8873
. 1127
.6986
. 2832
.3730
.2371
. 9167
. 0833
56
5
.58896
.41104
1.6979
.72877
1.3722
1.2374
.19184
.80816
55
6
. 8920
. 1080
.6972
. 2921
.3713
.2376
. 9201
. 0799
54
7
. 8943
. 1057
.6965
. 2966
.3705
.2379
. 9218
. 0782
53
8
.8967
. 1033
.6959
. 3010
.3697
.2382
. 9235
. 0765
52
9
. 8990
. 1010
.6952
. 3055
.3688
.2384
. 9252
. 0747
51
10
.59014
.40986
1.6945
.73100
1.3680
1.2387
.19270
.80730
50
H
. 9037
. 0963
.6938
. 3144
.3672
.2389
. 9287
. 0713
49
12
. 9060
. 09.39
.6932
. 3189
.3663
.2392
. 9304
. 0696
48
13
. 9084
. 0916
.6925
. 8234
.3655
.2395
. 9321
. 0679
47
14
. 9107
. 0892
.6918
. 8278
.3647
.2397
. 9338
. 0662
46
15
.59131
.40869
1.6912
.73323
1.3638
1.2400
.19365
.80644
45
16
. 9164
. 0845
.6905
. 3368
.3630
.2403
. 9373
. 0627
44
17
. 9178
. 0822
.6898
. 3412
.3622
.2405
. 9390
. 0610
43
18
. 9201
. 0799
.6891
. 3457
.3613
.2408
. 9407
. 0593
42
19
. 9225
. 0775
.6885
. 3502
.3005
.2411
. 9424
. 0576
41
20
.69248
.40752
1.6878
.73547
1.3597
1.2413
.19442
.80558
40
21
. 9272
. 0728
.6871
. 3592
.3588
.2416
. 9459
. 0641
39
22
. 9295
. 0705
.6865
. 3637
.3580
.2419
. 9476
. 0524
38
23
. 9318
. 0681
.6858
. 3681
.3672
.2421
. 9493
. 0507
37
24
. 9342
. 0658
.6851
. 3726
.3564
.2424
. 9511
. 0489
36
25
.59365
.40635
1.6845
.73771
1.3655
1.2127
.19528
.80472
35
26
. 9389
. 0611
.6838
. 3816
.3547
.2429
. 9545
. 0455
34
27
. 9412
. 0588
.6831
. 3861
.3539
.2432
. 9562
. 0437
33
28
. 9435
. 0564
.6825
. 3906
.3531
.2435
. 9580
. 0420
32
29
. 9459
. 0541
.6818
. 3951
.3522
.2437
. 9597
. 0403
31
30
.59482
.40518
1.6812
.73996
1.3514
1.2440
.19614
.80386
30
31
. 9506
. 0494
.6805
. 4041
.3506
.2443
. 9632
. 0368
29
32
. 9529
. 0471
.6798
. 4086
.3498
.2445
. 9649
. 0351
28
33
. 9562
. 0447
.6792
. 4131
.3489
.2448
. 9666
. 0334
27
34
. 9576
. 0424
.6785
. 4176
.3481
.2451
. 9683
. 0316
26
35
.59599
.40401
1.6779
.74221
1.3473
1.2453
.19701
.80299
25
36
. 9622
. 0377
.6772
. 4266
.3465
.2456
. 9718
. 0282
24
37
. 9646
. 0354
.6766
. 4312
.3457
.2459
. 9736
. 0264
23
38
. 9669
. 0331
.6759
. 4357
.3449
.2461
. 9753
. 0247
22
39
. 9692
. 0307
.6752
. 4402
.3440
.2464
. 9770
. 0230
21
40
.59716
.40284
1.6746
.74447
1.3432
1.2467
.19788
.80212
20
41
. 9739
. 0261
.6739
. 4492
.3424
.2470
. 9805
. 0195
19
42
. 9762
.0237
.6733
. 4538
.3416
.2472
. 9822
. 0177
18
43
. 9786
. 0214
.6726
. 4583
.3408
.2475
. 9840
. 0160
17
44
. 9R09
. 0191
.6720
. 4628
.3400
.2478
. 9867
. 0143
16
45
.59832
.40167
1.6713
.74673
1.3392
1.2480
.19875
.80125
15
46
. 9856
. 0144
.6707
. 4719
.3383
.2483
. 9892
. 0108
14
47
. 9879
. 0121
.6700
. 4764
.3375
.2486
. 9909
. 0090
13
48
. 9902
. 0098
.6694
. 4809
.3367
.2488
. 9927
. 0073
12
49
. 9926
. 0074
.6687
. 4855
.3359
.2491
. 9944
. 0056
11
60
.59949
.40051
1.6681
.74900
1.3351
1.2494
.19962
.80038
10
51
. 9972
. 0028
.6674
. 4946
.3343
.2497
. 9979
. 0021
9
52
. 9995
. 0004
.6668
. 4991
.3335
.2499
. 9997
. 0003
8
53
.60019
.39981
.6661
. 5037
.3327
.2502
.20014
.79986
7
54
. 0042
. 9958
.6655
. 5082
.3319
.2505
. 0031
. 9968
6
55
.60065
.39935
1.6648
.75128
1.3311
1.2508
.20049
.79951
5
56
. 0088
. 9911
.6642
. 5173
.3303
.2510
. 0066
. 9933
4
57
. 0112
. 9888
.6636
. 5219
.3294
.2513
. 0084
. 9916
3
68
. 0135
. 9866
.6629
. 5264
.3286
.2516
. 0101
. 9898
2
59
. 0158
. 9842
.6623
. 6310
.3278
.2519
. 0119
. 9881
1
60
. 0181
. 9818
.6616
. 6355
.3270
.2521
. 0136
. 9863
M.
Cosine.
Vrs. sin.
Secant.
Cotang.
Tang.
Cosec'nt
Vrs. COS.
Sine.
M,
126°
53°
Table 3.
NATURAL FUNCTIONS.
359
37=
Natural Trigonometrical Functions.
142°
mT
Sine.
Vra. COS.
Cosec'nt
Tang.
Cotang.
Secant.
Vrs. sin.
Cosine.
M.
.60181
.39818
1.6616
.75355
1.3270
1.2521
.20136
.79863
60
1
. 0205
. 9795
.6610
. 5401
.3262
.2524
. 0154
. 9846
59
2
. 0228
. 9772
.6603
. 5447
.3254
.2527
. 0171
. 9828
58
3
.0251
. 9749
.6597
. 5492
.3246
.2530
. 0189
. 9811
57
4
. 0274
. 9726
.6591
. 5538
.3238
.2532
. 0206
. 9793
56
5
.60298
.39702
1.6584
.75584
1.3230
1.2535
.20224
.79776
55
6
.0320
. 9679
.6578
. 5629
.3222
.2538
. 0242
. 9758
54
7
. 0344
. 9656
.6572
. 5675
.3214
.2541
. 0259
. 9741
53
8
. 0367
. 9633
.6565
. 5721
.3206
.2543
. 0277
. 9723
52
9
.0390
. 9610
.6559
. 5767
.3198
.2546
. 0294
. 9706
51
10
.60413
.39586
1.6552
.75812
1.3190
1.2549
.20312
.79688
50
11
. 0437
. 9563
.6546
. 5858
.3182
.2552
. 0329
. 9670
49
12
. 0460
. 9540
.6540
. 5904
.3174
.2554
. 0347
. 9653
48
13
. 0483
. 9517
.6533
. 5950
.3166
.2557
. 0365
. 9635
47
14
. 0506
. 9494
.6527
. 5996
.3159
.2560
. 0382
. 9618
46
15
.60529
.39471
1.6521
.76042
1.3151
1.2563
.20400
.79600
45
16
. 0552
. 9447
.6514
. 6088
.3143
.2565
. 0417
. 9582
44
17
. 0576
. 9424
.6508
. 6134
.3135
.2568
. 0435
. 9565
43
18
. 0599
. 9401
.6502
. 6179
.3127
.2571
. 0453
. 9547
42
19
. 0622
. 9378
.6496
. 6225
.3119
.2574
. 0470
. 9530
41
20
.60645
.39355
1.6489
.70271
1.3111
1.2577
.20488
.79512
40
21
. 0668
. 9332
.6183
. 6317
.3103
.2579
. 0505
. 9494
39
22
. 0691
. 9309
.6477
. 6364
.3095
.2582
. 0523
. 9477
38
23
. 0714
. 9285
.6470
. 6410
.3087
.2585
. 0541
. 9459
37
24
. 0737
. 9262
.6464
. 6156
.3079
.2588
. 0558
. 9441
36
25
.60761
.39239
1.6458
.76502
1.3071
1.2591
.20576
.79424
35
26
. 0784
. 9216
.6152
. 6548
.3064
.2593
. 0594
. 9406
34
27
. 0807
. 9193
.6445
. 6594
.3056
.2596
. 0611
. 9388
33
28
. 0830
. 9170
.6439
. 6640
.3048
.2599
. 0629
. 9371
32
29
. 0853
. 9147
.6433
. 6686
.3040
.2602
. 0647
. 9353
31
30
.60876
.39124
1.6427
.76733
1.3032
1.2605
.20665
.79335
30
31
. 0899
. 9101
.6420
. 6779
.3024
.2607
. 0682
. 9318
29
32
. 0922
. 9078
.6414
. 6825
.3016
.2610
. 0700
. 9300
28
33
. 0945
. 9055
.6408
. 6871
.3009
.2613
. 0718
. 9282
27
34
. 0963
. 9031
.6402
. 6918
.3001
.2616
. 0735
. 9264
26
35
.60991
.39008
1.6396
.76964
1.2993
1.2619
.20753
.79247
25
36
. 1014
. 8985
.6389
. 7010
.2985
.2622
. 0771
. 9229
24
37
. 1037
. 8962
.6383
. 7057
.2977
.2624
. 0789
. 9211
23
38
. 1061
. 8939
.6377
. 7103
.2970
.2627
. 0806
. 9193
22
39
. 1084
. 8916
.6371
. 7149
.2962
.2630
. 0824
. 9176
21
40
.61107
.38893
1.6365
.77196
1.2954
1.2633
.20842
.79158
20
41
. 1130
. 8870
.6359
. 7242
.2946
.2636
. 0860
. 9140
19
42
. 1153
. 8847
.6352
. 7289
.2938
.2639
. 0878
. 9122
18
43
. 1176
.8824
.6346
. 7335
.2931
.2641
. 0895
. 9104
17
44
. 1199
. 8801
.6340
. 7382
.2923
.2644
. 0913
. 9087
16
45
.61222
.38778
1.6334
.77428
1.2915
1.2647
.20931
.79069
15
46
. 1245
. 8755
.6328
. 7475
.2907
.2650
. 0949
. 9051
14
47
. 1268
. 8732
.6322
.7521
.2900
.2653
. 0967
. 9033
13
48
. 1290
. 8709
.6316
. 7568
.2892
.2656
. 0984
. 9015
12
49
. 1314
. 8686
.6309
. 7614
.2884
.2659
. 1002
. 8998
11
50
.61337
.38663
1.6303
.77661
1.2876
1.2661
.21020
.78980
10
51
. 1360
. 8640
.6297
. 7708
.2869
.2664
. 1038
. 8962
9
52
. 1383
. 8617
.6291
. 7754
.2861
.2667
. 1056
. 8944
8
53
. 1405
. 8594
.6285
. 7801
.2853
.2670
. 1074
. 8926
7
54
. 1428
. 8571
.6279
. 7848
.2845
.2673
. 1091
. 8908
6
55
.61451
.38548
1.6273
.77895
1.2838
1.2676
.21109
.78890
5
56
. 1474
.8525
.6267
. 7941
.2830
.2679
. 1127
. 8873
4
57
. 1497
. 8503
.6261
. 7988
.2822
.2681
. 1145
. 8855
3
58
. 1520
. 8480
.6255
. 8035
.2815
.2684
. 1163
. 8837
2
59
. 1543
. 8457
.6249
. 8082
.2807
.2687
. 1181
. 8819
1
60
. 1566
. 8434
.6243
. 8128
.2799
.2690
. 1199
. 8801
M.
Cosine.
Vrs. flin.
Secant.
Cotang.
TanK.
Cosec'nt
Vrs. COS.
Sine.
M.
360
NATURAL FUXCTTONS.
Table 3.
38'
Natural Trigonometrical Functions.
141°
M.
Sine.
Vrs. COS.
Cosec'nt
Tang.
Cotang.
Secant.
Vrs. ein.
Cosine.
M.
.61566
.38434
1.6243
.78128
1.2799
1.2690
.21199
.78801
60
1
. 1589
. 8411
.6237
. 8175
.2792
.2693
. 1217
. 8783
59
2
. 1612
. 8388
.6231
. 8222
.2784
.2696
. 1235
. 8765
58
3
. 1635
. 8365
.6224
. 8269
.2776
.2699
. 1253
. 8747
67
4
. 1658
. 8342
.6218
.8316
.2769
.2702
. 1271
. 8729
56
5
.61681
.38319
1.6212
.78363
1.2761
1.2705
.21288
.78711
55
6
. 1703
. 8296
.6206
. 8410
.2753
.2707
. 1306
. 8693
54
7
. 1726
. 8273
.6200
. 8457
.2746
.2710
. 1324
. 8675
63
8
. 1749
. 8251
.6194
. 8504
.2738
.2713
. 1342
. 8657
52
9
. 1772
. 8228
.6188
. 8561
.2730
.2716
. 1360
. 8640
61
10
.61795
.38205
1.6182
.78598
1.2723
1.2719
.21378
.78622
50
11
. 1818
. 8182
.6176
. 8645
.2715
.2722
. 1396
. 8604
49
12
. 1841
. 8159
.6170
. 8692
.2708
.2726
. 1414
. 8586
48
13
. 1864
. 8136
.6164
. 8739
.2700
.2728
. 1432
. 8568
47
H
. 1886
. 8113
.6159
. 8786
.2692
.2731
. 1450
. 8550
46
15
.61909
.38091
1.6153
.78834
1.2685
1.2734
.21468
.78532
45
16
. 1932
. 8068
.6147
. 8881
.2677
.2737
. 1486
. 8514
44
17
. 1955
. 8045
.6141
. 8928
.2670
.2739
. 1504
. 8496
43
18
. 1978
. 8022
.6135
. 8975
.2662
.2742
. 1622
. 8478
42
19
. 2001
. 7999
.6129
. 9022
.2655
.2745
. 1540
. 8460
41
20
.62023
.37976
1.6123
.79070
1.2647
1.2748
.21558
.78441
40
21
. 2046
. 7954
.6117
. 9117
.2639
.2751
. 1576
. 8423
39
22
. 2069
. 7931
.6111
. 9164
.2632
.2754
. 1694
. 8405
38
23
. 2092
. 7908
.6105
. 9212
.2624
.2757
. 1612
. 8387
37
24
. 2115
. 7885
.6099
. 9259
.2617
.2760
. 1631
. 8369
86
25
.62137
.37862
1.6093
.79306
1.2609
1.2763
.21649
.78351
35
26
. 2160
. 7840
.6087
. 9354
.2602
.2766
. 1667
. 8333
34
27
. 2183
. 7817
.6081
. 9401
.2594
.2769
. 1685
. 8315
33
28
. 2206
. 7794
.6077
. 9449
.2587
.2772
. 1703
. 8297
32
29
. 2229
. 7771
.6070
. 9496
.2579
.2776
. 1721
. 8279
31
30
.62251
.37748
1.6064
.79543
1.2572
1.2778
.21739
.78261
30
31
. 2274
. 7726
.6058
. 9591
.2564
.2781
. 1767
. 8243
29
32
. 2297
. 7703
.6052
. 9639
.2557
.2784
. 1775
. 8224
28
33
. 2320
. 7680
.6046
. 9686
.2549
.2787
. 1793
. 8206
27
34
. 2312
. 7657
.6040
. 9734
.2542
.2790
. 1812
. 8188
26
35
.62365
.37635
1.6034
.79781
1.2534
1.2793
.21830
.78170
25
36
. 2388
. 7612
.0029
. 9829
.2527
.2795
. 1848
. 8152
24
37
. 2411
. 7589
.6023
. 9876
.2519
.2798
. 1866
. 8134
23
38
. 2433
. 7566
.6017
. 9924
.2612
.2801
. 1884
. 8116
22
39
. 2456
. 7544
.6011
. 9972
.2604
.2804
. 1902
. 8097
21
40
.62479
.37521
1.6005
.80020
1.2497
1.2807
.21921
.78079
20
41
. 2501
. 7498
.6000
. 0067
.2489
.2810
. 1939
. 8061
19
42
. 2524
. 7476
.5994
. 0115
.2482
.2813
. 1967
. 8043
18
43
. 2547
. 7453
.5988
. 0163
.2475
.2816
. 1975
. 8025
17
44
. 2570
. 7430
.5982
. 0211
.2467
.2819
. 1993
. 8007
16
45
.62592
.37408
1.5976
.80268
1.2460
1.2822
.22011
.77988
15
46
. 2615
. 7385
.5971
. 0306
.2462
.2825
. 2030
. 7970
14
47
. 2638
. 7362
.5965
. 0354
.2445
.2828
. 2048
. 7952
13
48
. 2660
. 7340
.5969
. 0402
.2437
.2831
. 2066
. 7934
12
49
. 2683
. 7317
.5953
. 0460
.2430
.2834
. 2084
. 7915
11
50
.62708
.37294
1.5947
.80498
1.2423
1.2837
.22103
.77897
10
61
. 2728
. 7272
.5942
. 0546
.2415
.2840
. 2121
. 7879
9
52
. 2751
. 7249
.6936
. 0594
.2408
.2843
. 2139
. 7861
8
53
. 2774
. 7226
.6930
. 0642
.2400
.2846
. 2157
. 7842
7
54
. 2796
.7204
.6924
.0690
.2393
.2849
. 2176
. 7824
6
55
.62819
.37181
1.5919
.80738
1.2386
1.2862
.22194
.77806
5
56
. 2841
. 7158
.6913
. 0786
.2378
.2865
. 2212
. 7788
4
57
. 2864
. 7136
.6907
. 0834
.2371
.2858
. 2230
. 7769
3
58
. 2887
. 7113
.6901
. 0882
.2364
.2861
. 2249
. 7751
2
59
. 2909
. 7090
.5896
. 0930
.2356
.2864
. 2267
. 7733
1
60
. 2932
. 7068
.6890
. 0978
.2349
.2867
. 2285
. 7715
M.
Coeine.
Vrs. sin.
Secant.
Cotang.
Tang.
Cosec*nt
Vrs. COS.
Sine.
M.
128°
Si"
Table 3.
NATURAL FUNCTIONS.
361
39°
Natural Trigonometrical Functions.
140°
M.
Sine.
Vrs. COB.
Cosec'nt
Tang.
Co tang.
Secant.
Vrs. Bin.
Cosine.
M.
.62932
.37068
1.5890
.80978
1.2349
1.2867
.22285
.77715
60
1
. 2955
. 7045
.5884
. 1026
.2342
.2871
. 2304
. 7696
59
2
. 2977
. 7023
.5879
. 1076
.2334
.2874
. 2322
. 7678
68
3
. 3000
. 700O
.5873
. 1123
.2327
.2877
. 2340
. 7660
57
4
. 3022
. 6977
.5867
. 1171
.2320
.2880
. 2359
. 7641
56
5
.63045
.36955
1.5862
.81219
1.2312
1.2883
.22377
.77623
55
C
. 3067
. 6932
.5856
. 1268
.2305
.2886
. 2395
. 7605
64
7
. 3090
. 6910
.5850
. 1316
.2297
.2889
. 2414
. 7586
53
8
.3113
. 6887
.5845
. 1364
.2290
.2892
. 2432
. 7568
52
9
. 3135
.6865
.5839
; 1413
.2283
.2895
. 2450
. 7549
51
10
.63158
.36512
1.5833
.81461
1 9716
1.2898
.22469
.77531
50
11
. 3180
. 6820
.5828
. 1509
.2268
.2901
. 2487
. 7513
49
12
. 3203
. 6797
.5822
. 1558
.2261
.2904
. 2505
. 7494
48
13
. 3225
. 6774
.5816
. 1606
.2254
.2907
. 2524
. 7476
47
14
. 3248
. 6752
.6811
. 1655
.2247
.2910
. 2542
. 7458
46
15
.63270
.36729
1.5805
.81703
1.2239
1.2913
.22561
.77439
45
16
. 3293
. 6707
.6799
. 1752
.2232
.2916
. 2579
. 7421
44
17
. 3315
. 6684
.5794
. 1800
.2225
.2919
. 2597
. 7402
43
18
. 3338
. 6662
.5788
. 1849
2218
.2922
. 2616
. 7384
42
19
. 3360
. 6639
.5783
. 1898
.2210
.2926
. 2634
. 7366
41
20
.63383
.36617
1.5777
.81946
1.2203
1.2929
.22653
.77347
40
21
. 3405
. 6594
.5771
. 1995
.2196
.2932
. 2671
. 7329
39
22
. 3428
. 6572
.5766
. 2043
.2189
.2935
. 2690
. 7310
38
23
. 3450
. 6549
.5760
. 2092
.2181
.2938
. 2708
. 7292
37
24
. 3473
. 6527
.5755
. 2141
.2174
.2941
. 2727
. 7273
36
25
.63495
.36504
1.5749
.82190
1.2167
1.2944
.22745
.77265
36
26
. 3518'
. 6482
.5743
. 2238
.2160
.2947
. 2763
. 7236
34
27
. 3540
. 6469
.6738
. 2287
.2152
.2950
. 2782
. 7218
33
28
. 3563
. 6487
.5732
. 2336
.2145
.2953
. 2800
. 7199
32
29
. 3585
. 6415
.5727
. 2385
.2138
.2956
. 2819
. 7181
31
30
.63608
.36392
1.5721
.82434
1.2131
1.2960
.22837
.77162
30
31
. 3630
. 6370
.6716
. 2482
.2124
.2963
. 2856
. 7144
29
32
. 3653
. 6347
.5710
. 2531
.2117
.2966
. 2874
. 7125
28
33
. 3675
. 6325
.5705
. 2580
.2109
.2969
. 2893
. 7107
27
34
. 3697
. 6302
.5699
. 2629
.2102
.2972
. 2912
. 7088
26
35
.63720
.36280
1.5694
.82678
1.2096
1.2975
.22930
.77070
25
36
. 3742
. 6258
.5688
.2727
.2088
.2978
. 2949
. 7051
24
37
. 3765
. 6235
.5683
. 2776
.2081
.2981
. 2967
. 7033
23
38
. 3787
. 6213
.5677
. 2825
.2074
.2985
. 2986
. 7014
22
39
. 3810
. 6190
.6672
. 2874
.2066
.2988
. 3004
. 6996
21
40
.63832
.36168
1.5666
.82923
1.2059
1.2991
.23023
.76977
20
41
. 3854
. 6146
.6661
. 2972
.2052
.2994
. 3041
. 6958
19
42
. 3877
. 6123
.5655
. 3022
.2045
.2997
. 3060
. 6940
18
43
. 3899
. 6101
.5650
. 3071
.2038
.3000
. 3079
. 6921
17
44
. 3921
. 6078
.5644
. 3120
.2031
.3003
. 3097
. 6903
16
45
.63944
.36056
1.6639
.83169
1.2024
1.3006
.23116
.76884
15
46
. 3966
. 6034
.5633
. 3218
.2016
.3010
. 3134
. 6865
14
47
. 3989
. 6011
.5628
. 3267
.2009
.3013
. 3153
. 6847
13
48
. 4011
. 5989
.5622
. 3317
.2002
.3016
. 3172
. 6828
12
49
. 4033
. 5967
.6617
. 3366
.1995
.3019
. 3190
. 6810
11
50
.64056
.35944
1.6611
.83415
1.1988
1.3022
.23209
.76791
10
51
. 4078
. 5922
.5606
. 3465
.1981
.3026
. 3227
. 6772
9
52
. 4100
. 5900
.5600
. 3514
.1974
.3029
. 3246
. 6754
8
53
. 4123
. 5877
.5595
. 3663
.1967
.3032
. 3265
. 6735
7
54
. 4145
. 5855
.5590
. 3613
.1960
.3035
. 3283
. 6716
6
55
.64167
.35833
1.5584
.83662
1.1953
1.3038
.23302
.76698
5
56
. 4189
. 6810
.6579
. 3712
.1946
.3041
. 3321
. 6679
4
57
. 4212
. 5788
.6573
. 3761
.1939
.3044
. 3339
. 6660
3
58
. 4234
. 6766
.5568
. 3811
.1932
.3048
. 3358
. 6642
2
69
. 4256
. 6743
.5663
. 3860
.1924
.3051
. 3377
. 6623
1
60
. 4279
. 5721
.5557
. 3910
.1917
.3054
. 3395
. 6604
M.
Cosine.
Vrs. Bin.
Secant.
Cotang.
Tang.
CoBec'nt
Vrs. cos.
Sine.
M.
129°
50°
362
NATUEAL FUNCTIONS.
Table 3.
40°
Natural Trigonometrical
Functions.
139°
M.
Sine.
Vrs. COS.
Cosec'nt
Tang.
Cotang.
Secant.
Yrs. sin.
Cosine.
M.
.64279
.35721
1.5557
.83910
1.1917
1.3054
.23395
.76604
60
1
. 4301
. 5699
.5552
. 3959
.1910
.3057
. 34] <1
. 6686
59
2
. 4323
. 5677
.5546
. 4009
.1903
.3060
. 3433
. 6567
68
3
. 4345
. 5654
.5541
. 4059
.1896
.3064
. 3462
. 6548
57
4
. 4368
. 5632
.5536
. 4108
.1889
.3067
. 3470
. 6530
56
5
.64390
.35610
1.5530
.84158
1.1882
1.3070
.23489
.76611
55
. 4412
. 5588
.5525
. 4208
.1875
.3073
. 3508
. 6492
54
7
. 4435
. 5565
.5520
. 4267
.1868
.3076
. 3627
. 6473
53
8
. 4457
. 5543
.5514
. 4307
.1861
.3080
. 3545
. 6455
52
9
. 4479
. 5521
.5509
. 4357
.1854
.3083
. 3564
. 6436
,51
10
.64601
.35499
1.6503
.81407
1.1847
1.3086
.23583
.76417
50
11
. 4523
. 5476
.5498
. 4457
.1840
.3089
. 3602
. 6398
49
12
. 4516
. 5-164
.5493
. 4506
.1833
.3092
. 3620
. 6380
48
13
. 4568
. 5432
.5187
. 4556
.1826
.3096
. 8639
. 6361
47
U
. 4590
. 5410
.5482
. 4606
.1819
.3099
. 3658
. 6342
46
15
.61612
.36388
1.5477
.84656
1.1812
1.3102
.23677
.76323
45
16
. 4635
. 5365
.5471
. 4706
.1805
.3105
. 3695
. 6304
44
17
. 4657
. 5343
.5466
4756
.1798
.3109
. 3714
. 6286
43
18
. 4679
. 6321
.5161
. 4806
.1791
.3112
. 3733
. 6267
42
19
. 4701
. 5299
.5456
. 4856
.1785
.3115
. 3752
. 6248
41
20
.64723
.35277
1.5450
.84906
1.1778
1.3118
.23771
.76229
40
21
. 4745
. 6254
.6445
. 4956
.1771
.3121
. 3790
. 6210
39
22
. 4768
. 5232
.5440
. 5006
.1764
.3125
. 3808
. 6191
38
23
. 4790
. 5210
.5134
. 5056
.1757
.3128
. 3827
. 6173
37
24
. 4812
. 5188
.5429
. 5107
.1750
.3131
. 3846
. 6154
36
26
.64834
.35166
1.5424
.85157
1.1743
1.3134
.23865
.76135
35
26
. 4856
. 5144
.5419
. 5207
.1736
.3138
. 3884
. 6116
34
27
. 4878
. 5121
.5413
. 5257
.1729
.3141
. 3903
. 6097
33
28
. 4900
. 6099
.5408
. 5307
.1722
.3144
. 3922
. 6078
32
29
. 4923
. 6077
.5403
. 6358
.1715
.3148
. 3940
. 6059
31
30
.64945
.35055
1.5398
.85408
1.1708
1.3151
.23959
.76041
30
31
. 4967
. 5033
.6392
. 5458
.1702
.3154
. 3978
. 6022
29
32
. 4989
. 5011
.6387
. 6509
.1695
.3157
. 3997
. 6003
28
33
. 5011
. 4989
.6382
. 6559
.1688
.3161
. 4016
. 5984
27
34
. 6033
. 4967
,5377
. 6609
.1681
.3164
. 4035
. 5965
26
35
.65055
.34945
1.5371
.85660
1.1674
1.3167
.24054
.76946
25
36
. 6077
. 4922
.5366
. 6710
.1667
.3170
. 4073
. 5927
24
37
. 5099
. 4900
.5361
. 6761
.1660
.3174
. 4092
. 5908
23
38
. 5121
. 4878
.5356
. 6811
.1653
.3177
. 4111
. 5889
22
39
. 5144
. 4856
.5351
. 5862
.1647
.3180
. 4130
. 5870
21
40
.65166
.34834
1.6345
.85912
1.1640
1.3184
.24149
.75851
20
41
. 5188
. 4812
.6340
. 5963
.1633
.3187
. 4168
. 5832
19
42
. 5210
. 4790
.6335
. 6013
.1626
.3190
. 4186
. 5813
18
43
. 5232
. 4768
.5330
. 6064
.1619
.3193
. 4205
. 5794
17
44
. 5254
. 4746
.5325
. 6115
.1612
.3197
. 4224
. 5775
16
45
.66276
.34724
1.5319
.86165
.1.1605
1.3200
.24243
.75766
15
46
. 5298
. 4702
.5314
. 6216
.1599
.3203
. 4262
. 5737
14
47
. 5320
. 4680
.5309
. 6267
.1592
.3207
. 4281
. 5718
13
48
. 6342
,. 4658
.5304
. 6318
.1685
.3210
. 4300
. 5699
12
49
. 5364
. 4636
.5299
. 6368
.1578
.3213
. 4319
. 5680
11
50
.65386
.34614
1.5294
.86419
1.1571
1.3217
.24338
.75661
10
51
. 6408
. 4592
.5289
. 6470
.1565
.3220
. 4357
. 5642
9
52
. 5430
. 4570
.5'283
. 6521
.1558
.3223
. 4376
. 5623 8
63
. 5452
. 4548
.5278
. 6672
.1551
.3227
. 4396
. 5604 7
54
. 5474
. 4526
.5273
. 6623
.1544
.3230
. 4415
. 5585 6
55
.65496
.34504
1.5268
.86674
1.1637
1.3233
.24434
.75566 5
'56
. 6518
. 4482
.5263
. 6725
.1531
.3237
. 4453
. 5547
4
57
. 5640
. 4460
.5258
. 6775
.1524
.3240
. 4472
. 5528
3
58
. 5662
. 4438
.5253
. 6826
.1517
.3243
. 4491
. 6509
2
59
. 5584
. 4416
.6248
. 6878
.1510
.3247
. 4510
. 5490
1
60
. 5606
. 4394
.6242
. 6929
.1504
.3260
. 4529
. 5471
M.
Cosine.
Vrs. sin.
Secant.
Co tang.
Tang.
Cosec'nt
Vrs. COB.
Sine.
M.
130°
49°
Table 3.
NATURAL FUNCTIONS.
363
4«°
Natural Trigonometrical Functions.
138°
mT
Sine.
Vra. COB.
C!osec'nt
Tang.
Cotang.
Secant,
Yrs. sin.
Cosine,
M.
.65606
.34394
1.5242
.86929
1.1504
1,3250
.21529
.75471
60
1
. 5628
. 4372
.6237
. 6980
.1497
.3253
.4648
. 5462
59
2
. 5650
. 4350
.5232
.7031
.1490
.3257
. 4567
. 5133
58
3
.6672
. 4328
.5227
. 7082
.1483
.3260
. 4586
. 5414
57
A
. 5694
. 4306
.6222
. 7133
.1477
.3263
. 4605
. 5394
56
C
.65716
.34284
1.5217
.87184
1.1470
1.3267
.21624
.75375
65
6
. 5737
. 4262
.5212
. 7235
.1463
.3270
.4644
. 6356
54
7
. 5759
. 4210
.5207
. 7287
.1456
.3271
. 4663
. 5337
53
8
. 5781
.4219
.5202
. 7338
.1450
.3277
. 4682
. 5318
52
9
. 5803
. 4197
.5197
. 7389
.1443
,3280
. 4701
. 5299
51
10
.65825
.31175
1.6192
.87441
1,1436
1.3284
.21720
,75280
50
11
. 5847
. 4153
.5187
. 7192
.1430
.3287
. 1739
. 5261
49
12
. 5869
. 4131
.5182
. 7513
.1423
.3290
. 4758
. 5241
48
13
. 5891
. 4109
.5177
. 7595
.1416
.3294
. 4778
. 5222
47
14
. 5913
. 4087
.5171
. 7616
.1409
.3297
. 4797
. 5203
46
15
.65934
.31065
1.5166
.87698
1.1103
1.3301
.24816
.76184
45
16
. 5956
. 4043
.5161
. 7719
.1396
.3304
.4835
. 5165
44
17
. 5978
. 4022
.5156
. 7801
.1389
.3307
. 4861
. 5146
43
18
.6000
. 4000
.5151
. 7852
.1383
.3311
. 4873
. 5125
42
19
. 6022
. 3978
.5146
. 7904
.1376
.3314
. 1893
. 5107
41
20
.66044
.33956
1.5141
.87955
1.1369
1.3318
.21912
,7.5088
40
21
. 6066
. 3931
.6136
. 8007
.1363
.3321
. 4931
. 5069
39
22
. 6087
. 3912
.5131
. 8058
.1356
.3324
. 1950
. 5049
38
23
. 6109
. 3891
.5126
. 8110
.1319
.3328
. 4970
. 5030
37
24
. 6131
. 3869
.5121
. 8162
.1313
.3331
. 1989
. 6011
36
25
.66153
.33847
1.5116
.88213
1.1336
1.3335
.25008
.74992
35
26
. 6175
. 3825
.5111
. 8265
.1329
.3338
, 5027
. 4973
34
27
. 6197
. 3803
.5106
. 8317
.1323
.3342
. 5017
. 4953
33
28
. 6218
. 3781
.5101
. 8369
.1316
.3345
. 5066
. 4934
32
29
. 6240
. 3760
.5096
. 8121
.1309
.3318
. 5085
. 4915
31
30
.66262
.33738
1.8092
.88172
1.1303
1.3352
.25104
.74896
30
31
. 6284
. 3716
.6087
. 8521
.1296
.3355
. 5124
. 4876
29
32
. 6305
. 3694
.5082
. 8576
.1290
.3359
. 5143
. 4857
28
33
. 6327
. 3673
.5077
. 8628
.1283
.3362
, 5162
. 4838
27
34
. 6349
. 3651
.5072
. 8680
,1276
.3366
. 5181
. 1818
26
35
.66371
.33629
1.5067
.88732
1.1270
1,3369
,25201
.74799
25
36
. 6393
. 3607
.6062
. 8781
.1263
,3372
. 5220
. 4780
24
37
. 6414
. 3586
.5057
. 8836
.1257
.3376
. 5239
. 4760
23
38
. 6436
. 3564
.5052
. 8888
.1250
.3379
. 5259
. 4741
22
39
. 6158
. 3542
..5017
. 8940
,1243
.3383
. 5278
. 4722
21
40
.66479
.33520
1.5012
.88992
1.1237
1.3386
.25297
.74702
20
41
. 6501
. 3499
.5037
. 9041
.1230
.3390
. 5317
. 4683
19
42
. 6523
. 3477
.5032
. 9097
.1224
.3393
. 5336
. 4664
18
43
. 6545
. 3455
.5027
. 9119
.1217
.3397
. 5355
. 4644
17
44
. 6566
. 3433
.5022
. 9201
.1211
.3400
. 5375
. 4626
16
45
.66588
.33412
1.5018
.89253
1.1204
1.3404
.26394
.74606
15
46
. 6610
. 3390
.5013
. 9306
.1197
.3407
. 6414
. 4586
14
47
. 6631
. 3368
.5008
. 9358
.1191
.3411
. 5433
. 1567
13
48
. 6653
.3347
.6003
. 9110
.1184
.3414
. 5462
. 4518
12
49
. 6675
. 3325
.1998
. 9163
.1178
.3418
. 6472
. 1528
11
50
.66697
.33303
1.1993
.89515
1.1171
1.3421
.25491
.71509
10
51
. 6718
. 3282
.4988
. 9567
.1165
,3126
. 5510
. 4489
9
52
. 6740
. 3260
.4983
. 9620
.1158
.3428
. 5530
. 4170
8
63
. 6762
. 3238
.4979
. 9672
.1152
.3432
. 5619
. 4450
7
54
. 6783
. 3217
.4971
. 9725
.U45
.3435
. 5569
. 4131
6
55
.66805
.33195
1.4969
.89777
1.1139
1.3439
.25588
.74412
5
56
. 6826
. 3173
.4964
. 9830
.1132
.3442
. 5608
. 4392
4
57
. 6848
. 3152
.4959
. 9882
.1126
.3446
. 5627
. 4373
3
58
. 6870
. 3130
.4954
. 9935
,1119
.3449
. 5617
. 4353
2
69
. 6891
. 3108
.4949
. 9988
.1113
.3153
. 5666
. 4334
1
60
. 6913
. 3087
.4945
.90040
.1106
.3156
. 5685
. 4314
M.
Cosine.
Vrs. sin.
Secant,
Co tang.
Tang.
Cosec'nt
Vrs. COB,
Sine,
M.
131°
48°
364
NATURAL FUNCTIONS.
Table 3.
42°
Natural Trigonometrical Functions.
137°
M^
Sine.
Vrs. COS.
Cosec'nt
Tang.
Cotang.
Secant.
Yrs. Bin.
Cosine.
M.
.66913
.33087
1.4945
.90040
1.1106
1.3456
.26685
.74314
00
1
. 6936
. 3065
.4940
. 0093
.1100
.3460
. 5705
. 4295
59
2
. 6956
. 3044
.4935
. 0146
.1093
.3463
. 5724
. 4275
58
3
. 6978-
. 3022
.4930
. 0198
.1086
.3467
. 5744
. 4256
.67
4
. 6999
. 3000
.4925
. 0251
.1080
.3470
. 5763
. 4236
56
5
.67021
.32979
1.4921
.90304
1.1074
1.3474
.25783
.74217
55
6
7043
. 2957
.4916
. 0357
.1067
.3477
. 5802
. 4197
54
7
. 7064
. 2936
.4911
. 0410
.1061
.3481
. 5822
. 4178
.53
8
. 7086
. 2914
.4906
. 0463
.1054
.3485
. 5841
. 4168
52
9
. 7107
. 2893
.4901
. 0515
.1048
.3488
. 5861
. 4139
51
10
.07129
.32871
1.4897
.90568
1.1041
1.3492
.25880
.74119
60
11
. 7150
. 2849
.4892
. 0621
.1035
.3495
. 5900
. 4100
49
12
. 7172
. 2828
.4887
. 0674
.1028
.3499
. 5919
. 4080
48
13
. 7194
. 2806
.4882
. 0727
.1022
.3502
. 5939
. 4061
47
14
. 7215
. 2785
.4877
. 0780
.1015
.3506
. 5959
. 4041
46
15
.07237
.32763
1.4873
.90834
1.1009
1.3509
.25978
.74022
45
10
. 7258
. 2742
.4868
. 0887-
.1003
.3513
. 5998
. 4002
44
17
. 7280
. 2720
.4863
. 0940
.0996
.3517
. 6017
. 3983
43
la
. 7301
. 2699
.4868
. 0993
.0990
.3520
. 6037
. 3963
42
19
. 7323
. 2677
.4864
. 1046
.0983
.3524
. 6056
. 3943
41
20
.67344
.32656
1.4849
.91099
1.0977
1.3527
.26076
.73924
40
21
. 7366
. 2634
.4844
. 1153
.0971
.3531
. 6096
. 3904
39
22
. 7387
. 2613
.4839
. 1206
.0964
.3534
. 6115
. 3885
38
23
. 7409
. 2591
.4835
. 1259
.0953
.3538
. 6135
. 3865
37
24
. 7430
. 2570
.4830
. 1312
.0951
.3542
. 6154
. 3845
36
25
.67452
.32548
1.4825
.91366
1.0945
1.3545
.26174
.73826
35
26
. 7473
. 2527
.4821
. 1419
.0939
.3549
. 0194
. 3806
34
27
. 7495
. 2505
.4816
. 1473
.0932
.3552
. 6213
. 3787
33
28
. 7516
. 2484
.4811
. 1526
.0926
.3556
. 6233
. 3767
32
29
.7537
. 2462
.4806
. 1580
.0919
.3560
. 6253
. 3747
31
30
.67559
.32441
1.4802
.91633
1.0913
1.3563
.26272
.73728
30
31
. 7580
. 2419
.4797
. 1687
.0907
.3567
. 6292
. 3708
29
32
. 7602
. 2398
.4792
. 1740
.0900
.3571
. 6311
. 3688
28
33
. 7623
. 2377
.4788
. 1794
.0894
.3574
. 6331
. 3669
27
34
. 7645
. 2355
.4783
. 1847
.0888
.3578
. 6351
. 3649
26
35
.67666
.32334
1.4778
.91901
1.0881
1.3581
.26371
.73629
25
36
. 7688
. 2312
.4774
. 1955
.0875
.3585
. 6390
. 3610
24
37
. 7709
. 2291
.4769
. 2008
.0868
.3589
. 6410
. 3590
23
38
. 7730
. 2269
.4764
. 2062
.0862
.3592
. 6430
. 3570
22
39
. 7752
. 22J8
.4760
. 2116
.0856
.3596
. 6449
. 3551
21
40
.07773
.32227
1.4755
.92170
1.0849
1.3600
.26169
.73631
20
41
. 7794
. 2205
.4750
. 2223
.0843
.3603
. 6489
. 3511
19
J2
. 7816
. 2184
.4746
. 2277
.0837
.3607
. 6508
. 3491
18
43
. 7837
. 2163
.4741
. 2331
.0830
.3611
. 6528
. 3472
17
44
. 7859
. 2141
.4736
. 2385
.0824
.3614
. 6548
. 3452
16
45
.67880
.32120
1.4732
.92439
1.0818
1.3618
.26568
.73432
15
40
. 7901
. 2098
.4727
. 2493
.0812
.3622
. 6587
. 3412
14
47
. 7923
. 2077
.4723
. 2547
.0805
.3625
. 6607
. 3393
13
48
. 7944
. 2056
.4718
. 2601
.0799
.3629
. 6627
. 3373
12
49
. 7965
. 2034
.4713
. 2655
.0793
.3633
. 6647
. 3353
11
60
.67987
.32013
1.4709
.92709
1.0786
1.3636
.26066
.73333
10
51
. 8008
. 1992
.4704
. 2703
.0780
.3640
. 6686
. 3314
9
52
. 8029
. 1970
.4699
. 2817
.0774
.3644
. 6700
. 3294
8
53
. 8051
. 1949
.4695
. 2871
.0767
.3647
. 6726
. 3274
7
54
. 8072
. 1928
.4690
. 2926
.0761
.3651
. 6746
. 3254
6
65
.68093
.31907
1.4686
.92980
1.0755
1.3655
.26765
.73234
5
66
. 8115
. 1885
.4681
. 3034
.0749
.3658
. 6785
. 3215
4
57
. 8136
. 1864
.4676
. 3088
.0742
.3662
. 6805
. 3195
3
68
. 8157
. 1843
.4672
. 3143
.0736
.3666
. 6825
. 3175
2
r.9
. 8178
. 1821
.4667
3197
.0730
.3669
. 6845
. 3155
1
60
. 8200
. 1800
.4663
. 3251
.0724
.3673
. 6865
. 3135
M.
Conine.
VrB. ein.
Secant.
Cotang.
Tang.
Coeec'nt
IVrB. COB.
Sine.
M.
132°
470
Table 3.
NATURAL FUNCTIONS.
365
43°
Natural Trigonometrical Functions.
136°
mT
Sinn.
Vrs. COS.
Cosec'nt
Tang.
Co tang.
Secant.
Yrs. sin.
Cosine.
M.
.68200
.31800
1,4663
.93251
1.0724
1.3673
.26865
.73135
60
1
. 8221
. 1779
.4658
. 3306
.0717
.3677
. 6884
. 3115
59
2
. 8242
. 1758
.4654
. 3360
.0711
.3681
.6904
. 3096
58
3
. 8264
. 1736
.4649
.3415
.0705
.3684
. 6924
. 3076
67
4
. 8285
. 1715
.4614
. 3469
.0699
.3688
. 6944
. 3056
56
5
.68306
.31694
1.4610
.93524
1.0692
1.3692
.26964
.73036
55
6
.8327
. 1673
.4635
. 3578
.0686
.3695
. 6984
. 3016
54
7
. 8349
. 1651
.4631
. 3633
.0680
.3699
. 7004
. 2996
53
8
. 8370
. 1630
.4626
. 3687
.0674
.3703
. 7023
. 2976
62
9
. 8391
. 1609
.4622
. 3742
.0667
.3707
. 7043
. 2966
51
10
.68412
.31588
1.4617
.93797
1.0661
1.3710
.27063
.72937
50
11
. 8433
. 1566
.4613
. 3851
.0665
.3714
. 7083
. 2917
49
12
. 8455
. 1545
.4608
. 3906
.0649
.3718
. 7103
. 2897
48
13
. 8476
. 1524
.4604
. 3961
.0643
.3722
. 7123
. 2877
47
14
. 8497
. 1503
.4599
. 4016
.0636
.3725
. 7143
. 2857
46
15
.68518
.31482
1.4595
.94071
1.0630
1.3729
.27163
.72837'
45
16
. 8539
. 1460
.4590
. 4125
.0624
.3733
. 7183
. 2817
44
17
. 8561
. 1439
.4586
. 4180
.0618
.3737
. 7203
. 2797
43
18
. 8582
. 1418
.4581
. 4235
.0612
.3740
. 7223
. 2777
42
19
. 8603
. 1397
.4577
. 4290
.0605
.3744
. 7243
. 2757
41
20
.68624
.31376
1.4572
.94345
1.0599
1.3748
.27263
.72737
40
21
. 8645
. 13.55
.4568
. 4400
.0593
.3752
. 7283
. 2717
39
22
. 8666
. 1333
.4563
. 4455
.0587
.3756
. 7302
. 2697
38
23
. 8688
.1312
.4559
. 4510
.0581
.3759
. 7322
. 2677
37
24
. 8709
. 1291
.4554
. 4565
.0575
.3763
. 7342
. 2657
36
26
.68730
.31270
1.4550
.94620
1.0568
1.3767
.27862
.72637
35
26
. 8751
. 1249
.4545
. 4675
.0562
.3771
. 7382
. 2617
34
27
. 8772
. 1228
.4541
. 4731
.0556
.3774
. 7402
. 2597
33
28
. 8793
. 1207
.4536
. 4786
.0550
.3778
. 7422
. 2577
32
29
. 8814
. 1186
.4532
. 4841
.0644
.3782
. 7442
. 2557
31
80
.68835
.31164
1.4527
.94896
1.0538
1.3786
.27462
.72537
80
31
. 8856
. 1143
.4523
. 4952
.0532
.3790
. 7482
. 2517
29
32
. 8878
. 1122
.4518
. 5007
.0525
.3794
. 7503
. 2497
28
33
. 8899
. 1101
.4514
. 5062
.0519
.3797
. 7523
. 2477
27
34
. 8920
. 1080
.4510
. 5118
.0613
.3801
. 7643
. 2457
26
35
.68941
.31059
1.4505
.95173
1.0507
1.3805
.27563
.72437
25
36
. 8962
. 1038
.4501
. 5229
.0501
.3809
. 7583
. 2417
24
37
. 8983
. 1017
.4496
. 5284
.0496
.3813
. 7603
. 2397
23
38
. 9004
. 0996
.4492
. 5340
.0489
.3816
. 7623
. 2377
22
39
. 9025
. 0975
.4487
. 5395
.0483
.3820
. 7C.43
. 2357
21
40
.69046
.30954
1.4483
.95451
1.0476
1.3824
.27663
.72337
20
11
. 9067
. 0933
.4479
. 5506
.0470
.3828
. 7683
. 2317
19
42
. 9088
. 0912
.4474
. 5562
.0464
.3832
. 7703
. 2297
18
43
. 9109
.0891
.4470
. 5618
.0458
.3836
. 7723
. 2277
17
44
. 9130
. 0870
.4465
. 5673
.0452
.3839
. 7743 .
. 2266
16
45
.69151
.30849
1.4461
.95729
1.0446
1.3843
.27764
.72236
15
46
. 9172
. 0828
.4457
. 5785
.0440
.3847
. 7784
. 2216
14
47
. 9193
. 0807
.4452
. 5841
.0434
.3851
. 7804
. 2196
13
48
. 9214
. 0786
.4448
. 5896
.0428
.3855
. 7824
. 2176
12
49
. 9235
. 0765
.4443
. 5952
.0422
.3859
. 7844
. 2156
11
50
.69256
.30744
1.4439
.96008
1.0416
1.3863
.27864
.72136
10
51
. 9277
. 0723
.4435
. 6064
.0410
.3867
. 7884
. 2115
9
52
. 9298
. 0702
.4430
. 6120
.0404
.3870
. 7904
. 2095
8
53
. 9319
. 0681
.4426
. 6176
.0397
.3874
. 7925
. 2075
7
54
. 9340
. 0660
.4422
. 6232
.0391
.3878
, 7945
. 2055
6
55
.69361
.30639
1.4417
.96288
1.0385
1.3882
.27965
.72035
5
56
. 9382
. 0618
.4413
. 6344
.0379
.3886
. 7985
. 2015
4
57
. 9403
. 0597
.4408
. 6400
.0373
.3890
. 8005
. 1994
3
58
. 9424
. 0576
.4404
. 6456
.0367
.3894
. 8026
. 1974
2
59
. 9445
. 0555
.4400
. 6513
.0361
.3898
. 8046
. 1954
1
60
. 9466
. 0534
.4395
. a569
.0355
.3902
. 8066
. 1934
M.
Cosine.
Vrs. sin.
Secant.
Gotang.
Tang.
Cosec'nt
Vrs. cos.
Sine. ,
M.
366
NATURAL FUNCTIONS.
Table 3.
44
D
Natural Trigonometrical Functions.
J 35°
M.
Sino.
Vrg. COS.
Cosec'nt
Tang.
Cotang.
Secant.
Vrs. sin.
Cosine.
M.
.59466
.30534
1.4395
.96569
1.0355
1.3902
.28066
.719.34
60
1
. 9487
. 0513
.4391
. 6625
.0349
.3905
. 8086
. 1914
59
2
. 9508
. 0492
.4387
. 6681
.0343
.3909
. 8106
. 1893
58
3
. 9528
. 0471
.4382
. 6738
.0337
.3913
. 8127
. 1873
57
4
. 9549
. 0450
.4378
. 6794
.0331
.3917
. 8147
. 1853
56
5
.69570
.30430
1.4374
.96850
1.0325
1.3921
.28167
.71833
55
6
. 9591
. 0409
.4370
. 6907
.0319
.3925
. 8187
. 1813
54
7
. 9612
. 0388
.4365
. 6963
.0313
.3929
. 8208
. 1792
53
8
. 9633
. 0367
.4361
. 7020
.0307
.3933
. 8228
. 1772
52
9
. 9654
. 0346
.4357
. 7076
.0301
.3937
. 8248
. 1752
51
10
.69675
.30325
1.4352
.97133
1.0295
1.3941
.28268
.71732
50
11
. 9696
. 0304
.4348
. 7189
.0289
.3945
. 8289
. 1711
49
12
. 9716
. 0283
.4344
. 7216
.0283
.3949
. 8309
. 1691
48
13
. 9737
. 0263
.4339
. 7302
.0277
.3953
. 8329
. 1671
47
14
. 9758
. 0242
.4335
. 7359
.0271
.3957
. 8349
. 1650
46
15
.69779
.30221
1.4331
.97416
1.0265
1.3960
.28370
.71630
45
16
. 9800
. 0200
.4327
. 7472
.0259
.3964
. 8390
. 1610
14
17
. 9821
. 0179
.4322
. 7529
.0253
.3968
. 8410
. 1589
43
18
. 9841
. 0158
.4318
. 7586
.0247
.3972
. 8431
. 1669
42
19
. 9862
. 0138
.4314
. 7643
.0241
.3976
. 8451
. 1549
41
20
.69883
.30117
1.4310
.97699
1.0235
1.3980
.28471
.71529
40
21
. 9904
. 0096
.4305
. 7756
.0229
.3984
. 8492
. 1.508
39
22
. 9925
. 0075
.4301
. 7813
.0223
.3988
. 8512
. 1488
38
23
. 9945
. 0054
.4297
. 7870
.0218
.3992
. 8532
. 1468
37
24
. 9966
. 0034
.4292
. 7927
.0212
.3996
. 8553
. 1447
36
25
.69987
.30013
1.4288
.97984
1.0206
1.4000
.28573
.71427
35
26
.70008
.29992
.4284
. 8041
.0200
.4004
. 8593
. 1406
34
27
. 0029
. 9971
.4280
. 8098
.0194
.4008
. 8614
. 1386
33
28
. 0049
. 9950
.4276
. 8155
.0188
.4012
. 8634
. 1366
32
29
. 0070
. 9930
.4271
. 8212
.0182
.4016
. 8654
. 1345
31
30
.70091
.29909
1.4267
.98270
1.0176
1.4020
.28675
.71325
30
31
. 0112
. 9888
.4283
. 8327
.0170
.4024
. 8695
. 1305
29
32
. 0132
. 9867
.4259
. 8384
.0164
.4028
. 8716
. 1284
28
33
. 0153
. 9847
.42.54
. 8441
.0158
.4032
8736
. 1264
27
34
. 0174
. 9826
.4250
. 8499
.0152
.4036
. 8756
. 1243
26
35
.70194
.29805
1.4246
.98556
1.0146
1.4040
.28777
.71223
25
30
. 0215
. 9785
.4242
. 8613
.0141
.4044
. 8797
. 1203
24
37
. 0236
. 9764
.4238
. 8671
.0135
.4048
. 8818
. 1182
23
38
. 0257
. 9743
.4233
. 8728
.0129
.4052
. 8838
. 1162
22
39
. 0277
. 9722
.4229
. 8786
.0123
.4056
. 8859
. 1141
21
40
.70298
.29702
1.4225
.98843
1.0117
1.4060
.28879
.71121
20
41
. 0319
. 9681
.4221
. 8901
.0111
.4065
. 8899
. 1100
19
42
. 0339
. 9660
.4217
. 8958
.0105
.4069
. 8920
. 1080
18
43
. 0360
. 9610
.4212
. 9016
.0099
.4073
. 8940
. 1059
17
44
. 0381
. 9619
.4208
. 9073
.0093
.4077
. 8961
. 1039
16
45
.70401
.29598
1.4204
.99131
1.0088
1.4081
.2S9S1
.71018
15
46
. 0422
. 9578
.4200
. 9189
.0082
.4085
. 9002
. 0998
14
47
. 0443
. 9557
.4196
. 9246
.0076
.4089
. 9022
. 0977
13
48
0463
. 9536
.4192
. 9304
.0070
.4093
. 9043
. 0957
12
49
. 0484
. 9516
.4188
. 9362
.0064
.4097
. 9063
. 0936
11
50
.70505
.29495
1.4183
.99420
1.0058
1.4101
.29084
.70916
10
51
. 0525
. 9475
.4179
. 9478
.0052
.4105
. 9104
. 0895
9
62
. 0546
. 9454
.4175
. 9536
.0047
.4109
. 9125
. 0875
g
53
. 0566
. 9133
.4171
. 9593
.0041
.4113
. 9145
. 0854
7
54
. 0587
. 9413
.4167
. 9651
.0035
.4117
. 9166
. 0834
6
55
.70608
.29392
1.4163
.99709
1.0029
1.4122
.29186
.70813
5
66
. 0628
. 9372
.4159
. 9767
.0023
.4126
. 9207
. 0793
4
57
. 0649
. 9351
.4154
. 9826
.0017
.4130
. 9228
. 0772
3
58
. 0669
. 9330
.4150
. 9884
.0012
.4134
. 9248
. 07,52
2
59
. 0690
. 9310
.4146
. 9942
.0006
.4138
. 9269
. 0731
1
60
. 0711
. 9289
.4112
1.0000
.0000
.4142
. 9289
. 0711
M.
Cosine.
Vrs. sin.
Secant.
Col^ang.
Tang.
Cosec'nt
Vrs. cos.
Sine.
M.
134°
45°
Table 4.
SQUARES, CUBES AND KOOTS.
367
Squares, Cubes, Square Roots, Cube Roots, Circumferences
AND Circular Areas ov Nos. from t to 520
No.
Square
Cube
Sq. Root
Cube Root
Circle
Circum.
Area
I
I
I
1. 0000
1 .0000
3.142
0.7854
2
4
8
1. 4142
1.2599
6.283
3.1416
3
9
27
I.7321
1.4422
9-425
7.0686
4
16
64
2 .0000
1-5874
12.566
12.5664
5
25
125
2.2361
1. 7100
15-708
19.6350
6
36
216
2.4495
I.8171
18.850
28.2743
7
49
343
2.6458
1.9129
21.991
38-4845
8
64
512
2.8284
2 .0000
25-133
50.2655
9
81
729
3.0000
2.0801
28.274
63.6173
10
100
1000
3.1623
2.1544
31.416
78.5398
II
121
1331
3.3166
2.2240
34-558
95-033
12
144
1728
3.4641
2.2894
37.699
113.097
13
169
2197
3.6056
2-3513
40.841
132.732
14
196
2744
3-7417
2.41OI
43.982
153-938
IS
225
3375
3-8730
2.4662
47.124
176-715
16
256
4096
4.0000
2.5198
50.265
201.062
17
289
4913
4-I23I
2-5713
53-407
226.980
18
324
5832
4.2426
2.6207
56-549
254-469
19
361
6859
4-3589
2.6684
59.690
283.529
20
400
8000
4.4721
2.7144
62.832
314-159
21
441
9261
4.5826
2.7589
65-973
346.361
22
484
10648
4.6904
2.8020
69.115
380.133
23
529
12167
4-7958
2.8439
72.257
415.476
24
576
13824
4.8990
2.8845
75-398
452.389
25
625
15625
5 .0000
2.9240
78.540
490.874
26
676
17576
5-0990
2.9625
81.681
530.929
27
729
19683
5.1962
3 .0000
84.823
572.555
28
784
21952
5-2915
3.0366
87-965
615.752
29
841
24389
5-3852
3-0723
91.106
660.520
3°
900
27000
5-4772
3.1072
94.248
706.858
31
g6i
29791
5-5678
3-1414
90.389
754.768
32
1024
32768
5-6569
3.1748
100.531
804.248
33
1089
35937
5-7446
3-2075
103.673
855.299
34
1156
39304
5-8310
3-2396
106.814
907.920
35
1225
42875
5-9161
3.271I
109.956
962.113
36
1296
46656
6.0000
3-3019
113.097
1017.88
37
1369
50653
6.0828
3-3322
116.239
1075.21
38
1444
54872
6.1644
3.3620
I19.381
1134.ll
39
1521
S9319
6.2450
3-3912
122.522
1194.59
40
1600
64000
6.3246
3.4200
125.660
1256.64
368
SQUARES, CUBES AND BOOTS.
Table 4.
Squares, Cubes, Squaee Roots, Cube Roots, Circumperences
AND Circular Areas of Nos. from i to 520
No.
Square
Cube
Sq. Root
Cube Root
Circle
Circum.
Area
41
1681
68921
6.4031
3-4482
128.81
1320.25
42
1764
74088
6.4807
3.4760
131-95
1385-44
43
1849
795°7
6-5574
3-5034
135-09
1452.20
44
1936
85184
6.6332
3-5303
138-23
1520.53
45
2025
91125
6.7082
3-5569
141-37
1590-43
46
2116
97336
6.7823
3-5830
144-51
1661.90
47
2209
103823
6-8557
3.6088
147-65
1734-94
48
2304
I 10592
6.9282
3-6342
150.80
1809.56
49
2401
1 1 7649
7.0000
3-6593
153-94
1885.74
50
2500
125000
7.07II
3.6840
157.08
1963.50
SI
2601
I3265I
7-1414
3-7084
160.22
2042.82
52
2704
140608
7.2III
3-7325
163-36
2123.72
53
2809
148877
7.2801
3-7563
166.50
2206.18
54
2916
157464
7-3485
3-7798
169.65
2290.22
55
3°25
166375
7.4162
3.8030
172.79
2375-83
56
3136
I756I6
7-4833
3-8259
175-93
2463.01
57
3249
I85I93
7-5498
3-8485
179.07
2551.76
58
3364
I95II2
7.6158
3.8709
182.21
2642.08
59
3481
205379
7.68II
3-8930
185-35
2733-97
60
3600
216000
7.7460
3-9149
188.50
2827.43
61
3721
226981
7.8102
3-9365
191.64
2922.47
62
3844
238328
7-8740
3-9579
194.78
3019.07
63
3969
250047
7-9373
3-9791
197.92
3117-25
64
4096
262144
8.0000
4.0000
201.06
3216.99
65
4225
274625
8.0623
4.0207
204.20
3318.31
66
4356
287496
8.1240
4.0412
207.35
3421.19
67
4489
300763
8.1854
4-0615
210.49
3525-65
68
4624
314432
8.2462
4.0817
213-63
3631.68
69
4761
328509
8.3066
4.1016
216.77
3739-28
70
4900
343000
8.3666
4.1213
219.91
3848-45
71
5041
3579II
8.4261
4.1408
223.05
3959-19
72
5184
373248
8.4853
4-1602
226.19
4071.50
73
5329
389017
8.5440
4-1793
229.34
4185.39
74
5476
405224
8.6023
4.1983
232.48
4300.84
75
5625
421875
8.6603
4.2172
235.62
4417.86
76
5776
438976
8.7178
4-2358
238.76
4536-46
77
5929
456533
8-7750
4-2543
241.90
4656.63
78
6084
474552
8.8318
4.2727
245-04
4778-36
79
6241
493039
8.8882
4.2908
248.19
4901.67
80
6400
512000
8.9443
4-3089
251-33
5026.55
Table 4.
SQUAEES, CUBES AND ROOTS.
369
Sqtjases, Cubes, Square Roots, Cube Roots, Circui
iferences
AND Circular Areas of Nos. from i to 520
No.
Square
Cube
Sq. Root
Cube Root
Circle
Circum.
Area
81
■ 6561
S31441
9.0000
4.3267
254-47
5153-00
82
6724
SS1368
9-0554
4-3445
257-61
5281.02
83
6889
571787
9.II04
4.3621
260.7s
5410.61
84
■7056
592704
9.1652
4-3795
263.89
5541-77
8S
7225
614125
9.219s
4.3968
267.04
5674-50
86
7396
636056
9.2736
4.4140
270.18
5808.80
87
7569
658503
9-3274
4.4310
273-32
5944-68
88
7744
681472
9.3808
4.4480
276.46
6082.12
89
7921
704969
9-4340
4.4647
279.60
6221.14
90
8100
729000
9.4868
4.4814
282.74
6361.73
91
8281
7S3S7I
9-5394
4.4979
285.88
6503.88
92
8464
778688
9-5917
4-5144
289.03
6647.61
93
8649
804357
9-6437
4-5307
292.17
6792.91
94
8836
830584
9-6954
4.5468
295-31
6939.78
9S
9025
857375
9.7468
4.5629
298.45
7088.22
96
9216
884736
9.7980
4-5789
301-59
7238.23
97
9409
912673
9.8489
4-5947
3°4-73
7389-81
98
9604
941192
9-8995
4.6104
307.88
7542.96
99
9801
970299
9.9499
4.6261
311.02
7697-69
100
lOOOO
I 000000
10.0000
4.6416
314.16
7853-98
lOI
I020I
1030301
10.0499
4.6570
317-30
8011.85
102
10404
1061208
10.0995
4.6723
320.44
8171.28
103
10609
1092727
10.1489
4-6875
323-58
8332.29
104
I0816
I I 24864
10.1980
4-7027
326.73
8494.87
loS
1 1025
1157625
10.2470
4-7177
329.87
8659.01
106
11236
1191016
10.2956
4.7326
333-01
8824.73
107
1 1449
1225043
10.3441
4-7475
336-15
8992.02
108
1 1664
1259712
10.3923
4.7622
339-29
9160.88
109
I1881
1295029
10.4403
4.7769
342-43
9331-32
no
I2IOO
1331000
10.4881
4.7914
345-58
9503-32
III
I232I
136763J
10.5357
4.8059
348.72
9676.89
112
12544
1404928
10.5830
4.8203
351-86
9852.03
"3
12769
1442897
10.6301
4.8346
355-00
10028.7
ti4
12996
1481544
10.6771
4.8488
358-14
10207.0
"S
13225
152087s
10.7238
4.8629
361.28
10386.9
116
13456
1560896
10.7703
4-8770
364.42
10568.3
117
13689
1601613
10.8167
4.8910
367-57
10751.3
118
13924
1643032
10.8628
4.9049
370.71
10935.9
119
I4161
1685159
10.9087
4.9187
373-85
11122.0
120
14400
1728000
10.9545
4-9324
376-99
11309.7
370
SQUARES, CUBES AND ROOTS.
Table 4.
Squares, Cubes, Squaee Roots, Cube Roots, Circumferences
AND Circular Areas of Nos. from i to 520
No.
Square
Cube
Sq. Root
Cube Root
Circle
Circum.
Area
121
14641
1771561
1 1 .0000
4.9461
380.13
I1499.0
122
14884
1815848
11.0454
4-9597
383-27
11689.9
123
15129
1860867
1 1 .0905
4-9732
386.42
11882.3
124
15376
1906624
11-1355
4.9866
389-56
12076.3
I2S
1562s
1953125
11.1803
5.0000
392.70
12271.8
126
15876
2000376
11.2250
5-0133
395-84
12469.0
127
16129
2048383
11.2694
■ 5-0265
398.98
12667.7
128
16384
2097152
11-3137
S-°397
402.12
12868.0
129
16641
2146689
11-3578
5.0528
405.27
13069.8
130
16900
2197000
11.4018
5.0658
408.41
13273.2
131
17161
2248091
1 1 4455
5.0788
411-55
13478.2
132
17424
2299968
11.4891
5-0916
414.69
13684.8
133
17689
2352637
11.5326
5-1045
417-83
13892.9
134
17956
2406104
11-5758
5.1172
420.97
14102.6
135
18225
2460375
11.6190
5.1299
424.12
14313-9
136
18496
2515456
11.6619
5.1426
427.26
14526.7
137
18769
2571353
11.7047
5-1551
430.40
14741-1
138
19044
2628072
11-7473
5.1676
433-54
I49S7-1
T-39
19321
2685619
11.7898
5.1801
436.68
15174-7
140
19600
2744000
11.8322
S-1925
439.82
15393-8
141
19881
2803221
11.8743
5.2048
442.96
15614-S
142
20164
2863288
11.9164
5.2171
446.11
15836.8
143
20449
2924207
11-9583
5-2293
449-25
16060.6
144
20736
2985984
12.0000
5-2415
452-39
16286.0
I4S
21025
3048625
12.0416
5-2536
455-53
16513.0
146
21316
3112136
1 2 .0830
5-2656
458.67
16741.5
147
21609
3176523
12.1244
5.2776
461.81
16971.7
148
21904
3241792
12-1655
5.2896
464.96
17203.4
149
22201
3307949
12.2066
5-3015
468.10
17436.6
150
22500
3375000
12.2474
5-3133
471-24
17671.5
151
22801
3442951
12.2882
5-3251
474-38
17907.9
IS2
23104
3511808
12.3288
5-3368
477-52
18145.8
153
23409
3581577
12.3693
5-3485
480.66
18385.4
154
23716
3652264
12.4097
5-3601
483.81
18626.5
15s
24025
372387s
12.4499
S-3717
486.95
18869.2
156
24336
3796416
12.4900
5-3832
490.09
19113.4
157
24649
3869893
12.5300
5-3947
493-23
19359-3
158
24964
3944312
12.5698
5.4061
496-37
19606.7
159
25281
4019679
1 2 .6095
5-4175
499-51
19855-7
160
25600
4096000
12.6491
5.4288
502.65
20106.2
Table 4.
SQUARES, CUBES AND ROOTS.
371
Squares, Cubes, Square Roots, Cube Roots, Circumferences
AND Circular Areas of Nos. from i to 520
ClRPTTi'
No.
Square
Cube
Sq. Root
Cube Root
Circum .
Area
161
25921
4173281
12.6886
5.4401
505.80
20358.3
162
26244
4251528
12.7279
5-4514
508.94
20612.0
163
26569
4330747
12.7671
5.4626
512.08
20867.2
164
26896
4410944
12.8062
5-4737
515-22
21124.I
i6s
27225
4492125
12.8452
5.4848
518.36
21382.5
166
27556
4574296
12.8841
5-4959
521-50
21642.4
167
27889
4657463
12.9228
5-5069
524-65
21904.0
168
28224
4741632
12.9615
5-S178
527-79
22167. 1
169
28561
4826809
13.0000
5.5288
530-93
22431.8
170
28900
4913000
13.0384
5-5397
534-07
22698.0
171
29241
50002 I I
13.0767
5-5505
537-21
22965.8
172
29584
5088448
13.1149
S-5613
540.35
23235-2
173
29929
5177717
13-1529
5-5721
543-50
23506.2
174
30276
5268024
13.1909
S-5828
546.64
23778.7
175
30625
5359375
13.2288
5-5934
549-78
24052.8
176
30976
5451776
13.2665
5.6041
552-92
24328.5
177
31329
5545233
13-3041
5-6147
556.06
24605.7
178
31684
5639752
13-3417
5-6252
559-20
24884.6
179
32041
5735339
13-3791
S-6357
562.35
25164.9
180
32400
5832000
13.4164
5.6462
565-49
25446.9
181
32761
5929741
13-4536
5-6567
568.63
25730-4
182
33124
6028568
13.4907
5.6671
571-77
26015.5
183
33489
6128487
13-5277
5-6774
574-91
26302.2
184
33856
6229504
13-5647
5-6877
578-05
26590.4
i8s
34225
6331625
13.6015
5.6980
581.19
26880.3
186
34596
6434856
13.6382
5-7083
584-34
27171.6
187
34969
6539203
13.6748
5-7185
587-48
27464.6
188
35344
6644672
13-7113
5.7287
590.62
27759.1
189
35721
6751269
13-7477
5-7388
593-76
28055.2
190
36100
6859000
15.7840
5-7489
596.90
28352.9
191
36481
6967871
13.8203
5-7S90
600.04
28652.1
192
36864
7077888
13.8564
5.7690
603.19
28952.9
193
37249
7189057
13.8924
5-7790
606.33
29255-3
194
37636
7301384
13.9284
5.7890
609.47
29559-2
19s
38025
7414875
13.9642
5-7989
612.61
29864.8
196
38416
7529536
14.0000
5.8088
615-75
30171.9
197
38809
7645373
14-0357
5.8186
618.89
30480.5
198
39204
7762392
14.0712
5.828s
622.04
30790.7
199
39601
7880599
14.1067
5-8383
625.18
3 1 102 .6
200
40000
8000000
14.1421
5.8480
628.32
31415-9
S72
SQUAEES, CUBES AND ROOTS. Table 4.
Squaees, Cubes, Square Roots, Cube Roots, Circumferences
AND Circular Areas of Nos. from i to 520
Circle
No.
Square
Cube
Sq. Root
Cube Root
Circum.
Area
201
40401
8120601
14.1774
5-8578
631.46
31730.9
202
40804
8242408
14.2127
5 -8675
634.60
32047.4
203
41209
8365427
14.2478
5-8771
637-74
32365.5
204
41616
8489664
14.2829
5.8868
640.89
32685.1
205
42025
8615125
14.3178
5. 8964
644-03
33006.4
206
42436
8741816
14.3527
5-9°S9
647-17
33329-2
207
42849
8869743
14.3875
S-915S
650.31
33653-5
208
43264
8998912
14.4222
5-9250
653-45
33979-S
209
43681
9129329
14.4568
5-9345
656-59
34307-0
210
44100
9261000
14.4914
5-9439
659-73
34636.1
211
44521
9393931
14.5258
5-9533
662.88
34966.7
212
44944
9528128
14.5602
5.9627
666.02
35298.9
213
45369
9663597
14-5945
5-9721
669.16
35632.7
214
45796
9800344
14.6287
5.9814
672.30
35968.1
2IS
46225
9938375
14.6629
5 -9907
675-44
36305.0
216
46656
10077696
14.6969
6.0000
678.58
36643.5
217
47089
10218313
14.7309
6.0092
681.73
36983.6
218
47524
10360232
14.7648
6.0185
684.87
37325-3
219
47961
10503459
14.7986
6.0277
688.01
37668.5
220
48400
10648000
14.8324
6.0368
691.IS
38013-3
221
48841
10793861
14.8661
6.0459
694.29
38359-6
222
49284
10941048
14.8997
6.0350
697-43
38707-6
223
49729
I1089567
14.9332
6.0641
700-58
39°57-i
224
50176
I 1239424
14.9666
6.0732
703.72
39408.1
225
50625
I 1390625
15.0000
6.0822
706.86
39760.8
226
51076
I1543176
i5-°333
6.0912
710.00
40115.0
227
51529
I 1697083
15.0665
6.1002
713-14
40470.8
228
51984
I1852352
15.0997
6.1091
716.28
40828.1
229
52441
12008989
15-1327
6.1180
719.42
41187.1
230
52900
1 2167000
15.1658
6.1269
722.57
41547.6
231
53361
12326391
15.1987
6.1358
725-71
41909.6
232
53824
12487168
15-2315
6.1446
728.85
42273.3
233
54289
12649337
15.2643
6.1534
731-99
42638.5
234
54756
12812904
15.2971
6.1622
735-13
43005.3
23s
55225
12977875
15-3297
6.1710
738-27
43373-6
236
55696
13144256
15-3623
6.1797
741.42
43743-5
237
56169
13312053
15-3948
6.1885
744.56
44115.0
238
56644
13481272
15.4272
6.1972
747-70
44488.1
239
57121
13651919
15-4596
6.2058
750.84
44862.7
240
57600
13824000
15.4919
6.2145
753-98
45238.9
Table 4.
SQUARES, CUBES AND KOOTS.
373
Squares, Cubes, Square Roots, Cube Roots, Circumferences
AND Circular Areas of Nos. from 110520
Square
Cube
Sq. Root
Cube Root
Circle
No.
Circum.
Area
241
58081
13997521
15-5242
6.2231
757-12
45616.7
242
58564
14172488
15-5563
6.2317
760.27
45996.1
243
S9°49
14348907
15-5885
6.2403
763-41
46377.0
244
S9S36
14526784
15.6205
6.2488
766.55
46759-5
24S
60025
14706125
15-6525
6-2573
769.69
47143-5
246
60516
14886936
15.6844
6.2658
772.83
47529.2
247
61009
15069223
15.7162
6.2743
775-97
47916.4
248
61504
15252992
15.7480
6.2828
779.12
48305.1
249
62001
15438249
15-7797
6.2912
782.26
48695.5
250
62500
15625000
15,8114
6.2996
785-40
49087.4
251
63001
15813251
15.8430
6.3080
788.54
49480.9
252
63504
16003008
15-8745
6.3164
791.68
49875-9
253
64009
16194277
15.9060
6.3247
794.82
50272.6
2S4
64516
16387064
15-9374
6-3330
797-96
50670.7
2SS
65025
16581375
15.9687
6.3413
801.11
51070.5
256
65536
16777216
16.0000
6.3496
804.25
51471-9
2S7
66049
16974593
16.0312
6-3579
807.39
51874.8
258
66564
17173512
16.0624
6.3661
810.53
52279.2
2S9
67081
17373979
16.0935
6-3743
813.67
52685.3
260
67600
17576000
16.1245
6-3825
816.81
53092-9
261
68121
I 7779581
16.1555
6.3907
819.96
53502.1
262
68644
17984728
16.1864
6.3988
823.10
53912.9
263
69169
18191447
16.2173
6.4070
826.24
54325-2
264
69696
18399744
16.2481
6.4151
829.38
54739-1
265
70225
18609625
16.2788
6.4232
832.52
55154.6
266
70756
18821096
16.3095
6.4312
835-66
SS57I-6
267
71289
19034163
16.3401
6-4393
838.81
5599°-3
268
71824
19248832
16.3707
6.4473
841.95
56410.4
269
72361
19465109
16.4012
6-4553
845.09
56832.2
270
72900
19683000
16.4317
6.4633
848.23
57255-5
271
73441
19902511
16.4621
6.4713
851-37
57680.4
272
^3984
20123648
16.4924
6.4792
854-51
58106.9
273
74529
20346417
16.5227
6.4872
857-66
58534-9
274
75076
20570824
16.5529
6.4951
860.80
58964.6
27s
75625
20796875
16.5831
6.5030
863.94
59395-7
276
76176
21024576
16.6132
6.5108
867.08
59828.5
277
76729
21253933
16.6433
6.5187
870.22
60262.8
278
77284
21484952
16.6733
6.5265
873-36
60698.7
279
77841
21717639
16.7033
6.5343
876.50
61136.2
280
78400
21952000
16.7332
6.5421
879.65
61575-2
374
SQUARES, CUBES AND EOOTS.
Table 4.
Squares, Cubes, Square Roots, Cube Roots, Circumferences
AND Circular Areas of Nos. from i to 520
No.
Square
Cube
Sq. Root
Cube Root
Circle
Circum.
Area
281
78961
22188041
16.7631
6.5499
882.79
62015.8
282
79524
22425768
16.7929
6-5577
885.93
62458.0
283
80089
22665187
16.8226
6.5654
889.07
62901.8
284
80656
22906304
16.8523
6.5731
892.21
63347.1
285
81225
23149125
16.8819
6.5808
895-35
63794.0
286
81796
23393656
16.9I15
6.5885
898.50
64242.4
287
82369
23639903
16.9411
6.5962
901.64
64692.5
288
82944
23887872
16.9706
6.6039
904.78
65144.I
289
83521
24137569
17.0000
6.6II5
907.92
65597-2
290
84100
24389000
17.0294
6.6I9I
911.06
66052.0
291
84681
24642 I 71
17.0587
6.6267
914.20
66508.3
292
85264
24897088
17.08S0
6.6343
917.3s
66966.2
293
85849
25153757
17.I172
6.6419
920.49
67425.6
294
86436
25412184
17.1464
6.6494
923.63
67886.7
•^95
87025
25672375
17.1756
6.6569
926.77
68349.3
296
87616
25934336
17.2047
6.6644
929.91
68813.5
297
88209
26198073
17.2337
6.6719
933 -05
69279.2
298
88804
26463592
17.2627
6.6794
936.19
69746.5
299
89401
26730899
17.2916
6.6869
939.34
70215.4
300
90000
2 7000000
17.3205
6.6943
942.48
70685.8
301
90601
27270901
17.3494
6.7018
945.62
71157.9
302
91204
27543608
17.3781
6.7092
948.76
71631.5
5°3
91809
27818127
17.4069
6.7166
951.90
72106.6
3°4
92416
28094464
174356
6.7240
955. °4
72583.4
305
93°25
28372625
17.4642
6.73-I3
958.19
73061.7
306
93636
28652616
17.4929
6.7387
961.33
73541.S
3°7
94249
28934443
17.5214
6.7460
964.47
74023.0
308
94864
29218112
17.5499
6-7533
967.61
74506.0
3°9
95481
29503629
17-5784
6.7606
970-75
74990.6
310
96100
29791000
17.6068
6.7679
973-89
75476.8
3"
96721
30080231
17.6352
6.7752
977.04
75964.5
312
97344
30371328
17.6635
6.7824
980.18
76453.8
Z^3
97969
30664297
17.6918
6.7897
983-32
76944.7
314
98596
30959144
17.7200
6.7969
986.46
77437-1
315
99225
31255875
17.7482
6.8041
989 .60
77931.1
316
99856
31554496
17.7764
6.8113
992.74
78426.7
317
100489
31855013
17.8045
6.8185
995.88
78923.9
318
101124
32157432
17.8326
6.8256
999.03
79422.6
319
101761
32461759
17.8606
6.8328
1002.20
79922.9
320
102400
32768000
17.8885
6.8399
1005.30
. - - --^^ ■- —
80424.8
Table 4.
SQUARES, CUBES AND EOOTS.
375
Squares, Cubes, Square Roots, Cube Roots, Circumferences
AND Circular Areas of Nos. from i to 520
No;
Square
Cube
Sq. Root
Cube Root
Circle
Circum.
Area
321
I03041
33076161
17.9165
6.8470
1008.5
80928.2
322
103684
33386248
17.9444
6.8541
1011.6
81433.2
323
104329
33698267
17.9722
6.8612
1014.7
81939.8
324
104976
34012224
18.0000
6.8683
1017.9
82448.0
32s
105625
34328125
18.0278
6.8753
102 1.
82957.7
326
106276
34645976
18.0555
6.8824
1024.2
83469-0
327
106929
34965783
18.0831
6.8894
1027.3
83981.8
328
107584
35287552
18.1108
6.8964
1030.4
84496.3
329
108241
35611289
18.1384
6.9034
1033.6
85012.3
330
108900
35937000
18.1659
6.9104
1036.7
85529-9
331
109561
36264691
18.1934
6.9174
1039.9
86049.0
332
110224
36594368
18.2209
6.9244
1043.0
86569.7
333
1 10889
36926037
18.2483
6-9313
1046.2
87092.0
334
111556
37259704
18.2757
6.9382
1049.3
87615.9
335
II2225
37595375
18.3030
6.9451
1052.4
88141.3
336
I12896
37933056
.18.3303
6.9521
IOS5-6
88668.3
337
113569
38272753
18.3576
6.9589
1058.7
89196.9
338
I 14244
38614472
18.3848
6.9658
1061.9
89727.0
339
I 1492 I
38958219
18.4120
6.9727
1065.0
90258.7
340
I 15600
39304000
18.4391
6-9795
1068.1
90792.0
341
I16281
39651821
18.4662
6.9864
1071.3
91326.9
342
I16964
40001688
18.4932
6.9932
1074.4
91863.3
343
1 1 7649
40353607
18.5203
7.0000
1077.6
92401.3
344
I 18336
40707584
18.5472
7.0068
1080.7
92940.9
345
I 19025
41063625
18.5742
7.0136
1083.8
93482.0
346
119716
41421736
18.6011
7.0203
1087.0
94024.7
347
120409
41781923
18.6279
7.0271
1090.1
94569-0
121104
42144192
18.6548
7-0338
i°93-3
95114.9
349
121801
42508549
18.6815
7.0406
1096.4
95662.3
350
122500
42875000
18.7083
7-0473
1099.6
96211.3
351
123201
43243551
18.735°
7-0540
1102.7
96761.8
352
123904
43614208
18.7617
7.0607
1105.8
97314.0
353
124609
43986977
18.7883
7.0674
1109.0
97867.7
354
125316
44361864
18.8149
7.0740
1112. I
98423-0
355
126025
44738875
18.8414
7.0807
"15-3
98979-8
356
126736
45118016
18.8680
7.0873
1118.4
99538.2
357
127449
45499293
18.8944
7.0940
1121.5
100098
358
128164
45882712
18.9209
7.1006
1124.7'
100660
359
128881
46268279
18.9473
7.1072
1127.8
101223
360
129600
46656000
18.9737
7.1138
1131.0
101788
376
SQUARES, CUBES AND ROOTS.
Table 4.
Squaees, Cubes, Square Roots, Cube Roots, Circumferences
AND Circular Areas of Nos. from i to 520
ClEf^I-T=;
No.
Square
Cube
Sq. Root
Cube Root
Circum.
Area
361
130321
47045881
19.0000
7.1204
I134.I
102354
362
131044
47437928
19.0263
7.1269
II37-3
102922
363
131769
47832147
19.0526
7-1335
1 140.4
103491
364
132496
48228544
19.0788
7.1400
1 143 -5
104062
36s
133225
48627125
19.1050
7.1466
1146.7
104635
366
133956
49027896
I9.I3II
7-1531
1 149.8
105209
367
134689
49430863
19.1572
7-1596
"53-0
105785
368
135424
49836032
19-1833
7.1661
1156.1
106362
369
136161
50243409
19.2094
7.1726
1159.2
106941
370
136900
50653000
19-2354
7.1791
1162.4
107521
371
I 3 7641
51064811
19.2614
7-1855
1165.5
108103
372
138384
51478848
19.2873
7.1920
1168.7
108687
373
139 1 29
51895117
19.3132
7.1984
1171.8
109272
374
139876
52313624
19-3391
7.2048
1175.0
109858
375
140625
52734375
19.3649
7.2112
1 178.1
110447
376
I4I376
53157376
19.3907
7.2177
1181.2
II1036
377
I42I29
53582633
19.4165
7.2240
1184.4
111628
378
142884
54010152
19.4422
7.2304
1187.S
112221
379
I4364I
54439939
19.4679
7.2368
1190.7
I1281S
380
144400
54872000
19.4936
7-2432
1193.8
113411
3^'
I45I6I
55306341
19.5192
7-2495
1196.9
114009
382
145924
55742968
19.5448
7-2558
1200.1
114608
383
146689
56181887
19.5704
7.2622
1203.2
115209
384
147456
56623104
19-5959
7.2685
1206.4
115812
38s
148225
57066625
19.6214
7.2748
1209.5
I16416
386
148996
57512456
19.6469
7.2811
1212.7
I17021
3f7
149769
57960603
19.6723
7.2874
1215.8
117628
388
150544
58411072
19.6977
7.2936
1218.9
118237
389
I5I32I
58863869
19.7231
7-2999
1222.1
118847
390
I52IOO
59319000
19.7484
7.3061
12*25.2
I 19459
391
I5288I
59776471
19-7737
7-3124
1228.4
120072
392
153664
60236288
19.7990
7.3186
1231-5
120687
393
154449
60698457
19.8242
7-3248
1234.6
121304
394
155236
611 62984
19.8494
7-331°
1237.8
121922
39S
156025
61629875
ig.8746
7-3372
1240.9
122542
396
I568I6
62099x36
19.8997
7-3434
1244.1
123163
397
157609
62570773
19.9249
7-3496
1247.2
123786
398
158404
63044792
19.9499
7-3558
1250.4
124410
399
I5920I
63521199
19.9750
7-3619
1253-5
125036
400
■
160000
64000000
20.0000
7.3684
1256.6
125664
Table 4.
SQUARES, CUBES AND ROOTS.
377
Squares, Cubes, Square Roots, Cube Roots. Circumferences,
AND Circular Areas or Nos. from i to 52°
No.
Square
Cube
Sq. Root
Cube Root
Circle
Circum.
Area
401
160801
64481201
20.0250
7-3742
1259.8
126293
402
161604
64964808
20.0499
7-3803
1262.9
126923
403
162409
65450827
20.0749
7.3864
1266.I
127556
404
163216
65939264
20.0998
7-3925
1269.2
128190
40s
164025
66430125
20.1246
7.3986
1272.3
128825
406
164836
66923416
20.1494
7.4047
1275-S
129462
407
165649
67419143
20.1742
7.4108
1278.6
130100
408
166464
67917312
20.1990
7.4169
1281.8
130741
409
167281
68417929
20.2237
7.4229
1284.9
131382
410
168100
68921000
20.2485
7.4290
1288.1
132025
411
168921
69426531
20.2731
7-4350
1291.2
132670
412
169744
69934528
20.2978
7.4410
1294.3
133317
413
170569
70444997
20.3224
7-4470
1297-5
133965
414
171396
70957944
20.3470
7-4530
1300.6
134614
41S
172225
71473375
20.3715
7-459°
1303-8
135265
416
173056
71991296
20.3961
7.4650
1306.9
135918
417
173889
72511713
20.4206
7.4710
1310.0
136572
418
174724
73034632
20.4450
7.4770
1313-2
137228
419
175561
73560059
20.4695
7-4829
1316.3
137885
420
176400
74088000
20.4939
7.4889
1319-5
138544
421
177241
746 I 846 I
20.5183
7.4948
1322.6
139205
422
178084
75 I 5 1448
20.5426
7.5007
1325-8
139867
423
178929
75686967
20.5670
7.5067
1328.9
140531
424
179776
76225024
20.5913
7.5126
1332.0
141 196
42s
180625
76765625
20.6155
7-5185
1335-2
141863
426
181476
77308776
20.6398
7-5244
1338-3
142531
427
182329
77854483
20.6640
7-5302
1341-5
143201
428
183184
78402752
20.6882
7-5361
1344.6
143872
429
184041
78953589
20.7123
7.5420
1347-7
144545
430
184900
79507000
20.7364
7-5478
1350-9
145220
431
185761
80062991
20.7605
7-5537
1354-0
145896
432
186624
80621568
20.7846
7-5595
1357-2
146574
433
187489
81182737
20.8087
7-5654
1360.3
147254
434
188356
81746504
20.8327
7-5712
1363-5
147934
435
189225
82312875
20.8567
7-5770
1366.6
1486x7
436
190096
82881856
20.8806
7.5828
1369-7
149301
437
190969
83453453
20.9045
7.5886
1372.9
149987
438
19 1844
84027672
20.9284
7-5944
1376.0
150674
439
192721
84604519
20.9523
7.6001
1379-2
151363
440
193600
85184000
20.9762
7.6059
1382.3
152053
378
SQUARES, CUBES AND ROOTS. Table 4.
Squares, Cubes, Square Roots, Cube Roots, Circumferences
AND Circular Areas of Nos. from i to 520
No.
Square
Cube
Sq. Root
Cube Root
Circle
Circum.
Area
441
194481
85766121
2 1 .0000
7.6117
1385.4
152745
442
195364
86350888
21.0238
7.6174
1388.6
153439
443
196249
86938307
21.0476
7.6232
1391-7
154134
444
197136
87528384
21.0713
7.6289
1394.9
15483°
44S
198025
88121125
21.0950
7.6346
1398.0
155528
446
198916
88716536
2I.I187
7.6403
1401.2
156228
447
199809
89314623
21.1424
7.6460
1404.3
156930
448
200704
89915392
21.1660
7.6517
1407.4
157633
449
201601
90518849
21.1896
7.6574
1410.6
158337
45°
202500
91125000
21.2132
7.6631
1413-7
159043
451
203401
91733851
21.2368
7.6688
1416.9
159751
452
204304
92345408
21.2603
7.6744
1420.0
160460
453
205209
92959677
21.2838
7.6801
1423.I
161171
454
206116
93576664
21.3073
7.6857
1426.3
161883
455
207025
94196375
21.3307
7.6914
1429.4
162597
«56
207936
94818816
21.3542
7.6970
1432.6
163313
457
208849
95443993
21.3776
7.7026
1435-7
164030
458
209764
96071912
21.4009
7.7082
1438-9
164748
459
210681
96702579
21.4243
7.7138
1442.0
165468
460
211600
97336000
21.4476
7.7194
1445-1
166190
461
212521
97972181
21.4709
7.7250
1448.3
166914
462
213444
98611128
21.4942
7.7306
145 1. 4
167639
463
214369
99252847
21.5174
7.7362
1454.6
168365
464
215296
99897344
21.5407
7.7418
1457.7
169093
465
216225
100544625
21.5639
7.7473
1460.8
169823
466
217156
loi 194696
21.5870
7.7^29
1464.0
170554
467
218089
101847563
21.6102
7.7584
1467.1
171287
468
219024
102503232
21.6333
7.7639
1470.3
172021
469
219961
103161709
21.6564
7.769s
1473.4
172757
470
220900
103823000
21.6795
7.775°
1476-S
173494
471
221841
104487111
21.7025
7.7805
1479-7
174234
472
222784
I 05 I 5 4048
21.7256
7.7860
1482.8
174974
473
223729
105823817
21.7486
7.7915
1486.0
175716
474
224676
106496424
21.7715
7.7970
1489.1
176460
475
225625
107171875
21-7945
7.8025
1492-3
177205
476
226576
107850176
21.8174
7.8079
1495.4
177952
477
227529
108531333
21.8403
7.8134
1498.5
178701
478
228484
109215352
21.8632
7.8188
1501.7
I 7945 I
479
229441
109902239
21.8861
7.8243
1504.8
180203
480
230400
110592000
2 1 .9089
7.8297
1508.0
180956
Table 4.
SQUARES, CUBES AND BOOTS.
379
Squares, Cubes, Square Roots, Cube Roots, Circumferences
AND Circular Areas of Nos. from i to 520
Square
Cube
Sq. Root
Cube Root
Circle
Circum.
Area
231361
232324
233289
234256
235225
236196
237169
238144
239121
240100
241081
242064
243049
244036
245025
246016
247009
248004
249001
II1284641
II1980168
II 2678587
113379904
I14084125
114791256
iiS5°i3°3
116214272
116930169
I I 7649000
118370771
119095488
119823157
120553784
12128737s
122023936
122763473
123505992
124251499
250000 125000000
251001
252004
253009
254016
255025
256036
257049
258064
259081
260100
261121
262144
263169
264196
265225
266256
267289
268324
269361
270400
125751501
1 26506008
127263527
I 28024064
128787625
129554216
130323843
131096512
131872229
132651000
133432831
134217728
135005697
135796744
136590875
137388096
138188413
138991832
139798359
140608000
21.9317
21.9545
21.9773
22.0000
22.0227 -
22.0454
22.0681
22.0907
22.1133
22.1359
22.1585
22.1811
22.2036
22.2261
22.2486
22.2711
22.2935
22.3159
22.3383
22.3607
22.3830
22.4054
22.4277
22.4499
22.4722
22.4944
22.5167
22.5389
22.5610
22.5832
22.6053
22.6274
22.649s
22.6716
22.6936
22.7156
22.7376
22.7596
22.7816
22.8035
7-8352
7.8406
7.8460
7-8514
7-8568
7.8622
7.8676
7-8730
7-8784
7-8837
7.8891
7-8944
7.8998
7-9051
7-9105
7-9158
7.9211
7.9264
7-9317
7.9370
7-9423
7.9476
7-9528
7-9581
7-9634
7.9686
7-9739
7.9791
7-9843
7.9896
7.9948
8.0000
8.0052
8.0104
8.0156
8.0208
8.0260
8.03 II
8.0363
8.0415
1511.1
1514-3
1517-4
1520.5
1523-7
1526.8
1530.0
1533-1
1536-2
1539-4
1542.S
1545-7
1548.8
1551-9
1555-1
1558.2
1561.4
1564-5
1567-7
1570.8
1573-9-
1577-1
1580.2
1583-4
1586-S
1589-7
1592.8
IS95-9
IS99-I
1602.2
1605.4
1608.S
1611.6
1614.8
1617.9
1621.1
1624.2
1627.3
1630.5
1633.6
181711
182467
183225
183984
184745
185508
186272
187038
187805
188574
189345
190117
190890
191665
192442
193221
194000
194782
195565
196350
197136
197923
198713
199504
200296
201090
201886
202683
203482
204282
205084
205887
206692
207499
208307
2091 1 7
209928
210741
211556
212372
380
TEIGONOMETEIC FUNCTIONS.
Table s. Trigonometric Functions and the Solution of
Triangles
In the accompanying figure the trig-
onometric functions of the angle A
between the lines B A and A C are
as follows;
sin ^ = ^ C
cos A = A C
tan ^ = EF
cot A =G II
sec A = A E
cosec A = A II
ex-sec A = B E
In the right-angled triangle ABC
let a equal the side B C opposite the
angle A; let b equal the side A C opposite the angle B; let c
equal A B, the side opposite the angle C.
Let C = 90°
The following formulae apply to right-angled triangles:
Angles. A + B + C = 180°
A + B = 90°
A = 90°
B = 90°
sin ^ = ■ —
c
- B
— A
cos A = — ■
c
tan^ = -p
b
A
rea
ab
area
2
Sides, a =c sin ^4 = J tan A
a = V{c + b) (c-b)
b = ccos. A = -
tan A
b = V {c + a) (c - a)
_ a _ b
sin A cos A
<;= y/ a? + l^
Oblique Triangles.
Note. Where an angle is
more than 90° its sine, cosine,
and tangent are equal to that
of the angle (180° — the angle
in question); that is, if the sine
of 1 20° is desired take the sine
of (180° - 120°) = 60°.
Table 5.
TEIGONOMETMC TABLES.
381
Given
Desired
Formulse
A,B, a
A, a, b
C,b
c, K
C = i8o—{A + B); b =-
■ sin B
sin A
sin(A+B);K=
sin A
a? sin B sin C
2 sin yl
B,C
sin B= 5^ 6; C = i8o°- (A + B)
c = —. — - sin C
sm A
Two solutions are possible with B' as an acute angle
and B as an obtuse angle
C, a, b
i(A+B)
HA-B)
A B
c
K
1{A+B) =9o''-§C
tan|(^-B) = ''"*
a + b
A=\{A-frB) + \{A -B)
B = \{A+B)-\{A-B)
sin \U+B)
C = {a — b) -. j— r-j ^r-
sm f (4 — 5)
K = \ ah sSnC
tan \{A+B)
a, b, c
In the following formula s = \ {fl + b +c)
sin hB -*/ (^ - «) (^ - ^) .
. „ 2^/ s{s-a) [s-b) {s-
-c)
'■^^ ac
K
K = V s(s -a) (s - b) is - c)
EXPLANATION OF TABLES.
TABLE I. LOGARITHMS OE NUMBERS.— The log-
arithm of any number to any base is the index of the power
to which the base must be raised to equal the number.
The logarithms given in Table I are Briggs or Common
Logarithms in which the base is 10. Then 100 ^ 102, and
the logarithm of 100 = 2. Also 200 = lOa-soios, and the
logarithm of 200 = 2.30103. The integer of a logarithm is
called the characteristic, and is one less than the number
of integers in the number. The decimal part of the log-
arithm is called the mantissa and is given in Table I.
The mantissae of the logarithms in Table I are given to
five places ; while the numbers are given to four significant
figures. Where there are more than four significant figures
in the number, the table of proportional parts may be used.
The star opposite certain logarithms shows that the two
figures at the left are to be taken from the line below.
The logarithm of 1 is 0, and the logarithm of any
number less than unity will be negative. It is much more
convenient to use positive mantissae, and logarithms of
numbers less than unity are written as cologarithms or
modified logarithms in which the negative logarithm is sub-
tracted from a positive integer as 10, 20, etc., 100, 200, etc. ;
and the cologarithm or modified logarithm is written as a
positive logarithm with the integer shown as subtracted
from the logarithm. For example the logarithm of 0.2 =:
logarithm of % = log. 1 — log. 5 = 0.00000 — 0.69893 =
— 0.69893. The cologarithm or modified logarithm will be
equal to the logarithm subtracted from 10 and is written
9.30103 — 10. The logarithm of .00625 = log. %oo = ^°S- 5
— log. 800 = 0.69897 — 3.90309=— 2.20412, or as a colog-
arithm or modified logarithm r= 7.79588 — 10. The mantis-
sae of the cologarithms of numbers less than unity are
given in Table I.
The following rules shovild be kept in mind in using
the table of logarithms.
382
EXPLANATION OF TABLES. 383
1. The logarithin of a product is the sum of the loga-
rithms of the factors.
2. The logarithm, of a quotient is the difference of the
logarithms of the dividend and divisor.
3. The logarithm of a power of a number is equal to the
logarithm of the number multiplied by the index of the
power.
4. The logarithm of a root of a number is equal to the
logarithm of the number divided by the index of the root.
5. The logarithm of a fraction is equal to the logaritlim
of the numerator minus the logarithm of the denominator.
6. In dividing modified logarithms add a number to the
positive and negative characteristics so that the resulting
logarithm will have. — 10 following the logarithm. For
example if 8.36748 — 10 is to be divided by 3, the logarithm
should be written 39.36748 — 30 ; and dividing by 3 we
have 9.45583 — 10.
Eeverse the operation when multiplying modified loga-
rithms.
7. The characteristic of the logarithm of an integer is
always one less than the number of digits in the integral
part of the number.
8. The characteristic of the cologarithm of a number less
than unity (a decimal) is equal to 10 minus the number of
the place to the right of the decimal point occupied by the
first significant figure.
TABLE II. LOGAEITHMIC FTTNCTIOITS OF ANGLES.
— To avoid the use of negative characteristics the loga-
rithms of the functions of angles are written as cologa-
rithms, 10 being added to the characteristic of each loga-
rithm. In adding the logarithms of the functions of angles
the correct number of tens should be subtracted from the
result.
For angles from 0° to 45° and from 135° to 180° the
headings at the tops of the columns are to be used ; while
from 45° to 90° and from 90° to 135° the headings at the
bottoms of the columns are to be used ; the minutes being
read from the top down on the left of the page, and from the
boittom up on the right of the page.
In using the logarithmic functions of angles in connec-
tion with logarithms of numbers it should be remembered
that the logarithmic functions of angles are cologarithms
and that 10 should be subtracted from each logarithmic
function.
384 EXPLANATION OF TABLES.
TABLE III. NATUBAL FUNCTIONS OF ANGLES.—
For angles from 0° to 45° and from 135° to 180° the head-
ings at the tops of the columns are to be used ; while from
45° to 90° and from 90° to 135° the headings at the bottoms
of the columns are to be used ; the minutes being read
from the top down on the left of the page and from the
bottom up on the right of the page.
INDEX.
Page.
Acres, Reduction to 33
Angles, Errors of 214, 216
Measurement of . . 19, 52, 100
(See chain, transit.)
Areas 32, 34, 36, 54, 112
Axeman, Duties of ..23, 24, 190
Azimuth 100, 124, 150
Base line (see chain).
Borrow pit (see level).
Bubble vial 62
Calculations 12,85,224
Chain and Tape, The 13
Linear measuring instru-
ments 14
Problems (see Contents) . . 23
I'nits of Measure 13
Use of chain and tape.. 16, 24
Angles 19, 30
Areas 32, 34, 36
Base line 40, 153, 155
Chaining. .16, 26, 28, 30,
40, 188
on a slope 17, 28
Comparison of chains ... 43
Curve, Locating 38
Errors of chaining . .40, 215
Location of objects .... 20
of points 19
Passing obstacle 36
Parallels 18, 38
Perpendiculars ...17, 32, 38
Standard of length . . 26,
40, 153
Standardizing chain . . 26,
40, 153
Surveys, Tie line 21, 33
Tape constants 43, 153
making standard .... 43
Taping (see chaining).
Chaining (see chain).
Chainman, Duties of 16, 188
Collimation, Line of .... 58, 103
(see telescope, level, etc.).
Compass, The 45
Adjustments and tests . . 50, 56
Declination (variation) . .46, 51
Page.
Local attraction 48
Problems (see Contents) . . 51
Types of 45
Use of 49, 51
Adjustment 50, 56
Angles 52, 101, 112, 185
Area 54
Comparison of compasses 56
Declination of needle. .46, 51
Traverse with compass. . 52
Variation (see declination).
Computing, Methods of 223
Accuracy, Consistent .... 223
Arithmetical calculations. . 225
Addition 226
Checks 225
Division, Contracted.... 231
Divisor near unity .... 232
Multiples of 10 227
Multiplication 227
Contracted 230
Cross 228
Square root by subtrac-
tion 233
Contracted 232
of small number 233
Computing machines 234
Logarithmic calculations . . 224
Reckoning tables 234
Contour leveling (see level).
Cross-hairs 62, 93, 94
(see telescope).
Cross-sectioning (see level,
also see Railroad Survey-
ing).
Curve (see chain ; also see
vertical).
Declination (see compass).
DifEerential leveling (see level).
Dumpy level (see level).... 57
Eccentricity 48, 105, 133
Errors of Surveying 211
(see angles, chain, etc.).
Probable error 211
Tests of precision 215
385
386
INDEX.
Page.
Angular errors 216
Leveling 222
Linear errors 215
Traverse surveys 216
Field notes (see instructions).
Flagman, Duties of ..22, 24, 191
Forms for notes (see level
notes ; transit notes ; prob-
lems, etc.).
Freehand Lettering 237
Freehand titles 246
Grade lines (see level).
" Shooting in " 69, 101
Instructions, General 1
Field equipment, Care of . . 2
Adjusting screws 5
Axes and hatchets .... 5
Carrying instruments . . 3
Chains and tapes 5
Clamps 4
Exposure of instrument. 3
Eyepiece 4
Flag poles 5
Foot screws 4
Lenses 5
Leveling rods 5
Magnetic needle 5
Plumb bob, 5
Setting up 8
Stakes 6
Sunshade 3
Tangent screws 4
Tripod 2, 5
Field notes 6
Book, Field note 6
Character of notes .... 7
Criticism of notes 11
Cross referencing 7
Erasures 10
Form of notes 7
Indexing 7
Interpretation 6
Lettering 7
Numerical data 10
Office copies 10
Original 6
Pencil 7
Recording field notes ... 7
Scope 6
Sketches, Field note ... 7
Title page 7
Field work 1
Accuracy, Consistent ... 1
Correctness, Habitual . . 1
Page.
Decorum, Field practice. 2
Duties, Alternation of. . 2
Instructions, Familiarity
with 1
Instruments, Inferior . . 2
Speed 1
Office Work 12
Calculations 12
Drafting 12
Drafting room decorum. 12
equipment 12
Land Surveying 161
Functions of a surveyor. . 161
Metes and bounds, Surveys 172
Rectangular system, U. S. 163
Resurvey rules 161
Problems (see Contents).. . 173
City block, Resurvey of. . 179
Corner, Investigation of. 173
Perpetuation of 174
Metes and bounds 170
Partition of land 180
Quarter section corner . . 175
Section corner 176
Section, Resurvey of . . . . 176
Townsite, Design and
survey for 180
Lettering (see Freehand Let-
tering)
Leveler, Duties of 65, 68, 70, 191
Level note forms. .67,79, 80,
82, 86, 87, 94, 192, 196, 203
Leveling rods 64, 95
Making rod 64, 95, 142
Types of 63, 96
Leveling (see level ; leveling).
Level, The 57
Adjustments 72, 75
Practical hints 70
Problems (see Contents).. 76
Running lines 70
Telescope (see telescope).
Types of 57
Use of 65, 76
Adjustment of dumpy
level 75, 93
of wye level 72, 92
Bubble vial, Delicacy of
64, 90
Calculation of quantities 85
Comparison of levels . . 95
Contour leveling 69, 88
Contour map. Use of . . . 89
Cross-hairs, Stretching 62, 93
INDEX.
387
Page.
Cross-sectioning 69, 86
Differential leTeling . .66, 77
Error of setting target. . 94
Errors of leveling. . .59,
72, 77, 222
Grade line. Establishing 83
Levels for street paving.... 86
Level vial (see bubble).
Profile leveling ..68, 81, 82
Reciprocal leveling . . . 68, 89
Setting slope stakes .... 85
Sketching dumpy level.. 93
wye level 92
Staking out borrow pit. . 86
Tests ofi dumpy level. .75, 92
telescope (see telescope).
wye level 72, 91
Vertical curve 83
Line of coUimation (see colli-
mation. Line of).
Line shafting, Survey of. . . . 116
Local attraction (see compass).
Location survey 183, 201
Meridian (see transit).
North, True (see transit).
Note book, Field 7
Notes, Field (see instructions ;
problems ; chain ; compass ;
level; transit, etc.).
Pace, Length of 24
Pacing, Distances by 24
Parallels (see chain).
Perpendiculars (see chain;
transit).
Plane table 142
Problems 152
Preliminary survey ....183, 197
Profile leveling (see level).
Race track survey 117
Railroad Surveying 183
Bridge and masonry party. 207
Cross-sectioning party .... 202
Land-line party 207
Level party 191
Office work 197
Estimates, Approximate. 200
of quantities and costs 201
Map, Location 201
Preliminary 197
Office copies 201
Profile, Location 201
Preliminary 200
Records, Right of way . . . 201
Report of reconnaissance 197
Page.
Topography party 194
Topographer 194
Assistant topographer . . 195
Topography rodmau .... 196
Tapemau 197
Transit party 182
Chief of party 182
Transitman 182
Head chainman 188
Rear chainman 189
Stakeman 189
Axeman 190
Front flagman 191
Rear flagman 101
Problems (see Contents) . . 208
Adjustments, Review of. 208
Field equipment, Use of. 210
Curve practice, Field . . . 210
Curve problems, Office . . 210
Range pole practice 24
Ranging in lines (flagman).. 21
Reciprocal leveling (see level).
Reconnaissance 183, 197
Rectangular surveys 163, 175, 176
Referencing out points 110
Resurveys (see land survey-
ing).
Rodman, Duties of ..66, 71, 193
Sextant 146, 152
Signals 22
Simpson's rule 36
Slope stakes (see level).
Stadia 139, 148, 150, 157
Standard (see chain).
Stakeman, Duties of. .22, 24, 189
Stakes and stake driving. ... 23
Survey tsee chain ; compass ;
level ; transit ; stadia ; etc. ;
topographic ; land ; rail-
road ; reconnaissance ; pre-
liminary ; location ; rectan-
gular ; line shafting; race
track; tie line, etc.).
Tape (see chain).
Tapeman (see chainman).
Telescope, The . -. 58
Chromatic aberration ..58,
91, 132
CoUimation, Line of ..58, 103
Cross-hairs 62, 93, 94
Definition 61, 91, 132
Eye-piece 4, 60, 106
Field, Angular width.. 61,
91, 132
388
INDEX.
Page.
Illumination 61, 91, 132
Magnifying power.. 61, 92, 132
Objective 61, 92, 132
Parallax 4, 61, 71, 102
Spherical aberration . . . 60,
92, 132
Tests of 60, 02, 132
Tie line survey (see chain).
Topographer, Duties of .... 194
Topographic Surveying 137
City topographic surveying
138, 180
Hydrography 139
Problems (see Contents).. 148
Base line measurement. . 155
tape coefficients 153
Plane table and stadia . 159
by intersection 151
by radiation 152
by traversing 152
three-point problem . . . 152
Sextant, Angles with... 152
Sketching topography . . 156
Stadia, Azimuth traverse
with 150
constant. Fixed hairs. 148
reduction table 150
Topographic survey . . . 159
Transit and stadia sur-
vey 157
Triangulation system . . 156
Transitman, Duties of
99, 184
Transit, The 97
Adjustment (see problems) 102
Problems (see Contents) . . 106
Telescope (see telescope).
Types of 97
TJse of 99, 106
Adjustment 102, 133
Angles by repetition 101, 118
deflection 101, 112
Horizontal 100,106
Vertical 100, 114, 138
Page.
Angular errors 101, 216, 217
Area, Transit traverse. . 112
Azimuth 101, 150
Comparison of telescopes 132
of transits 135
Cross-hairs, Stretching
62, 93
Deflection survey ..100, 112
Double sighting 106
Eccentricity 105, 132
Error of setting pole . 134
Height of tower 114
Interpolation of point. . 107
Intersection of lines .... 108
Leveling with transit 77, 101
Line shafting survey. . . . 116
Meridian, Determination
of 119
direct observation .... 131
Polaris at any time . . 121
Polaris at elongation. . 119
solar attachment .... 127
Passing obstacle 110
Prolongation of line.. 99, 106
Referencing out a point. 109
Race track survey 117
Sketching transit 133
Staking out building. . . . 114
Tests of transit . . 102, 133
Traverse survey . . . .101,
112, 150
Triangulation across river llO
Transit note forms. 107, 109,
111, 113, 115, 118, 120,
124, 130, 134, 149, 187
Traverse surveys. Errors of
54, 112, 218
Triangulation. 110, 156, 159, 215
Variation of magnetic decli-
nation (see compass) .... 47
Vernier 49, 99, 1C5
Vertical curve 84
Wye level (see level) 57