c6yHr h'oiiojay explai AdjUiStabk table or AsU-oiiojay e^mned oiidvpactical dermitions giveu.to the lavrgator. Tlu,t,m,jramg«J:orjbb'mm,Ucalfy.Mal}u„iatCcaJly. &M^anicaUr defiiie^Tm ahi^f ohotajr mobmofOu- plane of iLEotA to theplajtc ofgit Sun. by Ae bm h^ht anJ dip/nt,- orji/iue^ law. enal/<« /Ae Mirme,- to ice theb^u Mi. lempfy ofobtavuh^ a S/ii/Js- pmV/m on am pait ofAe hobe vm6/e b, de Aeafmly bodies. in a SoUr rear. Tli£ Fliaiommn onhc chnM,n- r.n/if .reasons and //,/■ rJmiigi's- otyhe Jfoan. mdils- mru,netic plmwiammi ay a /bred law fyj^ Positive and J/igatm /bras- as- seen, are ,inctianx,pable in tlieirtawof action to the Sun and£artL 'Hie w/iole field ot iheU- naUon is-sja-ead out, and flu, h-ac inediod orXenidi dMnic-es- a\U J/dnul^ c>:p/aimd.by refei-aices contmtud and worked out ■ir, this- devise, For obtainmq hM.de A, ■ Sea a,- Land. T/ie oi/ec/ oftjiis little diagram is to show the medutimal tomi or raiding a ships lajibide. iv the vse of a pmpe,- Ih^mnmt to meosi\iv t/ie distance ofaBeavenfy /jody either north or south ottheAartM '-•■-•■ ., . .. „ , UrBacn'on mSorkontal pawlar and bj bidinii a correa ~j , . . / ' . I'^aatoriyJJtitiide and Zenith distance mdumt reference to Moriu^ declination on a given da^. Mle — di,y or su/warbhp the -^^.^ Ti^!^!^!^^-^^^a distance., ^^S^^^^X^SurrJ-Sol ^ . . iadtnJe is found t/y simply ad -declination fi-imi die Zenitfi VK555 .cm""" """"'"'""■"'"'^ + ,. 3 1924 030 898 922 °"" Overs ISfil ^« Cornell University Library The original of this book is in the Cornell University Library. There are no known copyright restrictions in the United States on the use of the text. http://www.archive.org/details/cu31924030898922 THE IMPROVED MUTICAL ALMAIiC, OB TEUE NAVIGATOR, Astronomically, Mathematically, and Mechanically Arranged, BY WHICH THE TKUB MOTIONS OF THE EAETH AND PLANETS TO THE SUN AEE DEMON- STEATED, AND THE EEYOLUTIONS OF THE SfiASONS IN A SOLAR YEAR ACCUEATELY DEFINED, EEOM WHICH AEE OBTAINED THE UNDEVIATINQ- EULES FOE FINDJjNG LATITUDE AND LONGITUDE, AT SEA OE ON LAND. IlLUSTRATED BY EKGRAYMGS, SHOWING THE Tkite Position of the Eabth astd Planets at their EQcriNoxES and Solstices, bt Plates 1. and II., And thbie Rotation and Declination, by Plates III. and IV. Plate V. Dbmonsteates Local Atteaotion and the Laws of Atmospheeic Elboteioity. Plates VI., VII., and VIIL, the Eclipses foe the Yeaes 1869, 1860, and 1861. HAl^I. COI.BY. NEW YOKK: PUBLISHED BY THE AUTHOR. 1859. & Entered according to Act of Congress, in the year 1858, by HALL COLBY, in the Clerk's Office of the District Court of the United States for the Southern District of New York. stereotyped and printed By C. a. Alvord, 15 Vandewater-st., New York. TESTIMONIALS. January, 1859. The undersigned have examined Hall Colby's Compend of Astronomy and Navigation ; we consider Ms method of illustration both new and use- ful, in a practical point of view, giving polarity and order, physically and mechanically, to the motions of the earth, and planets to the sun. We rec- ommend his Magnetic Theory of the polarity of the heavenly bodies to the consideration of all institutions of learning, testing their claims as set forth in his orrery, and in his plates and engravings — the nautical portion being for three years. We believe it will be found fully competent for the pur- poses of obtaining latitude and longitude at sea — the whole being designed for practical use and not for speculation. We are glad to see this work put in the way of distribution. Henut Eagle, Captain U. S. N. Ohaeles Boggs, Commander U. S. W. Joseph J. Oomstock;, Merchant Steam Marine. H. S. Knight, Ship ''New World." E. K. COENING, Bark ''Benefactor" China Trade. W. L. PIunsoN, TI. S. Wavy. Jos. H. TOONB, Ship-Master. Capt. S. M'Gowai^, Steamship "Illinois." Wm. Oitiwell,. First Officer " KathayP Capt. James Hall, Late of Russian Steam Cor- vette, "Japamese." HALL COLBY'S MAGNETIC ORRERY, AND ITS CLAIM. The Author published his Map of the Solar System in 1846 ; in this map he claimed the discovery of the Magnetic Polarity of the Heavenly Bodies, and their magnetic affinity to the Sun, in the mechanical arrangements of their polar forces, and their polar position at the Equinoxes, Solstices, and their Eclipses, changes of the Moon, &c. All of which were defi- nitely arranged in his Map in 1846 ; and in 1847 the Magnetic Orrery was constructed and exhibited to prove the Law of Action, as claimed in the Map, to be a negative and positive force or law. The adjustment of the Magnetic Orrery is simply to adjust the magnetic needle N. and S., causing the circle or wire to have a N. E. and S. W. direction across the gilt ball, represent- ing the Sun and Sun's equator. The engraving on the base on which it stands, shows the Earth at the Equinoxes and Solstices, and its maximum changes and angles of the poles, and consequent change of seasons. The suspended globe representing the Earth, being put on the hook or pivot, will, by being moved carefully from a west or winter solstice to a summer solstice, on the east side of the Sun, pass across the Sun's equator, giving a Node of the Sun and Earth, and constitutes a vernal equinox. By this device magnetically arranged the peculiar and wonderful law of the planetary system may be seen, negatively and positively worked out. By this device is also illustrated the universality and sovereignty of that law which is called positive and negative, or which may be otherwise designated as oxygen and hyd/rogen, known to be the inherent property of matter — and more definitely proved by means of chem- ical analysis^ to be the inherent property of water. The following testimonials are from men of more than ordinary talent : GotLEGiATB Institute, Eoohestee, 1846. The Plan or Map oi the Solar System, by Hall Oolby, is finely adapted to present to the aye of the learner in Astronomy clear and distinct views of the distances, revolutions, eclipses, &c., of the heavenly bodies. If it shall be used in connection with a globe, it will only become a more important auxiliary in the hand of the teacher, in communicating a great amount of interesting and important knowledge. Ghestee Dewet, President. Having examined Hall Colby's Magnetic Orrery, Chart, &c., of the Solar System. The Orrery is a rare invention, and may be so considered by any navigator or teacher of science, it having the capacity of exemplifying nature, or the natural phenomena of Astronomy. By the Orrery may be seen and illustrated the complicated motions of the Earth in her seasons. It also defines most beautifully the nodes of the Sun and Earth at the Equinoxes, and defines their position of axes and planes, solstices, &c. In short, all the mechanical order of the solar system seems to be the gift of the Orrery. The magnetic arrangements combined give it a force superior to any thing I have ever seen. The instrument being so lucid, I think a vast amount of correct knowledge may be obtained by its introduction to all seminaries of learning. Wm. L. Hudson, U. S. N. February 18th, 1854. \ The undersigned has cursorily examined Colby's Magnetic Orrery and Chart of the Solar System, and is of the opinion that they justify the recommendations given of them by Cap- tain Hudson and Professor Dewey. Hoeaob Websteb. Free Academy, N. Y., 21st February, 1854. Having examined Mr. Colby's Map and Magnetic apparatus, I am free to say that I fully coincide in the opinions of their utility in a practical point of view, as expressed by Captain Hudson. T. Steong, Professor of Mathematics and Natural Philosophy in Eutger's College. Teenton, New Jersey, June, 1858. Hall Colby — Dear Sie : I have examined with much attention and interest your Mag- netic Orrery, designed to illustrate the physical laws of the planetary system. If your opinions as to the sublime theory of the polarity of the Sun and Earth and Moon, and of the Planets and Comets, are correct and can be sustained — and the workings of your Orrery certainly go very far toward establishing their correctness — then it will settle one of the most profound principles in nature, and your discovery will constitute one of the most important made in Astronomy for the last three thousand years. Wishing you all success due to your long and indefatigable labors, I subscribe myself. Your friend, F. W. Phelps, Principal of the New Jersey State Normal School. ■S ^ -w c 1 •5 =5 1 '1 ^. ^1 '■-- -^ 5i '? '^ - 5 i 1 ■■£ ■<: c: =3 \ ■5 ? a i ^T s S ^ i ^ ^ -^ ^ "5. 0^ SELECTED MATTER FROM DISTINGmSHED AUTHORS, AS AN |ntr0krt}0ii to l^stroMmj anir §!aMgatkii. The term Asteohomt, like most terms of science, is derived from the an- cient Greek language. Astronomia, astronomy, is compounded of astron, a star or constellation, and nomos, a law, the law of the stars. It may be defined the science which treats of the heavenly bodies. Astronomy is a science of great antiquity. Its early history has too many allegorical representations to admit of a satisfactory elucidation. It is, how- ever, probable, that some scanty knowledge of this science must liave been nearly coeval with the existence of man. The grandeur of the deliglitful canopy extended over his head, must have attracted the curiosity of the most careless and rude wanderer of the forest, much more of the attentive shepherd. Beside, the most common concerns of life are in some measure regulated by a partial knowledge of astronomy. Both the Chaldeans and Egyptians claimed a very high antiquity ; and equally claimed the honor of being the first cultivatoi-s of astronomy. It may not be easy, at this late day, to determine which has the best founded claim. Most authors seem agreed in fixing the origin of this science either in Chaldea or Egypt. The shepherds, who "watched their flocks by night," on the beautiful plains of Babylon, or in the extended vale of the Nile, could not be careless spectators of the varying aspects of the heavens. The tower of Belus was the boast of the Chaldeans. This is thought by some to have been an astronomical observatory. They gloried in their astronomer, Zo- roaster, placed by them five hundred years before the destruction of Troy. The Egyptians, with equal ostentation, vaunted of their priests. Tlie col- leges of these they considered as the depositories of every species of knowl- edge. In the monument of Osymandyas, it is said, there was a golden circle of three hundred and sixty-five cubits in circumference, divided into three hundred and sixty-five equal parts, according to the days of the year, with the heliacal rising and setting of the stars for each day. It is proper to state, that, whatever may be thought of the tower of Belus, or the circle of Osymandyas, both the Chaldeans and Egyptians were extremely well situ- ated for astronomical observations, being almost always favored with a pure atmosphere, and a sky of delightful serenity. A very favorable opinion of the Egyptians must be formed from the position which they gave to their 4 ASTROiSrOMy AND NxVVIGATIOK pyramids, the faces of these being accurately directed to the four cardinal points of the heavens. Beside the Chaldeans and Egyptians, the Arabians may justly claim a high antiquity in astronomical knowledge. The land of Uz, famous for the afflictions of Job, was without doubt a district of Arabia. Authors are agreed that the book of Job is very ancient — is unrivaled in antiquity, ex- cept, perhaps, by the books of Moses. From the familiar manner in which Arcturus, Orion, and Pleiades are introduced in that book, it may be ascer- tained that, not only were names given to some of the stars, but constella- tions had been designated and named, so as to become objects of general notoriety. Among other relations of this kind may be reckoned what is mentioned by Josepnns in his Antiquities, who, in speaking of the progress that had been made in astronomy by Seth and his posterity, before the deluge, as- serts that they engraved the principles of the science on two pillars, one of stone and the other of brick, called the pillars of Seth; and that the former of these was entire in his time. He also ascribes to the antediluvians a knowledge of the astronomical cycle of six hundred years, which Mantucla, in his " Histoire des Mathematiques," thinks, with much greater reason, was an invention of the Chaldeans; and that whatever information was possessed by the Jewish annalist, with respect to this memorable period, was probably obtained either from that people, or from some ancient writings which no longer exist. Astronomy is a science useful and sublime in the highest degree. It is useful, not only on its own account, but as the foundation of other arts and sciences; and sublime, as it elevates the soul above the little objects of this world to scenes of infinite grandeur. Navigation, as an art or a science, is dependent on the principles of astronomy. The varying compass would not form a sure guide to the mar- iner on the pathless ocean, were it not for corrections derived from observa- tion on the heavenly bodies. Geography is equally dependent. By astron- omy are ascertained the figure and magnitude of the earth. The knowledge of latitude and longitude, the situation and distance of places the most re- mote, the true bearing of countries in respect to each other, and tlieir mag- nitude or extension, are most accurately obtained by astronomical principles. But above all, astronomy affords the most enlarged and sublime views of the Creator's works. In the vast expanse of the universe, the astronomer be- holds the stars, which bespangle and adorn our canopy, magnified into so many suns, surrounded with worlds of unknown extent, constituting systems multiplied beyond the utmost bound of human imagination, and measured, only by the omnipresence of Jehovah ; all moving in harmony, in subjection to his omnipotent control. '■'■The hea/uens decla/re the glory of God, and the Jt/rmmnent showeth his handy worhP "An undevout astronomer is mad." There have been three great systems of astronomy — the Ptolemaic, the Brahean, and the Copernican. The former two, however, though dignified by the name of systems, are more properly denominated hypotheses. The Ptolemaic system takes its name from Claudius Ptolemeus, or Ptolemy, who flourished at Alexandria or Pelusium, in Egypt, in the second century of the Christian era, in the reigns of Adrian and Antoninus, the Poman emperors. In this system, the Earth was supposed at rest in the center of the universe, around which the Moon, Mercury, Venus, the Sun, Mars, Ju- ASTRONOMY AND NAVIGATION. 5 pitev, and Saturn revolved. Above the planets this hypothesis placed the firmament of stars and the two crystaline spheres, all included in theprimum mobile, giving motion to the whole. Still higher, according to some, he con- ceived, was placed the em.pyrecm hecmen, or heaven of heavens; all revolv- ing round the Earth, from east to west, in twenty-four hours, according to the ideas of the illiterate in all ages. The different phases of Mercury and Venus, their superior conjunctions without oppositions, and the apparent retrograde motion of all the primary planets, show the absurdity of this hypothesis. Tycho Brahe was a native of Sweden, being born at Knudstorp, in the year 1546 ; though, from education and residence in Denmark, considered a Dane. This celebrated astronomer was acquainted with the Copernican system, published before his time. But, rejecting some of its most simple principles, because he thought them irreconcilable to the literal meaning of some texts of Scripture, he adopted some of the greatest absurdities of Ptol- emy, in other respects making his system agree with the rules of modern astronomy. In his system the Earth is supposed at rest, the Sun and Moon revolving round it as the center of their motion, while the other planets revolve around the Sun, and are carried with it about the Earth. By this hypothesis the phases of Mercury and Yenus may be explained. But no satisfactory explanation can be given by it of the opposition of the superior planets. Both the Ptolemaic and Brahean systems are contrary to the modern principles of calculating and projecting eclipses. The Copemiea/ii system is now universally adopted by astronomers as the true solar system. Some of the ancient Egyptians discovered the revolution of Mercury and Venus I'ound the Sun. The general principles of the system were afrerward taught privately by Pythagoras to his disciples, five hun- dred years before the Christian era. But, being afterward rejected, it was nearly lost, till revived by Copernicus, a native of Thorn, in Polish Prussia. In the center of this system is placed the Sun, around which the primary planets revolve from west to east. The Earth turns on its axis. The Moon revolves round the Earth. The other secondary planets perform their revo- lutions around their primaries from west to east, at different distances and at different times, the satellites of Herschel only excepted. Beyond these, at an immense distance, are the fixed stars, as centers to other systems. Some authors inform us that Copernicus finished his great work in 1530 ; but did not venture it in print till near the time of his death, which hap- pened on the 22d of May, 1543. He died suddenly, by the rupture of a blood-vessel, soon after completing his TOth year, and a few days after revising the first proof of his work. Copernicus was an accurate mathematician, and applied his useful knowl- edge to the improvement of astronomy. Perplexed with the epicycles a,nd eccentrics by which Ptolemy attempted to account for the irregular motion of the heavenly bodies, he searched the lore of antiquity. " He tried to find among the ancient philosophers a more simple arrangement of the universe. He found that many of them had supposed Venus and Mercury to move round the Sun ; that Nicetas, according to Cicero, made the Earth revolve on its axis, and by this means freed the celestial sphere from that inconceivable velocity, which must have been attributed to it to accomplish its diurnal revolution. He learned from Aristotle and Plutarch that the 6 ASTRONOMY AND NAVIGATION. Pythagoreans had made the Earth and planets move round the Sun, which they placed in the center of the universe. These luminous ideas struck him. He applied them to the astronomical observations, which time had multi- plied, and had the satisfaction to see them yield, without difficulty, to the theory of the motion of the Earth. The diurnal revolution of the heavens was only an illusion due to the rotation of the Earth, and the procession of the equinoxes is reduced to a slight motion of the terrestrial axis. The circles imagined by Ptolemy, to explain the alternate, direct, and retrograde motions of the planets, disappeared. Copernicus only saw in these singular phenomena the appearances produced by the motion of the Earth round the Sun with that of the planets ; and he determined, hence, the respective dimensions of their orbits, which till then were unknown. Finally, everj thing in this system announced that beautiful simplicity in- the operations of nature, which delights so much when we are fortunate enough to discover it. Copernicus published it in his work " On the Celestial Kevolutions." Not to shock received prejudices, he presented it under the form of an hy- pothesis. " Astronomers," said he, in his dedication to Paul III., " being permitted to imagine circles to explain the motion of the stars, I thought myself equally entitled to examine, if the supposition of the motion of the Earth would render the theory of these appearances more exact and simple." ASTRONOMY AND NAVIGATION. A DEFINITION OF ASTRONOMICAL TERMS. « Altitude is an arc of a vertical circle intercepted between the center of a heavenly body and the horizon. Amplitude is the distance of a heavenly body from the east or west point of the horizon, measured on an arc of that circle, the body being in it, or referred to it by a verticle. Antipodes, inhabitants living at opposite points of the Earth's surface, imder opposite meridians and in opposite parallels. Antasei, inhabitants living under the same meridian, but in opposite parallels, north and south. Aphelion, the point in the orbit of a planet farthest distant from the Sun. Apsis, the aphelion or perihelion point. The line connecting these is called the line of the apsides. Are of a circle, a part or portion of the circumference. Asteroids, four small planets between Mars and Jupiter. Axis, an imaginary line on which the Sun or a planet revolves. Azimuth, the distance of a heavenly body from the north or south point of the horizon, when the body is in that circle, or referred to it by a verticle. Centrifugal force, that by which a revolving body endeavors to recede from the center of its motion. Centripetal foree, that wliich attracts a revolving body to the center. Comet, a celestial body moving round the Sun in an orbit very eccentric. Conjunction, the meeting of heavenly bodies in the same longitude, on the same side of the Earth, tliough they may not be in the same latitude. Constellation, a number of stars contained in an assumed figure. Cosines, cotangents, and cosecants are sines, tangents, and secants of the complement of an arc. Cycle, a period of time. Declination, the angular distance of a heavenly body from the equator. Dichotomized, divided into two parts. Disk of the Sun or a planet, the hemisphere presented to an observer appearing like a plain circle. Eccentricity, the distance in a planet's orbit between one of the foci and the center. Eclipse, a partial or total obscuration of a heavenly body. Ecliptic, a great circle in which the Earth performs its annual revolution round the Sun, or in which the Snn appears to revolve round the Earth. Elongation, the angular distance of a heavenly body from the center of its motion ; as a planet from the Sun, or a secondary from its primary. Epact, the excess of the solar above the lunar year of 354 days, or twelve mean lunations. Equator, a great circle of the Earth drawn round the center from east to west. Equinox, a point in the ecliptic where it is cut by the equator. There are two equinoxes, the vernal and the autumnal. Eocus, a point in the elliptical orbit of a planet, round which it revolves. Eoci, the plural of focm, two points in the transverse axis of a planet's orbit. Galaxy, the milky way. Geocentric motion, the apparent motion of a planet as seen from the Earth. Gibbous, convex, protuberant ; applied to the Moon between the first quarter and the fuU, or between the full and last quarter; also applied to some of the planets. Globe, a sphei-e representing the Earth or visible heavens. Golden numter, a period of nineteen years ; the cycle of the Moon. Heliocentric motion, the motion of a planet as seen from the Sun. 8 ASTRONOMY AND NAVIGATION. Hemisphere, half of a sphere or globe. Horizon, a great circle of the Earth, 90° from the zenith of a place, the plane of which divides the Earth into upper and lower hemispheres. This is denominated the rational horizon. The sensible horizon is the circle which hounds our sight. Inclination, the angular distance between the orbit of a planet and the ecliptic. Latitude of a heavenly tody, its distance north or south from the ecliptic. Latitude on the Earth, the distance north or south from the equator. Libration of the Moon, a periodical irregularity in her motion by which exactly the same face is not always presented to the Earth. Limits in a planeVs orbit, two points farthest distant from the nodes. Longitude of a heamenly body, its distance on the ecliptic from the first of Aries to the intersection of a secondary passing through the body. It is reckoned eastward 360°. Longitudlb on the Earth, the distance east or west from a fixed meridian. Meridian, a great circle of the sphere, encompassing the Earth from north to south. Half of this is sometimes called a meridiem. Nadir, the point in the heavens directly under the observer, and opposite to the zenith. Nebulm, telescopic stars cloudy in appearance. Node, a point at which the orbit of a planet crosses the plane of the ecliptic. The inter- section where the planet passes to the north is denominated the ascending node ; where it passes to the south, the descending node ; above being often used for north, and below for south, in astronomical terms. Oblate spheroid, a spherical body flatted at the poles. Obliquity, inclination, the angular distance of a circle from the ecliptic. Oblique sphere, a position of the sphere in which the equator and parallels cross the hori- zon in an oblique direction. Opposition, opposite part of the heavens. Two bodies are said to be in opposition when their distance of longitude is 180°, though they may not he in the saitie degree of celestial latitude. Orbit, the figure described by a planet in its revolution round the Sun, or its primary. Pa/rallax, the angular difference between the true and apparent place of a heavenly body. Parallel sphere, a position of the sphere in which the parallels of latitude and the equator' appear parallel to the horizon. ' Penumbra, the partial shadow of the Moon. Perihelion, the point in the orbit of a planet nearest to the Sun. Phases, the difierent appearances of the Moon, Mercury, and Venus, as the illuminated side is differently presented to a spectator. Phenomenon, appearance, often a novel appearance. Phenomena, plural of phenomenon. - Planet, a heavenly body revolving round the Sun, or some primary planet. Plane of a plane fs orbit, that imaginary surface in which it lies, or a supposed even sur- face between every part of its circumference. Pola/r circles, two circles drawn round the Earth from east to west, parallel to the equator, about 23° 28' from the poles. Poles of a planet or the Sun, the extremities of its axis. Precession of the equinoxes, their retrograde motion in the heavens. Prima/ry planets, those which perform their revolutions immediately round the Sun. Projectile force, that which impels a body in a right line. Quadrature, a quarter, a point in the celestial sphere 90° from the Sun. Quadrant, the fourth part of a circle. Radius, a right line from the center of a cii'cle to the circumference. Refraction, the turning of a ray of light from a straight course. Retrograde moUon, apparent motion from east to west. Right angle, 90°. When a line falls on another line, maiing the angles on each side equal, each is a right angle. Right ascension, the distance of a heavenly body from the first of Aries on the equator, or referred to that circle by a secondary. It is reckoned from the first of Aries to the point where the secondary, passing through the body, cuts the equator. Seconda/ry planets, satellites, or moons, small planets revolving round some of the primary planets. Secondary to a great circle, a great circle crossing it at right angles. Sidereal resolution, the time of a planet's revolving from a star to the same star again. Sine, a line drawn from one end of an ai'C perpendicular to the radius. ASTRONOMY AND NAVIGATION. 9 Sohtices, two points in the ecliptic, 90° from the equinoxes. Star, a luminous heavenly body shining by its own light. Synodical revolution, the time intervening between the conjunction of a planet with the Sun, and the succeeding conjunction of the same bodies. Syzygy, the conjunction or opposition of a planet with the Sun, as the change or full of the Moon. Tangent, a right line touching the circumference of a circle perpendicular to the radius. Tide, the alternate ebbing and flowing of the sea. Transverse, the longest axis of an ellipse. Tropical revolution, the time intervening between a planet's passing a node and coming to the same node again. Tropics, two circles parallel to the equator, at the distance of about 23° 28'. Twilight (crepusculum), the partial light before sunrise in the morning and after sunset in the evening. Vector radius, a line from a planet, in any part of its orbit, to the Sun. Vertical circles, circles cutting the horizon at right angles, and passing through the zenith and nadir of a place. Zenith, the point in the heavens directly over the observer. The zenith and nadir are the poles of the horizon. Zodiacal light, a pyramid or triangular beam of light, rounded a little at the vertex, ap- pearing before the twilight of the morning and after the twUight of the evening. Zodiac, a broad circle in the heavens between two lines on each side of the ecliptic, and parallel to it at 8° distance. Zone, literally a belt or girdle ; a large division of the Earth's surface. OHAEAOTERS. PLANTITS. 2 Mercury. ? Ceres. ? Venus. <^ Pallas. © Earth. u Jupiter. $ Mars. T? Saturn. fi Vesta. ¥ Hersohel. 5 Juno. SIGNS. T Aries. ^ Libra. 8 Taurus. m Scorpio. n Gemini. t Sagittarius. © Cancer. ys Capricornns, SI Leo. ^ Aquarius. m Virgo. K Pisces. 8 Sign. O / pi ffr Third. = E quality. ASTRONOMY GENERALLY; OE, THE SOLAR SYSTEM. The Sun with his attendant planets and comets constitute the sola/r system. Conceive a large gilt ball suspended in open space, with several smaller balls moving around it from west to east, at different distances and with un- equal velocity ; imagine those nearest the large ball to have the swiftest motion, and that the movement of the others is more and more slow as you pass to those most remote ; imagine further, that several of the revolving balls have others moving round them, and carried with them, or round the central ball, and that all these motions are perpetual, and you will have some imperfect idea of the sola/r system. The idea will be more complete, if occasionally a ball with a liery train, or tail, be conceived moving with great velocity in a direction nearly to the central ball ; but that, passing round this, it recedes with retarded motion, the train increasing as it draws toward the center, and diminishing as it recedes. It is important that every instructor in astronomy should be furnished witli an orrery. To give a clear view of the whole, as suspended and re- volving in infinite space, is an object deserving the assiduous care of the well-informed teacher. Of the Sun. The Sun is the great source of light and" heat to the bodies of the solar system. It is an object pre-eminent — of inconceivable utility and grandeur. Diffusing its rays to an immense distance, and filling a sphere of incompre- hensible extent, it gives life and motion to innumerable objects. In some humble measure it resembles its divine Author. The most minute beings are not overlooked ; the greatest are subject to his control. The Sun is considered in the lower focus of the planetary orbits. But if the center of the Sun be considered the focus of Mercury's orbit, the com- mon center of gravity between Mercury and the Sun will be the focus of Yenus's orbit ; and the common center of gravity between Mercury, Yen us and the Sun will be the focus of the Earth's orbit. Thus the attraction of the planets nearest the Sun will, in a small degree, affect the foci of those more remote. Except the foci of Saturn and Herschel, however, those of all the orbits will not be sensibly removed from the center of the Sun. Nor will the foci of Saturn and Herschel be sensibly different from the common center of gravity between Jupiter and the Sun. ASTRONOMY AND NAVIGATION. H Though stationary in respect to surrounding objects, the Sun is not desti- tute of motion. It revolves on its axis from west to east in 25 d. 15 h. 16 m., or, according to some authors, in 25*d. 10 h. The Sun's rotation is known from the revolution of its spots. The form of the Sun is globular. This is demonstrable from its always appearing a flat, bright circle, whatever side is presented to the observer. The diameter of the Sun is 883,246 miles ; its circumference, 2,774,897 iniles. The Sun is 1,364,115 times larger than the Earth. Thus, surpassing in greatness the globe we inhabit more than one and a third million times, it swells beyond our conception. Some imperfect idea of the immense mag- nitude of the Sun may be formed by one or two computations. A celestial courier, passing at the rate of forty miles an hour, would be about one hun- dred and ninety Julian years in circumambulating the Sun. If the Sun were a hollow globe, and the Earth placed at its center, the Moon, at its present distance from the earth, 240,000 miles, might revolve uninterrupted, being but little more than half way from the center to the circumference of the Sun. Such a hollow globe might, therefore, contain within itself a brilliant system of revolving worlds. The physical construction of the Sun has excited much inquiry and spec- ulation. From time immemorial, an opinion seems to have prevailed tliat the Sun was a globe of fire. Some say, "The Sun shines, and liis rays, col- lected by concave mirrors, or convex lenses, burn, consume, and melt the most solid bodies, or else convert them into ashes or gas ; wherefore, as the force of the solar rays is diminished by their diverging, in a duplicate ratio of the distances reciprocally taken, it is evident their force and eff'ect are the same, when collected by a burning lens or mirror, as if we were at such a distance from the Sun where they were equally dense. The Sun's rays, therefore, in the neighborhood of the Sun, produce the same effects as might be expected from the most vehement fire; consequently, the Sun is a fiery substance." The force of this reasoning would lead us to conclude that, however antiquated or repudiated the opinion may be that the Sun is a globe of fire, its surface must resemble a vast combustion. But if heat come from the Sun, or the moving cause of heat originate in that luminary, why is it always cold in the upper regions of the air, though nearer the Sun than the surface of the Earth? And why are the tops of lofty mountains covered with perpetual snow, even under the equator? Tlie reply is, that animal heat is generated in the lungs from the oxygen of the atmosphere; that air is a bad conductor of heat, and of course a good de- fense against cold, or rather preservative of heat, preventing its escape from the body. The more dense the air is, therefore, the Avarmer is any situation. The density of the atmosphere is considered as decreasing in a geometrical proportion upward from the surface of the Earth. If the decrease be not always thus proportioned, it is well ascertained by experiments on the tops of lofty mountains, that the air becomes very rare in high regions. Hence the supply of heat from the oxygen of the atmosphere, and the security against cold, or the preservation of heat from the non-conducting power of the air, are greatly diminished. This must atfect sensation, and in some degree the thermometer. But this is not the only cause, perhaps not the principal cause, why high regions of the air are cold. According to clieni- ists, all bodjes, even those to us the most frigid, radiate heat. Hence, on 12 ASTRONOMY AND NAVIGATION. the common surface of the Earth, uot the great mass of the globe only, but other bodies innumerable, with which we are surrounded, supply us with heat. But the elevated observer on the top of Chimborazo or Himalaya is retired, in some measure, above the influence of the Earth and the bodies on its surface. He must exhaust his own treasure of heat, while, except immediately from the Sun, he can receive next to nothing in return. It may be added that heat, or caloric, is by very many considered a fluid put in action by the Sun's rays. If so, it may be confined near the surface of the Earth, or be far short of the atmosphere in height. On the modern theory of caloric, therefore, elevation must greatly diminish, rather than in- crease the heat. The highest elevation to which human beings can ascend, though quite a proportion in regard to the height of the atmosphere, vanishes, when com- pared with the distance of the Sun. "What are four or five miles in com- parison to ninety-five millions! ISTo mountain is so elevated, no balloon can ascend so high as to make any perceptible difl^erence in respect to the distance of the Sun. In regard to the ancient theory, it is worthy of notice that the powerful attraction of the Sun is incompatible with its being a mass of flamie only, and the spots on its surface are conclusive that in part, at least, it must be composed of other matter. ^ The celebrity of Dr. Herschel, and the ingenuity of his hypothesis respect- ing the Sun, make this hypothesis deserve some particular consideration. Rejecting the terms spots, moclei, penumhroB^foGulcB, and lucuU, he adopts openings, shallows, ndges, nodules, corrugations, mdentations, and pores. Openings, he says, are those places where, by the accidental removal of the luminous clouds of the Sun, its own solid body may be seen ; and this not being lucid, the openings, through which we see it, may by a common tel- escope be mistaken for mere black spots. Shallows are extensive and level depressions of the luminous solar clouds, generally surrounding the openings to a considerable extent. Being less luminous than the rest of the Sun, they seem to have some very imperfect resemblance to penumbrse, which occasioned them formerly to be so called. Ridges are elevations of luminous matter, extended in rows of irregular arrangement. Nodules are also elevations of luminous matter, but confined in extent to a small space. Those ridges and nodules being brighter than the general surface of the Sun, and slightly differing from it in color, have been called luculi &iidfaculcB. Gorrugatwns are a remarkable unevenness or asperity peculiar to the lu- minous clouds, extending over the whole apparent surface of the Sun. The depressed parts of the coi-rugations being less luminous than those more ele- vated, the disk of the Sun has a variegated or " mottled" appearance. Indentations are the low or depressed parts of the corrugations. Pores are very small openings about the middle of the mdentations. By a number of observations, he would evince that the appearances, called spots in the Sun, are real openings in the luminous clouds of the solar atmosphere. His next series of observations is adduced to prove that the appearances which have been called penum,brcB are real depressions or shallows. Fol- lowing these are others, alleged to show that ridges are elevations above the ASTRONOMY AND NAVIGATION. 13 luminous solar clouds ;_ that nodules are small but highly elevated luminous places; that corrugations consist of elevations and depressions; that inden- tations are dark places of the corrugations ; and that pores are the low places of indentations. He hence infers that the several phenomena, above enumerated, could not appear if the Sun's shining matter were a liquid ; since, by the laws of hydrostatics, the openings, shallows, indentations, and pores would instantly be filled up, and ridges and nodules could not pre- serve their elevation a single moment. But many openings have been known to last during a whole revolution of the Sun ; and elevations large in extent have continued for several days. Much less can this shining matter be an elastic fluid of an atmospheric nature; because this would be still more ready to assume a level by filling up the low places. It must, therefore, exist in the manner of luminous, empyreal, or phosphoric clouds, suspended in the higher regions of the solar atmosphere. "It appears highly probable," says Dr. Brewster, "and consistent with other discoveries, that the dark, solid nucleus of the Sun is the' magazine from which its heat is discharged, while the luminous or phosphorescent mantle, which that heat freely pervades, is the region whence its light is generated." The high authority of these men does not free their hypotheses from objection. If the spots are openings only in the luminous clouds of the Sun, why are they stationary for so long a time, except as they partake of the Sun's rotation? and why should heat be emitted from the dark body of the Sun, and not from its luminous mantle, when that mantle has so much the appearance of flame, from which heat is generally difi"used on the earth? But investigations into the nature of the Sun must be attended with so much uncertainty that, perhajjs, no theoiy on tlie subject can be free from objection. Much light has been thrown upon heat or caloric by the improvements of modern chemistry. But isatisfactory conclusions concerning its nature cannot be drawn. Lord Bacon considered heat "the efi'ect of an intestine motion, or mutual collision of the particles of the body heated, an expansive undulatory motion in the minute parts of the body." Count Eumford's ex- periments seemed to show that caloric "was imponderable, and capable of being produced ad inJmitMm from a finite quantity of matter." He con- cluded, that " it must be an effect arising from some species of corpuscular action among the constituent parts of the body." Other chemists consider it " an elastic fluid." Mr. Dick, a Scotch author of much ingenuity, in his " Christian Philoso- pher," has a note on the planet Mercury, deserving consideration. " From a variety of facts, which have been observed in relation to the production of caloric, it does not appear probable that the degree of heat on the_ sur- faces of different planets is inversely proportional to the square of their re- spective distances from the Sun. It is more probable that it depends chiefly on the distribution of the substance of caloric on the surfaces, and through- out the atmospheres of these bodies, in different quantities, according to the different situations they occupy in the solar system ; and that these differ- ent quantities of caloric are put into action by the influence of the solar rays, so as to produce that degree of sensible heat requisite for each respect- ive planetary globe. On this hypothesis, which is corroborated by a great variety of facts and experiments, there may be no more sensible heat felt on the surface of the planet Mercury than on the surface of Herschel, although 14 ASTRONOMY AND NAVIGATION. one of these bodies is nearly fifty times nearer the Sun than the other. "We have only to suppose .that a small quantity of caloric exists in Mercury and a larger quantity in Herschel, proportionate to his distance from the center of the system. On this ground we have no reason to believe either that the planets nearest the Sun are parched with excessive heat, or that those that are most distant are exposed to all the rigor of insufferable cold ; or that the different degrees of temperature which may be found in these bodies render them unlit for being the abodes of sensitive and intellectual beings." This theory of caloric is modern and popular ; but, like others on the same subject, does not command unqualified assent. If heat be a fluid only, why is it radiated by all bodies ? and why, reflected, does it pass from ob- ject to object in rays, a manner so dissimilar to the movement of other fluids ? It may be that the learned world must be content, as in attraction, with knowing the operations of heat, without being able to investigate its nature. Any uncertainty respecting caloric must rest on the physical construction of the Sun, the prime agent of heat in whatever way produced. From what has been said of solar clouds, it must be apparent that some authors con- sider the Sun surrounded by an atmosphere of vast extent. They ground their opinion principally on the authority of Dr. Herschel, supported by his observations. " The height of the atmosphere he computes to be not less than eighteen hundred forty-three, nor more than two thousand seven hun- dred sixty-tive miles, consisting of two regions; that nearest the Sun being opaque, and probably resembling the clouds of our Earth ; the outermost emitting vast quantities of light, and forming the apparent luminous globe we behold." Hai'iiot, an Englishman, or Fabricius, a German, first discovered the spots on the Sun about the year 1610. According to some authors, they were first seen by Galileo or Scheiner. An account of his observations of them was published by Fabricius in 1611. The spots are various in shape and magnitude. Some have been observed large enough to cover the whole eastern continent, Europe, Asia, and Africa; some to cover the surface of the whole Earth ; and one was observed by Dr. Herschel, in 1799, com- puted to be more than fifty thousand miles in diameter. In most of them there is a very dark nucleus, surrounded by an umbra, or fainter shade. A distinct and well-defined boundary intervenes between the umbra and nucleus. The part of the umbra nearest the dark nucleus is generally brighter than that; portion which is more distant. A spot on the Sun appears at the Earth to perform a revolution round the Sun from west to east in a little more than twenty-seven days — a period longer than the time in which the Sun revolves on its axis. The excess is occasioned by the motion of the Earth in its orbit. The spots on the Sun are generally confined to a zone extending about 35° each way from the solar equator. None have been seen nearer the poles than the solar latitude of 39° 5'. The Sun rarely appears pure and unsullied by spots. Sometimes, how- ever, none are seen on his disk for several years in succession. From the year 16Y6 to the year 1684:, not a single spot was seen on the Sun. Of MERcintY. Mercury is the planet nearest the Sun — so it is still considered, after the ASTRONOMY AND NAVIGATION. 15 most accurate modern discoveries. It shines by a very brilliant and white light ; but the short period in which it can be viewed, and the position of its body seen through the mists of the horizon, have prevented important discoveries being made on its surface. Of all the planets Mercury is the most swift in its motion. On this account the name was given to it by the ancients, after " the nimble messenger of the gods." It was " represented by the figure of a youth with wings at his head and feet ; whence is derived 5 , the character by which it is commonly represented," So great is the velocity of this planet, that it performs more than two revolutions to one of Yenus, and, commencing at a conjunction, would pass the Earth three times before it would complete a period, the synodic revolution of Mercury, as seen by us, being 115 d. 21 h. 3 m. 34 s. The mean diameter of the Sxm, as seen from Mercury, is 1° 22'. His mean distance from the Sun is to that of the Earth about as 4 to 10.3. The intensity of the light and heat of the Sun at Mercury must be about as 6.6 to 1 at the Earth, being inversely as the squares of the distances. The heat of the Sun at Mercury was found, by Sir Isaac Newton, suffici- ent to make water boil. Hence, beings constituted like the inhabitants of this Earth, cannot endure the climate of Mercury, if Sir Isaac was right, and the degree of heat be in proportion to the proximity of the planet to the Sun. But, from what has been before considered, the circumstances of caloric and atmosphere may be so diversified ; they may be so rare at the surface of Mercury, as to render the climate of this planet not only toler- able, but salubrious — a comfortable abode for animal life. This, however, we know, that, with infinite ease, the Deity could form constitutions suited to any situation or climate, destined by him for the creatures of his care. The surface of Mercury contains nearly thirty-two millions of square miles. It may therefore sustain a population far more numerous than the present inhabitants of the Earth. According to Dr. Herschel, Mercury is equally luminous in every pai't of his body, having neither dark spots nor uneven edge, but a disk well de- fined in every part. Mr. Schroeter, on the contrary, pretends to have dis- covered in this planet not dark spots only, but mountains. On the author- ity of the latter observer rests the discovery of a revolution of Mercury on his axis. ELEMENTS OF MEECIJET. * Diameter, 3,180 miles. Mean diameter, as seen from the Sun, 16". Inclination of its orbit to the ecliptic, 7° 0' 1". Tropical revolution, 87 d. 23 h. 14 m. 33 s. Hourly motion in orbit, 110,113 miles. Diurnal rotation, according to Schroeter, 24 h. 5 m. 28 s. Mean distance from the Sun, 37,000,000 miles. Eccentricity, 7,557,630 miles. Of Yenus. Yenus is to us among the most brilliant of the luminaries seen in the nocturnal heavens. She appears west of the Sun from her inferior toher superior conjunction, and, rising before him, is called Phosphor, Lucifer, or the morntng sta/r. Appearing east of the Sun from her superior to her inferior conjunction, she sets after him, and is called Hesperus, Vesper, or 16 ASTRONOMY AND NAVIGATION. the evenmg sta/r. She is in rotation east or west of the Sun about 292 daj^s ; but, obscured by his light when near that luminary, she is not visible quite so long. It is said that, before the time of Pythagoras, the morning and evening stars were supposed to be different, and that he first discovered them to be the same. The apparent motion of Yenus round the Sun is retarded by the motion of the Earth in its orbit, both being in the same direction. Her real revo- lution is performed in 22i d. 16 h. 49 m. 15 s. ; her apparent or synodic, in 583 d. 22 h. t m. 20 s. She appears, therefore, east or west of the Sun longer than the whole time of a revolution in her orbit. The bright side of Venus is turned nearly or quite toward us at her supe- rior conjunction ; but she is then invisible, being near the Sun, or hidden behind his body. "When visible, and the illuminated part nearly round be- fore or after that conjunction, she appears small, on account of her great distance. Yenus shines with a light extremely pleasant. Her silver brightness far surpasses that of the Moon, and is unequaled by any of the heavenly lumin- aries, except sometimes by Jupiter, or by Sirius, the most brilliant of the "starry train." Yenus may occasionally be seen in the daytime by the naked eye. The obstruction of her morning and evening light frequently causes shadows, well defined, like those of a new moon. Dr. Herschel observed spots on Yenus. To him she appeared much brighter round her limb than at the intervening line between the enlight- ened and dark part of her disk. From this he concluded that Yenus, like the Earth, had an atmosphere, and that it was more luminous than the body of the planet. The height of this atmosphere, according to the computation of some, is about fifty miles. Such computation, however, ought to be re- ceived with great allowance for uncertainty. The surface of the planet being enveloped in her atmosphere may be the reason that so few spots have been seen on her disk. "Mr. Schroeter," says Dr. Brewster, "seems to have been very successful in his observations upon Yenus ; but the results which he has obtained are more different than could have been wished from the observations of Dr. Herschel. He discovered several mountains in this planet, and found that, like those of the Moon, they were always highest in the southern hemi- sphere ; their perpendicular heights being nearly as the diameters of their respective planets. From the 11th of December, 1789, to the 11th of Jan- uary, 1790, the southern hemisphere of Yenus appeared much blunted with an enlightened mountain, in the dark hemisphere, nearly twenty-two miles high." He states the result of four mountains measured by him: First, .... 22.05 miles. Second, . . . 18.97 Third, .... 11.44 miles. Fourth, .... 10.84 " The bluntness and sharpness, alternately apparent in the horns of Yenus, arise, he supposes, from the shadows of high mountains. From the changes which appear in her dark spots, and, as inferred by Mr. Schroeter, from the illumination of her cusps when she is near her in- ferior conjunction, the atmosphere of Yenus is considered very dense. The diameter of Yenus has been considered about 220 miles shorter than that of the Earth. But it appears from the measurements of Dr. Herschel that her apparent mean diameter, reduced to the distance of the Earth, is ASTRONOMY AND NAVIGATION. 17 18".79, that of tlie Earth being 11". S. "This resull," says Dr. Brewster, "is rather stirprising; but the observations have the appearance of accuracy." ELEMENTS OF VENUS. Inclination of her orbit to the ecliptic, 3° 23' 32". Diameter, Y,6S7 miles. Mean diameter, as seen from the Sun, 23".3. Tropical revolution, 224 d. 16 h. 46 m. 15 s. Sidereal revolution, 224 d. 16 h. 49 m. 15 s. Hourly motion in orbit, 79,226 miles. Diurnal rotation, 23 h. 20 m. 59 s. Mean distance from the Sun, 68,000,000 miles. Of MEEomtT and Yenus. Mercury and Yenus are both constant attendants on the Sun ; in the one part of their course, being the harbingers of the morning; in the other, brightening the vail of evening with their setting splendor. Often seen in conjunction with the Sun, but never in opposition, they form a demonstra- tion of the truth of the Copernican system. The inferior conjunction of Mercury or Yenus is, when the planet comes between the Earth and the Sun, or so near the connecting line between them as the obliquity of its orbit will admit. It is, when referred to the ecliptic, in the same longitude with the Sun, though it may be farther north or south. The superior conjunction of either of these planets is, when the planet, in that part of its orbit most distant from the Earth, comes into the same longitude with the Sun. It is then either hidden behind the great luminary, or passes by it on the north or south. Mercury and Yenus are called inferior planets, because their orbits are nearer the Sun than the orbit of the Earth. When an inferior planet is at its greatest elongation, a line passing from the Earth through the planet is a tangent to the planet's orbit. The great- est elongation of Mercury is 28° 20'; of Yenus, 47° 48'. The orbit of these planets being elliptical, the greatest elongation on one side. of the Sun may not be equal to that on the other side. Mercury, like Yenus, is alternately morning and evening star, though nofr generally thus known. Like Yenns, being west of the Sun from m& m^- ferior to the superior conjunction, it rises before him in the morning:, flrom the superior to the inferior, east of the Sun, it sets after him in the evening, The apparent motion of the inferior planets is greatest at the conjunctions., From, the greatest elongation on one side to the greatest elongation on, the other, through the superior conjunction, their geocentric motion is. direct; through the inferior conjunction, this motion is retrograde. At their great- est elongation, they appear stationary in respect to the Sun. A small part of the orbit nearly coinciding with the tangent line, and the eye of the ob- server being in that line, the motion of the planet must be either toward such observer or from him, and, of course, must be imperceptible. The retrograde motion of Mercury, in regard to the fixed stars, does not commence when the planet is at the greatest elongation east, noi' does it continue till the planet is at the greatest elongation west of the Snn. For at these greatest elongations, the planet will appear to move forward with the same velocity as the Sun appears to advance by the motion of the Earth in 2 ^8 ASTRONOMY AND NAVIGATION. its orbit. The stationary appearance, in relation to a fixed star, must be, when the geocentric westerly motion of the planet counterbalances the bun s apparent easterly motion. ■,. . j ^ Venus, like Mercury, has her stationary appearance, her direct and retro- grade motion. .,,,1 -i.^ We are told by Eyan, in his "Grammar of Astronomy," that "the ditter- ent phases or appearances of Yenus were first discovered by Galileo, in 1611, which fulfilled the prediction of Copernicus, who foretold, before the dis- covery of the telescope, that the phases of the inferior planets would be one day discovered to be similar to those of the Moon. The accomplishment of this prediction affords some of the strongest and most convincing proofs of the truth of the Copernican system. One half of each of the planets is illuminated by the Sun. Thus it has been uniformly said by authors. On strict examination, however, it will be seen that a fraction more than a hemisphere is illumined, the Sun being a much larger body than any of the planets. The enlightened side of Mer- cury and Venus are turned from the Earth at their inferior conjunctions. In these conjunctions, when at or very near their nodes, they appear as dark spots passing over the Sun's disk. At other times, invisible to us, they pass the Sun unobserved. They appear nearly full at their superior conjunctions ; but never completely so, as their enlightened side is never turned directly toward us, except at the nodes, when they are hidden behind the body of the Sun. Of the Eaeth. Next to Yenus, in the solar system, is the Earth. TTiis is the planet by far the most worthy of our attention ; though astronomy forbids us fully to adopt the language of the poet : " Through worlds unnumbered, though the God be known, 'Tis ours to trace him only in our own." Tlie Earth affords sustenance to innumerable animated beings which people its surface. It is our habitation in life, and kindly covers our re- mains when the parting spirit has taken its flight. In its peaceful bosom our dust must slumber, till called forth by " the voice of the archangel and the trum/p of God." The Earth is spherical in its form. It is not, however, a complete globe. Elevated at the equator, and flattened at the poles, its form is an oblate spheroid, resembling, in some degree, the well-known English turnip. Of the rotundity of the Earth any person may satisfy himself. The clouds at a distance appear to rise from the horizon, or to sink, below that circle, which they could not do were the Earth an extended plain. If, in a level country, a person travel north for many miles, he will find, by accurate ob- servation, the north star rising, and discover other stars unseen at his former station. If he go south, these stars will be depressed, and southern stars will rise to his view. The masts and sails of a ship at sea are seen by a speqtator on land, when the hull is hidden behind the convex surface of the water. Were the sur- face level, the hull, being largest, would first appear. The outline of the Earth's shadow, seen in partial eclipses of the Moon, is circular. This it could not be were not the Earth of a spherical form. ASTKONOMY AND NAVIGATION. 19 For, as it presents different sides to the Sun in different eclipses, and even in the same eclipse, the outline of the shadow would be different, in con- formity to the original. The spherical figure of the Earth is placed beyond all doubts by its hav- ing been many times circumnavigated. The true form of the Earth, its spheroidical figv/re, was first discovered by the pendulum, a longer line being required to vibrate seconds toward the poles than at the equator. Some diversity in the proportion of the diameters is found in different authors. This is not wonderful in a case requiring so much nicety of observation. The excess of the equatorial diameter over the polar has been stated at twenty-four, thirty-four, and thirty-seven miles. In " Rees's Cyclopedia," the equatorial diameter is reckoned at 7,977, the polar at 7,940, considered by the author but "an approximation to a true estimation." In the "Practical Navigator" of Dr. Bowditch, the diameter is considered 7,964. Thus the mean diameter will be considered in this compend. The errors of antiquity, of childhood, and ignorance, in considering the Earth an extended plain, or unbounded in its dimensions, are corrected by philosophy. Its true form is now well-known to the scientific world. Eut the astronomical student is in danger of verging to the opposite extreme. When he considers the Earth as a planet, greatly inferior in magnitude to several wandering orbs of his own solar system — immensely less than the Sun ; and the Sun but a speck in the Creator's works — he seems to contract its true dimensions, and to be insensible that still, to its inhabitants, it is a globe of vast magnitude ; of which, and its kindred orbs, it may be truly said, " these little things are great to little man." Considering the diameter of the Earth 7,964 miles, the circumference is about 25,020 miles, and the superficial contents, or surface, 199,259,280 square miles. The equator is an imaginary circle encompassing the Earth from east to west; the plane of the circle dividing it into northern and southern hem- ispheres. The ecliptic is a great circle, in which the Earth performs its annual revo- lution; or in which the Sun appears to perform an annual revolution round the Earth. It is divided into twelve equal parts, denominated the twelve signs of the ecliptic, each containing 30° : Aries, Taurus, Gemini, Cancer, Leo, Virgo, Libra, Scorpio, Sagittarius, Capricornus, Aquarius, and Pisces. The plane of the equator is inclined to the ecliptic in an angle of about 23° 28'. (See OUimnty). The division of the Earth's surface into zones is not imaginary, but has a foundation in nature. The torrid some comprehends all that region where the Sun is vertical at any season of the year. The temperate zones spread over the whole of the Earth's surface, from the tropics to the extreme limit of continual and successive day and night, the Arctic and the Antarctic circles being drawn at the bound, where the longest day is twenty-four hours. At that bound the Sun does not appear to set at the summer solstice, nor to rise at the winter solstice. The/rigid zones are enveloped in light and darkness in alternate succes- sion. The Sun, at its greatest declination north, shines over the north pole to the Arctic circle. The whole northern frigid zone is then illuminated, and, by the diurnal motion of the Earth, revolves, wholly in the light. Tlie southern frigid zone, precluded from the Sun's rays, is then involved in en- 20 ASTRONOMY AND NAVIGATION. tire darkness. When the Sun is in his greatest declination south, shining over the south pole to the Antarctic circle, the southern frigid zone is en- lightened ; the northern, abandoned by the Sun, is shrouded in darkness. The continuance of light or darkness in the Arctic and Antarctic regions is longer, the nearer any place is to either pole, where the day and the night continue alternately for six months ; except the greater prevalence of light from refraction and other causes. The Earth has three motions : its diurnal rotation on its axis_; its annual motion in its orbit round the Sun ; and the revolution of its axis round the poles of the ecliptic. The rotation of the Earth on its axis is performed in 23 h. 56 m. 4 s. or one sidereal day. This is a most uniform motion. By bringing the different parts of the Earth to the Sun in succession, it produces day and night._ Given to this Earth, at its creation, by an all-benevolent Creator, it continues a. constant return of blessings to his dependent creatures. This motionis from west to east. It causes the apparent revolution of the heavenly bodies in a contrary direction, from east to west. Different parts of the Earth, in this rotation, move with unequal velocity. Greatest at tne equator, it decreases toward the poles, as the cosines of the latitude decrease. A place in Borneo or the Colombian Republic, at the equator, moves about 1,042 miles an hour ; "Washington city, 811 miles ; Boston Y70 miles; London, 649 miles; St. Petersburg, 522 miles; an in- habitant of Greenland, in latitude 80°, only 181 miles. When this motion is on the side of the Earth opposite the Sun, it nearly coincides with the immense velocity of the Earth in its orbit. By this motion the centrifugal force of an object near the equator is greater than at any parallel of lati- tude. This, as well as its distance from the center of gravity, causes objects to be lighter at the equator than near the poles. The farmer and mechanic know that the water on a grindstone, turned swiftly round, rises toward the highest part, and flies off by increased velocity. A similar effect would be produced on the Earth, were the motion sufficiently increased. " If," says Dr. Enfield, "the diurnal motion of the Earth round its axis was about seventeen times faster than it is, the centrifugal force would, at the equator, be equal to the power of gravity, and all bodies there would entirely lose their weight. But if the Earth revolved still quicker than this, they would all fly off." The circles, which the heavenly bodies appear to describe by this motion of the Earth on its axis, assume a different position as seen from different parts of the Earth's surface ; the great concave of the^ heavens, or celestial sphere, changing its appearance, as differently viewed by the spectator. At the equator the inhabitants have a right sphere, all the heavenly bodies appearing to rise and set at right angles to the horizon. The celestial equator passes through the zenith and nadir. The poles are in the horizon. From the equator to the poles, the inhabitants have an oblique sphere. The apparent circles, or circles formed by the apparent motion of the heavenly bodies, are oblique to the horizon ; but fonning angles with it less as they are farther from the equator ; till, at the poles, they become parallel to the horizon, or coincide with that circle. To a person passing from the equator toward either pole, the pole-star of his hemisphere appears to rise, and, at a distance from the equator, the stars,ithe same distance from his ASTRONOMY AND NAVIGATION. 21 elevated celestial pole, do not set, but appear to revolve in circles greater as they are farther distant from the pole. The Earth makes a complete revolution round the Sun, or from a star to the same star again, in 365 d. 6 h. 9 m. 12 s. This is called the sidereal yea/r. From an equinox or a solstice to the same again, it revolves in 365 d. 5 h. 48 m. 51 s. This is usually called the tropical yea/r; but sometimes the equinoctial or solstitial year. It is usually reckoned from the first degree of Aries, but may be computed from any other point of the ecliptic. The Earth performs a revolution, from the aphelion of its orbit to the same again, in 365 d- 6 h. 14 m. 2 s. The mean distance of the Earth from the Sun has been found to be about 95,000,000 miles. This was ascertained by observations made on the transit of Veniis, in the year 1761. Prior to these observations, the distance was considered much less. But their accuracy, confirmed by those on the transit of 1769, seems now to command the full assent of the philosophic world. Taking the distance as now reckoned, it makes the diameter of the Earth's orbit 190,000,000 miles, and the circumference 569,902,100 miles, about equal to the elliptical orbit. Tlie earth, moving this immense dis- tance in a year, must travel more than 68,000 miles every hour. All the in- habitants of the Earth are carried at this inconceivable velocity, one hun- dred and forty times greater than that of a cannon-ball, in their perpetual movement round the Sun. Even this velocity is increased, on a part of each day, by the motion of the Earth on its axis. It may shock the cre- dulity of those who are unaccustomed to philosophical observation, that a motion of such velocity should be imperceptible. But we must take notice, that terrestrial objects around the observer, even the atmosphere, move with him in the same direction ; so that with tlie heavenly bodies only can he compare his motion. By observation on those bodies, the motion of the Earth is ascertained beyond the slightest doubt of the astronomical student. But this motion, if wonderful, is not altogether singular. The passing of a vessel on still water is imperceptible, except from meeting the air, and the apparent motion backward of surrounding objects, till it strikes the shore or other obstruction. No motion on the stillest water is so uniform and even as that of the Earth in its orbit. The retrograde motion of the axis of the Earth round the poles of the ecliptic causes the difference between the tropical and sidereal years. The equinoxes are annually carried backward, from east to west, 50".118 in a year. Thus, in every year, they meet the Sun 20 minutes 24.4 seconds be- fore the Earth arrives at the point in the heavens whence it started at the commencement of the year. This retrograde motion is called the Recession of the eqvMioxes. With the equinoctial points move all the signs of the ecliptic. " It follows, that those stars which, in the infancy of astronomy, were in Aries, are now in Taurus; those of Taurus, in Gemini. Hence, likewise, it is, that the stars which rose or set at any particular season of the year in the times of Hesiod, Eudoxus, Yirgil, or Pliny, by no means answer at this time to their descriptions." An example of the change may be seen on our celestial globes. The constellations are placed 30° from the signs to which they originally belonged. This change of place shows the motion of the equinoxes for 2,154 years. A complete revolution of the signs requires a period of 25,858 years. Hence,- the pole-star, or the north poU, as it is called, will not always be. the point to which the pole of the 22 ASTEONOMY AND NAVIGATIOK Earth will be directed ; but in something more than 12,000 years will be about 47° from the pole of the Earth, and when on the meridian will be in the zenith of some parts of New England. How should the contemplation of these celestial motions and long periods constrain us to improve the short, fleeting moments of time assigned to us; and lead us to admire and adore the wisdom and power of Him who formed and still governs the universe with infinite ease; to whom "as thousand yea/rs are as one day!" The Moon. The Earth has one satellite, the Moon. This constant attendant is distant from the Earth 240,000 miles. The Moon, though inferior to most of the heavenly bodies, next to the Sun is to us by far the most interesting. By dispelling the gloom of night, she is the solace of the weary traveler ; ana by constantly changing her countenance, she gives Tariety and beauty to the nightly canopy. The Moon performs a revolution round the Earth, from a point in the ecliptic to the same again, in 27 d. 7 h. 43 m. 5 s. ; from a star to the same again, in 27 d. 7 h. 43 m. 12 s. It revolves from the Sun, to the Sun again, in 29 d. 12 h. 44 m. 3 s. This is called a meam hmation, and is a synodical revolution. The Moon always presents the same face to the Earth. Hence in the same time that it performs a revolution, it must revolve on its axis, unless the different sides of the Moon present the same prospect. That there should be a uniformity of appearance in the different sides of the Moon seems very improbable. Astronomers seem agreed in the coincidence of its revolutions ; or that it revolves on its axis in the same time that it performs a revolution round the Earth. If this opinion be correct, it must be considered that the side of the Moon next to the Earth is composed of matter more dense than that of the opposite side ; and that the powerful attraction of the Earth causes it to revolve on its axis. Several authors have asserted that the Moon performs a revolution in 29^ days ; and, in immediate connection, that it turns on its axis in the same time that it performs a revolution. The latter assertion is true ; but it is in the time of the sidereal revolution, 27 d. 7 h. 43 m. 12 s., and not in the synodical, or a lunation, about 29^ days. The diameter of the Moon is 2,180* miles. But it can be but 2,173 miles if its apparent diameter be 31' 8", as stated by De la Lande. The Moon, like the other planets, is opaque, shining only by the reflected light of the Sun. The side of the Moon which is next to the Sun is enlight- ened, the other half dark and invisible. Hence, when she comes between us and the Sun, she is not seen, her dark side being then toward us. When she is advanced a little way in her orbit, a small part of her illu- mined side becomes visible in the form of a beautiful luminous crescent. Tliis is called the new Moon. When she has performed one fourth of a lu- nation, her illunainated side becomes dichotomized, or one half of the bright side becomes visible. She is then said to be in h.Qv first qua/rter. From tiiis time to her oj)position, she is said to be gibbous, presentmg still more of her illuminated side as she moves forward, or becoming more protuberant. When she becomes opposite to the Sun, nearly the whole of her enlightened hemisphere is presented to the Earth. She is then said to he full; and is called the full Moon. It must be remembered, however, that the bright ASTEONOMY AND NAVIGATION. 23 side of the Moon is never exactly toward us, as she is never directly oppo- site to the Sun, except in her nodes, when she falls into the Earth's shadow, and is eclipsed. From the full to the change, the Moon passes in a retro- grade order through the same phases ; first gibbous, then dichotomized in her last quarter, then horned, till, coming between the Earth and the Sun, she again becomes invisible. The dark parts of the Moon attract the attention of the most careless ob- server. Hence " the mam, in the Moon" is familiar to boyhood, and common to the unlearned. These dark parts were formerly thought to be seas, but are now considered dark cavities not reflecting the light of the Sun. The light of the Moon is exceedingly soft and cheering ; but is little in the extreme compared with that of the Sun. In this authors are agreed. But, from their different modes of computation, they have come to different results, and made considerable difference in the disproportion between the lunar and solar lights. Dr. Hooke, accounting for the reason why the the Moon's light affords no perceptible heat, observes, " that the quantity of light which falls on the hemisphere of the full Moon is rarefied into a sphere, two hundred and eighty-eight times greater in diameter than the Moon, before it arrives at us/' The uniformity of the Moon's visage, or its exhibiting always the same face, is subject to some alteration. Spots on the east and the west, on the north and the south of the Moon, appear and disappear in rotation. The phenomena are produced by the Moon's 1/ibrations. These are of four kinds. The diurnal motion of the Earth on its axis, carrying the spectator farther north or south, causes the daily libration of the Moon. The libration of the Moon in longitude is caused by her uniform motion round the Earth. The libration of the Moon in latitude is caused by the inclination of her orbit to the plane of the ecliptic. The other is a small libration, caused by the attractive force of the Earth on the spheroidical figure of the Moon. Of Maes. Mars, in distance from the Sun, is next to the Earth in the solar system. The red, fiery color of this planet attracted the attention of the ancients. Hence they gave it the name of their god of war. Hence also it "is usually represented by this character, $, , which is said to be rudely formed from a man holding a spear protruded, representing the god of war." Some have thought the color of Mars may arise from his being of a nature suited to reflect the red rays of light. But the prevailing opinion is, that it arises from the extended and dense atmosphere of the planet. The color of a beam of light, passing through a dense medium, inclines to red ; the color always being brightened in proportion to the density of the medium and the distance passed. The red, the least refrangible rays, seem more strong and vigorous than the violet, the most refrangible rays. The former will traverse an atmosphere, when the latter will be absorbed or diverted. Hence the ruddy appearance of this planet and of the Moon eclipsed ; and hence the beautiful tinge of the morning and evening clouds. In 1665, Dr. Hooke discovered spots on Mars. From a motion perceived in these, he concluded this planet had a rotation on its axis. In 1666, Mr. Cassini observed spots on Mars. By diligent observation on these, at difler- / A" 24, ASTRONOMY AND NAVIGATION. ent times, he ascertained that Mars performed a revolution round his axis in 24 hours 40 minutes. ELEMENTS OF MAES. Mean diameter, 4,189 miles. Mean diameter, as seen from the Sun, 6 Inclination of his orbit to the ecliptic, 1° 51' i Tropical revolution, 686 d. 22 h. 67 m. 68 s. Sidereal revolution, 686 d. 23 h. 30 m. 35 s. Diurnal rotation, 24 h. 40 m. Mean distance from the Sun, 144,000,000 mUes. Of the Astekoids. PALLAS. Pallas, discovered by Dr. Olbers on the 26th of March, 1802, is in mag- nitude nearly the same as Ceres, but of a color less ruddy. It is surrounded with nebulosity, similar in appearance to that of Ceres, and extended to a height almost equal. In the eccentricity of its orbit, it resembles Juno. Pallas is distinguished from all the other primary planets by 'the great in- clination of its orbit to the plane of the ecliptic, being about 35° ; nearly five times the inclination of Mercury's orbit. Mean diameter of Pallas, according to Herschel, 80 miles. Mean diameter of Pallas, according to Schroeter, 2,099 miles. Mean distance from the Sun, 265,000,000 miles. Inclination of its orbit, 34° 39' 0"- Tropical revolution, 4 y. 7 m. 11 d. Much labor and ingenuity have been employed to show that the Asteroids are but fragments of a larger planet burst asunder by some vast explosion. The hypothesis seems not supported by conclusive arguments. Against it there are strong reasons. The idea itself of such an explosion seems ex- travagant beyond conception. How vast must have been the force which could throw such bodies from each other to a distance of forty millions of miles ; or so as to revolve in orbits forty millions of miles distant ! Im- mense is the explosive force of Hecla, throwing lava or cinders to the dis- tance of one hundred and fifty miles. But how diminutive ! How are all the explosions of Yesuvius and Hecla, of Etna and Cotopaxi, annihilated in comparison ! Had these Asteroids constituted but one planet since the first attention to the heavenly bodies, it would have been seefi by ancient astron- omers, being sufficiently large for observation by the naked eye. It would have been enumerated among the planets. It may be added that the vast atmosphere of some of these planets, which would without doubt have been left behind in such an explosion, seems directly opposed to the idea of their having been hurled from a bursting planet. Of Jupitee. Beyond the Asteroids, or farther distant from the Sun, is Jupiter, the largest of the planets. Jupiter, next to Yenus, is the most brilliant of the planets. _ He sometimes even surpasses her in brightness. The form of Jupiter is an oblate spheroid, his equatorial diameter being to his polar as 14 to 13. I ASTRONOMY AND NAVIGATION. 25 The character if , by which this planet is represented by astronomers, is a zeta, the first letter of his Greek name, Z'eus; the lower part cut oif by a small line drawn across as a sign of abbreviation. The most remarkable phenomena in the disk of Jupiter are a number of belts orstripes by which he is encompassed. These appear variable at dif- ferent times, and even at the same time, viewed by telescopes of different powers. Yet they generally appear parallel to each other, and parallel to the equator of Jupiter. In very favorable weather, they sometimes seem formed of a number of curved lines, like the strokes of an engraving. Eight or ten belts have been seen at the same time. The belts have been observed at times of different breadths, and have afterward all assumed nearly the same breadth. Bright and dark spots are frequently visible in these belts. Like the belts, the spots are subject to continual change. When a belt vanishes, the contiguous spots disappear. Some of the spots, however, seem to make periodical returns. The spot first observed by Cassini reappeared eight times between the years 1665 and 1Y08. In 1713, it again reappeared in the same form and position. In 1780, May 28, the disk of Jupiter was observed by Dr. Herschel covered with small curved belts, or rather lines not contiguous. Different opinions are formed by astronomers respecting the cause of these appearances. By some they are considered the effect of changes in the atmosphere surrounding Jupiter, while they are regarded by others as indications of great physical revolutions on the surface of the planet. By others, again, it is supposed that the clouds of Jupiter, partaking the great velocity of his diurnal motion, are formed into strata, parallel to his equator, that the clouds reflect more light than the body of Jupiter, and that the belts are the body seen through the parallel interstices of the clouds. "But whatever be the nature of these belts," says Mr. Dick, " the sudden changes to which they are occasionally subject seem to indicate the rapid operations of some powerful physical agency — for some of these are more than five thousand miles in breadth— and, since they have been known to disappear in the space of an hour or two, and even during the time of a casual ob- servation, agents more powerful than any with which we are acquainted must have produced so extensive an effect." ELEMENTS OF JUPITER. Mean diameter, 89,170 miles. Mean diameter, as seen from the Sun, 37".7. Inclination of his orbit to the ecliptic, 1° 18' 51". Tropical revolution, 11 y. 314 d. 8 h. 41 m. 3 s. Diurnal rotation, 9 h. 55 m. 37 s. ^ Mean distance from the Sun, 490,000,000 miles. SATELLITES OF JIJPITEE. Jupiter is attended by four satellites. They are reckoned the first, second, third, and fourth, beginning with the one nearest to the primary. These satellites were discovered by Galileo on the 8th of January, 1610, and called by him Mediea sidera, Me(Ucecm sta/rs, in honor of his patrons, the family of the Medici. By some we are told these satellites are not to be seen by the naked eye. But Prior, in his " Lectures on Astronomy," informs us that, " with the ex- 26 ASTBONOMY AND NAVIGATION. ception of the third and fourth, they are never visible to the naked eye ; instances of these two being so seen are extremely rare, although they have been known to occur." He tells us, in another place, that, " according, to Dr. Herschel, the third is the largest ; the second the least ; and the first and fourth are nearly of the same size. They are all of them supposed to be considerably larger than the Earth ; but their dimensions are not exactly known." Through a good telescope the satellites of Jupiter present a delightful prospect. They seem generally ranged in a straight line, parallel, or nearly parallel, to his belts. Jupiter and his satellites eclipse each other. Like the Moon, they throw their dark shadows upon their primary ; and like her they fall into his shadow, and are eclipsed. These phenomena are a demon- stration that those distant luminaries are in themselves opaque, and shine not by their own light, but by rays borrowed from the Sun. The echpses of Jupiter's satellites are of great utility to as. By these it is found that light is progressive, which, before their discovery, was sup- posed to be instantaneous. By them the relative distances between the Earth, the Sun, and Jupiter can be ascertained. But the greatest benefit derived from these eclipses is to geography and navigation. They afford one of the best methods yet known for ascertaining longitude. It could not have occurred to Galileo, when he first discovered these satellites, that by an act so simple he was rendering so great a benefit to mankind. Here is verified the observation of a celebrated traveler, that the Deity every- where brings the greatest events from causes apparently the least. Distances from Satellites. Periodical times. primary in miles. 1 1 d. 18 h. 28 m. 36. s. 266,000 2 3 13 lY • 54 423,000 3 7 3 69 36 676,000 4 16 18 6 6 1,189,000 Of Saturn. Beyond Jupiter in the solar system is Saturn, formerly considered the most remote of the planets. He shines with a dull, pale, leaden light. ■ The character of Saturn, '^ , is a scythe, rudely represented ; according to some, an old man leaning on a staff. In heathen mythology, Saturn was the father of Jupiter. Belts and dark spots have been discovered on the disk of Saturn. Five belts, nearly parallel to the equator, were discovered by Huygens. Several nearly parallel to the ring, and more extensive in proportion to the body of the planet than those of Jupiter, were seen by Dr. Herschel. By the spots of Saturn changing their position, hie diurnal rotation was determined by Dr. Herschel to be 10 h. 16 m. 0.44 s. Guy, in his "Astronomy," informs us, " later accounts say, 12 h. ISJ m." _ To an inhabitant of Saturn, the Sun's light and heat must be about ninety times less than they are to us. Yiewed Avith a good telescope, Saturn appears of a spheroidical figure. A remarkable circumstance is, the flattening at the poles does not seem to commence till the high latitude of 43° 20'. According to Dr. Herschel the proportion of his disk is : ASTRONOMY AND NAVIGATION. 27 Diameter of the greatest curvature, 36 Equatorial diameter, 35 Polar diameter, 32 The most remarkable phenomenon of Saturn is a ring with which he is encompassed. Something extraordinary in the appearance of this planet was discovered by Galileo. It seemed a large globe between two smaller globes. This discovery he announced in 1610. Continuing his observations till the year 1612, to his surprise the smaller globes disappeared, and the larger remained apparently alone. But after some time the smaller globes again appeared on each side of the larger globe, changing their form as he continued his observations ; appearing at different times round, semicircular, oblong like an acorn, with horns toward the globe, becoming gradually so long and wide as to encompass it with an elliptical ring. " Upon this ituy- gens set about improving the art of grinding object-glasses, and made tel- escopes which magnified two or three times more than any which had been before made, with w-hich he discovered very clearly the ring of Saturn ; and having observed it for some time, he published the discovery in 1656." The ring of Saturn is double, or rather consists of two concentric rings, detached from each other, and from the body of the planet. The two parts of the ring lie in the same plane, performing a revolution round an axis per- pendicular to that plane, in 10 h. 32 m. 15 s. It is visible to us when the Sun is on the same side of its plane with the Earth, but at no other times. A deep shadow is cast by the ring on that part of Saturn which is opposite to the Sun. In this dark shadow, each half of the planet in succession must be enveloped for almost fifteen of our years, or during one half of Saturn's annual revolution. During the same term, each in succession must be illuminated by the double ring, *he light of which is more brilliant than that of the planet itself. The ring of Saturn is considered by Dr. Herschel not as a shining matter, or aui'ora borealis, as supposed by some, but solid and dense as the body of the planet. DIMENSIONS OF THE EING. Miles. Inner diameter of the interior ring, . 146,345 Exterior diameter, .■ 184,393 Inner diameter of the external ring, . 190,248 Exterior diameter, 204,883 Breadth of the inner ring, .... 19,024 Breadth of the external ring, . . . 7,317 Breadth of the vacant space, . . . 2,927 , ELEMENTS OF SATUEN. Mean diameter, 79,042 miles. Mean diameter, as seen from the Sun, 18". Inclination of his orbit to the ecliptic, 2° 29' 34.8". Tropical revolution, 29 y. 162 d. 11 h. 30 m. s. Diurnal rotation, 10 h. 16 m. Mean distance from the Sun, 900,000,000 miles. Eccentricity, 50,958,399 miles. 28 ASTRONOMY AND NAVIGATION. SATELLITES OF SATTJKN. Saturn has seven satellites, revolving about their primary, and accom- panying him in his revolution round the Sun. Distances from Satellites. Periodical times. primary in miles. 1 Od. 22 h. 37 m. 22 s. 107,000 2 1 8 53 8 135,000 3 1 21 18 27 170,000 4 2 17 41 22 1217,000 5 4 12 25 12 303,000 6 15 22 41 13 704,000 7 79 7 48 2,050,000 The seventh satellite of Sattirn is, by some, reckoned the fifth. This satellite is remarkably bright at its greatest v^estern elongation, surpassing all the others but one in luster. Yery small at other times, it entirely dis- appears at its greatest eastern elongation. This phenomenon was first ob- served by Cassini. It may arise from one part of the satellite being more luminous than the other parts. It was observed through all the variations of light by Dr. Herschel. He concluded that, like the satellites of Jupiter and our Moon, it revolved on its axis at the same time that it performed a revolution round its primary. "There is not, perhaps," says Dr. Herschel, "another object in the heavens that presents us with such a variety of extraordinary phenomena as the planet Saturn ; a magnificent globe, encompassed by a stupendous double ring; attended by seven satellites; ornamented with equatoi'ial belts; compressed at the poles; turning upon its axis; mutually eclipsing its ring and satellites, and eclipsed by them ; the most distant of the rings also turning upon its axis, and the saipe taking place with the farthest of the satellites ; all the parts of the system of Saturn occasionally reflecting light to each other ; the rings and the moons illuminating the night of the Saturnian ; the globe and the satellites enlightening the dark parts of the rings ; and the planet and the rings throwing back the Sun's beams upon the moons, when they are deprived of them at the time of their conjimc- tions." Of Heeschel. Herschel, Uranus, or Georgium Sidus, was unknown as a planet to the scientific world till the year 1781. On the 13th of March, in that year, it was discovered by the celebrated astronomer whose name it usually bears in this country. Before the discovery, it had probably been seen by astron- omers, but had attracted no particular attention. Prior, in his Lectures, tells us, " it had been observed by Flamstead and Mayer, but was considered by them as a' fixed star, and, as such, introduced into their catalogues." Viewing the small stars near the feet of Gemini, Dr. Herschel was struck with the appearance of one, less brilliant than the rest, but surpassing them in magnitude. He suspected it to be a comet. Observing it with different telescopes, he found that, contrary to the fixed stars, its disk appeared to in- crease with the magnifying power of the glasses. He found also, by meas- uring its distance from some of the fixed stars, at different times, that it moved about 2^" in an hour. That it was a planet, first occurred to Dr. Maskelyne. The name of Oeorgkim Sidus, or Georgian Star, wasgiven to this planet ASTRONOMY AND NAVIGATION. 29 by Dr. Herscliel, in compliment to his patron George III., the then reigning king of Great Britain. It is often called Uranv^, in European publications. Uranus, in heathen mythology, was the father of Saturn. This planet is so distant, it is scarcely visible to the naked eye. In a serene sky, however, it appears like a star of the sixth magnitude, shining with a bluish-white light, and a brilliancy between the splendor of the Moon and that of "Venus. Such is the immense distance of this planet that no observations have been made upon it by which the time of its diurnal revolution can be deter- mined. Herschel is denoted by this character, H, the initial of a name immortal as human science ; " the horizontal bar being crossed by a perpendicular line, forming a kind of cross, the emblem of Christianity, denoting, perhaps, its discovery was made in the Christian era." The ball, however, repre- sented as pendent from the H, may be a globe or planet, as hanging on the discovery of the astronomer Herschel. ' ELEMENTS OF HERSCHEL. Mean diameter, 35,112 miles. Mean diameter as seen from the Sun, 4". Inclination of his orbit, 0° 46' 26". Tropical revolution, 83 y. 305 d. 7h. 21m. Mean distance of the planet from the Sun, 1,800,000,000 miles. SATELLITES OF HEESCHEL. Six satellites have been discovered accompanying Herschel in his dark and tedious roimd. " It is remarkable," says Prior, " that these satellites revolve in a retrograde direction, or contrary to the order of the signs, in orbits lying nearly in the same plane, and almost perpendicular to the plane of the planet's orbit." This statement is corroborated by other accounts. The satellites of Herschel were all discovered by Dr. Herschel. Distances from Satellites. 1 5d. Periodical times. 21 h. 25 m. 20 s. primary in mill 230,335 2 8 16 57 47 298,838 3 10 23 2 47 348,388 4 13 10 66 29 399,593 5 38 1 48 746,240 6 107 16 • 39 56 1,597,708 Causes of the Plajstetaet Motion. Matter is in itself inactive, and moves but as impelled by external force. An impulse being given to a body, it passes in a right Ime, till turned out of its course by a different impulse, not in direct coincidence or opposition to the former. Uninterrupted, it would forever move in the same direction, and at the same rate, or over equal distances in equal times. After every new impulse, it will take a new direction, and pass m a diagonal between its former course and the direction of the new impulse. Comets. The term comet is derived from the Latin cometa. This is a derivative^ from G Oct. 16 2 8 A.M. [Union. 1884 ® April 10 6 47 A. M. Total in the western parts of the ® Oct. 4 5 14 P.M. Visible, and total after the Sun sets. 1885 © March 16 1 28 P.M. © Sept. 24 2 56 A. M. [in the Western States. 1886 © March 5 P.M. Commences about sunset. Visible © Aug. 29 6 23 A.M. Very small. 1887 © Feb. 8 5 4 A. M. 1888 © Jan. 28 6 6 P.M. Total. © July 23 35 A.M. Total. 1889 © Jan. 1 P.M. Penumbra touches Washington about © Jan. 17 18 A. M. [sunset. 1890 1891 © Nov. 15 7 36 P.M. 1892 © May 11 6 P.M. Visible after sunset. © Oct. 20 1 40 P.M. 1893 1894 © Sept. 14 11 24 P.M. 1895 © March 10 10 28 P.M. Total. © Sept. 4 49 A. M. Total. 1896 © Aug. 23 1 55 A. M. 1897 © July 29 9 45 A. M. 1898 © Jan. 7 7 16 P.M. Small. © Dec. 27 6 37 P.M. Total. 1899 © Dec. 16 8 34 P.M. 1900 © May 28 8 40 A.M. 38 ASTRONOMY AND NAVIGATION. Divisions of Time. Time, as measured by the celestial luminaries, is divided into periods, cycles, years, months, weeks, days, hours, minutes, seconds, and sometimes farther sexagesimal parts. Periods, in astronomical reckoning, are large divisions of time. The Cfialdeam Period is a circle of 25,858 years. This period respects the motion of the terrestrial poles. At the termination of it, the axis of the Earth points to the same stars as at the beginning. The JvMcm Period is formed by multiplying together the cycles 28, 19, and 15. It consists of 7,980 years. The creation of the world, according to the common computatiou, was on the 706th year, and the Dionysian era of Christ's birth, on the 4,713th year, of this period. According to some, the birth *of Christ was earlier by four years. The Julian period is found of use in comparing the dates of ancient events. The Dionysian Period, or circle of Easter, consists of 532 years, formed by multiplying the cycle of the Sun, 28, by that of the Moon, 19. CYCLES AEE EEVOLUTIONS OP TIME. The Cycle of the Sim consists of 28 years. By this cycle the days of the week are brought to the same days of the month ; the Sun to the same signs and degrees of the ecliptic, with little variation ; and the leap-years to the same state as at the commencement of the cycle. Each of these returns, separately, in a much shorter period. But, by the cycle, they are brought to coincide. The Cycle ojf the Moon is the Golden Nuinb&r. It is a period of 19 years, , at the eixpiration of which, the changes and fulls, with the other aspects of the Moon, return to the same months,' and days of the month, as at the be- ginning, or within a day of the same time. The Romam Indiction is a period of fifteen years, established by Constan- tine, in the year 312, for indicating the times of certain payments, made by the subjects to the government. For finding the cycle of the Sun, golden number, and indiction, add 4,713 to the year of the Christian era, and divide the sum by 28, 19, and 16, re- spectively ; the remainders are the numbers sought for the year. Eequired the cycle of the Sun, golden number, and indiction, for the year 1831. ^ 4713 28)6544(233 19)6544(344 15)6544(436 1831 56 67 60 6544 94 "84 ~54 84 Y6 45 104 84 ~94 84 76 90 20 Cycle of Sun. 8 Golden number. 4 Indiction. The Efact is the excess of the solar above the lunar year of 354 days or 12 mean lunations. It is taken for the age of the Moon, on the first day of January. •' For finding the Julian epact, multiply the golden number of the year by ASTRONOMY AND NAVIGATION. 39 11 ; the product, if less than 30, is the epact. But, if the product exceed 30, divide it by 30 ; the remainder is the epact. To find the Gregorian epact, the Julian epact must be first found. From this subtract 12, the number of days between the old and new style in the present century ; the i-emainder is the epact required. If nothing remain, aO is the epact. If the subtraction cannot be made, add 30 to the Julian epact, and subtract as before. The golden number and epact are little used at the present time, especi- ally where accuracy is required. The Roman indiction, still less important, is retained in our almanacs ; why, is difiicult to be conceived, unless as it is used in forming the Julian period. A TEAE. A complete revolution of the seasons constitutes a yea/r. The difference in the years, the tropical, the sidereal, and anomalistic, has been considered. The civil solar year consists of 365 days, and in bissextile, of 366. In this manner it is used in the United States, and most European nations. The lunar year consists of 12 lunar months, or mean lunations; computed at 354 (lays, the surplus arising from the minutes and seconds of the lunation being generally dropped in tlie computation. In this calendar a month is added every third year, to make the lunar coincide with the solar year. This month is intercalary, or emholimic. The Jews computed their time by lunar years. " But, by intercalating no more than a month of thirty days, which they called Ye-Ader, every third year, they fell 3f -days short of the solar year in that time." The year of the Greeks consisted of 12 months, of 29 and 30 days, altern- ately taken, comprising 354 days, or about 12 mean lunations. This lunar year was with ditficulty connected with the solar year, or the revolution of the seasons, so as to make a particular month fall at the same season in suc- cessive years. " The Olympic games were celebrated every fourth year dur- ing the full Moon, next after the summer solstice; and the year of the Greeks was so regulated as to make this full Moon the first month. This purpose was effected by intercalations ; but these were managed so injudiciously, that, in the time of Meton, the calendar and the celebration of the festivals had fallen into great confusion." The ancient Romans computed their time by the iMstrvm,, a period of four years. They also reckoned by lunar years, as established by Romulus, till Julius Cossar reformed the calendar, introducing the system of computa- tion known as the Julian calendar to the present time. In this calendar three years were common, consisting of 365 days each. Every fourth year the 2^h day of February was twice reckoned, making it consist of 366 days. Tliis, being the 6th of the calends of March, was called his sextnis dins, de- nominated by us Ussextile. The intercalary day is now added to the lastof February, and from it the year is called bissextile, or leap-yea/r. The Julian calendar long prevailed in Europe. But, from observations on the time of Easter, the civil year was found to be too long for the tropical, and another attempt was made to reform the calendar. The vernal equinox fell on the 21st of March, at the time of the Council of Nice, 325 of the Christian era. In 1582 Pope Gregory XIII. observed, that the same equinox happened ten days earlier in the year than it had done at the time of the Nicene Council. To correct the style, he altered 40 ASTEONOMY AND NAVIGATION. the calendar ten days, ordering that the 5th day of October should be called the 15th. Thus amended, the style was called the Oregoricm, or ti&w style. Though adopted in several European countries, it was not received into England till the year 1752. The Julian calendar, or old style, still prevails in Russia. In the present century, the difference between the old style and the new is twelve days, as before stated. Pope Gregory stopped not at the alteration of the style. He endeavored to establish a principle by which the civil year and the tropical would in future coincide. By this principle bissextile is to be omitted three times in four hundred years. When the centuries of the Christian era are divided by four, if there be a remainder, the year at the end of the century is to be reckoned common ; but if nothing remain, the leap-year is to be retained, or the last year of the century is to be reckoned bissextile. Though the year 1800 would have been a leap year in the Julian calendar, yet it was considered common in all our almanacs on the Gregorian principle. Our computations to the present time are made on he same principle. Thus, at the end of the nineteenth century, the leap-year is to be omitted, there being a remainder when nineteen is divided by four ; but the year 2000 will be considered bissextile, because there is no remainder when twenty is divided by four. The omission of three bissextiles in four hundred years does not bring the civil year exactly to coincide with tlie tropical, as computed by La Place. The former still exceeds the latter twenty seconds, twenty-four thirds. Thip excess will amount to a day in about 4,236 years. The omission of one bissextile in one hundred and twenty-nine years would bring the different computations to great nearness. Months are the principal divisions of a year. These are lunar, solar, and civil. The sidereal lunar month is the time the Moon is passing from a point in the heavens to the same again, as from a star to the same star, as before stated. But the principal lunar month is a lunation, or the time the Moon is passing from one change to another. This seems to have given the name to this division of time, or to be the foundation of months. The solar month is the time the Sun is passing one of the signs of the ecliptic, or the twelfth part of a year. Civil months are of two kinds. The weekly month, always equally long, consists of four weeks. This is the true legal month. " A month in law, says Blackstone, " is a lunar month, or twenty-eight days, unless otherwise expressed ; not only because it is one uniform period, but because it falls naturally into a quarterly division by weeks. Therefore a lease for twelve months is only for forty-eight weeks ; but if it be for a twel/veTnonth, in the singular number, it is^ good for the whole year." The other months *are • those in our calendar. They are Roman in their origin. The Latin names are retained, some of them assuming an English" termination. The sixth month was called SexUlis till the time of Augustus Caesar. It was changed to Augustus, in honor of that emperor. To heighten the compliment, a day was taken from the last of February, and added to August. Before that time February, in a common year, consisted of twenty- nine days, August of thirty.* * The number of days in each month may be remembered by the following lines : " Thirty days hath September, All the rest have thirty-one, April, June, and November ; Saving February alone." ASTRONOMY AND NAVIGATION. 41 A week, a well-known portion of time, and old as creation, undoubtedly had its origin in the resting of Jehovah from his work, and the establishment of the Sabbath. It consists of seven days. Days are anrtificial or natural. The certijlGial da/y is continually varying in length in most latitudes, being the time the Sun is above the horizon. The natural day is the time in which any meridian of the Earth moves from the Sun roUnd to the Sun again, being twenty-four hours. This is subject to a fractional variation at different seasons. The ancient Egyptians began their day at midnight. This is the practice of the United States, and of most European nations. It is the civil day with us, and is divided into two twelves. From common practice, it is too well-known to need explana- tion. The Jews began their days at the setting of the Sun. They divided the night and the day each into twelve equal parts. As this was done at all seasons of the year, not only the days but the hours, or divisional parts, must have been of unequal length ; though not so unequal as such a divi- sion would be with us, Palestine being nearer the equator than most of the United States. The ancient Greeks also began their day at Sun-setting. The same practice is followed among the moderns, by the Bohemians, the Silesians, the Italians, and Chinese. The day was commenced at Sun-rising by the Babylonians, Persians, and Syrians. This is the manner of compu- tation by the modern Greeks. The nautical or sea day commences at noon, twelve hours before the civil day. The first twelve hours are marked P. M., the last A. M. The astro- nomical day begins at noon, twelve hours after the civil day, and is reckoned numerically from one to twenty-four. An hour is the twenty-fourth part of a natural day. This division of time is very ancient. Herodotus observes, " that the Greeks learned from the Egyptians, among other things, the method of dividing the day into twelve parts. The division of the day into twenty-four hours was not known to the Eomans before the Punic war. Till that time they only regulated their days by the rising and setting of the Sun." The day was divided by them into four watches, commencing at six, nine, twelve, and three of the clock. The night was divided in the same manner into four watches, each consisting of three hours. The remaining divisions of time all proceed in the well-known sexagesimal order — the hour is divided into sixty minutes; the minute into sixty seconds ; the second into sixty thirds ; and so on to fourths and fifths. The donrniical letter is deserving a place in a work of this kind. The first seven letters of the alphabet were formerly placed in almanacs for the days of the week. Introduced by the' primitive Christians, they were used instead of the nundinal letters of the Eoman calendar. One of these, standing for the Sabbath, was written in capitals, and called the dominical letter, from J)ominus, the Latin word for lord. The dominical letter is still retained in our almanacs, while, figures are substituted for the other If 365, the days in a common Julian year, be divided by seven, the num- ber of days in a week, one will remain. If there were no remainder, and no bissextile, each succeeding year would begin on the same day of the week But one remaining, when a common year is thus divided, each year will begin and end on the same day of the week. When January begins on Sunday A is the dominical letter for that year. But the next year must 42 ASTRONOMY AND NAVIGATION. commence on Monday ; A, therefore, or the substituted figure is set at that day. The Lord's day being the seventh of the month; G will be the domin- ical letter for that year. As the following year must commence on Tues- day, ^'is the dominical letter for that year. Thus the letters would follow, G, F, E, D, C, B, A, in retrograde order. At the end of seven years the days of the week would return to the same days of the month as at the be- ginning. But bissextile having 366 days, if this be divided by seven, there will be a remainder of two. Thus there must be an interruption of the regular returns. The letters were placed in such order that A stood at the first day of January, B at the second, O at the third ; thus on throudiout the seven. The sanie were repeated in succession through the year. In each succeed- ing year, therefore, the same letters stood at the same days of the month. This always brought O to the 28th of February. That this order might not be interrupted by leap-year, was placed at the 29th also ; or, according to some tables, D was repeated. Thus the same letters were set to the days of the succeeding months in bissextile, as in common years. K a year com- mence with D as the dominical letter, C at the 28th of February must in that case stand for Saturday; G also must be against the 29th, and of course being for the Lord's day must be dominical ; or, if D be repeated, C at the 7tli of March becomes dominical, and thus continues through the year. The next year would commence two days later in the week. On account of this leaping in the retrograde order of the letters, the seven occupy five years in a revolution, when leap-year is twice included ; six, when it is once in- cluded. Hence the days of the week return to the same days of the month in five or six years, according as bissextile is twice or but once included. In twenty-eight years the seven letters will always have five revolutions, ex- cept at the end of the centuries, when leap-year is omitted. Obliquity. The obliquity of the equator to the plane of the ecliptic, being the cause of the variety of seasons, the different length of days and nights, and the pleasing vicissitudes resulting from the varying year, is well deserving a place, even in a compendium of astronomy. The principal inquiry is, whether the obliquity remains the same, or is subject to a constant diminu- tion. " The obliquity of the ecliptic to the equator," says Dr. Brewster, '" was long considered a constant quantity. Even so late as the end of the seventeenth century, the difference between the obliquity, as determined by ancient and modern astronomers, was generally attributed to inaccuracy of observation, and a want of knowledge of the parallaxes and refraction of the heavenly bodies. It appears, however, from the most accurate modern observations, at great intervals, that the obliquity of the ecliptic is diminishing. I3y com- paring about one hundred and sixty observations of the ecliptic, made by ancient and modern observers, with the obliquity of 23° 28' 16", as observed by Tobias Mayer, in 1756, we have found that the diminution of the obliqu- ity of the ecliptic, during a century, is 51" ; a result which accords wonder- fullv with the best observations." This would bring the obliquity at the present time, 1858, to 23° 27' 25". The above statement, though contrary to the opinion of some philosophers, is in accordance with the true principles of Newtonian philosophy, and is ASTRONOMY AND NAVIGATION. 43 corroborated by the best modern astronomers. Professor Yince, having 'stated, the observations of many authors, ancient and modern, concludes : " It IS manifest, from these observations, that the obliquity of the ecliptic continually decreases ; and the irregularity, which here appears in the diminution, we may ascribe to the inaccuracy of the observations ; as we know that they are subject to greater errors than the irregularity of this variation." The following table will give an idea of the diminution of the obliquity for many centm-ies. It was extracted from "Eees's Cyclopaedia."* Obliquity of the Ecliptic, from Obserrations at Mean Obliquity for different Time i. 40 Centuries. B. 0. o / H B. 0. o i II Pytheas .... 324 23 49 23 900 23 50 26 Eratosthenes . . 230 23 51 20 400 23 46 30 Hypparchus . . 140 A. D. 23 51 20 A. D. 23 43 15 Ptolemy. . . . 140 23 48 45 100 23 42 26 Arzachel . . . 1104 23 33 30 500 23 39 6 Prbpatius . . . 1300 23 32 1000 23 34 51 Waltherus . . . 1476 23 30 1500 23 30 33 Tycho Bralie . . 1584 23 31 30 1700 23 28 49 Kepler .... 1627 23 30 30 1800 23 27 57 Flamstead . . . 1690 23 29 2000 23 26 13 Mayer .... 1756 23 28 16 2500 23 21 52 Maskelyne . . . 1800 23 27 56-6 3000 23 17 31 The Fixed Stabs. The fixed sta/rs are so denominated from their always retaining the same situation in relation to each other. We have seen that the Earth is, at one season of the year, 190,000,000 miles distant from its situation at the oppo- site season ; yet these stars have no sensible parallax. The star which is north at one time is north at any other time. Most of the stars, indeed, ap- pear to have a diurnal revolution round the Earth ; but this arises from the rotation of the Earth on its axis, and is no more than is caused by that rotation. That the stars always retain the same apparent situation, must be owing to their immense and inconceivable distance. Let two persons be placed one rod distant from each other, east and west. An object ten rods distant, which is due north from one, will easily be perceived not to be north of the other. But let the object be ten miles distant from these observers, and if it be north of one it will scarcely be perceived not to be north of the other ; the angle can be ascertained only by nice observation. Let this principle be applied to the iixed stars and the student will be sensible that their dis- tance is truly immense. We form very inadequate ideas of the Earth's distance from the Sun ; of course of twice that distance. But this immense distance, 190,000,000 miles, makes no perceptible difference in the situation * A small difference will be seen between the statement of Dr. Rees and that of Professor Vinoe re- speotmg the obliquity, as observed by some of these authors. But as the general principle is not affected, it may be useless to attempt a reconciliation. 44 ASTRONOMY AND NAVIGATION. of the fixed stars, even when viewed with the nicest instruments. " From what we know," says Mr. Ferguson, " of the immense distance of the stars, the nearest may be computed at 32,000,000,000,000 of miles from us, which is farther than a cannon-ball would fly in Y,000,000 of years. From tlie distance of the stars it may be concluded that they shine by their own native light, and not by the reflected rays of the Sun. For those rays, decreasing in number in any given s^ace as the squares of the distances increase, cannot by reflected light make objects visible at a distance so incon- ceivably great. The iixed stars are, without doubt, suns to other systems. Thus they are now considered by the nnanimous consent of astronomers. They may be distinguished from the planets by the twinkling of their light. The diame- ter of a star appears much less viewed through a good telescope, than when seen without the aid of instruments. Not more than 1 ,000 stars are visible to the naked eye in either hemi- sphere. They seem, indeed, innumerable when in a clear evening we turn our eyes toward the heavens. But, in attentive observation, most of those bright spots which appeared to be stars vanish. They are probably reflec- tions from minute particles of various kinds continually noating in our atmosphere. The British catalogue contains not more than' about 3,000 stars in both hemispheres, though it includes many not visible to the naked eye. • By improved reflecting telescopes the number is found to be great beyond all conception. Dr. Herscliel says, "that in the most crowded part of the milky-way, he has had fields of view that contained no less than 588 stars, and these were continued for many minutes, so that in a quarter of an hour he has seen 116,0u0 stars pass through the field of view of a telescope of only 15' aperture ; and at another time, in 41 minutes he saw 258,000 stars pass through the field of his telescope." Many stars appear single to the naked eye, which on being viewed with a good telescope, are found to consist of two, three, or more stars. Some are denominated by Dr. Ilerschel insulated stars, because they seem removed from the attractive force of other stars. Such are our Sun, Arcturus, Capella, Sirius, and many others. " A binary sidereal system, or double star, properly so called, is formed by two stars situated so near each other as to be kept together by their mutual attraction." It is, however, evident that stars may be situated one nearly behind the other, so as to appear binary though immensely distant. The double star Epsilon, Bootes, is beautiful, composed of two stars, one light red, the other a fine blue. The double star Zeta, in the constellation Hercules, is composed of two stars ; the greater a beautiful bluish white, the less a tine ash-color. The star Delta, of the Swan, is binary, composed of two stars very unequal in their apparent magnitude ; the larger white, the less reddish. The pole-star is binary, composed of two stars of very unequal magnitude ; the larger white, the less red. The treble star in the left fore-foot of the constellation Monoceros, is one of the most beautiful objects of the kind in the heavens. The Beta, in the constellation Lyra, or the Harp, is quadruple, white, but three of them inclined to red. The Lambda, in Orion, is quadruple. More properly it is a double star ASTRONOMY AND NAVIGATION. 45 ■with two stars at a small distance. The double star is unequal ; the largest white, the smallest a pale rose-color. A catalogue of the principal double stars may be seen in Dr. Brewster's supplement to Ferguson, its insertion here would far exceed the limits designed for this compend. Several stars have appeared for a time in the heavens and then disap- peared. In ancient catalogues stars are enumerated which are not now to be seen, even by the powerful instruments of modern astronomy. Others are now visible which seem not to have been noticed by the ancients. A new star was discovered by Cornelius Gemma, in 1672, in the cliairof Cassiopeia. It surpassed Sirius in brightness and magnitude. To some eyes it appeared larger than Jupiter, and might be seen at mid-day. It after- ward gradually decreased, and after sixteen months entirely disappeared. In 1696, the Stella Mi/ra, or wonderful star in the neck of the whale, was observed by Fabricius. It seemed alternately to vanish and reappear seven times in six years. During this time, however, it is said never to have been entirely extinct. In 1600, a changeable star in the neck of the Swan, was observed by Jansenius. The same was observed and its place 'determined by Eiciolus in 1616, 1621, and 1624. But from 1640 to 1650 it was invisible. It had several instances of appearing and again vanishing, prior to the year 1716, when it reappeared as a star of the sixth maOTitude, its present appearance. In 1604, a new star was discovered by Kepler and some of his friends near the head of Serpentarius. It exhibited a bright and sparkling appear- ance, beyond any they had before seen. Assuming the different colors of the rainbow, it appeared eveiy moment changing, except near the horizon, where it generally appeared white. It was near Jupiter in October of that year, and surpassed that planet in magnitude, but disappeared before the following February. Several other stars have appeared, vanished, and reappeared ; some of them in regular succession. Such changeable stars may be suns having ex- tensive spots. Stars of this kind, by a regular rotation on their axes, may alternately present their dark and luminous sides. " Maupertuis is of opin- ion that some stars, by their prodigious quick rotation on their axes, may not only assume the figure of oblate spheroids, but, by their great centrif- ugal force arising from such rotation, they may become of the figure of millstones, or reduced to flat circular plates, so as to be quite invisible when their edges are turned toward us ; as Saturn's ring is in such positions. But when any eccentric planets or comets go round any flat star in orbits much inclined to its equator, the attraction of the planets or comets in their perihelia, must alter the inclinations of that star, on which occasion it will appear more or less large and luminous, as its broad side is more or less turned toward us." — Ferguson. The propriety of the term Jlxed, as applied to the stars, seems rendered at least donbtful by the observations of modern astronomers. An advancement of the solar system, in absolute space, is now considered certain. It was observed by Halley and Cassini. The first explanation of it was given by Mayer. But to point out the region in the heavens to which the solar sys- tem is advancing, was reserved to Dr. Herschel. " He has examined this subject with his usual success, and has certainly discovered the direction in which our system is gradually advancing. He found that the apparent 46 ASTBONOMY AND NAVIGATION. proper motion of about forty-four stars out of fifty-six, is very nearly in the direction which would result from a motion of the Sun toward the consteljisv- tion Hercules, or more accurately, to a place in the heavens, whose right ascension is 250° 62 30", and whose north polar distance is 40° 22'." , The stars, according to their magnitude, have been arranged into sij^ classes or orders. The largest are called sta/rs of thefrst magmtttde .; next to these are those of the second magnitude / thus decreasing to the sixth. Of course, the least stars belong to the sixth magnitude. Sometimes, how- ever, in modern and even popular works, we find allusion to stars of the seventh or eighth magnitude. Considerable difference may be perceived in stars of the same class, some being much larger and more brilliant than others. The arrangement of stars into magnitudes, was made long before tbe inven- tion of telescopes. Stars unseen witbout the assistance of these, are called telescopic stars. ... Another happy arrangement of the stars has been handed down to us from great antiquity. By a powerful imagination, the early cultivators of astronomy conceived companies of stars as having, the form, of certain ani- mals, or other sensible objects; and hence they divided the starry sphere into constellations, each including stars of different magnitudes. According as the. forms appeared to their imagination, they applied names to the dif- ferent constellations. Thus one constellation was called Zeo, another Bootes, and another Orion. Stars not included in'any constellation are called urv- formed stars. The animal, or other object of each constellation, is represented on the celestial globe, and the proportion of the stars belonging to each, denoted by the letters of the Greek alphabet, according to the plan adopted by Bayer, a German, in his JJranomebria., a large celestial atlas. Thus, the largest star of the constellation is denoted by AVpha, the second by Beta, the third by Oannma, and thus on in alphabetical order. The classing of stars, however chimerical, is of vast importance, as it enables the astronomer to designate the place of a star, a planet, or a comet, at any time, as easily as a geogi-apher can that of a hamlet or a town. From Cygnus, the Swan; Phenix, the Phenix; Piscis Australis, the Southern Fish ; Leo, the Lion ; and Crux, the Cross, as they are represented on a common celestial globe, the student may form some idea of that im- agination by which the stars were arranged into constellations. Probably in Leo, or any other constellation viewed in the heavens, he will discover but little similarity between the figure presented by the stars, and the ani- mal or other object by which they are represented. Forty-eight of tlie constellations are reckoned ancient. Of these, 12 are in the zodiac, 21 to the north, and 15 to the south of it. The whole num- ber of constellations has been reckoned 92. Of these, 12 are in the zodiac 35 are north, and 45 south of that circle. ' In each part of, the following table the ancient constellations are placed first. ASTRONOMY AND NAVIGATION. 47 Aries, the Earn. Taurus, the BuU. Gemini, the Twins. Cancer, the Crab. Leo, the Lion. Virgo, the Virgin. CONSTELLATIONS IN THE ZODIAC. Libra, the Scales. Scorpio, the Scorpion. Sagittmius, the Archer, Oapricornus, the Goat. Aquarius, the Water-bearer. Pisces, the Pishes. CONSTELLATIONS NORTH OF THE ZODIAC. ZTrsa Minor, the Little Bear. ZTrsa Major, the Great Bear. Draco, the Dragon. Corona Borealis, the Northern Grown. Hercules. I/yra, the Harp. Gygnus, the Swan. Cassiopeia, the Lady in her Chair. Auriga, the Wagoner. Serpentwrius, the Serpent-bearer. Serpens, the Serpent. Sagitta, the An-ow. Aquila, the Eagle. DeJphinus, the Dolphin. jE'j'Mi Sectio, the Horse's Head. Fegasus, the Flying Horse. Andromeda, Triangulum, the Triangle. Can«s Venatici, the Greyhounds. Cor Caroli, the Heart of Charles. Triangulum Minv^, the Little Triangle. Musca, the Ply. ieo Minor, the Little Lion. Gam,elopardalis, the Oamelopard. Jfo?M Mmnalus, the Mountain Msenalus. Scutum SoieisM, Sobeiski's Shield. Hercules cum Ramo et Gerhero. Taurus Poniatowshi, Poniatowski's BuU. Fw^^ecMZa ei Anser, the Pox and the Goose. Lacerta, the Lizard. CONSTELLATIONS SOUTH OF THE ZODIAC. Cetiis, the Whale. Orj'oji. Bridanus. Lepus, the Hare. ^ Cbrais Major, the Great Dog. Cfl!?iis Minor, the Little Dog. Hydra, the Water-Serpent. Crater, the Cup. Corvus, the Raven. Centaurus, the Centaur. Lupiis, the Wolf. J.ra, the Altar. Corona Australis, the Southern Crown. PiscM AustraUs, the Southern Fish. Officina Seulptoria, the Engraver's Shop. Hy&rus, the Water-Snake. Fa/max Chemica, the Chemical Furnace. Horologiwm, the Time-Keeper. Setieulus Ehomboidalis. iorado vel Ziphias, the Sword-Pish. CeZfls Praxitelis, the Engraver's Tool. Columia Nbachi, Noah's Dove. Equuleus Piotorius, the Painted Colt. Monoceros, the Unicom. Chameleon. Pyxis NaUtica, the Mariner's Compass. Piscis Fofew, the PJying-Pish. Sextans, the Sextant. Rohur Ca/rolinum, the Royal Oak. MacMna Pneumatica, the Wind Instrument. 4pw Musca, the Bee or Fly. jipiM «eZ Avis, the Bird of Paradise. Oircinus, the Compass. Quadra Euclidis, Euclid's Square. Triangulwm Australe, the Southern Triangle. Telescopium, the Telescope. Pavo, the Peacock. Indus, the Indian. Microseopium, the Microscope. Octans Hadleiarms, Hadley's Octant. GWm, the Crane. Toucan, the American Goose. 48 ASTEONOMY AND NAVIGATION. The Galaxy. The Galaxy, or Milky- Way, is a luminous zone in the heavens. The beautiful cloudy whiteness by which it is distinguished is found by modern astronomers to proceed from the collected rays of innumerable stars not discernible by the naked eye. "That the Milky- Way," e,&ys, Dr. Herschel, " is a most extensive stratum of stars of various sizes admits no longer of the least doubt." A group of stars is a collection of them of any figure, closely compressed together, like the trees in a crowded forest. Clusters of stars are regarded by Dr. Herschel among the most mag- nificent objects in the heavens. They differ from groups in their beautiful and seemingly artificial arrangement. Ncbulm are light spots in the heavens, sometimes denominated cloudy stars. Some of them are found to be clusters of telescopic stars. The most noted nebula was discovered by Huygens in 1656. It is between the two stars in the sword of Orion. In one part of it, a bright spot upon a dark ground seems -to be an opening into a brighter and more distant region. ]S"ebula3 were discovered by Dr. Halley and others. " But to Dr. Herschel," says Enfield, " are we indebted for catalogues of two thousand nebulas and clusters of stars, which he himself Jias discovered." Dr. Brewster says, " two thousand five hmidred." What an astonishing view of the works of creation is opened upon us by the night! With wonder and delight we greet the return of day. The beauty, and even the sublimity of this world are lighted up to us by the splendor of the morning. But how surpassed are these by the infinite grandeur presented to our view by the noctwrnal heavens ! To the night we are indebted for the most exalted conceptions we can form of the im- mensity and sublimity of Jehovah's works. We cannot contemplate them without the most profound awe! We behold, not a solitary world, but a system of worlds, kept in perpetual harmony by the Sun ; not one Sun and one system only, but millions of Suns and of systems, ranged in endless perspective, all revolving in harmonious order ! How inconceivably great, and wise, and good must be the Author and Goveenoe of such a univeese. Latitude and Longitude. Latitude, as before stated, is the distance north or south from the equator. It is reckoned on the meridian in degrees ; which, like those of all other circles, are subdivided into minutes, and again into sexagesimal parts. The center of the meridian, like that of the equator and other great circles of the globe, is considered at the center of the Earth. The great circles of the globe, extended into the visible heavens, are con- sidered as celestial circles, always lying in the same plane with those on the Earth. The position of the heavenly bodies, therefore, in regard to these circles, may be used in determining the latitude and longitude of places. The latitude of a place may be determined by finding the distance of its zenith from the celestial equator. K, therefore, the zenith distance of a heavenly body and its declination be known, the latitude of the place of observation may be ascertained. ASTRONOMY AND NAVIGATION. 49 The declination of a heavenly body, as before defined, is its distance north or south from the celestial equator. The zenith distance of a heavenly body may be obtained by observing its meridian altitude, or by two alti- tudes. Four corrections are required in finding the altitude of the Sun or Moon : semi-diameter, depression of the horizon, parallax, and refraction. The semi-diameter and parallax of a planet can be but a few seconds. They are impel-ceptible in a star. Suppose that on the -ith of July, 1831, the Sun's declination was found to be 22° 65' 39" north, when it passed the meridian of New York ; and at that time the Sun's true zenith distance was found to be 17° 46' 21" nortli, what is the latitude of that city ? Declination north, 22° 55' 39" Zenith distance, 1T° 46' 21" Answer, 40° 22' 00" If Arcturus, the noble star mentioned in the book of Job, be in 20° 20' north declination, as placed on the British celestial globe, and be observed to pass the meridian of Boston 22° 3' north of the zenith, what is the lati- tude of the city ? Declination north, 20° 20' Zenith distance, 22° 3' Answer, 42° 23' With a little attention the student may easily determine whether he ought to add or subtract in making these calculations. If, in the last example, the declination had been 20° 20' south, the zenith distance would have been 62° 43', and the declination must have been subtracted to find the latitude of the place. The latitude of a place may be determined by observing the altitude of its elevated pole. The altitude is always equal to the latitude of the place of observation. At this time the north pole of the Earth points nearly to a particular star, well known as the north or pole sta/r. According to Dr. Flint, in his Survey, the declination of this star in 1810 was 88° 17' 28", with an annual increase of 19|-". Hence its declination on the 1st day of January, 1831, was 88° 24' 17", and its distance from the pole 1° 35' 43". Let the altitude of this star above and below the pole be taken. Half the sum of these altitudes added together is the altitude of the pole, and equal to the latitude of the place. Semi-diameter and depression of the horizon have been mentioned as necessary corrections in determining latitude, and not explained in separate articles. The semi-dAometerr of the heavenly body is the angle under which the semi-diameter of the body appears at the Earth. The distance of the limb being taken in ascertaining the altitude of the Sun or Moon, the semi-diame- ter is necessarily applied in order to reduce it to the center of the body. Depression of the horizon is caused by the eye of the observer being ele- vated. When a man stands uprightly, he looks down on the horizon which touches the Earth at his feet. It must be apparent, that the higher the eye 4 50 ASTKONOMT AND NAVIGATION. is elevated, the farther below the horizon, toaching the surface of the Earth beneath it, may a heavenly body be seen. Lohgitude on the Earth's surface is the distance east or west from some fixed meridian, assumed as first. Like latitude, it is reckoned in degrees, minutes, and sexagesimal parts. The best method of determining longitude has long been an object of inquiry by the mariner and the geographer, the mechanic, the statesman, and the philosopher. Philip III. of Spain, we are informed, offered a reward of a hundred thousand crowns for the discovery of longitude. The States of Holland, then the rival of Spain, soon after followed the example. During the minority of Lewis XY., the Eegent of France offered a great reward for the discovery of longitude at sea. About the year 1675, in the time of Charles II. of England, the royal observatory was built at Greenwich. Mr. Flamstead was appointed astronomer royal. Instructions were given to him and his successors, " that they should apply themselves with the litmost care and diligence to rectify the tables of the motions of the heavens, and the places of the fixed stars, in order to find out the so much desired longitude at sea for the perfecting of the art of navigation." In 1714, the British parliament offered £10,000 for the discovery of longi- tude if the method determined it to 1° ; £15,000 if it determined it to 40' ; and £20,000 if it determined it to 30', with a proviso, that if such method extended but to 80 miles adjoining the coast, the proposer should have but half the reward. On this act Mr. John Harrison received the premium of £20,000 for his time-keeper. Several acts were passed in the reign of George II. and George III. for the encouragement of finding longitude. An act passed in 1774, said to be the last of that government on the subject, repealing all the former acts. This act diminishes the premium to half the first great offer. The United States have not been inattentive to the subject of longitude ; so far, at least, as respects the establishment for themselves of a first merid- ian. In the year 1809, Mr. Lambert, of Virginia, presented to Congress a memorial on the subject of longitude. He commences by stating, " that the establishment of a first meridian for the United States of America, at the permanent seat of government, by which a further dependenoe on Great Britain, or any other foreign nation, for such a meridian, may be en- tirely removed, is deemed to be worthy the consideration and patronage of the national legislature." An interesting report on this memorial was made in March, 1810, by a select committee of the House of Representatives, of which Mr. Pitkin, gf Connecticut, was chairman. An extract from this re- port may deserve a place even in a compendium of astronomy : "The committee nave deemed the subject worthy the attention of Con- gress, and would, therefore, beg leave to observe, that the necessity of the establishment of a first meridian, or a meridian which should pass through some particular place on the globe from which geographers and navigators could compute their longitude, is too obvious to need elucidation. " The an cient Greek geographers' placed their first meridian to pass through one of the islands, which by them were called the Fortunate Islands, since called the Canaries. Those islands were situated as far west as any islands that had been discovered, or were known by ancient navigators in that part of the world. ASTEONOMY AND NAVIGATION. 51 " They reckoned their longitude east from Hera, or Junonia, supposed to be the present island of Teneriffe. " The Arabians, it is said, fixed their first meridian at the most westerly- part of the continent of Africa. In the fifteenth and sixteenth centuries, when Europe was emerging from the dark ages, and a spirit of enterprise and discovery had risen in the south of Europe, and various plans were formed and attempts made, to find a new route to the East Indies, geogra- phers and navigators continued to calculate longitude from Ferro, one of the same islands, though some of them extended their first meridian as far west as the Azores, or Western Islands. "In more modern times, however, most of the European nations, and particularly England and France, have established a first meridian to pass through the capital, or some place in their respective countries, and to which they nave lately adapted their maps, charts, and astronomical tables. " It would, perhaps, have been fortunate for the science of geography and navigation, that all nations had agreed upon a first meridian, from which all geographers and navigators might have calculated longitude ; but as this has not been done, and, in all probability, never will take place, the com- mittee are of opinion that, situated as we are in this western hemisphere, more than three thousand miles from any fixed or known meridian, it would be proper, in a national point of view, to establish a first meridian for our- selves ; and that measures should be taken for the eventual establishment of such a meridian in the United States. " In examining the maps and charts of the United States, and the par- ticular states, or their sea-coasts, which have been published in this countiy, the committee find that the publishers have assumed different places in the United States as first meridian. This creates confusion, and renders it di£B- cult, without considerable calculation, to ascertain the relative situation of places in this country. This diflSculty is increased by the circumstance, that in Loi^isiana, our newly acquired territory, longitude has heretofore been reckoned from Paris, the capital of the French empire. " The exact longitude of any place in the United States being ascertained from the meridian of the observatory at Greenwich, in England, a meridian with which we have been conversant, it would not be difficult to adapt all our maps, charts, and astronomical tables, to the meridian of such place. And no place, perhaps, is more proper than the seat of government." The memorial, the report of the committee, and other papers were after- ward referred to Mr. Monroe, then Secretary of State, and late President of the United States. His opinion fully accorded with that of the commit- tee, in favor of establishing a first meridian for the United States, and that it should be at Washington, the seat of government. The subject was afterward referred to another committee of the House of Eepresentatives, of which Dr. Samuel L. Mitchill, of New York, was chair- man. The report of this committee was in full accordance with the preced- ing sentiment, and in favor of the establishment of a first meridian at the seat of government. To these high authorities, that of the illustrious "Washington may be added, as stated by Mr. Lambert, in 1821, in his address on the subject to the President of the United States. " The illustrious personage by whose name the metropolis of the Ameri- can Uniqn has been designated, unquestionably intended that the capital, 52 ASTEONOMY AND NAVIGATION. situated at or near the center of the District of Columbia, should be a first meridian for the United States, by causing,-during the first term of his presi- dency, the geographical position of that point, in longitude 0° 0', and its latitude 38° 63' north, as found by Mr. Andrew Ellicott, to the nearest minute of a degree, to be recorded in the original plan of the city of Wash- ington." Relative or apparent time differs four minutes for a degree, or one hour for every 15° of longitude. To the east, it is later; to the west, earlier. When it is noon with us, it is one P. M., 15° east ; eleven, A. M. 15'' west. Washington, according to Mr. Lambert, is 76° 65' 30" west of Greenwich. It is 6 h. 52 m. 18 s., A. M., at Washinsjton when it is noon at Greenwich. Boston is 159° 32' west of Calcutta. When it is noon at Boston it is lOh. 38 m. 8 s., P. M., at Calcutta. If, therefore, by an exact time-keeper, or ob- servation on the heavenly bodies, the time of day at the meridian, from which longitude is reckoned, and also the time at the place of observation, can be known, the difference converted into motion will show the longitude. A good time-keeper, clock or watch, forms one method of computing lon- gitude. Such time-keeper, set for any meridian, will not, when carried east or west, correspond with the apparent time. But its difference from the time at the place of observation, turned into motion, would, if true, give the longitude. If a ship, sailing from London to Boston, should set a watch for the meridian of London 6' west of Greenwich, such watch, if perfectly accu- rate, would give the time 4 h. 43 m. 25 s., P. M., when the Sun is on the meridian at Boston. No clock or watch, however, yet invented, has been found entitled to perfect dependence. Even the time-keeper of Mr. William Harrison was found subject to considerable error when tried at the royal ob- servatory by Dr. Maskelyne ; though it had made a voyage from England to Barbadoes and back again, varying but 54 seconds in 156 days, or, as was thought, with proper allowance, only 16 seconds in that time. The eclipses of Jupiter's satellites, happening very often, form an excel- lent method of determining longitude on land. Like those of the Moon, they are seen at the same absolute time in all places where they are visible. The difference in relative time, then, will show the longitude. Suppose an eclipse of the 4th satellite of Jupiter be set in the Nautical Almanac published for Greenwich at 4h. 25 m., A. M., on a particular day, and the same is ob- served in the United States at 11 h. 17 m. 18 s., P. M., of the preceding day, what is the difference of longitude ? 4h. 25m. Ob. — llh. 17 m. 18 s. 6 7 42 In making this subtraction, it will be perceived, from the .nature of the case, that 12 must be add^d to the hours of the minuend, or upper number. Convert 5 h. 7 m. 42 s. into motion, by allowing 15° for each hour, 1° for every 4 minutes, and 1 minute for every 4 seconds, and so on for thirds, you have the difference of longitude 76° 55' 30". It is said the difficulty of observation at sea renders eclipses of Jupiter's satellites of but little practical utility to the mariner in computing lon^tude. Lwna/r observations form another method of determining longitude. This method is a great modem improvement in navigation, [ifiie idea is not very ASTRONOMY AND NAVIGATION. 53 modern. " M. de la Lande mentions certain astronomers, who, above two hundred years ago, proposed this method, and contended for the honor of the discovery ; but its present state of improvement and universal practice he very justly ascribes to Dr. Maskelyne." This last mentioned astronomer first j^roposed and superintended the construction of the Nautical Almanac. In this the angular distance of the Moon from the Sun and certain fixed stars is inserted for every third hour in the day, calculated for the meridian of Greenwich. "If, therefore, under any meridian, a lunar distance be ob- served, the difference between the time of observation and the time in the Almanac when the same distance was to take place at Greenwich, will show the longitude." The stars selected for the Almanac are nine, viz.: the Alpha, or first star of Aries, Aldebaran of Taurus, Pollux of Gemini, Kegu- lus of Leo, Spica of Yii-go, Antares of Scorpio, Altair of Aquila, Fomalhaut of Piscis Australis, and Markab of Pegasus. The Nautical Almanac is an- nually published in England by the commissioners of longitude. For practice in finding longitude, with the necessary tables, the student is referred to Dr. Bowditch's useful work, the "Practical Navigator." Except a small variation on account of the spheroidical figure of the Earth, degrees of latitude remain the same, or of equal length, on every part of the globe. But those of longitude decrease from the equator to the poles, where they become extinct. The number of degrees in a circle of longitude is the same in all latitudes ; but the number of miles in a degree continu- ally lessens each way from the equator. The student versed in trigonome- try may be informed that the proportion is — as radius is to the cosine of any given latitude, so is the number of miles in a degree of longitude at the equator to the number of miles in a degree of longitude at such latitude. JMeteoes. In some astronomical works are to be found accounts of lightning, thun- der, clouds, aurora borealis, and even of wind, rain, snow, and hail. These, though highly important, and deserving the attention of the chemist and the student in general philosophy, seem not connected with astronomy, nor deserving a place in a work intended to be exclusively astronomical. But aerolites, or falling stones, seem worthy of some notice, even in a compendium of astronomy. " It must be reckoned," says Rees's Cyclopaedia, " among the wonders of the age in which we live, that considerable portions of these heavenly bodies are now known to have descended to the Earth. So wonderful and unexpected an event was at first received with incredulity and ridicule ; but we may now venture to consider the fact as well estab- lished as any other hypothesis of natural philosophy, which does not actually admit of mathematical demonstration." One of the earliest accounts we have of these phenomena is given by Livy, in his History of Eomc. He tells us that, in the time of Tullus Hos- tilius, the successor of Numa, and third king of Rome, it was announced to the king and to the fathers, that it rained with stones on mount Albanus ; that these stones fell from heaven not otherwise than when the winds drive the hail thick to the Earth. Pliny mentions, that a large stone fell in Thrace, in the second year of the seventy-eighth Olympiad. Three large stones ai-e said to have fallen in Thrace, in the year before Christ 452. 54 ASTEONOMY AND NAVIGATION. It would be useless to dwell on the numerous accounts of these phenom- ena handed down to us from great antiquity. But it may be proper to give a few instances of the falling of these stones in modem times, received on the authority of different authors. A shower of falling stones, 1,200, one of 120 lbs., is related to have hap- pened near Fadua, in Italy, in 1510. April 5, 1804, a stone of this kind fell near Glasgow, in Scotland. Several gentlemen of the university well ascertained the particulars of this phe- nomenon. But New England affords one of the best authenticated accounts of these wonderful stones. Professors Silliman and Kingsley visited and carefully examined every spot where it was ascertained these stones had fallen. The principal fall was within the bounds of "Weston, in Connecticut ; though the most northerly was in Huntingdon, on the borders of Weston. Something of the original account deserves to be extracted : " The meteor which has so recently excited alarm in many, and astonishment in all, first made its ap- pearance in Weston, about a quarter or half-past six o'clock, on Monday, the 14th of December, 1807. The morning was somewhat cloudy, mingled with spots of clear, a space of 15° along the northern horizon perfectly clear ; there was little or no light, except from the Moon, just setting. " Judge Wheeler was passing through the inclosure adjoining his house, with his face toward the north, and his eyes on the ground, when a sudden flash across the northern sky made him look up ; he immediately discovered a globe of fire passing behind the first cloud, which was very dark, and obscured the meteor. In this situation its appearance was distinct, like the Sun seen through a mist. Itsprogress was not so rapid as that of common meteors and shooting stars. When it passed the clear sky it flashed with a vivid light, not so intense as lightning in a thunder-storm, but like what is called heat lightning. Its surface was apparently convex. When not too much obscured by clouds, a conical train of paler light attended it waving, and in length about ten or twelve diameters of the body. In the clear sky, there was a brisk scintillation about it, like a -firebrand carried against the wind. It disappeared about 15° short of the zenith, and the same number west of the meridian. It did not vanish instantaneously, but grew fainter, as a red-hot cannon-ball would do, cooling in the dark, only much more rapidly. \ "About thirty or forty seconds after this, three loud and distinct reports, like those of a four-pounder, near at hand, were heard. They succeeded each other rapidly, and did not occupy above three seconds. Then followed a continual rumbling, like a cannon-ball rolling over a floor, sometimes louder and sometimes fainter." There were six places where stones fell on this occasion ; the most remote, nine or ten miles from each other. One fell on a rock of granite with a loud report. It was broken into fragments, thrown to the distance of thirty feet, and some part reduced to powder. One mass of this fall was found sunk two feet below the surface of the ground. Of the masses found, two weighed 35 lbs. each ; one, 25 lbs. From the fragments found of one, it was thought it must have weighed nearly 200 lbs. A great similarity is found in these stones, when examined chemically, in different parts of the world where they had fallen. But they are very dif- ferent from the other stones on the sm-face of the Earth. ASTRONOMY AND NAVIGATION. 55 Much speculation has been excited respecting the origin of the aerolites. Prior tells us, '^The most prevalent opinion among modern philosophers is, that they are concretions actually formed in the atmosphere itself." But that such solid and weighty bodies should be formed in the rare medium of the atmosphere, would be more wonderful than the falling stones them- selves. Some have supposed they originate in the asteroids. Perhaps the most probable opinion is that of La Place, " that the stones are projected by lunar volcanoes within the sphere of terrestrial attraction." The Moon is but 240,000 miles from the Earth. The force of attraction in different bodies is as the quantity of matter. Of this, that of the Earth is to that of the Moon as 1 to .025. Hence the neutral ground between the two bodies must be vastly nearer the Moon than the Earth. "Whenever matter thrown up by a volcano from the Moon, passes this ground, it must irresistibly be drawn to tlie Earth. The luminous meteors, usually denominated shooting sta/rs, seem different in their origin, and to be of species different from aerolites, or falling stones. In some instances in which these meteors have appeared in immense num- bers, for many hours in succession, and over an extensive region, no falling stones have been discovered, nor any traces been found where they have marked the Earth. Several noted instances of these meteors have occurred in modern times. An account of one is given by Humboldt, witnessed by himself and Eon- pland at Cumana, in South America. " The night of the 11th of November, 17Y9, was cool and extremely beautiful. Toward the morning, from half after two, the most extraordinary luminous meteors were seen toward the east. Bonpland, who had risen to enjoy the freshness of the air in the gal- lery, perceived them first. Thousands of bolides, fireballs, and falling stars, succeeded each other during four hours.' Their direction was very regular from north to south. They filled a space in the sky extending from the true east 30° toward the north and south ; some of them attained a height of 40°, and all exceeded 35° or 30°. There was very little wind, and no trace of clouds to be seen." Phenomena similar to those seen by Humboldt were extensively observed on the Atlantic ocean and the Gulf of Mexico, on the 12th of iSTovember, 1799. The following account of these has been extracted into our papers from the Newburyport Herald of that year. It was given by Captain "Woodman, of the brig Nymph : " On my passage home from the island of St. Domingo, being in lat. 29° Ion. 70°, on the 12th of November, at half-past one o'clock in the morning, the weather being very clear and pleasant, the wind to the eastward, the moon near the full, and shining very bright, observed the stars to shoot in great numbers from every point of the compass ; and at two o'clock the whole atmosphere appeared to be full of stars — ^1 may say thousands of thousands — shooting and blazing in all directions — in a most extraordinary and alarming manner, and so continued till daylight. On my arrival at the Vineyard, I met with several masters of vessels, who were on their passage at the same time, and said that the stars made the same appearance to them on the night above mentioned, though they were then several degrees to the northward of me. This account was dated Newburyport, December 20, 1799. These phenomena of November 12th, 1799, were witnessed by Mr. Elli- 56 ASTKONOMY AND NAVIGATION. cott when a commissioner to settle the boundary line between the United States and the Spanish possessions in North America. He describes them as " grand and awful. The whole heavens appeared as if illuminated with sky-rockets, which disappeared only by the liglit of the sun after daybreak. Tlie meteors, which, at any one instant of time, appeared as numerous as the stars, flew in all possible directions, except from the Earth." Captain Hammond and his crew, when at Mocha in Arabia, on the 12th of November, 1832, witnessed a similar display of luminous meteors, and described them in similar language. The citizens of these United States will long remember the night of the 12th, or the morning of the 13th of November, 1833. The brilliant exhibi- tion of luminous meteors which adorned the canopy from the St. Lawrence to the Gulf of Mexico, and from the Atlantic to the Eocky Mountains, perhaps has never been surpassed in the time of its continuance, or in the richness and grandeur of its appearance. The display seems to have commenced earlier as seen from the southern than from the northern sections of the Union. The following account is extracted from the Charleston Mercury of November 14th, 1833 : " Those -vtho were up before the dawn yesterday witnessed a most glorioiis sight, one glance at which were worth ten years of common life. The tem- perature of the daj' before had been oppressive, the mercury ranging as high as 78 degrees. At night the atmosphere became cooler, but not so much so as to make a fire necessary for comfort. About ten o'clock, P. M., shooting stars were observed to succeed each other with unusual frequency, and continued to appear at short intervals during the night. But at about three o'clock in the morning the wind, which had been from the west, hav- ing changed, and blowing with some freshness from the northeast, there was a burst of splendor throughout the firmament, and its entire concave was thronged with innumerable meteors streaming athwart each other toward the horizon in every quarter, leaving long trains of light as if millions of rockets were incessantly exploding. The literal shower of stars continued till daylight, exploding in glittering confusion as if the whole starry host were reeling madly from their spheres. "While this grand and beautiful spectacle lasted, a permanent light as strong as moonlight was thrown through the windows of our chambers, and, although the sky was without a cloud, there were flashes, from time to time, of the most vivid lightning. The unusual light roused many from their beds, some supposing that the city was on fire. While every spectator must have gazed with feelings of awe, some were astonished into the live- liest terror. ' There is a striking coincidence of expression in the description of these phenomena in difi'erent and distant parts of the counti-y. How far they were visible beyond the limits of the United States is not yet ascertainedf. They are described as having appeared splendid at St. George's Bank, three hundred miles from the coast. The astonishing displays of meteors seen at different times, 1T79, 1799, 1832, and 1833, all appeared at the same time of the year, or within a single day of the same time. This is worthy of notice and philosophical inquiry. The cause of these phenomena, these showers of luminous meteors, evi- dently distinct from aerolites, seems now demanded from every quarter by the wise and the simple, the learned and the unlearned. Many hy- ASTRONOMY AND NAVIGATION. 67 potheses have been formed on the subject. Dr. Halley conjectured " that a stratum or train of inflammable vapor, gradually raised from the Earth and accumulated in an elevated region, suddenly took fire, and, burning like a train of gunpowder, exhibited the meteoric phenomena." Tlie late Presi- dent Clap of New Haven, supposed fiery meteors to be terrestrial comets revolving about the Earth. But his attention must have been fixed on oth- ers, and not on these showers of meteors. A learned professor wishing for more information concerning them, thinks " it evident that the point from •which the fireballs emanated was beyond the limits of our atmosphere ; that the balls were projected obliquely into the atmosphere ; that they were not at first luminous, but became so, and more so, as they reached the denser parts of the atmosphere, until they exploded or burst asunder ; and that they consisted of luminous vapor, such as after explosion remained suspended in the air." The most probable conjecture seems to be, that the meteors of 1833 were electrical phenomena. The state of the atmosphere is to be considered. The weather was warm for some time previous to the display. On the day preceding, it was almost sultry. In the afternoon there were gusts of wind attended with sudden showers of rain and lightning. " The atmosphere seemed to be satu- rated with electricity." To account for these meteors on the principles of electricity is not new. Dr. Kees informs us that " Dr. Blagden proceeds to explain these meteors on the hypothesis that they are electrical phenomena. His arguments are, 1st, from the great rapidity of their motion, which seems to exceed any other we are acquainted with besides electricity; 2dly, from certain electri- cal phenomena which sometimes accompany these meteors ; and 3dly, from the connection which they have with the aurora borealis. Dr. Blagden concludes that there are three regions of the atmosphere distinguished by electrical phenomena peculiar to each ; 1st, the lowest region, in which the thunder and lightning occur ; 2dly, the middle region, where the fireballs and shooting stars are observed ; and 3dly, the highest region, where the aiirora borealis displays a peculiar kind of electrical agency.^' It is worthy of remark, that many accounts mention flashes of lightning during the display of meteors. It is very probable that the great meteor which passed over England on the 18th of August, 1783, was an electrical phenomenon. It went with immense rapidity, more than one thousand miles in about half a minute. 58 ASTRONOMY AND NAVIGATION. SELECTIONS FROM RYAN'S ASTRONOMY. On Comets. 1. Comets are planetary bodies moving about the Sun in elliptic orbits, and following the same laws as the planets ; so that the areas described by their radii vectores are equal in equal times. When a comet appears, the observations to be made for ascertaining its orbit are of its declinations and right ascensions, from which the geocentric latitudes and longitudes are obtained. These observations of right ascension and declination must be made with an equatorial instrument, or by measur- ing with a micrometer, the differences of the declination and right ascension of the comet and a neighboring fixed star. The observations, according to Dr. Brinkley, ought to be made with the utmost care, as a small error may occasion a considerable one in the orbit. From the beginning of the Christian era to the present time, there have appeared not less than 5D0 comets; but the elements of not more than 99 have been computed, and of the latter number 22 passed between the Sun and Mercury in their perihelia; 40 between Mercury and Venus; 17 between Yenus and the Earth; 16 between the Earth and Mars; and 4 between Mars and Jupiter. The appearance of one comet has been several times recorded in history, viz., the comet of 1680. The period of this comet is 575 years. It exhibited at Paris a tail 62° long, and at Constantinople one of 90°. When nearest the Sun, it was only one-sixth part of the diameter of the sun distant from his surface ; when farthest, its distance exceeded 138 times the distance of the Sun from the Earth. 2. As the orbits of the comets are very eccentric, the aphelion distance of a comet is so great, compared with its perihelion distance, that the small portion of the ellipse which it describes near its perihelion, or during its appearance, may, without any sensible error, be supposed to coincide with a parabola, and thus its motion during a short interval may be calculated as if that portion of the orbit was parabolical. Dr. Halley makes the perihelion distance of the comet of 1680 to be to its aphelion distance, nearly as 1 to 22412 ; so that this comet was twenty-two thousand four hundred and twelve times farther from the Sun in its aphelion than in its perihelion. According to the laws of Kepler, the sectors described in the same time by two planets, are to each other as the areas of their ellipses divided by the square of the times of the revolution, and these squares are as the cubes of their semi-major axes. It is easy to conclude, that if we imaguxe a planet moving in a circular orbit, of which the radius is equal to the perihelion dis- tance of a comet, the sector described by the radius vector of the comet, will be to the corresponding sector described by the radius vector of the A8TE0N0MY AND NAVIGATION. 59 planet, as the square root of the aphelion distance of the comet is to the square root of the semi-major axis of its orbit, a relation which, when the ellipse changes to a parabola, becomes that of the bquare root of 2 to unity. The relation of the sector of the comet to that of the imaginary planet is thus obtained, and it is easy by what has been alreatjy said, to get the proportion of this last sector to that which the radius vector of the earth describes in the same time. The area described by the radius vector of the comet may then be determined for any instant whatever, setting out from the moment of its passage through the perihelion, and its position may be fixed in the parabola which it is supposed to describe. Nothing more is necessary, but to deduce from observation the elements of the parabolic motions. 3. The elements of a comet are, the perihelion distance of the comet, the position of the permelion, the instant of its passage through the perihelioh, the inclination of its orbit to the plane of the ecliptic, and the position of its nodes. Elements of the Comet of 1811. Time of Comet's passage through its perihelion, September, . . . l^d. 9A. 48m. Place of the perihelion, 74° 12' OO" Distance of the perihelion, 1 .02241 Place of the ascending node, 140° 13' 00" Inclination of the orbit to the plane of the ecliptic, . . . . Y2 12 00 Its heliocentric motion retrograde. The investigation of these five elements presents much greater difficulties than that of the elements of the planets, which being always visible, and having been observed during a long succession of years, may be compared when in the most favorable position for determining these elements, instead of which comets appear only for a short time, and frequently in circum- stances where their apparent motion is rendered very complicated by the real motion of the Earth, which always carries us in a contrary direction. Notwithstanding aU these difficulties, it is possible to determine the elements of the orbits of comets by different methods. Three complete observations are sufficient for this object; others only serve to confirm the accuracy of these elements, and the truth of the theory which has been just explained. Above four-and-twenty comets, the numerous observations of which are exactly represented by this theory, have confirmed it beyond all doubt. It appears, therefore, that comets which have been considered as meteors for many years, are of the same nature as planets ; their motions and their returns are regulated by the same laws as planetary motions. 4. Comets do not always move in the same direction like the planets. The real, or heliocentric motion of some is direct, or according to the order of the signs ; and of others, retrograde. But the geocentric motion of the same comet may be either retrograde or direct according to the position of the Earth with respect to the comet, and their relative velocities. The heliocentric motion of half the comets whose elements have been computed, is retrograde, and of the others, direct. The inclination of their orbits is not confined within a narrow zone like that of the planetary orbits; they present every variety of inclination, from an orbit nearly coincident with the plane of the ecliptic, to that pei-pendicular to it._ A comet is recognized when it reappears by the identity of the elements of its orbit with those of the orbit of a comet already observed. If its peri- 60 ASTEONOMY AND NAVIGATION. helion distance, the position of its perihelion, its nodefe, and the inclination of its orbit are very nearly the same, it is probable that the comet which appears is that which has been observed before, and which, having receded to such a distance as to be invisible, returns to that part of its orbit nearest to the Sun. The duration of the revolution of comets being very long, and having been observed with very little care till within about two centuries, the period of the revolution of one comet only is known with certainty, that of 1682, which had been already observed in 1607 and 1631, and which has reappeared in 1759. This comet takes about 76 years to return to its peri- helion ; therefore, taking the mean distance of the Sun from the Earth as unity, the greater axis of its orbit is 35.9, and as its perihelion distance is only 0.58, it recedes from the Sun at least 35 times more than the Earth, describing a very eccentric ellipse. Its return to the perihelion has been longer by thirteen months from 1531 to 1607, than from 1607 to 1682; it has been 18 months shorter from 1607 to 1682, than from 1682 to 1769. The real or heliocentric motion of this comet was retrograde, and the elements of the orbit deduced by Dr. Halley from the observations of Apian in 1631, of Kepler in 1607, and of himself in 1682, also the elements de- duced from the observations in 1759, were as follows : Passage through Perihelion. Per. dist. Earth's per dist. unity. Place of Perihelion. Place of Node. Inclination to ecliptic. A. h. 1531 . . . Aug. 21 18 1607 . . . Oct. 26 8 1682 . . . Sept. 14 4 1759 . . . Mar. 12 14 .567 .587 .583 .585 10 1 39 10 2 16 10 2 52 10 3 8 1 19 30 1 20 21 1 21 16 1 23 45 o t 17 61 17 2 17 58 17 40 This comet was retarded by the action of Jupiter, as Dr. Halley had fore- told. This retardation was more exactly computed by Clairaut, who also calculated the retardation by Saturn. The result of his computation pub- lished before the return of the comet, fixed April 15 for the time of the passage through perihelion : it happened on March 12. Dr. Halley's com- putation appears also very exact, when it is considered that he did not allow for the retardation by Saturn. As had been predicted by Dr. Halley, this comet reappeared in 1835. The return of some other comets has been suspected : the most probable of these returns was that of the comet of 1532, which has been believed to be the same with that of 1661, and the revolution of which was fixed at 129 years ; but this comet not having reappeared in 1790, as was expected, there is g'eat reason to believe that these two comets were not the same. The preceding matter has been principally extracted from Lwplace^s Sys- tem of the World. An ingenious computation has been made by Laplace, from the doctrine of chances, to show the probability of two comets being the same, from a near agreement of the elements. It is unnecessary to detail at length the method here. It supposes that the number of different comets does not exceed one million, a limit probably sufiiciently extensive. The chance that two of these, differing in their periodic times, agree in each of the five ele- ments within certain limits, may be computed, by which it was found to be ASTEONOMT AND NAVIGATION. 61 as 1200 to l._ that the comets of 1607 and 1682 were not different, and thus Halley was jnstly almost confident of its reappearance in 1759. As it did appear then, we may expect, with a decree of probability approaching almost without limit to certainty, that it will reappear again at the comple- tion of its period. But with respect to the comet predicted for 1789, from the supposition that those of 1661 and 1532 were the same, the case is widely different. From the discrepancy of the elements of these comets, the probability that they were the same is only 3 to 2, and we cease to be surprised that we did not see one in 1789. See Dr. Brinkley's Elements of Astronomy. Comets that appeared in 1264 and 1556 are supposed to haye been the same, whence this comet may again be expected in 1848. A comet appeared in 1770 very remarkable from the residt of the compu- tations of Lexell, which indicated a period of only 5^ years ; it has not been observed since. There can be no doubt that the periodic time of the orbit which it described in 1770, was justly determined ; for M. Burckhardt has since, with great care, recomputed the observations, and his result gives a periodic time of 5f years. Lexell has remarked, that this comet, moving in the orbit he had investi- gated, must have been near Jupiter ta 1767, and would also be very near it again in 1779 ; from whence he concluded that the former approach changed the perihelion distance of the orbit, by which the comet became visible to us, and that ra consequence of the latter approach, the perihelion distance was again increased, and so the comet again became invisible, even when near its perihelion. This explanation has been in a manner confirmed by the calculations of Burckhardt, from formulas of Laplace. He has found, that before the approach of Jupiter, in 1767, the perihelion distance might have been 5.08, and that after the approach in 1779, it may have become 3.33, the Earth's distance being unity. With both these perihelion distances, the comet must have been invisible during its whole revolution. The peri- helion distance in 1770 was 0.67. This comet was also remarkable by having approached nearer the Earth than any other comet that has been observed, and by that approach having enabled us to ascertain a limit of its mass, or quantity of matter. Laplace has computed, that if it had been equal to the Earth, it would have short- ened the length of our year by one-ninth of a day. Now it has been ascer- tained, by the computations oi Delambre on the Greenwich observations of thte Sun, that the length of the year has not been changed, in consequence of the approach of that comet, by any perceptible quantity; and thence Laplace has concluded, that its mass is less than one five-thousandth of that of the earth. The smallness of its mass is also shown by its having traversed the orbits of the satellites of Jupiter without having occasioned an alteration in their motions. From those and other circumstances, it seems probable that the masses of the comets are in general very inconsid- erable; and therefore, as Dr. Brinkley remarks, that astronomers need not be under apprehensions of having their tables deranged in consequence of the near approach of a comet to the Earth or Moon, or to any bodies of the solar system. „ ■, . -, , , 5. The motion of a comet, like that of a planet, is accelerated when mov- ing from its aphelion to its perihelion, and retarded from its perihelion to its amielion. On account of the great eccentricity of a comet's orbit, its motion 62 ASTRONOMY AND NAVIGATION. in the perihelion is prodigiously swift, and in the aphelion proportionably slow. The velocity of this comet in its perihelion was so great, that, if continued, it would have carried it through 124 degrees in an hour. But its actual hourly motion during that interval, before and after it passed its perihelion, was 81° 46' 52". From Dr. Halley's determination of the orbit of this comet, it cannot be less than 13,000 millions of miles from the Sun when in its aphelion. According to Pingre, the elements of the orbit of the comet of 1680 were as follows : this comet passed through its perihelion December 18th, at 1 minute 2 seconds after 12 o'clock, at noon mean time at Greenwich ; place of the perihelion 8s. 22° 40' 10", or 22° 40' 10" of Sagittarius; and its dis- tance from the Sun when in the perihelion, .00603, the mean distance of the Earth from the Sun being considered as unity or 1 ; the longitude or place of the ascending nodes 9 signs, 1° 57' 13", or 1° 67' 13" of Capricornus; and the inclination of the orbit to the plane of the ecliptic 61° 22' 55". It appears from the great diurnal motion of some comets, that they must have come very near the earth. For, according to Eegiomontanus, the comet of 1472 moved over an arc of 120° in one day. And the comet of 1759 described the apparent arc of 41° in the same interval of time. The comet of 1811 was first seen at Viviers, by Flaugergues, on the 25th of March, and was visible till the end of May ; it must have been very faint and near the horizon all the time, it having during that interval great southern latitude. The Earth was in about 5 degrees of Libra, on the 25th of March, and therefore the comet must be nearly in opposition to the Sun, which certainly was the most favorable position for seeing it. It was then moving toward its perihelion, but its motion being slow, and the Earth re- treating from it, it was lost sight of when the. Earth arrived at the beginning of Sagittarius. The comet passed the ascending node on July 11th, when the Earth was between Capricornus and Aquarius ; it was then approaching its conjunction with the Sun, and was invisible from the end of May till the 31st of August, when, between 3 and 4 o'clock that morning, it was observed by Bouvard, at the imperial observatory ; its right ascension was 147° 18', and declination 32° 53' north. The comet was first observed at Greenwich, on the 5th of September ; its geocentric longitude at that time was 145° 3' 10", and its geocentric latitude 28° 36' 39". The comet was at its perihelion at a distance of 97,128,950 miles from the Sun on the 12th of September. On October 2d, the comet was 26° 33' from the perihelion ; its heliocentric longitude was 41° 53' and latitude 72° 1'; having two days before passed the higher part of its orbit, or 90 degrees from the node. The Earth at the same time was in about 9° of Aries ; and the geocentric longitude of the comet was 174° 37', and its geocentric latitude 54° 5'. The comet's distance from the Sun was 102,532,550, and from the Earth 120,413,930 miles. The comet was nearest the Earth on the 11th of October, when its distance was 113,630,450 miles, its apparent motion in longitude at this time was nearly four degrees in twenty-four hours. On the 12m, the comet was 37° 33' from the perihelion, having a rapid geocentric motion in longitude, the direction of the Earth and comet conspiring to produce that effect. Its geocentric longitude was 203° 46', and latitude 61° 39'; the Earth at the same time was 18° 40' in the sign Aries. The comet's distance from the Sun was 108,342,464, and from the Earth 113,948,225 miles. On January Ist, 1812, ASTRONOMY AND NAVIGATION. 63 the comet was 89° 11' from tlie perilielion ; its heliocentric longitude was 328° 15', and latitude 23° 33'. The Earth was about 10° 21' in Cancer ; the greatest geocentric longitude of the comet was 312° 2', and latitude 17° 18'. Its distance from the Sun was 190,520,000, and from the Earth 259,614,500 miles. See, for a delineation of a portion of this comet's orbit. Squire's Astronomy. Though the real or hehocentric motion of this comet was not within the sphere of the Earth's orbit, yet its geocentric track, when referred to the ecliptic, crossed the orbit of the Earth ; hence, the apparent place of the comet, during the greater part of the time it was visible, was toward the op- posite part of the heavens to its true place. Erom the true and apparent places of the comet given above, for partic- ular days, its real and visible path may be traced upon the celestial globe. Dr. Herschel makes the planetary body of this comet not more than 428 miles in diameter ; but the real diameter of the head he makes to be about 127,000 miles. The apparent motion of this comet was direct, yet very unequal, for when it first became visible after passing the ascending node, it was nearly station- ary, and the same about the time of its disappearance, but when nearest the Earth it equaled that of Mercury. This comet was visible a longer time than almost any other upon record, and therefore none has ever afforded such certain means of information with respect to its orbit. Had its heliocentric motion been direct, it would have been visible much longer, and would have passed within 44,485,850 miles of the Earth, had it crossed the line of its nodes at the same time. The comet would then have appeared a large nebulous body, but without a tail, as that appendage would have been projected in a direct line from behind its body. Ckeatioit a Peoof of DrviNE Existence. This is a conclusion which has been deduced by men of all nations, and in every period of the world. " There is no nation or people," says Cicero, " so barbarous and ignorant as not to acknowledge a powerful and Supreme Di- vinity." 1. It is as natural for the human understanding, in its original and un- biassed state, when contemplating the frame of the universe, to infer the existence of a Deity, as it is the property of the eye to distinguish light and colors, and of the ear to distinguish sounds. The principle from which this conclusion is deduced is exactly the same as that by which, from the contem- plation of a building, we infer a builder, and from the elegance and utility of every part of the structure, we conclude that he was a wise and skillful archi- tect ; or that by which, from an inspection of a clock or watch, or any other piece of useful machinery, we infer not only the existence, but the qualities and attributes of the contriver and artificer. The man who is incapable of at once deducing such conclusions ought to be regarded as destitute of the rea- soning faculty; and if we thus necessarily infer the cause from the effect in the case of human art, can we for a moment hesitate to ascribe the produc- tion of this amazing universe which surrounds us, to a Being of infinite knowledge, wisdom, and power, adequate to bring into existence such an im- mense and wonderful machine, and to preserve it in harmony, from age to age, amidst aU its diversified and complicated movements? That ever a {i4 ASTRONOMY AI!T) NAVIGATION. doubt was entertained on this subject, is a plain proof that man haslost, in part, that light of reason and intelligence with which he was originally endued, or that he is sometimes urged on by depraved passions and a pride of singularity to utter sentiments which he does not sincerely believe. As Cicero long ago declared — "He who thinks the admirable order of the celes- tial orbs, and their constancy and regularity, on which the conservation and good of all things depend, to be void of a mind that governs them, he himself deserves to be accounted void of a miad." It is " the fool" alone, in the strictest sense of the word, whatever may be his pretended learning, who dares to declare " there is no God." And as the universe demonstrates the eodstenoe, so it displays the attri^tes of the Eternal. The manifestation of himself to numberless orders of intelli- gent beings must have been the great end intended in bringing the universe mto existence. This manifestation is made chiefly in actions — in actions which display greatness, wisdom and goodness, beyond all bounds. _ His g'eatness appears from the immensity of power which the universe exhibits. The power necessary to move a single planet in its course far transcends human conception. What, then, must be the energy and extent of that power which set in motion and still upholds all the planets, worlds, and sys- tems dispersed throughout the spaces of infinitude ! The highest created in- telligence must be utterly overwnelmed and confounded when it attempts to contemplate or to grasp an idea of omnipotence. His knowledge, wisdom and unceasing agency are no less conspicuous in the arrangement and direc- tion of every thing that exists in heaven and on earth. As his presence per- vades all space, so his agency is displayed in the minutest movement of every part of the vast whole. This great and incomprehensible Being moves every atom, expands every leaf of the forest, decks every flower, conveys the sap through the ramifications of every tree, conducts every particle of vapor to its appointed place, directs every ray of light from the sun and stars, every breath of wind, every flash of lightning, every movement of the meanest worm, and every motion of the smallest microscopic animalculum ; while at the same time he supports the planets in their courses, guides the comet in its eccentric career, regulates the movements of millions ol resplendent systems, and presides iu sovereign authority over unnumbered hosts of intelligent ex- istence ; directing all the mysterious powers of knowledge, virtue, and moral action to subserve the purposes of his will, and accomplish the ends of his moral government. In every department of this universe, likewise his good- ness is displayed to unnumbered orders of beings, sentient and intellectual ; for all the powers of intelligence and action possessed by every creature in heaven and on earth, from the archangel to the worm, and all the happiness they now or ever will enjoy, are derived from him as the uncreated source of all felicity. Under this glorious and stupendous Being we live and mote ; our comforts and enjoyments, while passing through this transitory scene, are wholly in his / hands, and all our prospects of enjoyment beyond the range of our earthly career are dependent on his mercy and favor. His omnipotent arm supports us every moment ; every breath we draw, every pulse that beats within us, every muscular power we exert, every sound that strikes our ears, and every ray of light that enters our eye-balls, is dependent on his sovereign will. All that we nope for beyond the limits of time and throughout the revolutions of eternity depends upon his power, his wisdom, bis' benevolence and his ASTRONOMY AND NAVIGATION. 65 promises. "Were he to witlihold the powers and agencies under which we now live and act, we could neither think nor speak, hear nor see, feel nor move; the whole assemblage of living beings in our world would be changed into immovable statues, and this earth transformed into a barren waste and an eternal solitude. To the service of this glorious Being all the powers and faculties with which he has endowed us ought to be unreservedly conse- crated. As his highest glory and blessedness consist in bestowing benefits on his intelligent offspring, so we ought to be imitators of him in his bound- less beneficence, by endeavoring to communicate happiness to all around us. " To do good, and to communicate, forget not ; for with such sacrifices God is well pleased." To him, as the " Father of our spirits and the former of our bodies," is due the highest degree of our love and gratitude ; on him we ought to rely for every blessing, and humbly resign ourselves to his disposal imder every event; for "all things are of God," and all are conducted with supreme and unerring wisdom and goodness to an end immortal and divine. 2. The immensity and magnificence of the universe and the attributes of Deity it displays are considerations which ought to be taken into account in all our views of religion. There is a class of men who, in prosecuting scien- tific pursuits, wish to discard every thing that has a bearing on religion when deduced from the investigations of science, and can scarcely refrain from a sneer, when the arrangements in the economy of nature are traced to the agency of their All- wise and Omnipotent Creator; as if the objects which science professes to investigate had no relation to the views we ought to en- tertain of the Divinity, and ought never to be traced to their great first cause. On the other hand, there are many professed religionists who, from mistaken notions of piety, would set aside the study of the works of God, as having no connection whatever with the exercises of piety and the business of religion. and as even injurious to their interests. Both these classes of men verge toward extremes which are equally inconsistent and dangerous. The amaz- ing fact, that creation consists of a countless number of magnificent systems and woi'lds beyond the comprehension of finite minds, ought not thus to be recklessly set aside in our views of God and of religion; for they are all the workmanship of one Being, and they are connected together as parts of one grand system, of which the God we profess to worship is the supreme and universal governor. They present to the view of all intelligences the most glorious displays of his character and perfections, and consequently demand from us a corresponding sentiment of admiration and reverence, and a cor- responding tribute of homage and adoration. Such enlarged prospects of tlie universe are therefore available for the loftiest purposes of religion and piety, and ought to enter as an element into all our views of the administration of the Almighty, and of that worship and obedience he requires from his rational offspring, unless we would be contented to render him a degree of homage far inferior to that which the manifestations of his attributes demand. God is known only by the manifestations which he makes of his character and perfections. The highest created intelligences can know nothing more of the Divinity than what is derived from the boundless universe he has pre- sented to their view, the dispensations of his providence to certain orders of beings, and the special revelations he may occasionally vouchsafe, on certaiu emergencies, to particular worlds. Had man continued in primeval inno- cence the contemplation of the vast creation around him, with all its diver- eified wonders and beneficent tendencies, would have led him to form correcl 66 ASTRONOMY AND NAVIGATION. views of the attributes of his Almighty Maker, and of the moral laws by which his conduct should be regulated : but it does not follow, that because the study of nature is now of itself an insufficient guide to the knowledge of the Creator, and the enjoyment of eternal felicity, such studiesare either to be thrown aside, or considered as of no importance in a religious point of view. To overlook the astonishing scene of the universe, or to view it with indifference, is virtually to " disregard the works of Jehovah, and to refuse to consider the operations of his hands." It is a violation of Christian duty, a,nd implies a reflection on the character of the Deity, for any one to imagine that he has nothing to do with God considered as' manifested in the immen- sity of his works ; for his word is pointed and explicit in directing the mind to such contemplations. " Hearken unto this ; stand still, and consider the wonderful works of God." " Lift up thine eyes on hi^h, and behold who hath created these orbs." " Eemember that thou magnify his works which men behold." " Great and marvelous are thy works. Lord God Almighty ! Thy saints shall speak of the glory of thy kingdom and talk of thy power, to make known to the sons of men thy mighty operations and the glorious ma- jesty of thy kingdom." 3. The Christian revelation, throughout all its departments, is not only consistent with the views we have taken of the universe, but aflFords direct evidence of the magnificence of creation, and of the myriads of beings with which it is peopled. Of this position we have exhibited some proofs in the remarks and illustrations which show at the same time the harmony which subsists between the discoveries of revelation and the discoveries which have been made in the system of nature. There is no other system of religion or pretended revelation that was ever propagated in the world to which such a characteristic belongs. K we examine the Mahomedan Koran, the Shasten of Bramah, the system of Confucius, the mythology of the Greeks and Romans, and every other Pagan code of religion, we shall find interspersed throughout the whole of them numerous sentiments, opinions, and pretended facts at utter variance with the true system of nature, and to what are known to be the established laws of the universe. This is strikingly exemplified in the extravagant stories and descriptions contained in the pretended revela- tions of Mahomet, and the absurd notions respecting the creation contained in the sacred books of the Hindoos, which assert that the universe consists of seven heavens and seven worlds, which are all at a future period to be ab- sorbed into God ; with many other absurdities. In opposition to all such foolish and absurd opinions, the inspired writings, when properly understood and rationally interpreted according to the rules of just criticism, are uni- formly found to be perfectly consistent with the discoveries of science, and the facts which are found to exist in the system of the universe ; and this cor- respondence and harmony ought to be considered as a strong presumptive evidence that the revelations of Scripture and the scenes of the material uni- verse proceed from the same All-wise and Omnipotent Author and Lawgiver, that all created matter is under the influence of a universal and unchange- able lano of a positive and a negative force. Beief History of somb; of the moee Remarkable Comets. The word comet literally signifies a hawy stwr ; because such bodies are generally accompanied with a nebulosity or train, which has the appearance of luminous hair. The luminous point near the center of a comet, which is ASTEOWOMY AND NAVIGATION. G7 most brilliant, is called the nucleus. The haze or nebulosity which surrounds the nucleus is called the hair, and sometimes the envelope ; and the nucleus and hair combined constitute what is usually termed the head of the comet. The luminous train, extending sometimes to a great distance from the head, is called the tail of the comet. These bodies have occasionally appeared in the heavens in all ages. The ancients were divided in their opinions respecting them ; some considering them as wandering stars ; others as meteors kindled in the atmosphere of the earth, subsisting for a time, and then dissipated ; and others viewed them as prodigies indicating wars, famines, inundations, or pestilences. Aristotle, who believed that the heavens were incorruptible and unchange- able, maintained that comets were generated when they first made their appearance, and were destroyed when they ceased to be visible, and conse- quently that they could not be reckoned to belong to the heavenly bodies, but were only meteors or exhalations raised into the upper regions of the air, where they blazed for awhile, and disappeared when the matter of which they were formed was consumed. And as the opinions of this ancient sage had a powerful influence on the philosophers and astronomers of later times — as his assertions were frequently regarded as little short of demonstrations — few persons had the boldness and independency of rfmd to call in question the positions he maintained on any subject discussed in his writings. It was not before the time of the celebi-ated astronomer Tycho Erahe that the nature of comets began to be a little understood, and that they were con- sidered as moving in the planetary regions. This astronomer observed with great diligence the famous comet which appeared in 1677 ; and, from many acciirate observations during the time of its appearance, found that it had no sensible diurnal parallax, and therefore was not only far above the limits of our atmosphere, but beyond the orbit of the moon itself. Its motions were likewise particularly observed by Hagecius, at Prague, in Bohemia, at the same time that they were observed by Tycho, at Uraniburg. These two places dilfer six degrees in latitude, and are nearly under the same meridian, and both measured the distance of the comet from the same star, which was in the same vertical circle with the comet ; yet both observers found their distances the same, and consequently they both viewed the comet in the same ppint of the heavens, which could not have happened unless tlie comet had been in a higher region than the moon. After Tycho, Kepler had an opportunity of making observations on the comets whicli appeared in 1607 and 1618, and from ail his observations he deduced this conclusion, " that comets move freely through the planetary orbs." From this period comets began to be more accurately observed, and to be considered as constituent parts of the solar system ; and at kaigth the illustrious Newton demonstrated that their motions are performed in long ellipses, having the san in one of their foci. Before proceeding to inquire into the nature and physical constitution of these bodies, I shall present the reader with a brief sketch of the history of the most remarkable comets which have appeared in modern times. One of the most remarkable comets which have appeared in modern times is that which made its appearance toward the close of the year 1680, and which was particularly observed by most of the astronomers of Europe. This comet, according to the accounts given by the astronomers of that period, appeared to descend from the distant regions of space with a prodig- 68 ASTEONOMY AND NAVIGATION". ious velocity, almost perpendicular to tlie sun, and ascended again in the same manner from that luminary with a velocity retarded as it had before been accelerated. It was observed, particularly at Paris and Greenwich, by Cassini and Flamstead, by whom it was seen in the morning from the 4th to the 25th of November, 1680, in its descent toward the sun ; and after it had passed its perihelion,* in the evening, from the 12th of December to the 9th of March, 1681. The many exact observations made on this comet enabled Sir I. ISTewton to discover that so much of its orbit as could be traced by the motion of the comet, while it was visible, was, as to sense, a, pa/rdbola, having the sun in its focus, and that it was one and the same comet that was seen all that time. This comet was remarkable for its very near approach to the sun. At its perihelion, it was not above a sixth part of the sun's diameter from its surface ; that is, about 146,000 miles from the surface of that luminary, and 584,000 from its center. According to Sir Isaac Newton, the velocity of this comet when nearest the sun was 880,000 miles an hour. On taking its peri- helion distance, as given by M. Pingre, Mr. Squire found, by two different calculations, that its velocity in its perihelion was no less than 1,240,000 miles an hour ! This velocity was so great, that if continued, it would have carried it through 124 degrees in an hour ; but its actual hourly motion dur- ing that interval, before and after it passed the perihelion, was 81 degrees, 47 minutes. At this period, the diameter of the sun, as seen from the comet, must have subtended an angle of more than a hundred degreesj which must nearly have filled its whole hemisphere. From Dr. Halley's determination of its orbit, it appears that when in its aphelion, or greatest distance from the sun, it cannot be less than 13,000,000,000, or thirteen thousand millions, of miles distant from that luminary ; that is, seven times the distance of Uranus. According to the same astronomer, this comet, in passing through its southern node, came within the length of the Sun's semi-diameter of the orbit of the Earth, that is within 440,000 miles ; and he remarks, " Had the earth been then in that part of its orbit nearest that node of the comet, their mutual gravitation must have caused a change in the plane of the Earth's orbit, and in the length of our year ; and if so large a body with so rapid a motion were to strike the Earth, a thing by no means impossible, the shock might reduce this beautiful frame to its original chaos." Modern observations, however, render such deductions somewhat improbable. The period of this comet is supposed to be about 5Y5 years. It is conjectured that it is the same comet which appeared in 1106, in the reign of Henry I., that was seen during the consulate of Lampadius and Orestes, about the year 531, and in the forty-fourth year before Christ, in which year Julius Cffisar was murdered. Its nucleus was computed to be about ten times as large as the moon. Its tail extended over a space of sevent)^ degrees in extent. This is the comet to the near approach of which to the Earth Mr. Whiston attributed the universal deluge in the time of Noah. His opinion was, that the Earth, passing through the atmosphere of the comet, attracted from it a gi-eat part of the water of the Hood ; that the nearness of the comet raised a great tide in the subterranean waters ; that this could not be done without * The perihelion is that point in the orbit of any planet or comet which is nearest to the sun. It is also called the hwer apais. The aphelion is that point in the orbit which is fur- thest from the sun ; called, also, the higher apm. ASTRONOMY AND NAVIGATION. 69 making fissures or cracks in the outer crust of the Earth ; that through these fissures the subterraneous waters were forced; that along with the water much slime or mud would rise, which after the subsiding of the water partly into the fissures and partly into the lower parts of the Earth to form the sea, would cover over to a considerable depth tlie antediluvian Earth ; and thus he accounts for trees and bones of animals being found at very great depths in the Earth. The same comet, he supposed, when coming near the Earth after being heated to an immense degree in its perihelion, would be the instrumental cause of that great catastrophe, the general conflagration. Modern geological researches, however, render all such hypotheses utterly untenable. 2. Another comet which has obtained a certain degree of celebrity is that which appeared in 1682, and is usually distinguished by the name of Halleyh comet. This comet appeared with considerable splendor, and exhibited a tail thirty degrees in length. On calculating its elements from its perihelion passage. Dr. Halley was led to conclude that it was identical with the gi'eat comets which appeared in 1456, 1531, and 1607, whose elements he had also ascertained. The intervals between these periods being about seventy-five or seventy-six years, he was led to conclude that this was the period of the revolution of the comet, and ventured to predict that it would again return about the latter part of the year 1758. As this was the first comet whose return had been predicted, when the time of its expected appearance ap- proached astronomers became anxious to ascertain whether the attraction of the larger planets, Jupiter and Saturn, might not interfere with its orbitual motion, and prevent it from ari'iving at its perihelion so soon as the time predicted. Clairaut, an eminent French mathematician, after a great many intricate and laborious calculations in reference to the subject, concluded that the attraction of Saturn would lengthen the period 100 days, and the action of Jupiter 518, making in all 618 days, by which the expected return would happen later than if no such influence had taken place; so that instead of the period being 74 years, 323 days, it ought to be 76 years, 211 days ; and as the comet passed its perihelion on September 14, 1682, it ought to reach the same point on April 13, 1759. These calculations were read before tlie Academy of Sciences on the 14th of ISTovember, 1758; but Clairaut gave notice that, being pressed for time, he had neglected in his calculations small values, which collectively might amount to about thirty days in die seventy-six years. These predictions were accordingly verified, for the comet appeared about the end of December, 1758, and arrived at its perihelion on the 13th of March, 1759, only thirty days before the time fixed by the calculations of Clairaut, who, upon repeating the process by which he had arrived at the result, reduced this error to nineteen days. The same comet again made its appearance, according to prediction, in 1835. 3. Another remarkable comet made its appearance in 1744, which excited a considerable degree of attention. It was first seen at Lausanne, in Switzer- land, December 13, 1743; from that period it increased in brightness and magnitude as it approached nearer the Sun. On the evening of January 23, 1744, it appeared exceedingly bright and distinct, and the diameter of its nucleus was nearly equal to that of Jupiter. Its tail then extended above 16 degrees from it's body, and was supposed to be about 23 millions of miles in length. On the 11th of February, the nucleus, which had before been 70 ASTRONOMY AND NAVIGATION. always round, appeared oblong in the direction of the tail, and seemed divided into two parts by a black stroke in the middle. One of the parts had a sort of beard, brighter than the tail ; this beard was surrounded by two uneqiial dark strokes, that separated the beard from the hair of the comet. These odd phenomena disappeared the next day, and nothing was seen but irregular obscure spaces, like smoke, in the middle of the tail, and the head resumed its natural form. On the 15th of February the tail was divided into two branches, the eastern about 8 degrees long, the western 24. On the 23d the tail began to be bent. It showed no tail till it was as near the Sim as the orbit of Mars, and it increased in length as it approached nearer that luminary. At its greatest length, it was computed to equal a third part of the distance of the Earth from the Sun.* This was one of the most brilliant comets that had appeared since that of 1680. Its tail was visible for a long time after its body was hid under the horizon : it extended 20 or 30 degrees above the horizon two hours before sunrise. 4. In the month of June, 1770, Messier discovered a comet, the motions of which appear to be involved in a considerable degree of mystery. The comet continued visible for a long time. Lexell ascertained, from observation, that it described an ellipse around the Sun, of which the greater axis was only three times the diameter of the Earth's orbit, which corresponds with a revo- lution of 5^ years. It was therefore expected that it would again frequently make its appearance; but it has never since been visible, altnough it made a pretty brilliant appearance in 17T0. The National Institute of France, not many years ago, requested M. Burckhardt to repeat all the calculations with the utmost care; and the result of his labor has been a complete confirma- tion of the elements obtained by Lexell. "What has become of this comet it is difficult to conjecture. Its aphelion, or greatest distance from the Sun, was reckoned to be not far beyond the orbit of Jupiter, and that it approach- ed as near to the Earth as the Moon, and ought to have appeared twelve times since the year 1770. M. Arago attempts to solve the diflSculty by affirming that its orbit was then totally diiferent from that which it has since pursued ; that its passage to the point of perihelion in 1776, when it was expected, took place by day, and before the following return the form of the orbit was so altered, that, had the comet been visible from the Earth, it would not have been recognized ; that before 1767, during the whole progress of its revolutions, its shortest distance from the Sun was 199,000,000 leagues, and that after 1779, the minimum distance became 131,000,000 leagues, which was still too far removed for the comet to be perceptible from the Earth. Sir David Brewster attempts to account for its disappearance by supposing that it must have been attracted by one of the planets whose orbit it crossed, and must have imparted to it its nebulous mass ; and that it is probable the comet passed near Ceres and Pallas, and imparted to them those immense atmospheres which distinguish them from all the other plan- ets. "Whether any ol these opinions be tenable and sufficient to solve the difficulty, is left entirely with the reader to determine. 5. Another comet, which has engaged the particular attention of astrono- mers during the last twenty years, is distinguished from all preceding comets by the shortness of -its periodic revolution. It is usually denominated Enok^s comet, so called from Professor Encke, of Berlin, who first ascertained itt * Memoirs of the Academy of Sciences for 1744. ASTRONOMY AND NAVIGATION. Yl periodical return. It was discovered at Marseilles on the 26tli November, 1818, by M. Pons, and its parabolic elements were presented to the Boarcl of Longitude, at Paris, by M. Bouvard, on the 13tn of January, 1819. It was immediately remarked, that the result of Bouvard's calculations was too similar to the elements of a comet which appeared in 1805, not to consider that and the one of 1818 as the same body ; and M. Encke soon after estab- lished, by incontestable calculations, that this comet took only about 1200 days, or three years and three-tenths, to travel through the whole extent of its elliptic orbit. This was considered as a very extraordinary result, as an opinion had previously prevailed that the period of a revolution of a comet must necessarily be long. It now appears that this comet was first seen by Messier and 'Mechain in 1786 ; afterward 'bj Miss Herschel, in 1795 ; and its subsequent returns were observed by different astronomers in 1805 and 1819, all of whom, at those periods, supposed that the four comets were four different bodies. The elements of this comet, and the short period of its revolution, are now incontrovertibly established ; for its reappearance in the southern hemisphere in June, 1822, took place very nearly in the positions previously calculated. The agreement was not less remarkable in 1825 ; and in 18-28, the third period of its announced return, it occupied the places assigned to it by Encke the year preceding. It likewise appeared in 1832, 1835, and 1838. Tliis comet is very small ; its light is feeble ; it has no tail ; it is invisible to the naked eye, except in very favorable circumstances, but may be seen with a small magnifying power. It revolves in an elliptical orbit of consid- erable eccentricity, having an inclination to the plane of the elliptic of 13-|- degrees. On comparing the intervals between the successive perihelion pas- sages of this comet, a singular fact has been elicited, namely, that its periods are continually diminishing, and its mean distance from the Sun shortening by slow but regular degrees. This is supposed by M. Encke to be produced by a resistance experienced by the comet from a very rare ethereal medium pervading the regions through which it moves; since such resistance, by diminishing its actual velocity, would diminish also its centrifugal force, and thus give the Sun more power over it to draw it nearer. It is therefore the opinion of Sir J. Herschel, that " it will probably fall ultimately into tlie Sun, should it not first be dissipated altogether^ — a thing no way improbable, when the lightness of its materials is considered, and which seems authorized by the observed fact of its having been less and less conspicuous at each reappearance." The acceleration of this comet is about two days in each revolution ; and the frequent opportunities of observation which will occur, in consequence of the shortness of its period, may lead to new and interest- ing conclusions in relation to the nature of these bodies. 6. Besides the above, another periodical comet has lately been discovered, which is distinguished by the name oi Biela's, and sometimes Gambart^ comet. This comet was perceived at Johannisberg on the 27th Feb., 1826, by M. Biela; and by M. Gambart, at Marseilles, ten days afterward. Gam- bart, without delay, calculated its parabolic elements from his own observa- tions • and by inspecting a general table of comets, he recognized that it was not its first appearance, but that it had been already observed in 1789 and 1795. Messrs. Clausen and Gambart undertook the computation of the comet's revolution, and found, each of them nearly at the same time, thai the new comet made its entire revolution round the Sun in a period of about 72 ASTRONOMY AND NAVIGATION. seven years. It was afterward found, more accurately, to be 2460 days, or nearly 6f years. M. Damoiseau calculated the perturbations of this comet, and predicted that it would cross the plane of the Earth's orbit on the 29th of October, 1832, a little before midnight, at a point about 18,480 miles with- in the orbit of the Earth. According to this prediction, the comet actually made its appearance in 1832 about the time now specified. Its next appear- ance was calculated to happen in 1839, and it was reckoned that it would arrive at its perihelion on the 23d July of that year. The predicted appearance of this comet in 1832 seems to have produced considerable alarm, particularly in France. Some German journalists pre- dicted that it would cross the Earth's orbit near the point at which the Earth would be at the time, and cause the destruction of our globe. 'Such was the degree of alarm excited on this occasion, that M. G , a Professor in Paris, put the question to the Academy of Sciences, whether it did not feel itself bound in duty to refute, as speedily as possible, this assertion. " Popular terrors," he observed, " are productive of serious consequences. Several members of the Academy may still remember the accidents and disorders which followed a similar threat, imprudently communicated to the Academy by M. de Lalande, in May, 1Y73. Persons of weak mind died of fright, and women miscarried. There were not wanting people who knew too well the art of turning to their advantage the alarm inspired by the approaching comet, and places inpa/radise were sold at a very high rate. The announce- ment of the comet of 1832 may produce similar effects, unless the authority of the Academy apply a prompt remedy ; and this salutary intervention is at this moment implored by many benevolent persons." It was supposed by some, that if any disturbing cause should delay the arrival of the comet for one month, the Earth must pass directly through its head. In order to dispel such fears, and to illustrate the nature of these bodies, M. Arago published an excellent and popular treatise on comets in the ^^Annuaire" of 1832. He showed that the result of the calculation, was, that the passage of the comet ought to proceed a little within our orbit, and at a distance from that curve, which is equal to fowp terrestrial radii and two-thirds, or about 37,000 miles; that on the 29th October, 1832, a portion of the Earth! s orbit might be included within the nebulosity of the comet ; but that the Earth would not arrive at the same point of its orbit till the morning of the 30th If ovember, or more than a month afterward ; and con- sequently that the Earth would be more than twenty millions of French leagues (or fifty millions of -British miles) distant from the comet. He adds, that " if the comet, instead of crossing the plane of the ecliptic on the 29th October, had not arrived there till the morning of the 3Gth November, it would have undoubtedly mingled its atmosphere with ours, and perhaps even have struck us !" The Earth is considered in more danger, if danger there be, from this comet and that of Encke, than from any other. Encke's comet crosses the orbit of the Earth sixty times in the course of a century, and there is certainly 2. possibility that it might come into collision with the Earth; but the probability of its doing so is very small, and, besides, this comet and that of Gambart are so extremely rare, that little danger is to be apprehended, even although a contact were to take place. Gambart's is a small, insignificant comet, without a tail, or any appearance whatever of a solid nucleus, and is not distinguishable by the naked eye. 7. The comet of 1807. This was the first comet on which I had an oppor- ASTRONOMY AND NAVIGATION. 73 . tunity of making observations. My first observation was on the evening of October the 8tli, 1807, a little after sunset, when it appeared in a northwest- erly direction, not far distant from Arcturus, which was then only a little above the horizon. To the naked eye it appeared somewhat like a dim nebulous star of the second magnitude, with a beam of light on one side of it. Through a telescope, its tail presented a pretty brilliant appearance, and occupied a space of considerably more than a degree in length. The coma seemed to have a roundish, but dim and undefined appearance, and appeared more indistinct as the magnifying power was increased. When viewed with an achromatic telescope of thirty-one inches focal distance, and a power of thirty, it presented a very distinct and beautiful appearance, and the nucleus, coma, and tail, nearly fi!lled the field of view, w hen a power of sixty was applied, it was much more indistinct than with the former power, and in all the subsequent observations the lower power was generally preferred. In the course of five or six weeks, or about the middle of November, it disap- peared to the naked eye. I traced it with the telescope, as often as the weather would permit, for two or three months after it had become invisible to the unassisted sight, and found that its apparent motion was pretty rapid, and toward the northeast. About the middle of January, 1808, at eleven p. M., it appeared in a direction northeast by north; and at this time it appeared through the telescope like a small nebulous star, or like that spe- cies of comets called hea/rded comets, having no trace of any thing similar to a tail. The last time I saw it was about the end of January, when it was still distinctly visible, like a nebulous star ; but cloudy weather for nearly a fortnight prevented any further observations, and I saw it no more. On the evening in which I had the last peep of it, I detected another comet within eight or ten degrees of it, which appeared like a star of the third magnitude, and exhibited a pretty brilliant appearance through the telescope. It had no tail, like the former comet, but appeared surrounded Mdth radiant hairs like the glory which painters represent around the head of our Saviour. It continued visible for several weeks; but I have not seen any particular notices of this second comet, or any special observations on it, which have been recorded by astronomers. This comet appears to have been first noticed by Herschel and Schroeter about the ith of October, 1807, who continued their observations upon it for several months. According to Schroeter's observations and estimates, the diameter of the nucleus of this comet was about 4,600 miles, or nearly the size of the planet Mars, and appeared to be of considerable density; the diam- eter of its coma, 120,000 miles, but liable at diiferent times to variations of increase and decrease ; and its rate of motion, at certain periods, 1,333,380 milee a day, or 55,557 miles an hour. Its tail was divided in a very unusual manner into two separate branches ; the north side continued much brighter and better defined than the other, and was also invariably convex, while the other side was concave. But what was deemed most remarkable was the variation in length and the coruscations of the tail. Something like corusca- tion had been observed by the naked eye in the case of preceding comets, and such phenomena appear to have been confirmed by the observations of Schroeter. In less than one second, streamers shot forth to two and a half degrees in length ; they as rapidly disappeared and issued out again, some- times in portions and interrupted like our northern lights. Afterward the the tail varied both in length and breadth, and in some of the observations, 74 ASTRONOMY AND NAVIG-ATION. the streamers shot from the whole expanded end of the tail, sometimes here, sometimes there, in an instant, two and a half degrees long, so that within a single second they must have shot out a distance of 4,600,000 miles. Their light was also sometimes whiter and clearer at the end than at the base, as is occasionally seen in the northern lights. Some have objected to the extreme rapidity of the streamers as here stated, but the fact of coruscations having been seen appears to be confirmed by the observations of this celebrated and accurate observer. The observations of Herschel on this comet differ in some respects from those of Schroeter, particularly in the estimate he makes of the size of the nucleus, which he reckons to be considerably smaller than what has been stated above. 8. The most remarkable comet which has appeared in modern times, since that of 1680, was the ooTnet of 1811. About the beginning of September in that year, about eight or nine in the evening, as I was taking a random sweep with my telescope over the northwestern quarter of the heavens, an uncommon object appeared to pass rapidly across the field of view, which on examination appeared to be a splendid comet. Not having heard of the ap- pearance of any such body at that time, I was led to imagine that I had for- tunately got the first peep of this illustrious stranger ; but I afterward learned from the public prints that it had been seen a day or two before by Mr. Neitch, in the neighborhood of Kelso, who appears to have been the first that observed it in this country. This comet appeared with peculiar splendor, and was visible even to the naked eye, for more than three months in succes- sion, and excited universal attention. It afforded to astronomers more oppor- tunities for observation of its physical aspect and constitution, and for deter- mining the elements of its orbit, than almost any other comet that had previously appeared. Tlie two celebrated observers, Herschel and Schroe- ter, made numerous and very particular observations on the phenomena and motions of this comet, which were continued every clear evening for the space of nearly five months. Some of these observations, along with the remarks and deductions connected with them, are extremely interesting to the astronomical observer; but my limits will permit only a statement of the general results. Some of the results deduced by Schroeter are the following : — ^That the central globe of light, or what he calls the nucleus, was 50,000 miles in diameter, or nearly six and a half times the diameter of the Earth, which he deduced from the mean of twenty-seven measurements, which gave 1' 49" as the mean angular diameter of the body ; that this great body was in all probability chiefly fluid, though its central parts might consist of denser sub- stances ; and that there was reason to believe that it shone with its own native liglit. Tlic coma was extremely rarefled in comparison with the nucleus, resembling a very faint whitish light, scattered in separate portions. It was divided into two — one immediately encompassing tlie nucleus, the other of a more faint and grayish light, sweeping round it at a distance, and forming the double tail which the comet presented. The t/rain, or hiod veil, as he terms it, swept around the nucleus, at a distance equal to its breadth, and appeared as unconnected as the ring of Saturn with its body, and which sometimes appeared darker than the open sky. The diameter of this exte- rior part of the head was 34' 16", or about 947,000 miles, which is larger than the diameter of the Sun, and which he thinks must have formed a hoUow cone around the nucleus, and which he thought indicated a force of ASTRONOMY AND NAVIGATION. Y5 a repulsive nature residing in the nucleus. Between the 4th and 6th of De- cember a great revolution took place; the rarefied nebulous matter, which had for three months been so unusually repelled from the nucleus on every side to a distance of about one-fifth of the diameter of the head, or 190,000 miles, was again attracted to it, aflTording an incontrovertible proof of physi- cal action upon a great scale, arising doubtless from the same causes which produce the other phenomena of nature. The double tail of this comet was exceeding faint compared with the nucleus and coma. On the 23d of Octo- ber it extended fully eighteen degrees, notwithstanding its oblique position, the angle at the Sun being then 61° 23'; at the Earth, 69°; and at the comet, 49° 37'. Had it been viewed at right angles, it would have subtended an angle of 36° 36', equivalent to more than 60,000,000 of miles, which is more than half the distance from the Earth to the Sun. CorusoaUons, similar to those which appeared in the tail of the comet of 1807, were likewise per- ceived, particularly on October the 16th, when a small tail instantaneously appeared, then vanished, and reappeared, which was in length equal to three times the diameter of the comet's head, or 2,373,000 miles. Other displays of the same kiad took place on the 7th of November and the 18th of Decem- ber. These facts, of the reality of which Schroeter entertained not the least doubt, must be considered as very curious and extraordinary phenomena. Herschel's observations nearly agree with those of Schroeter, excepting that he estimates the diameter of the nucleus as very much smaller than what is stated above. He estimates the greatest length of the tail, as seen on the 15th of October, to have been 100,000,000, or a hundred millions of miles, which consequently extended over a space larger than that which intervenes between the Earth and the Sun ; and its ireadth, as deduced from the observations of October the 12th, nearly fifteen millions of miles. He calculated its distance, when nearest the Earth, to be about 113 millions of miles. He concluded that the solid matter of the comet was spherical, that it shone in part by its own native light, and that it probably had a rotation round its axis, irom the most accurate observations of the motion of this comet, its period of revolution has been calculated to exceed 3000 years. Bessel computes it at 3383 years ; and several other astronomers conceive its period to be considerably longer, even exceeding 4000 years. 9. Rea/ppea/rcmce of JH.alley's comet in 1835. The retiu-n of this comet was calculated by Messrs. Damoiseau and Pontecoulant ; the former of whom calculated its return to the perihelion on the 4th, and the latter on the 7th of ISTovember, 1835, and it actually arrived at that point only a few days after these periods, namely, on the 16th of November. It was first seen on the continent in the month of August that year, but does not appear to have been noticed in the northern parts of Britain till more than a month after- ward. Its expected reappearance excited universal attention throughout Europe. Soon after the middle of September, as I was taking a sweep with a two-feet telescope over the northeastern quarter of the heavens, near the point where I expected its appearance, I happened to fix my eye on this long- expected visitor, which appeared very small and obscure. I immediately directed an excellent three-and-a-half-feet achromatic telescope, with a diag- onal eye-piece magnifying about thirty-four times, to the comet, when it was distinctly seen, and appeared of a considerable diameter, but still somewhat hazy and obscure, i afterward applied a power of forty-five, and another of ninety-five; but it was seen most distinctly with the lower power. With -g ASTRONOMY AND NAVIGATIOK. ninety-ffve it appeared extremely obscure, and nearly of the apparent size of the moon * There appeared at this time nothing like a tail, but the central part was much more luminous than the other portions of the comet, and presented something like the appearance of a star of the third or fourth magnitude sur- rounded with a haze. In some of the views I took of this object, the lumm- ous part or nucleus appeared to be considerably nearer one side than an- other. At this period, and for a week or ten days afterward, the comet was altogether invisible to the naked eye. Many subsequent observations were made, and published in the provincial newspapers, but which my present limits prevent me from inserting. After the comet became visible to the naked eye, the tail began to appear, and increased in length as it approached its perihelion, and at its utmost ex- tent was estimated to be above thirty degrees in length. On the 13th of October, according to the observations of Arago, a luminous sector was vis- ible in its head ; on the day following, this sector had disappeared, and a more brilliant one and of greater longitudinal extent was formed in another place. This second sector was observed on the 17th, when it appeared less bright; and on the 18th its weakness had decidedly increased. The comet was- concealed till the 21st, but on that day three distinct sectors were visible in the nebulosity. On the 23d all traces of these sectors had disappeared, the nucleus, which had previously been brilliant and well-defined, having become so large and diffiise that the observer could scarcely believe in the reality of such a sudden and important alteration, till he satisfied himself that the appearance was not occasioned by moisture on the glasses of his in- strument. It appears, likewise, that one of these luminous fans or sectors was observed by Sir J. Herschel, at the Gape of Good Hope, after the comet had passed its perihelion. The nebulosity of this comet appears to have in- creased in magnitude as it approached the sun, but its changes were some- times unaccountably rapid. On one occasion it was observed to become obscure and enlarged in the course of a few hours, though a little before its nucleus was clear and well defined. On the 11th of October, the Kev. T. W. Webb, and two other observers, observed coruscations in the tail. On that evening, at 7 30', the tail was very conspicuous, in the constellation of Draconis, and evidently fluctuated, or rather coruscated in length, being occasionally short, and then stretching -in the twinkling of an eye to its full extent, which was at least equal to ten degrees. Its changes were ex- tremely similar to the kindling and fading of a very faint streamer of the Aurora Borealis. "The influence pf tAe ethereal medium on the motion of Halley's comet will be known after another revolution, and future astronomers will learn by the accuracy of its returns, whether it has met with any unknown cause of disturb- ance in its distant journey. Undiscovered planets beyond the visible bound- ary of our system may change its path and the period of its revolution, and thus may indirectly reveal to us their existence, and even their physical na- ture and orbit. The secrets of the yet more distant heavens may be disclosed to future generations by comets which penetrate still further into space, such * In viewing comets, telescopes with large apertures and comparatively low magnifying powers should generally be used, as the faint light emitted by comets, whether it be inherent or reflected, will not permit the use of so high magnifying powers as may be applied to the planets. ASTRONOMY AND NAVIGATION. 77 as that of 1763, which, if any faith may be placed in the computation, goes nearly 43 times further from the Sun than Halley's does, and snows that the Sun's attraction is powerful enough at the distance of 144,600 millions of miles to recall the comet to its perihelion. The periods of some comets are said to be many thousand years, and even the average time of the revolution of comets generally is about a thousand years; which proves that the Sun's gravitating force extends very far. La Place estimates that the solar attrac- tion is felt throughout a sphere whose radius is a hundred millions of times greater than the distance of the Earth from the Sun." " The orbit of Halley's comet is four times longer than it is broad ; its length is about 3420 millions of miles, about 36 times the mean distance of the Earth from the Sun. At its perihelion it comes within 57 millions of miles of the Sun, and at its aphelion it is 60 times more distant. On account of this extensive range, it must experi- ence 3600 times more light when nearest to the sun than in the most remote point of its orbit. In the one position the Sun wiU seem to be four times larger than he appears to us, and at the other he will not be apparently larger than a star." The appearance of this comet, so near the time predicted by astronomers, and in positions so nearly agreeing with those which were previously calcu- lated, is a clear proof of the astonishing accuracy which has been introduced into astronomical calculations, and of the soundness of those principles on which the astronomy of comets is founded. It likewise shows, that comets in general are permanent bodies connected with the solar system, and that no very considerable change in their constitution takes place while traversing the distant parts of their orbits. From the preceding historical sketches and descriptions the reader will learn something of the general phenomena of comets; and I shall now briefly inquire into the opinions which have been formed respecting the PHYSicAi Constitution of Comets. On this subject our knowledge is very imperfect ; in fact, we may be said to know little or nothing of the physical construction of those mysterious bodies, or of the nature of the substances of which they are composed. In regard to the nelntlosity of comets, where there appears no nucleus, it has been conjectured to be composed of something analogous to globular masses of vapor, slightly condensed toward the center, and shining either by inherent light or by the reflected rays of the Sun. When there is a nucleus in the center of a comet, it seldom happens that the nebulosity extends to it with a gradually increasing intensity. On the contrary, the parts of the nebulosity near the nucleus are but slightly luminous, and seem to be extremely rarified and transparent. At some distance from their center, their shining quality is suddenly increased, so that it looks like a ring of invariable size resting in equilibrium around the center. Sometimes two, and even three of these con- centric rings have been perceived separated by intervals ; but what appears to be a ring must in reality be a spherical covering, an idea of which may be formed by imagining in our atmosphere, at three diiferent heights, three con- tinued layers of clouds entirely covering the globe. The matter of the nebu- losity is so rare and transparent that the smallest stars may frequently be seen through it. As to the nwleus, it is generally considered as the solid or densest part of the comet. The mudlei of comets are sometimes very similar to the disks of Y8 ASTEOKOMT AND NAVIGATION. planets, both in form and brightness. They are generally small compared with the whole size of the comet ; but in some cases they are of considerable magnitude, as we have already stated in respect to the comets of 1807 and 1811. Some suppose that the nuclei of comets are transparent, as well as their nebulosities, and allege as a proof that stars have been seen through a nucleus. Thus, Montaigne is said to have seen a star of the sixth magnitude through the nucleus of a small comet, and Olbers saw a star of the seventh magnitude, although it was covered by a comet, and without its light being rendered less powerful; but the accuracy of such observations has been called in question. On the other hand, it has been concluded that the nucleus of a comet has on several occasions eclipsed a star which was in the same line of vision. Messier, when observing the small- comet of 1774, perceived a. star which was eclipsed by the opaque body of a comet, or at least aU the cir- cumstances attending it led to that conclusion. On the 28th of November, 1828, at lO"" 30' -p. m., M. Wartman, at Geneva, perceived a star of the eighth magnitude completely eclipsed by Encke's comet. Comets have likewise been observed to transit the disk of the Sun like dark spots. M. Gambart, of Marseilles, calculated that a comet which he had observed would pass across the Sun on the morning of the 18th of November, 1826,_ and both he and M. Flaucerques were successful in obtaining a sight of it during its transit. Mr. Capel LloflPt, on the 6th June, 1818, at 11 a. m., saw a body passing over the sun's disk which appears to have been a comet. It was likewise seen on the same day by Mr. Acton, at 2'' 30', considerably advanced beyond the point in which it was seen at 11 a.m., and its progress over the disk seems to have exceeded that of "Venus in transit. These observations seem evidently to indicate that some comets at least have nuclei composed of solid and opaque materials. From all the observations in relation to this point, collected by M. Arago, he deduces the following conclusions : 1. That there exist some comets destitute of the nucleus. 2. That there are other comets, the nuclei of which are transparent. 3. That there are also comets, which are more brilliant than the planets, the nuclei of which are probably solid and opaque. La respect to the tml, or luminous train, which generally accompanies comets, it is found that it is generaUy in opposition to the Sun, or on the prolongation of the line which would join the Sun and the nucleus. But this is not always the case. Sometimes the direction of the tail has been found at right angles with this line ; and in some extraordinary instances the tails of comets have been observed to point directly toward the Sun. This was the case with a comet that appeared in 1824, which for about eight days exhibited an addi- tional luminous train in opposition to that which assumed the ordinary direc- tion. This anomalous tail, according to Olbers, was 7° long, while the other was only 3^°, and it was bright enough to be seen with an opera-glass. In general, however, it is found that the tail inclines constantly toward the the region last quitted by the comet, as if in its progress through an ethereal medium, the matter forming it experienced more resistance than that of the nucleus. The tail is generally enlarged in proportion to its distance from the head of the comet, and in certain cases it is divided into several branches, a^ already noticed of the comet of 1807. Some have supposed that the divided tail is nothing more than a perspective representation of the sides of a great hollow cone ; but there are certain observations which seem to prove that, in some cases, they have a separate existence as independent branches. The ASTRONOMY AND NAVIGATION. Y9 most remarkable instance of a diyided tail was in tlie comet of 1744. On the 6t\i and 7tli of March, there were six branches in the tail, each of them about 4° in breadth, and from 30° to 40° long. Their edges were pretty well de- fined and tolerably bright ; their middle emitted but a feeble light, and the intervening spaces were as dark as the rest of the firmament. The tails of comets, as already noticed, sometimes cover an immense space in the heavens. The comet of 1680 had a tail which extended to 68°, that of 1811 to 23°, and That of 1769 to 97° in length ; so that some of these tails must have reached from the zenith to the horizon. The length of the tail of the comet of 1680, estimated in miles, was 112,750,000 ; that of 1769, 44,000,000 ; and that of 1744, 8,250,000 miles. A body moving at the rate of 20 miles every hour would not pass over the space occupied by the tail of the comet of 1680 in less than 643 years. It has been supposed by some astronomers that certain changes in the appearance of the tails of comets arise from the rotation of the cometary body ; as some comets have been supposed to rotate about an axis passing through the center of the tail, such as that of 1825, which was concluded, from certain appearances, to perform its rotation in 20 hours 30 minutes. As to the nature of the immense tails of comets, their origin, or the sub- stances of which they are composed we are entirely ignorant ; and it would be wasting time to enter into any speculation on this subject as nothing could be presented to the view of the reader, but vague conjectures, gratui- tous hypotheses, and unfounded theories. MisoELLAUEOirs Remarks on Comets. 1. Whether comets shine with their own natvoe lights or derive their light from the^ Stm f — This is a question about which there have been different opinions, and at the present moment it may be considered as still undeter- mined, though the probability is, that in general, they derive their light from the same source as the planets. It appears to have been the opinion of bol^i Schroeter and Herschel, that the comet of 1811 shone by inherent light ; and the rapid variations wliich have been observed in the brightness of the nucleus, and the coruscations of the tail, are considered by some as inex- plicable on any other hypothesis. It is likewise supposed that certain phenomena, which have been observed in the case of faint and rarefied com- ets, tend to corroborate the same position. For example. Sir J. Herschel, on September 23, 1832, saw a small group of stars of the 16th and l7th magnitude through the comet of Biela. Though this group could have been effaced by the most trifling fog, yet they were visible through a thickness of more than 50,000 miles of cometary matter ; and therefore it is supposed scarcely credible that so transparent a material, aff'ording a free passage to the light of such minute stars, could be capable of arresting and reflecting to us the solar rays. On the other hand, it has been objected to this opinion, that comets have appeared as dark spots on the disk of the Sun ; that their light exhibits traces oi pola/risation; and that they have be(3n occasionally observed to exhibit phases. M. Arago remarks, that " on the very day that any comet shall appear with a distinct phase, all doubts on this subject will have ceased." But it is considered doubtful whether any decided phase has yet been perceived, although some observers were led, from certain phe- nomena, to infer that something like a phase was presented to their view. It is found that all direct light constantly divides itself into two points of 80 ASTRONOMY AND NAVIGATION. the same intensity, when it traverses a crystal possessing the power of double refraction; reflected light gives, on the contrary, in certain portions of the crystal through which it is made to pass, two images of unequal intensity, provided the angle of reflection is not 90°; in other words, it is polarized in the act of reflection. On this principle, M. Arago pointed out a photometric method of determining whether comets borrow their light from the Sun, or are luminous in themselves. On the 23d of October, 1835, having applied his new apparatus to the observation of Halley's comet, he immediately saw two images presenting the complementary colors, one of them red, the other green, aj turning the instrument half round, the red image became green, and vice, versa. He concluded therefore that the light of the comet, at least the whole of it, is not composed of rays possessing the property of direct light, but consists of that which \&^olarized or reflected specularly : that is, of light derived from the Sun. These experiments were repeated with the same result, by three other observers in the Observatory of Paris. 2. It appears to be a remarkable fact in respect to comets, that the real diameter of the nebulosity increases proporUonaMy as the comet becomes dis- iKsifrom the Sun. Hevelius appears to have been the first who made this observation; but it seems to have been overlooked, and even an opposite position maintained. As the tails of comets increase in length as they approach their perihelia, so it was generally considered that the nebulosities followed the same law ; but the observations which have lately been made on Biela's comet have confirmed the observations of Hevelius. On the 28th of October, 1828, this comet was found to be nearly three times further from the Sun than on the 24:th of December, or in the proportion of 1.4617 to 0.5419, yet in October its diameter was about twenty-six times greater than in December, or in the proportion of Y9.4 to 3.1 ; that is, its solid contents on the 28th of October were 16,800 times greater than on the 24th of Decem- ber, and the smallest size of the comet corresponded to its least distance from Iftie Sun. M. Yalz, of Nimes, and Sir John Herschel have attempted to account for this circumstance on very diflferent principles, but neither hypo- thesis appears to be satisfactory. 3. Whether a comet may ever come in contact with the JEa/rth, amd produce a concussion ? — As comets move in orbits which form extremely elongated ellipses ; as they move in all imaginable directions ; as they traverse almost every part of the solar system in returning from the furthest verge of their excursions ; as they penetrate within the interior of the planetary orbits — even within the orbit of Mercury, and cross the orbits of the Earth and the other planets, it is not impossible that a comet may come in contact with our globe. An apprehension of such an event produced a considerable de- gree of alarm on the Continent at different periods, particularly in 1773 and 1832, as formerly stated. But when we consider the immense cubical space occupied by the planetary system in which the comets move, and compare it with the small capacities of these bodies ; and when we take into view certain mathematical calculations in reference to the subject, the probability of a shock from a comet is extremely small. " Let us suppose," says Arago, " a comet, of which we only know, that at its perihelion, it is nearer the Sun than we are, and that its diameter is one-fov/rth of that of the Earth, the calculation of probabilities shows that of 281,000,000 of chances there is only one unfavorable; there exists but one which can produce a collision between the two bodies. As for the nebulosity, in its most general dimen- ASTRONOMY AND NAVIGATION. 81 sions, the unfavorable chances will be from ten to twenty m the same number of two hundred and eighty-one millions. Admitting then, for a moment, that the comets which may strike the Earth with their nuclei would annihi- late the whole human race, then the danger of death to each individual, resulting from the appearance of an unknown comet, would be exactly equal to the risk he would run if in an urn there was only one single white ball of a total number of 281,000,000 balls, and that his condemnation to death would be the inevitable consequence of the white ball being produced at the first drawing." When we consider that a "Wise and Almighty Kuler superintends and directs the movements of all the great bodies in the universe, and the erratic motions of comets among the rest, and that no event can befall our world without his sovereign permission and appointment, we may repose ourselves in perfect security that no catastrophe from the impulse of celestial agents shall ever take place but in unison with his will, and for the accomplishment of the plans of nis universal providence. At the same time, the possibility,' of a shock from a large comet shows us that this Earth and all its inhabitants are dependent for their present existence and comforts on the will of an Al- mighty Agent, " in whom we live, and move, and have our being ;" and that, were it conformable to his all-wise and eternal designs, he could easily dis- arrange the structure of our globe, and reduce its inhabitants either to misery or to complete destruction; and that, too, without altering a single physical law which now operates throughout the universe. If we recognize the Scriptures as a revelation from God, we may rest assured that no danger from such a cause can happen to our world for ages yet to come ; for there are many important predictions contained in revela- tion which have not yet received their accomplishment, and must be fulfilled before any fatal catastrophe can happen to our globe. It is predicted that the Jews shall be brought into the Christian church " with the fullness of the Gentiles," — that " the idols of the nations shall be abolished," — ^that " wars shall cease to the ends of the earth," — that the kingdom of Messiali shall extend over all nations, — that " the knowledge of Jehovali shall cover the earth, and that all shall know him from the least to the greatest ;" that " thie earth shall yield its increase," and its desolate wastes be cultivated and inhabited, — that moral order shall prevail, and " righteousnoss and praise spring forth before all the nations," — and that this happy era of the world shall continue during a lapse of ages. These events have not yet been accom- plished, though at the present moment they appear either in a state of com- mencement or of progression; but they cannot be supposed to be fully realized till after a lapse of centuries. The believer in Divine revelation, therefore, has the fullest assurance that, whatever directions comets may take in their motions toward the center of our sj^stem, none of them shall be permitted to impinge upon our globe, or to effect its destruction, for at least a thousand years to come, or till the above and other predictions be com- pletely accomplished. 4. Another question occurs on this subject— namely, whether amy comets have emer fallen into the simf It was the opinion of Sir Isaac Newton that one purpose for which comets are destined, is to recruit the Sun with fresh fuel, and repair the great consumption of his light by the streams continually emitted every way from that luminary ; and that such comets as come very near the Sun in their perihelions meet every time with so much resistance 82 ASTRONOMY AND NAVIGATION. from his atmospliere as to abate their projectile force — ^by the constant dimi- nution of which, the centripetal power, or gravitation toward the Sun, would be so increased as to make them fall into his body. On a similar principle, Arago supposes that the comet of 1680, which approached so near the body of the Sun, must have passed nearer to his surface at that time than at its preceding apparitions ; that the decrease in the dimensions of the orbit wiU continue on each succeeding return to its point of perihelion; and that '■'■it will terminate its career hy falli/ng upon the Sum,.'''' But he acknowledges that, " from our ignorance of the densities of the various strata of the Sun's atmosphere, of that of the comet of 1680, and of the time of its revolution, it will be impossible to calculate after how many ages this extraordinary event is to happen ;" and he likewise admits that " the annals of astronomy do not afford any reason to suppose the previous occurrence of such an event since the origin of historical record ; so that we have no direct evidence that such an event has ever taken place, or that it ever will. "We know too little of the physical constitution of the Sun, and of the nature of comets, to be able to assert that the falling of a comet into the Snn would actually recruit the luminous matter of which his outer surface is composed ; for we have reason to believe that there is little or no analogy between the mode in which we supply our fires by means of fagots, and that by which the solar light is recruited and preserved in its pristine vigor ; and besides, it is found that bodies, particularly in certain electric states, may be rendered luminous with- out the addition of any extraneous body to their substances. Of the Influence of Comets on the Eaeth. In former times, the appearance of comets was supposed to be the forerun- ner of wars, revolutions, famine, pestilence, the deaths of great men, earth- quakes, inundations and other calamities. When the splendid comet of 1456 appeared, (supposed to be the same as Halley's comet,) its tail extended at one time over more than 60 degrees. Three days before its perihelion, its nucleus was as bright as a fixed star, its tail of the color of -gold, and it appears to have exhibited coruscations. Pope Calixtns, believing it to be at once the sign and instrument of Divine wrath, was so frightened at its appearance that he ordered public prayers to be offered up in every town, and the bells to be tolled at the noon of each day, to warn the people to sup- plicate the mercy of Heaven. He at the same time excommunicated bom the comet and the Turks, whose arms had lately proved victorious against the Christians, and established the custom, which still exists in Catholic countries, of ringing the church bells at noon. In modern times, certain natural effects have likewise been attributed to the influence of comets — such as tempests, hurricanes, volcanic eruptions, cold or hot seasons, overflowing of rivers, fogs, dense clouds of flies or locusts, the plague, the dysentery, the cholera, and other disorders. Mr. T. Forster, a respectable writer on natural science, author of "Re- searches about Atmospherical Phenomena," &c., published in 1829 a work on the " Atmospherical Causes of Epidemic Diseases," in which he maintains that the most unhealthy periods are those during .which some great comet has been seen; that the appearance of these bodies has been accompanied by earthquakes, eruptions of volcanoes, and atmospheric commotions ; and that no comet has been seen during seasons of healthiness. For example, in the year 1665 a comet made its appearance, and soon after its disappearance the ASTRONOMY AND NAVIGATION. 83 city of London was ravaged by the plague. In 1680, one of the most splen- did comets which have been observed in modern times made its appearance. Tlie atmospheric effect produced by its influence, according to Mr. Forster, was " a cold winter, followed by a hot and dry summer," and " meteors in Germany." As the influence of comets on our globe and its atmosphere (if such an influence exist) must have a respect to the whole Earth, and not merely to any particular portion of it, we might ask, in reference to the first example, why 'did not the comet of 1665 produce a similar effect in Amster- dam, Vienna, Paris and Madrid, and in the principal cities of Asia, Africa, and America ? But of such effects we never had the least intimation. In respect to the second example, we are warranted to inquire, whether the cold winter was followed by a hot summer in every other climate of the Earth? whether meteors were as common in other countries as in Germany ? and whether the comet produced opposite effects, at one time congealing the pools and rivers, and at another scorching the Earth with heat ? If such questions cannot be satisfactorily answered, we are not warranted in attribu- ting such eft^ects to the influence of comets. We err egi-egiously, in this as well as in many other respects, when we infer, from two contemporaneous events, that the one is either the sign or the cause of the other. It is on a principle of this kind that some persons are led to attribute the events to which we have alluded to the influence of comets. Because an inundation, a war, a political convulsion, or a volcanic eruption has taken place at the time of the approach of a comet to this part of our system, therefore they conclude that there must be a certain connection between such events, and that the one is the cause and the other the effect ; while the two events, in point of fact, may not have the slightest relation to each other, except their casual occurrence at the same period. We might, on the same grounds, infer that the rising of the star Sirius along with the Sun, which announced to the Egyptians the rise of the Nile, was the cause of the annual overflowing of that river. Before we can identify any event with the influence of a comet, we must not conflne our views to an event or two in our immediate neighborhood, but must endeavor to ascertain whether similar events or phenomena have happened on every pm't of the E(wtk at the same period. As comets, either large or small — either visible to the naked eye or through a telescope, make their appearance at an average almost every year, and as epidemics, political commotions, earthquakes, hur- ricanes, and similar events are always to be found occurring in some particu- lar portions of the globe, we should never be at a loss for a physical cause to account for every tiling that happens here below, if comets are to be supposed to have such an influence over ten-estrial affairs. Whatever takes place in any country of an uncommon nature, might then be attributed to a comet wliich is either approaching the center of our system or receding from it. It is remarkable that the announcement of a comet has generally been received with melancholy anticipations, and the effects attributed to its influ- ence have uniformly been of a calamitous nature. But why should it not be the precursor of prosperous events — of peace, plenty, social tranquillity, and genial seasons — as well- as of wars, famines, revolutions, cold winters, and parched summers ? It seems something like a reflection on the general be- nevolence of the Deity to imagine that he has created such a vast number of bodies, and directed their course through every part of the planetary regions, chiefly for the purpose of " shaking from their horrid hair" wars, 84 ASTKONOMY AND NAVIGATION. famine, and pestilence ; for if they produce such effects upon the Earth, we might with equal reason believe that they produce similar effects on the otlier planets of our system as they pass along in their course toward the Sun; and this would lead us to infer that the inhabitants of all the planetary orbs are liable to the same disasters and calamities as the inhabitants of the Earth, a position which seems scarcely consistent with the ^boundless benevo- lence of tlie Divine mind. But although I do not admit the conclusions and the comfitary influences to which I have alluded, I am far from asserting that comets have no influ- ence whatever on our globe or its surrounding atmosphere. The universe is one great whole, and all its parts, however remote, must be supposed to have a certain relation to one another; and they may produce an influence, how- ever small and imperceptible, on each other at the greatest distances. The remotest star perceptible to the eye may produce a certain physical influence on our globe, though so small and insensible as to be beyond the limits of the nicest calculation ; and therefore comets which sometimes approach pretty near the Earth may produce a certain sensible effect upon our globe, particu- larly should a portion of their immense tails at any time sweep along the higher regions of our atmosphere. But what special influence or effects they may produce on the physical economy of our terrestrial system it is impos- sible for us in the mean time distinctly to ascertain, from our ignorance of the constitution of those mysterious bodies, and of the substances of which they are composed. "While too much has doubtless been attributed to the influence of comets, it would be verging to an opposite extreme to maintain that they can produce no effect at all on our Earth and atmosphere. We know that certain celestial bodies produce a powerful influence on our globe. The Moon, in conjunction with the solar infl^ience, rules the ocean and per- petuates the regular returns of ebb and flow. Its light not only cheers our winter nights, but produces a variety of other influences both on the human constitution, the atmosphere, and on the productions of the earth ; and there may be many effects produced by its agency with which we are as yet unac- quainted. The Sun not only diffuses light over every region of the Earth for the purpose of vision, but rays or emanations invisible to our sight pro- ceed from his body, which promote evaporation, the growth of vegetables, and the various degrees of temperature which prevail tliroughout the globe. These emanations are likewise found to produce certain chemical effects, to dissolve certain combinations of oxygen, and to give polarity to the magnetic needle ; and many other effects of which we are ignorant may afterwards be found to proceed from those invisible irradiations. Tlie larger planets, Jupi- ter and Saturn, and those which are nearest to us, as Yenus and Mars, may likewise produce certain effects on our globe, both in virtue of their attrac- tive power and of the peculiar nature of the reflected rays they transmit to the region we occupy. We cannot therefore but conclude, that comets may exert a peculiar influ- ence on our terrestrial system in addition to that of other celestial bodies, and different from it, particularly those whose bulk and masses are consider- able, and which approach nearest to the Earth. Their light, whether native or reflected, appeai-s to be peculiar, and the margin of their immense tails may occasionally graze our atmosphere when we are not aware of it, and may produce a peculiar effect different from that produced by the other bodies of our system ; but what that special effect is has not hitherto been ASTRONOMY AND NAVIGATION. 86 determined ; for the mere coincidences of certain events with the appearance of comets cannot be supposed to be owing to their peculiar influence, unless such events are found uniformly to happen on the apparition of a comet, and that too throughout a great portion of the Earth. This subject is worthy of some attention ; and perhaps future observers, by more accurate observations than have hitherto been made, may throw some light on an influence which on the one hand has been perhaps too rashly set aside, and on the other carried to a pitch of extravagance beyond the line of sober reason and obser- vation. Let it not be supposed that, in admitting that comets may have an influ- ence on our globe, I mean to give the least countenance to foolish supersti- tions, or to the absurdities of astrology, since all that I would be disposed to admit in the present case is purely a ^physical influence ; an influence which ■ may exist, although we have not yet been able to discriminate its specific effects. The most eminent philosophers have been disposed to admit such an influence. Sir Isaac Newton supposed that " the atmospheres and tails of comets may supply the planets with moisture, which is continually wasting by the growing of vegetables out of water and turning into earth ;" and that from the same source may be derived " the purest part of our air, which is requisite for the existence of living beings." These opinions, indeed, cannot be proved, and they are evidently untenable ; but they show that that great philosopher admitted the influence of comets. M. Arago, although he scouts the vulgar idea of comets being the cause of most calamitous events, yet he admits that, " not only cometary matter may fall into our atmosphere, but that this phenomenon is of a nature to occur frequently, and may possi- bly produce those epidemic diseases which have been attributed to it." A variety of questions has been started respecting cometary action and in- fluence, beside those to which we have now alluded. It has been a question whether we ought to have recourse to the action of a comet to account for the, rigor of the climate of North Amsrica? It is found that in the northern regions of America, the climate in the same latitude is much colder than in Europe. To account for this. Dr. Halley supposed that a comet had formerly struck the earth obliquely, and changed the position of its axis of rotation. In consequence of that event, the North Pole, which had been originally very near to Hudson's Bay, was changed to a more easterly position ; but the countries which it abandoned had been so long a time and so deeply frozen, that vestiges still remain of its ancient polar rigor, and that a long series of years would be required for the solar action to impart to the northern parts of the new continent the climate of their present geographical position. But we have no proof that a comet has ever struck the earth, or that its concus- sion would have the effect to change the direction of the terrestrial axis. Be- side, it is well known that the Asiatic coast is equally cold in the same lati- tudes as the Atlantic shores of North America. It has likewise been a subject of inquiry, whether the depression of the soil of a great part of Asia has been produced by the shock of a comet; and whether Siberia ever experienced a sudden change by a similar event? This latter inquiry has been suggested by the circumstance of the bones of elephants, rhinoceroses, and other animals peculiar to the torrid zone, having been found imbedded in the strata of that country, which has led to the sup- position that Siberia was, at some remote period, comprised within the tropics. But there is no proof, nor even probability, that the action of a 86 ASTKONOMT AND NAVIGATION. comet was concerned in either case. It has also been supposed that the small planets, Yesta, Juno, Ceres, and Pallas, the supposed fragments of a large planet, may have been broken to pieces by the shock of a comet. The circumstance that two of these planets, Ceres and Pallas, are encompassed with an atmosphere of great density and elevation, has been brought forward as a presumptive proof of the reality of such a concussion, and that the com- etary atmosphere, not being liable to destruction by the percussion, was im- parted to these planets. But when we consider the very small density of comets, it appears not at all probable that even a direct concussion from such a body would have produced such an effect, although it might have caused a considerable derangement of the physical constitution of the planet. Be- sides, this hypothesis does not account for the remarkable fact that Vesta and Juno exhibit no traces of an atmosphere which, in consistency with the supposition, ought to have been imparted to them by the comet, as well as to Ceres and Pallas. On the whole, we have no direct or satisfactory proofs that comets have ever come in direct contact with our globe, or that they have produced any considerable derangements throughout the planetary- system ; and whatever specific influence they may produce on our earth and atmosphere must be deduced from future observations. All that can be said of comets which is reliable, more than can be seen, is that they are electric bodies moving in projectiles magnetically arranged with the positive pole forward. It may be said that the Sun moves in the same manner in its orbit. All the planets have reversed poles to the Sun, and revolve on their axes surrounded by atmosphere; while the aimiosphere of a comet constitutes its tail, through which the Sun's electric rays of light pass. This phenomena is the same as the Aurora, or northern lights, and is precisely from the same cause. Thus as magnetic bodies when approaching their nearest contact or perihelion, their motion is accelerated. This is the true law of magnetic bodies, and this constitutes their aerial splendor as they move through space. The Comet of Septembee 12th, 1858. This comet made its appearance in the northern hemisphere about the middle of September, near and directly under the bowl of the Dipper, or Great Bear, and about twenty-eight degrees below the plane of the pole star. It had the appearance of coming in and passing round the Sun at an angle of about forty-hve degrees west of and below the Sun, and went out at an angle of about forty degrees east of the Sun— as viewed from the Earth in Sep- tember and October. There were various opinions as to the size and diameter of its mass. From a close observation of this comet, it may be said that it passed its perihelion on the 9th of October. It passed one degree below Arcturus on the evening of the 7th of October, at which time it seemed to have attained its greatest brilliancy. On the 20th, at half-past six in the evening, it stood perpendic- ular to Venus, three and a half degrees above that planet, and eleven and a half above the horizon. At the same time it stood at an angle with its tail of forty-five degrees south-southeast from the Sun's Hne of the ecliptic. These few measurements prove that this comet passed a UUle outside of^the line of the Earth's orbit, and west about thirty-five days before the Earth arrived at that point. i ASTRONOMY AND NAVIGATION. 87 GENERAL REMARKS ON THE ORIGIN OF THE EARTH'S MOTION TO THE SUN. Peobajblt the primeval order of the Earth's motion on its axis, and in its path around the Sun, was without obliquity, and consequently without change of seasons; unending summer and equal light spreading from pole to pole, and causing an undisturbed verdure and tropical fruits to exist far from the equator, both toward the north and south, where now the frigid zones forbid the existence of vegetable life to any extent. The history of the Earth is written in the volume of effects, which are undeniable ; it may be read also in nature and revelation combined, and by reference to causes and effects may be seen the laws and the order by which and in which each mighty revolution was effected, aifording indubitable evidence of the truth of the word of God, as well as of the durability of His works. It has been supposed that that dread sentence, " Cursed is the ground for thy sake," received its fulfillment when God caused the Flood to cover the Earth, changing at the same time the Earth's orbit, and causing the obliquity of the pole to the Sim's plane and pole or axis, whereby were produced all the present phenomena of the seasons. But whether or not those who thus specidate have any foundation in truth, it is confidently asserted that there is both reason and Scripture to sustain the belief that the present inclination of the Earth's axis will be perpetual ; the assurance given to Noah, that there should be summer and winter as long as the Earth endured, being sup- posed to be equivalent to the fiat that the Earth's axis should remain inclined. The passage referred to is found in Genesis viii. 20-22, and is as follows : "And Noah builded an altar unto the Lord, and took of every clean beast, and of every clean fowl, and offered burnt-offerings on the altar. And the Lord smelled a sweet savor ; and the Lord said in his heart, I will not again curse the ground any more, for man's sake; for the imagination of man's heart is evu from his youth : neither will I again smite any more every thing living, as I have done. While the earth remaineth, seed-time and harvest, and cold and heat, and summer and winter, and day and night shall not cease." The Mosaic account of the partial destruction of the Earth by the Deluge has been by some considered to be fully sustained by the organic remains of past ages, both vegetable and animal, which exist in abundance in a fossil or petrified state, proving incontestably that at some long past era most won- derful changes took place in the physical condition of the Earth. Not only does the presence of marine fossil shells, of species both known and unknown, at the tops of high mountains, and in other localities far remote from the sea 88 ASTRONOMY AND NAVIGATION. — as for instance in the neighborhood of Cincinnati — prove that many parts of the Earth were once far beneath the surface of the ocean, but there is much evidence to show that our planet has undergone a very great change in temperature — such as whole forests of tropical trees found beneath the Earth's siirface in northern regions, and the remains of elephants in Siberia, in such quantities that the ivory turners of St. Petersburg use for their pur- poses chiefly what is so found. In the same inhospitable region are also found the gigantic remains of an extinct species of elephant, one of which was dis- covered a few years ago in a condition so perfect that even the hide and hair were undecayed, it having been imbedded in the ice probably for count- less ages in that climate of perpetual winter. These facts show that the climate of Siberia must at one time have been such as belongs to those countries in which the elephant is found at the present day ; that is to say, it must have had the climate of Africa or India, — from which it must be infer- red either that the regions now polar were once equatorial, or that the tem- perature of the Earth at large has been lowered from a degree in which the heat of the polar regions was equal to that of the equatorial regions now, and that the heat of the equatorial regions was so great that they could not haye been habitable by man as he is at present constituted. But though there can be only one opinion relative to the fact of the sub- mersion of the Earth at some remote period beneath the waters of an over- whelming flood, some of the best of men have doubted whether the Noachian Deluge is that to which the great changes which the Earth has undergone must be referred. But, at least, the possibility of that event must be admit- ted. The vastness of space teems with the traveling messengers of God, which we call comets ; one of these may have visited the Earth, causing it to leave its wonted plane, changing the direction of its axis, causing the ocean to rush over the continent — when literally the "fountains of the great deep were broken up" — and sweeping to destruction every living thing. But it must be admitted that the weight of evidence is in favor of a theory which refers the vast changes the surface of the Earth has undergone to other and much longer continued action than that of the Noachian Deluge, which it is contended was only partial in extent, and not lasting a single year; while there is a vast accumulation of geological facts tending to show that many successive submersions and upheavals of the Earth's surface, and a lapse o^ thousands of years, were necessary to produce the enormous masses of fossiliferous rocks that are found in all parts of the world. There is every reason, too, to believe that these changes took place chiefly before the exist- ence of man upon the Earth, though evidence is not wanting which tends to show that since the appearance of man geological changes have taken place to some extent. In examining these evidences, it may be stated, in a general way, that the ages of the different strata of rock indicate the age of the organic remains imbedded in them; and that in the strata of the present period, there are found, besides the existing races, many extinct species, including animals of an enormous size. The organic remains of man, with the monuments of his arts, are also found buried in this last common grave. (The remains of man, and old pottery, with other monuments of his arts, have been found buried in deep caves of rock, both in Europe and this coun- try; and his remains have also been found, buried with his rude stone house, ASTRONOMY AND NAVIGATION. 89 in the peat bogs of Ireland, clad in skins, and in a perfect state of preserva- tion. About the year 1Y87, some workmen were occupied near Aix, ia Provence, France, ia quarrying stone for the rebuilding, upon a vast scale, of the Pal- ace of Justice. The stone was a limestone of a deep gray, and of that kind which is tender when it comes out of the quarry, but which hardens by ex- posure to the air. The strata were separated by a bed of sand mixed with clay, more or less calcareous. The first which were wrought presented no appearance of any foreign bodies ; but after the workmen had removed the first ten beds, they were astonished, when taking away the eleventh, to find its infeiior surface, at the depth of 40 or 50 feet, covered with shells. The stone of this bed having been removed, as they were taking away a stratum of argillaceous sand, which separated the eleventh bed from the twelfth, they found stumps of cohimns and pieces of stone half wrought, which were ex- actly similar to that of the quarry; they found, moreover, some coins, handles of hammers, and other tools, or fragments of tools, in wood. But that which principally commanded their attention, was a board about one inch thick and seven or eight feet long. It was broken into many pieces, of which none were missing, and it was possible to join them again one to another, and to restore to the board or plane its original form, which was that of the boards used by masons and quarrymen; it was worn in the same manner, rounded and waving upon the edges. The stones which were completely or partly wrought were not at all changed in their nature, but the fragments of the board, and the instruments and the pieces of instruments of wood, had been changed into agates, which were very fine and agreeably colored. Here, then, were traces of a work executed by the hand of man, placed at the depth of fifty feet, and covered with eleven beds of compact limestone : every thing tended to prove that this work had been executed upon the spot where the traces existed. The presence of man had preceded the formation of this stone, and that very considerably, since he was already arrived at such a degree of civilization that the arts were known to him, and that he wrought the stone and formed the columns out of it. The forests which covered the dry land at that period, many of which are now standing, and from which the board and handles of the tools of the workmen were made, are found buried all over Europe, beneath the surface of the present period. In all countries, in digging to certain depths, and in mining, the remains of fishes, vegetables, quadrupeds, and birds, are found in the soil, or imbed- ded in the rocks, except in those of primitive antiquity. The general regu- larity with which those that are marine are laid at one level, and those which are products of the land are laid at another, and in the alternations of these marine and land products, lead to the conclusion that the sea has repeatedly covered the land lor long periods of time, and that the land has, at interme- diate periods been dry. And the discoveries in the quarries near Aix, are one of the many evidences which lead irresistibly to such conclusions ; for there must have been a long period of submersion, in which that country was cov- ered with the ocean, between those periods in which the workmen at this quarry were succeeded by the workmen of another. We have on this continent the same evidences of a corresponding period of submersion since the creation of man. Immense forests are found buried here, portions of which are now standing like those found in Europe. 90 ASTRONOMY AND NAVIGATION. A diminutive iron horse-shoe was dug up, at the depth of twenty-five feet below the surface, in graduating a street in Cincinnati. It was smaller than the kind of shoe required for the smallest kind of asses. A number of nails were in it, and the erosion by rust was such as might have been expected from the oxydation of 500 years. In digging a well in Cincinnati, the workmen came to the top of a stump a foot and a half in diameter, at the distance of 94 feet from the surface, on the top of which was found an iron wedge; and below this, near the roots of the stump, which had been evidently cut with an axe, a small silver coin. In blasting the thick and solid limestone rock, at a distance of 14 feet from the surface, when the workmen were constructing the steamboat canal at Louisville, Ky., they came to a brick hearth, covered in part with charcoal, and what appeared to be old ashes, the remains of the last fire built upon it by the hand of man. In digging wells all over the valleys of the Ohio and Mississippi rivers, as well as their tributaries, it is necessary to sink them through beds of many difi"erent kinds of earth and sometimes of lime rock, to the ancient surface of the earth, on which are constantly found old logs, stumps, and sometimes standing trees, and the relics of human art. The soil on the old surface of the earth thus found, and once cultivated by man, which the farmers now call the old or ancient soil, is generally a rich blue clay. Little is known in regard to the changes in this hemisphere beyond the generally acknowledged fact that the ocean is rising in the low latitudes, or along the coasts from New Tork to the Mississippi. Among the evidences of the rise of the ocean, and of its encroachments upon the land along these coasts, is the submergence of the old walls of some of the houses erected by Captain Smith and his contemporaries, at Jamestown, Va., in 1600, latitude 37", which are now some distance from the shore in James Kiver, and tha old town itself has long since become an island, from the encroachment of the water on the back part of it. The amount of the rise of the water there in 230 years, is variously estimated at from five to seven feet, which has made it necessary to erect a bridge from the island to the main-land. At St. Augustine, Florida, latitude 26° 46' 30", an old dock and an old grave-yard have become submei'ged, and the government is now engaged in erecting a wall to protect the town from the further encroachment of the ocean ; which again corresponds with this theory, or that of the ancient east- ern nations. Some modem geologists, among whom is Mr. Lyell, have created in their imaginations the necessity of a new theory to account for the elevation of the land above the level of the sea, on the gratuitous assumption that the ocean " cannot be lowered in one place without a general subsidence throughout its whole extent," and attempt to account for the alternate changes in the eleva- tion of the land above the level of the ocean by volcanic convulsions. Their hypothesis is, however, based upon local causes, which are neither constant nor uniform in their action ; whereas the effect produced requires a general cause in constant operation. Aware of this objection, they acknowledge they " cannot, in all eases, understand the possibility of the elevation of the land out of the sea by the mere effect of local convulsive movements." ASTRONOMY AND NAVIGATION. 91 Convex and Concatb Belts of the Eakth. The Earth has three great convex and two concave belts, and is flattened at the poles, so that the equatorial diameter is supposed to be about thirty- six miles greater than the polar diameter, while the fact is that the equa- torial diameter is at least two hundred and fifty miles greater. This con- figuration of the earth is the result of natural or physical and mechanical laws — the centrifugal and centripetal forces operating on the Earth revolv- ing on her axis together with the atmospheric pressure and the universal law of matter and of space — the positive and negative forces or law of at- traction. These forces thus combined cause an elongated equator or great ridge ; this being convex causes a sag, or concave, which concavity at its equilibrium, or at a distance proportionate to the diameter of a sphere of the Earth's magnitude, again causes another convexity and a flattened pole ; and thus is produced by a combination of the above laws and forces, an undu- lated or corrugated surface to the Earth. K proof Were required to establish this theory, it would be afforded by a geographical view of the gulfs and rivers which head on a line of about forty-three to forty-five degrees north latitude, and discharge each way, north and south, into the great gulfs at about thirty-three to thirty-five degrees north latitude — forty-three degrees north being about the center of the northern convex belt. See the line of thirty-five degrees north — the line of gulfs and bays from San Francisco to Mexico, and the Mediterranean and E.ed Seas. This great northern ridge is a winter barrier to protect commerce between the poles and equator. All steam and wind crafts bound to England or France should cross the Atlantic south of the forty-fifth degree of north latitude, in winter, through the concave zone. This corrugated form of the Earth's surface — ^no doubt causing an unequal temperature of the sea-water — has probably much to do with the winds and calms of the atmosphere, and the tides and currents of the ocean. So long as the atniosphere is unchanged in density, so long^it remains at rest ; but whatever tends to change this, operates to set it in motion ; so also with the ocean — ^heat and cold, operating both by evaporation and hj their contract- ile and expansive influence, produce motion in the waters of the sea. Thus, both the atmosphere and ocean are kept in perpetual motion, con- stantly seeking an equilibrium, but finding none. Thus are accounted for the Gulf Stream and under-currents from ocean to ocean, as well as the ex- istence of the winds both regular and otherwise. In both the ocean and the atmosphere, when the lower strata become heated from subterranean fires, they begin to rise, and in doing so, displace the strata above them, and thus con- tribute to that agitation of wind and wave which it would seem is destined never to cease. MISCELLANEOUS. The Waters "Abote the Fiemament." Theee are some passages in Scripture which — to those who accept the revealed word of God as not only their guide in matters of religious belief, but as a sufficient source of spientific knowledge — tend to establish the theory that at some vast and unknown distance in the immeasurable regions of space, there exists a boundless concave of water. To such persons there seems nothing incredible or impossible in the idea that creative power should suspend " shoreless seas" in the remote ethereal regions, any more than that the same power should have formed and set bounds to the never-resting oceans beneath. It must be admitted, that a literal acceptation of the fol- lowing passages makes it almost necessary to adopt some such theory. They are sufficient, at any rate, to claim for the question a respectful consideration. " And God said. Let there be a firmament in the midst of the waters : and let it divide the waters from the waters. And God made the firmament, and divided the waters which were under the firmament from the waters which were above the firmament: and it was so. And God called the firmament heaven: and the evening and the morning were the second day." (Genesis i. 6-8.) " Praise Him, ye heavens of heavens, and ye waters that be above the heavens." (Psalm cxlviii. 4.) " In them hath he set a tabernacle for the sun .... his going forth is from the end of the heaven, and his circuit unto the end of it." ^saim xix. 4, 6.) Guided by the teachings of science, it would not be difficult for the literal reader of Scripture to suppose that our solar system moves within a vast hollow sphere of frozen waters, on the interior surface of which are reflected from innumerable points the rays of the Sixn, and that thus are accounted for the innumerable fixed stars. In short, that the heavens are but an immense mirror, in which our Sun and his planets are reflected from icy fields and mountain peaks ; that there are no other suns or solar systems — a doctrine which, it is worthy of remark, has not only the apparent testi- mony of Holy "Writ, but is in accordance with a physical law of the elements. Causes which have Peoduced a Change oe Climate. "With respect to the cause or causes which have effected so great a change in the temperature of the Earth's surface, there are a great variety of opinions. , Eurnet, as stated in the abstract we have given of his theory, accounted for this change by supposing that the Earth's axis took a new and different position at the time of Noah's flood ; but astronomy has shown the improba- bility of any such change in position. Most writers who admit a deterioration of climate, suppose with Burnet 'that the change was sudden, and that it took place about the period of the deluge. Some, however, and among them Mr. Lyell, believe it to have been gradual, occupying thousands of years, and to have been caused by the MISCELLANEOUS. 93 changes which have taken place in the relative positions of the sea and land. But in the first place, no such changes as this author supposes are proved to have happened with respect to the sea and land ; nor second, had such changes been proved, is it at all probable such local causes could have been adequate to effect a change so material and universal. Sir John F. "W. Herschel has recently made some calculations and inqui- ries, with the view of ascertaining whether there existed any astronomical causes which might account for the difference between the present and ancient heat of the Earth's suiface. "Geometers," he says, "have demon- strated the absolute invariability of the mean distance of the Earth from the Sun; whence it would at first seem to follow, that the mean annual supply of light and heat derived from that luminary would be alike invariable ; but a closer consideration of the subject will show that this would not be a legiti- mate conclusion, but that, on the contrary, the mean amount of solar radia- tion is dependent on the eccentricity of the Earth's orbit, and therefore liable to variations. " Now the eccentricity of the Earth's orbit," he continues, " is actually diminishing, and has been so for ages beyond the records of history. In consequence, the ellipsis is in a state of approach to a circle, and the annual average of solar heat radiated to the Earth is actually on the decrease. But whether this diminution of radiated heat is sufficient to account for the re- frigeration of climate, which geological facts appear to prove, is a question which has not been decided." Allowing that the Earth's orbit should become a perfect circle, we are at a loss to see how the mean annual radiation should thereby be diminished. It is the opinion of M. Arago, that the mean amount of solar radiation can never be materially affected by the irregularities of the Earth's annual motion. It would appear, therefore, that we cannot look to astronomy with much confidence for a solution of the problem in question. A recent and highly respectable author, Dr. Ure, of Glasgow, believes that the original heat of the Earth was dissipated in consequence of the evaporation of the waters of the deluge. liie effects of evaporation, together with the absence of a large heating surface, is stiikingly illustrated in the temperate climate of St. Helena. This island, though less than eighteen degrees from the equator, and on a parallel with the burning plains of continental Africa, enjoys one of the most com- fortable and sahibrious climates on the Earth. At Jamestown, the ther- mometer, in the warmest season, seldom rises above 80°. In the country the climate is still more mild, the thermometer in some seasons never rising higher than 72°. At Jamestown, the average temperature during the year is from 66° to 78°, the heat at this place being concentrated by the high rocks which rise above the town. At Plantation House, the average heat is only from 61' to 73°, and at Longwood, the last residence of Napoleon, from 56° to 68°. The island of Sumatra, though directly under the equinox, presents a simi- lar exemption from the excessive heats with which the interior of continents situated on the same parallel are oppressed. The heat at this island seldom rises higher than 85° at any season, while at Bengal, which is situated in 22° north latitude, it is often above 100°. It is at a distance from the sea, and where the surface is dry, that the greatest accumulation of heat takes place. Mungo Park relates, that in 94 MISCELLANEOUS. some districts in Africa the ground became so hot by the action of the Sun, that even the negroes, though accustomed to that ardent climate, could not bear to touch it with their naked feet ; and that he could not hold forth his hand against a current of air which entered the crevices of his hut, without feeling acute pain from its scorching effects. Dr. Ure supposes that a portion of the antediluvian land is now covered by the ocean, and that the heating surface, or dry land on the Earth, was twice as extensive before the deluge as it is now, and consequently, as a whole, that its heating effects were doubled. We cannot follow Dr. Ure through the detail of facts and arguments which he has brought forward on this subject ; but after many additional statements to those we have given, he concludes, " that the facts and obser- vations just detailed, seem adequate to prove that the events of the deluge involved such a change in the terraqueous constitution, as rendered the sur- face of the globe much colder and moister than it had previously been." The great and sudden fall of temperature which the Earth suffered at a former time, and which is supposed to have taken place at the period of the deluge, is indicated by the situation and number of fossil bones, belonging to species known to inhabit hot climates, found in northern latitudes. " The almost incredible number of bones of fossil elephants," says Dr. Ure, "found in northern Siberia, which betray no marks of having been rolled or transported from a distance, attest the existence on its plains of huge herbiv- orous animals at that distant epoch. These demonstrate that a vigorous vegetation clothed countries now covered with frost a great part of the year, where, even in summer, sterilizing cold and humidity perpetually reign, and where, at present, the reindeer can hardly pick up from beneath the snow its scanty mouthful of moss." ISTot only the bones of elephants, but those of the rhinoceros, the masto- don, and hippopotamus, are found in Siberia. All these animals living on vegetables, and, from their size, requiring large quantities for their suste- nance, it would seem impossible, as we have before stated, that, in the present state of the climate, there should have grown a sufiBcient quantity of nourish- ment for the support of these animals. That these animals died where they had lived, and where their remains are now found, is proved by the circumstances that their skeletons are entire, and that their bones show no scratches, or other marks of transportation or friction. That these bones have not lain for a long period in a hot climate, is proved by their state of preservation — many of the elephants' tusks being perfectly sound, and making the best of ivory, for which purpose vast num- bers have been dug up and sold. The change of climate must therefore have taken place at the deaths of these animals, or soon after. That these animals died suddenly, and remained in a cold climate after death — at least some of them — is proved by the circumstance that the body of an elephant was found* on the bank of the river Lena, in 1803. It was frozen in the ice, a large proportion of the flesh being still preserved, and serving as food for the white bears and dogs. Now, since there is no reason to believe that this animal could have lived in a cold climate, and as there is every reason to suppose that he died where his remains were found, perhaps the nature of such a case could not admit of stronger evidence, that there happened a great and sudden change from heat to cold in that country, and that this took place at the time when this animal perished, or soon after. MISCELLANEOUS. 95 If it is certain that this animal could not have lived in a cold climate, and equally so that his body could not have been preserved more than a few days in a hot one, the conclusion is inevitable, that the climate must have changed at the time of his death, or immediately afterward. The opinion of Baron Cuvier entirely coincides with what here seems to he proved. " Every hypothesis," says he, " of a gradual cooling of the earth, or a slow variation in either the inclination or position of the axis of the globe, is inadmissible." There are many reasons for believing that the animals whose remains are thus found were destroyed at the time of the general deluge, and also that their bodies were, not transported to any considerable distance by that catas- trophe. Their bones are found on plains and the sides of valleys, where we should suppose their bodies would have been left by the retiring waters ; and in many instances they have been found covered by sand or gravel, sucli as are considered diluvial deposits, and under such circumstances, as to make it improbable that any ordinary flood would have produced similar effects. On reviewing the facts and circumstances above stated, it is thought that we may fairly come to the following conclusions : First. That the climate of Siberia was once similar to that of the tropics of the present day. Second. That at the epoch of the dehige, the climate of Siberia suffered a sudden and material change in its temperature, and that it then became similar to what it is now. Third. That the deluge was the most probable cause of the destruction of several ancient races of quadrupeds, which inhabited tliat country anterior to the flood, and among which were the elephant and rhinoceros, the bones of which still exist tiiere. And Pourth. That the most probable cause of the sudden change of climate in Siberia, and of the decrease of the superficial temperature of the Earth generally, was the cold produced by the evaporation of the waters of the deluge. It will be readily seen by the inserted matter or opinions of the past ages, that reason, without a proper respect to the laws of the universe or the Taw of matter — which is also the cause of form and motion — that facts and reiison are both stubborn things, not disposed to yield the point. But as facts for- ever stand secure, reason learns to go back and investigate. It is therefore self-evident, that the theory of the universal polarity of matter and of space were not known in the days of Burnet, Dr. Ure, Baron Cuvier, Sir John F. "W. Herschel, Kepler, and a host of ancients. The polar heavens, the milky- way — vast concave zone of the heavens, and heaven of heavens, and the waters above the heavens, are spoken of in the Psalms. Those worthies reasoned well, but without law. The evidence b^ the law of matter is con- firmed both in nature and revelation. St. Paul, in Kom. i. 20, said : " The invisible things of God from the creation of the world are clearly seen, being understood by the things that are made." ISTow, had proper care and respect been paid to the Scriptures by those who reasoned on the subject of created matter, they would not have been confused at the innumerable changes of matter and of climate. Every step that nature has taken, has been in per- fect conformity to the laws of matter and of space. The immortal Newton saw the whole volume of effects, and was so over- 96 MISCELLANEOUS. awed by these, that tlie great cause or law which produced these effects to him was a mystery. Had Newton known the physical law of a comet, he would have set the world on fire ; in the eye of the age in which he lived. Sir Isaac Newton would have indorsed the idea of Burnet, that the deluge was caused by the attraction of a comet, and would have confirmed it from natural law and revelation. The law of a positive and negative force, or, in other words, atmospheric electricity — called atmospheric pressure — has not been properly applied in philosophy, as may be seen by the growth and trunk of a tree being round. To some, the cause of all this is a mystery, as is also the formation of- shot passing through space ; as the melted lead leaves the fine screen at the top of the tower, the simple law of equal pressure of the atmosphere on all sides causes the spherical form. Here, then, may be seen the upward tend- ency by attraction and the tenacity of atmmpherie electricity, that its equal pressure on all sides causes the circumference to be round. The Comet, Jlnd the Law of a Comet. The Sun is the great magnetic center of the universe of matter. All the heavenly bodies evidence the theory of the above in relation to their polar- ity ; and from the fact of the phenomena of the precession of the equinoxes, or the constant change of their nodes, prove the magnetic theory of the solar system and the still more important truth of the Sun's motion in the heavens and the vastness of its orbit. The time of one revolution of the Sun on its axis being over twenty-five days ten hours, and in its orbit not less than 26,858 years. It must and will be conceded that the Comets come in to the Sun positively and go out negatively ; and as those heavenly messengers perform their revclutioris to and from the Sun, the law of God in the physical world is made to appear. On this theory is based the great fact of the crea- tion of matter; not one jot or tittle can pass out of the power of this wonder- ful law. All animate beings derive their physical action, and all bodies their motion from this law. Inanimate matter is held by its negative and positive affinity or its polarity, particle to particle. Not a seed germinates in the soil, or a drop of dew falls from heaven to moisten the earth withoiit this law. All that comes down is first attracted upward, and falls by the same law as its bulk increases. Water possesses a magnetic property of its own, its composition being oxygen and hydrogen. Thus move on by, unchangeable law all the created material universe of God. Beauty as a Law. Beauty is under the law of four cardinal heads, viz. : Form, Motion, Color, and Sound. From these emanate all that is beautiful in time and sense. Both the animal and vegetable kingdom prove the above. All the attri- butes of beauty are concentrated in woman; that most exquisite combina- tion of form, motion, colol- and sound— the person of a just-balanced woman — the mother of us all, and the angel to man. The cardinal »laws of the mind are governed by the four cardinal senses of the body. These are paraphrased in Ecolesiastes xii. 6 : — " Or ever the silver cord be loosed, or the golden bowl be broken, or the pitcher be broken at the fountain, or the wheel broken at the cistern." In this noted and memorable essay is described, in most beautiful language, the dissolution of the eye, the ear, the taste and feeling of man in death. DIYINE AGENCY. At the funeral obsequies of tlie Hon. Jolm C. Calhoun, M. C, who died March 31st, 1850, the speaker selected the 6th and 7th verses of the Ixxxii. Psalm, as adapted to the character of this eminent American statesman and scholar; viz., "I have said ye are gods; and all of you are children of the Most High. But ye shall die like men, and fall like one of the princes." Here the psalmist intimates or indorses this sentiment, " That man is diviue in his origin, and eternal in his duration." But more recently I was struck with the impressive address of the present Empeeoe Alexaitdee, of Etjssia, at his CoEOJiTATioN, whcu he said: — "Gen- tlemen, and House of Lords, — It has pleased God to call the Emperor, my father, to eternal life." This most profound sentiment of this young Christian monarch, will forever secure to him the respect due to such distinguished talent, seen in his choice of words and reverence for his father and for God. For God hath said, " By me kings reign and princes decree justice ; by me princes rule and nobles, &oen all the judges of the earth." God's eternal pur- poses of life and destiny of men and nations are clearly seen or revealed. 7 98 ASTBONOMY AND NAVIGATION. REMARKS ON THE PLATES ACCOMPANYING THIS WORK. The object of the preceding compend is to illustrate first principles in astronomy, a true knowledge of which, and of the Earth's motion on her axis and in her orbit, is almost indispensable to a correct method of finding a ship's latitude or longitude. To perfect this knowledge, and in order to simplify this subject as much as possible, I have introduced a series of plates or cards, relating to both astronomy and navigation, in which the Sun and its declination, the Moon and its changes, and the motions of the Earth, each and all, from an astronomical, nautical, and geographical point of view, are so far explained that the practical part of navigation is made extremely simple, and a mistake made almost impossible in finding the latitude or longitude on whatever part of the surface of the globe the navigator may be. On an inspection of these plates, it will be seen that the eclipses for the years 1859, 1860, and 1861 are laid down in a new form or configuration, as is also the transit of Mercury on the 11th of November, 1861. In the plate illustrating this transit, the Earth will be seen to have passed the autumnal equinox, and will appear in the Sun's southern hemisphere, south of the Sun's equator,. 17° 44' 43"; the planet Mercury will be seen in its winter solstice, and in its return to a node with the Sun, or an equi- nox. The transit over 'the Sun's disk will be visible to that part of the Earth where the Sun can be seen. At Greenwich, it will be visible at about eight o'clock in the morning (20 h. 6 m.) Though the transit of Mercury takes place every eighty-eight days through all time, the position of the Earth forbids our seeing it except at much longer intervals. The process of finding a ship's latitude is fully worked out and explained on another of these cards ; on which, at the same time, are exhibited the various changes and declinations for a solar year. The plate intended to illustrate the method of ascertaining longitude by chronometer time will be found sufficient to give a true idea of the motions of the earth on her axis, and the rate of motion per hour, minute, and for every fifteen seconds. This motion of the Earth causes the apparent motion of all the heavenly bodies in a solar day. Another plate exhibits the Moon in its changes ; on which, also, the planets Mars, Jupiter, and Saturn are made to appear, for the purpose of showing their meridian passages, and their distances east and west of the Moon for lunar observations. This card also refers the navigator to the north polar star as an object of confidence in nautical science and_ practice ; as it is one of the safest objects in space for finding lati- tude by altitude, if it be measured where it stands, without horizon or zenith being forced. The altimeter measures the altitude of all bodies where it finds them, and gives the zenith distance at the same time. The day is coming when the accuracy of this in- strument, in finding correct altitudes, will give it the precedence of all others. The axis of the Earth is not supposed to be in an absolutely perfect line with the polar star, yet the Earth moves in her orbit from her summer solstice on the east side of the Sun to her winter solstice on the west side, one hundred and eighty millions of ASTRONOMY AND' NAVIGfATIOliT. 99 miles, without producing any perceptible parallax — a fact from which may be inferred its enormous distance as well as that of all the fixed stars. The polar star is always on the meridian, and all surrounding objects make their meridian passages above or below it, so that, if these passages were recorded accurately, they would furnish to the navigator the best method for finding longitude. The axis motion of the earth will detect an error of less than thirty seconds with a proper instrument for this purpose. The card or engraving relating to longitude will require a little attention. At first sight it will appear simple, but by taking up each idea or position separately this device will be found usefiil and interesting. This table shows the method of taking lunar ob- servations and the distance of each planet from the Moon. It is practically operated by turning the wheel representing the Earth's motions on her axis, the hour, half-houiy and quarter-hour lines, degrees, &c. This operation with the ship-master soon becomes perfectly easy and natural. By this wheel any place on the globe may be brought to the Sun's meridian by the aid of a chronometer with the time of Greenwich. This time will be found slow by traveling west, so that when Greenwich noon is at New York city, the Sun will pass the meridian at four hours and fifty-six minutes P. M. ; this will show 74° west longitude from Greenwich. In like manner we may travel east or west with the correct time of any other place. The meridian passage of the Sun in the place of the observer gives the longitude either east or west, the rate of motion of the earth on her axis being regular and re- liable to a second of time in a solar year. Thus, by this simple method- of time and motion, the navigator can tell his precise locality, and his distance from London, St. Petersburg, San Francisco, or Canton iu China. East or west 180° brings him under Greenwich, if he is in latitude 51° north. This is mentioned merely as an illustration to the student or new beginner, who; by the study of this simple card, may come to understand the whole subject of longitude. The author hopes to be able, by close application, to introduce a better method of finding longitude by meridian passages of the fixed stars, which are alluded to in the card. He is confident that an accuracy within 30" may be attained by this rule, when carried out and tabled, or properly recorded. Plate v., on local attraction, exhibits the action of the magnetic needle, when brought under the forces of atmospheric electricity, which is perpendicular to the geo- centric line of the Earth's equator, on all sides of the earth, from pole to pole. The sides of an iron ship have the power of a strong battery ; the iron being made to stand perpendicular, becomes a positive and a negative force in proportion to its mass. The upper end of a bar or of a smoke-pipe becomes a negative pole, and, as can be clearly demortstrated, attracts the north pole of the compass, as seen in the engraving. The ship-master will readily see the necessity of fully testing the liability of his compass to vary under quarter headings. North and south headings . generally give a correct course. The compass is the most important instrument in the ship ; .it is, therefore, a matter of the first consideration to the navigator that he should have a good one. Probably the best is the " Improved Compass," invented by Hall Colby. This com- pass has proved its superior force as a binnacle compass, and being constructed with duplicate polar-line needles, as shown on the left of the engraving, the card has less oscillation and more directive force — its poles also being concentric, and there being four polar points in the line of two oscillating polar-line needles. The following testimonials as to the superiority of this compass make comment un- necessary : I certify that I liave used the Improved Patent Compass, invented by Hall Oolby, and find it a superior Marine Binnacle Compass, being accurate in calm weather, giving the ship's heading, and more steady in storms and rough seas than any Compass I have ever seen. I can recommend this Compass to all ship-owners. Jacob Lokman, Sandy Hook and New Tork Pilot. 100 ASTKONOMT AITO NAVIGATION. I certify that in the month of March, 1847, hy request of myself, Mr. Hall Colby put on board the U. 8. Iron Steamer " Scourge," three of his patent Marine Compasses, and by these Compasses I cruised the Mexican coast, in the late war with Mexico, to my perfect satisfaction, without any artificial arrangement of Magnets. These Compasses gave my courses correctly, under the most severe trial of local attractive properties of the brig. I can safely recommend these Compasses to be superior to the common Compass, being quick in their directive force, and superior as a heavy weather and storm Compass. C. G. HuuTEE, Lt. Oom'dr., U. 8. Navy. New Yoek, April 12, 1847. Ship " Kensington :" I certify that the Compasses have been irregular and inaccurate, dif- fering from each other, in the wheel-house half a point, and binnacle outside one point and a half. Mr. H. Colby has furnished me with two of his improved Compasses for the wheel- house, which perfectly agree with each other, and has pointed out the causes of variation and local attraction, to our perfect satisfaction, on the subject of electricity and magnetic influences. I recommend all interested in sea-faring to see Mr. Colby on this subject, and his Compass. C. H. Cheistianson. IT. S. Sttbveting Stbamee " Coewiu," ) New Yobk, January 25, 1864. J I have used one of Mr. Hall Colby's Patent Improved Mariner's Compasses, for two years, on board of two U. S. vessels under my command, and have found it more perfect than any Mariner's Compass I have seen, being more steady and less affected by local attraction. I prefer it to any I have yet used. T. Augs. Oeaten, Lt. Oom'dr. TJ. S. Stbamee "PEDCOEToif," ) Navy Taed, New Yoek, May 9, 1854. j This is to certify, that there has been in use, on board of this ship, H. Colby's Mariner's Compass, and that we consider it a superior instrument, vibrating less in a seaway than the ordinaiy Compass, and can with confidence recommend it to general use. Henet Eagle, Commander. William W. Low, Act'g Master. New Yoek, November 13, 1855. Me. Hall Colby: My Bewr Sir— In April, 1853, you furnished me with one of your Patent Marine Compasses, which was placed in use in the binnacle of our ship, and to the best of my belief, the " Macedonian" was steered and navigated by that Compass entirely, during the outward passage to the East Indies, touching at Madeira, Canaries, Prince's Island, St. Helena, and at Anger Point. I noticed myself and recollect the master of the ship fre- quently remarking, its great accuracy and its superiority over the other Compass which stood in another binnacle. Yonr obedient servant, L. E. AvEEY, late 1st Lt. of TJ. S. Ship "Macedonian." Hall Colby, Esq. : Deiw iSir— Having had your "Binnacle Compass" twelve months in constant use, it gives me pleasure to say, that I consider it the hest Compass now in use, being less affected by heal attractions and the motion of the ship, in a seaway. Yours, &c., Chaeles S. Boggs, Commander, TJ. S. Navy, May 2, 1857. Commanding TJ. S. Mail Steamer "Illinois." New Yoek, March 1, 1858. •I hereby certify that Mr. Hall Colby's Patent Marine Compasses have been in constant use on board of the ship " New World," for the last eight years, and I am fully satisfied that they are more steady in heavy weather, and less subject to local attractions than any other Com- pass I have ever used. H. Knight, Master Ship "New World." I certify that having manufactured Hall Colby's Improved Compass, and investigated its principles as a Marine Binnacle Compass, I believe it possesses decided merit over the com- mon Compass for accuracy and directive force. Robert Meeeill, Manufacturer, and Mathematical Instrument Maker, No. 152 Front-street, New York. ->M 159 NAUTICAL ALMANAC FOE THE YEAR 1859. I'',iirth Hi a -Stufmief^ . ■^'iilsl u-p . Jill If 2/" 0- Da-i: ■l:i "■/7 '30 "Korth} Eclip.ie of Son July ^9.'^s.^^6:.s^ [Irfliimiirin IS "oOTai'JN'. Lang f>4 " 73 .? i'cut . Eclip'^i> iifMoon Auij. I.i'^l'- 20: Ecljp.ye of the Sj^fi^ AugJ>7!* ISl'SO!"' "^v Buhn atton 10 " 10 >.3 -Sof. Luriy 4^ ' 67 "'^ EfiJit. Ney-ili^'^ aiul pijshLvB ordwr of the ]S^"6. EcHpsfs forl859. ITn g'lietic Poles . Partj'ai Eclipm of the Sun. Long 166° id: JTiutA. 4"^ S*" .3S '^PJIf. L(d>. a " Sir South Er.lifjsF. of the S'un . fjyng 5'i''.^:iT \Lat. .South 20° 59 ^Jl^thp!2 a van SUN'S Diff. Equation of Time, Diff. ^ g ^ a ■s o 1 A}>parent Declination. for Ihr. to be added to Apparent Time. for Ihr. Apparent Declination. for Ihr. to ie added to Apparent Time. for Ihr. p p P / n II m. s. s. y // IJ m. s. s. Sat. 1 S.23 2 Y 12 3 43 Tues. 1 S.17 9 41 42 13 51 Sun. 2 22 57 1 13 4 12 Wed. 2 16 52 30 43 13 68 Mod. 3 22 51 27 15 4 40 Thur. 3 16 35 2 44 14 6 Tues. 4 22 45 26 16 5 7 Fri. 4 16 17 16 46 14 11 Wed. 5 22 38 57 17 5 35 Sat. 5 15 69 13 45 14 17 Tliur. 6 22 32 2 18 6 1 Sun. 6 15 40 64 46 14 21 Fri. 1 22 24 40 19 6 28 Mon. 7 15 22 19 47 14 26 Sat. 8 22 16 51 20 6 54 Tues. 8 16 3 28 47 14 27 Sun. 9 22 8 37 21 7 19 Wed. 9 14 44 22 48 14 29 Mon. 10 21 59 56 22 7 44 1 Thur. 10 14 26 2 48 14 31 Tues. 11 21 50 50 23 8 8 Fri. 11 14 5 27 49 14 31 Wed. 12 21 41 18 24 8 31 Sat. 12 13 45 38 50 14 31 Thur. 13 21 31 21 25 8 54 Sun. 13 13 25 37 50 14 29 J'l-i. 14 21 20 59 26 9 16 Mon. 14 13 6 22 51 14 28 Sat. 15 21 10 13 27 9 38 Tues. 15 12 44 54 61 14 26 Sun. 16 20 59 2 28 9 59 Wed. 16 12 24 14 62 14 21 Mon. 17 20 47 28 29 10 19 Thur. 17 12 3 23 62 14 17 Tues. 18 20 35 29 30 10 38 Fri. 18 11 42 20 63 14 12 Wed. 19 20 23 8 31 10 57 Sat. 19 11 21 6 63 14 7 Thur. 20 20 10 23 32 11 15 ,0 Sun. 20 10 69 41 53 14 1 Fri. 21 19 57 16 33 11 32 Mon. 21 10 38 6 54 13 54 Sat. 22 19 43 47 34 11 49 Tues. 22 10 16 21 54 13 46 Sun. 23 19 29 65 35 12 4 Wed. 23 9 64 26 66 13 38 Mon. 24 19 15 42 36 12 19 Thur. 24 9 32 23 55 13 29 Tues. 25 19 1 7 37 12 34 Fri. 25 9 10 11 65 13 20 Wed. 26 18 46 12 38 12 47 Sat. 26 8 47 50 56 13 10 Thur. 27 18 30 56 39 13 Sun. 27 8 26 21 56 13 Mon. 28 8 2 45 66 12 49 Fri. 28 18 15 20 39 13 11 Sat. 29 17 59 24 40 13 22 Tues. 29 S. 7 40 2 12 37 Sun. 30 17 43 9 41 13 33 Mon. 31 17 26 34 42 13 42 Tues. 32 S.17 9 41 13 51 — ' 164 1859. AT GEEENWICH APPAEENT NOON". 1859, MARCH, 1§59. APRIIi, 1859. 1 1 THE SUN'S Diff. Equation of Time, Diff. ■i a> 5 g THE SUN'S Diff Equation of Time, , toie added to Diffi' o fe- ci O n Apparent Declination. for Ihr. to be added to Apparent Time. for Ihr. ■B O 1 ' 0) ■3 ■s 1 Appareni Declination. for Ihr. for Ihr. suU.from Apparent Time. m. s. s. o / // m. s. 9. Tnes. 1 S. 7 40 2 57 12 37 Fri. 1 N. 4 27 67 4 2 Wed. 2 7 17 12 57 12 25 Sat. 2 4 50 7 57 3 44 Thur. 3 6 54 16 57 12 13 Sun. 3 6 18 10 57 3 26 Fri. 4 6 31 14 57 12 Mon. 4 5 36 7 67 3 8 Sat. 5 6 8 7 58 11 47 Tues. 5 5 58 58 56 2 51 Sun. 6 6 44 65 58 11 33 Wed. 6 6 21 42 56 2 33 Mon. 7 5 21 38 58 11 19 Thur. 7 6 44 20 66 2 16 Tues. 8 4 58 17 58 11 4 Fri. 8 7 6 51 55 1 59 Wed. 9 4 34 52 58 10 49 Sat. 9 7 29 16 65 1 42 Thur. 10 4 11 24 58 10 33 Sun. 10 7 61 31 55 1 25 Fri. H 3 47 53 58 10 18 Mon. 11 8 13 39 54 1 9 Sat. 12 3 24 19 59 10 1 Tues. 12 8 35 39 54 53 Sun. 13 3 44 59 9 46 Wed. 13 8 57 SO 54 37 Moil. 14 2 37 6 59 9 28 Thur. 14 9 19 11 53 21 Tues. Wed. 15 16 2 13 27 1 49 46 59 59 9 11 8 54 Fri. Sat. 15 16 9 40 44 10 2 7 53 53 6 % 8 Thur. IT 1 26 5 59 8 36 Sun. 17 10 23 20 52. 23 Fri. 18 1 2 23 59 8 19 Mon. 18 10 44 23 52 37 Sat. 19 38 41 59 8 1 Tues. 19 11 5 15 51 51 Sun. 20 S. 15 59 7 43 Wed. 20 11 25 57 51 1 4 Mon. 21 N. 8 40 59 7 25 Thur. 21 11 46 27 50 1 17 Tues. 22 32 21 59 7 6 Fri. 22 12 6 46 60 1 29 Wed. 23 56 59 6 48 Sat. 23 12 26 54 49 1 41 Thur. 24 1 19 37 58 6 29 Sun. 24 12 46 49 49 1 53 Fri. 25 1 43 13 58 6 n Mon. 25 13 6 31 48 2 4 Sat. 26 2 6 46 68 5 52 Tues. 26 13 26 1 48 2 15 Sun. 27 2 30 17 58 5 34 Wed. 27 13 46 18 47 2 26 Mon. 28 2 53 45 58 5 15 Thur. 28 14 4 21 47 2 34 Tues. 29 3 17 lo' 58 4 67 Fri. 29 14 23 10 46 2 43 Wed. 30 3 40 30 58 4 39 Sat. 30 14 41 45 46 2 52 Thur. 31 4 3 47 58 4 20 Sun. 31 N.16 6 3 Fri. 32 N. 4 27 4 2 J 165 1859. AT GEEENWICH APPAEENT NOON. 1859. OTAT, 1§59. JUWE, 1859. 4. 1 THE SUN'S Diff. Equation of Time, Diff. ■i 1 § THE SUN'S Diff. Equation of Time, Diff. n 1 Cm O a Apparent Declination. for Ihr. to be subt.from Apparent for Ihr. o ■B P Apparent Declination. for Ihr. subt.from for llir. added, to Apparent Time. o / // H m. s. s. o / // II m. s. s. (S^MW. 1 N.IS 6 45 3 Wed. 1 N.22 1 43 20 2 33 Mon. 2 15 18 12 44 3 7 Thur. 2 22 9 48 19 2 24 Tues. 3 15 36 3 43 3 14 Fri. 3 22 17 30 18 2 14 Wed. 4 15 53 38 43 3 20 Sat. 4 22 24 48 17 2 4 Thur. 5 16 10 58 42 3 26 Sun. 5 22 31 43 16 1 54 Fri. 6 16 28 1 41 3 31 Mon. 6 22 38 14 16 1 43 Sat. 1 16 44 48 41 3 36 Tues. 7 22 44 22 14 1 33 /Swra. 8 11 1 18 40 3 40 Wed. 8 22 50 5 13 1 22 Mon. 9 17 17 31 39 3 43 Thur. 9 22 55 25 12 1 10 Tues. 10 17 33 27 39 3 46 Fri. 10 23 20 11 69 Wed. 11 17 49 5 38 3 49 Sat. 11 23 4 51 10 47 Thur. 12 18 4 25 37 3 51 Siin. 12 23 8 57 9 35 Fri. 13 18 19 27 36 3 52 Mon. 13 23 12 40 8 23 Sat. Sun. 14 15 18 34 10 18 48 35 36 35 3 53 3 53 Tues. Wed. 14 15 23 15 57 23 18 50 7 6 10 p 1 Mon. 16 19 2 40 34 3 63 Thur. 16 23 21 19 5 14 Tues. lY 19 16 27 33 3 62 Fri. 17 23 23 23 4 27 Wed. 18 19 29 54 32 3 50 Sat. 18 23 25 2 3 40 Thur. 19 19 43 1 31 3 48 Sun. 19 23 26 17 2 52 Fri. 20 19 55 48 31 3 45 Mon. 20 23 27 6 1 1 6 Sat. 21 20 8 15 30 3 42 Tues. 21 23 27 31 1 18 Sun. 22 20 20 21 29 3 38 Wed. 22 23 27 81 1 1 31 Mon. 23 20 32 7 28 3 34 Thur. 23 23 27 6 2 1 44 Tues. 24 20 43 32 27 3 29 Fri. 24 23 26 17 3 1 67 Wed. 25 20 54 35 26 3 24 Sat. 25 23 25 2 4 2 10 Thur. 26 21 5 17 25 3 18 Sun. 26 23 23 23 5 2 23 Fri. 2Y 21 15 37 24 3 12 Mon. 27 23 21 19 6 2 35 Sat. 28 21 25 35 24 3 5 Tues. 28 23 18 51 7 2 48 Sun. 29 21 35 11 23 2 57 Wed. 29 23 15 67 8 3 Mon. 30 21 44 24 22 2 50 Thur. 30 23 12 40 9 3 12 Tues. 31 21 53 15 21 2 41 Fri. 31 N.23 8 57 •3 24 Wed. 32 N.22 1 43 2 33 166 1859 AT GKEENWICH APPARENT NOON. 1859. JUIY, 1859 AUeUST, 1859. 1 a 1 a; 1 THE SUN'S Diff. Equation of Time, Diff. 1 THE SUN'S Diff. Equation of Time, to ie added to Diff. o n O a Ajrparent Declination. for Ihr. to he added to Apparent for Ihr. .a ■s n 0) A;pparent Declination. for Ihr. for Ihr.l i 1 subt.from Apparent Time. o / II It m. s. s. O 1 II // m. s. s. Fri. 1 N.23 8 57 10 3 24 Mon. 1 N.18 6 42 37 6 4 Sat. 2 23 4 51 11 3 36 Tues. 2 17 51 31 38 6 1 '0 Sun. 3 23 20 12 3 47 Wed. 3 17 36 3 39 6 56 Mon. 4 22 55 25 13 3 59 Thur. 4 17 20 18 40 6 52 Tues. 5 22 50 1 14 4 9 Fri. 5 17 4 16 40 5 46 Wed. 6 22 44 24 15 4 20 Sat. 6 16 47 57 41 5 40 Thur. 1 22 38 18 16 4 30 Sun. 7 16 31 23 42 5 34 Fvi. 8 22 31 48 17 4 39 Mon. 8 16 14 32 42 5 26 Sat. 9 22 24 55 18 4 49 Tues. 9 15 57 26 43 6 19 Sun. 10 22 17 39 19 4 58 Wed. 10 15 40 4 44 5 10 Mon. 11 22 10 20 5 6 Thur. 11 15 22 28 44 5 1 Tues. 12 22 1 58 21 5 14 Fri. 12 15 4 37 45 4 52 Wed. 13 21 53 33 21 5 21 Sat. 13 14 46 31 45 4 42 Thur. 14 21 44 46 22 5 28 Sun. 14 14 28 11 46 4 31 Fri. 15 21 35 37 23 5 35 Mon. 15 14 9 38 46 4 20 Sat. 16 21 26 5 24 5 41 Tues. 16 13 50 50 47 4 8 Sun. 17 21 16 12 25 5 46 Wed.' 17 13 31 50 48 3 56 Mon. 18 21 6 57 26 5 51 Thur. 18 13 12 36 48 3 43 Tues. 19 20 55 20 27 5 56 Fri. 19 12 53 10 49 3 30 Wed. 20 20 44 23 28 6 Sat. 20 12 33 32 49 3 16 Thur. 21 20 33 4 29 6 3 Sun. 21 12 13 41 50 3 2 Fri. 22 20 21 25 30 6 6 Mon. 22 11 53 39 50 2 47 Sat. 23 20 9 25 30 6 9 Tues. 23 11 33 25 51 2 32 Sun. 24 19 57 4 31 6 11 Wed. 24 11 13 51 2 17 Mon. 25 19 44 24 32 6 12 Thur. 25 10 52 24 51 2 1 Tues. 26 19 31 23 33 6 12 Fri. 26 10 31 38 52 1 44 Wed. 27 19 18 4 34 6 13 Sat. 27 10 10 42 52 1 28 Thur. 28 19 4 25 34 6 12 Sun. 28 9 49 36 63 1 11 Fri. 29 18 50 27 35 6 11 Mon. 29 9 28 21 53 53 Sat. 30 18 36 10 36 6 9 Tues. 30 9 6 56 53 35 Sun. Mon. 1 31 32 18 21 35 ISr.l8 6 42 37 6 7 6 4 Wed. Thur. 31 32 8 45 23 N. 8 23 42 54 17 167 1859. AT GEEENWIOH APPARENT NOON. 1869. SEPTEMBER, 1859. OCTOBER, 1§59.^ 4 4 ^ A i § THE SUN'S Diff. Eqnation of Time, Diff. % O THE SUN'S Diff. Equation of Time, Diff. ^ s ^ a ■3 1 Apparent for to be subt.from for 1 Apparent for to be subt.from for o •3 Declination. Ihr. Apparent Ihr. Declination. Ihr. Apparent Time. Ihr. p Pi fi n n m. s. s. o / // // m. s. s. Thiir. 1 N. 8 23 42 54 Sat. 1 S. 3 5 1 58 10 12 Fri. 2 8 1 52 54 19 Sun. 2 3 28 19 68 10 31 Sat. 3 7 39 55 55 38 Mon. 3 3 51 36 58 10 50 Sun. 4 7 17 51 55 57 Tues. 4 4 14 49 57 11 8 Mon. 5 6 55 40 55 1 17 Wed. 5 4 38 57 11 26 Tues. 6 6 33 21 56 1 37 Thur. 6 5 1 7 67 11 44 Wed. 1 6 10 57 56 1 57 Fri. 7 5 24 10 67 12 2 Thur. 8 5 48 27 56 2 17 Sat. 8 5 47 8 57 12 19 Fri. 9 5 25 50 56 2 38 Sun. 9 6 10 3 57 12 35 ' Sat. 10 5 3 9 56 2 58 Mon. 10 6 32 52 56 12 51 Sun. 11 4 40 22 57 3 19 Tues. 11 6 55 36 66 13 7 Mon. 12 4 17 30 57 3 40 Wed. 12 7 18 15 56 13 22 Tues. 13 3 54 34 57 4 1 Thur. 13 7 40 47 56 13 37 Wed. 14 3 31 34 57 4 22 Fri. 14 8 3 14 55 13 51 Thur. 15 3 8 30 57 4 43 Sat. 15 8 25 83 65 14 6 Fri. 16 2 45 22 57 5 5 Sun. 16 8 47 46 55 14 18 Sat. IV 2 22 11 58 5 26 Mon. 17 9 9 51 64 14 30 Sun. 18 1 58 66 58 5 47 Tues. 18 9 31 49 54 14 42 Mon. 19 1 35 39 58 6 8 Wed. 19 9 53 38 54 14 53 Tues. 20 1 12 20 58 6 29 Thur. 20 10 15 19 53 15 4 Wed. 21 48 59 58 6 60 Fri. 21 10 36 51 53 15 14 Thur. 22 25 36 58 7 11 Sat. 22 10 58 14 53 15 23 Fri. 23 N. 2 12 58 7 32 Sun. 23 11 19 26 52 15 32 Sat. 24 S. 21 12 58 7 53 Mon. 24 11 40 29 52 15 39 Sun. 25 44 37 58 8 13 Tues. 25 12 1 21 51 15 47 Mon. 26 1 8 3 58 8 34 Wed. 26 12 22 2 51 15 53 Tues. 27 1 31 28 58 8 64 Thur. 27 12 42 31 50 15 59 Wed. 28 1 54 53 58 9 14 Fri. 28 13 2 49 50 16 4 Thur. 29 2 18 17 58 9 33 Sat. 29 13 22 54 49 16 8 Fri. 30 2 41 40 58 9 53 Sun. 30 13 42 47 49 16 11 Mon. 31 14 2 26 48 16 U Sat. 31 S. 3 5 1 10 12 Tues. 32 S.14 21 62 16 16 168 1859. AT GKEENWICH . A.PPARENT NOOK 1859. JVOTSMBXIR, 1§59. DECEMBER , 1§59. a) 1 THE SUN'S Diff. Equation of Time, Difif. 1 4 1 THE SUN'S Diff. Equation of Time, to be subt.from Diff. CD •s p O p Apparent Declination. for Ihr. to he subt.from Apparent Time. for Ihr. 1 o 1 Cm O p Appaa'CTii Declination. for Ihr. for Ihr. added to Apparent Ttime. O / It II m. s. s. O 1 II ;/ m. s. s. Tues. 1 S.14 21 62 48 16 16 Thur. 1 s.21 47 17 23 10 52 Wed. 2 14 41 4 47 16 17 Fri. 2 21 56 30 22 10 29 Thur. >3 15 1 46 16 18 Sat. 3 22 6 18 20 10 6 Fri. 4 15 18 44 46 16 17 Sun. 4 22 13 41 19 9 42 Sat. 5 15 37 11 45 16 16 Mon. 5 22 21 37 18 9 18 Sun. 6 15 55 23 44 16 14 Tues. • 6 22 29 8 17 8 62 Mob. 7 16 13 19 44 16 11 Wed. 7 22 36 12 16 8 27 Tues. 8 16 30 59 43 16 7 Thur. 8 22 42 49 15 8 1 Wed. 9 16 48 22 42 16 3 Fri. 9 22 49 14 7 34 Thur. 10 17 5 28 42 15 68 Sat. 10 22 54 44 13 7 7 Fri. 11 17 22 16 41 15 51 Sun. 11 23 1 12 6 40 Sat. 12' 17 38 46 40 15 44 Mon. 12 23 4 60 10 6 12 Sun. 13 17 54 59 39 15 36 Tues. 13 23 9 12 9 5 44 Mon. 14 18 10 52 38 15 28 Wed. 14 23 13 7 8 5 16 Tues. 15 18 26 27 38 15 18 Thur. 15 23 16 33 7 4 46 Wed. 16 18 41 42 37 15 7 Fri. 16 23 19 32 6 4 17 Thur. 17 18 56 37 36 14 56 Sat. 17 23 22 3 5 3 48 Fri. 18 19 11 12 35 14 44 Sun. 18 23 24 5 3 3 18 Sat. 19 19 25 27 34 14 31 Mon. 19 23 25 40 2 2 49 Sun. 20 19 39 20 33 14 17 Tues. 20 23 26 46 1 2 19 Mon. 21 19 52 52 32 14 2 Wed. 21 23 27 24 1 49 Tues. 22 20 6 3 32 13 47 Thur. 22 23 27 33 1 19 Wed. 23 20 18 51 31 13 30 Fri. 23 23 27 14 1 49 Thur. Fri. 24 25 20 31 17 20 43 19 30 29 13 13 12 56 Sat. Sun. 24 25 23 26 27 23 25 11 3 4 18 11 Sat. 26 20 54 59 28 12 36 Mon. 26 23 23 27 5 41 Stm. 27 21 6 15 27 12 17 Tues. 27 23 21 15 6 1 10 1 Mou. 2£ 21 17 7 26 11 57 Wed. 28 23 18 35 7 1 40 Tues. 29 21 27 35 25 11 36 Thur. 29 23 15 26 9 2 10 Wed. 30 21 37 38 24 11 14 Fri. Sat. 30 31 23 11 50 23 7 46 10 11 2 39 3 8 Thur. 31 S.21 47 17 10 52 Sun. 32 S.23 3 14 3 37 169 THF, MOON'S EIGHT ASCENSION AND DECLINATION. JANUARY, 1859. FEBRUARY, 1859 MEAN TIME MEAN TIME. KISHT ASCENSION. DECLINATION. EIGHT ASCENSION. DECLINATION. Day. Midnight. Noon. Midnight. Day. Midnight. Noon. Midnight. h. m. s. o / // o / // h. m. S. o / // o / 11 1 17 1 S.27 4 13 s.27 41 22 1 20 16 33 S.23 58 8 S.22 17 53 2 17 54 48 27 59 27 66 66 2 21 4 25 20 23 33 18 16 33 3 18 48 1 27 35 19 26 54 41 3 21 50 16 15 58 21 13 30 24 4 19 39 38 25 55 49 24 39 46 4 22 34 39 10 54 12 8 11 9 5 20 29 4 23 7 44 21 21 9 5 23 18 20 S. 6 22 42 8. 2 30 16 6 21 16 12 19 21 23 17 9 56 6 2 13 N. 24 42 N. 3 20 44 1 22 1 23 14 48 13 12 17 36 7 47 21 6 16 18 9 9 47 8 22 45 17 9 39 28 6 56 7 8 1 34 50 11 69 24 14 43 14 9 23 28 47 S. 4 5 48 S. 1 12 50 9 2 26 47 17 19 8 19 44 44 10 12 58 N. 1 42 30 N. 4 38 49 10 3 21 6 21 67 25 23 54 20 11 58 59 7 34 35 10 28 10 11 4 21 2 25 32 33 26 49 2 12 1 48 7 13 17 38 16 48 12 5 24 53 27 41 28 8 59 13 2 41 35 18 35 9 20 67 48 13 6 30 42 28 2 16 27 28 53 14 3 40 13 23 5 34 24 54 57 14 7 35 56 26 26 24 54 45 15 4 43 57 26 22 24 27 24 29 16 8 38 22 22 57 15 20 36 22 16 5 51 16 27 58 13 28 1 23 16 9 37 2 17 55 31 14 58 26 17 6 59 19 27 32 55 26 33 3 17 10 32 3 11 48 69 8 30 54 18 8 6 5 25 3 14 23 6 8 18 11 24 13 N. 6 7 49 N. 1 43 6 19 9 6 37 20 45 15 18 4 33 19 12 14 40 S. 1 40 13 8. 4 69 19 20 10 3 30 15 8 15 12 28 20 13 4 29 8 11 45 11 15 19 21 10 56 26 8 45 6 N. 6 26 41 21 13 64 38 14 8 3 16 48 12 22 11 46 35 N. 2 5 22 8. 1 13 6 22 14 46 46 19 14 14 21 24 44 23 12 35 13 S. 4 27 18 7 35 9 23 15 38 12 23 18 29 24 64 28 24 13 23 32 10 34 49 13 24 39 24 16 31 46 26 11 47 27 9 45 25 14 12 28 16 3 10 18 29 25 17 26 50 27 47 58 28 6 13 26 15 2 41 20 40 51 22 37 33 26 18 19 34 28 4 35 27 43 22 27 15 54 26 24 17 58 26 41 5 27 19 12 2 27 3 10 26 4 46 28 16 47 29 26 46 27 32 2 28 20 2 38 S.24 49 8 8.23 17 24 29 17 41 9 27 68 42 28 6 45 30 18 34 29 27 63 13 27 21 28 31 19 26 30 S.26 31 5 S.25 22 57 170 THE MOON'S EIGHT ASCENSION AND DECLINATION. MARCH, 1S59. APRIL,, 1859. MEAN TIME. MEAN TIME. EI6HT ASCENSION. DECLINATIOK. RIGHT ASCENSION. DECLINATION. Day. Midnight. Noon. Midnight. Day. Midnight. Noon. Midnight. :' 1 2 3 h. m. s. 20 51 6 21 37 36 22 22 37 o / // S.21 30 47 17 18 14 12 22 22 / // S.19 30 37 14 55 1 9 41 44 1 2 3 h. m. s. 23 37 12 22 38 1 10 1 o / // S. 2 57 16 N. 2 69 17 8 66 53 o / // N. 6 6 58 31 11 49 17 4 5 6 23 6 50 23 51 1 36 24 6 54 32 S. 1 6 27 N. 4 49 26 S. 4 2 16 N. 1 61 20 7 46 4 4 5 6 2 19 2 54 18 3 52 14 14 36 26 19 41 55 23 50 50 17 14 52 21 64 51 25 27 6 1 8 9 1 23 40 2 13 56 3 7 56 10 39 23 16 7 53 20 56 59 13 27 23 18 38 34 23 31 7 8 9 4 63 34 5 56 47 6 59 46 26 41 6 27 64 11 27 19 53 27 30 41 27 50 39 26 22 31 10 11 12 4 6 5 7 34 6 11 8 24 46 31 27 15 26 28 5 33 26 12 19 27 53 44 27 49 52 10 11 12 8 36 8 68 16 9 52 37 24 69 50 21 6 40 16 3 23 13 46 18 41 10 13 6 13 13 14 15 7 14 34 8 15 57 9 14 13 27 6 28 24 19 38 19 58 21 25 55 56 22 19 35 17 18 50 13 14 15 10 44 21 11 34 25 12 23 64 10 2 29 N. 3 36 23 S. 2 56 44 6 61 37 N. 19 25 S. 6 9 33 16 18 10 9 16 11 1 45 11 52 36 14 24 12 8 2 36 N. 1 19 19 11 17 42 N. 4 42 6 S. 2 2 49 16 17 18 13 13 48 14 4 57 14 67 46 9 16 36 16 4 10 20 1 67 12 15 34 17 40 18 22 7 17 19 20 21 12 42 54 13 33 34 14 25 17 S. 5 21 29 11 88 7 17 11 52 8 34 4 14 31 24 19 37 41 19 20 21 15 62 12 16 47 39 17 43 6 23 54 46 26 31 6 27 44 34 25 23 2 27 18 22 27 49 49 22 23 24 15 18 23 16 12 43 17 7 38 21 47 11 25 11 55 27 17 58 23 38 59 26 25 6 27 50 12 22 23 24 18 37 26 19 29 42 20 19 31 27 34 38 26 6 21 23 28 36 26 59 48 24 55 31 21 46 59 25 26 2V 18 2 14 18 55 31 19 46 50 28 1 51 27 25 1 25 33 4 ^7 63 16 26 37 56 24 11 31 25 26 27 21 6 67 21 52 30 22 36 53 19 51 59 16 27 12 10 24 21 17 44 68 12 69 56 7 41 41 28 29 30 20 35 53 21 22 51 22 8 13 22 34 32 18 39 21 13 57 47 20 43 23 16 23 43 11 22 50 28 29 30 23 21 2 6 57 62 44 S. 4 63 8 N. 66 19 N. 6 62 16 S. 2 1 N. 3 54 18 N. 48 18 31 22 52 43 S. 8 40 11 S. 5 51 11 171 THE MOON'S EIGHT ASCENSION AND DECLINATION. MAY, 1S59. jijive:, 1§59. MEAN TIME. MEAN TIME. EIGHT ASCENSION. DEOLDTATION. Eiam ASCENSION. DECLINATION. Day. Midnight. Noon. Midnight. Day. Midnight. Noon. Midnight. 1 2 3 h. m. s. 1 42 28 2 36 4 3 34 2 o / // N.12 40 11 18 1 33 22 33 62 K15 26 30 20 25 22 24 23 63 1 2 3 h. m. 8. 5 IV 10 6 23 30 V 28 20 N.2°V 2V 26 6 23 34 45 6 36 N.2'v 2V 24 / // 34 42 6 8 40 51 4 5 6 4 35 57 5 40 IV 6 44 40 25 62 22 2V 34 29 2V 26 23 26 56 3V 2V 44 34 26 40 23 4 5 6 8 29 36 9 26 34 10 19 40 22 18 12 60 32 8 66 28 60 20 15 9 38 46 24 29 25 6 n 8 9 V 46 50 8 45 25 9 40 12 25 2V 63 21 52 11 IV 38 23 60 59 19 34 25 14 13 50 V 8 9 11 9 55 11 58 35 12 46 52 N. 6 S. 6 16 V V -11 22 33 N. 3 S. 3 9 4 33 16 54 22 12 10 11 12 10 31 48 11 21 18 12 9 60 11 16 52 N. 5 3 16 S. 1 20 4 8 12 30 N. 1 61 39 S. 4 29 40 10 11 12 13 36 50 14 26 19 15 18 43 12 IV 21 13 58 26 42 46 46 14 19 23 56 4 44 9 32 66 13 14 15 12 58 34 13 48 26 14 40 3 V 34 58 13 24 21 18 31 50 10 33 64 16 4 20 20 44 69 13 14 16 16 12 62 IV 8 4 18 3 8 26 2V 2V 1 IV 37 V 26 2V 2V 10 3V 28 64 24 65 16 IV 18 15 33 36 16 28 42 IV 24 22 22 41 58 25 41 25 2V 20 46 24 21 14 26 41 28 2V 39 3 16 IV 18 18 56 51 19 48 IV 20 3V 5 26 24 21 52 55 53 30 49 10 26 23 19 2 2 28 42 66 26 19 20 21 18 19 23 19 12 34 20 3 16 2V 36 30 26 31 24 24 13 34 2V 13 39 26 30 56 22 40 4V 19 20 21 21 23 22 22 V 43 22 50 65 IV 13 8 52 13 51 6 33 15 10 S. 5 3V 20 42 61 23 8 22 23 24 20 51 21 21 3V 10 22 21 25 20 54 1 16 44 23 11 55 34 18 54 45 14 24 14 9 19 35 22 23 24 23 33 65 IV 60 1 3 60 S. 2 N. 3 8 36 46 3 9 44 2 N. 6 11 12 24 54 11 31 6 25 26 27 23 4 58 23 48 53 34 16 6 3V 25 S. 69 12 N. 4 49 10 S. 3 60 14 N. 1 54 23 V 43 35 26 26 2V • 1 63 8 2 46 51 3 45 3V 14 19 23 13 24 14 44 26 24 16 21 26 48 48 28 19 6 36 28 29 30 1 22 20 2 14 13 3 10 4V 10 35 49 16 5 11 20 66 52 13 23 49 18 3V 13 23 51 28 29 30 4 49 9 5 66 43 V 2 32 26 2V N,26 22 32 3V 34 54 40 2V 2V N.25 14 3 31 19 48 12 31 4 12 8 N.24 46 46 N.26 8 IV 172 THE MOON'S EIGHT ASCENSION AND DECLINATION. JUI.Y, 1§59. AVOITST, 1§59. MEAN TIME. MEAN TIME. RISHT ASCENSION. DECLINATION. EIGHT ASCENSION. DECLINATION. Day. Midnight. Noon. Midnight. Day. Midnight. Noon. Midnight. | h. m. 8. o / // o / // h. m. s. O 1 11 o / // 1 8 6 52 N.24 13 38 N.22 13 38 1 11 27 58 N. 3 47 12 N. 23 16 2 9 7 7 19 51 37 17 11 18 2 12 18 66 S. 2 58 6 8. 6 14 16 3 10 3 6 14 16 35 11 11 14 3 13 9 29 9 22 47 12 21 36 4 10 55 36 7 58 46 N. 4 27 28 4 14 35 16 8 46 17 42 35 5 11 45 46 N. 1 25 12 S. 1 50 24 5 14 52 50 20 1 31 22 4 8 6 12 34 55 S. 5 2 1 8 7 32 6 16 46 26 23 49 14 25 16 46 1 13 24 9 11k 5 3 13 52 46 7 16 41 2 26 22 53 27 9 59 8 14 14 23 16 29 1 18 52 13 8 17 35 52 27 36 46 27 43 14 9 15 6 12 21 52 22 53 32 9 18 29 52 27 29 39 26 56 38 10 15 59 40 24 28 56 25 45 56 10 19 22 7 26 5 4 24 56 3 11 16 54 16 26 43 37 27 21 19 11 20 12" 3 23 30 61 21 50 51 12 17 49 5 27 38 44 27 35 51 12 20 69 31 19 57 33 17 52 24 13 18 42 56 27 13 4 26 31 6 13 21 44 48 15 36 54 13 12 31 14 19 34 50 25 30 57 24 13 62 14 22 28 29 10 40 41 8 2 47 15 20 24 15 22 41 13 20 64 33 16 23 11 19 S. 5 20 9 S. 2 34 7 16 21 11 8 18 55 23 16 46 16 16 23 54 9 N. 14 1 N. 3 2 52 17 21 55 53 14 25 39 11 58 17 37 69 6 51 8 8 37 21 18 22 39 9 9 23 41 6 43 59 18 1 23 47 11 20 6 13 57 25 19 23 21 48 S. 4 8 S. 1 13 23 19 2 12 36 16 27 48 18 49 9 20 4 49 N. 1 35 3 N. 4 23 57 20 3 5 18 20 69 15 22 66 43 21 P 49 16 7 11 68 9 57 40 21 4 2 20 24 36 58 25 67 21 22 1 36 17 12 39 28 15 16 36 22 5 3 23 26 57 14 27 33 11 23 2 27 1 17 43 57 20 2 16 23 6 7 7 27 43 9 27 26 42 24 3 22 21 22 7 54 23 57 69 24 7 11 26 26 40 8 26 26 38 25 4 22 34 25 29 28 26 39 14 26 8 14 13 23 46 20 21 41 9 26 5 26 60 27 24 22 27 42 22 26 9 14 9 19 13 42 16 27 10 27 6 33 6 27 31 24 26 60 38 27 10 10 69 13 25 4 10 11 4 28 7 38 40 26 40 19 24 1 48 28 11 5 13 N. 6 48 66 N. 3 22 17 29 8 41 22 21 57 25 19 30 21 29 11 57 49 S. 5 22 S. 3 30 44 30 9 40 13 16 44 12 13 42 56 30 12 49 50 6 60 48 10 2 48 31 10 35 27 N.IO 30 29 N. 7 10 43 31 13 42 12 S.13 4 14 S.15 62 53 173 THE MOON'S EIGHT ASCENSION AND DECLINATION. SEPTEMBER, 1S59. OCTOBER, 1S59. MEAN TTMK MEAN TIME. EISHT ASCENSION. DECLINATION. RIGHT ASCENSION. DECLINATION. Day. Midnight. Noon. Midnight. Day. Midnight. Noon. Midnight. ■ h. m. s. o / // o / II h. m. 9. O 1 II o / // 1 ■14 35 32 S.18 26 46 S.20 44 12 1 17 2 36 S.26 49 23 S.27 21 43 2 15 30 4 22 43 41 24 24 3 2 17 58 35 27 32 22 27 21 58 3 16 25 29 25 44 22 26 44 1 3 18 62 41 26 51 28 26 2 2 4 17 21 2 27 22 42 27 40 27 4 19 44 16 24 54 69 23 31 47 5 18 15 43 27 37 34 27 14 43 5 20 33 7 21 6'3 54 20 2 47 6 19 8 36 26 32 45 25 32 47 6 21 19 33 17 59 63 15 46 36 7 19 59 9 24 16 3 22 43 54 7 22 4 7 13 24 12 10 64 1 8 20 47 12 20 57 44 18 58 59 8 22 47 36 8 17 19 5 36 20 9 21 33 3 16 49 3 14 29 23 9 23 30 51 S. 2 49 22 S. 43 10 22 17 13 12 1 20 9 26 17 10 14 48 N. 2 49 14 N. 6 38 58 11 23 26 6 45 33 S. 4 30 11 1 23 8 26 53 11 11 15 12 23 43 31 S. 1 12 30 N. 1 37 4 12 1 48 30 13 50 9 16 21 31 13 27 23 N. 4 26 45 7 15 3 13 2 39 54 18 43 9 20 52 40 14 1 12 57 10 21 12 40 58 14 3 35 22 47 41 24 26 43 15 2 17 15 15 2 17 40 37 15 4 33 32 25 44 24 26 41 36 16 2 52 41 19 55 35 21 57 43 16 5 34 27 27 15 30 27 24 47 17 3 48 2 23 44 40 25 14 3 17 6 36 4 27 8 43 26 27 12 18 4 46 58 26 23 34 27 11 2 18 7 36 35 26 20 60 23 50 47 19 5 48 26 27 34 38 27 32 57 19 8 34 47 21 68 44 19 46 46 ,20 6 50 45 27 5 12 26 11 14 20 9 SO 18 17 17 15 14 32 43 '21 7 52 6 24 51 36 23 7 33 21 10 23 29 11 35 60 8 29 18 22 8 51 13 21 54 18 33 58 22 11 15 10 N. 6 16 64 N. 1 68 22 23 9 47 42 15 49 27 12 50 18 23 12 6 24 S. 1 20 30 S. 4 37 66 24 10 41 57 9 39 41 N. 6 20 49 24 12 58 12- 7 61 6 10 57 17 25 11 34 45 N. 2 56 59 8. 28 33 25 13 51 24 13 63 46 16 37 59 26 12 27 6 S. 3 52 34 7 12 1 26 14 46 26 19 7 28 21 19 68 27 13 19 55 10 23 56 13 25 33 27 16 43 10 23 13 34 24 46 40 28 14 13 54 16 14 18 18 47 54 28 16 40 50 26 68 7 26 47 15 29 15 9 17 21 4 19 23 1 50 29 17 38 11 27 13 64 27 18 23 30 16 5 47 S.24 39 5 S. 25 65 7 30 18 33 52 27 1 30 26 24 20 31 19 26 57 S.25 28 19 8.24 15 174 THE MOON'S EIGHT ASCENSION AND DECLINATION. IVOTEmBER, 1§59. DSCEmBER, 1S59. MEAN TIME. MEAN TIME. EIGHT ASCENSION. DECLINATION. EIGHT ASCENSION. DECLINATION. ; Day. Midnight. Noon. Midnight. Day. Midnight. Noon. Midnight. 1 1 2 3 h. m. s. 20 17 1 21 4 17 21 49 17 o / // S.22 46 2 19 7 34 14 45 13 / // S.21 3 1 17 1 10 12 21 2 1 2 3 h. m. s. 22 17 37 23 24 23 43 10 o / // S.ll 18 20 6 8 59 S. 44 25 1 II S. 8 46 7 8. 3 28 3 N. 2 49 4 5 6 22 32 52 23 15 56 23 59 28 9 49 50 S. 4 31 7 N. 1 1 36 7 12 49 S. 1 45 54 N. 3 50 6 4 5 6 27 2 1 13 5 2 2 25 N. 4 46 27 10 13 37 15 24 29 7 31 12 12 52 17 48 52 1 8 9 44 30 1 32 4 2 23 3 6 38 10 12 6 29 17 11 25 9 24 13 14 42 57 19 29 27 7 8 9 2 56 54 3 53 63 4 55 46 20 2 43 23 47 49 26 16 49 22 3 20 25 13 16 26 56 1 10 11 12 3 18 1 4 16 52 5 18 35 21 34 26 24 54 24 26 50 36 23 23 39 26 4 8 27 12 8 10 11 12 5 69 62 7 3 46 8 6 18 27 8 58 26 12 34 23 29 53 26 64 33 26 3 48 21 33 8 13 14 15 6 21 16 7 22 52 •8 21 49 27 7 41 25 40 34 22 36 10 26 36 59 24 19 41 20 32 20 13 14 15 9 3 22 9 57 64 10 49 41 19 16 26 13 65 31 7 52 15 16 42 49 10 57 39 N. 4 42 5 16 17 18 9 17 35 10 10 28 11 1 20 18 10 44 12 44 59 6 40 25 16 34 2 9 46 15 N. 3 30 4 16 17 18 11 39 49 12 29 31 13 19 63 N. 1 29 49 S. 4 61 23 10 53 13 S. 1 42 6 7 56 47 13 41 36 19 20 21 11 51 19 12 41 32 13 33 N. 17 36 S. 6 3 57 12 5 13 S. 2 64 32 9 8 19 14 52 19 19 20 21 14 11 48 16 5 43 16 1 33 16 18 55 20 52 30 24 19 8 18 43 12 22 46 1 26 33 27 22 23 24 14 26 25 15 21 57 16 19 10 17 27 17 21 51 49 25 2 47 19 47 49 23 37 21 26 6 52 22 23 24 16 58 28 17 55 12 18 50 21 26 26 53 27 9 26 25 51 26 58 48 26 57 47 25 34 22 25 26 2Y 17 16 53 18 13 40 19 8 11 26 48 52 27 6 4 25 58 26 27 8 30 26 42 19 24 55 53 25 26 27 19 42 64 20 32 24 21 19 2 24 24 47 21 17 58 17 19 29 22 68 43 19 24 19 16 5 10 28 29 30 19 59 42 20 48 6 21 33 50 23 36 21 20 13 22 S. 16 3 16 22 1 35 18 13 24 8.13 44 27 28 29 30 22 3 21 22 46 9 23 28 26 12 42 54 7 40 7 S. 2 21 19 10 14 7 8. 6 2 8 N. 21 14 31 11 9 N. 3 4 26 N. 5 47 7 175 1859. AT geee:nwioh mkat^i" nook 1859. JANUARY. FEBRUARY. ISARCH. 4 4 4 ■3 ■i ■3 ^ 1 THE MOON'S $ THi; MOON'S a o THE MOON'S 11 0} ■s a 1 Cm o a 1 Cm O a ■S Cm o o a ■3 n Age. Meridian Passage. Age. Meridian Passage. Age. Meridian Passage. Xboa. Noon. Mon. d. h. m. d. h. m. d. h. m. Sat. 1 27-1 22 38-7 Tues. 1 28-3 23 51-9 Tues. 1 26-5 22 33-0 Sun. 2 28-1 23 30-2 Wed. 2 29-3 6 Wed. 2 27-5 23 16-1 Mon. 3 29-1 6 Thur. 3 0-5 36-1 Thur. 3 28-5 23 57-8 Tues. 4 0-3 20-5 Fri. 4 1-5 1 18-3 Fri. 4 29-5 6 Wed. 5 1-3 1 8-6 Sat. 5 2-5 1 69-4 Sat. 5 0-7 39 o Thar. 6 2-3 1 54-2 SUTI. 6 3-5 2 40-3 Sun. 6 1-7 1 21 1 Fri. 1 3-3 2 37-4 Mon. 7 4-5 3 22-0 Mon. 7 2-7 2 4 8 Sat. 8 4-3 3 18-9 Tues. 8 5-5 4 6-0 Tues. 8 3-7 2 51 3 Sun. 9 5-3 3 59-6 Wed. 9 6-5 4 53-3 Wed. 9 4-7 3 41 6 Mon. 10 6-3 4 40-7 Thur. 10 7-5 5 45-2 Thur. 10 5-7 4 36 4 Tues. 11 7-3 5 23-3 Fri. 11 8-5 6 42-2 Fri. 11 6-7 5 35 5 Wed. 12 ' 8-3 6 9-0 Sat. 12 9-5 7 44-0 Sat. 12 7-7 6 37 3 Thur. 13 9-3 6 59-1 Sim. 13 10-5 8 48-5 Sun. 13 8-7 7 39 6 Fri. 14 10-3 7 54-9 Mon. 14 11-5 9 52-7 Mon. 14 9-7 8 39 9 Sat. 15 11-3 8 56-5 Tues. 15 12-5 10 53-9 Tues. 15 10-7 9 36 7 Sun. 16 12-8 10 2-6 Wed. 16 13-5 11 50-9 Wed. 16 11-7 10 30 Mon. 17 13-3 11 9-6 Thur. 17 14-5 12 43-8 Thur. 17 12-7 11 20 3 Tues. 18 14:3 12 14-2 Fri. 18 15-5 13 33-6 Fri. 18 13-7 12 8 9 Wed. 19 15-3 13 14-1 Sat. 19 16-5 14 21-6 Sat. 19 14-7 12 56 7 Thur. 20 16-3 14 8-7 Sun. 20 17-5 15 9-0 Siin. 20 15-7 13 45 1 Fri. 21 17-3 14 59-0 Mon. 21 18-5 15 56-8 Mon. 21 16-7 14 34 6 Sat. 22 18-3 15 46-5 Tues. 22 19-5 16 45-9 Tues. 22 17-7 15 25 7 Sun. 23 19-3 16 32-5 Wed. 23 20-5 17 36-3 Wed. 23 18-7 16 18 1 Mon. 24 20-3 17 18-3 Thur. 24 21-5 18 27-9 Thur. 24 19-7 17 10 9 Tues. 25 21-3 18 6-0 Fri. 25 22-5 19 19-9 Fri. 25 20-7 18 3 2 Wed. 26 22-3 18 53-3 Sat. 26 23-5 20 11-1 Sat. 26 21-7 18 53 8 Thur. 27 23-3 19 43-2 Sun. Mon. 27 28 24-5 25-5 21 0-7 21 48-0 Sun. 27 22-7 19 42 Fri. 28 24-3 20 34-4 Mon. 28 23-7 20 27 8 Sat. 29 25-3 21 25-9 Tues. 29 26-5 22 33-0 Tues. 29 24-7 21 11 5 Sun. 30 26-3 22 16-6 Wed. 30 25-7 21 53 6 Mon. 31 27-3 23 6-4 Thur. 31 26-7 22 35-3 Tues. 32 28-3 23 61-9 Fri. 32 27-7 23 17-3 176 1859. AT GREENWICH IVTEATiT E"OON. 1859. APRIIi. MAY. 3VNE. ■i ■3 4 i 4 4 § THE MOON'S ! 1 THE MOOK'S Pi i THE MOON'S CD <^ o o a 1=1 1- o a 1 1 o Age. Meridian Passage. Age. Meridian Passage. Age. Meridian Passage. Mon. Sbcm. JVoon. d. h. m. A. h. m. d. h. m. Fri. 1 27-7 23 17-3 Sun. 1 28-1 23 28-2 Wed. 1 0-2 6 8 Sat. 2 28-7 6 Mon. 2 29-i 6 Thur. 2 1-2 1 11 8 Sun. 3 0-1 0-9 Tues. 3 0-6 21-9 Fri. 3 2-2 2 16 4 Mon. 4 1-1 47-2 Wed. 4 1-6 1 20-4 Sat. 4 3-2 3 17 7 Tues. 5 2-] 1 37-2 Thur. 5 2-6 2 22-6 Sun. 5 4-2 4 14 4 Wed. 6 3-1 2 31-5 Fri. 6 3-6 3 26-0 Mon. 6 5-2 5 6 4 Thur. 1 4-1 3 30-0 Sat. 7 4-6 4 27-7 Tues. 7 6-2 5 55 Fri. 8 5-1 4 31-4 Sun. 8 5-6 5 25-7 Wed. 8 7-2 6 41 4 Sat. 9 6-1 5 33-3 Mon. 9 6-6 6 19-4 Thur. 9 8-2 7 27 2 Sun. 10 7-1 6 33-2 Tues. 10 7-6 7 9-4 Fri. 10 9-2 8 13 5 Mon. 11 8-1 7 29-8 Wed. 11 8-6 7 56-8 Sat. 11 10-2 9 1 3 Tues. 12 9-1 8 22-6 Thur. 12 9-6 8 42-9 Sun. 12 11-2 9 51 2 Wed. 13 10-1 9 12-3 Fri. 13 10-6 9 29-0 Mon. 13 12-2 10 43 1 Thur. 14 11-1 10 0-1 Sat. 14 11-6 10 16-3 Tues. 14 13-2 11 36 2 Fri. 15 12-1 10 47-2 Sun. 15 12-6 11 6-5 Wed. 15 14-2 12 29 2 Sat. 16 13-1 11 34-6 Mon. 16 13-6 11 56-8 Thur. 16 15-2 13 20 7 , Sun. 17 14-] 12 23-4 Tues. 17 14-6 12 49-9 Fri. 17 16-2 14 9 6 Mon. 18 15-] 13 14-1 Wed. 18 15-6 13 43-5 Sat. 18 17-2 14 55 6 Tues. 19 16-1 14 6-5 Thur. 19 16-6 14 36-3 Sun. 19 18-2 15 38 9 Wed. 20 17-1 15 0-0 Fri. 20 17-6 15 27-0 Mon. 20 19-2 16 20 2 Thur. 21 18-1 15 53-3 Sat. 21 18-6 16 14-9 Tues. 21 20-2 17 5 Fri. 22 19-1 16 45-1 Sun. 22 19-6 16 59-9 Wed. 22 21-2 17 40 7 Sat. 23 20-1 17 34-6 Mon. 23 20-6 17 42-6 Thur. 23 22-2 18 22 3 Sun. 24 21-1 18 21-3 Tues. 24 21-6 18 23-8 Fri. 24 23-2 19 6 5 : Mon. 25 22-1 19 5-6 Wed. 25 22-6 19 4-5 Sat. 25 24-2 19 54 6 Tues. 26 23-1 19 47-9 Thur. 26 23-6 19 46-0 Sun, 26 25-2 20 48 1 Wed. 27 24-1 20 29-3 Fri. 27 24-6 20 29-6 Mon. 27 26-2 21 47 2 Thur. 28 25-1 21 10-9 Sat. 28 25-6 21 16-4 Tues. 28 27-2 22 51 1 Fri. 29 26-1 21 63-7 Sun. 29 26-6 22 7-9 Wed. 29 28-2 23 57 1 Sat. 30 27-1 22 39-1 Mon. Tues. 30 31 27-6 28-6 23 4-9 6 Thur. 30 29-2 6 Sun. 31 28-1 23 28-2 Fri. 31 0-9 1 1-7 Wed. 32 0-2 6-8 177 1859. AT GEEENWiCH MEAlf NOOIT. 1859. JUI.Y. AUGUST. SEPTEMBER. i 4 i THE MOON'S 4 1) i 1 THE MOON'S i ^ THE MOON'S 1 o 1 1 o =3 i o n 1 O a Age. Meridian Passage. Age. Meridian Passage. Age. Meridian Passage. Noon. Jfoon. Mon. Fri. Sat. Sun. 1 2 3 d. 0-9 1-9 2-9 h. m. 1 1-7 2 2-3 2 58-1 Mon. Tues. Wed. 1 2 3 d. 2-6 3-6 4-6 h. m. 2 28-7 3 17-8 4 6-0 Thur. Fri. Sat. 1 2 3 d. 4-3 5-3 6-3 h. m. 3 35-6 4 27-7 5 20-8 Mon. Tues. Wed. 4 5 6 3-9 4-9 5-9 3 49-6^ 4 38-0 5 24-8 Thur. Fri. Sat. 4 5 6 5-6 6-6 7-6 4 54-5 5 44-1 6 35-2 Sun. Mon. Tues. 4 5 6 7-3 8-3 9-3 6 14-4 7 7-3 7 68-4 Thur. Fri. Sat. 1 8 9 6-9 7-9 8-9 6 11-4 6 59-0 7 48-2 Sun. Mon. Tues. 7 8 9 8-6 9-6 10-6 7 27-5 8 20-3 9 12-3 Wed. Thur. Fri. 7 8 9 10-3 11-3 12-3 8 46-9 9 32-7 10 16-1 Sun. Mon. Tues. 10 11 12 9-9 10-9 11-9 8 39-2 9 31-6 10 24-3 Wed. Thur. Fri. 10 11 12 11-6 12-6 13-6 10 2-5 10 50-2 11 35-2 Sat. Sun. Mon. 10 11 12 13-3 14-3 15-3 10 67-6 11 37-9 12 18-2 Wed. Thur. Fri. 13 14 15 12-9 13-9 14-9 11 16-1 12 5-8 ■12 52-7 Sat. Sun. Mon. 13 14 15 14-6 15-6 16-6 12 77-8 12 58-6 13 38-6 Tues. Wed. Thur. 13 14 15 16-3 17-3 18-3 12 59-3 13 42-3 14 28-2 Sat. Sun. Mon. 16 17 18 15-9 16-9 17-9 13 36-8 14 18-6 14 68-9 Tues. Wed. Thur. 16 17 18 17-6 18-6 19-6 14 18-6 14 59-8 15 43-3 Fri. Sat. Sun. 16 17 18 19-3 20-3 21-3 15 17-9 16 11-9 17 9-7 Tues. Wed. Thur. 19 20 21 18-9 19-9 20-9 15 38-7 16 19-0 17 1-2 Fri. Sat. Sun. 19 20 21 20-6 21-6 22-6 16 30-2 17 21-6 18 17-9 Mon. Tues. Wed. 19 20 21 22-3 23-3 24-3 18 10-0 19 10-7 20 9-8 Fri. Sat. Sun. 22 23 24 21-9 22-9 23-9 17 46-4 18 35-9 19 30-8 Mon. Tues. Wed. 22 23 24 23-6 24-6 25-6 19 18-4 20 21-2 21 23-8 Thur. Fri. Sat. 22 23 24 25-3 26-3 27-3 21 6-2 21 59-7 22 51-0 Mon. Tues. Wed. 25 26 27 24-9 26-9 26-9 20 31-0 21 36-1 22 40-2 Thur. Fri. Sat. 25 26 27 26-6 27-6 28-6 22 24-0 23 20-7 6 Sun. ' Mon. Tues. 25 26 27 28-3 29-3 0-9 23 41-2 6 31-5 Thur. Fri. Sat. Sun. Mon. 28 29 30 31 32 27-9 28-9 0-6 1-6 2-6 23 43-3 6 42-5 1 37-4 2 28-7 Sun. Mon. Tues. Wed. Thur. 28 29 30 31 32 0-3 1-3 2-3 3-3 4-3 14-1 1 5-2 1 55-1 2 44-9 3 35-6 Wed. Thur. Fri. Sat. 28 29 30 31 1-9 2-9 3-9 4-9 1 22-7 2 15-4 3 9-5 4 4-4 12 178 1859. AT GKEEISTWICH MEAJS" NOON. 1869. OCTOBER. IVOTEMBER. DECEMBER. J3 THE MOON'S ^ Age. Noon. Meridian THE MOON'S Age. Noon. Meridian THE MOON'S Age. Noon. Meridian Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 6-5 h. m. 4 4-4' 4 58-8 6 51-6 6 41-4 1 28-3 8 12-5 8 54-6 9 35-3 10 15-'7 10 56-8 11 39-6 12 25-2 13 14-4 14 1-1 15 4-8 16 4-4 17 4-3 18 2-7 18 58-3 19 51-0 20 41-3 21 30-4 22 19-4 23 9-6 ' 6 1-4 55-4 1 50-9 2 46-7 3 41-1 4 33-0 5 21-6 Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 d. 6-5 7-5 8-5 9-5 10-5 11-5 12-5 13-5 14-6 15-5 16-5 17-5 18-5 19-5 20-5 21-5 22-5 23-5 24-5 25-5 26-5 27-5 28-5 29-5 0-9 1-9 2-9 3-9 4-9 5-9 6-9 ii. m. 5 21-6 6 7-0 6 49-8 7 30-7 8 11-0 8 Sl-6 9 33-6 10 18-3 11 6-8 11 59-6 12 56-7 13 57-0 14 58-2 15 58-0 16 54-5 17 47-5 18 37-5 19 25-6 20 13-2 21 1-3 21 5l'-2 22 43-5 23 37-9 6 33-7 1 29-2 2 22-8 3 13-3 4 0-3 4 44-1 5 25-6 Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. S^in. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 d. 6-9 7-9 9-9 10-9 11-9 12-9 13-9 14-9 15-9 16-9 17-9 18-9 19-9 20-9 21-9 22-9 23-9 24-9 25-9 26-9 27-9 28-9 0-3 1-3 2-3 3-3 4-3 5-3 6-3 7-3 8-3 h. m. 5 25-6 6 5-7 6 45-5 7 26-3 8 9-1 8 55-4 9 46-2 10 42-0 11 42-3 12 45-0 13 47-5 14 47-2 15 42-9 16 34-7 17 23-7 18 11-2 18 68-6 19 47-0 20 37-3 21 29-9 22 24-4 23 19-5 6 13-6 1 5-3 1 53-8 2 39-0 6 1-7 JANUARY, 1859. 179 GEEENWICH MEAN TIME. LUNAR DISTANCES. Day of Star's Name and Noon. IIP'. Vlk. IXh. Month. Position. 1 Spica W. / // 49 2 21 o / // 50 31 59 52 1 31 O / // 63 30 69 Son E. 30 3 48 28 42 28 27 21 18 26 17 6 Sun W. 24 8'7 31 25 58 3 27 18 43 28 39 32 a Pegasi E. 45 40 30 44 19 48 42 59 29 41 39 35 a Arietis E. 85 4V 36 84 18 52 82 50 4 81 21 13 1 Sun W. 35 25 30 36 47 4 38 8 46 39 30 36 a Pegasi E. 35 8 19 33 52 12 32 37 1 31 22 52 a Arietis E. 13 55 54 72 26 37 70 57 13 69 27 45 Aldebaran E. 105 32 8 104 4 4 102 35 53 101 7 34 Jupiter E. 110 46 30 109 16 34 107 46 33 106 16 25 8 SUN_ W. 46 21 49 47 44 30 49 7 21 50 30 22 a Arietis E. 61 58 45 60 28 36 58 58 19 57 27 54 Aldebaran E. 93 44 9 92 15 4 90 45 50 89 16 27 Jupiter E. 98 43 59 97 13 6 95 42 5 94 10 56 9 Sun W. 51 28 6 58 52 13 60 16 33 61 41 7 a Arietis E. 49 53 38 48 22 19 46 50 50 46 19 10 Aldebaran E. 81 4V 1 80 16 45 78 46 11 77 15 26 Jupiter E. 86 32 35 85 23 83 27 59 81 55 22 10 Sun W. 68 41 21 70 13 21 71 39 38 73 6 10 Fomalhaut W. 35 12 27 36 26 13 37 41 28 38 58 6 a Arietis E. 37 38 13 36 5 29 34 32 35 32 69 30 Aldebaran E. 69 38 44 68 6 46 66 34 35 65 2 11 ; Jupiter E. 74 9 5 72 35 8 71 55 69 26 27 11 Sun W. 80 23 18 81 51 39 83 20 21 84 49 22 Fomalhaut W. 45 39 7 47 2 24 48 26 34 49 51 36 Mars W. 26 47 10 28 17 24 29 48 31 18 66 a Pegasi W. 24 58 29 26 7 37 27 19 33 28 33 58 Aldebaran E. 57 16 46 55 43 54 9 52 34 47 Jupiter E. 61 29 59 59 53 50 68 17 22 56 40 37 Saturn E. 119 57 117 24 16 115 47 15 114 9 53 12 Sun W. 92 19 48 93 51 96 22 36 96 54 34 Fomalbaut W. 57 8 24 58 37 54 60 8 3 61 38 51 Mars w. 38 59 7 40 32 18 42 5 51 43 39 49 a Pegasi w. 35 15 44 36 40 51 38 7 16 39 34 64 Aldebaran E. 44 40 32 43 5 8 41 29 35 39 63 64 Jupiter Pollux E. 48 32 1 46 53 19 45 14 18 43 34 56 E. 86 39 23 85 35 83 21 25 81 41 51 Saturn E. 105 57 50 104 18 19 102 38 24 100 58 7 13 Sun W. 104 40 29 106 14 55 107 49 46 109 25 2 Fomalhaut W. 69 21 57 70 56 18 72 31 11 74 6 36 Mars w. 61 35 45 53 12 12 54 49 4 56 26 22 a Pegasi Jupiter Pollux w. 47 8 41 48 42 11 50 16 30 51 51 36 E. 35 13 20 33 32 7 31 50 37 30 8 62 E. 73 18 71 36 69 53 36 68 10 45 Saturn E. 92 30 34 90 47 49 89 4 38 87 21 2 Regulus E. 110 11 31 108 29 20 106 46 42 105 3 40 180 JANUARY, 1859. GEEENWICH MEAN TIME. LUNAR DISTANCES. Day of the Star's Name and Midnight. XVI. XVIHi". xxp.. Month. Position. 1 Spica W. 55 23 O / // 66 29 42 o / t/ 57 58 67 o / // 69 28 9 Sun E. 24 39 26 23 18 46 21 68 16 20 37 69 6 Sun W. 30 28 31 21 32 32 42 44 34 4 8 a Pegasi E. 40 20 9 39 1 15 37 42 66 36 25 15 a Arietis E. 19 52 18 78 23 19 76 64 15 75 26 7 1 Sun W. 40 52 34 42 14 40 43 36 54 44 69 17 a Pegasi E. 30 9 55 28 58 20 27 48 17 26 40 a Arietis E. 67 58 10 66 28 29 64 68 41 63 28 46 Aldebaran E. 99 39 9 98 10 36 96 41 55 96 13 6 Jupiter E. 104 46 11 103 15 49 101 45 20 100 14 44 8 Sun W. 51 53 32 53 16 64 64 40 26 66 4 10 a Arietis E. 55 67 21 54 26 39 62 55 48 51 24 48 Aldebaran E. 87 46 55 86 17 13 84 47 21 83 17 19 Jupiter E. 92 39 35 91 8 6 89 36 26 88 4 36 9 SUN_ W. 63 5 53 64 30 53 66 56 8 67 21 37 ' a Arietis E. 43 47 20 42 15 19 40 43 8 39 10 46 Aldebaran E. 75 44 30 74 13 22 72 42 2 71 10 29 Jupiter E. 80 22 34 78 49 32 77 16 17 75 42 48 10 Sun W. 74 33 76 7 77 27 32 78 56 15 Fomalhaut W. 40 16 3 41 36 11 42 55 27 44 16 47 a Arietis E. 31 26 15 29 62 51 28 19 19 26 45 41 Aldebaran E. 63 29 33 61 66 42 60 23 37 58 60 18 Jupiter E. 67 51 42 66 16 42 64 41 25 63 6 51 11 Sun W. 86 18 44 87 48 28 89 18 33 90 48 59 Fomalhaut W. 51 17 27 52 44 6 64 11 28 65 39 35 Mars w. 32 50 14 34 21 54 36 53 65 37 26 20 a Pegasi w. 29 60 37 31 9 18 32 29 49 33 62 1 Aldebaran E. 51 21 49 25 41 47 60 60 46 16 46 Jupiter E. 55 3 32 53 26 8 61 48 26 50 10 23 Saturn E. 112 32 12 110 54 9 109 16 45 107 36 58 12 Sun W. 98 26 56 99 69 43 101 32 53 103 6 29 Fomalhaut W. 63 10 17 64 42 19 66 14 58 67 48 10 Mars w. 46 14 11 46 48 68 48 24 9 49 69 44 a Pegasi w. 41 3 39 42 33 28 44 4 17 45 36 2 Aldebaran E. 38 18 8 36 42 19 .36 6 29 33 30 42 Jupiter E. 41 66 15 40 16 14 38 34 65 36 54 17 Pollux E. 80 1 53 78 21 31 76 40 45 74 59 35 Saturn E. 99 17 25 97 36 19 95 54 49 94 12 64 13 Sun W. 111 44 112 36 62 114 13 26 115 50 26 Fomalhaut W. 75 42 33 77 19 78 65 58 80 38 24 ; Mars w. 58 4 6 59 42 16 61 20 61 62 69 53 a Pegasi w. 53 27 26 55 4 1 66 41 17 58 19 13 Jupiter E. 28 26 54 26 44 46 25 2 31 23 20 12 Pollux E. 66 27 30 64 43 48 62 59 41 61 15 9 Saturn E. 85 37 83 52 32 82 7 38 80 22 19 Eegulus E. 108 20 11 101 36 17 99 51 56 98 7 10 . JANUARY, 1859. 181 GEEENWICH MEAN" TIME. LUNAE DISTANCES. Day of the Star's Kame ! and Noon. IIP'. VP". IXi. Month. Position. 14 Sun w. ^ 1 " im 27 50 O i II 119 5 41 O / II 120 43 58 O / II 122 22 40 • Fomalliaiit w. 82 11 19 83 49 42 85 28 31 87 7 47 Mars w. 64 39 21 66 19 16 67 59 36 69 40 22 a Pegasi w. 59 67 49 61 37 3 63 16 53 64 57 19 Pollux E. 59 30 12 57 44 49 55 59 54 12 47 Saturn E. 78 36 33 76 50 21 75 3 43 73 16 39 Eegulus E. 96 21 57 94 36 19 92 50 14 91 3 44 15 Mars W. 78 10 35 79 53 52 81 37 33 83 21 37 a Pegasi W. 73 27 44 75 11 20 76 55 25 78 39 57 a Arietis w. 30 11 53 31 59 12 33 47 4 35 35 28 Pollux E. 45 15 33 43 26 56 41 37 57 39 48 36 Saturn E. 64 14 58 62 25 23 60 35 25 58 45 3 Eegulus E. 82 4 51 80 15 50 78 26 26 76 36 38 16 Mars W. 92 7 29 93 53 41 95 40 12 97 27 a Arietis w. 44 44 25 46 35 27 48 26 51 50 18 35 Aldebaran w. 16 23 2 17 50 12 19 21 45 20 56 48 Pollux E. 30 37 5 28 45 58 26 54 38 25 3 9 Saturn E. 49 27 43 47 35 13 45 42 25 43 49 19 Regulus E. 67 22 5 65 30 9 63 37 54 61 45 21 17 a Arietis W. 59 41 44 61 35 6 63 28 40 65 22 25 Aldebaran W. 29 25 31 31 n 37 32 58 40 34 46 33 Jupiter W. 23 56 45 25 48 6 27 40 2 29 32 26 Saturn E. 34 19 58 32 25 27 30 30 45 28 35 55 Regulus E. 52 18 44 50 24 44 48 30 35 46 36 15 Spica E. 106 20 4 104 26 10 102 32 5 100 37 50 18 a Arietis W. 74 52 59 76 47 19 78 41 39 80 35 59 Aldebaran w. 43 54 41 45 45 31 47 36 36 49 27 53 Jupiter w. 38 59 10 40 53 6 42 47 9 44 41 16 Reerulus E. 37 3 2 35 8 13 33 13 23 31 18 34 • Spica E. 91 4 58 89 10 13 87 15 28 85 20 43 19 a Arietis W. 90 6 46 92 36 93 54 15 95 47 43 Aldebaran W. 58 45 53 60 37 31 62 29 6 64 20 35 Jupiter W. 54 11 50 56 5 44 57 59 30 59 53 8 Pollux W. 15 32 37 17 24 19 19 16 22 21 8 35 Spica E. 75 47 57 73 53 45 71 59 43 70 5 51 20 Aldebaran W. 73 35 37 75 25 58 77 16 3 79 5 51 Jupiter Pollux W. 69 18 7 71 10 21 73 2 18 74 53 55 W. 30 29 18 32 21 34 12 28 36 3 39 Spica Antares E. 60 40 4 58 47 43 56 55 42 55 4 E. 106 32 11 104 39 45 102 47 38 100 55 50 Venus E. 117 58 23 116 12 22 114 26 36 112 41 7 21 Aldebaran W. 88 9 50 89 57 31 91 44 48 93 31 40 ! Jupiter Pollux W. 84 6 47 85 56 12 87 45 13 89 33 49 W. 45 14 58 47 4 10 48 52 59 50 41 24 Saturn W. 26 32 56 28 23 1 30 12 43 32 2 1 Spica E. 45 50 58 44 1 33 42 12 32 40.23 58 182 JANUARY, 1859. , GREENWICH MEAN TIME. ' LUNAR DISTANCES. Day of- the Star's Name • and Midnight. XVi. XVIII''. XXIi. Month. Position. 1 It o / // o / // o / // 14 Sun W. 124 1 48 125 41 21 127 21 20 129 1 42 1 Fomalhaut w. 88 47 28 90 27 33 92 8 2 93 48 53 Mars w. 11 21 34 73 3 11 74 46 14 76 27 42 a Pegasi w. 66 38 19 68 19 63 70 1 59 71 44 36 Pollux E. 52 26 8 50 39 5 48 51 38 47 3 47 Saturn E. 11 29 9 '69 41 14 67 62 53 66 4 8 Regulus E. 89 16 48 87 29 27 85 41 40 83 63 28 15 Mars W. 85 6 4 86 50 64 88 36 5 90 21 37 a Pegasi W. 80 24 64 82 10 16 83 56 1 85 42 9 a Arietis W. 31 24 21 39 13 43 41 3 32 42 63 46 Pollux E. 37 58 55 36 8 54 34 18 34 32 27 58 Saturn E. 56 54 18 65 3 11 53 11 42 61 19 53 Regulus E. 74 46 27 72 55 63 71 4 58 69 13 42 16 Mars W. 99 14 6 101 1 27 102 49 2 104 36 52 a Arietis W. 52 10 39 64 3 1 66 55 40 57 48 35 Aldebaran W. 22 34 40 24 14 50 25 66 53 27 40 32 j Pollux E. 23 11 32 21 19 51 19 28 11 17 36 39 Saturn E. 41 55 57 40 2 18 38 8 25 36 14 18 Regulus E. 59 52 32 67 69 26 56 6 6 54 12 31 11 a Arietis W. 67 16 19 69 10 20 71 4 28 72 58 42 Aldebaran W. 36 35 9 38 24 20 40 14 2 42 4 10 Jupiter W. 31 25 13 33 18 20 36 11 44 37 5 21 Saturn E. 26 40 57 24 45 63 32 50 44 20 56 31 Regulus E. 44 41 48 42 47 14 40 52 34 38 67 49 Spica E. 98 43 27 96 48 67 94 64 21 92 59 41 18 a Arietis W. 82 30 18 84 24 33 86 18 44 88 12 49 Aldebaran W. 51 19 20 53 10 53 66 2 32 56 54 12 Jupiter W. 46 35 26 48 29 36 50 23 44 52 17 49 Regulus E. 29 23 47 27 29 3 26 34 25 23 39 52 Spioa E. 83 26 81 31 21 79 36 46 77 42 18 19 a Arietis W. 97 40 59 99 34 1 101 26 49 103 19 20 Aldebaran W. 66 11 56 68 3 9 69 64 11 71 45 1 Jupiter W. 61 46 34 63 39 48 65 32 50 67 25 36 Pollux W. 23 51 24 63 8 26 45 20 28 37 24 Spica ^E. 68 12 13 66 18 47 64 25 37 62 32 42 20 Aldebaran W. 80 55 20 82 44 29 84 33 18 86 21 45 Jupiter W. 76 45 13 78 36 9 80 26 44 82 16 57 Pollux W. 37 54 34 39 46 11 41 35 28 43 26 24 Spica E. 53 12 39 51 21 40 49 31 2 47 40 49 Antares E. 99 4 23 97 13 16 95 22 32 93 32 11 Venus E. 110 55 66 109 11 4 107 26 32 105 42 22 21 Aldebaran W. 95 18 7 97 4 7 98 49 41 100 34 47 Jupiter W. 91 22 93 9 44 94 67 2 96 43 53 Pollux W. 52 29 24 54 17 56 4 10 57 50 54 Saturn W. 33 50 53 35 39 19 37 27 20 39 14 54 Spica E. 38 35 49 36 48 7 35 53 33 14 7 JANUARY, 185&. 183 GKEENWICH MEA¥ TIME. LUNAR DISTANCES. Day of Star's Name the and Noon. IIP'. YIi>. IXK Month. Position. 21 Antares E. o / // 91 42 12 o / y/ 89 62 38 88 3 29 o / // 86 14 44 Venus E. 103 58 35 102 15 10 100 32 8 98 49 32 22 Jupiter W. 98 30 16 100 16 12 102 1 41 103 46 42 Pollux w. 59 37 12 61 23 3 63 8 28 64 53 25 Saturn w. 41 2 1 42 48 41 44 34 54 46 20 40 Regulus w. 22 38 8 24 24 14 26 9 52 27 55 3 Antares E. 77 17 33 ■75 31 27 73 45 49 72 38 Venus E. 90 23 88 43 4 87 3 35 86 24 34 Sun E. 131 34 33 129 56 14 128 18 21 126 40 55 23 Pollux W. 73 31 26 75 13 41 76 56 29 78 36 50 Saturn W. 55 2 38 56 45 40 58 28 14 60 10 22 Eegulus W. 36 34 6 38 16 32 39 58 31 41 40 4 Antares E. 63 21 36 61 39 10 59 57 11 58 15 39 Venus E. 77 16 43 75 40 36 74 4 57 72 29 48 Sun E. 118 40 33 117 5 49 115 31 33 113 57 43 24 Pollux W. 86 67 2 88 35 48 90 14 9 91 52 5 Saturn w. 68 34 24 70 13 56 71 53 3 73 31 45 Eegulus w. 50 1 9 51 40 5 53 18 36 54 56 43 Antares E. 49 54 36 48 15 41 46 37 10 44 59 4 Venus E. 64 41 12 63 8 55 61 37 5 60 6 43 Sun E. 106 15 6 104 43 51 103 13 101 42 34 25 Pollux W. S9 55 56 101 31 35 103 6 53 104 41 61 Saturn W. 81 39 26 83 16 52 84 51 66 86 27 40 Eegulus W. 63 1 26 64 37 15 66 12 44 67 47 51 Antares E. 36 64 25 35 18 37 33 43 9 32 8 2 Venus E. 62 35 49 61 7 11 49 39 1 48 11 17 Sun E. 94 16 12 92 48 3 91 20 14 89 52 46 26 Saturn W. 94 21 27 95 55 18 97 28 52 99 2 10 Eegulus W. 75 38 39 77 11 55 78 44 53 80 17 35 Spica W. 21 42 28 23 15 17 24 47 63 26 20 15 Venus E. 40 59 25 39 34 24 38 9 53 36 45 50 Sun E. 82 40 15 81 14 39 79 49 19 78 24 16 27 Saturn W. 106 44 55 108 16 48 109 48 27 111 19 55 Eegulus Spica Venus W. 87 57 21 89 28 38 90 59 41 92 30 33 W. 33 58 46 36 29 51 37 44 38 31 26 E. 29 53 30 28 32 48 27 12 48 25 53 32 Sun E. 71 22 44 69 59 6 68 36 41 67 12 27 28 Eegulus Spica Sun W. 100 2 16 101 32 7 103 1 51 104 31 28 w. 46 2 28 47 32 13 49 1 51 50 31 21 E. 60 18 58 68 66 45 57 34 39 56 12 41 29 Spica Son W. 67 67 17 69 26 13 60 55 4 62 23 51 E. 49 24 30 48 3 8 46 41 51 45 20 38 30 Spica Antares W. 69 47 4 71 IS 36 72 44 7 74 12 38 W. 23 63 12 25 21 46 26 SO 19 28 18 52 Sun E. 38 35 20 37 14 23 35 63 27 34 32 33 1 184 JANUARY, 1859. GREENWICH MEAN TIME. LUNAE DISTANCES. Day of Star's Name the and Midnight. XVK XVIIP. XXTi. Month. Position 21 Antares E. O 1 It 84 26 25 82° 38 32 o / // 80 51 6 ^0 / // 79 4 6 Venus E. 97 7 21 96 25 36 93 44 17 92 3 25 22 Jupiter W. 105 31 14 107 15 19 108 68 66 110 42 3 Pollux W. 66 37 56 68 21 59 70 6 35 71 48 44 Saturn W. 48 5 59 49 60 60 61 35 13 53 19 9 Eegulus W. 29 39 47 31 24 3 33 7 52 34 61 13 Antares E. 70 15 54 68 31 38 66 47 60 65 4 29 Venus E. 83 46 2 82 7 69 80 30 25 78 53 20 8VN E. 125 3 56 123 27 26 121 61 20 120 15 43 23 Pollux W. 80 17 45 81 58 13 83 38 15 85 17 51 Saturn w. 61 52 2 63 33 17 66 14 6 66 54 28 Regulus w. 43 21 9 46 1 48 46 42 1 48 21 48 Antares E. 56 34 34 54 53 66 63 13 43 51 33 57 Venus E. 70 55 7 69 20 56 67 47 13 66 13 58 Son E. 112 24 19 110 51 22 109 18 51 107 46 46 24 Pollux W. 93 29 38 95 6 47 96 43 32 98 19 56 Saturn W. 75 10 3 76 47 58 78 25 30 80 2 39 Regulus W. 56 34 26 58 11 45 69 48 41 61 25 14 Antares E. 43 21 22 41 44 3 40 7 8 38 30 36 Venus E. 58 34 49 57 4 23 65 34 25 64 4 63 Sun E. 100 12 32 98 42 53 97 13 37 95 44 44 26 Pollux W. 106 16 28 107 50 46 109 24 43 110 68 22 Saturn w. 88 3 3 89 38 7 91 12 62 92 47 18 Eegulus w. ' 69 22 39 70 67 7 72 31 16 74 5 7 Aaitares E. 30 33 16 28 58 49 27 24 42 25 50 53 Venus E. 46 44 1 45 17 11 43 50 48 42 24 53 Sun E. 88 25 38 86 58 49 85 32 19 84 6 8 26 Saturn W. 100 35 12 102 8 103 40 32 106 12 60 Regulus W. 81 50 1 83 22 13 84 54 9 86 25 52 Spica W. 27 52 23 29 24 18 30 66 32 27 29 Venus E. 35 22 17 33 69 15 32 36 46 31 14 SO Sun E. 76 59 28 75 34 56 74 10 38 72 46 34 27 Saturn W. 112 51 11 114 22 17 115 63 13 117 23 69 Regulus W. 94 1 14 95 31 44 97 2 4 98 32 14 Spica W. 40 1 58 41 32 20 43 2 31 44 32 34 Venus E. 24 35 6 23 17 36 22 1 8 20 46 51 Sun E. 65 49 25 64 26 34 63 3 62 61 41 21 28 Regulus W. 106 57 107 30 19 108 59 36 110 28 46 Spica W. 62 44 53 30 1 54 59 12 56 28 17 Sun E. 64 50 50 53 29 6 52 7 28 50 45 57 29 Spica W. 63 62 35 65 21 16 66 49 54 68 18 30 Sun E. 43 59 28 42 38 22 41 17 19 39 56 18 30 Spica W. 75 41 7 77 9 37 78 38 6 80 6 87 Antares W. 29 47 25 31 15 57 32 44 29 34 13 2 Sun E. 33 11 40 31 50 47 30 29 54 29 9 2 FEBRUARY, 1859. 185 GREENWICH MEAN TIME. 1 , LUNAE DISTANCES. Day of Star's Name tte and Noon. IIP'. VP". IXi. Month. Position. O 1 u o / // O / // o / // 5 Sun w. 21 1 43 28 32 4 29 66 36 31 21 15 a Arietis E. 62 46 26 51 14 69 49 43 26 48 11 -46 Aldebaran E. 84 39 31 83 9 7 81 38 34 80 7 53 Jupiter* E. 88 14 3 86 42 27 85 10 43 83 38 61 6 •Sun W. 38 27 2 39 52 42 41 18 84 42 44 36 a Arietis E. 40 31 34 38 59 11 37 26 41 35 54 6 Aldebaran E. 72 32 27 71 58 69 29 20 67 67 33 Jupiter E. 75 57 14 74 24 26 72 51 29 71 18 21 PoUux E. 116 8 69 113 35 64 112 2 38 110 29 10 Y StJN * W. 49 57 40 61 24 53 52 62 19 64 19 68 a Pegasi W. 22 50 33 23 63 3 24 68 54 26 7 43 Aldebaran E. 60 16 39 58 44 4 67 11 21 66 38 30 Jupiter E. 63 30 7 61 55 55 60 21 32 58 46 58 Pollux E. 102 38 59 101 4 20 99 29 29 97 54 26 8 Sun W. 61 41 39 63 10 43 64 40 2 66 9 37 a Pegasi W. 32 26 4 33 47 3 36 9 24 36 33 1 Mars W. 15 47 9 17 16 13 18 46 61 20 16 68 Aldebaran E. 47 52 33 46 19 4 44 46 31 43 11 54 Jupiter E. 50 51 6 49 16 19 47 39 20 46 3 8 Pollux E. 89 56 38 88 19 10 86 42 26 85 5 27 Saturn E. 107 6 9 105 27 66 103 60 28 102 12 44 9 Sun W. 73 41 32 75 12 46 76 44 18 78 16 7 a Pegasi W. 43 46 52 45 16 17 46 46 29 48 17 23 Mars w. 27 62 50 29 25 20 30 58 12 32 31 26 Aldebaran E. 35 23 63 33 50 31 32 17 21 30 44 27 Jupiter E. 37 69 3 36 21 39 34 44 3 33 6 17 Pollux E. 76 56 33 76 17 56 73 39 2 71 59 49 Saturn E. 94 5 92 20 42 90 41 2 89 1 5 Eegulus E. 113 50 57 112 12 9 110 33 3 108 63 40 10 Sun W. 85 69 53 87 33 36 89 7 39 90 42 1 a Pegasi W. 56 1 41 57 36 19 59 11 30 60 47 12 Mars w. 40 22 43 41 58 2 43 33 41 46 9 41 Pollux E. 63 39 16 61 68 12 60 16 60 68 36 9 Saturn E. 80 36 39 78 54 48 77 12 38 75 30 8 Eegulus E. 100 32 6 98 60 48 97 9 12 96 27 16 11 Sun W. 98 39 100 15 26 101 52 12 103 29 19 a Pegasi W. 68 53 9 70 31 44 72 10 46 73 50 13 Mars W. 53 15 2 54 53 11 56 31 40 58 10 31 a Arietis W. 25 28 44 27 10 36 28 63 2 30 36 1 Pollux E. 50 1 46 48 18 6 46 34 7 44 49 48 Saturn E. 66 52 35 65 8 2 63 23 9 61 37 56 Eegulus E. 86 52 31 85 8 33 83 24 13 81 39 32 12 Sun W. 111 40 12 113 19 25 114 68 58 116 38 51 a Pegasi Mars W. 82 13 39 83 66 29 85 37 41 87 20 13 w. 66 30 7 68 11 5 69 52 24 71 84 3 a Arietis w. 39 18 7 41 3 61 42 50 44 86 33 Pollux E. 36 3 24 34 17 12 32 30 43 30 43 68 186 FEBRUARY, 1859. GEEENWICH MEAN TIME. LUNAB DISTANCES. , Day of Star's Name the and Midnight. XV". XTIII''. XXTi. Month. Position. o / // o / // / // O / // 6 Sun W. 32 46 4 34 11 4 35 36 13 37 1 32 a Arietis E. 46 39 57 45 8 2 43 35 59 42 3 SO Aldebaran E. 78 37 4 77 6 7 75 35 2 74 3 49 Jupiter E. 82 6 50 80 34 39 79 2 20 77 29 52 6 Sun W. 44 10 49 45 37 14 47 3 50 48' 30 39 a Arietis E. 34 21 23 32 48 35 31 15 43 29 42 46 Aldebaran E. 66 25 39 64 53 36 63 21 25 61 49 6 Jupiter E. 69 45 4 68 11 35 66 37 67 65 4 7 Pollux E. 108 55 31 107 21 41 105 47 39 104 13 26 V Sun W. 55 47 50 67 15 56 68 44 1« 60 12 50 a Pegasi W. 27 19 10 28 32 58 29 48 51 31 6 37 Aldebaran E. 64 5 32 52 32 27 50 69 15 49 25 67 Jupiter E. 57 12 12 65 37 14 54 2 4 62 26 41 Pollux E. 96 19 7 94 43 36 93 7 61 91 31 52 8 Sun W. 67 39 27 69 9 33 70 39 56 72 10 35 " a Pegasi W. 37 57 48 39 23 39 40 50 29 42 18 15 Mars W. 21 46 32 23 17 31 24 48 56 26 20 41 Aldebaran E. 41 38 16 40 4 36 38 30 58 36 67 23 Jupiter E. 44 26 44 42 50 7 41 13 18 39 36 16 Pollux E. 83 28 13 81 50 43 80 12 56 78 34 53 Saturn E. 100 34 45 98 56 30 97 17 58 95 39 10 9 Sun W. 79 48 15 81 20 41 82 53 26 84 26 30 a Pegasi W. 49 48 59 51 21 14 52 54 7 54 27 37 Mars W. 34 4 59 35 38 53 37 13 9 38 47 46 Aldebaran E. 29 11 55 27 39 51 26 8 24 24 37 44 Jupiter E. 31 28 22 29 50 19 28 12 10 26 33 56 Pollux E. 70 20 19 68 40 31 67 25 65 19 59 Saturn E. 87 20 49 85 40 14 83 59 21 82 18 10 Regulus E. 107 13 58 106 33 58 103 53 39 102 13 2 10 Sun W. 92 16 44 93 51 47 95 27 11 97 2 55 a Pegasi W. 62 23 25 64 8 65 37 20 67 15 Mars W. 46 46 3 48 22 46 49 59 50 61 37 16 Pollux E. 56 53 7 65 10 47 53 28 6 51 45 6 Saturn E. 73 47 18 72 4 8 70 20 37 68 36 46 Eegulus E. 93 45 92 2 24 90 19 27 88 36 9 11 Sun W. 105 6 48 106 44 38 108 22 48 110 1 20 a Pegasi W. 75 30 6 77 10 24 78 51 6 80 32 11 Mars w. 59 49 44 61 29 18 63 9 13 64 49 29 a Arietis w. , 32 19 30 34 3 28 35 47 55 37 32 48 PoUux E. 43 5 9 41 20 11 39 34 54 37 49 18 Saturn E. 59 52 21 58 6 25 56 20 8 54 33 31 Regulus E. -^ 79 64 31 78 9 8 76 23 25 74 37 21 12 Sun W. 118 19 6 119 59 38 121 40 31 123 21 43 a Pegasi W. 89 3 5 90 46 16 92 29 45 94 13 32 Mars W. 73 16 3 74 58 22 76 41 1 78 23 69 a Arietis W. 46 23 28 48 10 47 40 58 27 51 46 28 Pollux E. 28 56 58 27 9 44 26 22 17 23 34 40 FEBRUARY, 1859. 187 • GEEENWICH MEAi^ timt:. LUNAR DISTANCES. Day of Star's Name the and Noon. nil'. Vli. IXb. Month. Position. 12 Saturn E. / // 62 46 33 o / // 60 59 15 O / // 49 11 37 o / // 47 23 38 Regulus E. 12 50 56 71 4 10 69 17 4 67 29 38 13 Sun W. 125 3 13 126 45 2 128 27 9 130 9 33 Mars W. 80 1 16 81 50 51 83 34 44 85 18 54 a Arietis W. 53 34 50 55 23 32 57 12 33 59 1 64 Aldebaran W. 23 51 38 25 29 34 27 9 6 28 50 2 Jupiter W. 18 30 30 20 14 51 22 14 23 46 28 Saturn E. 38 18 55 36 29 3 34 38 54 32 48 27 Regulus E. 58 27 33 56 38 12 54 48 33 52 68 37 Spica E. 112 28 3*7 110 39 21 108 49 47 106 59 66 14 Mars W. 94 3 43 95 49 24 97 35 16 99 21 21 a Arietis W. 68 12 49 70 3 46 71 54 56 73 46 18 Aldebaran w. 37 30 12 39 16 32 41 3 28 42 60 54 Jupiter w. 32 47 34 36 30 36 26 21 38 16 32 Regulus E. 43 44 58 41 63 31 40 1 51 38 10 Spica E. 97 46 41 95 55 18 94 3 44 92 11 57 15 Mars W. 108 14 6 110 1 1 111 48 113 35 3 a Arietis w. 83 5 41 84 57 57 86 50 19 88 42 44 Aldebaran w. 51 54 16 53 43 52 55 33 42 57 23 44 Jupiter w. 47 31 13 49 22 44 51 14 23 53 6 8 Regulus E. 28 48 19 26 65 36 25 2 49 23 9 67 Spica E. 82 50 38 80 58 79 5 17 77 12 30 16 a Arietis W. 98 5 13 99 57 40 101 50 2 103 42 19 Aldebaran W. 66 35 46 68 26 22 70 16 57 72 7 30 « Jupiter W. 62 25 47 64 17 44 66 9 38 68 1 29 Pollux W. 23 24 50 25 16 33 27 8 22 29 13 Spica E. 67 48 12 65 55 24 64 2 40 62 10 1 Antares E. 113 40 39 111 47 46 109 54 56 108 2 12 11 Aldebaran W. 81 19 4 83 8 58 84 68 40 86 48 10 Jupiter W. 77 19 2 79 10 4 81 64 82 51 30 Pollux W. 38 18 52 40 10 16 42 1 29 43 52 31 Saturn W. 21 44 32 23 36 49 25 28 54 27 20 47 Spica E. 52 48 39 50 56 54 49 5 22 47 14 3 Antares E. 98 40 19 96 48 27 94 66 47 93 5 20 18 Aldebaran W. -95 51 53 97 39 44 99 27 14 101 14 24 Jupiter W. 92 41 93 49 38 95 38 14 97 26 31 Pollux W. - 63 4 8 54 53 38 56 42 48 58 31 40 Saturn W. 36 36 28 38 26 45 40 16 41 42 6 18 Regulus Spica Antares W. 16 3 54 17 63 40 19 43 7 21 32 13 E. 38 1 33 36 11 58 34 22 45 32 33 53 E. 83 62 82 2 13 80 12 46 78 23 39 Venus E. 118 64 48 117 13 25 115 32 21 113 51 34 19 Jupiter Pollux W. 106 22 17 ■108 8 15 109 53 47 111 38 55 W. 67 30 35 69 17 14 71 3 29 72 49 19 Saturn w. 51 8 54 62 56 16 54 43 13 56 29 46 Regulus Spica w. 30 32 18 32 19 9 34 6 36 35 51 38 E. 23 35 32 21 49 11 20 3 20 18 17 69 188 FEBRUARY, 1859. GREENWICH MEAT^ TIME. • LDNAK ] DISTANCES. Day of Star's Name the and Midnight. XVh. XTIIP". XXii. Month. Position. Q 1 It o / // o ./ // / // 12 Saturn E. 45 35 20 43 46 42 41 57 45 40 8 29 Regulus E. 65 41 52 63 53 46 62 5 21 60 16 36 13 Sun- W. 131 52 13 133 35 10 135 18 23 137 1 50 Mars W. 87 3 21 88 48 4 90 33 2 92 18 16 a Arietis W. 60 51 32 62 41 27 64 31 39 66 22 7 Aldebaran W. 30 32 12 32 15 24 33 59 32 35 44 30 Jupiter W. 25 33 27 27 21 4 29 9 14 30 57 53 Saturn E. 30 57 45 29 6 47 27 15 34 25 24 7 Regulus E. 51 8 24 49 17 55 47 27 11 45 36 11 Spica E. 105 9 48 103 19 24 101 28 44 99 37 50 14 Mars W. 101 7 36 102 54 2 104 40 35 106 27 17 a Arietis W. 75 37 52 77 29 36 79 21 30 81 13 32 Aldebaran W. 44 38 49 46 27 10 48 15 52 60 4 55 Jupiter W. 40 7 41 57 44 43 48 42 46 39 52 Regulus E. 36 17 58 34 25 46 32 33 25 30 40 55 Spica E. 90 19 59 88 27 52 86 35 35 84 43 10 16 Mars W. 115 22 8 117 9 15 118 56 22 120 43 28 a Arietis W. 90 35 12 92 27 43 94 20 14 96 12 44 Aldebaran w. 59 13 56 61 4 16 62 54 42 64 45 13 Jupiter w. 54 57 59 56 49 53 58 41 50 60 33 49 Regulus E. 21 17 3 19 24 6 17 31 9 15 38 13 •Spica E. 75 19 40 73 26 48 71 33 55 69 41 3 16 a Arietis W. 105 34 30 107 26 33 109 18 27 111 10 12 Aldebaran W. 73 58 1 75 48 27 77 38 47 79 29 Jupiter w. 69 53 15 71 44 54 73 36 26 75 27 49 Pollux w. 30 52 5 32 43 54 34 35 39 36 27 19 Spica E. 60 17 28 58 25 2 56 32 45 54 40 37 Antares E. 106 9 33 104 17 1 102 24 38 100 32 23 17 Aldebaran W. 88 37 27 90 26 28 92 15 14 94 3 43 Jupiter W. 84 41 52 86 32 88 21 51 90 11 25 Pollux W. 45 43 20 47 33 55 49 24 16 51 14 21 - Saturn W. 29 12 27 31 3 52 32 55 1 34 45 54 Spica E. 45 23 43 32 11 41 41 40 39 51 27 Antares E. 91 14 8 89 23 10 87 32 29 85 42 6 18 Aldebaran W. 103 1 11 104 47 35 106 33 35 108 19 10 Jupiter W. 99 14 26 101 1 58 102 49 8 104 35 55 Pollux w. 60 20 10 62 8 20 63 56 8 65 43 33 Saturn w. 43 55 33 45 44 27 47 32 59 49 21 8 Regulus w. 23 20 59 25 9 22 26 57 24 28 45 3 Spica E. 30 45 24 28 57 18 27 9 37 25 22 21 Antares E. 76 34 54 74 46 30 72 58 28 71 10 50 Venus E. 112 11 7 110 30 59 108 51 12 107 11 47 19 Jupiter W. 113 23 36 . 115 7 51 116 51 39 118 35 Pollux W. 74 34 44 76 19 44 78 4 19 79 48 28 Saturn W. 58 15 53 60 1 35 61 46 52 63 31 42 Regulus W. 37 37 16 39 22 27 41 7 14 42 51 34 Spica E. 16 33 12 14 49 2 13 5 33 11 22 53 FEBRUARY, 1859. 189 • GEEENWICH MEAN TIME. LUNAK DISTANCES. Day of the Star's Name and Noon. IIP'. VP. IXi-. Month. Position. O i tl o / /i / // O / // 19 Antares E. 69 23 35 67 36 44 65 50 17 64 4 15 Venus E. 105 32 44 103 54 4 102 15 47 100 37 54 20 Pollux W. 81 32 12 83 15 29 84 58 20 86 40 45 Saturn W. 65 16 7 67 6 68 43 38 70 26 44 Eegulus w. 44 35 28 46 18 57 48 1 59 49 44 34 • Antares E. 55 20 27 53 36 59 51 53 57 50 11 22 Venus E. 92 34 40 90 59 18 89 24 21 87 49 51 a Aquite E. 106 59 19 105 32 49 104 6 27 102 40 13 Sun E. 138 55 23 137 19 26 135 43 55 134 8 50 21 Pollux W. 95 6 18 96 46 7 98 25 29 100 4 27 Saturn W. 78 55 40 80 36 9 82 16 13 83 56 51 Regulus w. 68 11 59 50 69 61 30 32 63 9 40 Antares E. 41 45 1 40 5 3 38 25 30 36 46 23 Venus E. 80 3 50 78 53 56 77 28 76 29 25 a Aquilse E. 95 32 6 94 7 14 92 42 41 91 18 27 Sun E. 126 19 58 124 47 30 123 16 27 121 43 60 22 Saturn W. 92 7 51 93 45 3 95 21 52 96 58 19 Eegulus w. 71 19 11 72 55 64 74 32 14 76 8 11 Spica w. 17 24 50 19 51 20 36 35 22 12 1 Antares E. 28 36 59 27 18 25 24 1 23 48 6 Venus E. 68 26 66 31 51 65 3 40 63 35 52 a Aquilse E. 84 22 38 83 38 81 39 3 80 17 54 Sun E. 114 11 52 112 42 40 111 13 51 109 45 25 23 Saturn W. 104 55 10 106 29 31 108 3 34 109 37 17 Regulus w. 84 2 35 85 36 28 87 10 1 88 43 16 Spica w. 30 4 39 31 38 16 33 11 36 34 44 38 Venus E. 56 22 26 54 56 49 53 31 32 52 6 36 a Aquilse E. 73 39 7^ 20 40 71 2 51 69 46 34 Sun E. 102 28 33 101 2 11 99 36 8 98 10 24 24 Eegulus W. 96 25 12 97 56 48 99 28 10 100 59 17 Spica W. 42 25 44 43 57 11 45 28 25 46 59 25 Venus E. 45 6 35 43 43 29 42 20 39 40 68 7 a Aquilae E. 63 27 32 62 13 44 61 35 59 48 6 Sun E. 91 6 1 89 41 65 88 18 4 86 54 27 25 Spica W. 54 31 25 56 1 16 67 30 59 59 32 Venus E. 34 9 27 32 48 31 31 27 50 30 7 25 Sun E. 79 59 28 78 37 1 77 14 44 75 62 36 26 Spica W. 66 26 27 67 55 19 69 24 6 70 62 60 Ajitares W. 20 32 28 22 1 22 23 30 11 24 68 66 Sun E. 69 3 51 67 42 26 66 21 4 64 59 47 27 Spica W. 78 15 38 79 44 7 81 12 34 82 41 1 Antares W. 32 21 57 33 50 28 35 18 58 36 47 28 Sun E. 58 14 13 56 53 12 56 32 11 54 11 11 28 Spica W. 90 3 30 91 32 6 93 44 94 29 26 Antares W. 44 10 12 45 38 50 47 7 32 48 36 16 1- Sun E. 47 26 46 4 52 44 43 42 43 22 28 190 FEBRUARY, 1859. GEEENWIOH WF,M^ TIME. LUNAR DISTANCES. Day of the Star's Name 1 and Midnight. xv. XVIIP'. XXP-. Month. Position. o t It a 1 Jt / // / // 19 Antares E. 62 18 38 60 33 26 58 48 41 57 4 21 Venus E. 99 25 97 23 21 96 46 42 94 10 28 20 Pollux W. 88 22 44 90 4 17 91 45 23 93 26 4 Saturn W. 11 9 24 73 51 37 75 33 24 77 14 45 Regulus w. 51 26 44 53 8 27 54 49 44 56 30 35 Antares E. 48 29 13 46 47 31 45 6 15 43 25 25 Venus E. 86 15 46 84 42 8 83 8 56 81 36 10 a Aquilse E. 101 14 9 99 48 17 98 22 38 96 57 13 Sun E. 132 34 11 130 59 69 129 26 13 127 62 52 21 Pollux W. 101 42 59 103 21 7 104 58 50 106 36 9 Saturn W. 85 35 4 87 13 52 88 62 16 90 30 15 Regulus w. 64 48 23 66 26 42 68 4 36 69 42 5 Antares E. 35 1 41 33 29 24 31 51 32 30 14 3 Venus E. V3 58 47 72 28 35 70 58 47 69 29 24 a Aquilse E. 89 64 33 88 31 87 7 50 86 45 2 Sun E. 120 12 37 118 41 49 117 11 26 116 41.27 22 Saturn W. 98 34 23 100 10 6 101 46 28 103 20 29 Regulus W. 77 43 46 79 18 59 80 63 52 82 28 24 Spica w. 23 47 9 25 21 59 26 66 31 28 30 44 Antares E. 22 12 33 20 37 23 19 2 34 17 28 6 Venus E. 62 8 27 60 41 24 59 14 44 57 48 24 a Aquilae E. 78 57 12 77 36 67 76 17 9 74 57 50 Sun E. 108 17 20 106 49 37 106 22 15 103 65 14 23 Saturn W. 111 10 43 112 43 51 114 16 42 115 49 17 Regulus W. 90 16 13 91 48 62 93 21 16 94 53 21 Spica W. 36 17 23 37 49 62 39 22 4 40 54 1 Venus E. 60 41 68 49 17 40 47 53 40 46 29 69 a Aquilse E. 68 28 49 67 12 37 66 57 64 41 58 Sun E. 96 44 58 95 19 49 93 54 57 92 30 21 24 Regulus W. 102 30 12 104 53 105 31 23 107 1 42 Spica W. 48 30 12 50 47 61 31 11 63 1 23 Venus E. 39 36 51 38 13 61 36 52 8 35 30 39 a Aquilse E. 58 36 19 57 25 15 56 14 56 65 5 24 Sun E. 85 31 3 84 7 52 82 44 63 81 22 5 25 Spica W. 60 29 57 61 69 16 63 28 25 64 57 29 Venus E. 28 47 17 27 27 26 26 7 52 24 48 38 Sun E. 74 30 37 73 8 45 71 47 70 26 22 26 Spica W. 72 21 29 73 50 5 75 18 38 76 47 9 Antares W. 26 27 38 27 56 16 29 24 62 30 63 25 Sun E. 63 38 36 62 17 26 60 56 19 59 35 15 2-7 Spica W. 84 9 29 86 37 57 87 6 26 88 34 57 Antares W. 38 16 69 39 44 30 41 13 2 42 41 36 Sun E. 52 50 11 51 29 10 60 8 8 48 47 5 28 Spica W. 96 58 11 97 27 1 98 65 56 100 24 54 Antares w. 50 5 5 61 33 68 63 2 56 64 31 57 Sun E. 42 1 10 40 39 49 39 18 23 37 66 53 MARCH, 1859. 191 GEEEE^WICH MEAIST TIME. LUNAR DISTANCES. Day of the Star's Name and Noon. nil'. VP. IX>. Month. Position. 1 Spica W. o / // 101 53 58 103° 23 7 O / // ,104 62 22 106° 21 44 Antares W. 56 1 4 57 30 17 58 69 36 60 29 1 Son E. 36 35 18 35 13 37 33 51 51 32 29 68 6 Sun W. 19 50 30 21 18 26 22 46 31 24 14 50 Aldebaran E. 63 17 64 61 44 26 60 10 52 58 37 10 Jupiter E. 67 56 4 66 21 41 64 47 9 63 12 26 Saturn E. 121 8 32 119 32 36 117 56 28 116 20 10 7 Sun W. 31 39 26 33 8 66 34 38 38 36 8 32 Aldebaran E. 50 47 18 49 13 7 . 47 38 64 46 4 39 Jupiter E. 55 16 22 53 40 40 62 4 48 50 28 47 Pollux E. 92 55 59 91 19 6 89 42 1 88 4 44 Saturn E. 108 15 49 106 38 23 105 46 103 22 57 8 Sun W. 43 40 58 45 12 3 46 43 19 48 14 48 Aldebaran E. 38 13 43 36 39 48 35 6 4 33 32 35 Jupiter E. 42 26 29 40 49 36 39 12 36 37 35 29 Pollux E. 79 55 30 78 17 5 76 38 28 74 59 40 Saturn E. 95 11 3 93 32 5 91 52 56 90 13 35 9 Sun W. 55 55 11 57 27 62 69 46 60 33 52 Mars W. 17 52 12 19 24 16 20 66 64 22 30 3 Jupiter E. 29"28 38 27 51 8 26 13 39 24 36 15 Pollux E. 66 42 41 65 2 42 63 22 31 61 42 8 Saturn E. 81 53 52 80 13 20 78 32 35 76 51 38 Kegulus E. 103 35 63 101 55 41 100 16 16 98 34 40 10 Sun W. 68 22 31 69 56 54 71 31 29 73 6 17 Mars W. 30 21 63 31 67 17 33 32 58 36 8 68 a Arietis w. 22 18 14 23 57 26 25 37 10 27 17 23 Pollux E. 53 17 12 51 35 37 49 63 50 48 11 51 Saturn E. 68 23 46 66 41 33 64 59 8 63 16 30 Regulus E. 90 8 28 88 26 35 86 44 30 85 2 11 11 Sun W. 81 3 36 82 39 42 84 16 2 86 52 36 Mars W. 43 13 1 44 50 37 46 28 28 48 6 34 a Arietis W. 35 44 30 37 26 67 39 9 42 40 62 46 Pollux E. 39 38 56 37 55 47 36 12 27 34 28 56 Saturn E. 54 40 6 62 56 9 51 12 49 27 38 Eegulus E. 76 27 22 74 43 44 72 59 53 71 15 49 12 Sun W. 93 58 43 96 36 36 97 14 42 98 53 1 Mars w. 56 20 44 58 17 59 40 4 61 20 4 a Arietis w. 49 32 14 51 16 55 63 1 61 54 47 2 Aldebaran w. 20 18 7 21 48 24 23 20 64 24 55 14 Saturn E. 40 42 31 38 56 61 37 10 58 35 24 63 Eegulus E. 62 32 9 60 46 46 59 1 8 57 15 19 13 Sun W. 107 7 42 108 47 15 110 26 59 112 6 54 Mars w. 69 43 24 71 24 42 73 6 12 74 47 64 a Arietis w. 63 36 26 65 22 58 67 9 43 68 56 41 Aldebaran w. 33 6 18 34 47 18 36 29 38 11 20 Jupiter w. 26 17 57 28 1 63 29 46 16 31 31 3 192 MARCH, 1859. GEEENWICH MEAJSr TIME. LUNAR DISTANCES. Day of the Month. Star's Name and Position. Midnight. XVi-. xvnp. XXTi. 1 Spica w. 107 61 12 O I II 109 20 47 O 1 II 110 50 2.8 O / II 112 20 17 Antares w. 61 58 32 63 28 11 64 57 57 66 27 60 Sun E. 31 8 29 45 55 28 23 44 27 1 25 6 Sun W. 25 43 22 27 12 5 28 41 30 10 7 Aldebaran E. 57 3 22 55 29 29 53 55 30 52 21 26 Jupiter E. 61 37 33 60 2 30 58 27 17 56 51 54 Saturn E. 114 43 40 113 6 59 111 30 7 109 53 4 7 Sun W. 37 38 38 39 8 55 40 39 24 42 10 5 Aldebaran E. 44 30 23 42 56 8 41 21 55 39 47 46 Jupiter E. 48 52 37 47 16 18 45 39 50 44 3 14 Pollux E. 86 27 16 84 49 37 83 11 46 81 33 44 Saturn E. 101 44 57 100 6 46 98 28 23 96 49 49 8 Sun W. 49 46 28 51 18 21 52 50 25 64 22 42 Aldebaran E. 31 59 22 30 26 32 28 64 11 27 22 25 Jupiter E. 35 58 16 34 20 57 32 43 34 31 6 7 Pollux E. 73 20 39 71 41 28 70 2 4 68 22 29 Saturn E. 88 34 2 86 54 18 85 14 21 83 34 13 9 Sun W. 62 7 11 63 40 42 65 14 26 66 48 22 Mars W. 24 3 39 25 37 40 27 12 4 28 46 49 Jupiter E. 22 58 58 21 21 54 19 46 7 18 8 46 Pollux E. 60 1 33 58 20 46 56 39 47 54 58 36 Saturn E. 75 10 29 73 29 7 71 47 32 70 5 45 Eegulus E. 96 53 51 95 12 49 93 31 35 91 60 8 10 Sun W. 74 41 18 76 16 33 77 52 79 27 41 Mars W. 36 45 14 38 21 47 . 39 58 35 41 35 40 a Arietis W. 28 58 3 30 39 7 32 20 34 34 2 22 Pollux E. 46 29 39 44 47 16 43 4 41 41 21 54 Saturn E. 61 33 39 69 50 35 58 7 19 56 23 49 Eegulus E. 83 19 40 81 36 55 79 63 57 78 10 46 11 Sun W. 87 29 23 89 6 23 90 43 37 92 21 4 Mars w. 49 44 55 51 23 31 53 2 21 54 41 26 a Arietis w. 42 36 7 44 19 46 46 3 39 47 47 49 Pollux E. 32 45 15 31 1 25 29 17 26 27 33 18 Saturn E. 47 43 3 45 58 14 44 13 13 42 27 58 Regulus E. 69 31 31 67 47 1 66 2 16 64 17 19 12 Sun W. 100 31 32 102 10 16 103 49 13 105 28 21 Mars W. 63 18 64 40 45 66 21 25 68 2 18 a Arietis W. 56 32 27 58 18 6 60 3 69 61 50 6 Aldebaran w. 26 31 7 28 8 21 29 46 42 31 26 4 Saturn E. 33 38 35 31 52 6 30 6 24 28 18 31 Regulus E. 55 29 17 63 43 1 51 56 34 50 9 54 IS Sun W. 113 47 115 27 17 117 7 46 118 48 22 Mars W. 76 29 48 78 11 52 79 54 7 81 36 33 a Arietis W. 70 43 50 72 31 11 74 18 42 76 6 24 Aldebaran W. 39 54 13 41 37 37 43 21 29 45 6 46 Jupiter W. 33 16 11 35 1 38 36 47 24 38 33 26 MARCH, 1859. 193 GEEENWICH MEAN TIM"E. LUNAR DISTANCES. Day of Star's Name the and Noon. Illk. Vli. IXh. Month. Position. / // o J n o / // O / // 13 Regains E. 48 23 1 46 35 57 44 48 42 43 1 14 Spica E. 102 24 45 100 37 46 98 50 35 97 3 12 U Sun W. 120 29 8 122 10 4 123 61 8 125 32 20 Mars W. 83 19 8 85 1 53 86 44 47 88 27 49 o Arietis w. 11 54 16 79 42 18 81 30 29 83 18 49 Aldebaran w. 46 50 26 48 35 28 50 20 50 52 6 29 Jupiter w. 40 19 43 42 6 15 43 53 45 39 57 Eegulus E. 84 1 18 32 12 49 30 24 12 28 36 26 Spica E. 88 3 36 86 15 12 84 26 39 82 37 57 15 Mars W. 91 4 49 98 48 30 100 32 16 102 16 5 Aldebaran w. 60 58 31 62 45 30 64 32 39 66 19 66 Jupiter w. 54 31 12 56 26 4 58 13 1 60 1 3 Pollux w. \1 45 43 19 33 12 21 21 5 23 9 17 Spica E. 73 32 40 71 43 19 69 53 53 68 4 24 16 Mars W. 110 55 40 112 39 36 114 23 29 116 7 21 Aldebaran W. 15 17 42 77 5 25 78 53 8 80 40 60 Jupiter w. 69 2 7 70 50 24 72 38 40 74 26 55 Pollux w. 32 13 1 34 2 4 35 51 9 37 40 16 Spica E. 58 56 27 57 6 60 66 17 16 53 27 43 Antares E. 104 48 30 102 58 47 101 9 6 99 19 27 11 Aldebaran W. 89 38 40 91 25 68 93 13 9 95 11 Jupiter w. 83 27 17 85 16 5 87 2 46 88 50 18 Pollux w. 46 45 24 48 37 14 50 22 57 52 11 33 Saturn w. 31 47 41 33 32 3 35 26 18 37 15 25 Spica E. 44 21 2 42 32 40 43 7 38 64 22 Antares E. 90 12 8 88 22 57 86 33 54 84 44 69 18 Jupiter W. 97 45 25 99 31 49 101 18 103 3 66 Pollux W. 61 12 13 62 59 47 64 47 7 66 34 14 Saturn W. 46 18 30 48 6 32 49 54 20 61 41 53 Eegulus W. 24 13 5 26 64 27 48 28 29 36 49 Antares E. 75 42 57 73 55 9 72 7 34 70 20 14 19 Pollux W. 75 25 55 77 11 24 78 56 35 80 41 27 Saturn W. 60 35 43 62 21 38 64 7 13 66 52 30 Eegulus W. 38 28 33 40 14 14 41 59 36 43 44 40 Antares E. 61 27 31 59 41 50 67 56 28 66 11 25 a Aquilse E. 112 2 31 110 36 19 109 7 59 107 40 34 20 Pollux W. 89 20 48 91 3 37 92 46 6 94 28 12 Saturn W. 74 33 62 76 17 6 77 59 57 79 42 27 Eegulus Antares W. 52 24 57 54 7 58 55 50 37 57 32 55 E. 47 31 9 45 48 9 44 5 30 42 23 13 a Aquilse E. 100 23 36 98 56 29 97 29 32 96 2 47 Venus E. 114 10 18 112 35 38 111 1 20 109 27 23 1 21 Saturn W. 88 9 22 89 49 37 91 29 30 93 9 Eegulus Antares w. 66 58 49 67 38 52 69 18 33 70 57 52 E. 33 57 23 32 17 21 30 37 41 28 68 24 a Aquilse E. 88 52 48 87 27 43 86 3 84 38 39 13 194 MARCH, 1859. GREENWICH MEAlf Tl^rF,. LUNAR DISTANCES. Day of the Star's I^ame and Midnight. XVi-. XTIIP. XXT*. Month. Position. O / // O J /I O / // O / // 13 Eegulus E. 41 13 36 39 26 47 37 37 47 35 49 37 Spica E. 95 16 38 93 27 63 91 39 57 89 61 62 14 Sun W. 127 13 40 128 65 7 130 36 40 132 18 19 Mars W. 90 10 69 91 54 17 93 37 41 96 21 12 a Arietis W. 85 1 17 86 65 63 88 44 35 90 33 24 Aldebaran w. 53 52 26 65 38 37 57 25 3 59 11 41 Jupiter w. 47 27 5 49 14 23 61 1 61 52 49 28 Regulus E. 26 46 32 24 57 31 23 8 22 2119 8 Spica E, 80 49 7 79 10 77 11 6 75 21 56 15 Mars W. 103 59 67 105 48 52 107 27 47 109 11 44 Aldebaran W. 68 7 20 69 54 49 71 42 24 73 30 2 Jupiter W. 61 49 10 63 37 21 66 26 35 67 13 50 Pollux W. 24 57 43 26 46 21 28 35 ,1 30 24 1 Spica E. 66 14 62 64 25 17 62 35 41 60 46 4 16 Mars W. 117 51 8 119 34 52 121 18 30 123 2 2 Aldebaran W. 82 28 31 84 16 10 86 3 44 87 61 15 Jupiter w. 76 16 7 78 3 17 79 61 22 81 39 22 Pollux w. 39 29 22 41 18 28 43 7 30 44 66 29 Spica E. 61 38 13 49 48 47 47 59 26 46 10 11 Antares E. 97 29 60 96 40 17 93 50 49 92 1 25 17 Aldebaran W. 96 47 3 98 33 46 100 20 16 102 6 34 Jupiter W. 90 37 41 92 24 64 94 11 56 95 58 47 Pollux w. 64 1 66 48 20 57 36 29 59 24 26 Saturn w. 39 4 23 40 53 12 42 41 49 44 30 16 Spica E. 37 6 48 35 17 24 33 29 12 31 41 14 Antares E. 82 56 13 81 7 37 79 19 12 77 30 59 18 Jupiter W. 104 49 37 106 36 1 108 20 9 110 4 59 Pollux W. 68 21 6 70 4 43 71 54 4 73 40 8 Saturn W. 53 29 12 55 16 16 57 3 1 58 49 31 Eegulus w. 31 22 64 33 9 44 34 56 17 36 42 34 Antares E. 68 33 9 66 46 19 64 59 46 63 13 30 19 Pollux W. 82 25 69 84 10 12 86 64 5 87 37 37 Saturn W. 67 37 27 69 22 4 71 6 21 72 60 17 Regulus W. 46 29 24 47 13 48 48 67 52 60 41 36 Antares E. 54 26 41 62 42 17 50 68 13 49 14 31 a AquUsB E. 106 13 6 104 46 38 103 18 13 101 50 61 20 Pollux W. 96 9 56 97 51 18 99 32 18 101 12 65 Saturn W. 81 24 35 83 6 20 84 47 43 86 28 44 Regulus w. 59 14 60 60 66 23 62 37 34 64 18 23 Antares E. 40 41 19 38 59 46 37 18 36 35 37 48 a Aquilae E. 94 36 16 93 9 58 91 43 67 90 18 13 Venus E. 107 53 49 106 20 36 104 47 45 103 15 17 21 Saturn W. 94 48 8 96 26 53 98 5 16 99 43 16 Regulus W. 72 36 47 74 15 21 76 53 32 77 31 22 Antares E. 27 19 29 25 40 67 24 2 48 22 25 a Aquilae E. 83 14 41 81 61 8 80 28 1 79 6 20 MARCH, 1859. 195 GKEENWIOH MEATiT TIME. LtlNAB DISTANCES. Day of Star's Name the and Noon. nil". VIi. VL\ Month. Position. 21 Venus E. 101 43 li' o / // 100 11 28 o / // 98 40 7 / // 97 9 9 22 Saturn W. 101 20 55 102 58 12 104 36 7 106 11 41 Eegulus W. 79 8 49 80 45 55 82 22 39 83 59 2 Spica W. 25 11 20 26 48 5 28 24 31 30 88 a Aquilse E. 11 43 1 76 21 22 76 7 73 39 23 Venus E. 89 39 51 88 11 6 86 42 40 85 14 37 Sun ' E. 134 11 16 132 41 46 131 12 37 129 43 49 23 Eegulus W. 91 55 49 93 30 11 95 4 16 96 38 Spica W. 37 56 22 39 30 34 41 4 29 42 38 5 a Aquilse E. 67 3 59 65 46 42 64 30 3 63 14 3 Venus E. 77 69 30 76 83 28 75 7 44 73 42 20 Fomalhaut E. 90 4 39 88 36 44 87 9 6 86 41 47 Sun E. 122 24 50 120 58 1 119 31 30 118 5 18 24 Eegulus W. 104 22 24 105 64 29 107 26 18 108 57 63 Spica w. 50 21 54 51 63 62 53 25 35 54 57 5 a Aquilse E. 57 4 57 65 53 30 54 42 54 63 33 12 Venus E. 66 39 36 65 15 58 63 62 24 62 29 10 Fomalhaut E. 78 29 48 77 4 20 76 39 10 74 14 19 Sun E. 110 58 33 109 34 1 108 9 43 106 45 40 25 Spica W. 62 31 15 64 1 30 65 31 36 67 1 29 Antares W. 16 37 11 18 7 27 19 37 34 21 7 81 Venus E. 55 36 18 54 14 20 62 62 32 61 30 64 Fomalhaut E. 67 14 49 65 51 62 64 29 16 63 7 Sun E. 99 48 42 98 25 53 97 3 16 95 40 48 26 Spica W. 74 28 56 75 58 4 77 27 6 78 56 4 Antares W. 28 35 9 30 4 20 31 33 26 33 2 26 Venus E. 44 44 55 43 24 6 42 3 21 40 42 42 Fomalhaut E. 56 20 54 65 48 63 41 7 52 21 50 Sun E. 88 50 39 87 28 59 86 7 25 84 45 66 27 Spica W. 86 19 54 87 48 33 89 17 11 90 46 49 Antares W. 40 '26 30 41 65 12 48 23 53 44 62 34 Venus E. 34 25 32 40 5 31 19 46 29 69 28 Fomalhaut E. 45 52 37 44 36 24 43 20 49 42 5 66 Sun E. 77 69 28 76 38 18 75 17 9 78 66 28 Spica W. 98 9 12 99 38 101 6 51 102 36 46 Antares W. 52 16 18 63 45 4 65 13 58 66 42 57 Fomalhaut E. 36 4 1 34 54 44 33 46 44 32 40 9 Sun E. 87 10 6 65 48 49 64 27 29 63 6 6 29 Antares W, 64 9 8 66 38 42 67 8 23 68 88 13 Sun E. 56 17 62 64 66 66 63 33 51 62 11 39 30 Antares W. 76 9 36 77 40 22 79 11 20 80 42 29 Sun E. 45 18 38 43 65 34 42 32 21 41 8 67 31 Antares W. 88 21 13 89 53 36 91 26 12 92 69 2 a Aquilse W. 44 64 14 46 56 34 47 21 48 6 30 Sun E. 34 9 23 32 44 66 31 20 19 29 56 81 196 MARCH, 1859. GREENWICH MEAN TIME. LUNAR DISTANCES. Day of the Month. Star's Name and Position. Midnight. XVi. XVIIP-. XXR 21 Venus E. O / // 95 38 33 o / n 94 8 19 o / // 92 88 27 o / // 91 8 58 22 Satum W. 107 47 64 109 23 46 110 59 18 112 34 29 Eegulus W. 85 35 4 87 10 46 88 46 7 90 21 8 Spica W. 31 36 25 38 11 53 84 47 1 86 21 51 a Aquilse E. 72 19 11 70 59 81 69 40 25 68 21 54 Venus E. 83 46 55 82 19 84 80 52 83 79 25 61 Sun E. 128 15 21 126 47 13 125 19 26 128 51 58 23 Eegulus W. 98 11 27 99 44 36 101 17 29 102 50 5 Spica W. 44 11 24 45 44 26 47 17 11 48 49 40 a Aquilse E. 61 58 45 60 44 10 69 30 19 58 17 14 Venus E. 72 17 13 70 52 24 69 27 61 68 8 36 Fomalhaut E. 84 14 47 82 48 4 81 21 40 79 65 35 SnN E. 116 39 23 115 13 46 113 48 25 112 23 21 24 Regulus W. 110 29 14 112 21 118 81 16 115 1 58 Spica W. 56 28 20 57 59 22 59 30 12 61 49 a Aquilae E. 52 24 27 51 16 42 50 9 59 49 4 20 Venus E. 61 6 9 59 43 28 68 20 49 56 68 28 Fomalhaut E. 72 49 47 71 25 84 70 1 39 68 38 4 Sun E. 105 21 51 103 58 15 102 34 52 101 11 41 : 25 Spica W. 68 31 15 70 52 71 80 20 72 59 41 Antares W. 22 37 18 24 6 57 25 86 28 27 5 52 ■ Venus E. 50 9 26 48 48 6 47 26 55 46 6 52 Fomalhaut E. 61 45 4 60 28 29 59 2 15 57 41 23 Sun E. 94 18 30 92 56 21 91 84 20 90 12 26 26 Spica W. 80 24 56 81 53 45 88 22 31 84 51 13 Antares W. 84 31 21 86 12 87 29 1 38 67 47 Venus E. 39 22 7 88 1 37 86 41 10 35 20 47 Fomalhaut E. 51 3 49 44 38 48 26 46 47 9 25 Sun E. 83 24 31 82 3 11 80 41 64 79 20 40 27 Spica W. 92 14 27 98 43 6 95 11 46 96 40 28 Antares w. 46 21 15 47 49 57 49 18 41 50 47 26 Venus E. 28 89 9 27 18 50 25 58 29 24 38 7 Fomalhaut E. 40 51 47 39 38 26 88 25 58 37 14 28 Sun E. 72 34 52 71 13 43 69 62 32 68 81 20 28 Spica W. 104 4 45 105 33 50 107 3 108 32 17 Antares W. 58 12 59 41 8 61 10 22 62 39 42 Fomalhaut E. 31 35 8 30 31 52 29 30 38 28 31 23 Sdn E. 61 44 87 60 28 4 59 1 26 67 39 42 29 Antares W. 70 8 11 71 38 18 78 8 34 74 39 Sun E. 50 49 20 49 26 58 48 4 17 46 41 32 30 Antares W. 82 13 49 83 45 21 85 17 6 86 49 3 Sun E. 89 45 28 38 21 39 36 67 44 36 33 39 81 Antares W. 94 32 5 96 5 28 97 88 65 99 12 41 a Aquilse w. 49 11 57 50 19 36 61 28 26 52 88 20 Sun E. 28 30 38 27 5 26 25 40 9 24 14 44 APRIL, 1859. 197 GEEENWICH MEAN TiiiE. LUNAE DISTANCES. i Day of the Star's Name and Noon. III''. VIK IXK Month. Position. 6 Sun W. 26 6 23 o / // 27 33 43 O / // 29 7 18 O / // 30 41 9 Jupiter E. 36 20 30 34 41 16 33 1 58 31 22 36 Pollux E. 70 8 6 68 26 41 66 45 6 65 3 21 Saturn E. 84 36 17 82 54 40 81 12 51 79 30 52 Regulus E. lOV 1 25 106 19 48 103 37 59 101 55 59 6 Sun W. 38 33 44 40 8 51 41 44 9 43 19 37 Pollux E. 56 32 9 54 49 27 53 6 38 51 23 40 Saturn E. 10 58 24 69 15 26 67 32 19 65 49 4 Eegulus E. 93 23 29 91 40 30 89 57 23 88 14 6 Y Sun W. 51 19 21 52 55 44 54 32 15 56 8 53 Mars W. 21 3 44 22 40 10 24 17 1 25 54 13 Pollux E. 42 47 6 41 3 28 39 19 45 37 35 57 Saturn E. 57 10 44 55 26 41 53 42 31 51 58 15 Regulus E. 79 35 38 77 51 33 76 7 21 74 23 2 8 Sun W. 64 13 53 65 51 13 67 28 39 69 6 11 Mars W. 34 4 22 35 43 2 37 21 53 39 53 Aldebaran W. 17 38 20 19 3 46 20 32 12 22 3 2 Pollux E. 28 56 9 27 12 7 25 28 7 23 44 9 Saturn E. 43 15 14 41 30 20 39 45 21 38 16 Kegulus E. 65 39 46 63 54 48 62 9 45 60 24 36 9 Sun W. 77 15 10 78 53 13 80 31 20 82 9 32 Mars W. 47 17 58 48 57 44 50 37 37 52 17 36 Aldebaran W. 30 52 31 39 35 33 19 84 59 2 Jupiter W. 19 21 47 21 2 39 22 44 7 24 26 2 Saturn E. 29 13 42 27 28 10 25 42 35 23 56 66 Regulus E. 51 37 33 49 51 54 48 6 11 46 20 23 Spica E. 105 39 34 103 54 102 8 20 100 22 37 10 Sun W. 90 21 28 92 2 93 38 39 95 17 18 Mars W. 60 38 46 62 19 14 63 59 45 65 40 21 Aldebaran w. 43 26 7 45 8 35 46 51 19 48 34 18 Jupiter w. 33 25 34 43 59 36 27 42 38 11 33 Regulus E. 37 30 26 35 44 17 33 58 4 32 11 48 Spica E. 91 33 89 46 54 88 45 86 14 33 11 Sun W. 103 31 10 105 10 1 106 48 54 108 27 47 Mars w. 74 4 3 75 44 65 77 25 48 79 6 43 Aldebaran w. 57 12 1 58 56 1 60 40 7 62 24 20 Jupiter Pollux w. 46 62 30 48 36 57 50 21 28 52 6 1 w. 14 3 41 15 46 58 17 30 54 19 15 18 Spica E. 77 22 57 75 36 32 73 50 6 72 3 38 12 Sun W. 116 42 17 118 21 9 120 121 38 49 Mars W. 87 31 32 89 12 30 90 53 28 92 34 24 Aldebaran W. 71 6 31 72 51 6 74 36 42 76 20 20 Jupiter Pollux W. 60 49 24 62 34 7 64 18 62 66 3 36 W. 28 1 22 29 47 2 31 32 47 33 18 36 Spica Antares E. 63 11 12 61 24 44 59 38 16 57 61 50 E. 109 3 19 107 16 45 105 30 12 103 43 40 198 APR] L, 1859. GEEENWICH MEAN TIME. LUNAR DISTANCES. Day of the Star's Name and Midnight. XVb. XVIIIi. ■ XXTi. Month. Position O / II o / // I il o / y/ 5 Sun W. 32 16 14 33 49 33 35 24 4 36 58 48 Jupiter E. 29 43 12 28 3 49 26 24 28 24 45 11 Pollux E. 63 21 25 61 39 20 69 67 5 58 14 41 Saturn E. 11 48- 42 76 6 22 74 23 53 72 41 13 Regulus E. 100 13 49 98 31 29 96 48 59 95 6 19 6 Susr W. 44 55 16 46 31 4 48 7 1 49 43 7 Pollux E. 49 40 35 47 57 22 46 14 3 44 30 37 Saturn E. 64 5 40 62 22 8 60 38 27 58 54 39 Eegulus E. 86 30 40 84 47 7 83 3 25 81 19 35 1 SXTN W. 57 45 39 59 22 33 60 69 33 62 36 40 Mars W. 27 31 45 29 9 33 30 47 36 32 26 53 Pollux E. 35 52 5 34 8 10 32 24 11 30 40 10 Saturn E. 50 13 51 48 29 21 46 44 45 45 3 Regulus E. 72 38 35 70 54 2 69 9 23 67 24 37 8 Sun W. 70 43 48 72 21 31 73 69 19 75 37 12 Mars W. 40 40 2 42 19 20 43 68 45 46 38 18 Aldebaran w. 23 35 51 25 10 18 26 46 5 28 23 Pollux E. 22 17 20 16 34 18 33 3 16 49 49 Saturn E. 36 15 7 34 29 52 32 44 33 30 59 10 Regulus E. 58 39 21 56 54 2 65 8 37 63 23 7 9 Sun W. 83 47 48 85 26 7 87 4 31 88 42 68 Mars w. 53 57 40 56 37 49 67 18 3 58 58 23 Aldebaran w. 36 39 36 38 20 39 40 2 7 41 43 57 Jupiter w. 26 8 21 27 50 59 29 33 54 31 17 3 Saturn E. 22 11 15 20 25 30 18 39 44 16 53 67 Regulus E. 44 34 31 42 48 35 41 2 36 39 16 33 Spica E. 98 36 49 96 60 57 95 6 2 93 19 3 10 Sun W. 96 56 ,98 34 45 100 13 31 101 52 20 Mars W. 67 21 69 1 41 70 42 26 72 23 13 Aldebaran w. 50 17 29 52 52 53 44 26 65 28 10 Jupiter w. 39 55 32 41 39 38 43 23 61 45 8 8 Regulus E. 30 26 30 28 39 9 26 52 46 26 6 21 Spica E. 84 28 18 82 42 1 80 55 42 79 9 20 11 Sun W. 110 6 41 111 45 35 113 24 30 115 3 24 1 Mars W. 80 47 40 82 28 37 84 9 36 85 60 34 Aldebaran W. 64 8 38 65 53 1 67 37 28 69 21 58 Jupiter w. 53 50 38 55 36 17 57 19 68 59 4 40 Pollux w. 21 4 22 45 7 24 30 23 26 15 49 Spica E. 70 17 10 68 30 41 66 44 11 64 57 42 12 Sun W. 123 17 35 124 66 20 126 35 1 128 13 38 Mars W. 94 15 20 95 66 13 97 37 5 99 17 54 Aldebaran W. 78 4 68 79 49 35 81 34 12 83 18 48 Jupiter W. 67 48 19 69 33 2 71 17 43 73 2 22 Pollux w. 35 4 27 36 50 19 38 36 13 40 22 7 Spica E. 56 5 25 64 19 2 52 32 41 50 46 23 Antares E. 101 57 10 100 10 41 98 24 14- 96 37 49 APRIL, 1859. 199 GEEEWWiCH MEAN" TIME. LUNAR DISTANCES. Day of the- Star's Name and Noon. Illk. VIi". IXi. Month. Position. 13 Mars W. / // 100 58 39 o / // 102 39 22 O / // 104 20 1 O / // 106 36 Aldebaran W. 85 3 22 86 47 53 88 32 21 90 16 46 Jupiter W. 74 46 58 76 31 32 78 16 3 80 31 Pollux W. 42 8 43 53 52 45 39 42 47 25 30 Saturn W. 2V 28 54 29 15 2 31 1 7 32 47 9 Spica E. 49 8 47 13 57 46 27 49 43 41 46 Antares E. 94 51 27 93 5 8 91 18 53 89 32 42 14 Aldebaran W. 98 57 33 100 41 22 102 25 4 104 8 37 Jupiter W. 88 41 36 90 25 32 92 9 21 93 53 2 Pollux w. 56 13 32 57 58 54 59 44 9 61 29 18 Saturn w. 41 36 7 43 21 38 45 7 1 46 52 18 Regulus w. 19 13 27 20 59 5 22 44 36 24 30 Spica E. 34 52 55 33 7 29 31 22 11 29 37 2 Antares E. 80 42 69 78 57 20 77 11 47 75 26 22 15 Jupite-r W. 102 29 21 104 12 8 105 54 44 107 37 9 Pollux w. 70 13 3 71 57 21 73 41 39 75 25 26 Saturn w. 55 36 35 57 20 59 59 5 11 60 49 14 Eegulus w. 33 14 56 34 59 28 36 43 49 38 27 59 Antares E. 66 41 23 64 56 51 63 12 30 61 28 19 a Aquilse E, 116 19 49 114 54 45 113 29 20 112 3 37 16 Pollux W. 84 2 18 85 45 3 87 27 33 89 9 60 Saturn W. 69 26 25 71 9 13 72 51 47 74 34 7 Eegulus w. 47 5 53 48 48 50 50 31 33 52 14 2 Antares E. 52 50 25 51 7 28 49 24 45 47 42 17 a Aquilse E. 104 52 2 103 25 24 101 68 44 100 32 5 11 Pollux W. 97 37 32 99 ;8 17 100 68 47 102 39 Saturn w. 83 2 4 84 42 52- 86 23 26 88 3 40 Eegulus w. 60 42 44 62 23 42 64 4 24 65 44 49 Antares E. 39 13 35 37 32 37 35 61 56 34 11 31 a Aquilse E. 93 20 1 91 54 2 90 28 15 89 2 41 18 Saturn W. 96 20 44 97 59 17 99 37 32 101 16 29 Eegulus w. 74 2 42 75 41 25 77 19 51 78 67 58 Spica w. 20 5 56 21 44 9 23 22 8 24 59 63 a Aquilse E. 81 59 2 80 35 17 79 11 55 77 48 57 Fomalhaut E. 106 44 36 105 13 17 103 42 7 102 11 9 19 Saturn W. 109 20 49 110 57 112 32 53 114 8 28 Eegulus Spica _ a Aquilae W. 87 4 12 88 40 34 90 16 38 91 52 25 W. 33 4 44 34 40 53 36 16 46 37 52 23 E. 71- 49 69 40 41 68 21 6 67 2 6 Fomalhaut E. 94 39 20 93 9 41 91 40 16 90 11 7 Venus, E. 113 27 25 111 59 51 110 32 35 109 5 36 20 Eegulus Spica a Aquilse Fomalhaut W. 99 47 2 101 21 7 102 54 56 104 28 29 W. 45 46 18 47 20 16 48 53 59 50 27 26 E. 60 36 37 59 21 37 58 7 24 56 53 59 E. 82 49 31 81 22 4 79 54 66 78 28 6 Venus E. 101 55 100 29 44 99 4 44 97 39 59 a Pegasi E. 104 42 51 103 13 16 101 43 63 100 14 42 200 APRIL, 1859. GREENWICH MEAN TIME. LUNAE DISTANCES. Day of the Star's Name and Midnight. XVh. XTIHi". XXH. Month. Position 13 Mars W. o / // 107 41 6 O / // 109 21 32 O 1 f/ 111 1 51 o / // 112 42 5 Aldebaran W. 92 1 6 93 45 22 95 29 32 97 13 36 Jupiter W. 81 44 54 83 29 13 85 13 26 86 57 34 Pollux W. 49 11 15 50 56 56 52 42 33 64 28 5 Saturn W. 34 33 Y 36 19 38 4 48 39 50 31 Spica E. 41 55 48 40 9 55 38 24 9 36 38 28 Antares E. 87 46 35 86 32 84 14 35 82 28 44 14 Aldebaran W. 105 52 1 107 35 15 109 18 18 111 1 10 Jupiter W. 95 36 35 97 20 1 99 3 17 100 46 24 Pollux W. 63 14 19 64 59 13 66 43 68 68 28 35 Saturn' W. 48 37 27 50 22 27 52 7 19 63 52 2 Regulus W. 26 15 16 28 25 29 45 24 31 30 15 Spica E. 27 52 3 26 7 14 24 22 36 22 38 11 Antares E. 73 41 6 71 65 56 70 10 66 68 26 5 15 Jupiter W. 109 19 22 111 1 23 112 43 11 114 24 46 Pollux W. 77 9 12 78 52 47 80 36 10 82 19 20 Saturn w. 62 33 4 64 16 43 66 10 67 43 24 Kegulus w. 40 11 58 41 55 46 43 39 21 45 22 44 Antares E. 59 44 20 58 33 56 16 58 54 33 35 a Aquilae E. 110 37 39 109 11 27 107 45 6 106 18 37 16 Pollux W. 90 51 53 92 33 40 94 15 13 95 56 30 Saturn W. 76 16 13 77 58 4 79 39 39 81 21 Regulus W. 53 56 16 55 38 16 67 20 1 59 1 30 Antares E. 46 2 44 18 2 42 36 18 40 54 49 a Aquilse E. 99 5 29 97 38 57 96 12 30 94 46 11 IT Pollux W. 104 18 56 105 58 35 107 37 56 109 17 1 Saturn W. 89 43 39 91 23 21 93 2 46 94 41 54 Regulus W. 67 24 58 69 4 50 70 44 25 72 23 42 Antares E. 32 31 23 30 61 31 29 11 57 27 32 40 a Aquilse E. 87 37 22 86 12 19 84 47 34 83 23 8 18 Saturn W. 102 53 9 104 30 31 106 7 34 107 44 21 Regulus w. 80 36 48 82 13 21 83 60 36 85 27 33 Spica w. 26 37 22 28 14 37 29 51 35 31 28 18 a Aquilse E. 76 26 24 75 4 17 73 42 38 72 21 28 Fomalhaut E. 100 40 21 99 9 46 97 39 24 96 9 15 19 Saturn W. 115 43 46 117 18 47 118 53 30 120 27 67 Regulus W. 93 27 54 95 3 6 96 38 2 98 12 40 Spica w. 39 27 43 41 2 46 42 37 33 44 12 3 a Aquilse E. 65 43 42 64 25 65 63 8 48 61 62 21 Fomalhaut E. 88 42 14 87 13 37 85 45 17 84 17 15 Venus E. 107 38 55 106 12 31 104 46 24 103 20 34 20 Regulus W. 106 1 47 107 34 49 109 7 36 110 40 9 Spica W. 52 37 53 33 34 65 6 16 66 38 43 a Aquilse E. 55 41 25 54 29 44 53 19 52 9 14 Fomalhaut E. 77 1 35 75 35 23 74 9 31 72 43 58 Venus E. 96 15 31 94 61 18 93 27 21 92 3 38 i a X^egasi E. 98 45 43 97 16 66 95 48 23 94 20 2 APRIL, 1859. 201 GEEENWICH MEA-N" TIME. LUNAR DISTANCES. Day of the Star's Name and Noon. IIP'. Vli. IXk. Month. Position. t II / u o / // o / // 21 Spica w. 58 10 56 59 42 56 61 14 42 62 46 15 Fomalhaut E. Tl 18 46 69 53 64 68 29 23 67 5 13 Venus E. 90 40 10 89 16 56 87 53 56 86 31 9 a Pearasi E. 92 51 53 91 23 57 89 56 14 88 28 43 Sun E. 130 32 58 129 8 39 127 44 33 126 20 39 22 Spica W. no 20 68 71 61 22 73 21 36 74 51 40 Antares "W. 24 27 11 25 57 38 27 27 55 28 58 2 Fomalliaut E. 60 9 56 58 48 2 57 26 34 56 5 31 Venus E. 79 40 23 78 18 48 76 57 24 75 36 9 a Pegasi E. 81 14 16 79 47 58 78 21 63 76 56 Sun E. 119 24 118 1 12 116 38 33 115 16 4 23 Spica W. 82 19 56 83 49 14 85 18 26 86 47 33 Antares W. 36 26 34 37 65 56 39 25 11 40 54 21 Fomalliaut E. 49 27 21 48 9 17 46 51 48 45 34 57 Venus E. 68 52 8 67 31 42 66 11 23 64 61 9 a Pegasi E. 69 49 24 68 24 39 67 5 66 35 42 Sun E. 108 25 36 107 3 51 105 42 11 104 20 36 24 Spica W. 94 12 9 95 40 56 97 9 42 98 38 28 Antares w. 48 19 14 49 48 5 51 16 54 62 45 43 Fomalliaut E. 39 21 37 38 9 33 36 58 32 36 48 39 Venus E. 58 11 9 56 51 19 55 31 31 54 11 44 a Pegasi E. 58 36 33 57 13 18 55 50 16 54 27 26 Sun E. 97 33 41 96 12 25 94 61 11 93 29 67 25 Spica W. 106 2 27 107 31 22 109 20 110 29 22 Antares W. 60 10 1 61 38 59 63 8 64 37 6 Venus E. 47 32 52 46 13 3 44 63 11 43 33 17 a Pegasi E. 47 36 42 46 15 22 44 64 21 43 33 40 Sun E. 86 43 35 85 22 13 84 47 82 39 17 26 Antares W. 72 3 59 73 33 42 75 3 33 76 33 34 Venus E. 36 52 50 35 32 30 34 12 6 32 61 36 a Pegasi E. 36 56 48 35 39 7 34 22 9 33 6 Sun E. 75 50 25 74 28 19 73 6 5 71 43 42 2Y Antares W. 84 6 6 85 37 11 87 8 28 88 39 58 a Aquilae W. 42. 1 30 42 69 13 43 58 36 44 59 34 Venus E. 26 7 42 24 46 40 23 25 34 22 4 26 Sun E. 64 49 24 63 26 62 2 24 60 38 35 28 Antares W. 96 20 59 97 53 57 99 27 11 101 41 a Aquilffi Sun w. 50 26 10 51 33 58 52 43 62 53 64 49 E. 63 36 15. 52 11 5 50 45 39 49 19 59 29 a Aquilse Fomalhaut W. 60 3 32 61 19 49 62 36 62 63 54 38 w. 33 47 34 36 6 36 14 23 37 30 19 Sun E. 42 7 46 40 40 32 39 13 3 37 45 18 30 a Aquilae Fomalhaut W. 70 33 30 71 65 5 73 17 13 74 39 53 w. 44 10 40 45 34 15 46 58 49 48 24 20 Sun E. 30 22 52 28 53 42 27 24 21 25 64 51 202 APRIL, 1859. 1 GEEENIVICH MEAN" TIME. ■ LUNAE DISTAJfCES. Day of Star's Name tte and Midnight. XVi-. XVIIIi. XX Ik. Month. Position. o / // o / // o / // O / // 21 Spica W. 64 IT 35 65 48 43 67 19 39 68 60 24 Fomalhaut E. 65 41 25 64 17 68 62 64 64 61 32 13 Venus E. 85 8 36 83 46 14 82 24 6 81 2 9 a Pegasi E. 87 1 25 85 34 19 84 7 26 82 40 45 Sdn E. 124 56 57 123 33 26 122 10 7 120 46 68 22 Spica W. 76 21 35 77 51 22 79 21 80 50 31 Antarea W. 30 28 31 57 50 33 27 32 34 57 7 Fomalhaut E. 54 44 55 63 24 47 62 5 8 50 45 59 Venus E. 74 15 4 72 54 8 71 33 20 70 12 40 a Pegasi E. 76 30 18 74 4 47 72 39 29 71 14 21 Sun E. 113 53 43 112 31 30 111 9 25 109 47 27 23 Spica W. 88 16 35 89 45 33 91 14 28 92 43 20 Antares W. 42 23 27 43 52 29 45 21 27 46 60 22 Fomalhaut E. 44 18 45 43 3 16 41 48 32 40 34 38 Venus E. 63 31 1 62 10 57 60 60 68 69 31 2 a Pegasi E. ' 64 11 30 62 47 29 61 23 39 60 Sun E. 102 59 7 101 37 41 100 16 18 98 64 58 24 Spica W. 100 7 13 101 36 103 ' 4 47 104 33 36 Antares W. 54 14 32 55 43 22 57 12 13 68 41 6 Fomalhaut E. 34 40 1 33 32 45 32 27 31 22 54 Venus E. 52 51 58 51 32 12 60 12 27 48 52 40 a Pegasi E. 53 4 48 51 42 24 60 20 14 48 58 20 Sun E. 92 8 43 90 47 28 89 26 13 88 4 55 23 Spica W. 111 58 28 113 27 40 114 66 57 116 26 21 Antares W. 66 6 17 67 35 33 69 4 55 70 34 23 Venus E. 42 13 19 40 53 18 39 33 13 38 13 4 a Pegasi E. 42 13 22 40 63 29 39 34 3 38 16 8 Sun E. 81 17 42 79 66 2 78 34 16 77 12 24 26 Antares W. 78 3 43 79 34 3 81 4 33 82 35 14 Venus E. 31 31 30 10 19 28 49 32 27 28 40 a Pegasi E. 31 50 47 30 36 38 29 23 43 28 12 12 Sun E. 70 21 11 68 68 29 67 35 38 66 12 36 27 Antares W. 90 11 41 91 43 39 93 15 50 94 48 17 a Aquilae W.~ 46 2 47 6 51 48 11 2 49 17 30 Venus E. 20 43 16 19 22 8 18 1 4 16 40 8 Sun E. 69 14 34 67 50 20 56 25 52 55 1 11 28 Antares W. 102 34 27 104 8 31 105 42 63' 107 17 32 a Aquilae w. 65 6 45 56 19 37 67 33 24 58 48 3 Sun E. 47 54 4 •46 27 63 45 1 26 43 34 44 29 a Aquilse W. 65 13 7 66 32 16 67 62 3 69 12 29 Fomalhaut W. 38 47 46 40 6 37 41 26 46 42 48 9 Sun E. 36 17 18 34 49 2 33 20 33 31 51 49 30 a Aquilse W. 76 3 3 77 26 42 78 50 49 80 15 21 Fomalhaut w. 49 50 45 51 17 59 52 46 1 54 14 48 Sun E. 24 26 13 22 55 28 21 25 42 19 56 58 MAY, 1859. 203 GKEENWIOH IVnRATq- TIME. LUNAR DISTANCES. Day of Star's Name the and Noon. nik. VR IX". Month. Position. o / // o / // o / // i II 4 Sun W. 21 16 8 22 51 39 24 28 39 26 6 2 Pollux E. 46 63 26 46 7 29 43 21 26 41 35 17 Saturn E. 61 67 37 60 11 37 68 25 27 66 39 10 Regulus E. 83 42 20 81 65 57 80 9 26 78 22 45 5 Sun W. 34 17 24 35 66 18 37 36 22 39 14 34 Pollux E. 32 43 28 30 57 1 29 10 36 27 24 13 Saturn E. 47 45 59 46 69 4 44 12 6 42 25 3 Regulus E. 69 27 41 67 40 23 65 63 1 64 6 35 6 Sun W. 47 32 2 49 11 43 60 51 26 52 31 10 Mars W. 25 11 25 26 62 24 28 33 33 30 14 51 Jupiter W. 11 7 30 12 44 66 14 24 22 16 5 11 Saturn E. 33 29 18 31 42 6 29 54 53 28 7 42 Reeulus E. 56 7 49 63 20 12 51 32 34 49 44 68 Spica E. 109 10 8 107 22 35 105 35 3 103 47 30 Y Sun W. 60 49 52 62 29 33 64 9 11 65 48 47 Mars W. 38 42 24 40 24 42 6 36 43 47 10 Jupiter W. 24 39 46 26 23 44 28 7 63 29 62 9 Regulus E. 40 47 16 ' 38 59 60 37 12 28 36 25 10 Spica E. 94 50 7 93 2 45 91 15 26 89 28 11 8 Sun W. 74 5 50 76 45 1 77 24 6 79 3 7 Mars W. 62 14 30 53 65 47 55 37 57 18 9 Jupiter W. 38 34 17 40 18 43 42 3 7 43 47 29 Pollux W. 11 7 6 12 48 15 14 30 39 16 13 52- Regulus E. 26 29 44 24 42 65 22 56 12 21 9 34 Spica E. 80 33 1 78 46 14 76 69 32 76 12 67 9 Sun W. 87 16 36 88 54 59 90 33 14 92 11 22 Mars W. 65 42 30 67 23 4 69 3 31 70 43 62 Jupiter W. 52 28 18 64 12 13 55 66 3 57 39 46 Pollux W. 24 56 34 26 40 20 28 26 7 30 9 64 Spica E. 66 21 36 ,64 36 40 62 49 52 61 4 11 Antares E. 112 13 31 110 27 31 108 41 37 106 56 50 10 Sun W. 100 20 6 101 57 25 103 34 37 105 11 41 Mars W. 79 3 47 80 43 24 82 22 62 84 2 12 Jupiter W. 66 16 42 67 59 44 69 42 38 71 25 26 Pollux W. 38 53 10 40 37 36 42 21 65 44 6 9 Saturn W. 23 14 6 24 58 36 26 42 69 28 27 13 Spica' E. 52 17 46 60 32 62 48 48 8 47 3 33 Antares E. 98 8 53 96 23 63 94 39 2 92 64 18 11 Sun W. 113 14 4* 114 50 63 116 26 52 118 2 41 Mars W. 92 16 49 93 55 18 95 33 38 97 11 50 Jupiter Pollux W. 79 57 15 81 39 11 83 20 59 85 2 38 W. 62 45 33 54 29 3 56 12 26 67 56 38 Saturn W. 37 6 20 38 49 4? 40 32 67 42 16 2 Regulus Spica Antares W. 15 44 23 17 28 9 19 11 48 20 55 17 E. 38 22 52 36 39 13 34 55 43 33 12 24 E. 84 12 50 82 28 59 80 45 17 79 1 43 204 MAY, 1859. GEEENWICH IVTEAT^ TIME. LUNAR DISTANCES. Day of Star's Name tte and Midnight. XY*. XVIII''. XXP". Month. Position. 4 Sun W. o / // 27 43 47 c / // 29 21 49 o / // 31 7 / // 32 38 39 Pollux E. 39 49 2 38 2 43 36 16 20 34 29 66 Saturn E. 54 52 45 53 6 12 61 19 34 49 32 49 Eegulus E. 76 35 58 74 49 3 73 2 1 71 14 64 5 Sun W. 40 53 64 42 33 19 44 12 49 45 62 24 Pollux E. 25 37 56 23 61 46 22 6 47 20 20 1 Saturn E. 40 37 58 38 60 50 37 3 41 35 16 30 Eegulus E. 62 18 6 60 30 34 68 43 1 56 56 25 6 Sun W. 54 10 55 55 60 41 67 30 26 59 10 10 Mars W. 31 56 14 33 37 43 36 19 14 37 49 Jupiter W. 17 47 19 29 31 21 12 34 22 56 1 Saturn E. 26 20 32 24 33 24 22 46 18 20 69 14 Regulus E. 47 57 22 46 9 47 44 22 14 42 34 44 Spica E. 101 59 58 100 12 27 98 24 68 96 37 31 1 Sun W. 67 28 19 69 7 48 70 47 13 72 26 34 Mars W. 45 28 44 47 10 16 48 61 43 50 33 8 Jupiter w. 31 36 30 33 20 65 35 6 22 36 49 49 Regulus E. 33 37 55 * 31 50 45 30 3 40 28 16 39 Spica E. 87 41 86 53 53 84 6 61 82 19 53 8 Sun W. 80 4-2 1 82 20 60 83 69 32 86 38 8 • Mars W. 58 59 12 60 40 10 62 21 3 64 1 49 Jupiter W. 45 31 47 47 16 2 49 12 60 44 18 - Pollux w. 17 67 40 19 41 50 21 26 16 23 10 61 Regulus E. 19 23 4 17 36 40 15 60 24 14 4 15 Spica E. 73 26 27 71 40 4 69 63 48 68 7 38 9 Sun W. 93 49 22 96 27 14 97 4 59 98 42 36 Mars w. 72 24 6 74 4 12 75 44 12 77 24 3 Jupiter w. 69 23 23 61 6 53 62 50 16 64 33 33 Pollux w. 31 64 40 33 39 23 36 24 3 37 8 39 Spica E. 69 18 38 67 33 12 65 47 56 64 2 46 Antares E. 105 10 11 103 24 40 101 39 17 99 64 1 10 Sun W. 106 48 35 108 25 21 110 1 68 111 38 25 Mars w. 85 41 25 87 20 28 88 69 24 90 38 11 Jupiter w. 73 8 3 74 50 34 76 32 66 78 15 10 Pollux w. 45 60 16 47 34 16 49 18 9 51 1 56 Saturn w. 30 11 19 31 66 17 33 39 7 35 22 48 Spica E. 45 19 6 43 34 49 41 50 41 40 6 42 Antares E. 91 9 44 89 25 17 87 40 69 85 56 50 11 Sun W. 119 38 21 t21 13 50 122 49 9 124 24 17 Mars W. 98 49 52 100 27 44 102 5 28 103 43 2 Jupiter W. 86 44 8 88 25 28 90 6 39 91 47 41 Pollux w. 59 38 43 61 21 40 63 4 28 64 47 7 Saturn w. 43 58 68 46 41 45 47 24 23 49 6 50 Regulus w. 22 38 38 24 21 51 26 4 54 27 47 48 Spica E. 31 29 15 29 46 17 28 3 30 26 20 55 Antares E. 77 18 19 75 36 6 73 51 69 72 9 3 MAY, 1859. 205 GEEENWIOH ¥EAT^^ TIME. LUNAR DISTANCES. Day of Star's Name tte and Noon. iir'. Vli. IX'. Month. Position. o / // / // O i if o / tl 12 Sun w. 125 59 15 127 34 1 129 8 37 130 43 1 Mars w. 105 20 26 106 57 40 108 34 44 110 11 88 Jupiter w. 93 28 33 95 9 15 96 49 48 98 30 10 Pollux w. 66 29 37 68 11 57 69 54 8 71 36 10 Saturn w. 50 49 8 52 31 17 54 13 15 55 55 4 Regulus w. 29 30 32 31 13 7 32 55 32 34 37 48 Spica E. 24 38 32 22 56 22 21 14 26 19 32 44 Antares E. 70 26 17 68 43 41 67 1 14 65 18 57 13 Jupiter W. 106 49 26 108 28 45 110 7 55 111 46 50 Pollux W. 80 3 49 81 44 50 83 25 40 85 6 20 Saturn w. 64 21 34 66 2 20 67 42 56 69 23 21 Regulus w. 43 6 35 44 47 49 46 28 5S 48 9 46 Antares E. 56 50 6 55 8 51 53 27 47 51 46 53 a Aquilse E. 108 16 28 106 51 38 105 26 41 104 1 39 14 Pollux W. 93 26 53 95 6 25 96 45 46 98 24 55 Saturn W. 77 42 37 79 21 54 81 59 82 39 52 Regulus W. 56 31 23 58 11 9 59 50 42 61 30 4 Antares E. 43 25 14 41 45 28 40 5 54 38 26 32 a Aquilse E. 96 56 6 95 31 5 94 6 10 92 41 21 15 Pollux W. 106 37 35 108 15 30 109 53 12 111 30.40 Saturn w. 90 51 16 92 28 56 94 6 23 95 43 37 Regulus w. 69 43 53 71 22 2 72 59 59 74 37 43 Spica w. 15 48 54 17 26 13 19 3 28 20 40 36 Antares E. 30 12 42 28 34 33 26 56 36 25 18 53 a Aquilse E. 85 39 40 84 15 57 82 52 29 81 29 17 Fomalliaut E. 110 43 27 109 13 10 107 42 55 106 12 44 16 Saturn W. 103 46 35 105 22 32 106 58 15 108 33 45 Regulus W. 82 43 9 84 19 35 85 55 48 87 31 48 Spica W. 28 44 4 30 20 14 31 56 12 33 31 59 a Aquilse E. 74 38 8 73 17 1 71 56 18 70 36 3 Fomalhaut E. 98 43 17 97 13 47 95 44 26 94 15 15 11 Regulus W. 95 28 31 97 3 12 98 37 40 100 11 55 Spica W. 41 27 48 43 2 21 44 36 41 46 10 49 a Aquilae E. 64 2 16 62 45 11 61 28 45 60 12 59 Fomalhaut E. 86 52 13 85 24 15 83 56 31 82 29 1 a Pegasi E. 108 47 9 107 17 5 105 47 9 104 17 21 18 Regulus Spica a Aquilse Fomalhaut W. 107 59 59 109 32 57 111 5 44 112 38 18 w. 53 58 20 55 31 13 57 3 54 58 36 23 E. 54 5 23 52 54 24 51 44 23 50 35 23 E. 75 15 2& 73 49 32 72 23 57 70 58 40 a Pegasi E. 96 50 40 95 21 49 93 53 9 92 24 39 19 Spica Antares W. 66 15 56 67 47 17 69 18 28 70 49 28 W. 20 22 6 21 53 32 23 24 46 24 55 51 Fomalhaut E. 63 57 14 62 34 1 61 11 10 59 48 43 a Pegasi Venus E. 85 4 57 83 37 35 82 10 24 80 43 25 E. 115 25 36 114 3 41 112 41 56 111 20 20 206 MAY, 1859. GEEEITWIOH ¥F,AT^ TIME. LUNAR DISTANCES. Day of the Month. Star's Name and Position. Midnight. XSTK XVIIP'. XXTi'. 12 Sun W. O 1 II 132 17 13 O 1 II 133 61 13 O 1 II 135 25 1 / // 136 58 36 Mars W. 111 48 22 113 24 66 115 1 19 116 37 31 Jupiter W. 100 10 22 101 60 24 103 30 15 106 9 56 Pollux W. 73 18 1 74 69 43 76 41 15 78 22 37 Satum W. 67 36 42 59 18 11 60 59 29 62 40 37 Regulus W. 36 19 54 38 1 50 39 43 35 41 25 10 Spica E. 17 51 20 16 10 13 14 29 29 12 49 10 Antares E. 63 36 61 61 54 64 60 13 8 68 31 32 13 Jupiter W. 113 26 35 115 4 9 116 42 31 118 20 41 Pollux W. 86 46 49 88 27 7 90 7 14 91 47 9 Saturn W. 71 3 35 72 43 37 74 23 29 76 3 9 Regulus W. 49 50 28 51 30 68 53 11 18 54 51 26 Antares E. 60 6 11 48 25 40 46 45 20 46 5 11 a Aquilae E. 102 36 33 101 11 26 99 46 18 98 21 11 14 Pollux W. 100 3 61 101 42 36 103 21 8 104 59 28 Satum W. 84 18 33 85 57 3 87 35 20 89 13 24 Eegulus W, 63 9 14 64 48 13 66 26 59 68 5 32 Antares E. 36 47 21 36 8 23 33 29 37 31 51 3 a Aqnilfp, E. 91 16 40 89 62 8 88 27 47 87 3 37 15 Pollux W. 113 7 66 114 44 59 116 21 48 117 58 24 Satum W. 97 20 39 98 57 28 100 34 3 102 10 26 Eegulus W. 76 15 IJj 77 52 32 79 29 37 81 6 29 Spica W. 22 17 37 23 54 29 25 31 11 27 7 43 Antares E. 23 41 22 22 4 4 20 26 59 18 50 7 a Aquilae E. 80 6 23 78 43 48 77 21 33 76 69 39 Fomalhaut E. 104 42 38 103 12 37 101 42 43 100 12 56 16 Satum W. 110 9 2 111 44 5 113 18 56 114 53 83 Regulus W. 89 7 35 90 43 9 92 18 30 93 63 37 Spica W. 35 7 33 36 42 55 38 18 6 39 53 3 a Aquilae E. 69 16 15 67 56 57 66 38 10 65 19 56 Fomalhaut E. 92 46 16 91 17 26 89 48 49 88 20 26 17 Regulus W. 101 45 68 103 19 47 104 53 24 106 26 48 Spica W. 47 44 44 49 18 26 50 61 56 52 25 14 a Aquilae E. 58 57 55 57 43 35 66 30 1 65 17 16 Fomalhaut E. 81 1 46 79 34 46 78 8 3 76 41 35 a Pegasi E. 102 47 42 101 18 12 99 48 52 98 19 41 18 Regulus W. 114 10 40 115 42 61 117 14 60 118 46 37 Spica W. 60 8 41 61 40 46 63 12 41 64 44 24 a Aquilae E. 49 27 26 48 20 38 47 15 1 46 10 40 Fomalhaut E. 69 33 43 ,68 9 6 66 44 47 65 20 50 a Pegasi E. 90 66 21 89 28 13 88 16 86 32 31 19 Spica W. 72 20 19 73 50 59 75 21 30 76 51 62 Antares W. 26 26 45 27 57 30 29 28 6 30 58 31 Fomalhaut E. 58 26 41 57 5 4 55 43 54 54 23 12 a Pegasi E. 79 16 37 77 50 1 76 23 37 74 57 25 Venus E. 109 68 64 108 37 38 107 16 31 106 55 33 MAY, 1859. 207 GEEENWIOH IVTEAif TIME. LUNAR DISTANCES. Day of the Star's Nam( ! and Noon. III''. VII'. IXk. Month. Position. 20 Spica w. / II 78 22 6 o 1 II 79 52 10 O i // 81 22 7 / // 82 51 56 Antares w. 82 28 48 33 58 56 36 28 67 36 68 50 Fomalliaut E. S3 2 59 51 43 16 50 24 6 49 5 29 a Pegasi E. 73 31 24 72 5 36 70 40 69 14 36 Venus E. 104 34 43 103 14 2 101 68 28 100 33 2 Sun E. 138 25 44 137 3 32 136 41 26 184 19 25 21 Spica W. 90 19 17 91 48 28 93 17 34 94 46 35 Antares W. 44 26 30 46 55 45 47 24 54 48 54 Fomalhant E. 42 42 11 41 27 47 40 14 16 89 1 44 a Pegasi E. 62 10 40 60 46 32 59 22 36 57 58 54 Venus E. 93 52 35 92 32 48 91 13 5 89 58 27 Sun E. 127 30 41 126 9 10 124 47 43 123 26 20 22 Spica W. 102 10 51 103 39 36 105 8 19 106 37 8 Antares W. 56 18 35 57 47 24 59 16 12 60 44 59 a Pegasi E. 51 4 5 49 41 56 48 20 4 46 58 32 Venus E. 83 16 9 81 56 48 80 37 29 79 18 11 Sun E. 116 39 59 115 18 48 113 57 36 112 36 26 23 Antares W. 68 9 9 69 38 5 71 7 5 72 36 9 a Pegasi E. 40 16 30 38 57 28 87 89 86 21 10 Venus E. 72 41 35 71 22 11 70 2 45 68 48 15 Sun E. 106 50 10 104 28 48 103 7 21 101 45 51 24 Antares W. 80 2 48 81 32 28 83 2 16 84 32 13 Venus E. 62, 4 39 60 44 38 59 24 31 68 4 17 Sun E. 94 56 56 93 34 48 92 12 32 90 50 8 25 Antares W. 92 4 29 93 35 81 96 6 45 96 38 13 a Aquilae W. 47 10 8 48 14 58 49 21 1 50 28 12 Venus E. 51 20 59 49 59 51 48 38 33 47 17 4 Sun E. 83 65 34 82 32 5 81 8 23 79 44 28 26 Antares W. 104 19 11 105 52 11 107 25 28 108 69 2 a Aquilae W. 56 19 30 57 32 31 68 46 23 60 1 2 Fomalliaut w. 30 39 26 31 44 26 32 51 40 34 67 Venus E. 40 26 61 89 4 14 37 41 25 86 18 24 Sun E. 72 41 18 71 15 52 69 50 10 68 24 11 27 a Aquilae W. 66 26 21 67 44 15 69 3 47 70 28 56^ 44 12 4# Fomalhaut W. 40 12 59 41 81 43 42 51 40 Venus E. 29 20 44 27 66 46 26 82 44 25 8 39 Sun E. 61 9 43 59 41 52 58 13 41 66 45 10 28 a Aquilae Fomalliaut W. 77 13 11 78 36 36 80 31 81 24 54 W. 51 13 28 62 40 18 64 7 57 55 36 22 a Pegasi Sun W. 29 32 49 30 52 66 82 14 51 33 38 29 E. 49 17 23 47 46 46 46 15 48 44 44 30 29 a Aquilae Fomalhaut W. 88 33 15 90 4 91 27 14 92 54 42 W. 63 9 5 64 41 34 66 14 39 67 48 19 a Pegasi Sun W. 40 57 20 42 28 33 44 44 45 33 51 E. 87 2 43 36 29 21 33 55 41 32 21 48 208 MAY, 1859. -- ^ GEEENWIOH : MEAN TIME. LUNAR DISTANCES. Day of Star's Name and Midnight. XVK XVIIP. XXTk. Month. Position. o / // / II o / // O 1 II 20 Spica w. 84 21 87 85 51 12 87 20 40 88 60 2 Antares w. 38 28 35 39 58 13 41 27 45 42 57 10 Fomalhaut E. i1 47 28 46 30 6 45 13 23 43 67 24 a Pegasi E. 67 49 24 66 24 24 64 59 37 63 36 2 Venus E. 99 12 44 97 62 32 96 32 27 96 12 28 Sun E. 132 57 30 131 35 41 130 13 66 128 62 17 21 Spica W. 96 15 32 97 44 26 99 13 17 100 42 5 Antares W. 50 23 1 51 61 58 53 20 63 64 49 46 Fomalhaut E. 37 60 13 36 39 50 36 30 41 34 22 63 a Pegasi E. 56 35 27 55 12 13 53 49 16 62 26 32 Venus E. 88 33 53 87 14 22 85 54 55 84 35 31 Sun E. 122 4 59 120 43 41 119 22 26 118 1 12 22 Spica W. 108 5 46 109 34 29 111 3 14 112 32 1 Antares W. 62 13 46 63 42 35 66 11 24 66 40 15 a Pegasi E. 45 37 20 44 16 30 42 66 4 41 36 3 ; Venus E. 77 58 54 76 39 36 75 20 17 74 57 i Sun E. 111 15 13 109 64 1 108 32 46 107 11 29 23 Antares W. 74 5 17 75 34 30 77 3 49 78 33 15 a Pegasi E. 35 4 2 33 47 40 32 32 11 31 17 41 Venus E. 67 23 41 66 4 3 64 44 21 63 24 33 Sun E. 100 24 16 99 2 35 97 40 49 96 18 66 24 Antares W. 86 2 20 87 32 36 89 3 2 90 33 40 Venus E. 56 43 55 65 23 24 64 2 45 62 41 57 Sun E. 89 27 34 88 4 60 86 41 56 86 18 51 25 Antares W. 98 9 65 99 41 61 101 14 2 102 46 29 a Aqniljfi W. 61 36 29 52 45 48 63 66 6 55 7 21 Venus E. 45 65 25 44 33 34 43 11 31 41 49 17 Sun E. 78 20 20 76 55 67 75. 31 19 74 6 26 26 Antares W. 110 32 54 112 7 6 113 41 35 116 16 25 a Aquilse W. 61 16 27 62 32 37 63 49 31 65 7 6 Fomalhaut W. 35 12 7 36 26 2 37 39 33 38 66 34 Venus E. 34 66 12 33 31 49 32 8 17 30 44 34 Sun E. 66 67 56 66 31 20 64 4 27 62 37 14 W^ a Aquilae W. 71 44 41 73 5 59 74 27 51 75 60 15 Fomalliaut W. 45 34 67 46 58 10 48 22 21 49 47 28 Venus E. 23 44 34 22 20 33 20 66 42 19 33 7 Sun E. 56 16 18 63 47 6 52 17 32 50 47 38 28 a Aquilse W. 82 49 45 84 15 1 85 40 42 87 6 47 Fomalliaut W. 67 5 32 58 35 25 60 5 69 61 37 13 a Pegasi w. 36 3 39 36 30 13 37 68 5 39 27 9 \ Sun E. 43 12 60 41 40 48 40 8 27 38 35 45 \ 29 a Aquilae W. 94 22 28 95 50 30 97 18 47 98 47 16 Fomalhaut W. 69 22 32 70 67 17 72 32 32 74 8 18 a Pegasi W. 47 7 48 48 42 34 50 18 7 51 54 23 Sun E. 30 47 28 29 12 57 •*- 27 38 12 26 3 15 JUNE, 1859. 209 GREENWICH MEATq" TIME. LUNAR DISTANCES. Day of Star's Name the and Noon. Illi. VI". IS>. Month. Position. 3 Sun W. / // 30 27 5 o / // 32 9 19 o / // 33 51 37 1 II 35 33 59 Eegulus E. 45 18 32 43 27 46 41 37 3 39 46 23 Spica E. 99 21 30 97 30 48 95 40 8 93 49 32 4 Sun W. 44 5 48 45 48 1 47 30 7 49 12 8 Eegulus E. 30 34 18 28 44 14 26 54 18 25 4 31 Spica E. 84 37 41 82 47 38 80 57 44 79 7 59 5 Sun W. 57 40 3 59 21 8 61 2 2 62 42 44 Pollux W. 21 21 39 23 8 32 24 55 29 26 42 25 Spica E. 70 1 46 68 13 6 66 24 38 64 36 24 Antares E. 115 53 30 114 4 44 112 16 10 110 27 60 6 Sun W. 71 3 72 42 22 74 21 29 76 22 Pollux W. 35 35 40 37 21 52 39 7 52 40 53 40 Saturn w. 17 49 32 19 35 44 21 21 42 23 7 25 Spica E. 65 38 42 53 51 53 52 5 21 60 19 3 Antares E. 101 29 33 99 42 37 97 55 56 96 9 30 T Sun W. 84 11 85 48 22 87 25 27 89 2 18 Pollux W. 49 39 23 51 23 50 53 8 2 54 51 59 Saturn W. 31 52 8 33 36 18 35 20 11 37 3 49 Eegulus W. 12 37 24 14 22 2 16 6 27 17 50 38 Spica E. 41 31 36 39 46 55 38 2 32 ' 36 18 25 Antares E. 87 21 13 85 36 20 83 51 44 82 7 23 8 Sun W. 97 2 32 98 37 48 100 12 49 101 47 34 Pollux w. 63 28 1 65 10 29 66 52 41 68 34 38 Saturn w. 45 37 59 47 20 2 49 1 49 60 43 21 Eegulus w. 26 27 55 28 10 37 29 53 4 31 35 16 Spica E. 27 42 11 25 59 51 24 17 48 22 36 5 Antares E. 73 29 38 71 46 53 70 4 23 68 22 8 a Aquilae E. 122 1 4 120 39 20 119 17 8 117 54 38 9 Sun W. 109 37 24 111 10 37 112 43 35 114 16 18 Pollux W. 77 41 78 41 10 80 21 24 82 1 23 Saturn W. 59 7 8 60 47 9 62 26 55 64 6 26 Eegulus W. 40 2 29 41 43 12 43 23 39 45 3 52 Antares E. 59 54 44 58 14 56 33 31 54 53 17 a Aquilae E. 110 57 21 109 33 20 108 9 12 106 44 59 10 Sun W. 121 56 14 123 27 30 124 58 32 126 29 20 Pollux W. 90 17 49 91 56 25 93 34 48 95 12 57 Saturn w. 72 20 27 73 58 33 75 36 26 77 14 6 Eegulus Antares w. 53 21 25 55 15 56 38 51 58 17 14 E. 46 35 37 44 56 47 43 18 10 41 39 47 a Aquilse Fomalhant E. 99 43 36 98 19 25 96 65 18 95 31 17 E. 125 30 41 124 2 34 122 34 16 121 6 49 11 Pollux W. 103 20 25 104 57 17 106 33 56 108 10 22 Saturn W. 85 19 8 86 55 30 88 31 40 90 7 38 Eegulus Spica Antares W. 66 25 52 68 2 57 69 39 51 71 16 32 W. 12 34 29 14 10 6 15 45 48 17 21 31 E. 33 31 5 31 53 59 30 17 5 28 40 24 14 210 JUNE, 1859. GREEN WIOH MEAN TIME. LUNAE DISTANCES. Day of Star's Name the and Midnight. XVk. XVIIIi>. XXIi. Month. Position. D / // / // o / // Oil/ 3 Sun w. 37 16 23 38 68 48 40 41 11 42 23 31 Regulus E. 37 55 47 36 5 16 34 14 50 32 24 30 Spica E. 91 58 59 90 8 30 88 18 7 86 27 51 4 Sun W. 50 54 52 36 45 64 17 21 65 58 47 Regulus E. 23 14 55 21 26 29 19 36 16 17 47 14 Spica E. 77 18 23 75 28 57 73 39 42 71 50 38 5 Sun W. 64 23 13 66 3 30 67 43 34 69 23 24 Pollux W. 28 29 18 30 16 6 32 2 46 33 49 18 Spica E. 62 48 23 61 36 69 13 3 57 25 45 Antares E. 108 39 43 106 51 49 105 4 9 103 16 44 6 Sun W. 77 39 1 79 17 23 80 55 31 82 33 24 Pollux W. 42 39 16 44 24 38 46 9 47 47 54 43 Saturn W. 24 52 53 26 38 5 28 23 2 30 7 43 Spica E. 48 33 1 46 47 15 45 1 46 43 16 32 Ajitares E. 94 23 20 92 37 26 90 51 45 89 6 21 Y Sun W. 90 38 62 92 15 10 93 51 13 96 27 Pollux W. 56 35 42 58 19 9 60 2 22 61 45 19 Saturn W. 38 47 11 40 30 17 42 13 7 43 55 41 Regulus W. 19 34 35 21 18 18 23 1 46 24 44 68 Spica E. 34 34 36 32 61 3 31 7 48 29 24 51 Antares E. 80 23 19 78 39 30 76 55 67 76 12 40 8 Sun W. 103 22 3 104 56 17 106 30 14 108 3 57 Pollux W. 70 16 21 71 57 48 73 39 76 19 58 Saturn W. 62 24 37 54 6 37 55 46 23 67 26 53 Regulus W. 33 17 13 34 68 54 36 40 21 38 21 32 Spica E. 20 64 42 19 13 41 17 33 3 15 52 50 Antares E. 66 40 9 64 58 25 63 16 56 61 35 43 , a AquilsB E. 116 31 37 115 8 24 113 44 55 112 21 13 9 Sun W. 115 48 47 117 21 118 52 59 120 24 44 Pollux W. 88 41 8 85 20 40 86 59 67 88 39 Saturn W. 65 45 42 67 24 46 69 3 33 70 42 7 Regulus W. 46 43 51 48 23 36 50 3 6 61 42 23 ; Antares E. 53 13 16 51 33 31 49 63 59 48 14 41 a Aquilse E. 105 20 44 103 66 26 102 32 8 101 7 51 10 Sun W. 127 69 54 129 30 14 131 19 132 30 12 Pollux W. 96 50 52 98 28 35 100 6 5 101 43 21 Saturn W. 78 61 32 80 28 46 82 5 46 83 42 33 Regulus W. 69 55 23 61 33 20 63 11 3 64 48 34 Antares E. 40 1 37 38 23 40 36 45 66 35 8 24 a Aquilse E. 94 7 23 92 43 37 91 19 59 89 56 32 Fomalhaut E. 119 37 15 118 8 36 116 39 52 116 11 5 11 Pollux W. 109 46 36 111 22 37 112 58 27 114 34 6 Saturn W. 91 43 23 93 18 67 94 54 18 96 29 29 Regulus W. 72 53 1 74 29 19 76 5 24 77 41 18 Spica W. 18 57 12 20 32 49 22 8 20 23 43 43 Antares E, 27 3 54 26 27 36 23 51 31 22 15 36 1 JUNE, 1859. 211 GREENWICH MEAN TIME. LUNAR DISTANCES. Day of the Star's Name and Noon. III''. Vlk. IXi-. Month. Position. o ; // o / // o / // o / // 11 a Aquilse E. 88 33 15 87 10 10 86 47 17 84 24 38 Fomalhaut E. 113 42 11 112 13 28 110 44 39 109 16 52 12 Pollux W. 116 9 30 117 44 44 119 19 46 120 64 36 Saturn W. 98 4 27 99 39 14 101 13 49 102 48 13 Kegulus W. 79 17 80 62 31 82 27 61 84 2 69 Spica W. 25 18 59 26 54 6 28 29 5 30 3 54 a Aquilae E. 77 35 21 76 14 24 74 5*3 47 73 33 32 Fomalhaut E. 101 52 46 100 24 23 98 56 7 97 27 58 a Pegasi E. 124 6 29 122 36 55 121 7 20 119 37 44 13 Saturn W. 110 37 30 112 10 49 113 48 58 115 16 56 Eegulus W. 91 55 57 93 30 1 95 3 64 96 37 37 Spica W. 37 55 40 39 29 33 41 3 16 42 36 49 a Aquilae E. 66 58 23 65 40 43 64 23 35 63 6 59 Fomalhaut E. 90 9 13 88 41 56 87 14 48 85 47 51 a Pegasi E. 112 10 4 110 40 41 109 11 22 107 42 8 14 Eegulus W. 104 23 40 105 56 23 107 28 56 109 1 20 Spica W. 50 22 11 51 64 48 63 27 15 54 59 32 a Aquilae E. 56 53 12 65 40 32 54 28 40 53 17 37 Fomalhaut E. 78 36 4 77 10 21 75 44 52 74 19 37 a Pegasi E. 100 17 22 98 48 44 97 20 13 95 51 49 15 Kegulus W. 116 41 2 118 12 32 119 43 63 121 16 5 Spica W. 62 38 47 64 10 12 65 41 28 67 12 36 Antares W. 16 44 47 18 16 17 19 47 37 21 18 60 a Aquilae E. 47 36 49 46 31 57 46 28 22 44 26 8 Fomalhaut E. 67 17 20 66 53 44 64 30 27 63 7 30 a Pegasi E. 88 31 50 87 4 15 85 36 49 84 9 32 16 Spica W. 74 46 16 76 16 37 77 46 51 79 16 58 Antares W. 28 62 54 30 23 19 31 63 38 33 23 49 Fomalhaut E. 66 18 10 54 67 31 63 37 20 62 17 38 a Pegasi E. 76 55 28 75 29 9 74 3 72 37 1 a Arietis E. 119 7 8 117 37 9 116 7 17 114 37 32 17 Spica W. 86 45 64 88 15 23 89 44 46 91 14 4 Antares W. 40 53 7 42 22 40 43 62 8 45 21 31 Fomalhaut E. 45 47 25 44 31 18 43 16 57 42 1 24 a Pegasi E. 65 29 49 64 4 57 62 40 18 61 15 51 a Arietis E. 107 10 13 105 41 2 104 11 56 102 42 66 18 Spica Antares W. 98 39 27 100 8 20 101 37 9 103 6 66 W. 62 47 16 64 16 13 56 45 7 57 13 59 Fomalhaut E. 36 3 19 34 56 16 33 48 40 32 43 38 a Pegasi a Arietis E. 54 16 59 62 53 57 61 31 12 60 8 44 E. 95 18 56 93 50 19 92 21 46 90 63 14 Venus E. 119 4 23 117 46 10 116 26 69 116 6 50 19 Spica Antares W. 110 29 21 111 57 58 113 26 36 114 56 13 W. 64 37 49 66 6 31 67 36 14 69 3 67 a Pegasi a Arietis E. 43 21 28 42 1 12 40 41 24 39 22 7 E. 83 31 7 82 2 46 80 34 24 79 6 2 212 JUNE, 1859. GREENWICH MEAN TIME. LUNAR DISTANCES. Day of the Star's Name and Midnight. XVI. XVIIP'. XXR Month. Position. o / // / // o / // , O f II 11 a Aquilae E. 83 2 14 81 40 5 80 18 13 78 56 37 ; Fomalhaut E. 107 47 7 106 18 25 104 49 48 103 21 14 12 Pollux W. 122 29 14 124 3 41 125 37 56 127 12 ' Saturn W. 104 22 26 105 56 29 107 30 20 109 4 Regulus W. 85 37 56 87 12 43 88 47 18 90 21 43 ! Spica W. 31 38 34 33 13 5 34 47 26 36 21 38 \ a Aquilse E. 72 13 40 70 54 11 69 35 8 68 16 31 Fomalhaut E. 95 69 56 94 32 2 93 4 17 91 36 41 a Pegasi E. 118 8 8 116 38 33 115 9 1 113 39 31 1 13 Saturn W. 116 49 44 118 22 22 119 54 60 121 27 8 Kegulus W. 98 11 9 99 44 32 101 17 45 102 60 47 : Spica W. 44 10 12 45 43 2,6 47 16 31 48 49 26 a Aquilse E. 61 50 58 60 35 32 59 20 44 58 6 37 i Fomalhaut E. 84 21 6 82 54 32 81 28 10 80 2 a Pegasi E. 106 12 59 104 43 56 103 14 58 101 46 7 14 Regulus W. 110 33 35 112 5 40 113 37 37 115 9 24 j Spica W. 56 31 41 58 3 41 59 35 32 61 7 14 ! a Aquilae E. 52 7 28 50 58 15 49 50 2 48 42 52 i Fomalhaut E. 72 54 37 71 29 53 70 5 25 68 41 14 a Pegasi E. 94 23 34 92 55 26 91 27 26 89 59 34 i 15 Regulus W. 122 46 9 124 17 6 125 47 53 127 18 33 i Spica W. 68 43 36 70 14 28 71 45 12 73 15 48 ', Antares w. 22 49 55 24 20 51 25 51 40 27 22 21 a AquilsB E. 43 25 19 42 26 2 41 28 23 40 32 27 Fomalhaut E. 61 44 53 60 22 37 59 44 57 39 15 a Pegasi E. 82 42 25 81 15 26 79 48 37 78 21 58 , 16 Spica W. 80 46 58 82 16 51 83 46 38 85 16 19 Antares W. 34 53 53 , 36 23 51 37 53 42 39 23 27 Fomalhaut E. 50 58 26 49 39 47 48 21 42 47 4 14 a Pegasi E. 71 11 12 69 45 35 68 20 8 66 64 53 a Arietis E. 113 7 52 111 38 19 110 8 51 108 39 29 '■ 17 Spica W. 92 43 18 94 12 26 95 41 31 97 10 31 Antares W. 46 50 49 48 20 2 49 49 10 61 18 15 Fomalhaut E. 40 47 44 39 35 38 23 18 37 12 42 a Pegasi E. 59 51 37 58 27 36 57 3 49 56 40 16 a Arietis E. 101 13 59 99 45 8 98 16 20 96 47 36 18 Spica W. 104 34 41 106 3 23 107 32 3 109 43 Antares W. 58 42 48 60 11 36 61 40 21 63 9 5 Fomalhaut E. 31 40 21 30 38 59 29 39 43 28 42 46 a Pegasi E. 48 46 35 47 24 45 46 3 16 44 42 10 a Arietis E. 89 24 46 87 66 19 86 27 54 84 59 SO Venus E. 113 47 42 112 28 35 111 9 80 109 50 25 . 19 Spica W. 116 23 51 117 52 30 119 21 11 120 49 53 Antares W. 70 32 41 72 1 26 73 30 12 74 59 1 o Pegasi E. 38 3 25 36 45 20 35 27 56 34 11 18 a Arietis E. 77 37 39 76 9 15 74 40 51 73 12 24 , JUNE, 1859. 213 GREENWICH MEAN TIME. LUNAR DISTANCES. Day of Star's Name the and Noon. IIP. VIi". IX''. Month. Position. O / il / II o / n O / // 19 Venus E. 108 31 20 107 12 15 105 53 10 104 34 4 Sun E. 135 11 26 133 50 20 132 29 12 131 8 3 20 Antares W. 76 27 52 77 56 46 79 26 44 80 64 46 a Pegasi E. 32 65 32 31 40 44 30 27 * 29 14 28 a Arietis E. 71 43 55 70 15 24 68 46 49 67 18 11 Venus E. 97 58 7 96 38 48 95 19 25 93 59 57 Sun E. 124 21 44 123 18 121 38 49 120 17 15 21 Antares W. 88 21 11 89 60 48 91 20 31 92 50 23 a Aquilse W. 44 25 43 45 26 51 46 29 16 47 32 56 a Arietis E. 59 53 53 58 24 45 56 55 29 55 26 7 Venus E. 87 21 21 86 1 19 84 41 9 83 20 51 Sun E. 113 27 59 112 5 47 110 43 28 109 21 22 Antares W. 100 22 4 101 52 67 103 24 1 104 55 IS a Aquilae W. 53 7 21 64 17 7 65 27 44 66 39 10 Fomalhaut w. 28 15 19 29 12 24 30 12 9 31 14 21 a Arietis E. 47 57 14 46 27 44 56 37 43 26 3 Venus E. 76 37 1 75 15 44 73 54 16 72 32 34 Sun E. 102 26 15 101 2 46 99 39 3 98 16 8 23 Antares W. 112. 35 11 114 7 56 115 40 67 117 14 15 a Aquilse W. 62 47 30 64 3 13 66 19 33 66 36 30 Fomalhaut w. 36 55 25 38 8 38 39 23 16 40 39 9 a Arietis E. 35 50 30 34 18 50 32 46 59 31 14 67 Venus E. 65 40 46 64 17 41 62 54 20 61 30 43 Sun E. 91 12 4 89 46 41 88 21 2 86 56 5 24 o Aquilse W. 73 9 47 74 30 2 75 50 48 77 12 3 Fomalhaut W. 47 15 32 48 37 47 60 64 51 24 61 a Pegasi w. 25 46 43 26 59 4 28 13 49 29 30 41 a Arietis E. 23 32 34 21 69 49 20 27 6 18 54 29 Venus E. 54 28 19 53 2 55 51 37 13 50 11 11 Sun E. 79 40 48 78 12 58 76 44 48 75 16 16 25 a Aquilae W. 84 5 13 85 29 9 86 63 30 88 18 13 Fomalhaut W. 68 36 11 60 4 35 61 33 39 63 3 21 a Pegasi w. 36 20 39 37 46 50 39 14 10 40 42 36 Venus E. 42 56 5 41 28 3 39 69 41 38 30 59 Sun E. 67 48 7 66 17 20 64 46 9 63 14 34 26 a Aquilse W. 95 27 11 96 63 56 98 20 57 99 48 12 Fomalhaut w. 70 41 3 72 14 19 73 48 8 76 22 29 a Pegasi Venus w. 48 19 49 62 49 51 27 24 63 2 42 E. 31 2 44 29 32 13 28 1 28 26 30 30 Sun E. 55 30 31 53 66 27 62 21 68 60 47 4 21 a Aquilse Fomalhaut W. 107 7 23 108 35 34 110 3 48 111 32 2 W. 83 21 45 84 59 1 86 36 43 88 14 60 a Pegasi Sun w. 61 9 25 62 48 38 64 28 26 66 8 46 E. 42 46 16 41 8 52 39 31 4 37 62 53 214 JUNE, 1859. 1 GKEENWICH MEAN TIME. LUNAR ] DISTANCES. Day of Star's Name the and Midnight. XV". XTnit. WR 1 Month. Position. 19 Venus E. 103 14 57 O / // 101 55 48 o / n • 100 36 37 o / // 99 17 23 Sun E. 129 46 52 128 25 40 127 4 24 125 43 6 20 Antares W. 82 23 52 83 53 3 85 22 19 86 51 42 a Pegasi E. 28 3 20 26 53 46 25 46 59 24 40 16 a Arietis E. 65 49 29 64 20 43 62 61 52 61 22 66 Venus E. 92 40 25 91 20 48 90 1 5 88 41 16 Sun E. 118 55 36 117 33 51 116 12 114 60 3 21 Antares W. 94 20 24 95 50 34 97 20 63 98 61 23 a Aquilse W. 48 37 43 49 43 37 60 50 33 51 68 29 a Arietis E. 53 56 37 52 27 50 57 14 49 27 19 Venus E. 82 24 80 39 48 79 19 3 77 58 7 Sun E. 107 58 23 106 35 37 105 12 40 103 49 33 22 Antares W. 106 26 48 107 58 32 109 30 30 111 2 43 a Aquilse W. 57 51 23 59 4 21 60 18 3 61 32 26 Fomalhaut w. 32 18 46 33 25 14 34 33 36 35 43 42 a Arietis E. 41 55 18 40 24 23 38 53 17 37 21 59 Venus E. 71 10 40 69 48 33 68 26 12 67 3 36 Sun E. 96 51 95 26 38 94 2 2 92 37 11 23 Antares W. 118 47 50 120 21.44 121 55 56 123 30 27 a Aquilse W. 67 54 2 69 12 9 70 30 49 71 50 2 Fomalhaut W. 41 56 16 43 14 32 44 33 52 46 54 13 a Arietis E. 29 42 45 28 10 23 26 37 53 25 5 16 Venus E. 60 6 49 68 42 38 67 18 10 55 53 23 Sun E. 85 28 51 84 2 19 82 35 28 81 8 18 24 a Aquilse W. 78 33 47 79 55 58 81 18 37 82 41 42 Fomalhaut W. 52 49 37 54 15 9 66 41 27 57 8 27 a Pegasi W. 30 49 28 32 10 33 32 8 34 56 43 a Arietis E. 17 22 5 16 50 4 14 18 43 12 48 21 Venus E. 48 44 50 47 18 9 45 51 8 44 23 46 Sun E. 73 47 23 72 18 8 70 48 30 69 18 30 25 a Aquilse W. 89 43 20 91 8 47 92 34 36 94 44 Fomalhaut W. 64 33 42 66 4 39 67 36 12 69 8 21 a Pegasi w. 42 12 3 43 42 27 45 13 47 46 45 58 Venus E. 37 1 57 35 32 36 34 2 56 32 32 58 Sun E. 61 42 36 60 10 12 58 37 23 57 4 10 26 a Aquilse W. 101 15 42 102 43 23 104 11 16 105 39 16 Fomalhaut W. 76 67 21 78 32 43 80 8 36 81 44 66 a Pegasi W. 54 38 44 56 15 26 57 62 48 69 30 48 Venus E. 24 59 23 23 28 10 21 66 54 20 26 42 Sun E. 49 11 45 47 36 45 59 60 44 23 16 27 a Aquilse W. 113 13 114 28 18 115 66 14 117 23 58 Fomalhaut W. 89 53 21 91 32 15 93 11 32 94 51 9 a Pegasi w. 67 49 40 69 31 6 71 13 1 72 56 26 Sun E. 36 14 19 34 35 23 32 66 6 31 16 27 .lULY, 1859. 215 GREENWICH MEAN TIME. LUNAR DISTANCES. Day of Star's Name and Noon. iiib. VIi". IXt. Month. Position. o / // o / // O / // / // 2 Sun W. 26 39 45 28 24 27 30 9 6 31 53 40 Spica E. 75 17 41 73 25 2 71 32 32 69 40 12 Antares E. 121 9 30 119 16 44 117 24 7 115 31 41 3 Sun W. 40 34 19 42 17 52 44 1 10 45 44 14 Spica E. 60 21 40 58 30 41 56 39 59 54 49 33 Antares E. 106 12 31 104 21 24 102 30 33 100 39 58 4 Sun W. 54 15 19 65 56 37 57 37 36 59 18 15 Saturn W. 24 49 5 26 36 56 28 24 26 30 11 35 Spica E. 45 42 3 43 53 33 42 5 24 40 17 36 Antares E. 91 31 36 89 42 53 87 54 31 86 '6 29 5 Sun W. 67 36 19 69 14 52 70 53 3 72 30 53 Saturn W. 39 2 2 40 47 2 42 31 40 44 15 56 Eegulus W. 22 46 45 24 32 31 26 17 56 28 3 Spica E. 31 24 16 29 38 46 27 53 41 26 9 2 Antares E. 77 11 39 75 25 47 73 40 16 71 55 7 6 Sun W. 80 34 35 82 10 14 83 45 32 85 20 28 Saturn W. 52 51 44 54 33 48 56 15 30 57 56 50 Regulus w. 36 42 53 38 25 47 40 8 20 41 50 31 Spica E. 17 32 31 15 50 47 14 9 40 12 29 18 Antares E. 63 14 54 61 31 58 59 49 23 58 7 9 a Aquilffl E. 113 50 4 112 24 50 110 59 31 109 34 9 7 Sun W. 93 9 56 94 42 49 96 15 21 97 47 34 Saturn w. 66 18 16 67 57 31 69 36 26 71 15 2 Regulus w. 50 16 12 51 56 19 53 36 6 55 15 33 Antares E. 49 41 19 48 1 11 46 21 22 44 41 53 a Aquilae E. 102 27 29 101 2 23 99 37 24 98 12 33 8 Sun W. 105 23 55 106 54 17 108 24 21 109 54 8 Saturn W. 79 23 15 80 59 59 82 36 26 84 12 35 Regulus W. 63 28 7 65 5 44 66 43 2 68 20 4 Antares E. 36 29 14 34 51 37 33 14 17 31 37 15 a Aquilae E. 91 11 7 89 47 29 88 24 6 87 59 Fomalhaut E. 116 20 24 114 51 37 113 22 53 111 54 12 9 Sun W. 117 18 59 118 47 11 120 15 8 121 42 50 Saturn W. 92 9 17 93 43 51 95 18 11 96 52 16 Regulus w. 76 21 10 77 56 37 79 31 49 81 6 47 Spica Antares w. 22 24 51 23 59 43 25 34 25 27 8 56 E. 23 36 7 22 40 20 25 28 18 50 31 a Aquilae Fomalhaut E. 80 9 49 78 48 33 77 27 37 76 7 4 E. 104 32 10 103 4 7 101 36 11 100 8 24 10 Sun W. 128 57 57 130 24 20 131 50 30 133 16 29 Saturn W. 104 39 17 106 12 4 107 44 38 109 17 Regulus Spica a Aquilae Fomalhaut w. 88 58 13 90 31 53 92 5 20 93 38 36 w. 34 58 45 36 32 10 38 5 24 39 38 27 E. 69 30 18 68 12 15 66 54 41 65 37 37 E. 92 51 49 91 24 59 89 58 21 88 31 53 a Pegasi E. 115 1 21 113 32 27 112 3 38 110 34 54 216 JULY, 1859. GREENWICH MEAl^ TIME. LUNAR DISTANCES. Day of Star's Name the and Midnight. XV". XVIIP-. XXTi. Month. Position. O 1 II a I 11 o / // O / II 2 Sun W. 33 38 7 35 22 26 37 6 36 38 50 33 Spica E. 67 48 3 66 56 7 64 4 24 62 12 66 Antares E. 113 39 25 111 47 21 109 65 31 108 3 54 3 Sun W. 47 27 1 49 9 32 50 51 46 52 33 42 Spica E. 52 59 25 51 9 36 49 20 6 47 30 54 Antares E. 98 49 41 96 69 41 95 10 93 20 38 4 Sun W. 60 58 33 62 38 31 64 18 8 66 67 24 Saturn W. 31 58 23 33 44 50 35 30 56 37 16 40 Spica E. 38 30 10 36 43 7 34 66 26 33 10 9 Antares E. 84 18 48 82 31 29 80 44 31 78 57 54 5 Sun W. 74 8 21 75 45 27 77 22 11 78 58 34 Saturn W. 45 59 50 47 43 21 49 26 31 51 9 19 Eegulus W. •29 47 42 31 32 2 33 16 1 34 59 38 Spica E. 24 24 48 22 41 1 20 67 41 19 14 50 Antares E. 70 10 20 68 25 56 66 41 63 64 58 18 6 Sun W. 86 55 3 88 29 18 90 3 11 91 36 44 Saturn W. 59 37 49 61 18 27 62 68 44 64 38 40 Regulus W. 43 32 20 46 13 49 46 54 57 48 35 45 Spica E. 10 49 51 9 11 37 - . - . Antares E. 56 25 17 54 43 47 63 2 37 61 21 48 a Aquilse E. 108 8 46 106 43 22 105 18 103 52 42 1 Sun W. 99 19 28 100 51 2 102 22 18 103 53 16 Saturn W. 72 53 18 74 31 15 76 8 54 77 46 14 Eegulus W. 56 54 41 58 33 31 60 12 1 61 50 13 Antares E. 43 2 44 41 23 53 39 45 22 38 7 9 a Aquilse E. 96 47 53 95 23 23 93 59 4 92 34 59 8 Sun W. 111 23 39 112 52 63 114 21 51 115 50 33 Saturn W. 85 48 28 87 24 4 88 59 24 90 34 28 Regulus W. 69 56 49 71 33 18 73 9 31 74 46 28 Antares E. 30 29 28 23 59 26 47 46 26 11 49 a Aquilse E. 85 38 9 84 15 36 82 53 21 81 31 26 Fomalhaut E. 110 25 36 108 57 5 107 28 40 106 21 9 Sun W. 123 10 18 124 37 33 126 4 34 127 31 22 Saturn W. 98 26 7 99 59 44 lOl 33 8 103 6 19 Regulus W. 82 41 30 84 16 1 85 50 18 87 24 22 Spica W. 28 43 16 30 17 25 31 51 23 33 25 10 Antares E. 17 16 47 15 41 18 14 7 2 12 33 a Aquilse E. 74 46 54 73 27 7 72 7 45 70 48 48 Fomalhaut E. 98 40 46 97 13 18 95 45 58 94 18 48 10 Sun W. 134 42 15 136 7 51 137 33 15 138 58 28 Saturn W. 110 49 12 112 21 12 113 53 1 116 24 40 Regulus w. 95 11 40 96 44 33 98 17 16 99 49 48 Spica w. 41 11 19 42 44 2 44 16 34 45 48 57 a Aquilse E. 64 21 4 63 6 4 61 49 39 60 34 49 Fomalhaut E. 87 5 36 85 39 31 84 13 37 82 47 66 j. a Pegasi E. 109 6 15 107 37 42 106 9 15 104 40 64 JULY, 1859. 217 GEEENWIOH MEAN TIME. LUNAR DISTANCES. Day of Star's Name and Noon. III''. VIi-. IXt. Month. Position. 11 Regulus W. 101 22 10 O 1 11 102 54 22 O / // 104 26 24 o / // 105 58 18 Spica w. 47 21 10 48 53 13 60 25 8 51 56 54 a Aquilae E. 59 20 37 58 7 4 66 54 13 55 42 5 Fomalhaut E. 81 22 26 79 57 7 78 32 2 77 7 11 a Pegasi E. 103 12 39 101 44 31 100 16 29 98 48 33 12 Spica W. 69 33 38 61 4 35 62 36 25 64 6 8 Antares w. 13 39 20 15 10 22 16 41 16 18 12 4 a Aquilse E. 49 53 53 48 47 6 47 41 22 46 36 48 Fomalhaut E. 70 6 18 68 42 52 67 19 43 65 56 60 a Pegasi E. 91 30 36 90 3 22 88 36 15 87 9 16 13 Spica W. 71 38 3 73 8 8 74 38 7 76 8 Antares w. 25 44 25 27 14 34 28 44 38 30 14 37 Fomalhaut E. 59 7 57 46 3 56 25 29 55 5 19 a Pegasi E. 79 56 6 78 29 51 77 3 45 76 37 46 a Arietis E. 122 14 58 120 45 15 119 15 37 117 46 4 14 Spica W. 83 36 13 85 6 37 86 34 58 88 4 14 Antares w. 37 43 14 39 12 43 40 42 9 42 11 30 Fomalhaut E. 48 31 26 47 14 15 45 57 43 44 41 50 a Pegasi E. 68 30 1 67 4 65 65 39 58 64 15 12 a Arietis E. 110 19 24 108 60 16 107 21 12 106 52 12 15 Spica W. 95 29 45 96 68 41 98 27 35 99 66 27 Antares W. 49 37 26 51 6 28 62 36 27 54 4 24 Fomalhaut E. 38 34 34 37 24 3 36 14 43 35 6 41 a Pegasi E. 57 14 4 65 60 27 54 27 3 63 3 64 a Arietis E. 98 27 59 96 69 16 95 30 37 94 1 69 16 Spica W. 107 20 18 108 48 59 110 17 40 111 46 21 Antares W. 61 28 41 62 57 28 64 26 15 65 55 1 a Pegasi E. 46 12 20 44 61 43 30 4 42 9 33 a Arietis E. 86 39 19 85 10 51 83 42 24 82 13 57 Aldebaran E. 118 17 39 116 50 45 115 23 48 113 56 49 1*7 Antares W. 73 18 53 74 47 42 76 16 32 77 45 24 a Pegasi E. 35 34 57 34 18 2 33 1 58 31 46 50 a Arietis E. 74 51 45 73 23 17 71 54 48 70 26 18 Aldebaran E. 106 41 22 105 14 10 103 46 54 102 19 36 18 Antares W. 85 10 19 86 39 27 88 8 40 89 37 67 a Aquilse W. 42 14 22 43 12 19 44 11 43 46 12 27 a Arietis E. 63 3 18 61 34 34 60 5 47 58 36 56 Aldebaran E. 96 2 18 93 34 39 92 6 66 90 39 8 19 Antares W. 97 5 40 98 36 32 100 5 30 101 36 36 / a Aquilse Fomalhaut W. 60 33 46 51 41 6 52 49 19 63 68 22 w. 26 28 40 27 18 39 28 11 45 29 7 43 a Arietis E. 51 11 37 49 42 19 48 12 54 46 43 24 Aldebaran E. 83 18 55 81 60 35 80 22 9 78 53 36 Sun E. 181 26 5 130 3 29 128 40 46 127 17 54 20 a Aquilse w.. 59 64 58 61 8 18 62 22 14 63 36 45 218 JULY, 1859. GREENWICH MEAN TIME. '■'-.-'SiS LUNAR DISTANOiSS. Day of Star's Name the and Midnight. XVi. xvnii. XXTt. Month. Position. 11 Begulus W. o / // 107 30 2 O / // 109 1 38 o / // 110 33 5 O / // 112 4 24 Spica W. 53 28 31 55 56 31 20 58 2 33 a AquilsB E. 54 30 44 53 20 11 52 10 30 51 1 43 Fomalhaut E. 15 42 32 74 18 7 72 53 56 71 29 59 a Pegasi E. 97 20 44 95 53 2 94 25 26 92 57 58 12 Spica W. 65 36 43 67 7 13 68 37 36 70 7 52 Antares W. 19 42 45 21 13 19 22 43 47 24 14 9 1 a Aquilse E. 45 33 27 44 31 24 43 30 44 42 31 33 Fomalhaut E. 64 34 15 63 11 57 61 49 58 60 28 19 a Pegasi E. 86 42 22 84 15 37 82 48 69 81 22 29 13 Spica W. 77 37 49 79 7 32 80 37 10 82 6 44 Antares W. 31 44 30 33 14 18 34 44 1 36 13 40 Fomalhaut E. 53 45 35 52 26 18 51 7 29 49 49 11 a Pegasi E. 74 11 56 72 46 14 71 20 41 69 55 16 a Arietis E. 116 16 36 114 47 11 113 17 51 111 48 36 14 Spica W. 89 33 27 91 2 37 92 31 43 94 46 Antares w. 43 40 48 45 10 3 46 39 13 48 8 21 Fomalhaut E. 43 26 41 42 12 18 40 58 47 39 46 10 a Pegasi E. 62 50 36 61 26 10 60 1 66 68 37 64 a Arietis E. 104 23 16 102 54 21 101 25 31 99 56 43 j 15 Spica W. 101 25 16 102 54 4 104 22 60 105 51 34 Antares W. 55 33 19 57 2 12 58 31 3 59 69 52 Fomalhaut E. 34 5 32 55 3 31 51 44 30 50 19 a Pegasi E. 51 41 60 18 22 48 56 2 47 34 1 a Arietis E. 92 33 24 91 4 60 89 36 18 88 7 48 16 Spica W. 113 15 114 43 40 116 12 20 117 41 Antares W. 67 23 47 68 52 33 70 21 19 71 50 6 a Pegasi E. 40 49 30 39 29 58 38 10 69 36 62 38 a Arietis E. 80 45 31 79 17 5 77 48 39 76 20 12 Aldebaran E. 112 29 48 111 2 45 109 36 40 108 8 32 11 Antares W. 79 14 17 80 43 13 82 12 12 83 41 14 a Pegasi E. 30 32 47 29 19 57 28 8 28 26 58 32 a Arietis E. 68 57 46 67 29 13 66 37 64 31 59 Aldebaran E. 100 62 16 99 24 61 97 57 24 96 29 53 18 Antares W. 91 7 18 92 36 45 94 6 18 95 35 56 a Aquilse W. 46 14 28 47 17 40 48 22 49 27 23 a Arietis E. 57 8 1 55 39 2 54 9 59 62 40 60 Aldebaran E. 89 11 16 87 43 19 86 15 16 84 47 8 19 Antares W. 103 5 50 104 36 13 106 6 44 107 37 25 a Aquilse w. 55 8 14 56 18 62 57 30 13 58 42 16 Fomalhaut w. 30 6 18 31 7 17 32 10 27 33 15 37 a Arietis E. 45 13 48 43 44 6 42 14 16 40 44 20 Aldebaran E. 77 24 57 75 66 10 74 27 16 72 68 14 Sun E. 125 64 64 124 31 46 123 8 28 121 46 1 20 a Aquilse W. 64 51 50 66 7 28 67 23 36 68 40 16 JULY, 1859. 219 GEEENWICH MEAN TIME. LUNAR DISTANCES. Day of Star's Namt the and Noon. III'-. TI'". VS.K Month. Position. O / It o / // O 1 II O / // 20 Fomalhaut W. 34 22 37 35 31 18 36 41 33 37 53 13 a Arietis E. 39 14 IT 37 44 7 36 13 50 34 43 26 Aldebaran E. 71 29 4 69 59 45 68 30 18 67 43 Sun E. 120 21 24 118 57 36 117 33 38 116 9 28 21 a Aquilae W. 69 57 22 71 14 58 72 33 2 73 51 32 Fomalliaut W. 44 9 46 45 28 10 46 47 28 48 7 37 Aldebaran E. 59 30 25 57 59 52 66 29 9 54 58 16 Jupiter E. 90 23 88 52 8 87 21 3 85 49 42 Sun E. 109 5 30 107 40 2 106 14 18 104 48 20 22 a Aquilae W. 80 30 18 81 51 14 83 12 32 84 34 11 Fomalliaut W. 54 59 44 56 24 13 57 49 21 69 15 5 a Pegasi W. 32 43 48 34 4 51 35 27 10 36 60 40 Aldebaran E. 47 21 24 45 49 34 44 17 36 42 45 80 Jupiter E. 78 8 51 76 35 49 75 2 28 73 28 48 Sun E. 97 34 20 96 6 39 94 38 40 93 10 21 23 a Aquilae W. 91 27 29 92 51 4 94 14 56 95 39 4 Fomalhaut W. 66 32 28 68 1 35 69 31 14 71 1 24 a Pegasi w. 44 3 20 45 32 30 47 2 27 48 33 9 Aldebaran E. 35 3 52 33 31 32 31 59 18 30 27 14 Jupiter E. 65 35 26 63 59 43 62 23 37 60 47 9 Sun E. 85 43 42 84 13 18 82 42 31 81 11 22 24 a Aquilae W. 102 43 17 104 8 43 105 34 17 106 59 58 Fomalliaut W. 78 39 41 80 12 47 81 46 21 83 20 21 a Pega-si W. 66 17 2 57 51 44 59 27 3 61 2 57 a Arietis W. 12 40 22 14 14 9 15 49 44 17 26 45 Aldebaran E. 22 53 30 21 25 19 19 68 39 18 33 59 Jupiter E. 52 39 1 51 12 49 20 69 47 41 21 Sun E. 73 29 40 71 56 7 70 22 8 68 47 44 25 a Aquilae W. 114 9 6 115 34 49 117 24 118 25 48 Fomalhaut W. 91 16 54 92 53 26 94 30 21 96 7 39 a Pegasi w. 69 11 70 50 14 72 30 74 10 15 a Arietis w. 25 46 46 27 29 5 29 12 1 30 55 33 Jupiter E. 39 17 4 37 35 35 52 31 34 9 39 Sun E. 60 49 16 59 12 16 57 34 50 66 56 58 26 Fomalhaut W. 104 19 3 105 58 12 107 37 34 109 17 9 a Pegasi W. 82 38 48 84 21 53 86 5 23 87 49 17 a Arietis W. 39 41 31 41 28 14 43 15 25 46 3 4 Jupiter Sun E. 25 29 52 23 44 57 21 59 47 20 14 25 E. 47 41 9 46 43 44 19 52 42 38 37 21 a Pegasi a Arietis W. 96 34 27 98 20 29 100 6 48 101 53 23 W. 54 7 48 55 57 56 57 48 27 69 39 19 Aldebaran w. 24 5 23 25 45 12 27 26 40 29 9 30 Sun E. 34 6 33 32 23 3 30 39 13 28 55 4 31 Sun W. 22 38 3 24 23 38 26 8 59 27 54 5 Spica Antajes E. 51 33 50 49 41 8 47 48 42 45 66 32 E. 97 23 48 95 30 65 93 38 17 91 45 54 220 JULY, 1859. GEEENWICH MEAN TIME. LUNAR DISTANCES. Day of Star's Name tiie and Midnight. XVi". XVIIIi". XXTi'. Month. Position. 20 Fomalhaut W. / // 39 6 14 40° 20 28 O / // 41 35 51 42° 52 18 a Arietis E. 33 12 55 31 42 17 30 11 34 28 40 44 Aldebaran E. 65 30 58 64 1 4 62 31 1 61 48 Sun E. 114 45 6 113 20 32 111 66 45 110 30 44 21 a Aquilffi W. 15 10 28 76 29 50 77 49 36 79 9 45 Fomalhaut W. 49 28 34 50 50 17 52 12 46 53 35 54 Aldebaran E. 53 27 13 51 56 1 60 24 38 48 63 6 Jupiter E. 84 18 5 82 46 12 81 14 3 79 41 36 Sun E. 103 22 6 101 55 35 100 28 47 99 1 43 22 a Aquilas W. 85 56 11 87 18 32 88 41 12 90 4 11 Fomalhaut W. 60 41 26 62 8 21 63 35 50 65 3 52 a Pegasi W. 38 15 16 39 40 54 41 7 29 42 34 59 Aldebaran E. 41 13 18 39 41 38 8 39 36 36 15 Jupiter E. 1\ 54 48' 70 20 29 68 45 49 67 10 48 Sun E. 91 41 43 90 12 44 88 43 24 87 13 44 23 a Aquilae W. 97 3 28 98 28 6 99 52 58 101 18 2 Fomalhaut w. 72 32 5 74 3 15 75 34 55 77 7 4 a Pegasi w. 60 4 35 51 36 42 53 9 30 54 42 57 Aldebaran E. 28 55 27 27 24 1 25 63 6 24 22 51 Jupiter E. 59 10 18 57 33 4 65 56 27 54 17 26 Sun E. 79 39 49 78 7 63 76 35 33 75 2 49 24 a Aquilae W. 108 25 44 109 51 34 111 17 26 112 43 17 Fomalhaut W. 84 54 49 86 29 42 88 6 1 89 40 46 a Pegasi W. 62 39 27 64 16 30 65 64 8 67 32 18 a Arietis W. 19 4 57 20 44 10 22 24 16 24 5 9 Aldebaran E. 17 11 56 15 53 17 14 39 7 13 30 49 Jupiter E. 46 1 19 44 20 52 42 40 40 58 44 Sun E. 67 12 54 65 37 38 64 1 57 62 25 49 25 a Aquilae W. 119 50 57 121 15 47 122 40 15 124 4 15 Fomalhaut W. 97 45 17 99 23 16 101 1 34 102 40 10 a Pegasi W. 76 51 1 77 32 15 79 13 59 80 66 10 a Arietis W. 32 39 40 34 24 21 36 9 33 37 55 17 Jupiter E. 32 26 25 30 42 48 28 58 49 27 14 30 Sun E. 54 18 40 52 39 56 61 46 49 21 10 26 Fomalhaut W. 110 56 64 112 36 48 114 16 49 115 66 56 a Pegasi W. 89 33 35 91 18 17 93 3 20 94 48 44 a Arietis W. 46 51 10 48 39 42 60 28 40 52 18 2 Jupiter E. 18 28 55 16 43 23 14 57 58 13 12 52 Sun E. 40 56 58 39 14 65 37 32 30 35 49 42 2V a Pegasi W. 103 40 12 105 27 13 107 14 26 109 1 48 a Arietis W. 61 30 31 63 22 2 65 13 61 67 5 58 Aldebaran W. 30 63 33 32 38 39 34 24 40 36 11 31 Sun E. 27 10 86 25 26 61 23 40 60 21 55 34 31 Sun W. 29 38 65 31 23 28 33 7 42 34 61 38 Spica E. 44 4 41 42 13 8 40 21 65 38 31 2 Antares E. 89 53 49 88 2 2 86 10 33 84 19 24 AUGUST, 1859. 221 GEEENWIOH MEAN TIME. 1 LUNAR DISTANCES. Day of the Star's Name and Noon. Illi. Vli. IXi. Month. Position. O t U o / // Q 1 II O / II 1 Sun W. 36 35 14 38 18 29 40 1 23 41 43 55 Spica E. 36 40 32 34 60 24 33 39 31 11 19 Antares E. 82 28 35 80 38 7 78 48 76 58 16 2 SlTN W. 50 10 48 61 60 57 53 30 42 56 10 2 Antares E. 67 56 26 66 8 6 64 21 10 62 34 39 a Aquilae E. 117 43 27 116 15 54 114 48 8 113 20 14 3 Sun W. 63 20 18 64 57 4 66 33 24 68 9 19 Antares E. 53 48 32 52 4 36 50 21 5 48 38 1 a Aquilse E. 106 10 104 32 19 103 4 37 101 37 3 4 Sun W. 76 2 33 77 35 68 79 8 68 80 41 36 Antares E. 40 8 67 38 28 23 36 48 13 35 8 27 a Aquilte E. 94 22 32 92 66 26 91 30 36 90 6 7 Fomalhaut E. 119 36 45 118 6 64 116 35 9 116 4 30 5 Sun W. 88 18 52 89 49 13 91 19 12 92 48 51 Spica W. 19 8 20 44 38 22 21 3 23 67 12 Antares E. 26 66 24 25 17 55 23 40 46 22 3 59 a Aquilae E. 83 2 59 81 39 43 80 16 51 78 54 24 Fomalhaut E. 107 33 26 106 3 46 104 34 17 103 5 1 6 Sun W. 100 12 9 101 39 53 103 7 19 104 34 28 Spica W. 31 64 1 33 28 34 36 2 51 36 36 53 a Aquilae E. 72 8 69 70 49 21 69 30 14 68 11 39 Fomalhaut E. 95 42 7 94 14 16 92 46 37 91 19 14 a Pegasi E. 117 59 19 116 29 28 114 69 46 113 30 12 7 Sun W. 111 46 14 113 11 50 114 37 13 116 2 23 Spica W. 44 23 18 46 56 53 47 28 15 49 24 a Aquilae E. 61 47 20 60 32 20 69 18 1 58 4 24 Fomalhaut E. 84 6 6 82 40 13 81 14 36 79 49 16 a Pegasi E. 106 4 46 104 36 10 103 7 43 101 39 27 8 Sun W. 123 5 10 124 29 10 126 53 127 16 40 Spica W. 56 38 14 68 9 16 59 40 8 61 10 51 a Aquilae E. 52 8 7 50 59 29 49 51 61 48 45 15 Fomalhaut E. 72 46 27 71 22 43 69 69 16 68 36 4 a Pegasi E. 94 20 24 92 53 3 91 25 51 89 58 48 9 Spica W. 68 42 20 70 12 15 71 42 3 73 11 45 Antares W. 22 48 24 24 18 25 25 48 18 27 18 6 Fomalhaut E. 61 44 46 60 23 27 59 2 31 57 41 57 a Pegasi E. 82 45 44 81 19 32 79 53 29 78 27 33 a Arietis E. 125 10 43 123 41 10 122 11 42 120 42 20 10 Spica W. 80 38 56 82 8 8 83 37 16 85 6 20 Antares W. 34 46 42 36 14 59 37 44 12 39 13 22 Fomalhaut E. 61 5 13 49 47 16 48 29 51 47 13 a Pegasi E. 71 19 59 69 54 64 68 29 56 67 5 7 a Arietis E. 113 16 42 111 47 46 110 18 56 108 50 6 11 Spica Antares W. 92 31 93 69 49 96 28 37 96 57 23 W. 46 38 27 48 7 22 49 36 14 61 5 6 222 AUGUST, 1859. GREENWICH MEAN TIME. LUNAE DISTANCES. Day of the Star's Name and Midnight. XVi. XTIIP'. XXTt. Month. Position 1 Sun W. o / // 43 26 5 O / // 45 7 51 o / // 46 49 14 O / // 48 30 13 Spica E. 29 22 24 27 33 55 25 45 54 23 58 22 Antares E. 75 8 55 73 19 57 71 31 22 69 43 12 2 Sun W. 56 48 56 58 27 25 60 6 28 61 43 6 Antares E. 60 48 34 59 2 55 57 17 41 55 32 54 a Aquilae E. 111 52 14 110 24 12 108 66 8 107 28 7 3 Sun W. 69 44 48 71 19 52 72 64 30 74 28 44 Antares E. 46 55 22 45 13 8 43 31 19 . 41 49 66 a Aquilae E. 100 9 41 98 42 32 97 15 37 95 48 56 4 Sun W. 82 13 48 83 45 38 85 17 6 86 48 10 Antares E. 33 29 5 31 60 5 30 11 29 28 33 16 a Aquilae E. 88 39 58 87 15 10 85 50 44 84 26 40 Fomalhaut E. 113 33 58 112 3 35 110 33 21 109 3 18 5 Sun W. 94 18 10 95 47 8 97 15 47 98 44 8 Spica W. 25 33 6 27 8 44 28 44 6 30 19 12 Antares E. 20 21 32 18 51 26 17 15 39 16 40 12 a Aquilse E. VY 32 24 76 10 51 74 49 45 73 29 7 Fomalhaut E. 101 35 59 100 7 10 98 38 35 97 10 14 6 Sun W. 106 1 20 107 27 57 108 54 17 110 20 23 Spica W. 38 10 39 39 44 10 41 17 27 42 50 30 a Aquilffi E. 66 53 37 65 36 8 64 19 15 63 2 59 Fomalliaut E. 89 52 6 88 25 13 86 58 35 85 32 13 a Pegasi E. 112 48 110 31 33 109 2 28 107 33 32 1 Sun W. 117 27 20 118 52 5 120 16 37 121 40 59 Spica W. 50 32 21 52 4 6 53 35 39 55 7 2 a Aquilae E. 56 51 31 55 39 25 64 28 7 53 17 40 Fomalhaut E. 78 24 « 76 59 20 75 34 46 74 10 29 a Pegasi E. 100 11 19 98 43 21 97 15 33 95 47 54 8 Sun W. 128 40 12 130 3 35 131 26 49 132 49 65 Spica W. 62 41 25 64 11 50 65 42 8 67 12 17 a Aquilae E. 47 39 45 46 35 25 45 32 19 44 30 31 Fomalhaut E. 67 13 12 65 50 37 64 28 20 63 6 23 a Pegasi E. 88 31 54 87 5 9 85 38 32 84 12 4 9 Spica W. 74 41 21 76 10 53 77 40 18 79 9 39 Antares W. 28 47 47 30 17 24 31 46 54 33 16 20 Fomalhaut E. 56 21 45 55 1 58 53 42 36 52 23 40 a Pegasi E. 77 1 46 75 36 7 74 10 36 72 45 14 a Arietis E. 119 13 3 117 43 51 116 14 44 114 45 41 10 Spica W. 86 35 22 88 4 20 89 33 16 91 2 9 Antares W. 40 42 28 42 11 32 43 40 33 46 9 31 Fomalhaut E. 45 56 45 44 41 10 43 26 17 42 12 10 a Pegasi E. 65 40 27 64 15 56 62 61 34 61 27 22 a Arietis E. 107 21 20 105 62 37 104 23 56 102 55 18 11 Spica W. 98 26 8 99 54 52 101 23 35 102 62 18 Antares W. 52 33 56 64 2 45 55 31 34 57 23 AUGUST, 1859. 223 GEEENWIOH MEAN" TIME. LUNAR DISTANCES. Day of the Star's Name and Noon. iiii. Tli. IXi-. Month. Position. O i u o / n O / // O I It 11 Fomalhaut E. 40 58 53 39 46 29 38 35 4 37 24 43 a Pegasi E. 60 3 20 58 39 28 67 15 47 65 52 18 a Arietis E. 101 26 41 99 58 6 98 29 33 97 1 12 Spica W. 104 21 1 106 49 44 107 18 27 108 47 11 Antares W. 58 29 11 59 58 61 26 48 62 65 38 Fomalhaut E. 31 52 52 30 51 28 29 62 8 28 55 5 a Pegasi E. 48 58 11 47 36 8 46 14 24 44 63 a Arietis E. 89 38 29 88 9 59 86 41 29 85 12 59 Aldebaran E. 121 13 20 119 46 32 11^ 19 41 116 52 46 13 Antares W. 70 20 71 48 57 73 17 56 74 46 57 a Pegasi E. 38 12 IT 36 53 44 36 35 49 34 18 40 a Arietis E. 11 50 13 76 21 36 74 52 68 73 24 17 Aldebaran E. 109 37 16 108 9 59 106 42 39 105 15 15 14 Antares W. 82 12 43 83 42 2 86 11 24 86 40 60 K a Aquilae W. 40 22 51 41 17 47 42 14 21 43 12 29 a Arietis E. 66 18 64 31 23 63 2 24 61 33 22 Aldebaran E. 97 57 17 96 29 30 96 1 39 93 33 43 15 Antares W. 94 9 6 95 38 59 97 8 58 98 39 3 a Aquilae W. 48 23 8 49 28 43 50 35 17 51 42 48 a Arietis E. 54 7 20 52 37 56 51 8 29 49 38 66 Aldebaran E. 86 13 84 44 38 83 16 10 81 47 38 Jupiter E. 122 50 34 121 22 22 119 54 4 118 25 40 16 Antares W. 106 10 57 107 41 40 109 12 31 110 43 29 a Aquilae W. 57 32 84 58 44 39 59 57 22 61 10 41 Fomalhaut W. 32 14 27 33 19 42 34 26 46 36 36 28 a Arietis E. 42 10 9 40 40 11 39 10 7 37 39 59 Aldebaran E. 74 23 40 72 54 36 71 25 27 69 56 \\ Jupiter E. 111 2 3 109 32 59 108 3 46 106 34 27 Pollux E. 116 50 1 115 19 35 113 49 1 112 18 20 11 a Aquilae W. 67 25 16 68 41 37 69 58 23 71 15 34 Fomalhaut W. 41 39 22 42 55 32 44 12 37 46 30 36 a Arietis E. 30 8 21 28 37 53 27 7 23 25 36 54 Aldebaran E. 62 28 27 60 58 37 59 28 40 57 58 37 Jupiter E. 99 5 39 97 35 26 96 5 3 94 34 30 Pollux E. 104 42 40 103 11 6 101 39 20 100 7 24 Sun E. 137 53 39 136 29 135 4 11 133 39 12 18 a Aquilae W. 77 47 7 79 6 27 80 26 6 81 46 3 Fomalhaut W. 52 11 56 53 34 12 54 57 4 56 20 30 a Pegasi Aldebaran W. 30 3 27 31 20 46 32 39 30 33 59 32 E. 50 26 59 48 66 24 47 25 45 45 55 2 Jupiter Pollux E. 86 59 85 27 19 8b 55 25 82 23 18 E. 92 25 1 90 51 68 89 18 42 87 45 12 Son E. 126 31 33 125 6 26 123 39 7 122 12 35 19 a Aquil» Fomalhaut W. 88 29 55 89 51 27 91 13 12 92 35 10 W. 63 25 28 64 51 55 66 18 48 67 46 8 a Pegasi W. 40 55 42 42 21 36 43 48 16 45 15 88 224 AUGUST, 1859. GEEENWICH MEAN TIME. LUNAR DISTANCES. 1 ' Day of : the Star's Name and Midnight. XVi. XTnii. XXH. ' Month. Position. 11 Fomalbaut E. O / // 36 15 32 o / // 35 7 37 O 1 II 34 1 6 O 1 II 32 56 8 a Pegasi E. 54 29 1 53 S 67 61 43 7 50 20 31 a Arietis E. 95 32 29 94 3 58 92 36 29 91 6 59 12 Spica W. 110 15 55 111 44 40 113 13 26 114 42 13 Antares W. 64 24 28 65 63 19 67 22 11 68 61 5 Fomalhaut E. 28 32 27 8 44 26 19 58 25 34 82 a Pegasi E. 43 31 58 42 11 20 40 61 9 39 31 27 a Arietis E. 83 44 28 82 15 66 80 47 23 79 18 49 Aldebaran E. 115 25 47 113 58 46 112 31 89 111 4 29 13 Antares W. 76 16 77 45 7 79 14 16 80 43 28 a Pegasi E. 83 2 21 31 46 58 30 82 39 29 19 32 a Arietis E. 71 55 34 70 26 49 68 58 1 67 29 11 Aldebaran E. 103 47 47 102 20 15 100 52 40 99 25 1 14 Antares W. 88 10 20 89 39 65 91 9 84 92 39 17 a Aquilse W. 44 12 3 46 12 59 46 15 12 47 18 36 a Arietis E. 60 4 17 58 35 8 57 5 56 55 36 40 Aldebaran E. 92 6 44 90 37 39 89 9 31 87 41 18 15 Antares W. 100 9 13 101 39 29 103 9 52 104 40 21 a Aquilse W. 52 51 11 54 24 55 10 24 56 21 8 a Arietis E. 48 9 20 46 39 39 45 9 54 43 40 4 Aldebaran E. 80 19 1 78 50 19 77 21 31 75 62 88 Jupiter E. 116 57 10 115 28 83 113 59 50 112 31 16 Antares W. 112 14 36 113 45 51 116 17 14 116 48 45 a Aquilae W. 62 24 35 63 39 64 53 66 66 9 22 Fomalbaut w. 36 45 41 37 67 18 89 10 10 40 24 13 a Arietis E. 36 9 47 34 39 31 33 9 11 31 38 48 Aldebaran E. 68 26 50 66 67 24 65 27 51 63 58 12 Jupiter E. 105 4 59 103 35 22 102 5 37 100 35 43 Pollux E. 110 47 29 109 16 31 107 45 23 106 14 6 IT a Aquilse W. 72 33 9 73 51 6 75 9 26 76 28 6 Fomalhaut W. 46 49 24 48 8 58 49 29 17 50 60 17 a Arietis E. 24 6 26 22 36 2 21 5 44 19 85 37 Aldebaran E. 66 28 29 64 58 15 53 27 55 61 57 30 Jupiter E. 93 3 46 91 32 52 90 1 46 88 30 29 Pollux E. 98 35 18 97 3 1 95 80 32 93 57 63 Sun E. 132 14 2 130 48 42 129 23 10 127 57 27 18 a Aquilse W. 83 6 17 84 26 48 85 47 36 87 8 38 Fomalhaut W. 57 44 28 59 8 59 60 38 59 61 59 80 a Pegasi w. 35 20 46 36 48 5 38 6 23 39 30 37 Aldebaran E. 44 24 15 42 53 26 41 22 35 89 51 44 Jupiter E. 80 50 58 79 18 24 77 45 37 76 12 85 Pollux E. 86 11 30 84 37 34 83 3 25 81 29 Sun E. 120 45 50 119 18 61 117 61 38 116 24 10 19 a Aquilse W. 93 57 19 96 19 41 96 42 12 98 4 54 Fomalhaut W. 69 13 54 70 42 5 72 10 41 73 39 40 a Pegasi W. 46 43 41 48 12 23 49 41 42 51 11 86 AUGUST, 1859. 225 GEEENWIOH MEAN Tl^rE. LUNAE DISTANCES. Day of Star's Name the and Noon. III''. VIi". IXi. Month. Position. o / // o / // 36 50 7 o / // / // 19 Aldebaran E. 38 20 54 85 19 25 33 48 50 Jupiter E. 74 89 18 73 5 46 71 31 58 69 57 54 Pollux E. 79 54 22 78 19 28 76 44 19 76 8 64 Sun E. 114 56 28 113 28 31 112 18 110 31 49 20 a Aquilae W. 99 27 45 100 50 44 102 13 50 103 87 2 Fomalhaut w. 75 9 4 76 38 52 78 9 2 79 39 35 a Pegasi w. 52 42 5 54 18 8 55 44 43 57 16 49 Aldebaran E. 26 19 57 24 51 40 28 24 14 21 57 54 Jupiter E. 62 3 25 60 27 39 58 51 33 67 15 9 Pollux E. 67 7 40 65 30 83 63 58 8 62 15 25 Sun E. 103 5 12 101 34 59 100 4 28 98 33 37 21 a Aquilse W. 110 33 52 111 57 13 113 20 31 114 48 42 Fomalhaut W. 87 17 51 88 50 34 90 23 37 91 57 a Pegasi W. 65 4 50, 66 89 52 68 15 22 69 51 19 a Arietis W. 21 83 45 28 11 19 24 49 34 26 28 25 Jupiter E. 49 8 19 47 29 56 45 51 13 44 12 9 Pollux K 54 2 52 22 19 50 42 19 49 1 58 Sun E. 90 54 27 89 21 86 87 48 28 86 14 48 22 Fomalhaut W. 99 48 37 101 28 48 102 59 16 104 34 58 a Pegasi W. 77 57 42 79 36 16 81 15 15 82 64 38 a Arietis W. 34 50 46 36 82 43 38 15 8 39 58 Jupiter E. 35 51 32 34 10 21 82 28 50 30 46 58 . Pollux E. 40 35 7 38 62 44 37 10 1 35 26 58 Sun E. 78 21 22 76 45 38 75 9 20 73 32 45 23 Fomalhaut W. 112 36 38 114 13 27 116 60 22 117 27 20 o Pegasi W. 91 17 31 92 59 13 94 41 16 96 23 41 a Arietis W. 48 38 69 50 24 28 52 10 22 58 56 40 Aldebaran W. 19 18 48 20 48 88 22 21 5 28 55 45 .' Jupiter E. 22 12 50 20 29 11 18 46 20 17 1 21 Pollux E. 26 47 13 25 2 31 23 17 37 21 32 86 Sun E. 65 24 63 45 5 62 6 47 60 26 7 24 a Pegasi W. 105 25 106 44 36 108 29 2 110 IS 40 a Arietis W. 62 54 8 64 42 46 66 31 45 68 21 6 Aldebaran W. 32 12 30 33 55 20 35 39 2 87 23 32 Sun E. 52 2 9 60 20 17 48 38 4 46 55 32 25 a Pegasi W. 118 59 14 120 44 37 122 30 124 15 21 a Arietis W. 77 32 39 79 23 52 81 16 20 83 7 8 Aldebaran W. 46 15 54 48 4 49 52 33 51 41 81 Sun E. 38 18 7 36 33 46 34 49 11 33 4 21 30 Sun W. 31 51 6 33 82 6 35 12 42 36 62 54 Antares E. 69 26 50 57 38 31 55 50 36 54 8 5 ' a Aquilse E. 110 48 54 109 13 19 107 42 43 106 12 9 81 ,guN Antares W. 45 7 88 46 45 17 48 22 29 49 59 16 E. 45 11 54 43 26 57 41 42 28 39 58 24 a Aquilse E. 98 41 5 97 11 29 95 42 8 94 13 4 TF 226 AUGUST, 1859. GREENWICH MEAN TIME. LUNAR DISTANCES. Day of Star's Name the and Midnight. XVI. XVIIP. XXP. Month. Position. 19 Aldebaran E. o / // 32 18 26 o / // 30 48 14 29° 18 22 O / // 27 48 54 Jupiter E. 68 23 35 66 48 58 65 14 5 63 38 54 Pollux E. 73 33 13 71 67 15 70 21 1 68 44 29 Sun E. 109 3 4 107 34 2 106 4 43 104 36 6 20 a Aquilse W. 105 19 106 23 40 107 47 3 109 10 28 Fomalliaut W. 81 10 31 82 41 49 84 13 29 85 45 29 a Pegasi w. 58 49 26 60 22 33 61 56 10 63 30 16 / Aldebaran E. 20 32 56 19 9 44 17 48 47 16 30 46 Jupiter E. 55 38 27 54 1 24 52 24 2 50 46 21 Pollux E. 60 37 22 58 59 1 67 20 20 56 41 20 Sun E. 97 2 27 96 30 68 93 59 8 92 26 58 21 a Aquilse W. 116 6 45 117 29 38 118 62 17 120 14 39 Fomalhaut W. 93 30 43 95 4 44 96 39 4 98 13 42 a Pegasi W. 71 27 43 73 4 34 74 41 51 76 19 34 a Arietis W. 28 7 50 29 47 49 31 28 18 33 9 17 Jupiter E. 42 32 44 40 52 58 39 12 60 37 32 22 Pollux E. 47 21 17 45 40 15 43 68 53 42 17 10 Sun E. 84 40 51 83 6 33 81 31 52 79 56 48 22 Fomalhaut W. 106 10 54 107 47 4 109 23 25 110 59 57 a Pegasi W. 84 34 26 86 14 37 87 65 12 89 36 11 a Arietis W. 41 41 19 43 26 6 46 9 17 46 53 55 Jupiter E. 29 4 46 27 22 14 25 39 23 23 56 15 Pollux E. 33 43 36 31 69 55 30 15 67 28 31 43 Sun E. 71 55 47 70 18 25 68 40 40 67 2 31 23 Fomalhaut W. 119 4 21 120 41 21 122 18 19 123 55 10 a Pegasi W. 98 6 25 99 49 28 101 32 60 103 16 29 a Arietis W. 55 43 23 67 30 30 59 18 61 5 53 Aldebaran w. 25 32 16 27 10 24 28 49 65 30 30 40 Jupiter E. 15 17 19 13 33 22 11 49 44 10 6 45 Pollux E. 19 47 32 18 2 31 16 17 42 14 33 17 Sun E. 58 46 4 67 5 38 56 24 50 53 43 40 24 a Pegasi W. 111 58 30 113 43 30 115 28 38 117 13 54 a Arietis W. 70 10 46 72 47 73 61 6 75 41 44 Aldebaran w. 39 8 46 40 54 40 42 41 12 44 28 17 Sun E. 45 12 39 43 29 28 41 45 58 40 2 11 25 a Pegasi W. 126 38 127 45 46 129 30 43 131 15 25 o Arietis W. 84 69 86 51 10 88 43 32 90 36 6 Aldebaran W. 53 30 62 65 20 35 57 10 36 59 55 Sun E. 31 19 17 29 34 2 27 48 35 26 2 57 30 Sun W. 38 32 42 40 12 4 41 51 1 43 29 32 Antares E. 52 16 50 29 20 48 43 5 46 67 16 a Aquilae E. 104 41 39 103 11 16 101 41 1 100 10 57 31 Sun W. 51 35 36 53 11 29 54 46 56 56 21 57 Antares E. 38 14 47 36 31 37 34 48 54 33 6 37 a Aqnilae E. 92 44 20 91 15 56 89 47 53 88 20 14 SEPTEMBER, 1859. 227 GKEENWIOH ¥EAT^ TIME. LUNAB DISTANCES. Davof Star's Name and Noon. HI'-. Til". IXh. Month. Position. 1 Sun W. o / n 51 66 31 / // 59 30 39 o / n 61 4 20 O / // 62 37 37 Spica W. 14 41 42 16 21 40 18 1 27 19 41 Antares E. 31 24 46 29 43 22 28 2 24 26 21 62 a Aquilse E. 86 52 58 86 26 7 83 69 43 82 33 46 Fomalhaut E. 111 41 4 110 8 14 108 35 37 107 3 15 2 Sun W. 10 17 38 71 48 24 73 18 47 74 48 46 Spica W. 27 54 13 29 31 51 31 9 7 32 46 2 a Aquilse E. 75 31 19 74 8 24 72 46 3 71 24 16 Fomalhaut E. 99 25 28 97 54 47 96 24 24 94 54 21 3 Sun W. 82 13 9 83 40 58 85 8 27 86 35 36 Spica W. 40 45 28 42 20 21 43 64 65 45 29 11 o Aquilse E. 64 44 36 63 26 39 62 9 24 60 52 53 Fomalhaut E. 87 28 55 86 50 84 33 4 83 6 39 a Pegasi E. 109 32 35 108 1 55 106 31 29 105 1 18 4 Sun W. 93 46 48 95 12 11 96 37 18 98 2 10 Spica W. 53 16 1 64 48'34 56 20 51 67 52 53 a Aquilse E. 54 42 13 63 30 42 52 20 8 51 10 35 Fomalhaut E. 75 53 37 74 28 14 73 3 12 71 38 31 a Pegasi E. 97 33 57 96 6 11 94 36 39 93 8 20 5 Sun W. 105 3 2 106 26 35 107 49 56 109 13 6 Spica W. 65 29 42 67 27 68 31 1 70 1 24 Antares W. 19 35 41 21 6 31 22 37 10 24 7 39 Fomalhaut E. 64 40 26 63 17 65 61 56 47 60 34 3 a Pegasi E. 85 50 2 84 22 69 82 56 9 81 29 30 6 Sun W. 116 6 35 117 28 51 118 51 1 120 13 4 Spica W. 77 31 2 79 33 80 29 58 81 59 16 Antares W. 31 37 43 33 7 19 34 36 49 36 6 12 Fomalhaut E. 53 51 39 52 32 32 51 13 56 49 55 51 a Pegasi E. 74 19 4 72 53 31 71 28 9 70 2 57 a Arietis E. 116 24 114 64 47 113 26 40 111 66 39 1 Sun W. 127 1 56 128 23 29 129 44 69 131 6 26 Spica W. 89 24 29 90 53 19 92 22 6 93 50 60 Antares W. 43 31 50 45 45 46 29 37 47 58 27 Fomalhaut E. 43 34 32 42 20 23 41 7 4 39 54 38 a Pegasi E. 62 69 32 61 35 22 60 11 24 68 47 36 a Arietis E. 104 32 46 103 4 11 101 35 38 100 7 8 8 Spica W. 101 14 8 102 42 45 104 11 23 105 40 1 Antares W. 55 22 11 56 60 64 58 19 37 59 48 20 a Pegasi E. 51 51 38 50 29 7 49 6 51 47 44 52 a Arietis E. 92 45 1 91 16 37 89 48 13 88 19 49 Aldebaran E. 124 16 26 122 49 61 121 23 12 119 66 29 9 Spica W. 113 3 32 114 32 20 116 1 12 117 30 6 Antares W. 67 12 20 68 41 15 70 10 13 71 19 14 a Pegasi E. 40 69 56 39 40 11 38 20 56 37 2 16 a Arietis E. 80 67 26 79 28 50 78 13 76 31 32 Aldebaran E. 112 41 43 111 14 32 109 47 16 108 19 64 228 SEPTEMBER, 1859. i GREENWICH ME A IN" TIME. i LUNAR DISTANCES. 1 Day of Star's Name the and Midnight. XVi-. XTIIP. XXIi. Month. Position 1 Sun W. / tt 64 10 27 o / ;/ 65 42 52 O / /i 67 14 52 O / // 68 46 27 Spica W. 21 20 17 22 59 16 24 37 56 26 16 15 Antares E. 24 41 46 23 2 5 21 22 49 19 43 58 a Aqnilse E. 81 8 17 79 43 16 78 18 46 76 64 47 Fomalhaut E. 105 31 8 103 59 18 102 27 44 100 56 27 2 Sun W. 76 18 23 77 47 37 79 16 29 80 44 59 Spioa W. 34 22 37 35 68 50 37 34 43 39 10 16 a Aquilse E. 70 3 5 68 42 30 67 22 33 66 3 14 Fomalhaut E. 93 24 37 91 65 12 90 26 6 88 67 21 3 Sun W. 88 2 26 89 28 68 90 56 12 92 21 8 Spioa W. 47 3 7 48 36 46 60 10 8 61 43 13 a Aquilse E. 59 37 7 58 22 9 57 7 59 55 64 40 Fomalhaut E. 81 38 33 80 11 49 78 45 24 77 19 20 a Pegasi E. 103 31 21 102 1 39 100 32 11 99 2 57 4 Sun W. 99 26 48 100 51 11 102 15 21 103 39 18 Spica W. 59 24 42 60 66 16 62 27 37 63 58 46 a Aquilae E. 50 2 4 48 54 39 47 48 24 46 43 23 Fomalhaut E. 70 14 11 68 50 12 67 26 35 66 3 19 a Pegasi E. 91 40 15 90 12 22 88 44 43 87 17 16 5 Sun W. 110 36 6 111 58 67 113 21 38 114 44 10 Spica W. 71 31 38 73 1 42 74 31 37 76 1 23 Antares W. 25 37 58 27 8 7 28 38 7 30 7 69 Fomalhaut E. 59 12 43 67 51 47 56 31 18 55 11 15 a Pegasi E. 80 3 2 78 36 46 77 10 41 75 44 47 . 6 Sun W. 121 35 1 122 56 52 124 18 38 126 40 19 Spica W. 83 28 28 84 57 35 86 26 37 87 55 35 Antares W. 37 35 29 39 4 41 40 33 49 42 2 61 Fomalhaut E. 48 38 20 47 21 24 46 6 5 44 49 27 a Pegasi E. 68 37 55 67 13 4 65 48 23 64 23 52 ■ a Arietis E. 110 27 43 108 58 52 107 30 6 106 1 24 1 Sun W. 132 27 50 133 49 12 135 10 32 136 31 51 Spica W. 95 19 32 96 48 13 98 16 52 99 46 30 Antares W. 49 27 14 60 56 52 24 45 53 53 28 Fomalhaut E. 38 43 11 37 32 47 36 23 33 35 15 34 a Pegasi E. 57 24 66 35 54 37 23 53 14 24 a Arietis E. 98 38 40 97 10 14 95 41 49 94 13 25 8 Spica W. 107 8 40 108 37 20 110 6 2 111 34 46 Antares W. 61 17 5 62 45 51 64 14 39 65 43 28 a Pegasi E. 46 23 10 45 1 48 43 40 47 42 20 9 a Arietis E. 86 51 23 85 22 56 83 64 28 82 25 68 Aldebaran E. 118 29 41 117 2 48 115 35 51 114 8 50 9 Spica W. 118 59 3 120 28 6 121 67 10 123 26 19 Antares W. 73 8 18 74 37 26 76 6 39 77 36 56 a Pegasi E. 35 44 15 34 26 57 33 10 27 31 64 51 a Arietis E. 75 2 48 73 34 1 72 5 10 70 36 15 Aldeharan E. 106 52 28 105 24 56 103 67 19 102 29 36 SEPTEMBER, 1859. 229 GEEENWIOH MEAN TIME. LUNAR DISTANCES. Day of the Star's Name aod ' Noon. IIP. VI'. \X\ Month. Position. 10 Antares W. O i II 19 5 16 O t II 80 34 42 a 1 II 82 4 13 O / // 83 33 50 a Arietis E. 69 7 16 67 38 12 66 9 4 64 39 51 Aldebaran E. 101 1 48 99 33 64 98 5 56 96 37 49 11 Antares W. 91 3 18 92 33 31 94 3 60 95 34 16 a Aquilae W. 46 11 22 47 16 6 48 19 69 49 25 58 a Arietis E. 57 12 32 55 42 48 64 12 58 52 43 3 Aldebaran E. 89 15 60 87 47 8 86 18 19 84 49 23 12 Antares W. 103 8 13 104 39 23 106 10 41 107 42 7 a Aquilae W. 55 10 6 56 21 %h 67 33 27 58 46 9 Fomalhaut w. 30 1 38 31 9 9 32 12 62 33 18 36 a Arietis E. 45 12 2 43 41 33 42 10 58 40 40 18 Aldebaran E. 11 23 10 76 63 35 74 23 64 72 64 7 Jupiter E. 119 117 30 10 116 11 114 30 6 Pollux E. 119 52 35 118 21 44 116 50 44 115 19 36 13 a Aqnilse W. 64 58 45 66 14 52 67 31 27 68 48 28 Fomalhaut W. 39 11 63 40 26 34 41 42 21 42 59 8 a Arietis E. 33 6 48 31 34 42 30 3 35 28 32 26 Aldebaran E. 65 23 37 63 53 12 62 22 42 60 52 6 Jupiter E. 106 51 23 105 26 24 103 56 16 102 23 59 Pollux E. 107 41 44 106 9 43 104 37 33 103 5 14 14 a Aquilas W. 76 19 34 76 38 60 77 68 26 -79 18 18 Fomalhaut W. 49 36 1 60 57 35 62. 19 47 53 42 35 a Pegasi w. 27 43 32 28 68 9 30 14 31 31 32 25 Aldebaran E. 63 17 62 51 46 48 50 15 41 48 44 31 Jupiter E. 94 45 9 93 12 64 91 40 29 90 7 54 Pollux E. 96 21 15 93 47 69 92 14 32 90 40 65 IS f'a Aquilae W. 86 1 36 87 22 56 88 44 27 90 6 10 Fomalhaut W. 60 44 26 62 10 12 63 36 24 66 2 69 a Pegasi w. 38 20 28 39 46 1 41 10 23 42 36 29 Aldebaran E. 41 8 27 39 37 18 38 6 13 36 35 16 Jupiter E. 82 22 19 80 48 39 79 14 49 77 40 46 Pollux E. 82 60 15 81 16 36 79 40 44 78 6 42 Saturn E. 112 24 23 110 60 20 109 16 7 107 41 41 16 a Aquilae W. 96 66 62 98 19 20 99 41 63 101 4 29 Fomalhaut W. 72 21 27 73 50 10 76 19 12 76 48 32 a Pegasi w. 49 56 31 61 26 10 52 56 19 64 26 65 Jupiter E. 69 47 38 68 12 24 66 36 57 65 1 17 Pollux E. 70 7 39 68 31 26 66 55 2 65 18 26 Saturn E. 99 46 38 98 11 1 96 35 11 94 69 8 S0N E. 132 7 8 130 38 7 129 8 53 127 39 26 IT Fomalhaut W. 84 19 27 86 50 26 87 21 40 88 63 9 a Pegasi W. 62 6 20 63 39 24 65 12 60 66 46 37 a Arietis w. 18 30 47 20 6 41 21 41 18 23 17 33 Jupiter Pollux E. 56 69 41 66 22 41 63 45 26 62 7 68 E. 67 12 12 56 34 17 63 66 10 , 62 17 60 Saturn E. 86 55 33 85 18 9 83 40 30 :. 82 2 37 Susr E. 120 8 48 118 37 59 117 6 65 115 35 37 230 SEPTEMBER, 1859. GEEENWIOH MEAN TIME. LUNAR ] DISTANCES. Day of Star's Name the and Midnight. XVt. XVIIP'. XXlk. Month. Position. 10 Antares W. o / // 85 3 32 86° 33 20 o / // 88 3 13 o / // 89 33 13 a Arietis E. 63 10 34 61 41 11 60 11 43 58 42 10 Aldebaran E. 95 9 31 93 41 20 92 12 56 90 44 26 11 Antares W. 91 4 49 98 35 29 100 6 16 101 37 10 a AquilsB w. 50 32 59 51 40 57 52 49 50 53 59 34 a Arietis E. 51 13 2 49 42 55 48 12 43 46 42 25 Aldebaran E. 83 20 22 81 51 13 80 21 59 78 52 37 12 Antares W. 109 13 41 110 45 23 112 17 14 113 49 13 a Aquilae W. 59 59 31 61 13 29 62 28 2 63 43 8 Fomalhaut W. 34 26 10 35 35 25 36 46 12 37 58 24 a Arietis E. 39 9 33 37 38 43 36 7 49 34 36 50 Aldebaran E. Yl 24 14 69 54 14 68 24 7 66 63 55 Jupiter E. 1]2 59 50 111 29 26 109 58 54 108 28 13 Pollux E. 113 48 19 112 16 53 110 45 19 109 13 36 13 a Aqnilse W. 10 5 55 71 23 46 72 42 1 74 37 Fomalhaut W. 44 16 53 45 35 29 46 54 55 48 15 7 a Arietis E. 27 1 11 25 30 9 23 59 5 22 28 6 Aldebaran E. 59 21 25 57 50 39 56 19 47 54 48 52 Jupiter E. 100 52 32 99 20 56 97 49 10 96 17 15 Pollux E. 101 32 45 100 7 98 27 19 96 54 21 14 a Aquilae W. 80 38 28 81 58 53 83 19 34 84 40 28 Fomalhaut W. 55 5 57 56 29 50 57 54 14 59 19 6 a Pegasi w. 32 51 44 34 12 19 35 34 1 36 56 46 Aldebaran E. 47 13 19 45 42 6 44 10 52 42 39 38 Jupiter E. 88 35 8 87 2 12 85 29 5 83 55 47 Pollux E. 89 7 8 87 33 11 85 59 3 84 24 44 15 a Aquilse W. 91 28 2 92 50 4 94 12 13 95 34 29 Fomalhaut W. 66 29 58 67 57 19 69 25 1 70 53 4 a Pegasi W. 44 3 17 45 30 43 46 58 45 48 27 22 Aldebaran E. 35 4 27 33 33 49 32 3 26 30 33 22 Jupiter E. 76 6 32 74 32 7 72 57 29 71 22 40 Pollux E. 76 30 29 74 55 4 73 19 27 71 43 39 Saturn E. 106 7 5 104 32 16 102 57. 15 101 22 3 16 a Aquilae W. 102 27 7 103 49 46 105 12 26 106 35 4 Fomalhaut W. 78 18 9 79 48 4 81 18 16 82 48 43 a Pegasi W. 55 57 58 57 29 27 59 1 21 60 33 39 Jupiter E. 63 25 25 61 49 19 60 13 58 36 27 Pollux E. 63 41 36 62 4 35 60 27 20 58 49 52 Saturn E. 93 22 52 91 46 23 90 9 40 88 32 44 Sun E. 126 9 46 124 39 52 123 9 45 121 39 24 11 Fomalhaut W. 90 24 52 91 56 48 93 28 58 95 1 20 a Pegasi W. 68 20 46 69 55 15 71 30 5 73 5 14 a Arietis W. 24 54 20 26 31 38 28 9 23 29 47 34 Jupiter E. 50 30 15 48 52 17 47 14 5 45 35 38 Pollux E. 50 39 16 49 28 47 21 26 45 42 11 Saturn E. 80 24 29 78 46 6 77 7 28 75 28 35 Sun E. 114 4 4 112 32 16 111 13 109 27 56 SEPTEMBER, 1859. 231 GEEElSrWICH MEAN TIME. LUNAR DISTANCES. Day of Star's Name the and Noon. Illk. Vlt. IX>. Month. Position. o / // O i II O / // o / // 18 Fomalhaut W. 96 33 54 98 6 40 99 39 37 101 12 44 a Pegasi W. 74 40 43 76 16 31 77 52 38 79 29 4 a Arietis W. 31 26 9 33 5 8 34 44 29 36 24 11 Jupiter E. 43 56 55 42 17 68 40 38 45 38 59 17 Pollux E. 44 2 43 42 23 ■ 40 43 4 39 2 55 Saturn E. 73 49 26 72 10 1 70 30 21 68 60 24 Sun E. 107 55 21 106 22 31 104 49 25 103 1^ 4 19 Fomalhaut W. 109 33 110 34 27 112 8 26 113 42 29 a Pegasi W. 87 35 43 89 13 55 90 52 23 92 31 8 a Arietis w. 44 47 63 46 29 38 48 11 41 49 54 4 Aldebaran w. 16 8 13 17 28 8 18 51 49 20 18 34 Jupiter E. 30 38 7 28 57 8 27 15 53 25 34 25 Pollux E. 30 38 57 28 57 35 27 16 4 26 34 24 Saturn E. 60 26 34 68 44 57 57 a 4 56 20 53 Sun E. 95 25 10 93 50 9 92 14 61 90 39 16 20 a Pegasi W. 100 48 43 102 28 67 104 9 24 105 50 4 a Arietis W. 58 30 46 60 16 2 61 59 38 63 44 31 Aldebaran W. 28 3 6 29 40 16 31 18 27 32 57 33 Saturn E. 46 45 37 45 1 42 43 17 29 41 32 58 Sun E. 82 37 1 80 59 42 79 22 6 77 44 13 21 a Arietis W. 72 33 28 74 20 8 76 7 6 77 54 18 Aldebaran W. 41 24 9 43 7 18 44 50 58 46 35 8 Saturn E. 32 46 11 31 29 13 32 27 26 49 Mars E. 49 14 35 47 32 28 46 60 6 44 7 27 Sun E. 69 30 32 67 50 67 66 11 7 64 31 2 22 a Arietis W. 86 54 22 88 43 7 90 32 6 92 21 17 Aldebaran w. 55 22 16 57 8 48 68 56 40 60 42 51 Mars E. 35 30 42 33 46 43 32 2 32 30 18 12 Sun E. 56 6 48 64 25 15 52 43 30 61 1 33 23 a Arietis W. 101 30 8 103 20 24 105 10 49 107 1 21 Aldebaran w. 69 42 43 71 31 22 73 20 13 75 9 13 Pollux w. 26 52 23 28 41 43 30 31 21 32 21 14 Jupiter w. 25 56 33 27 45 43 29 35 5 31 24 38 Sun E. 42 29 7 40 46 12 39 3 10 37 20 3 28 Sun W. 26 10 46 27 47 30 29 23 56 31 3 Antares E. 37 6 3 35 21 3 33 36 26 31 52 11 a Aquilae E. 91 42 37 90 12 31 88 42 45 87 13 21 Fomalhaut E. 116 54 26 115 19 7 113 43 53 112 8 47 29 Sun W. 38 55 28 40 29 26 42 3 2 43 36 14 a Aquilae E. 79 52 27 78 25 40 76 69 26 75 33 41 Fomalhaut E. 104 16 3 102 42 12 101 8 38 99 35 22 30 Sun W. 51 16 28 52 47 21 54 17 61 55 47 59 a Aquilse E. 68 33 63 67 11 50 65 50 29 64 29 51 Fomalhaut E. 91 63 48 90 22 32 88 51 36 87 21 3 a Pegasi E. 113 68 65 112 25 13 110 51 48 109 18 39 232 SEPTEMBER, 1859. GEEENWICH MEAN TIME. LUNAR DISTAJfCES. Day of Star's Name the and Midnight. XTi. xvmi'. XXII. Month. Position 18 Fomalhaut W. 102 46 'i O / // 104 19 28 o / ii 105 53 2 107 26 44 a Pegasi W. 81 5 48 82 42 51 84 20 11 85 57 48 a Arietis w. 38 4 15 39 44 39 41 25 24 43 6 29 Jupiter E. . B1 19 34 35 39 35 33 59 21 32 18 52 Pollux E. 37 22 32 35 41 57 34 1 9 32 20 9 Saturn E. 67 10 11 65 29 42 63 48 56 62 7 53 Sun E. 101 42 26 100 8 32 98 34 21 96 59 64 19 Fomalliaut W. 115 16 33 116 50 38 118 24 41 119 58 42 a Pegasi W. 94 10 9 95 49 25 97 28 57 99 8 43 a Arietis w. 51 36 47 53 19 48 55 3 9 56 46 48 Aldebaran w. 21 47 51 23 19 14 24 52 24 26 27 5 Jupiter E. 23 52 42 22 10 48 20 28 41 18 46 23 Pollux E. 23 52 39 22 10 51 20 29 2 18 47 IS Saturn E. 53 38 24 51 55 38 50 12 35 48 29 15 Sun E. 89 3 23 87 27 14 85 50 47 84 14 3 20 a Pegasi W. 107 30 55 109 11 58 110 53 10 112 34 32 a Arietis W. 65 29 43 67 15 13 69 1 70 47 6 Aldebaran W. 34 37 29 36 18 10 37 59 33 39 41 33 Saturn E. 39 48 11 38 3 6 36 17 45 34 32 6 Sun E. 76 6 2 74 27 35 72 48 50 71 9 49 21 a Arietis W. 79 41 48 81 29 34 83 17 35 85 5 51 Aldebaran W. 48 19 44 50 4 47 61 50 14 53 36 4 Saturn E. 25 39 50 23 52 37 22 5 9 20 17 27 Mars E. 42 24 33 40 41 26 38 58 4 37 14 29 Sun E. 62 50 40 61 10 4 59 29 13 57 48 7 22 a Arietis W. 94 10 41 96 17 97 50 4 99 40 1 Aldebaran W. 62 30 19 64 18 3 66 6 3 67 54 16 Mars E. 28 33 42 26 49 6 25 4 22 23 19 34 Sun E. 49 19 24 47 37 4 45 54 34 44 11 55 23 a Arietis W. 108 51 59 110 42 43 112 33 32 114 24 24 Aldebaran W. 76 58 22 78 47 40 80 37 4 82 26 33 Pollux W. 34 11 20 36 1 38 37 52 6 39 42 42 Jupiter w. 33 14 20 35 4 11 36 54 9 38 44 12 Sun E. 35 36 51 33 53 36 32 10 19 30 27 2 28 Sun W. 32 35 51 34 11 17 35 46 23 37 21 6 Antares E. 30 8 21 28 24 55 26 41 53 24 59 16 a Aquilfe E. 85 44 19 84 15 41 82 47 29 81 19 44 Fomalhaut E. 110 33 50 108 59 4 107 24 30 105 50 9 29 Sun W. 45 9 4 46 41 30 48 13 32 49 45 12 a Aquilae E. 74 8 31 72 43 56 71 19 57 69 56 36 Fomalhaut E. 98 2 24 96 29 45 94 57 26 93 25 27 30 Sun W. 57 17 44 58 47 7 60 16 7 61 44 46 a Aquilae E. 63 9 58 61 50 51 60 32 31 59 15 1 Fomalhaut E. 85 50 53 84 21 6 82 51 40 81 22 39 a Pegasi E. 107 45 46 106 13 10 104 40 52 103 8 51 OCTOBER, 1859. 233 GEEENWIOH MEAT^ TIME. 1 LUNAR DISTANCES. Day of Star's Name the and Noon. nil". VII'. IXk. Month. Position. Q 1 tl o / y/ 1 II o / // 1 Sun W. 63 13 4 64 41 66 8 36 67 35 52 a Aquilae E. S'Z 58 23 56 42 39 55 27 50 64 13 69 Fomalliaut E. 79 54 2 78 26 48 76 67 58 75 30 33 a Pegasi E. 101 37 7 100 5 41 98 34 32 97 3 41 2 Sun W. Y4 47 25 76 12 49 77 37 57 79 2 48 Antares W. 16 39 23 17 12 23 18 45 5 20 17 32 Fomalliaut E. 68 19 39 66 54 46 66 30 17 64 6 16 a Pegasi E. 89 33 45 88 4 37 86 35 46 85 7 11 3 Sun W. 86 3 18 87 26 43 88 49 55 90 12 66 Antares W. 27 55 59 29 26 59 30 57 47 32 28 24 Fomalliaut E. 57 13 7 55 61 68 54 31 20 53 11 14 a Pegasi E. 77 48 14 76 21 13 74 54 26 73 27 54 4 Sun W. 97 5 20 98 27 22 99 49 16 101 11 2 Antares W. 39 58 50 41 28 28 42 67 58 44 27 22 Fomalhaut E. 46 39 41 45 23 22 44 7 49 42 63 4 a Pegasi E. 66 18 49 64 63 41 63 28 48 62 4 8 a Arietis E. 108 4 17 106 35 106 6 51 103 36 49 6 Sun W. 107 58 26 109 19 41 110 40 63 112 2 2 Antares W. 51 62 55 53 21 49 64 50 40 66 19 28 Fomalliaut E. 36 63 33 35 46 3 34 37 56 33 32 18 a Pegasi •E. 65 4 20 53 41 6 52 18 7 50 55 25 a Arietis E. 96 12 58 94 44 24 93 15 63 91 47 25 6 Sun W. 118 47 22 120 8 25 121 29 28 122 60 33 Antares w. 63 43 13 65 11 58 66 40 45 68 9 34 a Pegasi E. 44 6 27 42 46 43 41 25 24 40 5 33 a Arietis E. 84 26 19 82 66 64 81 28 28 80 7 Sun W. 129 36 28 130 67 49 132 19 13 133 40 41 Antares W. 75 34 19 77 3 28 78 32 42 80 2 2 a Pegasi E. 33 36 1 32 19 10 31 4 17 29 60 31 a Arietis E. 72 37 1 71 3 14 69 39 22 68 10 26 Aldebaran E. 104 30 27 103 2 60 101 35 7 100 7 17 8 Antares W. 87 30 14 89 14 90 30 23 92 39 a Aquilse w. 43 42 21 44 43 17 45 46 36 46 49 10 a Arietis E. 60 44 19 59 14 46 57 45 6 66 16 18 Aldebaran E. 92 46 26 91 17 53 89 49 12 88 20 23 9 a Aquilae W. 52 23 63 53 33 46 54 44 31 66 56 5 Fomalhaut W. 27 55 28 60 21 29 48 33 30 49 19 a Arietis E. 48 44 26 47 13 50 45 43 7 44 12 15 Aldebaran E. 80 64 8 79 24 26 77 54 36 76 24 35 10 a Aquilse W. 62 4 48 63 20 29 64 36 45 65 53 33 Fomalhaut W. 36 24 30 37 36 39 38 50 12 40 5 2 a Arietis E. 36 35 59 36 4 21 33 32 37 32 47 Aldebaran E. 68 62 14 67 21 18 65.60 13 64 18 59 Jupiter E. 114 3 5 112 31 14 110 69 12 109 26 57 11 a Aquilae W. 72 24 54 73 44 29 75 4 27 76 24 47 234 OCTOBER, 1859. GREENWICB : MEAN" TIME. LUNAR ] DISTANCES. Day of Star's Name the and Midnight. XV". XTIII''. XXTi. Month. Position. 1 Sun W. o / // 69 2 49 / ;/ 70 29 25 71 55 43 , o in 73 21 43 a Aquilse E. 53 1 9 51 49 22 50 38 41 49 29 10 Fomalhaut E. 74 3 32 72 36 56 71 10 45 69 44 59 a Pegasi E. 95 33 V 94 2 51 92 32 52 91 3 10 2 Sun W. 80 21 23 81 51 44 83 15 49 84 39 40 Antares W. 21 49 42 23 21 38 24 63 19 26 24 46 Fomalhaut E. 62 42 42 61 19 35 59 66 57 58 34 47 a Pegasi E. 83 38 52 82 10 49 80 43 2 79 15 30 3 Sun W. 91 35 45 92 58 23 94 20 62 95 43 11 Antares W. 33 58 49 35 29 3 36 59 8 38 29 3 Fomalhaut E. 51 51 42 60 32 45 49 14 25 47 66 43 a Pegasi E. 72 1 37 70 35 34 69 9 45 67 44 10 4 Sun W. 102 32 42 103 54 16 105 15 44 106 37 7 Antares W. 45 56 39 47 25 50 48 54 56 50 23 58 Fomalhaut E. 41 39 11 40 26 12 39 14 13 38 3 18 a Pegasi E. 60 39 42 59 15 30 57 51 32 66 27 49 a Arietis E. 102 7 53 100 39 2 99 10 16 97 41 35 5 Sun W. 113 23 8 114 44 13 116 6 16 117 26 19 Antares W. 57 48 15 59 17 60 45 45 62 14 29 Fomalhaut E. 32 28 18 31 26 6 30 25 53 29 27 50 a Pegasi E. 49 32 59 48 10 52 46 49 3 45 27 34 a Arietis E. 90 18 58 88 50 33 87 22 8 85 53 44 6 Sun W. 124 11 39 125 32 48 126 53 58 128 16 12 Antares W. 69 38 24 71 7 18 72 36 14 74 6 14 a Pegasi E. 38 46 12 37 27 25 36 9 14 34 61 45 a Arietis E. 78 31 30 77 2 58 75 34 22 74 5 43 V Sun W. 135 2 14 136 23 51 137 45 34 139 7 21 Antares W. 81 31 27 83 59 84 30 37 86 22 a Pegasi E. 28 38 27 26 56 26 17 30 25 9 57 a Arietis E. 66 41 25 65 12 17 63 43 4 62 13 45 Aldebaran E. 98 39 21 97 11 18 95 43 8 , 94 14 51 8 Antares W. 93 31 4 95 1 38 96 32 22 98 3 15 u, Aquilse W. 47 53 57 48 59 53 50 6 53 51 14 64 a Arietis E. 54 45 23 53 15 21 61 45 10 50 14 51 Aldebaran E. 86 51 25 85 22 19 83 53 5 82 23 41 9 a Aquilae W. 57 8 26 58 21 31 69 35 18 60 49 44 Fomalhaut W. 31 52 25 32 57 39 34 4 51 35 13 51 a Arietis E. 42 41 16 41 10 8 39 38 53 38 7 29 Aldebaran E. 74 54 26 73 24 7 71 53 39 70 23 1 10 a Aquilae W. 67 10 52 68 28 41 69 46 59 71 6 43 Fomalhaut W. 41 21 4 42 38 13 43 56 22 45 16 29 a Arietis E. 30 28 52 28 56 53 27 24 61 25 52 48 Aldebaran E. 62 47 37 61 16 5 59 44 26 58 12 38 Jupiter E. 107 54 31 106 21 52 104 49 2 103 15 59 11 a Aquilae W. 77 45 29 79 6 31 80 27 51 81 4fl 29 OCTOBER, 1859. 235 GEEENWIOH MEAN TIME. LUNAR DISTANCES. Day of Star's Nam( ) and Noon. IIP-. YIK IX>. Month. Position. o / // o / // O 1 II o / // 11 Fomalhaut W. 46 35 29 47 56 18 49 17 54 60 40 15 a Pegasi w. 25 5 42 26 16 33 27 29 44 28 45 Aldebaran E. 56 40 42 55 8 40 53 36 31 52 4 16 Jupiter E. 101 42 43 100 9 15 98 36 36 97 1 43 12 a Aquilse W. 83 11 24 84 33 34 85 55 59 87 18 38 Fomalhaut W. 57 41 31 59 7 26 60 33 51 62 44 a Pegasi w. 35 25 29 36 49 21 38 14 13 39 40 Aldebaran E. 44 21 45 42 49 7 41 16 29 39 43 53 Pollux E. 86 11 43 84 36 6 83 18 81 24 17 Jupiter E. 89 9 14 87 34 7 85 58 48 84 23 16 Saturn E. 118 33 44 116 58 33 116 23 11 113 47 36 13 FomalLaut W. 69 21 26 70 50 41 72 20 16 73 50 10 a Pegasi w. 47 12 48 30 9 50 38 51 31 37 Aldebaran E. 32 2 32 30 30 57 28 59 45 27 29 3 Pollux E. 73 21 18 71 44 7 70 6 46 68 29 12 Jupiter E. 76 22 36 74 45 52 73 8 56 71 31 48 Saturn • E. 105 46 40 104 9 52 102 32 63 100 56 43 14 Fomalhaut W. 81 23 67 82 56 28 84 27 12 85 59 9 a Pegasi W. 59 13 14 60 46 43 62 20 34 63 64 45 Pollux E. 60 18 42 58 40 3 67 1 15 56 22 16 Jupiter E. 63 23 15 61 44 58 60 6 29 58 27 50 Saturn E. 92 46 64 91 8 34 89 30 2 87 61 20 Regulus E. 97 10 9 95 31 9 93 61 58 92 12 36 15 a Pegasi W. 71 50 10 73 26 4 76 2 13 76 38 37 a Arietis W. 28 28 40 30 7 32 31 46 44 33 26 15 Pollux E. 47 4 57 45 25 2 43 44 67 42 4 46 Jupiter E. 50 11 49 48 32 4 46 52 9 45 12 3 Saturn E. 79 36 2 77 55 13 76 15 14 74 35 4 Regulus E. 83 53 82 12 32 80 31 54 78 51 5 Mars E. 108 43 18 107 7 48 105 32 7 103 56 15 Sun E. 137 24 4 136 61 38 134 18 59 132 46 8 16 a Pegasi W. 84 43 50 86 21 29 87 69 19 89 37 19 a Arietis W. 41 47 61 43 28 63 45 10 9 46 51 38 Jupiter E. 36 49 2 35 7 56 33 26 41 31 45 15 Saturn E. 66 11 38 64 30 21 62 49 2 61 7 29 Regulus E. 70 24 22 68 42 30 67 28 66 18 16 Mars E. 95 64 18 94 17 23 92 40 19 91 3 3 Sun E. 124 68 58 123 24 58 121 50 46 120 16 24 IT a Arietis W. 55 22 8 57 4 49 58 47 42 60 30 45 Aldebaran W. 25 3 8 26 37 26 28 12 49 29 49 11 Saturn E. 52 37 10 50 54 36 49 11 52 47 28 58 Eegulus Mars E. 56 44 42 55 1 29 53 18 6 51 34 34 E. 82 64 16 81 16 79 37 35 77 59 Sun E. 112 21 61 110 46 25 109 10 49 107 35 2 18 a Arietis W. 69 8 46 - 70 62 53 72 37 11 74 21 39 Aldebaran W. 38 2 7 39 42 24 41 23 9 43 4 18 236 OCTOBER, 1859. GREEW WICH MEAN TIME. LUNAR DISTANCES. Day of the Star's Name and Midnight. XVI. XVIIIt. XXR Month. Position. 11 Fomalhaut W. o / // 52 3 17 53 26 57 54 61 14 O / // 56 16 6 a Pegasi w. 30 2 7 31 20 53 32 41 8 34 2 43 Aldebaran E. 50 31 53 48 59 27 47 26 66 45 54 21 Jupiter E. 95 27 38 93 53 21 92 18 51 90 44 9 12 a Aquilae W. 88 41 29 90 4 32 91 27 45 92 61 7 Fomalhaul W. 63 28 4 64 55 50 66 23 69 67 52 31 a Pegasi W. 41 6 37 42 33 59 44 2 5 45 30 60 Aldebaran E. 38 11 20 36 38 53 36 6 34 33 34 26 Pollux E. 79 48 5 78 11 41 76 36 6 74 58 17 Jupiter E. 82 47 33 81 11 37 79 35 28 77 69 8 Saturn E. 112 11 49 110 35 60 108 59 38 107 23 15 13 Fomalhaut W. 75 20 22 76 50 52 78 21 38 79 52 40 a Pegasi W. 53 3 5 54 35 56 7 21 57 40 6 Aldebaran E. 25 68 59 24 29 40 23 1 20 21 34 12 Pollux E. 66 51 28 65 13 33 63 35 26 61 57 9 Jupiter E. 69 54 28 68 16 57 66 39 14 65 1 20 Saturn E. 99 18 20 97 40 46 96 3*0 94 25 2 14 Foraalliaut W. 87 31 18 89 3 38 90 36 8 92 8 49 a Pegasi W. 65 29 15 67 4 3 68 39 8 70 14 31 Pollux E. 53 43 8 52 3 49 50 24 21 48 44 44 Jupiter E. 56 49 55 9 58 63 30 46 61 61 23 Saturn E. 86 12 26 84 33 22 82 54 6 81 14 39 Eegulus E. 90 33 3 88 53 18 87 13 23 85 33 17 15 a Pegasi W. 78 15 14 79 52 4 81 29 8 83 6 23 a Arietis W. 35 6 3 36 46 7 38 26 27 40 7 2 Pollux E. 40 24 24 38 43 56 37 3 21 35 22 40 Jupiter E. 43 31 47 41 51 21 40 10 45 38 29 59 Saturn E. 72 64 44 71 14 13 69 33 32 67 52 40 Eegulus E. 77 10 5 75 28 55 73 47 34 72 6 3 Mars E. 102 20 13 100 44 99 7 36 97 31 2 Sun E. 131 13 5 129 39 51 128 6 25 126 32 47 16 a Pegasi W. 91 15 29 92 53 49 94 32 17 96 10 56 a Arietis W. 48 33 20 50 15 14 51 57 20 53 39 38 Jupiter E. 30 3 41 28 21 67 26 40 5 24 58 5 Saturn E. 59 25 45 67 43 52 66 1 48 54 19 34 Regulus E. 63 35 53 61 53 21 60 10 38 58 27 45 Mars E. 89 25 38 87 48 2 86 10 17 84 32 21 Sun E. 118 41 51 117 7 7 115 32 12 113 57 7 17 a Arietis W. 62 14 63 57 26 65 41 2 67 24 48 Aldebaran W. 31 26 25 33 4 24 34 43 3 36 22 19 Saturn E. 45 45 55 44 2 42 42 19 19 40 35 47 Eegulus E. 49 50 51 48 6 59 46 22 57 44 38 45 Mars E. 76 20 ]6 74 41 22 73 2 18 71 23 5 Sun E. 105 59 5 104 22 58 102 46 41 101 10 14 18 a Arietis W. 76 6 17 77 51 4 79 36 1 81 21 8 Aldebaran W. 44 45 51 46 27 45 48 9 59 49 52 32 OCTOBER, 1859. 237 GEEENWIOH MEAN TIME. LUNAR DISTANCES. Day of Star's Name the and Noon. IIP-. TJk. IXk. Month. Position, o * // o / // o / // o / // 18 Saturn E. 38 52 5 37 8 14 35 24 14 33 40 4 Kegulus E. 42 54 24 41 9 53 39 25 13 37 40 24 Mars E. 69 43 43 68 4 11 66 24 31 64 44 42 Sun E. 99 33 38 97 56 51 96 19 55 94 42 49 19 a Arietis W. 83 6 23 84 51 48 86 37 22 88 23 5 Aldebaran W. 51 35 23 53 18 31 55 1 54 56 45 32 Regulus E. 28 54 4 27 8 23 25 22 34 23 36 37 Mars E. 56 23 26 54 42 46 53 1 59 51 21 4 Sun E. 86 35 2 84 57 1 83 18 52 81 40 35 20 Aldebaran W. 65 27 3 67 11 57 68 57 70 42 13 Pollux W. 22 40 3 24 24 59 26 10 18 27 55 55 Jupiter W. 18 42 46 20 28 37 22 14 40 24 54 Mars E. 42 54 52 41 13 21 39 31 46 37 50 7 Sun E. 73 27 8 71 48 4 70 8 54 68 29 37 21 Aldebaran W. 79 30 26 81 16 26 83 2 31 84 48 41 Pollux W. 36 47 41 38 34 36 40 21 38 42 8 49 Jupiter W. 32 54 19 34 41 22 36 28 31 38 15 46 Mars E. 29 21 28 27 39 48 25 58 14 24 16 47 StJN E. 60 11 50 58 32 3 56 52 12 55 12 18 22 Aldebaran W. 93 40 25 95 26 51 97 13 18 98 59 44 PoUux W. 51 6 6 62 53 45 54 41 27 56 29 10 Jupiter W. 47 12 54 49 28 50 48 3 52 35 40 Saturn W. 17 48 30 19 35 41 21 22 67 23 10 16 Sun E. 46 52 25 45 12 26 43 32 29 41 52 35 23 Pollux W. 65 27 45 67 15 23 69 2 57 70 50 28 Jupiter W. 61 33 31 63 20 59 65 8 24 66 55 44 Saturn W. 32 7 4 33 54 23 35 41 38 37 28 49 ■Regulus W. 28 27 30 30 15 24 32 3 14 33 51 Sun E. 33 34 16 31 54 59 30 15 54 28 37 1 28 Sun W. 31 34 50 33 4 27 34 33 49 36 2 56 a Aquilse E. 61 56 22 60 36 24 59 17 15 57 58 58 Fomalbaut E. 84 38 20 83 7 31 81 37 3 80 6 69 a Pegasi E. 106 23 46 104 49 51 103 16 11 101 42 47 29 Sun W. 43 24 17 44 51 42 46 18 50 47 45 40 Antares W. 10 57 39 12 33 15 14 8 32 15 43 31 a Aquilse Fomalhaut E. 51 41 47 50 29 33 49 18 30 48 8 43' E. 72 42 34 71 14 56 69 47 45 68 21 1 a Pegasi E. 94 3 92 28 23 90 57 89 25 56 30 Sun W. 54 55 43 56 20 54 57 45 50 59 10 31 Antares W. 23 33 49 25 7 1 26 39 56 28 12 35 Fomalhaut E. 61 14 26 59 50 37 58 27 20 67 4 36 a Pegasi E. 81 55 3 80 25 46 78 56 48 77 28 7 31 Sun W. 66 10 21 67 33 39 68 56 44 70 19 38 Antares W. 35 52 5 37 23 17 38 54 17 40 26 6 Fomalhaut E. 50 19 50 49 49 47 42 31 46 24 59 a Pegasi E. 70 9 6 68 42 10 67 15 32 65 49 10 238 OCTOBER, 1859. GREEITWICH MEAN TIME. LUNAR DISTANCES. Day of the Star's Name and Midnight. XVI.. XVIIIi. XXP.. Month. Position. 18 Saturn E. 31 55 46 o / // 30 11 20 o ; // 28 26 45 26 42 2 Regulus E. 35 55 25 34 10 18 32 25 2 30 39 37 Mars E. 63 4 43 61 24 36 59 44 21 58 3 57 Sun E. 93 5 34 91 28 10 89 50 36 88 12 53 19 a Arietis W. 90 8 56 91 54 56 93 41 4 95 27 19 Aldebaran W. 58 29 25 60 13 31 61 57 50 63 42 21 Eegulus E. 21 50 33 20 4 23 18 18 8 16 31 48 Mars E. 49 40 2 47 58 54 46 17 39 44 36 18 Sun E. 80 2 9 78 23 35 76 44 53 75 6 4 20 Aldebaran W. 12 21 36 74 13 1 75 58 46 77 44 33 Pollux W. 29 41 50 31 27 59 33 14 22 35 56 Jupiter W. 25 41 19 27 33 52 29 20 34 31 7 23 Mars E. 36 8 25 34 26 41 32 44 56 31 3 11 Sun E. 66 50 14 65 10 46 63 31 12 61 51 33 21 Aldebaran W. 86 34 56 88 21 14 90 7 35 91 53 59 Pollux W. 43 56 6 45 43 29 47 30 57 49 18 29 Jupiter W. 40 3 3 41 50 26 43 37 52 45 25 22 Mars E. 22 35 31 20 54 31 19 13 50 17 33 37 Sun E. 53 32 22 51 52 24 50 12 25 48 32 26 22 Aldebaran W. 100 46 9 102 32 32 104 18 52 106 5 9 Pollux W. 58 16 54 60 4 38 61 52 22 63 40 4 Jupiter W. 54 23 16 56 10 52 57 58 27 69 46 Saturn W. 24 57 31 26 44 59 28 32 22 30 19 44 Sun E. 40 12 44 38 32 57 36 53 16 35 13 42 23 Pollux W. 12 37 54 74 25 14 76 12 28 77 59 35 Jupiter W. 68 42 59 70 30 8 72 17 12 74 4 8 Saturn W. 39 15 56 41 2 57 42 49 52 44 36 41 Regulus W. 35 38 42 37 26 18 39 13 48 41 1 11 Sun E. 26 58 24 25 20 5 23 42 6 22 4 33 28 Sun W. 37 31 45 39 18 40 28 35 41 66 34 a Aquilas E. 56 41 34 55 25 6 54 9 37 52 56 10 Fomalhaut E. 78 37 17 77 7 59 75 39 6 74 10 37 a Pegasi E. 100 9 40 98 36 50 97 4 17 95 32 1 29 Sun W. 49 12 14 50 38 31 52 4 31 53 30 15 Antares W. 17 18 11 18 52 32 20 26 35 22 21 a Aquilae E. 47 15 45 53 11 44 47 35 43 43 32 Fomalhaut E. 66 54 44 65 28 56 64 3 36 62 38 46 a Pegasi E. 87 55 9 86 24 41 84 54 30 83 24 38 30 Sun W. 60 34 57 61 59 9 63 23 6 64 46 50 Antares w. 29 44 68 31 17 7 32 49 34 20 39 Fomalhaut E. 55 42 26 54 20 51 52 59 52 51 39 31 a Pegasi E. 75 59 44 74 31 38 73 3 50 71 36 19 31 Sun W. 71 42 21 73 4 53 74 27 14 75 49 27 Antares W. 41 55 40 43 26 5 44 66 20 46 26 24 Fomalhaut E. 45 8 14 43 52 20 42 37 20 41 23 16 a Pegasi E. 64 23 6 62 57 19 61 31 50 60 6 37 NOVEMBER, 1859. 239 GREENWICH MEAN TIME. LUNAR DISTANCES. Day of tfce Star's Name and Noon. IIP. \l\ IX"-. Month. Position. 1 Sun W. O 1 II 11 11 30 ^ O J II 78 83 24 ^ o / // 79 55 10 O / // 81 16 49 Fomalhaut E. 40 10 14 38 58 17 37 47 30 36 37 59 a Pegasi E. 58 41 43 57 17 6 65 52 47 54 28 46 a Arietis E. 100 1 24 98 37 68 97 8 41 95 39 31 2 Sun W. 88 3 30 89 24 36 90 45 39 92 6 38 a Pegasi E. 47 33 33 46 11 33 44 49 57 43 28 47 a Arietis E. 88 15 14 86 46 36 85 18 3 83 49 32 3 Sun W. 98 51 15 100 12 10 101 33 6 102 54 4 a Pegasi E. 36 50 16 35 32 22 34 15 12 32 58 52 a Arietis E. 76 27 21 74 58 55 73 30 28 72 2 Aldebaran E. 108 21 35 106 64 20 105 27 3 103 59 42 4 Sun W. 109 39 41 111 1 1 112 22 27 113 43 59 a Aquilae W. 40 58 55 41 55 54 42 54 27 43 54 28 a Arietis E. 64 38 53 63 10 3 61 41 8 60 12 7 Aldebaran E. 96 41 52 95 14 2 93 46 6 92 18 3 5 Sun W. 120 33 28 121 55 46 123 18 14 124 40 61 a Aquilse W. 49 13 55 50 21 11 51 29 27 52 38 39 a Arietis E. 52 45 20 51 15 35 49 45 42 48 15 39 Aldebaran E. 84 55 51 83 26 59 81 57 58 80 28 46 6 a Aquilae W. 58 37 16 69 51 15 61 5 54 62 21 13 Fomalhaut W. 33 22 43 34 29 51 35 38 46 36 49 19 a Arietis E. 40 43 6 39 12 6 37 40 56 36 9 37 Aldebaran E. 73 12 71 29 56 69 59 28 68 28 48 Jupiter E. 119 53 9 118 21 28 116 49 34 115 17 27 V a Aquilae W. 68 46 41 70 5 24 71 24 37 72 44 19 Fomalhaut W. •43 2 64 44 21 8 45 40 22 47 32 . a Pegasi W. 22 2 26 23 5 41 24 12 16 25 21 47 Aldebaran E. 60 52 33 59 20 42 57 48 40 56 16 26 Pollux E. 103 4 17 101 30 48 99 57 2 98 23 1 Jupiter E. 107 33 8 105 59 30 104 25 35 102 61 25 8 a Aquilae W. 79 29 20 80 51 31 82 14 4 83 36 58 Fomalhaut W. 53 53 45 55 18 35 56 44 4 58 10 9 a Pegasi W. 31 43 8 33 4 37 34 27 27 35 51 31 Aldebaran E. 48 32 26 46 59 22 45 26 43 52 31 Pollux E. 90 28 49 88 53 8 87 17 11 85 40 67 Jupiter E. 94 56 24 93 20 33 91 44 25 90 8 9 a Aquilae W. 90 35 56 92 30 93 25 18 94 50 17 Fomalhaut W. 65 29 66 58 18 68 28 2 69 58 13 a Pegasi w. 43 7 6 44 36 47 46 7 10 47 38 14 Aldebaran E. 36 4 17 34 30 42 32 57 14 31 23 59 Pollux E. 77 35 36 75 67 41 74 19 31 72 41 5 Jupiter Saturn E. 82 1 38 80 23 31 78 45 7 77 6 26 E. 111 55 20 110 17 33 108 29 28 107 1 7 10 Fomalhaut W. 77 35 3 79 7 29 80 40 14 82 13 17 a Pegasi W. 65 22 23 56 56 46 68 31 37 60 6 64 240 NOVEMBER, 1859. GEEENWICH MEATq- TIME. LUNAR DISTANCES. Day of the Star's Name and Midnight. XVh. XTIIP-. XXIh. Month. Position 1 Sun W. O 1 II 82 38 20 83 59 46 85 21 5 86° 42 20 Fomalhaut E. 35 29 50 34 23 10 33 18 7 32 14 49 a Pegasi E. 53 5 4 51 41 40 50 18 37 48 55 54 a Arietis E. 94 10 28 92 41 32 91 12 41 89 43 55 2 Sun W. 93 27 36 94 48 32 96 9 26 97 30 21 a Pegasi E. 42 8 3 40 47 47 39 28 2 38 8 51 a Arietis E. 82 21 3 80 52 37 79 24 11 77 55 46 3 Sun W. 104 15 5 105 36 8 106 57 15 108 18 25 a Pegasi E. 31 43 21 30 29 4 29 15 52 28 3 59 a Arietis E. 70 33 29 69 4 55 67 36 19 66 7 38 Aldebaran E. 102 32 17 101 4 48 99 37 15 98 9 36 4 Sun W. 115 5 38 116 27 24 117 49 17 119 11 18 a Aquilse W. 44 55 53 45 58 36 47 2 33 48 7 41 a Arietis E. 58 43 57 13 46 55 44 25 54 14 56 Aldebaran E. 90 49 53 89 21 35 87 53 9 86 24 34 5 Sun W. 126 3 39 127 26 36 128 49 45 130 13 4 a Ac(uil8e W. 53 48 45 54 69 41 56 11 27 67 23 59 a Arietis E. 46 45 28 45 15 7 43 44 37 42 13 66 Aldebaran E. 78 59 25 77 29 53 76 10 74 30 17 6 a Aquilse W. 63 37 9 64 53 42 66 10 49 67 28 29 Fomalhaut W. 38 1 24 39 14 54 40 29 43 41 45 44 a Arietis E. 34 38 8 33 6 29 31 34 43 30 2 48 Aldebaran E. 66 57 57 65 26 54 63 55 39 62 24 12 Jupiter E. 113 45 5 112 12 29 110 39 37 109 6 30 1 a Aquilae W. 74 4 28 75 25 4 76 46 5 78 7 31 Fomalhaut W. 48 21 36 49 43 29 61 6 10 52 29 36 a Pegasi W. 26 33 54 27 48 20 29 4 60 30 23 9 Aldebaran E. 54 44 1 63 11 25 51 38 38 50 5 42 Pollux E. 96 48 44 95 14 10 93 39 20 92 4 12 Jupiter E. 101 16 58 99 42 16 98 7 14 96 31 68 8 a Aquilse W. 85 11 86 23 42 87 47 31 §9 11 36 Fomalhaut W. 59 36 51 61 4 6 62 31 53 64 12 a Pegasi W. 37 16 43 38 42 57 40 10 8 41 38 13 Aldebaran E. 42 18 57 40 45 19 39 11 38 37 37 67 Pollux E. 84 4 26 82 27 38 80 50 34 79 13 13 Jupiter E. 88 31 18 86 64 19 85 17 3 83 39 29 9 a Aquilse W. 96 15 26 97 40 45 99 6 11 100 31 44 Fomalhaut W. 71 28 49 72 69 49 74 31 12 76 2 57 a Pegasi w. 49 9 56 60 42 13 52 15 5 63 48 29 Aldebaran E. 29 50 59 28 18 21 26 46 13 25 14 41 Pollux E. 71 2 23 69 23 25 67 44 11 66 4 42 Jupiter E. 75 27 29 73 48 16 72 8 45 70 28 69 Saturn E. 105 22 29 103 43 85 102 4 25 100 24 59 10 Fomalhaut W. 83 46 37 85 20 14 86 64 5 88 28 10 a Pegasi W. 61 42 35 63 18 40 64 65 8 66 31 57 NOVEMBER, 1859. 241 1 GEEENWICH MEAI^ TIME. LUNAR DISTANCES. Uayof Star's Name the and Noon. . mi-. Tit. IXi". Month. Position. 10 Pollux E. o / // 64 24 58 O / 11 62 45 O / II 61 4 47 O 1 II 69 24 20 Jupiter E. 68 48 58 67 8 40 65 28 8 63 47 20 Saturn E. 98 45 17 97 5 20 96 25 7 93 44 39 Ecgulus E. 101 17 3 99 36 43 97 56 7 96 16 17 11 Fomalhaut W. 90 2 29 91 37 93 11 41 94 46 32 a Pegasi W. 68 9 6 69 46 35 71 24 22 73 2 27 a Arietis W. 24 40 21 26 20 29 28 1 4 29 42 4 Pollux E. 50 58 49 49 17 6 47 36 13 46 53 9 Jupiter E. 65 19 46 53 37 33 51 66 9 50 12 32 Saturn E. 85 18 44 83 36 63 81 54 48 80 12 31 Eegulus E. 87 47 29 86 6 15 84 22 48 82 40 9 12 a Pegasi W. 81 16 39 82 56 9 84 35 61 86 16 43 a Arietis W. 38 11 57 39 64 46 41 37 46 43 21 1 Pollux E. 37 20 39 36 37 49 33 54 54 32 11 56 Jupiter E. 41 36 34 39 52 51 38 8 58 36 24 56 Saturn E. 71 38 13 69 54 49 68 11 15 66 27 33 Eegulus E. 74 4 72 20 14 70 36 19 68 52 14 Mars E. 116 29 29 114 50 54 113 12 10 111 33 16 13 a Pegasi W. 94 37 12 96 17 50 97 68 33 99 39 19 a Arietis W. 52 5 53 44 22 66 28 48 57 13 22 Aldebaran W. 21 54 12 23 27 38 26 2 37 26 38 52 Jupiter E. 27 42 47 26 58 1 24 13 9 22 28 13 Saturn E. 67 46 62 56 2 22 54 17 45 52 33 2 Eegulus E. 60 9 45 58 24 62 66 39 54 54 64 49 Mars E. 103 16 27 101 36 42 99 56 50 98 16 52 14 a Arietis W. 66 57 50 67 43 69 28 16 71 13 34 Aldebaran W. 34 53 21 36 34 7 38 15 19 39 56 54 Saturn E. 43 48 10 42 2 59 40 17 45 38 32 27 Eegulus E. 46 8 6 44 22 32 42 36 55 40 51 14 Mars E. 89 56 38 88 15 9 86 34 37 84 54 1 Sun E. 129 46 50 128 9 24 126 31 52 124 54 16 16 a Arietis W. 80 57 81 46 33 83 32 11 85 17 51 Aldebaran W. 48 29 15 50 12 23 51 55 41 53 39 8 Saturn E. 29 46 33 28 8 26 14 44 24 29 21 Eegulus E. 32 2 18 30 16 27 28 30 35 26 44 42 Mars E. 76 30 26 74 49 37 73 8 48 71 27 58 Spica Stjn E. 86 5 9 84 19 15 82 33 19 80 47 22 E. 116 45 14 116 7 17 113 29 17 111 51 15 16 a Arietis W. 94 6 20 95 52 3 97 37 45 99 23 27 Aldebaran W. 62 18 4 64 2 7 65 46 12 67 30 20 Pollux W. 19 38 30 21 21 44 23 5 23 24 49 21 Jupiter Mars W. 14 43 4 16 28 45 18 14 33 20 25 E. 63 3 48 61 23 1 69 42 14 58 1 30 Spica Sun E. 71 57 27 70 11 27 68 25 28 66 39 30 E. 103 40 47 102 2 40 100 24 32 98 46 25 11 Aldebaran W. 76 11 28 77 65 44 79 40 81 24 15 Pollux W. 33 32 8 36 17 3 37 2 1 38 47 2 16 242 NOVEMBER, 1859. GEEENWICH MEAT^ TIME. LUNAR DISTANCES. Day of Star's Name the and Midnight. XVt. XTIIP'. XXI'. Month. Position. 10 Pollux E. 67 43 39 O / // 56 2 45 O / // 64 21 39 52° 40 20 Jupiter E. 62 6 17 60 26 58 43 29 57 1 44 Saturn E. 92 3 56 90 22 69 88 41 48 87 23 Eegulus E. 94 34 11 92 52 51 91 11 18 89 29 30 11 FomaUiaut W. 96 21 32 97 66 40 99 31 54 101 7 13 a Pegasi W. 74 40 48 76 19 24 77 68 16 79 37 21 a Arietis W. 31 23 25 33 6 6 34 47 6 36 29 23 Pollux E. 44 10 56 42 28 33 40 46 3 39 3 24 Jupiter E. 48 29 43 46 46 42 46 3 30 43 20 8 Saturn E. 78 30 2 76 47 21 75 4 29 73 21 26 Regulus E. 80 57 18 79 14 16 77 31 1 76 47 36 12 a Pegasi W. 87 55 45 89 36 55 91 16 14 92 56 40 a Arietis W. 45 4 29 46 48 7 48 31 57 50 15 66 Pollux E. 30 28 55 28 45 64 27 2 55 25 20 1 Jupiter E. 34 40 46 32 66 27 31 12 1 29 27 27 Saturn E. 64 43 41 62 59 40 61 15 32 59 31 16 Regulus E. 67 8 65 23 38 63 39 8 61 54 30 Mars E. 109 54 11 108 14 57 106 35 36 104 66 5 13 a Pegasi W. 101 20 9 103 1 1 104 41 63 106 22 47 a Arietis W. 58 58 3 60 42 61 62 27 45 64 12 45 Aldebaran W. 28 16 11 29 64 26 31 33 25 33 13 6 Jupiter E. 20 43 12 18 58 9 17 13 5 15 28 Saturn E. 50 48 13 49 3 19 47 18 21 45 33 17 Regulus E. 53 9 38 51 24 22 49 39 1 47 63 36 Mars E. 96 36 47 94 66 37 93 16 22 . 91 36 2 14 a Arietis W. 72 58 57 74 44 22 76 29 51 78 15 23 Aldebaran W. 41 38 60 48 21 4 45 3 34 46 46 18 Saturn E. 36 47 8 35 1 46 33 16 22 31 30 68 Regulus E. 39 6 31 37 19 46 36 33 68 33 48 9 Mars E. 83 13 22 81 82 41 79 51 58 78 11 13 Sun E. 123 16 35 121 38 60 120 1 1 118 23 9 15 a Arietis W. 87 3 32 88 49 13 90 34 55 92 20 38 Aldebaran W. 66 22 43 67 6 25 58 50 13 60 34 6 Saturn E. 22 44 20 58 42 19 13 29 17 28 22 Regulus E. 24 58 51 23 13 21 27 11 19 41 25 Mars E. 69 47 7 68 6 17 66 25 27 64 44 37 Spica E. 79 1 24 77 15 25 75 29 26 73 43 26 Sun E. 110 13 12 108 35 7 106 67 1 105 18 54 16 a Arietis W. 101 9 7 102 64 47 104 40 25 106 26 2 Aldebaran W. 69 14 31 70 68 44 72 42 68 74 27 13 Pollux W. 26 33 34 28 18 30 2 36 31 47 19 Jupiter W. 21 46 20 23 32 16 25 18 14 27 4 12 Mars E. 56 20 48 54 40 8 52 69 31 51 18 66 Spica E. 64 63 33 63 7 36 61 21 41 69 35 47 Sun E. 97 8 18 96 30 12 93 62 6 92 14 1 . 11 Aldebaran W. 83 8 29 84 52 42 86 36 63 88 21 2 Pollux W. 40 32 5 42 17 10 44 2 16 45 47 22 NOVEMBER, 1859. 243 GREENWICH MEAN TIME. LUNAR DISTANCES. Day of the Star's Name and Noon. Illi. Vlk IXi-. Month. Position. o / // Q 1 II O / // O / // 17 Jupiter W. 28 50 11 30 36 9 32 22 8 34 8 5 Mars E. 49 38 26 47 57 59 46 17 37 44 37 19 Spica E. 57 49 65 56 4 4 54 18 15 52 32 29 Sun E. 90 35 68 88 67 56 87 19 56 86 41 67 18 Aldebaran W. 90 5 9 91 49 13 93 33 14 96 17 12 Pollux W. 47 32 29 49 17 34 61 2 39 52 47 42 Jupiter W. 42 57 30 44 43 18 46 29 3 48 14 45 Saturn W. 12 46 13 14 30 24 16 14 49 17 59 22 Mars E. 36 17 25 34 37 50 32 58 25 31 19 13 Spica E. 43 44 17 41 68 48 40 13 24 38 28 3 Sun E. 77 32 38 76 64 54 74 17 13 72 39 36 19 Pollux W. 61 32 27 63 17 15 66 2 66 46 41 Jupiter W. 57 2 31 68 47 53 60 33 12 62 18 26 Saturn w. 26 42 49 28 27 30 30 12 8 31 56 44 Regulus w. 24 31 19 26 16 20 28 1 19 29 46 14 Mars E. 23 7 14 21 30 2 19 63 25 18 17 32 Spica E. 29 42 36 27 57 49 26 13 10 24 28 40 Sun E. 64 32 28 62 55 16 61 18 9 59 41 7 20 Pollux W. 75 28 59 77 13 11 78 57 18 80 41 18 Jupiter W. 71 3 25 72 48 9 74 32 47 76 17 19 Saturn W. 40 38 46 42 22 67 44 7 2 45 51 1 Eegulus w. 38 29 49 40 14 17 41 58 39 43 42 55 Sun E. 51-37 30 60 1 7 48 24 52 46 48 46 21 PoUjix W. 89 19 34 91 2 50 92 45 58 94 28 57 Jupiter w. 84 58 14 86 42 2 88 25 43 90 9 14 Saturn w. 54 29 19 66 12 36 57 55 46 59 38 47 Regulus w. 52 22 32 54 6 6 56 49 30 57 32 47 Sun E. 38 50 32 37 16 26 36 40 31 34 5 50 26 Sun w. 23 17 41 24 42 59 26 8 14 27 33 24 Fomalhaut E. 65 30 64 4 12 62 38 53 61 14 2 a Pegasi E. 86 18 36 84 47 38 83 16 56 81 46 29 27 Sun W. 34 37 13 36 1 30 37 25 37 38 49 33 Fomalhaut E. 54 17 46 52 66 15 51 35 24 50 15 13 a Pegasi E. 74 18 25 72 49 39 71 21 11 69 53 a Arietis E. 116 31 15 114 68 53 113 26 44 111 54 47 28 Sun W. 45 46 37 47 9 31 48 32 15 49 54 49 Fomalhaut E. 43 45 48 42 30 33 41 16 19 40 3 10 a Pegasi a Arietis E. 62 36 32 61 10 9 69 44 5 58 18 21 E. 104 18 15 102 47 32 101 17 99 46 40 29 Sun W, 56 45 26 68 7 9 69 28 45 60 50 15 Fomalhaut E. 34 16 44 33 12 6 32 9 19 31 8 35 a Pegasi a Arietis E. 51 14 41 49 61 1 48 27 45 47 4 52 E. 92 17 23 90 47 58 89 18 42 87 49 32 30 'Sun W. 67 36 16 68 57 14 70 18 9 71 39 2 a Pegasi a Arietis E. 40 17 19 38 57 23 37 38 3 36 19 24 1 E. 80 25 21 78 66 45 77 28 14 75 59 47 2M NOVEMBER, 1859. 1 GEEENWICH MEAK TIME. 1 ! LUNAR DISTANCES. ' Day of Star's Name the and Midnight. XVK XVIII''. XXP>. Month. Position. 1 i o 1 II Q 1 II o / // o / // 17 Jupiter W. 35 54 1 37 39 56 39 25 49 41 11 41 Mars E. 42 5*7 7 41 17 1 39 37 1 37 57 9 Spica E. 50 46 45 49 1 4 47 15 25 45 29 49 Sun E. 84 4 1 82 26 6 80 48 14 79 10 24 18 Aldebaran W. 97 1 6 98 44 56 100 28 42 102 12 23 Pollux W. 54 32 44 56 17 43 58 2 41 59 47 35 Jupiter w. 50 24 51 46 1 53 31 34 65 17 4 j Saturn w. 19 44 21 28 41 23 13 24 24 68 7 Mars E. 29 40 13 28 1 29 26 23 2 24 44 56 Spica E. 86 42 47 34 57 36 33 12 30 31 27 80 Sun E. 71 2 2 69 24 33 67 47 7 66 9 45 19 Pollux W. 68 31 18 70 15 51 72 19 73 44 42 Jupiter W. 64 3 36 65 48 41 67 33 41 69 18 36 Saturn W. 33 41 16 35 25 45 37 10 10 38 54 31 Regulus W. 31 31 6 33 15 54 35 37 36 45 16 Mars E. 16 42 34 15 8 47 18 86 35 12 6 31 Spica E. 22 44 19 21 9 19 16 13 17 82 33 Sun E. 58 4 11 56 27 21 54 50 37 53 14 20 Pollux W. 82 25 11 ' 84 8 58 85 52 37 87 86 9 Jupiter w. 78 1 44 79 46 2 81 80 14 83 14 18 Saturn w. 47 34 54 49 18 41 51 2 21 52 45 58 Regulus w. 45 27 4 47 11 7 48 55 3 50 38 52 Sun E. 45 12 47 43 36 58 42 1 19 40 25 50 21 Pollux W. , 96 11 47 97 54 28 99 36 59 101 19 20 Jupiter W. 91 52 37 93 35 51 95 18 56 • 97 1 50 Saturn W. 61 21 40 63 4 23 64 46 57 66 29 22 Regulus W. 59 15 54 60 58 52 62 41 41 64 24 20 Sun E. 32 31 23 30 57 11 29 23 16 27 49 39 26 Sun w. 28 68 27 30 23 22 31 48 8 88 12 46 Fomalliaut E. 59 49 41 58 25 52 57 2 36 55 39 53 a Pegasi E. 80 16 19 78 46 25 77 16 48 76 47 28 2Y Sun W. 40 13 19 41 36 54 48 19 44 23 33 Fomalhaut E. 48 55 44 47 37 1 46 19 6 45 2 a Pegasi E. 68 25 6 66 57 30 65 80 18 64 3 13 a Arietis E. 110 23 4 108 51 34 107 20 16 106 49 9 28 Sun W. 51 17 14 52 39 29 54 1 36 55 23 35 Fomalhaut E. 38 51 10 37 40 25 36 31 2 35 23 5 a Pegasi E. 56 52 56 55 27 51 64 3 7 52 38 43 a Arietis E. 98 16 29 96 46 28 95 16 38 93 46 56 29 Sun W. 62 11 38 63 32 55 64 54 6 66 15 13 Fomalhaut E. 30 10 3 29 13 57 28 20 28 27 29 62 a Pegasi E. 45 42 25 44 20 25 42 58 53 41 37 60 a Arietis E. 86 20 30 84 51 34 83 22 44 81 54 30 Sun W. 72 59 52 74 20 41 75 41 28 77 2 15 a Pegasi E. 35 1 29 33 44 22 32 28 8 31 12 53 a Arietis E. 74 31 22 73 2 59 71 34 39 70 6 19 DECEMBER, 1859. 245 GKEENWIOH MEAN TIME. LUNAR DISTANCES. °r^ Star's Name aod Noon. HI''. VIi-. IX". Month. Position. 1 Sun W. o / // 18 23 2 o / // 79 43 49 / // 81 4 38 82 25 28 a Arietis E. 68 38 67 9 42 65 41 22 64 18 2 Aldebaran E. 100 42 42 99 15 26 97 48 8 96 20 48 2 Sun W. 89 10 25 90 31 38 91 52 56 93 14 21 a Aquilae W. 46 2 41 47 6 38 48 11 40 49 17 44 a Arietis E. 56 50 41 56 22 9 63 53 27 62 24 39 Aldebaran E. 89 3 20 87 36 87 86 7 49 84 39 54 3 Sun W. 100 3 23 101 25 39 102 48 6 104 10 44 a Aquilae W. 65 1 46 56 13 1 57 24 69 58 87 39 a Arietis E. 44 59 1 43 29 39 42 2 40 30 16 1 Aldebaran E. 11 18 36 75 49 65 74 21 5 72 62 6 4 Sun W. 111 6 51 112 30 52 113 66 2 115 19 28 a Aquilae W. 64 50 35 66 6 56 67 23 49 68 41 14 Fomalhaut W. 39 27 11 40 40 44 41 55 30 43 11 24 Aldebaran E. 65 24 29 63 54 24 62 24 6 60 53 36 Pollux E. 107 37 6 106 5 36 104 33 51 108 1 50 Jupiter E. 111 22 29 109 50 8 108 17 33 106 44 41 6 Sun W. 122 25 38 128 51 43 125 18 7 126 44 49 a Aquilae w. 75 15 43 76 36 77 56 43 79 17 52 Fomalhaut w. 49 45 39 51 7 8 62 29 23 63 62 23 a Pegasi w. 27 38 20 28 54 19 30 12 7 31 31 84 Aldebaran E. 53 18 51 46 15 60 14 18 48 42 9 Pollux E. 96 17 33 93 43 49 92 9 45 90 35 23 Jupiter E. 98 56 10 97 21 84 96 46 39 94 11 25 6 a Aquilae W. 86 9 29 87 32 54 88 56 40 90 20 45 Fomalhaut W. 60 57 41 62 24 38 68 62 11 65 20 18 a Pegasi w. 38 28 53 39 66 40 41 23 24 42 52 Aldebaran E. 40 68 47 39 25 41 87 52 30 36 19 16 Pollux E. 82 38 33 81 2 10 79 25 26 77 48 21 Jupiter E. 86 10 13 84 32 67 82 66 19 81 17 19 Saturn E. 117 41 33 116 4 56 114 27 57 112 50 37 n Fomalhaut W. 72 48 53 74 20 5 75 51 46 77 23 53 a Pegasi w. 60 26 42 51 69 44 53 88 28 65 7 39 Aldebaran E. 28 34 2 27 1 43 25 29 54 23 58 46 Pollux E. 69 37 35 67 58 22 66 18 47 64 38 51 Jupiter E. 73 1 53 71 21 42 69 41 9 68 13 Saturn E. 104 38 28 102 58 66 101 19 1 99 38 45 8 Fomalhaut W. 85 10 47 86 45 19 88 20 11 89 55 23 a Pegasi W. 63 7 16 64 44 43 66 22 39 68 1 1 Pollux E. 56 13 59 54 32 52 49 42 51 7 5 Jupiter E. 69 30 8 57 47 3 56 3 36 54 19 49 Saturn E. 91 11 64 89 29 28 87 46 40 86 8 33 Eegulus E. 93 4 21 91 21 53 89 39 4 87 55 65 9 a Pegasi a Arietis W. 76 19 7 77 69 52 79 40 68 81 22 23 W. 33 4 34 34 48 28 36 32 46 38 17 25 Pollux E. 42 29 36 40 46 18 39 47 37 16 3 m DECEMBER, 1859. 1 GEEENWICH : ME ATT TIME. / LUNAH ] DISTANCES. Day of Star's Name tfie and Midnight. XVi. XViiii.. XXP. Month. Position. 1 Sun W. o / // 83 46 20 / // 85 7 15 o / // 86 28 14 / // 87 49 17 a Arietis E. 62 44 40 61 16 17 59 47 60 58 19 20 Aldebaran E. 94 53 26 93 26 91 68 31 90 30 58 2 Sun W. 94 36 53 95 57 33 97 19 21 98 41 17 a Aquilae W. 50 24 47 51 32 45 52 41 36 53 61 17 a Arietis E. 50 55 46 49 26 47 47 57 41 46 28 28 Aldebaran E. 83 11 54 81 43 46 80 16 30 78 47 7 3 Sun W. 105 33 33 106 56 34 108 19 48 109 43 16 a Aquilae W. 59 51 61 4 59 . 62 19 35 63 34 48 a Arietis E. 39 22 37 30 19 36 7 34 29 46 Aldebaran E. 11 22 56 69 53 36 68 24 5 66 64 23 4 Sun W. 116 44 9 118 9 6 119 34 19 120 69 50 a Aquilae W. 69 59 10 71 17 36 72 36 30 73 55 53 Fomalhaut W. 44 28 21 45 46 18 47 5 12 48 26 Aldebaran E. 59 22 54 57 52 56 20 52 64 49 33 Pollux E. 101 29 33 99 56 59 98 24 8 96 51 Jupiter E. 105 11 33 103 38 9 102 4 27 100 30 27 5 Sun W. 128 11 49 129 39 8 131 6 47 132 34 44 a Aquilae W. 80 39 25 82 1 22 83 23 42 84 46 24 Fomalhaut W. 55 16 6 56 40 31 68 6 36 59 31 20 1 a Pegasi W. 32 52 31 34 14 49 36 38 22 37 3 6 Aldebaran E. 47 9 49 45 37 18 44 4 37 42 31 46 1 Pollux E. 89 41 87 25 39 85 60 18 84 14 36 1 Jupiter E. 92 35 51 90 59 58 89 23 43 87 47 9 6 a Aquilse W. 91 45 8 93 9 49 94 34 46 95 59 59 Fomalhaut W. 66 48 58 68 18 11 69 47 55 71 18 9 a Pegasi W. 44 21 26 45 51 40 47 22 39 48 54 20 Aldebaran E. 34 46 1 33 12 48 31 39 41 30 6 44 Pollux E. 76 10 54 74 33 6 72 54 67 71 16 27 Jupiter E. 79 38 58 78 15 76 21 10 74 41 43 Saturn E. 111 12 55 109 34 51 107 66 26 106 17 38 1 Fomalhaut W. 78 56 27 80 29 26 82 2 60 83 36 37 a Pegasi W. 56 42 30 58 17 54 59 63 60 61 30 18 Aldebaran E. 22 28 31 20 59 28 19 31 68 18 6 29 Pollux E. 62 58 34 61 17 56 69 36 67 57 55 38 Jupiter E. 66 18 56 64 37 16 62 66 15 61 12 52 Saturn E. 97 58 6 96 17 6 94 36 43 92 63 59 8 Fomalhaut W. 91 30 53 93 6 42 94 42 46 96 19 6 a Pegasi W. 69 39 50 71 19 4 72 58 42 74 38 43 Pollux E. 49 24 10 47 40 56 45 57 26 44 13 39 Jupiter E. 52 35 42 50 51 15 49 6 28 47 21 22 Saturn E. 84 20 4 82 36 16 80 52 8 79 7 41 Kegulus E. 86 12 26 84 28 37 82 44 28 81 1 ! 9 a Pegasi W. 83 4 6 84 46 7 86 28 23 88 10 56 ! a Arietis W. 40 2 26 41 47 47 43 33 26 45 19 24 ' Pollux E. 35 31 7 33 46 2 32 47 30 16 27 DECEMBER, 1859. 247 GEEENWIOH MEAT^ TIME. i LUNAR DISTANCES. Day of Star's Name the and Noon. III''. Yl\ 1X\ Month. Position. o / // / // O f 11 O / // 9 Jupiter E. 45 35 58 43 50 16 42 4 15 40 17 58 Saturn E. 11 22 56 75 37 52 73 52 30 72 6 52 Eegulus E. 19 15 14 77 30 10 75 44 47 73 59 8 10 a Pegasi W. 89 53 42 91 36 41 93 19 53 95 3 15 a Arietis W. 41 5 39 48 52 10 ,50 38 56 52 25 56 Aldebaran w. 11 38 11 19 7 19 20 39 25 22 13 S3 Jupiter E. 31 22 39 29 34 53 27 46 55 25 58 46 Saturn E. 63 14 41 61 27 32 59 40 11 57 52 37 Eegulus E. 65 6 55 63 19 46 61 32 24 59 44 50 11 a Arietis W. 61 23 56 63 12 1 65 15 66 48 36 Aldebaran W. 30 29 3T 32 11 52 33 54 49 36 38 23 Saturn E. 48 52 18 47 3 49 45 15 14 43 26 33 Regulus E. 50 44 25 48 55 55 47 7 19 45 18 36 Mars E. 111 23 55 109 40 40 107 57 18 106 13 49 12 a Arietis W. 75 51 35 77 40 21 79 29 7 81 17 64 Aldebaran W. 44 22 42 46 8 30 47 54 30 49 40 42 Saturn E. 34 22 IV 32 33 22 30 44 28 28 55 36 Eegulus E. 36 14 4 34 25 4 32 36 4 30 47 4 Spica E. 90 16 53 88 27 50 86 38 46 84 49 43 Mars E. 97 35 10 95 51 18 94 7 24 92 23 30 n a Arietis W. 90 21 33 92 10 8 93 58 39 95 47 6 Aldebaran W. 58 33 18 60 20 62 6 43 63 63 24 Spica E. 75 44 45 73 65 54 72 7 8 70 18 27 Mars E. 83 44 19 82 38 80 17 2 78 33 30 Sun E. 134 49 46 133 8 56 131 28 8 129 47 24 14 Aldebaran W. 72 46 13 74 32 33 76 18 47 78 4 54 Pollux W. 30 10 41 31 57 24 33 44 8 35 30 50 Jupiter W. 27 17 28 49 2 30 37 40 32 26 10 Spica E. 61 16 37 59 28 37 57 40 46 66 53 5 Mars E. 69 57 35 68 14 47 66 32 9 64 49 40 ' Sun E. 121 24 55 119 44 44 118 4 40 116 24 44 15 Aldebaran W. 86 53 26 88 38 40 90 23 44 92 8 37 Pollux W. 44 23 13 46 9 22 47 55 24 49 41 16 Jupiter w. 41 26 31 43 14 7 45 1 32 46 48 46 Spica E. 46 57 5 45 10 25 43 23 57 41 37 41 Mars E. 56 20 54 38 39 62 57 31 51 16 37 Sun E. 108 7 18 106 28 18 104 49 28 103 10 49 16 Pollux W. 58 28 18 60 13 12 61 57 54 63 42 26 Jupiter w. 65 42 14 57 28 22 59 14 18 61 2 Saturn w. 23 26 30 25 11 28 26 56 18 28 40 69 ; Regulus w. 21 26 34 23 11 35 24 56 27 26 41 10 1 Mars E. 42 55 39 41 16 14 39 37 6 37 68 16 Sun E. 95 17 93 22 45 91 45 24 90 8 16 It Pollux W. 72 22 17 74 5 41 75 48 53 77 31 64 Jupiter Saturn w. 69 45 46 71 30 19 73 14 40 74 58 49 w. 37 22 1 39 5 42 40 49 13 42 32 32 248 DECEMBER, 1859. GREENWICH MEAl^ TTIVTE. LDNAE DISTANCES. Day of the Month. Star's Name and Position. Midnight. XVk. XVIIIt. XXP. 9 Jupiter E. 38 31 25 36° 44 35 o / // 34 57 30 O / // 33 10 11 Saturn E. 70 20 66 68 34 45 66 48 18 65 1 37 Eegulus E. 72 13 12 70 27 68 40 33 66 53 51 10 a Pegasi W. 96 46 47 98 30 28 100 14 15 101 58 8 a Arietis W. 54 13 9 56 34 57 48 11 59 35 59 Aldebarau W. 23 50 18 26 28 20 27 7 42 28 48 11 Jupiter E. 24 10 26 22 21 58 20 33 21 18 44 38 Saturn E. 56 4 63 54 16 68 52 28 53 50 40 39 Eegulus E. 57 67 4 56 9 8 54 21 3 52 32 48 11 a Arietis W. 68 37 3 70 25 35 72 14 11 74 2 52 Aldebaran W. 37 22 28 39 6 59 40 51 54 42 37 9 Saturn E. 41 37 48 39 48 68 38 6 36 11 12 Regulus E. 43 29 48 41 40 56 39 62 1 38 3 4 Mars E. 104 30 14 102 46 34 101 2 49 99 19 1 12 a Arietis W. 83 6 42 84 55 28 86 44 12 88 32 54 Aldebaran W. 51 27 2 53 13 29 55 1 56 46 38 Saturn E. 27 6 47 25 18 3 23 29 26 21 40 55 Regulus E. 28 68 7 27 9 12 26 20 22 23 31 36 Spica E. 83 39 81 11 37 79 22 37 77 33 39 Mars E. 90 39 36 88 55 43 87 11 52 85 28 4 13 a Arietis W. 97 35 26 99 23 41 101 11 48 102 59 49 Aldebaran W. 65 40 4 67 26 42 69 13 17 70 59 48 Spica E. 68 29 62 66 41 22 64 63 63 4 45 Mars E. 76 60 5 75 6 46 73 23 35 71 40 30 Sun E. 128 6 43 126 26 8 124 45 37 123 5 13 14 Aldebaran W. 79 50 54 81 36 45 83 22 28 85 8 2 Pollux W. 37 17 29 39 4 3 40 50 33 42 36 56 Jupiter w. 34 14 32 36 2 46 37 60 51 39 38 46 Spica E. 54 5 32 52 18 9 50 30 57 48 43 55 Mars E. 63 7 22 61 25 14 59 43 18 58 1 33 Sun E. 114 44 57 113 5 18 111 25 49 109 46 29 15 Aldebaran W. 93 53 19 95 37 49 97 22 8 99 6 15 Pollux W. 51 27 53 12 35 54 57 59 56 43 14 Jupiter W. 48 36 50 50 22 43 62 9 25 53 55 55 Spica E. 39 51 38 38 5 46 36 20 8 34 34 43 Mars E. 49 35 56 47 55 29 46 16 17 44 35 20 Sun E. 101 32 20 99 54 2 98 15 56 96 38 1 16 Pollux W. 65 26 47 67 10 57 68 54 55 70 38 42 Jupiter W. 62 45 34 64 30 55 66 16 4 68 1 1 Saturn W. 30 25 31 32 9 53 33 54 6 35 38 9 Regulus W. 28 25 43 30 10 5 31 54 17 33 38 17 Mars E. 36 19 44 34 41 32 33 3 41 31 26 11 Sun E. 88 31 19 86 64 34 85 18 1 83 41 40 17 Pollux "W. 79 14 42 80 57 19 82 39 44 84 21 58 Jupiter W. 76 42 46 78 26 32 80 10 6 81 53 28 ; Saturn w. 44 15 40 45 58 37 47 41 23 49 23 58 DECEMBER, 1859. 249 GEEENWICH MEAN TIME. r LUNAR DISTANCES. Day of the Star's Name aud Noon. iiii-. Yl\ IX'. Month. Position. 17 Regulus W. 35 22 7 O 1 11 87 5 46 / // 38 49 13 o / tl 40 32 28 Mars E. 29 49 6 28 12 26 26 36 14 25 33 Sun E. 82 5 31 80 29 34 78 53 60 77 18 17 18 Pollux W. 86 3 69 87 45 49 89 27 28 91 8 64 Jupiter W. 83 36 38 85 19 36 87 2 22 88 44 67 Saturn w. 51 6 21 62 48 33 54 30 33 56 12 22 Regulus w. 49 5 52 50 47 59 62 29 53 54 11 36 Sun E. 69 23 35 67 49 16 66 15 6 64 41 10 19 Polkx W. 99 33 10 lOi 13 26 102 53 31 104 33 24 Jupiter w. 97 14 58 98 56 24 100 37 39 102 18 42 Saturn w. 64 38 39 66 19 21 67 59 52 69 40 11 Regulus w. 62 37 19 64 17 53 65 58 16 67 38 28 Sun E. 56 54 27 55 21 42 63 49 9 52 16 48 20 Jupiter W. 110 41 9 112 21 6 114 50 116 40 24 Saturn W. 77 59 1 79 38 14 81 17 16 82 56 7 Regulus w. 75 56 38 77 35 42 79 14 35 80 53 18 Spica w. 22 68 23 39 19 25 17 35 26 55 44 Sun E. 44 38 2 . 43 6 53 41 35 56 40 5 11 21 Saturn W. 91 7 37 92 46 22 94 22 65 96 18 Regulus w. 89 4 2 90 41 37 92 19 2 93 66 15 Spica w. 35 4 30 36 41 48 38 18 67 39 56 56 Sun E. 32 34 38 31 5 11 29 35 67 28 6 68 26 Sun W. 25 22 26 26 44 35 28 6 38 29 28 36 a Pegasi E. 54 53 23 53 28 19 62 3 36 50 39 12 a Arietis E. 96 12 17 94 42 8 93 12 7 91 42 14 27 Sun W. 36 17 9 37 38 36 38 59 58 40 21 15 a Pegasi E. 43 43 19 42 21 30 41 13 39 39 29 a Arietis E. 84 14 46 82 45 38 81 16 37 79 47 41 28 Sun W. 47 6 40 48 27 36 49 48 27 51 9 17 a Pegasi E. 33 6 3 31 49 53 30 34 47 29 20 51 a Arietis E. 72 24 23 70 55 57 69 27 34 67 59 15 Aldebaran E. 104 29 24 103 2 6 101 34 60 100 7 36 29 Sun W. 67 53 7 69 13 53 60 34 39 61 55 27 a Aquilse W. 43 14 11 44 14 51 46 16 45 46 19 48 a Arietis E. 60 38 12 59 10 3 67 41 64 56 13 45 Aldebaran E. 92 61 41 91 24 31 89 67 21 88 30 9 30 Sun W. 68 40 4 70 1 11 71 22 23 72 43 41 a Aquilse W. 61 49 54 62 58 30 54 7 52 56 17 56 a Arietis E. 48 52 42 47 24 23 45 56 44 27 34 Aldebaran E. 81 13 41 79 46 14 78 18 44 76 51 9 31 Sun W. 79 31 66 80 53 59 82 16 12 83 38 36 a Aquilse a Arietis W. 61 17 54 62 31 38 63 45 53 65 38 E. 37 4 16 35 35 21 34 6 20 32 37 14 Aldebaran E. 69 31 52 68 3 41 66 35 23 66 6 67 Jupiter E. 112 43 4 111 12 19 109 41 26 108 10 21 250 DECEMBER, 1859. GEEENWICH : MEAN TIME. LUNAR DISTANCES. Day of the Month. Star's Name and Position. Midnight. XVk. XTIIIi. XXTi". 17 Regulus W. o / // 42 15 32 o / // 43 58 25 o / // 45 41 6 O / // 47 23 35 Mars E. 23 25 27 21 51 1 20 17 21 18 44 36 Sun E. 75 42 56 74 7 48 72 32 52 70 58 7 18 Pollux W. 92 50 9 94 31 12 96 12 3 97 52 42 Jupiter W. 90 27 20 92 9 32 93 51 32 95 33 21 Saturn W. 57 54 59 35 27 61 16 42 62 57 46 Regulus W. 55 53 8 57 34 28 69 15 37 60 56 34 Sun E. 63 7 26 61 33 53 60 33 58 27 24 19 Pollux W. 106 13 5 107 52 34 109 31 52 111 10 58 Jupiter W. 103 59 34 105 40 15 107 20 44 • 109 1 2 Saturn W. 71 20 19 73 16 74 40 2 76 19 37 Eegulus W. 69 18 28 70 58 17 72 37 55 74 17 22 Sun E. 50 44 39 49 12 41 47 40 56 46 9 23 20 Jupiter W. 117 19 47 118 58 59 120 37 59 122 16 49 Saturn W. 84 34 47 86 13 16 87 51 34 89 29 41 Regulus W. 82 31 49 84 10 9 85 48 17 87 26 15 Spica W. 28 33 45 30 11 39 31 49 25 33 27 2 Sun E. 38 34 39 . 37 4 19 35 34 12 34 4 18 21 Saturn W. 97 37 30 99 14 31 100 51 21 102 27 59 Regulus W. 95 33 17 97 10 8 98 46 48 100 23 17 Spica W. 41 32 45 43 9 24 44 45 53 46 22 11 Sun E. 26 38 14 25 9 46 23 41 34 22 13 39 26 Sun W. 30 50 29 32 12 17 33 34 34 55 37 a Pegasi E. 49 15 12 47 51 35 46 28 23 45 5 37 1 a Arietis E. 90 12 29 88 42 52 87 13 23 85 44 1 27 Sun W. 41 42 28 43 3 37 44 24 41 45 45 42 o Pegasi E. 38 19 21 36 59 53 35 41 8 34 23 9 a Arietis E. 78 18 51 76 50 7 75 21 27 73 52 53 28 Sun W. 52 30 5 53 50 51 55 11 37 56 32 22 a Pf gasi E. 28 8 15 26 57 8 25 47 42 24 40 11 a Arietis E. 66 30 58 65 2 44 63 34 32 62 6 21 Aldebaran E. 98 40 23 97 13 12 95 46 1 94 18 51 29 Sun W. 63 16 17 64 37 9 65 58 4 67 19 2 a Aquilse W. 47 23 55 48 29 3 49 35 7 50 42 5 a Arietis E. 54 45 36 53 17 25 51 49 13 50 20 59 Aldebaran E. 87 2 56 85 35 41 84 8 24 82 41 4 30 Sun W. 74 5 5 75 26 36 76 48 14 78 10 a Aquilffi W. 56 28 41 57 40 6 58 52 7 60 4 43 a Arietis E. 42 59 4 41 30 29 40 1 50 38 33 5 Aldebaran E. 75 23 29 73 55 44 72 27 53 70 59 55 31 Sun W. 85 1 11 86 23 57 87 46 56 89 10 7 a Aquilse W. 66 15 53 67 31 36 68 47 47 70 4 25 a Arietis E. 31 8 3 29 38 46 28 9 25 26 39 59 Aldebaran E. 63 38 23 62 9 41 60 40 50 59 11 50 Jupiter E. 106 39 7 105 7 41 103 36 2 102 4 9 MARS. 251 JANUARY, L859. FEBRUARY, 1S59. MEAN TIME. M-RAN TIME. Day of the GEOCENTRIC. Day of the Month. GEOCBNTEIO. Apparent Declination. Meridian Appwreml Declination. Meridian Month. Nocm. Passage. Noon. Passage. 1 2 3 Q t II S. 9 44 18 9 26 25 9 8 28 h. m. 3 54-1 3 53-0 3 51-9 1 2 3 / // S. 11 6 N. 7 33 26 11 h. m. 3 17-7 3 16-4 3 15-2 4 5 6 8 50 27 8 32 23 8 14 14 3 50-8 3 49-6 3 48-5 4 5 6 44 48 1 3 24 1 21 58 3 14-0 3 12-7 3 11-5 7 8 9 7 56 2 7 37 46 7 19 28 3 47-4 3 46-2 3 45-1 7 8 9 1 40 30 1 58 59 2 17 27 3 10-3 3 9-0 3 7-8 10 11 12 7 1 6 6 42 42 6 24 15 3 43-9 3 42-8 3 41-6 10 11 12 2 35 52 2 54 15 3 12 35 3 6-6 3 5-3 3 4-1 13 14 15 6 5 46 5 47 15 5 28 42 3 40-4 3 39-3 3 38-1 13 14 15 3 30 52 3 49 6 4 7 16 3 2-9 3 1-7 ' 3 0-4 j 16 17 18 6 10 7 4 51 31 4 32 53 3 36-9 3 36-7 3 34-5 16 17 18 4 25 24 4 43 27 5 1 28 2 59-2 , 2 57-9 2 56-7 19 20 21 4 14 14 3 55 34 3 36 53 3 33-4 3 32-2 3 31-0 19 20 21 5 19 24 5 37 17 5 55 5 2 55-5 2 54-2 2 53-0 22 23 24 3 18 11 2 69 29 2 40 46 3 29-8 3 28-6 3 27-4 22 23 24 6 12 50 6 30 30 6 48 6 2 51-8 2 50-5 2 49-3 25 26 27 28 29 30 31 2 22 3 2 3 20 1 44 36 1 25 53 1 7 10 48 28 29 47 3 26-2 3 24-9 3 23-7 3 22-5 3 21-3 3 20-1 3 18-9 25 26 27 28 29 7 5 37 7 23 3 7 40 25 7 57 42 N. 8 14 53 2 48-1 2 46-8 2 45-6 2 44-4 2 43-1 32 S. 11 6 3 17-7 252 MARS. MARCS, 1§59. APRII., 1859. MEAN TIME. MEAN TIME. SEOCENTKIC. GEOOENTEIO. Day of the Day of Apparent Declination. Meridian the Apparmt Declination. Meridian Month. Man. Passage. Month. Noon. Passage. O 1 11 h. m. ; // h. m. 1 N. 8 14 53 2 43-1 1 N.16 13 7 2 6-3 2 8 31 69 2 41-9 2 16 26 25 2 5-1 3 8 49 2 40-7 3 16 39 34 2 4-0 4 9 5 56 2 39-5 4 16 52 34 2 2-9 5 9 22 45 2 38'3 5 17 5 24 2 1-8 6 9 89 29 2 37-1 6 17 18 4 2 0-6 7 9 56 7 2 85-8 7 17 30 35 59-5 8 10 12 39 2 34-6 8 17 42 56 68-4 9 10 29 4 2 38-4 9 17 55 8 67-3 10 10 45 23 2 32-2 10 18 7 9 56-2 11 11 1 86 2 31-0 11 18 19 55-0 12 11 17 41 2 29-8 12 18 30 41 63-9 13 11 33 40 2 28-6 13 18 42 12 52-8 14 11 49 82 2 27-4 14 18 53 32 51-7 15 12 5 17 2 26-2 15 19 4 42 50-7 16 12 20 55 2 25-0 16 19 15 41 49-6 11 12 36 25 2 23-8 17 19 26 30 48-5 18 12 61 48 2 22-6 18 19 37 8 47-4 19 13 7 4 2 21-4 19 19 47 36 46-3 20 13 22 11 2 20-3 20 19 67 52 46-2 21 13 37 11 2 19-1 21 20 7 58 44-1 22 13 62 4 2 17-9 22 20 17 52 43-1 23 14 6 48 2 16-7 23 20 27 36 42-0 24 14 21 24 2 15-5 24 20 37 8 40-9 25 14 36 51 o 14-4 25 20 46 29 39-9 26 14 50 11 2 18-2 26 20 56 39 38-8 27 15 4 22 2 12-0 27 21 4 88 37-8 , 28 15 18 25 2 10-9 28 21 13 25 86-7 29 15 32 18 2 9-7 29 21 22 1 35-6 30 16 46 4 2 8-6 30 21 30 26 34-6 31 15 59 40 2 7-4 31 N.21 38 38 1 33-5 32 N.16 13 7 2 6-3 MARS. 253 inAY, 1§59. JVIYE, 1859. MEAN TIME. MEAN TIME. Day of the Month. GEOCENTRIC. Declination. Noon. Meridian Day of the Month. 9E0CENTIU0. Declination. Noon. Meridian 1 2 3 4 6 6 Y 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 N.21 38 38 21 46 38 21 54 28 22 2 5 22 9 30 22 16 44 22 23 45 22 30 35 22 37 12 22 43 38 22 49 51 22 55 62 23 1 40 23 7 17 23 12 41 23 17 53 23 22 52 23 27 40 23 32 14 23 36 37 23 40 47 23 44 45 23 48 30 23 52 2 23 55 23 23 58 30 24 1 26 24 24 24 4 9 6 39 8 57 24 11 N.24 12 55 h. m. 1 33-5 1 32-5 1 31-5 30- 29- 28- 27' 26' 25' 1 24-2 1 23-2 1 22-2 1 21-2 1 20-2 1 19-2 18 17 16 15 14 13-0 1 12-0 1 11-0 1 10-0 9-0 8-0 7-0 6-0 4-9 1-9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 N.24 12 55 24 14 36 24 16 4 24 17 19 24 18 22 24 19 13 24 19 51 24 20 18 24 20 31 24 20 33 24 20 22 24 19 59 24 19 24 24 18 37 24 17 37 24 16 26 24 15 2 24 13 27 24 11 40 24 9 41 24 7 30 24 5 7 24 2 32 23 59 46 23 56 48 23 53 39 23 60 18 23 46 46 23 43 3 23 39 N.23 35 8 h. m. 1 1-9 1 0-9 69-9 68-8 57-8 56-8 55-8 54-8 53-7 52-7 51-7 50-6 49-6 48-5 47-5 46-4 46-4 44-3 43-3 42-2 41-2 40-1 39-0 37-9 36-8 36-8 34-7 33-6 32' 31' 30-3 254 MARS. JUI,Y, 1859. AUGUST, 1859. MEAN TIME. MEAN TIME. GEOCENTRIC. GEOOENTEIC. Day of the Month. Day of Apparent Declination. Meridian the Month. Apparent Declination. Meridian NiMn. Passage. Soon. Passage. o / // h. m. t II h. m. 1 N.23 35 2 30-3 1 N.20 2 51 23 52-0 2 23 30 45 29-2 2 19 53 31 23 60-7 3 23 26 16 28-1 3 19 44 3 23 49-4 4 23 21 37 27-0 4 19 34 27 23 48-1 5 23 16 47 25-8 5 19 24 43 23 46-8 6 23 11 46 24-7 6 19 14 51 23 45-4 1 23 6 35 23-6 7 19 4 51 23 44-1 8 23 1 13 22-4 8 18 54 43 23 42-8 9 22 65 40 21-3 9 18 44 28 23 41-5 10 22 49 57 20-1 10 18 34 6 23 40-1 11 22 44 3 19-0 11 18 23 36 23 39-8 12 22 37 59 17-8 12 18 12 58 23 37-4 13 22 31 45 16-6 13 18 2 14 23 36-0 14 22 25 21 15-4 14 17 51 22 23 34-6 15 22 18 47 14-3 15 17 40 23 23 33-3 16 22 12 2 13-1 16 17 29 18 23 31-9 17 22 5 8 11-9 17 17 18 5 23 30-5 18 21 58 4 10-7 18 17 6 46 23 29-1 19 21 50 50 9-5 19 16 55 20 23 27-7 20 21 43 27 8-3 20 16 43 47 23 26-3 21 21 35 54 7-1 21 16 32 8 23 24-9 22 21 28 12 5-8 22 16 20 23 23 23-5 23 21 20 20 4-6 23 16 8 31 23 22-0 24 21 12 20 3-4 24 15 56 34 23 20-6 25 21 4 9 2-1 25 15 44 30 23 19-2 26 20 55 50 \ .? 0-9 1 69-6 f 26 15 32 20 23 17-7 27 20 47 22 23 58-4 27 15 20 4 23 16'3 28 20 38 45 23 57-1 28 15 7 43 23 14-9 29 20 29 59 23 65-8 29 14 55 16 23 18-4 30 20 21 5 23 54-6 30 14 42 44 23 11-9 31 20 12 2 23 53-3 31 14 30 6 23 10-5 32 N.20 2 51 23 52-0 32 N.14 17 23 23 9-0 MARS. 255 -^ SEPTEinBER, 1S59. OCTOBER, 1S59 MEAN TTlVnil MEAN TIME. GBOCENTEIC. GEOCENTRIC. Day of the Day of the Month. Apparent Declination. Meridian Apparent Declination. Meridian Month. Noon. Passage. • JSfoon. Passage. O 1 II h. m. / // h. m. 1 ]Sr.l4 17 23 23 9-0 1 N. 7 22 58 22 22-8 2 14 4 35 23 7-5 2 7 8 19 22 21-2 3 13 51 42 23 6-0 3 6 53 38 22 19-6 4 13 38 44 23 4-6 4 6 38 66 22 18-0 5 13 25 41 23 3-1 5 6 24 11 22 16-4 6 13 12 33 23 1-6 6 6 9 24 22 14-8 1 12 59 20 23 0-1 7 6 64 35 22 13-2 8 12 46 3 22 68-6 8 5 39 45 22 11-6 9 12 32 42 22 57-0 9 5 24 53 22 10-0 10 12 19 16 22 55-5 10 5 9 59 22 8-4 11 12 5 46 22 54-0 11 4 55 4 22 6-8 12 11 52 11 22 62-5 12 4 40 7 22 6-2 13 11 38 33 22 60-9 13 4 25 10 22 3-5 14 11 24 50 22 49-4 14 4 10 11 22 1-9 15 11 11 3 22 47-9 15 3 55 10 22 0-3 16 10 57 13 22 46-4 16 3 49 9 21 58-7 17 10 43 19 22 44-8 17 3 25 7 21 57-0 18 10 29 21 22 43-3 18 3 10 4 21 65-4 19 10 16 19 22 41-7 19 2 55 21 53-8 20 10 1 14 22 40-1 20 2 39 56 21 52-2 21 9 47 6 22 38-6 21 2 24 50 21 50-6 22 9 32 54 22 37-0 22 2 9 45 21 48-9 23 9 18 39 22 35-5 23 1 54 39 21 47-3 24 9 4 21 22 33-9 24 i 39 33 21 46-7 25 8 50 22 32-3 25 1 24 26 21 44-0 26 8 35 36 22 30-8 26 1 9 20 21 42-4 27 8 21 10 22 29-2 27 64 13 21 40-8 28 8 6 41 22 27-6 28 39 7 21 39-1 29 7 62 9 22 26-0 29 24 1 21 37-5 30 7 37 35 22 24-4 30 N. 8 55 21 35-9 31 8. 6 9 21 34-2 31 N. 7 22 58 22 22-8 32 S, 21 14 21 32-6 256 MARS. NOVEMBER, 1859. DECEMBER, 1859. MEAN TIME MEAN TIME. GEOOBNTEIC. GBOCENTEIC. Day of the Day of the Month. Apparent Declination. Meridian Appa/rent Declination. Meridian Month. I^oon. Passage. Noon. Passage. o / // li. m. o / // h. m. 1 S. 21 14 21 32 6 1 S. 7 42 33 20 43-9 2 36 18 21 31 2 7 56 38 20 42-3 3 51 21 21 29 3 3 8 10 40 20 40-8 4 1 6 24 21 27 7 4 8 24 39 20 39-2 5 1 21 26 21 26 1 6 8 38 33 20 37-6 6 1 36 27 21 24 4 6 8 52 25 20 36-0 1 1 51 27 21 22 8 7 9 6 12 20 34-4 8 2 6 25 21 21 2 8 9 19 56 20 32-8 9 2 21 23 21 19 5 9 9 33 35 20 31-2 10 2 36 19 21 17 9 10 9 47 11 20 29-7 11 2 51 15 21 16 3 11 10 8 43 20 28-1 12 3 6 8 21 14 6 12 10 14 11 20 26-5 13 3 21 21 13 13 10 27 34 20 24-9 14 3 35 51 21 11 4 14 10 40 54 20 23-4 15 3 50 40 21 9 8 15 10 54 8 20 21-8 16 4 5 27 21 8 2 16 11 7 19 20 20-2 IV 4 20 12 21 6 5 17 11 20 24 20 18-7 18 4 34 66 21 4 9 18 11 33 26 20 17-1 19 4 49 37 21 3 3 19 11 46 22 20 15-5 20 5 4 16 21 1 7 20 11 59 13 20 14-0 21 5 18 53 21 21 12 12 20 12-5 22 5 S3 27 20 58 4 22 12 24 41 20 10-9 23 5 47 59 20 58 8 23 12 37 17 20 9-4 24 6 2 28 20 55 2 24 12 49 48 20 7-8 25 6 16 55 20 53 6 25 13 2 13 20 6-3 26 6 31 19 20 52 26 13 14 34 20 4-8 2V 6 45 40 20 50 4 27 13 26 48 20 3-2 28 6 59 58 20 48 8 28 13 38 57 20 1-7 29 7 14 13 20 47 2 29 13 51 20 0-2 30 7 28 25 20 45-6 30 14 2 58 19 58-6 31 14 14 49 19 57-1 31 8. 7 42 33 20 43-9 32 S. 14 26 35 19 55-6 JUPITER. 257 lATlVARV, 1S59 FEBRUARY, 1859. MEAN TTIVTR, MEAN TIME. GBOOENTmC. GEOOBNTEIO. Day of the Month. Day of the Apparent Decimation. • Meridian Appm-ent Declination. Meridian Mon. Passage. Month. Noon. Passage. O 1 41 h. m. o / ;* h. m. 1 N.21 53 37 10 4-6 1 N.21 44 48 7 54-4 2 21 63 2 10 0-2 2 21 44 55 7 60-4 3 21 52 28 9 65-8 3 21 45 3 7 46-6 4 21 51 54 9 51-5 4 21 45 13 7 '42-5 5 21 51 22 9 47-1 5 21 45 24 ■7 38-6 6 21 50 60 9 42-8 6 ,21 45 38 7 34-7 1 21 50 20 9 88-4 7 21 45 52 - 7 30-8 8 21 49 51 9 34-1 8 21 46 9 7 26-9 9 21 49 22 9 29-8 9 21 46 27 7 23-0 10 21 48 55 9 25-5 10 21 46 46 7 19-2 11 - 21 48 29 9 21-2 11 21 ,47 8 7 15-3 12 21 48 4 9 17-0 12 21 47 30 7 11-5 13 21 47 41 9 12-7 13 21 47 55 7 7-6 14 21 47 19 9 8-5 14 21 48 20 7 3-8 15 » 21 46 58 9 4-3 15 21 48 48 7 0-0 16 21 46 38 9 0-0 16 21 49 17 6 .66-2 17 21 46 20 8 55-8 17 21 49 47 6 52-4 18 21 46 3 8 61-6 18 21 50 19 6 48-7 19 21 45 48 8 47-5 19 21 50 52 6 44-9 20 21 45 34 8 43-3 20 21 51 27 6 41-2 21 21 45 22 8 39-1 21 21 62 3 6 37-5 22 21 45 11 8 36-0 22 21 62 40 6 33-8 23 21 45 1 8 30-9 23 21 63 19 6 30-1 24 21 44 53 8 26-8 24 21 53 59 6 26-6 25 21 44 47 8 22-7 25 21 54 40 6 : 22-8 j 26 21 44 42 8 18-6 26 ' 21 65 23 6 19-2 1 27 21 44 39 8 14-5 27 28 21 66 7 21 56 62 6 , 15'6 1 6 11-9 28 21 44 38 8 10-6 29 21 44 38 8 6-4 29 N.21 57 38 6 8'3 30 21 44 40 8 2-4 31 21 44 43 7 58-4 32 N.21 44 48 7 54-4 17 258 JUPITER. MARCH, 1§59. APRIIi, 1859. MEAN TIME. MEAN TIME. GEOOENTEIC. GEOOENTKIO. Day of the Day of the Month. Apparent Declination. Meridian Afparent Declination. • Meridian Month. Noon. Passage; Noon. Passage. O 1 II h. m. O 1 II h. m. 1 ]Sr.21 67 38 6 8-3 1 N.22 28 14 4 22-0 2 21 58 25 6 4-7 2 22 29 20 4 18-8 3 21 . 59 14 6 1-1 3 22 30 26 ■ 4 15-6 4 22 4 5 57-6 4 22 31 32 4 12-3 5 22 54 5 64-0 6 22 32 38 4 9-0 6 22 1 46 6 50-5 6 22 33 44 4 5-8 7 22 2 39 5 46-9 7 22 34 49 4 2-5 8 22 3 33 6 43-4 8 22 36 55 3 69-3 9 22 4 27 5 39-9 9 22 37 3 56-1 10 22 5 23 5 36-4 10 22 38 5 3 52-9 11 22 6 19 5 32-9 11 22 39 10 3 49-7 12 22 7 16 5 29-4 12 22 40 15 3 46-5 13 22 8 14 6 26-0 13 22 41 19 3 43-3 14 22 9 13 5 22-5 14 22 42 23 3 40-1 15 22 10 12 5 19-1 15 22 43 26 3* 37-0 16 22 11 12 5 15-6 16 22 44 29 3 33-8 17 22 12 13 5 12-2 17 22 45 32 3 30-7 18 22 13 14 5 8-8 18 22 46 34 3 27-5 19 22 14 16 6 5-4 19 22 47 36 3 24-4 20 22 15 18 5 2-0 20 22 48 37 3 21-2 21 22 16 21 4 68-6 21 22 49 38 3 18-1 22 22 17 24 4 55-2 22 22 50 38 3 16-0 23 22 18 28 4 61-9 23 22 61 38 3 11-9 24 22 19 82 4 48-5 24 22 52 36 3 8-7 25 22 20 36 4 45-2 25 22 53 36 3 5-6 26 22 21 41 4 41-9 26 22 64 32 3 2-5 27 22 22 46 4 38-5 27 22 55 29 2 59-4 28 22 23 61 4 35-2 28 22 56 25 2 56-3 29 22 24 57 4 31-9 29 22, 67 20 2 53-3 30 22 26 2 4 28-6 30 22 58 14 2 50-2 31 22 27 8 4 25-3 31 N.22 59 8 2 47-1 82 N.22 28 14 4 22-0 JUPITER. 259 MAT, 1S59. JUNE, 1S59. MEAN TfW, MEAN TTMK Day of the Month. GEOCENTEIO. Day of the Month. GEOOENTHIO. Jpparent Decimation. Meridian Passage. Apparent Declination. Meridian Passage. M>on. Noon. 1 2 3 N.22 59 8 23 1 23 53 h. 2 2 2 m. 47-1 44-0 41-0 1 2 3 111 N.23 18 10 23 18 27 23 18 43 h. m. 1 13-8 1 10-8 1 7-8 4 5 6 23 1 44 23 2' 34 23 3? 23 2 2 2 37-9 34-9 31-8 .4 5 6 23 18 57 23 ' 19 10 23 19 22 1 4-9 1 1-9 68-9 1 8 9 23 4 11 23 4 58 23 5 45 2 2 2 28-8 25-7 22-7 7 8 9 23 19 32 23 19 41 23 19 49 56-0 63-0 60-1 10 11 12 23 6 30 23 T 14 23 7 57 2 2 2 19-7 16-6 13-6 10 11^' 12 23 19 65 23 19 59 23 20 2 47-1 44-2 41-2 13 14 15 23 8 39 23 9 20 23 9 59 2 2 2 10-6 7-5 4-5 13 14 15 23 20 4 23 20 5 23 20 4 38-3 35-3 32-4 16 IT 18 23 10 38 23 11 16 23 11 52 2 1-5 68-5 55-5 16 17 18 23 20 1 23 19 67 23 19 62 29-5 26-5 23-6 19 20 21 23 12 27 23 13 I 23 13 34 52-5 49-5 46-5 19 20 21 23 19 46 23 19 37 23 19 28 20-6 17-7 14-7 22 23 24 23 14 6 23 14 35 23 15 4 43-6 40-5 37-5 22 23 24 23 19 17 23 19 4 23 18 60 11-8 8-8 5-9 25 26" 27 23 15 32 23 15 59 23 16 24 34-6 31-6 28-6 25 26 27 23 18 36 23 18 18 23 18 2-9 ( 0-0 1 ) 23 61-0 f 23 54-1 28 29 30 31 32 23 16 48 23 17 10 23 17 32 23 17 52 N.23 18 10 1 25-6 22-7 19-7 16-7 13-8 28 29 80 81 23 17 41 23 17 20 23 16 57 N.23 16 33 23 61-2 23 48-2 23 45-3 23 42-3 260 JUPITER. JVI.T, 1S59. AVGVST, 1S59. MEAN TTMK MEAN TTMK G-EOCENTEIO. eEOOENTBIC. Day of the Day of the Apparent Declination. Meridian Apparent Declination. Meridian Month.- Soon. Passage. Month. Noon. Passage. O 1 II h. m. o / // h. m. 1 N.23 16 33 23 42-3 1 N.22 53 36 22 10-1 2 23 16 8 23 39-4 2 22 52 34 22 7-1 3 23 15 42 23 36-4 3 22 51 30 22 4-1 4 23 15 14 23 33-5 4 22 50 25 22 1-1 5 23 14 44 23 30-5 5 22 49 20 21 58-0 6 23 14 14 23 27-6 6 22 48 14 21 56-0 7 23 13 42 23 24-6 7 ■ 22 47 7 21 52-0 8 23 13 8 23 21-6 8 22 45 59 21 48-9 9 23 12 34 23 18-7 9 22 44 50 21 45-9 10 23 11 58 23 15-7 10 22 43 41 21 42-8 11 23 11 20 23 12-8 11 22 42 30 21 39-8 12 23 10 42 23 9-8 12 22 41 19 21 36-7 13 23 10 2 23 6-9 13 22 40 8 21 33-7 14 23 9 21 23 3-9 14 22 38 55 21 30-6 15 23 8 38 23 0-9 15 22 37 42 21 27-5 16 23 7 55 22 57-9 16 22 36 28 21 24-5 17 23 7 10 22 55-0 17 22 35 14 21 21-4 18 23 6 23 22 52-0 18 22 33 69 21 18-3 19 23 5 36 22 49-0 19 22 32 44 21 15-2 20 23 4 48 22 46-0 20 22 31 28 21 12-1 21 23 3 58 22 43-1 21 22 30 12 21 9-0 22 23 3 7 22 40-1 22 22 28 55 21 5-9 23 23 2 15 22 37-1 23 22 27 38 21 2-8 24 23 1 21 22 34-1 24 22 26 20 20 59-7 25 23 27 22 31-1 25 22 25 2 20 56-6 26 22 59 31 22 28-1 26 22 23 44 20 53-4 27 22 58 35 22 25-1 27 22 22 25 20 60-3 28 22 57 37 22 22-1 28 22 21 6 20 47-2 29 22 56 38 22 19-1 29 22 19 47 20 44-0 30 22 55 39 22 16-1 30 22 18 28 20 40-9 31 22 64 38 22 13-1 31 22 17 8 20 37-7 32 N.22 53 36 22 10-1 32 N.22 15 49 20 34-6 JUPITER. 261 SEPTEJHBER, 1§59. OCTOBER, 1S59 • MEAN TIME. MEAN Tip. Day of the Month. GEOCENTKIC. Day of (JBOCENTEIC. Apparent Declination. Meridian Passage. the Month. Appa/rent Declination. Meridian Passage. Soon. Noon. 1 2 3 o / // lSr.22 15 49 22 14 29 22 13 10 h. m. 20 34-6 20 31-4 20 28-2 1 2 3 O 1 II N.21 38 8 21 37 3 21 35 59 h. 18 18 18 m. 56-0 62-6 49-1 4 5 6 22 11 50 22 10 30 22 9 11 20 25-0 20 21-8 20 18-6 4 5 6 21 34 57 21 33 56 21 32 56 18 18 18 45-7 42-2 38-7 1 8 ♦ 9 22 7 51 22 6 32 22 5 13 20 15-4 20 12-2 20 8-9 7 8 9 21 31 56 21 30 59 21 30 3 18 18 18 35-2 31-8 28-3 10 11 12 22 3 64 22 2 35 22 1 16 20 . 5-7 20 2-6 19 59-2 10 11 12 21 29 8 21 28 14 21 27 22 18 18 18 24-7 21-2 17-7 13 14 15 21 59 68 21 58 40 21 57 23 19 66-0 19 62-7 19 49-4 13 14 15 21 26 32 21 26 43 21 24 56 18 18 18 14-1 10-6 7-0 16 17 18 21 56 6 21 54 49 21 53 33 19 46-2 19 42-9 19 39-6 16 17 18 21 24 10 21 23 25 21 22 43 18 17 17 3-5 59-9 66-3 19 20 21 21 62 17 21 61 2 21 49 48 19 36-3 19 33-0 19 29-7 19 20 21 21 22 2 21 21 23 21 20 46 17 17 17 52-6 49-0 45-4 22 23 24 21 48 34 21 47 21 21 46 9 19 26-3 19 23-0 19 19-6 22 23 24 21 20 10 21 19 36 21 19 5 17 17 17 41-7 38-0 34-4 '25 26 27 21 44 68 21 43 47 21 42 37 19 16-3 19 12-9 19 9-6 . 25 26 27 21 18 35 21 18 7 21 17 41 17 17 17 30-7 27-0 23-3 28 29 30 31 21 41 28 21 40 20 21 39 13 N.21 38 8 19 6-2 19 2-8 18 69-4 18 56-0 28 29 30 31 32 21 17 17 21 16 55 21 16 35 21 16 17 N.21 16 1 17 17 17 17 17 19-5 15-8 12-0 8-3 4-6 262 JUPITER. NOVEMBER, 1§59. DECEMBER, 1S59. 1 li^AN TIME. MEAN TIME. i " " " i GEOCENTRIC. SEOCENTRIC. | Day of the Day of the Month. Apparent Declination. Meridian Apparent Declination. Meridian Month. ^oon. Passage. Noon. Passage. O 1 It h. m. o / u h. m. 1 N.21 16 1 17 4-5 1 N.21 24 55 15 4-7 1 2 21 15 48 17 0-7 2 21 25 46 15 0-4 3 21 15 36 16 56-9 3 21 26 38 14 56-2 4 21 15 27 16 53-0 4 21 27 32 14 52-0 5 21 15 19 16 49-2 5 21 28 28 14 47-8 6 21 15 14 16 45-4 6 21 29 26 14 43-5 1 21 15 11 16 41-5 7 21 30 25 14 39-2 8 21 15 10 16 37-6 8 21 31 26 14 34-9 9 21 15 12 16 33-7 9 21 32 29 14 80-7 10 21 15 15 16 29-8 10 . 21 33 33 14 26-3 11 21 15 21 16 25-9 11 21 34 38 14 22-0 12 21 15 29 16 22-0 12 21 35 45 14 17-7 13 21 15 39 16 18-1 13 21 36 54 14 13-4 14 21 15 52 16 14-1 14 21 38 3 14 9-0 15 21 16 6 16 10-1 15 21 39 14 14 4-7 16 21 16 23 16 6-1 16 21 40 27 14 0-3 IT 21 16 42 16 2-1 17 21 41 40 13 55-9 18 21 17 3 15 58-1 18 21 42 55 13 61-5 19 21 17 27 15 54-1 19 21 44 10 13 47-2 20 21 17 52 15 50-0 20 21 45 27 13 42-7 21' 21 18 20 15 46-0 21 21 46 44 13 38-3 22 21 18 50 15 41-9 22 21 48 2 13 33-9 23 21 19 22 15 37-8 23 21 49 21 13 29-5 24 21 19 57 15 33-7 24 21 50 41 13 25-1 25 21 20 33 15 29-6 25 21 52 1 13 20-6 26 21 21 12 15 25-5 26 21 53 22 13 16-2 27 21 21 52 15 21-3 27 21 64 44 13 11-7 28 21 22 35 15 17-2 28 21 56 5 13 7-2 29 21 23 20 15 13-0 29 21 57 27 13 2-8 30 21 24 7 15 8-8 30 21 58 50 12 58-3 31 22 12 12 53-8 31 N.21 24 55 15 4-7 i 1 32 N.22 1 35 12 49-3 SATURN. 263 lAWUAKY, 1§59. F£BRVARY, 1§59. MEAN TIME. MEAN TIME. GEOCENTEIC. GEOCENTRIC. Day of the Day of the Mouth. Apparent Declination. Meridian Apparent Declination. Meridian Month. Noon. Passage. Soon. Passage. O 1 II h. m. O 1 II h. m. 1 N.18 11 9 14 9-8 1 N.18 53 8 11 58-3 2 18 12 22 14 5-6 2 18 54 31 11 54-1 3 18 13 36 14 1-4 3 18 55 53 11 49-8 4 18 14 50 13 57-2 4 18 57 15 11 46-6 5 18 16 6 13 53-0 5 18 68 36 11 41-3 6 18 17 28 13 48-8 6 18 59 57 11 37-0 7 18 18 40 13 44-6 7 19 ' 1 17 11 32-8 8 18 19 58 13 40-3 8 19 2 37 11 28-5 9 is' 21 17 13 36-1 9 19 3 56 11 24-3 10 18 22 36 13 31-9 10 19 6 13 11 20-0 11 18 23 57 13 27-6 11 19 6 31 11 15-8 12 18 25 18 13 23-4 12 19 7 47 11 11-5 13 18 26 39 13 19-2 13 19 9 3 XI 7-3 14 18 28 1 13 14-9 14 19 10 18 11 3-0 15 18 29 23 13 10-7 15 19 11 31 10 68-8 16 18 30 46 13 6-4 16 19 12 44 10 54-6 IV 18 32 9 13 2-2 17 19 13 66 10 50-3 18 18 33 32 12 57-9 18 19 16 7 10 46-1 19 18 34 56 12 53-7 19 19 16 17 10 41-9 20 18 36 20 12 49-4 20 19 17 26 10 37-7 21 18 37 44 12 45-2 21 19 18 34 10 33-5 22 18 39 8 12 40-9 22 19 19 40 10 29-3 23 18 40 33 12 36-7 23 19 20 46 10 25-1 24 18 41 67 12 32-4 24 19 21 50 10 20-9 25 18 43 22 12 28-2 25 19 22 63 10 16-7 26 18 44 46 12 23-9 26 19 23 55 10 12-5 27 18 46 10 12 19-6 27 28 19 24 56 19 25 65 10 8-3 10 4-1 28 18 47 34 12 16-4 29 18 48 58 12 11-1 ,29 N.19 26 63 9 59-9 30 18 50 22 12 6-8 31 18 51 45 12 2-6 32 N.18 53 8 11 58-3 264 SATURN. MARCH, 1S59. APRIIi, 1§59. MEAN TIME. MEAN TIME. Day of the Month. GEOCENTRIC. Day of the Month. GEOCENTRIC. Apparent Decimation. Meridian Passage. Appwrent Declination. Meridian Passage. Noon. Iforni. 1 2 3 N.l°9 26 53 19 27 50 19 28 45 h. 9 9 9 m. 59-9 55-7 51-6 1 2 3 O 1 II N.19 44 29 19 44 37 19 44 44 h. 1 7 7 m. 53-5 49-5 45-6 4 5 6 19 29 39 19 30 31 19 31 23 9 9 9 47-4 43-2 39-1 4 5 6 19 44 49 19 44 53 19 44 55 7 7 7 41-6 37-7 33-7 7 8 9 19 32 12 19 33 19 33 47 9 9 9 34-9 30-8 26-7 7 8 9 19 44 65 19 44 S3 19 44 50 7 7 7 29-8 25-9 22-0 10 11 12 19 34 32 19 35 16 19 35 58 9 9 9 22-5 18-4 14-3 10 11 12 19 44 45 19 44 39 19 44 31 7 7 7 18-1 14-2 10-3 13 14 15 19 36 39 19 37 18 19 37 55 9 9 9 10-2 6-1 2-0 13 14 15 19 44 21 19 44 10 19 43 57 7 7 6 6-4 2-5 68-6 16 lY 18 19 38 31 19 , 39 6 19 39 38 I 8 57-9 53-9 49-8 16 17 18 19 43 43 19 43 27 19 43 9 6 6 6 64-8 50-9 47-1 19 20 21 19 40 10 19 40 39 19 ; 41 7 8 8 8 45-7 41-7 37-6 19 20 21 19 42 60 19 42 29 19 42 7 6 6 6 43-2 39-4 35-6 22 23 24 19 41 34 19 41 59 19 42 22 8 8 8 33-6 29-5 25-5 22 23 24 19 ~ 41 43 19 41 17 19 40 50 6 6 6 31-8 27-9 24-1 25 26 27 19 42 43 19 43 3 19 43 22 8 8 8 21-5 17-4 13-4 25 26 27 19 40 21 19 39 51 19 39 19 6 6 6 20-3 16-5 12-8 28 29 30 31 32 19 ' 43 38 19 43 54 19 44 7 19 ; 44 19 N.19 44 29 8 8 8 7 7 9-4 5-4 1-5 57-5 53-5 28 29 30 31 19 38 46 19 38 11 19 37 36 N.19 36 67 6 6 6 6 9-0 5-2 1-4 57-7 SATURN. 265 MAY, 1859. JIJWE, 1859. MEAN TIME. , MEAN TIME. GEOCENTRIC. GEOCENTRIC. ' Day of the Day of the Apparent Declination. Meridian Appa/rmt Declination. Meridian Month. Noon. Passage. Mouth. Noon. Passage. O 1 It h. m. O t 11 h. m. 1 N.19 36 57 5 57-7 1 N.19 5 34 4 4-3 2 19 36 17 5 58-9 2 19 4 12 4 0-7 3 19 35 36 5 60'2 3 19 2 49 3 57-1 4 19 34 54 5 46-4 4 19 1 25 3 53-6 5 19 34 10 5 42-7 5 19 3 50-0 6 19 33 24 5 39*0 6 18 58 33 3 46-5 n 19 32 87 5 35-3 7 18 57 5 3 42-9 8 19 31 49 5 31-6 8' 18 55 36 8 39-4 9 19 30 59 5 27-9 9 18 , 54 6. 3 35-8 10 19 30 8 5 24-2 10 18 52 35 3 32-3 11 19 29 15 5 20-5 11 18 51 2 3 28-8 12 19 28 21 5 16-8 12 18 49 29 3 25-2 13 19 27 25 5 13-1 13 18 47 54 3 21-7 14 19 26 28 5 9-5 14 18 46 19 3 18-2 15 19 25 30 5 5-8 15 . 18 44 42 8 14-7 16 19 24 30 5 2-1 16 18 43 5 3 11-2 IT 19 23 29 4 58-5 17 18 41 26 8 7-6 18 19 22 27 4 54-8 18 18 39 46 8 4-1 19 19 21 23 ■ 4 51-2 19 18 38 5 8 0-6 20 19 20 18 4 : 47-5 20 18 36 24 2 57-1 21 19 19 11 4 43-9 21 18 34 41 2 58-6 22 19 18 4 4 40-3 22 18 32 57 2 50-1 23 19 16 55 4 36-7 23 18 31 12 2 46-6 24 19 15 44 4 33-0 24 18 29 27 2 43-2 25 19 14 82 4 29-4 25 18 27 40 2 39-7 26 19 13 19 4 25-8 26 18 25 53 2 36-2 27 19 12 5 4 22-2 27 18 24 4 2 32-7 28 19 10 49 4 ' 18-6 28 18 22 15 2 29-2 29 19 9 32 4 15-0 29 18 20 24 2 25-8 30 19 8 14 4 11'5 30 18 18 33 2 22-3 31 19 , 6 55 4 7-9 31 N.18 16 41 • 2 18-8 32 N.19 5 34 4 4-3 266 SATURN. JlTIiY, 1§59. AirOUST, 1§59. MEAN TIME. MEAN TIME. GEOCENTEIO. GEOOEKTEIC. Day of - the Day of Apparent Declination. Meridian the Month. Appatrent Declination. Meridian Month. Nbrni. Passage. No(m, Passage. oil! h. m. O 1 If h. m. 1 N.18 16 41 2 18-8 1 N.17 13 1 32-3 2 18 14 48 2 15-4 2 17 10 50 28-8 3 18 12 54 2 11-9 3 17 8 38 25-4 4 18 11 2 8-4 4 17 6 26 22-0 5 18 9 4 2 5-0 5 17 4 13 18-6 6 18 7 8 2 1-5 6 17 2 1 16-2 7 18 5 11 58-1 7 16 59 48 11-7 8 18 3 13 54-6 8 16 57 34 8-3 9 18 1 15 51-2 9 16 55 21 4-9 10 17 59 16 47-7 10 16 53 7 ( 1-5 1 t 23 58 '0 ; 11 17 57 16 44-3 11 16 50 54 23 64-6 12 17 55 15 40-9 12 16 48 40 23 51-2 13 17 53 14 37-4 13 16 46 26 23 47-8 14 17 51 12 34-0 14 16 44 12 23 44-4 15 17 49 10 30-5 15 16 41 57 23 40-9 16 17 47 7 27-1 16 16 39 43 23 37-5 17 17 45 3 23-7 17 16 37 29 23 34-1 18 17 42 58 20-2 18 16 35 14 23 30-7 19 17 40" 53 16-8 19 16 33 23 27-2 20 17 38 48 13-4 20 16 30 46 23 23-8 21 17 36 42 9-9 21 16 28 '31 23 20-4 22 17 34 35 6-6 22 16 26 17 23 17-0 23 17 32 28 3-1 23 16 24 3 23 13-5 24 17 30 20 59-7 24 16 21 49 23 10-1 25 17 28 12 56-2 25 16 19 34 23 6-6 26 17 26 3 52-8 26 16 17 21 23 3-2 27 17 23 54 49-4 27 16 15 7 22 59-8 28 17 21 44 46-0 28 16 12 53 22 56-3 29 17 19 34 42-5 29 16 10 40 22 52-9 30 17 17 23 39-1 80 16 8 27 22 49-5 31 17 15 IS 35-7 31 16 6 14 22 46-0 32 N.17 13 1 32-3 32 N.16 4 1 22 42-6 SATURN. 267 SEPTEMBER, 1S59. OCTOBER, 1S50. MEAN TIME. MEAN TTMK. Day of the Month. QEOOBNTRIC. Day of QEOGENTBIO. Apparent Decimation. Meridian Passage. the Month. Apparent Declination. Meridian Passage. Soon. JSbon. 1 2 3 o t tt N.16 4 1 16 1 49 15 59 37 h. m. 22 42-6 22 39-1 22 35-7 1 2 3 O 1 il N.15 2 2 15 11 14 58 21 h. 20 20 20 m. 58-1 54-6 51-0 4 5 6 15 57 26 15 55 15 15 53 4 22 32-2 22 28-8 22 25-3 4 5 6 14 56 32 14 54 44 14 52 68 20 20 20 47-4 43, -9 40-4 7 8 9 15 50 54 15 48 44 15 46 35 22 21-9 22 18-4 22 14-9 7 8 9 14 51 12 14 49 28 14 47 46 20 20 20 36-8 33-2 29-7 10 11 12 15 44 26 15 42 18 15 40 10 22 11-5 22 8-0 22 4-6 10 11 12 14 46 4 14 44 24 14 42 45 20 20 20 26-1 22-5 19-0 13 14 15 15 38 3 15 35 57 15 33 51 22 1-1 21 57-6 21 54-1 13 14 15 14 41 7 14 39 31 14 37 56 20 20 20 15-4 11-8 8-2 16 17 18 15 31 46 15 29 41 15 27 37 21 50-6 21 47-2 21 43-7 16 17 18 14 36 23 14 34 51 14 33 21 20 20 19 4-6 1:0 57-4 19 20 21 15 25 34 15 23 31 15 21 30 21 40-2 21 36-7 21 33-2 19 20 21 14 31 52 14 30 25 14 28 59 19 19 19 53-8 50-1 46-5 22 23 24 15 19 29 15 17 29 15 15 30 21 29-7 21 26-2 21 22-7 22 23 24 14 27 35 14 26 13 14 24 62 19 19 19 42-9 39-3 35-6 25 26 27 15 13 31 15 11 34 15 9 38 21 19-2 21 15-7 21 12-2 25 26 27 14 23 33 14 22 16 14 21 19 19 19 32-0 28-3 24-7 28 29 30 31 15 7 42 15 6 48 15 3 55 N.15 2 2 21 8-6 21 5-1 21 1-6 20 58-1 28 29 30 31 32 14 19 46 14 18 34 14 17 24 14 16 16 N.14 15 9 19 19 19 19 19 21-0 17-3 13-7 10-0 6-3 268 SATURN. nroT£MBi:R, 1§59. DECEMBER, 1859. MEAN. TIME. MEAN TIME. GEOCENTEIC. GEOOENTBIO. Day of the Day of the Apparent Declination, Meridian Appa/renl Declination. Meridian Month. Noon. Passage. Month. Noon. Passage. o i • a h. m. O 1 u h. m. 1 N.14 15 9 19 6-3 1 N.13 57 50 17 12-8 2 14 14 5 19 2-6 2 13 57 60 17 8-9 3 14 13 2 18 58-9 3 13 67 52 17 5-0 4 14 12 1 18 55-2 4 13 57 56 17 1-1 5 14 11 2 18 51-5 5 13 58 2 16 67-1 6 14 10 6 18 47-8 6 13 68 11 16 53-2 7 14 9 10 18 44-1 7 13 58 22 16 49-3 8 14 8 17 18 40-4 8 13 58 36 16 45-4 9 14 : 7 27 18 36-6 9 13 58 62 16 41-4 10 14 6 38 18 32-9 10 13 69 10 16 37-5 11 14 5 51 18 29-1 11 13 59 30 16 33-5 12 14 5 6 18 25-4 12 13 59 52 16 29-6 13 14 4 23 18 21-6 13 14 17 16 25-6 14 14 3 43 18 17-8 14 14 44 16 21-6 15 14 3 4 18 14-1 15 14 1 13 16 17-6 16 14 2 28 18 10-3 16 14 1 46 16 13-6 17 14 1 54 18 6-5 17 14 2 19 16 9-6 18 14 1 22 18 2-7 18 14 2 66 16 5-6 19 14 52 17 58-9 19 14 3 33 16 1-6 20 14 24 17 55-1 20 14 4 13 15 57-6 21 13 59 59 17 51-3 21 14 4 65 15 63-6 22 13 59 36 17 47-5 22 14 6 40 15 49-5 23 13 59 15 17 43-7 23 14 6 27 15 46-6 24 13 58 56 17 39-8 24 14 7 15 15 41-4 25 - 13 58 40 17 36-0 25 14 8 6 16 37-4 26 13 58 26 17 32-1 26 14 8 59 16 33-3 27 13 58 14 17 28-3 27 14 9 54 16 29-2 28 13 58 5 17 24-4 28 14 10 51 15 25-2 29 13 57 58 17 20-5 29 14 11 60 15 21-1 30 13 57 53 17 16-6 30 14 12 61 15 17-0 V 31 14 13 63 16 12-9 31 N.13 57 50 17 12-8 32 N.14 14 58 16 8-8 269 NAUTICAL ALMANAC FOE THE YEAR 18 60. X°7. Lilkut .I.Bieii, (in FuUim St XT 271 ECLIPSES OF THE SUN AND MOON. In the year 1860 there will be two Eclipses of the Sun and two of the Moon. I. — An Annular Eclipse of the SUN, January 22, 1860, invisible at Greenwich. Begins on the Earth generally January 22'' 9'' 54"'3, in Mean Time at Greenwich. Longitude 99° 58' E. of Greenwich, and Latitude . . 49° 20' S. Central Eclipse begins generally January 22'' ll"" SS^'O, in Longitude 30° 29' E. of Greenwich, and Latitude . . .69° 9' S. Central Eclipse at Noon January 22* 11'' 51'°-2, in Longi- tude 5° 10' E. of Greenwich, and Latitude 88° 59' S. Central Eclipse ends generally January 22'' IS"" 19°'-2, in Longitude 88° 11' W. of Greenwich, and Latitude . . 41° 59' S. Ends on the Earth generally January 22'' 14'' 59'°-9, in Longitude 126° 30' W. of Greenwich, and Latitude . . 15° 8' S. n. — A Partial Eclipse of the MOON, February 6, 1860, invisible at Greenwich. d. h. m. First contact with the Penumbra February 6 12 01 ") First contact with the Shadow " 6 13 1-8 Middle of the Eclipse " 6 14 28'7 \ Mean Time at Greenwich. liast contact with the Shadow " 6 15 55'6 Last contact with the Penumbra " 6 16 57 "3 J At these times respectively the Moon will be in the Zenith of the places whose positions are — Longitude 1° 55' E. T Latitude 15° 44' N. 12 55 "W. , 15 29 33 50 \ of Greenwich. 15 8 54 44 14 46 69 35 W. J 14 30 N. Magnitude of the Eclipse (Moon's diameter =- 1) 0'809. The first contact with the Shadow occurs at 79'' from the Northernmost point of the Moon's limb toward the East. The last contact at 32° toward the West ; in each case, for direct image. IIL — A Total Eclipse of the SUN, July 18, 1860, visible (as apartial one) at Greenwich. Begins on the Earth generally July 17'' 23'' 53'°-8, in Mean Time at Greenwich. Longitude 102° 14' W. of Greenwich, and Latitude . . 34° 43' N. Central Eclipse begins generally July 18'' 0'' 5V'°-3, in Longftude 125° 47' W. of Greenwich, and Latitude . . 45° 42' N. Central Eclipse at Noon July 18'' 2'' 8°°-l, in Longi- tude 30° 33' W. of Greenwich, and Latitude .... 56° 8' N. Central Eclipse ends generally July 18'' 3'' 53'°-2, in Longitude 39° 25' E. of Greenwich, and Latitude . . 15° 56' N. Ends on the Earth generally July 18'' 4'' S6'"-6, in Longitude 18° 56' E. of Greenwich, and Latitude . . 4° 16' N. IV! — A Partial Eclipse of the MOON, August 1, 1860, invisible at Greenwich, d. h. m. First contact with the Penumbra August 1 2 43'2 "1 First contact with the Shadow " 14 8-4 Middle of the Eclipse " 15 24-5 > Mean Time at Greenwich. Last contact with the Shadow " 16 40'6 Last contact with the Penumbra " 1 8 5-8 J Magnitude of the Eclipse (Moon's diameter^ 1) 0-443. ELEMENTS OF THE ECLIPSES OF THE SUN. 1 § 60. January 22. July 18. Greenwich Mean Time of cJ in E. A. © and 9 's Right Ascension . . d's Declination ®'s Declination d. h. m. s. 22 11 51 13 20 18 6 o I 41 S. 20 31 39 S. 19 40 24 d. h. m. 8. 18 2 8 7 7 52 20 „ o 4 II N.21 31 11 N.20 57 272 PHASES OF THE MOON FOR 1860. JANUAEY. d. h. ® Full Moon .... 83 m. 23-4 JTOY, © Full Moon . . . d. 2 h. 16 m. T-0 d Last Quarter . 14 18 58-T d Last Quarter . . . 10 IT 68-1 % New Moon . , . 22 12 16-T # New Moon . . , 18 2 20-3 © First Quarter . . . 30 IT 10-9 © First Quarter . . . 24 18 19-T rJEBBTTABT. d. h. @ Full Moon .... 6 14 m. 35-4 AUGUST. © Full Moon . . , d. 1 5 m. 33-6 (§ Last Quarter , . . 13 6 51-3 (§ Last Quarter . . 9 9 23-4 (ii New Moon . . , 21 1 38-6 # New Moon . . , 16 10 20-2 ID Mr St Quarter . . . 29 1 55-3 © First Quarter . . 23 49-8 © Full Moon , . . 30 20 5T-4 MARCH. d. h. © Full Moon .... To m. 44-2 SEPTEMBEK. d. (§ Last Quarter ... T h. 23 m. T-1 (§ Last Quarter . . . 13 21 8-T # New Moon . . . 14 18 9-6 fj New Moon . . . . 22 1 55-5 © First Quarter . . 21 11 24-9 © First Quarter . . . 29 18 52-8 © Full Moon . . . 29 13 39-8 APETL © Full Moon . . . d. h. . 5 10 m. 0-0 OCTOBEE. d Last Quarter . . d. T h. 11 m. 4-8 (§ Last Quarter . . . 12 13 34-5 # New Moon . . . 14 2 3T-6 # New Moon . . . 20 IT 44-8 © First Quarter . . 21 2 10-6 © First Quarter . . 28-2 36-2 ® Full Moon . . . 29 6 49-9 MAY. © Full Moon . . . d. h. 4 19 m. 1-8 NOVEMBEB . (§ Last Quarter . . d. 5 h. 21 m. lT-5 (§ Last Quarter . . . 12 T 16-4 (11 New Moon . . . 12 12 36-4 # New Moon . . . . 20 6 46-0 © First Quarter . . 19 20 52-T © First Quarter . . . 2T 8 4-T © Full Moon . . . 2T 23 3T-9 JTTNE @ Full Moon . . d. h. . 3 4 m. 45-9 DECEMBER d Last Quarter . . d. 6 h. 6 m. 0-8 (§ Last Quarter . 11 1 4-3 % ,New Moon . . . 12 48-5 # New Moon . , . . 18 IT 23 -T © First Quarter . . 19 18 9-8 © First Quarter . . . 25 12 36-1 © Full Moon . . . 2T 16 lT-4 273 I860. AT GREENWICH APPARENT NOON. 1860. JAWrARY, 1860. FEBRVARY, 1S60. ^ Sun. Mon. Tues. Wed. Thnr. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sun. Mon. Tues. Wed. ST a 1 2 3 4 5 6 1 8 9 10 11 12 13 14 15 16 11 18 19 20 21 22 23 24 25 26 21 28 29 30 31 32 THE SUN'S Apparent S.23 3 12 22 58 12 22 52 45 22 46 51 22 40 30 22 33 41 22 26 26 22 18 45 22 10 3Y 22 2 3 21 53 4 21 43 38 21 38 48 21 23 32 21 12 52 21 1 47 20 50 18 20 38 25 20 26 8 .20 13 28 20 26 19 47 1 19 33 14 19 19 5 19 4 35 18 49 44 18 34 33 18 19 1 18 3 10 17 46 59 17 30 30 8.17 13 42 Diff. for Ihr. 11 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28 29 30 31 32 33 33 84 35 36 37 38 39 40 40 41 42 Equation of Time, to be added to Apparent Tvme. m. s. 3 36 4 5 4 33 5 5 27 5 54 6 20 6 46 7 12 7 36 8 8 24 8 47 9 9 9 31 9 52 10 13 10 33 10 52 11 10 11 28 11 44 12 12 16 12 30 12 44 12 57 13 9 13 20 13 30 13 40 13 48 Diff. for Ihr. ^ Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. THE SUN'S Appajreni Declination. Fri. 10 Sat. 11 Sun. 12 Mon. 13 Tues. 14 Wed. 15 Thur. 16 Fri. 17 Sat. 18 Sun. 19 Mon. 20 Tues. 21 Wed. 22 Thur. 23 Fri. 24 Sat. 25 Sun. 26 Mon. 27 Tues. 28 Wed. 29 Thur. 30 S.17 13 42 16 56 36 16 39 12 16 21 32 16 3 34 15 45 19 15 26 49 15 8 3 14 49 1 14 29 45 14 10 14 13 50 29 18 30 30 13 10 18 12 49 53 12 29 15 12 8 25 11 47 24 11 26 11 11 4 48 10 43 14 10 21 31 9 59 38 9 37 36 9 15 25 8 53 6 8 30 39 8 8 5 7 45 24 S. 7 22 37 Diff. for Ihr. 42 43 43 44 45 45 46 47 47 48 49 49 60 50 51 51 52 52 63 63 54 54 54 56 56 55 66 66 56 67 Equation of Time, to be added to Apparent dHme. Diff. for :hr. m. s. 13 48 13 56 14 3 14 9 14 15 14 19 14 23 14 26 14 28 14 29 14 30 14 30 14 29 14 27 14 25 14 21 14 18 14 13 14 8 14 2 13 55 13 48 ,13 40 13 32 13 23 13 13 13 3 12 52 12 41 12 29 s. lb 274 I860. AT GEEENWICH APPAEENT NOON. 1860. MARCH, 1S60. APRII., 1§60. Day of the Week. .a a o .a . <«-• o a THE SUN'S Apparent Declination. Diff. for Ihr. Equation of Time, to be added to Apparent Time. Diff. for Ihr. ■i 1 o a o o p THE SUN'S Apparent Declination. Diff. for Ihr. Equation of Time, to be added to Diff. for Ihr; ■9 siibt.from Apparent: ^Pime. ■■• m. s. s. m. s. S. Tliur. 1 S.'7 22 37 57 12 29 Sun. 1 N. 4 44 37 57 3 49 Fri. 2 6 59 43 57 12 16 Mon. 2 5 7 39 57 3 31 Sat. 3 6 36 44 57 12 3 Tues. 3 5 30 36 57 3 13 Sun. 4 6 13 39 57 11 50 Wed. 4 5 53 27 57 2 55 Mod. 5 5 50 29 58 11 36 Thur. 5 6 16 12 56 2 37 Tues. 6 5 27 14 58 11 22 Fri. 6 6 38 51 56 2 19 Wed. 7 5 3 55 58 11 7 Sat. 7 7 1 23 56 2 2 Thur. 8 4 40 33 58 10 52 Sun. 8 7 23 48 55 1 45 Fri. 9 4 17 6 58 10 36 Mon. 9 7 46 5 55 1 28 Sat. 10 3 53 36 58 10 21 Tues. 10 8 8 15 55 1 12 Sun. 11 3 30 3 58 10 4 Wed. 11 8 30 17 54 55 Mod. 12 3 6 28 59 9 48 Thur. 12 8 52 11 54 40 Tues. 13 2 42 51 59 9 31 Fri. 13 9 13 55 54 24 Wed. Thur. 14 15 2 19 11 1 55 31 59 59 9 14 8 57 Sat. Sun. 14 15 9 35 30 9 56 57 53 53 9 5 Fri. 16 1 31 49 59 8 40 Mon. 16 10 18 13 52 20 Sat. 17 1 8 6 59 8 22 Tues. 17 10 39 20 52 34 Sun. 18 44 23 59 8 5 Wed. 18 11 15 52 48 Mon. 19 S. 20 41 59 7 47 Thur. 19 11 21 51 1 1 Tues. 20 N. 3 1 59 7 29 Fri. 20 11 41 34 51 1 14 Wed. 21 26 43 59 7 11 Sat. 21 12 1 56 50 1 26 Thur. 22 50 23 59 6 52 Sun. 22 12 22 7 50 1 38 Fri. 23 1 14 2 59 6 34 Mon. 23 12 42 5 49 1 50 Sat. 24 1 37 39 58 6 16 Tuea. 24 13 1 51 49 2 1 Sun. 25 2 1 13 58 5 57 Wed. 25 13 21 24 48 2 12 Mon. 26 2 24 45 58 5 39 Thur. 26 13 40 43 48 2 22 Tues. 27 2 48 13 58 5 20 Fri. 27 13 59 49 47 2 31 Wed. 28 3 11 38 58 5 2 Sat. 28 14 18 41 46 2 41 Thur. 29 3 34 59 58 4 44 Sun. 29 14 37 19 46 2 49 Fri. 30 3 58 16 58 4 25 Mon. 30 14 55 42 45 2 57 j Sat. 31 4 21 29 57 4 7 Tues. 31 N.15 13 51 45 3 5 j Sun. ■1 32 N. 4 44 37 57 3 49 275 I860. AT GEEENWICH APPAEENT NOON. 1860. ! MAY, 1860. JITKTi:, 1S60. 1 1 THE SUN'S Diff. Equation of Time, Diff. .a 1 THE SUN'S Diff. Equation of^Time, to be Diff. Day of the Apparent Declination. for Ihr. to he subt.from Apparent Time. for Ihr. 1 "s O Apparent •• Deelinatilln. for Ihr. mjibt.from for Ihr. added to Apparent Tmu. oil/ II m. s. B. ./ // II m. s. s. Tues. 1 N.15 13 51 45 3 5 Fri. 1 N.22 7 49 19 2 26 Wed. 2 15 31 44 44 3 12 Sat. 2 22 15 36 18 2 17 Thur. 3 15 49 23 43 3 19 Sun. 3 22 23 18 2 7 Fri. 4 16 6 45 43 3 25 Mon. 4 22 30 1 17 1 57 Sat. 5 16 23 52 42 3 30 Tues. 5 22 36 38 16 1 47 Sun. 6 16 40 42 41 3 35 Wed. 6 22 42 51 15 1 37 Mon. 1 16 51 16 41 3 40 Thur. 7 22 48 40 14 1 26 Tues. 8 17 13 33 40 3 43 Fri. 8 22 54 5 13 1 14 Wed. 9 17 29 32 39 3 47 Sat. 9 22 59 7 12 1 3 Thur. 10 17 45 15 38 3 49 Sun. 10 23 3 44 11 51 Fri. 11 18 39 38 3 51 Mon. 11 23 7 57 10 39 Sat. 12 18 15 46 37 3 53 Tues. 12 23 11 45 9 27 Sun. 13 18 30 34 36 3 54 Wed. 13 23 15 9 7 14 Mon. Tues. 14 15 18 45 4 18 59 15 35 35 3 54 3 54 Thur. Fri. 14 15 23 18 8 23 20 43 6 5 2 10 Wed. 16 19 13 7 34 3 53 0' Sat. 16 23 22 53 4 23 Thur. 1-7 19 26 39 33 3 51 Sun. 17 23 24 38 3 36 Fri. 18 19 39 51 32 3 49 Mon. 18 23 25 58 2 49 Sat. 19 19 52 44 31 3 46 Tues. 19 23 26 54 1 1 2 Sun. 20 20 5 16 30 3 43 Wed. 20 23 27 24 1 15 Mon. 21 20 17 27 30 3 39 Thur. 21 23 27 30 1 28 Tues. 22 20 29 18 29 3 35 Fri. 22 23 27 11 1 1 41 Wed. 23 20 40 48 28 3 30 Sat. 23 23 26 27 2 1 54 Thur. 24 20 51 66 27 3 25 Sun. 24 23 25 18 3 2 7 Fri. 25 21 2 43 26 3 19 Mon. 25 23 23 45 4 2 20 Sat. 26 21 13 8 25. 3 13 Tues. 26 23 21 47 5 2 32 •0 Sun. 21 21 23 11 24 3 6 Wed. 27 23 19 24 6 2 45 Mon. 28 21 32 51 23 2 59 Thur. 28 23 16 37 7 2 57 Tues. 29 21 42 10 22 2 52 Fri. 29 23 13 25 • 8 8 9 Wed. 30 21 51 6 21 2 44 Sat. 30 23 9 49 9 3 21 Thur. .31 21 59 39 20 2 35 Sun. 31 N.23 5 49 10 3 32 Fri. 32 N.22. 7 49 19 2 26 276 1 1860. AT GEEENWICH APPARENT NOON. 1860. JUJuY, 1860. AUCrST, 1«60. i ^ c o THE SUN'S Diff. Equation of Time, Diff. ^ $ § THE SUN'S Diff. Equation oi^Time, to lie added to Diff. 1 -^ i>-. a a Thur. 1 Fri. 2 Sat. 3 Sun. 4 Mob. 5 Tues. 6 Wed. 7 Thur. 8 Fri. 9 Sat. 10 Sim. 11 Mon. 12 Tues. 13 AVed. 14 Thur. 15 Fri. 16 Sat. IV Sun. 18 Mon. 19 Tues. 20 Wed. 21 Thur. 22 Fri. 23 Sat. 24 Sun. 25 Mon. 26 Tues. 27 Wed. 28 Thur. 29 Fri. 30 Sat. 31 THE SUN'S Declination. S. 14 36 23 14 55 23 15 14 10 15 32 41 15 50 57 16 8 58 16 26 42 16 44 10 17 1 20 17 18 13 17 34 49 17 51 6 18 7 5 18 22 44 18 38 4 18 53 4 19 7 44 19 22 3 19 36 2 19 49 38 20 2 54 20 15 47 20 28 17 20 40 25 20 52 10 21 3 31 21 14 28 21 25 2 21 35 11 21 44 55 S. 21 54 15 Diff. for Ihr. 47 47 46 45 45 44 43 43 42 41 41 40 39 38 37 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 Equation of Time, to be s-uht./rom Apparent Time. Diff. for Ihr. m. s. 16 18 16 18 16 18 16 17 16 15 16 12 16 9 16 4 15 59 15 53 15 46 15 38 15 29 15 20 15 9 14 58 14 46 14 33 14 19 14 5 13 49 13 33 13 16 12 59 12 40 12 21 12 2 11 41 11 20 10 58 10 35 Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 THE SUN'S Apparent Declination. S.21 54 15 22 3 9 22 11 38 22 19 41 22 27 18 22 34 29 22 41 13 22 47 31 22 53 21 22 58 44 23 3 40 23 8 9 23 12 10 23 15 43 23 18 48 23 21 25 23 28 34 23 25 15 23 26 28 23 27 12 23 27 29 23 27 16 23 26 36 23 25 27 23 23 50 23 21 45 23 19 11 23 16 10 23 23 23 12 41 8 43 4 18 S. 22 59 26 Diff. for Ihr. 22 21 20 19 18 17 16 15 14 12 11 10 5 4 3 2 1 1 2 3 4 5 6 8 9 10 11 12 Equation of Time, to be svbt./rtmt added to Apparent lyne. Diff. for Ihr. m. s. 10 35 10 12 9 48 9 24 8 59 8 33 7 41 14 6 46 6 18 5 50 5 21 4 53 4 23 3 54 3 24 2 55 2 25 1 55 1 25 55 25 4 34 1 4 1 33 3 58 279 THE MOON'S EIGHT ASCENSION AND DECLINATION. JAWUARY, 1§60. FEBRUARY, 1§60. MEAN TIME. MEAN TIME. BIGHT ASCENSION. DECLINATION. EIGHT ASCENSION.. DECLINATION. Day. Midniglit. Noon. Midnight. Day. Midnight. Noon. Midnight. 10 11 12 13 14 15 16 IT 18 19 20 21 22 23 24 25 26 27 28 29 30 31 h. m. s. 65 26 1 42 24 2 33 7 3 28 18 4 28 5 5 31 29 6 36 25 7 40 26 8 41 39 9 39 19 10 33 46 11 25 54 12 16 53 13 7 51 13 59 44 14 53 8 15 48 8 16 44 13 17 40 23 18 35 26 19 28 17 20 18 24 21 5 44 21 50 39 22 33 50 23 16 5 23 58 19 41 30 1 26 41 2 14 50 3 6 50 N. 8 28 5 13 39 19 18 25 3 22 28 21 25 28 16 27 2 11 26 51 30 24 48 51 21 2 3 15 52 3 9 46 30 N. 3 13 31 , 3 21 43 9 37 51 15 16 67 20 3 36 23 44 26 26 8 49 27 10 16 26 47 60 25 6 41 22 16 55 18 31 23 14 3 35 9 6 9 S. 3 50 25 N. 1 33 31 6 56 10 12 7 42 16 56 55 N.21 10 3 N.ll 5 59 16 6 19 20 33 14 24 7 40 26 27 19 27 10 43 26 4 3 23 7 24 18 35 48 12 54 25 N. 6 31 46 S. 5 14 6 33 21 12 33 3 17 47 43 22 2 58 25 6 42 26 50 7 27 9 21 26 6 33 23 49 36 20 30 17 16 21 57 11 37 50 6 29 56 S. 1 8 53 N. 4 15 36 9 33 69 14 35 54 19 8 59 N.22 67 52 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 h. m. s. 4 3 9 5 3 31 6 6 39 7 10 33 8 13 9 9 13 10 10 10 16 11 4 59 11 58 14 12 51 4 13 44 23 14 38 49 15 34 27 16 30 55 17 27 18 18 22 30 19 15 36 20 6 3 20 53 48 21 39 10 22 22 44 23 5 14 23 47 30 30 25 1 14 50 2 1 40 2 51 41 3 45 21 4 42 40 N.24 30 2 26 37 12 27 12 8 26 1 8 23 1 54 18 25 53 12 35 45 N. 6 9 S. 51 23 7 31 46 13 37 54 18 50 51 22 65 45 25 41 58 27 3 39 27 32 25 37 47 23 4 51 19 33 41 15 16 66 10 26 53 S. 5 14 59 N. 8 4 5 32 2 10 46 32 16 40 21 20 45 23 33 1 N.26 33 N.25 44 27 7 16 26 50 21 24 44 39 20 64 47 15 38 21 9 21 45 . 2 34 36 . 4 14 31 10 40 24 16 22 3 21 2 35 24 29 11 26 33 32 27 12 30 26 28 36 24 29 23 21 25 46 17 30 13 12 65 20 7 52 59 S. 2 34 13 N. 2 60 35 8 11 9 13 16 46 17 65 36 21 53 54 24 55 57 N.26 44 45 280 THE MOON'S EIGHT ASCENSION" AND DECLINATION. 1 1 1 MARCH, I860. APRIIi, 1860. HBAN TIME. MEAN TIME. EIGHT ASCENSION. DECLINATION. EIGHT ASCENSION. DECLINATION. Day. Midnight. Noon. Midnight. Day. Midnight. Noon. Midnight. h. m. s. o / II O 1 il h. m. s. O t II O 1 II 1 5 42 51 N.27 6 38 N.27 4 38 1 9 20 42 N.17 24 26 N.14 42 13 2 6 44 28 26 37 38 25 45 5 2 10 15 31 11 45 53 8 38 8 3 7 45 51 24 27 9 22 44 36 3 11 9 18 N. 6 21 64 N. 2 17 4 8 45 40 20 38 56 18 12 12 4 12 2 59 S. 1 22 32 S. 4 46 15 5 9 43 22 15 27 1 12 26 20 5 12 57 29 8 4 33 11 15 9 6 10 39 7 9 13 27 N. 5 51 50 6 13 53 31 14 14 50 17 36 V 11 33 37 N. 2 25 4 S. 1 3 14 7 14 51 23 19 29 38 21 39 33 8 12 27 49 S. 4 29 33 7 50 28 8 15 60 42 23 28 19 24 54 27 9 13 22 34 11 2 46 14 3 27 9 16 50 24 25 57 4 26 35 50 10 14 18 28 16 49 50 19 19 31 10 17 49 2 26 51 2 26 43 27 11 15 15 39 21 30 28 23 21 4 11 18 45 17 26 14 20 25 25 14 12 16 13 40 24 60 4 25 56 43 12 19 38 21 24 17 56 22 54 13 13 17 11 31 26 40 44 27 2 13 13 20 28 4 21 16 19 25 3 14 18 8 3 27 1 45 26 40 16 14 21 14 49 17 23 4 15 11 37 15 19 2 14 25 59 24 59 21 15 21 59 16 12 52 9 10 26 1 16 19 53 31 23 42 55 22 11 18 16 22 42 17 7 64 28 S. 5 18 44 17 20 41 53 20 26 9 18 29 3 17 23 24 45 S. 2 39 58 N. 39 18 21 27 42 16 21 32 14 5 4 18 7 36 N. 2 41 54 5 22 32 19 22 11 36 11 41 4 9 10 52 19 51 44 8 1 11 10 36 26 20 22 54 21 6 35 46 S. 3 57 1 20 1 38 13 6 41 15 30 14 21 23 36 46 S. 1 15 55 N. 1 26 18 21 2 27 8 17 46 15 19 49 45 22 19 42 N. 4 8 19 6 48 46 22 3 19 33 21 41 42 23 18 58 23 1 4 9 26 17 11 59 20 23 4 15 12 24 39 30 25 41 20 24 1 50 29 14 26 20 16 45 38 24 5 13 23 26 22 42 26 42 14 ; 25 2 39 50 18 55 25 20 53 49 25 6 12 47 26 38 65 26 12 17 1 26 3 32 27 22 38 52 24 8 35 26 7 11 53 25 22 25 24 9 52 : 27 4 28 17 25 21 1 26 14 16 27 8 9 28 22 35 44 20 41 27 ! 28 5 26 40 26 46 40 26 56 51 28 9 4 58 18 28 51 16 69 56 29 6 26 22 26 43 49 26 7 2 29 9 68 33 13 16 56 10 22 12 ' 30 7 25 56 25 6 30 23 42 43 30 10 50 52 N. 7 18 10 N. 4 7 23 31 8 24 13 N.21 56 44 N.19 50 31 Wi THE MOON'S EIGHT ASCENSION AND DECLINATION. MAY, 1S60. jrWE, I860. MEAN TIME. MEAN TIME. RIGHT ASCENSION. DECLINATION. EIGHT ASCENSION. DECLINATION. Day. Midnight. 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 SO 31 h. m. s. 11 42 53 12 85 38 13 30 4 14 26 45 15 25 39 16 25 55 17 26 5 18 24 25 19 19 42 20 11 23 20 59 39 21 45 7 22 28 39 23 11 13 23 53 49 37 27 1 23 3 2 11 32 3 3 28 3 59 4 57 33 5 57 45 6 57 53 7 56 25 8 52 30 9 46 8 10 87 55 11 28 50 12 20 13 12 27 14 7 3 Noon. N. 52 29 S. 6 88 38 11 52 16 17 24 41 21 53 4 24 58 83 26 29 52 26 25 46 24 54 28 22 10 21 18 29 35 14 7 16 9 16 7 S. 4 6 40 N. 1 11 51 6 30 24 11 39 16 25 38 20 85 41 23 52 3 25 56 59 26 35 23 25 39 8 28 9 23 19 16 62 14 18 2 8 32 5 N. 2 18 46 S. 4 2 18 10 11 14 S.15 47 35 Midnight. Day. Midnight. , 2 28 48 8 49 7 14 45 6 19 48 12 28 37 6 25 56 19 26 39 25 25 50 13 23 40 30 20 26 3 16 22 46 11 44 86 6 43 5 S. 1 27 69 N. 3 51 42 9 6 38 14 5 55 18 36 15 22 21 42 25 4 30 26 27 43 26 19 12 24 35 25 21 22 32 16 54 34 11 29 43 N. 5 27 37 S. 62 2 7 9 38 ■ 13 4 47 S.18 17 2 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Noon. h. m. s. 16 4 6 16 8 14 17 3 16 18 2 31 18 59 23 19 52 54 20 42 51 21 29 87 22 18 58 22 56 51 23 89 16 22 15 1 6 49 1 53 58 2 44 80 3 88 64 4 36 68 5 37 38 6 39 7 7 39 33 8 87 88 9 32 56 10 26 50 11 17 11 12 8 7 12 59 42 13 52 53 14 48 14 15 46 43 16 44 33 S.20 30 37 24 1 26 3 58 26 32 44 25 30 24 23 8 23 19 42 41 15 29 48 10 44 24 5 38 36 S. 22 26 N. 4 66 13 10 5 20 14 57 33 19 19 6 22 54 7 25 24 29 26 32 23 26 4 59 23 58 56 20 22 9 15 31 29 9 48 28 N. 3 35 13 S. 2 46 42 8 57 22 14 37 46 19 29 26 23 14 57 S.26 39 48 Midnight. S.22 25 58 25 14 4 26 30 10 26 12 24 24 28 24 21 32 26 17 41 10 13 10 21 8 13 23 S. 3 1 14 N. 2 16 45 7 81 49 12 34 24 17 13 5 21 18 31 24 18 83 26 9 44 26 31 4 25 14 8 22 21 18 4 46 12 45 5 6 44 12 N. 24 4 S. 5 54 38 11 52 31 17 10 49 21 31 28 24 38 11 S.26 18 54 282 J-/. J ' 5 ■6' ''} J '! THE MOON'S EIGHT ASCENSION AND DECLINATION. JU1,Y, 1860. AlTGirST, 1860. MEAN TIME. MEAN TIME. EIGHT ASCENSION. DBOLINATION. EIGHT ASCENSION. DECLINATION. Day. Midnight. Noon. Midnight. Day. Midnight. Noon. Midnight. h. m. s. O 1 II O / // h. m. s. o / // o / // 1 17 43 23 S.26 35 6 S.26 28 33 1 21 9 S. 18 10 24 S.16 56 2 18 40 38 26 25 10 39 2 21 46 2 13 42 40 11 17 19 3 19 35 6 24 2 4 22 36 8 3 22 29 54 8 46 29 6 11 39 4 20 26 14 20 54 50 19 15 4 23 12 35 S. 3 34 10 S. 55 22 5 21 U 9 16 54 23 14 39 7 6 23 54 57 N. 1 43 33 N. 4 21 24 6 21 59 23 12 16 16 9 47 27 6 37 64 6 57 1 9 29 12 1 22 42 47 7 14 9 S. 4 37 44 7 1 22 23 11 56 45 14 18 22 8 23 25 14 S. 1 59 25 N. 39 37 8 2 9 15 16 32 40 18 38 8 9 7 45 N. 3 18 14 5 55 21 9 2 59 15 20 33 6 22 15 47 10 51 19 8 29 50 11 28 10 3 52 51 23 44 16 24 56 29 11 1 36 56 13 25 59 15 44 66 11 4 49 54 26 50 29 26 24 16 12 2 25 31 17 55 46 19 56 40 12 6 49 38 26 36 5 26 24 33 13 3 17 46 21 45 42 23 20 45 13 6 50 36 25 48 44 24 48 16 14 4 13 55 24 39 34 25 39 62 14 7 51 12 23 23 29 21 36 22 15. 5 13 26 26 19 30 26 36 31 16 8 50 13 19 25 32 16 66 12 16 6 14 58 26 29 25 25 57 18 16 9 47 12 14 10 11 9 57 17 7 16 39 24 59 55 23 37 60 17 10 42 22 7 59 19 N. 4 41 27 18 8 16 47 21 52 18 19 45 16 18 11 36 27 N. 1 19 48 S. 2 2 17 19 9 14 28 17 19 11 14 36 54 19 12 30 20 S. 5 21 30 8 34 42 20 10 9 35 11 41 29 8 36 7 20 13 24 66 11 38 58 14 31 33 21 11 2 47 N. 5 23 59 N. 2 8 10 21 14 20 60 17 9 55 19 31 61 22 11 54 59 S. 1 8 19 S. 4 22 38 22 16 18 13 21 35 22 23 18 51 23 12 47 15 7 32 5 10 34 7 23 16 16 37 24 41 2 26 41 3 1 24 13 40 32 13 26 18 16 6 22 24 17 15 2 26 18 31 26 33 29 25 14 35 28 18 32 10 20 41 41 25 18 12 14 26 26 24 25 58 12 26 15 32 11 22 33 8 24 4 66 26 19 7 6 26 10 6 24 3 34 2V 16 30 10 25 15 51 26 4 57 ■27 19 69 2 22 40 18 21 2 4 28 17 28 20 26 31 49 26 36 24 28 20 47 57 19 10 39 17 7 50 1 29 18 25 19 26 19 12 25 41 7 29 21 34 12 14 66 21 12 34 52 30 19 19 57 24 43 25 23 27 40 30 22 18 24 10 7 55 7 36 2 31 20 11 35 S.21 65 40 S.20 9 16 31 23 1 17 S. 5 37 S. 2 23 1 283 THE MOON'S EIGHT ASOENSION AND DECLINATION. SEPTEMBER, 1S60. OCTOBER, 1§60. MEAN TIME. MEAN TIME. EIGHT ASCENSION. DECLINATION. EIGHT ASCENSION. DECLINATION. Day. Midnight. NoQn. Midnight. Day. Midnight. Noon. Midnight. 10 11 12 13 14 15 ]6 17 18 19 20 21 22 23 24 25 26 27 28 29 30 h. m. s. 23 43 42 26 28 1 10 24 1 56 17 2 44 49 8 36 25 4 31 7 5 28 25 6 27 17 7 26 27 8 24 61 9 21 62 10 17 33 11 12 26 12 7 20 13 3 4 14 16 14 59 6 15 59 4 16 59 4 17 57 43 18 53 48 .19 46 40 20 36 16 21 22 68 22 7 27 22 60 31 23 33 15 44 69 30 N. 15 29 5 30 7 10 33 20 15 14 48 19 23 21 22 46 32 25 10 45 26 22 17 26 9 28 24 26 31 21 10 46 16 33 42 10 60 17 N. 4 22 20 S. 2 24 13 16 20 1 35 2 21 2 1 23 41 25 25 48 58 26 21 57 26 26 5 23 13 8 19 57 40 15 54 21 11 16 37 6 16 21 S. 1 4 14 N. 4 9 40 N. 9 15 15 N, 2 53 37 8 3 47 12 57 28 17 23 57 21 11 27 24 6 53 25 56 24 26 27 25 29 3 22 59 8 19 1 41 13 49 2 7 40 19 N. 59 40 S. 5 45 48 12 8 10 17 41 11 22 2 41 24 57 4 26 17 6 26 4 30 24 28 22 21 42 17 18 1 7 13 39 8 48 37 S. 3 41 8 N. 1 33 7 6 44 8 N.ll 41 39 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 h. m. s. 1 45 3 2 32 59 3 23 41 4 17 9 5 12 64 6 10 3 7 7 28 8 4 14 8 59 48 9 64 16 10 48 6 11 42 7 12 37 17 13 34 20 14 33 38 15 34 51 16 36 49 17 37 63 18 36 24 19 31 23 20 22 36 21 10 26 21 55 36 22 39 23 21 34 4 12 47 46 1 33 6 2 20 46 3 11 15 4 4 30 N.14 1 67 18 18 16 21 61 42 24 29 11 25 68 3 26 7 58 24 52 53 22 12 34 18 12 56 13 6 28 7 6 21 N. 36 52 S. 6 1 67 12 20 17 17 51 30 22 10 22 24 58 13 26 6 35 25 38 16 23 45 8 20 43 36 16 60 29 12 20 44 7 26 51 S. 2 19 20 N. 2 62 17 7 68 36 12 49 30 17 13 34 20 57 56 N.23 48 51 N.16 14 40 20 11 10 23 18 16 26 22 55 26 13 22 26 41 13 23 43 9 20 22 4 15 46 47 10 11 11 N. 3 53 36 S. 2 43 46 9 15 18 15 13 27 20 11 20 23 46 28 26 44 55 26 3 56 24 51 20 22 21 51 18 52 30 14 39 22 9 56 7 S. 4 54 11 N. 16 32 5 26 43 10 26 40 15 5 39 19 11 33 22 30 56 N.24 50 2 284 THE MOON'S EIGHT ASCENSION AND DECLINATION. [ IVOTX:iTIBER, 1860. DECEMBER, 1§60 MEAN TIME; MEAN TIME. EIGHT ASOENSION. DECLINATION. EIGHT ASCENSION. DECLINATION. Day. Midnight. Noon. Midnight. Day. Midnight. Noon. Midnight. [ h. m. s. o / // o / // h. m. s. o / // o / // 1 5 2 N.25 33 N.25 56 32 1 7 36 54 N.23 12 53 N.21 ■40 57 2 5 56 50 25 59 41 25 41 56 2 8 31 54 19 50 43 17 43 52 • 3 6 63 44 25 3 7 24 3 29 3 9 24 56 15 22 18 12 48 2 4 7 49 42 22 43 42 21 4 45 4 10 16 26 10 3 11 7 9 52 5 8 44 11 19 7 55 16 54 42 5 11 7 12 N. 4 10 16 N. 1 6 38 6 9 37 12 14 26 49 11 46 7 6 11 58 18 S. 1 58 46 S. 5 3 34 V 10 29 17 8 54 39 N. 5 54 31 7 12 50 48 8 5 17 11 1 20 : 8 11 21 18 N. 2 48 2 S. 22 21 8 13 45 39 13 49 3 16 26 35 9 12 14 17 S. 3 34 6 44 4 9 14 43 24 18 48 8 20 53 55 10 13 9 12 9 49 35 12 47 22 10 15 43 62 22 40 18 24 5 1 11 14 6. 47 15 34 11 18 6 46 11 16 45 57 25 6 17 25 42 56 ; 12 15 7 9 20 22 22 17 1 12 17 47 48 25 54 34 25 41 35 13 16 9 31 23 49 25 24 57 27 13 18 47 ^8 25 5 4 24 6 43 14 17 12 U 25 40 6 25 57 9 14 19 43 37 22 48 41 21 13 22 15 18 13 18 25 49 13 25 17 37 15 20 35 48 19 23 14 17 20 44 16 19 11 6 24 24 13 23 11 15 16 21 24 21 15 8 8 12 47 34 17 20 4 53 21 41 6 19 56 10 17 22 9 59 10 20 53 7 49 47 18 20 54 44 17 58 50 15 51 11 18 22 53 42 5 15 43 S. 2 40 1 19 21 41 20 13 35 12 11 12 37 19 23 36 30 S. 3 52 N. 2 31 36 20 22 25 35 8 44 57 6 13 36 20 19 25 N. 5 5 21 7 36 18 21 23 8 29 S. 3 39 49 S. 1 4 45 21 1 3 24 10 3 21 12 25 22 22 23 51 3 N. 1 30 32 N. 4 4 55 22 1 49 23 14 41 3 16 49 4 23 34 15 6 37 19 9 6 34 23 2 38 7 18 47 53 20 35 51 24 1 19 11 31 27 13 50 37 24 3 30 3 22 11 10 23 32 1 25 2 6 5 16 2 36 18 5 49 25 4 25 8 24 36 30 25 22 49 26 2 56 4 19 58 34 21 39 1 26 5 22 42 25 49 21 25 54 48 27 3 49 8 23 5 20 24 15 40 27 6 21 26 25 38 17 24 59 25 28 4 44 53 25 8 18 25 41 42 28 7 19 60 23 58 22 22 35 54 29 5 42 20 25 54 39 25 46 21 29 8 16 41 20 53 17 18 52 11 30 6 40 7 N.25 16 26 N.24 25 4 30 9 11 25 16 34 40 14 2 58 31 10 4 11 N.ll 19 30 N. 8 26 45 285 I860. ^T GEEENWIOH MEAN NOON. 1860. JAWIJARY. FEBRVARY. MARCH. a THE MOON'S Afe. Noon. Meridian •a THE MOON'S Age. Noon. Meridian THE MOON'S Meridian Passeg'-. Sun. Mon. Tues. Wed, Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Y 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 d. 8-4 9-4 10-4 4 11-4 5 12-4 6 13-4 14-4 15-4 16-4 17-4 18-4 19-4 20-4 21-4 22-4 23-4 24-4 25-4 26-4 27-4 28-4 29-4 0-5 1-5 9-5 h. m. 6 1-7 6 45-3 7 32-8 8 25-1 9 22-5 10 24-2 11 27-9 12 30-6 13 30-1 14 25-6 15 17-6 16 7-2 16 55-7 17 44-5 18 34-5 19 26-2 20 19-6 21 13-9 22 7-7 22 59-8 23 49-0 6 35-2 1 18-5 1 59-5 2 39-2 3 18-4 3 68-3 4 39-9 6 24-5 6 13-1 AYed. Thur. Fri. Sat.' Sun. Mon. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Tues. 7 Wed. 8 Thur. d. 9-5 10-5 11-5 12-5 13-5 14-5 15-5 16-5 17-5 18-5 19-5 20-5 21-5 22-5 23-6 24-5 25-5 26-5 27-5 28-5 29-5 h. m. 7 6-4 8 4-4 9 5-8 10 11 12 13 8-4 9-7 8-0 3-2 ">'7 .1-6 22 0-7 23 1-7 24 2-7 25 3-7 26 4-7 27 5-7 28 6-7 29 7-7 30 8-7 15 37-3 16 28-6 17 21-2 18 15-1 19 9-7 20 3-8 20 66-3 21 46-1 22 32-9 23 16-9 23 58-5 6 38-6 1 18-0 1 57-6 2 38-5 3 21-6 4 8-0 4 58-3 5 52-6 6 50-5 Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 d. 8-7 9-7 10-7 11-7 12-7 13-7 14-7 15-7 16-7 17-7 18-7 19-7 20-7 21-7 22-7 23-7 24-7 25-7 26-7 27-7 28-7 29-7 0-9 1-9 2-9 3-9 4-9 5-9 6-9 7-9 8-9 9-9 h. m. 6 50-5 7 50-5 8 50-4 9 48-8 10 44-8 11 38-6 12 31-0 13 23-1 14 15-8 15 9-9 16 5-4 17 1-6 17 57-4 18 51-4 19 42-6 20 30-4 21 15-1 21 57-4 22 37-9 23 17-5 23 57-2 6 37-9 1 20-6 2 6-1 2 55-1 3 47-7 43 41' 39 36 31-1 286 I860. AT GREENWICH MEAN NOON. 1860. APRII i* MAY. JUWE. M ■S . ■i 1 M 5 § THE MOON'S o THE MOON'S P O THE MOON'S 1 o 03 Ih-i o ..ft o o ■ ^ O a 03 (4-1 a 4 Age.- Meridian . Passage. Age. Meridian , Passage. Age. Meridian , Passage. . u-^<^on. Jfoon. Mon. d. • h. m. d. h. m. d. h. m. Sun. 1 9-9 8 31-1 Tues. 1 10-3 8 56-2 Fri. 1 11-7 10 17-5 Mon. 2 10-9 9 23-9 Wed. 2 11-3 9 46-6 Sat. 2 12-7 11 14-8 Tues. 3 11-9 10 15-6 Thur. 3 12-3 10 38-7 Sun. 3 13-7 12 13-2 Wed. 4 12-9 11 7-0 Fri. 4 13-3 11 33-4 Mon. 4 14-7 13 10-6 Thur. 5 13-9 11 59-4 Sat. 5 14-3 12 30-5 Tues. 5 15-7 14 5-3 Fri. 6 14-9 12 53-5 Sun. 6 15-3 13 29-2 Wed. 6 16-7 14 56-3 Sat. Y 15-9 13 49-7 Mon. 7 16-3 14 27-6 Thur. 7 17-7 15 43-3 Sim. 8 16-9 14 47-3 Tues. 8 17-3 15 23-8 Fri. 8 18-7 16 26-9 Mon. 9 17-9 15 45-3 Wed. 9 18-3 16 16-4 Sat. 9 19-7 17 8-1 Tnes. 10 18-9 16 41-8 Thur. 10 19-3 17 5-0 Sun. 10 20-7 17 47-9 Wed. 11 19-9 17 35-4 Fri. 11 20-3 17 50-0 Mon. 11 21-7 18 27-5 Thur. 12 20-9 18 25-3 Sat. 12 21-3 18 32-2 Tues. 12 22-7 19 8-0 Fri. 13 21-9 19 11-6 Sim. 13 22-3 19 12-5 Wed. 13 23-7 19 50-6 1 Sat. 14 22-9 19 54-9 Mon. 14 23-8 19 52-1 Thur. 14 24-7 20 36-3 Sun. 15 23-9 20 36-0 Tues. 15 24-3 20 32-1 Fri. 15 25-7 21 25'9 Mon. 16 24-9 21 15-8 Wed. 16 25-3 21 13-5 Sat. 16 26-7 22 19-9 Tues. 17 25-9 21 55-4 Thur. 17 26-3 21 57-6 Sim. 17 27-7 23 17-6 Wed. 18 26-9 22 35-9 Fri. 18 27-3 22 45-0 Mon. 18 28-7 6 Thur. 19 27-9 23 18-2 Sat. 19 28-3 23 36-5 Tnes. 19 0-3 17-3 Fri. 20 28-9 6 Sun. 20 29-3 6 Wed. 20 1-3 1 16-9 Sat. 21 0-3 3-2 Mon. 21 0-7 31-8 Thur. 21 2-3 2 14-3 Sun. 22 1-3 51-6 Tues. 22 1-7 1 29-7 Fri. 22 3-3 3 8-7 Mon. 23 2-3 1 43-7 Wed. 23 2-7 2 28-4 Sat. 23 4-3 4 0-2 Tues. 24 3-3 2 39-1 Thur. 24 3-7 3 20-0 St(n. 24 5-3 4 49-7 Wed. 25 4-3 3 36-5 Fri. 25 4-7 4 21-0 Mon. 25 6-3 5 38-3 Thur. 26 5-3 4 34-1 Sat. 26 5-7 5 13-2 Tnes. 26 7-3 6 27-3 Fri. 27 6-3 5 30-4 Sun. 27 6-7 6 3-1 Wed. 27 8-3 7 17-8 Sat. 28 7-3 6 24-4 Mon. 28 7-7 6 51-8 Thur. 28 9-3 8 10-7 Sun. 29 8-3 7 16-2 Tues. 29 8-7 7 40-5 Fri. 29 10-3 9 6-2 Mon. 30 9-3 8 6-5 Wed. Thur. 30 31 9-7 10-7 8 30-4 9 22-6 Sat. 30 . VP. IX>. Month. Position. ■ o / // o / // / // / /' 17 Saturn W. 89 23 57 91 1 25 92 38 40 94 15 40 Regulus ^V. 86 2 40 87 39 41 89 16 28 90 53 Spica w. 32 4 6 33 40 45 35 17 11 36 53 25 Sdn '3. 62 54 15 61 24 49 59 55 36 58 26 38 18 Saturn ( w. 102 17 18 103 52 59 105 28 27 107 3 43 Spica ^ w. 44 51 31 46 26 33 48 1 23 ^49 36 2 Mars w. 15 36 32 17 33 18 25 24 19 50 61 Sdn E. 51 5 11 49 37 33 48 10 6 46 42 52 19 Spica W. 57 26 31 59 6 60 33 30 62 6 45 Mars w. 27 2 52 28 29 41 29 56 34 31 23 27 Sun E. 39 29 33 38 3 26 36 37 30 35 11 43 25 Sun W. 27 1 32 28 22 35 29 43 37 31 4 37 a Arietis E. 64 51 62 32 33 61 4 17 59 86 3 Aldebaran E. 96 13 2 94 45 47 93 18 33 91 51 19 26 Sun W. 37 49 33 39 10 33 40 31 35 41 52 38 a Arietis E. 62 15 13 50 47 5 49 18 58 47 50 60 Aldebaran E. 84 35 21 83 8 10 81 40 58 80 13 45 27 Sun W. 48 38 28 49 59 48 61 21 13 52 42 42 Venus W. 19 59 36 21 18 3 22 36 41 23 56 30 a Arietis E. 40 30 5 39 1 53 37 33 40 36 6 25 Aldebaran E. 72 57 21 71 29 58 70 2 33 68 35 5 Jupiter E. 112 38 57 111 9 9 109 39 18 108 9 22 28 Sun W. 59 31 36 60 53 44 62 16 63 38 24 Venus W. 30 32 16 31 52 8 33 12 11 34 32 24 Aldebaran E. 61 16 52 59 49 2 68 21 7 56 53 7 Jupiter E. 100 38 13. 99 7 38 97 36 56 96 6 6 Pollux E. 103 20 49 101 51 26 100 21 56 98 52 15 29 Sun W. 70 32 56 71 56 24 73 20 4 74 43 57 Venus W. 41 16 25 42 37 60 43 59 29 46 21 21 Aldebaran E. 49 31 55 48 3 26 46 34 52 46 6 14 Jupiter E. 88 29 25 86 67 31 85 25 26 83 53 7 Pollux E. 91 21 25 89 50 42 88 19 46 86 48 37 30 Sun W. 81 46 59 83 12 22 84 38 2 86 4 Venus W. 52 14 29 53 37 56 66 1 38 56 25 39 a Pegasi w. 41 31 7 42 55 68 44 21 31 45 47 46 Aldebaran E. 37 42 17 36 13 26 34 44 36 33 15 51 Jupiter Pollux E. 76 8 3 74 34 15 73 11 71 25 61 E. 79 9 22 77 36 46 76 3 51 74 30 40 Saturn E. 111 47 16 110 13 49 108 40 5 107 6 4 01 Sun W. 93 18 28 94 46 22 96 14 38 97 43 15 Venus W. 63 30 30 64 66 29 66 22 50 67 49 33 a Pegasi Jupiter Pollux W. 53 8 7 54 37 55 66 8 16 57 39 10 E. 63 29 26 61 53 9 60 16 32 58 39 33 E. 66 40 12 66 5 8 63 29 43 61 53 58 Saturn E. 99 11 15 97 35 17 96 58 58 94 22 17 294 JANUARY, 1860. 1l- Day of the Month. 18 19 25 26 21 28 29 30 31 GEEENWICH MEAN TIME. v^ LUNAE DISTANCES. Star's Name and Position. Saturn Regulus Spica Sun Saturn Spica Mars Sun Spica Mars Sun Sun a Arietis Aldebaran Sun a Arietis Aldebaran Sun Venus . a Arietis Aldebaran Jupiter Sun Venus Aldebaran Jupiter Pollux Sun Venus Aldebaran Jupiter Pollux Sun Venus a Pegasi Aldebaran Jupiter Pollux Saturn Sun Venus a Pegasi Jupiter Pollux Saturn W. W. W. E. W. W. W. E. W. w. E. W. E. E. W. E. E. W. W. E. E. E. W. W. E. E. E. W. W. E. E. E. W. W. W. E. E. E. E. W. W. W. E. E. E. Midnight. 95 52 26 92 29 19 38 29 26 56 57 54 108 38 47 51 10 29 21 16 46 45 15 50 63 39 50 32 50 19 33 46 7 32 25 37 58 7 51 90 24 7 43 13 43 46 22 43 78 46 31 54 4 16 25 14 30 34 37 8 67 7 34 106 39 20 65 58 35 52 49 55 25 3 94 35 6 97 22 26 76 8 4 46 43 28 43 37 32 82 20 36 85 17 15 87 30 15 57 49 58 38 14 12 12 105 31 45 47 14 31 47 69 51 72 57 12 14 69 16 38 59 10 35 67 2 12 17 51 45 13 99 60 92 97 28 59 94 5 24 40 5 15 55 29 24 110 13 39 52 44 46 22 43 43 48 69 65 12 45 34 17 10 32 20 41 33 46 36 56 39 40 88 56 55 44 34 50 44 54 35 77 19 16 56 25 56 26 33 41 33 8 49 65 39 59 105 9 13 66 23 42 37 13 25 63 56 53 93 3 56 95 52 26 77 32 25 48 5 50 42 8 47 80 47 50 83 45 39 88 56 49 59 14 37 48 42 7 30 18 47 68 16 14 71 23 26 103 57 7 Or 100 41 70 44 60 42 31 55 24 29 58 41 91 7 36 6 22 47 98> 5 18 95^41 15 41 40 52 64 M 6 111 48 20 54 VS 52 24 9 29 42 22 19 66 46 31 35 43 59 30 65 24 36 7 35 55 11 30 87 29 43 45 56 59 43 26 26 75 51 59 56 47 42 27 53 3 31 40 30 64 12 21 103 39 67 46 36 38 34 12 52 28 38 91 32 36 94 22 16 78 57 1 49 28 27 40 39 68 79 14 49 82 13 49 90 23 42 60 39 35 50 10 12 28 60 33 66 40 68 69 49 21 102 22 9 102 11 22 72 11 57 62 14 69 63 46 23 67 4 31 89 29 57 100 41 25 97 16 63 43 16 17 62 33 2 113 22 52 65 52 47 26 36 7 40 55 51 68 18 8 37 10 45 29 30 17 36 28 34 63 43 21 86 2 32 47 17 12 41 58 16 74 24 41 58 9 36 29 12 34 30 12 10 62 44 39 102 8 40 69 9 40 39 56 12 51 19 90 1 6 92 51 56 80 21 52 60 51 20 39 11 8 77 41 34 80 41 43 50 55 4 52 61 38 53 27 22 33 5 22 14 56 91 62 65 68 100 46 62 103 41 31 73 40 12 47 59 7 63 52 55 27 63 18 87 61 44 FEBRUARY, 1860. 295 GEEENWIOH MEAN TI\fE. LUNAR DISTANCES. Day of the Star's Name and Noon. III''. VP'. IX". Month. Position. / n / It o / // / // 1 Sun W. 105 12 4 106 43 2 108 14 25 109 46 13 Venus W. 75 8 52 76 37 67 78 7 26 79 37 20 a Pegasi W. 65 21 27 66 55 28 68 29 58 70 4 58 a Arietis W. 21 49 30 23 25 50 25 2 49 26 40 26 Jupiter E. 50 28 59 48 49 41 47 9 59 45 29 52 Pollux E. 53 49 42 52 11 43 50 33 20 48 64 35 Saturn E. 86 13 1 84 34 5 82 54 38 81 14 46 Regulus E. 90 40 17 89 1 47 87 22 54 86 43 36 2 Sun W. 117 31 46 119 6 12 120 41 6 122 16 27 Venus W. 87 13 20 88 45 53 90 18 52 91 62 19 a Pegasi w. 78 7 23 79 45 20 81 23 45 83 2 39 a Arietis w. 34 57 15 36 38 17 38 19 49 40 1 63 Jupiter E. 37 2 53 35 20 11 33 37 3 81 53 29 Pollux E. 40 34 51 38 53 43 37 12 15 35 30 20 Saturn E. 72 48 55 71 6 25 69 23 27 67 40 2 Eegulus E. 77 20 30 75 38 32 73 56 9 72 13 17 3 Sun W. 130 20 6 131 58 13 133 36 47 135 15 48 Venus W. 99 46 19 101 22 29 102 59 6 104 36 9 a Pegasi W. 91 24 4 93 5 41 94 47 43 96 30 10 a Arietis W. 48 39 48 50 24 53 52 10 25 53 56 26 Aldebaran W. 18 59 8 20 29 4 22 1 40 23 36 27 Pollux E. 26 55 57 25 12 15 23 28 22 21 44 24 Saturn E. 58 56 11 57 10 3 65 23 28 53 36 26 Regulus E. 63 32 7 61 46 31 60 28 58 13 59 4 Venus W. 112 47 52 114 27 27 ' 116 7 26 117 47 47 a Pegasi w. 105 8 6 106 52 44 108 37 39 110 22 50 a Arietis w. 62 53 25 64 42 8 66 31 16 68 20 47 Aldebaran w. 31 54 24 33 37 32 36 21 37 37 6 32 Saturn E. 44 34 53 42 45 20 40 65 24 39 5 6 Regulus Spica E. 49 15 47 25 57 45 36 31 43 46 42 E. 103 17 54 101 28 54 99 39 29 97 49 40 6 a Arietis W. 77 34 3 79 25 44 81 17 43 83 10 Aldebaran w. 46 1 28 47 50 12 49 39 24 51 29 3 Saturn E. 29 48 27 27 56 14 26 3 47 24 11 7 Regulus E. 34 32 14 32 40 23 30 48 15 28 65 52 Spica E. 88 35 6 86 43 11 84 50 57 82 58 27 6 a Arietis W. 92 35 1 94 28 37 96 22 22 98 16 16 Aldebaran W. 60 42 50 62 84 29 64 26 22 66 18 27 Jupiter Pollux w. 21 23 47 23 18 8 25 12 42 27 7 26 w. 18 12 39 20 2 47 21 63 40 23 46 11 Spica Mars E. 73 32 20 71 38 31 69 44 33 67 50 27 E. 115 18 34 113 29 44 111 40 44 109 51 34 T Aldebaran W. 75 40 56 77 33 39 79 26 23 81 19 7 Jupiter Pollux W. 36 42 47 38 38 40 33 13 42 28 24 W. 33 8 58 35 1 48 36 65 14 38 48 43 Spica Mars E. 58 18 46 56 24 21 64 29 67 62 36 36 E. 100 44 17 98 54 42 97 5 7 95 15 34 Antares E. 104 6 16 102 11 89 100 17 2 98 22 27 296 I'EBRUARY, 1860. GEEENWICH MEAN TnVTF,. LUNAR DISTANCES. Day of Star's Name the and Midnight. XVi. XVIIP. XXp. Month. Position. 1 Sun W. o / // 111 18 27 o / // 112 61 7 O i // 114 24 13 O / // 116 67 46 Venus w. 81 1 39 82 38 25 84 9 37 85 41 16 a Pegasi w. 11 40 27 73 16 27 74 52 57 76 29 65 a Arietis w. 28 18 39 29 57 27 31 36 49 33 16 46 Jupiter E. 48 49 20 42 8 22 40 26 58 38 45 9 Pollux E. 47 15 25 45 35 52 43 56 56 42 15 35 Saturn E. 79 34 28 77 63 44 76 12 34 74 30 58 Regulus E. 84 3 50 82 23 40 80 43 3 79 2 2 Sun W. 123 52 16 125 28 32 127 6 16 128 42 27 Venus W. 93 26 12 95 33 96 35 21 98 10 37 a Pegasi W. 84 42 1 86 21 61 88 2 9 89 42 53 a Arietis W. 41 44 28 43 27 33 45 11 8 46 56 13 Jupiter E. 30 9 28 28 26 2 26 40 10 24 54 62 Pollux E. 33 48 6 32 5 31 30 22 37 28 39 25 - Saturn E. 65 56 10 64 11 51 62 27 5 60 41 52 Eegulus E. 70 29 57 68 46 10 67 1 66 65 17 16 3 Sun W. 136 55 15 138 35 8 140 15 28 141 56 13 Venus W. 106 13 38 107 51 33 109 29 54 111 8 41 a Pegasi W. 98 13 1 99 56 15 101 39 51 103 23 48 a Arietis w. 55 42 55 57 29 52 59 17 17 61 5 8 Aldebaran w. 25 13 10 26 51 29 28 31 15 30 12 15 Pollux E. 20 27 18 16 41 16 33 18 14 50 28 Saturn E. 51 48 59 50 1 5 48 12 46 46 24 2 Regulus E. 56 27 3 64 39 41 52 61 53 61 3 39 4 Venus W. 119 28 31 121 9 36 122 51 1 124 32 46 a Pegasi W. 112 8 17 113 53 58 115 39 60 117 26 52 a Arietis W. 70 10 42 72 1 73 51 40 75 42 41 Aldebaran W. 38 62 13 40 38 36 42 25 38 44 13 16 Saturn E. 37 14 25 35 23 24 33 32 4 31 40 24 Regulus E. 41 56 29 40 6 55 38 16 1 36 23 47 Spioa E. 95 59 28 94 8 54 92 17 58 90 26 42 5 a- Arietis W. 85 2 32 86 56 20 88 48 21 90 41 35 Aldebaran W. 53 19 7 65 9 33 57 20 58 61 27 Saturn E. 22 18 16 20 25 19 18 32 17 16 39 14 Regulus E. 27 3 15 25 10 26 23 17 26 21 24 17 Spica E. 81 6 41 79 12 40 77 19 25 76 25 58 6 a Arietis W. 100 10 15 102 4 19 103 58 28 106 52 39 Aldebaran W. 68 10 43 70 3 7 71 55 38 73 48 15 Jupiter W. 29 2 19 30 57 19 32 52 26 34 47 35 Pollux W. 25 37 12 27 29 37 29 22 20 31 16 18 Spica E. 65 56 14 64 1 57 62 7 36 60 13 11 Mars E. 108 2 16 106 12 52 104 23 23 102 33 51 1 Aldebaran W. 83 11 48 85 4 25 86 66 57 88 49 22 Jupiter W. 44 23 32 46 18 36 48 13 34 50 8 26 Pollux W. 40 42 13 42 35 44 44 29 12 46 22 37 Spioa E. 50 41 20 48 47 9 46 53 4 44 69 9 Mars E. 93 26 3 91 36 37 89 47 17 87 58 6 ' Antares E. 96 27 56 94 33 29 92 39 9 90 44 65 FEBRUARY, 1860. 297 GEEENWICH MEAN TIME. LUNAR DISTANCES. Day of Star's Name and Noon. nil'. VI'. IXK ' Month. Position. o ; /; / // / // Q i II 8 Aldebaran W. 90 41 39 92 33 46 94 25 42 96 17 26 Jupiter W. 52 3 8 53 57 41 65 62 4 67 46 15 Pollux W. 48 15 57 50 9 10 52 2 14 63 55 9 Saturn W. 16 17 11 18 10 31 20 3 51 21 67 10 Spica E. 43 5 23 41 11 48 39 18 26 37 25 16 Mars E. 86 9 1 84 20 6 82 31 22 80 42 49 Antares E. 88 50 50 86 66 55 86 3 10 83 9 87 9 Jupiter W. 67 13 38 69 6 15 70 58 36 72 50 36 Pollux w. 63 16 32 65 8 3 66 69 16 68 60 11 Saturn w. 31 21 40 83 13 54 35 5 62 36 57 88 Regulus w. 26 14 51 28 6 82 29 67 67 31 49 4 Spica E. 28 3 43 26 12 26 24 21 33 22 31 7 Mars E. 71 43 43 69 56 45 68 10 6 66 23 46 Antares E. 73 45 27 71 53 27 70 1 46 68 10 23 10 Jupiter W. 82 5 23 83 55 13 86 44 40 87 38 42 Pollux W. 77 59 39 79 48 27 81 36 52 83 24 68 Saturn w. 46 11 1 48 39 49 49 54 51 38 46 Regulus w. 40 59 44 42 48 47 44 37 27 46 25 44 Mars E. 57 37 35 66 53 32 64 9 63 52 26 39 Antares E. 58 58 44 57 9 32 65 20 43 63 32 18 Sun E. 132 14 24 130 32 45 128 51 30 127 10 89 11 Jupiter W. 96 32 40 98 19 12 100 5 18 101 50 68 Saturn W. 60 36 58 62 23 24 64 9 21 66 64 55 Regulus W. 56 21 7 57 6 57 68 52 22 60 37 22 Mars E. 43 57 12 42 16 41 40 36 40 38 57 7 Antares E. 44 36 25 42 60 30 41 5 39 19 55 Sun E. 118 52 34 117 14 12 115 36 16 113 58 46 12 Saturn W. 74 36 27 76 19 80 78 2 8 79 44 22 Regulus W. 69 16 70 68 29 72 40 33 74 22 12 Spica W. 15 26 6 17 6 64 18 47 36 20 28 7 Antares E. 30 40 64 28 -68 22 27 16 14 25 34 31 Mars E. 80 47 4 29 10 40 27 34 52 25 59 40 Sun E. 105 57 .33 104 22 34 102 48 101 18 61 13 Saturn W. 88 9 33 89 49 26 91 28 56 93 8 3 Regulus W. 82 44 30 84 28 48 86 2 44 87 41 18 Spica W. 28 46 47 30 25 36 32 4 6 33 42 17 Sun E. 93 29 3 91 57 16 90 25 51 88 54 48 14 Saturn W. 101 18 27 102 55 31 104 32 16 106 8 41 Regulus Spica Sun W. 95 48 48 97 25 18 99 1 28 100 37 21 w. 41 48 21 43 24 37 45 35 46 36 16 E. 81 24 49 79 65 50 78 23 10 76 68 49 15 Saturn W. 114 6 30 115 41 14 117 15 42 118 49 64 Spica Sun W. 64 30 25 66 4 27 67 38 14 59 11 46 E. 69 41 27 68 14 48 66 48 25 65 22 17 16 Spica Antares w. 66 56 4 68 28 17 70 19 71 82 9 w. 21 3 51 22 36 13 24 8 28 25 40 22 Mars w. 19 40 36 21 6 25 22 30 25 28 56 88 298 FEBRUARY, 1860. GEEEIsTWICH MEAN TIME. LUNAR ] DISTANCES. Day of the Month. Star's Name and Position. Midnight. X.VK XTIIIi". XXTt. 8 Aldcbaran W. / // 98 8 57 O / fi 100 13 101 51 12 O / // 103 41 54 Jupiter W. 59 40 13 61 33 57 63 27 26 65 20 40 Pollux w. 55 47 53 57 40 24 59 32 42 61 24 45 Saturn w. 23 50 24 25 43 30 27 36 26 29 29 10 Spica E. 35 32 22 33 39 44 31 47 24 29 55 23 Mars E. 78 54 29 77 6 23 75 18 33 73 30 59 Antares E. 81 16 17 79 23 11 77 30 20 75 37 45 9 Jupiter W. 74 42 16 76 33 35 78 24 34 80 15 10 Pollux W. 70 40 46 72 31 1 74 20 55 76 10 28 Saturn w. 38 48 55 40 39 57 42 30 39 44 21 1 Regulus w. 33 39 52 35 30 21 37 20 30 39 10 18 Spica E. 20 41 10 18 51 46 17 2 58 15 14 54 Mars E. 64 37 47 62 52 10 61 6 55 59 22 3 Antares E. 66 19 20 64 28 38 62 38 18 60 48 20 10 Jupiter W. 89 22 19 91 10 32 92 58 20 94 45 43 Pollux W. 85 12 30 86 59 42 88 46 30 90 32 54 Saturn W. 53 27 13 55 15 15 57 2 64 58 50 9 Regulus W. 48 13 38 50 1 7 51 48 12 53 34 52 Mars E. 50 43 52 49 1 31 47 19 36 45 38 10 Antares E. 51 44 18 49 56 42 48 9 32 46 22 46 Son E. 125 30 13 123 50 11 122 10 34 120 31 21 11 Jupiter W. 103 36 13 105 21 2 107 5 26 108 49 25 Saturn W. 67 40 4 69 24 47 71 9 5 72 52 59 Regulus W. 62 21 66 64 6 4 65 49 48 67 33 7 Mars E. 37 18 4 35 39 32 34 1 31 32 24 1 Antares E. 37 35 16 35 51 2 34 7 14 32 23 52 Sun E. 112 21 41 110 45 1 109 8 46 107 32 57 12 Saturn W. 81 26 12 83 7 38 84 48 40 86 29 18 Regulus W. 76 3 27 77 44 18 79 24 45 81 4 49 Spica W. 22 8 25 23 48 27 25 28 12 27 7 39 Antares E. 23 S3 12 22 12 18 20 31 47 18 51 40 Mars E. 24 25 6 22 51 14 21 18 6 19 45 47 SnN E. 99 40 6 98 6 45 96 33 48 95 1 14 13 Saturn W. 94 46 50 96 25 15 98 3 19 99 41 3 Regulus W. 89 19 30 90 57 20 92 34 49 94 11 59 .I* Spica W. 35 20 8 36 57 39 38 34 52 40 11 46 Son E. 87 24 6 85 53 46 84 23 47 82 54 8 14 Saturn W. 107 44 49 109 20 40 110 56 14 112 31 30 Regulus W. 102 12 54 103 48 10 105 23 8 106 57 50 Spica W. 48 11 39 49 46 45 51 21 34 52 56 8 Sun E. 75 30 46 74 3 1 72 35 33 71 8 22 15 Saturn W. 120 23 52 121 57 35 123 31 5 125 4 21 Spica W. 60 45 5 62 18 10 63 51 1 65 23 39 Sun E. 63 56 24 62 30 45 61 5 20 59 40 8 16 Spica W. 73 3 49 74 35 19 76 6 39 77 37 48 Antares w. 27 12 10 28 43 47 30 15 14 31 46 31 Mars w. 25 20 46 26 46 1 28 11 18 29 36 34 FEBRUARY, 1860. 299 GEEENWICH MEAN TIME. 1 LUNAK DISTANCES. S Day of the Star's Name and Noon. IIP. ri\ IXt. Month. Position. 16 Sun E. o / // 58 15 8 o / // 56 50 21 1 It 55 25 46 o / // 54 1 23 17 Spica W. 79 8 48 80 39 39 82 10 21 83 40 55 Antares W. 33 17 38 34 48 39 36 19 27 37 50 8 Mars W. 31 1 49 32 27 2 33 52 13 35 17 21 Sun E. 47 2 8 45 38 46 44 15 33 42 52 29 18 Spica W. 91 11 55 92 41 47 94 11 33 95 41 13 Antares W. 45 21 43 46 51 42 48 21 34 49 51 21 Mars W. 42 22 10 43 46 57 45 11 41 46 36 21 Sun E. 35 59 6 34 36 47 33 14 34 31 52 28 23 Sun W. 18 29 59 19 51 11 21 12 24 22 33 41 Aldebaran E. 75 56 42 74 29 10 73 1 86 71 34 Jupiter E. 113 14 46 111 45 23 110 15 58 108 46 30 24 Sun W. 29 21 15 30 43 5 32 5 33 27 1 Aldebaran E. 64 15 35 62 47 48 61 19 59 59 52 8 Jupiter E. 101 18 15 99 48 23 98 18 27 96 48 26 Pollux E. 106 23 21 104 54 9 103 24 54 101 55 83 25 Sun W. 40 18 42 41 41 23 43 4 18 44 27 11 Aldebaran E. 52 32 23 51 4 21 49 36 17 48 8 13 Jupiter E. 89 16 52 87 46 13 86 15 28 84 44 36 Pollux E. 94 27 13 92 57 13 91 27 5 89 56 50 Saturn E. 125 3 15 123 32 27 122 1 32 120 30 29 26 Sun W. 51 24 13 52 48 7 54 12 11 55 36 27 Venus W. 16 34 18 17 53 9 19 12 39 20 32 43 Aldebaran E. 40 47 47 39 19 46 37 51 48 36 23 56 Jupiter E. 77 8 3 75 36 16 74 4 19 72 82 11 Pollux E. 82 23 23 80 52 13 79 20 53 77 49 28 Saturn E. 112 53 1 111 21 1 109 48 52 108 16 32 27 Sun W. 62 40 44 64 6 15 65 31 59 66 57 58 Venus W. 27 19 52 28 42 28 30 5 25 31 28 42 Jupiter E. 64 48 87 63 15 16 61 41 42 60 7 54 Pollux K 70 8 57 68 36 14 67 3 18 65 30 8 Saturn E. 100 31 50 98 58 15 97 24 26 95 50 23 Eegulus E. 107 3 22 105 30 19 103 57 3 102 23 32 28 , Sun W. 74 11 47 75 39 23 77 7 16 78 85 27 Venus W. 38 30 13 39 55 31 41 21 11 42 47 10 Jupiter E. 52 15 2 50 39 38 49 3 58 47 28 1 Pollux E. 57 40 37 56 5 56 54 30 59 52 55 45 Saturn E. 87 56 13 86 20 32 84 44 85 83 8 20 Eegulus E. 94 32 4 92 56 56 91 21 81 89 45 48 29 Sun W. 86 1 11 87 31 21 89 1 51 90 82 43 V Venus W. 50 2 25 51 30 34 52 59 5 54 27 59 a Arietis w. 30 39 17 32 15 48 33 52 46 85 30 11 Jupiter E. 39 23 33 37 45 40 36 7 27 34 28 58 Pollux E. 44 65 12 43 18 12 41 40 53 40 8 16 Saturn E. 75 2 17 73 24 4 71 45 80 70 6 34 Eegulus E. 81 42 24 80 4 42 78 26 40 76 48 16 300 FEBRUARY, 1860. GEEENWICH MEAN TIME. LUNAR ] DISTANCES. 1 1 Day of Star's Name the and Midnight. XTt. XTIIIk. VXtl>. Month. 1 Position. 1 16 Sun E. O 1 It 52 37 11 51 13 10 O 1 II 49 49 19 O ' / // 48 25 39 17 Spica W. 85 11 21 86 41 41 88 11 53 89 41 57 Antares W. 39 20 42 40 51 8 42 21 27 43 51 38 Mars w. 36 42 26 38 7 27 39 32 25 40 67 19 Sun E. 41 29 33 40 6 45 38 44 5 37 21 32 18 Spica W. 97 10 47 98 40 16 100 9 41 101 39 1 Antares W. 51 21 3 52 50 39 54 20 11 65 49 38 Mars W. 48 58 49 25 32 50 50 3 52 14 30 Sun E. 30 30 29 29 8 35 27 46 47 26 25 4 23 Sun W. 23 55 1 25 16 26 26 37 56 27 69 32 Aldebaran E. 70 6 23 68 38 44 67 11 3 65 43 20 Jupiter E. 107 16 58 105 47 23 104 17 44 102 48 1 24 Sun W. 34 49 8 36 11 21 37 33 41 38 56 8 Aldebaran E. 58 24 15 56 56 20 55 28 23 54 24 Jupiter E. 95 18 19 93 48 7 92 17 48 90 47 23 Pollux E. 100 26 5 98 56 31 97 26 52 95 57 6 25 Sun W. 45 50 17 47 13 32 48 36 56 60 29 Aldebaran E. 46 40 7 45 12 43 43 54 42 15 50 Jupiter E. 83 13 35 81 42 25 80 11 7 78 39 40 Pollux E. 88 26 20 86 55 54 85 25 13 83 54 23 Saturn E. 118 59 18 117 27 58 115 56 29 114 24 50 28 Sun W. 57 54 58 25 33 59 50 24 61 15 27 Venus W. 21 53 17 23 14 19 24 35 47 25 57 38 Aldebaran E. 34 66 11 33 28 34 32 1 8 30 33 57 Jupiter E. 70 59 52 69 27 22 67 54 40 66 21 46 Pollux E. 76 17 42 74 45 48 73 13 43 71 41 26 Saturn E. 106 44 105 11 17 103 38 21 102 6 12 27 Sun W. 68 24 12 69 50 42 71 17 27 72 44 28 Venus W. 32 52 20 34 16 18 35 40 36 37 5 15 Jupiter E. 58 33 51 56 59 32 55 24 58 53 60 8 Pollux E. 63 56 44 62 23 5 60 49 11 69 15 2 1 Saturn E. 94 16 4 92 41 30 91 6 41 89 31 36 Regulus E. 100 49 46 99 15 45 97 41 28 96 6 65 28 Sun W. 80 3 57 81 82 46 83 1 54 84 31 22 Venus W. 44 13 30 45 40 11 47 7 14 48 34 39 Jupiter E. 45 51 45 44 15 11 42 38 18 41 1 5 Pollux E. 51 20 14 49 44 25 48 8 18 46 31 54 Saturn E. 81 31 47 79 54 53 78 17 41 76 40 9 liegulus E. 88 9 47 86 33 26 84 56 45 83 19 46 29 Sun W. 92 3 57 93 35 34 95 7 33 96 39 65 Venus W. 55 57 16 57 26 57 58 57 1 60 27 30 a Arietis W. 37 8 2 38 46 20 40 25 6 42 4 16 Jupiter E. 32 49 59 31 10 43 29 31 6 27 51 7 Pollux E. 38 25 20 36 47 6 35 8 35 33 29 46 Saturn E. 68 27 17 66 47 37 65 7 35 63 27 9 i Regulus E. 75 9 30 73 30 21 71 50 49 70 10 55 ' MARCH, 1860. 301 GEEENWICH MEAN TIME. ] LUNAR DISTANCES. Day of the Star's Name and Noon. IIP". VP. IXt. Month. Position. 1 Sun W. o / // 98 12 40 o / // 99 45 49 101 19 2.3 o / // 102 53 21 Venus W. 61 58 23 63 29 40 66 1 22 66 33 30 a Arietis W. 43 43 53 46 23 66 47 4 26 48 45 22 Jupiter E. 26 10 45 24 30 3 22 48 59 21 7 34 Saturn E. 61 46 22 60 5 9 58 23 33 56 41 33 Kegulus E. 68 30 37 66 49 56 65 8 61 63 27 22 2 Sun W. 110 49 19 112 26 47 114 2 40 115 39 58 Venus W. 74 20 27 75 65 8 77 30 14 79 6 47 a Arietis W. 67 16 40 59 16 60 44 18 62 28 46 Aldebaran W. 26 37 15 28 13 27 29 50 61 31 29 21 Saturn E. 48 5 27 46 20 59 44 36 6 42 50 48 Regulus E. 54 53 42 53 9 43 61 26 18 49 40 28 3 Sun W. 123 52 43 125 32 30 127 12 41 128 63 16 Venus W. 87 9 56 88 48 2 90 26 33 92 6 29 a Arietis W. 71 17 40 73 4 44 74 62 14 76 40 9 Aldebaran W. 39 55 26 41 38 57 43 23 8 45 7 56 Saturn E. 33 58 11 32 10 28 30 22 23 28 33 56 Kegulus E. 40 50 2 39 2 43 37 14 59 36 26 62 4 Venus W. 100 26 102 7 13 103 48 47 106 30 41 a Arietis w. 85 45 36 87 35 48 89 26 22 91 17 17 Aldebaran w. 54 27 55 48 28 57 36 67 69 25 61 Jupiter w. 16 17 2 18 7 8 19 57 42 21 48 41 Spica E. 80 23 11 78 32 43 76 41 56 74 60 47 5 Aldebaran W. 68 36 5 70 27 8 72 18 27 74 10 2 Jupiter w. 31 9 33 1 58 34 55 11 36 48 38 Pollux w. 26 3 4 27 64 4 29 45 33 31 37 26 Spica E. 65 30 31 63 37 39 61 44 33 59 51 14 Antares E. 111 18 43 109 25 40 107 32 23 105 38 53 6 Aldebaran W. 83 30 59 85 23 37 87 16 21 89 9 8 Jupiter W. 46 18 44 48 13 9 50 7 39 62 2 13 Pollux w. 41 1 31 42 54 59 44 48 37 46 42 22 Spica E. 50 22 9 48 27 58 46 33 44 44 39 27 Antares E. 96 8 45 94 14 20 92 19 49 90 25 15 Mars E. 109 12 38 107 22 50 106 32 57, 103 43 7 Jupiter W. 61 35 19 63 29 50 66 24 16 67 18 35 Pollux W. 56 11 56 58 5 61 59 59 41 61 63 27 Saturn W. 26 20 28 14 33 SO 9 4 32 3 32 Spica E. 35 8 10 33 14 7 31 20 12 29 26 27 Antares E. 80 52 11 78 57 41 77 3 16 75 8 68 Mars E. 94 32 51 92 42 54 90 53 3 89 3 18 8 Jupiter W. 76 47 61 78 41 6 80 34 6 82 26 51 Pollux W. 71 20 11 73 12 68 75 5 31 76 67 49 Saturn w. 41 33 57 43 27 29 45 20 48 47 13 52 Regulus w. 34 19 20 36 12 23 38 5 12 39 57 46 Antares E. 66 39 43 63 46 28 61 53 28 60 44 Mars E. 79 56 47 78 8 5 76 19 37 74 31 25 9 Jupiter W. 91 46 93 36 49 96 27 17 97 17 22 302 MARCH, 1860. GEEElSrWICH MEAN TIME. LUNAR DISTANCES. Day of the Month. Star's Name and Position. Midnight. XVK XVIIP". XXP. Sun Venus a Arietis Jupiter Saturn Regulus Sun Venus a Arietis Aldebaran Saturn Regulus Sun Venus a Arietis Aldebaran Saturn Regulus Venus a Arietis Aldebaran Jupiter Spica Aldebaran Jupiter Pollux Spica Antares Aldebaran Jupiter Pollux Spica Antares Mars Jupiter Pollux Saturn Spica Antares Mars Jupiter Pollux Saturn Regulus Antares Mars Jupiter W. W. W. E. E. E. W. W. W. W. E. E. W. W. W. W. E. E. W. W. W. W. E. W. W. W. E. E. W. W. w. E. E. E. W. w. w. E. E. E. W. w. w. w. E. E. W. 104 21 43 68 6 2 50 26 44 19 25 49 54 --59 10 61 45 28 117 17 40 80 41 45 64 13 40 33 8 52 41 5 5 47 55 13 130 34 14 93 44 49 78 28 28 46 53 20 26 45 7 33 38 22 107 12 54 93 8 31 61 15 10 23 40 4 72 59 19 76 1 51 38 42 18 33 29 41 57 57 44 103 45 11 91 1 58 53 56 50 48 36 12 42 45 8 88 30 38 101 52 59 69 12 47 63 45 7 33 57 54 27 32 54 73 14 47 87 13 40 84 19 18 78 49 50 49 6 39 41 CO 60 O 6 1 a 58 8 16 72 43 29 99 7 3 106 2 69 39 52 8 29 33 17 43 45 53 60 16 21 3 9 118 55 49 82 18 10 65 59 1 34 49 18 18 ^7 9 32 39 46 132 15 35 95 24 32 80 17 10 48 39 19 24 55 58 31 49 30 108 55 26 95 4 63 4 53 25 31 49 71 7 33 77 53 53 40 36 10 35 22 16 56 4 3 101 51 18 92 54 50 55 51 29 50 30 6 40 50 49 86 36 100 2 56 71 6 50 65 40 37 35 52 9 25 39 35 71 20 45 85 24 10 86 11 28 80 41 34 50 59 9 43 42 6 56 16 6 70 55 52 100 56 20 107 37 40 71 12 23 63 50 49 1 23 33 8 16 51 58 20 25 120 34 22 83 55 67 44 49 36 30 34 37 32 26 44 23 26 133 57 19 97 4 39 82 6 16 50 25 51 23 6 31 30 16 110 38 15 96 51 55 64 54 57 27 23 54 69 15 29 79 46 6 42 30 13 37 15 7 54 10 13 99 57 15 94 47 41 57 46 7 62 24 3 38 56 32 84 41 22 98 12 53 73 42 67 33 59 37 46 15 23 46 32 69 26 53 83 34 51 19 21 88 3 82 33 52 51 45 33 49 54 24 15 69 8 33 102 45 12 109 13 17 72 46 12 55 33 31 14 18 44 49 49 30 66 37 16 122 13 20 85 82 15 69 31 2 38 12 38 35 45 31 42 36 66 136 39 26 98 46 8 83 55 46 52 12 64 21 16 46 28 10 40 112 21 21 98 44 2 66 45 21 29 16 18 67 23 8 81 38 29 44 24 25 39 8 13 52 16 14 98 3 4 96 40 29 59 40 44 54 18 37 2 19 82 46 45 96 22 51 74 64 23 69 27 11 39 40 12 21 53 48 67 33 12 81 45 43 89 64 49 84 24 7 64 43 14 47 26 13 52 32 43 67 21 35 104 33 39 MARCH, 1860. 303 GKEENWIOH MEAN TIME. LUNAR DISTANCES. Day of Star's Name the and Noon. IIXi-. VIi-. IX^. Month. Position. 9 Pollux w. O i 11 86 14 54 o / /; 88 5 19 89° 55 23 / // 91 45 5 Saturn w. 56 34 47 58 25 59 60 16 60 62 7 18 Regulus w. 49 16 17 61 7 1 52 57 23 54 47 23 Antares E. 50 41 31 48 60 40 47 11 45 10 6 Mars E. 65 34 56 63 48 39 62 2 45 60 17 14 a Aquilse E. 103 31 35 101 56 33 100 21 39 98 46 54 10 Jupiter W. 106 21 40 108 9 15 109 56 24 111 43 7 Pollux W. 100 47 30 102 34 43 104 21 30 106 7 50 Saturn W. 71 13 41 73 1 42 74 49 18 76 36 27 Regulus W. 63 51 25 65 38 59 67 26 6 69 12 47 Antares E. 36 5 38 34 18 1 32 30 49 30 44 3 Mars E. 51 35 44 49 52 43 48 10 10 46 28 4 a Aquilse E. 90 56 43 89 23 37 87 50 55 86 18 37 11 Saturn W. 85 25 28 87 9 55 88 53 54 90 37 26 Regulus W. 77 59 31 79 43 31 81 27 3 83 10 8 Spica W. 24 2 41 25 46 7 27 29 4 29 11 38 Mars E. 38 4 40 36 26 27 34 46 43 33 8 30 a Aquilse E. 78 44 12 77 14 63 75 46 9 74 18 1 Sun E. 125 12 37 123 36 16 122 22 120 24 64 12 Saturn W. 99 8 21 100 49 12 102 29 37 104 9 37 Regulus W. 91 38 49 93 19 13 94 59 12 96 38 46 Spica W. 37 38 30 39 18 39 40 68 23 42 37 42 a Aquilae E. 67 7 6 65 43 1 64 19 41 62 67 9 Sun E. 112 34 14 111 1 25 109 29 1 107 57 2 13 Regulus W. 104 50 19 106 27 26 108 4 11 109 40 33 Spica W. 60 48 25 62 26 24 54 2 1 65 38 16 a Aquilae E. 56 17 16 55 6 53 43 67 52 28 52 Sun E. 100 23 21 98 53 48 97 24 38 95 66 50 14 Spica W. 63 34 18 65 8 31 66 42 26 68 16 3 Antares w. 17 42 8 19 16 30 20 60 33 22 24 18 Sun E. 88 37 10 87 10 26 85 44 1 84 17 64 15 Spica W. 75 59 55 77 31 55 79 3 40 80 35 12 Antares w. 30 8 48 31 40 56 33 12 48 34 44 26 Sun E. 77 11 37 75 47 9 74 22 56' 72 68 56 16 Spica W. 88 9 43 89 40 4 91 10 15 92 40 16 Antares W. 42 19 32 43 60 45 20 17 46 50 25 Mars W. 23 50 47 26 15 59 26 41 9 28 6 15 Sun E. 66 2 10 64 39 24 63 16 48 61 54 22 17 Spica W. 100 8 16 101 37 30 103 6 38 104 36 41 Antares W. 54 18 59 56 48 20 67 17 35 58 46 45 Mars W. 35 10 43 36 35 24 38 1 39 24 35 Sun E. 55 4 23 53 42 46 52 21 16 50 69 63 18 Antares W. 66 11 26 67 40 11 69 8 54 70 37 35 Mars w. 46 26 39 47 50 57 49 15 14 60 39 30 Sun E. 44 14 16 42 53 24 41 32 34 40 11 48 304 MAKCH, 1860. GREENWICH MEAN TIME. LUNAR DISTANCES. Day of Star's Name the and Midnight. XTl. XTIIIi-. XXR Month. Position. 9 Pollux W. o / // 93 34 23 95 23 17 O / // 97 11 47 98 59 62 Saturn w. 63 57 23 65 47 4 67 36 21 69 25 14 Eegulus w. 56 37 58 26 13 60 15 2 62 3 26 Antares E. 43 20 22 41 31 4 39 42 10 37 53 41 Mars E. 58 32 6 56 47 23 55 3 4 63 19 10 a Aquilae E. 97 12 20 95 38 94 3 56 92 30 10 10 Jupiter W. 113 29 23 115 15 12 117 33 118 45 27 Pollux W. 107 53 43 109 39 9 111 24 7 113 8 38 Saturn w. 78 23 9 80 9 24 81 55 13 83 40 34 Regulus w. 70 59 2 72 44 50 74 30 11 76 15 4 Antares E. 28 57 43 27 11 49 25 26 20 23 41 17 Mars E. 44 46 26 43 5 17 41 24 35 39 44 23 a Aquilae E. 84 46 46 83 15 22 81 44 28 80 14 4 11 Saturn W. 92 20 31 94 3 9 95 45 20 97 27 4 Regulus w. 84 52 46 86 34 56 88 16 40 89 57 58 Spica w. 30 53 49 32 35 36 34 16 58 35 67 56 Mars E. 31 30 46 29 53 35 28 16 54 26 40 46 a Aquilse E. 72 50 30 71 23 38 69 57 25 68 31 65 Sun E. 118 49 53 117 15 19 115 41 11 114 7 29 12 Saturn W. 105 49 11 107 28 20 109 7 4 110 45 24 Regulus W. 98 17 54 99 56 36 101 34 54 103 12 48 Spica W. 44 16 38 45 55 10 47 33 18 49 11 3 a Aquilje E. 61 35 25 60 14 32 58 54 31 57 35 25 Sun E. 106 25 29 104 54 21 103 23 37 101 53 17 13 Regulus W. 111 16 33 112 52 12 114 27 29 116 2 25 Spica W. 57 14 9 58 49 42 60 24 54 61 59 46 a Aquilse E. 51 14 53 50 2 3 48 50 26 47 40 8 Sun E. 94 27 24 92 59 20 91 31 37 90 4 13 14 Spica W. 69 49 22 71 22 24 73 55 11 74 27 40 Antares w. 23 57 45 25 30 55 27 3 48 28 36 26 Sun E. 82 52 5 81 26 34 80 1 19 78 36 20 15 Spica W. 82 6 30 83 37 36 85 8 30 86 39 12 Antares w. 36 15 52 37 47 5 39 18 5 40 48 54 Sun E. 71 35 10 70 11 37 68 48 16 67 25 8 16 Spica W. 94 10 8 95 39 52 97 9 27 98 38 56 Antares w. 48 20 24 49 50 14 51 19 66 52 49 31 Mars w. 29 31 17 30 56 15 32 21 8 33 45 58 Sun E. 60 32 5 69 9 57 57 47 38 66 26 7 17 Spica w. 106 4 38 107 33 31 109 2 19 110 31 4 Antares w. 60 15 50 61 44 50 63 13 46 64 42 38 Mars w. 40 49 5 42 13 32 43 37 57 45 2 19 Sun E. 49 38 35 48 17 24 46 56 17 45 36 14 18 Antares W. 72 6 13 73 34 50 75 3 26 76 32 1 Mars W. 52 3 44 53 27 57 64 52 10 66 16 24 Sun E. 38 51 5 37 30 26 36 9 60 34 49 17 MARCH, 1860. 305 GKEENWICH MEAN TIME. LUNAR DISTANCES. Day of the Star's Name and Noon. nil'. \l\ U>. Month. Position. 19 Antares W. o / // 18 36 i (1 79 29 11 O / // 80 57 46 O / // 82 26 22 Mars W. 51 40 87 59 4 50 60 29 5 61 53 22 S0N E. 33 28 47 32 8 20 30 47 65 29 27 34 24 Sun W. 21 54 17 23 17 8 24 40 16 26 3 40 Aldebaran E. 43 35 1 42 6 18 40 37 39 39 9 3 Jupiter E. 80 2 13 78 30 52 76 59 23 75 27 46 Pollux E. 85 18 21 83 47 82 15 31 80 43 54 25 Sun W. 33 4 17 34 29 4 35 54 4 37 19 17 Aldebaran E. 31 48 1 30 20 28 28 63 15 27 26 27 Jupiter E. 67 47 25 66 14 53 64 42 11 63 9 19 Pollux E. 73 3 33 71 31 1 69 68 20 68 25 30 Saturn E. 101 46 46 100 13 36 98 40 16 97 6 45 Eegulus E. 109 58 11 108 25 19 106 52 18 106 19 6 26 Sun W. 44 28 32 45 55 2 47 21 44 48 48 40 Jupiter E. 55 22 22 53 48 25 62 14 17 60 39 57 Pollux E. 60 38 45 59 4 53 57 30 50 65 56 37 Saturn E. 89 16 31 87 41 55 86 7 7 84 32 6 Regulus E. 97 30 25 95 66 6 94 21 36 92 46 54 27 Sun W. 56 6 41 57 35 69 3 33 60 32 21 Jupiter E. 42 45 12 41 9 35 39 33 45 37 57 42 Pollux E. 48 2 37 46 27 14 44 51 40 43 15 64 Saturn E. 76 33 56 74 67 38 73 21 6 71 44 20 Regulus E. 84 50 12 83 14 11 81 37 56 80 1 28 28 Sun W. 68 15 69 30 38 71 1 17 72 32 13 Venus W. 26 46 68 28 15 35 29 44 33 31 13 63 Jupiter E. 29 53 49 28 16 18 26 38 32 25 30 Pollux E. 35 14 14 33 37 21 32 19 30 23 8 Saturn E. 63 36 48 61 58 31 60 19 58 58 41 8 Regulus E. 71 55 17 70 17 15 68.38 68 67 24 29 Sun W. 80 11 17 81 43 59 83 17 84 50 20 Venus W. 38 45 39 40 17 1 41 48 43 43 20 46 Aldebaran W. 23 3 50 24 34 37 26 6 46 27 40 9 Saturn E. 50 22 47 48 42 14 47 1 23 45 20 15 Eegulus E. 58 43 16 57 2 57 56 22 20 53 41 24 Spica E. 112 46 19 111 6 4 109 25 29 107 44 36 30 Sun W. 92 41 49 94 17 6 95 52 42 97 28 38 Venus W. 51 6 7 62 40 14 64 14 41 55 49 30 Aldebaran W. 35 41 18 37 19 51 38 59 3 40 38 52 Saturn E. 36 49 54 35 6 54 33 23 36 31 39 57 Regulus Spica E. 45 12 1 43 29 11 41 46 1 40 2 32 E. 99 15 16 97 32 25 96 49 14 94 6 43 31 Sun W. 105 33 22 107 11 19 108 49 36 110 28 10 Venus W. 63 48 50 65 25 46 67 3 2 68 40 38 Aldebaran W. 49 6 9 50 49 7 52 32 32 54 16 24 Regulus Spica E. 31 20 17 29 34 53 27 49 11 26 3 10 E. 85 23 2 83 37 29 81 51 35 80 6 22 20 306 MARCH, 1860. GKEENWICH MEAN" TIME. LTJNAB DISTANCES. Day of Star's Name the and Midnight. XVI'. XVIIIi-. XXIi. Month. Position. O 1 It O i II o / // o / // 19 Antares W. 83 54 58 85 23 36 86 52 15 88 20 66 Mars W. 63 VI 39 64 41 57 66 6 18 67 30 42 Sun E. 28 7 17 26 47 2 26 26 52 24 6 46 24 Sot W. 27 27 20 28 51 14 30 16 22 31 39 43 Aldebaran E. 37 40 33 36 12 10 34 43 56 33 16 52 Jupiter E. 73 56 72 24 5 70 52 1 69 19 48 Pollux E. 79 12 7 77 40 11 76 8 8 74 36 66 25 Sun W. 38 44 43 40 10 21 41 36 11 43 2 15 Aldebaran E, 26 -0 10 24 34 32 23 9 42 21 45 52 Jupiter E. 61 36 17 60 3 4 58 29 41 56 66 7 Pollux E. 66 52 29 65 19 18 63 46 57 62 12 26 Saturn E. 95 33 4 93 59 12 92 25 9 90 50 56 Kegulus E. 103 45 44 102 12 12 100 38 28 99 4 32 26 Sun W. 50 15 49 51 43 11 53 10 46 54 38 36 Jupiter E. 49 5 25 47 30 41 45 55 44 44 20 36 Pollux E. 54 22 11 52 47 34 51 12 46 49 37 48 Saturn E. 82 56 64 81 21 29 79 45 61 78 10 Regulus E. 91 12 89 36 52 88 1 31 86 25 68 27 Sun W. 62 1 25 63 30 44 65 18 66 30 8 Jupiter E. 36 21 24 34 44 52 33 8 6 31 31 6 Pollux E. 41 39 57 40 3 48 38 27 27 36 60 56 Satum E. 70 7 20 68 30 5 66 52 35 66 14 49 Regulua E. 78 24 44 76 47 45 76 10 31 73 33 2 28 Sun W. 74 3 26 75 34 57 77 6 46 78 38 53 Venus W. 32 43 34 34 13 35 35 43 56 37 14 37 Jupiter E. 23 22 13 21 43 41 20 4 55 .18 26 54 Pollux E. 28 45 49 27 8 23 25 30 53 23 63 23 Satum E. 57 2 2 55 22 39 53 42 59 52 3 2 Regulua E. 65 21 33 63 42 25 62 3 60 23 17 29 Sun W. 86 24 87 57 58 89 32 15 91 6 62 Venus W. 44 53 8 46 25 51 47 68 55 49 32 21 Aldebaran W. 29 14 36 30 50 2 32 26 20 34 3 27 Saturn E. 43 38 48 41 57 2 40 14 58 38 32 35 Regulus E. 52 10 60 18 36 48 36 44 46 54 82 Spica E. 106 3 23 104 21 51 102 39 59 100 57 47 30 Sun W. 99 4 55 100 41 32 102 18 28 103 55 45 Venus W. 57 24 40 59 10 60 36 2 62 12 15 Aldebaran W. 42 19 15 44 12 45 41 41 47 23 40 Saturn E. 29 56 2 28 11 49 26 27 18 24 42 30 Regulus E. 38 18 44 36 34 36 34 50 9 33 5 22 Spica E. 92 21 52 90 37 40 88 53 8 87 8 15 31 Sun W. 112 7 5 113 46 20 115 25 64 117 5 45 Venus W. 70 18 35 71 56 53 73 35 31 76 14 27 Aldebaran w. 56 41 67 45 24 59 30 31 61 16 2 Regulus E. 24 16 53 22 30 20 20 43 32 18 56 30 Spica E. 78 18 49 76 31 56 74 44 43 72 67 11 APRIL, 1860. 307 GEEENWICH MEA^ TIME. LUNAR DISTANCES. Day of the Star's Name. and Noon. IIP'. VI>>. IXX Month. Position. * 66 23 49 Mars E. 29 25 6 27 48 23 26 12 1 24 36 1 a Aquilae E. 48 31 28 47 17 17 46 4 36 44 53 26 Fomalhaut E. 69 38 44 68 8 35 66 38 59 65 9 57 a Pegasi E. 90 19 5 88 43 17 87 7 60 85 32 44 8 Spica W. 73 31 41 75 8 12 76 44 22 78 20 13 Antares W. 27 41 44 29 18 24 30 64 40 .32 30 37 • Fomalhaut E. 57 53 64 56 28 39 '65 4 7 63 40 19 o Pegasi E. 77 42 53 76 10 3 74 37 36 73 5 33 Sun E. 133 14 131 31 28 130 3 1 128 34 62 MAY, 1860. 315 GEEENWICH MF,AT^ TIME. LUNAR DISTANCES. Day of the Star's Name and Noon. IHi-. VIi. IX''. Month. Position. 9 Spica w. / // 79 56 42 o / // 81 30 52 83 5 42 / // 84 40 13 Antares w. 34 6 14 35 41 31 37 16 28 38 51 6 Fomalhaut E. 52 17 IT 60 55 4 49 33 40 48 13 9 a Pegasi E. 71 33 52 70 2 35 68 31 42 67 1 12 Sun E. 127 7 3 126 39 33 124 12 20 122 45 25 10 Spica W. 92 28 13 94 67 95 33 26 97 6 37 Antares W. 46 39 41 48 12 31 49 45 7 51 17 26 Fomallaaut E. 41 45 29 40 31 21 39 18 31 38 7 6 a Pegasi E. 59 34 42 58 6 37 56 38 57 55 11 41 Sun E. 115 35 14 114 10 2 112 46 5 111 20 23 11 Spica W. 104 42 59 106 13 47 107 44 23 109 14 47 Antares W, 58 55 23 60 26 18 61 67 1 63 27 33 a Pegasi E. 48 1 59 46 37 26 45 13 24 43 49 53 Sun E. 104 20 27 102 57 7 101 33 68 100 11 12 Antares W. 70 67 40 72 27 15 73 56 42 76 26 2 Mars W. 25 21 12 26 48 10 28 16 2 29 41 47 Sun E. 93 18 40 91 56 38 90 34 44 89 12 66 13 Antares W. 82 51 25 84 20 17 85 49 7 87 17 64 Mars W, 36 54 22 38 20 42 39 47 41 13 16 Sun E. 82 25 17 81 3 57 79 42 40 78 21 24 14 Antares W. 94 41 42 96 10 30 97 39 19 99 8 11 Mars W. 48 24 33 49 60 61 51 17 13 52 43 36 a Aquilae W, 48 3 10 49 9 57 60 17 36 61 26 4 Sun E. 71 35 23 70 14 9 68 62 54 67 31 36 15 Antares W. 106 33 28 108 2 46 109 32 11 111 1 42 Mars W. 59 56 39 61 23 31 62 50 31 64 17 38 a Aquilse w. 57 19 11 58 31 43 59 44 48 60 68 26 Sun E. 60 44 15 59 22 34 58 47 66 38 53 16 Mars W. 71 35 10 73 3 8 74 31 16 75 69 35 a Aquilae W. 67 13 61 68 30 15 69 47 4 71 4 16 Fomalhaut W. 42 10 44 43 24 6 44 38 26 46 53 41 Sun E. 49 47 42 48 25 5 47 2 19 45 39 24 IV Mars W. 83 23 69 84 63 29 86 23 11 87 63 7 a Aquilae W. 77 35 39 78 54 54 80 14 28 81 34 20 Fomalhaut w. 62 21 48 53 41 30 65 1 49 56 22 44 Sun E. 38 42 32 37 18 41 35 54 40 34 30 29 22 Sun W. 21 25 48 22 67 41 24 29 59 26 2 42 Jupiter E. 29 49 24 28 9 33 26 29 30 24 49 16 Saturn E. 57 19 7 55 38 30 53 57 43 62 16 46 Kegulus E. 65 10 26 63 29 21 61 48 6 60 6 39 ,23 Sun W. 33 51 8 35 25 39 37 23 38 35 20 Saturn E. 43 49 19 42 7 21 40 25 15 38 43 Regulus E. 51 36 44 49 64 15 48 11 37 46 28 50 Spica E. 105 40 10 103 57 39 102 14 58 100 32 7 316 MAY, 1860. GEEENWIOH MEAN TIME. , LUNAR DISTANCES. Day of Stains Name the and Midnight, XVb. XVIIIk. XXTk. Month. Position. o / // O t 11 O / // O / // 9 Spica W. 86 14 25 87 48 18 89 21 63 90 55 11 Antares w. 40 25 25 41 69 26 43 33 7 45 6 33 Fomalhaut E. 46 53 34 45 34 67 44 17 21 43 60 a Pegasi E. 65 31 6 64 1 24 62 32 6 61 3 12 Sun E. 121 18 49 119 62 30 118 26 28 117 43 10 Spica W. 98 37 35 100 9 17 101 40 45 103 11 59 Antares W. 62 49 30 54 21 19 55 52 64 57 24 15 Fomalhaut E. 36 57 8 35 48 48 34 42 12 33 37 27 a Pegasi E. 53 44 51 62 18 28 60 62 31 49 27 1 Sun E. 109 56 66 108 31 44 107 7 45 106 43 59 11 Spica W. 110 45 112 16 2 113 44 55 115 14 38 Antares W. 64 67 64 66 28 4 67 68 6 69 27 57 a Pegasi E. 42 26 54 41 4 30 39 42 42 38 21 34 Sun E. 98 48 13 97 25 36 96 3 9 94 40 51 12 Antares W. 76 65 17 78 24 26 79 63 30 81 22 30 Mars W. 31 8 27 32 35 2 34 1 33 35 27 69 Sun E. 87 51 14 86 29 38 85 8 7 83 46 40 13 Antares W. 88 46 41 90 15 26 91 44 11 93 12 57 Mars W. 42 39 31 44 6 45 45 32 46 58 16 Sun E. 77 11 75 38 69 74 17 47 72 56 35 14 Antares W. 100 37 6 102 6 5 103 35 7 105' 4 15 Mars w. 64 10 4 56 36 35 67 3 11 58 29 52 a Aquilae w. 62 35 18 63 45 16 54 56 56 56 7 15 Sun E. 66 10 15 64 48 51 63 27 23 62 5 61 15 Antares W. 112 31 20 114 1 6 115 30 67 117 67 Mars w. 65 44 51 67 12 13 68 39 43 70 7 22 a Aquilae w. 62 12 34 63 27 12 64 42 18 65 57 51 Sun E. 65 16 63 63 54 47 62 32 33 61 10 12 16 Mars W. 77 28 6 78 66 45 80 25 38 81 64 43 a AquilK w. 72 21 51 73 39 47 74 68 5 76 16 42 Fomalhaut w. 47 9 47 48 26 41 49 44 21 61 2 43 Sun E. 44 16 20 42 63 7 41 29 45 40 6 13 17 Mars W. 89 23 16 90 63 37 92 24 13 93 66 4 a Aquilae w. 82 64 28 84 14 52 85 35 33 86 66 28 Fomalhaut w. 57 44 14 69 6 16 60 28 47 61 51 49 Sun E. 33 6 10 31 41 41 30 17 3 28 62 16 22 Sun w. 27 35 47 29 9 12 30 42 64 32 16 63 Jupiter E. 23 8 62 21 28 16 19 47 29 18 6 32 Saturn E. 60 36 37 48 54 17 47 12 47 46 31 8 Eegulus E. 58 25 1 56 43 12 55 1 13 53 19 3 23 Sun W. 40 10 32 41 46 54 43 21 28 44 57 14, Saturn E. 37 36 35 18 5 33 35 27 31 52 43 Regulus E. 44 45 53 43 2 48 41 19 35 39 36 14 Spica E. 98 49 6 97 5 67 95 22 39 93 39 13 MAY, 1860. 317 GKEENWICiL ¥F,ATT TIME. LUNAR DISTANCES. Day of Star's Name -- and Noon. nil'. Vlk. IXh. Month. Position. 24 Sun W. 46 33 10 O 1 II 48 9 16 O 1 II 49 45 32 O 1 [I 61 21 67 Satum E. 30 9 54 28 26 59 26 44 26 57 Eegulus E. 37 52 46 36 9 11 34 25 30 32 41 42 Spica E. 91 55 38 90 11 64 88 28 2 86 44 2 25 Sun W. 69 26 11 61 3 26 62 40 48 64 18 17 Venus W. 15 22 13 17 28 18 38 55 20 17 32 Eegulus E. 24 1 31 22 17 20 20 33 9 18 49 1 Spica E. 78 2 15 76 17 33 74 32 45 72 47 51 26 Sun W. 72 27 14 74 6 19 75 43 29 77 21 46 Venus W. 28 32 51 30 12 17 31 51 51 33 31 30 Pollux W. 27 39 48 29 23 13 31 6 66 32 50 64 Jupiter W. 24 44 52 26 29 5 28 13 23 29 57 46 Spica E. 64 1 57 62 16 31 60 31 1 58 46 27 Antares E. 109 48 10 108 2 34 106 16 64 104 31 8 27 Sun W. 85 34 9 87 12 50 88 51 35 90 30 23 Pollux W. 41 33 53 43 18 67 46 4 8 46 49 27 Venus W. 41 51 9 43 31 19 45 11 34 46 61 64 Jupiter W. 38 40 46 40 25 34 42 10 26 43 66 19 Spica E. 49 56 38 48 10 43 46 24 45 44 38 45 Antares E. 95 41 15 93 56 5 92 8 52 90 22 36 28 Sun W. 98 45 6 100 24 9 102 3 14 103 42 20 Pollux W. 55 37 24 57 23 13 59 9 6 60 55 Venus w. 65 14 28 56 66 9 58 35 52 60 16 37 Jupiter w. 52 40 31 54 25 40 66 10 60 67 56 ■ 3 Saturn w. 26 4 69 27 50 25 29 36 56 31 21 33 Spica E. 35 48 22 34 -2 16 32 16 11 30 30 7 Antares E. 81 30 30 79 43 58 77 67 26 76 10 50 29 Sun W. 111 58 5 113 37 15 115 16 24 116 55 31 Pollux W. 69 45 9 71 31 14 73 17 20 75 3 26 Venus W. 68 40 55 70 21 50 72 2 45 73 43 41 Jupiter W. 66 42 19 68 27 36 70 12 50 71 58 5 Satum w. 40 10 24 41 66 16 43 42 9 46 28 2 Eegulus w. 32 43 36 34 29 55 36 16 16 38 2 36 Antares E. 67 17 39 66 31 63 44 21 61 67 42 Mars E. 117 35 68 115 50 55 114 5 52 112 20 49 30 Pollux W. 83 63 43 85 39 41 87 25 37 89 11 29 Venus w. 82 8 14 83 49 5 85 29 54 87 10 40 Jupiter w. 80 44 82 29 5 84 14 6 85 59 4 Satum w. 64 17 21 56 3 8 67 48 52 59 34 34 Eegulus w. 46 54 19 48 40 36 60 26 60 62 13 2 Antares E. 53 4 50 51 18 22 49 31 67 47 45 35 Mars E. 103 35 45 101 50 49 100 5 55 98 21 4 31 Venus w. 95 33 45 97 14 9 98 54 28 100 34 41 Jupiter w. 94 42 56 96 27 25 98 11 49 99 56 6 Saturn w. 68 22 3 70 7 18 71 62 27 73 37 30 Eegulus w. 61 3 6 62 48 52 64 34 33 66 20 7 Antares E. 38 54 46 37 8 52 36 23 4 33 37 23 Mars E. 89 37 42 87 53 16 86 8 55 84 24 41 318 MAY, 1860. GEEENWIUJbL MEAT^T TIME. LUNAR DISTANCES. Day of Star's Name the .' and Midnight. XTh. XVIIP-. XXIi. Month. Position. 24 Sun W. O i II 52 58 31 o 1 n 64 35 14 O 1 II 66 12 5 o / // 57 49 4 Saturn E. 23 11 53 21 34 48 19 61 45 18 8 46 Regulns E. 30 57 48 29 13 49 27 29 46 25 46 40 Spica E. 84 59 65 83 15 41 81 31 19 79 46 50 25 Sun W. 65 55 52 6,7 33 34 69 11 21 70 49 15 Venus W. 21 56 19 23 35 16 25 14 20 26 53 32 Eegnlus E. 17 5 15 21 10 13 37 35 11 54 21 Spica E. 71 2 51 69 17 46 67 32 35 65 47 19 26 Sun W. 79 5 8a 38 30 82 16 68 83 55 32 Venus W. 35 11 15 36 51 6 38 31 2 40 11 3 Pollux w. 34 35 7 36 19 33 38 4 9 39 48 56 Jupiter w. 31 42 14 33 26 46 35 11 22 36 56 2 Spica E. 56 59 48 65 14 6 53 28 20 51 42 30 Antares E. 102 45 17 ,100 59 22 99 13 24 97 27 22 27 Sun W. 92 9 14 93 48 8 95 27 5 97 6 4 Pollux W. 48 34 52 50 20 23 52 5 58 53 51 39 Venus W. 48 32 18 60 12 45 51 53 16 53 33 51 Jupiter W. 45 40 16 47 25 16 49 10 19 50 65 24 Spica E. 42 52 43 41 6 39 39 20 35 37 34 28 Antares E. 88 36 16 86 49 53 85 3 28 83 17 1 28 Sun W. 105 21 28 107 36 108 39 45 110 18 55 Pollux W. 62 40 58 64 26 68 66 13 67 59 4 Venus w. 61 57 26 63 38 16 65 19 7 67 Jupiter w. 59 41 17 61 26 31 63 11 46 64 57 2 Saturn w. 33 7 14 34 52 58 36 38 45 38 24 34 Spica E. 28 44 5 26 58 6 25 12 12 23 26 23 Antares E. 74 24 13 72 37 36 70 60 57 69 4 19 29 Sun W. 118 34 38 120 13 43 121 52 46 123 31 46 Pollux w. 76 49 32 78 35 37 80 21 41 82 7 43 Venus w. 75 24 37 77 5 33 78 46 28 80 27 22 Jupiter w. 73 43 19 76 28 32 77 13 44 78 58 53 Saturn w. 47 13 57 48 69 60 50 45 42 62 31 32 Regulus w. 39 48 58 41 36 20 43 21 41 45 81 Antares E. 60 11 5 68 24 29 56 37 54 54 51 21 Mars E. 110 35 47 108 50 45 107 5 43 105 20 43 30 Pollux w. 90 57 17 93 43 2 94 28 42 96 14 17 Venus w. 88 51 25 90 Zi 6 92 12 43 93 53 16 Jupiter w. 87 44 89 28 60 91 13 37 92 68 19 Saturn w. 61 20 12 63 5 47 64 51 17 66 36 42 Regulus w. S3 59 11 55 45 16 67 31 17 69 17 14 Antares E. 45 59 16 44 13 1 42 26 61 40 40 46 Mars E. 96 36 15 94 51 30 93 6 50 91 22 14 31 Venus W. 102 14 48 103 64 48 105 34 43 107 14 29 Jupiter W. 101 40 17 103 24 20 105 8 15 106 62 2 Saturn W. 75 22 26 77 7 15 78 61 56 80 36 29 Regulus W. 68 5 35 69 60 55 71 36 8 73 21 14 Antares E. 31 51 47 30 6 20 28 21 26 35 48 Mars E. 82 40 31 80 56 30 79 12 36 77 28 50 JUNE, 1860. 319 GEEKNIVTOH MEAN TIME. LUNAR DISTANCES. Day of Star's Name tfie and Noon. III''. VP. IXk. Month. Position. O 1 tt / // O / // O / // 1 Jupiter W. 108 35 40 110 19 10 112 2 30 113 46 40 Venus W. 108 54 8 110 33 39 112 13 1 113 52 14 Saturn W. 82 20 53 84 5 8 85 49 14 87 33 10 Eegulus W. Y5 6 10 76 50 57 78 35 35 80 20 3 Spica W. 21 9 38 22 53 32 24 37 25 26 21 14 Mars E. 75 45 12 74 1 42 72 18 22 70 35 11 a Aquilae E. 81 9 41 79 38 48 78 8 12 76 37 64 2 Satum W. 96 10 2 97 52 48 99 35 21 101 17 41 Regulus W. 88 59 42 90 43 2 92 26 9 94 9 3 Spica W. 34 58 42 36 41 44 38 24 35 40 7 15 Mars E. 62 1 57 60 19 53 58 38 2 56 66 25 a Aquilse E. 69 12 8 67 44 22 66 17 7 64 50 28 Fomalhaut E. 93 40 91 25 48 89 51 8 88 16 41 3 Saturn W. 109 45 48 111 26 41 113 7 18 114 47 39 Regulus W. 102 40 1 104 21 28 106 2 39 107 43 35 Spica W. 48 37 21 50 18 41 51 59 45 53 40 34 Mars E. 48 31 45 46 51 35 45 11 40 43 32 1 a Aquilse E. 57 47 15 56 24 57 55 3 34 53 43 7 Fomalhaut E. 80 28 7 78 55 17 77 22 47 75 60 38 a Pegasi E. 101 42 7 100 4 25 98 26 56 96 49 40 4 Spica W. 62 42 63 39 54 65 18 50 66 57 28 Mars E. 35 18 4 33 40 12 32 2 38 30 26 23 Fomalhaut E. 68 15 51 66 46 14 65 17 6 63 48 29 a Pegasi E. 88 46 59 87 11 15 85 35 48 84 38 5 Spica W. 75 6 21 76 43 15 78 19 52 79 56 12 Antares W. 29 16 55 30 53 57 32 30 42 34 7 9 Fomalhaut E. 56 33 56 55 8 56 63 44 39 52 21 6 a Pegasi E. 76 9 28 74 36 13 73 3 18 71 30 43 , a Arietis E. 118 35 14 116 58 39 115 22 20 113 46 18 6 Spica W. 87 53 29 89 28 5 91 2 25 92 36 29 Antares W. 42 5 6 43 39 50 45 14 18 46 48 29 Fomalhaut E. 45 36 44 17 52 43 49 41 44 58 a Pegasi E. 63 53 13 62 22 50 60 52 50 59 23 14 a Arietis E. 105 60 17 104 15 54 102 41 48 101 7 67 7 Spica W. 100 22 51 101 55 22 103 27 38 104 69 41 Antares W. 54 35 29 56 8 7 57 40 32 69 12 42 a Pegasi E. 52 1 25 50 34 22 49 7 48 47 41 43 a Arietis E. 93 22 36 91 50 17 90 18 12 88 46 22 Sun E. 134 35 28 133 10 22 13] 45 29 130 20 49 8 Antares W. 66 50 17 68 21 12 69 51 55 71 22 28 Mars W. 15 20 15 16 48 46 18 17 18 19 45 60 a Pegasi a Arietis E. 40 39 18 39 16 38 37 64 39 36 33 24 E. 81 10 23 79 39 49 78 9 25 76 39 13 Sun E. 123 20 31 121 57 2 120 33 44 119 10 36 9 Antares W. 78 52 47 80 22 26 81 51 59 83 21 24 Mars W. 27 8 30 28 36 56 30 5 17 31 33 34 a Arietis E. 69 10 36 67 41 19 66 12 10 64 43 7 320 JUNE, 1860. GEEEJTWICH MF,AT^ TIME. LUNAR DISTANCES. Day of Star's Name the and Midnight. XVi-. JJIIIK XXTk. Month. Position. 1 Jupiter W. 115 28 40 o / // 117 11 29 O / // 118 54 6 o / // 120 36 32 Venus w. 116 31 18 117 10 11 118 48 54 120 27 26 Saturn w. 89 16 55 91 29 92 43 52 94 27 3 Regulus w. 82 4 22 83 48 30 85 32 26 87 16 10 Spica w. 28 4 59 29 48 37 31 32 7 33 15 29 Mars E. 68 52 10 67 9 20 65 26 41 63 44 14 a AquilsB E. Y5 7 56 73 38 21 72 9 10 70 40 26 2 Saturn W. 102 59 48 104 41 41 106 23 19 108 4 42 Regulus W. 95 51 43 97 34 9 99 16 21 100 68 19 Spica W. 41 49 43 43 31 58 45 14 46 55 48 Mars E. 55 15 1 53 33 50 51 52 53 50 12 12 a Aquilae E. 63 24 25 61 59 2 60 34 21 59 10 24 Fomalhaut E. 86 42 27 85 8 27 83 34 43 82 1 16 3 Saturn W. 116 27 43 118 7 31 119 47 1 121 26 14 Regulus W. 109 24 14 111 4 36 112 44 42 114 24 31 Spica w. 55 21 8 57 1 26 58 41 27 60 21 13 Mars E. 41 52 39 40 13 34 38 34 46 36 56 16 a Aquilae E. 52 23 42 51 5 22 49 48 11 48 32 15 Fomalliaut E. 74 18 51 72 47 28 71 16 30 69 45 67 a Pegasi E. 95 12 37 93 35 49 91 69 16 90 23 4 Spica W. 68 35 50 70 13 54 71 51 40 73 29 9 Mars E. 28 48 29 27 11 56 25 35 44 23 59 65 Fomalliaut E. 62 20 23 60 52 52 69 25 66 57 69 36 a Pegasi E. 82 25 46 80 51 13 79 16 59 77 43 4 5 Spica W. 81 32 13 83 7 57 84 43 25 86 18 35 i Antares W. 35 43 19 37 19 11 38 54 47 40 30 5 Fomalhaut E. 50 58 20 49 36 23 48 15 19 46 65 10 a Pegasi E. 69 58 30 68 26 37 66 55 7 66 23 69 a Arietis E. 112 10 33 110 35 4 108 59 52 107 24 56 6 Spica W. 94 10 17 95 43 48 97 17 4 98 50 5 Antares W. 48 22 24 49 56 4 61 29 27 63 2 36 Fomalliaut E. 40 30 21 39 17 6 38 5 17 36 54 68 a Pegasi E. 57 54 2 56 25 14 64 56 52 53 28 56 a Arietis E. 99 34 21 98 1 2 96 27 59 94 55 9 1 Spica W. 106 31 29 108 3 4 109 34 26 111 5 36 Antares W. 60 44 39 62 16 22 63 47 53 66 19 11 o Pegasi E. 46 16 7 44 51 4 43 26 34 42 2 38 a Arietis E. 87 14 44 85 43 20 84 12 9 82 41 10 Sun E. 128 56 21 127 32 6 126 8 2 124 44 11 8 Antares W, 72 52 50 74 23 2 75 53 5 77 23 Mars. W. 21 14 22 22 42 54 24 11 26 25 39 69 - a Pegasi E. 35 12 58 33 53 23 32 34 44 31 17 8 a Arietis E. 75 9 10 73 39 18 72 9 35 70 40 2 Sun E. 117 47 37 116 24 47 115 2 6 113 39 34 9 Antares W. 84 50 43 86 19 56 87 49 5 89 18 10 Mars w. 33 1 48 34 30 35 58 9 37 26 16 ^^^^^^ a Arietis E. 63 14 10 61 45 21 60 16 37 58 47 68 JUNE, 1860. 321 GEEENWIOH MEAN TIME. LUNAR DISTANCES. Day of the Star's Name and Noon. III"'. TI". IX". Month. Position. / // o / // O / // Q / /i 9 Sun E. 112 17 10 110 54 53 109 32 42 108 10 37 10 Antares W. 90 47 10 92 16 8 93 45 2 95 13 55 a Aquilse W. 45 2 8 46 6 38 47 12 8 48 18 35 Mars W. 38 54 21 40 22 25 41 50 29 43 18 34 a Arietis E. 57 19 23 55 60 53 54 22 26 52 54 2 Sun E. 101 21 33 99 59 55 98 38 20 97 16 47 11 Antares W. 102 38 6 104 6 69 105 35 53 107 4 50 a Aquilse W. 54 2 46 55 13 39 66 25 9 67 37 14 Mars w. 50 39 2 52 7 14 63 36 29 55 3 48 a Arietis E. 45 32 33 44 4 18 42 36 3 41 7 47 Sun E. 90 29 9 89 7 35 87 45 59 86 24 20 12 a Aquilae W. 63 45 12 65 10 66 15 32 67 31 19 Mars W. 62 26 38 63 66 31 65 24 31 66 53 39 Fomalhant W. 39 7 18 . 40 17 3 41 27 58 42 39 56 a Arietis E. 33 46 14 32 17 52 30 49 28 29 21 3 Sun E. 79 35 4 78 12 56 76 60 41 75 28 19 13 Mars W. 74 21 43 76 51 52 77 22 13 78 52 47 a Aquilae W. 73 55 47 75 13 42 76 31 57 77 60 32 Fomalhaut W. 48 53 27 60 10 32 61 28 19 52 46 47 Sun E. 68 34 21 67 11 4 66 47 36 64 23 56 14 Mars W. 86 28 66 88 54 89 33 7 91 5 36 a Aquilae W. 84 27 61 85 48 9 87 8 42 88 29 32 Fomalhaut W. 59 28 6 60 60 1 62 12 27 63 35 23 a Pegasi W. 36 45 27 38 8 24 39 32 9 40 66 39 Sun E. 57 22 27 55 57 28 54 32 15 63 6 46 15 Mars W. 98 52 9 100 26 20 102 49 103 36 37 a Aquilae W. 95 17 7 96 39 15 98 1 34 99 24 4 Fomalhaut W. 70 37 3 72 2 43 73 28 47 76 56 16 a Pegasi W. 48 9 23 49 37 44 51 6 39 52 36 5 Sun E. 45 55 26 44 28 20 43 58 41 33 18 16 Fomalhaut W. 82 13 27 83 42 11 85 11 15 86 40 40 a Pegasi W. 60 10 45 61 43 5 63 15 62 64 49 4 Sun E. 34 10 37 32 41 12 31 11 29 29 41 30 21 Sun W. 29 44 43 31 24 11 33 3 47 34 43 31 Spica E. 81 55 5 80 8 8 78 21 7 76 33 59 22 Sun W. 43 3 38 44 43 52 46 24 9 48 4 27 Jupiter Spica Antares W. 15 52 23 17 38 27 19 24 33 21 10 40 E. 67 37 26 65 49 59 64 2 31 62 15 3 E. 113 23 32 111 35 54 109 48 16 -108 36 23 Sun W. 56 26 7 6§ 6 25 69 46 41 61 26 56 Jupiter Venus ;^ W. 30 1 11 31 47 13 33 33 14 35 19 12 W. 24 16 20 26 1 41 27 48 3 29 34 23 Spica Antares E. 53 17 50 61 30 29 49 43 10 47 55 54 E. 99 2 17 97 14 40 96 27 6 93 39 36 21 322 JUNE, 1860. GEEENWICH MEAN TIME. LUNAR DISTANCES. Day of tbe Month. Star's Name and Position. Midnight. KVK XVIIP'. XXTi. 9 Sun E. 106 48 39 O / // 105 26 46 o / // 104 4 58 o / n 102 43 14 10 Antares W. 96 42 45 98 11 35 99 40 25 101 9 16 a Aquilae W. 49 25 54 50 34 1 61 42 54- 62 52 29 Mars w. 44 46 3*7 46 14 41 47 42 46 49 10 53 a Arietis E. 51 25 40 49 57 21 48 29 4 47 48 Sun E. 95 55 15 94 33 44 93 12 13 91 60 41 11 Antares W. 108 83 50 110 2 64 111 32 3 113 1 17 a Aquilae W. 58 49 51 60 2 59 61 16 36 62 30 40 Mars W. 56 32 12 58 40 59 29 13 60 67 52 a Arietis E. 39 39 31 38 11 14 36 42 55 35 14 35 Sun E. 85 2 38 83 40 52 82 19 1 80 57 6 12 a Aquilae W. 6a.47 29 70 4 1 71 20 55 72 38 10 Mars W. 68 ^2 56 69 52 23 71 21 59 72 51 46 Fomalhaut W. 43 52 53 . 45 6 46 46 21 31 47 37 6 a Arietis E. 21 52 38 26 24 13 24 55 49 23 27 27 Sun E. 74 5 50 72 43 12 71 20 26 69 57 28 13 Mars W. 80 23 33 81 64 32 83 26 45 84 67 13 a Aquilae W. 79 9 25 80 28 35 81 48 4 83 7 49 Fomalhaut w. 54 5 52 66 25 34 56 45 51 58 6 42 Sun E. 63 4 61 36 60 11 43 68. 47 12 14 Mars W. 92 38 20 94 11 22 95 44 41 97 18 16 a Aquilae w. 89 60 36 91 11 54 92 33 25 93 55 10 Fomalhaut w. 64 68 48 66 22 42 67 47 3 69 11 49 a Pegasi w. 42 21 64 43 47 49 45 14 24 46 41 35 Sun E. 51 41 1 50 15 2 48 48 47 47 22 15 15 Mars W. 105 10 43 106 46 9 108 21 53 109 57 55 a Aquilse w. 100 46 44 102 9 32 103 32 28 104 55 30 Fomalhaut w. 76 22 8 77 49 24 79 17 3 80 45 3 a Pegasi w. 54 6 2 65 36 29 67 7 26 58 38 52 Sun E. 40 5 21 38 37 6 37 8 33 35 39 44 16 Fomalhaut W. 88 10 24 89 40 27 91 10 47 92 41 26 a Pegasi W. 66 22 43 67 56 45 69 31 13 71 6 5 Sun E. 28 11 14 26 40 42 25 9 54 23 38 51 21 Sun W. 36 23 22 38 3 19 39 43 21 41 23 28 Spica E. 74 46 48 72 59 32 71 12 12 69 24 50 22 Sun W. 49 44 46 51 25 7 53 5 27 64 45 47 Jupiter W. 22 56 47 24 42 54 26 29 1 28 15 7 Spica E. 60 27 35 58 40 7 66 62 40 55 5 14 Antares E. 106 12 56 104 25 15 102 37 36 100 49 66 23 Sun W. 63 7 8 64 47 17 66 27 23 68 7 26 Jupiter W. 37 6 7 38 50 59 40 36 47 42 22 32 Venus w. 31 20 44 33 7 3 34 63 21 36 39 36 Spica E. 46 8 42 44 21 35 42 34 32 40 47 35 Antares E. 91 52 5 90 4 39 88 17 17 86 30 JUNE, 1860. 323 GEEENWICH MEAN TIME. i LUNAR DISTANCES. Day of Star's Name the and Noon. IIP'. \l\ IX\ Month. Position. 24 Sdn W. O 1 II 69 47 24 o / // 71 27 18 / // 73 7 8 ll 46 52 Jupiter W. 44 8 12 46 53 47 47 39 18 49 24 43 Venus w. 38 25 50 40 12 41 58 8 43 44 13 Saturn w. 20 46 37 22 31 53 24 17 13 26 2 35 Spica E. 39 44 37 13 59 35 27 22 33 40 51 Antares E. 84 42 45 82 55 36 81 8 32 79 21 32 25 Sdn W. 83 4 14 84 43 24 86 22 28 88 1 24 Jupiter W. 58 10 24 59 55 12 61 39 54 63 24 30 Venus w. 52 33 43 54 19 24 56 5 57 50 33 Saturn w. 34 49 19 36 34 31 38 19 38 40 4 40 Antares E. 70 28 68 41 37 66 55 20 66 9 11 Mars E. 122 2 21 120 15 33 118 28 49 116 42 11 26 Sun W. 96 14 15 97 52 27 99 30 31 101 8 27 Jupiter w. 72 5 38 73 49 28 75 33 10 77 16 44 Venus w. 66 36 54 68 21 53 70 6 47 71 51 34 Saturn w. 48 48 20 50 32 44 52 17 54 1 9 Regulus w. 43 40 2 45 25 12 47 10 15 48 55 11 Antares E. 56 20 10 54 34 46 52 49 30 51 4 21 Mars E. 107 50 32 106 4 32 104 18 39 102 32 63 27 Sun W. 109 16 1 110 53 6 112 30 2 114 6 49 Jupiter w. 85 52 28 87 35 11 89 17 44 90 9 Venus w. 80 33 57 82 18 6 84 2 8 86 46 3 Saturn w. 62 39 58 64 23 19 66 6 31 67 49 35 ■ Regulus w. 57 37 54 59 22 2 61 6 1 62 49 52 Antares E. 42 20 43 40 36 26 38 52 17 37 8 17 Mars E. 93 45 59 92 1 90 16 10 88 31 28 a Aquilse E. 96 27 1 94 56 18 93 25 39 91 56 6 28 Sdn W. 122 8 25 123 44 16 125 19 57 126 56 27 Jupiter W. 99 29 54 101 11 23 102 52 41 104 33 50 Venus W. 94 23 52 96 7 3 97 50 7 99 33 4 Saturn W. 76 22 38 78 4 47 79 46 46 81 28 35 Regulus W. 71 26 52 73 9 48 74 52 35 76 35 12 Mars E. 79 50 8 78 6 20 76 22 40 74 39 11 a Aquilse E. 84 24 14 82 54 37 81 25 14 79 56 7 Fomalhaut E. 109 40 107 27 14 105 53 47 104 20 19 29 Venus W. 108 5 47 109 47 55 111 29 54 113 11 44 Saturn w. 89 55 9 91 35 57 93 16 34 94 67 1 Regulus w. 85 5 46 86 47 22 88 28 48 90 10 3 Spica w. 31 5 53 32 47 5 34 28 8 36 9 3 Mars E. 66 4 15 64 21 47 62 39 30 60 57 23 a Aqnilse E. 72 35 6 71 8 69 41 20 68 15 6 Fomalhaut E. 96 33 37 95 31 93 27 33 91 54 42 30 Saturn W. 103 16 27 104 55 46 106 34 53 108 18 49 Spica W. 44 31 21 46 11 19 47 61 6 49 30 42 i Mars E. 52 29 46 50 48 51 49 8 9 47 27 39 a AquilsB E. 61 11 55 59 49 7 58 27 2 57 5 41 Fomalhaut E. 84 13 2 82 41 19 81 9 49 79 38 34 a Pejjasi E. 105 40 36 104 4 12 102 27 56 100 61 49 324 JUNE, 1860. GEEEIS'WIOH MEAN TIME. LUNAR DISTANCES. Day of the Star's Name and Midnight. XVi. XVIII''. XXIh. Month. Position. 24 Sun W. o / // 76 26 32 O 1 il 78 6 6 79 45 34 81 24 57 Jupiter W. 51 10 3 52 55 17 54 40 26 56 25 28 Venus W. 45 30 15 47 16 13 49 2 7 50 47 57 Saturn W. 27 47 59 29 33 22 31 18 44 33 4 3 Spica E. 31 54 29 30 8 17 28 22 14 26 36 21 Antares E. 77 34 38 75 47 50 74 1 7 72 14 30 25 Sun W. 89 40 12 91 18 54 92 57 28 94 35 50 Jupiter W. 65 8 58 66 53 19 68 37 33 70 21 40 Venus W. 59 36 61 21 21 63 6 37 64 51 48 Saturn W. 41 49 36 43 34 26 45 19 11 47 3 49 Antares E. 63 23 7 61 37 12 59 61 24 58 5 43 Mars E. 114 55 39 113 9 13 111 22 63 109 36 39 26 Sun W. 102 46 14 104 23 53 106 1 24 107 38 47 Jupiter W. 79 10 80 43 27 82 26 36 84 9 37 Venus W. 73 36 16 75 20 50 77 5 19 78 49 42 Saturn W. 55 45 11 57 29 5 59 12 51 60 56 29 Eegulus W. 50 40 52 24 40 64 9 12 56 63 37 Antares E. 49 19 20 47 34 28 45 39 46 44 5 10 Mars E. 100 47 15 99 1 44 97 16 21 95 31 6 27 Sun W. 115 43 27 117 19 56 118 66 15 120 32 25 Jupiter W. 92 42 25 94 24 31 96 6 28 97 48 16 Venus w. 87 29 51 89 13 32 90 57 6 92 40 32 Saturn w. 69 32 30 71 15 16 72 57 52 74 40 20 Kegulus w. 64 33 34 66 17 7 68 31 69 43 46 Antares E. 35 24 26 33 40 45 31 67 14 30 13 51 Mars E. , 86 46 54 85 2 29 83 18 13 81 34 6 a Aquilse E. 90 24 36 88 54 16 87 24 4 85 54 3 28 Sun W. 128 30 48 130 5 59 131 40 69 133 15 49 Jupiter w. 106 14 49 107 65 38 109 36 17 111 16 45 Venus w. 101 15 53 102 58 33 104 41 6 106 23 31 Saturn w. 83 10 14 84 61 43 86 33 2 88 14 11 Eegulus w. 78 17 39 79 59 66 81 42 2 83 23 59 Mars E. 72 55 52 71 12 42 69 29 43 67 46 64 a Aquilse E. 78 27 15 76 58 42 75 30 29 74 2 36 Fomalhaut E. 102 46 52 101 13 27 99 40 6 98 6 49 29 Venus W. 114 53 26 116 34 58 118 16 22 119 57 37 Saturn w. 96 37 17 98 17 21 99 67 16 101 36 57 Kegulus w. 91 51 7 93 32 95 12 41 96 53 12 Spica w. 37 49 50 39 30 27 41 50 55 42 51 13 Mars E. 59 15 28 57 33 45 65 52 13 54 10 53 a Aquilse E. 66 49 21 65 24 8 63 69 28 62 36 23 Fomalhaut E. 90 22 1 88 49 29 87 17 8 85 44 59 30 Saturn W. 109 52 33 111 31 4 113 9 23 114 47 30 Spica w. 51 10 8 52 49 22 54 28 25 56 7 16 Mars E. 45 47 24 44 7 22 42 27 36 40 48 2 a Aquilse E. 55 45 8 54 25 26 53 6 89 61 48 49 Fomalhaut E. 78 7 37 76 36 56 75 6 33 73 36 29 a Pegasi E. 99 15 51 97 40 2 96 4 22 94 28 53 JULY, 1860. 325 GEEENWICH MEAN TIME. LUNAR DISTANCES. Day of Star's Name and 1 Noon. im. VR IX"-. Month. Position. o / // O 4 H O t il o / ii 1 Spica W. 57 45 56 59 24 24 61 2 39 62 40 43 Antares w. 11 54 47 13 33 25 15 11 51 16 50 4 Mars E. 39 8 47 37 29 45 35 51 34 12 32 a Aquilae E. 50 32 2 49 16 21 48 1 51 46 48 36 Fomalhaut E. 72 6 46 70 37 22 69 8 21 67 39 43 a Pegasi E. 92 53 35 91 18 28 89 43 33 88 8 50 2 Spica W. 70 47 53 72 24 41 74 1 16 75 37 38 Antares W. 24 58 2 26 34 59 28 11 43 29 48 14 Mars E. 26 5 14 24 28 58 22 53 11 21 17 56 Fomalhaut E. 60 23 7 58 57 16 57 31 58 56 7 16 a Pegasi E. 80 18 33 78 45 11 77 12 5 55 39 14 a Arietis E. 122 53 4 121 16 34 119 40 16 118 4 11 3 Spica W. 83 36 11 85 11 13 86 46 3 88 20 39 Antares W. 37 47 30 39 22 41 40 57 89 42 32 24 Fomalliaut E. 49 13 45 47 53 21 46 33 50 45 15 15 a Pegasi E. 67 59 3 66 27 53 64 57 1 63 ^6 28 a Arietis E. 110 6 52 108 32 3 106 57 26 105 23 2 4 Spica W. 96 10 27 97 43 46 99 16 51 100 49 44 Antares W. 50 22 52 51 56 19 53 29 33 55 2 35 Fomalhaut E. 38 58 59 37 47 41 ■ 36 37 57 35 29 53 a Pegasi E. 55 58 49 54 30 22 53 2 19 51 34 40 a Arietis E. 97 34 12 96 1 4 94 28 9 92 55 27 6 Spica W. 108 31 7 110 2 48 111 34 17 113 5 36 Antares W. 62 44 41 64 16 31 65 48 9 67 19 37 Mars W. 13 43 26 15 10 47 16 39 6 18 8 5 a Pegasi E. 44 23 9 42 58 21 41 34 8 40 10 31 a Arietis E. 85 14 54 83 43 23 82 12 3 80 40 55 Aldebaran E. 117 22 48 115 52 37 114 22 35 112 52 42 6 Antares W. 74 64 19 76 24 46 77 55 4 79 25 14 Mars W. 25 37 46 27 8 4 28 38 U 30 8 44 a Arietis E. 73 7 50 71 37 43 70 7 45 68 37 56 Aldebaran E. 105 25 21 103 56 18 102 27 22 100 58 34 1 Antares W. 86 54 4 88 23 29 89 52 49 91 22 3, a Aquilae W. 42 13 39 43 15 21 44 18 20 45 22 25 Mars W. 37 40 25 39 10 41 40 40 54 42 11 6 a Arietis E. 61 10 57 59 41 56 58 13 1 56 44 13 Aldebaran E. 93 36 19 92 8 11 90 40 9 89 12 13 Sun E. 130 57 25 129 35 11 128 13 3 126 50 59 8 Antares W. 98 47 5 100 15 55 101 44 43 103 13 30 a Aquilae Mars W. 50 56 49 52 6 4 53 15 58 54 26 29 w. 49 41 40 51 11 43 52 41 46 54 11 49 a Arietis E. 49 21 31 47 53 12 46 24 57 44 56 45 Aldebaran E. 81 53 39 80 26 7 78 58 38 77 31 11 Sun" E. 120 1 48 118 40 7 117 18 29 115 56 52 9 Antares W. 110 37 17 112 6 4 113 34 54 115 3 46 Mars W. 61 42 21 63 12 33 64 42 49 66 13 8 a Aquilse w. 60 27 3 61 40 34 62 54 30 64 8 50 326 JULY, 1860. GEEENWICH MEAT^ TIME. LDNAE DISTANCES. Day of Star's Name and Midnight. XVi-. XTIIIi'. XXTii. Month. Position. • / // o / // / II O i II 1 Spica W. 64 18 34 65 56 13 67 33 39 69 10 62 Antares W. 18 28 5 20 5 53 21 43 29 23 20 52 Mars E. 32 34 22 30 56 33 29 19 4 27 41 66 a Aquilse E. 45 36 41 44 26 13 43 17 18 42 10 2 Fomalhaut E. 66 11 30 64 43 42 63 16 21 61 49 29 a Pegasi E. 86 34 20 85 3 83 25 59 81 52 9 2 Spica W. 17 13 41 78 49 43 80 25 25 82 56 Antares w. 31 24 32 33 36 34 36 27 36 12 5 Mars E. 19 43 19 18 9 27 16 36 27 15 4 32 Fomalliaut E. 54 43 11 63 19 44 51 56 59 50 34 59 a Pegasi K 74 6 38 72 34 19 71 2 17 69 30 31 a Arietis E. 116 28 18 114 62 38 113 17 10 111 41 55 3 Spica W. 89 55 3 91 29 13 93 3 11 94 36 55 Antares w. 44 6 66 45 41 14 47 15 20 48 49 12 Fomalhaut E. 43 57 40 42 41 10 41 25 50 40 11 44 a Pegasi E. 61 56 15 60 26 22 58 56 49 67 27 38 a Arietis E. 103 48 50 102 14 62 100 41 6 99 7 33 4 Spica W. 102 22 25 103 54 54 105 27 10 106 59 14 Antares W. 56 35 25 58 8 2 59 40 27 61 12 40 Fomalhaut E. 34 23 40 33 19 26 32 17 21 31 17 39 a Pegasi E.- 50 7 27 48 40 39 47 14 19 45 48 29 a Arietis E. 91 22 56 89 50 38 88 18 31 86 46 37 5 Spica W. 114 36 43 116 7 39 117 38 25 119 9 1 Antares W. 68 50 54 70 22 71 52 56 73 23 43 Mars W. 19 37 32 21 7 20 22 37 21 24 7 31, a Pegasi E. 38 47 32 37 25 16 36 3 45 34 43 4 a Arietis E. 79 9 57 77 39 10 76 8 33 74 38 7 Aldebaran E. 111 22 57 109 53 21 108 23 53 106 54 33 6 Antares W. 80 55 15 82 25 8 83 54 54 85 24 32 Mars W. 31 39 5 33 9 26 34 39 47 36 10 7 a Arietis E. 67 8 16 65 38 44 64 9 21 62 40 5 Aldebaran E. 99 29 53 98 1 20 96 32 53 95 4 33 1 Antares W. 92 51 12 94 20 16 95 49 16 97 18 12 a Aquilse W. 46 27 32 47 33 36 48 40 32 49 48 17 Mars W. 43 41 16 45 11 24 46 41 31 48 11 36 a Arietis E. 55 15 30 53 46 53 52 18 21 50 49 54 Aldebaran E. 87 44 21 86 16 34 84 48 52 83 21 14 Sun E. 125 29 1 124 7 7 122 45 17 121 23 31 8 Antares W. 104 42 16 106 11 1 107 39 46 109 8 31 a Aquilas W. 55 37 33 56 49 10 58 1 19 59 13 57 Mars W. 55 41 53 57 11 58 58 42 4 60 12 11 a Arietis E. 43 28 37 42 31 40 32 28 39 4 26 Aldebaran E. 76 3 47 74 36 24 73 9 3 71 41 43 Sun ■ E. 114 35 16 113 13 40 111 52 5 110 30 29 9 Antares W. 116 32 42 118 1 41 119 30 45 120 59 64 Mars W. 67 43 31 69 13 59 70 44 32 72 15 10 a Aquilae W. 65 23 33 66 38 37 67 54 2 69 9 47 JULY, 1860. 327 GREENWICH MEAN TIME. LUNAR DISTANCES. Day of the Star's Nam( and Noon. nil'. VP. IXi. Month. Position. • 9 Fomalhaut W. O 1 II 36 15 41 o / // 37 21 36 38° 28 52 a 1 II 39 37 23 a Arietis E. 37 36 27 36 8 29 34 40 33 33 12 38 Aldebaran E. 70 14 23 68 47 3 67 19 43 65 52 22 Sun E. 109 8 52 107 47 14 106 25 33 105 3 50 10 Mars W. 73 45 55 75 16 47 76 47 46 78 18 53 a Aquilae W. 70 25 52 71 42 15 72 58 56 74 15 54 Fomalhaut w. 45 35 27 46 49 43 48 4 43 49 20 27 a Arietis E. 25 53 32 24 25 51 22 58 16 21 30 49 Aldebaran E. 58 35 15 57 7 43 55 40 8 54 12 30 Sun E. 98 14 12 96 52 95 29 42 94 7 17 11 Mars W. 85 56 45 87 28 50 89 1 7 90 33 37 a Aquilae w. 80 44 55 82 3 30 83 22 20 84 41 24 Fomalhaut w. 65 48 35 57 7 55 58 27 46 59 48 7 a Pegasi w. 32 58 35 34 48 4 36 38 29 36 59 47 Aldebaran E. 46 53 26 46 25 29 43 57 27 42 29 21 Sun E. 87 12 55 86 49 32 84 25 58 83 2 12 12 Mars W. 98 19 27 99 53 21 101 27 31 103 1 57 a Aquilae w. 91 20 15 92 40 40 94 1 18 95 22 7 Fomalhaut w. 66 36 59 68 6 69 23 38 70 47 36 a Pegasi w. 43 57 27 45 22 57 46 49 2 48 15 41 Aldebaran E. 35 8 38 33 40 34 32 12 36 30 44 46 Sun E. 76 2 74 34 52 73 9 26 71 43 43 13 Mars W. 110 58 26 112 34 39 114 11 11 115 48 2 a Aquilae w. 102 8 51 103 30 40 104 52 36 106 14 38 Fomalhaut w. 77 53 32 79 19 54 80 46 39 82 13 47 a Pegasi w. 55 36 53 57 6 37 58 36 50 60 7 32 Son E. 64 30 46 63 3 13 61 35 21 60 7 9 14 a Aquilse w. 113 6 51 114 28 8 115 50 22 117 12 31 Fomalhaut w. 89 34 53 91 4 10 92 33 47 94 3 44 a Pegasi w. 67 47 59 69 21 26 70 55 19 72 29 39 a Arietis w. 24 18 5 25 63 44 27 29 57 29 6 42 Sun E. 52 40 55 51 10 35 49 39 52 48 8 46 15 Fomalhaut W. 101 38 103 9 41 104 41 38 106 13 45 a Pegasi w. 80 27 48 82 4 41 83 41 59 85 19 41 a Arietis w. 37 18 1 38 67 41 40 37 49 42 18 23 Sun E. 40 27 30 38 54 4 37 20 15 35 46 2 20 Sun w. 26 4 51 27 48 31 29 32 11 31 15 51 Spica E. 57 56 34 66 5 59 54 16 24 52 24 61 Antares E. 103 41 28 101 50 39 99 59 49 98 9 1 21 Sun W. 39 53 30 41 36 48 43 19 59 45 3 3 Spica E. 43 13 3 41 22 59 39 33 3 37 43 15 Antares E. 88 55 40 87 5 14 85 14 54 83 24 42 Mars E. 134 25 44 132 34 1 130 42 25 128 50 56 22 Sun W. 63 36 15 55 18 23 67 20 58 42 6 Spica E. 28 37 13 26 48 42 25 29 23 12 37 Antares E. 74 15 49 72 26 33 70 37 28 68 48 34 328 JULY, 1860. GKEENWICH MEAN" TIME. LUNAR DISTANCES. Day of the Month. Star's Name and Position. Midnight. • XV". XVIIP'. XXIk. 9 Fomalhaut W. / // 40 4T 1 o / // 41 57 -43 o / // 43 9 24 o / tt 44 22 a. Arietis E. 31 44 45 30 16 53 28 49 3 27 21 16 Aldebaran E. 64 25 0"^ 62 57 37 61 30 12 60 2 45 Sun E. 103 42 3 102 20 12 100 58 17 99 36 17 10 Mars W. T9 60 8 81 21 82 82 53 6 84 24 60 a Aquilae W. 75 33 10 76 50 42 78 8 31 79 26 35 Fomalhaut W. 50 36 51 51 53 54 53 11 33 64 29 47 a Arietis E. 20 3 31 18 36 27 17 9 43 15 48 24 Aldebaran E. 52 44 48 51 17 3 49 49 14 48 21 22 Sun E. 92 44 43 91 22 1 89 69 9 88 36 7 11 Mars W. 92 6 19 93 39 15 95 12 24 96 45 48 a Aquilae W. 86 43 87 20 16 88 40 3 90 2 Fomalhaut W. 61 8 58 62 30 17 63 62 4 66 14 18 a Pegasi w. 38 21 53 39 44 45 41 8 20 42 32 36 Aldebaran E. 41 1 13 39 33 3 38 4 53 36 36 45 Sun E. 81 38 13 80 14 1 78 49 36 77 24 66 12 Mars W. 104 36 39 106 11 39 107 46 57 109 22 32 a Aquilae W. 96 43 7 98 4 18 99 25 40 100 47 11 Fomalhaut w. 72 11 59 73 36 46 76 1 58 76 27 33 A Pegasi w. 49 41 53 51 10 37 52 38 52 54 7 37 Aldebaran E. 29 17 8 27 49 46 26 22 45 24 56 11 Sun E. 70 17 43 68 51 26 ■67 24 61 66 57 57 13 Mars W. 117 25 13 119 2 44 120 40 36 122 18 48 a Aquilae W. 107 36 46 108 58 59 110 21 16 111 43 33 Fomalhaut W. 83 41 17 85 9 9 86 37 22 88 6 67 a Pegasi w. 61 38 42 63 10 20 64 42 26 66 14 59 Sun E. 58 38 37 57 9 44 55 40 29 54 10 53 ,14 a Aquilse W. 118 34 33 119 56 26 121 18 6 122 39 30 Fomalhaut w. 95 33 59 97 4 33 98 35 26 100 6 35 a Pegasi w. 74 4 25 75 39 37 77 15 15 78 61 19 a Arietis w. 30 43 59 32 21 46 34 2 35 38 47 Sun E. 46 37 17 45 5 25 43 33 10 42 32 15 Fomalhaut W. 107 46 5 109 18 38 110 51 18 112 24 2 a Pegasi W. 86 57 46 88 36 14 90 15 6 91 54 21 o Arietis W. 43 59 24 45 40 51 47 22 43 49 5 1 Sun E. 34 11 26 32 86 26 31 1 8 29 26 16 20 Sun w. 32 59 29 34 43 5 36 26 38 88 10 6 Spica E. 50 34 21 48 43 54 46 53 31 45 3 14 Antares E. 96 18 14 94 27 30 92 36 49 90 46 12 21 Sun W. 46 46 48 28 48 50 11 27 51 53 66 Spica E. 35 53 39 34 4 14 32 15 30 26 Antares E. 81 34 37 79 44 41 77 64 54 76 5 16 Mars E. 126 69 34 125 8 20 123 17 14 121 26 17 22 Sun W. 60 23 39 62 4 59 63 46 6 65 26 59 Spica E. 21 25 6 19 37 57 17 51 18 16 5 13 Antares E. 66 59 53 65 11 25 63 23 10 61 35 8 JULY, 1860. 329 GREENWICH MEAN TIME. LUNAR DISTANCES. Day of the Star's Name and Noon. Illk. VI"-. IXi'. Month. Position. O t 11 O / // O I II / // 22 Mars E. 119 35 29 117 44 50 115 54 21 114 4 3 23 Sun W. 6T 7 39 68 48 4 70 28 15 72 8 11 Antares E. 59 47 20 57 59 46 66 12 27 54 25 23 Mars E. 104 55 25 103 6 22 101 17 81 99 28 64 a Aquilae E. 111 30 62 109 59 17 108 27 36 106 55 48 24 Sun W. 80 24 7 82 2 32 83 40 41 85 18 34 Antares E. 45 33 46 43 48 14 42 2 67 40 17 56 Mars E. 90 29 39 88 42 35 86 65 46 85 9 15 a Aquilae E. 99 16 42 97 45 3 96 13 32 94 42 9 25 Sun W. 93 24 95 17 96 36 19 98 12 6 Spica W. 14 31 54 16 13 3 17 54 21 19 35 45 Antares E. 31 36 50 29 53 24 28 10 14 26 27 20 Mars E. 76 20 38 74 35 45 72 61 7 71 6 46 a Aquilae E. 87 8 10 85 38 6 84 8 18 82 38 49 Fomalhaut E. 111 47 41 110 14 19 108 40 69 107 7 41 26 Sun W. 106 7 3 107 41 17 109 15 15 110 48 69 Spica W. 28 1 29 29 42 11 31 22 42 33 3 2 Mars E. 62 29 8 60 46 26 59 4 67 21 51 a Aquilae E. 75 16 38 73 49 23 72 22 34 70 66 13 Fomalhaut E. 99 22 35 97 49 57 96 17 29 94 45 11 a Pegasi E. 121 33 14 119 56 48 118 20 27 116 44 11 27 Sun W. 118 33 59 120 6 16 121 38 19 123 10 8 Spica W. 41 21 38 43 43 44 39 36 46 18 16 Mars E. 48 55 11 47 14 41 46 34 28 43 54 32 a Aquilae E. 63 52 13 62 29 9 61 6 45 69 45 1 Fomalhaut E. 87 6 43 86 35 42 84 4 55 82 34 24 a Pegasi E. 108 44 36 107 9 6 106 33 46 103 58 35 28 Spica W. 54 28 30 66 5 56 67 43 9 59 20 10 Mars E. 35 39 12 34 1 4 32 23 16 30 45 49 a Aquilae E. 53 8 3 51 51 19 60 35 37 49 20 58 Fomalhaut E. 75 6 2 73 37 17 72 8 52 70 40 48 a Pegasi E. 96 5 13 94 31 6 92 57 10 91 23 26 29 Spica W. 67 22 17 68 68 7 70 33 46 72 9 14 Antares W. 21 31 58 23 7 58 24 43 47 26 19 24 Fomalhaut E. 63 26 13 62 34 60 35 22 69 10 41 a Pegasi E. 83 37 41 82 5 9 80 32 50 79 44 30 Spica Antares W. 80 3 46 81 38 7 83 12 18 84 46 18 W. 34 14 41 35 49 11 37 23 30 38 57 39 Fomalhaut E. 52 15 30 60 54 21 49 33 54 48 14 14 a Pegasi a Arietis E. 71 23 39 69 52 57 68 22 29 66 52 17 E. 113 39 11 112 5 3 110 31 5 108 57 17 31 Spica Antares W. 92 33 44 94 6 43 95 39 31 97 12 10 w. 46 45 47 48 18 54 49 61 61 51 24 38 a Pegasi Arietis E. 59 25 19 57 56 47 56 28 34 55 40 E. 101 10. 51 99 38 3 • 98 6 26 96 32 57 330 JULY, 1860. GEEENWICH MEAN TIME. 1 LUNAK DISTANCES. Day of the Star's Name and Midnight. XVt. XTIIP. XXP". Month. Position. 1 II / // O / // O 4 II 22 Mars E. 112 13 56 110 24 108 34 16 106 44 44 23 Sun W. 73 47 53 75 27 19 77 6 31 78 45 27 Antares E. 52 38 33 50 51 58 49 5 39 47 19 35 Mars E. 97 40 32 95 52 26 94 4 34 92 16 59 a Aquilse E. 105 23 58 103 52 7 102 20 16 100 48 27 24 Sun W. 86 56 11 88 33 32 90 10 37 91 47 26 Antares E. 38 33 11 36 48 42 35 4 29 33 20 32 Mars E. 83 22 69 81 37 79 51 17 78 5 49 a Aquilae E. 93 10 56 91 39 55 90 9 6 88 38 31 25 Sun W. 99 47 36 101 22 51 102 57 50 104 32 34 Spica W. 21 17 6 22 58 24 24 39 34 26 20 36 Antares E. 24 44 41 23 2 18 21 20 11 19 38 19 Mars E. 69 22 41 67 38 54 65 55 22 64 12 7 a Aquilse E. 81 9 39 79 40 50 78 12 23 76 44 18 Fomalhaut E. 105 34 27 104 1 19 102 28 17 100 55 22 26 Sun W. 112 22 28 113 55 42 115 28 42 117 1 28 Spica W. 34 43 10 36 23 6 38 2 49 39 42 20 Mars E. 55 39 58 53 58 22 52 17 2 50 35 69 a A qui las E. 69 30 20 68 4 58 66 40 9 65 15 63 Fomalhaut E. 93 13 5 91 41 10 90 9 28 88 37 69 a Pegasi E. 115 8 1 113 31 58 111 66 3 110 20 15 27 Sun W. 124 41 44 126 13 6 127 44 15 129 15 11 Spica W. 47 66 44 49 34 59 51 13 2 62 50 52 Mars E. 42 14 52 40 35 30 38 56 25 37 17 40 a Aquilae E. 58 24 1 57 3 46 55 44 19 64 25 44 Fomalhaut E. 81 4 9 79 34 11 78 4 30 76 35 7 a Pogasi E. 102 23 34 100 48 43 99 14 2 97 39 32 28 Spica W. 60 56 59 62 33 36 64 10 1 65 46 16 Mars E. 29 8 43 27 32 2 25 55 47 24 19 59 a Aquilae E. 48 7 28 46 55 12 45 44 13 44 34 37 Fomalhaut E. 69 13 6 67 45 46 66 18 50 64 52 19 a Pegasi E. 89 49 52 88 16 31 86 43 22 85 10 26 29 Spica W. 73 44 31 75 19 36 76 54 30 78 29 14 Antares W. 27 54 50 29 30 5 31 5 8 32 40 Fomalhaut E. 57 46 30 56 22 51 54 59 47 53 37 19 a Pegasi E. 77 28 52 75 57 13 74 25 47 72 54 36 30 Spica W. 86 20 8 87 53 48 89 27 17 91 36 Antares W. 40 31 37 42 5 25 43 39 3 45 12 30 Fomalhaut E. 46 55 23 45 37 23 44 20 20 43 4 17 a Pegasi E. 66 22 21 63 52 40 62 23 16 60 54 9 a Arietis E. 107 23 40 105 50 13 104 16 56 102 43 48 31 Spica W. 98 44 39 100 16 58 101 49 8 103 21 8 Antares W. 52 57 15 54 29 43 56 2 1 57 34 10 a Pegasi E. 53 33 7 52 5 55 60 39 5 49 12 38 a Arietis E. 95 38 • 93 28 29 91 66 29 90 24 39 AUGUST, 1860. 331 GEEENWIOH MEAN TIME. LUNAR DISTANCES. Day of Star's Name and Noon. IHK Vlt. IX". Month. Position. t n O / // O 1 II O / // 1 Spica W. 104 52 69 106 24 40 107 56 12 109 27 35 Antares W. 59 6 9 60 37 59 62 9 40 63 41 12 Mars W. 16 55 41 18 24 36 19 54 2 21 23 51 a Pegasi E. 47 46 35 46 20 58 44 55 48 43 31 8 a Arietis E. 88 52 58 87 21 26 86 50 4 84 18 50 2 Antares W. 71 16 47 72 47 29 74 18 4 76 48 30 Mars W. 28 55 35 30 26 9 31 66 43 33 27 16 a Arietis E. 76 44 51 75 14 28 73 44 14 72 14 7 Aldebaran E. 108 59 43 107 30 28 106 1 20 104 32 16 3 Antares W. 83 18 55 84 48 40 86 18 19 87 47 51 Mars W. 40 59 26 42 29 43 43 69 66 46 30 6 a Aquila w. 39 50 32 40 49 3 41 49 2 42 60 22 a Arietis E. 64 45 28 63 16 6 61 46 50 60 17 41 Aldebaran E. 97 8 38 95 40 12 94 11 51 92 43 37 4 Antares W. 95 14 12 96 43 14 98 12 13 99 41 8 Mars w. 52 59 53 54 29 40 55 69 23 57 29 4 a Aquilae w. 48 13 53 49 21 23 50 29 40 51 38 41 a Arietis E. 52 53 28 51 24 54 49 66 26 48 28 3 Aldebaran E. 85 23 42 83 55 58 82 28 18 81 41 6 Mars W. 64 56 50 66 26 18 67 56 45 69 26 11 a Aquilae W. 57 32 51 58 45 14 59 68 4 61 11 19 a Arietis E. 41 7 14 39 39 17 38 11 23 36 43 34 Aldebaran E. 73 43 34 72 16 18 70 49 5 69 21 63 Venus E. 114 13 6 112 44 16 111 15 28 109 46 42 Sun E. 138 22 30 137 1 1 136 39 33 134 18 6 6 Mars W. 76 52 23 78 21 52 79 61 23 81 20 57 a Aquilse W. 67 22 57 68 38 14 69 53 48 71 9 38 Fomalhaut W. 42 89 39 43 51 30 45 4 14 46 17 46 Aldebaran E. 62 6 22 60 39 19 69 12 17 57 45 16 Venus E. 102 23 6 100 54 22 99 25 39 97 66 65 Pollux E. 104 3 55 102 35 40 101 7 22 99 39 2 Sun E. 127 30 44 126 9 12 124 47 38 123 26 1 7 Mars W. 88 49 37 90 19 34 91 49 37 93 19 46 a Aquilae W. 77 32 26 78 49 40 80 7 6 81 24 44 Fomalhaut W. 52 35 11 53 52 25 55 10 8 56 28 20 a Pegasi w. 29 47 18 31 3 21 32 20 30 33 38 38 Aldebaran E. 50 30 11 49 3 9 47 36 7 46 9 6 Venus E. 90 32 39 89 3 39 87 34 35 86 5 27 Pollux E. 92 16 19 90 47 31 89 18 36 87 49 35 Sun E. 116 36 57 115 14 53 113 52 43 112 30 26 8 Mars W. 100 52 23 102 23 20 103 54 27 105 25 43 a Aquilae Fomalhaut W. 87 55 42 89 14 25 90 33 18 91 52 20 w. 63 6 4 64 26 51 66 48 1 67 9 32 a Pegasi Aldebaran w. 40 21 39 41 44 19 43 7 33 44 31 20 E. 38 54 10 37 27 16 36 26 34 33 43 Venus E. 78 38 17 77 8 31 76 38 37 74 8 35 Pollux E. 80 22 29 78 52 37 77 22 34 76 62 20 Sun E. 105 37 2 104 13 53 102 50 34 101 27 3 332 AUGUST, 1860. GEEEITWIOH MEAE" TIME. LUNAR DISTANCES. Day of Star's Name tte and Midnight. xv*. XVIII''. XXP. Month. Position. 1 Spica W. / // 110 68 50 o / // 112 29 65 O 1 ft 114 52 O / // 115 31 40 Antares W. 65 12 36 66 43 51 68 14 58 69 46 67 Mars W. 22 53 55 24 24 10 26 54 34 27 25 3 a Pegasi E. 42 6 58 40 43 21 39 20 20 37 57 68 a Arietis E. 82 47 45 81 16 49 79 46 1 78 15 22 2 Antares W. TT 18 49 78 49 1 80 19 6 81 49 4 Mars W. 34 57 48 36 28 17 37 58 43 39 29 6 a Arietis E. 70 44 8 69 14 17 67 44 33 66 14 57 Aldebaran E. 103 3 21 101 34 31 100 6 48 98 37 9 3 Antares W. 89 17 17 90 46 38 92 15 64 98 45 5 Mars W. 47 10 48 30 11 50 8 61 30 2 a Aquilse W. 43 52 57 44 56 40 46 1 27 47 7 13 a Arietis E. 58 48 38 57 19 42 66 50 51 64 22 7 Aldebaran E. 91 15 28 89 47 24 88 19 25 86 51 31 4 Antares W. 101 9 59 102 38 47 104 7 33 106 36 17 Mars W. 58 58 42 60 28 17 61 57 50 63 27 21 a Aquila w. 52 48 21 63 58 39 56 9 31 56 20 56 a Arietis E. 46 59 44 46 31 30 44 3 20 42 35 15 Aldebaran E. 79 33 9 78 6 41 76 38 16 75 10 53 6 Mars '■'- W. 70 54 86 72 24 2 73 63 28 75 22 66 a Aquilse w. 62 24 57 63 38 57 64 53 18 66 7 58 a Arietis E. 35 15 48 33 48 6 32 20 28 30 52 66 Aldebaran E. 67 54 44 66 27 37 65 31 63 33 26 Venus E. 108 17 67 106 49 13 105 20 30 103 61 48 Sun E. 132 66 38 131 35 11 130 18 43 128 52 14 6 Mars W. 82 50 34 84 20 14 86 49 57 87 19 44 a Aquilse W. 72 25 43 73 42 3 74 68 37 76 15 25 Fomalbaut w. 47 31 58 48 46 51 60 2 23 51 18 30 Aldebaran E. 56 18 15 54 51 14 68 24 13 51 67 12 Venus E. 96 28 8 94 59 20 93 30 29 92 1 36 Pollux E. 98 10 38 96 42 10 95 13 38 93 46 1 Sdn E. 122 4 20 120 42 36 119 20 48 117 58 55 1 Mars W. 94 50 2 96 20 26 97 50 57 99 21 36 a Aquilas W. 82 42 34 84 35 85 18 47 86 37 9 Fomalhaut w. 67 47 1 69 6 9 60 25 42 61 45 41 a Pegasi w. 34 67 42 36 17 34 37 88 13 88 69 36 Aldebaran E. 44 42 5 43 15 4 41 48 4 40 21 6 Venus E. 84 36 13 83 6 53 81 87 28 80 7 56 Pollux E. 86 20 26 84 51 10 83 21 45 81 62 12 Sun E. 111 8 2 109 46 30 108 22 50 107 1 8 Mars W. 106 57 11 108 28 61 110 42 111 32 46 a Aquilse W. 93 11 31 94 30 51 95 50 20 97 9 67 Fomalhaut w. 68 81 27 69 53 44 71 16 22 72 39 20 a Pegasi w. 45 55 40 47 20 30 48 45 50 50 11 38 Aldebaran E. 33 7 7 31 40 40 30 14 25 28 48 26 Venus E. 72 38 23 71 8 2 69 37 82 68 6 61 Pollux E. 74 21 55 72 61 18 71 20 28 69 49 26 Sun E. 100 3 22 98 39 27 97 15 19 95 50 58 AUGUST, 1860. 333 GEEENAViCH MEAN TIME. LUNAR DISTANCES. Day of Star's Name and Noon. III". Vli. IX". Mouth. Position. O 1 II o / // O 1 u 1 II 9 ffl Aquilae W. 98 29 42 99 49 34 101 9 33 102 29 39 Fomalhaut W. 74 2 40 75 26 21 76 60 22 78 14 43 a Pegasi W. 51 37 54 53 4 38 54 31 47 55 59 23 Venus E. 66 36 65 4 58 63 33 44 62 2 18 Pollux E. 68 18 10 66 46 40 65 14 56 63 42 57 Sun E. 94 26 23 93 1 33 91 86 28 90 11 7 10 Fomalhaut W. 85 21 30 86 47 61 88 14 31 89 41 30 a Pegasi W. 63 23 47 64 53 56 66 24 29 67 65 27 a Arietis W. 19 48 32 21 20 16 22 62 38 24 25 36 Venus E, 54 21 54 62 49 8 51 16 9 49 42 66 Pollux E. 55 59 1 54 26 23 52 51 27 51 17 13 Sun E. 83 7 81 33 80 5 33 78 37 47 11 Fomalhaut W. 97 1 7 98 29 58 99 59 6 101 28 28 a Pegasi W. 75 36 37 77 10 6 78 44 1 80 18 21 a Arietis W. 32 18 30 33 54 34 36 31 7 37 8 7 Venus E. 41 53 12 40 18 34 38 43 44 37 8 41 Pollux E. 43 21 21 41 45 13 40 8 47 38 32 2 Sun E, 71 13 36 69 43 39 68 13 19 66 42 35 12 a Pegasi W. 88 16 20 89 53 11 91 30 27 93 8 8 a Arietis W. 45 20 9 46 69 57 48 40 12 60 20 55 Venus E. 29 11 15 27 35 36 26 24 24 34 Sun E. 59 2 50 57 29 38 65 56 54 21 67 13 a Arietis W. 58 51 25 60 34 53 62 18 48 64 3 10 Aldebaran W. 27 47 19 29 24 34 31 2 52 32 42 9 Sun E. 46 25 11 44 48 32 43 11 27 41 33 57 14 a Arietis "W. 72 51 33 74 38 30 76 25 51 78 13 35 Aldebaran W. 41 10 56 42 64 48 44 39 17 46 24 21 Sun E. 33 20 12 31 40 15 29 59 65 28 19 14 18 Sun W. 22 27 46 24 13 19 25 58 49 27 44 13 Spica E. 34 2 17 32 9 41 30 17 15 28 26 1 Antares E. 79 42 56 77 49 45 75 56 42 74 3 47 19 Sun W. 36 29 8 38 13 33 39 57 45 41 41 43 Antares E. 64 41 40 62 49 62 60 68 18 69 6 58 Mars E. 105 47 6 103 55 48 102 4 45 100 13 58 20 Sun W. 50 17 27 51 69 42 63 41 38 55 23 15 Antares E. 49 54 32 48 4 57 46 15 42 44 26 47 Mars E. 91 4 20 89 15 21 87 26 42 85 38 23 a Aquilae E. 103 1 2 101 26 16 99 51 33 98 17 21 Sun W. 63 46 6 65 25 36 67 4 46 68 43 31 Antares E. 35 27 22 33 40 34 31 54 8 30 8 3 Mars E. 76 42 13 74 56 6 73 10 22 71 26 1 a Aquilse E. 90 27 23 88 54 17 87 21 31 86 49 7 22 Sun W. 76 61 51 78 28 24 80 4 35 81 40 24 Spica Mars W. 24 36 4 26 19 6 28 1 61 29 44 19 E. 62 44 6 61 1 6 69 18 29 57 36 16 334 AUGUST, 1860. GEEENWICH W&KE TIME. ■ LUNAR DISTANUJiS. Day of Star's Name ' the and Midnight. XVK XVIIIi. XXTl'. Month. Position. 9 a Aquilae W. o / // 103 49 50 O I II 105 10 7 106° 30 28 O 1 II 107 50 52 Fomalhaut W. 79 39 24 81 4 26 82 29 48 83 66 29 a Pegasi w. b1 27 25 58 65 53 60 24 46 61 54 3 Venus E. 60 30 39 58 58 48 57 26 44 55 54 26 Pollux E. 62 10 42 60 38 12 69 5 26 57 32 22 Sun E. 88 45 30 87 19 36 85 53 24 84 26 55 10 Fomalhaut W. 91 8 48 92 36 26 94 4 22 95 32 35 a Pegasi W. 69 26 51 70 58 40 72 30 64 74 3 33 a Arietis w. 25 59 8 27 33 13 29 7 49 30 42 65 Venus E. 48 9 28 46 35 45 46 1 48 43 27 37 Pollux E. 49 42 40 48 7 49 46 32 38 44 57 9 Sun E. 77 9 40 75 41 12 74 12 22 72 43 10 11 Fomalhaut W. 102 58 9 104 28 5 105 58 16 107 28 40 a Pegasi w. 81 53 6 83 28 17 85 3 63 86 39 64 a Arietis w. 38 45 36 40 23 33 42 1 57 43 40 49 Venus E. 35 33 27 33 68 3 32 22 32 30 46 66 Pollux E. 36 54 58 35 17 36 33 39 57 32 2 2 Sun E. 65 11 27 63 39 65 62 7 68 60 35 37 12 a Pegasi W. 94 46 14 96 24 44 98 3 38 99 42 55 a Arietis W. 52 2 6 53 43 44 56 26 50 57 8 24 Venus E. 22 49 26 21 14 46 19 40 45 18 7 40 Sun E. 52 47 28 61 12 32 49 37 11 48 1 24 13 a Arietis W. 65 47 59 67 33 14 69 18 56 71 6 1 Aldebaran W. 34 22 21 36 3 22 37 45 11 39 27 43 Sun E. 39 56 1 38 17 41 36 38 55 34 59 46 14 a Arietis W. 80 1 43 81 50 14 83 39 7 86 28 21 Aldebaran w. 48 9 56 49 56 6 61 42 43 63 29 49 Sun E. 26 38 11 24 56 48 23 15 5 21 33 5 18 Sun W. 29 29 31 31 14 40 32 69 40 34 44 30 Spica E. 26 33 1 24 41 18 22 49 53 20 58 49 Antares E. 72 11 70 18 23 68 26 67 66 33 42 19 Sun W. 43 25 26 45 8 52 46 52 1 48 34 63 Antares E. 57 15 54 55 25 8 63 34 38 51 44 26 Mars E. 98 23 27 96 33 13 94 43 19 92 63 39 20 Sun W. 57 4 31 58 45 26 60 26 1 62 6 15 Antares E. 42 38 12 40 49 58 39 2 5 37 14 33 Mars E. 83 60 25 82 2 49 80 15 35 78 28 43 a AquilsB E. 96 42 37 95 8 26 93 34 29 92 47 21 Sun W. 70 21 56 71 69 68 73 37 38 75 14 56 Antares E. 28 22 21 26 37 1 24 52 4 23 7 28 Mars E. 69 40 3 67 66 29 66 11 18 64 27 30 a Aquilae E. 84 17 5 82 45 27 81 14 16 79 43 29 22 Sun W. 83 15 51 84 50 66 86 25 40 88 2 Spica W. 31 26 30 33 8 21 34 49 54 36 31 10 Mars E. 55 54 26 54 12 59 52 31 56 60 51 16 AUGUST, 1860. 335 GEEENWICH MEAN TIME. LUNAR DISTANCES. Day of the Star's Name and Noon. III''. Vli. IXt. Month. Position. o / // o / il o / n o / II 22 a Aquilae E. 78 13 11 76 43 22 75 14 4 73 45 17 23 Sun W. 89 34 3 91 7 43 92 41 2 94 14 1 ' Spica W. 38 12 5 39 52 40 41 32 67 43 12 56 Mars E. 49 10 59 47 31 5 45 51 35 44 12 27 a Aquilae E. 66 30 2 65 4 53 63 40 24 62 16 40 Fomalhaut E. 90 2 20 88 29 51 86 57 43 86 25 64 24 Son W. 101 53 56 103 24 57 104 65 40 106 26 6 Spica w. 61 28 6 53 6 14 54 44 4 56 21 35 Mars E. 36 2 30 34 25 39 32 49 11 51 13 8 a Aquilse E. 55 29 51 64 11 9 52 53 25 51 36 43 Fomalhaut E. 77 52 10 76 22 33 74 53 19 73 24 29 a Pegasi E. 98 58 26 97 23 41 96 49 11 94 14 58 25 Sun W. 113 58 50 116 22 34 116 51 1 118 19 13 Spica W. 64 25 7 66 1 1 67 36 40 69 12 5 Antares W. 18 34 47 20 10 60 21 46 39 23 22 12 Fomalhaut E. 66 6 43 64 40 31 63 14 48 61 49 36 a Pegasi E. 86 27 53 84 55 17 83 22 56 81 50 51 26 Sun W. 125 36 32 127 3 18 128 29 51 129 56 11 Spica W. 77 5 34 78 39 35 80 13 24 81 47 1 Antares w. 31 16 25 32 50 34 34 24 31 35 58 16 Fomalhaut E. 54 51 34 63 29 45 62 8 36 60 48 8 a Pegasi E. 74 14 24 72 43 56 71 13 41 69 43 44 27 Spica W. 89 32 9 91 4 37 92 36 66 94 9 5 Antares W. 43 44 5 45 16 41 46 49 7 48 21 24 Fomalhaut E. 44 17 39 43 2 18 41 48 40 34 60 a Pegasi E. 62 18 4 60 49 47 69 21 47 67 54 6 a Arietis E. 104 12 3 102 39 47 101 7 41 99 36 44 28 Spica W. 101 47 27 103 18 41 104 49 47 106 20 45 Antares W. 56 26 67 31 48 59 3 2 60 34 8 a Pegasi E. 50 40 23 49 14 41 47 49 22 46 24 28 a Arietis E. 91 58 17 90 27 13 88 66 17 87 25 28 29 Antares W. 68 7 49 69 3'8 13 71 8 30 73 38 41 Mars W. 26 27 11 27 56 12 29 23 13 30 51 13 a Pegasi E. 39 26 69 38 6 8 36 43 57 35 23 29 a Arietis E. 79- 53 21 78 23 18 76 53 21 76 23 31 Aldebaran E. 112 5 66 110 37 109 8 10 107 39 24 30 Antares W. 80 8 12 81 37 50 83 7 24 84 36 53 Mars W. 38 10 43 39 38 29 41 6 12 42 33 62 a Aquilae a Arietis W. 37 51 37 38 46 49 39 43 40 40 42 3 E. 67 56 48 66 26 31 64 57 20 63 28 14 Aldebaran E. 100 16 40 98 48 19 97 20 3 96 51 51 31 Antares W. 92 3 18 93 32 24 95 1 27 96 30 27 Mars W. 49 51 24 51 18 46 52 46 5 64 13 21 a Aquilae a Arietis W. 45 53 39 46 59 17 48 6 61 49 13 17 E. 56 3 65 54 35 17 63 6 43 61 38 13 Aldebaran E. 88 31 46 87 3 65 85 36 8 84 8 336 AUGUST, 1860. GREE]!nVICH 1VTF,A¥ TIME. LUNAR DISTANCES. Day of the Star's Name and Midnight. XVi. xvim. XXTi. Month. Position. o / // O 1 II i II O 1 II 22 a Aquilse E. T2 17 3 70 49 23 69 22 19 67 55 51 23 Sun W. 95 46 40 97 18 68 98 60 67 100 22 36 Spica W. 44 52 35 46 31 55 48 10 67 49 49 40 Mars E. 42 33 42 40 66 19 39 17 20 37 39 43 a Aquilse E. 60 63 40 59 31 27 58 10 3 56 49 30 Fomalhaut E. 83 54 26 82 23 19 80 62 33 79 22 10 24 Sun W. 107 56 12 109 26 2 110 55 35 112 24 61 Spica W. 67 58 51 59 35 49 61 12 31 62 48 67 Mars E. 29 37 28 28 2 13 26 27 23 24 52 59 a Aquilse E. 50 21 6 49 6 39 47 63 23 46 41 26 Fomalhaut E. 71 56 4 70 28 4 69 30 67 33 23 a Pegasi E. 92 41 1 91 7 20 89 33 55 88 46 25 Sun W. 119 47 10 121 14 62 122 42 20 124 9 33 Spica W. 70 47 15 72 22 10 73 56 51 76 31 20 Antares W. 24 57 31 26 32 36 28 7 26 29 42 2 Fomalhaut E. 60 24 53 59 42 57 37 4 66 14 1 a Pegasi E. 80 19 1 78 47 28 77 16 11 75 46 9 26 Sun W. 131 22 18 132 48 13 134 13 66 135 39 25 Spica W. 83 20 25 84 53 38 86 26 39 87 69 30 Antares W. 37 31 49 39 5 10 40 38 19 42 11 17 Fomalhaut E. 49 28 23 48 9 25 46 61 16 45 34 a Pegasi E. 68 14 3 66 44 38 66 15 30 63 46 38 27 Spica W. 95 41 4 • 97 12 53 98 44 33 100 16 4 Antares W. 49 53 31 61 26 28 52 67 16 64 28 66 Fomalhaut E. 89 22 54 38 12 17 37 3 6 35 55 28 a Pegasi E. 56 26 41 54 59 37 63 32 52 52 6 27 a Arietis E. 98 3 56 96 32 18 95 49 93 29 29 28 Spica W. 107 51 35 109 22 18 110 62 63 112 23 21 Antares W. 62 5 7 63 35 58 66 6 42 66 37 19 a Pegasi E. 45 43 35 59 42 12 27 40 49 26 a Arietis E. 85 54 47 84 24 14 82 53 49 81 23 31 29 Antares W. 74 -8 46 75 38 45 77 8 39 78 38 27 Mars W. 32 19 11 33 47 8 35 15 2 36 42 54 a Pegasi E. 34 3 48 32 44 69 31 27 9 30 10 24 a Arietis E. 73 53 47 72 24* 9 70 54 37 69 25 10 Aldebaran E. 106 10 43 104 42 6 103 13 33 101 45 4 30 Antares W. 86 6 18 87 36 39 89 4 66 90 34 9 Mars w. 44 1 29 45 29 2 46 66 33 48 24 1 a Aquilse w. 41 41 52 42 43 2 43 45 26 44, 49 a Arietis E. 61 59 13 60 30 16 59 1 25 57 32 38 Aldebaran E. 94 23 43 92 66 38 91 27 37 89 59 40 31 Antares W. 97 59 24 99 28 19 100 57 11 102 26 Mars W. 55 40 34 57 7 46 58 34 54 60 2 a Aquilse W. 50 21 29 61 30 27 62 40 7 53 50 24 o Arietis E. 50 9 47 48 41 25 47 13 7 45 44 52 Aldebaran E. 82 40 44 81 13 6 79 45 31 78 17 58 SEPTEMBER, 1860. 337 GKEENWICH MEAN TTME. LUNAR DISTANCES. Day of star's Namt i tie and Noon. iii'>. VP'. IX". Month. Position. 1 Antares W. 1 il 103 54 49 105° 23 36 O / // 106 52 21 108° 21 5 Mars W. 61 29 4 62 56 7 64 23 9 65 60 8 a Aquilse w. 55 1 17 66 12 44 57 24 40 58 37 6 a Arietis E. 44 16 41 42 48 34 41 20 31 39 52 31 Aldebaran E. 76 50 29 75 23 2 73 55 37 72 28 15 Venus E. 125 16 42 123 63 18 122 29 55 121 6 33 2 Mars W. 73 4 52 74 31 47 75 58 43 77 25 40 V a Aquilse W. 64 45 25 66 8 67 15 9 68 30 27 Fomalhaut W. 40 6 6 41 15 58 42 26 49 43 38 34 a Arietis E. 32 33 33 31 5 59 29 38 30 28 11 8 Aldebaran E. 65 11 59 63 44 49 62 17 41 60 60 35 Pollux E. 107 13 11 105 44 58 104 16 44 102 48 29 Venus E. 114 9 51 112 46 31 111 23 11 109 59 60 3 Mars W. 84 40 37 86 7 41 87 34 48 89 1 58 a Aquilae W. 74 50 43 76 7 25 77 24 18 78 41 22 Fomalhaut W. 49 48 31 51 4 25 52 20 51 53 37 47 a Pegasi w. 27 12 2 28 25 5 29 39 30 30 55 9 Aldebaran E. 53 35 29 62 8 32 50 41 38 49 14 46 Pollux E. 95 26 49 93 58 22 92 29 51 91 1 16 Venus E. 103 2 47 101 39 17 100 15 44 98 52 9 Jupiter E. 118 54 30 117 27 12 116 59 50 114 32 26 4 Mars W. 96 18 41 97 46 14 99 13 53 100 41 38 a Aquilae W. 85 9 4 86 27 2 87 45 7 89 3 19 Fomalhaut W. 60 9 7 61 28 34 62 48 22 64 8 30 a Pegasi W. 37 27 36 38 48 22 40 9 45 41 31 40 Aldebaran E. 42 1 3 40 34 29 39 7 69 37 41 36 Pollux E. 83 37 26 82 8 24 80 39 17 79 10 6 Venus E. 91 53 17 90 29 17 89 5 12 87 41 1 Jupiter E. 107 14 16 105 46 23 104 18 24 102 60 18 5 Mars W. 108 2 1 109 30 28 110 69 4 112 27 50 a Aquilae W. 95 35 48 96 54 33 98 13 22 99 32 15 Fomalhaut W. 70 53 63 72 15 51 73 38 5 75 36 a Pegasi W. 48 28 46 49 63 29 51 18 36 52 44 6 Pollux E. 71 42 14 70 12 16 68 42 9 67 11 53 Venus E. 80 38 25 79 13 31 77 48 28 76 23 16 Jupiter Sun E. 95 27 57 93 59 3 92 30 91 47 E. 123 i6 40 122 23 40 121 30 119 37 10 6 Fomalhaut W. 81 57 8 83 21 13 84 45 34 86 10 8 a Pegasi a Arietis w. 59 56 53 61 24 30 62 52 26 64 20 42 w. 16 19 12 17 47 22 19 16 15 20 45 49 Pollux E. 59 38 2 58 6 41 56 35 10 65 3 26 Venus E. 69 14 40 67 48 23 66 21 63 64 55 10 Jupiter Sun E. 83 31 55 82 1 32 80 30 56 79 9 6 E. 112 37 41 111 13 10 109 48 26 108 23 28 7 Fomalhaut W. 93 16 41 94 42 43 96 8 59 97 35 28 a Pegasi a Arietis w. 71 47 3 73 17 21 74 47 68 76 18 55 w. 28 21 50 29 54 26 31 27 26 33 51 Pollux E. 47 21 27 45 48 21 44 15 1 42 41 26 Venus E. 57 38 3 56 9 51 54 41 23 53 12 38 22 338 SEPTEMBER, 1860. GREENWICH Ml^AN TIME. LUNAR DISTANCES. Day of the Star's Name and Midnight. XV. XTIII''. XXIk. Month. Position. 1 Antares W. 109 49 48 Ill 18 30 1 H 112 47 12 o i n 114 16 53 Mars W. 67 \1 6 68 44 3 70 11 71 37 56 a Aquilae w. 59 49 58 61 3 16 62 16 57 63 31 1 a Arietis E. 38 24 35 36 56 43 35 28 56 34 1 13 Aldebaran E. 71 56 69 33 39 68 6 23 66 39 10 Venus E. 119 43 12 118 19 51 116 56 31 115 33 11 2 Mars W. 78 52 37 80 19 35 81 46 34 83 13 36 a Aquilse W. 69 45 2 71 1 51 72 17 55 73 34 13 Fomalhaut w. 44 51 8 46 4 28 47 18 31 48 33 12 a Arietis E. 26 43 54 25 16 46 23 49 49 22 23 4 Aldebaran E. 59 23 81 57 56 28 56 29 27 56 2 27 Pollux E. 101 20 13 99 51 55 98 23 35 96 65 13 Venus E. 108 36 28 107 13 5 105 49 41 104 26 15 3 Mars W. 90 29 11 91 56 27 93 23 47 94 51 12 a Aquilse W. 79 58 36 81 16 82 33 32 83 51 14 Fomalhaut w. 54 55 12 56 13 4 57 31 21 58 50 2 a Pegasi w. 32 11 52 33 29 34 34 48 8 36 7 31 Aldebaran E. 47 47 56 46 21 8 44 54 23 43 27 41 Pollux E. 89 32 39 88 3 57 86 35 11 85 6 21 Venus E. 97 28 30 96 4 48 94 41 2 93 17 12 Jupiter E. 113 4 57 111 37 24 110 9 47 108 42 4 4 Mars W. 102 9 29 103 37 26 105 5 31 106 33 42 a Aquilse w. 90 21 37 91 40 1 92 58 31 94 17 7 Fpmalliaut w. 65 28 58 66 49 44 68 10 49 69 32 12 a Pegasi w. 42 54 9 44 17 7 45 40 34 47 4 27 Aldebaran E. 36 15 19 34 49 10 33 23 12 31 57 26 Pollux E. 77 40 45 76 11 19 74 41 45 73 12 4 Venus E. 86 16 43 84 52 19 83 27 49 82 3 11 Jupiter E. 101 22 5 99 53 45 98 25 17 96 56 41 5 Mars W. 113 56 44 115 25 49 116 55 4 118 24 30 a Aquilse W. 100 51 11 102 10 10 103 29 10 104 48 13 Fomalbaut w. 76 23 22 77 46 25 79 9 44 80 33 18 a Pegasi w. 54 9 56 55 36 10 57 2 43 58 29 38 Pollux E. 65 41 28 64 10 52 62 40 6 61 9 9 Venus E. 74 57 54 73 32 21 72 6 38 70 40 45 Jupiter E. 89 31 23 88 1 48 86 32 3 85 2 6 Sun E. 118 13 39 116 49 57 115 26 4 114 1 59 6 Fomalhaut W. 87 34 57 89 2 90 25 22 91 50 54 a Pegasi W. 65 49 17 67 18 13 68 47 30 70 17 7 a Arietis W. 22 15 59 23 46 41 25 17 55 26 49 39 Pollux E. 53 31 27 51 59 18 50 26 55 48 54 17 Venus E. 63 28 14 62 1 3 60 33 38 69 5 58 Jupiter E. 77 29 75 57 40 74 26 5 72 64 13 Sun E. 106 58 15 105 32 47 104 7 4 102 41 4 1 Fomalhaut W. 99 2 11 100 29 7 101 56 17 103 23 38 a Pegasi W. 77 50 14 79 21 54 80 63 55 82 26 17 a Arietis W. 34 34 39 36 8 52 37 43 28 39 18 28 Pollux E. 41 7 38 39 33 35 37 69 16 36 24 43 Venus E. 51 43 36 50 14 16 48 44 38 47 14 41 SEPTEMBER, 1860. 339 GREENWICH MEAN TIME. LUNAR DISTANCES. Day of Star's Name the and Noon. III''. VI>>. IX\ Month. Position. n Jupiter E. o / n 71 22 5 o / // 69 49 40 O 1 II 68 16 58 o / n 66 43 67 Sun E. 101 14 48 99 48 16 98 21 27 96 54 19 8 Fomalhaut W. 104 51 12 106 18 58 107 46 55 109 15 12 a Pegasi W. 83 59 85 32 4 87 5 30 88 39 18 a Arietis W. 40 63 52 42 29 40 44 5 63 45 42 28 Pollux E. 34 49 57 33 14 67 31 39 44 30 4 21 Venus E. 45 44 25 44 13 49 42 42 53 41 11 38 Jupiter E. 58 54 8 57 19 9 56 43 49 54 8 7 Son E. 89 33 51 88 4 45 86 36 18 85 6 29 9 a Arietis W. 53 51 41 56 30 48 67 10 20 68 60 18 Aldebaran W. 23 6 26 24 37 13 26 9 24 27 42 50 Venus E. 33 30 6 31 66 43 30 22 59 28 48 54 Jupiter E. 46 3 56 44 25 55 42 47 30 41 8 40 : Sun E. 77 30 44 75 58 36 74 26 4 72 53 8 10 a Arietis W. 67 16 46 68 69 26 70 42 29 72 26 2 Aldebaran W. 35 44 55 37 23 52 39 3 32 40 43 56 Jupiter E. 32 48 16 31 6 65 29 25 9 27 42 59 Sun E. 65 2 6 63 26 37 61 60 42 60 14 22 11 a Arietis W. 81 10 24 82 56 35 84 43 14 86 30 18 Aldebaran W. 49 15 19 50 59 22 52 43 58 64 29 6 Sun E. 52 6 13 60 27 20 48 48 1 47 8 19 12 a Arietis W. 95 31 51 97 21 21 99 11 13 101 1 28 Aldebaran W. 63 22 11 65 10 12 66 68 38 68 47 29 Pollux w. 21 14 36 23 31 24 47 20 26 34 66 Sun E. 38 44 2 37 2 7 36 19 52 33 37 19 17 Sun W. 32 15 51 33 69 8 35 42 11 37 24 56 Antares E. 40 58 58 39 7 29 37 16 18 35 26 28 Mars E. 87 56 53 86 8 19 84 20 6 82 32 14 a Aquilffi E. 95 12 35 93 35 23 91 58 25 90 21 43 18 Sun Wi. 45 53 50 47 34 31 49 14 50 50 54 46 Mars E. 73 38 37 71 53 6 70 8 1 68 23 21 a Aquilse E. 82 23 30 80 49 7 79 15 14 77 41 52 Fomalhaut E. 107 3 43 105 25 10 103 46 50 102 8 45 19 Sun W. 59. 8 14 60 45 39 62 22 39 63 59 13 Mars E. 69 46 39 58 4 40 66 23 7 54 42 3 a Aquilse E. 70 3 47 68 34 7 67 6 10 66 36 58 Fomalbaut E. 94 2 38 92 26 26 90 60 37 89 15 11 a Pegasi E. 115 49 48 114 9 18 112 29 6 110 49 13 20. Sun W. 71 55 41 73 29 42 75 3 18 76 36 29 Mars E. 46 23 29 44 45 9 43 7 14 41 29 47 a Aquilfe E. 68 28 18 67 5 17 65 43 16 54 22 17 Fomalhaut E. 81 24 20 79 61 31 78 19 11 76 47 19 a Pegasi E. 102 34 42 100 56 51 99 19 22 97 42 16 21 Sun W. 84 16 26 85 47 15 87 17 41 88 47 46 Antares W. 16 10 46 IQ 49 9 18 27 11 20 4 50 340 SEPTEMBER, 1860. GKEENWICH MEA^ TIME. LUNAR DISTANCES. Day of Star's Name the and Midnight. XVh. XVIIP-. XXW Month. Position. o i II / // O / // a 1 u 1 Jupiter E. 65 10 38 63 37 62 3 3 60 28 45 Sun E. 95 26 52 93 59 6 92 31 1 91 2 36 8 Fomalhaut W. 110 43 59 112 11 45 113 40 19 115 9 a Pegasi W. 90 18 28 91 48 93 22 53 94 68 9 a Arietis w. 47 19 29 48 56 55 50 34 46 52 13 Pollux E. 28 28 46 26 53 2 25 17 13 23 41 22 Venus E. 39 40 2 38 8 5 36 35 46 35 3 7 Jupiter E. 52 32 3 50 55 36 49 18 46 47 41 32 Sdn E. 83 35 18 82 4 44 80 33 48 79 2 28 9 a Arietis W. 60 30 43 62 11 34 63 52 51 65 34 35 Aldebaran W. 29 17 22 30 52 55 32 29 24 34 6 45 Venus E. 27 14 28 25 39 41 24 4 34 22 29 8 Jupiter E. 39 29 25 37 49 46 36 9 41 34 29 11 Sun E. 71 19 47 69 46 68 11 47 66 37 9 10 a Arietis W. 74 10 75 54 25 77 39 18 79 24 37 Aldebaran W. 42 24 57 44 6 38 45 48 56 47 31 50 Jupiter E. 26 23 24 17 22 22 33 59 20 50 12 Sun E. 58 37 36 57 23 55 22 45 63 44 41 11 a Arietis W. 88 17 48 90 5 42 91 54 1 93 42 44 Aldebaran w. 56 14 45 58 53 59 47 31 61 34 37 Sun E. 45 28 13 43 47 43 42 6 51 40 25 37 12 a Arietis W. 102 52 3 104 42 58 106 34 13 108 25 46 Aldebaran w. 70 36 43 72 26 20 74 16 19 76 6 38 Pollux w. 28 23 14 30 12 11 32 1 42 33 51 44 Sun E. 31 54 30 30 11 25 28 28 8 26 44 40 17 Sun W. 39 7 23 40 49 31 42 31 19 44 12 46 Antares E. 33 35 1 31 44 55 29 55 12 28 5 53 Mars E. 80 44 44 78 57 37 77 10 52 75 24 33 a Aquilse E. 88 45 20 87 9 18 85 33 37 83 58 21 18 Sun W. 52 34 17 54 13 24 55 52 6 57 30 23 Mars E. 66 39 7 64 55 19 63 11 58 61 29 4 a Aquilse E. 76 9 2 74 36 47 73 5 8 71 34 8 Fomalhaut E. 100 30 54 98 53 21 97 16 7 95 39 13 19 Sun W. 65 35 22 67 11 5 68 46 22 70 21 15 Mars E. 53 1 25 61 21 16 49 41 33 48 2 17 a Aquilae E. 64 9 33 62 42 55 61 17 8 59 52 15 Fomalhaut E. 87 40 8 86 6 32 84 31 22 82 57 38 a Pegasi E. 109 9 39 107 30 23 105 51 29 104 12 65 20 Sun W. 78 9 17 79 41 40 81 13 38 82 46 14 Mars E. 39 52 48 38 16 13 36 40 6 36 4 25 a Aquilse E. 53 2 23 51 43 38 50 26 6 49 9 48 Fomalhaut E. 75 15 56 73 45 4 72 14 42 70 44 52 a Pegasi E. 96 5 29 94 29 6 92 53 5 91 17 26 21 Sun W. 90 17 29 91 46 50 93 15 51 94 44 31 Antares W. 21 42 9 23 19 6 24 55 43 26 32 SEPTEMBER, 1860. 341 GKEENWIOH MEAN TIME. LUNAK DISTANCES. °r^ Star's Name and Noon. III''. VI'. IX'. Month. Position. 21 Mars E. O 1 II 33 29 12 o / // 31 54 25 O i II 30 20 4 o / // 28 46 10 Fomalhaiit E. 69 15 34 67 46 49 66 18 37 64 50 59 a Pegasi E. 89 42 9 88 7 15 86 32 43 84 58 33 22 Sun W. 96 12 51 97 40 51 99 8 33 100 35 56 Antares W. 28 7 58 29 43 35 31 18 54 32 53 64 Fomalhaut E. 57 41 50 56 17 57 54 54 43 53 32 13 a Pegasi E. 77 13 8 75 41 7 74 9 28 72 38 11 23 Sun W. 107 48 27 109 14 8 110 39 32 112 4 43 Antares W. 40 44 35 42 17 55 43 51 45 23 51 Fomalhaut E. 46 51 33 45 34 4 44 17 34 43 2 7 o Pegasi E. 65 6 57 63 37 45 62 8 54 60 40 24 a Arietis E. 107 10 23 105 37 26 104 4 42 102 32 12 24 Sun W. 119 7 8 120 30 68 121 54 37 123 18 3 Antares W. 53 4 44 64 36 17 56 7 39 67 38 61 a Pegasi E. 53 23 17 51 56 59 50 31 6 49 6 35 a Arietis E. 94 53 93 21 46 91 60 44 90 19 51 25 Antares W. 65 12 24 66 42 40 68 12 49 69 42 51 Mars W. 15 31 44 16 56 28 18 21 23 19 46 27 a Pegasi E. 42 4 45 40 42 6 39 20 1 37 68 33 a Arietis E. 82 47 58 81 18 2 79 48 14 78 18 33 Aldebaran E. 114 59 57 113 31 10 112 2 29 110 33 62 26 Antares W. 77 11 20 78 40 45 80 10 6 81 39 21 Mars W. 26 52 50 28 18 9 29 43 28 31 8 46 a Arietis E. 70 51 48 69 22 45 67 53 47 66 24 64 Aldebaran E. 103 12 5 101 43 57 100 15 52 98 47 50 27 Antares W. 89 4 46 90 33 42 92 2 36 93 31 28 a Aquilse W. 43 43 26 44 47 45 61 40 46 57 20 Mars w. 38 14 57 39 40 8 41 6 17 42 30 26 a Arietis E. 59 1 33 57 33 4 56 4 38 64 36 16 Aldebaran E. 91 28 33 90 49 88 33 8 87 5 27 28 Antares W. 100 55 26 102 24 12 103 52 57 105 21 42 a Aquilae W. 52 38 28 53 48 52 54 59 53 66 11 28 Mars W. 49 35 59 51 1 5 52 26 12 53 51 18 a Arietis E. 47 15 1 45 46 53 44 18 47 42 50 44 Aldebaran E. 79 47 36 78 20 5 76 52 36 76 26 7 29 a Aquilse W. 62 16 43 63 31 8 64 45 43 66 44 Mars W. 60 56 57 62 22 9 63 47 24 65 12 37 Fomalhaut W. 37 47 9 38 54 46 40 3 33 41 13 25 a Arietis E. 35 31 3 34 3 15 32 35 40 31 7 69 Aldebaran E. 68 7 54 66 40 28 65 13 4 63 46 39 Pollux E. 110 11 41 108 43 23 107 15 2 105 46 40 30 Mars W. 72 19 19 73 44 47 75 10 18 76 35 52 a Aquilae Fomalhaut W. 72 20 15 73 36 56 74 53 60 76 10 57 w. 47 16 22 48 31 14 49 46 43 51 2 48 Aldebaran E. 56 28 43 55 1 21 53 34 52 6 40 Pollux E. 98 24 12 90 55 34 95 26 52 93 58 7 342 SEPTEMBER, 1860. GEEENWIOH MEAN TTATE. LUNAR DISTANCES. Day of the Star's Name and Midnight. XVi>. XVIIP'. XXIk. Month. Position. 21 Mars E. O / tl 27 12 44 o / // 25 39 45 O 1 II 24 7 14 22 35 12 1 Fomalhaut E. 63 23 56 61 57 29 60 31 38 69 6 24 a Pegasi E. 83 24 45 81 51 18 80 18 13 78 45 30 22 Sto W. 102 3 1 103 29 47 104 66 17 106 22 30 Antares W. 34 28 36 36 3 1 37 37 9 39 11 Fomalhaut E. 52 10 27 50 49 28 49 29 18 48 9 58 a. Pegasi E. 71 7 15 69 36 39 68 6 24 66 36 30 23 Sun W. 113 29 39 114 54 21 116 18 49 117 43 6 Antares W. 46 56 28 48 28 51 50 1 1 51 32 69 Fomalhaut E. 41 47 47 40 34 39 39 22 48 38 12 20 a Pegasi E. 69 12 15 57 44 28 56 17 2 54 49 58 a Arietis E. 100 59 55 99 27 53 97 66 3 96 24 26 24 Sun W. 124 41 19 126 4 24 127 27 19 128 50 4 Antares W. 59 9 53 60 40 45 62 11 27 63 42 a Pegasi E. 47 40 30 46 15 61 44 61 40 43 27 67 a Arietis E. 88 49 10 87 18 38 85 48 16 84 18 2 25 Antares W. 71 12 45 72 42 32 74 12 13 76 41 49 Mars W. 21 11 38 22 36 53 24 2 10 26 27 30 a Pegasi E. 36 37 45 35 17 41 33 58 25 32 40 a Arietis E. 76 48 59 75 19 33 73 50 11 72 20 66 Aldebaran E. 109 5 21 107 36 66 106 8 36 104 40 18 26 Antares W. 83 8 33 84 37 41 86 6 45 87 35 47 Mars W. 32 34 2 33 59 18 35 24 32 36 49 45 a Arietis E. 64 56 5 63 27 21 61 58 42 60 30 6 Aldebaran E. 97 19 53 96 51 58 94 24 7 92 56 19 27 Antares W. 95 18 96 29 7 97 57 55 99 26 41 a Aquilse W. 48 3 55 49 11 24 60 19 41 61 28 44 Mars w. 43 65 33 45 20 41 46 45 48 48 10 53 a Arietis E. 63 7 66 51 39 38 50 11 23 48 43 11 Aldebaran E. 85 37 50 84 10 14 82 42 40 81 15 7 28 Antares W. 106 50 27 108 19 13 109 48 111 16 48 a Aquilse W. 57 23 34 58 36 11 59 49 16 61 2 47 Mars W. 55 16 24 66 41 32 58 6 39 69 31 48 a Arietis E. 41 22 43 39 54 44 38 26 47 36 58 53 Aldebaran E. 73 57 40 72 30 12 71 2 46 69 36 20 29 a Aquilae W. 67 16 4 68 31 43 69 47 38 71 3 49 Mars w. 66 37 52 68 3 11 69 28 31 70 63 63 Fomalhaut w. 42 24 17 43 36 6 44 48 45 46 2 12 a Arietis E. 29 40 12 28 12 40 26 45 15 26 17 58 i ( Aldebaran E. 62 18 16 60 50 52 59 23 29 57 56 6 Pollux E. 104 18 15 102 49 48 101 21 19 99 62 47 30 Mai's W. 78 1 29 79 27 10 80 52 54 82 18 42 a Aquilse W. 77 28 15 78 45 44 80 3 24 81 21 13 Fomalhaut w. 62 19 24 53 36 33 64 54 11 56 12 16 Aldebaran E. 50 39 23 49 12 5 47 44 50 46 17 38 Pollux E. 92 29 19 91 27 89 31 31 88 2 31 OCTOBER, 1860. 343 GKEENWICH MEAN TIME. LUNAU DISTANCES. Day of Star's Nam* ) the and Noon. III''. VI"-. IX". Month. Position. 1 Mars w. o / // 83 44 34 85° 10 31 O / // 86 36 31 O / // 88 2 36 a Aquilae w. 82 39 11 83 67 18 85 15 32 86 33 54 Fomalhaut w. 57 30 45 58 49 40 60 8 57 61 28 36 Aldebaran E. 44 50 27 43 23 19 41 56 16 40 29 16 Pollux E. 86 33 27 85 4 18 83 35 5 82 5 48 2 Mars W. 95 14 18 96 40 55 98 7 38 99 34 28 Fomalhaut W. 68 11 41 69 33 10 70 54 55 72 16 55 a Pegasi W. 45 48 19 47 12 24 48 36 52 50 1 43 Pollux E. 74 38 3 73 8 14 71 38 18 70 8 15 Jupiter E. 103 34 39 102 5 41 100 36 37 99 7 27 Venus E. 107 11 54 105 49 3 104 26 6 103 3 3 3 Mars W. 106 50 22 108 17 56 109 46 38 111 13 28 Fomalhaut W. 79 10 22 80 33 42 81 57 14 83 20 58 a Pegasi w. 57 10 56 58 37 42 60 4 45 61 32 4 Pollux E. 62 36 26 61 5 43 59 34 52 58 3 56 Jupiter E. 91 39 41 90 9 43 88 39 36 87 9 20 Venus E. 96 6 3 94 42 16 93 18 20 91 54 16 Saturn E. 106 5 45 104 35 30 103 5 6 101 34 33 4 Fomalhaut W. 90 22 24 91 47 12 93 12 9 94 37 16 > a Pegasi W. 68 52 40 70 21 34 71 50 43 73 20 7 a Arietis W. 25 22 26 b- 52 28 24 7 29 55 43 Pollux E. 50 26 59 48 55 11 47 23 13 45 61 6 Jupiter E. 79 35 31 78 4 13 76 32 44 75 1 3 Venus E. 84 51 35 83 26 32 82 1 18 80 35 53 Regulus E. 87 12 50 85 40 16 84 7 31 82 34 35 Saturn E. 93 59 17 92 27 41 90 55 65 89 23 57 5 a Pegasi W. 80 50 56 82 21 52 83 63 3 86 24 30 a Arietis W. 37 38 28 39 11 66 40 45 42 42 19 45 Pollux E. 38 8 24 36 35 29 35 2 27 33 29 17 Jupiter E. 67 19 28 65 46 28 64 13 14 62 39 46 Venus E. 73 25 45 71 69 5 70 32 11 69 5 2 Regulus E. 74 46 43 73 12 28 71 37 59 70 3 15 Saturn E. 81 40 55 80 7 38 78 34 7 77 p 22 Sun E. 119 16 47 117 50 13 116 23 25 114 56 21 6 a Arietis W. 50 14 35 51 50 29 53 26 42 56 3 14 Jupiter E. 54 48 31 53 13 26 51 38 4 50 2 26 Venus E. 61 45 30 60 16 47 58 47 48 57 18 30 Regulus E. 62 5 43 60 29 23 58 52 46 57 15 61 Saturn E. 69 7 43 67 32 22 65 56 44 64 20 49 Sun E. 107 37 2 106 8 19 104 39 19 103 10 7 a Arietis W. 63 10 54 64 49 28 66 28 22 68 7 38 Aldebaran W. 31 43 36 33 17 68 34 53 1 36 28 45 Jupiter Regulus Venus E. 41 59 33 40 22 2 38 44 10 37 5 69 E. 49 6 43 47 27 56 45 48 49 44 9 22 E. 49 47 33 48 16 24 46 44 56 45 13 8 Saturn E. 56 16 40 54 38 64 53 48 51 22 22 Sun E. 95 38 41 94 7 26 92 36 51 91 3 55 8 a Arietis W. 76 29 31 78 11 2 79 52 56 81 35 12 344 OCTOBER, 1860. ^X GREENWICH ME ATT TIME. LUNAR DISTANCES. Day of Star's ITame the and Midnight. XV'. XVIIIi-. WTi. Month. Position. 1 Mars W. O / it 89 28 46 O / // 90 55 2 O / // 92 21 22 / // 93 47 46 a Aquilsa W. 87 52 22 89 10 56 90 29 36 91 48 20 Fomalhaut w. 62 48 36 64 8 55 65 29 33 66 50 29 Aldebaran E. 39 2 23 37 35 35 36 8 56 34 42 26 Pollux E. 80 36 26 79 6 58 77 37 25 76 7 47 2 Mars W. 101 1 25 102 28 28 103 66 38 105 22 56 Fomalhaut w. 73 39 9 75 1 38 76 24 20 77 47 15 a Pegasi w. 51 26 56 52 62 27 54 18 18 65 44 28 Pollux E. 68 38 7 67 7 52 65 37 30 64 7 2 Jupiter E. 97 38 10 96 8 44 94 39 11 93 9 30 Venus E. 101 39 54 100 16 37 98 63 13 97 29 42 3 Mars W. 112 41 27 114 9 36 115 37 54 117 6 21 Fomalhaut w. 84 44 53 86 9 87 33 17 88 57 45 a Pegasi w. 62 59 40 64 27 31 65 55 39 67 24 2 Pollux E. 56 32 48 55 1 34 53 30 11 61 58 39 Jupiter E. 85 38 54 84 8 19 82 37 34 81 6 38 Venus E. 90 30 3 89 5 41 87 41 9 86 16 27 Saturn #, E. 100 3 50 98 32 57 97 1 54 95 30 41 4 Fomalhaut W. 96 2 31 97 27 55 98 63 28 100 19 9 a Pegasi W. 74 49 46 76 19 40 77 49 60 79 20 f6 a Arietis w. 31 27 38 32 69 53 34 32 27 36 6 18 Pollux E. 44 18 51 42 46 27 41 13 64 39 41 12 Jupiter E. 73 29 10 71 57 4 70 24 45 68 52 14 Venus E. 79 10 17 77 44 28 76 18 27 74 52 13 Regulus E. 81 1 26 79 28 5 77 64 31 76 20 44 Saturn E. 87 51 46 86 19 22 84 46 46 83 13 68 5 a Pegasi W. 86 56 12 88 28 10 90 24 91 32 54 a Arietis W. 43 54 7 46 28 47 47 3 45 48 39 1 Pollux E. 31 56 1 30 22 38 28 49 9 27 15 33 Jupiter E. 61 6 3 69 32 4 57 57 50 56 23 19 Venus E. 67 37 39 66 10 64 42 6 63 13 56 Eegulus E. 68 28 16 66 53 2 65 17 32 63 41 46 Saturn E. 75 26 22 73 52 6 72 17 35- 70 42 47 Sun E. 113 29 2 112 1 26 110 33 35 109 6 27 6 a Arietis W. 56 40 6 58 17 18 69 64 50 61 32 42 Jupiter E. 48 26 28 46 50 12 45 13 38 43 36 45 Venus E. 55 48 56 54 19 3 52 48 62 51 18 22 Eegulus E. 55 38 39 54 1 9 62 23 19 50 46 10 Saturn E. 62 44 36 61 8 4 59 31 16 57 54 7 Sun E. 101 40 23 100 10 27 98 40 11 97 9 35 7 a Arietis W. 69 47 16 71 27 17 73 7 39 74 48 24 Aldebaran W. 38 5 8 39 42 7 41 19 41 42 57 49 Jupiter E. 35 27 28 33 48 37 32 9 26 30 29 54 Regulus E. 42 29 35 40 49 27 39 8 58 37 28 9 Venus E. 43 41 42 8 31 40 35 42 39 2 32 Saturn E. 49 43 37 48 4 31 46 26 6 44 45 20 Sun E. 89 31 38 87 68 59 86 25 69 84 62 37 8 a Arietis W. 83 17 52 86 56 86 44 22 88 28 13 OCTOBER, 1860. 345 GEEENWICH MEAN TIME. LUNAR DISTANCES. "r^ Star's Name and Noon. Illk. Vlk. IX''. Month. Position. O / il o ; // O / // / // 8 Aldebaran W. 44 36 29 46 15 41 47 55 24 49 35 38 Regulus E. 35 46 59 34 5 29 32 23 38 30 41 27 Venus E. 37 29 1 35 55 8 34 20 55 32 46 21 Saturn E. 43 5 15 41 24 50 39 44 4 38 2 68 Sun E. 83 18 53 81 44 47 80 10 18 78 35 26 9 a Arietis W. 90 12 27 91 57 4 93 42 5 95 27 30 Aldebaran W. 58 4 7 59 47 13 61 30 46 63 14 46 Saturn E. 29 32 54 27 50 3 26 6 59 24 23 44 Sun E. 70 35 24 68 58 15 67 20 42 65 42 4"^ 10 a Arietis W. 104 20 19 106 8 107 56 2 109 44 26 Aldebaran W. 72 1 16 78 47 48 75 34 44 77 22 4 Pollux W. 29 51 2 31 36 51 33 23 16 35 10 13 Sun E. 57 27 36 55 47 28 54 7 52 26 12 11 Aldebaran W. 86 24 3 88 13 26 90 3 8 91 53 7 Pollux W. 44 12 11 46 1 51 47 51 52 49 42 16 Sun E. 43 57 30 42 14 55 40 32 6 30 10 % 38 49 3 16 Sun W. 26 49 38 28 29 66 31 49 61 a Aquilae E. 75 4 42 73 30 3 71 56 1 70 22 35 Mars E. 78 25 3 76 39 51 74 55 1 73 10 37 Fomalhaut E. 99 32 22 97 52 26 96 12 45 94 33 20 IT Sun W. 40 4 41 41 42 36 43 20 9 44 57 18 a Aquilae E. 62 46 10 61 17 20 59 49 24 68 22 26 Mars E. 64 34 45 62 51 54 61 11 29 59 30 31 Fomalhaut E. 86 21 36 84 44 29 83 7 48 81 31 35 18 Sun W. 52 56 56 54 31 36 66 5 51 67 39 40 Mars E. 51 12 40 49 34 29 47 56 46 46 19 32 Fomalhaut E. 73 38 11 72 5 9 70 32 42 69 61 a Pegasi E. 94 11 43 92 32 39 90 54 1 89 15 48 19 Sun W. 65 22 26 66 63 44 68 24 38 69 55 8 Antares w. 23 56 56 25 36 7 27 14 62 28 53 13 Mars E. 38 20 24 36 45 58 35 12 33 38 29 Fomalhaut E. 61 31 13 60 3 20 58 36 11 57 9 48 a Pegasi E. 81 11 15 79 35 40 78 30 76 25 47 20 Sun W. 77 21 47 78 49 59 80 17 50 81 45 19 Antares W. 36 59 5 38 35 7 40 10 48 41 46 8 Fomalhaut E. 50 10 4 48 48 49 47 28 32 46 9 17 a Pegasi E. 68 38 47 67 6 42 65 35 4 64 3 52 21 Sun W. 88 57 50 90 23 23 91 48 39 93 13 39 Antares W. 49 37 46 51 11 9 62 44 15 64 17 4 a Pegasi a Arietis E. 56 34 30 55 5 59 53 37 55 52 10 18 E. 98 18 16 96 45 14 95 12 29 93 40 22 Sun W. 100 14 45 101 38 15 103 , 1 32 104 24 37 Antares W. 61 57 17 63 28 37 64 59 44 66 30 39 a Pegasi a Arietis E. 44 59 39 43 35 5 42 11 5 40 47 42 E. 86 1 28 84 30 29 82 59 43 81 29 8 346 OCTOBER, 1860. GEEENWICH MEAN TIME. LUNAR DISTANCES. s Day of Star's Name the and Midnight. XTh. XVIIIii. XXI'. Month. Position 8 Aldebaran W. o / // 51 16 21 o / // 52 57 35 54 39 18 O 1 II 56 21 28 Regulus E. 28 58 56 27 16 6 25 32 57 23 49 30 Venus E. 31 11 25 29 36 9 28 32 26 24 34 Saturn E. 36 21 34 34 39 50 32 67 48 31 15 29 Sun E. 77 12 75 24 35 73 48 34 72 12 11 9 a Arietis W. 97 13 18 98 59 30 100 46 4 102 33 Aldebaran W. 64 69 13 66 44 7 68 29 26 70 15 9 Saturn E. 22 40 23 20 57 19 13 38 17 30 23 Sun E. 64 4 30 62 25 50 60 46 46 59 7 22 10 a Arietis W. 111 33 11 113 22 16 116 11 41 117 1 24 Aldebaran W. 79 9 45 80 57 48 82 46 12 84 34 58 Pollux w. 36 57 42 38 45 39 40 34 5 42 22 65 Sun E. 50 45 4 49 3 37 47 21 52 46 39 49 11 Aldebaran W. 93 43 23 95 33 64 97 24 39 99 15 38 Pollux w. 51 32 57 53 23 59 55 15 18 57 6 55 Sun E. 37 5 49 35 22 24 33 38 49 31 55 8 16 Sun _ * W. 33 29 28 35 8 45 36 47 44 38 26 23 a Aquilas E. 68 49 49 67 17 45 65 46 26 64 15 53 Mars E. 71 26 35 69 43 67 59 49 66 17 4 Fomalhaut E. 92 54 14 91 15 30 89 37 8 87 59 9 17 Sun W. 46 34 3 48 10 23 49 46 19 51 21 50 a Aquilae E. 56 56 28 55 31 33 54 7 45 52 45 8 Mars E. 57 50 1 56 10 64 30 25 62 61 18 Fomalhaut E. 79 55 52 78 20 38 76 45 66 75 11 46 18 Sun W. 59 13 4 60 46 2 62 18 36 63 50 43 ' Mars E. 44 42 47 43 6 29 41 30 39 39 55 17 Fomalhaut E. 67 29 37 65 69 2 64 29 5 62 59 49 a Pegasi E. 87 38 2 86 41 84 23 46 82 47 17 19 Sun W. 71 25 14 72 54 66 74 24 15 76 53 12 Antares W. 30 31 10 32 8 44 33 45 53 35 22 40 Mars E. 32 5 26 30 32 52 29 46 27 29 8 Fomalhaut E. 56 44 10 54 19 22 52 55 23 61 32 17 a Pegasi E. 74 51 30 73 17 40 71 44 16 70 11 18 20 Sun W. 83 12 29 84 39 18 86 6 47 87 31 68 Antares W. 43 21 7 44 55 45 46 30 4 48 4 4 Fomalhaut E. 44 51 7 43 34 6 42 18 17 41 3 46 a Pegasi E. 62 33 6 61 2 47 59 32 64 58 3 29 21 Sun W. 94 38 23 96 2 51 97 27 4 98 51 2 Antares W. 55 49 37 67 21 54 58 53 57 60 25 44 a Pegasi E. 50 43 11 49 16 33 47 50 24 46 24 46 a Arietis E. 92 7 47 90 35 50 89 4 8 87 32 41 22 Sun W. 106 47 29 107 10 9 108 32 39 109 64 69 Antares W. 68 1 22 69 31 63 71 2 14 72 32 26 a Pegasi E. 39 24 56 38 2 61 36 41 28 35 20 53 a Arietis E. 79 58 46 78 28 35 76 68 35 75 28 45 OCTOBER, 1860. 347 GEEENWICH MEAN TIME. II LUNAR DISTANCES. Day of Star's Name and Noon. III''. Yl\ IX'. Montli. Position. 23 Sun W. O 1 n 111 17 9 O 1 II 112 39 9 114 1 o / // 115 22 44 Antares W. 74 2 27 75 32 19 77 2 3 78 31 40 a Arietis E. 73 59 6 72 29 35 71 13 69 31 24 Sun W. 122 9 32 123 30 36 124 51 S4 126 12 27 Antares w. 85 57 59 87 26 59 88 65 54 90 24 46 Mars w. 21 19 42 22 42 58 24 6 19 26 29 43 a Arietis E. 62 6 39 60 38 5 59 9 37 67 41 13 Aldebaran E. 94 34 66 93 7 7 91 39 21 90 11 39 25 Antares W. 97 48 23 99 17 1 100 45 39 102 14 16 a Aquilse W. 50 6 50 51 15 58 52 25 48 63 36 18 Mars W. 32 27 22 33 50 59 35 14 38 36 38 19 a Arietis E. 50 20 9 48 52 5 47 24 4 45 66 5 Aldebaran E. 82 53 49 81 26 21 79 58 66, 78 31 30 26 a Aquilae W. 59 37 13 60 50 52 62 4 57 63 19 26 Mars W. 43 37 16 45 1 11 46 25 10 47 49 12 a Arietis E. 38 36 35 37 8 46 36 40 67 34 13 11 Aldebaran E. 71 14 26 69 47 68 19 34 66 62 7 Pollux E. 113 18 14 111 50 7 110 21 66 108 63 42 27 a Aquilse W. 69 37 11 70 63 41 72 10 28 73 27 30 Mars W. 64 50 21 56 14 48 57 39 19 69 3 56 Fomalhaut W. 44 42 1 45 55 16 47 9 16 48 23 59 Aldebaran E. 69 34 31 58 6 55 56 39 18 66 11 40 Pollux E. 101 31 35 100 2 66 98 34 14 97 6 26 28 a Aquilse W. 79 56 12 81 14 34 82 33 6 83 51 49 Mars W. 66 8 26 67 33 38 68 58 56 70 24 21 Fomalhaut W. 54 47 1 66 5 14 57 23 56 58 43 4 Aldebaran E. 47 63 12 46 25 28 44 57 46 43 30 3 Pollux E. 89 40 2 88 10 39 86 41 10 85 11 36 29 Mars W. 77 33 11 78 59 19 80 25 34 81 51 68 Fomalhaut W. 65 24 39 66 46 1 68 7 43 69 29 42 a Pegasi W. 42 58 53 44 22 50 45 47 15 47 12 7 Aldebaran E. 36 12 12 34 44 64 33 17 44 31 50 46 Pollux E. 77 42 76 11 44 74 41 20 73 10 60 Jupiter E. 110 45 48 109 16 3 107 46 11 106 16 11 1 30 Mars W. 89 5 53 90 33 5 92 25 93 27 54 Fomalhaut W. 76 23 43 77 47 16 79 11 2 80 35 a Pegasi W. 54 22 10 55 49 13 57 16 34 58 44 13 Pollux E. 66 36 28 64 5 13 62 33 61 61 2 20 Jupiter E. 98 44 2 97 13 11 96 42 11 94 11 3 Saturn E. 111 44 6 110 13 11 108 42 6 107 10 52 31 Mars W. 100 47 29 102 16 51 103 44 22 105 13 3 a Pegasi W. 66 6 32 67 35 46 69 6 14 70 34 66 a Arietis W. 22 31 52 24 2 42 25 33 55 27 6 31 Pollux E. 63 22 66 51 50 42 60 18 20 48 45 61 Jupiter E. 86 33 1 86 66 83 28 41 81 56 17 Begulus Saturn E. 90 9 24 88 36 24 87 3 15 86 29 57 E. 99 32 22 98 12 96 27 52 94 65 21 348 OCTOBER, 1860. GREENWICH MEAN TIME. LUNAE DISTANCES. Day of Star's Name tfie and Midnight. XYK XVIIR XXTk. Month. Position 23 Sun W. / // 116 44 19 O i II . 118 5 47 O / // 119 27 8 o / // 120 48 23 Antares W. 81 1 8 81 30 30 82 59 46 84 28 54 a Arietis E. 68 1 54 66 32 56 65 4 3 63 35 18 24 Sun W. • 127 38 16 128 54 1 130 14 43 131 35 21 Antares W. 91 53 34 93 22 19 94 51 2 96 19 43 Mars W. 26 53 11 28 16 41 29 40 12 31 3 46 a Arietis E. 56 12 53 54 44 37 53 16 25 61 48 16 Aldebaran E. 88 44 87 16 24 85 48 50 84 21 19 25 Antares W. 103 42 53 105 11 31 106 40 10 108 8 50 a Aquilse w. 54 47 24 55 59 5 57 11 18 58 24 1 Mars w. 38 2 1 39 25 46 40 49 34 42 13 24 fl! Arietis E. 44 28 8 43 13 41 32 19 40 4 27 Aldebaran E. 77 4 5 75 36 40 74 9 16 72 41 51 26 a Aquilse • W. 64 34 18 65 49 31 67 5 5 68 21 59 Mars W. 49 13 17 50 37 27 52 1 41 53 25 59 a Arietis E. 32 45 27 31 17 45 29 50 6 28 22 31 Aldebaran E. 65 24 38 63 57 9 62 29 38 61 2 5 Pollux E. 107 25 25 105 57 4 104 28 38 103 9 11 a Aquilse W. 74 44 47 76 2 19 77 20 4 78 38 2 Mars W. 60 28 38 61 53 27 63 18 20 64 43 20 Fomalbaut w. 49 39 24 60 55 27 52 12 6 53 29 17 Aldebaran E. 53 44 1 52 16 20 50 48 38 49 20 55 Pollux E. 95 36 32 94 7 33 92 38 28 91 9 19 28 a Aquilse W. 85 10 41 86 29 42 87 48 52 89 8 10 Mars W. 71 49 53 73 15 32 74 41 18 76 7 11 Fomalhaut w. 60 2 37 61 22 35 62 42 56 64 3 38 Aldebaran E. 42 2 22 40 34 43 39 7 9 37 39 38 Pollux E. 83 41 54 82 12 5 80 42 10 79 12 9 29 Mars W. 83 18 29 84 45 8 86 11 55 87 38 50 Fomalhaut W. 70 51 58 72 14 31 73 37 20 75 24 a Pegasi W. 48 37 23 50 3 2 51 29 4 52 56 27 Aldebaran E. 30 24 2 28 57 35 27 31 28 26 5 48 Pollux E. 71 40 13 70 9 28 68 38 35 67 7 35 Jupiter E. 104 46 2 103 15 45 101 45 19 100 14 45 30 Mars W. 94 55 31 96 23 17 97 51 12 99 19 16 Fomalhaut W. 81 59 11 83 23 34 84 48 7 86 12 61 a Pegasi W. 60 12 9 61 40 21 63 8 49 64 37 33 Pollux E. 59 30 42 57 68 57 56 27 4 54 65 4 Jupiter E. 92 39 45 91 8 18 89 36 42 88 4 56 Saturn E. 105 39 29 104 7 56 102 36 14 101 4 23 31 Mars W. 106 41 53 108 10 52 109 40 1 111 9 19 a Pegasi W. 72 4 51 73 35 75 5 22 76 35 57 a Arietis W. 28 37 28 30 9 44 31 42 18 33 16 9 Pollux E. 47 13 16 45 40 32 44 7 43 42 34 48 Jupiter E. 80 23 43 78 50 59 77 18 5 75 45 1 Regulus E. 83 56 29 82 22 51 80 49 3 79 15 6 Saturn E. 93 22 41 91 49 61 90 16 51 88 43 41 NOVEMBER, 1860. 349 GEEENWICH MEAN TIME. LUNAR DISTANCES. "r^ Star's Name and Noon. IIR TP. IXi. Month. Position. o ; n / tl O / // O / // 1 a Pegasi W. 18 6 45 79 37 46 81 8 58 82 40 23 a Arietis W. 34 48 17 36 21 40 37 56 18 39 29 11 Pollux E. 41 1 48 39 28 41 37 56 30 36 22 14 Jupiter E. 74 11 47 72 38 22 71 4 47 69 31 1 Eegulus E. 77 40 67 76 6 39 74 32 10 72 57 30 Saturn E. 87 10 20 85 36 49 84 3 8 82 29 15 Venus E. 105 43 21 104 17 56 102 52 21 101 26 36 2 a Pegasi W. 90 20 25 91 52 69 93 25 44 94 68 41 a Arietis W. 47 22 9 48 57 26 50 32 57 52 8 42 Jupiter E. 61 39 27 60 4 35 68 29 30 56 54 14 Regulus E. 65 1 29 63 25 43 61 49 45 60 13 36 Saturn E. 74 37 11 73 2 13 71 27 3 69 51 41 Venus E. 94 15 4 "92 48 12 91 21 9 89 63 64 3 a Arietis W. 60 10 51 61 47 58 63 26 20 65 2 66 Aldebaran W. 28 45 56 30 18 15 31 61 16 33 24 54 Jupiter E. 48 54 55 47 18 26 45 41 44 44 4 50 Regulus E. 52 9 60 50 32 28 48 54 53 47 17 6 Saturn E. 61 61 56 60 16 21 68 38 36 57 1 37 Venus E. 82 34 41 81 6 14 79 37 34 78 8 41 Sun E. 125 34 .3 124 4 29 122 34 40 121 4 37 4 a Arietis W. 73 14 36 74 53 41 76 33 1 78 12 37 Aldebaran W. 41 21 6 42 57 43 44 34 46 46 12 12 Jupiter E. 35 57 8 34 18 57 32 40 34 31 1 59 Regulus E. 39 4 53 37 25 47 36 46 29 34 6 57 Saturn E. 48 53 32 47 16 17 46 36 49 43 68 8 Venus E. 70 41 69 10 47 67 40 20 66 9 40 Sun E. 113 30 39 111 59 6 110 27 17 108 65 13 5 a Arietis W. 86 34 33 - 88 16 45 89 57 13 91 38 57 Aldebaran W. 54 25 - 56 4 38 57 44 36 59 24 55 Saturn E. 35 41 40 34 1 48 32 21 46 30 41 36 Venus E. 58 32 45 57 40 66 28 21 53 55 47 Sun E. 101 10 56 99 37 13 98 3 16 96 29 2 6 Aldebaran W. 67 51 29 69 33 47 71 16 23 72 69 19 Pollux W. 25 60 20 27 31 3 29 12 23 30 54 17 Venus E. 46 9 27 44 35 30 43 1 20 41 26 68 Sun E. 88 33 37 86 57 40 85 21 26 83 44 66 7 Aldebaran W. 81 38 36 83 23 21 85 8 23 86 53 43 Pollux W. 39 31 1 41 15 39 43 40 44 46 3 Venus E. 33 32 31 31 57 13 30 21 50 28 46 26 Sun E. 75 38 3 73 59 49 72 21 19 70 42 33 8 Aldebaran W. 95 44 26 97 31 19 99 18 27 101 5 49 Pollux W. 63 38 2 56 26 22 57 13 59 54 Jupiter Regulus Sun W. 19 19 40 21 5 48 22 52 22 24 39 22 w. 16 38 26 18 24 66 20 11 58 21 69 29 E. 62 24 42 60 44 23 59 3 48 57 23 3 9 Pollux W. 68 4 13 69 63 33 71 43 6 73 32 49 Jupiter W. 33 39 20 35 28 9 37 17 11 39 6 27 350 NOVEMBER, 1860. GEEENWICH MEAT^ TIME. LUNAR DISTANCES. Day of Star's Name tie aod Midnight. xv. XVIII'". VXTi. Month. Position, 1 a Pegasi W. o / // 84 12 85 43 49 D / // 87 16 49 O / // 88 48 1 a Arietis w. 41 3 19 42 37 40 44 12 16 45 47 6 Pollux E. 34 48 55 33 15 33 31 42 10 30 8 47 Jupiter E. 67 57 4 66 22 56 64 48 38 63 14 8 Regulus E. 71 22 40 69 47 39 68 12 27 66 37 3 Saturn E. 80 55 12 79 20 59 77 46 34 76 11 58 Venus E. 100 39 98 34 31 97 8 13 95 41 44 2 a Pegasi W. 96 31 49 98 5 7 99 38 36 101 12 15 a Arietis W. 53 44 40 55 20 52 66 57 18 58 33 57 Jupiter E. 55 18 47 53 43 7 62 7 15 50 31 11 Regulus E. 58 37 15 57 42 55 23 57 63 47 Saturn E. 68 16 8 66 40 23 6-5 4 26 63 28 17 Venus E. 88 26 28 86 58 49 85 30 59 84 2 66 3 a Arietis W. 66 40 46 68 18 51 69 57 11 71 36 46 Aldebaran W. 34 59 8 36 33 55 38 9 11 39 44 55 Jupiter E. 42 27 43 40 60 23 39 12 61 37 35 6 Regulus E. 45 39 5 44 61 42 22 25 40 43 45 Saturn E. 65 24 25 53 47 52 9 24 60 31 34 Venus E. 76 39 35 75 10 16 73 40 44 72 10 69 Sun E. 119 34 19 118 3 46 116 32 69 116 1 56 4 a Arietis W. 79 52 28 81 32 36 83 12 69 84 53 38 Aldebaran W. 47 50 1 49 28 13 61 6 47 52 45 43 Jupiter E. 29 23 12 27 44 13 26 5 3 24 26 43 Regulus E. 32 27 13 30 47 16 29 7 7 27 26 46 Saturn E. 42 19 14 40 40 9 39 52 37 21 22 Venus E. 64 38 46 63 7 38 61 36 15 60 4 37 Sun E. 107 22 54 105 50 19 104 17 27 102 44 19 5 a Arietis W. 93 20 59 95 3 17 96 45 52 98 28 44 Aldebaran W. 61 5 35 62 46 34 64 27 52 66 9 31 Saturn E. 29 1 16 27 20 50 25 40 21 23 69 50 Venus E. 52 22 59 50 49 56 49 16 40 47 43 10 Sun E. 94 54 31 93 19 43 91 44 38 90 9 16 6 Aldebaran W. 74 42 34 76 26 7 78 9 59 79 54 9 Pollux W. 32 36 43 34 19 38 36 3 37 46 48 Venus E. 39 52 25 38 17 40 36 42 45 35 7 42 Sun E. 82 8 8 80 31 2 78 53 39 77 16 1 Aldebaran W. 88 39 19 90 26 12 92 11 21 93 67 46 Pollux W. 46 31 47 48 17 51 50 4 15 51 61 Venus E. 27 11 2 25 35 41 24 29 22 25 31 Sun E. 69 3 30 67 24 11 65 44 37 64 4 47 8 Aldebaran W. 102 53 24 104 41 11 106 29 10 108 17 19 Pollux W. 60 49 4 62 37 30 64 26 11 66 15 5 Jupiter W. 26 26 44 28 14 26 30 2 27 31 60 46 Regulus W. 23 47 26 25 35 45 27 24 25 29 13 23 Sun E. 55 42 2. 54 50 62 19 26 50 37 60 9 Pollux W. 75 22 43 77 12 46 79 2 68 80 53 17 Jupiter W. 40 55 53 42 45 30 44 35 17 46 25 13 NOVEMBER, 1860. 351 GEEENWICH MEAN TIME. LUNAB DISTANCES. Day of the Month. Star's Name and Position. Noon. int. VII'. IXh. 9 Eegulus Saturn Sun W. W. E. O 1 II 31 2 37 21 21 22 48 56 4 O 1 II 32 52 7 23 8 3 47 14 8 34 41 51 24 55 18 45 32 3 36 31 47 26 43 4 43 49 50 10 Pollux Jupiter Regulus Saturn Sun W. W. W. W. E. 82 43 44 48 15 16 45 44 13 35 47 6 35 17 24 84 34 17 50 5 27 47 35 6 37 36 89 33 34 48 86 24 54 51 55 44 49 26 6 39 26 22 31 52 12 88 15 35 53 46 5 51 17 11 41 16 14 30 9 40 14 Sun Mars Fomalhaut a Pegasi W. E. E. E. 20 6 45 73 25 58 79 9 8 99 56 18 21 42 56 71 44 51 77 32 36 98 13 53 23 19 3 70 4 7 75 56 33 96 31 46 24 55 5 68 23 46 74 20 59 94 50 15 Sun Mars Fomalhaut a Pegasi W. E. E. E. 32 51 59 60 8 1 66 31 14 86 26 36 34 26 32 58 30 6 64 59 6 84 47 6 36 45 56 52 36 63 27 36 83 8 37 34 37 55 15 32 61 56 47 81 29 20 16 Sun Mars Fomaltaut a Pegasi W. E. E. E. 45 18 36 47 16 40 54 34 2 73 22 29 46 50 16 45 42 12 53 7 59 71 46 29 48 21 34 44 8 9 51 42 51 70 10 55 49 52 30 42 34 33 50 18 41 68 35 50 17 Sun Mars a Pegasi a Arietis W. E. E. E. 57 21 33 34 53 8 60 47 33 102 46 49 58 50 15 33 22 10 59 15 22 101 10 32 60 18 36 31 51 39 57 43 41. 99 34 36 61 46 36 30 21 34 56 12 30 97 59 2 18 Sun a Pegasi a Arietis W. E. E. 69 1 30 48 44 32 90 6 24 70 27 31 47 16 37 88 32 52 71 53 13 45 49 17 86 59 38 73 18 37 44 22 33 85 26 43 19 Sun a Arietis Aldebaran W. E. E. 80 21 26 77 46 25 110 9 51 81 45 14 76 15 9 108 39 33 83 8 47 74 44 7 107 9 28 84 32 6 73 13 20 105 39 35 20 Sun a Arietis Aldebaran W. E. E. 91 25 41 65 42 34 98 12 59 92 47 51 64 13 96 44 10 94 9 52 62 43 35 95 15 30 95 31 45 61 14 21 93 46 59 21 Sun a Aquilse a Arietis Aldebaran W. W. E. E. 102 19 9 47 14 56 53 50 12 86 26 13 103 40 19 48 22 40 52 21 44 84 58 23 105 1 24 49 31 12 50 53 23 83 30 37 106 22 25 • 50 40 28 49 25 6 82 2 56 22 Sun a Aquilae Mars a Arietis Aldebaran W. W. w. E. E. 113 6 48 56 36 6 23 30 3 42 4 51 74 45 22 114 27 35 57 48 50 24 52 16 40 36 59 73 17 58 115 48 22 59 2 1 26 14 38 39 9 10 71 50 36 117 9 10 60 15 39 27 37 7 37 41 24 70 23 14 23 SCN a Aquilse W. W. 123 53'24 66 29 34 126 14 22 67 45 23 126 35 23 69 1 31 127 56 28 70 17 56 352 NOVEMBER, 1860. GEEEN WICH MEAN TIME. LUNAR DISTANCES. Day of the Month. Star's Name and Position. Midnight. XVK XVIIP'. XXI*. 9 Regulus Saturn Sun W. w. E. O / // 38 21 57 28 31 15 42 7 30 O i II 40 12 17 30 19 47 40 25 5 42° 2 47 32 8 38 38 42 35 o / // 43 53 26 33 57 45 ; 37 10 Pollux Jupiter Eegulus Saturn Sun W. w. w. w. E. 90 6 19 55 36 30 53 8 19 43 6 14 28 27 12 91 57 5 57 26 59 64 69 30 44 56 19 26 44 52 93 47 52 59 17 29 66 50 43 46 46 29 25 2 42 95 38 39 61 8 58 41 57 48 36 41 23 20 46 14 Sun Mars Fomalhaut a Pegasi W. E. E. E. 26 30 57 66 43 49 72 45 54 93 8 34 28 6 36 65 4 16 71 11 22 91 27 30 29 42 63 25 6 69 37 24 89 46 49 31 17 9 61 46 21 68 4 1 S8 6 30 15 Sun Mars Fomalhaut a Pegasi W. E. E. E. 39 8 8 53 38 53 60 26 41 79 51 4 40 41 18 62 2 41 58 67 20 78 13 16 42 14 6 50 26 55 57 28 45 76 36 53 43 46 32 48 51 34 56 58 74 58 68 16 Sun Mars Fomalhaut a Pegasi W. E. E. E. 51 23 4 41 1 23 48 55 30 67 1 13 62 53 14 39 28 39 47 33 24 65 27 5 54 23 2 37 56 22 46 12 25 63 63 25 66 52 29 36 24 32 44 52 36 62 20 15 17 Sun Mars a Pegasi a Arietis W. E. E. E. 63 14 15 28 51 57 54 41 50 96 23 49 64 41 33 27 22 47 63 11 41 94 48 58 66 8 31 25 64 6 5a 42 5' 93 14 26 67 35 10 24 25 54 50 13 1 91 40 15 18 Sun o Pegasi a Arietis W. E. E. 74 43 43 42 56 27 83 54 6 76 8 33 41 31 1 82 21 46 77 33 6 40 6 16 80 49 43 78 67 24 38 42 15 79 17 66 19 Sun a Arietis Aldebaran W. E. E. 85 55 13 71 42 46 104 9 54 87 18 7 70 12 25 102 40 23 88 40 49 68 42 17 101 11 5 90 3 20 67 12 20 99 41 67 20 SUN_ a Arietis Aldebaran W. E. E. 96 53 26 59 45 15 92 18 36 98 15 2 58 16 18 90 50 20 99 36 31 66 47 29 89 22 11 100 67 53 55 18 47 87 64 9 21 . Sun a Aquilse o Arietis Aldebaran W. W. E. E. 107 43 23 51 50 24 47 56 55 80 35 19 109 4 18 63 69 46 28 48 79 7 45 110 25 9 54 12 8 45 45 77 40 16 111 45 59 55 23 51 43 32 46 76 12 48 22 Sun a Aquilse Mars a Arietis Aldebaran W. W. W. E. E. 118 29 57 61 29 41 28 59 44 36 13 40 68 55 53 119 50 46 62 44 7 30 22 27 34 45 59 67 28 32 121 11 36 63 58 56 31 45 18 33 18 21 66 1 11 122 32 28 65 14 4 33 8 15 31 60 46 64 33 50 23 Sun a Aquilse W. W. 129 17 37 71 34 39 130 38 51 72 51 38 132 9 74 8 53 133 21 33 75 26 22 NOVEMBER, 1860. 353 GEEENWIOH MEAN TIME. LUNAE DISTANCES. Day of Star's Name and Noon. IIP. Vlk. IX'. Month. Position. 23 Fomalhaut W. O / Jl 41 56 24 43 7 5 / // 44 18 42 O / // 45 31 11 Mars W. 34 31 19 35 54 29 37 17 46 38 41 9 Aldebaran E. 63 6 27 61 39 3 60 11 38 58 44 12 Pollux E. 105 2 64 103 34 38 102 6 18 100 37 54 24 a Aquilse W. 76 44 7 78 2 6 79 20 18 80 38 43 Fomalhaut W. 51 44 47 53 1 27 54 18 40 56 36 27 Mars W. 45 39 58 47 4 7 48 28 25 49 62 50 a Pegasi W. 29 5 30 16 8 31 33 27 32 51 51 Aldebaran E. 51 26 30 49 58 51 48 31 10 47 3 27 Pollux E. 93 14 28 91 45 27 90 16 19 88 47 4 25 a Aquilae W. 87 13 48 88 33 22 89 53 4 91 12 66 Fomalhaut W. 62 12 29 63 33 64 53 64 66 15 12 Mars w. 56 57 22 58 22 46 59 48 19 61 14 3 a Pegasi w. 39 36 28 40 59 30 42 23 7 43 47 17 Aldebaran E. 39 44 35 38 16 50 36 49 7 35 21 28 Pollux E. 81 18 44 79 48 37 78 18 20 76 47 54 Jupiter E. 116 51 47 115 21 43 113 51 27 112 21 1 26 Fomalhaut W. 73 6 54 74 30 13 75 63 49 77 17 44 Mars W. 68 25 33 69 52 26 71 19 29 72 46 46 a Pegasi w. 50 55 20 52 22 15 53 49 34 55 17 14 Pollux E. 69 13 13 67 41 45 66 10 7 64 38 18 Jupiter E. 104 46 8 103 14 35 101 42 49 100 10 51 Saturn E. 117 3 31 115 32 11 114 38 112 28 52 21 Fomalhaut W. 84 21 12 85 46 38 87 12 18 88 38 10 Mars W. 80 6 10 81 34 41 83 3 23 84 32 18 a Pegasi w. ,62 40 50 64 10 32 65 40 31 67 10 49 Pollux E. 56 56 32 55 23 38 63 60 35 52 17 21 Jupiter E. 92 28 2 90 64 50 89 21 26 87 47 47 Regulus E. 93 44 34 92 10 59 90 37 12 89 3 12 Saturn E. 104 46 56 103 13 54 101 40 39 100 7 12 28 Fomalhaut W. 95 50 15 97 17 9 98 44 11 100 11 21 Mars W. 92 2 93 30 13 95 36 96 31 11 a Pegasi w. 74 46 31 76 18 27 77 50 38 79 23 3 a Arietis w. 31 22 31 32 56 41 34 31 9 36 5 56 Pollux E. 44 28 46 42 54 36 41 20 19 39 45 55 Jupiter E. 79 56 31 78 21 38 76 46 32 76 11 13 Regulus E. 81 10 2 79 34 46 77 59 18 76 23 37 Saturn E. 92 16 43 90 41 59 89 7 2 87 31 63 29 Mars W. 104 7 11 105 38 59 107 10 68 108 43 9 a Arietis W. 44 3 55 45 40 17 47 16 63 48 53 43 Jupiter E. 67 11 34 65 35 1 63 68 16 62 21 20 Regulus ■ E. 68 22 11 66 45 17 65 8 12 63 30 54 Saturn E. 79 32 59 77 56 36 76 20 1 74 43 14 30 a Arietis W. 57 1 18 68 39 28 60 17 50 61 56 24 Aldebaran w. 25 43 24 27 16 36 28 48 39* 30 22 25 Jupiter E. 64 13 46 52 35 42 50 57 27 49 19 2 Regulus Saturn E. 55 21 36 63 43 11 62 4 36 50 25 49 E. 66 36 29 64 58 36 63 20 31 61 42 16 23 354 NOVEMBER, 1860. GEEENWICH : MEAN TIME. 1 LUNAE ] DISTANCES. Day of tbe Star's Name and Midnight. iVt. XTIIP'. XXI"". Month. Position. o / // o / // o ; // O 1 II 23 Fomalhaut W. 46 44 28 47 58 31 49 13 17 50 28 42 Mars W. 40 4 40 41 28 19 42 52 4 44 16 56 Aldebaran E. 57 16 44 56 49 13 54 21 41 52 54 6 Pollux E. 99 9 24 97 40 49 96 12 9 94 43 21 24 a Aquilae W. 81 57 20 83 16 10 84 36 12 85 64 25 Fomalhaut W. 56 54 43 58 13 29 59 32 42 60 52 23 Mars W. 51 17 26 52 42 11 54 7 5 66 32 8 a Pegasi W. 34 11 11 35 31 21 36 52 18 38 14 1 Aldebaran E. 45 35 43 44 7 57 42 40 10 41 12 22 Pollux E. 87 17 42 85 48 10 84 18 30 82 48 42 25 a Aquilae W. 92 32 56 93 53 4 95 13 19 96 33 42 Fomalliaut w. 67 36 51 68 58 52 70 21 13 71 43 54 Mars w. 62 39 59 64 6 6 65 32 23 66 68 53 a Pegasi w. 45 11 67 46 37 7 48 2 46 49 28 50 Aldebaran E. 33 53 54 32 26 28 30 59 11 29 32 7 Pollux E. 75 17 19 73 46 33 72 16 37 70 44 30 Jupiter E. 110 50 25 109 19 38 107 48 39 106 17 29 26 Fomalhaut W. 78 41 54 80 6 21 81 31 4 82 56 Mars W. 74 14 14 76 41 55 77 9 48 78 37 52 a Pegasi W. 56 45 16 58 13 40 59 42 24 61 11 28 Pollux E. 6'3 6 18 61 34 7 60 1 46 68 29 15 Jupiter E. 98 38 42 97 6 20 95 33 47 94 1 1 Saturn E. 110 56 54 109 24 43 107 52 20 106 19 45 27 Fomalhaut W. 90 4 12 91 30 28 92 56 64 94 23 30 Mars W. 86 1 26 87 30 47 89 20 90 30 -4 a Pegasi w. 68 41 24 70 12 16 71 43 25 73 14 50 Pollux E. 50 43 57 49 10 23 47 36 40 46 2 48 Jupiter E. 86 13 57 84 39 56 83 6 40 81 31 11 Regulus E. 87 28 59 85 64 34 84 19 56 82 46 6 Saturn E. 98 33 32 96 59 39 95 25 33 93 51 14 28 Fomalhaut W. 101 38 36 103 5 57 104 33 22 106 61 Mars W. 98 1 59 99 32 59 101 4 11 102 36 35 a Pegasi w. 80 55 43 82 28 37 84 1 45 85 35 6 a Arietis w. 37 40 59 39 16 19 40 61 56 42 27 48 Pollux E. 38 11 24 36 36 48 35 2 8 33 27 23 Jupiter E. 73 35 42 71 59 59 70 24 3 68 47 64 Regulus E. 74 47 45 73 11 40 71 35 22 69 58 52 Saturn E. 85 56 31 84 20 56 82 45 9 81 9 10 29 Mars W. 110 15 31 111 48 6 113 20 50 114 63 46 a Arietis W. 50 30 48 52 8 6 53 46 37 55 23 21 Jupiter E. 60 44 12 59 6 63 57 29 22 66 51 39 Regulus E. 61 53 26 60 16 46 58 37 53 56 69 50 Saturn E. 73 6 16 71 29 6 69 51 44 68 14 12 30 a Arietis W. 63 35 11 65 14 9 66 53 19 68 32 40 Aldebfcran W. 31 56 52 33 31 54 35 7 28 36 43 32 Jupiter E. 47 40 27 46 1 42 44 22 47 42 43 42 Regulus E. 48 46 52 47 7 45 46 28 28 43 49 2 Saturn E. 60 3 50 58 25 16 56 46 80 55 7 35 DECEMBER, 1860. 355 GEEENWICH MEAN TIME. LUNAR DISTANCES. Day of Star's Name and Noon. IIP". VR IX^. Month. Position. ^ o / // O 1 n o / // o / // 1 a Arietis W. 70 12 13 71 51 58 73 31 54 75 12 Aldebaran W. 38 20 3 39 56 58 41 34 16 43 11 67 Jupiter E. 41 4 27 39 26 4 37 45 32 36 5 53 Regulus E. 42 9 26 40 29 40 38 49 46 37 9 44 Saturn E. 53 28 31 51 49 18 50 9 56 48 30 27 Spica E. 96 10 45 94 30 45 92 60 34 91 10 13 2 a Arietis W. 83 35 12 85 16 22 86 57 41 88 39 10 Aldebaran W. 51 25 1 53 4 28 54 44 10 56 24 7 Saturn E. 40 11 5 38 30 53 36 50 37 35 10 16 Spica E. 82 45 51 81 4 28 79 22 56 77 41 14 Venus E. 93 38 4 92 6 24 90 34 35 89 2 35 Sun E. 131 28 25 129 54 49 128 21 3 126 47 7 3 a Arietis W. 97 9 2 98 51 29 100 34 5 102 16 51 Aldebaran W. 64 47 14 66 28 30 68 9 57 69 51 36 Spica E. 69 10 19 67 27 40 65 44 51 64 1 63 Venus E. 81 20 14 79 47 17 78 14 12 76 40 59 Sun E. 118 54 43 117 19 43 115 44 34 114 9 14 4 Aldebaran W. 78 22 33 80 5 17 81 48 10 83 31 12 Pollux W. 36 20 7 38 2 24 39 44 57 41 27 47 Spica E. 55 24 49 53 40 58 51 56 59 50 12 51 Venus E. 68 52 40 67 18 35 66 44 23 64 10 3 Sun E. 106 10 12 104 33 54 102 67 28 101 20 62 5 Aldebaran W. 92 8 39 93 52 35 95 36 38 97 20 49 Pollux W. 50 5 26 51 49 37 53 33 59 55 18 32 Spica E. 41 30 11 39 45 16 38 14 36 15 7 Venus E. 56 16 31 54 41 28 63 6 19 51 31 5 Sun E. 93 15 35 91 38 5 90 27 88 22 39 6 Pollux W. 64 3 54 65 49 27 67 36 9 69 20 59 Jupiter W. 28 2 9 29 47 25 31 32 64 33 18 36 Regulus w. ■ 27 2 7 28 47 38 30 33 22 32 19 18 Venus E. 43 33 48 41 58 11 40 22 33 38 46 54 Sun E. 80 11 38 78 33 2 76- 54 18 75 15 28 1 Pollux W. 78 12 4 79 58 37 81 45 16 83 32 1 Jupiter W. 42 9 40 43 56 19 46 43 6 47 29 59 Regulus w. 41 11 26 42 58 ,16 44 45 14 46 32 18 Saturn w. 30 6 11 31 51 30 33 37 4 35 22 61 Sun E. 66 59 35 65 20 6 63 40 31 62 52 8 Pollux W. 92 26 51 94 13 59 96 1 9 97 48 21 Jupiter Regulus Saturn W. 56 25 52 68 13 15 60 42 61 48 12 W. 55 29 57 16 32 59 4 8 60 51 46 W. 44 14 28 46 1 11 47 48 1 49 34 55 Sun E. 53 41 38 52 1 38 50 21 37 48 41 34 9 Jupiter Rcgulus Saturn W. 70 46 1 72 33 35 74 21 7 76 8 37 W. 69 50 14 71 37 54 73 25 34 75 13 11 w. 58 30 9 60 17 16 62 4 21 63 51 26 Sun E. 40 21 19 38 41 21 37 1 26 35 21 35 356 DECEMBER, 1860. GKEENWICH MEAIT TIME. LUNAR DISTANCES. Day of the Star's Name and Midnight. }L\K XVIII''. XXP. Month. Position. 1 a Arietis W. V6 52 18 78 32 46 o / // 80 13 26 / ;/ ■ 81 54 13 Aldebaran w. 44 49 57 46 28 17 48 6 55 49 45 50 Jupiter E. 34 26 5 32 46 10 31 6 9 29 26 3 Regnlus E. 35 29 34 33 49 15 32 8 49 30 28 16 Saturn E. 46 50 49 45 11 3 43 31 10 41 51 10 Spica E. 89 29 41 87 48 59 86 8 6 84 27 3 2 a Arietis W. 90 20 49 92 2 39 93 44 38 96 26 46 Aldebaran W. 58 4 18 59 44 42 61 25 20 63 6 11 Saturn E. 33 29 53 31 49 27 30 9 2 28 28 37 Spica E. 15 59 22 74 17 20 72 35 9 70 52 49 Venus E. 87 30 26 85 58 7 84 25 39 82 63 1 Sun E. 125 12 59 123 38 40 122 4 12 120 29 33 3 a Arietis W. 103 59 46 105 42 50 107 26 4 109 9 27 Aldebaran W. 71 33 26 73 15 27 74 57 39 76 40 1 Spica E. 62 18 46 60 35 30 58 52 5 67 8 31 Venus E. 75 7 36 73 34 6 72 25 70 26 37 Sun E. . 112 33 45 110 58 7 109 22 19 107 46 21 4 Aldebaran W. 85 14 23 86 57 43 88 41 13 90 24 52 Pollux W. 43 10 51 44 54 10 46 37 43 48 21 29 Spica E. 48 28 34 46 44 10 44 59 38 43 14 59 Venus E. 62 35 34 61 59 59 26 15 67 51 27 Sun E. 99 44 7 98 7 13 96 30 10 94 52 57 5 Aldebaran W. 99 5 8 100 49 34 102 34 7 104 18 47 Pollux W. 57 3 15 58 48 10 60 33 15 62 18 30 Spica E. 34 29 53 32 44 34 30 69 9 29 13 41 Venus E. 49 55 47 48 20 23 46 44 55 45 9 23 Sun E. 86 44 44 85 6 40 83 28 26 81 50 6 6 Pollux W. 71 6 57 72 53 3 74 39 16 76 25 37 Jupiter W. 35 4 29 36 60 33 38 36 46 40 23 9 Regulus w. 34 5 25 35 51 42 37 38 8 39 24 43 Venus E. 37 11 16 35 35 40 34 8 32 24 41 Sun E. 73 36 30 71 57 26 70 18 16 68 38 68 n Pollux . W. 85 18 61 87 5 45 88 62 44 90 39 46 Jupiter W. 49 16 59 61 4 4 52 51 16 54 38 32 Regulus W. 48 19 28 50 6 43 61 54 4 53 41 30 Saturn W. 37 8 50 38 66 1 40 41 22 42 27 51 Sun E. 60 21 9 68 41 22 67 1 30 56 21 36 8 Pollux W. 99 35 34 101 22 47 103 10 104 57 12 Jupiter W. 63 35 44 65 23 16 67 10 51 68 68 26 Regulus W. 62 39 26 64 27 7 66 14 50 68 2 31 1 Saturn W. 61 21 52 53 8 53 54 55 67 56 43 2 I Sun E. 47 1 30 46 21 26 43 41 22 42 1 20 ; 9 Jupiter W. 77 56 5 79 43 29 81 30 49 83 18 5 Regulus W. 77 45 78 48 16 80 35 42 82 23 3 Saturn W. 65 38 29 67 25 29 69 12 26 70 69 19 Sun 1 E. 33 41 48 32 2 7 30 22 33 28 43 7 DECEMBER, 1860. 357 GEEENWICH MEAN TTME. LUNAR DISTANCES. Day of the Month. Star's Name ■ and Position. Noon. III''. Tlk. IX'. 14 Sun W. O 1 II 24 40 21 O 1 II 26 11 29 O / 11 27 42 19 o 1 II 29 12 54 Mars E. 58 32 56 26 47 54 53 23 53 20 21 a Pegasi E. 65 50 30 64 15 17 62 40 30 61 6 9 a Arietis E. 108 3 55 106 24 59 104 46 23 103 8 6 15 Sun W. 36 41 12 38 9 56 39 38 22 41 6 29 Mars E. 45 40 37 44 9 47 42 39 17 41 9 11 a Pegasi E. 53 21 33 51 50 9 50 19 17 48 48 59 a Arietis E. 95 1 45 93 25 29 91 49 32 90 13 55 16 Sun W. 48 22 26 49 48 44 51 14 45 52 40 29 Mars E. 33 44 13 32 16 22 30 48 53 29 21 50 o Pegasi E. 41 26 39 40 13 38 34 33 37 9 41 a Arietis E. 82 20 35 80 46 50 79 13 23 77 40 14 11 Son W. 59 45 6 61 9 16 62 33 11 63 56 53 a Arietis E. 69 58 42 68 27 12 66 55 55 65 24 54 Aldebaran E. 102 29 39 100 58 59 99 28 33 97 68 20 18 Sun W. TO 52 15 72 14 46 ■ 73 37 7 74 59 18 a Aquilae W. 44 5 25 45 11 31 46 18 35 47 26 29 a Arietis E. 57 53 4 56 23 19 54 53 45 53 24 21 Aldebaran E. 90 30 17 89 1 14 87 32 22 86 3 39 19 Sun W. 81 48 8 83 9 33 84 30 53 85 52 9 a Aquilae W. 53 16 44 54 28 34 55 40 53 56 53 39 a Arietis E. 45 59 48 44 31 19 43 2 58 41 34 44 Aldebaran E. 78 42 10 77 14 15 75 46 25 74 18 42 20 Sun W. 92 37 38 93 58 38 95 19 37 96 40 36 a Aquilae W. 63 3 29 64 18 29 65 33 47 66 49 22 Fomalhaut w. 38 59 57 40 7 32 41 16 12 42 25 54 a Arietis E. 34 15 11 32 47 35 31 20 5 29 52 40 Aldebaran E. 67 1 15 65 33 56 64 6 40 62 39 25 21 Sun W. 103 25 55 104 47 8 106 8 25 107 29 46 a Aquilae w. 73 11 13 74 28 18 75 45 36 77 3 6 Fomalhaut w. 48 27 19 49 41 48 50 56 54 52 12 36 Mars w. 23 52 26 25 14 23 26 36 33 27 58 56 Aldebaran E. 55 23 32 53 56 22 52 29 12 51 2 3 Pollux E. 97 11 68 95 43 40 94 15 18 92 46 61 22 Sun W. 114 18 7 115 40 9 117 2 20 118 24 41 a Aquilae w. 83 33 40 84 52 21 86 11 12 87 30 13 Fomalhaut w. 58 39 3 59 57 46 61 16 56 62 36 31 Mars w. 34 53 58 36 17 36 37 41 27 39 5 31 Aldebaran E. 43 46 2 42 18 50 40 51 37 39 24 23 Pollux E. 85 23 1 83 53 53 82 24 37 80 55 12 23 Sun W. 125 18 59 126 42 25 128 6 3 129 29 55 Fomalhaut w. 69 20 17 70 42 9 72 4 22 73 26 56 a Pegasi Mars w. 46 53 51 48 19 15 49 45 5 51 11 21 w. 46 8 59 47 34 21 48 59 57 50 25 46 Pollux E. 73 25 38 71 55 10 70 24 31 68 53 40 Jupiter E. 109 13 31 107 42 23 106 11 1 104 39 26 358 DECEMBER, 1860. GKEENWICH MEAI^ TIME. LUNAR ] DISTANCES. Day of Star's Name the and Midnight XVK xvn)>. XXTi-. Month. Position. 14 Sun W. O 1 it 30 43 11 o 1 n 32 13 9 o / // 33 42 48 35° 12 9 Mars E. 51 47 40 50 15 22 48 43 25 47 11 50 a Pegasi E. 59 32 15 57 58 50 56 25 54 54 53 28 a Arietis E. 101 30 10 99 52 34 98 15 18 96 38 21 15 Sun W. 42 34 17 44 1 46 45 28 57 46 55 60 Mars E. 39 39 26 38 10 5 36 41 5 35 12 27 a Pegasi E. 47 19 16 45 50 9 44 21 39 42 53 49 a Arietis E. 88 38 37 87 3 39 85 28 59 83 54 38 16 Sun W. 54 5 56 55 31 6 56 56 1 58 20 41 Mars E. 27 55 9 26 28 55 25 3 8 23 37 46 a Pegasi E. 35 45 40 34 22 36 33 32 31 39 34 a Arietis E. 76 7 23 74 34 49 73 2 31 71 30 28 11 Sun W. 65 20 22 66 43 38 68 6 42 69 29 34 a Arietis E. 63 54 5 62 23 31 60 53 9 59 23 1 Aldebaran E. 96 28 19 94 58 31 93 28 56 91 59 31 18 Sun W. • 76 21 19 77 43 12 79 4. 58 80 26 36 a Aquilae W. 48 35 11 49 44 37 50 54 42 52 5 26 a Arietis E. 51 55 8 50 26 5 48 57 11 47 28 25 Aldebaran E. 84 35 4 83 6 39 81 38 21 80 10 13 19 Sun W. 87 13 21 88 34 29 89 55 34 91 16 37 a Aquilae W. 58 6 51 59 20 28 60 34 27 61 48 48 a Arietis E. 40 6 36 38 38 35 37 10 40 35 42 52 Aldebaran E. 72 51 3 71 23 30 69 56 1 68 28 37 20 Sun W. 98 1 36 99 22 37 100 43 40 102 4 46 a Aquilae W. 68 5 14 69 21 22 70 37 45 71 54 22 Fomalhaut W. 43 36 33 44 48 5 46 25 47 13 31 a Arietis E. 28 25 21 26 58 9 25 31 3 24 4 3 Aldebaran E. 61 12 13 59 45 1 58 17 51 56 50 41 21 Sun W. 108 51 32 110 12 46 111 34 26 112 56 13 a Aquilae W. 78 20 49 79 38 44 80 56 51 82 15 10 Fomalbaut w. 53 28 52 54 45 40 56 2 59 57 20 47 Mars w. 29 21 31 30 44 19 32 7 19 33 30 32 Aldebaran E. 49 34 52 48 7 41 46 40 28 45 13 16 Pollux E. 91 18 18 89 49 39 88 20 53 86 52 1 22 Sun W. 119 47 11 121 9 51 122 32 43 123 55 45 a Aquilae W. 88 49 24 90 8 45 91 28 15 92 47 55 Fomalhaut w. 63 56 30 65 16 53 66 37 39 67 58 48 Mars w. 40 29 47 41 54 15 43 18 56 44 43 51 Aldebaran E. 37 57 12 36 30 4 35 2 59 33 36 Pollux E. 79 25 38 77 55 53 76 25 59 74 55 54 23 Sun W. 130 54 132 18 18 133 42 51 135 7 38 Fomalhaut W. 74 49 49 76 13 2 77 36 35 79 26 a Pegasi W. 52 38 3 54 5 10 55 32 42 57 38 1 Mars W. 51 51 51 53 18 11 54 44 46 56 11 36 Pollux E. 67 22 36 65 51 19 •64 19 49 62 48 6 Jupiter E. 103 7 38 101 35 35 100 3 19 98 30 47 DECEMBER, 1860. 359 GREENWICH MF,AN TIME. LUNAE DISTANCES. Day of Star's Name the aud Noon. IIIK VII'. IXt. Month. Position. 24 Fomalhaut W. 80 24 36 a 1 it 81 49 4 O / ii 83 13 51 / ;/ 84 38 53 a Pegasi W. 58 28 55 59 57 37 61 26 41 62 66 7 Mars W. 57 38 42 69 6 4 60 33 41 62 1 36 Pollux E. 61 16 10 69 44 58 11 36 66 38 58 Jupiter E. 96 58 1 96 24 69 93 51 42 •92 18 8 Eegulus E. 98 6 25 96 33 37 95 34 93 27 16 25 Fomalhaut W. TO 28 41 72 16 73 32 8 75 4 22 Mars W. 69 25 20 70 64 67 72 24 50 73 66 3 a Arietis w. 26 59 6 28 32 40 30 6 39 31 41 4 Pollux E. 48 52 18 47 18 17 46 44 3 44 9 35 Jupiter E. 84 26 13 82 51 81 16 30 79 39 42 Kegulus E. 85 86 42 84 1 44 82 26 29 80 50 68 26 a Pegasi W. 82 50 23 84 24 32 85 58 59 87 33 43 Mars W. 81 30 26 83 2 24 84 34 39 86 7 13 a Arietis w. 39 38 50 41 15 29 42 62 27 44 29 47 Pollux E. 36 14 13 34 38 38 33 2 55 31 27 7 Jupiter E. VI 36 18 69 58 45 68 20 64 66 42 46 Regulus E. 72 48 59 71 11 42 69 34 9 67 56 19 Saturn E. 84 19 7 82 42 1 81 4 38 79 26 67 27 a Pegasi W. 95 31 38 97 8 98 44 37 100 21 28 Mars W. 93 54 16 95 28 31 97 3 2 98 37 51 a Arietis W. 52 41 11 54 20 24 65 69 55 57 39 44 Aldebaran W. 21 42 57 23 13 37 24 45 38 26 18 50 Jupiter E. 68 27 52 66 48 4 56 8 53 27 40 Regulus E. 59 42 53 68 3 22 56 23 35 54 43 32 Saturn E. 71 14 22 69 35 1 67 66 25 66 15 33 28 Mars W. 106 35 41 108 11 59 109 48 31 111 25 16 a Arietis W. 66 2 55 67 44 21 69 26 1 71 7 56 Aldebaran w. 34 17 57 35 56 49 37 34 13 39 13 6 Jupiter E. 45 2 19 43 20 34 41 38 36 39 56 26 Regulus E. 46 19 36 44 38 7 42 56 26 41 14 31 Saturn E. 67 52 31 66 11 13 64 29 43 52 48 1 Spica E. 100 21 22 98 39 41 96 67 46 95 15 36 29 a Arietis W. 79 40 55 81 24 8 83 7 32 84 51 8 Aldebaran W. 47 33 60 49 15 3 50 56 34 52 38 22 Jupiter E. 31 23 5 29 40 27 66 51 26 13 39 Regulus E. 32 42 16 30 69 20 29 16 17 27 33 8 Saturn E. 44 16 50 42 34 9 40 51 21 39 8 27 Spica E. 86 41 29 84 68 3 83 14 26 81 30 39 30 a Arietis W. 93 31 33 96 18 4 97 2 43 98 47 29 Aldebaran W. 61 11 1 62 54 11 64 37 32 66 21 3 Saturn E. 30 33 13 28 60 13 27 7 20 25 24 38 Spica Venus E. 72 49 15 71 4 32 69 19 42 67 34 46 E. 118 51 116 25 46 114 60 32 113 15 10 31 Aldebaran W. 75 46 76 45 3 78 29 26 80 13 53 Pollux W. 33 1 49 34 45 21 36 29 8 38 13 8 Spica Venus E. 58 48 28 67 2 58 65 17 24 53 31 47 E. 106 16 30 103 40 27 102 4 20 100 28 8 360 DECEMBER, 1860. GEEENWICH MEAK TIME. LUNAR DISTANCES. Day of Star's Name the and Midnight. XVI. XVIIR XX I'. Month. Position. o / // / // O / // / // 24 Fomalhaut W. 86 4 13 ,87 29 51 88 55 44 90 21 63 a Pegasi W. 64 25 56 65 56 6 67 26 37 68 67 28 Mars w. 63 29 47 64 58 15 66 26 59 67 56 1 Pollux E. 55 6 6 53 33 51 59 40 60 26 6 Ju^ter E. 90 44 19 89 10 13 87 35 50 86 1 10 Regulus E. 91 53 42 90 19 52 88 46 45 87 11 22 25 a Pegasi W. 76 36 55 78 9 48 79 43 1 81 16 35 Mars W. 75 25 31 76 56 19 78 27 23 79 58 46 a Arietis w. 33 15 52 34 51 4 36 26 37 38 2 34 Pollux E. 42 34 54 41 39 24 55 37 49 39 Jupiter E. 78 3 36 76 27 12 74 50 31 73 13 33 Regulus E. 79 15 9 77 39 2 76 2 38 74 25 57 26 a Pegasi W. 89 8 45 90 44 4 92 19 39 93 55 31 Mars W. 87 40 3 89 13 11 90 46 36 92 20 18 a Arietis W. 46 7 25 47 45 23 49 23 40 61 2 17 Pollux E. 29 51 14 28 15 19 26 39 26 25 3 39 Jupiter E. 65 4 21 63 25 39 61 46 40 60 7 24 Regulus E. 66 18 12 64 39 47 63 1 5 61 22 7 Saturn E. 77 49 76 10 46 74 32 15 72 63 27 27 a Pegasi W. 101 68 32 103 35 49 105 13 18 106 60 58 Mars . W. 100 12 54 101 48 13 103 23 48 104 59 37 a Arietis W. 59 19 49 61 12 62 40 50 64 21 45 Aldebaran W. 27 53 2 29 28 9 31 4 4 32 40 41 Jupiter E. 51 47 5 50 6 15 48 25 10 46 43 51 Regulus E. 53 3 15 51 22 42 49 41 64 48 61 Saturn E. 64 35 26 62 55 4 61 14 27 59 33 36 28 Mars W. 113 2 14 114 39 25 116 16 47 117 54 21 a Arietis W. 72 50 6 74 32 29 76 16 4 77 67 63 Aldebaran w. 40 52 28 42 32 16 44 12 25 45 62 57 Jupiter E. 38 14 5 36 31 34 34 48 62 33 6 3 Regulus E. 39 32 25 37 50 7 36 7 39 34 26 1 Saturn E. 51 6 7 49 24 2 47 41 47 45 69 23 Spica E. 93 33 11 91 50 34 90 7 45 88 24 43 29 a Arietis W. 86 34 54 88 18 50 90 2 55 91 47 10 Aldebaran W. 54 20 25 56 2 44 57 45 17 69 28 3 Jupiter E. 24 30 26 22 47 13 21 4 4 19 21 4 Regulus E. 25 49 54 24 6 39 22 23 27 20 40 21 Saturn E. 37 25 29 35 42 26 33 59 22 32 16 17 Spica E. 79 46 41 78 2 33 76 18 16 74 33 60 30 a Arietis W. 100 30 22 102 15 21 104 25 106 45 35 Aldebaran W. 68 4 44 69 48 33 71 32 30 73 16 34 Saturn E. 23 42 9 21 59 69 20 18 17 18 37 12 Spica E. 65 49 41 64 4 31 62 19 15 60 33 64 Venus E. 111 39 40 110 4 3 108 28 18 106 52 27 31 Aldebaran W. 81 58 27 83 43 5 85 27 45 87 12 27 Pollux W. 39 57 21 41 41 44 43 26 17 45 10 58 Spica E. 51 46 7 50 24 48 14 39 46 28 62 ' r-r- Venns E. 98 51 52 97 15 31 95 39 7 94 2 41 MARS. 361 JANUARY, 1860 FEBRITARY, 1S60. MEXS TIME. MEAN TIME. BBOCBNTEIO. GBOOBNTRIO. Day of the Month. Day of the. Month. Apparent Declination. Meridian Apparent Declination. Meridian Noon. Passage. iRw». Passage. o / // h. m. o / // h. m. 1 S.14 26 83 19 55-6 1 S.19 35 59 19 9-9 2 14 38 13 19 54*1 2 19 43 59 19 8-5 3 14 49 47 19 52-6 3 19 51 52 19 7-0 4 15 1 14 19 51-1 4 19 59 36 19 5-6 5 15 12 36 19 49-6 5 20 7 13 19 4-1 6 15 23 51 19 48-1 6 20 14 41 19 2-7 1 15 35 19 46-6 7 20 22 2 19 1-3 8 15 46 2 19 45-1 8 20 29 14 18 59-8 9 15 56 58 19 43-6 9 20 36 18 18 68-4 10 16 7 48 19 42-1 10 20 43 14 18 67-0 11 16 18 31 19 40-6 11 20 50 2 18 56-5 12 16 29 7 19 39-1 12 20 56 41 18 64-1 13 16 39 37 19 37-6 13 21 3 12 18 52-6 14 16 49 59 19 36-1 14 21 9 35 18 51-2 15 17 16 19 34-7 15 21 15 49 18 49-8 16 17 10 24 19 33-2 16 21 21 56 18 48-3 17 17 20 25 19 31-7 17 21 27 54 18 46-9 18 17 30 20 19 30-2 18 21 33 43 18 45-6 19 17 40 7 19 28-8 19 21 39 25 18 44-0 20 17 49 47 19 27-3 20 21 44 68 18 42-6 21 17 59 20 19 25-9 21 21 50 22 18 41-2 22 18 8 45 19 24-4 22 21 66 38 18 39-7 23 18 18 3 19 22-9 23 22 46 18 38-3 24 18 27 13 19 21-5 24 22 6 45 18 36-9 25 18 36 16 19 20-0 25 22 10 37 18 36-4 26 18 45 11 19 18-6 26 22 15 20 18 34-0 27 18 53 58 19 17-1 27 22 19 54 18 32-5 28 19 2 38 19 16-7 28 22 24 21 18 31-1 29 19 11 10 19 14-2 29 22 28 40 18 29-6 30 19 19 34 19 12-8 31 19 27 50 19 11-3 30 31 22 32 50 22 36 62 18 28-1 18 26-6 32 S. 19 35 59 19 9-9 32 S. 22 40 46 18 25-2 362 MARS. raARCM, 1§60. APRII., 1860. MEAN TIME. ME A IV TIME. Day of the Month. GEOCENTEIC. Day of the Month. GEOCENTEIO. Apparent Declination. Meridian Passage. Apparent Declination. Meridian Passage. Mon. Noon. 1 2 3 O i u S.22 82 50 22 36 52 22 40 46 h. 18 18 18 m. 28-1 26-6 25-2 1 2 3 S. 2°3 39 16 23 39 38 23 39 54 h. 17 17 17 m. 40-3 38-6 36-9 4 5 6 22 44 32 22 48 9 22 51 39 18 18 18 23-7 22-2 20-8 4 5 6 23 40 6 23 40 12 23 40 13 17 17 17 35-2 33-5 31-8 1 8 9 22 65 1 22 58 15 23 1 21 18 18 18 19-3 17-8 16-3 7 8 9 23 40 9 23 40 1 23 39 48 17 17 17 30-1 28-4 26-6 10 11 12 23 4 19 23 7 9 23 9 52 18 18 18 14-8 13-3 11-8 10 11 12 23 39 31 23 39 9 23 38 44 17 17 17 24-8 23-1 21-3 13 14 15 23 12 27 23 14 55 23 17 14 18 18 18 10-3 8-8 7-3 13 14 15 23 38 15 23 37 43 23 37 7 17 17 17 19-6 17-7 15-8 16 17 18 23 19 27 23 21 32 23 23 30 18 18 18 6-8 4-2 2-7 16 17 18 23 36 28 23 35 46 23 35 1 17 17 17 14-0 12-1 10-2 19 20 21 23 25 21 23 27 4 23 28 41 18 17 17 1-1 59-6 58-0 19 20 21 23 34 14 23 33 25 23 32 34 17 17 17 8-3 6-4 4-5 22 23 24 23 30 11 23 31 34 23 32 50 17 17 17 56-5 54-9 53-3 22 23 24 23 31 41 23 30 46 23 29 50 17 17 16 2-5 0-5 58-5 25 26 27 23 34 23 35 4 23 36 1 17 17 17 51-7 50-1 48-5 25 26 27 23 28 53 23 27 55 23 26 57 16 16 16 66-5 64-5 52-5 28 29 30 31 32 23 36 52 23 37 37 23 38 16 23 38 49 8.23 39 16 17 17 17 17 17 46-9 46-2 43-6 41-9 40-3 28 29 30 31 32 23 25 58 23 24 69 23 24 23 23 1 S. 23 22 3 16 16 16 16 16 50-4 48-3 46-2 44-1 41-9 MARS. 363 IttAY, 1§60. JITNi:, 1S60. MEAN TIME. MEAN TIME. GEOOBNTKIO. GEOOENTEIO. Day of the Day of the Apparent Declination. Meridian Appm-ent Declination. Meridian Month. S/bon. Passage. Month. Sbon. Passage. oil! h. m. O J tl h. m. 1 S.23 23 1 16 44-1 1 S.23 22 10 15 23-9 2" 23 22 3 16 41-9 2 23 23 58 15 20-T 3 23 21 6 16 39-T 3 23 25 55 16 lT-6 4 23 20 10 16 3T-5 , 4 23 28 2 15 14-2 6 23 19 15 16 35-3 6 23 30 19 16 11-0 6 23 18 22 16 33-1 6 23 32 46 15 T-6 7 23 IT 31 16 30-8 T 23 35 23 15 4-2 8 23 16 42 16 28-6 8 23 38 11 15 0-8 9 23 15 66 16 26-1 9 23 41 9 14 5T-3 10 23 15 13 16 23-8 10 23 44 19 14 53-8 11 23 14 33 16 21-4 11 23 4T 40 14 50-2 12 23 13 56 16 19-0 12 23 51 12 14 46-6 13 23 13 23 16 16-6 13 23 54 55 14 42-9 14 23 12 55 16 14-1 14 23 58 50 14 39-2 15 23 12 31 16 11-6 15 24 2 55 14 35-4 16 23 12 12 16 9-1 16 24 T 12 14 31-5 IT 23 11 58 16 6-5 IT 24 11 39 14 27-6 18 23 11 49 16 3-9 18 24 16 16 14 23-7 19 23 11 46 16 1-3 19 24 21 4 14 19-7 20 23 11 50 15 58-6 20 24 26 2 14 15-6 21 23 12 15 55-9 21 24 31 9 14 11-5 22 23 12 16 15 53-2 22 24 36 25 14 7-3 23 23 12 40 15 50-4 23 24 41 51 14 3-1 24 23 13 11 15 4T-6 24 24 4T 24 13 58-8 , 25 23 13 50 15 44-8 25 24 53 6 13 54-5 26 23 14 36 15 41-9 26 24 58 54 13 50-1 27 23 15 30 / 15 39-0 2T 25 4 49 13 46-7 28 23 16 32 15 36-1 28 25 10 50 13 41-2 29 23 IT 43 15 33-1 29 25 16 67 13 36-7 30 23 19 3 15 30-0 30 ■ 26 23 8 13 32-1 31 23 20 32 15 2T-0 31 25 29 23 13 27-5 32 S.23 22 10 15 23-9 32 S.25 36 41 13 22-8 364 MARS. JUL.Y, 1§60. AVOVST, 1§60. MEAN TIME MEAN TIME. SBOCENTEIO. GEOCENTBIC. Day of the Day of the Appa/rent Declination. Meridian Apparent Declination. Meridian Month. Soon. Passage. Mouth. Noon. Passage. 1 II h. m. O 1 II h. m. 1 S.25 29 23 13 27 5 1 s.28 47 10 52-7 < 2 25 35 41 13 22 8 2 ; 28 2 16 10 47'- 9 3 25 42 2 13 18 1 3 ': 28 3 29 10 43-1 4 25 48 24 13 13 3 . 4 28 4 26 10 38-4 5 25 54 48 13 8 6 6 28 6 8 10 33-7 6 26 1 11 13 3 7 6 28 5 34 10 29-0 n 26 T 33 12 58 8 7 28 5 44 10 24-4 8 26 13 54 12 53 9 8 28 5 40 10 19-9 9 26 20 12 12 49 9 28 5 20 10 15-4 10 26 26 2*7 12 44 10 28 4 46 10 10-9 11 26 32 38 12 39 11 28 3 58 10 6'- 6 12 26 38 43 12 33 9 12 28 2 55 10 2-2 13 26 44 42 12 28 9 13 28 1 39 9 57-9 14 26 60 33 12 23 8 14 28 9 9 53-6 15 26 56 16 12 18 7 15 27 58 25 9 49-5 16 27 1 50 12 13 6 16 27 56 29 9 46-4 17 27 7 14 12 8 5 17 27 54 20 9 41-4 18 27 12 27 12 3 3 18 27 51 59 9 37-4 19 27 17 28 11 58 2 19 27 49 26 9 33-4 20 27 22 16 11 53 1 20 27 46 40 9 29-6 21 27 26 52 11 47 9 21 27 43 43 9 25-9 22 27 31 14 11 42 8 22 27 40 35 9 22-1 23 27 35 21 11 37 7 23 27 37 16 9 18-4 24 27 39 14 11 32 6 24 27 33 46 9 14-9 25 27 42 51 11 27 5 25 27 30 6 9 11-3 26 27 46 13 11 22 4 26 27 26 16 9 7-8 2V 27 49 19 11 17 4 27 27 22 16 9 4-3 28 27 52 9 11 12 4 28 27 18 6 9 1-0 29 27 54 43 11 7 4 29 27 13 46 8 57-7 30 27 57 11 2 5 30 27 99 17 8 54-5 31 27 59 2 10 57-6 31 27 4 40 8 51-8 32 S.28 47 10 52-7 32 S.26 59 53 8 48-1 MARS. 365 SEPTEMBER, 1§60. OCTOBER, 1§60 • MEAN TIME. MEAN TIME. Day of the Month. GEOCBNTEIO. Day of the Month. aEOCBNTBIO. Apparent Declination. Meridian Passage. Apparent Declination. Meridian Passage. Noon. Noon. 1 2 3 S. 2°6 59 53 26 54 58 26 49 54 li. m. 8 48 8 44 8 41 1 9 9 1 2 3 S. 2°3 30 10 23 20 58 23 11 38 h. 7 • 7 7 m. 33-1 31-1 29-1 4 5 6 26 44 41 26 39 20 26 33 49 8 38 8 36 8 33 9 4 6 6 23 2 9 22 52 31 22 42 46 7 7 7 27-2 25-3 23-3 8 9 26 28 10 26 22 23 • 26 16 28 8 30 8 27 8 24 2 3 •6 7 8 9 22 32 51 22 22 48 22 12 36 7 7 7 21-4 19-5 17-7 10 11 12 26 10 24 26 4 12 25 57 52 8 21 8 19 8 16 •8 •0 •5 10 11 12 22 2 16 21 61 46 21 41 8 7 7 7 16-9 14-1 12-3 13 14 15 25 61 22 25 44 44 25 37 68 8 13 8 11 8 8 9 3 8 13 14 15 21 30 21 21 19 25 21 8 21 7 7 7 10-6 8-7 7-0 16 It 18 25 31 3 25 24 25 16 47 8 6 8 3 8 1 3 9 5 16 17 18 20 67 7 20 46 45 20 34 14 7 7 7 5-2 3-6 1-8 19 20 21 25 9 26 25 1 57 24 54 19 7 69 7 56 7 64 1 7 4 19 20 21 20 22 35 20 10 48 19 68 62 7 6 6 0-1 68-3 66-6 22 23 24 24 46 33 24 38 38 24 30 35 7 52 7 60 7 47 2 8 22 23 24 19 46 47 19 34 35 19 22 14 6 6 6 65-0 53-3 61-7 25 26 27 24 22 23 24 14 2 24 5 33 7 45 7 43 7' 41 6 4 2 25 26 27 19 9 46 18 67 9 18 44 24 6 6 6 50-0 48-4 46-8 28 29 30 31 32 23 56 56 23 48 9 23 39 14 23 30 10 8.23 20 58 7 39 7 37 7 35 7 33 7 31 1 1 1 1 1 28 29 30 31 32 18 31 32 18 18 32 18 5 24 17 52 8 S. 17 38 44 6 6 6 6 6 45-2 43-6 42-0 40-4 38-8 366 MAES. IVOTEMBER, 1860. DECEMBER, 1860. MEAN TIME. MEAN TIME. GBOCENTKIO. GBOCENTEIC. | Day of the Day of the Month. Apparent Declination. Meridian Apparent Declination. Meridian Month. Nbcm. Passage. Noon. Passage. O 1 II h. m. O 1 II h. m. 1 S.17 38 44 6 38-8 1 S.IO 5 35 5 53-1 2 17 25 13 6 37-2 2 9 49 6 6 61-6 3 17 11 34 6 35-6 3 9 32 32 5 50-2 4 16 57 48 6 34-0 4 9 15 55 5 48-7 5 16 43 54 6 32-6 5 8 59 14 5 47-2 6 16 29 53 6 31-0 6 8 42 29 5 45-8 V 16 15 44 6 29-4 7 8 25 41 6 44-3 8 16 1 29 6 27-8 8 8 -8 49 5 42-8 9 15 47 7 6 26-3 9 7 51 55 5 41-3 10 15 32 38 6 24-7 10 7 34 57 5 39-8 11 15 18 2 6 23-2 11 7 17 56 5 38-4 12 15 3 20 6 21-7 12 7 52 5 36-9 13 14 48 31 6 20-2 13 6 43 45 5 35-4 14 14 33 36 6 18-7 14 6 26 35 5 33-9 15 14 18 35 6 17-1 15 6 9 24 5 32-4 16 14 3 27 6 15-6 16 5 52 10 5 30-9 17 13 48 14 6 14-1 17 5 34 53 5 29-5 i 18 13 32 54 6 12-6 18 5 17 35 5 28-0 19 13 17 29 6 11-1 19 5 15 5 26-5 20 13 1 58 6 9-6 20 4 42 53 5 25-0 21 12 46 22 6 8-1 21 4 25 30 5 23-5 22 12 30 40 6 6-6 22 4 8 5 5 22-0 23 12 14 52 6 5-0 23 3 50 39 5 20-6 24 11 59 6 3-6 24 3 33 12 5 19-1 25 11 43 2 6 2-1 25 3 15 44 5 17-6 26 11 26 59 6 0-6 26 2 58 16 5 16-2 27 11 10 51 5 59-1 27 2 40 46 5 14-7 28 10 54 39 5 67-6 28 2 23 16 5 13-2 29 10 38 22 5 56-1 29 2 6 45 5 11-8 30 10 22 1 5 54-6 30 1 48 14 6 10-3 31 1 30 42 5 8-8 31 10 5 35 5 53-1 32 S. 9 49 6 5 51-6 32 S. 1 13 11 5 7-3 JUPITER. 367 JAHTIJARY, L§60 FEBRUARY, 1§60. MTIAN TIME. MEAN TIME. GBOCENTEIC. GEOCENTRIC. Day of the Day of the Month. Apparent Declination. Meridian Apparent Declination. Meridian Month. Noon. Passage. Noon. Passage. o / // h. m. O 1 It h. m. 1 N.22 1 35 12 49-3 1 N.22 39 58 10 30 5 2 22 2 57 12 44-9 2 22 40 56 10 26 1 3 22 4 20 12 40-4 3 22 41 52 10 21 7 4 22 5 42 12 36-9 4 22 42 47 10 17 3 5 22 7 5 12 31-4 5 22 43 40 10 12 9 6 22 8 27 12 26-9 6 22 44 32 10 8 5 1 22 9 49 12 22-5 7 22 45 23 10 4 2 8 22 11 11 12 17-9 8 22 46 12 9 59 9 9 22 12 32 12 13-4 9 22 47 9 66 6 10 22 13 63 12 8-9 10 22 47 46 9 61 3 11 22 15 13 12 4-4 11 22 48 31 9 47 12 22 16 33 11 59-9 12 22 49 14 9 42 7 13 22 17 52 11 56-4 13 22 49 66 9 38 4 14 22 19 11 11 50-9 14 22 50 37 9 34 1 15 22 20 28 11 46-4 16 22 51 16 9 29 8 16 22 21 45 11 41-9 16 22 51 63 9 25 5 17 22 23 2 11 37-4 17 22 62 29 9 21 3 18. 22 24 17 11 32-9 18 22 63 4 9 17 1 19 22 25 31 11 28-4 19 22 63 37 9 12 9 20 22 26 45 11 23-9 20 22 64 8 9 8 7 21 22 27 57 11 19-4 21 22 64 38 9 4 6 22 22 29 9 11 14-9 22 22 65 7 9 3 23 22 30 19 11 10-4 23 22 55 34 8 66 1 24 22 31 28 11 6-0 24 22 56 8 51 9 25 22 32 36 11 1-5 25 22 66 24 8 47 8 26 22 33 43 10 57-0 26 22 66 46 8 43 7 27 22 34 49 10 52-5 27 22 67 8 8 39 6 28 22 35 68 10 48-1 28 22 57 27 8 36 5 29 22 36 57 10 43-7 29 22 57 46 8 31 4 30 22 37 58 10 39-3 31 22 38 59 10 34-9 30 22 68 3 8 27 3 31 22 58 18 8 23 2 32 N.22 39 58 10 30-5 32 N.22 58 32 8 19-2 tt 368 JUPITER. niARCH, 1S60. APRII., 1860. MEAN TIME. MEAN TIME. Day of the Month. aSOOEKTEIO. Day of the Month. aEOCENTEIC. Apparmt Declination. Meridian Passage. Appwrent Declination. Meridian Passage. Noon. Nbon. 1 2 3 o / // N.22 68 3 22 58 18 22 58 32 h. 8 8 8 m. 27-3 23-2 19-2 1 2 3 N.22 56 16 22 54 49 22 54 20 h. 6 6 6 m. 28-1 24-5 20-9 4 5 6 22 58 44 22 58 55 22 59 5 8 8 8 15-2 11-2 7-2 4 5 6 22 63 50 22 53 19 22 52 46 6 6 6 17-3 13-7 10-1 1 8 9 22 69 13 22 59 20 22 59 26 8 7 7 3-2 69-2 55-2 7 8 9 22 52 12 22 5l 37 22 51 6' 6 5 6-5 2-9 59-3 10 11 12 22 59 30 22 59 38 22 69 35 7 7 7 61-3 47-4 43-5 10 11 12 22 50 22 22 49 42 22 49 1 5 5 56-8 62-3 48-8 13 14 15 22 59 36 22 59 33 22 59 31 7 7 7 39-6 35-7 31-8 13 14 15 22 48 19 22 47 35 22 46 50 5 5 6 46-3 41-8 38-3 16 17 18 22 59 27 22 59 21 22 59 14 7 7 7 27-9 24-1 20-3 16 17 18 22 46 3 22 45 15 22 44 26 5 6 5 34-8 31-3 27-8 19 20 21 22 69 6 22 58 57 22 58 46 7 7 7 16-6 12-7 8-9 19 20 21 22 43 35 22 42 42 22 41 49 5 6 5 24-3 20-9 17-5 22 23 24 22 58 34 22 58 20 22 58 5 7 7 6 5-1 1-3 57-6 22 23 24 22 40 53 22 39 56 22 38 58 5 5 5 14-1 10-7 7-3 25 26 27 22 57 49 22 57 31 22 57 12 6 6 6 63-9 60-2 46-6 25 26 27 22 37 59 22 36 57 22 35 55 5 5 4 3-9 0-5 57-1 28 29 30 31 32 22 56 52 22 56 30 22 56 7 22 56 42 lSr.22 55 16 6 6 6 6 6 42-8 39-1 , 36-4 31-7 28-1 28 29 30 31 32 22 34 61 22 33 45 22 32 38 22 31 29 N.22 30 19 4 4 4 4 4 63-7 50-4 47-0 43-7 40-4 JUPITER. 369 MAY, 1§60. JUlfE, 1§60. MEAN TIME. MEAN TIME. GBOCBNTEIC. GBOOENTHIC. Day of Day of the the Apparent Declination. Meridian Apparent Declination. Meridian Month. Noon. Passage. Month. Noon. Passage. O t II h. m. O 1 II h. m. 1 N.22 31 29 4 43-7 1 N.21 43 22 3 3-8 2 22 80 19 4 40-4 2 21 41 24 3 0-7 3 22 29 8 4 37-1 3 21 39 24 2 57-5 4 22 27 55 4 33-8 4 21 37 23 2 54-4 5 22 26 40 4 30-5 6 21 35 20 2 51-3 6 22 25 24 4 27-2 6 21 33 16 2 48-2 1 22 24 6 4 23-9 7 21 31 10 2 45-1 8 22 22 47 4 20-6 8 21 29 3 2 42-0 9 22 21 26 4 17-3 9 21 26 54 2 38-9 10 22 20 4 4 14-0 10 21 24 43 2 35-8 H 22 18 41 4 10-7 11 21 22 31 2 32-7 12 22 17 15 4 7-5 12 21 20 18 2 29-6 13 22 15 49 4 4-3 13 21 18 2 2 26-5 14 22 14 20 4 1-1 14 21 16 46 2 23-4 15 22 12 50 3 67-9 la. 21 13 28 2 20-3 16 22 11 19 3 54-7 16 21 11 8 2 17-3 17 22 9 46 3 51-5 17 21 8 47 2 14-2 18 22 8 11 3 48-3 18 21 6 24 2 11-2 19 22 6 35 3 45-1 19 21 4 2 8-1 20 22 4 57 3 41-9 20 21 1 34 2 5-0 21 22 3 18 3 38-7 21 20 59 7 2 2-0 22 22 1 37 3 35-5 22 20 56 38 68-9 23 21 59 55 3 32-3 23 20 54 8 66-9 24 21 58 11 3 29-1 24 20 51 36 52-8 25 21 56 25 3 25-9 25 20 49 3 49-7 26 21 54 38 3 22-7 26 20 46 29 46-7 27 21 62 49 3 19-5 27 20 48 53 43-6 28 21 60 59 ■ 3 16-3 28 20 41 16 40-6 29 21 49 7 3 13-2 29 20 38 37 37-5 30 21 47 14 3 10-1 30 20 85 57 34-5 31 21 45 19 3 7-0 31 20 S3 16 31-4 32 N.21 43 22 3 3-8 82 N,20 30 33 28-4 24 370 JUPITER. JUIY, 1860. AUGUST, I860. MEAN TIME. MEAN TIME. GEOCBNTKIO. GEOOENTKIC. Day of the Month. Day of Apparent Decimation. Meridian the Month. Appwrent Declination. Meridian Noon. Passage. Noon. Passage. O 1 II h. m. a 1 H h. m. 1 N.20 33 16 1 31-4 1 N.18 59 42 23 54-5 2 20 30 33 1 28'4 2 18 56 25 23 51-4 3 20 27 49 1 25-3 3 18 63 6 23 48-4 4 20 25 4 1 22-3 4 18 49 47 23 45-4 5 20 22 17 1 19-2 5 18 46 27 23 42-3 6 20 19 29 1 16-2 6 18 43 6 23 39-3 7 20 16 39 1 13-2 7 18 39 44 23 36-3 8 20 13 49 1 10-1 8 18 36 22 23 33-2 9 20 10 57 1 7-1 9 18 32 59 23 30-2 10 20 8 3 1 4-1 10 18 29 35 23 27-2 U 20 5 9 1 1-1 11 18 26 11 23 24-1 12 20 2 13 58-0 12 18 22 46 23 21-1 13 19 59 16 55-0 13 18 19 20 23 18-0 14 19 , 56 18 52-0 14 18 15 54 23 15-0 15 19 53 18 49-0 15 18 12 28 23 11-9 16 19 50 17 45-9 16 18 9 1 23 8-9 17 19 47 16 42-9 17 18 5 33 23 6-8 18 19 44 13 39-9 18 18 2 5 23 2-8 19 19 41 8 36-9 19 17 58 37 22 69-7 20 19 38 3 33-8 20 17 55 8 22 56-7 21 19 34 57 30-8 21 17 51 39 22 53-6 22 19 31 50 27-8 22 17 48 9 22 50-6 23 19 28 41 24-8 23 17 44 40 22 47-5 24 19 25 32 21-7 24 17 41 10 22 44-4 25 19 22 22 18-7 25 17 37 40 22 41-3 26 19 19 10 15-7 26 17 34 9 22 38-2 11 19 15 58 12-6 27 17 30 39 22 35-1 28 19 12 44 ^- 9-6 28 17 27 8 22 32-1 29 19 9 30 6-6 29 17 23 37 22 29-0 30 19 6 15 3-5 30 17 20 7 22 25-9 31 19 2 59 r o.Ei \m 6T6f 31 17 16 36 22 22-8 32 N.18 59 42 23 54-5 32 N.17 13 5 22 22-8 JUPITER. 371 SEPTEMBER, I860. OCTOBER, 1§60 MEAN TIME. MEAN TIME. GEOCENTRIC. | GEOCENTEIC. Day of the Day of the Month. Apparent Declination. Meridian Apparent Declination. Meridian Month. iRjon.. Passage. Mon. Passage. o / // h. m. O 1 II h. m. 1 N.17 13 5 22 19-7 1 N.15 30 42 20 44-9 2 17 9 34 22 16-6 2 15 27 30 20 41-7 3 17 6 4 22 13-5 3 15 24 19 20 38-5 4 17 2 33 22 10-4 4 15 21 9 20 35-2 5 16 59 3 22 7-3 5 15 18 1 20 31-9 6 16 55 32 22 4-2 6 15 14 54 20 28-6 1 16 52 2 22 1-1 7 15 11 49 20 25-4 8 16 48 32 21 58-0 8 15 8 45 20 22-1 9 16 45 2 21 54-9 9 15 5 43 20 18-8 10 16 41 33 21 51-8 10 15 2 42 20 15-5 11 16 38 4 21 48-6 11 14 59 43 20 12-2 12 16 34 35 21 45-4 12 14 56 46 20 8-9 13 16 31 7 21 42-3 13 14 53 50 20 5-6 14 16 27 39 21 39-2 14 14 50 56 20 2-3 15 16 24 12 21 36-1 15 14 48 4 19 69-0 16 16 20 46 21 32-9 16 14 l5 14 19 55-7 17 16 17 20 21 29-7 17 14 42 26 19 52-4 18 16 13 54 21 26-5 18 14 39 40 19 49-1 19 16 10 29 21 23-3 19 14 36 56 19 45-7 20 16 7 6 21 20-1 20 14 34 14 19 42-3 21 16 3 42 21 16-9 21 14 31 34 19 38-9 22 16 20 21 13-7 22 14 28 57 19 35-5 23 15 56 59 21 10-5 23 14 26 21 19 32-1 24 15 53 38 21 7-3 24 14 23 48 19 28-7 26 15 50 18 21 4-1 25 14 21 18 19 25-3 26 15 46 59 21 0-9 26 14 18 49 19 21-9 27 15 43 42 20 57-7 27 14 16 23 19 18-5 28 15 40 25 20 54-5 28 14 14 19 15-1 29 15 37 10 20 51-3 29 14 11 39 19 11-6 30 15 33 55 20 48-1 30 14 9 20 19 8-1 31 14 7 4 19 4-6 31 15 30 42 20 44-9 32 N.15 27 30 20 41-7 32 K14 4 51 19 1-1 372 JUPITER. NOTEJHBER, 1860. DECEMBER, 1S60. MEAN TIME. MEAN TIME. Day of the GEOOENTEIO. Day of the OEOOBNTBIC. Apparent Declination. Meridian Afpairent Declination. Meridian ffbon. Passage. Noon. Passage. 1 2 3 O 1 II N.14 4 51 14 2 41 14 33 h. m. 19 1-1 18 57-6 18 54-1 1 2 3 N.l°3 22 42 13 22 13 13 21 48 h. m. 17 12-4 17 8-6 17 4-8 4 5 6 13 58 28 13 56 26 13 54 26 18 60-6 18 47-1 18 43-6 4 5 6 13 21 27 13 21 10 13 20 57 17 1-0 16 57-2 16 53-3 7 8 9 13 52 30 13 50 37 13 48 47 18 40-1 18 36-6 18 33-1 7 8 9 13 20 48 13 20 43 13 20 42 16 49-4 16 45-5 16 41-6 10 11 12 13 46 59, 13 45 15 13 43 35 18 29-6 18 26-0 18 22-4 10 11 12 13 20 45 13 20 53 13 21 4 16 37-7 16 33-8 16 29-9 13 14 15 13 41 57 13 40 23 13 38 52 18 18-8 18 15-2 18 11-6 13 14 15 13 21 19 13 21 39 13 22 2 16 26-0 16 22-0 16 18-0 16 11 18 13 37 25 13 36 1 13 34 41 18 8-0 18 4-4. 18 0-8 16 17 18 13 22 30 13 23 1 13 23 37 16 14-0 16 10-0 16 6-0 19 20 21 13 33 23 13 32 10 13 31 17 57-2 17 53-5 17 49-8 19 20 21 13 24 17 13 25 13 25 48 16 2-0 15 58-0 15 54-0 22 23 24 13 29 53 13 28 61 13 27 51 17 46-1 17 42-4 17 38-7 22 23 24 13 26 39 13 27 35 13 28 34 15 50-0 15 45-9 15 41-8 25 26 21 13 26 56 13 26 4 13 25 16 17 35-0 17 31-3 17 27-6 25 26 27 13 29 37 13 30 44 13 31 54 15 37-7 15 33-6 16 29-5 28 29 30 31 32 13 24 32 13 23 51 13 23 15 13 22 42 N.13 22 13 17 23-8 17 20-0 17 16-2 17 12-4 17 8-6 28 29 30 31 32 13 33 9 13 34 27 13 35 49 13 37 14 N.13 38 43 15 25-4 15 21-3 15 17-2 15 13-1 15 8-9 SATURN. 373 JAIVITARY, 18«^0. FEBRVARY, 1860. MEAN TIME. MEAN TIME, Day of the > GEOCENTRIC. -Day of the Month. BBOCBNTRIC. Apparent Declination. Meridian Apparent Declination. Meridian Month, AOOTI. Paasage. Wooti. Passage. 1 2 3 o / // N.14 15 3 14 16 10 14 17 18 h. 15 15 15 m. 8-8 4-7 0-6 1 2 3 1 It N.15 2 15 1 42 15 3 24 h. m. 12 59-3 12 55-0 12 50-8 4 5 6 14 18 28 14 19 39 14 20 62 14 14 14 56-5 52-3 48-2 4 5 6 15 ^ 5 15 6 47 15 8 28 12 46-5 12 42-3 12 38-1 1 8 9 14 22 7 14 23 24 14 24 42 14 14 14 44-1 39-9 35-8 7 8 9 15 10 10 15 11 52 15 13 33 12 33-8 12 29-6 12 25-3 10 11 12 14 26 1 14 27 22 14 28 45 14 14 14 31-6 27-5 23-3 10 11 12 15 15 15 15 16 56 15 18 37 12 21-1 12 16-8 12 12-6 13 14 15 14 30 9 14 31 34 14 33 14 14 14 19-2 15-0 10-8 13 14 15 15 20 18 15 21 59 15 23 39 12 8-4 12 4-1 11 59-9 16 17 18 14 34 28 14 35 57 14 37 27 14 14 13 6-7 2-5 58-3 16 17 18 15 25 18 15 26 57 15 28 36 11 65-6 11 51-4 11 47-2 19 20 21 14 38 59 14 40 31 14 42 5 13 13 13 54-1 49-9 45-7 19 20 21 15 30 14 15 31 51 15 33 28 11 42-9 11 38-7 11 34-4 22 23 24 14 43 39 14 45 14 14 46 50 13 13 13 41-6 37-3 33-1 22 23 24 15 35 4 15 36 39 15 38 13 11 30-2 11 25-9 11 21-7 25 26 27 14 48 27 14 50 4 14 51 43 13 13 13 28-8 24-6 20-4 25 26 27 15 39 46 15 41 18 15 42 49 11 17-5 11 13-2 11 9-0 28 29 30 31 32 14 53 21 14 55 1 14 56 41 14 58 21 N.15 2 13 13 13 13 12 16-2 11-9 7-7 3-5 59-3 28 29 30 31 32 15 44 19 15 45 48 15 47 16 15 48 42 N.15 50 08 11 4-8 11 0-6 10 66-3 10 52-1 10 47-9 374 SATURN. MARCH, 1860. APRII., 1860. MEAN TIME. MEAN TIME. GBOCENTEIO. GEOCENTBIC. Day of the Month. Day of the Month. Apparent Declination. Meridian Apparent Declination. Meridian Xixm. Passage. ifOOTl. 1 2 3 Ota N.15 47 16 15 48 42 15 50 8 h. 10 10 10 m. 66-3 52-1 47-9 ■ 1 2 3 o / // N.16 19 54 16 20 28 16 21 h. 8 8 8 m. 47-7 43-7 39-6 4 5 6 15 51 32 15 52 64 15 54 16 10 10 10 43-7 39-5 35-3 4 5 6 16 21 30 16 21 58 16 22 24 8 8 8 36-6 31-6 27-6 1 8 9 15 55 36 15 56 54 15 58 11 10 10 10 31-1 26-9 22-7 7 8 9 16 22 47 16 23 9 16 23 29 8 8 8 23-5 19-5 15-5 10 11 12 15 59 27 16 41 16 1 54 10 10 10 18-5 14-3 10-1 10 11 12 16 23 47 16 24 2 16 24 16 8 8 8 11-5 7-6 3-5 13 14 15 16 3 5 16 4 14 16 5 22 10 10 9 5-9 1-7 57-6 13 14 15 16 24 27 16 24 37 16 24 44 59-6 65-5 51-5 16 11 18 16 6 28 16 7 32 16 8 34 9 9 9 53-4 49-3 45-2 16 17 18 16 24 49 16 24 53 16 24 64 47-6 43-6 39-6 19 20 21 16 9 35 16 10 34 16 11 31 9 9 9 41-0 36-9 32-8 19 20 21 16 24 63 16 24 60 16 24 46 35-7, 31-8 27-8 22 23 24 16 12 27 16 13 20 16 14 12 9 9 9 28-6 24-5 20-4 22 23 24 16 24 38 16 24 28 16 24 17 23-9 20-0 16-1 25 26 27 16 15 1 16 15 49 16 16 35 9 9 9 16-3 12-2 8-1 25 26 27 16 24 4 16 23 48 16 23 31 12-2 8-3 4-4 28 29 30 31 ■ 16 17 19 16 18 1 16 18 41 16 19 18 9 8 8 8 4-0 69-9 55-9 51-8 28 29 30 16 23 11 16 22 50 16 22 26 7 6 6 0-6 56-7 52-8 32 N.16 19 54 8 47-7 31 32 16 22 1 N.16 21 33 6 6 49-0 45-2 SATURN. 375 MAT, 1860. JVIfE, 1S60. MEAN TIME. MEAN TIME. Day of the GEOCENTEIO. Day of the GEOOBNTEIC. Apparent Decimation. Meridian Appwrmt Declination. Meridian Month. Noon. Passage. Month. Noon. Passage. 1 2 3 O 1 II N.16 22 1 16 21 33 16 21 4 h. 6 6 6 m. 49-0 45-2 41-3 1 2 3 oil! N.15 53 11 15 51 47 15 50 22 h. 4 4 4 m. 62-7 49-0 45-4 4 5 6 16 20 32 16 19 59 16 19 23 6 6 6 37-5 33-7 29-9 4 5 6 15 48 55 15 47 26 15 45 56 4 4 4 41-7 38-1 34-5 8 9 16 18 46 16 18 7 16 17 25 6 6 6 26-0 22-2 18-4 7 8 9 15 44 24 15 42 51 15 41 16 4 4 4 30-8 27-2 23-6 10 11 12 16 16 42 16 15 57 16 15 10 6 6 6 14-6 10-8 7-0 10 11 12 15 39 40 15 38 2 15 36 23 4 4 4 20-0 16-3 12-7 13 14 15 16 14 22 16 13 31 16 12 39 6 5 5 3-2 59-5 55-7 13 14 15 15 34 42 15 33 15 31 17 4 4 4 9-1 5-5 1-9 16 17 18 16 11 44 16 10 48 16 9 50 5 5 5 51-9 48-2 44-4 16 17 18 15 29 32 15 27 45 15 25 58 3 3 3 58-3 54-7 51-1 19 20 21 16 8 50 16 7 48 16 6 45 5 5 5 40-7 37-0 33-3 19 20 21 15 24 9 15 22 18 15 20 26 3 3 3 47-5 43-9 40-4 22 23 24 16 5 39 16 4 32 16 3 23 5 5 6 29-5 25-8 22-1 22 23 24 15 18 33 15 16 39 15 14 43 3 3 3 36-8 33-3 29-7 25 26 27 16 2 13 16 1 15 59 46 5 5 5 18-4 14-7 11-0 25 26 27 15 12 46 15 10 48 15 8 49 3 3 3 26-2 22-7 19-1 28 29 30 31 32 15 58 31 15 57 13 15 55 54 15 54 34 N.15 • 63 11 5 5 5 4 4 7-3 3-7 0-0 56-3 52-7 28 29 30 31 32 15 6 48 15 4 47 15 2 44 15 40 N.14 58 35 3 3 3 3 3 15-6 12-1 8-6 5-0 1-5 V 376 SATURN. JUIiY, I860. AVOVST, 1S60. MEAN TIME. MEAN TIME. GEOCENTRIC. OEOCENTBZO. | Day of the Day of Apparent Declination. Meridian the Afparent Declination. Meridian Month. Noon. Passage. Month. Noon. Passage. oil! h. m. O 4 II h. m. 1 N.15 40 3 5-0 1 N.13 48 47 1 16-8 2 14 58 35 3 1-5 2 13 46 17 1 13-4 3 14 56 29 2 58-0 3 13 43 45 1 9-9 4 14 54 21 2 54-5 4 13 41 13 1 6-5 5 14 52 13 2 50-9 5 13 38 41 1 3-1 6 14 50 4 2 47-4 6 13 36 8 59-6 1 14 47 53 2 43-9 7 13 33 35 56-2 8 14 45 42 2 40-4 8 13 31 1 62'7 9 14 43 29 2 36-9 9 13 28 27 49-3 10 14 41 16 2 33-4 10 13 25 53 45-8 11 14 39 1 2 29-9 11 13 23 18 42-3 12 14 36 46 2 26-4 12 13 20 43 38-9 13 14 34 30 2 22-9 13 13 18 7 35-4 14 14 32 12 2 19-4 14 13 16 32 32-0 15 14 29 54 2 15-9 15 13 12 66 28-5 16 14 27 35 2 12-4 16 13 10 19 25-1 17 14 25 15 2 8-9 17 13 7 43 21-7 "18 14 22 54 2 5-4 18 13 5 6 18-2 19 14 20 33 2 1-9 19 13 2 29 14-8 20 14 18 10 58-4 20 12 69 62 11-3 21 14 15 47 54-9 21 12 67 16 7-8 22 14 13 23 61-4 22 12 54 38 4-4 23' 14 10 69 48-0 23 12 52 1 ( »'91 { SS 67-6} 23 54-0 24 14 8 33 44-5 24 12 49 24 25 14 6 7 41-0 25 12 46 46 23 50-6 26 14 3 41 37-6 26 12 44 9 23 47-2 27 14 1 13 34-1 27 12 41 32 23 43-7 28 13 68 45 30-7 28 12 38 66 23 40-3 29 13 66 17 27-2 29 12 36 17 23 36-9 •30 13 63 47 23-7 30 12 33 40 23 33-4 31 13 51 18 20-3 31 12, 31 4 23 30'0 32 N.13 48 47 1 10-8 32 N.12 28 27 23 26-5 SATURN. 377 SEPITEMBER, 1§60. OCTOBER, 1§60. MEAN TIME. MEAN TIME. Day of the Month. GEOOENTBIO. Declination. Noon. Meridian Passage. Day of the . Mouth. SEOCBNTBIO. Declination. Noon. Meridian 1 2 3 4 5 6 1 8 9 10 11 12 13 14 16 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 N.12 28 27 12 26 50 .12 23 14 12 20 38 12 18 1 12 16 26 12 12 50 12 10 15 12 7 40 12 5 6 12 2 31 11 59 68 11 57 24 11 54 52 11 52 19 11 49 48 11 47 16 11 44 46 11 42 16 11 39 46 11 37 18 11 34 50 11 32 22 11 29 56 11 27 30 11 25 6 11 22 41 11 20 18 11 17 65 11 15 34 11 13 13 N.ll 10 53 h. 23 23 23 23 23 23 23 23 22 22 22 22 22 22 22 22 22 22 22 21 21 m. 26-5 23-1 19-6 16-1 12-7 9-2 5-8 2-3 68-8 65-4 51-9 48-6 45-0 41-5 38-1 34-6 31-2 27-7 22 24-2 22 20-8 22 17-3 22 13-8 22 10-4 22 6-9 3-4 59-9 56-4 21 .62-9 21 49-4 21 45-9 21 42-4 21 38-9 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 N.ll 13 13 11 10 53 11 8 36 11 6 17 11 4 11 1 46 10 69 30 10 57 17 10 55 5 10 62 63 10 50 44 10 48 36 10 46 27 10 44 21 10 42 17 10 40 13 10 38 12 10 36 H 10 34 12 10 32 14 10 30 18 10 28 24 10 26 31 10 24 39 10 22 49 10 21 1 10 19 16 10 10 10 14 10 12 17 30 16 47 6 26 h. 21 21 21 21 20 20 N.IO 10 48 20 20 19 19 m. 42-4 38-9 35-4 21 31-9 21 28-3 21 24-8 21 21-3 21 17-8 21 14-3 21 10-7 21 7-2 21 3-7 0-1 56-6 63-0 20 49-6 20 46-9 20 42-3 20 38-8 20 35-2 20 31-6 20 28-1 20 24-5 20 20-9 20 17-3 20 13-7 20 10-1 6-5 2-9 59-2 55-6 19 52-0 378 SATURN. NOVEMBER, 1§60. DECEMBER, 1S60. MEAN TIME. MEAN TIME. Uayof the Month. OBOCENTEIO. Day of the Month. SEOCENTHIC. Appwrmt Declination. Meridian Passage. Apparent Declination. Meridian Passage. Noon. Noon. 1 2 3 N.IO 10 48 10 9 11 10 7 37 h. m. 19 52-0 19 48-3 19 44-7 1 2 3 o / // N. 9 37 45 9 37 15 9 36 46 h. m. 18 0-6 17 56-8 17 53-0 4 5 6 10 6 5 10 4 34 10 3 6 19 41-0 19 37-4 19 33-8 4 5 6 9 36 20 9 35 57 9 35 36 17 49-1 17 45-3 17 41-5 1 8 9 10 1 39 10 14 9 58 52 19 30-1 19 26-5 19 22-8 7 8 9 9 35 17 9 35 1 9 34 48 17 37-6 17 33-8 17 29-9 10 11 12 9 57 31 9 56 12 9 54 56 19 19-1 19 15-4 19 11-8 10 11 12 9 34 37 9 34 28 9 34 23 17 26-1 17 22-2 17 18-3 13 14 15 9 53 41 9 52 29 9 51 19 19 8-1 19 4-4 19 0-7 13 14 15 9 34 19 9 34 19 9 34 20 17 14-5 17 10-6 17 6-7 16 17 18 9 50 11 9 49 5 9 48 2 18 57-0 18 53-3 18 49-6 16 17 18 9 34 25 9 34 32 9 34 41 17 2-8 16 58-9 16 55-0 19 20 21 9 47 1 9 46 2 9 45 5 18 45-8 18 42-1 18 38-4 19 20 21 9 34 53 9 35 7 9 35 24 16 51-0 16 47-1 16 43-2 22 23 24 9 44 10 9 43 18 9 42 28 18 34-6 18 30-9 18 27-1 22 23 24 9 35 44 9 36 6 9 36 30 16 39-2 16 35-3 16 31-3 25 26 21 . 9 41 41 9 40 56 9 40 13 18 23-4 18 19-6 18 15-8 25 26 27 9 36 57 9 37 26 9 37 58 16 27-4 16 23-4 16 19-4 28 29 30 31 32 9 39 32 9 38 54 9 38 19 9 37 45 N. 9 37 15 18 12-0 18 8-2 18 4-4 18 0-6 17 66-8 28 29 30 31 32 9 38 32 9 39 9 9 39 48 9 40 29 N. 9 41 13 16 15-4 16 11-4 16 7-4 16 3-4 15 59-4 379 NAUTICAL ALMANAC FOR THE YEAK 18 61. W.°8. Siirraizer Sfilsti^e .Tutu- &li'. Ded..U3°ii7'3U"Jf^' ■10 "Sciut?! . By ihi-s Mf't'hri.njxxvl fXrixuuji'tnciit ^ catt. he 'ti^in the rna^/m'tA^: pola/Uy ■>! (/iv /ifa\r/ilv l^odW'^ . (-'■hf/./f/i;i/ a^ CL phystcftl lair af iiiDlioft , ut muAti'.?', diul ol dp(Ut:' . Litti.of ,TTliei\. BO l^ultcm .Str Ny 381 ECLIPSES OF THE SUN AND MOON. In the year 1861 there will be three Eclipses of the Sun, one of the Moon, and a Transit of Mercury over the Sun's disk. I. — An Annular Eclipse of the SUN", January 10, 1861, invisible at Greenwich. ELEMENTS. d h m . Greenwich Mean Time of cj in E. A Jan. 10 15 23 58 ©'s and d's Eight Ascension 19 30 40 (©'s Declination S. 21 59 34 ©'s Declination S. 21 49 20 Begins on the Earth generally January 10* 12'' 34°-9, Mean Time at Greenwich, in Longitude 75° 12' E. of Greenwich, and Latitude 19° 32' S. IL — An Annular Eclipse of the S UN, July 1, 1861, invisible at Greenwich. ELEMENTS. . . d. h. m. ii. Greenwich Mean Time of 6 in E. A July 7 14 15 7 ©'s and d's Eight Ascension 7 8 44 d's Declination " N. 2°2 18 7 ©'s^Declination N. 22 31 3 Begins on the Earth generally July 7* ll* 17'°'8, Mean Time at Greenwich, in Longitude 100° 6' E. of Greenwich, and Latitude 3° 54' N. IIL — A Partial Eclipse of the MOON, Dec. 16, \?>^\,partly visible at Greenwich, ELEMENTS. ^ Greenwich Mean Time of § in E. A Dec. 16 20 11 16 (f's Eight Ascension 5 40 8 d's Declination N. 2°4 I'l 24 ©'s Declination S. 23 22 44 Longitude 88° 10' W. of Greenwich. Latitude 24° 24' N. lY. — A Total Eclipse of the SUN, December 30-31, 1861, visible {as a partial one) at Greenwich. ELEMENTS. ^ Greenwich Mean Time of 6 in E. A Dec. 31 1 58 22 ©'s and d's Eight Ascension .*>>.... 18 43 19 d's Declination S. 22 33 24 ©'s Declination S. 23 5 1 Begins on the Earth generally December 30* 23" 14""-8, Mean Time at Greenwich, in Longitude 74° 1' W. of Greenwich, and Latitude 9° 1' N. A Transit of Mercury over the Sun's disk, Nov. 11, 1861, partly visible at Greenwich. ELEMENTS. ^ ^ „ ,_ Greenwich Mean Time of 6 in E. A Nov. 11 20 5 58 ©'s and $ 's Eight Ascension 15 10 3 i^ 's Declination S. 17 32 40 ©'s Declination S. 17 44 43 Longitude 97° 20' E. of Greenwich. Latitude 17° 49' S. 382 PHASES OF THE MOON FOR 1861. jAinrASY. JITLY. ' d. h. m. • d. h. m. d Last Quarter . . . 3 13 53-8 • New Moon .... 7 14 12-1 New Moon . . . . 10 15 27-1 © First Quarter . . . 14 14 47-3 i) First Quarter . , . 18 16 0-X) @ Full Moon .... 21 12 5-5 © Full Moon . . . . 26 5 6-6 d Last Quarter . . . 29 7 51-4 7EBBTJASY. AUGirST. d. h. m. d. h. m. (f Last Quarter . . . 1 21 59-0 ® New Moon .... 6 53-7 # New Moon . . . . 9 8 4-8 © First Quarter . . . 12 19 15-3 © First Quarter . . . li 12 19-4 © Full Moon .... 19 23 50-9 © Full Moon .. . . . 24 16 42-8 d Last Quarter . . . 28 1 23-1 UABCH. RTi>TEMBEB. d. h. m. d. h. m. (§ Last Quarter . . . 3 7 15-9 # New Moon .... 4 10 11-9 © New Moon . . . • }l 1 37-5 © First Quarter . . . 11 1 15-9 (D First Quarter . . . 19 5 31-6 © Full Moon .... 18 14 1-4 © Full Moon . . ." , 26 2 14-9 d Last Quarter . . . 26 18 24-1 AFBIL, OCTOBES. d. h. m. d. h. m. d Last Quarter , . . 1 18 23-9 # New Moon .... 3 18 56-3 9 New Moon . . . . 9 18 56-1 © First Quarter . . . 10 10 8-9 i) First Quarter . . . 17 18 45-3 © Full Moon .... 18 6 37-9 © Full Moon . . . . 24 10 23-0 d Last Quarter . . . 26 9 54-0 MAT. HOVEUBEB M d. b. m. d. h. m. (§ Last Quarter . . . 1 7 31-8 # New Moon .... 2 4 3-3 (§ New Moon . . . . 9 11 7-5 © First Quarter . . 8 22 44-2 © First Quarter . . . 17 4 2-8 © Full Moon . . . 17 1 6-6 "© Full Moon . . . .23 18 5-7 d Last Quarter . . 24 23 6-6 d Last Quarter . . . 30 22 25-0 1 1 JUNE. DECEMBEB d. h. m. d. h. m. # New Moon . . . . 8 1 38-2 # New Moon . . . 1 14 16-7 © First Quarter . . . 15 10 15-6 © First Quarter . . 8 15 9-5 © Full Moon . . . . 22 2 22-7 © Full Moon . , . 16 20 7-7 d Last Quarter . . . 29 14 40-4 d Last Quarter , . 24 9 51-2 S New Moon . . . 31 1 54-2 383 1861. AT GEEENWICH APPAEENT NOON. 1861. JAIV1JARY, 1S61. FEBRVARY, 1§61. ^ I THE SUN'S Decimation. Diff. for Ihr. Equation of Time, to he added to Apparent Time. Diff. for Ihr. n THE SUN'S Appa/rent Declination. Diff. for Ihr. Equation of Time, to be added to Apparent Time. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. 1 2 3 4 5 6 V 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28 29 30 31 32 S.22 59 27 22 54 7 22 48 19 22 42 4 22 35 22 22 28 13 22 20 38 22 12 36 22 4 7 21 55 13 21 45 63 21 36 8 21 25 58 21 15 23 21 4 24 20 53 20 41 13 20 29 2 20 16 28 20 3 31 19 50 12 19 36 31 19 22 28 19 8 4- 18 53 19 18, 38 13 18 22 47 18 7 2 17 50 66 17 34 3!2 17 48 17 S.17 47 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 41 42 m. s. 3 58 4 26 4 54 5 21 5 48 6 16 6 41 7 6 7 31 7 66 8 20 8 43 9 6 9 28 9 49 IQ 10 10 30 10 49 11 7 11 25 11 42 11 68 12 13 12 28 12 41 12 54 13 6 13 18 13 28 13 38 13 47 13 55 Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. 10 11 12 13 14 16 16 17 18 19 20 21 22 23 24 25 26 27 28 29 S.17 47 16 43 27 16 25 50 16 7 55 15 49 44 15 31 17 15 12 33 14 5? 35 14 34 21 14 14 52 13 55 10 13 35 13 12 13 20 11 52 22 11 31 13 11 9 53 10 48 23 10 26 43 10 4 63 9 42 54 9 20 46 8 68.30 8 36 7 8 13 35 7 60 56 S. 7 28 10 43 44 44 45 46 46 47 48 48 49 49 50 13 16 4 60 12 54 42 61 12 34 7 51 62 52 53 63 54 64 54 55 56 66 56 56 56 m. s. 13 56 14 2 14 8 14 14 14 19 14 23 14 26 14 29 14 30 14 31 14 31 14 30 14 29 14 27 14 24 14 20 14 16 14 11 14 5 13 68 13 51 13 43 13 35 13 26 13 16 13 6 12 65 12 44 12 32 384 1861. AT GKEENWICH APPAEENT NOON. 1861. MARCH, 1§61. APRII., 1861. ■1 1 THE SUN'S Diff. Equation of Time, DiflF. j 1 TRb) SUN'S Diff. Equation of Time, tobe added to Diff. "S a 1 o n Apparmt Declination. for Ihr. tole added to Apparent Time. for Ihr. Cm O 1 1 ■s Apparent Declination. for Ihr. for Ihr. subt./rom Apparent « £ ' " U m. 8. s. O 1 II II m. 8. s. Fri. 1 8. 7 28 10 57 12 32 Mon. 1 N. 4 38 58 57 3 53 Sat. 2 7 5 18 57 12 19 Tues. 2 5 2 2 57 3 35 Sun. 3 6 42 20 57 12 7 Wed. 3 5 25 1 57 3 17 Mon. 4 6 19 16 57 11 53 Thur. 4 5 47 64 56 2 59 Tues. 5 5 56 6 58 11 40 Fri. 5 6 10 42 56 2 41 Wed. 6 5 32 52 58 11 26 Sat. 6 6 33 23 56 2 24 Thur. 1 5 9 33 58 11 11 Sun. 7 6 55 58 56 2 7 Fri. 8 4 46 10 58 10 56 Mon. 8 7 18 25 55 1 50 Sat. 9 4 22 43 58 10 41 Tues. 9 7 40 45 55 1 33 Sun. 10 3 59 13 58 10 25 Wed. 10 8 2 58 55 1 17 Mon. 11 3 35 40 58 10 9 Thur. 11 8 25 2 54 1 Tues. 12 3 12 5 59 9 53 Fri. 12 8 46 68 54 45 Wed. 13 ; 2 48 27 59 9 37 Sat. 13 9 8 46 54 29 Thur. Fri. 14,.' 2 24 48 2 17 59 9 20 Sun. Mon. 14 9 30 22 53 14 15 59 ? 3 15 9 51 50 53 Sat. 16 1 37 25 59 8 46 Tues. 16 JO 13 9 52 15 Sun. 17 1 13 43 59 8 28 Wed. 17 10 34 17 52 29 Mon. 18 50 1 59 8 10 Thur. 18 10 66 15 61 43 Tues. 19 26 19 59 7 53 Fri. 19 11 16 1 61 57 Wed. 20 S. 2 37 59 7 34 Sat. >20 11 36 37 51 1 10 Thur. 21 N. 21 3 59 7 16 Sun. .21 11 57 1 50 1 22 Fri. 22 44 43 59 6 68 Mon. 22 12 17 14 50 1 35 Sat. 23 1 8 21 59 6 39 Tues. 23 12 37 14 49 1 47 Sun. 24 1 31 57 68 6 21 Wed. 24 12 67 2 48 1 58 Mon. 25 1 55 30 58 6 2 Thur. 25 13 16 37 48 2 9 Tues. 26 2 19 2 68 5 44 Fri. 26 13 35 59 47 2 19 Wed. 27 2 42 30 68 5 25 Sat. 27 13 65 8 47 2 29 Thur. 28 3 6 55 58 5 7 Sun. 28 14 14 3 46 2 39 Fri. 29 3 29 17 68 4 48 Mon. 29 14 32 46 46 2 48 Sat. 30 3 52 35 58 4 30 Tues. 30 14 61 12 45 2 56 Sun. 31 4 15 48 57 4 11 Wed. 31 lSr.16 9 24 3 4 Mon. 32 N. 4 38 58 3 53 385 1861. AT GEEENWICH APPAEENT NOON. 1861. MAY, 1§61. JIJJVJE, 1861. a THE SUN'S Apparent Decliuation. Diff. for Ihr. Equation of Time, to be mbt.from Apparent Tme. Diff. for Ihr. ^ Q o THE SUN'S Apparent Declination. Diff. for Ihr. Equation of Time, to be auM.from, added to Apparent Time. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 N.15 9 24 15 27 22 15 45 4 16 2 31 16 19 42 16 36 37 16 53 16 17 9 37 17 25 42 17 41 28 17 56 58 18 12 9 18 27 ] 18 41 36 18 55 51 19 9 47 19 23 23 19 36 40 19 49 37 20 2 13 20 14 29 20 26 24 20 37 59 20 49 12 21 4 21 10 34 21 20 42 21 30 29 21 39 53 21 48 54 21 67 33 N.22 5 49 44 44 43 42 42 41 40 40 39 38 37 37 36 35 34 34 ■33 32 31 30 29 28 28 27 26 25 24 23 22 21 20 m. s. 3 4 3 11 3 18 3 24 3 29 3 34 3 38 3 42 3 45 3 48 3 50 3 52 3 52 3 53 3 53 3 52 3 51 3 49 3 46 3 43 3 40 3 36 3 32 3 27 3 21 3 15 3 9 3 2 2 54 2 46 2 38 2 29 Sat. Sun, Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 N.22 5 49 22 13 43 22 21 12 22 28 19 22 35 1 22 41 20 22 47 16 22 52 47 22 57 54 23 2 37 23 6 55 23 10 50 23 14 19 23 17 24 23 20 5 23 22 20 23 24 11 23 25 38 23 26 39 23 27 16 23 27 28 23 27 15 23 26 38 23 25 36 25 23 24 9 26- 23 22 17 27 23 20 1 28 29 30 31 23 17 20 23 14 14 23 10 44 N.23 6 50 19 18 17 16 15 14 13 12 11 10 m. s. 2 29 2 20 2 10 2 1 50 1 39 1 28 1 17 1 5 53 41 29 17 4 7 20 33 46 59 1 12 1 25 1 38 1 50 2 3 16 28 41 53 5 17 3 29 25 386 1861. AT GEEENWICH APPARENT NOON. 1861. JUIiY, 1861 ■'^. AUGUST, 1861. 1 a 1 THE SUN'S Diff. Equation oi^Time, Diff. i THE SUN'S Diff. Equation of Time, Diff. ■S o to Apparent Declination. for Ihr. to ie added to Apparent for Ihr. 0) ■s 4) O Apparent Declination. for Ihr. vo oe added to for Ihr. s-uM.from Apparent Time. n R a a m. s. s. m. s. s. Mon. 1 N.23 6 50 10 3 29 Thur. 1 N.17 68 57 38 6 Tues. 2 23 2 31 11 3 40 Fri. 2 17 43 37 39 6 57 Wed. 3 22 57 48 12 , 3 51 Sat. 3 17 28 39 5 52 Thur. 4 22 52 41 13 4 2 Sun. 4 17 12 6 40 6 47 Fri. 6 22 47 10 14 4 13 Mon. 5 16 55 56 41 5 42 Sat. 6 22 41 16 15 4 23 Tues. 6 16 39 28 41 5 35 Sun. 7 22 34 57 16 4 33 Wed. 7 16 22 45 42 5 29 Mon. 8 22 28 15 17 4 43 Thur. 8 16 5 45 43 5 21 Tues. 9 22 21 10 18 4 52 Fri. 9 15 48 31 43 5 13 Wed. 10 22 13 42 19 5 1 Sat. 10 15 31 1 44 5 5 Thur. 11 22 5 50 20 5 9 Sun. 11 15 13. 16 44 4 55 Fri. 12 21 57 36 21 5 17 Mon. 12 14 55 17 45 4 46 Sat. 13 21 49 22 5 24 Tues. 13 14 37 3 46 4 35 Sun. 14 21 4-0 1 23 5 31 Wed. 14 14 18 36 46 4 25 Mon. 15 21 30 40 24 5 37 Thur. 15 13 59 55 47 4 13 Tues. 16 21 20 57 25 5 43 Fri. 16 13 41 1 47 4 1 Wed. 17 21 10 53 26 5 48 Sat. 17 13 21 54 48 3 49 Thur. 18 21 27 26 5 53 Sun. 18 13 2 34 48 3 36 Fri. 19 20 49 39 "57 5 57 Mon. 19 12 43 2 49 3 22 Sat. 20 20 38 31 28 6 1 Tues. 20 12 23 18 49 3 8 Sun. 21 20 27 2 29 6 4 Wed. 21 12 3 22 50 2 64 Mon. 22 20 15 12 30 6 7 Thur. 22 11 43 14 50 2 39 Tues. 23 20 3 2 31 6 9 Fri. 23 11 22 56 51 2 23 Wed. 24 19 50 32 32 6 10 Sat. 24 11 2 26 51 2 7 Thur. 25 19 37 42 32 6 11 Sun. 25 10 41 46 52 1 51 Fri. 26 19 24 32 33 6 11 Mon. 26 10 20 55 52 1 35 Sat. 27 19 11 3 34 6 11 Tues. 27 9 59 54 52 1 18 Sun. 28 18 57 15 35 6 10 Wed. 28 9 38 44 53 1 Mon. 29 18 43 8 36 6 8 Thur. 29 9 17 25 53 43 Tues. 30 18 28 43 36 6 6 Fri. 30 8 55 56 54 25 Wed. Thur. 31 32 18 13 59 N.17 58 57 37 6 4 6 Sat Sun. 31 32 8 34 19 N. 8 12 33 54 6 11 387 1861. AT GKEENWICH APPAKENT NOON. 1861. SJEPTEMBER, 1861. OCTOBER, 1S61. a Sun. Mon. Tues. Wed. Thiir. Fri. Sat. Sun. Mod. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Tlmr. Fri. Sat. ^Sun. Mon. Tiies. Wod. Thur. Fri. Sat. Sun. Mon. Tues. THE SUN'S Declination. 10 11 12 1.3 14 15 16 11 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Diff. Apparent for Ihr. N. 8 12 33 1 50 39 1 28 38 V 6 30 6 44 14 6 21 52 5 59 23 5 36 49 5 14 9 4 51 24 4 28 34 4 5 40 3 42 41 3 19 38 2 66 32 2 33 23 2 10 10 1 46 55 1 23 31 1 18 36 51 N. 13 34 S. 9 49 33 13 56 38 1 20 3 1 43 28 2 6 52 2 30 15 2 53 37 S. 3 16 57 Equation of Time, to he svH.from Apparent Ti/me. Diff. for Ihr. 54 55 55 55 55 56 56 56 56 57 57 57 57 57 67 58 58 58 68 58 58 58 58 58 58 58 58 58 58 58 m. s. 11 30 49 1 9 1 28 1 48 2 8 2 28 2 49 3 9 3 30 3 51 4 12 4 33 4 54 5 16 5 37 5 58 6 19 6 40 7 1 22 43 4 8 24 8 45 9 5 9 25 9 44 10 4 10 23 Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. Sat. Sun. Mon. Tues. Wed. Thur. Fri. THE SUN'S Apparent Declination. 10 11 12 13 14 15 16 17 18 19 20 21 25 26 27 28 29 30 31 32 3 16 57 3 40 15 4 3 31 4 26 43 4 49 53 5 12 58 5 36 5 58 57 6 21 50 6 44 37 7 7 19 7 29 55 7 52 25 8 14 48 8 37 4 8 59 12 9 21 13 9 43 6 10 4 51 10 26 26 10 47 53 Diff. for Ihr. 22 11 9 10 23 11 30 16 24 11 51 13 12 11 59 12 32 33 12 52 56 13 13 8 13 33 6 13 52 52 14 12 25 S. 14 31 44 Equation of Time, to be subt.from Apparent Time. Diff. for Ihr. 58 58 58 67 57 57 57 67 56 56 56 56 55 56 55 55 64 54 53 53 53 52 52 51 51 50 50 49 49 48 48 m. s. 10 23 10 42 11 11 18 11 36 11 64 12 11 12 27 12 43 12 59 13 14 13 29 13 44 13 67 14 11 14 24 14 36 14 47 14 68 15 9 15 18 16 27 15 36 15 43 15 50 15 56 16 2 16 6 16 10 16 13 16 16 16 17 388 1861. AT GEEENWICH APPARENT NOOE^.. \ 1861. BTOTEinBER , 1S61. DECSmBEB , 1§61. ,i4 a THE SUN'S Diff. Equation of Time, Diff. ■i 5 a THE SUN'S Diff. Eqnation of Time, to be Bvht.from Diff 0:1 -a a .Si Cm Apparent Declination. for Ihr. tote mht.from Apparent for Ihr. 1 Apparent Declination. for Ihr. for Ihr. added to Apparent Time. / // // m. s. s. 1 11 y/ m. s. a. Fri. 1 S. 14 31 44 47 16 17 Sun. 1 S. 21 62 1 22 10 40 Sat. 2 14 50 49 47 16 18 Mon. 2 22 1 1 21 10 17 Sun. 3 15 9 39 46 16 17 Tues. 3 22 9 36 20 9 53 1 Mod. 4 15 28 15 45 16 17 Wed. 4 2,2 17 46 19 9 29 Tues. 5 15 46 35 45 16 15 Thur. 5 22 25 29 18 9 4 Wed. 6 16 4 39 44 16 12 Fri. 6 22 32 45 17 8 38 Thur. 7 16 22 27 43 16 9 Sat. 7 22 39 36 16 8 12 Fri. 8 16 39 58 43 16 4 Sun. 8 22 46 14 7 46 Sat. 9 16 57 13 42 15 59 Mon. 9 22 51 56 13 7 19 Sun. 10 17 14 10 41 15 53 Tues. 10 22 57 26 12 6 52 Mon. 11 17 30 49 40 15 47 Wed. 11 23 2 29 11 6 24 Tnes. 12 17 47 10 40 15 39 Thur. 12 23 7 4 10 5 66 Wed. 13 18 3 13 39 15 31 Fri. 13 23 11 11 9 6 28 Tliur. 14 18 18 56 38 15 21 Sat. 14 23 14 51 8 4 69 Fri. 15 18 34 21 37 15 11 Sun. 15 23 18 3 6 4 30 Sat. 16 18 49 25 36 15 1 Mon. 16 23 20 47 6 4 1 Sun. 17 19 4 10 36, 14 49 Tues. 17 23 23 3 4 3 32 Mon. 18 ' 19 18 34 V 35 14 36 Wed. 18 23 24 61 3 3 2 Tues. 19 19 32 37 34 14 23 Thur. 19 23 26 11 2 2 32 Wed. 20 19 46 19 33 14 9 Fri. 20 23 27 2 2 3 Thur. 21 19 59 39 32 13 54 Sat. 21 23 27 26 1 33 Fri. 2*2 20 12 38 31 13 38 Sun. 22 23 27 21 1 1 3 Sat. ■23 20 25 14 30 13 21 Mon. 23 23 26 47 2 33 Sun.- Mon. 24 25 20 37 28 20 49 18 29 28 13 4 12 45 Tues. Wed. 24 25 23 25 45 23 24 15 3 4 3 26 Tues. 26 21 46 27 12 26 Thur. 26 23 22 17 6 56 Wed. 27 21 11 49 26 12 7 Fri. 27 23 19 50 7 1 26 Thur. 28 21 22 29 25 11 46 Sat. 28 23 16 55 8 1 65 Fri. 29 21 32 44 24 11 26 Sun. 29 23 13 82 9 2 25 Sat. 30 21 42 35 23 11 3 Mon. Tues. 30 31 23 9 41 23 6 23 10 11 2 54 3 23 Sun. 31 S. 21 52 1 10 40 Wed. 32 S.23 36 3 61 \ 'V' ■■w^ 389 THE MOON'S RIGHT ASCENSION AND DECLINATION. JANUARY, 1861. FEBRUARY, 1861. MEAN TIME. MEAN TIME. EIGHT ASCENSION. DECLINATION. EIGHT ASCENSION. DECLINATION. Day. Midnight. Noon. Midnight. Day. Midnight. Noon. Midnight. h. m. s. o / // o / // h. m. s. O / II o / il 1 10 55 36 N. 5 12 N. 2 23 18 1 14 14 38 S.16 47 11 S.18 54 2 11 46 37 S. 57 56 S. 3 47 39 2 16 12 9 21 5 15 22 38 52 3 12 38 18 7 4 53 9 46 48 3 16 11 17 24 7 6 25 1 42 4 13 31 36 12 49 35 15 14 49 4 17 10 58 25 41 39 25 54 24 5 14 27 15 17 52 37 19 52 18 5 18 9 50 25 44 51 25 16 86 6 15 25 25 21 54 51 23 20 40 6 19 6 33 24 20 40 23 15 41 1 16 25 32 24 38 57 25 24 24 7 20 16 21 40 2 20 4 66 8 17 26 15 25 52 35 25 54 39 8 20 60 48 17 58 6 16 24 9 18 25 52 25 31 47 24 51 56 9 21 38 25 13 31 18 11 18 23 10 19 22 52 23 42 19 22 26 4 10 22 23 44 8 35 19 6 13 48 11 20 16 26 20 37 64 18 53 10 11 23 7 34 S. 3 24 5 S. 69 41 12 21 6 28 16 36 20 14 31 31 12 23 50 43 N. 1 50 23 N. 4 12 40 13 21 53 28 11 55 38 9 38 22 13 34 4 6 57 33 9 13 16 14 22 38 11 6 51 46 S. 4 28 27 14 1 18 23 11 47 47 13 62 34 15 23 21 33 S. 1 37 67 N. 46 9 16 2 4 28 16 11 36 18 69 16 4 30 N. 3 34 57 6 55 30 16 2 52 54 19 58 59 21 28 2 17 47 69 8 37 39 10 50 33 17 3 44 S 22 58 56 24 2 20 18 1 32 65 13 21 17 15 22 21 18 4 38 1 24 59 38 25 31 55 19 2 20 5 17 36 23 19 20 51 19 6 34 13 25 49 24 25 45 42 20 3 10 9 21 12 5 22 34 23 20 6 31 45 25 18 32 24 35 49 21 4 3 23 23 66 47 24 49 40 21 7 29 32 23 21 56 21 59 56 22 4 59 31 25 33 45 26 53 3 22 8 26 37 20 57 18 2 45 23 5 57 41 25 53 7 25 33 6 23 9 22 34 15 24 17 12 56 13 24 6 56 34 24 45 7 23 43 59 24 10 17 23 9 47 24 6 58 24 25 7 64 51 22. 8 6 20 28 26 11 11 37 N. 3 31 3 N. 31 56 26 8 51 35 18 9 5 15 55 66 26 12 6 S. 3 28 S. 5 57 56 27 9 46 29 13 2 47 10 25 16 27 13 1 20 9 21 22 12 6 22 28 10 39 54 7 9 12 N. 4 17 29 28 13 58 15 S.15 6 12 S.17 25 44 29 11 32 31 N. 60 52 S. 2 4 29 30 12 25 17 S. 6 29 13 8 17 53 31 13 19 6 S. 11 28 61 S.14 1 4 390 THE MOON'S EIGHT ASCENSION AND DECLINATION. MARCH, 1S61. APRIIi, 1861. MEAN TIME. MEAN TIME. EIGHT ASCENSION. DECLINATION. BISHT ASCENSION. DECLINATION. Day. 1 2 3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Miduight. Noon. h. m. s. 14 56 57 15 57 1 16 57 25 17 56 44 18 53 45 19 47 40 20 38 20 21 26 5 22 11 33 22 55 28 23 38 39 21 54 1 5 57 1 51 29 2 39 3 3 28 58 4 21 16 5 15 34 11 11 7 16 3 2 8 58 4 9 52 25 10 46 29 11 41 1 12 36 49 13 34 36 14 34 37 15 36 28 16 38 59 17 40 29 S.19 51 65 23 19 53 25 18 6 25 42 46 24 38 34 22 16 43 18 52 2 14 40 7 9 55 40 S. 4 51 56 N. 19 12 5 26 59 10 21 13 14 51 48 18 48 30 22 39 24 17 24 25 28 26 25 25 13 24 2 30 21 19 43 17 21 32 12 18 6 24 15 Midnight. Day. N. 17 S. S. 6 29 37 12 38 13 17 57 39 22 3 24 36 24 S.25 30 24 S. S. 21 37 47 24 25 38 25 40 65 26 23 49 23 42 21 20 49 45 17 1 31 12 32 56 7 38 6 S. 2 29 35 N. 2 41 19 7 44 8 12 28 47 16 45 8 20 22 45 23 10 51 24 58 42 26 36 35 24 67 19 22 57 40 19 39 25 16 9 44 9 41 N. 3 30 39 2 59 16 9 22 54 15 12 20 20 35 23 25 26 25 13 31 S.25 22 34 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Midnight. Noon. h. m. s. 18 39 26 19 34 52 20 26 36 21 14 58 22 44 22 44 44 23 27 51 10 55 64 43 1 39 56 2 27 6 3 16 28 4 8 6 6 1 31 5 56 4 6 60 53 7 45 16 8 38 47 9 31 32 10 23 68 11 16 50 12 11 6 13 7 36 14 7 16 9 12 16 13 14 17 17 16 18 19 12 19 17 33 20 11 41 S.24 48 42 22 43 42 19 32 5 15 31 10 55 47 6 59 35 S. 53 40 N. 4 11 45 9 6 53 13 41 43 17 45 46 21 7 57 23 37 15 25 3 26 25 18 30 24 17 67 22 1 34 18 33 35 14 2 2 8 38 28 N. 2 37 52 S. 3 40 61 9 64 30 15 36 8 20 17 31 23 33 40 25 8 45 26 9 23 18 1 S.20 20 26 Midnight. S.24 47 21 23 6 17 46 45 13 28 15 8 41 55 S. 3 39 57 N. 1 26 58 6 28 54 11 16 15 38 3 19 24 17 22 23 35 24 25 8 25 19 32 25 15 23 24 42 20 34 44 16 36 24 11 39 23 N. 5 56 45 S. 14 46 6 34 17 12 36 46 17 54 14 21 69 14 24 30 17 25 17 19 24 23 58 22 4 46 S. 18 39 18 391 THE MOON'S EIGHT ASCENSION AND DEOTJNATION. MAY, 1§61. JVIV£, 1S61. MEAN TIME. MEAN TIME. EIGHT ASCENSION. DECLINATION. RISHT ASCENSION. DECLINATION. Day. Midnight. Noon. Midnight. Day. Midnight. Noon. Midnight. h. m. s. O 1 II o / // h. m. s. O 1 II o / // 1 21 1 52 S. 16 27 20 S.14 27 2 1 23 47 27 N. 1 47 36 N. 4 6 22 2 21 48 49 11 56 52 9 44 36 2 30 57* 6 47 7 8 59 26 3 22 33 29 7 3 53 S. 4 45 24 3 1 15 26 11 30 12 13 32 4 23 16 51 S. 2 14 N. 19 42 4 2 1 39 15 47 47 17 34 35 5 23 59 52 N. 3 4 3 5 21 14 5 2 50 10 19 29 43 20 66 30 6 43 24 7 59 53 10 10 7 6 3 41 10 22 24 50 23 26 14 V 1. 28 15 12 37 68 14 36 48 7 4 34 26 24 21 32 24 52 36 8 2 15 1 16 48 20 18 30 52 8 5 29 15 26 9 36 25 6 39 9 3 4 4 20 20 3 21 41 9 6 24 36 24 42 14 24 3 52 10 3 55 28 23 1 34 23 55 45 10 7 19 25 22 57 57 21 45 26 11 4 48 49 24 41 53 25 4 52 11 8 12 57 20 1 3 18 18 3 12 5 43 19 25 12 11 25 1 7 12 9 4 59 16 39 13 52 33 13 6 38 3 24 27 29 23 41 44 13 9 55 45 11 9 6 8 42 12 14 7 32 6 22 27 46 21 9 14 10 45 53 N. 5 40 30 N. 3 1 39 15 8 25 1 19 17 51 17 29 35 15 11 36 21 S. 9 52 S. 2 53 16 16 9 16 44 15 6 18 12 53 24 16 12 28 8 6 5 26 8 46 7 17 10 7 41 10 4 21 7 32 39 17 13 22 17 11 47 32 14 14 9 18 10 58 37 N. 4 25 13 N. 1 41 30 18 14 19 33 16 56 4 18 68 10 19 11 50 31 S. 1 35 36 S. 4 23 19 19 15 20 5 21 4 58 22 34 1 20 12 44 25 7 39 44 10 21 50 20 16 23 7 23 54 58 24 41 17 21 13 41 14 13 25 8 15 50 19 21 17 26 57 25 8 31 26 7 68 22 14 41 25 18 26 26 20 22 30 22 18 29 26 24 40 3 23 54 31 23 15 44 35 22 17 19 23 33 13 23 19 28 46 22 37 3 21 13 38 24 16 49 16 24 35 36 25 4 17 24 20 24 4 19 16 66 17 25 20 25 17 53 19 25 9 29 24 50 17 25 21 15 24 15 1 14 12 51 11 26 18 54 35 24 1 26 22 59 54 26 22 3 24 10 10 30 7 60 24 27 19 51 47 21 26 12 19 51 37 27 22 48 69 S. 5 1 58 S. 2 38 26 28 20 44 39 17 44 50 15 47 10 28 23 33 10 N. 10 50 N. 2 32 38 29 21 33 42 13 18 32 11 6 35 29 16 67 5 17 13 7 33 30 22 19 50 8 25 25 6 6 7 30 1 1 16 N.IO 8 8 N.12 13 56 31 i 23 4 4 S. 3 19 39 S. 58 26 392 TFl^": MOON'S EIGHT ASCEISTSION AND DECLINATION". JUliY, 1861. AITGIJST, 1§61. MEAN TIME. MEAN TIME. EIGHT ASCENSION. DBOlmATION. EMHT ASCENSION. DECLINATION. Day. Midnight. Noon. Midnight. Day. Midnight. Noon. Midnight. h. m. s. o / // / // h. m. s. o / // o / // 1 1 46 56 N.14 34 55 N.16 26 40 1 4 52 40 N.24 45 10 N.25 4 52 2 2 34 39 18 28 25 20 1 34 2 5 47 51 25 8 3 24 53 7 3 3 24 48 21 38 26 22 47 58 3 6 43 41 24 14 11 23 23 11 4 4 17 25 23 53 52 24 34 41 4 7 39 14 22 1 56 20 36 3 5 5 12 3 25 3 52 25 11 31 5 8 33 48 18 35 31 16 38 41 6 6 7 47 24 59 39 24 31 33 6 9 27 6 14 4 57 11 43 23 7 7 3 32 23 37 22 33 9 7 10 19 23 8 44 52 6 6 24 8 7 68 20 20 57 38 19 20 53 8 11 11 11 N. 2 53 4 N. 6 35 9 8 51 40 17 9 19 15 4 56 9 12 3 19 S. 3 10 42 S. 5 55 48 10 9 43 32 12 24 35 9 59 22 10 12 58 39 9 6 48. 11 39 55 11 10 34 21 6 58 49 N. 4 20 24 11 13 51 54 14 31 17 16 44 53 12 11 24 55 N. 1 8 57 S. 1 34 37 12 14 49 29 19 6 35 20 50 43 13 12 16 11 S. 4 47 17 7 27 41 13 15 49 14 22 32 51 23 39 58 14 13 9 5 10 31 29 12 59 56 14 16 50 14 24 35 1 25 18 15 14 4 28 15 44 11 17 51 27 15 17 61 4 25 4 44 24 47 14 16 15 2 42 20 5 10 21 41 58 16 18 50 13 24 2 25 23 5 18 17 16 3 29 23 14 36 24 12 50 17 19 46 34 21 37 6 20 6 48 18 17 5 39 24 66 16 25 10 47 18 20 39 39 18 3 59 16 8 30 19 18 7 28 25 1 31 24 31 49 19 21 29 38 13 40 61 11 28 26 20 19 7 10 23 32 14 22 22 43 20 22 17 3 8 45 23 6 23 36 21 20 3 34 20 40 24 18 58 56 21 23 2 40 S. 3 33 32 S. 1 8 59 22 20 56 20 16 44 18 14 40 8 22 23 47 20 N. 1 40 54 N. 4 2 35 23 21 45 47 12 4 1 9 46 23 31 49 6 46 8 9 5 24 22 32 36 6 58 10 S. 4 33 51 24 1 16 55 11 31 49 13 33 35 25 23 17 41 S. 1 42 26 N. 42 25 2 3 16 15 48 25 17 33 47 26 1 59 N. 3 30 28 5 50 1 26 2 51 24 19 26 42 20 51 23 27 46 21 8 30 4 10 40 24 27 3 41 36 22 17 20 23 17 3 28 1 31 39 13 7 9 15 4 12 28 4 33 48 24 11 24 41 39 29 2 18 34 17 12 49 18 52 23 29 5 27 40 24 59 7 24 57 17 30 3 7 38 20 37 45 21 55 21 30 6 22 29 24 34 54 23 58 32 isi 3 59 3 N.23 11 57 N.24 2 51 31 7 17 31 N.22 54 55 N.21 43 51 393 THE MOON'S EIGHT ASCENSION AND DECLINATION. SEPTEMBER, 1861. OCTOBER, 1§61. MEAN TIME. MEAN TIME. EIGHT ASCENSION. DECLINATION. EIGHT ASCENSION. I DECLINATION. Day. Midnight. Noon. Midnight. Day. Midnight. Noon. Midnight. h. m. s. o / // O t tl h. m. s. o / // o / // 1 8 12 7 N.20 9 N.18 16 81 1 10 28 45 N. 7 38 11 N. 4 58 44 2 9 5 57 15 56 36 18 44 48 2 11 21 53 N. 1 43 28 S. 1 5 28 3 9 59 5 10 55 11 8 21 45 3 12 16 27 S. 4 26 4 7 13 67 4 10 51 57 N. 5 11 19 N. 2 24 40 4 18 13 13 10 26 81 18 1 31 5 11 45 14 S. 55 44 S. 3 45 44 6 14 12 36 15 51 29 18 1 11 6 12 39 41 7 8 49 9 46 20 6 15 14 28 20 14 25 21 47 49 7 13 35 58 12 49 1 15 12 59 7 16 17 47 28 13 6 24 2 48 8 14 34 27 17 47 27 19 42 82 8 17 20 57 24 34 19 24 38 9 9 15 34 53 21 37 31 22 55 19 9 18 22 9 24 16 41 23 37 52 10 16 36 23 24 2 41 24 38 7 10 19 20 6 22 29 43 21 15 10 11 17 37 32 24 54 17 24 46 31 11 20 14 18 19 29 43 17 47 53 12 18 36 51 24 13 1 28 25 20 12 21 4 56 15 35 7 13 34 9 13 19 33 17 22 8 2 20 46 41 13 21 52 40 11 3 11 8 50 15 14 20 26 25 18 54 1 17 6 88 14 22 38 20 6 8 52 S. 3 50 3 15 21 16 26 14 47 48 12 42 3 15 23 22 50 S. 1 4 54 N. 1 14 31 16 22 3 54 10 5 50 7 48 51 16 6 59 N. 3 57 29 6 12 43 17 22 49 83 S. 5 3 10 S. 2 41 14 17 51 84 8 47 58 10 54 21 18 23 34 12 N. 6 51 N. 2 28 6 18 1 87 13 13 16 26 15 9 22 19 18 38 5 12 19 7 27 47 19 2 24 23 17 12 48 18 47 39 20 1 3 32 10 2 20 12 7 16 20 3 13 20 20 27 2 21 89 20 21 1 49 32 14 26 40 16 16 33 21 4 3 58 22 49 38 23 35 23 22 2 37 6 18 15 30 19 45 54 22 4 55 57 24 12 18 24 28 26 23 3 26 27 21 19 18 22 26 •23 5 48 40 24 29 6 24 18 50 24 4 17 35 23 29 3 24 8 13 24 6 41 28 28 87 4 22 50 14 25 5 10 10 24 36 48 24 45 21 25 7 88 48 21 86 43 20 19 88 26 6 3 39 24 36 24 24 12 26 26 8 25 24 18 81 46 16 47 4 27 6 57 23 23 24 38 22 27 37 27 9 16 23 14 28 86 12 20 1 28 7 50 51 21 1 17 19 82 37 28 10 7 11 9 86 1 7 8 28 29 8 43 47 17 30 16 15 32 47 29 10 58 82 N". 4 5 20 N. 1 24 54 30 9 36 17 N.12 58 52 N.IO 37 11 30 11 51 19 S. 1 48 48 S. 4 33 59 81 12 46 30 S. 7 47 85 s.io 27 16 394 TFF, MOON'S EIGHT ASCENSION AND DECLINATION. TVOTEMBER, 1S61. DECEJHBKR, 1§61 • MEiN- TIME. MEAN TIME. EIGHT ASCENSION. DECLINATION. EIGHT ASCENSION. DECLINATION. Day. Midnight. Noon. Midnight. Day. Midnight. Noon. Midnight. h. m. s. o / // o / // h. m. s. o / // o / // 1 13 44 49 S.13 27 21 S.15 49 16 1 16 25 30 S.23 16 38 S.24 13 2 14 46 31 18 20 40 20 11 63 2 17 31 31 24 22 48 24 17 17 3 15 50 56 21 59 57 23 9 22 3 18 35 42 23 42 35 22 50 55 4 16 56 23 24 3 33 24 25 5 4 19 36 13 21 26 11 19 57 1 5 18 38 24 22 5 23 56 26 5 20 32 17 17 54 19 15 58 32 6 19 1 45 23 51 21 54 33 6 21 24 10 13 30 44 11 18 40 1 19 58 42 20 16 24 18 39 3 7 22 12 38 8 36 53 6 16 56 8 20 51 26 16 30 3 14 31 20 8 22 58 44 S. 3 29 53 S. 1 8 30 9 21 40 34 12 2 18 9 50 S7 9 23 43 31 N. 1 37 8 N. 3 54 59 10 22 27 2 7 10 25 S. 4 52 26 10 27 58 6 33 65 8 44 3 11 23 11 50 S. 2 8 8 N. 10 46 11 1 12 58 11 11 33 13 10 5 12 23 55 66 N. 2 53 25 5 8 42 12 1 59 14 15 21 30 17 4 22 13 40 13 7 44 32 9 51 68 13 2 47 15 18 54 48 20 17 45 14 1 25 26 12 16 14 11 16 14 3 37 13 21 42 2 22 40 41 15 2 12 9 16 18 20 17 56 59 15 4 28 58 23 33 50 24 4 14 16 3 43 19 41 41 20 69 7 16 6 21 56 24 22 6 24 21 26 IV 3 51 8 22 16 7 23 7 59 17 6 15 17 24 1 41 23 28 55 18 4 43 3 23 62 31 24 15 18 18 7 8 9 22 31 34 21 27 47 19 5 35 49 24 23 68 24 15 33 19 7 59 57 19 55 20 18 23 34 20 6 28 37 23 46 54 23 7 20 8 50 25 16 20 27 14 25 6 21 7 20 46 22 1 49 20 61 59 21 9 39 46 11 57 4 9 43 16 22 8 11 53 19 13 1 17 36 14 22 10 28 32 6 56 45 N. 4 30 11 23 9 1 57 15 27 38 13 27 51 23 11 17 30 N. 1 32 7 8. 1 1 7 24 9 51 20 10 54 45 8 36 36 24 12 7 40 S. 4 3 11 6 36 17 25 10 40 43 5 44 49 N. 3 13 38 25 13 3 9 33 40 11 58 40 26 11 31 2 N. 9 58 S. 2 27 56 26 13 55 34 14 41 8 16 48 38 2V 12 23 18 S. 5 35 10 8 11 59 27 14 54 43 19 4 19 20 43 49 28 13 18 33 11 12 25 13 38 18 28 15 57 15 22 20 10 23 21 26 29 14 17 28 16 19 7 18 22 22 29 17 1 54 24 7 40 24 23 26 30 15 20 8 S. 20 29 8 S.21 57 32 30 18 6 34 24 13 57 23 42 32 31 19 9 3 S.22 39 13 S.21 25 20 395 1861. JANUARY. 1861. AT GEEENWIOH IVTF.ATT NOON. 1 1 O 4 a ? p THE MOON'S Longitude. Latitude. Age. Meridian Passage. Jfoon. Mid/mgM. Boon. Midmght. Noon. Tues. Wed. Thur. 1 2 3 o 157 171 185 9 56 20 41 32 48 o / n 164 14 58 178 26 43 192 38 39 O III S.3 41 44 4 30 21 5 2 32 o / u S.4 7 55 4 48 39 5 11 47 d. 20-0 21-0 22-0 h. m. 16 17-6 17 6-3 17- 56-0 Fri. Sat. Sun. 4 5 6 199 213 227 43 59 52 2 54 50 206 48 31 220 54 13 234 53 35 5 16 17 5 10 53 4 46 56 5 15 58 5 1 8 4 28 32 23-0 24-0 25-0 18 47-7 19 42-2 20 39-4 Mon. Tues. Wed. 7 8 9 241 255 269 50 13 36 10 4 248 44 27 262 24 37 275 52 6 4 6 16 3 11 46 2 7 9 3 40 32 2 40 29 1 32 20 26-0 27-0 28-0 21 38-3 22 37-1 23 33-8 Thur. Fri. Sat. 10 11 12 282 295 308 30 32 36 1 25 52 289 6 12 302 2 54 314 44 56 S.O 56 34 N.O 15 44 1 25 50 S.O 20 22 N.O 51 17 1 68 58 29-0 0-4 1-4 6 27-1 1 16-5 Sun. Mon. Tues. 13 14 15 321 333 345 14 20 18 28 11 327 11 57 339 25 36 351 28 28 2 30 19 3 26 31 4 12 25 2 59 36 3 50 51 4 31 4 2-4 3-4 4-4 2 2-2 2 45-0 3 25-9 Wed. Thur. Fri. 16 18 357 9 21 26 52 20 5 12 5 3 23 55 15 15 57 27 9 4 4 46 40 5 8 19 5 16 48 4 59 6 5 14 14 5 15 59 5-4 6-4 7-4 4 6-1 4 46-5 5 28-1 Sat. Sun. Mon. 19 20 21 33 45 57 7 29 11 1 27 16 39 7 56 51 17 17 63 41 30 5 11 45 4 53 3 4 20 46 5 4 7 4 38 35 3 59 42 8-4 9-4 10-4 6 12-0 6 58-9 7 49-3 Tues. Wed. Thur. 22 23 24 70 82 96 24 53 44 9 21 76 24 22 89 28 41 102 55 44 3 35 28 2 38 11 1 30 56 3 8 13 2 5 39 N.O 54 28 11-4 12-4 13-4 8 43-0 9 39-1 10 36-3 Fri. Sat. Sun. 25 26 21 109 123 138 47 44 47 27 5 3 116 45 6 130 54 18 145 19 1 N.O 16 43 S. 1 19 2 15 10 S.O 21 45 1 38 22 2 50 4 14-4 15-4 16-4 11 32-8 12 27-6 IS 20-3 Mon. Tues. Wed. Thur. 28 29 30 31 152 167 181 196 35 25 12 17 49 7 20 2 159 53 27 174 31 5 189 5 38 203 31 47 3 22 22 4 16 51 4 54 37 5 13 14 3 51 29 4 38 1 6 6 24 5 15 6 17-4 18-4 19-4 20-4 14 11-5 15 1-8 15 52-5 16 44-4 Fri. 82 210 40 27 217 45 43 S.5 12 4 S.5 4 17 21-4 17 38-4 396 1861. FEBRUARY. 1861. AT GREENWICH MEAN 'I'l ^TE. ■i t i THE MOON'S Longitude. Latitude. Age. Meridian Q Passage. M}(m. Midmght. Noon. Midnight. Noon. o / // o / // o / // o / // d. h. m. Fri. 1 210 40 27 217 45 43 S.5 12 4 S.5 4 17 21-4 17 38-4 Sat. 2 224 47 22 231 45 15 4 51 59 4 35 28 22-4 18 34-5 Sun. 3 238 39 18 245 29 31 4 15 6 3 51 17 23-4 19 32-2 Mon. 4 252 15 58 258 58 43 3 24 25 2 54 59 24-4 20 30-1 Tues. 5 265 37 54 272 13 38 2 23 25 1 50 14 25-4 21 26-6 Wed. 6 278 46 2 285 15 14 1 15 52 S.O 40 50 26-4 22 20-0 Thur. 7 291 41 21 298 4 28 S.O 5 34 N.O 29 27 27-4 23 10-0 Fri. 8 304 24 43 310 42 10 N.l 3 49 1 37 7 28-4 23 56-6 Sat. 9 316 56 54 323 9 2 8 58 2 39 2 29-4 6 Sun. 10 829 18 34 335 25 43 3 7 3 32 36 0-7 40-3 Mon. 11 341 30 35 347 33 19 3 55 34 4 15 45 1-7 1 21 9 Tues. 12 353 34 8 359 33 15 4 32 58 4 47 5 2-7 2 2 5 Wed. 13 5 30 58 11 27 34 4 58 5 5 41 3-7 2 42 8 Thur. 14 17 23 27 23 19 1 5 10 3 5 11 5 4-7 3 23 8 Fri. 15 29 14 42 35 11 1 5 8 48 5 3 12 5-7 4 6 5 Sat. 16 41 8 28 47 7 37 4 54 19 4 42 10 6-7 4 51 6 SU71. 17 53 9 3 59 13 22 4 26 51 4 8 25 7-7 5 39 6 Mon. 18 65 21 11 71 33 ,5 3 46 58 3 22 39 8-7 6 30 7 Tues. 19 77 49 40 84 11 30 2 55 35 2 25 59 9-7 7 24 5 Wed. 20 90 39 7 97 12 56 1 54 7 1 20 14 10-7 8 19 9 Thur. 21 103 53 19 110 40 32 N.O 44 44' N.O 8 2 11-7 9 15 9 Fri. 22 117 34 41 124 35 42 S.O 29 22 S. 1 6 55 12-7 10 11 2 Sat. 23 131 43 23 138 57 18 1 43 58 2 19 50 13-7 11 6 2 Sun. 24 146 16 50 153 41 10 2 53 50 3 25 15 14-7 11 58 Mon. 25 161 9 21 168 40 16 3 53 23 4 17 38 15-7 12 60 1 Tues. 26 176 12 41 183 45 21 4 37 28 4 52 28 16-7 13 42 4 Wed. 27 191 17 3 198 46 36 5 2 21 5 6 59 17-7 14 35 8 Thur. 28 206 12 57 213 35 12 5 6 25 5 44 18-7 15 31-1 Fri. 29 220 52 38 228 4 42 S.4 50 12 S.4 36 12 19-7 16 28-3 397 1 1861. MARCH. 1861. AT GEEENWICH MEAT^" TIME. 0) •s a 4 § 1 o THE MOON'S Longitude, Latitude. Age. Meridian Passage. Mem. Midnight. Noon. Midnight. Noon. Fri. Sat. Sun. 1 2 3 o 220 235 249 / // 52 38 11 4 6 6 O 1 u 228 4 42 242 11 32 256 54 52 o ; // S.4 50 12 4 16 7 3 27 35 o / tt s.4 36 12 3 63 25 2 69 9 d. 19-7 20-7 21-7 h. m. 16 28-3 17 26-9 18 26-5 Mon. Tues. Wed. 4 5 6 262 275 288 38 2 48 52 41 28 269 15 55 282 17 16 295 1 56 2 28 36 1 23 8 S.O 14 56 1 56 26 S.O 49 9 N.O 19 6 22-7 23-7 24-7 19 22-5 20 16-5 21 7-0 Thur. Fri. Sat. V 8 9 301 313 326 19 3 44 34 32 307 33 8 319 53 36 332 5 34 N.O 52 34 1 56 20 2 53 42 1 25 6 2 26 58 3 19 15 25-7 26-7 27-7 21 54-0 22 38-1 23 20-0 Sun. Mon. Tues. 10 11 12 338 350 2 8 64 11 11 8 38 344 10 44 356 10 26 8 5 54 3 42 23 4 20 34 • 4 46 56 4 2 53 4 36 18 4 56 24 28-7 29-7 0-9 6 0-6 40-9 Wed. Thur. Fri. 13 14 15 14 25 37 2 27 54 9 45 42 19 58 27 31 49 48 43 42 13 5 37 5 1 14 4 48 62 5 2 34 4 66 39 4 37 66 1-9 2-9 3-9 1 21-7 2 3-7 2 47-8 Sat. Sun. Mon. 16 17 18 49 61 73 39 44 39 34 49 15 65 38 41 67 42 54 79 59 12 4 23 55 3 47 8 2 59 36 4 6 57 3 24 38 2 32 13 4-9 5-9 6-9 3 34-4 4 23-6 5 16-2 Tues. Wed. Thur. 19 20 21 86 98 112 13 21 56 41 3 53 92 32 19 105 27 2 118 47 40 2 2 42 N.O 68 18 S.O 11 3 1 31 18 N.O 24 4 S.O 46 36 7-9 8-9 9-9 6 8-5 7 2-6 7 56-4 Fri. Sat. Sun. 22 23 24 125 139 164 38 43 43 9 16 28 132 37 12 146 56 22 161 42 45 1 22 6 2 30 37 3 31 38 1 66 68 3 2 24 3 67 41 10-9 11-9 12-9 8 49-5 9 41-8 10 33-8 Mon. Tues. Wed. 25 26 27 169 184 199 14 22 28 56 49 23 176 50 11 192 9 10 207 28 9 4 19 53 4 50 38 6 45 4 37 41 4 58 23 4 57 44 13-9 14-9 15-9 11 26-1 12 19-9 13 15-9 Thur. Fri. Sat. Sun. 28 29 30 31 215 230 244 258 4 1 2 16 36 34 42 69 222 36 45 237 22 45 251 43 22 265 35 28 4 49 26 4 18 20 3 30 59 2 31 67 4 36 10 3 56 26 3 2 37 1 69 33 16-9 17-9 18-9 19-9 14 14-5 15 15-0 16 16-9 17 16-5 Mon. 32 272 21 1 278 69 56 S. 1 26 58 S.O 61 44 20-9 18 11-8 398 1861. APRIL. 1861. AT GEEENWICH MEAT^ TIME. ■i 1 o 1 THE MOON'S Longitude. Latitude. Age. Meridian JH^oon. MidmgM. Mon. Midnight. Noon. Passage. o / // o / // Q 1 II O I 11 d. h. m. Mon. 1 272 21 1 278 59 56 S.l 25 58 S.O 51 44 20 9, 18 11-8 Tnes. 2 285 32 41 291 59 43 S.O 17 21 N.O 16 45 21 9 19 4-1 Wed. 3 298 21 36 304 38 52 N.O 50 12 1 22 36 22 9 19 52-3 Thur. 4 310 52 4 317 1 44 1 53 39 2 23 2 23 9 20 37-1 Fri. 5 323 8 23 329 12 30 2 50 29 3 16 46 24 9 21 19-4 Sat. 6 335 14 31 341 14 50 3 38 41 3 59 1 25 9 22 0-1 Sun. 1 347 13 46 353 11 40 4 16 36 4 31 18 26 9 22 40-3 Mon. 8 359 8 45 5 5 17 4 42 59 4 51 33 27 9 23 20-8 Tues. 9 11 1 28 16 57 28 4 56 56 4 59 4 28 9 6 Wed. 10 22 53 26 28 49 34 4 57 58 4 63 37 2 2-4 Thur. 11 34 46 40 42 55 4 46 4 4 35 22 1 2 45 9 Fri. 12 46 40 31 52 39 1 4 21 38 4 4 67 2 2 1 31 7 Sat. 13 58 38 41 64 39 50 3 45 29 3 23 23 3 2 2 20 1 Sun. 14 70 42 47 76 47 56 2 58 52 2 32 7 4 2 3 10 6 Mon. 15 82 55 42 89 6 33 2 3 23 1 32 56 5 2 4 2 8 1 Tnes. 16 95 21 1 101 39 35 N.l 1 2 N.O 28 2 6 2 4 55 6 i Wed. 11 108 2 49 114 31 14 S.O 5 45 S.O 39 66 7 2 5 47 9 Thur. 18 121 5 23 127 45 41 1 14 5 1 47 46 8 2 6 39 5 Fri. 19 134 32 34 141 26 20 2 20 28 2 61 40 9 2 7 30 2 Sat. 20 148 27 8 155 34 59 3 20 48 3 47 17 10 2 8 20 4 Sun. 21 162 49 40 170 10 49 4 10 33 4 30 11 2 9 10 9 Mon. 22 177 37 46 185 9 41 4 45 9 4 56 32 12 2 10 2 9 Tues. 23 192 45 27 200 23 50 5 48 5 45 13 2 10 57 2 Wed. 24 208 3 26 215 42 47 4 55 18 4 44 33 14 2 11 64 8 Thur. 25 223 20 27 230 65 2 4 28 45 4 8 18 15 2 12 55 6 Fri. 26 238 25 18 245 50 10 3 43 42 3 15 33 16 2 13 58 4 Sat. 2V 253 8 49 260 20 37 2 44 31 2 11 17 17 2 16 9 Sun. 28 267 25 12 274 22 24 1 36 31 S.l 51 18 2 16 9 Mon. 29 281 12 14 287 54 55 S.O 24 64 N.O 10 47 19 2 16 66 6 Tues. 30 294 30 47 301 15 N.O 45 46 1 19 36 20-2 17 47-6 Wed. 1 31 307 23 51 313 42 7 N.l 51 55 N.2 22 25 21-2 18 34-4 399 1861. MAY. 1861. AT GEEENWICH MEAN TIME. 4 Hi G i 1 1 THE MOON'S Longitude. Latitude. Age. Meridian Passage. M)on. Midnight. Noon. Midnight. Noon. Q J ^j O / // O / n o / // d. h. m. Wed. 1 sov 23 51 313 42 7 N.l 51 55 N.2 22 25 21 2 18 34-4 Thur. 2 319 65 39 326 5 4 2 50 49 3 16 54 22 2 19 17-9 Fri. 3 332 10 56 338 13 51 3 40 27 4 1 19 23 2 19 59-3 Sat. 4 344 14 21 350 12 58 4 19 22 4 34 27 24 2 20 39-6 Sun, 5 356 10 10 2 6 25 4 46 30. 4 55 23 25 2 21 19-8 Mon. 6 8 2 6 13 57 34 5 16 5 3 31 26 2 22 1-0 Tues. 1 19 53 8 25 49 5 6 2 42 4 58 35 27 2 22 43-9 Wed. 8 31 45 40 37 43 4 4 61 15 4 40 42 28 2 23 29-2 Thur. 9 43 41 29 49 41 6 4 27 1 4 10 20 29 2 6 Fri. 10 55 42 5 61 44 34 3 50 47 3 28 31 5 17-0 Sat. n 67 48 45 73 54 48 3 3 45 2 36 43 1 5 1 7-2 Sun. 12 80 2 50 86 13 23 2 7 41 1 36 56 2 5 1 59-2 Mon. 13 92 26 23 98 42 16 N.l 4 44 N.O 31 29 3 6 2 61-9 Tues. 14 105 1 19 111 23 55 S.O 2 28 S.O 36 44 4 6 3 44-2 Wed. 15 in 50 2-i 124 21 9 1 10 55 1 44 34 6 6 4 36-3 Thur. 16 130 56 32 137 36 53 2 17 15 2 48 29 6 5 5 25-0 Fri. IV 144 22 31 151 13 40 3 17 47 3 44 39 7 5 6 13-8 Sat. 18 158 10 29 165 13 4 8 35 4 29 7 8 5 7 2-3 Sun, 19 172 21 9 179 34 41 4 46 45 4 68 5 9 6 7 51-6 Mon. 20 186 53 11 194 16 3 5 6 44 5 8 24 10 5 8 43-0 Tues. 21 201 42 32 209 11 43 6 5 56 4 68 13 11 5 9 87-5 Wed. 22 216 42 34 224 13 55 4 45 21 4 27 32 12 6 10 36-7 Thur. 23 231 44 34 239 1.^ 22 4 6 7 3 38 34 13 5 11 37-3 Fri. 24 246 39 10 254 56 3 8 26 2 35 23 14 6 12 40-8 Sat. 25 261 17 48 268 29 2 2 7 1 23 20 15 5 13 43-4 Sun, 26 275 34 5 282 32 37 S.O 45 44 S.O 7 59 16 5 14 42-7 Mon. 2V 289 24 26 296 9 33 N.O 29 18 N.l 6 37 17 5 15 37-4 Tues. 28 302 48 4 309 20 17 1 40 27 2 13 26 18 5 16 27-3 Wed. 29 315 46 30 322 7 13 2 44 13 3 12 31 19 5 17 13-2 Thur. 30 328 22 54 334 34 7 3 38 8 4 53 20 6 17 56-1 Fri. 31 340 41 25 ■ 346 45 23 4 20 37 4 37 14 21-5 18 37-2 Sat. 32 352 46 37 358 45 41 N.4 50 40 N.6 50 22-5 19 17-7 400 f 1861. JUNE. AT GEEENWICH MEAN TIME. 1861. ■i § .a ja e*-. ^H 1>> fe n P Sat. 1 Sun. 2 Mon. 3 Tues. 4 Wed. 5 Thur. 6 Fri. V Sat. 8 Sun, 9 Mon. 10 Tues. 11 Wed. 12 Thur. 13 Fri. 14 Sat. 15 Sun. 16 Mon. 17 Tues. 18 Wed. 19 Thur. 20 Fri. 21 Sat. 22 Sun. 23 Mon. 24 Tues. 25 Wed. 26 Thur. 21 Fri. 28 Sat. 29 Sun. 30 Mon. 31 THE MOON'S Longitude. Noon. Latitude. Noon. Age. Noon. Meridian 352 46 37 4 43 8 16 35 23 28 27 16 40 22 11 52 22 52 64 31 28 76 49 33 89 18 16 101 58 35 114 51 17 127 57 14 141 17 18 154 52 16 168 42 30 182 47 41 197 6 23 211 35 47 226 11 35 240 48 16 255 19 35 269 39 28 283 42 45 297 25 48 310 46 50 323 45 53 336 24 36 348 45 53 53 31 12 61 51 24 45 22 358 45 41 10 39 32 22 31 9 34 24 10 46 21 39 58 26 4 70 39 14 83 2 31 95 36 56 108 23 19 121 22 32 134 35 27 148 2 53 161 45 29 175 43 18 189 55 29 204 19 69 218 53 12 233 30 12 248 4 59 262 31 19 276 43 27 290 36 57 304 9 6 317 19 2 330 7 38 342 37 12 364 51 9 6 53 34 18 48 55 30 41 45 K4 50 40 5 7 42 5 11 27 5 1 53 4 39 15 4 4 11 3 17 43 2 21 27 1 17 33 N.O 8 46 S. 1 1 40 2 10 10 3 12 54 4 6 3 4 46 5 9 39 5 14 40 4 69 56 4 25 49 3 34 25 2 29 26 S. 1 15 46 N.O 1 12 1 16 21 2 25 19 3 24 50 4 12 42 4 47 38 5 9 5 16 38 N.5 10 40 N.5 50 5 11 15 5 8 19 4 52 4 23 3 42 10 13 17 2 50 42 . 1 50 18 N.O 43 35 S. 26 27 1 36 24 2 42 29 3 40 54 4 27 53 5 2 6 14 36 6 9 47 4 45 12 4 2 5 3 3 20 1 53 21 S.O 37 21 N.O 39 18 1 51 50 2 56 25 3 60 20 4 31 50 5 2 5 14 32 5 15 20 N.5 2 40 22 23 24 25 26 27 28 29 1 2 3 4 5 10 11 12 13 14 15 16 17 18 19 20 21 h. m 19 17 19 68 20 40 21 25 22 12 23 2 23 54 c5 47 22-9 6 36 7 27 8 22 9 21 10 22 11 24 12 25 13 23 14 16 16 4 16 49 16 32 17 13 17 54 18 36 19 20-0 401 18«1. JULY. 1861. AT GEEENWICH TVTF.AW TIME. 1 5 a THE MOON'S 1 a P Longitude. Latitude. Age. Meridian Passage. M. Month. Position. o / // O i II O 1 II O / II 15 Sun W. 55 40 53 57 2 51 58 24 42 59 46 25 a Arietis E. 44 11 54 42 43 41 14 15 39 46 40 Aldebaran E. T6 55 48 75 27 27 73 59 14 72 31 9 16 Sun W. 66 33 34 67 54 46 69 15 64 70 37 Fomalhaut W. 40 26 24 41 35 24 42 45 21 43 56 12 a Arietis E. 32 26 4 30 57 25 29 29 54 28 2 34 Aldebaran E. 65 12 34 63 45 10 62 17 52 60 50 38 IT Sun W. 11 22 6 78 43 7 80 4 9 81 26 13 Fomalhaut W. 50 1 27 51 16 22 52 31 49 53 47 46 Aldebaran E. 53 35 37 62 8 47 50 42 1 49 15 18 Pollux E. 95 21 55 93 63 53 92 26 49 90 57 43 18 Sun W. 88 11 22 89 32 50 90 54 24 92 16 5 Fomalhaut W. 60 14 12 61 32 42 62 61 33 64 10 46 a Pegasi w. 37 25 29 38 46 29 40 8 4 41 30 11 Aldebaran E. 42 2 25 40 35 69 39 9 37 37 43 20 Pollux E. 83 36 25 82 7 56 80 39 21 79 10 39 19 Sun W. 99 6 34 100 29 8 101 51 64 103 14 51 Fomalhaut w. 70 51 54 72 13 5 73 34 34 74 56 22 a Pegasi w. 48 27 56 49 62 45 61 17 59 52 43 36 Mars w. 29 8 29 30 32 6 31 56 1 33 20 14 Pollux E. 71 45 14 70 15 42 68 46 67 16 8 Jupiter E. 105 28 12 103 57 24 102 26 26 100 56 15 20 Sun W. 110 12 51 111 37 10 113 1 45 114 26 35 Fomalbaut W. 81 49 50 83 13 24 84 37 16 86 1 24 a Pegasi w. 59 57 21 61 25 12 62 53 26 64 22 Mars w. 40 25 35 41 51 .S2 43 17 47 44 44 21 Pollux E. 69 43 46 58 12 39 56 41 19 65 9 44 Jupiter E. 93 16 4 91 43 30 90 10 41 88 37 36 21 Sun W. 121 35 4 123 1 41 124 28 37 125 56 62 a Pegasi W. 71 50 18 73 21 3 74 62 10 76 23 39 Mars w. 52 1 53 53 30 23 54 59 13 56 28 24 Pollux E. 47 28 9 45 66 5 44 21 45 42 48 10 Jupiter E. 80 47 51 79 12 59 77 37 48 76 2 18 Regulus E. 84 11 54 82 37 61 81 3 29 79 28 48 Saturn E. 94 43 56 93 9 45 91 35 14 90 24 22 Sun W. 133 17 14 134 46 34 136 16 15 137 46 18 a Pegasi W. 84 6 33 85 40 14 87 14 17 88 48 41 Mars W. 63 59 39 65 31 67 2 43 68 34 48 Pollux E. 34 56 39 33-21 41 31 46 33 30 11 16 Jupiter E. 67 69 40 66 22 6 64 44 10 63 5 53 Regulus E. 71 30 16 69 63 31 68 16 24 66 38 56 Saturn E. 82 1 6 80 24 11 78 46 56 77 9 17 23 Mars W. 76 20 57 ,77 56 19 79 30 4 81 5 11 a Arietis W. 53 57 54 65 37 18 57 17 6 58 57 17 Jupiter E. 54 48 59 53 8 31 61 27 41 49 46 29 Regulus E. 58 26 5 56 46 25 55 6 23 53 25 69 JANUARY, 1861. 409 GEEENWICH MEAW TIME. LUNAR DISTANCES. Day of Star's Name the and Midnight. XYk. XVIIP. XXP. ; Month. Position. o / // o / // O / // / // 28 Saturn E. 68 55 42 67 15 53 66 35 43 63 65 11 24 Mars W. 89 6 26 90 43 47 92 21 29 93 59 32 a Arietis W. 67 24 1 69 6 29 70 49 19 72 32 31 Aldebaran W. 35 36 15 37 15 21 38 55 6 40 35 24 Jupiter E. 41 15 16 39 32 1 37 48 28 36 4 36 Regulus E. 44 58 40 43 16 10 41 33 20 39 50 11 Saturn E. 55 27 15 53 44 39 52 1 44 50 18 30 25 Mars W. 102 14 48 103 54 49 105 36 6 107 16 41 a Arietis W. 81 13 38 82 58 50 84 44 20 86 30 7 Aldebaran W. 49 4 47 50 48 2 52 31 42 54 15 45 Jupiter E. 27 21 15 25 35 57 23 50 30 22 4 68 Regulus E. 31 10 2 29 25 13 27 40 12 26 55 Saturn E. 41 38 3 39 53 12 38 8 9 36 22 55 26 Mars W. 115 42 28 117 24 31 119 6 46 120 49 12 a Arietis W. 95 23 7 97 10 26 98 57 57 100 45 41 Aldebaran W. 63 1 9 64 47 9 66 33 24 68 19 64 Saturn E. 27 35 4 25 49 28 24 4 1 22 18 50 Spica E. 70 57 47 69 10 16 67 22 32 65 34 37 27 Aldebaran W. 77 15 30 79 3 8 80 50 53 82 38 45 Pollux W. 35 15 21 37 2 23 38 49 43 40 37 16 Spica E. 56 32 30 54 43 40 52 54 44 51 5 43 Ajitares E. 102 13 20 100 24 15 98 35 4 96 46 47 28 Aldebaran W. 91 39 13 93 27 26 95 16 39 97 3 61 Pollux w. 49 37 39 51 26 6 63 14 34 55 3 7 Spica E. 41 59 52 40 10 39 38 21 27 36 32 18 Antares E. 87 38 21 85 48 46 83 59 8 82 9 32 29 Pollux W. 64 5 55 65 64 24 67 42 49 69 31 10 Jupiter W. 31 26 7 33 16 34 36 5 36 54 25 Spica E. 27 27 50 25 39 21 23 51 5 22 3 3 Antares E. 73 2 71 12 40 69 23 26 67 34 17 Venus E. 110 17 19 108 37 15 106 67 16 105 17 23 30 Pollux W. 78 31 25 80 19 6 82 6 39 83 54 2 Jupiter W. 46 30 47 49 25 49 38 12 51 26 61 Regulus Antares W. 41 30 31 43 18 29 46 6 20 46 54 2 E. 58 30 17 56 41 54 64 53 40 53 5 36 Venus E. 96 59 39 95 20 31 93 41 32 92 2 42 Sun E. 121 55 33 120 14 46 118 34 9 116 63 41 31 Pollux W. 92 48 26 94 34 44 96 20 62 98 6 47 Jupiter Regulus Saturn W. 60 27 48 62 15 28 64 2 58 66 50 16 W. 55 50 16 57 37 59 23 33 61 9 65 W. 46 5 13 47 51 47 •49 38 13 51 24 30 Antares E. 44 7 49 42 20 49 40 34 1 38 47 26 Venus E. 83 61 8 82 13 22 80 35 48 78 58 26 Sun E. 108 33 57 106 64 33 105 15 21 103 36 21 410 FEBRUARY, 1861. GREENWICTI MEATS' TIME. LUNAR DISTANCES. Day of Star's Name tie and ■ . Midnight. xyi. XVIII''. XXTk. Month. Position. 1 Pollux ■ W. o / // 106 53 14 o / // 108 37 52 o i // 110 22 16 O . / // 112 6 26 Jupiter w. 74 43 50 76 29 57 78 15 60 80 1 31 Eegulus w. 69 58 47 71 43 57 73 28 64 75 13 38 Saturn w. 60 13 24 61 58 38 63 43 41 65 28 32 Antares E. 29 57 33 28 12 14 26 27 ' 7 24 42 13 Venus E. 70 54 40 69 18 33 67 42 38 66 6 57 Sun E. 95 24 27 93 46 42 92 9 10 90 31 50 2 Jupiter W. 88 46 45 90 31 10 92 15 21 93 59 19 Eegulus W, 83 54 9 86 37 36 87 20 51 89 3 53 Saturn W. 74 9 49 75 53 28 77 36 54 79 20 8 Spica W. 29 53 57 31 36 58 33 19 51 36 2 33 Venus E. 58 11 43 56 37 19 55 3 8 63 29 10 a Aquilae E. 73 24 23 71 54 37 70 25 19 68 56 28 Susr E. 82 28 30 80 52 29 79 16 42 77 41 7 3 Jupiter W. 102 35 58 104 18 40 106 1 8 107 43 25 Eegulus W. 97 35 49 99 17 34 100 59 6 102 40 26 Saturn W. 87 63 12 89 35 11 91 16 58 92 58 32 Spica W. 43 33 25 45 15 2 46 56 27 48 37 41 Venus E. 45 42 34 44 9 53 42 37 25 41 5 9 a Aquilae E. 61 40 19 60 14 55 58 50 13 57 26 16 Sun E. 69 46 28 68 12 11 66 38 6 65 4 14 4 Jupiter W. 116 11 36 117 52 37 119 33 25 121 14 1 Eegulus W. 111 3 57 112 44 2 114 23 64 116 3 35 Saturn w. 101 23 18 103 3 39 104 43 47 106 23 43 Spica w. 57 58 58 41 3 60 20 56 62 38 Venus E. 33 26 55 31 66 53 30 25 3 28 54 26 a Aquilae E. 50 39 17 49 20 51 48 3 35 46 47 32 Sun E. 57 18 3 55 45 26 54 13 2 52 40 49 5 Saturn W. 114 40 16 116 18 58 117 57 27 119 35 44 Spica W. 70 16 15 71 64 48 73 33 10 75 11 20 Antares w. 24 30 41 26 9 21 27 47 49 29 26 7 Venus E. 21 24 13 19 54 47 18 26 32 16 56 28 Sun E. 45 2 60 43 31 51 42 1 4 40 30 29 6 Spica W. 83 19 25 84 66 28 86 33 20 88 10 1 Antares W. 37 34 48 39 11 59 40 48 59 42 25 47 Sun E. 33 37 31 31 16 30 2 8 28 33 13 11 Sun W. 24 35 17 25 57 31 27 19 39 28 41 42 Mars E. 38 43 42 37 19 22 35 55 13 34 31 16 a Arietis E. 48 5 31 46 35 54 45 6 26 43 37 i8 Aldebaran E. 80 46 57 79 L7 53 77 48 68 76 20 12 12 Sun W. 35 30 30 36 51 59 38 13 24 39 34 43 Mars E. 27 34 24 26 11 40 24 49 10 23 26 66 a Arietis E. 36 13 7 34 44 49 33 16 41 31 48 43 Aldebaran E. 68 58 21 67 30 23 66 2 31 64 34 47 Pollux E. 110 55 28 109 26 51 107 58 19 106 29 61 13 Sun W. 46 20 20 47 41 18 49 2 13 50 23 6 FEBRUJ lRY, 1861. 411 GEEENWICH MEATq" TIME. LUNAR DISTANCES. Day of the Star's Name , and • Midnight. XVi. XVIIP'. XXTk, Month. Position. o / // O 1 il O / // O ' // 13 Aldebaran E. 57 IT 48 55 50 43 54 23 45 , 52 56 62 Pollux E. 99 8 35 97 40 30 96 12 27 94 44 26 14 Sun W. ST T 18 58 28 9 69 49 61 9 54 Aldebaran E. 45 43 56 44 17 39 42 51 27 41 25 22 Pollux E. 8T 24 40 85 66 43 84 28 46 83 46 16 Son W. 6T 55 3 69 16 17 70 37 37 71 59 3 Aldebaran E. 34 16 53 32 51 41 31 26 42 30 1 57 Pollux E. T5 40 15 74 11 58 72 43 36 71 15 9 Jupiter E. 106 2 104 30 20 103 32 101 30 39 Kegulus E. 112 35 16 111 6 33 109 37 44 108 8 50 16 Sun W. T8 48 80 10 13 81 32 36 82 66 10 Aldebaran E. 23 4 2 21 42 14 20 21 22 19 1 40 Pollux E. 63 51 18 62 22 9 60 62 52 59 23 25 Jupiter E. 93 59 23 92 28 42 90 57 50 89 26 49 Regulus E. 100 42 25 99 12 42 97 42 48 96 12 44 Saturn E. 109 23 2 107 53 1 106 22 49 104 52 27 IT Sun W. 89 50 59 91 14 48 92 38 53 94 3 13 Mars . W. 29 12 29 30 37 41 32 3 14 33 29 7 a Arietis W. 24 1 30 25 31 4 27 1 5 28 31 32 Pollux E. 51 53 39 50 23 8 48 62 26 47 21 30 Jupiter E. 81 48 40 80 16 23 78 43 51 TT 11 3 Regulus E. 88 39 24 87 8 4 86 36 29 84 4 39 Saturn E, 9T IT 31 95 45 51 94 13 56 92 41 46 18 Sun W. 101 9 1 102 35 5 104 1 28 105 28 10 Mars W. 40 43 40 42 11 37 43 39 56 45 8 3T a Arietis W. 36 9 42 37 42 30 39 15 41 40 49 15 Pollux E. 39 43 45 38 11 34 36 39 10 36 6 36 Jupiter E. 69 22 58 67 48 28 66 13 38 64 38 29 Regulus E. T6 21 IT 74 47 43 73 13 60 Tl 39 3T Saturn E. 84 56 43 83 22 48 81 48 36 80 14 2 19 Sun W. 112 46 54 114 15 45 115 44 68 IIT 14 34 Mars W. 52 3T 41 54 8 40 55 40 4 5T 11 52 a Arietis W. 48 42 59 50 18 57 51 55 19 53 32 6 Pollux E. 2T 21 14 25 47 52 24 14 32 22 41 IT Jupiter E. 56 37 36 55 21 63 22 43 61 44 43 Regulus E. 63 43 20 62 6 59 60 30 16 58 53 9 Saturn E. T2 16 5 70 39 25 69 2 22 6T 24 6T 20 Sun W. 124 48 36 126 20 37 127 53 3 129 25 66 Mars W. 64 57 9 66 31 30 68 6 17 69 41 30 a Arietis W. 61 42 24 63 21 46 65 1 34 66 41 48 Aldebaran W. 30 6 23 31 41 23 33 17 13 34 53 50 Jupiter Regulus Saturn E. 43 28 50 41 48 29 40 7 44 38 26 35 E. 50 41 40 49 2 9 47 22 13 46 41 63 E. 59 11 58 57 32 11 55 52 64 11 24 Spica E. 104 43 56 103 4 16 101 24 10 99 43 38 21 Mars W. 77 44 14 79 22 6 81 24 82 39 9 412 FEBRUARY, 1861. GEEEJSrWICH MKATq" TIME. LUNAR DISTANCJiS. Day of the Star's Name and Midnight. XV. XVIIP". XXR Month. Position. o / // o / // O / // / // 21 a Arietis W. 75 9 40 76 52 34 78 35 54 80 19 40 Aldebaran W. 43 7 21 44 47 57 46 29 8 48 10 53 Jupiter E. 29 55 3 28 11 39 26 27 56 24 43 54 Eegulus E. 37 14 5 35 31 19 33 48 11 32 4 39 Saturn E. 45 42 30 43 59 34 42 16 16 40 32 36 Spica E. 91 14 27 89 31 17 87 47 42 86 3 41 22 Mars W. 90 69 18 92 40 34 94 22 14 96 4 18 a Arietis W. 89 4 57 90 51 15 92 37 57 94 26 2 Aldebaran W. 56 47 35 58 32 24 60 17 41 62 3 25 Regulus E. 28 21 59 21 36 39 19 51 8 18 5 32 Saturn E. 31 49 27 30 4 2 28 18 26 26 32 43 Spica E. 77 17 14 75 30 43 73 43 47 71 56 28 23 Mars W. 104 40 8 106 24 20 108 8 50 109 53 38 a Arietis W. 103 25 57 106 16 9 107 4 39 108 64 27 Aldebaran W. 70 58 19 72 46 27 74 34 55 76 23 42 Pollux w. 29 1 47 30 48 30 32 35 48 34 23 39 Spica E. 62 54 26 61 6 59 15 15 57 25 14 Antares E. 108 36 1 106 46 24 104 56 28 103 6 14 24 Mars W. 118 41 33 120 27 48 122 14 14 124 49 Aldebaran W. 85 31 55 87 22 18 89 12 52 91 3 36 Pollux W. 43 29 33 45 19 48 47 10 21 49 1 9 Spica E. 48 11 12 46 19 44 44 28 6 42 36 18 Antares E. 93 51 91 59 15 90 7 18 88 16 11 25 Aldebaran W. 100 19 14 102 10 36 104 1 59 105 53 23 Pollux W. 58 18 4 60 9 53 62 1 46 63 63 43 Jupiter W. 29 4 21 30 57 12 32 50 11 34 43 17 Regulus w. 21 16 54 23 8 16 24 69 52 26 61 40 Spica E. 33 15 48 31 28 34 29 31 20 27 39 9 Antares E. 78 62 34 76 69 46 75 6 55 73 14 3 26 Pollux W. 73 13 39 75 6 32 76 57 20 78 49 2 Jupiter w. 44 9 19 46 2 28 47 56 33 49 48 33 Regulus w. 36 12 3 38 4 11 39 56 15 41 48 15 Saturn w. 28 35 33 30 26 41 32 17 67 34 9 18 Antares E. 63 49 53 61 57 13 60 4 38 58 12 11 27 Pollux W. 88 5 25 89 66 9 91 46 40 93 36 58 Jupiter w. 59 11 81 61 3 36 62 65 28 64 47 7 Regulus w. 61 6 25 62 67 34 64 48 31 56 39 15 Saturn w. 43 26 45 46 16 47 47 7 39 48 68 21 Antares E. 48 52 9 47 42 45 9 29 43 18 29 a Aquilse E. 102 7 14 100 29 48 98 52 24 97 15 4 28 Pollux W. 102 44 34 104 33 14 106 21 36 108 9 38 Jupiter W. 74 1 39 75 51 44 77 41 32 79 31 1 Regulus w. 65 49 16 67 38 28 69 27 22 71 15 69 Saturn w. 68 8 46 69 58 6 61 47 11 63 35 59 Antares E. 34 7 21 32 17 58 30 28 53 28 40 7 a Aquilae E. 89 10 39 87 34 26 85 58 31 84 22 65 Sun E. 126 40 45 124 59 10 123 17 52 121 86 51 MARCH, 1861. 413 GEEENWIOH MEAN TIME. LUNAR DISTANCES. Day of the Month. Star's Name and Position. Midnight. XVi>. XTIII''. XXR 1 Jupiter Regulus Saturn a Aquilse Sun W. W. W. E. E. 88 33 41 80 14 18 72 35 27 76 30 44 113 16 28 o / // 90 21 14 82 59 74 22 24 74 57 38 111 37 22 1 II 92 8 26 83 47 20 76 9 1 73 25 4 109 58 35 / // 93 55 18 85 33 20 77 55 19 71 53 1 108 20 9 2 Jupiter Regulus Saturn Spica a AquilsB Sun W. w. w. w. E. E. .102 44 25 94 18 15 86 41 42 40 15 48 64 21 51 100 13 4 104 29 12 96 2 11 88 25 58 41 59 36 62 53 38 98 36 40 106 13 38 97 45 48 90 9 53 43 43 4 61 26 10 97 38 107 57 43 99 29 3 91 53 27 45 26 13 59 59 29 95 24 55 . 3 Jupiter Satum Spica a Aquilse Sun W. W. W. E. E. 116 33 100 26 15 53 57 9 52 59 23 87 31 27 118 15 2 102 7 49 55 38 23 51 38 22 85 57 45 119 56 45 103 49 3 57 19 18 50 18 28 84 24 23 121 38 8 105 29 57 58 59 54 48 59 45 82 51 20 4 Satum Spica Antares Sun W. W. W. E. 113 49 41 67 18 21 21 33 28 75 10 46 115 28 42 68 57 10 23 12 20 73 39 34 117 7 25 70 35 41 24 50 56 72 8 40 118 45 50 72 13 56 26 29 15 70 38 3 5 Spica Antares Sun W. w. E. 80 21 5 34 36 52 63 9 8 81 57 45 36 13 37 61 40 10 83 34 9 37 50 8 60 11 26 85 10 19 39 26 24 58 42 58 6 Spica Ajitares Sun W. W. E. 93 7 41 47 24 17 51 24 18 94 42 30 48 59 13 49 57 17 96 17 7 50 33 56 48 30 29 97 51 31 52 8 27 47 3 54 7 Spica Antares Sun W. W. E. 105 40 34 59 58 6 39 54 18 107 13 50 61 31 28 38 29 1 108 46 55 63 4 41 37 3 58 110 19 49 64 37 43 35 39 7 8 Antares Sun W. E. 72 20 28 28 38 13 73 52 34 27 14 44 75 24 31 25 51 30 76 56 19 24 28 33 13 Sun Mars Aldebaran PoUux W. E. E. E. 26 59 30 26 47 9 48 57 12 90 44 28 19 29 25 24 31 47 30 31 89 16 1 29 39 33 24 2 46 3 57 87 48 2 30 59 42 22 39 37 44 37 29 86 20 4 14 Sun Aldebaran Pollux Jupiter W. E. E. E. 37 41 20 37 27 4 79 17 106 17 38 39 1 50 36 1 26 77 32 17 104 48 33 40 22 25 34 36 76 4 17 103 19 25 41 43 3 33 10 46 74 36 15 101 50 16 15 Sun Aldebaran Pollux Jupiter Satum W. E. E. E. E. 48 27 22' 26 8 59 67 15 29 94 23 44 110 41 24 49 48 29 24 45 53 65 47 11 92 54 15 109 12 17 51 9 42 23 23 22 64 18 49 91, 24 40 107 43 5 52 31 1 22 1 34 62 50 22.4, 89 55 0"' 106 13 46 16 Sun W. 59 19 26 60 41 32 62 3 47 63 26 11 414 MARGH, 1861. GREENWICH MEAN" TIME. LUNAR DISTANCES. Day of Star's Name ^ the. and ' ' ! ' ■ Midnight. XYi. XTIIIk. XXTi. Month. Position. o / // O / // O / // O t il 16 Pollux E. 55 26 55 53 57 57 52 28 52 50 69 40 Jupiter E. 82 25 5 80 54 44 79 24 14 77 53 36 ' Regulus E. 92 13 32 90 43 48 89 13 55 87 43 52 Saturn E. 98 45 33 97 15 32 95 45 21 94 16 1 17 Sun W. 70 20 55 71 44 28 73 8 14 74 32 14 a Arietis W. 32 25 16 33 55 22 35 25 47 36 56 30 • ; Pollux E. 43 31 52 42 1 55 40 31 51 39 1 39 ' J-upiter . E. 70 17 50 68 46 7 67 14 11 65 42 3 Regulus E. 80 11 4 78 39 55 77 8 34 75 36 59 Saturn E. 86 40 45 85 9 19 83 37 40 82 5 48 18 Sun W. 81 35 56 83 1 29 84 27 19 85 53 27 a Arietis W. 44 34 43 46 7 18 47 40 12 49 13 27 Mars W. 30 13 10 31 40 45 33 8 40 34 36 57 Pollux E. 31 28 58 29 58 10 28 27 21 26 56 31 Jupiter E. 57 57 45 56 24 7 54 50 13 53 16 1 Regulus E. 67 55 28 66 22 22 64 48 59 63 15 19 :'!?. • Saturn E. 74 22 52 72 49 30 71 15 52 69 41 56 19 Sun W. 93 8 55 94 37 1 96 5 29 97 34 19 a Arietis W. 57 4 48 58 40 9 60 15 53 61 51 59 Mars W. ■42 3 39 43 34 6 45 4 56 46 36 9 Aldebaran W. 25 37 50 27 7 46 28 38 38 30 10 21 Jupiter E. 45 20 30 43 44 26 42 8 2 40 31 18 Regulus E. 55 22 17 53 46 41 52 10 44 50 34 26 Saturn E. 61 47 40 60 11 51 58 35 42 66 69 12 S!0 Sun W. 105 4 10 106 35 20 108 6 54 109 38 53 a Arietis W. 69 58 28 71 37 73 15 57 74 55 20 Mars W. 54 18 15 55 51 55 57 26 1 59 32 Aldebara;n w. 38 6 39 36 1 41 12 33 42 49 41 Jupiter E. 32 22 24 30 43 34 29 4 24 27 24 53 Regulus E. 42 27 27 40 48 55 39 10 37 30 42 Saturn E. 48 51 22 47 12 42 45 33 41 43 54 17 21 Sun W. 117 25 10 118 59 44 120 34 43 122 10 9 a Arietis w. 83 18 50 85 52 86 43 22 88 26 18 Mars w. 66 59 49 68 37 2 70 14 42 71 52 49 Aldebaran w. 51 3 50 52 44 18 54 25 18 66 6 49 Regulus E. 29 8 26 27 26 52 25 44 58 24 ,2 45 Saturn E. 35 31 54 33 50 23 32 8 35 30 26 29 Spica E. 83 5 50 81 23 32 79 40 47 77 57 35 22 Sun W. 130 13 44 131 51 44 133 30 9 135 8 57 Mars W. 80 10 20 81 51 12 83 32 31 85 14 17 Aldebaran W. 64 42 6 66 26 39 68 11 40 69 57 11 Saturn E. 21 53 5 20 10 18 18 27 47 16 45 45 Spica E. 69 14 48 67 28 54 65 42 33 63 66 46 23 Mars W. 93 49 35 95 33 54 97 18 36 99 3 41 Aldebaran W. 78 51 31 80 39 40 82 28 14 84 17 12 Pollux w. 36 52 26 38 39 54 40 27 53 42 16 24 MARCH, 1861. 415 GKEENWICH MEAN, TIME. LUNAE DISTANCES. Day of Star's Name tL.' and Midnight. xv*. XVIII". XXP. Month. Position. O / // / // o / // o / // 23 Spica E. 54 55 29 S3 6 13 51 16 34 49 26 32 Antares E. 100 35 48 98 46 19 96 56 27 95 6 11 24 Mars W. 101 54 27 109 41 35 111 28 59 113 16 40 Aldebaran W. 93 27 20 95 18 20 97 9 36 99 1 8 Pollux ; W. 51 25 45 53 16 49 65 8 14 56 59 59 Spica E. 40 11 19 38 19 22 36 27 9 34 34 43 Antares R E. 85 49 33 83 57 15 82 4 40 80 11 48 25 Pollux W. 66 22 43 68 15 56 70 9 18 72 2 48 Jupiter W. 39 42 38 41 36 43 43 30 67 46 25 21 Kegulus W. 29 20 34 31 13 50 33 7 21 35 1 3 Spica E. 25 9 58 23 16 44 21 23 31 19 30 22 Antares E. 70 44 1 68 49 54 66 55 39 66 1 16 26 Pollux W. 81 31 39 83 25 31 85 19 21 87 13 9 Jupiter w. 54 58 41 56 53 27 58 48 13 60 42 56 Regulus w. 44 31 24 46 25 39 48 19 64 50 14 7 * Saturn w. 38 49 29 40 43 21 42 37 17 44 31 15 Antares E. 55 28 19 53 33 41 61 39 4 49 44 30 a Aquilae E. 107 49 23 106 9 46 104 29 54 102 49 50 27 Pollux W. 96 40 39 98 33 42 100 26 33 102 19 12 Jupiter W. 70 15 6 72 9 7 74 2 57 75 56 34 Eegulus W. 59 44 61 37 35 63 30 59 66 24 11 Saturn W. 54 30 55 54 3 57 47 27 59 40 40 Antares E. 40 13 12 38 19 24 36 25 47 34 32 23 a Aquilae E. 94 28 19 92 48 6 91 7 68 89 28 1 28 Jupiter W. 85 20 55 87 12 65 89 4 37 90 65 59 Eegulus W. 74 46 34 76 38 12 78 29 31 80 20 31 Saturn W. 69 3 21 70 55 6 72 46 31 74 37 37 Antares E. 25 9 17 23 17 34 21 26 12 19 35 11 a Aquilae E. 81 12 10 79 34 2 77 56 20 76 19 6 29 Jupiter W. 100 7 22 101 56 30 : 103 45 14 105 33 33 Eegulus W. 89 30 10 91 18 68 93 7 22 94 65 22 Saturn W. 83 47 56 85 ^6 53 87 25 26 89 13 34 Spica W. 35 27 47 37 16 23 39 4 37 40 52 29 a Aquilae Sun E. 68 21 16 66 47 37 65 14 42 63 42 33 E. 131 46 52 130 5 57 128 26 23 126 45 11 30 Jupiter Saturn W. 114 28 50 116 14 36 117 59 55 119 44 49 W. 98 8 4 99 53 42 101 38 54 103 23 39 Spica a Aquilae Fomalhaut w. 49 45 53 51 31 20 63 16 23 65 1 1 E. 56 14 57 54 48 23 53 22 56 61 68 39 E. 79 44 56 78 9 8 76 33 51 74 59 5 Son E. 118 30 4 116 62 16 116 14 52 113 37 53 31 Saturn W. 112 58 113 43 8 115 24 62 117 6 11 Spica a Aquilae Fomalhaut W. 63 37 65 , 65 20 3 67 1 46 68 43 5 E. 45 17 21 44 1 41 42 47 46 41 35 43 E. 67 13 47 66 42 32 64 11 58 62 42 3 Sun ; E. 105 39 10 104 4 40 102 30 34 100 56 53 416 APRTT,, 1861. GEEEISIVICH " ¥EAT^ TIME. LUNAR 1 DISTANCES. Day of the Month. Star's Name and Position. Midnight. XVl>. XVIIIi". XXP. 1 Spica Antares Fomaliaut Sun W. W. E. E. O 1 11 77 3 43 31 20 34 65 23 28 93 14 22 O t 11 78 42 42 32 69 36 53 58 7 91 43 2 o / // 80 21 17 34 38 16 62 33 39 90 12 3 O 1 U 81 69 31 36 16 34 61 10 4 88 41 27 2 Spica Antares Fomalhaut Sun W. W. E. E. 90 5 24 44 22 50 44 27 26 81 13 42 91 41 34 45 59 5 43 10 20 79 45 10 93 17 25 47 35 2 41 54 33 78 16 57 94 52 58 49 10 39 40 40 10 76 49 3 3 Spica Antares Sun W. W. E. 102 46 15 67 4 26 69 33 59 104 20 5 58 38 22 68 7 49 105 63 39 60 12 2 66 41 54 107 26 58 61 46 28 66 16 16 4 Antares Sun W. E. 69 29 7 58 11 37 71 1 12 56 47 22 72 33 6 65 23 19 74 4 48 53 59 29 5 Antares Sun W. E. 81 40 42 47 3 11 83 11 24 46 40 28 84 41 58 44 17 55 86 12 24 42 56 32 6 Antares a Aquilae Sun W. W. E. 93 42 41 46 39 50 36 6 4 96 12 24 47 48 30 34 44 39 96 42 2 48 57 58 33 23 24 98 11 34 50 8 9 32 2 19 Y Antares a Aquilae Sun W. W. E. 105 38 4 56 8 11 25 19 35 107 7 9 67 21 42 23 59 39 108 36 11 58 35 39 22 39 59 110 5 10 59 49 69 21 20 36 12 Sun Pollux Jupiter Kegulus Saturn W. E. E. E. E. 29 51 43 58 25 27 84 17 23 95 12 43 100 14 54 31 12 50 56 56 41 82 47 52 93 43 12 98 45 21 32 34 7 56 27 62 81 18 16 92 13 36 97 15 43 33 56 35 53 59 79 48 34 90 43 54 95 45 59 13 Sun Pollux Jupiter Regulus Saturn W. E. E. E. E. 40 45 31 46 33 38 72 18 28 83 13 45 88 15 38 42 8 1 45 4 21 70 48 6 ai 43 22 86 45 11 43 30 42 43 35 1 69 17 36 80 12 49 85 14 37 44 63 33 42 5 38 67 46 58 78 42 9 83 43 54 14 Sun Pollux Jupiter Regulus Saturn W. E. E. E. E. 51 50 34 34 37 55 60 11 33 71 6 28 76 8 6 53 14 33 33 8 18 58 39 59 69 34 50 74 36 26 54 38 45 31 38 41 57 8 14 68 3 1 73 4 36 66 3 9 30 9 6 66 36 18 66 31 71 32 35 15 Sun Aldebaran Mars Jupiter Regulus Saturn Spica W. W. W. E. E. E. E. 63 8 31 22 21 55 20 42 27 47 53 44 58 47 54 63 49 32 112 50 32 64 34 19 23 48 20 22 10 33 46 20 36 67 14 37 62 16 17 111 17 7 66 21 26 15 46 23 38 58 44 47 14 66 41 7 60 42 48 109 43 28 67 26 40 26 44 7 25 7 41 43 13 38 54 7 22 59 9 6 108 9 33 16 Sun Aldebaran W. W. 74 42 19 34 16 49 76 10 20 35 49-11 77 38 39 37 22 6 79 7 17 38 55 32 APRIL, 1861. 417 GEEENWICH MEAN TIME. LUNAR DISTANCES. Day of the Star's Name and Midnight. XVi". XVIIP. XXP. Month. Position. 16 Mars W. o ; // 32 35 50 o / // 34 6 23 O / // 35 37 16 O 1 II 37 8 29 ' Jupiter E. 35 22 8 33 47 5 32 11 48 30 36 16 Regulus E. 46 14 49 44 39 30 43 3 55 41 28 3 Saturn E. 51 16 56 49 41 45 48 6 17 46 30 34 Spica E. 100 15 57 98 40 22 97 4 29 95 28 17 17 Sun W. 86 35 23 88 6 2 89 37 3 91 8 26 Aldebaran W. 46 49 59 48 26 17 50 3 1 61 40 13 Mars W. 44 49 37 46 22 54 47 56 34 49 30 35 Jupiter E. 22 35 8 20 58 19 19 21 22 17 44 22 Eegulus E. 33 24 21 31 46 45 30 8 51 28 30 40 Saturn E. .38 27 55 36 50 35 36 13 33 35 10 Spica E. 87 22 23 85 44 11 84 6 36 82 26 41 18 Sun W. 98 51 100 24 41 101 58 45 103 33 14 Aldebaran W. 69 52 51 61 32 43 63 13 1 64 53 46 Mars W. 57 26 29 59 2 51 60 39 38 62 16 49 Eegulus E. 20 16 12 18 36 50 16 57 27 15 18 8 Saturn E; 25 22 57 23 44 7 22 6 18 20 26 35 Spica E. 74 6 22 72 25 8 70 43 31 69 1 29 19 Sun W. 111 31 42 113 8 37 114 45 57 116 23 41 Aldebaran W. 73 24 7 75 7 30 76 61 19 78 35 34 Mars W. 70 28 56 72 8 37 73 48 44 75 29 16 Pollux W. 31 33 26 33 16 20 34 67 63 36 41 3 Spica E. 60 25 15 58 40 46 56 55 63 55 10 35 Antares E. 106 5 7 104 20 29 102 36 26 100 49 57 20 Sun W. 124 38 21 126 18 28 127 68 66 129 39 47 Aldebaran w. 87 23 11 89 9 66 90 67 5 92 44 37 Mars w. 83 58 8 85 41 8 87 24 33 89 8 21 Pollux w. 45 25 21 47 11 46 48 58 40 50 46 1 Spica E. 46 18 1 44 30 20 42 42 16 40 53 60 Antares E. 91 56 21 90 8 24 88 20 4 , 86 31 20 21 Aldebaran W. 101 47 44 103 37 23 106 27 19 107 17 33 Mars W. 97 62 59 99 38 68 101 26 18 103 11 56 Pollux W. 59 49 18 61 39 9 63 29 22 65 19 66 Jupiter W. 33 29 12 35 19 15 37 9 42 39 31 Eegulus W. 22 47 51 24 37 19 26 27 18 28 17 45 Saturn W. 18 30 3 20 16 24 22 3 60 23 62 9 Spica Antares E. 31 46 30 29 56 7 28 5 28 26 14 35 E. 77 22 2 75 31 7 73 39 52 71 48 18 22 Mars W, 112 9 27 113 67 43 115 46 11 117 34 51 Pollux W. 74 37 25 76 29 44 78 22 16 80 14 59 Jupiter Eegulus Saturn W. 48 19 21 60 11 67 52 4 47 53 57 49 W. 37 35 62 39 28 28 41 21 18 43 14 23 W. 33 3 23 34 66 4 36 47 6 38 39 28 Spica Antares E. 16 58 5 15 6 52 13 16 69 11 25 44 E. 62 26 11 60 33 68 39 37 56 46 2 23 Pollux W. 89 41 3 91 34 36 98 28 10 95 21 48 27 418 APRIL, 1861. GEEENWICH MEAiq" TIME. LUNAR DISTANCES. Day of Star's Name and Midnight. XVT. XVIIIi'. XXIi". Month. Position. 23 Jupiter W. O / // 63 25 27 O 1 11 65 19 20 o y // 67 13 16 69 7 14 Eegulus W. 52 42 34 54 36 35 56 30 41 68 24 50 Saturn W. 48 4 55 49 58 31 61 62 14 53 46 2 Antares E. 47 15 53 45 21 32 43 27 9 41 32 43 a Aquilx E. 100 39 48 98 59 16 97 18 30 95 37 36 24 Pollux W. 104 49 39 106 43 1 108 36 14 110 29 19 Jupiter W. 78 37 1 80 30 48 82 24 28 84 18 1 Eegulus W. 67 65 38 69 49 38 71 43 32 73 37 20 Saturn W. 63 15 22 65 9 8 67 2 48 68 56 21 Antares E. 32 61 30 6 41 28 12 38 26 18 46 a Aquilaa E. 87 12 30 85 31 39 83 50 58 82 10 29 25 Jupiter "W. 93 43 4 95 35 25 97 27 30 99 19 18 Regulus W. 83 3 41 84 56 19 86 48 41 88 40 46 Saturn W. 78 21 43 80 14 10 82 6 20 83 58 15 Spica W. 29 1 56 30 54 12 32 46 16 34 38 7 Antares E. 16 52 26 15 1 13 8 11 16 27 a Aquilae E. 73 52 39 72 14 18 70 36 28 68 59 12 Fomalhaut E. 98 42 28 97 '6 95 17 54 93 35 54 26 Jupiter W. 108 33 30 110 23 17 112 12 41 114 1 41 Regulus w. 97 56 30 99 46 36 101 36 20 103 25 41 Saturn w. 93 13 8 95 3 4 96 52 37 98 41 47 Spica w. 43 53 13 45 43 16 47 32 68 49 22 18 o Aquilae E. 61 2 57 59 30 6 67 58 10 56 27 14 Fomalhaut E. 85 9 56 83 29 47 81 50 2 80 10 44 a Pegasi E. 105 54 4 104 7 39 102 21 32 100 35 43 • 27 Regulus W. 112 26 13 114 13 2 115'59 26 117 45 19 Saturn W. 107 41 26 109 28 3 111 14 14 112 59 57 Spica W. 58 23 3 60 9 58 61 56 26 63 42 29 a Aquilse E. 49 9 53 47 46 26 46 24 31 45 4 16 Fomalhaut E. 72 1 45 70 25 39 68 50 11 67 15 21 a Pegasi E. 91 52 4 90 8 31 88 25 23 86 42 41 28 Saturn W. 121 41 34 123 34 29 125 6 54 126 48 51 Spica W. 72 26 2 74 9 24 75 62 19 77 34 47 Antares w. 26 44 12 28 27 34 30 10 31 31 53 1 Fomalhaut E. 59 32 2 58 1 44 56 32 18 55 3 46 • Pegasi E. 78 16 1 76 36 5 74 56 39 73 17 43 Sun E. 124 16 18 122 39 33 121 4 14 119 29 20 29 Spica W. 86 30 87 40 21 89 19 46 90 58 46 Antares W. 40 18 59 41 58 54 43 38 23 45 17 27 Fomalhaut E. 47 56 6 46 33 65 45 13 43 63 25 : a Pegasi E. 65 10 32 63 34 38 61 69 16 60 24 25 Sun E. 111 41 20 110 9 108 37 5 107 5 35 30 Spica W. 99 7 41 100 44 17 102 20 32 103 66 24 Antares W. 53 26 47 56 3 30 56 39 50 68 15 48 Fomalhaut E. 87 38 29 36 28 50 35 21 16 34 15 56 a Pegasi E. 52 38 21 61 6 49 49 36 52 48 5 32 Sun E. 99 34 2 98 4 52 96 36 4 95 7 38 MAY, 1861. 419 GKEENWICH ¥F,AN TIME. LUNAB DISTANCES. Day of Star's Name and Midnight. XT*. XVIIP. XXJb. Month. Position. o y // O / // O / // o / // 1 Spica W. 111 50 35 113 24 26 114 57 59 116 31 14 Antares W. 66 10 31 67 44 29 69 18 9 70 51 31 a Pegasi E. 40 43 29 39 17 11 37 51 41 36 27 1 Sun E. 87 50 35 86 24 8 84 58 83 32 9 2 Antares W. 78 34 17 80 6 5 81 37 39 83 9 a Pegasi E. 29 38 29 28 20 24 27 3 50 25 48 57 Sun E. 76 27 1 75 2 45 73 38 43 72 14 54 3 Antares W. 90 42 42 92 12 54 93 42 57 95 12 50 a Aquilse W. 44 16 31 45 23 54 46 32 11 47 41 16 Sun E. 65 18 53 63 56 14 62 33 45 61 11 25 4 Antares W. 102 40 19 104 9 29 105 38 33 107 7 31 a Aquilse W. 53 36 51 54 49 38 56 2 53 67 16 34 Sun- E. 54 21 50 53 17 51 38 50 50 17 28 6 . Antares W. 114 31 22 ' 115 59 59 117 28 33 118 57 6 o Aquilae W. 63 30 21 64 46 1 66 1 57 ■ 67 18 7 Fomalhaut W. 39 25 57 40 33 14 41 41 36 42 50 57 Sun E. 43 31 59 42 11 6 40 50 16 39 29 30 6 a Aquilse W. 73 42 8 74 59 28 76 16 58 77 34 37 Fomalhaut W. 48 50 3 50 3 56 51 18 24 52 33 24 Sun E. 32 46 25 31 25 57 30 5 32 28 45 9 12 Sun W. 34 4 42 35 30 4 36 55 39 38 21 28 Pollux E. 25 30 45 24 1 46 22 33 11 21 5 5 Jupiter E. 52 7 6 50 34 48 49 2 20 47 29 42 Eegulus E. 61 40 67 60 7 56 58 34 46 57 1 25 Saturn E. 66 28 28 64 55 49 63 23 1 61 50 3 13 Sun W. 45 33 52 47 1 1 48 28 24 49 56 1 Jupiter E. 39 44 9 38 10 32 36 36 46 35 2 50 Eegulus E. 49 12 2 47 37 37 46 3 1 44 28 13 Saturn E. 54 2 43 52 28 44 50 54 35 49 20 15 Spica E. 103 13 18 101 38 37 100 3 43 98 28 36 14 Sun W. 57 17 40 58 46 44 60 16 4 61 45 39 Mars w. 24 6 33 25 38 18 27 10 18 28 42 33 Jupiter E. 27 10 50 25 36 2 24 1 8 22 26 9 Eegulus E.. 36 31 24 34 55 28 33 19 22 31 43 4 ; Saturn E. 41 26 39 50 38 38 15 7 36 39 26 Spica E. 90 29 43 88 53 14 87 16 30 85 39 32 15 Sun W. 69 17 35 70 48 48 72 20 18 73 52 6 Mars W. 36 27 43 38 1 34 39 35 41 41 10 6 Eegulus Saturn E. 23 39 15 22 2 9 20 25 1 18 47 55 E. 28 39 7 27 2 48 25 26 29 23 50 12 Spica E. 77 30 49 75 52 17 74 13 27 72 34 20 16 Sun W. 81 35 33 83 9 10 84 43 6 86 17 21 Mars W. 49 6 37 50 42 50 52 19 22 53 56 13 Pollux W. 27 55 30 29 33 1 31 11 11 32 49 56 Saturn E. 15 52 51 14 19 31 12 47 46 11 18 23 420 MAY, 1861. GKEElfWICH MEAN TIME. LUNAR DISTANCES. Day of the Month. Star's Name and Position. Midnight. XVi". XTIIP'. XXI*. 16 17 18 19 20 21 23 23 Spica Antares Sun Mars Pollux Spica Antares Sun Mars Pollux Jupiter Regulus Spica Antares Pollux Jupiter Regulus Saturn Antares a Aquilas Pollux Jupiter Regulus Saturn Spica Antares a Aquilae Fomalhaut Jupiter Regulus E. E. W. W. W. E. E. W. W. W. W. W. E. E. Sun W Mars W Pollux W. Jupiter Regulus Saturn W. W. W. Spica Antares E. E. Sun W. Mars w. Pollux w. Jupiter Regulus Saturn w. w. w. Antares E. a Aquilse E. w. w. w. w. E. E. W. W. W. W. W. E. E. E. W. W. 64 14 27 109 53 35 94 13 26 62 5 17 41 11 40 50 38 44 96 16 31 107 12 21 75 24 57 64 57 39 26 50 28 17 59 14 36 42 57 82 18 27 120 31 57 89 5 32 69 7 58 40 56 54 32 5 48 27 31 38 22 29 2 67 59 32 134 9 48 103 4 54 83 38 27 65 24 50 46 38 20 41 54 5 53 21 57 106 4 16 98 23 29 70 7 68 61 27 12 56 36 46 38 30 19 92 58-49 113 15 14 84 58 46 76 24 18 71 29 1 22 24 30 23 31 53 79 44 4 104 44 27 99 48 24 91 20 35 62 33 34 108 12 34 95 49 39 63 44 5 42 53 26 48 65 21 94 32 55 108 51 77 6 56 42 42 28 34 62 19 43 2 34 67 7 11 24 80 32 12 -122 13 16 90 49 30 70 55 47 42 44 21 33 53 43 29 17 51 20 41 23 66 10 47 136 53 5 104 50 57 85 28 26 57 14 32 48 28' 42 43 43 34 51 31 8 104 27 14 100 14 46 71 59 4 63 19 4 58 27 59 36 38 12 91 19 36 116 6 42 86 50 13 78 16 34 73 20 43 24 16 2 21 39 35 5 2 3 1 78 103 101 39 93 12 60 52 23 106 31 14 97 26 11 66 23 12 44 35 39 47 11 40 92 48 59 110 30 22 78 48 11 58 28 6 30 19 41 21 27 32 33 10 59 78 45 38 123 54 52 92 33 45 72 43 53 44 32 7 36 41 59 31 4 36 18 53 40 64 21 46 137 36 34 106 37 12 87 18 37 59 4 28 60 19 19 45 33 19 49 40 7 102 49 48 102 6 8 73 50 16 65 11 2 60 19 19 34 46 89 40 15 116 58 6 88 41 39 80 8 48 75 12 25 26 7 41 19 47 22 76 26 12 101 21 27 103 29 32 95 3 26 69 10 53 , 104 49 36 99 3 3 67 2 40 46 18 18 45 27 39 91 4 43 112 9 51 80 30 17 60 13 53 32 4 56 23 12 39 31 24 36 76 58 44 125 36 44 94 18 17 74 32 18 46 20 12 37 30 35 32 51 50 17 5 58 62 32 26 139 20 13 108 23 40 89 9 1 60 64 36 52 10 10 47 23 21 47 48 54 101 12 1 103 57 35 76 41 34 67 3 7 62 10 46 32 53 43 88 51 118 49 25 90 33 1 82 10 77 4 3 27 69 23 17 55 15 74 47 38 99 39 47 106 19 49 96 54 34 MAY, 1861. 421. GEEENWICH MEAN TIME. L0NAR DISTANCES. Day of the Star's Name and Midnight. XVh. XVIIR XXIb. Month. Position. o / // 1 u O I' II O 1 II 23 Saturn W. 86 20 56 88 11 55 90 2 43 91 53 20 Spica W. 3T 17 33 39 8 55 41 9 42 51 12 as Aquilae E. 66 40 7 ,65 4 2 63 28 32 61 53 42 Fomalhaut E. 91 11 30 89 30 6 87 48 52 86 7 49 a Pegasi E. 112 15 35 110 28 108 40 29" 106 53 3 24 Jupiter W. 114 27 40 116 16 24 118 4 51 119 52 58 Regulus W. 106 6 49 107 56 27 10.9 45 48 111 34 49 Saturn W. 101 2 55 102 52 1 104 40 49 106 29 18 Spica W. 52 3 24 53 53 6 55 42 30 67 31 37 a Aquilse E. 54 11 31 62 42 51 13 38 49 46 30 Fomalhaut E. 77 46 47 76 7 38 74 28 56 72 60 41 a Pegasi E. 97 58 17 96 11 58 94 25 54 92 40 8 25 Saturn W. 115 26 27 117 12 45 118 58 38 120 44 7 Spica W. 66 32 14 68 19 17 70 5 58 71 62 16 Antares W. 20 61 25 22 38 24 24 25 2 26 11 18 a Aquilae E. 42 53 21 41 36 4 40 20 55 39 8 4 Fomalhaut E. 64 47 37 63 12 53 61 38 61 60 6 35 a Pegasi E. 83 56 7 82 12 24 80 29 5 78 46 11 26 Spica W. 80 37 46 82 21 37 84 5 3 85 48 4 Antares W. 34 56 54 36 40 49 ■ 38 24 18 40 7 23 Fomalhaut E. 52 32 1 51 4 13 49 37 31 48 11 59 a Pegasi E. 70 18 16 68 38 6 66 58 26 65 19 17 27 Spica W. 94 16 45 95 57 13 97 37 15 99 16 52 Antares W. 48 36 27 50 17 51 57 8 53 36 51 Fomalhaut E. 41 24 26 40 7 35 38 62 32 37 39 26 a Pegasi E. 57 11 27 55 35 33 64 16 52 25 34 a Arietis E. 99 13 33 97 33 21 95 63 34 94 14 12 Sun E. 130 25 41 128 52 31 127 19 45 125 47 24 28 Spica W. 107 28 50 109 6 1 110 42 49 112 19 14 Antares W. 61 49 21 63 26 39 65 3 34 66 40 6 Fomalhaut E. 32 8 26 31 10 26 30 15 40 29 24 23 a Pegasi E. 44 41 42 43 11 41 41 4 40 11 55 a Arietis E. 86 3 28 84 26 31 82 49 57 81 13 46 Sun E. 118 11 36 116 41 37 115 12 113 42 46 29 Antares , W. 74 37 23 76 11 48 77 45 54 79 19 41 a Pegasi a Arietis' E. 32 59 42 31 36 25 30 14 23 28 53 44 E. 73 18 19 71 44 17 70 10 35 68 37 12 Sun E. 106 21 57 104 54 49 103 28 102 1 29 30 Antares W. 87 4 6 88 36 9 90 7 57 91 39 30 a Aquilae a Arietis W. 41 29 18 42 35 25 43 42 37 44 50 49 E. 60 54 54 59 23 18 57 61 59 56 20 55 Sun ■ E. 94 53 24 93 28 36 92 4 3 90 39 45 31 Antares W. 99 13 56 100 44,14 102 14 20 103 44 17 a Aquilse a Arietis W. 50 43 37 51 56 6 63 9 3 54 22 29 E. 48 49 14 47 19 34 45 50 7 44 20 51 Sun E. 83 41 33 82 18 30 80 65 38 79 32 56 422 JUNE, 1861. GEEENWICH MEAN" TIME. LUNAR DISTANCJfiS. Day of Star's Name and Midnight. XVi>. XVIIP. XXR HoDth. Poaition. / // o / // 1 11 O 1 If 1 a Aquilse W. 60 35 23 61 50 54 63 6 41 64 22 43 Fomalhaut W. 37 5 44 38 10 15 39 16 4 40 23 4 a Arietis E. 36 57 25 35 29 16 34 1 18 32 33 31 Sun E. 72 41 35 71 19 41 69 67 53 68 36 10 2 a Aquilae W. 70 45 57 72 3 8 73 20 28 74 37 56 Fomalhaut W. 46 12 37 47 24 56 48 37 55 49 51 31 a Arietis E. 25 17 24 23 50 51 22 24 34 20 58 37 Sun E. 61 48 38 60 27 17 59 5 67 57 44 38 3 a Aquilae W. 81 7 16 82 25 27 83 43 45 86 2 9 Fomalhaut W. 56 7 26 57 23 59 58 40 56 59 58 15 aPegasi W. 33 21 7 34 40 14 36 3 37 20 29 Sun E. 50 58 9 49 36 48 48 15 25 46 54 4 a Aquilse W. 91 35 20 92 54 11 94 13 6 96 32 1 Fomalhaut W. 66 29 55 67 49 9 ^9 8 40 70 28 27 a Pegasi W. 44 10 16 45 33 31 46 57 7 48 21 4 Sun E. 40 6 6 38 44 20 37 22 28 36 31 5 a Aquilse W. 102 7 11 103 26 15 104 45 18 106 4 19 Fomalhaut W. 77 10 58 78 32 9 79 53 32 81 15 7 a Pegasi W. 55 25 31 56 51 16 58 17 17 59 43, 33 Sun E. 29 9 24 27 46 52 26 24 14 25 1 30 10 Sun W. 28 23 48 29 53 27 31 23 19 32 53 24 Jupiter E. 33 28 44 31 53 41 30 18 31 28 43 16 Regulus E. 39 31 36 37 55 10 36 18 35 34 41 61 Saturn E. 45 31 21 43 55 45 42 20 40 44 8 Spica E. 93 30 31 91 53 35 90 16 27 88 39 7 11 Sun W. 40 27 6 41 58 28 43 30 3 45 1 51 Jupiter E. 20 46 19 19 11 6 17 36 6 16 1 26 Regulus E. 26 36 27 24 59 8 23 21 47 21 44 28 Saturn E. 32 43 16 31 6 54 29 30 30 27 54 8 Spica E. 80 29 29 78 50 58 77 12 14 75 33 19 12 Sun W. 52 44 1 64 17 5 65 50 22 57 23 51 Mars W. 28 49 12 30 24 38 32 17 33 36 9 Saturn E. 19 54 22 18 19 28 16 46 18 15 12 9 Spica E. 67 15 43 65 35 35 63 55 16 62 14 44 Antares E. 112 54 31 111 14 15 109 33 47 107 53 6 13 Sun W. 65 14 30 66 49 17 68 24 16 69 59 29 Mars W. 41 38 39 43 15 48 44 53 10 46 30 45 Spica E. 53 49 3 52 7 19 50 25 22 48 43 14 Antares E. 99 26 32 97 44 35 96 2 26 94 20 3 14 Sun W. 77 58 45 79 35 16 81 11 59 82 48 56 Mars W. 54 41 53 56 20 45 67 59 61 59 39 9 Spica E. 40 9 35 38 26 17 36 42 48 34 59 8 Antares E. 85 44 58 84 1 18 82 17 26 80 33 20 15 Sun W. 90 56 51 92 35 6 94 13 31 95 52 9 Mars W. 67 58 54 69 39 29 71 20 17 73 1 17 JUNE, 1861. 423 GEEENWICH MEAN TIME. LUNAR DISTANCES. Day of the Star's Nam« and Midnight. XV". XVIIIi-. XXIi. Month. Position. 15 Jupiter W. / // 33 36 33 O 1 11 35 19 52 O / // 37 3 28 o / // 38 47 19 Eegulus W. 28 18 54 30 3 8 31 47 42 33 32 35 Saturn W. 22 33 13 24 14 36 25 56 38 27 39 13 Spica E. 26 18 25 24 33 53 22 49 17 21 4 38 Autares E. 71 49 41 70 4 20 68 18 46 66 33 a Aquilae E. 121 59 32 120 31 7 119 1 57 117 32 7 16 Sun W. 104 8 22 105 48 12 107 28 13 109 8 24 Mars W. 81 29 17 83 11 28 84 53 50 86 36 23 Jupiter W. 47 30 19 49 15 36 51 1 5 52 46 46 Eegulus W. 42 20 58 44 7 22 45 54 47 40 50 Saturn W. 36 18 41 38 3 38 39 48 53 41 34 26 An tares E. 57 41 8 55 54 11 54 7 3 52 19 45 a Aquilae E. 109 54 2 ^ 108 20 54 106 47 21 105 13 24 17 Sun W. 117 31 66 119 13 7 120 54 26 122 35 64 Mars W. 95 11 40 96 55 11 98 38 51 100 22 39 Jupiter W. 61 38 63 24 46 66 11 40 66 58 43 Eegulus W. 56 37 57 58 25 54 60 14 1 62 2 16 Saturn W. 50 25 42 52 12 35 53 69 39 55 46 54 Antares E. 43 20 42 41 32 26 39 44 2 37 55 30 a Aquilae E. 97 18 41 95 42 56 94 7 . 92 30 53 18 Sun W. 131 4 53 132 46 58 134 29 7 136 11 20 Mars W. 109 3 21 110 47 46 112 32 16 114 16 49 Jupiter W. 75 55 47 77 43 29 79 31 17 81 19 8 Eegulus W. 71 5 25 72 54 21 74 43 23 76 32 28 Saturn W. 64 45 16 66 33 17 68 21 24 70 9 36 Antares E. 28 51 16 27 2 11 25 13 3 23 23 52 a Aquilae E. 84 28 43 82 52 10 81 15 39 79 39 11 Fomalhaut E. 109 30 4 107 52 18 106 14 14 104 35 55 19 Mars W. 123 5 124 44 46 126 29 25 128 14 2 Jupiter W. 90 18 56 92 6 56 93 54 54 95 42 50 Eegulus W. 85 38 30 87 27 45 89 16 59 91 6 10 Saturn W. 79 11 16 80 59 39 82 48 1 84 36 22 , Spica W. 31 36 13 33 25 11 35 14 10 37 3 11 a Aquilae E. 71 39 3 70 3 42 68 28 41 66 54 3 Fomalhaut E. 96 21 41 94 42 31 93 3 19 91 24 7 a Pegasi E. 117 46 11 116 1 4 114 16 50 112 30 31 20 Jupiter W. 104 41 34 106 29 1 108 16 22 110 3 34 Eegulus Saturn W. 100 11 16 102 1 103 48 39 106 37 8 W. 93 37 15 95 25 9 97 12 56 99 36 Spica a Aquilae Fomalhaut W. 46 7 48 47 56 32 49 45 11 51 33 42 E. 59 8 6 67 36 45 56 6 10 54 36 25 E. 83 9 1 81 30 23 79 51 58 78 13 46 a Pegasi E. 103 43 24 101 58 1 100 12 43 98 27 29 21 Jupiter Eegulus Satjirn "W. 118 57 120 43 5 122 28 65 124 14 32 W. 114 37 6 116 24 30 118 11 40 119 58 36 W. 107 56 18 109 42 50 111 29 9 113 15 13 Spica W. 60 34 3 62 21 35 64 8 55 65 56 1 424 JUINE, 1861. GKEENWIOH MEAN TIME. LUNAK DISTANCES. Day of Star's Name the and Midnight. XTi. XVlllk. XXV. Month. Position. o / // O / // o / // o / // 21 a Aquilse E. 47 23 8 46 15 44 38 54 43 19 12 Fomalhaut E. 70 7 25 68 31 18 66 66 39 65 20 30 a Pegasi E. 89 43 20 87 59 2 86 14 67 84 31 6 22 Saturn W. 122 1 28 123 45 49 125 29 60 127 13 30 Spica W. 74 47 49 76 33 22 78 18 37 80 3 34 Antares W. 29 7 30 52 35 32 37 62 34 22 62 Fomalhaut E. 57 33 47 56 2 33 64 32 9 53 2 37 a Pegasi E. 75 55 55 74 13 49 72 32 4 70 50 41 a Arietis E. 118 38 45 116 53 34 115 8 39 113 24 2 23 Spica W. 88 43 31 90 26 30 92 9 9 93 61 26 Antares W. 43 3 11 44 46 15 46 28 69 48 11 22 Fomalhaut E. 45 50 30 44 27 44 43 6 22 41 46 32 a Pegasi E. 62 29 45 • 60 50 52 59 12 28 57 34 34 a Arietis E. 104 45 35 103 2 52 101 20 30 99 38 29 24 Spica W. 102 17 26 103 57 32 105 37 16 107 16 38 Antares W. 56 37 53 58 18 6 69 57 67 61 37 26 ; Fomalhaut E. 35 34 53 34 27 8 33 22 32 19 41 a Pegasi E. 49 33 5 47 58 33 46 24 40 44 51 26 a Arietis E. 91 13 42 89 33 50 87 64 20 86 15 11 25 Spica W. 115 27 56 117 5 5 118 41 64 120 18 21 Antares W. 69 49 25 71 26 44 73 3 42 74 40 19 a Pegasi E. 37 16 46 35 48 27 34 21 9 32 54 57 a Arietis E. 78 4 59 76 28 2 74 51 27 73 15 13 26 Antares W. 82 38 16 84 12 53 86 47 11 87 21 10 a Pegasi E. 26 4 30 24 47 38 23 33 2 22 20 59 a Arietis E. 65 19 14 63 45 3 62 11 11 60 37 39 Sun E. 125 2 32 123 35 2 122 7 50 120 40 57 27 Antares W. 95 6 44 96 39 2 98 11 4 99 42 62 a Aquilae W. 47 25 16 48 37 17 49 49 57 51 3 12 J a Arietis E. 52 54 32 51 22 48 49 51 20 48 20 8 Sun E. 113 30 53 112 5 41 110 40 46 109 16 3 28 Antares W. 107 18 26 108 48 56 110 19 15 111 49 23 a Aquilse W. 57 16 14 58 31 54 59 47 52 61 4 4 : Fomalhaut w. 34 28 8 35 29 15 36 32 37 36 15 a Arietis E. 40 48 4 39 18 23 37 48 57 36 19 45 Sun E. 102 15 58 100 62 33 99 29 20 98 6 17 29 Antares W. 119 17 49 120 47 7 122 16 19 123 45 26 a Aquilse W. 67 28 11 68 46 30 70 2 67 71 20 31 Fomalhaut w. 43 15 32 44 26 18 45 37 50 46 50 6 a Arietis E. 28 57 16 27 29 30 26 2 24 34 47 Sun E. 91 13 17 89 61 4 88 28 67 87 6 66 30 a Aquilse W. 77 49 56 79 8 5 80 26 18 81 44 36 Fomalhaut W. 53 19 54 15 52 55 31 50 56 48 13 a Pegasi E. 30 4 19 31 21 41 32 39 66 33 58 53 Sun E. 80 17 55 78 66 16 77 34 38 76 13 1 JULY, 1861., 425 GEEENWICH MEA¥ TIME. LUNAR DISTANCES. Day of Star's Name t^e and Midnight. \.\K XVIIP'. XXI»>. Month. Position. O / II O 4 II O 1 11 o / // 1 a Aquilae W. 88 17 2 89 35 40 90,54 22 9,2 13 7 Fomalhaut W. 63 15 23 64 33 45 65 52 25 67 11 21 a Pegasi W. 40 42 44 i 42 4 57, 43' 27 35 44 50 35 Aldebaran E. 38 34 3 37 7 52 35 41 48 34 15 53 Sun E. 69 24 50 68 3 7 66 41 21 ■ 65 19 31 2 a Aquilae W. 98 47 21 100 6 16 101 25 12 102 44 8 Fomalhaut w. 73 49 49 75 10 13 76 30 51 77 51 42 a Pegasi w. 51 50 36 53 15 30 54 40 42 66 6 10 Aldebaran E. 27 9 28 25 45 6 24 21 12 22 57 51 Sun E. 58 29 11 57 6 49 55 44 20 64 21 44 3 a Aquilae W. 109 18 35 110 37 21 111 56 3 113 14 40 Fomalhaut w. 84 39 4 86 1 9 87 23 24 88 45 51 a Pegasi w. 63 17 31 64 44 34 66 11 52 67 39 25 Sun E. 47 26 33 46 3 2 44 39 21 43 15 28 4 Fomalhaut W. 95 40 39 97 4 5 98 27 39 99 51 22 a Pegasi W. 75 59 76 30 3 77 59 22 79 28 56 a Arietis W. 31 34 13 33 5 9 ^34 36 23 36 7 57 Sun E. 36 13 12 34 48 7 *33 22 49 31 57 18 10 Sun W. 36 18 25 37 54 20 39 30 25 41 6 39 Spica E. 57 5 12 55 22 23 53 39 25 51 56 18 Antares E. 102 43 101 99 16 49 97 33 30 11 Sun W. 49 10 50 47 5 52 24 17 54 1 37 Spica E. 43 18 47 41 34 56 39 50 58 38 6 55 Antares E. 88 54 40 87 10 30 85 26 12 83 41 47 12 Sun W. 62 9 59 63 47 58 65 26 3 67 4 14 Jupiter W. 25 49 41 27 81 43 29 14 30 56 33 Regulus w. 26 13 13 26 56 55 28 40 51 30 25 2 Spica - E. 29 25 34 27 41 9 25 56 43 24 12 19 Antares E. 74 57 57 73 12 52 71 27 41 69 42 25 13 Sun W. 75 16 28 76 55 9 78 33 54 80 12 44 Jupiter W. 39 32 5 41 15 39 42 59 20 44 43 8 Eegulus W. 39 8 36 40 53 44 42 39 1 44 24 23 Saturn W. 30 51 12 32 34 12 34 17 28 36 56 Antares E. 60 54 45 59 8 59 57 23 8 55 37 13 a Aquilae E. 112 42 38 111 11 5 109 39 8 108 6 51 14 Sun W. 88 27 49 90 6 59 91 46 13 93 26 30 Jupiter W. 53 23 36 55 7 67 56 52 21 58 36 50 Eegulus W. 53 12 39 54 68 33 56 44 30 58 30 32 Saturn W. 44 41 1 46 25 27 48 10 49 54 38 Antares E. 46 46 45 45 30 43 14 13 41 27 63 a Aquilae E. 100 21 16 98 47 30 97 13 35 95 39 32 15 Sun W. 101 42 25 103 21 53 105 1 22 106 40 53 Jupiter Eegulus Satum W. 67 19 57 69 4 42 70 49 28 72 34 16 w. 67 21 23 69 7 40 70 53 59 72 40 19 w. 58 39 3 60 24 7 62 9 14 63 64 23 426 JULY, 1861. GREENWICH MEAN TIME. LUNAR DISTANCES. Day of Star's Name the and Midnight. XVK XVIIP'. XXI'. Month. Position. O 1 It o 1 ii o / /y O * II 15 Antares E. 32 35 45 30 49 16 29 2 47 27 16 17 a Aquilse E. 87 48 8 86 13 47 84 39 27 83 5 11 Fomalhaut E. 112 60 14 111 16 22 109 40 13 108 4 49 16 Sun W. 114 58 28 116 37 58 118 17 27 119 56 54 Regulns W. 81 32 10 83 18 32 85 4 63 86 51 13 Jupiter W. 81 18 23 83 3 12 84 48 1 86 32 48 Saturn W. 72 40 29 74 25 44 76 10 59 77 56 13 Spica W. 27 30 52 29 16 48 31 2 47 32 48 49 Antares E. 18 24 10 16 37 54 14 51 46 13 5 44 a Aquilse E. 75 15 30 73 42 5 72 8 55 70 36 1 Fomalhaut E. 100 4 58 98 28 37 96 52 10 95 16 41 lY Sun W. 128 13 39 129 52 51 131 31 59 133 11 3 Eegulus W. 95 42 22 97 28 28 99 14 29 101 26 Jupiter W. 95 16 12 97 44 98 45 11 100 29 36 Saturn W. 86 41 55 88 26 56 90 11 52 91 66 45 Spica W. 41 39 6 43 25 7 45 11 5 46 67 a Aquilse E. 62 56 51 61 26 22 59 66 26 58 27 6 Fomalhaut E. • 87 13 12 85 36 52 84 37 82 24 30 a Pegasi E. 108 4 4 106 21 26 104 38 47 102 56 8 18 Regulus W. 109 48 60 111 34 12 113 19 27 115 4 33 Jupiter W. 109 10 10 110 63 68 112 37 38 114 21 10 Saturn w. 100 39 48 102 24 6 104 8 16 105 62 18 Spica w. 55 45 34 57 31 1 59 16 22 61 1 35 a Aquilse E. 61 11 44 49 47 24 48 24 11 47 2 10 Fomalhaut E. 74 26 36 72 51 44 71 17 10 69 42 66 a Pegasi E. 94 23 34 92 41 16 90 59 5 89 17 19 Saturn W. 114 30 11 116 13 14 117 56 5 119 38 46 Spica w. 69 45 42 71 30 4 73 14 16 74 68 17 Antares w. 24 4 47 26 49 8 27 33 20 29 17 23 a Aquilffi E. 40 34 23 39 22 16 38 12 20 37 4 48 Fomalhaut E. 61 57 48 60 26 14 58 55 14 57 24 52 a Pegasi E. 80 48 50 79 7 44 77 26 50 75 46 10 20 Spica W. 83 35 28 85 18 16 87 51 88 43 12 Antares W. 37 54 49 39 37 41 41 20 21 43 2 46 Fomalhaut E. 60 4 7 48 38 37 47 14 10 45 60 61 a Pegasi E. 67 26 37 65 47 34 64 8 60 62 30 27 a Arietis E. 109 63 7 108 10 36 106 28 19 104 46 15 21 Spica W. 97 11 15 98 52 6 100 32 40 102 12 67 Antares W. 61 31 17 53 12 14 64 62 64 66 33 19 Fomalhaut E. 39 14 40 38 21 36 48 2 36 37 51 a Pegasi E. 54 24 14 52 48 16 51 12 46 49 37 47 a Arietis E. 96 19 30 94 38 55 92 58 35 91 18 32 22 Spica W. 110 30 13 112 8 49 113 47 6 116 25 7 Antares W. 64 51 11 66 29 64 68 8 20 69 46 29 Fomalhaut E. 30 26 24 29 33 40 28 44 46 27 59 56 a Pegasi E. 41 51 27 40 20 10 38 49 39 37 19 57 JULY, 1861. 427 GREENWICH MEAN TIME. LUNAR DISTANCES. Day of Star's Name tfie and Midnight. XV>'. XVIIP'. XXTk. Month. Position. 22 a Arietis E. / // 83 2 25 81 24 3 o y /; 79 45 59 o / // 78 8 13 23 Antares W. 11 52 48 79 29 11 81 5 17 82 41 6 a Pegasi E. 30 6 40 28 43 47 27 22 29 26 2 58 a Arietis E. 70 3 48 68 27 49 66 62 8 65 16 46 Aldebaran E. 102 44 53 101 9 34 99 34 32 97 69 47 24 Antares W. 90 35 52 92 9 59 93 43 51 96 17 26 a Aquilse W. 44 10 45 10 42 46 22 8 47 34 23 a Arietis E. 57 24 16 55 50 89 54 17 20 52 44 17 Aldebaran e; 90 10 7 88 37 87 4 9 85 31 34 25 Antares w. 103 1 33 104 33 38 106 5 31 107 37 9 a AquilsB w. 53 44 59 55 33 56 16 30 57 32 46 a Arietis E. 45 3 16 43 31 54 42 47 40 29 57 Aldebaran E. 77 52 31 76 21 28 74 50 38 73 20 3 Sdn E. 132 10 55 130 45 59 129 21 17 127 56 47 26 Antares W. 115 12 18 116 42 46 118 13 3 119 43 11 a Aquilse W. 63 67 54 65 15 30 66 33 14 67 51 6 Fomalhaut W. 40 4 43 41 13 34 42 23 25 43 34 10 a Arietis E. 32 59 45 31 30 31 30 1 34 28 32 56 Aldebaran E. 4 65 50 26 64 21 9 62 52 4 61 23 10 Sun E. 120 57 26 119 34 7 118 10 69 116 48 1 27 a Aqnilae W. 74 21 49 75 40 10 76 58 34 78 17 Fomalhaut W. 49 38 42 50 53 21 52 8 30 63 24 4 a Pegasi W. 26 43 5 27 57 56 29 13 57 30 31 Aldebaran E. 54 1 24 52 33 34 51 5 53 49 38 21 Sun E. 109 55 16 108 33 5 107 11 1 106 49 1 28 a Aquilse W. 84 49 37 86 8 13 87 26 48 88 46 26 Fomalhaut W. 59 47 29 61 5 7 62 23 2 63 41 12 a Pegasi W. 37 7 34 38 28 37 39 50 6 41 12 Aldebaran E. 42 23 2 40 56 26 39 29 69 38 3 42 Sun E. 99 9 97 38 31 96 16 65 94 56 19 29 a Aquilae W. 95 18 29 96 37 5 97 56 41 99 14 15 Fomalhaut W. 70 15 34 71 35 5 72 54 48 74 14 43 a Pegasi W. 48 6 40 49 30 29 50 64 35 62 18 66 Aldebaran E. 30 55 10 29 30 11 28 6 30 26 41 12 SCN E. 88 7 16 86 45 34 86 23 49 84 2 30 a Aquilse W. 105 46 48 107 5 12 108 23 32 109 41 49 Fomalhaut W. 80 57 8 82 18 10 83 39 22 85 45 a Pegasi W. 59 24 19 60 50 6 62 16 7 63 42 23 Aldebaran E. 19 48 3 18 28 4 17 9 30 16 62 43 Sun E. 77 11 38 75 49 14 74 26 42 73 4 2 31 a Aquilae W. .116 11 49 117 29 26 118 46 53 120 4 8 Fomalhaut W. 91 50 14 93 12 38 94 36 12 95 57 55 a Pegasi a Anetis W. 70 57 14 72 24 57 73 52 54 75 21 6 W. 27 25 33 28 54 51 30 24 31 31 54 30 Sun E. 66 8 18 64 44 37 63 20 44 61 66 38 428 AUGUST, 1861. GKEENWIOH MEAN" TIME. LUNAR DISTANCES. Day of Star's Name the and Midnight. XVb. XVIIP. XSIK Month. Position. o / // O 1 li / // O 1 II 1 Fomalliamt W. 102 53 43 104 17 16 105 40 57 107 4 44 a Pegasi W. 82 46 1 84 15 48 85 45 61 87 16 10 a Arietis W. 39 29 16 41 1 10 42 33 23 44 5 65 Sun E. 54 52 45 63 27 15 52 1 29 50 35 28 2 Fomalhaut W. 114 4 50 115 28 59 116 53 8 118 17 15 a Pegasi W. 94 51 57 96 23 67 97 56 13 99 28 46 a Arietis W. 61 63 24 63 27 52 65 2 39 56 37 47 Sun E. 43 21 13 41 53 30 40 25 30 38 57 12 3 a Pegasi W. 107 15 33 108 49 42 110 24 6 111 58 44 a Arietis W. 64 38 26 66 15 35 67 63 3 69 30 52 Aldebaran W. 32 37 44 34 11 46 35 46 24 37 21 36 Sun E. 31 31 15 30 1 10 28 30 48 27 8 8 Sun W. 32 42 39 34 22 29 36 2 25 37 42 27 Spica E. 33 13 18 31 26 28 29 39 37 27 52 46 Antares E. 78 47 27 77 7 75 12 42 73 25 13 9 Sun W. 46 3 34 47 43 65 49 24 16 61 4 38 Saturn W. 24 28 38 26 12 13 27 56 11 29 40 27 Venus W. 22 25 2 24 22 25 36 5 27 12 7 Spica E. 18 69 31 17 13 24 16 27 38 13 42 21 Antares E. 64 27 6 62 39 23 60 61 41 69 3 58 a Aquiiae E. 115 42 50 114 10 19 112 37 24 111 4 8 10 Sun W. 59 26 17 61 6 32 62 46 43 64 26 51 Saturn W. 38 24 48 40 10 41 56 16 43 40 34 Venus W. 35 16 14 36 62 12 38 29 13 40 6 16 Antares E. 60 5 45 48 18 14 46 30 45 44 43 21 a Aquilse E. 103 13 45 101 39 8 100 4 23 98 29 33 11 Sun W. 72 46 30 74 26 12 76 6 47 77 46 17 Saturn W. 52 27 1 64 12 14 55 67 23 57 42 28 Venus W. 48 11 30 49 48 27 61 25 22 53 2 12 Antares E. 35 47 26 34 32 32 13 44 30 27 2 a Aquiiae E. 90 35 7 89 21 87 25 40 85 51 6 Fomalhaut E. 115 42 57 114 8 14 112 33 18 110 68 9 12 Sun W, 86 1 11 87 40 1 89 18 44 90 57 19 Saturn W. 66 26 44 68 11 19 69 65 48 71 40 9 Venus W. 61 5 17 62 41 38 64 17 52 65 64 . Spica . . W. 24 20 13 26 5 33 27 60 52 29 36 8 Antares E. 21 35 28 19 49 36 18 3 66 16 18 26 a Aquiiae E. 78 53 76 27 32 74 64 28 73 21 42 Fomalhaut E. 103 , 26 101 24 41 99 48 65 98 13 10 13 Sun W. 99 8 16 100 46 ■ 3 102 23 41 104 1 10 Venus W. 73 52 55 75 28 19 77 3 36 78 38 46 Spica W. 38 21 23 40 6 9 41 60 48 43 36 20 a Aquiiae E. 65 43 36 64 13 20 62 43 36 61 14 26 Fomalhaut E. 90 15 12 88 39 54 87 4 45 85 29 45 OS Pegasi E. 111 13 33 109 32 16 107 51 2 106 9 62 AUGUST, 1861. 429 GKEE» WICH MEAiq- TIME. * LUNAR DISTANCES. Day of Star's Name the and Midnight. XV">. XVIIIi'. XXP-. Month. Position. o / // o / // / n off! 14 Sun W. 112 6 22 113 42 67 115 19 22 116 55 37 Venus W. 86 32 21 88 6 38 89 40 46 91 14 45 Spica W. 52 16 5 53 59 50 55 43 26 67 26 64 a Aquilae E. 53 58 49 52 34 5 51 10 19 49 47 34 Fomalhaut E. 11 31 42 76 4 1 74 30 37 72 57 31 a Pegasi E. 97 45 21 96 4 46 94 24 18 92 43 59 15 Sun W. 124 54 23 126 29 37 128 4 41 129 39 33 1 Venus W. 99 2 14 100 35 14 102 8 4 103 40 43 Spica w. 66 1 55 67 44 27 69 26 49 71 9 2 Antares w. • 20 21 42 22 4 7 23 46 24 25 28 34 o Aquilse E. 43 12 14 41 57 36 40 44 43 39 33 46 Fomalhaut E. 65 17 23 63 46 37 62 16 19 60 46 32 a Pegasi E. 84 24 39 82 45 17 81 6 7 79 27 8 16 Venus W. 111 21 19 112 52 52 114 24 14 115 55 25 Spica W. 79 37 33 81 18 44 82 59 44 84 40 33 Antares W. 33 57 4 35 38 17 37 19 19 39 12 Fomalhaut E. 53 26 35 52 41 50 35 37 49 11 26 a Pegasi E. 71 15 26 69 37 47 68 24 66 23 16 a Arietis E. 113 50 8 112 9 17 110 28 37 108 48 8 17 Spica W. 93 1 52 94 41 33 96 21 3 98 20 Antares w. 47 21 49 49 1 35 50 41 9 52 20 32 Fomalhaut E. 42 26 17 41 9 2 39 53 18 38 39 12 a Pegasi E. 58 22 2 56 46 45 55 11 50 53 37 18 a Arietis E. 100 28 18 98 48 54 97 9 41 95 30 40 18 Spica W. 106 13 45 107 51 48 109 29 39 111 7 17 Antares W. 60 34 24 62 12 33 63 50 30 65 28 15 Fomalhaut E. 32 58 54 31 58 12 31 28 30 5 59 a Pegasi E. 45 51 3 44 19 17 42 48 5 41 17 30 a Arietis E. 87 18 34 85 40 46 84 3 11 82 25 48 Aldebaran E. 119 50 38 118 13 49 116 37 9 115 40 19 Spica W. 119 12 9 120 48 27 122 24 32 124 23 Antares W. 73 33 44 75 10 11 76 46 24 78 22 25 a Pegasi E. 33 55 41 32 30 3 31 5 33 29 42 18 a Arietis E. 74 22 13 72 46 10 71 10 20 69 34 45 Aldebaran fi. 107 1 105 25 38 103 50 28 102 15 31 20* Antares W. 86 19 8 87 53 49 89 28 17 91 2 32 a Aquilae a Anetis W. 40 56 24 42 3 55 43 12 40 44 22 32 E. 61 40 14 60 6 2 58 32 4 56 58 21 Aldebaran E. 94 23 50 92 50 8 91 16 39 89 43 23 21 Antares W. 98 50 30 100 23 27 101 56 12 103 28 45 a Aquilae a Arietis W. 50 25 4 51 39 38 52 54 45 54 10 20 E. 49 13 16 47 40 68 46 8 55 44 37 6 Aldebaran E. 82 15 80 28 17 78 66 31 77 24 58 22 Antares W. 111 8 30 112 39 52 114 11 4 116 42 5 a Aquilae W. 60 33 46 61 51 17 63 9 1 64 26 56 430 AUGUST, 1861. GEEENWICH MEAN TI^^E. LUNAR 1 DISTANCES. Day of the Star's Name and Midnight. XV. XVIIP-. XXP. Month. Position. O t II o / // o / // O 1 H 22 Fomalhaut W. 37 1 15 38 7 13 39 14 30 40 22 58 a Arietis E. 37 1 43 35 31 24 34 1 21 32 31 36 Aldebaran E. 69 50 21 68 20 3 66 49 58 66 20 3 23 a Aqnilae W. 70 58 32 72 17 7 73 35 46 74 64 27 Fomalhaut W. 46 19 26 47 32 69 48 47 6 50 1 46 a Pegasi W. 23 36 47 24 47 46 26 30 27 14 44 o Arietis E. 25 7 9 23 39 18 22 11 62 20 44 64 Aldebaran E. 57 53 28 56 24 44 54 56 10 53 27 47 24 a Aquilae W. 81 28 17 82 47 4 84 5 51 85 24 36 Fomalhaut W. 66 21 38 57 38 41 58 56 1 60 13 37 a Pegasi W. 33 41 57 35 1 43 36 22 2 37 42 52 Aldebaran E. 46 8 35 44 41 17 43 14 11 41 47 15 Sun E. 128 41 6 127 19 25 126 67 52 124 36 22 25 a Aqnilae W. 91 57 68 93 16 32 94 35 3 95 53 31 Fomalhaut w. 66 45 4 68 3 57 69 23 70 42 13 a Pegasi w. 44 32 49 46 66 44 47 18 55 48 42 20 Aldebaran E. 34 35 36 33 9 57 31 44 34 30 19 28 Sun E. 117 49 40 116 28 27 115 7 14 113 46 1 26 a Aquilae W. 102 24 59 103 43 4 105 1 6 106 19 Fomalhaut W. 77 20 34 78 40 40 80 63 81 21 14 a Pegasi w. 55 42 36 57 7 14 68 32 4 59 67 4 Aldebaran E. 23 19 63 21 57 38 20 36 11 19 15 43 Sun E. 106 59 48 105 38 28 104 17 5 102 66 37 27 a Aquilae W. 112 47 2 114 4 16 115 21 20 116 38 13 Fomalhaut W. 88 4 55 89 26 2 90 47 16 92 8 37 a Pegasi w. 67 4 60 68 30 67 69 57 16 71 23 46 Sun E. 96 7 4 94 45 2 93 22 52 92 34 28 Fomalhaut W. 98 57 12 100 19 15 101 41 25 103 3 42 a Pegasi W. 78 39 26 80 7 13 81 35 14 83 3 29 a, Arietis w. 35 15 59 36 45 42 38 16 41 39 46 58 Sun E. 85 6 37 83 43 17 82 19 44 80 55 58 29 Fomalhaut W. 109 66 27 111 19 14 112 42 4 114 4 56 a Pegasi W. 90 28 28 91 68 16 93 28 17 94 58 35 a Arietis W. 47 21 45 48 53 48 50 26 11 51 58 53 Sun E. 73 63 36 72 28 21 71 2 60 69 37 1 30 Fomalhaut W. 120 59 14 122 21 66 123 44 31 125 6 57 a Pegasi W. 102 34 22 104 6 23 105 38 40 107 11 16 a Arietis w. 59 47 21 61 22 6 62 57 11 64 32 39 Aldebaran w. 27 54 45 29 25 34 30 67 7 32 29 22 Sun E. 62 23 26 60 55 46 69 27 46 57 69 25 31 a Pegasi W. 114 58 27 116 32 43 118 7 14 119 42 1 a Arietis W. 72 35 36 74 13 20 76 61 28 77 30 Aldebaran w. 40 19 61 41 65 38 43 31 66 45 8 46 Sun E. 60 32 27 49 1 69 47 31 9 45 59 67 SEPTEMBER, 1861. 431 GEEENWIOH MEAN TTME. LUNAR DISTANCES. Day of Star's Name and Midnight. XTk. XVIIP'. XXIb. Month. Position. o / // o / // O / It / // 1 a Arietis W. 85 48 38 87 29 33 89 10 63 90 52 36 Aldebaran W. 53 20 17 55 1 66 40 13 58 20 51 Sun E. 38 18 36 36 45 16 35 11 36 33 37 36 2 a Arietis W. 99 27 2 101 11 4 102 55 27 104 40 12 Aldebaran w. 66 50 36 68 33 48 70 17 24 72 1 24 Pollux w. 25 19 39 26 59 29 28 40 11 30 21 41 Sun E. 25 43 16 24 7 42 22 31 59 20 56 11 6 Sun W. 29 2 40 30 45 6 32 27 37 34 10 11 Antares E. 54 40 19 52 49 24 50 58 32 49 7 42 a Aquilae E. 107 10 31 105 33 19 103 55 56 102 18 22 1 Sun W. 42 43 44 25 24 46 7 42 47 49 53 Antares E. 39 54 47 38 4 33 36 14 27 34 24 31 a Aquilae E. 94 9 25 92 31 39 90 53 57 89 16 23 8 Sun W. 56 18 41 57 59 56 69 40 59 61 21 50 Venus W. 24 47 40 26 25 8 28 2 39 29 40 11 Spica W. 20 38 46 22 26 43 24 14 37 26 2 24 Antares E. 25 17 40 23 28 57 21 40 30. 19 52 20 a Aquilae E. 81 11 20 79 35 5 77 59 10 76 23 37 Fomalhaut E. 106 25 9 104 47 12 103 9 15 101 31 22 9 Sun W. 69 42 46 71 22 14 73 1 28 74 40 27 Venus w. 37 46 46 39 23 42 41 27 42 37 1 Spica w. 34 59 2 36 45 47 38 32 19 40 18 37 a Aquilae E. 68 32 10 66 59 23 65 27 10 63 55 34 Fomalhaut E. 93 23 30 91 46 25 90 9 32 88 32 54 a Pegasi E. 114 24 47 112 41 46 110 58 54 109 16 11 10 Sun W. 82 51 26 84 28 50 86 5 58 87 42 50 Venus W. 60 36 43 52 11 59 53 47 1 55 21 49 Spica w. 49 6 28 50 51 17 52 35 51 54 20 9 a Aquilae E. 56 28 10 65 1 8 63 35 3 62 9 57 Fomalliaut E. 80 33 49 78 58 57 77 24 27 75 50 20 a Pegasi E. 100 45 21 99 ' 3 49 97 22 29 96 41 24 11 Sun W. 95 43 6 97 18 20 98 53 18 100 28 Venus W. 63 12 6 64 45 25 66 18 29 67 51 18 Spica W. 62 57 43 64 40 26 66 22 54 68 5 7 a Aquilae E. 45 21 59 44 4 30 42 48 36 41 34 26 Fomalhaut E. 68 6 2 66 34 34 65 3 38 63 33 14 a Pegasi E. 87 19 45 85 40 12 84 55 82 21 55 12 Sun W. 108 17 33 109 50 41 111 23 33 112 56 10 Spica Venus W. 76 32 19 78 13 79 53 26 81 33 37 w. 75 31 41 77 3 2 78 34 8 80 5 Antares w. 30 53 32 33 39 34 14 4 35 54 15 Fomalhaut E. 56 10 21 54 43 50 53 18 5 51 53 9 a Pegasi E. 74 11 12 72 33 56 70 56 69 69 20 21 13 Sun W. 120 35 29 122 6 37 123 37 29 126 8 7 Spica W. 89 50 59 91 29 46 93 8 18 94 46 37 432 SEPTEMBER, 1861. i GEEEJSrWICH M"F,A¥ TIME. LUNAK DISTANCES. Day of Star's Name the and Midnight. XVi". XVIIP'. XXTk. Month. Position. o / // o / // o / // o ' // 13 Venus W. 87 35 SO 89 6 19 90 34 35 92 3 37 Antares w. 44 11 42 46 60 30 47 29 5 49 7 27 Fomalhaut E. 45 2 39 43 43 61 42 26 21 41 10 14 a Pegasi E. 61 22 59 47 21 58 13 4 56 39 9 a Arietis E. 103 37 33 101 69 6 100 20 63 98 42 63 14 Sun W. 132 37 43 134 6 55 136 35 53 137 4 36 Spica W. 102 54 56 104 31 56 106 8 44 107 45 20 Venus W. 99 25 34 100 53 19 102 20 52 103 48 13 Antares W. 57 16 1 58 63 7 60 29 69 62 6 40 Fomalhaut ,E. 35 14 39 34 9 34 33 6 65 32 6 53 a Pegasi E. 48 55 36 47 24 12 45 63 19 44 22 67 a Arietis E. 90 36 6 88 59 23 87 22 52 86 46 33 15 Venus W. 111 1 56 112 28 6 113 54 3 116 19 50 Antares W. 70 7 4 71 42 34 73 17 53 74 63 1 a Pegasi E. 37 13 36 33 60 34 8 20 32 43 47 a Arietis E. 77 48 2 76 12 56 74 38 1 73 3 18 Aldebaran E. 110 26 26 108 61 59 107 17 42 105 43 36 16 Antares W. 82 45 55 84 19 68 85 53 50 87 27 32 a Arietis E. 65 12 34 63 38 69 62 5 36 60 32 23 Aldebaran E. 97 55 30 96 22 23 94 49 26 93 16 39 17 Antares W. 95 13 29 96 46 11 98 18 43 99 61 6 a Aquilse W. 47 34 25 48 47 7 50 32 51 14 36 a Arietis E. 52 49 11 51 17 7 49 46 13 48 13 32 Aldebaran E. 85 35 13 84 8 25 82 31 48 81 20 18 Antares W. 107 30 39 109 2 6 110 33 25 112 4 35 a Aquilae W. 67 32 26 58 49 12 60 6 17 61 23 39 Fomalhaut W. 34 28 14 35 30 4 36 33 36 37 38 40 a Arietis E. 40 37 58 39 7 28 37 37 10 36 7 5 Aldebaran E. 73 25 27 71 54 57 70 24 37 68 54 27 Pollux E. 115 20 3 113 49 31 112 19 6 110 48 48 19 Antares W. 119 38 19 121 8 41 122 38 64 124 9 a Aquilse W. 67 53 39 69 12 8 70 30 43 71 49 25 Fomalhaut w. 43 22 34 44 34 17 45 46 46 46 69 67 a Arietis E. 28 40 18 27 11 46 26 43 32 24 15 40 Aldebaran E. 61 26 59 59 56 46 58 27 43 66 58 49 Pollux E. 103 19 9 101 49 34 100 20 6 98 60 46 20 a Aquilse W. 78 23 50 79 42 49 81 1 49 82 20 49 Fomalhaut W. 63 14 24 64 30 40 56 47 17 67 4 14 a Pegasi W. 30 37 59 31 66 33 16 5 34 34 42 Aldebaran E. 49 36 45 48 8 60 46 41 4 46 13 29 Pollux E. 91 25 38 89 56 55 88 28 17 86 69 46 21 a Aquilse W. 88 55 33 90 14 23 91 33 10 92 51 54 Fomalhaut w. 63 33 6 64 61 32 66 10 10 67 28 67 a Pegasi w. 41 20 23 42 42 41 44 5 16 45 28 7 Aldebaran E. 37 58 20 36 31 65 36 5 43 33 39 46 Pollux E. 79 38 22 78 10 19 76 42 20 76 14 24 SEPTEMBER, 1861. 438 GKEENWICH MEAN TIME. LUNAR DISTANCES. Day of the Star's Name and MidDight. XVi. XVIIIt. XXIK Month. Position. 22 a Aquilae W. / // 99 24 28 o / // 100 42 43 102 53 103° 18 55 Fomalhaut W. 74 5 5 75 24 40 76 44 22 78 4 10 a Pegasi W. 52 26 37 53 49 40 55 13 62 56 38 13 Aldebaran E. 26 34 37 25 10 47 23 47 29 22 24 50 Pollux E. 67 55 34 66 27 55 65 18 63 32 42 23 a Aquilae W. 109 47 16 111 4 30 112 21 34 113 38 26 Fomalhaut W. 84 44 28 86 4 46 87 25 9 88 45 36 a Pegasi W. 63 42 4 66 7 14 66 32 32 67 57 58 Pollux E. 66 14 57 54 47 25 53 19 52 51 52 18 Regulus E. 92 58 30 91 30 2 90 1 31 88 32 56 Sun E. 125 55 47 124 34 54 123 13 58 121 52 57 24 a Aquilae W. 119 59 35 121 15 2 122 30 11 123 44 59 Fomalhaut W. 95 28 49 96 49 39 98 10 32 99 31 29 a Pegasi W. 75 7 12 76 33 29 77 69 65 79 26 31 a Arietis W. 31 37 58 33 5 54 34 34 6 36 2 28 Pollux E. 44 34 16 43 6 34 41 38 52 40 11 9 Regulus E. 81 8 51 79 39 44 78 10 31 76 41 10 Sun E. 115 6 32 113 44 56 112 23 13 111 1 21 25 Fomalhaut W. 106 16 52 107 38 3 108 69 16 110 20 29 a Pegasi W. 86 41 59 88 9 38 89 37 27 91 5 29 a Arietis W. 43 27 44 44 57 27 46 27 25 47 57 37 Pollux E. 32 52 31 31 24 51 29 57 16 28 29 47 Regulus E. 69 12 14 67 41 58 66 11 29 64 40 49 Sun E. 104 9 45 102 46 54 101 23 52 100 37 26 Fomalhaut W. 117 6 30 118 27 36 119 48 35 121 9 29 a Pegasi W. 98 28 47 99 58 6 101 27 40 102 57 27 a Arietis W. 55 32 29 57 4 16 68 36 21 60 8 43 Aldebaran W. 23 46 10 25 13 3 26 40 46 28 9 16 Regulus E. 57 4 15 55 32 14 53 59 57 52 27 25 Sun E. 93 1 91 36 20 90 11 24 88 46 11 27 a Pegasi W. 110 30 5 112 1 22 113 32 53 115 4 40 a Arietis W. 67 55 19 69 29 38 71 4 18 72 39 20 Aldebaran W. 35 41 17 37 13 23 38 46 1 40 19 9 Regulus E. 44 40 30 43 6 13 41 31 39 39 56 45 Sun E. 81 35 38 80 8 34 78 41 10 77 13 25 28 a Arietis W. 80 40 7 82 17 26 83 55 10 86 33 19 Aldebaran W. 48 12 14 49 48 18 61 24 50 53 1 51 Regulus E. 31 57 33 30 20 46 28 43 42 27 6 20 Sun E. 69 49 14 68 19 15 66 48 53 65 18 8 29 a Arietis W. 93 50 21 95 31 2 97 12 10 98 63 44 Aldebaran W. 61 14 3 62 53 55 64 34 15 66 15 4 Sun E. 57 38 12 56 4 58 54 31 19 52 57 15 30 a Arietis W. 107 28 7 109 12 18 110 56 54 112 41 66 Aldebaran W. 74 46 8 76 29 44 78 13 47 79 58 17 Pollux E. 33 6 17 34 47 55 36 30 15 38 13 14 Sun E. 45 44 43 24 12 41 47 18 40 10 28 434 OCTOBER, 1861. , GKEENWICH MEAN TLME. LUNAR DISTANCES. Day of Star's Name the and Midnight. xv». XVIIP. XXTk. Month. Position. o / // o / // o / // O / ti 1 Aldebaran W. 88 47 16 90 34 18 92 21 44 94 9 33 Pollux W. 46 56 53 48 43 13 50 30 1 52 17 17 Sun E. 31 58 20 30 19 5 28 39 36 26 69 56 6 Sun W. 38 29 5 40 12 16 41 55 14 43 38 a Aquilae E. 72 39 48 71 2 6 69 24 57 67 48 21 Fomalhaut E. 97 52 7 96 11 15 94 30 32 92 50 2 7 Sun W. 52 7 58 53 49 5 65 29 53 57 10 21 a Aquilae E. 59 55 28 58 23 15 56 51 66 56 21 35 Fomalhaut E. 84 31 33 82 52 51 81 14 32 79 36 39 a Pegasi E. 104 49 9 103 3 43 101 18 34 99 33 42 8 Sun W. 65 27 35 67 5 57 68 43 68 70 21 36 Venus W. 27 14 28 37 12 30 13 60 31 50 7 a Aquilae E. 48 6 44 46 43 41 45 22 9 44 2 15 Fomalhaut E. 71 34 16 69 59 21 68 25 2 66 51 20 a Pegasi E. 90 54 13 89 11 22 87 28 53 85 46 47 9 Sun "W. 78 24 13 79 59 38 81 34 40 83 9 21 Venus W. 39 46 17 41 20 27 42 54 15 44 27 41 Antares W. 27 32 42 29 15 40 30 58 17 32 40 33 Fomalhaut E. 59 12 50 57 43 21 56 14 41 54 46 52 a Pegasi E. 77 22 6 75 42 23 74 3 4 72 24 11 10 Sun W. 90 57 18 92 29 50 94 2 2 95 33 53 ' Venus W. 52 9 36 53 40 56 55 11 57 56 42 37 Antares W. 41 6 42, 42 46 54 44 26 45 46 6 17 Fomalhaut E. 47 42 15 46 20 35 45 10 43 41 4 a Pegasi E. 64 16 9 62 39 52 61 4 2 59 28 39 a Arietis E. 106 41 21 105 1 30 103 22 101 42 50 11 Sun W. 103 8 12 104 38 7 106 7 44 107 37 2 Venus W. 64 11 10 65 39 58 67 8 27 68 36 39 Antares W. 54 19 8 55 66 47 57 34 7 69 11 11 Fomalhaut E. 37 28 44 36 19 43 35 12 51 34 8 18 a Pegasi E. 51 38 54 50 6 27 48 34 33 47 3 11 a Arietis E. 93 31 47 91 54 30 90 17 31 88 40 50 12 Sun W. 114 59 20 116 26 58 117 64 21 119 21 29 yenus W. 75 53 30 77 20 78 46 25 80 12 31 Antares w. 67 12 17 68 47 43 70 22 53 71 57 50 a Pegasi E. 39 35 31 38 8 2 36 41 21 35 15 31 a Arietis E. 80 41 36 79 6 33 77 31 45 75 57 13 13 Sun W. 126 33 29 127 59 11 129 24 40 130 49 56 Venus W. 87 19 35 88 44 21 90 8 55 91 33 17 Antares W. 79 49 4 81 22 40 82 56 4 84 29 16 a Arietis E. 68 8 4 66 34 65 65 1 69 63 29 16 Aldebaran E. 100 52 38 99 19 65 97 47 23 96 15 3 14 Venus W. 98 32 24 99 55 43 101 18 52 102 41 62 Antares W. 92 12 29 93 44 37 95 16 35 96 48 23 1 a Aquilae w. 45 10 5 46 20 50 47 32 25 48 44 45 OCTOBER, 1861. 435 GEEENWICH MEAN" TIME. LUNAR DISTANCES. Day of the Star's Name and Midnight. XYk. XVIIIi-. XXP. .Month. Position. O / // O / // o / n / // 14 a Arietis E. 65 48 39 54 17 6 52,46 44 51 14 33 Aldebaran ' E. 88 36 2 87 4 45 86 33 37 84 2 39 15 Venus W. 109 34 44 110 56 54 112 18 57 113 40 53 Antares W. 104 25 14 105 56 12 107 27 3 108 67 46 a Aquilae W. 54 55 33 56 11 11 57 27 12 58 43 34 a Arietis E. 43 41 20 42 11 14 40 41 18 39 11 33 Aldebaran E. 76 30 2 74 59 56 73 29 69 72 9 16 a Aquilae W. 65 9 42 66 27 36 67 46 41 69 3 55 Fomalhaut W. 40 57 42 6 9 43 16 16 44 27 16 a Arietis E. 31 45 41 30 17 9 28 48 52 27 20 50 Aldebaran E. 64 32 59 63 3 56 61 35 60 6 11 Pollux E. 106 26 18 104 57 6 103 27 56 101 58 53 17 a Aquilse W. 75 36 57 76 55 49 78 14 45 79 33 44 Fomalhaut W. 50 33 10 51 48 7 53 3 33 54 19 24 a Pegasi w. 27 55 64 29 11 57 30 29 3 31 47 5 Aldebaran E. 52 43 56 51 15 51 49 47 64 48 20 4 Pollux E. 94 34 44 93 6 7 91 37 34 90 9 6 18 a Aquilse W. 86 9 2 87 28 6 88 47 9 90 6 11 Fomalhaut W. 60 44 6 62 1 56 63 20 64 38 18 a, Pegasi w. 38 27 28 39 49 5 41 11 5 42 33 26 Aldebaran E. 41 3 39 36 2 38 9 16 36 42 39 Pollux E. 82 47 35 81 19 27 79 61 22 78 23 20 19 a Aquilse W. 96 40 41 97 69 24 99 18 2 100 36 34 Fomalhaut w. 71 12 35 72 31 64 73 51 21 75 10 65 f a Pegasi w. 49 29 21 50 63 12 52 17 13 53 41 25 Aldctaran E. 29 33 2 28 7 69 26 43 18 25 19 4 Pollux E. 71 3 50 69 36 3 68 8 18 66 40 36 20 a Aquilae W. 107 7 37 108 26 26 109 43 3 111 31 Fomalhaut W. 81 50 12 83 10 18 84 30 28 85 50 41 a Pegasi W. 60 44 36 62 9 36 63 34 43 64 59 57 Pollux E. 59 22 28 57 54 55 56 27 23 64 59 63 Regulus E. 96 7 2 94 38 35 93 10 7 91 41 37 Jupiter Satum E. 116 23 12 114 56 28 113 29 42 112 2 54 E. 116 22 16 114 65 4 113 27 50 112 34 21 fomalhaut , w. 92 32 28 93 52 56 96 13 24 96 33 54 a Pegasi a Arietis W. 72 7 43 73 33 35 74 69 34 76 26 38 W. 28 34 22 30 1 36 31 29 2 32 56 40 Pollux E. 47 42 39 46 16 16 44 47 55 43 20 36 ( Regnliis Satum E. 84 18 41 82 49 58 81 21 12 79 52 22 E. 104 43 36 103 16 1 101 48 23 100 20 41 Jupiter E. 104 48 17 103 21 12 101 64 3 100 26 50 22 Fomalhaut W. 103 16 27 104 36 67 106 67 25 107 17 51 ; - a Pegasi a Arietis W. 83 37 36 86 4 20 86 31 11 87 68 9 w. 40 17 26 41 46 5 43 14 54 44 43 52 IJollux E. 36 4 32 34 37 31 33 10 35 31 43 47 ' " Regulus E. 72 27 5 70 57 46 69 28 20 67 58 48 436 OCTOBER, 1861. GKEENWICH MEAN TIME. LUNAE DISTANCES. Day of the Mouth. Star's Name and Position. Midnight. xv. XVIIP. XXIk. 22 Saturn E. t II 93 58 o / // 91 32 44 o / // 90 4 24 O / II 88 36 57 Jupiter E. 93 9 32 91 41 47 90 13 56 88 45 58 23 a Pegasi W. 95 14 55 96 42 42 98 10 36 99 38 39 a Arietis W. 52 11 16 53 41 17 55 11 30 56 41 55 Aldebaran w. 20 30 34 21 54 28 23 19 20 24 46 2 Eegulus E. 60 29 18 58 68 59 57 28 30 55 57 52 Saturn E. 81 11 45 79 42 28 78 13 2 76 43 26 Jupiter E. 81 24 11 79 55 23 78 26 26 76 57 18 Sun E. 123 9 18 121 46 31 120 23 33 119 24 24 a Pegasi W. 107 1 15 108 30 16 109 59 26 111 28 46 a Arietis W. 64 17 7 65 48 61 67 20 49 68 63 2 Aldebaran W. 32 3 14 33 32 27 36 2 9 36 32 16 Kegulus E. 48 22 3 46 50 19 45 18 23 43 46 14 Saturn E. 69 12 42 67 41 57 66 10 59 64 39 48 Jupiter E. 69 28 52 67 58 36 66 28 4 64 57 19 Sun E. 112 1 37 110 37 12 109 12 33 107 47 38 25 a Arietis W. 76 38 10 78 12 3 79 46 15 81 20 45 Aldebaran W. 44 9 3 45 41 36 47 14 32 48 47 51 Regulus E. 36 2 10 34 28 41 32 64 68 31 21 1 Saturn E. 57 19 55 27 40 63 54 45 52 21 34 Jupiter E. 67 19 58 56 47 43 54 15 12 62 42 24 Sun E. 100 39 9 99 12 36 97 45 46 96 18 35 26 a Arietis W. 89 18 14 90 64 46 92 31 41 94 8 67 Aldebaran W. 56 40 20 68 16 1 59 62 7 61 28 38 Eegulus E. 23 28 17 21 63 16 20 18 12 18 43 9 Saturn E. 44 31 33 42 56 42 41 21 35 39 46 li Jupiter E. 44 54 4 43 19 31 41 44 40 40 9 31 Sun E. 88 57 49 87 28 37 86 59 3 84 29 7 27 Aldebaran W. 69 37 26 71 16 29 72 55 58 74 35 53 Pollux W. 28 11 20 29 47 17 31 24 1 33 1 30 Saturn E. 31 45 30 30 8 45 28 31 51 26 54 51 Jupiter E. 32 9 30 30 32 43 28 55 44 27 18 34 Sun E. 76 53 37 75 21 19 73 48 36 72 16 28 28 Aldebaran W. 83 2 6 84 44 41 86 27 42 88 11 11 Pollux W. 41 19 43 21 44 42 16 46 24 45 Sun E. 64 23 24 62 47 42 61 11 33 59 34 58 29 Aldebaran W. 96 55 9 98 41 15 100 27 46 102 14 41 Pollux w. 55 5 9 56 50 46 58 36 62 60 23 27 Sun E. 61 25 38 49 46 30 48 6 57 46 27 1 30 Aldebaran W. 111 15 11 113 4 23 114 53 54 116 43 45 Pollux W. 69 23 6 71 12 18 73 1 54 74 51 62 Regulus w. 32 21 20 34 10 38 36 24 37 50 37 Sun E. 38 1 39 36 19 32 34 37 7 32 54 25 31 Pollux W. 84 6 53 85 68 48 87 50 58 89 43 22 Regulus w. 47 7 30 48 59 64 50 52 36 52 45 32 Sun E. 24 17 45 22 34 4 20 50 26 19 6 55 NOVEMBER, 1861. 437 GREENWICH MEAN TIME. LUNAR DISTANCES. Day of Star's Name the and Midnight. X.VK XVIII'-. XXl'. Uonth. Position. 4 Sun W. o / il 32 59 58 34° 42 46 O / // 36 25 17 o / // 38 7 31 a Aquilae E. 52 29 11 50 58 36 49 29 18 48 1 24 Fomalhaut E. 76 39 48 75 73 20 42 71 41 58 a Pegasi E. 96 15 50 94 28 9 92 40 48 90 53 47 5 Sun W. 46 33 29 48 13 34 49 53 14 61 32 30 a Aquilae E. 41 6 46' 39 49 46 38 35 8 37 23 2 Fomalhaut E. 63 37 35 62 2 50 60 28 53 58 66 46 a Pegasi E. 82 4 28 80 19 51 78 35 42 76 52 6 Sun W. 59 42 33 61 19 16 62 55 34 64 31 25 Fomalhaut E. 51 24 21 49 57 16 48 31 23 47 6 47 a Pegasi E. 68 20 47 66 40 4 64 59 52 63 20 13 n Sun W. 72 24 16 73 57 34 75 30 26 77 2 54 Venus W. 28 55 36 30 27 53 31 59 46 33 31 15 Fomalhaut E. 40 25 45 39 10 40 37 57 33 36 46 34 a Pegasi E. 55 10 19 53 34 6 51 58 29 60 23 29 a Arietis E. 97 16 49 95 36 12 93 56 1 92 16 13 8 Sun W. 84 39 14 86 9 21 87 39 5 89 8 27 Venus W. 41 2 45 42 31 54 44 41 45 29 6 Pegasi E. 42 38 34 41 7 46 39 37 46 38 '8 36 a Arietis E. 84 3 21 82 25 56 80 48 65 79 12 15 9 Sun W. 96 30 7 97 57 28 99 24 31 100 51 15 Venus W. 52 46 5 54 12 30 56 38 36 67 4 25 a Pegasi E. 30 57 34 29 34 53 28 13 39 26 54 2 a Arietis E. 71 14 13 69 39 37 68 5 21 66 31 23 Aldebaran E. 104 1 19 102 27 10 100 53 18 99 19 44 10 Sun W. 108 43 109 25 49 110 50 41 112 15 18 Venus W. 64 9 16 65 33 28 66 67 25 68 21 8 a Arietis E. 58 45 57 57 13 42 55 41 43 54 9 59 Aldebaran E. 91 36 90 4 1 88 32 17 87 46 11 Sun W. 119 15 12 120 38 35 122 1 47 123 24 49 Venus W. 75 16 33 76 39 3 78 1 22 79 23 32 a Aquilae W. 52 24 20 53 39 13 54 54 32 56 10 14 a Arietis E. 46 34 55 45 4 36 43 34 29 42 4 36 Aldebaran E. 79 26 28 77 56 13 76 26 8 74 56 14 12 Sun W. 130 17 37 131 39 45 133 1 46 134 23 39 Venus w. 86 12 4 87 33 23 88 54 34 90 15 39 a Aquilae Fomalhaiit w. 62 33 23 63 50 45 65 8 19 66 26 4 w. 38 50 42 39 57 3 41 4 33 42 13 7 a Arietis E. 34 38 20 33 9 44 31 41 21 30 13 13 Aldebaran E. •67 29 11 66 14 64 31 25 63 2 44 13 Venus W. 96 59 38 98 20 11 99 40 40 101 1 6 a Aquilae Fomalhaut w. 72 56 59 74 15 30 75 34 7 76 52 49 w. 48 8 56 49 22 13 50 36 4 51 60 28 Aldebaran E. 55 41 10 54 13 13 52 45 22 51 17 38 Pollux E. 97 31 3 96 2 45 94 34 30 93 6 19 438 NOVEMBER, 1861. GEEENWICH . MEAN TIME. LUNAR ] DISTANCES. Day of Star's Name the ! and , 1 1 i. Midnight. \.SK xvin'. , xxip. Month. Position. 14 Venus W. lof 42 29 in 109 2 39 o / // 110 22 46 O.I II 111 42 53 a Aquilae W. 83 21 9 84 46 8 86 5 9 87 24 11 i Fomalliaut w. 58 9 7 59 25 58 60 43 7 : 62 35 a Pegasi w. 35 41 64 37 2 31 38 23 38 39 45 12 Aldebaran E. 44 36 42 33 33 41 6 37 39 39 49 Pollux E. 85 46 6 84 18 10 82 50 16 81 22 23 15 a Aquilse W. 93 59 17 95 18 15 96 37 11 97 56 4 Fomalhaut W. 68 31 35 69 50 25 71 9 27 72 28 38 a Pegasi w. 46 38 23 48 1 64 49 25 38 50 49 37 Aldebaran E. 32 28 11 31 2 27 29 36 58 28 11 47 Pollux E. 74 3 19 72 35 33 71 7 47 69 40 1 16 a Aquilse W. 104 29 32 1()6 47 57 107 6 16 108 24 28 Fomalhaut W. 79 6 46 80 26 46 81 46 52 83 7 4 a Pegasi W. 57 52 20 59 17 23 60 42 34 62 7 56 Pollux E. 62 21 16 60 53 31 59 25 47 67 58 2 Kegulus E. 99 7 27 97 38 51 96 10 12 94 41 31 17 Fomalhaut W. 89 49 14 91 9 51 92 30 31 93 51 12 a Pegasi W. 69 16 34 70 42 40 72 8 52 73 35 11 Pollux E. 50 39 17 49 11 33 47 43 50 46 16 7 Regulus E. 87 17 24 85 48 25 84 19 23 82 50 17 Saturn E. 110 9 40 108 41 42 107 13 39 106 45 32 Jupiter E. 112 20 54 110 63 20 109 25 42 107 57 59 18 a Pegasi W. 80 48 25 ' 82 15 22 83 42 26 85 9 36 ffl Arietis W. 37 23 55 38 52 39 40 21 33 41 60 35 Pollux E. 38 58 5 37 30 37 36 3 15 34 35 69 Regulus E. 75 23 48 T3 54 17 72 24 41 70 56 Saturn E. 98 23 46 96 55 10 95 26 28 93 67 41 Jupiter E. 100 38 15 99 10 3 97 41 45 96 13 22 19 a Pegasi W. 92 26 57 93 54 43 95 22 36 96 50 34 a Arietis W. 49 17 56 50 47 50 62 17 52 53 48 3 t Pollux E. 27 22 9 25 56 10 24 30 36 23 5 33 Regulus E. 63 25 16 61 55 2 60 24 42 58 54 15 Saturn E. 86 32 17 85 2 53 83 33 23 82 3 46 Jupiter E. 88 49 57 87 20 57 86 51 50 84 22 37 20 a Arietis W. 61 21 13 62 52 19 64 23 35 65 55 Aldebaran W. 29 8 58 30 37 8 32 5 45 33 34 46 Regulus E. 51 20 21 49 49 13 48 17 57 46 46 33 Saturn E. 74 33 52 73 3 30 71 32 59 70 2 20 Jupiter E. 76 54 35 75 24 35 73 54 26 72 24 8 Mars E. 112 40 32 111 14 19 109 47 55 1Q8 21 22 21 a Arietis W. 73 34 49 75 7 20' 76 40 4 78 12 69 Aldebaran W. 41 5 8 42 36 10 44 7 30 45 39 8 Regulus E. 39 7 37 37 35 26 36 3 7 34 30 40 Saturn E. 62 26 53 60 55 19 59 23 35 57 61 41 Jupiter E. 64 50 20 63 19 5 61 47 39 60 16 3 Mars E. 101 6 2 99 38 24 98 10 35 96 42 34 Sun E. 130 52 45 129 27 34 128 2 10 126 36 35 NOVEMBER, 1861. 439 GEEENWICH MEAN TIME. tUNAE' DISTANCES. Day of the Star's Nam( and ' s Midnight. XVl>. XVIIIi-. XXP. Uonth. Position. 22 a Arietis w. 86 50 O / 4/ 87 35 6 o / // 89 9 35 / // 90 44 20 Aldebaran w. 53 21 35 54 i54 56 66 28 34 68 2 30 Regulua E. 26 46 39 25 13 36 23 40 30 22 7 24 Saturn E. 50 9 37 48 36 40 47 3 33 46 30 14 Jupiter E. 62 35 14 51 2 29 49 29 32 47 56 24 Spica E. 80 33 58 78 59 24 77 24 36 75 49 34 Mars E. 89 19 16 87 49 56 86 20 22 84 50 32 Sun E. 119 25 18 117 58 21 116 31 9 115 3 42 23 o Arietis W. 98 41 68 100 18 18 101 64 66 103 31 52 Aldebaran W. 65 56 35 67 32 19 69 8 22 70 44 44 Pollux ^ W. 24 44 53 26 16 18 27 48 33 29 21 35 Saturn E. 37 41 11 36 6 55 34 32 30 32 67 59 Jupiter E. 40 7 38 38 33 17 36 58 45 35 24 3 Spica E. 67 50 26 66 13 47 64 36 51 62 59 37 Mars E. 77 17 30 76 46 6 74 14 22 72 42 22 Sun E. 107 42 26 106 13 20 104 43 57 103 14 15 24 Aldebaran W. 78 51 30 80 29 52 82 8 34 83 47 38 Pollux W. 37 16 25 38 53 6 40 30 15 42 7 56 Saturn E. 25 4 55 28 30 34 21 56 31 20 22 54 Jupiter E. 27 28 24 25 53 3 24 17 44 22 42 32 Spica E. 54 48 50 53 9 43 61 30 16 49 50 29 Mars E. 64 57 46 63 23 54 61 49 42 60 15 11 Sun E. 95 41 3 94 9 25 92 37 27 91 6 8 25 Aldebaran W. 92 8 18 93 49 32 95 31 8 97 13 6 Pollux W. 50 23 27 62 3 56 63 44 51 65 26 14 Spica E. 41 26 25 39 44 34 38 2 21 36 19 47 Mars E. 52 17 31 50 40 57 49 4 3 47 26 48 Sun E. 83 18 10 81 43 40 80 8 47 78 33 32 26 Pollux W. 63 69 36 65 43 33 67 27 56 69 12 43 Regulus W. 26 58 19 28 41 69 30 26 11 32 10 55 Mars E. 39 15 33 37 36 20 35 56 49 34 17 Sun E. 70 31 30 68 53 66 67 15 59 65 37 39 27 Pollux W. 78 2 41 79 49 51 81 37 23 83 25 17 Regulus Mars W. 41 1 45 42 49 15 44 37 10 46 25 29 E. 25 54 30 24 13 32 22 32 34 20 61 41 Sun E. 67 20 16 55 39 41 63 58 44 62 17 26 28 Pollux W. 92 29 54 94 19 46 96 9 65 98 20 Eegulus Saturn W. 55 32 38 67 23 6 69 13 53 61 4 58 W. 32 19 32 34 7 16 35 55 33 37 44 20 Jupiter Sun W. 29 19 27 31 6 62 32 54 50 34 43 18 E. 43 45 55 42 2 41 40 19 10 38 35 23 29 Pollux W. 107 15 56 109 7 88 110 59 28 112 51 26 Eegulus Saturn W. 70 24 18 72 16 51 74 9 35 76 2 29 W. 46 54 17 48 45 15 60 36 29 52 27 68 Jupiter Sun W. 43 51 45 45 42 25 47 33 22 49 24 32 . E. 29 52 59 28 7 57 26 22 46 24 37 28 uo DECEMBER, 1861. GEEENWICH MEAN TIME. LUNAR DISTANCES. Day of Star's Name tte and Midnight. XVi". XVIII''. XXT*. Month. Position. O 1 II o / li o / // O / // 4 Sun W. 39 40 28 41 18 36 42 56 18 44 33 34 Fomalhaut E. 44 43 54 43 20 50 41 59 27 40 39 55 a Pegasi E. 60 21 1 58 39 34 56 58 42 55 18 26 a Arietis E. 102 42 7 100 56 44 99 11 47 97 27 16 5 Sun W. 52 33 16 54 7 52 55 42 1 67 15 44 , Fomalhaut E. 34 34 51 33 29 36 32 27 26 31 28 36 a Pegasi E. 47 6 58 45 30 49 43 55 26 42 20 52 a Arietis E. 88 51 25 87 9 35 85 28 12 83 47 17 6 Sun W. 64 57 47 66 28 54 67 69 37 69 29 55 u, Pegasi E. 34 41 48 33 13 10 31 45 46 30 19 44 a Arietis E. 75 29 15 73 50 56 72 13 3 70 35 35 Aldebaran E. 108 17 26 106 39 39 105 2 16 103 25 17 1 Sun W. 76 55 34 78 23 35 79 51 13 81 18 31 Venus W. 30 36 40 32 3 7 33 29 19 34 55 14 a Arietis E. 62 34 19 60 59 14 59 24 31 57 50 10 Aldebaran E. 95 26 2 93 51 17 92 16 53 90 42 49 8 Sun W. 88 30 5 89 55 29 91 20 36 92 45 26 a Aquilse w. 49 27 27 50 42 30 51 58 1 53 13 58 Venus w. 42 54 43 25 16 44 49 23 46 13 16 a Arietis E. 50 3 42 48 31 24 46 69 26 45 27 46 Aldebaran E. 82 57 28 81 25 19 79 53 28 78 21 53 9 Sun W. 99 45 50 101 9 14 102 32 25 103 55 24 a Aquilse W. 59 38 32 60 56 10 62 14 63 32 Venus W. 63 9 18 54 31 54 66 54 18 57 16 32 a Arietis E. 37 53 58 36 24 5 34 54 29 33 25 11 Aldebaran E. 70 47 56 69 17 53 67 48 3 66 18 26 10 Sun W. 110 47 44 112 9 45 113 31 38 114 53 23 a Aquilse W. 70 3 46 71 22 24 72 41 6 73 69 51 Venus W. 64 5 17 65 26 37 66 47 50 68 8 57 Fomalhaut W. 45 36 58 46 48 52 48 1 26 49 14 36 Aldebaran E. 58 53 18 57 24 50 56 56 31 54 28 22 Pollux E. 100 41 38 99 12 57 97 44 23 96 15 66 11 Su{f W. 121 40 40 123 1 54 124 23 3 126 44 9 a Aquilse W. 80 34 12 81 53 9 83 12 7 84 31 6 Venus W. 74 53 8 76 13 46 77 34 20 78 54 52 Fomalhaut W. 55 27 56 56 43 51 58 7 59 16 42 Aldebaran E. 47 9 55 45 42 39 44 15 32 42 48 33 Pollux E. 88 55 5 87 27 9 85 69 17 84 31 28 12 Sun W. 132 29 10 133 50 7 135 11 4 136 32 2 a Aquilse W. 91 5 59 92 24 56 93 43 52 96 2 47 Venus W. 85 37 6 86 57 31 88 17 56 89 38 22 Fomalhaut W. 65 43 51 67 2 68 20 22 69 38 66 a Pegasi W. 43 36 44 44 59 36 46 22 45 47 46 10 Aldebaran E. 35 35 52 34 9 50 32 44 31 18 22 Pollux E. 77 12 59 75 45 22 74 17 46 72 60 10 DECEMBER, 1861. 441 ^GEEENWICH MEAN TIME. LUNAR DISTANCES. Day of Star's Name the and Midnight. XVi. XVIIIi-. XXIt. Mouth. Position. o / /; o / // O / // o / // 13 Venus W. 96 20 56 97 41 34 99 2 15 100 23 Fomalhaut W. 76 14 29 77 34 4 78 63 48 80 13 40 a Pegasi W. 64 46 37 56 11 19 57 36 12 59 1 15 Pollux E. 65 32 6 64 4 27 62 36 47 61 9 5 Eegulus E. 102 20 21 100 51 54 99 23 24 97 54 50 14 Venus W. 107 7 44 d08 28 55 109 50 12 111 11 34 Fomalhaut W. 86 54 51 88 15 25 89 36 4 90 56 49 a Pegasi W. 66 9 4 67 35 6 69 1 18 70 27 39 Pollux E. 53 50 9 52 22 17 50 54 22 49 26 26 Regulns E. 90 31 1 89 2 87 32 55 86 3 44 15 a Pegasi W. 77 41 36 79 8 50 80 36 12 82 3 43 a Arietis W. 34 13 28 35 42 21 37 11 26 38 40 43 Pollux E. 42 6 29 40 38 29 39 10 29 37 42 32 Begulus E. 78 36 19 77 6 30 75 36 36 74 6 33 Saturn E. 103 1 22 101 32 13 100 2 66 98 33 32 Jupiter E. 106 56 53 105 27 59 103 58 58 102 29 49 16 a Pegasi W. 89 23 20 90 51 40 92 20 8 93 48 44 a Arietis W. 46 9 52 47 40 13 49 10 46 50 41 28 Pollux E. 30 23 57 28 56'^40 27 29 39 26 2 56 Eegulus E. 66 34 36 65 3 50 63 32 57 62 1 56 Saturn E. 91 4 33 89 34 21 88 4 1 86 33 33 Jupiter E. 95 2 4 93 32 6 92 2 90 31 45 17 a Pegasi W. 101 13 32 102 42 50 104 12 16 105 41 48 a Arietis W. 58 17 32 59 49 15 61 21 8 62 53 11 Eegulus E. 54 24 52 52 53 4 61 21 8 49 49 6 Saturn E. 78 59 5 77 27 46 75 56 18 74 24 42 Jupiter E. 82 58 22 81 27 16 79 56 78 24 36 18 a Arietis W. 70 35 58 72 9 2 73 42 16 76 15 41 Aldebaran W. 38 8-31 39 39 50 41 11 27 42 43 21 Eegulus E. 42 6 53 40 34 5 39 1 9 37 28 7 Saturn E. 66 44 34 65 12 7 63 39 32 62 6 48 Jupiter E. 70 45 19 69 13 67 40 33 66 7 56 Spica E. 96 2 44 94 29 20 92 55 46 91 22 2 19 a Arietis W. 83 6 19 84 39 46 86 14 24 87 49 13 Aldebaran W. 50 26 49 52 15 53 33 55 65 7 49 Eegulus Saturn E. 29 41 36 28 8 6 26 34 34 25 1 3 E. 54 21 5 62 47 33 61 13 53 49 40 6 Jupiter Spica Mars E. 58 22 39 66 49 9 55 16 30 53 41 42 E. 83 30 51 81 56 5 80 21 10 78 46 3 E. 110 6 39 108 37 3 107 7 17 106 37 19 20 o Arietis W. 95 46 1 97 21 57 98 58 3 100 34 22 Aldebaran W. 63 43 64 35 58 66 11 26 67 47 7 Pollux W. 22 63 23 30 27 25 1 26 32 25 Saturn E. 41 49 29 40 15 5 38 40 36 37 6 5 Jupiter Spica E. 46 60 37 44 16 42 41 16 41 6 25 E. 70 47 48 69 11 36 67 36 11 65 58 36 442 DECEMBER, 1861. GREEN WiOR ME A T^ TIME. tlTNAR DISTANCES. , 1 Day of the Star's Name and Midnight. XTk. XVIII''. XXP. Month. Position. 20 Mars E. O / // 98 4 41 o / /J m 33 35 95 2 17 1 II 93 30 47 21 Aldebaran W. 75 48 55 77 25 57 79 3 12 80 40 41 Pollux W. 34 19 13 36 54 9 37 29 31 39 5 18 Saturn E. 29 13 20 27 38 59 26 4 50 24 30 57 Jupiter E. 33 10 47 31 35 29 30 11 28 24 55 Spica E. 57 52 39* ' 56 14 51 54 36 51 52 58 38 Mais E. 85 50 14 84 17 29 82 44 32 81 11 21 Sun E. 126 6 3 124 35 40 123 5 4 121 34 16 22 Aldebaran W. 88 51 34 90 30 27 92 9 34 93 48 56 Pollux W. 47 9 52 48 47 49 50 26 6 62 4 42 Jupiter E. 20 31 5 18 57 31 17 24 44 15 63 4 Spica E. 44 44 18 43 4 47 41 26 2 39 45 4 Mars E. 73 22 6 71 47 34 70 12 47 68 37 46 Sun E. 113 56 47 112 24 35 110 52 9 109 19 28 23 Pollux w. , 60 22 25 62 2 52 63 43 38 65 24 41 Eegulus W. 23 22 28 25 2 12 26 42 27 28 23 9 Spica E. 31 21 56 29 40 40 27 59 11 26 17 32 Mars E. 60 39 1 59 2 31 57 25 46 65 48 46 Sun E. 101 32 18 99 58 6 98 23 38 96 48 54 24 Pollux W. 73 54 26 75 37 15 77 20 22 79 3 46 Eegulus W. 36 52 46 38 35 48 40 19 9 42 2 51 Mars E. 47 39 66 46 1 25 44 22 38 42 43 37 Sun E. 88 51 12 87 14 51 85 38 13 84 1 19 25 Pollux W. 87 45 1 89 30 5 91 15 26 93 1 2 Regulus W. 50 46 7 52 31 42 54 17 34 56 3 43 Saturn w. 26 45 37 28 27 40 30 10 24 31 53 45 Jupiter w. 22 21 27 24 2 44 25 44 50 27 27 40 Mars E. 34 24 58 32 44 34 31 3 59 29 23 13 Sun E. 75 52 40 74 14 7 72 35 18 70 56 13 26 Pollux W. 101 52 46 103 39 49 106 27 6 107 14 34 Regulus w. 64 58 39 66 46 25 68 34 26 70 22 41 Saturn w. 40 38 7 42 24 16 44 10 47 45 57 38 Jupiter w. 36 10 21 37 56 15 39 42 33 41 29 11 Mars E. 20 57 35 19 16 23 17 35 19 15 54 32 Sun E. 62 36 57 60 56 20 59 15 30 67 34 27 27 Regulus W. 79 27 15 81 16 45 83 6 26 84 56 16 Saturn w. 54 56 24 56 44 56 58 33 41 60 22 38 Jupiter w. 50 27 4 52 15 26 54 4 2 55 52 50 Spica w. 25 25 43 27 14 60 29 4 12 30 53 48 Sun E. 49 5 58 47 23 42 45 41 16 43 68 40 28 Regulus W. 94 7 25 95 57 57 97 48 33 99 39 12 Saturn W. 69 29 56 71 19 48 73 9 44 74 69 46 Jupiter w. 64 59 25 66 49 9 68 38 58 70 28 51 Spica w. 40 4 33 41 55 6 43 45 46 45 36 29 Sun E. 36 23 44 33 40 27 31 57 5 30 13 41 = MAKS. 443 186X. AT GEEEKWICH MEAN" TIME. 1861. JANUARY. FEBRUARY. MARCH. APRILr. Day of the Month. 1 2 3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 GEOOENTEIO. Meridian Passage.' h. m. 5 7-4 5 5-9 5 4-4 4 4 4 4 4 4 4 4 4 4 4 4 4 58-6 57' 55' 54-2 52-8 51-3 49-9 48-4 47-0 4 45-5 4 44-1 4 42-6 41' 39' 38' 36-9 35-4 34-0 32-6 31-2 29-7 28-3 26-9 25-5 24-1 Day of the Month. 4 22-0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 aEOCENTEIC. Meridian Passage. Day of the Month. h. m. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 22-6 21-2 19-8 18-4 17-0 15-6 4 14-2 4 ;12-9 4 11-5 10- 8- 7- 5- 4- 3' !■ 0' 59; 57-8 56-5 55-1 53-8 52' 51' 49-8 48-6 47-1 45-8 3 44-5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 flEOCBNIBIC. Meridian Day of the Month. h. m. 3 44-5 3 43-2 3 41-9 40-6 39-3 38-0 36 35 34 3 32-9 3 31-7 3 30-4 3 29-1 3 27-9 3 26-6 25' 24' 22-9 21 20 19 3 18-0 3 16-8 3 15-6 14' 13' 12-0 10-8 9-6 8-4 7-2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 GEOOENTEIO. Meridian h. 3 3 3 3 3 3 m. 6-1 4-9 3-7 2-5 1-4 0-2 2 59-1 2 57-9 2 56-8 2 55-6 2 54-5 2 53-4 52-2 51-1 49-9 2 48-8 2 47-7 2 46-6 2 45-6 2 44-3 2 43-2 2 2 2 2 2 2 2 2 2 42-1 41-0 39-9 38-8 37-7 36-6 35-5 34-4 33-3 2 32-2 444 MARS. 1861 • AT GETi^ENl^ICH MEAN TIME. 1861. 1 MAY. JVNE. JUIiY. AUGUST. GBOCENTEIC. GEOCBNTEIC. GEOCENTRIC. GEOCENTRIC. Day of the Day of the Day of the Day of the Meridian Meridian Meridian Meridian Month. Passage. Month. Passage. Month. Passage. Month. Passage. h. m. h. m. h. m. h. m. 1 2 32-2 1 1 68-1 1 1 22-5 1 41 1 2 2 31-1 2 1 56-9 2 1 21-3 2 39 7 3 2 30-0 3 1 55-8 3 1 20-0 3 38 2 4 2 28-9 4 1 54-7 4 1 18-8 4 36 8 5 2 27-8 5 1 53-5 5 1 17-5 5 35 4 6 2 ■26-7 6 1 52-4 6 1 16-2 6 33 9 1 2 25-6 7 1 51-2 7 1 14-9 7 32 5 8 2 24-5 8 1 50-1 8 1 13-6 8 31 1 9 2 23-4 9 1 48-9 9 1 12-4 9 29 6 10 2 22-3 10 1 47-8 10 1 11-0 10 28 1 11 2 21-2 11 1 46-6 11 1 9-7 11 26 7 12 2 20-2 12 1 45-5 12 1 8-4 12 25 2 13 2 19-1 13 1 44-3 13 1 7-1 13 23 7 14 2 18-0 14 1 43-1 14 1 5-8 14 22 3 15 2 16-9 15 1 42-0 15 1 4-5 15 20 8 16 2 15-8 16 1 40-8 16 1 3-1 16 19 3 17 2 14-7 17 1 39-6 17 1 1-8 17 17 8 18 2 13-6 18 1 38-4 18 1 0-5 18 16 3 19 2 12-5 19 1 37-2 19 59-1 19 14 8 20 2 11-4 20 1 36-0 20 57-8 20 13 3 21 2 10-3 21 1 34-8 21 66-4 21 11 8 22 2 9-2 22 1 33-6 22 55-0 22 10 3 23 2 8-1 23 1 32-4 23 63-7 23 8 8 24 2 7-0 24 1 31-2 24 52-3 24 7 3 25 2 5-9 25 1 30-0 25 50-9 25 S 7 26 2 4-8 26 1 28-7 26 49-5 26 4 2 27 2 3-6 27 . 1 27-5 27 . 48-1 27 2 7 28 2 2-5 28 1 26-3 28 46-7 28 { 1-8) \K t9-6f 23 58-1 29 2 1-4 29 1 25-0 29 45-3 29 30 2 0-3 30 1 23-8 30 43-9 30 23 56-5 81 1 59-2 31 1 22-5 31 42-6 ; 31 23 55-0 32 1 58-1 32 41-1 32 23 53-5 MARS. 445 1861 AT GKEENWICH MEAN TIME. 1861. SKFTEITIBER. OCTOBER. ]yOT£niBER. DECEMBER. Day of the GBOCBNTRIO. Day of the (JEOCENTRIO. Day of the (JEOCBKTRIO. Day of the GEOCENTEIO. Meridian Meridian Meridian Meridian Month. Passage. Month. Passage. Month. Passage. Month. Passage. 1 2 3 h. 23 23 23 m. 53-5 51-9 50-4 1 2 3 h. m. 23 6-2 23 4-7 23 3-1 1 2 3 h. m. 22 17-7 22 16-2 22 14-7 1 2 3 h. m. 21 33-8 21 32-4 21 31-0 4 5 6 23 23 23 48-8 47-2 45-7 4 5 6 23 1-5 22 59-9 22 58-3 4 5 6 22 13-1 22 11-6 22 10-1 4 5 6 21 29-6 21 28-3 21 26-9 T 8 9 23 23 23 44-1 42-6 41-0 7 8 9 22 56-7 22 55-2 22 53-6 7 8 9 22 8-6 22 7-1 22 5-6 7 8 9 21 25-6 21 24-2 21 22-9 10 11 12 23 23 23 39-4 37-9 36-3 10 11 12 22 52-0 22 50-4 22 48-8 10 11 12 22 4-1 22 2-6 22 1-1 10 11 12 21 21-5 21 20-2 21 18-9 13 14 15 23 23 23 34-7 33-1 31-6 13 14 15 22 47-3 22 45-7 22 44-1 13 14 15 21 59-6 21 58-1 21 56-7 13 14 15 21 17-5 21 16-2 21 14-9 16 17 18 23 23 23 30-0 28-4 26-8 16 17 18 22 42-5 22 41-0 22 39-4 16 17 18 21 55-2 21 53-7 21 52-3 16 17 18 21 13-6 21 12-4 21 11-1 19 20 21 23 23 23 25-2 23-7 22-1 19 20 21 22 37-8 22 36-3 22 34-7 19 20 21 21 50-8 21 49-4 21 47-9 19 20 21 21 9-8 21 8-5 21 7-2 22 23 24 23 23 23 20-5 18-9 17-3 22 23 24 22 33-1 22 31-6 22 30-0 22 23 24 21 46-5 21 45-0 21 43-6 22 23 24 21 6-0 21 4-7 21 3-5 25 26 27 23 23 23 15-7 14-2 12-6 25 26 27 22 28-5 22 26-9 22 25-4 25 26 27 21 42-2 21 40-8 21 39-4 25 26 27 21 2-3' 21 1-0 20 59-8 28 29 30 31 23 23 23 23 11-0 9-4 7-8 6'2 28 29 30 31 32 22 23-8 22 22-3 22 20-7 22 19-2 22 17-7 28 29 30 31 21 38-0 21 36-6 21 35-2 21 33-8 28 29 30 31 32 20 58-6 20 57-4 20 56-2 20 65-0 20 53-8 446 JUPITER. JTAWIJARY, 1861 .^...■,. T FEBRVART, 1861. MEAN TIME. MEAN TIME. Day of the GEOCENTKIO. Day of SBOCENTRIC. Apparent Declination. Meridian the Apparent Declination. Meridian t A'bon. ■ Passage. Month. Woon. Passage. 1 2 3 N.13 38 45 13 40 18 13 41 54 h. 15 15 15 m. 8-8 4-6 0-4 1 2 3 a 1 tl N.14 47 44 14 50 25 14 53 6 h. m. . 12 54-8 12 50-4 12 45-9 4 5 6 13 43 33 13 45 17 13 47 3 14 14 14 56-2 52-0 47-8 4 5 6 14 55 47 14 58 29 15 1 11 12 41-5 12 37-1 12 32-6 7 8 9 13 48 52 13 50 45 13 52 41 14 14 14 43-5 39-3 35-0 7 8 9 15 3 53 15 6 35 15 9 17 12 28-2 12 23-7 12 19-3 10 11 12 13 54 40 13 56 42 13 58 47 14 14 14 30-8 26-5 22-2 10 11 12 15 11 58 15 14 39 15 17 19 12 14-8 12 10-4 12 5-9 13 14 15 14 54 14 3 4 14 5 17 14 14 14 17-9 13-6 9-3 13 14 15 15 19 58 15 22 36 15 25 14 12 1-6 11 57-0 11 52-6 16 11 18 14 7 32 14 9 50 14 12 10 14 14 13 5-0 0-6 56-3 16 17 18 15 27 50 15 30 25 15 32 59 11 48-1 11 43-7 11 39-3 19 20 21 14 14 32 14 16 56 14 19 21 13 13 13 51-9 47-6 43-2 19 20 21 15 35 31 15 38 2 15 40 31 11 34-8 11 30-4 11 26-0 22 23 24 14 21 49 14 24 19 14 26 50 13 13 13 38-8 34-5 30-1 22 23 24 15 42 59 15 45 24 15 47 48 11 21-6 11 17-1 11 12-7 . 25 26 27 28 29 30 31 14 29 22 14 31 56 14 34 32 14 37 8 14 39 46 14 42 24 14 45 4 13 13 13 13 13 13 12 ■25-7 21-3 16-9 12-5 8-1 3-6 59-2 25 26 27 28 29 15 50 10 15 52 30 15 54 48 15 57 3 N.15 69 17 11 8-3 11 3-9 10 59-5 10 55-1 10 50-8 32 N.14 47 44 ■12 54-8 JUPITER. 447 MARCH, 1861. APRIX, 1861. MEAN TIME. MEAN TIME. Day of the Montl». GBOCENTBIO. _.D»y of the : Month.^ GEOOENTRIO. Apparent Decimation. Meridian Passage. Apparent' Declination. Meridian Passage, A'oon. Mon. 1: 2 3 o / /* N.15 59 17 16 1 27 16 3 36 h. 10 10 10 m. 50-8 46-4 42-0 1 2 3 N.l°6 43 39 16 44 12 16 44 40 h. 8 8 8 m. 39-2 35-2 31-1 4 5 6 16 5 42 16 7 46 16 9 45 10 10 10 37-6 33-3 28-9 4 5: 6 16 45 6 16 45 ■ 27 16 45 46 8 8 8 27-1 23-1 19-0 1 8 9 16 11 43 16 13 38 16 15 31 10 10 10 24-6 20-2 15-9 7 8 9 16 46 , 16 46 11 16 46 19 8 8 8 15-0 11-1 7-1 10 H 12 16 17 20 16 19 6 16 20 49 10 10 10 11-6 7-3 3-0 10 11 12 16 46 23 16 46 24 16 46 21 8 7 7 3-1 59-2 55-2 13 14 15 16 22 29 16 24 6 16 25 40 9 9 9 68'7 54-4 50-2 13 14 15 16 46 14 16 46 4 16 45 51 7 .7 7 51-3 47-4 43-5 16 17 18 16 27 11 16 28 38 16 30 2 9 9 9 45-9 41-7 37-4 16 17 18 16 45 34 16 45 14 16 44 50 7 7 7 39-6 35-7 31-8 19 20 21 16 31 22 16 32 40 16 33 54 9 9 9 33'2 29-0 24-8 19 20 21 16 44 23 16 43 52 16 43 18 7 7 7 28-0 24-1 20-3 22 23 24 16 35 4 16 36 11 16 37 15 9 9 9 20-6 16-4 12-2 22 23 24 16 42 41 16 42 16 41 16 7 7 7 16-5 12-7 8-9 25 26 27 16 38 15 16 39 12 16 40 5 9 9 8 8-0 3-9 59-8 25 26 27 16 40 29 16 39 39 16 38 45 7 7 6 5-1 . 1'3 57-5 28 29 30 31 32 16 40 55 16 41 41 16 42 24 16 43 3 N,16 43 39 8 8 8 8 8 55-6 51-5 47-4 43-3 39-2 28 29 30 31 16 37 48 16 36 48 16 35 45 N,16 34 39 6 6 6 6 53-8 50-0 46-3 42-6 448 JUPITER. MAY, 1861. jrviri:, isei. MEAN TIME. MEAN TIME Day of the Month. GEOOENTEIC. Day of GEOCENTEIC. Apparent Declination. Meridian Passage. the Month. Apparent Declination. Meridian Passage. Noon. Noon. 1 2 3 o / // N.16 34 39 16 33 29 16 32 16 h. 6 6 6 m. 42-6 38-9 35-2 1 2 3 o / // N.15 35 47 16 33 9 15 30 30 h. 4 4 4 m. 62-4 49-0 45-6 4 5 6 16 31 16 29 41 16 28 19 6 6 6 31-5 27-9 24-2 4 5 6 15 27 47 15 26 2 15 22 15 4 4 4 42-2 38-8 36-4 7 8 9 16 26 53 16 25 25 16 23 54 6 6 6 20-5 16-9 13-3 7 8 9 15 19 26 15 16 33 15 13 39 4 4 4 32-0 28-7 26-3 10 11 12 16 22 19 16 20 42 16 19 1 6 6 6 9-7 6-0 2-4 10 11 12 15 10 42 16 7 43 15 4 41 4 4 4 21-9 18-6 15-2 13 14 15 16 17 18 16 15 32 16 13 43 5 5 5 58-8 65-3 51-7 13 14 15 16 1 38 14 58 32 14 55 24 4 4 4 11-9 8-6 5-3 16 17 18 16 11 51 16 9 56 16 7 58 5 5 5 48-1 44-6 41-0 16 17 18 14 52 13 14 49 1 14 45 46 4 3 3 1-9 58-6 55-3 19 20 21 16 5 57 16 3 64 16 1 48 5 5 5 37-5 34-0 30-5 19 20 21 14 42 30 14 39 11 14 35 50 3 3 3 52-0 48-7 45-5 22 23 24 15 59 39 15 57 28 15 56 14 5 6 6 27-0 23-5 20-0 22 23 24 14 32 27 14 29 2 14 25 36 3 3 3 42-2 38-9 35-6 25 26 27 16 52 57 15 50 38 16 48 16 5 5 5 16-5 13-1 9-6 26 26 27 14 22 6 14 18 .35 14 15 2 3 3 3 32-4 29-1 25-8 28 29 30 31 32 15 46 51 15 43 24 15 40 54 15 38 22 N.15 36 47 5 5 4 4 4 6-2 2-7 59-3 55-8 52-4 28 29 30 31 14 11 27 14 7 50 14 4 11 N.14 31 3 3 3 3 22-6 19-3 16-1 12-9 JUPITER. 449 3VI.Y, 1§61. AIJOUST, 1861. MEAN TIME. MEAN TIME. GEOCENTEIC. GEOOENTBIO. Day of the Day of the Month. Apparent Declination. Meridian Apparent Declination. Meridian Month. Mon. Passage. Noon. Passage. 1 2 3 O 1 II N.14 31 13 56 48 13 53 4 h. 3 3 3 m. 12-9 9-6 6-4 1 2 3 N.ll 53 5 11 48 36 11 44 7 h. m. 1 34-3 1 31-1 1 28-0 4 5 6 13 49 18 13 45 30 13 41 40 3 3 2 3-2 0-0 56-7 4 6 6 11 39 36 11 35 4 11 30 32 1 24-8 1 21-7 1 18-6 1 8 9 13 37 49 13 33 55 13 30 2 2 2 53-5 50-3 47-1 7 8 9 11 25 68 11 21 23 11 16 47 1 15-4 1 12-3 1 9-2 10 11 12 13 26 4 13 22 5 13 18 6 2 2 2 43-9 40-7 37-5 10 ' 11 12 11 12 11 11 7 33 11 2 65 1 6-1 1 2-9 69-8 13 14 15 13 14 4 13 ■'■ 10 1 13 5 56 2 2 2 34-3 31-2 28-0 13 14 15 10 58 16 10 53 36 10 48 56 66-7 53-6 50-5 16 17 18 13 1 50 12 57 43 12 53 34 2 2 2 24-8 21-6 18-4 16 17 18 10 44 14 10 39 32 10 34 50 47-3 44-2 41-1 19 20 21 12 49 23 12 45 11 12 40 68 2 2 2 15-2 12-1 8-9 19 20 21 10 30 6 10 25 22 10 20 37 38-0 34-9 31-7 22 23 24 12 36 43 12 32 27 12 28 10 2 2 1 5-8 2-6 59-4 22 23 24 10 15 52 10 11 6 10 6 20 28-6 25-5 22-4 25 26 27 12 23 51 12 19 31 12 16 10 56-3 53-1 50-0 25 26 27 10 1 33 9 56 46 9 61 58 19-3 16-1 13-0 28 29 30 1 31 12 10 47 12 6 24 12 1 59 11 67 32 46-8 43-7 40-5 37-4 28 29 30 31 9 47 10 9 42 22 9 37 33 9 32 43 9-9 6-8 3-7 ( 0-6) 1 28 57 • 6 J 32 N.ll 63 6 1 34-3 32 N. 9 27 64 23 64-3 29 . 450 JUPITER. SEPTTBMBER 1§61. OCTOBER, 1§61. MEAN TIME. MEAN TIME. Day of the Month. GEOCENTRIC. Apparent Declination. Noon. Meridian Day of the Month. GEOCENTRIC. Declination. Noon. Meridian 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 N. 9 27 54 9 23 4 9 18 14 9 13 24 9 8 33 9 3 43 8 58 52 8 54 2 8 49 11 8 44 20 8 39 30 8 34 39 8 29 49 8 24 59 8 20 9 8 15 19 8 10 29 8 5 40 8 51 7 66 2 7 51 14 7 46 26 7 41 39 7 36 62 7 32 5 7 27 19 7 22 33 17 49 13 4 8 21 N. 7 3 38 h. 23 23 23 m. 54-3 51-2 48-1 23 45-0 23 41-9 23 38-7 23 35-6 23 32-5 23 29-4 23 23 23 23 23 23 26-2 23-1 20-0 16-9 13-7 10-6 23 7-5 23 4-4 23 1-2 22 22 22 22 22 22 58-1 54-9 61-8 48-6 45-5 42-3 22 39-2 22 36-0 22 32-9 22 22 29-7 26-6 22 23-4 22 20-2 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 N. 7 3 38 6 58 56 6 54 15 h. m. 22 20-2 22 17-1 22 13-9 6 49 35 22 10-7 6 44 55 22 7-6 6 40 17 22 4-4 6 35 39 22 1-2 6 31 3 21 68-0 6 26 27 21 54-8 6 21 53 21 61-6 6 17 20 21 48-4 6 12 48 21 45-3 6 8 17 21 42-1 6 3 48 21 38-8 5 59 19 21 35-6 5 54 52 21 32-4 5 50 27 21 29-2 5 46 3 21 26-0 5 41 40 21 22-8 6 37 19 21 19-6 5 32 59 21 16-3 5 28 41 21 13-1 5 24 25 21 9-8 5 20 10 21 6-6 5 15 66 21 3-3 5 11 45 21 0-1 5 7 35 20 56-8 5 3 27 20 53-5 4 59 21 20 50-3 4 65 17 20 47-0 4 51 15 20 43-7 N. 4 47 15 20 40-4 JUPITER. 451 NOTEMBER, 1861. DECBMBER, 1861. MEAN TIME. MEAN TIME. Day of the Month. GEOOENTEIC. Day of the Month. GEOCENTRIC. Afparent Declination. Meridian Passage. Apparent Declination. Meridian Passage. - Noon. ' Noon. 1 2 3 / // N. 4 47 15 4 43 17 4 39 21 L. m. 20 40-4 20 37-1 20 33-9 1 2 3 / // N. 3 6 30 3 3 55 3 1 23 h. m. 18 58'9 18 55-4 18 51-9 4 5 6 4 35 27 4 31 35 4 27 46 20 30-6 20 27-3 20 24-0 4 5 6 2 58 65 2 56 80 2 54 9 18 48-4 18 44-8 18 41-3 7 8 9 4 23 I59 4 20 14 4 16 32 20 20-6 20 17-3 20 14-0 7 8 9 2 51 51 2 49 38 2 47 27 18 37-7 18 34-2 18 30-6 10 11 12 4 12 52 4 9 15 4 5 40 20 10-6 20 7-3 20 3-9 10 11 12 2 45 21 2 43 19 2 41 20 18 27-0 18 23-5 18 19-9 13 14 15 4 2 7 3 58 37 3 55 10 20 0-5 19 57-2 19 53-8 13 14 15 2 39 25 2 37 34 2 35 47 18 16-3 18 12-6 18 9-0 16 17 18 3 51 46 3 48 24 3 45 5 19 50-4 19 47-0 19 43-7 16 17 18 2 34 4 2 32 25 2 30 50 18 6-4 18 1-7 17 58-1 19 20 21 3 41 49 3 38 36 3 35 25 19 40-3 19 36-8 19 33-4 19 20 21 2 29 19 2 27 52 2 26 29 17 54-4 17 50-7 17 47-1 22 23 24 3 32 17 3 29 13 ^ 3 26 11 19 30-0 19 26-6 19 231 2i 23 24 2 25 11 2 23 57 2 22 47 17 43-4 17 39-7 17 36-0 25 26 27 3 23 13 3 20 18 3 17 26 19 19-7 19 16-3 19 12-8 25 26 27 2 21 41 2 20 40 2 19 43 17 32-2 17 28-5 17 24-7 28 29 30 31 3 14 37 3 11 51 , 3 9 9 N, 3 6 30 19 9-3 19 6-9 19 2-4 18 58-9 28 29 30 31 32 2 18 50 2 18 2 2 17 19 2 16 40 N. 2 16 5 17 21-0 17 17-2 17 13-4 17 9-6 17 5-8 452 SATURN. 186] ■ AT GEEEITWICH MF,AN^ TIME. 1861. JANUARY. FEBRUARY. MARCH. APRIIi. GEOCENTRIC. QEOCENTBIC. GBOOBNTBIC. (JBOCENTMC. Day of the Day of the Day of the Day of the Meridian Meridian Meridian Meridian Month. Passage. Month. Passage. Month, Passage. Month. Passage. h. m. h. m. h. m. h. in. 1 15 59 4 1 13 52 1 1 11 53-9 1 9 43-9 2 15 55 4 2 13 47 9 2 11 49-7 2 9 39-8 3 15 51 4 3 13 43 7 3 11 45-5 3 9 35-7 4 16 47 3 4 13 39 5 4 11 41-2 4 9 31-5 5 15 43 3 5 13 35 3 5 11 37-0 5 9 27-4 6 15 39 2 6 13 31 1 '6 11 32-8 6 9 23-3 7 15 35 2 7 13 26 9 7 11 28-6 1 9 19-2 8 15 31 1 8 13 22 7 8 11 24-3 8 9 15-1 9 15 27 1 9 13 18 5 9 11 20-1 9 9 11-0 10 16 23 10 13 14 2 10 11 15-9 10 9 6-9 11 15 18 9 11 13 10 11 11 11-7 11 9 2-8 12 15 14 8 12 13 5 8 12 11 7-4 12 8 68-7 13 15 10 7 13 13 1 6 13 11 3-2 13 8 54-7 14 15 6 6 14 12 57 4 14 10 59-0 14 8 50-6 15 15 2 5 15 12 53 2 15 10 54-8 15 8 46-5 16 14 68 4 16 12 48 9 16 10 50-6 16 8 42-5 17 14 54 3 17 12 44 7 17 10 46-4 17 8 38-4 18 14 60 2 18 12 40 5 18 10 42-2 18 8 34-4 1 19 14 46 1 19 12 36 2 19 10 38-1 19 8 30-4 \ 20 14 42 20 12 32 20 10 33-9 20 8 26-3 ; 21 14 37 9 21 12 27 8 21 10 29-7 21 8 22-3 22 14 33 7 22 12 23 6 22 10 25-5 22 8 18-3 23 14 29 6 23 12 19 3 23 10 21-3 23 8 14-3 24 14 26 4 24 12 15 1 24 10 17-1 24 8 10-3 26 14 21 3 25 12 10 9 25 10 13-0 25 8 6-3 .26 14 17 1 26 12 6 6 26 10 8-8 26 8 2-3 27 14 13 27 12 2 4 27 10 4-6 27 7 58-3 28 11 58-2 28 14 8 8 28 10 0-5 28 7 54-4 29 14 4 6 29 11 53-9 29 9 56-3 29 7 50-4 30 14 4 30 9 52-2 30 7 46-4 31 13 56-2 31 9 48-0 31 7 42-5 32 13 52-1 32 9 43-9 SATURN. 453 1861 AT GEEENWICH MEAN TIME. 1861. MAY. JVIVE. JUI-Y. AUGUST. SEOCBNTEIC. 6E0CBNTEIC. GEOCENTRIC. GEOCENTRIC. Day of the Day of the Day of the Day of the Meridian Meridian Meridian Meridian Month. Passage. Month. Passage. Month. Passage. Month. Passage. h. m. h. m. h. m. h. m. 1 1 42-5 1 5 43-1 1 3 52-9 1 2 2-9 2 7 38-5 2 5 39-3 2 3 49-3 2 1 59-4 3 7 34-6 3 5 35-6 3 3 45-7 3 1 55-9 4 7 30-6 4 5 31-8 4 3 42-1 4 1 62-4 5 7 26-7 5 5 28-1 5 3 38-5 5 1 48-9 6 7 22-8 6 5 24-4 6 3 34-9 6 1 45-4 1 7 18-9 7 5 20-7 7 3 31-3 7 1 42-0 8 7 14-9 8 5 17-0 8 3 27-8 8 1 38-5 9 7 11-0 9 5 13-2 9 3 24-2 9 1 35-0 10 7 7-1 10 5 9-5 10 3 20-6 10 1 31-5 11 7 3-3 11 5 5-8 11 3 17-1 11 1 28-0 12 6 59-4 12 5 2-1 12 3 13-5 12 1 24-5 13 6 55-6 13 4 58-4 13 3 10-0 13 1 21-1 14 6 51-6 14 4 64-8 14 3 6-4 14 1 17-6 15 6 47-8 15 4 61-1 15 3 2-8 15 1 14-1 16 6 43-9 16 4 47-4 16 2 69-3 16 1 10-6 17 6 40-1 17 4 43-7 17 2 65-7 17 1 7-1 18 6 36-2 18 4 40-1 18 2 52-2 18 1 3-7 19 6 32-4 19 4 36-4 19 2 48-7 19 1 0-2 20 6 28-6 20 4 32-8 20 2 45-1 20 56-7 21 6 24-7 21 4 29-1 21 2 41-6 21 53-3 22 6 20-9 22 4 25-5 22 2 38-1 22 49-8 23 6 17-1 23 4 21-8 23 2 34-5 23 46-3 24 6 13-3 24 ,4 18-2 24 2 31-0 24 42-9 26 6 9-5 25 4 14-6 25 2 27-5 25 39-4 26 6 5-7 26 4 10-9 26 2 24-0 26 35-9 27 6 1-9 27 4 7-3 27 2 20-5 27 32-5 28 5 58-1 28 4 3-7 28 2 17-0 28 29-0 29 5 54-4 29 4 0-1 29 2 13-4 29 25-6 30 5 50-6 30 3 56-5 30 2 9-9 30 22-1 31 5 46-8 31 3 52'9 31 2 6-4 31 18-6 32 6 43-1 32 2 2-9 32 15-1 454 SATURN. 1861. AT GREENWICH MEAN" TIME. 1861. SEPTEMBER. OCTOBER. NOTEMBER. DECEMBER. GEOCENTEIC. SBOOEHTMO. OBOCBNTEIO. GEOCENTEIC. Day of the Day of the Day of the Day of the Meridian Meridian Meridian Meridian , Month. Passage. Month. Passage. Month. Passage. Month. ■ Passage. h. m. ' h. m. 1 h. m. h. m. 1 15-1 1 22 27-5 1 20 38-2 1 18 48-7 2 11-7 2 22 24-0 2 20 34-6 2 18 45-0 3 8-2 3 22 20-5 3 20 31-0 3 18 41-3 4 4-7 4 22 17-0 4 20 27-4 4 18 37-5 5 {d 1-3) 61' 8) 5 22 13-5 6 20 23-8 5 18 33-8 6 23 54-3 6 22 10-0 6 20 20-2 6 18 30-0 1 23 50-9 7 22 6-6 7 20 16-6 7 18 26-3 8 23 47-4 8 22 3-1 8 20 13-0 8 18 22-5 9 23 43-9 9 21 59-6 9 20 9-4 ; 9 18 18-7 10 23 40-5 10 21 56-0 10 20 5-8 10 18 15-0 11 23 37-0 11 21 52-5 11 20 2-2 11 18 11-2 12 23 33-5 12 21 49-0 12 19 58-6 12 18 7-4 13 23 30-1 . 13 21 45-6 13 19 54-9 13 18 3-6 14 23 26-6 14 21 42-0 14 19 51-3 14 17 59-8 13 23 23-2 15 21 38 -.5 15 19 47-7 15 17 56-0 16 23 19-7 16 Si 35-0 16 19 44-0 16 17 52 -/a 11 23 16-2 17 21 31-4 17 19 40-4 17 17 48-4 18 23 12-7 18 21 27-9 18 19 36-7 18 17 44-5 19 23 9-3 19 21 24-4 19 19 33-1 19 17 40-7 20 23 5-8 20 21 20-8 20 19 29-4 20 17 , 36-9 21 23 2-3 21 21 17-3 21 19 25-7 21 17 33-0 22 22 58-9 22 21 13-8 22 19 22-1 22 17 29-1 23 22 55-4 23 21 10-2 23 19 18-4 23 17 25-3 24 22 51-9 24 21 6-7 24 19 14-7 24 17 21-4 25 22 48-4 25 21 3-1 25 19 11-0 25 17 17-5 26 22 44-9 26 20 59-6 26 19 7-3 26 17 13-6 27 22 41-5 27 20 56-0 27 19 3-6 27 17 9-8 28 22 38-0 28 20 52-4 28 18 59-9 28 17 5-9 29 22 34-5 29 20 48-9 29 18 56-2 29 17 2-0 30 22 31-0 30 31 20 45-3 20 41-7 30 18 52-5 30 31 16 58-0 16 54-1 31 22 27-5 32 20 38-2 31 18 48-7 32 16 50-2 455 LATITUDES AND LONGITUDES OF PUBLIC OBSERVATORIES. %* The Longitudes are reckoned from the Meridian of Greenwich. Altona . Armagh . Athens . Berlin . Bilk . . Bonn . . Breslau . Brussels Bud A Cambridge . . Cambridge, U. S. Cape of Good Hope Christiania . . Copenhagen . . Cracow .... . Lat. 53° 32' 45"* 3 N. Gauss on the Latitudes of Gottingen and Altona, page 71. (Gottingen, 1828.) Long. 0'' 39"° 46' ■ 14E. Expedition Chronometrique executee mtreAltonaet Greenwich, <&c. (St. Petersburg, 1845.) • Loig. % 26" 1%''- 5 W: } Communicated by Rev. Dr. Eobinson. . Lat. 37° 58' 20" N. Ast. Nach. vol. xxxiii. page 197. Long, l"" 34" 55' • 7 E. Ergamungs-Heft zu den Ast. Nach. 1849, page 151. . Lat. 52° 30' 16"- 7 N. ) Berliner Astron. Jahrhuch, 1852, page Long. 0'' 53"° 35' -5 E. j 289. • tag. '5' 2?- I-"- 6 E^' f *'■ ""''■ "">'• """■ f^ '"■ • Sg.'? r; 2?": \ 1 1 ^■•- "'"'■ '«■■ ^-"i- «• "=■ . Lat. 51° 6' 56"- N. ) Berliner Astron. Jahrhuch, 1852, page Long, l"" 8" 10' -0 E. j 289. .Lat. 50° 51' 10"' 7 N. Annuaire de T Observatoire de Bruxelles, pour VAn 1837, pages 264 and 265. Long. O"" 17"° 28' • 90E. Communicated by G. B. Airy, Esq. . (Ofen.) Lat. 47° 29' 12"- 2 N. Mem. Ast. Sac. vol. i. page 280. Long, l"" 16"° 12' ■ 7 E. Zach's Corresp. Astron. vol. vii. p. 263. . Lat. 52° 12' 51"- 8 N. Camh. Phil. Trans, vol. v. p. 279. Long. O"" O" 23' • 54E. Camb. Phil. Trans, vol. iii. p. 168. .Lat. 42° 22' 49" 'E.\ Monthly Notices of the Royal Ast. Soc. Long. 4'' 44" 32' W. ] vol. vii. p. 157. . Lat. 33° 56' 3" S. Mem. Roy. Ast. Soc. vol. vi. p. 130. Long, l"" 13" 55' "0 E. Communicated by Mr. Henderson. , Lat. 59° 54' 42"- 4 N. Ast. Nach. vol. xii. p. 283. Long. O"" 42" 53' ■ 9 E. Berliner Astron. Jahrbuch,1852,Tp.289. . (University.) Lat. 55° 40' 53"- N. Ast. Nach. vol. v. page 366. Longk 0" 50" 19' • 8 E. Ast. Nach. vol. xix. page 120. .Lat. 50° 3' 50"-0 N. J««. iVacA. vol. xvi. page 256. Long, l"" 19" 51' • 1 E. Ast. Nach. vol. xvi. page 362 ; and vol. xviii. page 392. 456 LATITtJDES Airo LONGITUDES OF PUBLIC OBSEEVATOEIES. DORPAT . . . Dublin . . . Durham . . , Edinburgh . . Geneva . . . . . Lat. 58° 22' 47"- 1 N. Long. 1" 46"° 55" • E. . . Lat. 53° 23' 13" N. Long. 0'' 25" 22* W. . . Lat. 54° 46' 6"- 2 N. Long. O' 6"° 19* -IbW. . . Lat. 55° 5 V 23"- 2 N. Long. O"" 12°' 43' • 6 W. . . Lat. 46° 11' 59"- 4 N. ■:} Long. 0'' 24"° 37* ■ 1 E. Georgetown College, D. C. (U. S.) Lat. 38° 54' 26"- 1 N. Long. 5^ 8" 18" •15W. GoTHA , ,' . , . (Seeberg.) Lat. 50° 56' 6" N. Gottingbn . . Greenwich . . Hamburgh . . Kazan . . , KoNIGSBERG Krbmsmunster Leipsic . . . Letden . . . Liverpool . . Long. 0''42"56" -4 E. . Lat. 51° 31' 48" N. Long. O"" 39"° 46" • 6 E. , Lat. 51° 28' 38"- 2 N. Long. 0'' 0° 0" . Lat. 53° 33' 5"- N. Long. O"" 39" 54" ■ 1 E. Lat. 55° 47' 23"- 1 N. Long. 3^ 16" 26" -3 E. Lat. 64° 42' 50"- 7 N. Long, i^ 22" 0" • 5 E. Lat. 48° 3' 23"- 8 F. Long. O*" 56" 32' • 8 E. Lat. 51° 20' 20"- 1 N. Long. 0'' 49" 28' • 5 E. Lat. 52° 9' 28"' 2 N. Long. 0'' 17" 57' -5 E. Lat. 53 24' 47"- 8 N. Long. 0' 12" 0' -llW. Struve's Astronom. Observations, vol. vi. page 60. Bessel's Tabulce RegiomontancB, p. 2. • Ast. Nach, vol. x. page 274. Communicated by Prof. Chevallier. Ast. Soc. Wot. vol. iii. page 201. Mem. Ast. Soc. vol. iv. page 568. Memoire sur une nouvelle determination sur la Latitude de Geneve. By M. Gautier. (Geneve, 1830.) Ast. Nach. vol. xx. page 7. Annals of the Astronomical Observatory of Georgetown College, D. C. No. I. p. 2 1 5. Bo. Do. p. 186. Gauss on the Latitudes of Gbttingen and Altona, p. 80. BessePs Tabulce RegiomontancB, p. 2. Gauss on the Latitudes of Gottingen and Altona, p. 71. Bessel's Tabulce Regiomontanoe, p. 2. Greenwich Observations, 1843, p. Ivii. Ast. Nach. vol. vii. page 379. Berliner Astron. Jahrbuch, 1852, naffe 289. ^ ^ Ast. Nach. vol. xxviii. page 47. Conn, des Temps, 1855, page 376. Ast. Nach. vol. xxix. p. 72. BesseVs Tab. Regiomontanoe, p. 2. Ast. Nach. vol. xxxvii. p. 271. Ast. Nach. vol. xxxvii. p. 269. ) Berliner Astron. Jahrbuch, 1 852, paee j 289. ^ ^ Ast. Nach. vol. xvii. page 100. Communicated by J. Hartnup, Esq. G. B. Airy, Esq. 457 LATXTUDES AND LONGirUDES OF PUBLIC OBSEEVATOEIEB. Madras . , Manheim Marbubo Marseilles . Milan MODENA . Moscow . Munich , Naples . Nicol^ff Oxford . Padua Palermo . Paris . . . Petersburg Portsmouth Lat. 13° 4' 9"- 2 N, Long. 5''21" 3* -HE. Lat. 49° 29' 14" N. Long. 0''33°' 51" -4 E. Lat. 50° 48' 46"- 9 N. Long. 0'' 35" 5" • 6 E. Lat. 43° 17' 50"- 1 N. Long. 0" 21"° 29" • E. (Brera.) Lat. 45° 28' 1" N. Long. 0" se" i1' • 2 E. Lat. 44° 38' 53" N. Long. O"" 43° 43' • 2 E. Lat. 55° 45' 19"- 8 N. Long. 2" 30" 16" • 96E. (Bogenhausen.) Lat. 48° 8' 45" N. Long. O"" 46" 26' • 5 E. (Capo di Monte.) Lat. 40° 51' 46"- 6 N. Long. 0''5'7" 0" -3 E. J Taylor's Results of Astron. Obs. at the > Observatory, \o\. i. 1831, pp. 94, 95. ) (Madras, 1832.) ZacKs Corresp. Astron. vol. i. p. 193. Ast. Nach. vol. ii. page 398. ■ Ast. Nach, vol. xx. page 27. ZacKs Attraction des Montagnes, vol. ii. p. 591. Ast. Nach. vol. iv. p. 36. ZacKs Corres. Astron. vol. v. p. 300. Ast. Nach. vol. ix. p. 312. Effem. Astron. di Milano for 1829, pp. 94 and 60. Ast. Nach. vol. xxvii. page 215. Ast. Nach. vol. i. p. 221. Ast. Nach. vol. viii. p. 148. , Lat. 46° 58' 20"- 6 N. Long. 2'' 7" 55' • 1 E. Lat. 51° 45' 36"- N. Long. 0" 6" 2" • 6 W. Lat. 45° 24' 2" N. Long. 0'' 47" 29' • 2 E. , Lat. 38° 6' 44" N. Long. 0" 53" 25' • 6 E. Lat. 48° 50' 13" N. Long. 0" 9" 20' • 63E. (Academy of Sciences.) Lat. 59° 56' 29"- 7 N. Long. 2" l" 13' . 5 E. Lat. 50° 48' 3" N. Long. 0" 4" 23' ■ 9 W. Ast. Nach. vol. v. page 294. Communicated by M. Cacciatore to Captain B. Hall, R. N. Ast. Nach. vol. vii. p. 261. Ast. Nach. vol. vii. p. 306. t Compiunicated by M. J. Johnson, Esq. Ast. Nach. vol. V. p. 411. Ast. Nach. vol. iv. p. 347. Cacciatore, in Books 7 and 8 of Pal- ermo Observations. Communicated by M. Cacciatore to Captain B. Hall, R. N. Conn, des Temps, 1853, page 353. Communicated by G. B. Airy, Esq. ) Description de V Observatoire Astron. f Central de Poulhova, p. 292. ) Requisite Tables, 3d edit, (from Trig, j Survey.) 458 LATITUDES AITO LONGUTDES OF PUBLIO GBSEKTATpEffiB. Prague . . . . . Lat. 50° 5' 18"-5 N. ^««. iVacA. vol. viii. p. 198. Long. O"" S*?"" 41' • 9 E. ■ Asi. Nach. vol, iii. page 2«4,- PULKOWA . . . . Lat. 59° 46' 18"- 7 '^ . \ Description de V Ohservatoire Astron. Long. 2*" I^IS' .66Bi J • Genlml de Foulkova, ^p. 290. , BOME . . . . . . (Roman College.) T ^ .-,0^0/ ro// o Tvr ) -S/ew. deir Osserv. delV Universita Lfng.'jM9".54':?K| 'SrpTr.'^' '°"'''' ''"''' St. Fernando, near ) Lat. 36° 21' 45" N. Zach's Corresp. Astron. vol. xiv. pp. [ . 240-243. ,, Cadiz. Long. 0'' 24" 49' • 1 W. Ast. Nach. vol. ix. p. 358. Stockholm . :' -■! 't ; . , . , . . . Lat. 69° 20' 31"' N. Conn, des Temps, 1840, page 344. Long, l"" 12" 14' -8 E. Ast. Nach. vol. xi. p. 408. Turin . . . . . . (New Observatory.) Lat. 45° 4' 6" N. ) Communicated by M. Plana to Capt. Long. 0" 30" 48' • 4 E. j B. Hall, E.N. Upsala . ., . . . Lat. 59° 51' 50"- N. Conn des Temps, 1840, p. 344. Long, l"" 10" 34' • 8 E. Ast. Nach. vol. xi. p. 409. Venice . . . . . Lat. 45° 25' 49"- 5 N. ) Berliner Astron. Jdhrbuch, 1852, page Long. 0'' 49" 25' • 4 E. ) - 290. Vienna . . . . . Lat. 48° 12' 35" N. lAttrow's Astronomical Observations, Part viii. p. 124. Long, l"" 5" 31' • 9 E. Ast. Nach. vol. iii. p. 64. Warsaw . . . . . Lat. 52° 13' 5"-0 N .) Additions to Conn, des Temps, 1846, Long, l"" 24" 8' -5 E. j pp. 30, 31. Washington . . . (National Observatory.) , Lat. 38° 53' 38"- 6 N. ) Boy. Ast. Soc. Monthly Notices, vol. x. Long. 5" 8"12'-0W. j page 180. Wilna , . , . .Lat. 54° 41' 0" N. ^«^ iVacA. vol. iv. page 562. Long, l"" 41" 11' -g E. Ast. Nach. vol. viii. p. 96. 459 LATITUDES AND LONGITUDES OF PRIVATE OBSERVATORIES. Birr Castle . , . (The Earl of Eosse.) Lat. 53° 5' 4'7" N, Long. 0''31°'40' -QW, Bradstones . . . (W. Lassell, Esq.) (Liverpool.) Lat. 53° 25' 28" N. Long. O"- 11° 38" -IW. Hartwell .... |Dr. Lee.) Lat. 51° 48' 36" N. Long. O"" 3" 24' • 33W. Haverhill .... (W. W. Boreham, Esq.) Lat. 52° 5' 22"- 8 N. Long. 0" 1° 46' • 4 E. Kensington . . . (Sir James South.) Lat. 51° 30' 11"- 6 N. Long. 0'' 0*' 46' • 8 W. Markree . . . . (E. J. Cooper, Esq.) Lat. 54° 10' 36" N. ' Long. 0" 33" 48' • 4 W. Olmutz (Herr v. Unkrechtsberg.) Lat. 49° 35' 40" N. Long, l"" 9" 0' -1 E. Eedhill (R. C. Carrington, Esq.) Lat. 61° 14' 25"- 3 N. Long. 0'' 0"° 41' •25W. Regent's Park . . (George Bishop, Esq.) Lat. 51° 31' 29"- 9 N. Long. 0'' 0" 37' • 1 W. Senftenberg . . . (Baron v. Senl'tenberg.) Lat. 50° 5' 10" N. Long. 1" 5" 50' • 5 E. Stone (Atlesburt) . (Rev. J. B. Reade.) Lat. 51° 47' 5V"'-0 N. Long. O"" 3" 29' -09^^. Tarn Bank .... (Isaac Fletcher, Esq.) Lat. 54° 39' 13"- Y N. Long. 0" la" 44' •52W. Wateringburt . . (Rev. W. R. Dawes.) Lat. 51° 15' 12" N. Long. 0" I" 39' • 8 E. Wrotteslet Hall . (Lord Wrottesley.) Lat. 52^37' 2"- 3 N. Long. 0'' 8" 53" -blW. Communicated by the Earl of Rosse. Communicated by W. Lassell, Esq. Communicated by Dr. Lee. Communicated by W. W. Boreham, Esq. Communicated by Sir James South. Communicated ty E. J.'Cooper, Esq. Ast. Nach. vol. xxxvii. page 77. Communicated by R. C. Carrington, Esq. Communicated by George Bishop, Esq. Ast. Nach. vol. xxxi. page 173. Communicated by Rev. J. B. Reade. Communicated by Isaac Fletcher, Esq. Communicated by Rev. W. R. Dawes. Communicated by Lord Wrottesley. 461 DIRECTIONS FOR DEFINING THE POSITION OF SOME OF THE FIXED STARS AND CONSTELLATIONS, I FOR THE PURPOSES OF LATITUDE AND LONGITUDE. Ursa Majw, the Great Bear, is the most conspicuous Northern Constellation. There are seven bright stars in it between the first and third magnitudes. The two stars in the body most distant from the tail, are usually called the Pointers, from their pointing to the Pole Star, which is distant 29°. About 46° south from the Pole Star, and about 48° west of the northern pointer, bearing a little to the south, is Capella, and a line from the Pole Star through Capella will pass through Bir/r!, which is dis- tant from Capella 54°. A line running S. "W. from Capella will puss through the Pleiades, at the distance of about 28°, and nearly through Menkar, which is 23° dis- tant from that nebulous cluster. About 1^° E. b. S. from Capella is (3 Auriga, and nearly S. E. b. E., in a line between Benetnasch (the star in the point of the tail of the Great Bear) and Beneb (in the tail of the Lion), is Cor Caroli, distant from the latter 28°, and from the former 14^° ; a line S. W. from Cor Caroli will nearly pass through Arcturus, at the distance of 25°. About 19° E. N. E. of Arcturus is Alphacca, the brightest star in the Northern Crown. A line from Arcturus, through the northern part of the Crown, will point out Vega in Lyra, at the distance of 59°. E. N. E. of Vega is a Cygni ; these two latter stars, with the bright star a Aguilce, or Altair in the Eagle, form a long triangle. The middle bright star is Altair or a Aguilce, which is distant from Vega 34^°, and from a Cygni 3Y|°. From a Cygni, in a N. E. direction, and at the distance of 33°, is (i Cassiopeia, and southward of both stars, nearly at the same distance from both, is Scheat, in Pegasus ; these three stars forming a large tri- angle in the heavens. A little to the south of Scheat is Markab, or a Fegasi, in the constellation Pegasus ; the four bright stars, Scheat, Algenib, Alpheratz, and Markab, which is the most southerly, forming nearly a square. Cassiopeia is a remarkable con- stellation, five bright stars in it forming a kind of W, nearly at the same distance from the Pole Star as the Great Bear on the opposite side. A line from (3 Cassiopeia, and passing a Cassiopeia or Schedir, distant 5°, and forming the most southern angle of the W, and through Almaach, distant from Schedir 194°, will lead to the'little nebulous cluster Musca. About 13° W. S. W. of Almaach is Mirach, both in Andromeda; nearly E. from Almaach, at the distance of 12°, is Algol. N. N. E. of Algol, at 94° distance, is Algenib; a line from Algenib through ^Zyo/ will intersect Musca; Algenib, Musca, and the Pleiades, which are a little to the E. of Musca, will form a long triangle. Fixed Stars in ob near the Zodiac. Nearly S. E. b. E. from the Pleiades, at the distance of 1 4°, is the bright red-looking star Aldeharan, in the constellation Taurus ; the large star on the left is Aldebaran. 16° in a S E direction from this star is the beautiful constellation Orion. The two principal star's in Orion's shoulders are Bellatrix, which is 16° from Aldebaran, and 4:62 DIEECTIONS FOE FINDING LATITUDE AlTD LONGITUDE. Betelgeux, -which is 74° from Bellatrix^ In a S.W., direction, at 10° distance, are three stars of the second magnitude, neiarl3rin a line with each other, called Orion's Belt ; a line from Betelgeux through the middle star in the belt, will pass close to Rigel, which is 19° distant from Betelgeux. A line S. E. through the three stars in the.belt, will cross (Smw, the Dog Star, one of the most brilliant ili the heavens-; at 23°' dis- tance from the centre star in the belt; N. E. of' Sirius, at the distance of 23°, is Fro- cyon. Sirius, Procyon, and Betelgeux form an equilateral triangle, and the two first being of the first magnitude, are easily recognized. A line from Procyon nearly N. will intersect Pollux, distant 22i° ; and 5° N. W. of Pollux is Castor. As you look N. W. is Castor on the left, and Pollux on the right. 37° E. b. N. from Procyon is Regulus, in the constellation Leo ; the large star on the left is Megului, and that on the right is Deneb. A line from Procyon through Regulus will pass through Deneh, or fi Leonis, and nearly in the same line is Arcturus, 35° from jDeneh ; S. E. 36° from Deneh is Spica, in the constellation Virgo ; the great star on the right hand is Spica ; this bright star, Arcturus, and Deneb, are nearly equidistant from each other, and form a large triangle. A line from Regulus throngla Spica will pass to the south of Antares, distant from the latter 454°. Antares is the largest star in the constellation Scorpio, which appears in the heavens under this figure. About 14° N. E. b. E. from a Aquilce, already mentioned, is the constellation Delphinus, known by four bright stars, close together. Nearly S. E. from a Aquilce, and at the distance of 584°, is Fomalhaut, in the con- stellation called Pisces, or the Southern Fish. A line from a Aquilce through Del- phinus will nearly cross Scheat, at the distance of 484°. 13° S. from Scheat is Markab ; 14° due E. from Scheat is Alpherate ; and nearly directly S. of Alpheratz, distant 14°, is Algenib ; these four bright stars forming nearly a square. Nearly in a line bet-ween Menkar and Pleiades is Arietis, in the constellation Aries. Southern Fixed Stars. A line from Aldeharan through Rigel will nearly cross a Cofo?re6ce, distant from the latter 264°, andi carried a little further, will pass Canopus, distant from Rigel 46°. Canopus is likewise nearly S. of Sirius, at the distance of 364°. A line from Betel- geux through Sirius, at 73° distance from the latter star, is the beautiful Southern Cross, consisting of four bright stars, and well known to all who have navigated to the south. 10° E. from the centre of the Cross is j3 Centauri, and a few degrees further E. is a Centauri, both stars of the first magnitude, and easily mistaken for one another. To the E. of a Centauri, at the distance of about 42°, is Pavo, in the constellation Pavo ; and about 40° E. of Pavo is Achernar. As the earth, besides its annual revolution around the sun, makes a daily rotation upon its axis, the same alteration in the aspect of the heavens which may be observed in the period of a year, also takes place in the course of every twenty-four hours. The Planets. The planets for obtaining the Latitude arid. Longitude are easily distinguished from the fixed stars by their steady light, as they never, like the latter, twinkle, except when near the horizon. Mars may be known by ruddy complexion ; Jupiter commonly ap- pearing larger and refulgent ; Saturn of a pale cast and feeble light, and somftimes resembling a star of the first or second magnitude. Stars in distance for Lunar observations, will be perpendicular with the moon's horns, and their names can be ascertained by the lunar distances in our Almanac W. standing for west, and E. for east — then those stars or planets marked W. (for the day of the month you are on) are to the west of the moon, and those with an E, to the east. Pegasi, Aldebaran, Pollux, Regulus, Fomalhaut, and Arietis are Lunar Stars. DIEEGmONS FOK> BINDmG LATITUDE AND LONGITTJDE. 463 DEFINITIONS. The Horizon. — The visible horizon is that which is seen while the eye is elevated above the surface ; and the sensible is that which is seen when the eye is on a level with the water. The depression of the former below the latter is called the dip of the visible horizon. Terrestrial and Celestial Equators. — The Terrestrial Equator is a great circle sup- posed to be described around Ihe earth, at an equal distance, or 90 degrees from the poles, dividing the globe into two equal parts; the part to the southward of the equator being called the southern hemisphere, and that to the northward the northern hemisphere. The Celestial Equator, commonly called the Equinoctial, is an imaginary circle de- scribed in the heavens, corresponding to and coinciding with the sun's equator and poles. Declination of a Celestial Object. — The declination of any celestial object is its dis- tance north or south from the Equator, and is measured by that portion of the celestial meridian which is intercepted between the center of the object and the equator. Zenith and Nadir. — The Zenith is that point in the heavens which is directly over the observer's head ; and the Nadir that which is opposite to it — under his feet. Vertical Circles. — Vertical Circles are circles supposed to be described in the heavens perpendicular to the horizon, and meeting at the Zenith. They are sometimes called circles of altitudes, circles of azimuths, and prime vertical circles. Altitudes. — The Altitude of an object is that portion of a vertical circle which is in- tercepted between the center of the celestial object and the horizon. Zenith Distance. — The Zenith Distance of a celestial object is equal to that portion of the vertical circle which is intercepted between the center of the object and the ob- server's zenith. It is always equal to the complement of the altitude, or 90 degrees. Azimuths. — The Azimuth of an object is its true bearing, east or west, of its nearest meridian. It is always equal to that portion of the horizon which is intercepted be- tween the vertical circle passing through the center of the object and the meridian of the place of observatien. Prime Vertical Circle. — The Prime Vertical Circle is the circle which passes from the zenith due east or west, having 90 degrees of the horizon intercepted between it and the meridian. All objects on this circle are said to be on the prime vertical. Tropics The Tropics are two circles supposed to be described parallel to the equator at the distance of about 23° 27' 30", equal to the highest declination. The northernmost is called the Tropic of Cancer, and the southern the Tropic of Capricorn, or the sun's north and south hemispheres. Eight Ascension. — The Eight Ascension of a celestial body is that portion of the eqmnoctial which is intercepted by a celestial meridian passing through the center of the body and the first point of the ecliptic. It is generally given m time. Right Ascension of the Meridian. — The Right Ascension of the Meridian is that part of the equinoctial that comes to the meridian with the object, measured from the first point of Aries. Twilight. — Twilight is before and after sunrise and setting. Befracticm. — Refraction is a quantity by which a body appears above its true place in the heavens. Parallax. — Parallax is the diflference between an altitude taken at the surface of the earth, and that taken at the center at the same time. When the object is on the horizon, it is called the horizontal parallax ; but in any other case it is called the par- allax in altitude. Time. — Time is measured by the apparent motion of a celestial body over the sur- face of the globe, and is called Solar, Lunar, or Sidereal, according to. the body with which it is referred ; a full revolution of either of these objects is called its apparent day, and begins when the object comes to the meridian; but for the. convenience of civil and commercial business, that of the sun, called solar or civil time, is from mid- night to midnight, the first twelve hours of which are marked A. m., signifying ante meridian, and the last twelve hours p. m., signifying . post meridian. ■ In this and the following mode of keeping time, the day is dated as soon as it commences. Astronomical Bay. — This day is also measured by the apparent motion of the sun ; but for the convenience of astronomical computations, it is taken to begin at noon — that is, twelve hours after the beginning of the civil day — and end at noon of the fol- lowing day. Astronomers generally reckon the hours of this day up to twenty-four hours, without any distinction of ante or post meridian, which they call astronomical time ; hence the first twelve hours of which are the p. m. hours of the civil day on which it begins, and the last twelve hours of it are the a. m. hours of the day on which it ends. The Nautical Day. — This day, as well as the civil and astronomical day, is meas- ured by the apparent motion of the sun. It begins just with the astronomical day, but it is dated with the noon on which it ends ; hence it is twenty-four hours in date later than the astronomical day — the first twelve hours of which are marked in the journal with p. m., and the last twelve hours with a. m., so that occurrences which happen on the afternoon of the civil day on which it begins, come in the journal under the date of the civil day in which it ends. The Log-Book is generally kept in Nautical or Sea Time, but it may be kept in Common or Civil Time.* Equation of Time. — From the eccentricity of the earth's orbit, and the course of the earth round the sun, the meridians are not the same throughout the year ; hence the apparent time deduced by observations or sun-dial is irregular, and requires to be corrected. When time is deduced from observations of the sun, moon, or star, the immediate result is apparent time ; to convert it into mean time, the equation of time is neces- sary, and it is to be applied to the apparent time according to the direction at the head of its column. At page 106, for the month of August, we observed at the head of the column, ^uV°m i 'w^tich signifies that a change of declination occurs at the end of the month ; and between the equations opposite the 31st of that month and the 1st of September, a * There is no reason why this absurd system of keeping Sea Time should be continued, because it is just as easy to keep Civil Time, oommeueing the day at midnight, and the day's work could still be reckoned from noon to noon, as before. The only dilference would be, that one half of it woulll ap- pear in the preceding day's log (where it really belongs), and the other half in the following. Many logs are now kept on this principle. DtRECTIONS FOB FINDING LATITUDE AND LONGITUDE. 465 black line indicates that the change occurs between the apparent noons of those days. The upper direction applies to all the quantities above the black line, and the lower direction to all the quantities below it. Polar Distance of any celestial object, is an arch of a meridian, contained between the center of that object and the pole of the equinoctial ; or, in other words, it is the distance of the object from the elevated pole. Aberration. — An apparent change of place in the fixed stars, which arises from the motion of the earth combined with the motion of light. Aphelion. — That point in the orbit of a planet in which it is at its greatest distance from the sun. Apogerni.—ThaX point in the orbit of a planet in which it is at its greatest distance from the earth. Dish of the Sun or Moon is its round face, which, on account of the great distance of the object, appears flat, like a plane surface. Diurnal. — Diurnal motions of the planets are the spaces they move through in a day. Mongation. — The angular distance of a planet from the sun, as it appears to us upon the earth. JEmersion. — The time when any planet which is eclipsed begins to recover its light again. Immersion. — The moment when an eclipse begins, or when a planet enters into a dark shadow. lAbration. — An apparent irregularity of the moon's motion, which makes her appear to librate about her axis in such a manner that parts of her eastern and western limbs becomes visible and invisible alternately. Penumbra. — A faint shadow which accompanies an eclipse, and occasions a partial obscurity of the body to that part of the earth on which it falls. Perigeon. — That point of a planet's orbit in which it is at its least distance from the earth. Perihelion. — That point of a planet's orbit in which it is at its least distance from the sun. Phases. — The several appearances of the moon and planets, according as a greater or less part of their illuminated hemispheres are presented to our sight. 30 466 DIEECTIONS FOE FINDmG LATITUDE AND LONGITUDE. To KNOW WHETHER THE TiME BT ChEONOMETEE IS P. M. OR A. M. AT Geeenwich. To the time of observation by watch, add the longitude of the ship in time if west, and subtract it if east, and the sum or difference will be the mean time at Greenwich. This, if less than twelve hours, will show the chronometer to be P. M. at Greenwich ; but if more than twelve hours, the hours on the chronometer will be A. M. at Greenwich. EXAMPLES. February 22, 1858, when the time by chronometer was Ih. 30m. 35s., and in longi- tude 140° west, at 4h. 10m. 3Ss. p. m. by watch ; required whether it be a. m. or p. m. at Greenwich. Longitude of ship 140°* Time at ship 4h 10m 35s 4 Longitude in time ... 9 20 add 60)560(9h20m Time in Greenwich ... 13 30 35 equal Ih 30m 35s A. M. July 4, 1858, time by chronometer 9h. 40m. 15s., in longitude 160° east, at 8h. 20m. 15s. A. M. by watch ; required whether it is a. m. or p. m. at Greenwich. 160° Time from tlie face of the watch, A. II. . . . 8h 20m 15s 4 Add ; 12 for A. M. 60 ) 640 ( lOh 40m Time at ship by watch 20 20 15 A. M. Longitude of ship in time , 10 40 subtract in B. longitude Time at Greenwich 9 40 15 P. ii. Observe, that as only twelve hours are given on the face of a chronometer, it shows only the time after noon or after midnight ; therefore, when it shows A. m. at Green- wich, add 12 hours to it, and yoii will have the time since the preceding noon. If it shows p. M. at Greenwich, the noon of the present day will be the ■ preceding noon at Greenwich ; for which the smCs declination must he found,, and corrected for the hour at Greenwich after that noon, wheti finding the longitude by chronometer. N. B. — This method of reckoning time is out of place with common sense. A uni- form method of reckoning time should be adapted for all purposes. To FIND THE Longitude by Cheonometee feom an Obseeved Altitude of THE Sun. RULES. Take an altitude, or several altitudes of the sun, when it bears as nearly east or west as possible, but generally not less than three hours distant from the meridian,f noting by chronometer the corresponding times ; of these altitudes and times take their * To turn longitude into time, multiply degrees by 4 and divide by 60 (if above), will give hours and minutes ; multiply miles by 4 will give seconds. ■)• When the latitude and declination are of contrary names, the best time to observe is when the object is. between 6° and 10° high. DIRECTIONS FOE FINDING LATITUDE AND LONGITUDE. 467 To the mean of the times of observation, apply the original error — that is, add what the chronometer was too slow, and subtract what it was too fast for Greenwich time — gives the time by chronometer corrected for the original error. Multiply the daily rate by the number of days and parts of a day that have elapsed since the rate was ascertained, gives the whole accumulated rate ; which add to the above corrected time, if the chronometer be losing, and subtract it, if gaining, gives the true Greenwich time by chronometer. Tate out the sun's declination and the equation of time for the preceding noon from this Almanac, and reduce them to mean time by the " Diff. for 1 hour," in the next column to them ;* also find the sun's polar distance.f Then, with the true altitude of the sun, the true latitiide of the ship, and the sun's polar distance, the trne time at ship is readily ascertained ; the difference between which and the true time at Greenwich is the longitude of the shipj at the time of observation (in time), which will be east, if the time at ship be greater than the Greenwich time, and west, if it be less. EXAMPLE s. August 19, 1858, the following altitudes of the sun and corresponding time was ob- served. Eequired the mean of each ! Altitudes. 40° 07' 43 57 43 44 Times. 6° 58' 40" P. M 6 59 36 7 00 1 Number of observations . Mean of altitudes . . . . 3 ) 131 48 43 56 3)20 58 17 6 59 25 Mean April 5, 1868, in latitude 48° 45' N., at p. m., the mean of several obs. altitudes of the sun's lower limb was 9° 5' 42", and that of the corresponding times 9h. 38m. 54s. p. M. by a chronometer, whose error and rate had been determined at noon, January 1, when it was found to be 4m. 40s. too fast for Greenwich time, and gaining Is. 8-tenths daily ; height of the eye above the level of the sea 20 feet. Eequired the longitude of the ship ? * Tliis method of correcting the declination and equation for the Greenwich time by the " Di£f. for 1 hour," from the Nautical Almanac, is much easier and more correct than the old method of correct- ing by tables. If it is near noon at Greenwich, or the " Difif. for 1 hour" is small, we see at once that no correction is required. \ If the latitude of the ship m. ito4N. 2iN. 2to4N, 3 N. 2iN. 3t Febraary 2 10 1 2 1 5 6 2S. 3 H i 1 1 li 4* March . 2\ 8 &i 2 1 b 5^ 1 2 1 i ^ 1^ u 31- April . 4 9 6 4 8 5i 5* 2 ii 1 2^ H u 41 May. . 5 10 7 a 1 6 H IN. 4 U 4 3 2* 3* June '7 13 9 1 12 9 9 1 5 3 5 3 3 fi- July. . 8i 15 12 11 14 12 12 1 6 4 1 5 3 3 8* August . 11 15 13 11 14i 13 13 3 5 4 1 4 2^ H 9» September 9 14 Hi 11 14 12 11* 2 4 3i 1 3 2 3 84 October . 7i 13 10 8^14 10 10 2 5 3 1 5 3 3 7 November 6 11 9 7 7 8 3 4 n 3 5 4 3* 4+ December 5 1 6 3 6 5 5i 1 4 2i 1 4i 4 3* 2i * If the latitude of the ship is not known in working for the time, the longitude will be far from the truth, and previous to the introduction of "Sumner's Method," the "Chronometer Sights" were Considered worthless, unless the latitude could be obtained ; but by his method, a ship's position may be found, if two altitudes (within an hour or more of each other) can be observed for the longitude by .chronometer, although. the latitude may be considerably in error. This work will be found a valuable ■assistant to the navigator, especially in high latitudes, when the observations for latitude are generally uncertain. \ Difierence of the two Mean Limits of N. E, and S. E, Trades. DIEECTIONS FOE FINDING LATITUDE AND LONGITUDE. 471 The preceding observations are rather few in number for some months to obtain a correct mean ; but the first column, showing the extreme limits of each, will be most useful to refer to, as it marlvs the situation where the Trades may reasonably be ex- pected to fail or commence. The numbers in the last column are the space of variable winds, etc., between the limits of the trades. The column of means exhibit* the limits experienced by numerous vessels. Calms and variable winds are also experienced during every month in the year in the space between the trades; the former seldom continue long, the vicinity of the N. E. trades being most liable to them. Sudden squalls often follow calms, which must be observed with care, as they give very little warning. They are some- times accompanied with whirlwinds, in their first resistance against the resisting at- mosphere, and will blow strong for one or two hours. The S. W. and W. S. W. winds, with much rain, often prevail in July and August, and sometimes in June and September, blowing towards the coast of Guinea, and some- times as far north as the Cape Verd Islands. These are called by the Guinea traders the Western Monsoons. Gebat Ciecle SAILmG. An arc of a great circle is the shortest distance between any two places. The paral- lels of latitude are small circles that divide the globe into two unequal parts. If two places are situated exactly opposite to each other on different sides of the Atlantic, both being on the same parallel of N. latitude, the shortest way to go from one to the other, is not to sail due E. or W., but to direct your course from the first half a little N. of E. or W.J and then again curving down to the S., describing the arc of a great circle, uniting the two places, and the further N. or S. the two places are, the greater will be the gain by sailing in a great circle. Between New York and England it makes a difference of one hundred miles, if N. of 45° ; if S. of 45°, no saving, but a loss of dis- tance. Latitude by the Polak Stae. Of all the heavenly bodies, the Polar Star is best calculated for finding the latitude in the northern hemisphere ; because a single altitude, taken at any hour of the night by a careful observer, will give the latitude to a sufiicient degree of accuracy. This is true if you measure the altitude where it is without horizon by the altimeter. The Baeometee. This useful instrument being of leading importance to the mariner for measuring the weight of the air, and the variations of its pressure, in order to determine the changes in the weather, the heights of mountains, etc., we insert the following valuable directions by Mr. Patrick : The changes of the weather seldom produce a variation in the height of the mer- cury which passes the limits of 28 and 31 inches, which is therefore a sufficient length for the graduated scale, but to use the barometer as a weather-glass, several particulars must be attended to : , . j, „. 1st. The rising of the mercury presages, in general, fair weather, and its falling, the contrary — as rain, snow, high winds, and storms. 2d. In very hot weather, the falling of the mercury indicates thunder. 472 DEBECTIONS FOB FINDING- LATITUDE AND LONGITUDE. 3d, In'winter, the rising presages frost ; and in frosty weather, if the mercury falls three or four divisions (tenths of an inch), there certainly will follow a thaw ; but in a continued frost, if the mercury rises, there will be snow. * 4th. When foul weather happens soon after the fall of the mercury, expect but little of it ; and, on the other hand, little fair weather may be expected, when it becomes quickly fair after the rising of the mercury. 5th. In foul weather, when the mercury rises much and high, and so continues two or three days before the foul weather has gone away, then a continuance of fair weather may be expected. 6th. In fair weather, when the mercury falls much and low, and continues so for two or three days before the rain comes, then a great deal of wet and high winds may be expected. Tth. The unsettled motion, or frequent rising and falling of the mercury, denotes changeable weather. 8th. The words on the plates are not so strictly to be observed as the rising and falling of the mercury, for if it stand at " Much Rain," and then rise to " Changeable," it presages fair weather, though not to continue so long as though the mercury had risen higher; and so, on the contrary, if the mercury stand at "Fair," then fall to " Changeable," it presages foul weather, though not so much as if it had sunk lower. From this it appears that it is not from the point at which the mercury may stand that we are to form a judgment of the state of the weather, but from its being in a state of rising or falling ; therefore it is necessary to attend to the following directions : 1st. If the mercury is in a rising state, it stands higher in the middle of the tube than at the sides. 2d. If the middle is hollow, it indicates its fall. 3d. If level, it is steady. 4th. Before observation, gently tap the barometer near the top, as the mercury will occasionally, where the tubes are small, slightly hang to the sides of the glass, and prevent its predicting any very delicate change which may have taken place in the air. The following explanation of the scale and vernier, and examples to show the man- ner of reading them, may be of use : The scale is divided into inches and tenths, and again, by means of the vernier, sub- divided into hundredths of an inch ; the observations are, therefore, better made from the figures than the words. Example 1. — Suppose the mercury to stand nearly a tenth above 30, turn up the vernier till the top stands even with the surface of the mercury, and observe which of its divisions or figures exactly coincides with any one of the divisions on the barometer scale ; suppose 9 on the vernier to agree with one of the lines, the height of the mer- cury as then shown will be 30 in. '09 — that is, 30 inches and 9-hundredths of an inch from the level of its surface in the cistern. Example 2. — Suppose the mercury to stand a little below the 30, but not a tenth below, set the top of the vernier level with the mercury, and suppose 6 on the vernier to coincide with one of the lines on the barometrical scale, the height of the mercury will then be 29 in. '96 (hundredths), or rather more than gi^-tenths above 29 inches. The greatest height of the mercury is observed when an easterly or northerly wind prevails. Within the tropics and near them, it does not vary more than from 1 to 3- tenths ; this being the case, greater care should be taken in noticing the observations. THE END. Sal :' ErStTrincipleE Tor (indiug ]iOn£;ilDile li.v dlrolionjetor liine on iiUpautii ol' ihi' CHoljp. _ . Any Hvo of till' Fiw/I .llur.v Tteiiii/ jiei/jiiiilj'mftn- rn i'iir7i oflirv im. or iiriirHie Eipintor: lieaiiiig ihic gautli, rinislitiile prrlhl JUiniifimt Hn- HiitNii// Imijitiiili' mice in 21 IwurxJ') all jiin-ts ofilie Einili As ilhislimird liy llm lUvii-i The Sini on Jlfj-i'ilift// , •J/fljT'i'. ,^-''^ '^ I ' • • ITtpJSmllis motion on lier ti.vis thnn Wext To East is I mimitn- to iiDenree, or Jo /)fi/vi-rs Ki llic Horn- .The Meiiilian- 1 • . . ; . pnnsiiijt' nf the !sini,2Iooii.or S,tiirx,ut (ieeemvirh formsn Htaiiihiril liy Chionovierritimi' ot tirmim'eh liie Jhuliiiy Lmi- -tlititdf on onv vart oC ihf Glohp Itsdj^ .10 tSD^ fiiifiias dfilS luw ofj i>j.itidsiiiuj[ ilijiii.ioj[ ,//// tu Jiuif .i,it'£ . ffmpni/ JO poi/fnii tJa.uo3 v SJ/iiiitslutJ '.lvj.^ J[0^ ^l-l-OS <>ill MOl^q .lo ,),u>i/n .miy pj.vtf n-jo .ilioxxnd nnifiUJiif ;■ *■ ■Aa^ii.fiiii'il^iiutliM/jf-Ji/t m.ivig' <>loj;.tip oi^spinlS n-uu-u '■ .addiy .m ■.luCuui-VRij \ ■■* J^ f^ nM n> mm'^iMrim :u Hi