POCKET COMPANION fcgv CARNEGIE STEEL COMPANY PIT tsburgh; pa. .■"■'■ Jttjara, New fork TW^VslVaheT Cornell University Library TA 684.C28 Pocket companion for engineers, architec 3 1924 004 696 245 The original of this book is in the Cornell University Library. There are no known copyright restrictions in the United States on the use of the text. http://www.archive.org/details/cu31924004696245 POCKET COSTFftNf©N FOR ENGINEERS, ARCHITECTS AND BUILDERS CONTAINING USEFUL INFORMATION AND TABLES APPERTAINING TO THE USE OF STEEL MANUFACTURED BY CARNEGIE ^TEEL 1 COMPANY Copyright 1920 by Carnegie Steel Company Pittsburgh, Pa. THE first edition of Carnegie Pocket Companion appeared in 1872 and was issued by Carnegie, Kloman & Company, Pro- prietors, Union Iron Mills, Pittsburgh, Pa. Immediately on its appearance this book became indispensable to users of structural iron. More than any other single publication this book and its successive editions have served to advance the interests of standardization in structural practice. Since July 1896, about 254, 000 copies have gone into the handsof engineers, architects and builders. So far as practicable each successive edition has been placed abreast of the most approved methods in structural design. Each successive edition, therefore, records the stages of development in the manufacture of structural steel and its fabrication into bridges, buildings, cars and ships. • The sections illustrated in the profiles and tables are those deemed most suitable for use in bridge, building, locomotive, car and ship construction. A complete list of all the sections rolled by Carnegie Steel Company, together with tables of weights and other data in regard to these products, is given in Shape Book. CARNEQIE STEEL COMPANY AMERICAN SOCIETY FOR TESTING MATERIALS PHILADELPHIA, PA.', U. S. A. AFFILIATED WITH THE International Association for Testing Materials STANDARD SPECIFICATIONS FOB STRUCTURAL STEEL FOR BRIDGES Serial Designation: A7-16. These specifications are issued under the fixed designation A 7; the final number indicates the year of original adoption as standard or, in the case of revision, the year of last revision. Adopted, 1901; Revised, 1905, 1909, 1913, 1914, 1915, 1916. 1. steel Castings. The Standard Specifications for Steel Castings (Serial Designation A-27) adopted by the American Society for Testing Materials shall govern the purchase of steel castings for bridges. Unless otherwise specified, Class B castings, medium grade, shall be used. I. MANUFACTURE 2. Process. The steel shall be made by the open-hearth process. II. CHEMICAL PROPERTIES AND TESTS 3. Chemical Composition. The steel shall conform to the following requirements as to chemical composition: Stbucttibal Steel Rivet Steel _, , f Acid not over 0.06 per cent not over 0.04 per cent Phosphorus " [Basic " " 0.04 " 0.04 " Sulphur " " 0.05 ' .045" i 4 A. S. T. M.— STRUCTURAL STEEL FOR BRIDGES 4. Ladle Analyses. An analysis of each, melt of steel shall be made by the manufacturer to determine the percentages of carbon, manganese, phosphorus and sulphur. This analysis shall be made from a test ingot taken during the pouring of the melt. The chemical composition thus determined shall be reported to the purchaser or his representative, and shall conform to the requirements specified in sec. 3. 5. Check Analyses. Analyses may be made by the purchaser from finished material representing each melt. The phosphorus and sulphur content thus determined shall not exceed that specified in sec. 3 by more than 25 per cent. III. PHYSICAL PROPERTIES AND TESTS 6. Tension Tests, (a) The material shall conform to the follow- ing requirements as to tensile properties: Properties Considered Structural Steel Eivet Steel Tensile strength lb. per sq. inch Yield point, min lb. per sq. inch Elongation in 8 inches, min per cent Elongation in 2 inches, min per cent 55,000-65,000o 0.5 tens. str. 1,500,0005 tens. str. 22 46,000-56,000 0.5 tens. str. 1,500,000 tens. str. a See par. (o). b See sec. 7. (b) In order to meet the required minimum tensile strength of full-size annealed eye bars, the purchaser may determine the tensile strength to be obtained in specimen tests, the range shall not exceed 14,000 lb. per sq. inch and the maximum shall hot exceed 74,000 lb. per sq. inch. The material shall conform to the requirements as to physical properties other than that of tensile strength, specified in sec. 6, 7 and 8 (6). (c) The yield point shall be determined by the. drop of the beam of the testing machine. 7. Modifications in Elongation, (a) For structural steel over % inch in thickness, a deduction of 1 from the percentage of elongation in 8 inches specified in sec. 6 (a) shall be made for each increase of J^inch in thickness above % inch to a minimum of 18 per cent. (6) For structural steel under s Ae inch in thickness, a deduc- tion of 2.5 from the percentage of elongation in 8 inches specified in sec. 6 (a) shall be made for each decrease of %e inch in thickness below %e inch. CARNEQIE STEEL COMPANY 8. Bend Tests, (a) The test specimen for plates, shapes and bars, except as specified in par. (6), (c) and (d), shall bend cold through 180 degrees without cracking on the outside of the bent portion, as follows : For material % inch or under in thickness, flat on itself; for material over % inch to and including 1J4 inch in thickness, around a pin the diameter of which is equal to the thickness of the specimen; and for material over 1}^ inch in thickness, around a pin the diameter of which is equal to twice the thickness of the specimen. (6) The test specimen for eye-bar flats shall bend cold through 180 degrees without cracking on the outside of the bent portion, as follows: For material M inch or under in thickness, around a pin the diameter ot which is equal to the thickness of the specimen; for material over % inch to and including 1J<£ i nen m thickness, around a pin the diameter of which is equal to twice the thickness of the specimen; and for material over 1J£ inch in thickness, around a pin the diameter of which is equal to three times the thickness of the specimen. * — -About 3 *> Parallel section 1, not less than 9 ! ■+■*+- ■2/2 ** - -I- -wetc.*<^[tl * - 18-- - FlGTJBB 1. (c) The test specimen for pins, rollers and other bars, when prepared as specified in sec. 9 (e), shall bend cold through 180 degrees around a 1-inch pin without cracking on the outside of the bent portion. (d) The test specimen for rivet steel shall bend cold through 180 degrees flat on itself without cracking on the outside of the bent portion. 9. Test Specimens, (a) Tension-and ,bend-test specimens shall be taken from rolled steel in the condition in which it comes from the rolls, except as specified in par. (6). (6) Tension-and bend-test specimens for pins and rollers shall be taken from the finished bars, after annealing when annealing is specified. A. S. T. M.— STRUCTURAL STEEL FOR BRIDGES (c). Tensibn-and bend-test specimens for plates, shapes and bars, except as specified in par. (d), (e) and (J), shall be of the full thickness of material as rolled. They may be machined to the form and dimensions shown in fig. 1, or with both edges parallel; except that bend-test specimens for eye-bar flats may have three rolled sides. » 2 Gaze length NOTE: — The gage length, parallel portions and fillets shall be as shown, but the ends may be of any form which will fit the holders of the testing machine. Figure 2. (d) Tension-and bend-test specimens for plates, and tension- test specimens for eye-bar flats, over 1J^ inch in thickness may be machined to a thickness or diameter of at least % inch for a length of at least 9 inches. (e) Tension-test specimens for pins, rollers and bars (except eye-bar flats) over 1 H inch in thickness or diameter may conform to the dimensions shown in fig. 2. In this case the ends shall be of a form to fit the holders of the testing machine in such a way that the load shall be axial. Bend-test specimens may be 1 by Yi inch in section. The axis of the specimen shall be located at any point midway between the center and surface and shall be parallel to the axis of the bar. (/) Tension-and bend-test specimens for rivet steel shall be of the full-size section of bars as rolled. 10. Number of Tests, (o) One tension-and one bend test shall be made from each melt; except that if material from one melt differs % inch or more in thickness, one tension-and one bend test shall be made from both the thickest and the thinnest material rolled. (6) If any test specimen shows defective machining or develops flaws, it may be discarded and another specimen substituted. (c) If the percentage of elongation of any tension-test specimen is less than that specified in sec. 6 (a) and any part of , the fracture CARNEGIE STEEL COMPANY is more than % inch from the center of the gage length of a 2-inch specimen or is outside the middle third of the gage length of an 8-inch specimen, as indicated by scribe scratches marked on the specimen before testing, a retest shall be allowed. IV. PERMISSIBLE VARIATIONS IN WEIGHT AND THICKNESS. 11. Permissible Variations. The cross-section or weight of each piece of steel shall not vary more than 2.5 per cent from that specified; except in the case of sheared plates, which shall be covered by the following permissible variations. One cubic inch of rolled steel is assumed to weigh 0.2833 pounds, (a) When Ordered to Weight per Square Foot : — The weight of each lot 1 in each shipment shall not vary from the weight ordered more than the amount given in Table I. TABLE I.- -PERMISSIBLE VARIATIONS OP PLATES ORDERED TO WEIGHT Permissible Variations in Average Weights per Square Foot op Plates for Widths Given, Expressed in Percentages or Ordered Weights Ordered Weight, 48 in. COin. 72 in. 84 in. 96 in. 108 in. 120 in. Pounds Under to to to to to to to 132 in. per 48 is. 60 in. 72 in. 84 in. 96 in. 108 in. 120 in. 132 in. or Square Foot excl. excl. excl. excl. excl. excl. excl. over St- 1 St St St St Si St T1 Si Si ftl St St St Si St St St 6 £ > o £ o £ <5 £ o g £ £ 5 g o £ o £ 5 4.5 3 3 5.5 5 3 3 6 fi.fi 3 3 7 fi 3 3 3 to 7.5 excl. 7.5 to 10 " 4 3.5 3 2.5 4.5 4 3 3 5 4.5 3 3 5.5 5 3 3 6 fi.fi 3 3 7 6 3 3 a 7 3 3 10 to 12.5 " 8 3 9 3 12.5 to 15 3 2.5 3.5 2.5 4 ft 4.5 3 fi 3 fi.fi 3 6 3 7 3 H 8 15 to 17.5 " 2.5 2.5 3 2.5 a..<> 2.5 4 8 4.5 H 5 3 5.5 3 fi 3 7 a 17.5 to 20 2.5 2 2.5 2.5 3 2.5 3.5 2.5 4 a 4.5 3 5 3 fi.fi 3 H a 20 to 25 2 2 2.5 2 2.5 2.fi a 2.5 3.5 2.5 4 a 4.5 8 5 3 fi.fi a 25 to 30 2 2 2 2 2.5 2 2.5 2.5 a 2.5 3.5 H 4 3 4.5 3 fi a 30 to 40 2 2 2 2 2 2 2.5 2 2.fi 2.5 3 2.5 3.fi a 4 a 4.fi a 40 or over 2 2 2 2 2 2 2 2 2.5 2 2.5 2.5 3 2.5 3.5 3 4 3 i Note. — The weight per square foot of individual plates shall not vary from the ordered weight by more than lVs times the amount given in this table. (b) When Ordered to Thickness : — The thickness of each plate shall not vary more than 0.01 inch under that ordered. The overweight of each lot 2 in each shipment shall not exceed the amount given in Table II. ^he term ' 'lot" applied to Table I means all of the plates of each group width and group. weight. -The term ' 'lot " applied to Table II means all of the plates of each group width and group thickness. A. S. T. M.— STRUCTURAL STEEL FOR BRIDGES TABLE II —PERMISSIBLE OVERWEIGHTS OP PLATES ORDERED TO THICKNESS Permissible Excess in Average Weights per Square Foot op Plates for Widths Given, Expressed in Percentages of Nominal Weights Ordered' ' Thickness, Inches 48 in. 60 in. 73 in.. 84 in. 96 in. 108 in. 120 in. Under to to to to to to , 120 inf. to 132 in. 48 in. 60 in. 72 in. 84 in. 96 in./ 108 in. 132 in. or excl. excl. excl. excl. ' excl. excl. excl. over Tinder M 9 10 12 14 H to %e excl 8 9 10 12 %e to X " • • ■ • 7 8 9 10 12 Ji to %a " . . . . 6 7 8 9 10 12 14 16 19 %oto M " .... 5 6 7 8 9 10 12 14 17 K to 'At " 4.5 5 6 7 8 9 10 12 15 %a to }4 " ... . 4 4.5 5 6 7 8 9 10 13 X to H " .... Hio.H " .... 3.5 4 4.5 5 6 7 8 9 11 3 3.5 4 4.5 5 6 7 8 9 % to 1 " 2.5 3 3.5 4 4.5 5 6 7 8 1 or over 2.5 2.5 3 3.5 4 4.5 5 6 7 V. FINISH 12. Finish. The finished material shall be free from injurious defects and shall have a workmanlike finish. VI. MARKING 13. Marking. The name or brand of the manufacturer and the melt number shall be legibly stamped or rolled on all finished material, except that rivet and lattice bars and other small sections shall, when loaded for shipment, be properly separated and marked for identification. The identification marks shall be legibly stamped on the end of each pin and roller. The melt number shall be legibly marked, by stamping, if practicable, on each test specimen. VII. INSPECTION AND REJECTION 14. Inspection. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the material ordered. The manufacturer shall afford the inspector, free of cost, all reason- able facilities to satisfy him that, the material is being furnishedv in accordance with these, specifications. All tests (except check CARNEQIE STEEL COMPANY analyses) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so con- ducted as not to interfere unnecessarily with the operation of the works. 15. Rejection, (a) Unless otherwise specified, any rejection based on tests made in accordance with sec. 5 shall be reported within five working days from the receipt of samples. (b) Material which shows injurious defects subsequent to its acceptance at the manufacturer's works will be rejected, and the manufacturer shall be notified. 16. Rehearing. Samples tested in accordance with sec. 5, which represent rejected material, shall be preserved for two weeks from the date of the test report. In case of dissatisfaction with the results of the tests, the manufacturer may make claim for a re- hearing within that time. 10 A. S. T. M.— STRUCTURAL NICKEL, STEEL AMERICAN SOCIETY FOR TESTING MATERIALS PHILADELPHIA, PA., U. S. A. AFFILIATED WITH THE International Association for Testing Materials STANDARD SPECIFICATIONS FOB STRUCTURAL NICKEL STEEL Serial Designation: A8-16. These specifications are issued under the fixed designation A 8; the final number indicates the year of original issue or, in the case of revision, the year of last revision. Adopted, 1912; Revised, 1913, 1914, 1916. I. MANUFACTURE 1. Process. The steel shall be made by the open-hearth process. 2. Discard. A sufficient discard shall be made from each ingot intended for eye bars to secure freedom from injurious piping and undue segregation. II. CHEMICAL PROPERTIES AND TESTS 3. Chemical Composition. The steel shall conform to the following requirements as to chemical composition: Structural Steel Rivet Steel Carbon not over 0.45 per cent . not over 0.30 per cent Manganese " " 0.70 " " " " 0.60 „ . /Acid " " 0.05 " " " " 0.04 ' Phosphorus| Bas . c ., .. 0Q4 ., .. .. .. 003 .. Sulphur " " 0.05 " " " " 0.45 " Nickel not under 3.25 " " not under 3.25 " CARNEQIE STEEL COMPANY 4. Ladle Analyses. An analysis of each melt of steel shall be made by the manufacturer to determine the percentages of the elements specified in sec. 3. This analysis shall be made from a test ingot taken during the pouring of the melt. The chemical composition thus determined shall be reported to the purchaser or his representa- tive, and shall conform to the requirements specified in sec. 3. 5. Check Analyses. Analyses may be made by the purchaser from finished material representing each melt. The chemical composition thus determined shall conform to the requirements specified in sec. 3. III. PHYSICAL PROPERTIES AND TESTS conform to 6. Tension Tests, (a) The material shall following requirements as to tensile properties: the Properties Considered Rivet Steel Plates, Shapes and Bars Eye Bars and Rollers, c Unannealed Eye Bars, a and Pins, c Annealed Tensile strength, lb. per sq. inch Yield point, min., lb. per sq. inch Elongation in 8 inches, min., per cent Elongation in 2 inches, min., per cent Reduction of area min., per cent 70,000-80,000 45,000 1,500,000 tens. str. 85,000-100,000 50,000 1,500,0006 tens. str. 95,000-110,000 55,000 1,500,0006 tens. str. 16 25 90,000-105,000 52,000 20 20 40 25 35 a Tests of annealed specimens of eye bars shall be made for information only. 6 See sec. 7. c Elongation shall be measured in 2 inches. (6) The yield point shall be determined by the drop of the beam of the testing machine. 7. Modifications in Elongations. For plates, shapes and unannealed bars over 1- inch in thickness, a deduction of 1 from the percentage of elongation .specified in sec. 6 (a) shall be made for each increase of % inch in thickness above 1 inch, to a minimum of 14 per cent. 8. character of Fracture. All broken tension-test specimens shall show either a silky or a very fine granular fracture, of uniform color, and free from coarse crystals. 9. Bend Tests, (a) The test specimen for plates, shapes and bars shall bend cold through 180 degrees without cracking on the 12 A. S. T. M.— STRUCTURAL NICKEL STEEL outside of the bent portion, as follows: For material % inch or under in thickness, around a pin the diameter of which is equal to the thickness of the specimen; and for material over % inch in thickness, around a pin the diameter of which is equal to twice the thickness of the specimen. (6) The test specimen for pins and rollers shall bend cold through 180 degrees around a 1-inch pin without cracking on the outside of the bent portion. (c) The test specimen for rivet steel shall bend cold through 180 degrees flat on itself without cracking on the outside of the bent portion. 10. Drift Tests. Punched rivet holes pitched two diameters from a planed edge shall stand drifting until the diameter is enlarged 50 per cent, without cracking the metal. 11. Test Specimens, (a) Tension-and bend-test specimens shall be taken from the finished material. Specimens for pins shall be taken after annealing. .# I .--About 3-- * j .Par^llel.section ; . ! not less than 9 3 I — i * I 'M — i — . - i :<4^sl«--l---yl 18' FlGUBE 1. (6) Tension-and bend-test specimens for plates, shapes and bars, except as specified in par. (c), shall be of the full thickness of material as rolled. They may be machined to the form and dimensions shown in fig. 1, or with both edges parallel; except that bend-test specimens shall not be less than 2 inches in width, and that bend-test specimens for eye-bar flats may have three rolled sides. ' (c) Tension-and bend-test specimens for plates and bars (except eye-bar flats) over 1% mcn m thickness or diameter may be machined to a thickness or diameter of at least % inch for a length of at least 9 inches. (d) The axis of tension-and bend-test specimens for pins and rollers shall be 1 inch from the surface and parallel to the axis of the bar. Tension-test specimens shall conform to the dimensions 13 CARNEGIE STEEL COMPANY shown in fig. 2. The ends shall be of a form to fit the holders of the testing machine in such a way that the load shall be axial. Bend- test specimens shall be 1 by J^ inch in section. (e) Tensionrand bend-test specimens for rivet steel shall be of the full-size section of bars as rolled. 12. Number of Tests, (a) One tension-and one bend test shall be made from each melt; except that if material from one melt differs Y% inch or more in thickness, one tension-and one bend test shall be made from both the thickest and the thinnest material rolled. (6) If any test specimen shows defective machining or develops flaws, it may be discarded and another specimen substituted. -2 Gage length NOTE: — The gage length, parallel portions and fillets shall be as shown, but the ends may be of any form which will fit the holders of the testing machine. FlQUEE 2. (c) If the percentage of elongation of any tension-test specimen is less than that specified in sec. 6 (a) and any part of the fracture is more than % inch from the center of the gage length of a 2-inch specimen or is outside the middle third of the gage length of an 8-inch specimen, as indicated by scribe scratches marked on the specimen before testing, a retest shall be allowed. IV. PERMISSIBLE VARIATIONS IN WEIGHT AND THICKNESS 13. Permissible Variations. The cross-section or weight of each piece of steel shall not vary more than 2.5 per cent from that specified; except in the case of sheared plates, which shall be covered by the following permissible variations. One cubic inch of rolled steel is assumed to weigh 0.2833 pound. (a) When Ordered to Weight per Square Foot: — The weight of each lot 1 in each shipment shall not vary from the weight ordered more than the amount given in Table I. J The term "lot" applied to Table I means all of the plates of each group width and group weight. 14 A. S. T. M.— STRUCTURAL NICKEL STEEL TABLE I.— PERMISSIBLE VARIATIONS OP PLATES ORDERED TO WEIGHT Permissible Variations in Average Weights per Square Foot op Plates for Widths Given, Expressed in Percentages of Ordered Weights Ordered Weight, 48 in. 60 in. 72 in. 84 in. 96 in. 108 in. 120 in. 132 in. Founds Under to to to to to to to per 18 in. 60 in. 72 in. 84 in. 96 in. 108 in. 120 in. 132 in. Square Foot excl. excl. excl. excl. excl. excl. excl. 1 S3 ft 1 ft % b ft ft ft ft ft! ft ft ft 1 ft ft T1 ft ft > O > o S i £ 6 £ £ S & £ open-hearth process. (6) Rivet steel, and steel for plates or angles over % inch in thickness which are to be punched, shall be made by the open- hearth process. II. CHEMICAL PROPERTIES AND TESTS 2. Chemical Composition. The steel shall conform to the following requirements as to chemical composition: Steuctubal Steel Rivet Steel _ , (Bessemer.. . not over 0.10 per cent ...... Phosphorus < LOpen-hearth " " 0.06 " " not over 0.06 per cent Sulphur 0.045" " 18 A. S. T. M. — STRUCTURAL STEEL FOR BUILDINGS 3. Ladle Analyses. An analysis of each melt of steel shall be made by the manufacturer to determine the percentages of carbon, manganese, phosphorus and sulphur. This analysis shall be made from a test ingot taken during the pouring of the melt. The chemical composition thus determined shall be reported to the purchaser or his representative, and shall conform to the requirements specified in sec. 2. 4. Check Analyses. Analyses may be made by the purchaser from finished material representing each melt. The phosphorus and sulphur content thus determined shall not exceed that specified in sec. 2 by more than 25 per cent. III. PHYSICAL PROPERTIES AND TESTS 5. Tension Tests, (a) The material shall conform to following requirements as to tensile properties: the Properties Considered Structural Steel Eivet Steel Yield point, min lb. Elongation in S inches, min . Elongation in 2 inches, min . per sq. inch per sq. inch . , . per cent , . per cent 55,000-65,000 0.5 tens. str. 1,400,000a tens. str. 22 46,000-56,000 0.5 tens. str. 1,400,000 tens. str. a See sec. 6. (6) The yield point shall be determined by the drop of the beam of the testing machine. 6. Modifications in Elongation, (a) For structural steel over % inch in thickness, a deduction of 1 from the percentage of elongation in 8 inches specified in sec. 5 (o) shall be made for each increase of y% inch in thickness above % inch to a minimum of 18 per cent. (6) For structural steel under %6 inch in thickness, a deduction of 2.5 from the percentage of elongation in 8 inches specified in sec. 5 (a) shall be made for each decrease of Vie inch in thickness below %6 inch. 7. Bend Tests, (a) The test specimen for plates, shapes and bars, except as specified in par. (6) and (c), shall bend cold through 180 degrees without cracking on the outside of the bent portion, as follows: For material % inch or under in thickness, flat on itself; for material over % inch to and including \\i inch in thick- ness, around a pin the diameter of which is equal to the thickness of the sDecimen; and for material over l\i inch in thickness, around 19 CARNEGIE STEEL COMPANY a pin the diameter of which is equal to twice the thickness of the specimen. (6) The test specimen for pins, rollers and other bars, when prepared as specified in sec. 8 (e), shall bend cold through 180 degrees around a 1-inch pin without cracking on the outside of the bent portion. (c) The test specimen for rivet steel shall bend cold through 180 degrees flat on itself without cracking on the outside of the bent portion. » 8. Test Specimens, (a) Tension-and bend-test specimens shall be taken from rolled steel in the condition in which it comes from the rolls, except as specified in par. (6). (6) Tension-and bend-test specimens for pins and rollers shall be taken from the finished bars, after annealing when annealing is specified. * — -About 3-"— — *! 3 Parallel section ! not less than 9" -fi-fjU- 13 o ^ ;46« - -1-- -wetolVa" t, g-"- J — -^ ■*■ FigtJbe 1. (c) Tension-and bend-test specimens for plates, shapes and bars, except as specified in par. (d), (e) and (/), shall be of the full thickness of material as rolled; and may be machined to the form and dimensions shown in fig. 1, or with both edges parallel. (d) Tension-and bend-test specimens for plates over 1J^ inch in thickness may be machined to a thickness or diameter of at least % inch for a length of at least 9 inches. (e) Tension-test specimens for pins, rollers and bars over 1% inch in thickness or diameter may conform to. the dimensions , shown in fig. 2. In this case the ends shall be of a form to fit the holders of the testing machine in such a way that the load shall be axial. Bend-test specimens may be 1 by J^ inch in section. The axis of the specimens shall be located at any point midway between the center and surface and shall be parallel to the axis of the bar. 20 A. S. T.M.— STRUCTURAL STEEL FOR BUILDINGS (/) Tension-and bend-test specimens for rivet steel shall be , of the full-size section of bars as rolled. 9. Number of Tests, (o) One tension-and one bend test shall be made from each melt; except that if material from one melt differs Y% inch or more in thickness, one tension-and one bend test shall be made from both the thickest and the thinnest material rolled. (6) If any test specimen shows defective machining or develops flaws, it may be discarded and another specimen substituted. - •' / (c) If the percentage of elongation of any tension-test specimen is less than that specified in sec. 5 (a) and any part of the fracture is more than % inch from the center of the gage length of a 2-inch specimen or is outside the middle third of the gage length of an 8-inch specimen, as indicated by scribe scratches marked on the specimen before testing, a retest shall be allowed. NOTE: — The gage length, parallel portions and fillets shall be as, shown, but the ends may be of any form which will fit the holder of the testing machine. Figure 2. IV. PERMISSIBLE VARIATIONS IN WEIGHT AND THICKNESS 10. Permissible Variations. The cross-section or weight of each piece of steel shall not vary more than 2.5 per cent from that specified; except in the case of sheared plates, which shall be covered by the following permissible variations. One cubic inch of rolled steel is assumed to weigh 0.2833 pound. (a) When Ordered to Weight per Square Foot: — The weight of each lot 1 in each shipment shall not vary from the weight ordered more than the amount given in Table I. 1 The term "lot" applied to Table I means all of the plateB of each group width and group weight. V CARNEQIE STEEL COMPANY "N; — — : — ; iV-: TABLE PERMISSIBLE VARIATIONS OF PLATES ORDERED TO WEIGHT ' Permissible Variations m Average Weights per Square Foot of Plates for Widths Given, Expressed in Percentages of Ordered Weights Ordered Weight, 48 in. 60 in. 72 in. 84 in. 96 in. 108 in. 120 in. 132 in. Founds Under to to to to to to to , per Square Foot 48 in. 60 in. 72 in. 84 in. 96 in. 108 in. 120 in. 132 in. excl. excl. excl. excl. excl. excl. excl. t. SS T1 81 S ■a S Si ai SI o S > o 6 S > o £ £ P > O S > o P > o £ & 5 5 3 5 5 3 fi 3 7 3 5 to 7.5 excl. 4,5 3 5 3 5,5 3 fi 3 \ 3 4 5 19 5 6 7 8 9 10 12 14 17 % to %„ " .... 4.5 5 6 7 8 9 10 12 15 %eto M " .... 4 4.5 5 6 7 8 9 10 13 14 to y s " ■■■■ 3.5 4 4.5 5 6 7' 8 9 11 %to<% " .... 3 3.5 4 4.5 5 6 7 8 9 Htol " .... 2.5 3 3.5 4 4.5 5 6 7 8 1 or over. 2.5 2.5 3 3.5 4 4.5 5 6 7 V. FINISH 12. Finish. The finished material shall be free from injurious defects and shall have a workmanlike finish. VI. MARKING 13. Marking. The name or brand of the manufacturer and the melt number shall be legibly rolled or stamped on all finished material, except that rivet bars and other small sections shall, when loaded for shipment, be properly separated and marked for identi- fication. The melt number shall be legibly marked, by stamping, if practicable, on each test specimen. VII. INSPECTION AND REJECTION 14. Inspection. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the material ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the material is being furnished in accord- ance with these specifications. All tests (except check analyses) and inspection shall be made at the place of manufacture prior to> shipment, unless otherVise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works. 42 A. S. T. M.— STRUCTURAL STEEL FOR CARS 15. Rejection, (a) Unless otherwise specified, any rejection based on tests made in accordance with sec. 5 shall be reported within five working days from the receipt of samples. (6) Material which shows injurious defects subsequent to its acceptance at the manufacturer's works will be rejected, and the manufacturer shall be notified. 16. Rehearing. Samples tested in accordance with sec. 5, which represent rejected material, shall be preserved for two weeks from the date of the test report. In case of dissatisfaction with the/ results of the tests, the manufacturer may make claim for a re- hearing within that time. 43 CARNEQIE STEEL COMPANY AMERICAN SOCIETY FOR TESTING MATERIALS PHILADELPHIA, PA., U. S. A. AFFILIATED WITH THE International Association fob Testing Materials STANDARD SPECIFICATIONS FOB STRUCTURAL STEEL FOR LOCOMOTIVES Serial Designation: A10-16. These specifications are issued under the fixed designation A 10; the final number indicates the year of original issue or, in the case of revision, the year of last revision. Adopted, 1912; Revised, 1913, 1914, 1916. Note Adopted June 26, 1918. In view of the abnormal difficulty in obtaining materials in time of war, the rejection limits for Sulphur in all steels and for Phosphorus in acid steels shall be raised 0.01 per cent above the values given in these Specifications. This shall be effective during the period of the war and until otherwise ordered by the Society. • 1. Material Covered. These specifications apply to shapes, plates (except boiler and firebox plates) and bars over Y% inch in thickness. I. MANUFACTURE 2. Process. The steel shall be made by the open-hearth process. II. CHEMICAL PROPERTIES AND TESTS 3. Chemical Composition. The steel shall conform to the following requirements as to chemical composition: Phosphorus not over 0.05 per cent Sulphur " " 0.05 " 4. Ladle Analyses. An analysis of each melt of steel shall be made by the manufacturer to determine the percentages of carbon, manganese, phosphorus and sulphur. This analysis shall be made from a test ingot taken during the pouring of the melt. The chemical A. S. T. M.— STRUCTURAL STEEL FOR LOCOMOTIVES composition thus determined shall be reported to the purchaser or his representative, and shall conform to the requirements, specified in sec. 3. 5. Check Analyses. Analyses may be made by the purchaser from finished material representing each melt. The phosphorus and sulphur content thus determined shall conform to the requirements specified in sec. 3. III. PHYSICAL PROPERTIES AND TESTS 6. Tension Teats, (a) The material shall conform to the following requirements as to tensile properties: i Tensile strength lb. per sq. inch 55,000-65,000' Yield point, min lb. per sq. inch 0.5 tens. str. Elongation in 8 inches, min per cent ^^P'Pii See sec- 7. (b) The yield point shall be determined by the drop of the' beam of the testing machine. 7. Modifications in Elongation, (a) For material over % inch in thickness, a deduction of 1 from the percentage of elongation specified in sec. 6 (o) shall be made for each increase of y% inch in thickness above M inch, to a minimum of 18 per cent. i (b) For material under %e inch in thickness, a deduction of 2.5 from the percentage of elongation in 8 inches specified in sec. 6 (a) shall be made for each decrease of %e inqh in thickness below % 6 inch. 8. Bend Tests. The test specimen shall bend cold through 180 degrees without cracking on the outside of the bent portion, as follows: For material % inch or under in thickness, flat on itself; for material over % inch to and including 1J^ inch in thickness, around a pin the diameter of which is equal to the thickness of the specimen ; and for material over 1 J^ inch in thickness, around a pin the diameter of which is equal to twice the thickness of the specimen. 9. Test Specimens, (a) Tension-and bend-test specimens shall be taken from the finished rolled material. (6) Tension-and bend-test specimens, except as specified in par. (c), shall be of the full thickness of material as rolled; and may be machined to the form and dimensions shown in fig. 1, or with both edges parallel. 45 CARNEGIE STEEL COMPANY (c) Tension-and bend-test specimens for plates and bars over 1 J^ inch in thickness or diameter may be machined to a thickness or diameter of at least ^ inch for a length of at least 9 inches. 10. Number of Tests, (a) One tension-and one bend test shall be nlade from each melt; except that if material from one melt differs % inch or over in thickness, one tension-and one bend test shall be made from both the thickest and the thinnest material rolled. Shapes less than 1 sq. inch in section, and bars less than . J^ sq. inch in section, need not be subjected to a tension test. (6) If any test specimen shows defective machining or develops flaws, it may be discarded and another specimen substituted. (c) If the percentage of elongation of any tension-test specimen is less than that specified in sec. 6 (a) and any part of the fracture is. outside the middle third of the gage length, as indicated by scribe scratches marked on the specimen before testing, a retest shall be allowed. ; » ! not less than 9 ~-*-— — i ■— __— — ^*" T 1 +'vtf "l~ +J g 3 ■^■^ i. (<%« - -i--jke tc Av£- FlGTTEE 1. .. IV. PERMISSIBLE VARIATIONS IN WEIGHT AND THICKNESS. 11. Permissible Variations. The cross-section or weight of each piece of steel shall not vary more than 2.5 per cent from that specified, except in the case of sheared plates, which shall be covered by the following permissible variations. One cubic inch of rolled steel is assumed to weigh 0.2833 pound. (a) When Ordered to Weight per Square Foot: — The weight of each lot 1 in each shipment shall not vary from the weight ordered more than the amount given in Table I. IThe term "lot" applied to Table I means all of the plates of each group width and group weight. A. S. T. M.— STRUCTURAL STEEL FOR LOCOMOTIVES TABLE I.— PERMISSIBLE VARIATIONS OF PLATES ORDERED TO WEIGHT Permissible Variations in Average Weights peb Square Foot op Plates fob Widths Given, Expressed in Percentages of Ordered Weights Ordered Weight, , 48 in. 60 in. 72 in. 84 in. 96 in. 108 in. 120 in. 132 in. Bounds Under to to to to to to to per 48 in. 60 in. 72 in. 84 in.~ 96 in. 108 in. 120 in. 132 in. Square Foot exel. excl. excl. excl. excl. excl. excl. ft ft 1 S ft 1 S! SJ ft ft ft 0J ft ft ft i & & <5 cS S & £ 6 £ 6 $ o tS Under 5 5 3 5 5 3 fi 3 7 3 4.5 4 3.5 3 3 2.5 5 4.5 4 3 3 3 5.5 5 4.5 3 3 3 6 5.5 5 3 3 3 7.5 to 10 6 5.5 3 3 7 6 3 3 8 7 3 3 10 to 12.5 " 8 3 9 3 12.5 to 15 3 2.5 3.5 2.5 4 3 4.5 3 5 3 5.5 a 6 < 7 3 8 3 15 to 17.5 " '2.5 2.5 3 2.5 3.5 2.5 4 3 4.5 3 5 3 5.53 6 3 7 3 17.5 to 20 2.5 2 2.5 3.5 3 2.5 3.5 2.5 4 3 ' 4.5 3 5 ■i 5.53 H 3 20 to 25 2 2 2.5 2 2.5 2.5 3 2.5 3.5 2.5 4 H 4.53 5 3 5.5 3 25 to 30 2 2 2 2 2.5 2 2.5 2.5 3 2.5 3.5 8 4 i 4.5 3 5 3 30 to 40 2 2 2 2 2 2 2.5 2 2.5 2.5 3 2.5 3.5 1 4 3 4.5 3 40 or over 2 2 2 2 2 2 2 2 2.5 2 2.5 2.5 3 2.5 3.5 3 4 3 Note.— The weight per square foot of individual plates shall not vary from the ordered weight by more than l^t times the amount given in this table. (6) When Ordered to Thickness: — ■ The thickness of each plate shall not vary more than 0.01 inch under that ordered. The overweight of each lot 2 in each shipment shall not exceed the amount given in Table II. TABLE II.— PERMISSIBLE OVERWEIGHTS OP PLATES ORDERED TO THICKNESS Permissible Excess in Average Weights per Square Foot of Plates fob Widths Given, Expressed in Percentages of Nominal Weights Ordered Thickness, Inches' 48 in. 60 in. 72 in. 84 in. 96 in. 108 in. 120 in. 132 in. Under to to to to to to to ' 48 in. 60 in. 72 in. 84 in. 96 in. exol. 108 in. 120 in. 132 in. excl. excl. expl. excl. excl. v excl. Under y% 9 10 12 14 H to %e excl .... 8 9 10 12 9isto M " .... 7 8 9 10 12 «to%n " .... He to M " 6 7 8 9 10 12 14 i.6 19 5 6 7 8 9 10 12 14 17 H to %6 " 4.5 5, 6 7 8 . 9 10 12 15 %e to }4 " . . . . 4 4.5 5 6 7 8 9 10 13 H to % " 3.5 4 4.5 5 6 7 8 9 11 % to % " .... 3 3.5 4 4.5 5 6 7 8 9 % to 1 " 2.5 3 3.5 4 4.5 5 6 7 8 2.5 2.5 3 3.5 4 4.5 5 6 7 sfhe term ' 'lot " applied to Table II means all of the plates of each group width and group thickness 47 CARNEGIE STEEL COMPANY V. FINISH 12. Finish. The finished material shall be free from injurious defects and shall have a workmanlike finish. i VI. MARKING 13. Marking. The name or brand of the manufacturer and the melt number shall be legibly stamped or rolled on all finished material, except that small sections shall, when loaded for shipment, be properly separated and marked for identification. The melt number shall be legibly marked, by stamping, if practicable, on each test specimen. VII. INSPECTION AND REJECTION 14. Inspection. The .inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to alL parts of the manufacturer's works which concern the manufacture of the material ordered. The manufacturer shall afford the inspector, free of cost, all reason- able facilities to satisfy him that the material is being furnished in accordance with these specifications. All tests (except check analyses) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so con- ducted as not to interfere unnecessarily with the operation of the works. 15. Rejection, (a) Unless otherwise specified,, any rejection based on tests made in accordance with sec. 5 shall be reported within five working dayB from the receipt of samples. (6) Material which shows injurious defects subsequent to its acceptance at the manufacturer's works will be rejected, and the manufacturer shall be notified. 16. Rehearing. Samples tested in accordance with sec. 5, which represent rejected material, shall be preserved for two weeks from the date of the test report. In case of dissatisfaction with the results o ( f the tests, the manufacturer may make claim for a re- hearing within that time. 4* A. S. T. M.— BOILER AND FIREBOX STEEL FOR LOCOMOTIVES ' AMERICAN SOCIETY FOR TESTING MATERIALS PHILADELPHIA, PA., TJ. S. A. AFFILIATED WITH THE International Association for Testing Materials STANDARD SPECIFICATIONS FOR BOILER AND FIREBOX STEEL FOR LOCOMOTIVES Serial Designation: A30-18. These specifications are issued under the fixed designation A 30; the final number indicates the year of original adoption as standard or, in the case of revision, the year of last revision. Adopted, 1901; Eevised, 1909, 1912,1913, 1914, 1916, 1918. 1. Material Covered. These specifications cover two grades of steel for boilers for, locomotives, namely: Flange AND Firebox I. MANUFACTURE 2. Process. The steel shall be made by the open-hearth process. II. CHEMICAL PROPERTIES AND TESTS 3. Chemical Composition. The steel shall conform to the following requirements as to chemical composition: 49 CARNEQIE STEEL COMPANY Flange Fibe box Carbon per cent 0.12-0.25 per cent Manganese 0.30-0.60 " " 0.30-0.60 Phosphorus {£ cl ? notovero.05 ■■ - not over 0.04 " " (Basic " " 0.04 O.udo Sulphur " " 0.05 " " " " 004 4. Ladle Analyses. An analysis of each melt of steel shall be made by the manufacture to determine the percentages of the elements specified in sec. 3. This analysis shall be made from a test ingot taken during the pouring of the melt. The chemical composition thus determined shall be reported to the purchaser or his representa- tive, and shall conform to the requirements specified in sec. 3. 5. Check Analyses. An analysis may be made by the purchaser from a broken tension-test specimen representing each plate as rolled. The chemical composition thus determined shall conform to the requirements specified in sec. 3. III. PHYSICAL PROPEKTIES AND TESTS 6. Tension Tests, (a) The material shall conform to the following requirements as to tensile properties: Flange Firebox Tensile strength lb. per sq. inch 55,000-65,000 52,000-62,000 Yield point, min lb. per sq. inch 0.5 tens. str. 0.5 tens. str. Elongation in 8 inches min. per cent h- 00 '" 00 h- 00 -"- See sec. 7. tens. str. tens. str. (b) The yield point shall be determined by the drop of the beam of the testing machine. 7. Modifications in Elongation, (a) For material over % inch in thickness, a deduction of 0.5 from the percentages of elongation specified in sec. 6 (a) shall be made for each' increase of J'jj inch in thickness above % inch. (b) For material }4 inch or under in thickness, the elongation shall be measured on a gage length of 24 times the thickness of the specimen. 8. Bend Tests, (a) The test specimen shall bend cold through 180 degrees without cracking on the outside of the bent portion, as follows: For material 1 inch or under in thickness, around a pin the diameter of which is equal to the thickness of the specimen; and for material over 1 inch in thickness, around a pin the diameter of which is equal to twice the thickness of the specimen. A. S. T. M.— BOILER AND FIREBOX STEEL FOR LOCOMOTIVES 9. Homogeneity Tests. For firebox steel, a sample ■ taken from a broken tension-test specimen shall not show any single seam or cavity more than J^ inch long, in either of the three fractures obtained in the test for homogeneity, which shall be made as follows: The specimen shall be either nicked with a chisel or grooved on a machine, transversely, about Ma inch deep, in three places about 2 inches apart. The first groove shall be made 2 inches from the square end; each succeeding groove shall be made on the opposite side from the preceding one. The specimen shall then be firmly held in a vise, with the first groove about }4 mcn above the jaws, and the projecting end broken off by light blows of a hammer, the bending being away from the groove. The. specimen shall be broken at the other two grooves in the same manner. The object of this test is to open and render visible to the eye any seams due to failure to weld up or to interposed foreign matter, or any cavities' due to gas bubbles in the ingot. One side of each fracture shall be examined and the lengths of the s§ams and cavities determined, a pocket lens being used if necessary. i* — -About 3 Parallel section 10. Test Specimens, (a) Tension-test specimens shall be taken longitudinally from the bottom of the finished rolled material, and bend-test specimens shall be taken transversely from the middle of the top of the finished rolled material. The longitudinal test specimens shall be taken in the direction of the longitudinal axis of the ingot, and the transverse test specimens at right angles to that axis. (6) Tension-and bend-test specimens shall be of the full thickness of material as rolled, and shall be machined to the form and dimensions shown in fig. 1; except that bend-test specimens may be machined with both edges parallel. 11. Number of Tests, (a) One tension-, and one bend test shall be made from each plate as rolled. (6) If any test specimen shows defective machining or develops flaws, it may be discarded and another specimen substituted. (c) If the percentage of elongation of any tension-test specimen 51 CARNEGIE STEEL COMPANY is less than that specified in sec. 6 (a) and any part of the fracture is outside the middle third of the gage length, as indicated by scribe scratches marked on the specimen before testing, a retest shall be allowed. IV. PERMISSIBLE VARIATIONS IN WEIGHT AND THICKNESS 12. Permissible Variations. The thickness of each plate shall not vary more than 0.01 inch under that ordered. The overweight of each lot 1 in each shipment shall not exceed the amount given in Tabls I. One cubic inch of rolled steel is assumed to weigh 0.2833 pound. TABLE I.— PERMISSIBLE OVERWEIGHTS OF PLATES ORDERED TO THICKNESS m. ' Permissible Excess in Average Weights per Square Foot op Plates for Widths Given. Expressed in Percentages of Nominal Weights Ordered Thickness, - Inches 48 in. 60 in. 72 in. 84 in. 96 in. 108 in. 120 in. Under to to to to to to to 132 in.. • 48 in. 60 in. 72 in. 84 in. 96 in. 108 in. 120 in. 132 in, or excl. excl. excl. excl. excl. excl. excl. over 9 10 12 14 H to %e excl 8 9 10 12 .... Hsto M . 7 8 9 10 12 M to , >M.»>^Sk^W^W\'..\'.iR? «>w^wwmi^^w «»i»»>>>uiiiiiM,mMW,miB SS^TOK^mmmw>t^^m^mi ^«si»i»M\m The above figures show the method of increasing the sectional areas and weights of structural shapes. Cross hatched portions represent the minimum sections and the blank portions the added areas. In the case of Channels, I-Beams and Bulb Beams, the enlargement of the section adds an equal amount to the thickness of the web and the width of the flanges. In the case of Angles and Zees, the effect of spreading the rolls is slightly to increase the length of the legs. No general statement can be made wtyh regard to Bulb Angles, in the rolling of which different methods are in use. Inasmuch as the roll passes are modified in the wear of the rolls, the actual dimensions will not always conform to the theoretical, even in the case of the minimum weight sections. Designers and detailers of structural work should arrange for ample clearances. 59 CARNEQIE STEEL COMPANY BEAMS AND CHANNELS— Common Dimensions STKUCTUBAL BEAMS A. A. S. M. Standard Sections T MINIMUM SECTIONS: n=minimum web=t E^=minimum web + 0.10" r=j^j minimum web Slope of Flange, 1:6=16%%=9° 27' 42" STRUCTURAL CHANNELS A. A. S. M. Standard Sections MINIMUM SECTIONS: n=miiiimiim web =t R==zninimuni web + 0.10" r = & minimum web ! of Flange, 1:6=16%%= 9° 27' 42" SHIP BUILDING CHANNELS New American Standard Sections n=t 2 — 0.03492a R==t2 Slope of liange=2°=3.492% Dimensions for Structural Beams are those adopted by the Association of American Steel Manufacturers and apply to all Structural Beams, except American Standard Sections B 1, B 2 and B 3, also Sections B 24 and B 81. The dimensions of the Supplementary Beams, B 61 to B 68, inclusive, cannot be readily reduced to formulas. Slope of flange is 1 : 11=5° 11' 40". Dimensions for Structural Channels are those adopted by the Association of American Steel Manufacturers and apply to all Structural Channels, except Section C 20, which is a Car Building Channel. Dimensions for Ship Building Channels of the New American Standard conform to those adopted by the British Engineering Standards Committee and apply to all Ship Building Channels. 60 BEAMS STRUCTURAL BEAMS *B6L Section Index Depth of Beam, Inches Weight per Foot, Pounds Flange Width. / Inches Web Thickness, Inches . Decimal Fractional Decimal Fractional *B61 27 90.0 9.00 9 0.524 "As * Supplementary Beam. 61 CARNEGIE STEEL COMPANY STRUCTURAL BEAMS— Continued 3 B24 i .1 TV Bl 5SK-- ^—i - 3.250 --*i g Section Index Depth of Beam, Inches Weight per Foot, Pounds Flange Width, Inches Web Thickness, Inches Decimal Fractional Decimal Fractional B24 B 1 24 24 115.0 110.0 105.0 100.0 95.0 90.0 85.0 80.0 8.000 7.938 7.875 7.254 7.193 7.131 7.070 7.000 8 7tt 7% 7K 7ft 7H 7 0.750 0.688 0.625 0.754 0.693 0.631 0.570 0.500 H H H *A H % ft BEAMS STRUCTURAL BEAMS— Continued -9.00 Section Index Depth of Beam, Inches Weight per Foot, Pounds Flange Width, Inches Web Thickness, Inches Decimal Fractional Decimal Fractional *B62 *B63 24 21 74 60.5 9.00 8.25 9 8M 0.476 0.428 !%2 2 %4 * Supplementary Beam. 63 CARNEGIE STEEL COMPANY STRUCTURAL BEAMS— Continued 0.60" B3 Section Depth! of Beam, Inches Weight per Foot, Pounds Flange Width, Inches Web Thickness, Inches - Decimal Fractional Decimal Fractional 100.0 7.284 , 7ft 0.884 H 95.0 7.210 7if 0.810 n B2 20 90.0 7.137 7ft 0.737 a 85.0 7.063 7.V 0.663 n 80.0 7.000 7' 0.600 H 75.0 6.399 615 0.649 n B3 20 70.0 6.325 6si 0.575 a 65.0 6.250 6M 0.500 y* 64 BEAMS STRUCTURAL BEAMS— Continued ■18 0.659 1.195 0.34*: 8 B80 ■15.207"— 10.460" *., — TS" 0.56\" 0.28 V 0.922 , Section Depth of Beam, Inches Weight per Foot, Founds Flange Width, Inches Web Thickness, Inches ■ Decimal Fractional Decimal Fractional B81 B80 *B64 18 18 18 90.0 85.0 80.0 75.0 70.0 65.0 60.0 55.0 48.0 7.245 7.163 7.082 7.000 6.259 6.177 6.095 6.000 7.500 7M 7%2 7%4 7 ■ 6«/fe 6*y M 68/as 6 7M 0.807 0.725 0.644 0.562 0.719 0.637 0.555 0.460 0.380 w Ae 2 %2 ■% 2 %4 H * Supplementary Beam. 65 CARNEGIE STEEL COMPANY STRUCTURAL BEAMS— Continued 0.590' Section Depth of Beam, Inches Weight per Foot, Founds Flange Width, Inches Web Thickness, Inches Decimal Fractional Decimal Fractional B 5 B 7 *B65 15 15 75.0 70.0 65.0 60.0 55.0 50.0 45.0 42.0 37.5 6.292 6.194 6.096 6.000 5.746 5.648 5.550 5.500 6.750 61%4 6%6 6%s 6 5M 5«/04 5<>%4 5H 6M ' 0.882 0.784 0.686 0.590 0.656 0.558 0.460 6.410 0.332 % 2 %2 "Ma 2 %4 !%2 2 %4 * Supplementary Beam. BEAMS STRUCTURAL BEAMS— Continued Section Index Depth of Beam, Inches Weight per Foot, Pounds Flange Width, Inches Web Thickness, Inches Decimal Fractional Decimal Fractional B 8 B 9 *B66 12 12 12 55.0 50.0 45.0 40.0 35.0 31.5 28.0 5.611 5.489 5.366 5.250 5.086 5.000 6.000 6«%4 5sye4 52%1 5M 5%2 5 6 0.821 0.699 0.576 0.460 0.436 0.350 0.284 6 %4 * Supplementary Beam. CARNEGIE STEEL COMPANY STRUCTURAL BEAMS— Continued r.\ 3 io" Section Index Depth of Beam, i Inches Weight per Foot, Pounda Flange Width, Inches Web Thickness, Inches Decimal Fractional Decimal Fractional B 11 *B67 B 13 10 10 9 40.0 35.0 30.0 25.0 22.25 35.0 30.0 25.0 21.0 5.099 4.952 4.805 4.660 5.500 4.772 4.609 4.446 4.330 5% 2 4«%4 4i/m X %« J %1 * Supplementary, Beam. 68 BEAMS STRUCTURAL BEAMS— Continued Section Index Depth of Beam, Inches Weight per Foot, Pounda Flange Width, Inches Web Thickness. Inches Decimal Fractional Decimal Fractional B15 *B68 B 17 8 8 I 7 25.5 23.0 20.5 18.0 17.5 20.0 17.5 15.0 4.271 4.179 4.087 4.000 5.000 3.868 3.763 3.660 4i% 4 4iy 04 4%2 4 5 3% 34%4 3% 0.541 0.449 0.357 0.270 0.220 0.458 0.353 0.250 8 %i 2 %1 "At . %2 2 %4 ♦Supplementary Beam. 69 CARNEGIE STEEL COMPANY STRUCTURAL BEAMS— Concluded B23 -2.717" -*\ <.0.190" j , w 0.11' — " hJ B77 -4.843"-»i ♦0.170 1; 0.27"\ S 0.10"^— * , 0.350" -*■»♦ Section Index Depth of Beam, Inches Weight per Foot, Pounds Flange Width, Inches Web Thickness, Inches Decimal Fractional Decimal Fractional B19 B21 B23 B77 6 5 4 3 17.25 14.75 12.25 14.75 12.25 9.75 10.5 9.5 8.5 7.5 7.5 6.5 5.5 3.575 3.452 3.330 3.294 3.147 3.000 2.880 2.807 2.733 2.660 2.521 2.423 2.330 811 3g| m m 8* 3 2% 2« 211 213 211 m 0.475 0.352 0.230 0.504 0.357 0.210 0.410 0.337 0.263 0.190 0.361 0.263 0.170 H a u X 13 H U 54 H A 83 H U TO - BEAMS H-BEAMS Section Index Depth of Beam, IncheB Weight per Foot, Founds Flange Width, Inches Web Thickness, Inches Decimal Fractional Decimal Fractional H 4 H 3 H 2 H 1 8 6 5 4 34.0 23.8 18.7 13.6 8.000 6.000 5.000 4.000 8 6 - 5 4 0.375 0.313 0.313 0.313 ft 5 IB ft H-Beams shown on this sheet are particularly adapted for use in inside mine timbering. Full information as to their properties and uses is given in separate pamphlets entitled "Steel Mine Timbers. " 71 CARNEQIE STEEL COMPANY BULB TEES M% Section Index Depth, Inches Flange Width, Inches Web Thickness, Inches Weight per Foot, Pounds Increase in web and width for Decimal ' Fractional Decimal Fractional pound per foot *B100 *B101 *B102 *B103 *B105 10 9 8 7 6 5.500 5.250 5.125 4.938 5.156 5.000 5.094 4.875 4.524 4.375 5H 5H 4i% 6 5% 2 5 5%a 4K 4i% 2 i'A 0.625 0.375 0.563 0.375 0.469 0.313 0.531 0.313 0.430 , 0.281 % % % !%2 %6 !%2 %a %2 36.6 28.1 30.1 24.3 24.2 20.0 23.3 ,18.1 17.2 14.0 0.029" 0.033" 0.037" 0.042" 0.049" ♦Furnished only by special arrangement. 72 BULB SECTIONS SHIP BUILDING BULB ANGLES !*-":.726* New American Standard Sections »t*— »i lo B 195 .725'i . l0 .'_ B196 1.625" i<-»i.525 --10- .600' B197 (BSBA1S) .526"i 14 -10- B205 i.600" 914 -, B206 (BSBA17) .5001 ~>>,500" m " Section Index . Depth, Inches Flange Width, Inches Web Thickness. Inches Weight per Foot, Decimal Fractional Decimal Fractional Decimal Fractional Pounds B 195 B 196 B 197 (BSBA18) B 205 B 206 (BSBA17 1 10.000 10.000 10.000 9.500 9.500 10 10 10 9M 3.500 3.500 3.500 3.500 3.500 3!4 3M 3H 3H 0.725 0.675 0.625 0.575 0.525 0.475 0.600 0.550 0.500 0.450 7 2 %2 H !%2 H 35.2 33.2 31.1 29.1 > 26.9 24.9 28.8 26.9 24.7 22.8 Dimensions of British Standard Sections are indicated in bold type. 73 CARNEGIE STEEL COMPANY .676 SHIP BUILDING BULB ANGLES— Continued New American Standard Sections — Continued .476 «■--■ .476?" B201 i.675" -it, "L-fc B203 (BSBA 16) i.475"' B 209 (BSBA 14) i-475" -&&- J,.J B202 .6751 B208 .576"J -Ktf- .575" J 1.575 Section Index Depth, Inches Flange Width, Inches ' Web Thickness, Inches • Weight per Foot, Decimal Fractional Decimal Fractional Decimal Fractional Pounds B201 B 202 B 203 (BSBA 167 B 208 B 209 (BSBA 14 1 9.000 9.000 9.000 8.500 8.500 9 9 9 8H 8M 3.500 3.500 3.500 3.500 3.500 3K 3K 3H 3M 0.675 0.625 0.575 0.525 0.475 0.425 0.575 0.5B5 0.475 0.425 % 37 /64 17 /S2 1 %2 2 T'64 30.4 ^8.6 26.6 24.8 22.7 20.9 25.3 23.5 21.6 19,8 Dimensions of British Standard Sections are indicated in bold type. ~7T BULB SECTIONS .650* r SHIP BUILDING. BULB ANGLES— Continued New American Standard Sections — Continued .55or .525 £-^ B211 ,.550* -814- B214 ,1.550" B217 ..525" B 212 (BSBA 13) .450' B 215 (BSBA 12) .450 \ * - 1 ..450 rx g%'_ ~3 |"*.450" Section Index Depth, Inches Flange Width, Inches Web Thickness, Inches Weight per Foot, Decimal Fractional Decimal Fractional Decimal Fractional Pounds B211 B212 (BSBA 13) B 214 •B 215 (BSBA 12) B 217 8.500 8.500 8.000 8.000 8.000 8M 8H 8 8 8 3.000 3.000 3.500 3.500 3.000 3 3 3H 3M 3 0.550 0.500 0.450 0.400 0.550 0.500 0.450 0.400 0.575 v 0.525 S %4 H a %4 J %2 !%2 23.4 21.7 19.8 18.1 23.2 21.6 19.6 18.0 23.1 21.4 Dimensions of British Standard Sections are indicated in bold type. 75 CARNEGIE STEEL , COMPANY .525 f— SHIP BUILDING BULB ANGLES— Continued New American Standard Sections — Continued B 2L8 (BSBA 11) .425" :.425° .525r>->i B 220 B223 1.525" 1 7 y/ 4.--T 8 , :— -Ttfr- * B 221 (BSBA 10) .425" 7%- B 224 (BSBA 9) .425"! r ('-1.425" < W£ ^ Section Depth, Inches Flange Width, Inches Web Thickness, Inches ' Weight per Foot, Decimal Fractional Decimal Fractional Decimal Fractional Pounds B 218 (BSBAIl) B 220 B 221 (BSBAIO) B 223 B224 (BSBA 9) 8.000 7.500 7.500 7.500 7.500 8 714 3.000 3.500 3.500 3.000 3.000 3 3*! 3 3 0.475 0.425 0.575 0.525 0.475 0.425 0.525 0.475 0.425 0.375 !%2 ma ma m-2 2 %i Vs 19.6 18.0 22.8 21.2 19.4 17.8 20.3 ,. 18.8 17.1 15.6 Dimensions of British Standard Sections are indicated in bold type. BULB SECTIONS SHIP BUILDING BULB ANGLES— Continued H- B2B " New American Standard Sections — Continued (^ .425'"! .400 B 227 (BSBA 8) i.425" B 230 (BSBA 7) ! .400" T B226 .5251 B229 ■500; - 7 »- B 233 (BSBA 6) .4001 -6%-'—- -- "S ^.500" _> k->;.400 ; Section Index Depth, Inches Flange Width, Inches "Web Thickness, Inches Weight per Foot, Decimal Fractional Decimal Fractional Decimal Fractional Pounds, B 226 B 227 (BSBA 8) B 229 B 230 (BSBA 7) B 233 (BSBA 6) 7.000 7.000 7.000 7.000 6.500 7 7 7 7 6M 3.500 3.500 3.000 3.000 3.500 3M 3 3 3J^ 0.525 0.475 0.425 0.375 0.500 0.450 0.400 0.350 0.400 0.350 "/S2 % 2 %4 20.0 18.6 16.8 15.3 18.4 16.9 15.3 13.9- 15.0' 13.6 Dimensions of British Standard Sections are indicated in bold type. CARNEQIE STEEL COMPANY .475" SHIP BUILDING BULB ANGLES— Continued New American Standard Sections — Continued B 236 (BSBA 5) .375"' T ■t Lloyd '.475" .475" jl f ~7\ ^ . *B124 J*&<>tiZr -% L 5 *B122 jtftfjL- » *-- «,*B123 ^ \; *' > + V ---i" + Section Index Depth, Inches Flange Width, Inches Web Thickness, Inches Weight per Foot, Decimal Fractional Decimal Fractional Decimal Fractional Pounds *B 125 *B 124 *B 122 *B 123 5.000 5.000 4.000 4.000 5 5 4 4 4.500 3.500 3.500 3.500 4M 3H 3M 0.438 0.375 0.500 0.375 % 19.3 13.2 14.3 ,11.9 * Furnished only by special arrangement. 80 CHANNELS 0.425 Vi STRUCTURAL CHANNELS tC 60 ,* 15.421-- ! 0.625" J,0.500* n I 0.564 0.686 0.340 Section Index Depth of Channel, Weight per Foot, Flange Width, Inches ' Web Thickness, Inches Inches Founds Decimal Fractional Decimal Fractional • 57.7 " 4.200 411 0.700 a 18 51.6 4.100 4& 0.600 s TC 60 45.5 4.000 4 0.500 42.5 3.950 3Si Q.450 H 55.0 3.818 3 fi 3B 0.818 H 50.0 3.720 3.622 0.720 M 45.0 m 0.622 Vs C 1 15 40.0 3.524 345 0.524 V, 35.0 3.426 381 0.426 fi 33.0 3.400 3J? 0.400 a 50.0 4.416 m 0.791 n 45.0 4.303 4SI 0.678 33 13 40.0 4.190 4A 0.565 A tC 20 37.0 4.122 4H 0.497 H 35.0 4.077 4& 0.452 II 32.0 4.000 4 0.375 fC 60 is a Ship Building Channel — fC 20 is a Car Building Channel. 81 CARNEQIE STEEL COMPANY STRUCTURAL CHANNELS— Continued t 1 1 V, 0.30" r 1 si n t tC 170 1 i h - 50 " 10.473" ' J. , i ^O.l?" C2 / 1 U-J0.38" J, 0.280" ±1 ^ i 7 ! 0.650" T 0.750" 0.280 0.723" ~»l C3 p 8.158"- J ,0.34" J. 0.240' T Section Depth of Channel, Weight per Foot, Flange Width, Inches Web Thickness, Inches Inches Pounds Decimal Fractional Decimal Fractional 50.0 4.140 4A* 0.840 JJ 48.4 4.100 n 0.800 H 0.750 y. tO 170 12 46.3 4.050 44.3 4.000 4 0.700 « 40.0 3.895 3§£ 0.595 H 35.0 3.773 3§£ 0.473 H 40.0 3.418 335 0.758 3! 35.0 3.296 m ~ 0.636 JJ 02 12 30.0 3.173 3Ji 0.513 H 25.0 3.050 3ft 0.390 ! M 20.5 2.940 2!S 0.280 & 35.0 3.183 3ft 0.823 H 30.0 3.036 3& 0.676 J? C3 10 25.0 2.889 m 0.529 U 20.0 2.742 m 0.382 11 15.0 2.600 2JS 0.240 if tC 170 is a Car Building Channel. ~8T CHANNELS STRUCTURAL CHANNELS - Continued PT C4 ■/I W0.33" 10.230" \J - l „ C9 g I \ f— -2-700? til ~i ftiso" J0-2S" 10.180!^ ,| J. n T h i"— rH .J. 0.113" C72 -¥— riO.10" f « 1 H — 1.788--*| / 1 VtMT'jMliU, T 10.377' ," i 0.170" Section Index ' Depth of Channel, Inches Weight per Foot, Pounds Flange Width, Inches Web Thickness, -Inches Decimal Fractional Decimal Fractional C 7 O 8 C 9 C72 6 5 4 3 15.5 13.0 10.5 8.0 11.5 9.0 6.5 7.25 6.25 5.25 6.0 5.0 4.0 2.283 2.160 2.038 1.920 2.037 1.890 1.750 1.725 1.652 1.580 1.602 1.504 1.410 2& 2 A 2,V l« 2A HI I5i 1*3 m 181 HS 1H 1M 0.563 0.440 0.318 0.200 0.477 0.330 0.190 0.325 0.252 0.180 0.362 0.264 0.170 ft ft ft H n li ft .H X ft 11 il H N 34 CHANNELS SHIP BUILDING CHANNELS r\ New American Standard Sections ■) C 21 (BSC 26) o T \ |0.575" i0.475" iJ i. 0.513" 0.637" Section Index Depth of Channel, Inches Weight per Foot, Founds Flange Width, Inches Web Thickness, Inches Decimal Fractional Decimal Fractional C 21 (BSC 36) C 171 (BSC 25) C 26 (BSC 21) 12 12 10 44.4 40.3 36.2 34.2 40.8 36.8 32.7 30.6 36.8 33.4 30.0 , 28.3 4.200 4.100 4.000 3.950 3.700 3.600 3.500 3.450 4.200 4.100 4.000 3.950 41%4 4%2 4 3«ye4 3*%4 31%2 3H 3 2 %4 41%4 4 3ey 6t 0.725 0.625 0.525 0.475 0.700 0.600 0.500 0.450 0.675 0.575 0.475 0.425 2 %2 % !%a 4 %4 !%2 H 2 %4 ±%4 8 %4 15 /s2 2 %4 Dimensions and properties of the British Standard Sections are indicated in bold type 85 CARNEQIE STEEL COMPANY SHIP BUILDING CHANNELS— Continued New American Standard Sections — Continued -h * *■— T\0.400" T \xa 1 o o CO* < C 27 (BSC 20) 7,634- ,•0.475 * , Id * c < t 10^ J 0.522" 0.628' f"" _ rr\0.3BO" i C 28 (BSC 19) 7.925"-— 10.500" 10.375" 0.555 <_ ^o". , ^ FT\ 0.400" ^ C 31 (BSC 18) 6.616-' j, i 0.575" 10.513" 0.637" < y- Section Depth of Channel, Inches Weight per Foot, Pounds Flange Width, Inches Web Thickness, Inches Decimal Fractional Decimal Fractional O 27 (BSC 20) C 28 (BSC 19) O 31 (BSC 18) 10 10 9 34.8 31.4 28.0 26.3 24.6 25.1 23.4 21.7 34.5 31.4 28.4 26.8 3.700 3.600 3.500 3.450 3.400 3.550 3.500 3.450 4.200 4.100 4.000 ' 3.950 3±%i 31%2 3M 32% 4 3l% 2 3»%4. 3K 32%4 41%4 4%2 4 3°y 01 0.675 0.575 0.475 0.425 0.375 0.425 0.375 0.325 - 0.675 0.575 0.475 0.425 *%4 <»%4 *%2 % 27 /e4 % "Vu, *%4 s %4 !%2 2 %4 Dimensions and properties of the British Standard Sections are indicated in bold type. CHANNELS SHIP BUILDING CHANNELS— Continued New American Standard Sections — Continued rr\ C 32 (BSC 17) _t 6.731-" i 0.550" i 0.450" 0.497 ri""t 0.603 ^0.375" C 36 (BSC 13) © ,_* . , 0.471" 0.579 " r\0.350" * "0.454" , C 37 (BSC 12) & 5.943-"- *, ' 10.500" 10.375" i >. Section Index Depth of Channel, Inches •Weight per Foot, Founds Flange Width, Inches . Web Thickness, Inches Decimal Fractional Decimal j Fractional C 32 (BSC 17) C 36 (BSC 13) C 37 (BSC 12) 9 8 8 31.3 28.3 25.2 23.7 28.0 25.3 22.6 21.2 25.3 22.6 19.9 19.2 18.5 3.700 3.600 3.500 3.450 3.700 3.600 3.500 3.450 3.225 3.125 3.025 3.000 2.975 3*%4 3i% 2 3K 32%4 3*94* 3i% 2 3K 32%4 3%2 3H 3% 2 3 2%! 0.650 0.550 0.450 0.400 0.625 - 0.525 0.425 0.375 0.600 0.500 0.400 0.375 0.350 2 %2 3B /e* 2 %4 !%2 % 2 %t % !%2 H »%2 % !VS2 Dimensions and properties of the British Standard Sections are indicated in bold type. 87 CARNEGIE STEEL COMPANY SHIP BUILDING CHANNELS— Continued New American Standard Sections — Continued "* "JOMB" 0.350 C 41 (BSC 10) -4.926—— : 0.500" i 0.400" — * » 0.554 C 42 (BSC 9) 5.041-"-— • 0.475" J.0.375" ~*i T0.429" b-i— a rT^O.325 C 46 (BSC 8) / t * 4.023- »j 10.475" '0.375" | ^0.420" 0.300" \-~lo.E C109 —4.376— f 6.SH>" ) 10.340" 0.440 Section Depth of - -Channel, Inches Weight per Foot, Pounds Flange Width, Inches Web Thickness,, Inches Decimal Fractional Decimal Fractional 41 (BSC 10) C42 (BSC 9) C46 (BSC 8) O 109 7 7 6 6 24.9 22.5 20.1 18.9 19.8 17.4 16.3 21.9 19.8 17.8 16.8 15.3 3.700 3.600 3.500 3.450 3.100 3.000 2.950 3.700 3.600 3.500 3.450 3.500 3*%4 3i% 2 32%4 3%2 3 2«%4 3*%4 31%2 32%4 0.600 0.500 0.400 0.350 0.475 0.375 0.325 0.575 0.475 0.375 0.325 0.340 18 /is J %2 . s /s 2 y 4 a y 8 4 !%2 H !%2 Dimensions and properties of the British Standard Sections are indicated in bold type. CHANNELS SHIP BUILDING CHANNELS— Concluded New American Standard Sections — Concluded C 48 CBSC 5) -5~ 0.S25" < r 8 © CO C 47 (BSC 7) t 4.041-'- tio.47B" :0.375" © «— -...gr — >1 4.449-- *|« 0.375" : 0.313" \J 0.413 < 6 'l MISCELLANEOUS CAR BUILDING CHANNELS '6.406" r k FO Ti 0.25" *C 106 ;|o.25" 10.375" <■, 1 "-5%--- -4l 07500" ~T^ °- 19 " C 200 ^" 2.395--—, tlO-28" .;0.S0tJ. . *-- -4-" -* 0.469 mi9"*C220 1 h 2.402----; C|0.38" ;0.39fe— - I ■ * A 26 to *A285 ^ ' *A34 to A 40 Section Index •■ Size, Inches Thickness, Inches Weight per Foot, Pourids *A 18 4x4 a 19.9 A 19 4x4 H 18.5 A 20 4 x 4 ^ a 17.1 A 21 4x4 % 15.7 A 22 4x4 ft 14.3 A 23 4x4 ^ 12.8 A 24 4x4 ' ft 11.3 A 25 4x4 H 9.8 A 90 4x4 ft 8.2 *A284 4x4 Ji 6.6 *A 26 3^x3^ H 17.1 *A 27 3V 2 x ZVi U 16.0 *A 28 33^x3^ « 14.8 A 29 3^x3^ M 13.6 A 30 3Kx3H A 12.4 A 31 3V2XZV 2 H 11.1 A 32 3^x3H ft 9.8 A 33 3^x3^ J< 8.5/ A 99 3K x 3K A 7.2 *A285 3Hx3K Ji 5.8 *A 34 3x3 % 11.5 *A 35 3x3 A 10.4 A 36 3x3 ^ 9.4 A 37 3x3 ft 8.3 A 38 3x3 J« 7.2 A 39 3x3 n . 6.1 A 40 3x3 H 4.9 * Special, see page 58. ~ST~ CARNEGIE STEEL COMPANY EQUAL ANGLES— Concluded X ■2Mt- T % * A 46 to *A504 „-— 2"-'— — T...U *A56 to *A506 Hi" * A 61 to *A507 —IX--. *A X 66 to A 102 * *A7 t— 1/ frt ,70 . to *A73 _L % *A78 . to *A80 Section Index Size, Inches Thickness, Inches Weight per Foot, Pounds *A 46 2HX2M X 7.7 A 47 2^x2^ ft 6.8 A 48 2i4 x 2)4 'A 5.9 A" 49 2^x2^ ' P. 1? A 50 2Hx2}£ A 100 2^x2H ft 3.07 *A504 2^x2K y% 2.08 *A 56 2x2 * 5.3 A 57 2x2 k /■ 4.7 A 58 2x2 a 3.92 A 59 2x2 K 3.19 A 60 2x2 ft 2.44 *A506 2x2 H 1.65 *A 61 VAxlH ft 4.6 *A 62 lMxlM % 3.99 *A 63 l%xlH ft 3.39 *A 64 l?ixlM H 2.77 *A 65 lKxlM ft 2.12 *A507 lKxlM H 1.44 *A 66 Wi 1H % 3.35 A 67 l^x IK ft 2.86 A 68 lMxiH M 2.34 A 69 i«i iH ft 1.80 A 102 Wi 1H y% 1.23 *A 70 IX x ljf ft 2.33 *A 71 lJi x lJi X 1.92 *A 72 WiW ft 1.48 *A 73 lJixlM K 1.01 *A 78 lxl M 1.49 *A 79 lxl ft 1.16 *A 80 lxl H 0.80 * Special, see page 58. 92 ANQLES UNEQUAL ANGLES 6 — - n. (....; Vi V * A 138 to *A 139 s\ „ t 3f" y 2 " ! Ho *A320 to *A329 3X". L C 1 %" t %" * A 150 to * A 310 Section Index Size, Inches Thickness, Inches Weight per Foot, Pounds *A138 8x6 1 44.2 *A137 8x6 H 41.7 *A136 8x6 39.1 *A135 8x6 s 36.5 *A 134 8x6 33.8 *A133 8x6 31.2 *A 132 8x6 ^1 28.5 *A131 8x6 ft 25.7 *A 130 8x6 23.0 *A 139 8x6 ft 20.2 *A320 8x3« l 35.7 *A321 8 x3K 8 33.7 *A322 8x3X 31.7 *A323 8 x3H H 29.6 *A324 8 x3H 27.5 *A325 8x3^ g 25.3 *A326 8 x3H 23.2 *A327 8 x3H ft 21.0 *A328 8x3^ k 18.7 *A329 8x3^ ft 16.5 *A150 7 x3H 1 32.3 *A 151 7 x3H 8 30.5 *A152 7 x3M 28.7 *A153 7 x3H 9 26.8 *A154 7x3!^ 24.9 *A155 7 x3J^ 8 23.0 *A156 7 x3H 21.0 *A157 7 x3H ft 19.1 *A158 7 x3H 17.0 *A 159 7x3^ ft . 15.0 *A310 7 x3J^ 13.0 * Special, see page 68. 93 CARNEGIE STEEL COMPANY UNEQUAL ANGLES— Continued L-U CIZ^\ % *A89 to A 168 — | t_ %T^ Y *A92 to *A301 -i — Jfc 3 ■Jy»' '» *A178 to *A186 m- \ Section Index Size, Thickness, Weight per Foot, Inches Inches Founds *A 89 6x4 1 30.6 *A 91 6x4 u 28.9 A 160 6x4 Vs 27.2 A 161 6x4 a 25.4 113.6 A 162 6x4 n A 163 6x4 n 21.8 A 164 6x4 % 20.0 A 165 6x4 A 18.1 A 166 6x4 H 16.2 A 167 6x4 A 14.3 A 168 6x4 % 12.3. *A 92 6 x zy 2 1 1 28.9 *A 93 6 x 3K II 27.3 A 169 6 x zy 2 25.7 A 170 6 x 3M it 24.0 A 171 6 x zy 2 % 22.4 A 172 6x3"^ Ji 20.6 A 173 6 s3M % 18.9 A 174 6 x 3H A 17.1 A 175 6 x 3H M 15.3 A 176 6 x 3H ft 13.5 A 177 6 x 3H H 11.7 *A301 6 x Z]4 A 9.8 *A178 5x4 Vt 24.2 *A 179 , 5x4 18- 22.7 *A 180 5x4 X 21.1 *A181 5x4 « 19.5 *A182 5x4 N 17.8 *A183 5x4 ft 16.2 *A184 5x4 K 14.5 *A 185 5x4 ft 12.8 *A 186 5x4 H 11.0 ♦Special, Bee page 58. ~m~ ANGLES UNEQUAL ANGLES— Continued ■3J4 (CIk. t Mo" *A187 to A 96 3 ? 3 ! *A196 to A 280 ^ 1 I "A 204 to *A97 — 3%- — _i % 15.7 A 200 5x3 ft 14.3 A 201 5x3 H 12.8 A 202 5x3 ft 11.3 A 203 5x3 H 9.8 A 280 5x3 ft 8.2 *A204 4H x 3 « 18.5 *A205 4H x 3 M 17.3 ■ *A 206 4K x 3 ft 16.0 *A 207 4H x 3 H 14.7 . *A 208 i\i x 3 ft 13.3 *A 209 4M x 3 M 11.9 *A210 4H x 3 ft 10.6 *A211 4H x 3 % 9.1 *A 97 4^ x 3 ft 7.7 *A212 4 x 3H H 18.5 *A213 4 x 3M M 17.3 *A214 4x3^ ft 16.0 *A215 4x3^ k 14.7 *A216 4 x 3H ft 13.3 *A217 4 x 3H h 11.9 *A218 4x3^ ft 10.6 *A219 4 x 3H K 9.1 *A '98 4 x3)i ft 7.7 ♦Special, see page 58. 95 CARNEGIE STEEL COMPANY UNEQUAL ANGLES— Continued ... 2%" -— ; Z) '.!%" 1W'« 3- -> * A 220 i to ! *A 283^ CT> TW * A 229 to *A286 PvJ T %" r 2% *A 238 ; ' to .: A 245 « 1 — ,, *,,„ « *A 252 S to A 257 V ^-1 fJ^i'i Th" *A258 to *A262 Section Index Size, Inches Thickness Inches Weight per Foot, Pounds *A220 4x3 II 17.1 *A221 4x3 16.0 *A222 4x3 it 14.8 A 223 4x3 13.6 A 224 4x3 A 12.4 A 225 4x3 H 11.1 A 226 4x3 ft 9.8 A 227 4x3 8.5 , A 228 4x3 A 7.2 *A283 4x3 K 5.8 *A229 3'A* 3 II 15.8 *A230 ,3^x 3 14.7 *A231 3Xx 3 II 13.6 *A232 3^x 3 12.5 A 233 3Hx 3 A 11.4 A 234 3^2 x 3 H 10.2 A 235 3^x 3 A 9.1 A 236 3Hx 3 7.9 A 237 3 l Ax 3 A 6.6 *A286 3Hx 3 M 5.4 *A238 3J4X2H ti, 12.5 *A239 3^ k 9.4 A 242 3Mx2K A 8.3 A 243 3Kjx2K Jl 7.2 A 244 3M x 2K A 6.1 A 245 3K x 2H M 4.9 *A252 3x2M A 9.5 *A253 3x2)j 54 8.5 A 254 3x2^ A 7.6 A 255 3x2}^ 6.6 A 256 3 x 2J4 A 5.6 A 257 3 xZ)4 X 4.5 *A 258 3x2 H 7.7 *A259 3x2 ft 6.8 *A 260 3x2 5.9 *A261 3x2 § 5.0 *A262 3x2 4.1 ♦Special, seepage 58. 96 ANGLES UNEQUAL ANGLES— Concluded - 2- >? *A264 to *A523 TS /l6" * A 610 to * A 612 -1W~. I i M4e" *A270 to *A275 --1H-- i_ Mfc" *A631 to *A525 ,—H *A646 and *A645 * A 618 * t0 *A620 I-114- V 16 *A670 to *A624 Section Index Size, Inches Thickness, Inches Weight per Foot, Pounds *A264 2^x 2 x 6.8 *A265 2Hx 2 A 6.1 A-266 2J^x 2 % 5.3 A 267 2Hx 2 A 4.5 A 268 2^x 2 X 3.62 A 269 2Hx 2 A 2.75 *A523 2>^x 2 M 1.86 *A610 2^xlJ^ A 3.92 *A 611 2^xlH H 3.19 *A612 2HxlM A 2.44 *A270 2Jixl^ M 5.6 *A271 2MxlH A 5.0 *A272 2JixlH N 4.4 *A273 2«x 1H A 3.66 *A274 2«stt X 2.98 *A275 2MxlH A 2.28 *A631 2x1^ % 3.99 *A614 2 xlH A 3.39 *A615 2x1^ M 2.77 ' *A616 2 xlH A 2.12 *A525 2 xlH H 1.44 *A646 2 x IK M 2.55 *A645 2 x 1M A 1.96 *A618 15ixlM « 2.34 *A619 l«x IX A 1.80 *A620 lJixlJi H 1.23 *A670 lHxIJi A 2.59 *A623 lJ^XlJi X 2.13, *A624 lHx IX A 1.64 * Special, see page 58. 97 CARNEGIE STEEL COMPANY w t 1 •an i .: 6?"" i 4 T 16 ■ V tzmic .* lW-'-* = f" it 19 : ^ 7 / 32 T20 if S3? T21 M, 'SfTifi yr" ~ 3 /£ T22 Section Size, Inched Thickness, Inches Weight per Foot, Pounds Index Flange Stem Flange Stem T10 2H 2M «to A H to A 6.4 T 11 2M 2H Ato^ AtoM 5.5 T12 2M 2M AtoK AtoM 4.9 T 13 2M 2« Jito A Mto A 4.1 T14 2 2 AtoK Ato% 4.3 T15 2 2 a to a Mto A 3.56 T16 1M 1M Jito A Mto A 3.09 T 17 l« 1H M to& H to A 2.47 T 18 IK IK A to A A to A 1.94 T 19 1M 1M M to A Mto A 2.02 T20 l« 1M A to A A to A 1.59 T21 1 1 A to A A to A 1.25 T22 1 1 Hto A Hto* 0.89 99 CARNEGIE STEEL COMPANY UNEQUAL TEES r 6 _> -r-^-x. T50 -m — -, ~n< n: T 54 —»/£■ -4%- "V T 53 'fir 2-f Section Size, Inches Thickness, Inches Weight per Foot, Founds > Index Flange Stem Flange Stem |T 50 (T51 T 52 T54 T53 5 5 4A 4X 3 3 3 *$to & % to A A to A Vs to A SSto^ a to » H to% Vs to A Ato% 11.5 10.9 15.7 9.8 84 J^"toA". and stem 3)^"; weight 13.6 lbs. per foot. H"toA"i and stem 2^"; weight 13.0 lbs. per foot. t T 50 can be rolled with i T 51 can be rolled with 100 TEES UNEQUAL TEES— Continued r m ' i :i i *■ S? 1 S! \ \ T56, % *- •-4*4- "^ ^fl- 3_j£ T55 -J% _L.__ t TB7 Yi; r& 13- T58 ^& -%^ j a r* T59 i« t-4-- ^S? s -1H" T60 Section Size, Inches Thickrteaa, Inches Weight per Foot, Pounds Index Flange Stem Flange Stem T56 4M 2H Nto A %to A 9.2 T55 4K 2M AtoK AtoM 7.8 T57 4 5 Hto A Hto A 15.3 T58 4 5 Mto A «to A 11.9 T59 4 4^ Mto A Mto A 14.4 T60 4 4H M to A Mtoft 11.2 101 CARNEGIE STEEL COMPANY UNEQUAL TEES— Continued r" -I- L - J n V CO T61 i - ~%" ■■ t ! 5j I t JZ V "? T66 t -J ~%" ; s t«i 1 t ^ ^ JOS ca T65 t t ... IMe" -3%-'--— _i..5J T67 - ■-% Section Size, Inches Thickness, Inches Weight Index Flange Stem Flange Stem Pounds T61 T44 T62 T63 T64 T65 T66 T67 4 4 4 4 4 4 3K 3^ 3 3 2H 2K 2 2 4 4 Mto A Ato« V% to A A to K Hto A Ato^ J^to A «to A Mto A Ato« % to A A to M Htq A A toH Hto A % to A 9.2 7.8 8.5 7.2 7.8 6.7 12.6 9.8 102 TEES UNEQUAL TEES— Continued * 31/0 — >, 1 a? 1 T ^ te 08" CO T69 * - 1A „ f 3%-- T70 , 3% „ ! 5 I 5 1 ,n .* 1 « n m^ T M T71 t % « "Vs^ ji g sS T73 -%* -1 T76 Section Size, Inches Thickness, Inches Weight per Foot, Pounds Index Flange Stem Flange Stem T69 3H 3 Hto A Hto A 10.8 T70 3H 3 Hto A Hto A 8.5 T71 3H 3 AtoM H 7.5 T72 3 4 Hto A Hto A 11.7 T73 3 4 A to H AtoJ^ 10.5 T74 3 4 Hto A Hto A 9.2 T75 3 3H Hto A Hto A 10.8 T76 3 3H Ato^ Ato^ 9.7 T77 3 3H Hto A Hto A 8.5 103 CARNEGIE STEEL COMPANY UNEQUAL TEES— Concluded -2% 1 I 3J7UI -I J T 86' Wi T 519 I— -1%-Hj Vfc' ^ $ No.7 (-U4-- 1 . T 605 I *T M" «f Section Size, Inches Thickness, Inches Weight per Foot, Pounds Index Flange Stem Flange Stem T78 3 2X %to ft »A to A 7.1 T79 3 2X ft to% Ato« 6.1 T82 2X 3 Ktoft Kto ft 7.1 T83 2X 3 ft to% AtoM 6.1 T86 2X IX A, to A A to ft 2.87 T87 2 IX Jito A 5ito A 3.09 T519 IX 2 A to M A to H 2.45 T605 IX IX Mto ft HtoA 1.25 *T603 IX % No. 9 K to No. 7 0.88 * Furnished only by special arrangement. 104 TEES MISCELLANEOUS TEES *.T 156 _ 4-,— <| %s ...JW? '* ¥\ ^ tf Vi~ 1/ , 2=-'— - I _i *T 158 4 T-^S/li— + 3? \L.T Section Size, Inches Thickness, Inches Weight per Foot, Pounds Index Flange Stem Flange Stem *T 156 *T 157 *T158 4 3 i 3 2M 2« See cut See cut See cut Ktoy 2 %6 t5 Tic %6 tO %6 ' 11.3 7.3 7.0 * Furnished only by special arrangement. 105 CARNEGIE STEEL COMPANY ZEES c 1_ •3H- ~~2 9 /£S 1\ Z 6 'Hi' L i -354- 3 ! Z 5 -%' • 5 /lG -2'Jie" Z 4 - 6 / 16 ■SYi- Section" Size, Inches - Thickness, Inches Weight per Foot, Pounds Index Flange Web Flange Z3 3% 3ft 3^ ey a 6ft 6 3% 3ft 3>i 34.6 32.0 29.4 Z2 3% 3ft 3K ey s 6ft 6 3« 3ft 3*3 II ft 28.1 25.4 22.8 Zl 35< 3ft 3H 6ft 6 3^ 3ft 3% * 21.1 18.4 15.7 Z6 3% 3 iff 3M 5H 5ft o 3% 3ft 3£ 1* 28.4 26.0 23.7 Z5 3« 514 5ft o 3% 5* ft 22.6 20.2 17.9 Z4 3H 5H 5ft 5 3« 1ft H ft 16.4 14.0 11.6 106 ZEES ZEES^-Conchided J_ V - 6 /l6 *$ — &£-■ Z9 j. r i _L <"««" £? ■~2%- Z 8 «-%« '-4i« -213/16— -J Z 7 -:— SHg -SMe- " 6 /l6 *& j -— -2«£— * -44" Z 12, L-i— 3 i/i 6 '- — j _L 31 A ' 6 /16" «£ ■— -2«6-— • Hi" Z 11 (- 2?£— , -54" Z 10 -2% V 2«/ 16 - -2%- -i%- "Z 14 1 , r-- 6 /i6 s: ! h *Z 15 U-i-2%6— -J i j 5 !U -u" *Z 16 r j Section Size, Inches Thickness, Inches Weight per Foot, Pounds Index Flange Web Flange Z 9 1ft 3ft 1* 1ft 3ft ft 23.0 20.9 18.9 Z 8 fft 3ft 4M 4ft 4 1ft 3ft ft ft 18.0 15.9 13.8 Z 7 1ft * 3ft 4H 1* 1ft 3ft % ft 12.5 10.3. 8.2 Z12 2»i 2« , 3ft 2Jf 2*4 § 14.3 12.6 Zll 2« 2« 3ft 3 1% 2*4 ft 11.5 9.8 ZIO 2Ji 2ii 3ft 3 2K 2*4 ft 8.5 6.7 *Z14 *Z15 > *Z16 1% 1% 1% 4M 3H 3H 2ft 2ft . 9.2 8.6 4.8 * Furnished only by special arrangement. 107 CARNEQIE STEEL COMPANY UNITED STATES STEEL SHEET PILING Section Index Width, Inches Web Thickness, Inches Weight per Foot, Founds M 105 M 104 M 103 13 X 13 X QX X % X 42.5 38 16 This Company manufactures Friestedt Interlocking Channel Bar Piling and Symmetrical Interlock Channel Bar Filing, in addition to United States Steel Sheet Filing. Full information as' to the properties and uses of these sections is given in a separate pamphlet entitled "Steel Sheet Piling.* 108 FLOOR PLATES TROUGH PLATES CORRUGATED PLATES |«- 2%"- 1 2 8^ 6 - M33 - — *&~ £ k--l%-*i Section Width, Depth, Thickness, Weight per Foot, Index Inches Inches Inches Pounds *M 14 9 J* 3M k 23.2 *M 13 9Vz 3M Wo 21.4 *M 12 9^ 3% % 19.7 *M 11 9H 3% °A« 18.0 *M 10 9Y 2 3H K 16.3 *M 35 12Wo 2% J* 23.7 *M 34 12% 2i%e %0 20.8 *M 33 12% a 2M % f 17.8 *M 32 8M 1H M 12.0 *M 31 8% 1%6 %6 10.1 *M 30 SVi 1J* M 8.1 * Furnished only by special arrangement. 109 CARNEQIE STEEL COMPANY CHECKERED PLATE Section at Rib Section Thickness, Inches Width and Length, Inches Weight per Square Foot, Pounds Index 6tollJ£ 12 to 48 48H to 60 M 54 H 120 240 240 21.4 M 53 %« 120 240 240 18.9 M 52 % 120 240 240 16.3 M 51 Ho 120 240 240 13.8 M 50 'A 120 240 240 11.2 M49 %e 120 180 8.7 Checkered plates of greater lengths than shown in the above table may be submitted for special consideration. 110 FLAT ROLLED STEEL RECTANGULAR AND CIRCULAR PLATES— Carbon Steel SHEARED PLATES, THREE-SIXTEENTH INCHES AND UNDER, EXTREME SIZES Thickness, Weight, Lbs. per Widths and Lengths in Inches Inches, Diameter, N B. W. G. Sq. Ft. 74 72 70 68 66 64 60 Inches %o 7.65 200 220 240 250 270 320 375 77 *No. 8 6.73 200 210 216 230 260 280 74 *No. 9 6.04 160 170 190 220 240 70 *No. 10 5.47 144 170 200 230 68 * H 5.10 140 150 160 66 *No. 11 140 150 160 66 *No. 12 120 130 144 64 Thickness, Weight, Inches, Lbs. per 54 48 42 36 30 24 B. W. G. Sq. Ft. %« 7.65 400 400 400 375 375 400 77 *No. 8 6.73 300 340 350 350 350 340 74 *No. 9 6.04 280 300 310 330 330 280 70 *No. 10 5.47 240 260 270 300 300 260 68 * y» 5.10 200 220 230 260 260 260 66 *No. 11 200 220 230 260 260 260 66 *No. 12 180 200 220 240 240 240 64 Rectangular Plates %o" thick, over 74" wide and Circular Plates $4e" thick, over 77" diameter can be furnished to gage only and only under certain conditions. Such sizes should be submitted for special consideration. ♦Plates under % 6 " thick are furnished only by special arrangement. Plates lighter than 3's" should be specified to gage only. Plates of greater dimensions than shown in above table, may be submitted for special consideration. RECTANGULAR UNIVERSAL PLATES— Carbon Steel UNIVERSAL MILL PLATES, ONE-FOURTH INCH AND OVER, EXTREME SIZES Thick- Weight, Widths and Lengths in Inches ness, Lbs. per Sq. Ft. Inches 48-46 45-41 40-36 35-31 30-26 25-20 19-17 16-15 14-12 11 10-6J M 10.20 1020 1020 1020 1020 540 540 %6 12.75 1020 1020 1140 1260 1320 1320 1080 1080 1080 600 600 % 15.30 1200 1200 1320 1380 1380 1380 1080 1080 1080 900 840 Tie 17.85 1320 1320 1380 1380 1380 1380 1080 1080 1080 900 840 %a 20.40 1380 1380 1380 1380 1380 1380 1080 1080 1080 1020 840 22.95 1380 1380 1380 1380 1380 1380 1080 1080 1080 1020 840 Yi 25.50 1380 1380 1380 1380 1380 1380 1080 1080 1080 1020 840 %, 30.60 1353 1357 1363 1372 1380 1380 1080 1080 1080 900 840 Va 35.70 1160 1163 1169 1177 1188 1203 1080 1080 1080 900 840 1 40.80 1015 1018 1023 1030 1039 1052 1080 1080 1080 900 840 IK 45.90 903 905 910 916 924 936 1080 1080 1080 840 840 1M 51.00 812 814 818 824 832 842 1071 1080 1080 840 840 m 56.10 738 740 744 749 756 766 973 1080 1080 840 840 Hi 61.20 677 679 682 687 693 702 892 1059 1080 840 840 1% 66.30 625 626 629 634 640 648 823 978 1080 840 840 1M 71.40 580 581 584 588 594 601 765 908 1038 720 720 i-Vi 76.50 541 543 545 549 554 561 714 847 968 660 720 2 81.60 507 509 511 515 519 526 669 794 907 600 720 Plates of greater dimensions than shown in above table, may be submitted for special consideration. Ill CARNEGIE STEEL COMPANY RECTANGULAR AND CIRCULAR PLATES— Carbon Steel SHEARED PLATES, ONE-FOURTH INCH AND OVER, EXTREME SIZES Thick- ness, Inches Weight, Lbs. per ■Sq. Ft. Widths and Lengths in Inches Diam., Inches 132 126 120 114 108 102 96 90 .84 78 a 10.20 175 250 280 300 330 375 400 115 %a. 12.75 240 270 320 360 380 420 440 460 120 % 15.30 180 240 270 320 365 380 410 450 500 550 132 %« 17.85 200 270 300 360 370 410 430 460 510 550 132 k 20.40 240 270 320 365 400 450 480 510 550 % 580 134 %« 22.95 240 270 330 373 420 470 500 530 57Q % 600 134 % 25.50 240 300 350 390 450 500 520 540 600 620 134 w« 28.05 240 300 360 420 450 500 520 540 600 620 134 K 30.60 240 300 360 400 450 490 520 540 600 620 134 ls /io 33.15 240 300 340 385 440 490 510 530 600 620 134 K 35.70 240 300 330 375 440 480 510 530 600 620 134 1 40.80 240 300 300 340 440 460 500 530 580 600 134 IK 45.90 240 300 300 330 410 440 450 500 550 580 132 IK 51.00 230 270 300 310 380 400 420 490 530 550 132 ik 61.20 210 23Q 260 280 330 320 340 420 440 480 132 1M 71.40 200 200 220 240 280 270 300 380 380 410 132 2 81.60 180 180 190 210 240 240 260 320 330 360 132 2J€ 91.80 132 160 170 190 210 210 230 280 295 320 132 Thick- ness, Inches Weight, Lbs. per Sq. Ft. 72 66 60 54 50 48 42 36 30 24 Diam., Inches , a 10.20 430 475 525 530 530 530 530 530 530 530 115 %e 12.75 480 500 560 550 575 575 550 550 550 580 120 K 15.30 600 600 620 620 620 620 600 580 600 600 132 Ho 17.85 600 630 630 640 640 640 600 580 600 600 132 K 20.40 610 630 630 640 640 640 600 580 630 600 134 %6 22.95 620 640 640 640 640 640 600 580 630 600 134 « 25.50 620 640 640 640 640 640 600 580 600 600 134 i^c 28.05 620 640 640 640 640 640 600 580 600 580 134 K 30.60 620 640 640 640 640 640 600 580 600 580 134 *%e 33.15 620 640 640 640 640 640 600 580 570 550 134 K 35.70 620 640 640 640 640 640 600 580 550 550 134 1 40.80 600 630 630 640 640 640 580. 580 520 530 134 IK 45.90 580 620 620 640 640 640 580 580 520 500 132 IK 51.00 550 600 600 600 600 600 560 560 520 450 132 IK 61.20 530 600 600 600 600 600 540 540 470 430 132 IK 71.40 450 490 550 550 550 550 540 540 430 380 132 2 81.60 400 440 480 500 500 500 500 500 400 350 132 2Ji 91.80 350 390 420 450 450 450 450 450 300 200 132 Plates 48" wide and u For greater length anc Plates of greater dimei nder can also 1 Universal Mi isionsthanshov e rolle< 1 Sizes, m in ab onUn see Un ovetab versal Mills. veraal Mill Plate Table. es may be submitted for special consit eration. 112 FLAT ROLLED STEEL RECTANGULAR PLATES— Nickel Steel SHEARED PLATES, ONE-FOURTH INCH AND OVER, EXTREME SIZES Thick- ness, Inches Widths and Lengths in Inches 102 96 90 84 78 72 66 60 54 50 48 42 36 280 30 260 24 260 K 240 240 260 280 280 280 280 %d 2fi0 260 270 300 310 310 340 340 340 310 310 % 280 340 390 420 450 500 500 500 500 480 450 450 430 430 %a 260 300 360 400 430 480 520 520 520 520 500 490 490 '480 480 M 270 320 380 420 460 485 520 520 520 520 500 490 490 480 480 %6 270 320 380 420 460 485 520 520 520 520 500 490 490 480 480 % 270 300 355 390 440 480 520 520 520 520 500 500 500 480 450 »Wo 260 300 355 390 440 460 490 500 500 500 500 500 480 480 450 % 260 300 355 390 440 450 460 500 500 500 500 500 480 480 450 ] %6 260 300 355 390 440 440 460 480 500 500 500 500 480 460 440 % 260 300 355 390 440 440 460 480 480 480 480 480 480 450 440 1 260 290 320 370 400 430 440 460 480 480 480 480 440 420 420 1H 250 270 295 330 375 400 410 420 440 440 440 440 440 420 420 1M 240 260 290 315 330 350 360 380 390 400 400 420 420 400 400 . 1^ 230 260 290 290 310 330 350 370 390 390 390 390 380 380 360 IX 220 230 250 270 300 310 330 350 370 390 390 360 340 340 320 2 . 210 230 250 260 290 295 310 330 350 370 370 340 320 320 290 RECTANGULAR PLATES— Nickel Steel UNIVEBSAL MILL PLATES, ONE-FOURTH INCH AND OVER, EXTREME SIZES Thick- ness, Inches Widths and Lengths in Inches 48-46 45-41 40 ; 36 35-31 30-26 25-20 19-17 16-15 14-15 11 10-6 J X 660 660 660 540 540 %e 540 540 600 660 720 780 780 780 780 600 600 % 720 720 780 840 960 960 1020 1020 1020 900 840 %e 840 840 960 1020 1080 1080 1020 1020 1020 900 840 y* 960 960 1080 1140 1200 1200 1020 1020 1020 1020 840 9ie 960 960 1080 1140 1200 1200 1020 1020 1020 1020 840 5^ 900 900 1020 1080 1140 1140 1000 1000 1020 1020 840 M 840 840 960 1020 1080 1080 1000 1000 1020 900 840 K 780 780 840 960 960 960 1000 1000 1000 900 840 1 720 750 780 816 840 900 1000 1000 1000 900 840 1H 640 667 693 725 744 800 1000 1000 1000 840 840 1M 575 600 624 652 672 720 1000 1000 1000 840 840 1% 525 545 567 593 600 655 970 1000 1000 840 840 1J* 480 500 520 544 540 600 890 1000 980 840 840 i» 444 461 480 502 504 554 820 978 980 840 840 1% 410 428 445 466 480 514 765 908 980 720 720 i% 384 400 416 435 444 480 710 847 968 660 720 2 360 375 390 408 420 450 670 794 90S 600 720 All sues of Rectangular Nickel Steel Plates given in above tables under W thick should be specified to gage only. Plates 0j[' thick and over can be rolled to either gage or weight per square foot. 113 CARNEGIE STEEL COMPANY SQUARE EDGE FLATS ^— Width-— Thickness wide, x any thickness, K". UP to width. wide, x any thickness, M" to 3", inclusive. wide, x any thickness, W to 2", inclusive. , wide, x any thickness, % 6 " to IK", inclusive. Over VA" to 8", wide, x any thickness, % 6 " to 1" inclusive. Sizes not listed will be considered. %" to 3", Over 3" to 5", Over 5" to 7", Over 7" to7H' NUT STEEL FLATS All sizes of Nut Steel Flats within the range of Square Edge Flats can be furnished. Some of the smaller sizes can be furnished in coils. BAND EDGE FLATS -Width- - D'" Thickness From ; Over 9 %", wide, x No. 18 to No. 4 B. W. G. 7/io". wide, x No. 19 to No. 4 B. W. G. y 2 ", wide, x No. 22 to No. 4 B. W. G. 8/ie" to 1", wide, x No. 23 to No. 4 B. W. G. Hie" to 2", wide, x No. 22 to No. 4 B. W. G. 2%e" to 3",. wide, x No. 21 to No. 1 B. W. G. 3% e " to 3H". wide, x No. 20 to No. 1 B. W. G. 3%a'' to 4", wide, x No. 19 to No. 1 B. W. G. iVw" to 4W. wide, x No. 18 to No. 1 B. W. G. 49/V' to 5Via", wide, x No. 17 to No. 1 B. W. G. 5H" to 6%", wide, x No. 16 to No. 1 B. W. G. 6i%e" to &/»". wide, x No. 14 to No. 1 B. W. G. 8iMo" to 9%", wide, x No. 12 to No. 1 B. W. G. 10)i"> wide, x No. 12 to No. 1 B. W. G. " to 9%" intermediate widths can be furnished. i" in width, the size listed is the only one which is rolled, but intermediate widths will be considered. SKELP All sizes within the range of Sheared Plates, Universal Mill Plates and Band Edge Flats can be furnished. 114 MERCHANT BARS SQUARES ! I | Size Size %e" to 2", inclusive, advancing by 64ths. Size 2%2'' to 3J4", inclusive, advancing by 32ds. Size 3%6" to 5H'\ inclusive, advancing by 16ths. Squares can also be rolled to decimal dimensions, if so arranged. Squares %" and smaller can be furnished in coils. ROUND CORNERED SQUARES jSize Size H" to %" % inclusive, advancing by 64ths. LQ ROUNDS Qjsize , Size %2" to 1%", inclusive, advancing by 64ths. Size 1 2 % 2 " to 3H", inclusive, advancing by 32ds. Size 3%o" to 7", inclusive, advancing by 16ths. Rounds can also be rolled to decimal dimensions, if so arranged. Bounds %" and smaller can be furnished in coils. HALF ROUNDS O Size Size %e'' to %", inclusive, advancing by 64ths. Size i%e" to 1 %", inclusive, advancing by 16ths. Size 2", 2H". 3". i HEXAGONS Q] Si ze Size H" to VAb", inclusive, advancing by 32ds. Size l s /i" to 3% ". inclusive, advancing by 16ths. Size 3%e" OCTAGONS q: ;Size Size %" to. 2", inclusive, advancing by 32ds. _ CARNEGIE STEEL COMPANY AREAS OF RECTANGULAR SECTIONS SQUARE INCHES Width, Inches Thickness, Inches He % Vm % ■%e % fte % »Aa % % % ^o % ™A« '1 1 .016 .031 .047 .063 .031 .063 .094 .125 .047 .094 .141 .188 .063 .125 .188 .250 .078 .156 .234 .313 .094 .188 .281 .375 .109 .219 .328 438 .125 .250 .375 .500 .141 .281 .422 .563 .156 .313 .469 .625 .172 .344 .516 .688 .188 .375 .563 .750 .203 .406 .609 .813 .22 .44 .66 .88 .23 .47 .70 .94 .25 .50 .75 1.00 IK l% 2 .078 .094 .109 .125 .156 .188 .219 .250 .234 .281 .328 .375 313 .375 .438 .500 .391 .469 .547 .625 .469 .563 .656 .750 .547 .656 .766 .875 .625 .750 .875 1.000 .703 .844 .984 1.125 .781 .938 1.094 1.250 .859 1.031 1.203 1.375 .938 1.125 1.313 1.500 1.016 1.219 1.422 1.625 1.09 1.31 1.53 1.75 1.17 1.41 1.64 1.88 1.25 1.50 1.75 2.00 VA 3 .141 .156 .172 .188 .281 .313 .344 .375 .422 .469 .516 .563 .563 .625 .688 .750 .703 .781 .859 .938 .844 .938 1.031 1.125 .984 1.094 1.203 1.313 1.125 1.250 1.375 1.500 1.266 1.406 1.547 1.688 1.406 1.563 1.719 1.875 1.547 1.719 1.891 2.063 1.688 1.875 2.063 2.250 1.828 2.031 2.234 2.438 1.97 2.19 2.41 2.63 2.11 2.34 2.58 2.81 2.25 2.50 2.75 3.00 3'A 3H 3% 4 .203 .219 .234 .250 .406 .438 .469 .500 .609 .656 .703 .750 .813 .875 .938 1.000 1.016 1.094 1.172 1.250 1.219 1.313 1.406 1.500 1.422 1.531 1.641 1.750 1.625 1.750 1.875 2.0QJ 1.828 1.969 2.109 2.250 2.031 2.188 2.344 2.500 2.234 2.406 2.578 2.750 2.438 2.625 2.813 3.000 2.641 2.844 3.047 3.250 2.84 3.06 3.28 3.50 3.05 3.28 3.52 3.75 3.25 3.50 3.75 4.00 '4Ji 4K 5 .266 .281 .297 .313 .531 .563 .594 .625 .797 .844 .891 .938 1.063 1.125 1.188 1.250 1.328 1.406 1.484 1.563 1.594 1.688 1.781 1.875 1.859 1.969 2.078 2.188 2.125 2.250 2.375 2.500 2.391 2.531 2.672 2.813 2.656 2.813 2.969 3.125 2.922 3.094 3.266 3.438 3.188 3.375 3.563 3.750 3.453 3.656 3.859 4.063 3.72 3.94 4.16 4.38 3.98 4.22 4.45 4.69 4.25 4.50 4.75 5.00 5Ji 5H , 6 .328 .344 .359 .375 .656 .688 .719 .750 .984 1.031 1.078 1.125 1.313 1.375 1.438 1.500 1.641 1.719 1.797 1.875 1.969 2.063 2.156 2.250 2.297 2.406 2.516 2.625 2.625 2.750 2.875 3.000 2.953 3.094 3.234 3.375 3.281 3.438 3.594 3.750 3.609 3.781 3.953 4.125 3.938 4.125 4.313 4.500 4.266 4.469 4.672 4.875 4.59 4.81 5.03 5.25 4.92 5.16 5.39 5.63 5.25 5.50 5.75 6.00 6Ji 6H 7 .391 .406 .422 .438 .781 .813 .844 .875 1.172 1.219 1.266 1.313 1.563 1.625 1.688 1.750 1.953 2.031 2.109 2.188 2.344 2.438 2.531 2.625 2.734 2.844 2.953 3.063 3.125 3.250 3.375 3.500 3.516 3.656 3.797 3.938 3.906 4.063 4.219 4.375 4.297 4.469 4.641 4.813 4.688 4.875 5.063 5.250 5.078 5.281 5.484 5.688 5.47 5.69 5.91 6.13 5.86 6.09 6.33 6.56 6.25 6.50 6.75 7.00 7& ,7H 7M 8 .453 .469 .484 .500 .906 .938 .969 1.000 1.359 1.406 1.453 1.500 1.813 1.875 1.938 2.000 2.266 2.344 2.422 2.500 2.719 2.813 2.906 3.000 3.172 3.281 3.391 3.500 3.625 3.750 3.875 4.000 4.078 4.219 4.359 4.500 4.531 4.688 4.844 5.000 4.984 5.156 5.328 9.500 5.438 5.625 5.813 6.000 5.891 6.094 6.297 6.500 6.34 6.56 6.78 7.00 6.80 7.03 7.27 7.50 7.25 7.50 7.75 8.00 8K 8H 8^ ■ 9 .516 .531 .547 .563 1.031 1.063 1.094 1.125 1.547 1.594 1.641 1.688 2.063 2.125 2.188 2.250 2.578 2.656 2.734 2.813 3.094 3.188 3.281 3.375 3.609 3.719 3.828 3.938 4.125 4.250 4.375 4.500 4.641 4.781 4.922 5.063 5.156 5.313 5.469 5.625 5.672 5.844 6.016 6.188 6.188 6.375 6.563 6.750 6.703 6.906 7.109 7.313 7.22 7.44 7.66 7.88 7.73 7.97 8.20 8.44 8.25 8.50 8.75 9.00 -9)i 9^ 9M 10 .578 .594 .609 .625 1.156 1.188 1.219 1.250 1.734 1.781 1.828 1.875 2.313 2.375 2.438 2.500 2.891 2.969 3.047 3.125 3.469 3.563 3.656 3.750 4.047 4.156 4.266 4.375 4.625 4.750 4.875 5.000 5.203 5.344 5.484 5.625 5.781 5.938 6.094 6.250 6.359 6.531 6.703 6.875 6.938 7.125 7.313 7.500 7.516 7.719 7.922 8.125 8.09 8.31 8.53 8.75 8.67 8.91 9.14 9.38 9.25 9.50 9.75 10.00 10 Ji 10VS 10 Ji 11 ,.641 .656 .672 .688 1.281 1.313 1.344 1.375 1.922 1.969 2.016 2.063 2.563 2.625 2.688 2.750 3.203 3.281 3.359 3.438 3.844 3.938 4.031 4.125 4.484 4.594 4.703 4.813 5.125 5.250 5.375 5.500 5.766 5.903 6.047 6.188 6.406 6.563 6.719 6.875 7.047 7.219 7.391 7.563 7.688 7.875 8.063 8.250 8.328 8.531 8.734 8.938 8.97 9.19 9.41 9.63 9.61 9.84 10.08 10.31 10.25 10.50 10.75 11.00 11 M 11H 11M' 12 .703 .719 .734 .750 1.406 1.438 1.469 1.500 2.109 2.156 2.203 2.250 2.813 2.875 2.938 3.000 3.516 3.594 3.672 3.750 4.219 4.313 4.406 4.500 4.922 5.031 5.141 5.250 5.625 5.750 5.875 6.000 6.328 6.469 6.609 6.750 7.031 7.188 7.344 7.500 7.734 7.906 8.078 8.250 8.438 8.625 8.813 9.000 9.141 9.344 9.547 9.750 9.84 10.06 10.28 10.50 10.55 10.78 11.02 11.25 11.25 11.50 11.75 12.00 116 AREAS OF RECTANGLES AREAS OF RECTANGULAR SECTIONS— Continued SQUARE INCHES Width, Thickness, Inches Incfies %6 % He % He % %e % %e % %e Vi *%« % 16 /ie 1 12H 13 13J^ 14 .781 .813 .844 .875 1.563 1.625 1.688 1.750 2.344 2.438 2.531 2.625 3.13 3.25 3.38 3.50 3.91 4.06 4.22 4.38 4.69 4.88 5.06 5.25 5.47 5.69 5.91 6.13 6.25 6.50 6.75 7.00 7.03 7.31 7.59 7.88 7.81 8.13 8.44 8.75 8.59 8.94 9.28 9.63 9.38 9.75 10.13 10.50 10.16 10.56 10.97 11.38 10.94 11.38 11.81 12.25 11.72 12.19 12.66 13.13 12.50 13.00 13.50 14.00 15 15}* 16 .906 .938 .969 1.000 1.813 1.875 1.938 2.000 2.719 2.813 2.906 3.000 3.63 3.75 3.88 4.00 4.53 4.69 4.84 5.00 5.44 5.63 6.81 6.00 6.34 6.56 6.78 7.00 7.25 7.50 7.75 8.00 8.16 8.44 8.72 9.00 9.06 9.38 9.69 10.00 9.97 10.31 10.66 11.00 10.88 11.25 11.63 12.00 11.78 12.19 12.59 13.00 12.69 13.13 13.56 14.00 13.59 14.06 14.53 15.00 14.50 15.00 15.50 16.00 16}* 17 17J* 18 1.031 1.063 1.094 1.125 2.063 2.125 2.188 2.250 3.094 3.188 3.281 3.375 4.13 4.25 4.38 4.50 5.16 5.31 5.47 5.63 6.19 6.38 6.56 6.75 7.22 7.44 7.66 7.88 8.25 8.50 8.75 9.00 9.28 9.56 9.84 10.13 10.31 10.63 10.94 11.25 11.34 11.69 12.03 12.38 12.38 12.75 13.13 13.50 13.41 13.81 14.22 14.63 14.44 14.88 15.31 15.75 15.47 15.94 16.41 16.88 16.50 17.00 17.50 18.00 18}$ 19 19H 20 1.156 1.188 1.219 1.250 2.313 2.375 2.438 2.500 3.469 3.563 3.656 3.750 4.63 4.75 4.88 5.00 5.78 5.94 6.09 6.25 6.94 7.13 7.31 7.50 8.09 8.31 8.53 8.75 9.25 9.50 9.75 10.00 10.41 10.69 10.97 11.25 11.56 11.88 12.19 12.50 12.72 13.06 13.41 13.75 13.88 14.25 14.63 15.00 15.03 15.44 15.84 16.25 16.19 16.63 17.06 17.50 17.34 17.81 18.28 18.75 18.50 19.00 19.50 20.00 20}* 21 21^ 22 1.281 1.313 1.344 1.375 2.563 2.625 2.688 2.750 3.844 3.938 4.031 4.125 5.13 5.25 5.38 5.50 6.41 6.56 6.72 6.88 7.69 7.88 8.06 8.25 8.97 9.19 9.41 .9.63 10.25 10.50 10.75 11.00 11.53 11.81 12.09 12.38 12.81 13.13 13.44 13.75 14.08 14.44 14.78 15.13 15.38 15.75 16.13 16.50 16.66 17.08 17.47 17.88 17.94 18.38 18.81 19.25 19.22 19.69 20.16 20.63 20.50 21.00 21.50 22.00 22}* 23 23 }£ 24 1.406 1.438 1.469 1.500 2.813 2.875 2.938 3.000 4.219 4.313 4.406 4.500 5.63 5.75 5.88 6.00 7.03 7.19 7.34 7:50 8.44 8.63 8.81 9.00 9.84 10.06 10.28 10.50 11.25 11.50 11.75 12.00 12.66 12.94 13.22 13.50 14.06 14.38 14.69 15.00 15.47 15.81 16.16 16.50 16.88 17.25 17.63 18.00 18.28 18.69 19.09 19.50 19.69 20.13 20.56 21.00 21.09 21.56 22.03 22.50 22.50 23.00 23.50 24.00 25 26 27 28 1.563 1.625 1.688 1.750 3.125 3.250 3.375 3.500 4.688 4.875 5.063 5.250 6.25 6.50 6.75 7.00 7.81 8.13 8.44 8.75 9.38 9.75 10.13 10.50 10.94 11.38 11.81 12.25 12.50 13.00 13.50 14.00 14.06 14.63 15.19 15.75 15.63 16.25 16.88 17.50 17.19 17.88 18.56 19.25 18.75 19.50 20.25 21.00 20.31 21.13 21.94 22.75 21.88 22.75 23.63 24.50 23.44 24.38 25.31 26.25 25.00 26.00 27.00 28.00 29 30 31 32 1.813 1.875 1.938 2.000 3.625 3.750 3.875 4.000 5.438 5.625 5.813 6.000 7.25 7.50 7.75 8.00 9.06 9.38 9.69 10.00 10.88 11.25 11.63 12.00 12.69 13.13 13.56 14.00 14.50 15.00 15.50 16.00 16.31 16.88 17.44 18.00 18.13 18.75 19.38 20.00 19.94 20.63 21.31 22.00 21.75 22.50 23.25 24.00 23.56 24.38 25.19 26.00 25.38 26.25 27.13 28.00 27.19 28.13 29.06 30.00 29.00 30.00 31.00 32.00 33 31 35 36 2.063 2.125 2.188 2.250 4.125 4.250 4.375 4.500 6.188 6.375 6.563 6.750 8.25 8.50 8.75 9.00 10.31 10.63 10.94 11.25 12.38 12.75 13.13 13.50 14.44 14.88 15.31 15.75 16.50 17.00 17.50 18.00 18.56 19.13 19.69 20.25 20.63 21.25 21.88 22.50 22.69 23.38 24.06 24.75 24.75 25.50 26.25 27.00 26.81 27.63 28.44 29.25 28.88 29.75 30.63 31.50 30.94 31.88 32.81 33.75 33.00 34.00 35.00 36.00 37 38 39 40 2.313 2.375 2.438 2.500 4.625 4.750 4.875 5.000 6.938 7.125 7.313 7.500 9.25 9.50 9.75 10.00 11.56 11.88 12.19 12.50 13.88 14.25 14.63 15.00 16.19 16.63 17.06 17.50 18.50 19.00 19.50 20.00 20.81 21.38 21.94 22.50 23.13 23.75 24.38 25.00 25.44 26.13 26.81 27.50 27.75 28.50 29.25 30.00 30.06 30.88 31.69 32.50 32.38 33.25 34.13 35.00 34.69 35.63 36.56 37.50 37.00 38.00 39.00 40.00 41 42 43 44 2.563 2.625 2.688 2.750 5.125 5.250 5.375 5.500 7.688 7.875 8.063 8.250 10.25 10.50 10.75 11.00 12.81 13.13 13.44 13.75 15.38 15.75 16.13 16.50 17.94 18.38 18.81 19.25 20.50 21.00 21.50 22.00 23.06 23.63 24.19 24.75 25.63 26.25 26.88 27.50 28.19 28.88 29.56 30.25 30.75 31.50 32.26 33.00 33.31 34.13 34.94 35.75 35.88 36.75 37.63 38.50 38.44 39.38 40.31 41.25 41.00 42.00 43.00 44.00 45 46 47 48 2.813 2.875 2.938 3.000 5.625 5.750 5.875 6.000 8.438 8.625 8.813 9.000 11.25 11.50 11.75 12.00 14.06 14.38 14.69 15.00 16.88 17.25 17.63 18.00 19.69 20.13 20.56 21.00 22.50 23.00 23.50 24.00 25.31 25.88 26.44 27.00 28.13 28.75 29.38 30.00 30.94 31.63 32.31 33.00 33.75 34.50 35.25 36.00 36.56 37.38 38.19 39.00 39.38 40.25 41.13 42.00 42.19 43.13 44.06 45.00 45.00 46.00 47.00 48.00 117 CARNEQIE STEEL COMPANY AREAS OF RECTANGULAR SECTIONS— Concluded SQUARE INCHES Thickness, Inches 1 Width Inches Vl« Vs 9ie Vl 5 /ie %■ %6 % % Rolled for Trussed Concrete Steel Co. Section Index Size, Inches Weight per Foot, Pounds Section Index Size, Inches Weight per Foot, Pounds Wing Bar — Type A Wing Bar— Type B *M 1513 % 2.70 *M 1509 3X 10.2 *M 1512 X ■ 1.40 *M 1510 2M 6.8 *M 1516 2X 4.8 Square Rib Bar — Type A Rou nd Rib Bar— Type B Section Index Size, Inches Weight per Foot, Pounds Section Index Size, Inches Weight per Foot, Pounds *M 1918 IX 5.31 *M 2508 IX 4.17 *M 1917 1H 4.30 *M 2507 IK 3.38 *M 1916 l 3.40 *M 2506 1 2.67 *M 1915 % 2.60 *M 2505 H 2.04 *M 1914 % 1.91 *M 2504 X 1.50 *M 1913 % 1.33 *M 2503 % 1.04 *M 1912 X 0.85 *M 2502 X 0.67 *M 1911 H 0.48 *M 2501 X 0.38 *M 1910 X 0.21 * Furnished only by special arrangement. CARNEQIE STEEL COMPANY i DEFORMED BARS— Continued MONOTYPE BAR Rolled for Philadelphia Steel and Wire Co. WING BAR Rolled for Thomas Reinforcement Co. SLANT RIB BAR Rolled for Mississippi Valley Construction Co. Section Size, Weight per Foot, Section Size, height per Foot, Index Inches Pounds Index Inches Pounds Monotyp Bar — Equivale it to Square Monotyp* Bar — Equivalent to Round *M 2151 1M 5.39 *M 2161 IK 4.24 *M 2152 1H 4.37 *M 2162 1H 3.43 *M 2153 1 3.45 *M 2163 1 2.71 *M 2154 H 2.64 *M 2164 % 2.08 *M 2155 % 1.94 *M 2165 M 1.53 *M 2156 % 1.35 *M 2166 Vt 1.06 *M 2157 y* 0.86 *M 2167 l A 0.68 *M 2158 Vs 0.49 *M 2168 % ) 0.38 Wing Bar Slant Rib Bar *M 2135 2K 5.08 *M 1297 Hi 5.31 *M 2134 2 1 4.02 *M 1296 l 3.40 *M 2133 \% 3.06 *M 1295 Vs 2.60 *M 2132 1M 2.08 *M 1294 }i 1.91 *M 2131 IK 1.08 *M 1293 % 1.33 *M 1292 Y2 0.85 *M 1291 % 0.48 *M 1290 H 0.21 * Furnished only by special arrangement. 130 CONCRETE REINFORCEMENT BARS DEFORMED BARS— Continued SCOPIELD BAR THACHER BAR MONOLITH BAR Section Size, Weight per Foot, Section Size, Weight per Foot, Index Inches Pounds Index Inches Pounds Scofield Bar Thacher Bar Equivalent to Round *M 1969 IK 6.01 *M 1546 IK 5.20 *M 1968 IK 4.17 *M 1545 IJi 3.55 *M 1967 IK 3.38 *M 1544 1 2.32 *M 1966 1 2.67 *M 1543 K 1^79 *M 1965 K 2.04 *M 1542 H 1.34 *M 1964 % 1.50 *M 1541 H 0.92 *M 1963 % 1.04 *M 1540 K 0.58 *M 1962 K 0.67 *M 1961 Vs 0.38 Equivalent to Square *M 1583 % 1.33 *M 1582 K 0.85 *M 1581 K 0.48 Monolith Bar Section Size, Weight per Foot, Index Inches Pounds *M 1500 IK 7.65 *M 1508 IK 5.31 *M 1507 l 3.40 *M 1517 H 1.91 *M 1506 % 1.33 *M 1505 y% 0.85 *M 1504 Vs 0.48 * Furnished only by special arrangement. 131 CARNEGIE STEEL COMPANY FACING BAR *M1663 Boiled for Concrete Steel Co. GIRQER BAR SECTIONS *M 1852 Customer's No. 704 *M 1853 Customer's No. 705 (\_JTI ni _!».._ J WASHBOARD SECTION - TYPE A *M 1521 WASHBOARD SECTION "- TYPE B , *M 1522 Rolled for Trussed Concrete Steel Co. Section Size, Weight per Foot, Index Inches Pounds *M 1663 iM^lMxKo 1.46 *M 1852 4 xlHx% 4.1 *M 1853 1 X 1 X % 2 1.52 *M 1521 &H X %2 X %2 3.20 *M 1522 6J^ X % X % 2 3.95 *Rolled only by special arrangement. 132 CONCRETE REINFORCEMENT BARS HANGER BARS *M980 I.P_ 4,4*M 986 y&Y *M982 -*jl^" Is 2- t»L*M987 t— l Section Index Size, Inches Thickness, Inches Weight per Foot, Founds *M 980 *M 935 *M 981 *M 982 *M 983 *M 984 *M 986 *M 987 4KxlJi 4M x l'%4 iX xlM4i 3J4xl 3Hx «y a * 2'Ax H 2H x H 2 2 1 1 % X x S.31 4.63 4.18 4.41 3.85 2.61 1.65 2.29 1.43 1.30 1.09 * Furnished only by special arrangement. 133 CARNEGIE STEEL COMPANY CROSS TIE SECTIONS M28A Same aa M 28, excepting Web Thickness, %a' Section Depth, Inches Width of Flanges Web Thickness, ' Inches Weight per Foot, Pounds Index Top, Inches Bottom, Inches M 28A 6J4 5 10 7 M 29.8 M28 6J4 5 10 Sis 27.8 M 29 5^ 5 8 M tO 3%4 24.0 M 21 5H 4.H 8 K 20.0 M25 4K 4 6 K 14.5 M 24 3 3 5 18 /64 9.5 Full information aa to uses of steel cross ties is given in a separate pamphlet on Steel Cross Ties, 134 CROSS TIES CROSS TIE SECTIONS— Concluded M27 ^VA- ij -$% 7"- M20 hi M18 S// 4 " 3%i ,\w i, 5 r. M26 £__(( %gr jj HH*'_ 4 , h » it M19 C|^^Wi^\ l, — -1 4-"- J Section Depth, Width, Web Thickness, Weight per Foot, Index Inches Inches Inches Founds M27 2M 7 Ji 9.0 M20 2 6 %e 6.0 M 18 1}^ 5 %2 4.0 M26 !%6 4i%e Ja- 3.20 M 19 5i 4 ys* 2.50 Full inf onnation as to uses of steel cross ties is given in a separate pamphlet on Steel Cross Ties. 135 CARNEQIE STEEL COMPANY A. S. C. E. RAILS AND LIGHT RAILS Section Weight- per Yard, Pounds a b c d e f g h i i k 1 Index In. In. In. In. In. In. In. In. In. In. In. In. 10040 100 5H 5%. 2H in 3ft 8$ ft 23ft G 15 x ft ft 9040 80 5% 5% 2% liS 2JJ H 9 Iff 2ft 5 ,, ft X ft ft 8540 85 5ft 5ft 2ft Hi 2M ii ft 2JI ft X ft A 8040 80 5 5 2K IK 2M Vs ii 2ft ft X ft ft 7540 75 41* 41* 2iS iaj 28S n 15 2ft". ft X ft ft 7040 70 4^ 4M 2ft Hi 24s \l ii 2ft A X ft ft 6540 65 4ft 4ft 211 1 D Ws SS H HI ft X ft ft 6040 60 4M 4Ji 2% 1ft 2Ji « ii IHi ft X ft A 5540 55 4ft 4ft 2M Hi 2Ji SI M iHi A X ft 1 lo 5040 50 3V 8 3Vs 2« m 2ft « T Iff m A X ft 1 Id 4540 45 m m 2 ift m Si H Hi A X ft ft 4040 40 VA 3H 1^ ift Hi % ii IftV A X ft ft 3540 35 3ft 3ft 1M ii HI ii Ii Hi ft X ft ft 3040 30 3H 3M 1H % 152 ii ii Hi ft X ft ft 2540 25 2U 2*A IK M Hi ii ii lft% X X ft ft 2040 20 2M 2% HI M 1-53 7 T3 X Hi X A ft 1640 16 2H 2M Hi ii Hi H ft H5» A ft ft 1440 14 2ft 2ft ift % ift ii x H G 32 A 16 1240 12 2 2 l ft ift a ft 15 ft ft ft 1040 10 IK Hi H « H ii .ft ii ft ft ft 840 8 1ft 1ft 11 it 18 ft ft ii ft ft ft RAILS AMERICAN RAILWAY ASSOCIATION RAILS SERIES A Section Index Weight Per Yard a b c d e f e h i i k I Pounds In. In. In. In. In. In. In. In. In. In. In. ft In. 10020 100 6 5M 2% 1ft 3H lft ft 2f& % H ft 9020 90 5H BVs 2ft 1H 3 32 1 ft ■^32 % % ft ft 8020 80 5X W% 2J^ lft 2H u S3 2ft H % ft ft 7020 70 AH 4M 2H m 2K a X 2J? % % ft ft 6020 60 iH 4 2J€ 1H 2iS « if 24i % Ve ft ft <*■—■ --C SERIES B Section Weight Per Yard, Pounds a b c d e f g h i i k 1 Index In. In. In. In. In. In. In. In. In. In. In. In. 10030 9030 8030 *7030 *6030 100 90 80 70 60 5SJ sw 4« 4H 4ft 5& 4« 4ft 4* 3tt 2S4 2ft 2ft 2% 2J^ 1» 111 U! US 1M 211 2% 2M 2« 2ft 1A lft 1 59 B~ a li fi M A% « A% A 3fl¥ 2iSI 284 2i B A 2A K 88 *Not rolled by Carnegie Steel Company. 139 CARNEQIE STEEL COMPANY sauossaooy mi B[ve^ B^ltf 'Si\OQ areg sofldg 937[Tdg s^nx 'HHog s.reg aaijdg jo Birej 53UOSS903y R°X s*iiN 'ej[og sj By aoi [dg * sa^idg sa^i'dg nnN 's;[og areg eoitdg jo aire j s^ajdraoQ pas s}[og BJBg 3Di|dg asfidg jo azig n°a j° az !s jcg 30i[dg jo T^Sua^ \vs^ JO 89Bg jo ^qSiag; piB A jad iq3[9& ^ noitpag [rey; rtt— OOSCVlfflOTfl^OU3^^OC000C0C^O^Or-OSe0^^^0sGS>-?C2 ooooooooooooooooooooi>-oii>;'^3>ftooqr^i."-;^j'^; COMWW«ICOCOCOWWMeCMCOMWWMMWCi|HpH-H--i-l T ^^rtt»HQOONOMOO!OfOMMWiNO^MOSl'*WMMOTNN NMioo^eoOTOsoJooot^oaosiO'^'d'ri^cocQcqi-H^H ooooooooooooooooooo o~o — — ~—'~ —■ ooooo NNNiNINNNNNMMMINNNNININCgiMtOtDOtD'StC.tDOfOBtg T-Hr-li-4.— Ir-Hr-Hi— It-Hi— IvHi— IHHHf li— I^H^^H^HOOOOOOOOOOO lOioioioioioinwininioioi'Si'iooooooioioioiC'O'ninioioinio OSOSfflCRCSCvSOOOOiOiCftOSfflMMCOCOCOCO^^^^^^^^^''^ 1 "'' COOOOCDOOeQO«0©OeOOOcDCOOOCO'^ ,, ^ , ^'^'^'^*'' , S < ''* , ^ , ' , J 1 '^ N(MNWCTiMNNNIMNNNNCJNNINC>»(MNON!S(ON'OCO ;mmac qNNno iidd^- -o oo WCOOOW tOOOO osm - ' - oocn c O WW « locdosc COCOCQC c©cocooicso»r-t— co r-oocococpTtHTyTi lO lO "Of- I— C— NQOCOQOOWlO'-'-tfOOO COOS or— oo coo .-i cm I— T* coco ON CM CO COW ONNU5 HOW^MCOMtD^ThTtlNNNIXMCTiOO^CONTtirtOSlflOWOO 300-*OSO>Q©COtDtDCimU5iOI~-'^^o^oscscS'H'*THmr-rti-(t.iosN'o^iflM^c» ^MNNM^^^NlOQ©q©N^^NWfflfflcBO)O)NNcoeo©cOM00Q000'^1 , ^ oaososos'oac^oi6SNio^'NOicjJioS ^^^^^Q^^w«^^^w^«^ood»rico^c>ioiri^^cocccNicvi »aoNNCRfflo©Nioio©«innwiHMHrt miOIQiniOtQiQ iQi O >Q >Q tO tO ip 1Q to to 1Q to tp jQjq tfoto>otoioio ioto to^o io'»o 'io'>o ■^\*l ^< co c o'co eo PI c ^^^^^TtHT*-*-*-*T».o *feft ! | ^l|Me^ 3f~- - £°l 4 -jsMj — 1 — V 8! 1 -«4~»-%-J»-%-Av4 , 2%"- > " RAIL CLIPS No. 103 !No. 114 i«Jtf---J l : I %-' ' I i^Tt- 'J i w \«— »> — ■■ j i i. i 1 iNo. 118 •2H- "> 18 : f^-- N ; — i tfs-i 1 04, $ \ ! i & -y4-'-*- 15 /i6- 6' " No. 104 No. 108 Rail Clip No. Size, Inches Weight per Foot, Founds Weight of Finished CUp, Pounds Rail Section 103 114 118 104 108 2Mx2 l«xlH 2^x2 2}»x2 2^x2 4.4 2.3 5.65 7.3 4.8 . 0.64 0.25 0.85 1.10 0.70 100 to 60 lb. A.,S. C. E. Rails. 50 to 20 lb. A. S. C. E. Bails. 100 to 60 lb. E. B. Rails. 100 to 60 lb. A.S.O.E. Angle Bars Girder Rails. Clips can be furnished with M" diameter holes. 141 CARNEQIE STEEL COMPANY PIPE— BLACK AND GALVANIZED NATIONAL TUBE COMPANY STANDARD STANDARD PIPE Diameters, , Inches Thick- ness, Inches Weight per Foot, Pounds Threads per Inch Couplings In. External Internal Plain ' Ends Threads and Couplings Diameter Inches Length, Inches, Weight, Pounds x .405 .269 .068 .244 .245 27 .562 % .029 v a .540 .364 .088 .424 .425 18 .685 1 .043 . X .675 .493 .091 .567 .568 18 .848 1M " .070 x .840 .622 .109 .850 .852 14 1.024 W .116 H 1.050 • .824 .113 1.130 1.134 114 1.281 W .209 i 1.315 1.049 .133 1.678 1.684 HH- 1.576 VA .343 IX 1.660 1.380 .140 2.272 2.281 11X 1.950 2X .535 IX 1.900 1.610 .145 2.717 2.731 HM 2.218 2% .743 2 2.375 2.067 .154 3.652 3.678 11}£ 2.760 2% 1.208 2X 2.875 2.469 .203 5.793 5.819 8 3.276 2Vs 1.720 3 3.500 3.068 .216 .7.575 7.616 8 3.948 ZX 2.498 3X 4.000 3.548 .226 9.109 9.202 8 4.591 3% 4.241 4 4.500 4.026 .237 10.790 10.889 8 5.091 m 4.741 4M 5.000 4.506 .247 12.538 12.642 8 5.591 3% 5.241 5 5.563 5.047 .258 14.617 14.810 8 6.296 4H 8.091 6 6.625 6.065 .280 18.974 19.185 8 7.358 m 9.554 7 7.625 7.023 .301 23.544 23.769 8 8.358 ±X 10.932 8 8.625 8.071 .277 24.696 25.000 8 9.358 m 13.905 8 8.625 7.981 .322 28.554 28.809 8 9.358 m 13.905 9 9.625 8.941 .342 33.907 34.188 8 10.358 5X 17.236 10 10.750 10.192 .279 31.201 32.000 8 11.721 6H 29.877 10 10.750 10.136 .307 34.240 35.000 8 11.721 6X 29.877 10 10.750 10.020 .365 40.483 41,132 8 11.721 ex 29.877 11 11.750 11.000 .375* 45.557 46.247 8 12.721 ex 32.550 12 12.750 12.090 .330 43.773 45.000 8 13.958 eX 43.098 12 12.750 12.000 .375 49.562 50.706 8 13.958 ex 43.098 13 14.000 13.250 .375 54.568 55.824 8 15.208 6X 47.152 14 15.000 14.250 .375 58.573 60.375 8 16.446 6X 59.493 15 16.000 15.250 .375 62.579 64.500 8 17.446 ex 63.294 The permissible variation in weight is 5 per cent, above and 5 per cent, below. Furnished with threads and couplings and in random lengths unless otherwise ordered. Taper of threads is %'' diameter per foot length for all sizes. The weight per foot of pipe with threads and couplings is based on a length of 20 feet, including the coupling, but shipping lengths of small sizes will usually average less than 20 feet. All weights and dimensions are nominal. On sizes made in more than one weight, weight desired must be specified. 142 PIPE PIPE— BLACK AND GALVANIZED— Concluded NATIONAL TUBE COMPANY STANDARD EXTRA STRONG PIPE DOUBLE EXTRA STRONG PIPE Diameters, Weight, per Diameters, Weight Inches Thick- Foot, Size, In. Inches Thick- Foot, In. ness, Inches Founds ness, Inches Founds External Internal Plain Ends' External Internal Plain Ends Yt Yi % X .405 .540 .675 .840 .215 .302 .423 .546 .095 .119 .126 .147 .314 .535 .738 1.087 X 1* IK .840 1.050 1.315 1.660 .252 .434 .599 .896 .294 .308 .358 .382 1.714 2.440 3.659 5.214 X is 1.050 1.315 1.660 1.900 .742 .957 1.278 1.500 .154 .179 .191 .200 1.473 2.171 2.996 3.631 IX 2 2X 3 1.900 2.375 2.875 3.500 1.100 1.503 1.771 2.300 .400 .436 n552 .600 6.408 9.029 13.695 18.583 2 2Yz 3 3K 2.375 2.875 3.500 4.000 1.939 2.323 2.900 3.364 .218 .276 .300 .318 5.022 7.661 10.252 12.505 SX 4 4H 5 4.000 4.500 5.000 5.563 2.728 3.152 3.580 4.063 .636 .674 .710 .750 22.850 27.541 32.530 38.552 4 4H 5 4.500 5.000 5.563 6.625 3.826 4.290 4.813 5.761 .337 .355 .375 .432 14.983 17.611 20.778 28.573 6 7 8 6.625 7.625 8.625 4.897 5.875 6.875 .864 .875 .875 53.160 63.079 72.424 6 V 8 9 10 7.625 8.625 9.625 10.750 6.625 7.625 8.625 9.750 .500 .500 .500 .500 38.048 43.388 48.728 54.735 Furnished with plain ends and lengths unless otherwise ordered. Permissible variation in weight, strong pipe, 5 per cent, above and : in random for extra per cent. 11 12 13 14 11.750 12.750 14.000 15.000 10.750 11.750 13.000 14.000 .500 .500 .500 .500 60.075 65.415 72.091 77.431 below. For double extra strong pipe, 10 per cent, above and 10 per cent, below. All weights and dimensions are nominal. 15 16.000 15.000 .500 82.771 LARGE O. D. PIPE Weight per Foot, Pounds Thickness, Inches % %. %« ¥2 ■lio % % 14 15 16 17 18 20 21 22 24 26 28 30 713 383 053 723 393 45.682 49.020 52.357 55.695 59.032 65.708 69.045 72.383 54 58 62 66 70 78. 82. 86 94 102 568 573 579 584 589 599 604 609 619 629 63 68 72. 77. 82 91 96 100 110 119 128, 138. 371 044 716 389 061 407 079 752 097 442 787 132 72. 77. 82. 88 93 104 109 114. 125 136 146 157. 091 431 771 111 451 131 471 811 491 172 852 532 80. 86. 92 98. 104. 116. 122. 128. 140. 152. 164. 176. 726 734 742 749 ,757 772 780 .787 802 818 833 848 89 95 102 109 115 129 136 142 156 169 182 196 279 954 .629 304 .979 .330 .005 680 .030 106. 114, 122. 130. 138, 154, 162 170 186, .380202 .730218 .081 234 134 144 154 164 174 194 204 ,215 235 255 275 296 122.654 132.000 141.345 150.690 160.035 178.725 138.842 149.522 160.202 170.882 181.562 202.923 Famished with plain ends and in random lengths, unless Alt weights and dimensions are nominal. 143 otherwise ordered. CARNEGIE STEEL COMPANY SCREW THREADS AMERICAN BRIDGE COMPANY STANDARD Bolts, Rods, Eye Bars, Turnbuckles, Sleeve Nuts, and Clevises Diameter Area Number of Threads Diameter Area Number , of Total Net, Total Net Total, Net, Total Net Threads d, Dia., d, per d, c, Dia., d, Dia., c, per In. In. Sq. In. Sq. In. Inch In. In. Sq. In. Sq. In. Inch M .185 ' .049 .027 20 2K 2.175 4.909 3.716 4 %' .294 .110 .068 16 2% 2.300 5.412 4.156 4 H .400 .196 .126 13 2% 2.425 5.940 4.619 4 • ■H .507 .307 .202 11 2% 2.550 6.492 5.108 4 .620 .731 .442 .601 .302 .419 10 9 3 3M 2.629 2.879 7.069 8.296 5.428 6.509 3^ 3H l .838 .785 .551 8 3M 3.100 9.621 7.549 3K 1H ,.939 .994 .693 7 3M 3.317 11.045 8.641 3 1J4 1.064 1.227 .890 7 1% 1.158 1.485 1.054 1 6 4 3.567 12.566 9.993 3 in 1.283 1.767 1.294 6 iH 3.798 14.186 11.330 2% w& 1.389 2.074 1.515 5H m 4.028 15.904 12.741 2% 1M 1.490 2.405 1.744 5 Wi 4.255 17.721 14.221 2H m 1.615 2.761 2.049 5 5 4.480 19.635 15.766 2H 2 1.711 3.142 2.300 4M 5H 4.730 21.648 17.574 2M 2H 1.836 3.547 2.649 m 5H 4.953 23.758 19.268 2H 2M 1.961 3.976 3.021 m 5M 5.203 25.967 21.262 2% 2« 2.086 4.430 3.419 m 6 5.423 28.274 23.095 2H . _£..-, BOLT HEADS AND NUTS AMERICAN BRIDGE COMPANY STANDARD V w-h-w «-h-J Rough Nut Finished Nut Rough Head Finished Head f g f g t h f h 1.5d+M" d 1.5d+M 8 " d-tto" 1.5d+H" 0.5 f 1.5d+% " 0.5f— %a" For Screw Threads, Bolt Heads and Nuts, the American Bridge Company has adopted the Franklin Institute Standard, commonly known as United States Standard. 144 BOLTS BOLT HEADS AND NUTS, Dimensions in Inches AMERICAN BRIDGE COMPANY STANDARD HEAD , m J a s NUT (9 Hexagonal Hex. or Square Square Hexagonal Hex. or Square Square o S \(' % rr\ a> d m [( 3 i" 3 1 J Diameter Diameter Diameter Diameter Long Short Height Long Short Long Short Height Long Short K % K X n K . X a K X ii K % w 1 fi K ft i IX 1H - ii K K i «l % K 1 IX « H IX tft s 1ft H i« Ift' % 1% J6 ft ift 1H IK K ift lJi X irt Hi 1ft X 2ft 1ft K Hi 1ft K 2ft 1ft 1 IK IK a 2 is IK 1 IK IK 1 2ft IK IK 2K Hi 11 2ft 1« if* 2K HI m 2ft Hi IK m 2ft 2 i • 2}S 2 IM 2ft 2 IX m 2 2ft 2ft ik 3^" ift IK 2ft 2k 2 fr 2K i% 3K 2 # 2K m 2M 2« ift Z% IK IK m m 3 2ft 2k ift 3% 2k y% 3 2 $ 2k 1M m 2ft IX •3ft 1M 3K IH 3ft IK m 2X ik 3tb 2i§ IK 4ft 21* m 3ft 2i| IK 4ft 2« 2 3K 3K ift 4ft 3K 2 3K 3H 2 4ft 3K 'M 4ft 3K IK 4+if 3K 2M 2^ 4ft 3K , 2K 4}* 3K 2K 2% 4K 3K 2k 5K 3K 4H 3% 2K 2K 5K 3K 418 4M 6 4K 2M 4fJ IX 6. 4K 3 5*4 4« 2ft 6ft 4K 3 5K m 3 6ft 4K ■AX; 3K 5» 5 2K Vft 7k 5 3H 5H 5 3K Vft 7H 5 6Ji 5% 2ii 5K 3K «K 5% 3K 5K BOLT THREADS, Length in Inches AMERICAN BRIDGE COMPANY STANDARD Length, Diameter, Inches Inches K K K K X K 1 IK IK 1 to IK X K l IK IK t° 2 X K l IK IK IK 2Kto 2K X K l IK IK IK IK 2Kto 3 K K 1 IK IK 1M IK 2K 3Kto 4 K K- IK IK IK IK IK 2K 2K 4Kto 8 l l IK IK 1M 2 2K 2K 2K 8K to 12 l l IK 1M 2 2K 2K 3 . 3 12Kto20 .1 1 IK 2 2 2K 2K 3 1 3 Bolts not listed are threaded about 3 times the diameter; in 'no case are standard bolts threaded closer to the head than 1 i inch. _ _____ CARNEGIE STEEL COMPANY BOLTS WITH SQUARE HEADS AND' NUTS \ AMERICAN BRIDGE COMPANY STANDARD Weight in Pounds pee 100 Bolts Length Under Diameter of Boli , Inches Head, Inches y* B Ao % 7 /ie % % % %. 1 1 4 7 11 15 22 37 56 1% 4 7 11 16 23 39 59 m 5 8 12 17. 24 41 62 m 5 8 13 18 26 43 64 2 5 9 14 19 27 45 67 101 144 ' 2M 6 9 15 20 28 47 . 71 104 150 VA 6 10 15 21 30 49 74 109 155 2M 6 10 16 22 31 51 77 113 161 3 7 11 17 24 33 54 80 117 167 3H 7 12 18 25 35 • 58 86 126 178 4 8 13 20 28 38 62 92 134 189 4H 9 14 21 30 41 66 98 142 198 5 10 15 23 32 43 71 104 151 * 209 514 10 16 25 34 46 75 111 159 220 6 11 17 26 • 36 49 79 117 168 232 6M 28 38 52 84 123 176 243 7 29 40 55 88 129 185 254 7K 31 42 57 92 136 193 265 8 32 45 60 97 142 202 276 9 34 49 65 105 154 218 298 10 53 71 114 167 235 320 12 61 82 131 192 269 364 14 93 148 217 303 409 Per Inch Additional 1.4 2.2 3.1 4.3 5.6 8.7 12.5 17.0 22.3 SQUARE NUTS AND BOLT HEADS AMERICAN BRIDGE COMPANY STANDARD Weights in Pounds fob One Head and One Nut Diameter of Bolt, Inches 1%. 1% 1% 2 2y 2 3 Square Head and Nut Weight of Shank per Inch 2.05 .3477 3.51 .5007 5.48 .6815 8.08 .8900 15.5 1.391 26.2 2.003 146 BOLTS BOLTS WITH HEXAGON HEADS AND NUTS AMERICAN BRIDGE COMPANY STANDARD Weight in Pounds per 100 Bolts Length Under Diameter of Bolt, Inches Length Under Head, Diameter of Bolt, Inches Head, Inches y 2 % % % 1 Inches % % % % 1 1 19 33 52 8 58 92 137 194 264 1H 20 34 54 sy 2 60 96 143 202 274 VA 22 36 57 9 63 100 149 210 285 1% 23 38 60 9K 66 105 156 219 296 2 24 40 63 93 132 10 68 109 162 227 307 2X 26 43 66 97 137 10H 71 114 168 236 318 ■m 27 45 69 101 143 11 74 118 174 244 329 2% 29 47 72 105 148 HH 77 122 181 253 341 3 30 49 75 109 154 12 80 127 187 261 352 ax 31 51 78 114 160 12H 82 131 193 270 363 zyi 33 54 82 118 165 13 85 135 199 278 374 3% 34 56 85 122 171 13M 88 139 206 287 385 4 35 58 88 126 176 14 91 144 212 295 396 4« 37 60 90 130 180 UH 93 148 218 304 407 4H 38 62 94 134 186 15 96 152 225 312 418 4M 39 64 97 138 191 15H 99 157 231 321 430 5 41 66 100 143 197 16 102 161 237 329 441 5M 42 68 103 147 202 16H 105 165 243 338 452 5« 44 71 106 151 208 17 107 170 250 346 463 5M 45 73 109 156 213 ny* 110 174 256 355 474 6 46 75 112 160 219 18 113 177 262 364 485 6M 48 77 115 164 225 18^ 116 183 268 372 496 6H 49 79 119 168 230 19 119 187 275 381 507 6K 51 81 122 173 236 19M 121 191 281 389 519 7 52 84 125 177 241 20 124 196 287 398 530 7« 53 86 128 181 247 7J4 55 88 131 185 252 7% 56 90 134 190 258 Additional 5.6 8.7 12.5 17.0 22.3 Additional 5.6 8.7 12.5 17.0 22.3 HEXAGON NUTS AND BOLT HEADS AMERICAN BRIDGE COMFANT STANDARD Weights in Pounds for One Head and One Nut Diameter of Bolt, Inches 1% 1% 1% 2 2% 3 Hexagon Head and Nut . . Weight of Shank per Inch 1.73 .3477 2.95 .5007 4.61 .6815 6.79 .8900 13.0 1.391 22.0 2.003 147 CARNEQIE STEEL COMPANY UPSET SCREW ENDS FOR SQUARE BARS AMERICAN BRIDGE: COMPANY STANDARD VMv-- T d 11 1! ■■ I c i W>: i Pitch and Shape of Thread A. B. Co. Standard BAR UPSET Side of Square d, Inches Area, Sq. Inches Weight per Foot, Lbs. Diameter b, Inches Length a, Inches Additional Length for Upset Inches Diameter at Root of Thread c, Inches Area At Root of Thread, Sq. Inches Excess Over Area of Bar, % * M 0.563 1.91 IK 4 4 0.939 0.693 23.2 * H 0.766 2.60 IK 4 3H 1.064 0.890 16.2 l 1.000 3.40 1M 4 4 1.283 1.294 29.4 IK 1.266 4.30 1% 4 3K 1.389 1.515 19.7 1M 1.563 5.31 W 4K 4K 1.615 2.049 31.1 1« 1.891 6.43 2 4K 4 1.711 2.300 21.7 IK 2.250 7.65 2H 5 5 1.961 3.021 34.3 IK 2.641 8.98 2Vs 5 4K 2.086 3.419 29.5 1M 3.063 10.41 2K 5K 4K 2.175 3.716 21.3 IK 3.516 11.95 2% 5J3 5 2.425 4.619 31.4 2 4.000 13.60 2K 6 5 2.550 5.108 27.7 2K 4.516 15.35 3 6 4M 2.629 5.428 20.2 2& 5.063 17.21 3M- 6H 5K 2.879 6.509 28.6 " 2^ 5.641 19.18 3K 7 6M 3.100 7.549 33.8 2H 6.250 21.25 3% 7 7 3.317 8.641 38.3 2H' 6.891 23.43 ZU 7 5^ 3.317 8.641 25.4 25i 7.563 25.71 4 7K 6K 3.567 9.993 32.1 2% 8.266 28.10 Wi 8 7K 3.798 11.330 37.1 3 9.000 30.60 4M 8 6 3.798 11.330 25.9 3M 9.766 33.20 4M 8H 7 4.028 12.741 30.5 3M 10.563 35.91 4% sy 2 7K 4.255 14.221 34.6 ' Upset s marked * are special. 148 UPSET SCREW ENDS UPSET SCREW ENDS FOR ROUND BARS AMERICAN BRIDGE COMPANY STANDARD YMV- ? t — c 1 ■ 111 ■ I ! J c b / ! AWMA W — ■ i Pitch and Shape of Thread A. B. Co. Standard ■ BAR UPSET Diameter Inches Area, Sq. Inches Weight per Foot, Lbs. Diameter b, Inches Length a, Inches Addition;! Length for Upset Inches Diameter at Hoot of Thread c, Inches Area At Root of Thread, Sq. Inches Excess Over Area of Bar, % * a 0.442 1.50 1 4 4 0.838 0.551 24.7 * % 0.601 2.04 IX 4 5 1.064 0.890 48.0 i 0.785 2.67 W 4 4 1.158 1.054 34.2 m 0.994 3.38 1H 4 4 1.283 1.294 30.2 IX 1.227 4.17 m 4 4 1.389 1.515 23.5 m 1.485 5.05 1% 4 4 1.490 1.744 17.5 m 1.767 6.01 2 4J* 4K 1.711 2.300 30.2 m 2.074 7.05 2H 4H 4 1.836 2.649 27.7 1M 2.405 8.18 2X 5 4 1.961 3.021 25.6 IK 2.761 9.39 2*A 5 4 2.086 3.419 23.8 2 3.142 10.68 2H 5M 4 2.175 3.716 18.3 2H 3.547 12.06 2% 5M 3K 2.300 4.156 17.2 2X 3.976 13.52 2% 6 4M 2.550 5.108 28.4 2% 4.430 15.06 3 6 4K 2.629 5.428 22.5 2K 4.909 16.69 3J€ 6K 5M 2.879 6.509 32.6 ' 2% 5.412" 18.40 ZX ey 3 4K 2.879 6.509 20.3 2% 5.940 20.19 3H 7 5H 3.100 7.549 27.1 2% 6.492 22.07 3% 7 6 3.317 8.641 33.1 3 7.069 24.03 3% 7 5 3.317 8.641 22.2 3K 7.670 26.08 4 7% 6 3.567 9.993 30.3 3X 8.296 28.21 4 7X 5 3.567 9.993 20.5 3% 8.946 30.42 4M 8 5H 3.798 11.330 26.6 3H 9.621 32.71 4M 8 5 3.798 11.330 17.8 3% 10.321 35.09 4K SH 5H 4.028 12.741 23.4 3% 11.045 37.55 i% SH 6 4.255 14.221 28.8 3% 11.793 40.10 4« 8H 5K 4.255 14.221 20.6 Dpseti marked * are apt cial. \ 149 CARNEQIE STEEL COMPANY EYE Bi AMERICAN BRIDGE CO! ORDINARY EYE BAR JPANY STANDARD ADJUSTABLE EYE BAR I - iLXQZ-j ( s~ tti'M Xi 1 <*- J™M \ 1 I 1 '"V-V — ] i u...i __^j^.y.. ! ■? 4/ i.— a .-J "T ; > """: . -i ^ — a ... -». * b-- Minimum length of short end from center of pin to end of screw, 6'-6", preferably 7M)". Thread on short end to be left hand. Pitch and Shape of Thread A. B. Co. Standard. BAE HEAD BAR SCREW END Widtt In. Thickness Dia. d. In. Maximum ' Pin Additional Material, a, Ft. and In. Width In. Min. thick- ness In. Dia. In. Excess Upset over Bar % Additional Material,!}, Ft. and In. Max In. Min In. Dia. In. Excess Head over Bar, % For order- ing Bar For figuring Weight m, In. For order- ing Bar For figur- ing Wt. 2 1 1 4^ * 6H 2% 3X 37.5 1- 1- 4 1- 9 0- 7 0-11 1- 4 2 * % % W IX 2 39.6 36.6 31.4 4 4X 4V, 1- 1- 0-11 8 7X 7X 2H 6 7 * 8 2X 3X *x 40.0 1- 3 1- 7 2- 0-10 1- 2 1- 7 2X * % X 1 2X 2X 2% 41.2 38.1 36.7 4X 5 5 1- 1- 1- 8 8 7X 3 IK X 7X 8H * 9H 3X 5X 41.7 1- 6 1-11 2- 4 1- 1 1- 5 1-10 3 * M X l 2M 2X 2X 34.3 41.6 23.9 5 5X 5X 1- 1 -1 1- 1 ■OX SX SX 7X SX 9X 4 1% to. X l 10 11 *12 4H 6K 37.5 1-11 2- 3 2- 8 1- 6 1-10 2- 2 4 * 'A X 1 ix 2X 2% 3 3X 23.9 32.0 35.7 44.6 5X 5X 6 6X 1- 1 0-11 1- 1 1- 2 5 2 54 1 1 12 13H *15 5J€ 6M 8J4 35.0 2- 1 2- 8 3t 3 1- 8 2- 2 2- 9 5 * % x i 1H 2% 3 3M 3X 3X. 36.2 24.1 30.2 34.2 38.3 6 6 ex 7 7 1- 0-11 1- 1- 1 1- 2 8 7 8 SX 9 6 , 2 H l l 14 14M *16H 5M 6X 8J4 37.5 2- 4 2- 6 3- 2 1-10 2- 1 2- 8 7 2 1 IX 1H 16M nx *18'A 7 8 9 35.7 2- 7 2-11 3- 4 2- 2 2- 6 2-11 6 7 8 *l IX *iy 8 m w 3X 3H 4 4M 25.8 28.0 33.2- 37.3 26.9 29.5 32.4 35.4 7 7 7X 8 1- 1- 1- 1 1- 2 7X 8 SX' QX 8 2 l 18 19 *20 7 8 9 37.5 2- 8 3- 3- 4 2- 3 2- 6 2-11 4 ±X 4M 7X 8 SX SX 1- 1- 1 1- 2 1- 2 s SX 9 9X 9 2 1H 20 22 7^ 9H 3S.9 2-11 3- 7 2- 6 3- 1 10 2 iy s IK m 22^ 24 *25 9 10M UK 35.0 3- 5 3- 9 4- 1 2-10 3- 3 3- 7 *IX IX w IX IX 4M iX 4M 5 BX 25.9 27.4 29.3 31.4 35.2 8 SX 8X 9 9K 1- 1- 1 1- 1 1- 2 1- 3 8 SX SX 9 10 12 14 2 ■ 2 2 1M i« 1H l-K IX 1M 26}* 28 *29M 10 11H 13 37.5 3- 8 4- 2 4- 8 3- 3 3- 8 4- 1 31 33 *34 12 14 15 35.7 4- 3 4-10 5- 5 3- 9 4- 4 4- 8 Bars marked * should only be used when absolutely unavoidable. Deduct pin hole when figuring weight. 16 i« 1% 36 *37M 14 16 37.5 34.4 4-11 5- 5 4- 5 4-10 160 LOOP RODS LOOP RODS AMERICAN BRIDGE COMPANY BTANDARD Mi" W Right Thread Thr. Left Thread J a t~ m P_ ^Min. Length 4-7" >5"-i For Turnbuckle * *. "~~l_ 3 .".JFor Sleeve Nut Pitch and Shape of Thread A. B. Co. Standard Additional Length "A" in Feet and Inches for One Loop A=4.17p+5.89r Diam. pf Diameter or Side "r" of Rod in Inches Pin, P % % 1 m v,i 1% iy 2 1% iy 4 1% 2 IK 0- 9K 0-10 0-11 O-HK IK IK 0-10 0-11 1- 0-10K 0-llK 1- OH 0-11H 1- OK 1- IK 1- l- i 1- 2 1- 1 1- 2 1- 3 1- 2H 1- 3K 1- 4H 1- 5 1- 6 2 1- 1 1- IK 1- 2M 1- 3 1- 4 1- 4K 1- 5K 1- 6 1- 7 1- 7M 1- 8K 2K 2K 2% 1- 1- 1- 2 3 4 1- 3 1- 4 1- 5 1- 3K 1- 4K 1- 5K l- m. 1- 5H l- 6K 1- S 1- 6 1- 7 1- 5K 1- 7 1- 8 1- 6H l- 7K 1- 8H 1- 7 1- 8 1- 9K 1- 8 1- 9 1-10 1- 8K 1- 9H 1-11 1- 9K 1-10K 1-llK 3 1- 5 1- 6 1- 6H 1- 7H 1- 8 1- 9 1- 9K 1-10K 1-11 2- 2- OH *3K 3K 1- 1- 1- 6 7K 8K 1- 7 1- 8 1- 9 1- 7K l- 8K 1-10 1- 8K 1- 9K 1-10K 1- 9 1-10 1-11 1-10 1-11 2- i-iok 1-llK 2- OK 1-HK 2- OK 2- IK 2- 2- 1 2- 2 2- 1 2- 2 2- 3 2- in 2- 2K 2- 3K 4 1- 9K 1-10 1-11 1-llK 2- OK 2- 1 2- 2 2- 2K 2- 3 2- 4 2- 4K *4K 4H *45i 1-11 2- 2- 1 2- 2- 1 2- 2 2- OK 2- IK 2- 2H 2- IK 2- 2K 2- 3K 2- 2 2- 3 2- 4 2- 3 2- 4 2- 5 2- 3K 2-4K 2- 5K 2- 4M 2- 5K 2- 6H 2- 5 2- 6 2- 7 2- 6 2- 7 2- 8 5 2- 2H 2- 3 2- 3K 2- 4M 2- 5 2- 6 2- 6K 2- 7^ 2- 8 2- 9 *5Ji 5K *5M 2- 4 2- 5 2- 6 2- 5 2- 6 2- 7 2- 5K 2- 6K 2- 7K 2- 6 2- 7K 2- 8K 2- 7 2- 8 2- 9 2- 7K 2- 9 2-10 2- 8M 2- 9H 2-10H 2- 9 2-10 2-11H 2-10 2-11 3- 6 2- 7 2- 8 2- 8K 2- 9K 2-10 2-11 2-11H 3- OK 3- 1 *6K *6M 2- 9 2-10 2-11 2- 9K 2-10H 3- 2-10K 2-11K 3- OK 2-11 3- 3- 1 3- 3- 1 3- 2 3- oy 2 3- IK 3- 2K 3- IK 3- 2K 3- 3K 3- 2 3- 3 3- 4 7 • 3- 3- 1 3- IK 3- 2K 3- 3 3- 3K 3- 4K 3- 5 Pins marked * are special. Maximum shipping length of ' '1"=^5 feet. 151 CARNEQIE STEEL COMPANY CLEVISES AMERICAN BBIDGS COMPANY STANDARD All dimensions in inches ]Grip ma:::? Grip= thickness of plate + K" but must not exceed dimension f » i Head Nut Fork 2 "2 S"fi i i 0| d w t Max. P Mm P r X y n c u u e f a s 3 3 iy, a IK 1 2K 2M 3 IK 2H IK 1 3A IK 5 4 4 4 4 2 K 2 IK 3 3 4 1% 2% 1H IK 3K IK 6 5 8 5 5 2K % 2K IK 3M 3% 5 2H 3M 2K IK 4K 2K 7 6 16 6 6 3 % 3 2 4K 4K 6 2K 4K 2K 2 5K 2M 8 7 26 7 7 3K % 3K 2K 5K 5K 7 3 5 3 2K 6ft 3K 9 8 36 Clevis Numbees FOR Various Rods and Pins Bods Pins Round Square Upset 1 1% 1% i% 2 2y 4 2% 2% 3 3y 4 3% K 1 3 3 3 K K IK IK 3 3 3 4 4 4 4 4 K 4 l 1 IK IK 4 4 4 4 4 4 4 5 5 IK 4 IK IK IK IK IK IK 4 4 5 5 4 4 5 5 5 5 5 5 5 IK 5 5 5 IK IK 2 2K 5 5 5 5 S 5 5 S 5 6 6 6 6 ' IK 5 m IK 2K 6 6 6 6 6 7 7 i% IK IK 2K 2K 6 6 6 6 6 6 6 6 6 7 7 7 2 6 7 2K IK 2K 2K 6 6 6 7 6 7 6 7 7 7 7 7 2K " 2 2K 7 7 7 7 7 2K 2K 3 7 7 7 7 7 Clevises above and to right of zigzag, line may be used with forks strafght, those below and to left of this line should have forks closed so as not to overstrain pin. 152 TURNBUCKLES AND SLEEVE NUTS TURNBUCKLES AND SLEEVE 'NUTS AMERICAN BRIDGE COMPANY STANDARD All Dimensions in Inches - TURNBUCKLES SLEEVE NUTS r d-»- a----* <-d-» r a-r-4"~ ■*«h 1 3 s .1--MGM. [*C*| l- b- rf" i, ...J hm ?Zlf ;l \ 1 p._ ^|0| t J £1 hi > i>~ i 1^_ J -i— • turnl i a=6"; a=9" foi ucklee marked *. "™"l Fitch and shape )f thread, A. B. Co. Standard. Pitch and shape of thread, A. B. Co . Standard Diam. Standard Dimensions ■+J to Diam. ' Standard Dimensions ,?. of Screw u Si of Screw u d i c t g b d 1 a b c t % A 7% ft 3 ie % 1ft i ft U 7ft % % % 1% i % % 7% % % % 1% i ft U 7JS « ft % 1ft i% K \l 7% a ft 'A 1ft i% „ a i% 8& ift « % 2 2 % 1ft 8% 1% % 1 2% 3 % 1% 7 1% 1% 1% % 3 i 1% 9 ift 7 IB 1% 2ft 4 1 1% 7 1% 1% 1% H 3 1% 1« 9% ift % IK 2ft 5 1% IK 7% 2 2ft 1% ft 4 1% 1% 9M ift % 1% 2M 6 1M 1% 7% 2 2ft 1% ft 4 1% 2ft 10% m % 1% 3ft 7 1% 2 8 2% 2K 1% % 5 1% 2% 10% 1U % Ik 3ft 8 1% 2 8 2% 2M 1% % 6 1% 2ft 10% 2 % 1% 3% 10 1% 2% 8% 2% 3ft 1% ft 8 1M 2% 1W 2% K 2 3« 11 1% 2% 8% 2% 3ft 1% ft 9 1% 2H 1W 2ft tt 2% 3% 12 1% 2% 9 3% 3% 2% % 10 2 3 12 2% ii 2% 4% 14 2 2% 9 3% 3% 2% % 11 2% 3ft 12% 2% it 2% 4% 17 2% 2% 9% 3% 4ft 2% ft 14 2% 3% 12M 2H if 2% 4M 20 2H 2% 9% 3% 4ft 2% S Id 15 2% 3ft 13% 2% H 2M 4% 22 2% 3 10 3% 4% 2% % 18 2% 3M 13% 3ft » 3 5% 25 2% 3 10 3% 4% 2% % 19 2% 4% 14M 3% IS 3% 5% 33 2% 3% 10% 4% 411 2% ii 23 2% 4ft 14% 3ft ift 3% 6ft 36 2% 3% 11 4% 5% 3% % 27 3 4% 15 3% 1ft 3% 6% 40 3 3% 11 4% 5% 3% M 28 3% 4% 15M 3% 1ft 4 6M 50 3% 3M 11% 5 518 3% IS 35 3% 5% 16% 4% ift 4 7% 65 3% 4 12 5%. 6% 3% % 40 3« 5% 17% 4ft 1ft 5 8% 95 3% 4k 12% 5% 61J 3% 1! 47 4 6 18 4% ift 5 8% 108 4 4% 13 6% 7ft 4% 1 55 *4Ji 6% 21% 4% 1% 5ft 9% 140 4M 4% 13% 6H 7% 4% ift 65 *4% 6K 22% 5% 1M 6% 10« 195 4% 5 14 6% 715 4% ift 75 *4K 7M 23% 5%- 2 6% 11% 205 *5 7% 24 6 2K 6% 11% 250 153 CARNEQIE STEEL COMPANY RECESSED PIN NUTS AMERICAN BRIDGE COMPANY STANDARD All Dimensions in Inches Distance between Shoulders J*"""*! Distance between Nuta=Grip J*SJ , To obtain grip, add tY' for each bar. i,_t~J NutB threaded 6 threads per inch. To obtain distance between shoulders, add amount given in table to grip. Pin Nut Diameter of Fin, Thread Add to Diameter 5 of -^" at Pattern \ No. a . b Grip t n m c s 2, 2% ik; 1 H % 2t# 3M 2S ¥ 1A 1.1 PN21 2%, 2% 2 IV* V* 1 3ft 4VS 3** H it* 1.7 PN22 3, *3K, 3y 2 2U 1M. V\ ivs 4A b 3/ a *ft 2A 2.5 PN23 *3%, 4 3 iy» H 1W 4« bH 4»/» % 2tK 3.7 PN24 *4Ji, 4}^, *&% 5, *5X 3U m V, 1*6 fit* «H bii H 3A 4.6 PN25 4 lVs U m 6V< 7yV bM « «W 6.2 PN26 5H, *5M, 6, 4K m v<> m 7 8V« |t>H H 7" 1 * 7.8 PN27 *6J€. *^J4 fi 1H a 4 l»4 7% «''/» 7 W 4« 9.9 PN28 *6M, 7 fiM a % T'/« «V* yv» VV* H. i>A 11.8 PN29 *7M. *7M 5^ 2 V4. *4 T'/ B 8*/8 10 8 % bA 14.3 PN30 *7%, 8, *8K fi aw 2V« «H 10 to 8M % w* 18.6 PN31 *8^: 9 6 24 *4 2« 31.1 PN33 Ping marked * are special. COTTER PINS AMERICAN BRIDGE COMPANY STANDARD f^-* All Dimensions in Inches Horizontal or Vertical Pin Finished Horizontal Pin Rough or Finished Pin Head g Cotter Pin Cotter P h c d Pi c d Hi Hi 2 H Ik 2 H IK m 2H X m 2K M W 2 * 2% X 1% v 2^ W 2 2% :s 3 % 2 ^ 3 H 2M 2% + 3 H % 2M 2ji + 3V£ 'A 2K 2% Of 3% % & 3M aj 2% 3H 4 % 2M 4 8^1 3 3H S % 3 5 v< 3M 3M jz; 5 X 3M 3J| & 5 l| 3H 4 6 y* 6 K 3% 4Ji 6 *A 3M 6 H 184 RIVETS STRUCTURAL RIVETS AMERICAN BRIDGE COMPANY STANDARD Dimensions in Inches — -1%6- — »l / / \ \ X ;~di~ 4i" ' 1 -1 d I— _ » A = x = Ii-i = Si-i = ri-i = ** — d * jm HOLLOW SQUARE Axis of moments on diagonal Ii-i = Si-i = ri-i d2-di» _d V 2 " d*-di* ~ IS d*-di* d*-di< - ~. ■ = 0.117851 \T 6 \2d d ■A/ d a +di» * 12 166 ELEMENTS, OF SECTIONS RECTANGLE Axis of momenta through center T ...j ii-i Si-i ri-i •4 -b - bd d 2 bd? 12 bd' 6 d V"12~ : = 0.288675d RECTANGLE Axis of moments on base d 1 1* -— b- A x. Ii-i 8h ri-i bd d bd» 3 bda 3 _d V3~ : : 0.577350d RECTANGLE Axis of moments on diagonal v d. bd bd Ii-i Si-i -V b*+da b» d» 6 (ba+d") ba d« 6 V ba+d? bd r i-i r= TRAPEZOID Axis of moments through center of gravity r«-bi->; d(b + b x ) 2 d(bi + 2b) 3(b + bi) " d (b + 2bi) Xl 3 (b + bi) ' da (b° + 4 bbi + bi») 36 (b + bi) da (b3 + 4 bb t + bi») 12 (bi + 2 b) d 6 (b + bi) V 2 (ba + 4 bbi + bi2) TRAPEZOID Axis of moments on base ,~br xi Si-i= Xl if xi > x 1= 12 IT J' 9 ir* (d*-di«) (da-di2)-64 (d8-di«)g (da-di2)2 ELLIPSE Axis of moments through center A = Ii-i= Si-i= 7r ddi 4 d 2 jr d« di 64 ird^di L — d r — ' ■ 0.785398 ddi = 0.049087 d» di - = 0.098175 da dt d 4 169 CARNEGIE STEEL COMPANY BEAM " y ~i m n ^ e c d m n | -f-T y = ii-i= I2-2— dt + 2a(m+n) _d 2 bd»- 4(m-n) (c*-e*) 2nb8+et8+-^S- (b*-t*) 12 % It— ...t_..i..._ m n 1 ""1 1 e c d _. i -U- ']""!"" CHANNEL A = dt + a (m+n) . = f b3n + cti + i&pL (b+2t) T bda - ^5T «"-*> 1 1-1= Hrer* 12 2nba+ets'+ -^-S- (b*-t*) I 2 -2= g^ Aya -y -a— << V 1 ^ c d 5=ft . 0.^.3 i — b i ZEE A = t(d+2a) d x = y = 2 2b-t Tan2a=< dt T ti! )', ba - bt ) 11-1-I2-2 1 1-1= I 2 -2= la -8= 14-4= bda-a(d-2t)s 12 d(b+a)3-2a°c-6ab'c 12 I2-2 cosgo-Ii-^inag cos 2a I1-1 cosgg-l2-2 sin'a cos 2a 170 ELEMENTS OF SECTIONS t (b+c) ba+ct 2(b+c) t(b-x)8+bs»-a (x-t)» 3 cta+c8t+3et(b-fa+2t)g+t*+6tg(2i-t)' cts+cat+3ctb2+t* 12 r*-yH \ iT" 4'* it X -b— - >! UNEQUAL ANGLE A = t(b+c) t(b+2c)+c» = 2 1 1-1 = 1 2-2 = 1 8-8 = 1 4-4 = t(d-x)3+bx8-a(x-t)8 3 t(b-y)3+dy»-c(y-t)8 3 l2-2COs3g-Ii-isin !! a cos 2a Ii-icosga-Ia-asin 2 ^ cos 2a TEE e(t+u) 2 +mt+a(m+n) 6an2+2a(m-n) ( m+2n)+3tda-e( t-u) (3d-e) - 1 sx _b_ 2 -A(x-m)2 e3(3u+t)+4bm8-2a(m-n)3 12 ' nb8+(m-n)t°+ en» 12 ~ , a(m-n)[2a^+f2a+3t)gl , e(t-u) I(t-u) a +2(t+2n)') + iij 171 CARNEGIE STEEL COMPANY COMPOUND SECTIONS Moments of Inebtia, Section Modtjli, and Radii of Gtbation The moment of inertia of a compound section about its neutral axis- is equal to the sum of the moment of inertia, I, of the component parts about axes through their own centers of gravity, plus the areas A, of the component parts multiplied by the squares of the distances d, of their own centers of gravity from the neutral axis of the compound section, or Moment of Inertia I 1 = I+Ad 2 f—ZO- ^f *> 1 1.75 — «i S»._. | /^> 4 2.28 t Section Modulus SI: & a 3 S Radius of Gyration r 1 ; V£ Example 1. Required the moments of inertia and the section moduli about axes 1-1 and 2-2 of a compound -t- * ,* - section to be used as a girder, composed of . !' . ! * 1 Web Plate 33"xJi" 8 "a 4 Flange Angles 6"x4"x%" 2 Flange Plates 14"x%" basing the properties on the gross area of the section. Determine the distances, of the center lines of gravity of J —

ELEMENTS OF SECTIONS COMPOUND SECTIONS — Concluded Example 2. Required the moments of inertia and radii of „ 14 — ....--.), gyration about axes 1-1 and 2-2 of a column section composed ^ a i- .513, «-'-> as follows: — 2 Channels 12"x30 pounds per foot, 2 Flange Plates U"x%", .1 properties to be based on the gross section, no deduction being made for holes, Ix Determine the distances, d, of center lines of gravity for [ jp i the various sections from the neutral axes 1-1 and 2-2, in *A\ accordance with the dimensions given, then for w 2 k.164- AXIS 1-1 In of 2-12"Channels301bs.= 2x 161.65 = 323.30 Inches* In of 2-U"x%" Plates = 2x ■ 14 *°™" = 0.98 " Ada f 2-14"x^" " = 2 f 10.5 x 6.375a — 853.45 Moment of Inertia, gross section 1177.73 Inches 4 VI 177 73 gg-gj = 5.52 Inches AXIS 2-2 I2-2 of 2-12" Channels30 lbs. = 2x 5.22 = 10.44 Inches* Ada of 2-12"Channels301bs.= 2x 8.82x4.1642= 305.86 " I2-2 of 2-14"x%" Plates = 2 x °- 75 ^ 14 ° = 343.0 " Moment of Inertia, gross section 659.30 Inches* Radius of Gyration," » = \ lf$ = 4.13 Inches ^^drr^^ Example 3. Required the radii of gyration about axes 1-1 JoIm" - ? and 2-2 of a strut section composed as follows: — "" L fcj, 4-6"x4"xM" Angles latticed by He" bars, u5 j properties to be based on the gross section of angles, no deduc- 1 1 * — *-l tions being made for rivet holes nor any allowance for lattice bars. n] ri Determine the distances, d, of center lines of gravity of angles . 'J 1 1 _ from neutral axes 1-1 and 2-2 in accordance with the dimensions I % given, then for 2' AXIS 1-1 Ii_i of 4-6"x4"x^" Angles = 4x4.90 = 19.60 Inches* > ( Ada of 4-6"x4"x^" " =4x3.61x5.063 = 369.72 Moment of Inertia, gross section 389.32 Inches 4 *fc f BRfl ^2 Radius of Gyration, " " = \ jj^j = 5.19 Inches AXIS 2-2 From tables of radii of gyration for 2 angles (placed back to back page 202, axis 2-2, %" apart, r 2 -2 of 4-6"x4"xM" angles=2.97 Inches. Where sections are assembled without any web or flange plates, as, for example, latticed channel columns or latticed angle struts, the radius of gyration, ri-i can be readily obtained, without considering the moment of inertia, from the radius of gyration, r, of one section about i ts neutral axis, and the distance, d, between the center of gravity of the section and the neutral axis parallel to the axis of section. VI + Ada" I j , where -j = ra, and ri-i = ^ r2+ da Thus, in the above e xample, ft4= i] 1.17a+5.062 = 5.19 Inches ' 173 CARNEGIE STEEL COMPANY ELEMENTS OF STRUCTURAL BEAMS ■ l» dc 2 Section Index Depth of Beam Weight per Foot Area of Sec- tion Width of Flange Thick- ness of Web Axis 1-1 Axis 2-2 I r S I r S In. Lbs. In.s In. fin. In.* In. In.= In.* In. In.s B61 27 90.0 26.33 9.000 0.524 2958.3 10.60 219.1 75.3 1:69 16.7 B24 24 115.0 110.0 105.0 33.98 32.48 30.98 8.000 7.938 7.875 0.750 0.688 0.625 2955.5 2883.5 2811.5 9.33 9.42 9.53 246.3 240.3 234.3 83.2 81.0 78.9 1.57 1.58 1.60 20.8 20.4 20.0 B 1 24 100.0 95.0 90.0 85.0 80.0 29.41 27.94 26.47 25.00 23.32 r.254 7.193 7.131 7.070 7.000 0.754 0.693 .0.631 0.570 0.500 2379.6 2309.0 2238.4 2167.8 2087.2 9.00 9.09 9.20 9.31 9.46 198.3 192.4 186.5 180.7 173.9 48.6 47.1 45.7 44.4 42.9 1.28 1.30 1.31 1.33 1.36 13.4 13.1 12.8 12.6 12.3 B62 24 74.0 21.70 9.000 0.476 1950.1 9.48 162.5 61.2 1.68 13.6 B63 21 60.5 17.68 8.250 0.428 1235.5 8.36 117.7 43.5 1.57 10.6 B 2 20 100.0 95.0 90.0 85.0 80.0 29.41 27.94 26.47 25.00 23.73 7.284 7.210 7.137 7.063 7.000 0.884 0.810 0.737 0.663 0.600 1655.6 1606.6 1557.6 1508.5 1466.3 7.50 7.58 7.67 7.77 7.86 165.6 160.7 155.8 150.9 146.6 ■ r 2.7 i.U.8 49.0 47.3 45.8 1.34 1.35 1.36 1.37 1.39 14.5 14.1 13.7 13.4 13.1 B 3 20 75.0 70.0 65.0 22.06 20.59 19.08 6.399 6.325 6.250 Q.649 0.575 0.500 1268.8 1219.8 1169.5 7.58 7.70 7.83 126.9 122.0 117.0 30.3 29.0 27.9, 1.17 1.19 1.21 9.5 9.2 8.9 B81 18 90.0 85.0 80.0 75.0 26.47 25.00 23.53 22.05 7.245 7.163 7.082 7.000 0.807 0.725 0.644 0.562 1260.4 1220.7 1181.0 1141.3 6.90 6.99 7.09 7.19 140.0 135.6 131.2 126.8 52.0 50.0 48.1 46.2 1.40 1.42 1.43 1.45 14.4 14.0 13.6 13.2 B80 18 70.0 65.0 60.0 55.0 20.59 19.12 17.65 15.93 6.259 6.177 6.095 6.000 0.719 0.637 0.555 0.460 921.2 881.5 841.8 795.6 6.69 6.79 6.91 7.07 102.4 97.9 93.5 88.4 24.6 23.5 22.4 21.2 1.09 1.11 1.13 1.15 7.9 7.6 7.3 7.1 B64 18 48.0 14.08 7.500 0.380 737.1 7.23 81.9 30.0 1.46 8.0 B 5 15 75.0 70.0 65.0 60.0 22.06 20.59 19.12 17.67 6.292 6.194 -6.096 6.000 5 / .746 5.648 5.550 5.500 0.882 0.784 0.686 0.590 691.2 663.7 636.1 609.0 5.60 5.68 5.77 5.87 92.2 88.5 84.8 81.2 30.7 29.0 27.4 26.0 1.18 1.19 1.20 1.21 9.8 9.4 9.0 8.7 B 7 15 55.0 50.0 45.0 42.0 16.18 14.71 13.24 12.48 0.656 0.558 0.460 0.410 511.0 483.4 455.9 441.8 5.62 . 5.73 5.87 5.95 68.1 64.5 60.8 58.9 17.1 16.0 15.1 14.6 1.02 1.04 1.07 1.08 5.9 5.7 5.4 5.3 B65 15 37.5 10.91 6.750 0.332 405.5 6.10 54.1 19.9 1.35 5.9 174 ELEMENTS OF SECTIONS ELEMENTS OF STRUCTURAL i2 BEAMS— Concluded 1- — — -1 • '2 Section Index Depth of Beam Weight per Foot Area of Sec- tion Width of Flange Thick- ness of Web Axis 1-1 Axis 2-2 I r S I r S* In. Lbs. In.2 In. In. In.* In. In.3 In.* In. In.s B 8 12 55.0 • 50.0 45.0 40.0 16.18 14.71 13.24 11.84 5.611 5.489 5.366 5.250 0.821 0.699 0.576 0.460 321.0 303.4 285.7 269.0 4.45 4.54 4.65 4.77 53.5 50.6 47.6 44.8 17:5 16.1 14.9 13.8 1.04 1.05 1.06 1.08 6.2 5.9 5.6 5.3 B 9 12 35.0 31.5 10.29 9.26 5.086 5.000 0.436 0.350 228.3 215.8 4.71 4.83 38.0 36.0 10.1 9.5 0.99 1.01 4.0 3.8 B66 12 28.0 8.15 6.000 0.284 199.4 4.95 33.2 12.6 1.24 4.2 B 11 10 40.0 35.0 30.0 25.0 11.76 10.29 8.82 7.37 5.099 4.952 4.805 4.660 0.749 0.602 0.455 0.310 158.7 146.4 134.2 122.1 3.67 3.77 3.90 4.07 31.7 29.3 26.8 24.4 9.5 8.5 7.7 6.9 0.90 0.91 0.93 0.97 3.7 3.4 3.2 3.0 B67 10 22.25 6.54 5.500 0.252 113.6 4.17 22.7 9.0 1.17 3.3 B 13 9 35.0 30.0 25.0 21.0 10.29 8.82 7.35 6.31 4.772 4.609 4.446 4.330 0.732 0.569 0.406 0.290 111.8 101.9 91.9 84.9 3.29 3.40 3.54 3.67 24.8 22.6 20.4 18.9 7.3 6.4 5.7 5.2 0.84 0.85 0.88 0.90 3.1 2.8 2.5 2.4 B 15 8 25.5 23.0 20.5 18.0 7.50 6.76 6.03 5.33 4.271 4.179 4.087 4.000 0.541 0.449 0.357 0.270 68.4 64.5 60.6 56.9 3.02 3.09 3.17 3.27 17.1 16.1 15.2 14.2 4.8 4.4 4.1 3.8 0.80 0.81: 0.82 1 0.84 2.2 2.1 2.0 1.9 B68 8 17.5 5.12 5.000 0.220 58.4 3.38 14.6 6.2 1.10 2.5 B 17 7 20.0 17.5 15.0 5.88 5.15 4.42 3.868 3.763 3.660 0.458 0.353 0.250 42.2 39.2 36.2 2.68 2.76 2.86 12.1 11.2 10.4 3.2 2.9 2.7 0.74 0.76 0.78 1.7 1.6 1.5 B 19 6 17.25 14.75 12.25 5.07 4.34 3.61 3.575 3.452 3.330 0.475 0.352 0.230 26.2 24.0 21.8 2.27 2.35 2.46 8.7 8.0 7.3 2.4 2.1 1.9 0.68 0.69 0.72 i 1.3 1.2 1.1 B 21 5 14.75 12.25 9.75 4.34 3.60 2.87 3.294 3.147 3.000 0.504 0.357 0.210 15.2 13.6 12.1 1.87 1.94 2.05 6.1 5.5 4.8 1.7 1.5 1.2 0.63 0.63' 0.65 1.0 0.92 0.82 B23 4 10.5 9.5 8.5 7.5 3^.09 2.79 2.50 2.21 2.880 2.807 2.733 2.660 0.410 0.337 0.263 0.190 7.1 6.8 6.4 6.0 1.52 1.55 1.59 1.64 3.6 3.4 3.2 V3.0 1.0 0.93 0.85 0.77 0.57 0.58 0.58 0.59 0.70 0.66 0.62 0.58 B77 3 7.5 6.5 5.5 2.21 1.91 1.63 2.521 2.423 2.330 0.361 0.263 0.170 2.9 2.7 2.5 1.15 1.19 1.23 1.9 1.8 1.7 0.60 0.53 0.46 0.52 0.52 0.53 0.48 0.44 0.40 175 CARNEQIE STEEL COMPANY ELEMENTS OF STRUCTURAL CHANNELS 4 - -L Ik V > >> Il -t Depth Weight Area Width Thick- Axis 1-1 Aris 2-2 . Section Index of Channe per Foot of Section of Flange ness of Web I r S I r - S y In. Lbs. In.!! In. In. In* In. In.a In.* In. In.a In. • 55.0 16.18 3.818 0.818 430.2 5.16 57.4 12.2 0.87 4.1 0.82 50.0 14.71 3.720 0.720 402.7 5.23 53.7 11.2 0.87 3.8 0.80 C 1 15 45.0 13.24 3.622 0.622 375.1 5.32 50.0 10.3 0.88 3.6 0.79 40.0 11.76 3.524 0.524 347.5 5.43 46.3 9.4 0.89 3.4 0.78 35.0 10.29 3.426 0.426 319.9 5.58 42.7 8.5 0.91 3.2 0.79 33.0 9.90 3.400 0.400 312.6 5.62 41.7 8.2 0.91 3.2 0.79 40.0 11.76 3.418 0.758 196.9 4.09 32.8 6.6 0.75 2.5 0.72 35.0 10.29 3.296 0.636 179.3 4.17 29.9 5.9 0.76 2.3 0.69 C 2 12 30.0 8.82 3.173 0.513 161.7. 4.28 26.9 5.2 0.77 2.1 0.68 25.0 7.35 3.050 0.390 144.0 4.43 24.0 4.5 0.79 1.9 0.68 20.5 6.03 2.940 0.280 128.1 4.61 21.4 3.9 0.81 1.7 0.70 35.0 10.29 3.183 0.823 115.5 3.35 23.1 4.7 0.67 1.9 0.70 30.0 8.82 3.036 0.676 103.2 3.42 20.7 4.0 0.67 1.7 0.65 C 3 10 25.0 7.35 2.889 0.529 91.0 3.52 18.2 3.4 0.68 1.5 0.62 20.0 5.88 2.742 0.382 78.7 3.66 15.7 2.9 0.70 1.3 0.61 15.0 4.46 2.600 0.240 66.9 3.87 13.4 2.3 0.72 1.2 0.64 25.0 7.35 2.815 0.615 70.7 3.10 15.7 3.0 0.64 1.4 0.62 C 4 g 20.0 5.88 2.652 0.452 60.8 3.21 13.5 2.5 0.65 1.2 • 0.59 15.0 4.41 2.488 0.288 50.9 3.40 11.3 2.0 0.67 1.0 0.59 13.25 3.89 2.430 0.230 47.3 3.49 10.5 1.8 0.67 0.97 0.61 21.25 6.25 2.622 0.582 47.8 2.77 11.9 2.3 0.60 1.1 0.59 18.75 5.51 2.530 0.490 43.8 2.82 11.0 2.0 0.60 1.0 0.57 C 5 8 16.25 4.78 2.439 0.399 39.9 2.89 10.0 1.8 0.61 0.95 0.56 13.75 4.04 2.347 0.307 36.0 2.98 9.0 1.6 0.62 0.87 0.56 11.25 3.35 2.260 0.220 32.3 3.11 8.1 1.3 0.63 0.79 0.58 19.75 5.81 2.513 0.633 33.2 2.39 9.5 1.9 0.56 0.96 0.58 17.25 5.07 2.408 0.528 30.2 2.44 8.6 1.6 0.57 0.87 0.56 C 6 7 14.75 4.34 2.303 0.423 27.2 2.50 7.8 1.4 0.57 0.79 0.54, 12.25 3.60 2.198 0.318 24.2 2.59 6.9 1.2 0.58 0.71 0.53 9.75 2.85 2.090 0.210 21.1 2.72 6.0 0.98 0.59 0.63 0.55 15.5 4.56 2.283 0.563 19.5 2.07 6.5 1.3 0.53 0.74 0.55 O 7 6 13.0 3.82 2.160 0.440 17.3 2.13 5.8 1.1 0.53 0.65 0.52 10.5 3.09 2.038 0.318 15.1 2.21 5.0 0.88 0.53 0.57 0.50 8.0 2.38 1.920 0.200 13.0 2.34 4.3 0.70 0.54 0.50 0.52 ll.S 3.38 2.037 0.477 10.4 1.75 4.2 0.82 0.49 0.54 0.51 C 8 5 9.0 2.65 1.890 0.330 8.9 1.83 3.6 0.64 0.49 0.45 0.48 6.5 1.95 1.750 0.190 7.4 1.95 3.0 0.48 0.50 0.38 0.49 7.25 2.13 1.725 0.325 4.6 1.46 2.3 0.44 0.46 0.35 0.46 O 9 4 6.25 1.84 1.652 0.252 4.2 1,51 2.1 0.38 0.45 0.32 0.46 5.25 1,55 1.580 0.180 3.8 1.56 1.9 0.32 0.45 0.29 0.46 6.0 1.76 1.602 0.362 2.1 1.08 1.4 0.31 0.42 0.27 0.46 C 72 3 5.0 1.47 1.504 0.264 1.8 1.12 1.2 0.25 0.42 0.24 0.44 4.0 1.19 1.410 0.170 1.6 1.17 , 1.1 0.20 0.41 0.21 0.44 176 ELEMENTS OF SECTIONS ELEMENTS OF SHIP BUILDING CHANNELS New American Standard Sections I Section Index Depth of Chan- nel In. Wt. per Foot Lbs. Area of Sec- tion In.2 Width of Flange In. Thick- ness of Web In. Axis 1-1 In* In. In.s Axis 2-2 In.* In. In.s tC 60 C 21 (BSC 26) O 171 (BSC 25) C 26 (BSC 21) C 27 (BSC 20) C 28 (BSC 19) C 31 (BSC 18) C 32 (BSC 17) C 36 (BSC 13) C 37 (BSC 12) 18 12 12 10 10 10 57.7 51.6 45.5 42.5 44.4 40.3 36.2 34.2 40.8 36.8 32.7 30.6 36.8 33.4 30.0 28.3 34.8 31.4 28.0 26.3 24.6 25.1 23.4 21.7 34.5 31.4 28.4 26.8 31.3 28.3 25.2 23.7 28.0 25.3 22.6 21.2 25.3 22.6 19.9 19.2 18.5 ,984.: .184 384 .483 .200 .100 .000 .950 .700 .600 .500 .450 13.04 11.84 10.64 10.04 4.200 .725 4.100 .625 4.000 .525 3.950 .475 12.003.700 10.803.600 9.603.500 9.003.450 10.; 9 8.80 8.; 80 4 80 4 303 10.23 8.23 7.' 7 3.700 9.233.600 3.500 .450 .400 733 23 3 7.38 3.550 6.88 3.500 6.383.450 10 9.: 8.33 7., 13 4 23 4 883 9.21 8.31 7.41 8.23 7.43 6.63 433 7.. 6.63 5.83 5.63 5.43 200 .100 4.000 .950 .200 .100 4.000 950 3.700 3.600 3.500 6.963.450 3.700 3.600 3.500 6.23 3.450 .225 3.125 3.025 3.000 2.975 ' .700 .600 .500 .450 .675 .575 .475 .425 .675 .575 .475 .425 .375 .425 .375 .325 .675 .575 .475 .425 .650 .550 .450 .400 .625 .525 .425 .375 .600 .500 .400 .375 .350 673.0 624.4 575.8 551.5 245.0 230.6 216.2 209.0 217.8 203.4 189.0 181.8 4.50 146.3 138.0 129.7 125.5 133.6 125.2 116.9 112.7 108.6 106.0 101.8 97.6 113.0 106.9 100.9 97.8 99.4 93.4 87.3 84.3 71.8 67.6 63.3 61.2 62.6 58.3 54.0 53.0 51.9 6.30 6.41 6.56 6.65 4.33 4.41 4.51 4.57 4.26 4.34 4.44 3.68 3.75 3.84 3.89 3.61 3.69 3.77 3.82 3.88 3.79 3.85 3.91 3.34 3.40 3.48 3.52 3.29 3.35 3.43 3.48 2.95 3.02 3.09 3.13 2.97 3.05 3.07 3.09 74.8 69:4 64.0 61.3 40.8 38.4 36.0 34.8 36.3 33.9 31.5 30.3 29.3 27.6 25.9 25.1 26.7 25.0 23.4 22.5 21.7 21.2 20.4 19.5 25.1 23.8 22.4 21.7 22.1 20.7 19.4 18.7 18.0 16.9 15.8 15.3 2.90 15 14.6 13.5 13.2 13.0 18.5 17.1 15.8 15.0 16.8 15.5 14.2 13.5 11.3 10.3 9.4 8.9 14.9 13.7 12.5 11.8 10.4 9.5 8.6 8.1 7.6 7.9 7.5 7.0 14.5 13.3 12.1 11.4 9.7 8.8 8.0 7.5 9.0 8.2 7.4 6.9 5.8 5.3 4.7 4.5 4.4 1.04 1.06 1.09 1.10 1.14 1.15 1.16 1.16 0.97 0.98 0.99 0.99 1.18 1.18 1.19 1.19 1.01 1.01 1.02 1.02 1.03 1.04 1.04 1.05 1.20 1.20 1.20 1.20 1.03 1.03 1.04 1.04 1.05 1.05 1.05 1.05 0.89 0.89 0.90 0.90 0.90 5.6 5.3 5.1 4.9 5.3 5.1 4.8 4.7 4.0 3.8 3.6 3.5 4.8 4.6 4.3 4.2 3.8 3.6 3.4 3.3 3.2 3.0 2.9 2.8 4.8 4.5 4.3 4.2 3.6 3.4 3.2 3.1 3.4 3.2 3.0 2.9 2.5 2.3 2.2 2.1 2.1 Dimensions and properties of the British Standard Sections are indicated in bold type. fC 60 is not a new American Standard Section; profile is shown on page 81 with Structural Channels. \ 177 CARNEGIE STEEL COMPANY ELEMENTS OF SHIP, BUILDING CHANNELS New American Standard Sections — Concluded i n — P—j Depth . of 'Chan- nel Wt. Area of Sec- tion Width Thick- Axis 1-1 Axis 2-2 'Section Index per Foot ot Flange ness of Web I r S I r S y In. Lbs. In.2 In. In. In.* In. In.s In* In. In.» In. C 41 (BSCIO) 7 24.9 22.5 20.1 18.9 7.30 6.60 S.90 5.55 3.700 3.600 3.500 3.450 0.600 0.500 0.400 0.350 49.9 47.1 44.2 42.8 2.62 2.67 2.74 2.78 14.3 13.5 12.6 12.2 8.3 7.5 6.7 6.3 1.07 1.07 1.07 1.07 3.2 3.0 2.8 2.7 1.06 1.07 1.09 1.11 C42 (BSC9) 7 19.8 17.4 16.3 5.82 5.12 4.77 3.100 3.000 2.950 0.475 0.375 0.325 40.2 37.3 35.9 2.63 2.70 2.74 11.5 10.7 10.2 4.7 4.2 3.9 0.90 0.90 0.90 2.1 2.0 1.9 0.88 0.90 0.91 C46 (BSC8) 6 21.9 19.8 17.8 16.8 6.42 5.82 5.22 4.92 3.700 3.600 3.500 3.450 0.575 0.475 0.375 0.325 33.0 31.2 29.4 28.5 2.27 2.32 2.38 2.41 11.0 10.4 9.8 9.5 7.6 6.9 6.1 5.7 1.09 1.09 1.08 1.08 2.9 2.8 2.6 2.5 1.12 1.13 1.15 1.17 C 109 6 15.3 4.47 3.500 0.340 25.3 2.38 8.4 5.1 1.08 2.1 1.08 C47 (BSC7) 6 16.2 14.9 4.74 4.37 3.000 2.938 0.375 0.313 25.8 24.7 2.33 2.38 8.6 8.2 4.0 3.6 0.91 0.91 1.9 1.8 0.95 0.97 C 48 (BSC5) 6 13.3 12.0 3.89 3.52 2.563|o.375 2.5000.313 19.7 18.6 2.25 2.30 6.6 6.2 2.1 2.0 0.74 0.75 1.2 1.1 0.71 0.72 Dimensions and properties of the British Standard Sections are indicated in bold type. ELEMENTS OF CAR BUILDING CHANNELS 55.0 16.17 4.529 0.904 334.5 4.55 51.5 18.1 1.06 a.?, 1.00 50.0 14.71 4.416 0.791 313.8 4.62 48.3 16.7 1.07 4.9 0.98 45.0 13.24 4.303 9.678 293.1 4.71 45.1 15.3 1.08 4.6 0.97 tC 20 13 40.0 11.76 4.19(1 0.565 272.3 4.81 41.9 13.9 1.09 4,3 0.97 37.0 10.88 4.122 0.497 259.9 4.89 40.0 13.1 1.10 4.2 0.98 35.0 10.29 4.07Y 0.452 251.6 4.95 38.7 12.5 1.10 4.1 0.99 32.0 9.30 4.000 0.375 237.6 5.06 36.6 11.6 1.12 3.9 1.01 50.0 14.70 4.140 0.840 268.6 4.27 44.8 17.8 1.10 5 8 1.06 48.4 14.22 4.10(1 a. 800 262.8 4.30 43.8 17.3 1 10 5 7 1.05 tO 170 12 46.3 13.62 4.05(1 9.750 255.6 4.33 42.6 16.6 1.11 5.5 1.05 44.3 13.02 4.00(1 0.700 248.4 4.37 41.4 16.0 1.11 5.4 1.05 40.0 11.76 3.895 0.595 233.3 4.45 38.9 14.6 1.11 5.1 1.05 35.0 10.30 4.99 3.773 0.473 215.8 4.58 36.0 13.0 1.12 4.8 1.07 C 106 5M 17.0 3.500 0.375 25.8 2.28 9.0 5.8 1.08 2.5 1.15 C 200 4 13.6 4.00 2.500 0.500 8.8 1.49 4.4 2.2 0.74 1.4 0.87 C 220 4 10.1 2.95 2.087 0.394 6.6 1.49 3.3 1.12 0.62 0.79 0.67 O 190 3 7.1 2.05 1.984 D.250 2.8 1.17 1.9 0.75 0.60 0.60 0.72 fProfiles of C 20 and C 170 are shown on pages 81 and 82 with Structural Channels. 178 ELEMENTS OF SECTIONS ELEMENTS OF H BEAMS Depth .of Beam Weight per Foot Area ' of Section Width of Flange Thick- ness of.Web Axis 1-1 Axis 2-2 Section Index I r S I r S In. Lbs. In. 2 In. In. In* In. In.a In* In. In.s H4 8 34.0 10.00 8.0 .375 115.4 3.40 28.9 35.1 1.87 8.8 H3 6 23.8 7.00 6.0 .313 45.1 2.54 15.0 14.7 1.45 4.9 H2 5 18.7 5.50 5.0 .313 23.8 2.08 i 9.5 7.9 1.20 3.1 H 1 4 13.6 4.00 4.0 .313 107 163 53 3.6 0.95 1.8 ELEMENTS OF BULB TEES Depth of Beam Wt. per Foot Area of Sec- tion Width of Flange Thick- ness of Web Axis 1-1 Axis 2-2 Section Index I r S X I r S y In. Lbs. In.2 In. In. In.* In. In.» In. In.* In. In.3 In. B 100 10 36.6 28.1 10.62 8.12 5.500 5.250 0.625 0.375 140.4 118.6 3.64 3.82 25.3 20.7 4.45 4.28 7.6 6.3 0.84 0.88 2.8 2.4 2.75 2.63 B 101 9 30.1 24.3 8.83 7.15 5.125 4.938 0.563 0.375 95.8 84.0 3.29 3.43 19.4 16.6 4.06 3.95 5.4 4.6 0.78 0.80 2.1 1.9 2.56 2.47 B 102 8 24.2 20.0 7.11 5.86 5.156 5.000 0.469 0.313 62.8 55.6 2.97 3.08 14.1 12.2 3.54 3.43 4.5 3.9 0.79 0.82 1.7 1.6 2.58 2.50 B 103 7 23.3 18.1 6.85 5.32 5.094 4.875 0.531 0.313 45.5 38.8 2.57 2.70 11.7 9.7 3.11 2.98 4.3 3.6 0.79 0.82 1.7 1.5 2.55 2.44 B 105 6 17.2 14.0 5.00 4.11 4.524 4.375 0.430 0.281 24.4 21.6 2.20 2.28 7.2 6.1 2.61 2.46 2.7 2.2 0.73 0.72 1.2 1.0 2.26 2.19 179 CARNEQIE STEEL COMPANY ELEMENTS OF SHIP BUILDING BULB ANGLES New American Standard Sections i=^ Section i Index Size Thick- ness of Web Wt. per Foot Area of Sec- tion Axis 1-1 Axis 2-2 I r S X I r S y Inches In. Lbs. In.2 In.* In. In.s In. In* In. In.8 In. B195 10 X3J-S 0.725 0.675 35.2 33.2 10.35 9.77 122.0 115.9 3.43 3.44 22.3 21.2 4.53 4.52 6.3 5.8 0.78 0.77 2.3 2.1 0.76 0.74 B196 10 x3H 0.625 0.575 31.1 29.1 9.14 8.55 110.4 104.3 3.48 3.49 20.3 19.2 4.56 4.56 5.6 5.1 0.78 0.77 2.0 1.9 0.72 0.70 B197 (BSBA 18) 10 x3M 0.525 0.475 26.9 24.9 7.90 7.32 98.2 92.1 3.53 3.55 18.3 17.2 4.62 4.63 4.8 4.4 0.78 0.78 1.7 1.6 0.69 0.68 B205 9Hx3K 0.600 0.550 28.8 26.9 8.47 7.91 93.0 87.8 3.32 3.33 17.9 16.9 4.30 4.29 5.3 4.9 0.79 0.79 1.9 1.8 0.73 0.71 B206 (BSBA 17) 9Kx3K 0.500 0.450 24.7 22.8 7.28 6.72 82.4 77.1 3.37 3.39 16.0 15.1 4.36 4.36 4.6 4.2 0.79 0.79 1.6 1.5 0.69 0.68 B201 9 x3K 0.675 0.625 30.4 28.6 8.95 8.41 86.3 81.8 3.11 3.12 17.2 16.4 4.00 3.98 5.8 5.4 0.81 0.80 2.1 2.0 0.76 0.74 B202 9 x3y 2 0.575 0.525 26.6 24.8 7.82 7.29 77.6 73.1 3.15 3.17 15.6 14.8 4.03 4.03 5.1 4.7 0.81 0.80 1.8 1.7 0.73 0.71 B203 (BSBA 16) 9 x3K 0.475 0.425 22.7 20.9 6.68 6.14 68.4 63.8 3.20 3.22 13.9 13.1 4.10 4.10 4.3 3.9 0.81 0.80 1.5 1.4 0.70 0.68 B208 8^x3H 0.575 0.525 25.3 23.5 7.43 6.92 65.5 61.7 2.97 2.98 13.8 13.0 3.74 3.73 5.0 4.6 0.82 0.82 1.8 1.7 0.74 0.72 B209 (BSBA 14) 8Hx3^ 0.475 0.425 21.6 19.8 6.34 5.83 57.7 53.8 3.02 3.04 12.3 11.5 3.80 3.80 4.3 3.9 0.82 0.82 1.5 1.4 0.71 0.69 B211 8^x3 0.550 0.500 23.4 21.7 6.89 6.39 60.1 56.4 2.96 2.97 13.1 12.3 3.89 3.89 3.1 2.8 0.67 0.66 1.3 1.2 0.63 0.61 B212" (BSBA 13) 8^x3 0.450 0.400 19.8 18.1 5.84 5.34 52.7 48.9 3.00 3.03 11.6 10.8 3.96 3.96 2.6 2.3 0.67 0.66 1.1 0.99 0.60 0.58 Dimensions and properties of the British Standard Sections are indicated in bold type. 180 ELEMENTS OF SECTIONS ELEMENTS OF SHIP BUILDING BULB ANGLES New American Standard Sections — Continued 2 yd -x— -4 1 =4= z£> 2 Section Index Size Thick- ness of, Web Wt. per Foot Area of Sec- tion Axis 1-1 Axis 2-2 I r S X I r S y Inches In. Lbs. In.2 In* In. In.s In. In.4 In. In." In. B214 8 x3J^ 0.550 0.500 23.2 21.6 6.83 6.34 53.7 50.4 2.81 2.82 11.9 11.2 3.49 3.48 4.8 4.4 0.84 0.83 1.7 1.6 0.75 0.73 B215 (BSBA12) 8 x3H 0.450 0.400 19.6 18.0 5.78 5.29 47.1 43.8 2.85 2.88 10.6 9.8 3.54 3.54 4.0 3.7 0.84 0.83 1.4 1.3 0.71 0.70 B217 8 x3 0.575 0.525 23.1 21.4 6.78 6.31 52.4 49.2 2.78 2.79 12.0 11.3 3.64 3.63 3.2 2.9 0.69 0.68 1.3 1.2 0.65 0.63 B218 (BSBA 11) 8 x3 0.475 0.425 19.6 18.0 5.78 5.30 46.1 42.9 2.82 2.84 10.6 10.0 3.70 3.70 2.7 2.4 0.69 0.68 1.1 1.0 0.62 0.60 B220 7^x3H 0.575 0.525 22.8 21.2 6.71 6.24 46.2 43.4 2.63 2.64 10.8 10.2 3.24 3.23 4.9 4.5 0.86 6.85 1.8 1.7 0.77 0.75 B221 (BSBAIO) 7^x3^ 0.475 0.425 19.4 17.8 5.70 5.24 40.6 37.8 2.67 2.69 9.6 9.0 3.29 3.29 4.2 3.8 0.85 0.85 1.5 1.4 0.73 0.72 B223 7*^x3 0.525 0.475 20.3 18.8 5.98 5.53 41.0 38.4 2.62 2.63 9.9 9.3 3.36 3.35 2.9 2.6 0.69 0.69 1.2 1.1 0.64 0.62 B224 (BSBA 9) 7^x3 0.425 0.375 17.1 15.6 5.02 4.57 35.7 33.1 2.67 2.69 8.8 8.2 3.42 3.42 2.4 2.2 0.69 0.69 1.0 0.92 0.61 0.60 B226 7 sZM. 0.525 0.475 20.0 18.6 5.90 5.46 35.5 33.2 2.45 2.47 '8.8 8.2 2.95 2.94 4.5 4.1 0.87 0.88 1.6 1.5 0.77 0.75 B227 (BSBA 8) 7 x3H 0.425 0.375 16.8 15.3 4.94 4.50 30.9 28.6 2.50 2.52 7.7 7.2 3.00 2.99 3.7 3.4 0.87 0.87 1.4 1.2 0.74 0.72 B229 7 x3 0.500 0.450 18.4 16.9 5.41 4.98 32.5 30.3 2.45 2.46 8.3 7.8 3.09 3.08 •2.7 2.5 0.71 0.70 1.3 1.2 0.65 0.63 B230 (BSBA 7) 7 x3 0.400 0.350 15.3 13.9 4.50 4.07 28.1 25.9 2.50 2.52 7.3 6.7 3.14 3.14 2.3 2.0 0.71 0.70 1.1 1.0 0.61 0.60 Dimensions and properties of the British Standard Sections are indicated in b old type. CARNEGIE STEEL COMPANY ELEMENTS OF SHIP BUILDING BULB ANGLES New American Standard Sections — Concluded =£)* ! Size Thick- ness of Web' wt. per Foot Area of Sec- tion 1 Axis 1-1 Axis 2-2 Section Index I r S X I r S y Inches In. Lbs. In.2 In.* In. In.8 In. In* In. Tn. s In. B233 (BSBA 6) 6^x3K 0.400 0.350 15.0 13.6 4.42 4.01 23.9 22.1 2.33 2.35 6.3 5.9 2.72 2.71 3.5 3.1 0.89 0.89 1.3 1.2 0.75 0.73 B236 (BSBA 5) 6^x3 0.425 0.37S 0.350 15.0 13.6 12.9 4.40 4.00 3.80 23.5 21.7 20.8 2.31 2.33 2.34 6.4 6.0 5.7 2.87 2.87 2.86 2.3 2.1 2.0 0.73 0.72 0.72- 0.97 0.88 0.84 0.64 0.62 0.61 *Uoyd sZVi 0.475 0.425 16.4 14.8 4.82 4.34 21.4 19.9 2.11 2.14 6.0 5.6 2.44 2.49 4.0 3.6 0.91 0.92 1.5 1.3 0.80 0.78 *Lloyd 6 x3^ 0.375 0.350 13.4 12.8 3.95 3.76 18.4 17.6 2.16 2.17 5.2 5.0 2.49 2.48 3.3 3.1 0.91 0.91 1.2 1.1 0.76 0.76 B241 6 x3 0.525 0.475 16.8 15.6 4.95 4.58 21.7 20.2 2.09 2.10 6.3 5.9 2.56 2.55 2.8 2.5 0.75 0.74 1.2 1.1 0.69 0.67 B242 (BSBA 4) 6 x3 0.425 0.375 0.350 14.1 12.8 12.2 4.14 3.76 3.58 18.8 17.4 16.6 2.13 2.15 2.16 5.5 5.1 4.9 2.60 2.60 2-59 2.3. 2.1 1.9 0.75 0.74 0.74 0.96 0.87 0.83 0.66 0.64 0.63 B244 5^x3 0.500 0.450 15.1 13.9 4.45 4.10 16.5 15.3 1.92 1.93 5.1 4.8 2.31 2.30 2.6 2.4 0.76 0.76 1.1 1.0 0.71 0.69 B245 (BSBA 3J 5Hx3 0.400 0.350 0.325 12.5 11.3 10.7 3.68 3.33 3.16 14.2 13.0 12.5 1.96 1.98 1.99 4.5 4.1 4.0 2.35 2.35 2.34 2.1 1.9 1.8 0.76 0.76 0.75 0.90 0.81 0.77 0.67 0.65 0.64 B 251 (BSBA 2) 5 x2>£ 0.375 0.325 0.300 10.4 9.3 8.8 3.06 2.74 2.59 9.7 8.8 8.4 ( 1.78 1.79 1.80 3.4 3.1 3.0 2.20 2.19 2.19 1.2 1.0 0.95 0.62 0.61 0.61 0.58 0.52 0.49 0.56 0.54 0.53 *Lloyd sections, rolled bjr Pencoyd Iron Works (Pencoyd 60A). Dimensions and properties of British Standard Sections are indicated in bold type. ELEMENTS OF SECTIONS ELEMENTS OF SHIP BUILDING BULB ANGLES Miscellaneous Sections 2 — x 41 -4=^¥ Size Thick- ness of Web Wt. per Foot Area of Sec- tion Axis 1-1 Axis 2-2 Section Index I r S X I r' S y Inches In. Lbs. In.* In.* In. In.* In. In.* In. In.a In. B 143 5 x2H 0.240 8.3 2.44 8.6 1.89 3.4 2.41 0.91 0.61 0.47 0.55 B 144 4>^x2Ji 0.220 6.7 1.95 5.6 1.69 2.4 2.12 0.60 0.56 0.34 0.50 B 145 3x2 0.190 3.60 1.08 1.3 1.09 0.74 1.24 0.31 0.54 0.20 0.45 B 146 3x1% 0.160 3.25 0.97 1.2 1.13 0.72 1.31 0.21 0.47 0.16 0.41 B 147 2Xxiy 2 0.150 2.66 0.84 0.74 0.94 0.55 1.17 0,12 0.38 0.11 0.36 ELEMENTS OF CAR BUILDING BULB ANGLES •- .--x-'Y /¥ t . Size Thick- ness of Web Wt. per Foot Area of Sec- tion Axis 1-1 Axis 2-2 Section ' Index I r S X I r S ■y Inches In. Lbs. In.2 In.* In. In.s 'Cn. In.* In. In.s In. B 125 5 x4H 0.438 19.3 5.66 20.8 1.91 7.9 2.39 7.9 1.18 2.4 1.23 B 124 5 x3H 0.375 13.2 3.82 13.5 1.88 4.9 2.22 3.3 0.92 1.2 0.86 B 122 4 -x 3iM 0.500 14.3 4.21 8.7 1.44 3.7 1.65 3.9 0.96 1.5 0.99 B 123 1 s3« 0.375 11.9 3.48 7.9 1.50 3.5 1.77 3.1 0.94 1.2 0.94 183 CARNEGIE STEEL COMPANY ELEMENTS OF EQUAL ANGLES 8 \ 2- — c t 2 \ N i 1 \z Weight Area Axis 1-1 and Axis 2-5 Axis 3-3 Section Index Sue per Foot of Section I r S x r min. Inches Pounds In.2 In* In. In.s In. In. A 113 8x8 xlH 56.9 16.73 98.0 2.42 17.5 2.41 1.55 A 112 8x8 xlA 54.0 15.87 93.5 2.43 16.7 2.39 1.56 Alll 8x8x1 51.0 15.00 89.0 2.44 15.8 2.37 1.56 A110 8 x 8 x i% 48.1 14.12 84.3 2.44 14.9 2.34 1.56 A 109 8 x 8 x y s 45.0 J3.23 12.34. 79.6 2.45 14.0 2.32 1.56 A 108 8 X 8 x j;i 42.0 74.7 2.46 13.1 2.30 1.57 • A 107 8 x 8 x M 38.9 11.44 69.7 2.47 12.2 2.28 1.57 A 106 8 x 8 x H 35.8 10.53 64.6 2.48 11.2 2.25 1.58 A 105 8 x 8 x % 32.7 9.61 59.4 2.49 10.3 2.23 1.58 A 104 8 x 8 x A 29.6 8.68 54.1 2.50 9.3 2.21 1.58 A 103 8 x 8 x H 26.4 7.75 48.6 2.51 8.4 2.19 1.58 A 86 6x6x1 37.4 11.00 35.5 1.80 8.6 1.86 1.16 A 87 6 x 6 x H 35.3 10.37 33.7 1.80 8.1 1.84 1.16 A 1 6 x 6 x % 33.1 9.73 31.9 1.81 7.6 1.82 1.17 A 2 6 x 6 x i| 31.0 9.09 30.1 i:82 7.2 1.80 1.17 A 3 6 x 6 x % 28.7 8.44 28.2 1.83 6.7 1.78 1.17 A 4 6 x 6 x H 26.5 7.78 26.2 1.83 6.2 1.75 1.17 A 5 6 x 6 x % 24.2 7.11 24.2 1.84 5.7 1.73 1.17 A 6 6 x 6 x A 21.9 6.43 22.1 1.85 5.1 1.71 1.18 A 7 6 x 6 x yi 19.6 5.75 19.9 1.86 4.6 1.68. 1.18 A 8 6x6 x ft 17.2 5.06 17.7 1.87 4.1 1.66 1.19 A 88 6 x 6 x y % 14.9 4.36 15.4 1.88 3.5 1.64 1.19 A 94 5x5x1 30.6 9.00 19.6 1.48 5.8 1.61 0.96 A 95 5 x 5 x \\ 28.9 8.50 18.7 1.48 5.5 1.59 0.96 A 9 5 x 5 x % 27.2 7.98 17.8 1.49 5.2 1.57 0.96 A 10 5 x 5 x \i 25.4 7.47 16.8 1.50 4.9 1.55 0.97 A 11 5 x 5 x %. 23.6 6.94 15.7 1.50 4.5 1.52 0.97 A 12 5 x 5 x M 5 x 5 x % 21.8 6.40 14.7 1.51 4.2 1.50 0.97 A 13 20.0 5.86 13.6 1.52 3.9 1.48 0.97 A 14 5x5 x ft 18.1 5.31 12.4 1.53 3.5 1.46 0.98 A 15 5 x 5 x yl 16.2 4.75 11.3 1.54 3.2 1.43 0.98 A 16 5x5 x ft 14.3 4.18 10.0 1.55 2.8 1.41 0.98 A 17 5 x 5 x M 12.3 3.61 8.7 1.56 2.4 1.39 0.99 A 18 4 x 4 x \\ 19.9 5.84 8.1 1.18 3.0 1.29 0.77 A 19 4 x 4 x % 18.5 5:44 7.7 1.19 2.8 1.27 0.77 A 20 4 x 4 x H 17,1 5.03 7.2 1.19 2.6 1.25 0.77 A 21 4 x 4 x j| 15.7 4.61 6.7 1.20 2.4 1.23 0.77 A 22 4x4 x ft 14.3 4.18 6.1 1.21 2.2 1.21 0.78 A 23 4 x 4 x ^ 12.8 3.75 5.6 1.22 2.0 1.18 0.78 A 24 4 x 4 x ft 11.3 3.31 5.0 1.23 1.8 1.16 0.78 A 25 4 x 4 x % 9.8 2.86 4.4 ■1.23 1.5 1.14 0.79 A 90 4x4 x ft 8.2 2.40 3.7 1.24 1.3 1.12 0.79 A 284 4 x 4 x % 6.6 1.94 3.0 1.25 1.0 1.09 0.79 184 ELEMENTS OF SECTIONS -A - ELEMENTS OF EQUAL ANGLES- *X-*|1 3, : \ —Concluded * US " s — & c *• V "^ !i S Weight Area Axis 1-1 and Axis 2-2 Axis 3-3 Section Index Size per Foot of Section I r s X r min. Inches Pounds In.2 In.* In. In.s In. In. A 26 3J^x3Hx}S 17.1 5.03 5.3 1.62 2.3 1.17 0.67 A 27 3^x3^x% 16.0 4.69 5.0 1.03 2.1 1.15 0.67 A 28 3Hx3MxH 14.8 4.34 4.7 1.04 2.0 1.12 0.67 A 29 3^x3J$xM 13.6 3.98 4.3 1.04 1.8 1.10 0.68 A 30 3^x3Mxi\ 12.4 3.62 4.0 1.05 1.6 1.08 - 0.68 A 31 3Mx3HxJ4 11.1 3.25 3.6 1.06 1.5 1.06 0.68 A 32 3«x3«xA 9.8 2.87 3.3 1.07 1.3 1.04 0.68 A 33 3Hx3Mxj| 8.5 2.48 2.9 1.07 1.2 1.01 0.69 A 99 3H x 3H x A 7.2 2.09 2.5 1.08 0.98 0.99 0.69 A 285 3^x3^xJ£ 5.8 1.69 2.0 1.09 0.79 0.97 0.69 A 34 3 x 3 x% 11.5 3.36 2.6 0.88 1.3 0.98 0.57 A 35 3 X 3 x/j 10.4 3.06 2.4 0.89 1.2 0.95 0.58 A 36 3x3 x'2 9.4 2.75 2.2 0.90 1.1 0.93 0.58 A 37 3 X 3 Xt 7 , 3 x 3 x% 8.3 2.43 2.0 0.91 0.95 0.91 0.58 A 38 7.2 2.11 1.8 0.91 0.83 0.89 0.58 A 39 3 x 3 xA 6.1 1.78 1.5 0.92 0.71 0.87 0.59 A 40 3x3 xK 4.9 1.44 1.2 0.93 0.58 0.84 0.59 A 46 2H x 2)4 x H 7.7 2.25 1.2 0.74 0.73 0.81 0.47 A 47 2^x2HxA 6.8 2.00 1.1 0.75 0.65 0.78 0.48 A 48 2^x2J^xM 5.9 1.73 0.98 0.75 0.57 0.76 0.48 A 49 2Hx2Kx T 8 , 5.0 1.47 0.85 0.76 0.48 0.74 0.49 A 50 2)^x2MxJ£ 4.1 1.19 0.70 0.77 0.39 0.72 0.49 A 100 2Mx2^x A 3.07 0.90 0.55 0.78 0.30 0.69 0.49 'A 504 2^x2^xH 2.08 0.61 0.38 0.79 0.20 ' 0.67 0.50 A 56 2 x 2 xA 5.3 1.56 0.54 0.59 0.40 0.66 0.39 A 57 2 x 2 x% 4.7 1.36 0.48 0.59 0.35 0.64 0.39 A 58 2 x 2 xA 3.92 1.15 0.42 0.60 0.30 0.61 0.39 A 59 2x2 xK 3.19 0.94 0.35 0.61 0.25 0.59 0.39 A 60 2 x 2 xA 2.44 0.71 0.28 0.62 0.19 0.57 0.40 A 506 2x2 sH 1.65 0.48 0..19 0.63 0.13 0.55 0.40 A 61 lMxlKx A 4.6 1.34 0.35 0.51 0.30 0.59 0.33 A 62 l^Xl^X^ 3.99 1.17 0.31 0.51 0.26 0.57 0.34 A 63 l^xlMxA 3.39 1.0b 0.27 0.52 0.23 0.55 0.34 A 64 l^xlMxM 2.77 0.81 0.23 0.53 0.19 0.53 0.34 A 65 WilMxA 2.12 0.62 0.18 0.54 0.14 0.51 0.35 A 507 lMxiMxJI 1.44 0.42 0.13 0.55 0.10 0.48 0.35 A 66 l^xlMx^ 3.35 0.98 , 0.19 0.44 0.19 «.51 0.29 A 67 1}| x 1)| x A 2.86 0.84 0.16 0.44 0.16 0.49 0.29 A 68 13^xl}f x M 2.34 0.69 0.14 0.45 0.13 0.47 0.29 A 69 l^xlKxA 1.80 0.53 0.11 0.46 0.10 0.44 0.29 A 102 Wxl^xX 1.23 0.36 0.08 0.46 0.07 0.42 0.30 A 70 lVxlJixA lMxlMxJi IMxIKxA lJixlj|xH 2.33 0.68 0.09 0.36 0.11 0.42 0.24 A 71 1.92 0.56 0.08 0.37 0.09 0.40 0.24 A 72 1.48 0.43 0.06 0.38 0.07 0.38 0.24 A 73 1.01 0.30 0.04 0.38 0.05 0.35 0.25 A 78 l x l iM 1.49 0.44 0.04 0.29 0.06 0.34 0.19 A 79 1 x 1 iA 1.16 0.34 0.03 0.30 0.04 0.32 0.19 A 80 1 x 1 x'H 0.80 0.23 0.02 0.31 0.03 0.30 1 0.19 185 CARNEGIE STEEL COMPANY ELEMENTS OF UNEQUAL ANGLES "1 —r-2 y :i "-3 Weight Area of Axis 1-1 Axis 2-2 Axis 3-3 Size per Foot Sec- tion Section Index I r S X I r S y rmin. . Inches Lbs. In.2 In.4 In. In.» In. In.* In. In." In. In. A 138 8x6x1 44.2 13.00 80.8 2.49 15.1 2.65 38.8 1.73 8.9 1.65 1.28 A 137 8 X 6 x }A 8x 6 xy a 8 x 6 x if 41.7 12.25 76.6 2.50 14.3 2.63 36.8 1.73 8.4 1.63 1.28 A 136 39.1 11.48 72.3 2.51 13.4 2.61 34.9 1.74 7.9 1.61 1.28 A 135 36.5 10.72 67.9 2.52 12.5 2.59 32.8 1.75 7.4 1.59 1.29 A 134 8x 6 ' x M 8 x 6 x i| 33.8 9.94 63.4 2.53 11.7 2.56 30.7 1.76 6.9 1.56 1.29 A 133 31.2 9.15 58.8 2.54 10.8 2.54 28.6 1.77 6.4 1.54 1.29 A 132 8x 6 x% 28.5 8.36 54.1 2.54 9.9 2.52 26.3 1.77 5.9 1.52 1.30 A 131 8x 6 x A 25.7 7.56 49.3 2.55 8.9 2.50 24.0 1.78 5.3 1.50 1.30 A 130 8x 6 x}4 23.0 6.75 44.3 2.56 8.0 2.47 21.7 1.79 4.8 1.47 1.30 A 139 8x 6 lA 20.2 5.93 39.2 2.57 7.1 2.45 19.3 1.80 4.2 1.45 1.30 A 320 8 x 3H x 1 35.7 10.50 66.2 2.51 13.7 3.17 7.8 0.86 3.0 0.92 0.73 A 321 3x314 x 11 33.7 9.90 62.9 2.52 12.9 3.14 7.4 0.87 2.9 0.89 0.73 A 322- 8 x syi x y% 31.7 9.30 59.4 2.53 12.2 3.12 7.1 0.87 2.7 0.87 0.73 A32S 8 x 3H x K 29.6 8.68 55.9 2.54 11.4 3.10 6.7 0.88 2.5 0.85 0.73 A 324 8 x 3H X % 27.5 8.06 52.3 2.55 10.6 3.07 6.3 0.88 2.3 0.82 0.73 A 325 8 x 3H x H 25.3 7.43 48.5 2.56 9.8 3.05 5.9 0.89 2.2 0.80 0.73 A 326 8x3H s« 23.2 6.80 44.7 2.57 9.0 3.03 5.4 0.90 2.0 0.78 0.74 A 327 8 X 3)4 x ft 21.0 6.15 40.8 2.57 8.2 3.00 5.0 0.90 1.8 0.75 0.74 A 328 8x3^xH 18.7 5.50 36.7 2.58 7.3 2.98 4.5 0.91 1.6 0.73 0.74 A 329 8 x 3H X ft 16.5 4.84 32.5 2.59 6.4 2.95 4.1 0.92 1.5 0.70 0.74 A 150 7 x 3H x 1 32.3 9.50 45.4 2.19 10.6 2.70 7.5 0.89 3.0 0.96 0.74 A 151 7x3^x11 30.5 8.97 43.1 2.19 10.0 2.69 7.2 0.89 2.8 0.94 0.74 A 152 7x3M x% 28.7 8.42 40.8 2.20 9.4 2.66 6.8 0.90 2.6 0.91 0.74 A 153 7 x 3]4 x H 26.8 7.87 38.4 2:21 8.8 2.64 6.5 0.91 2.5 0.89 0.74 A 154 7x3iixH 24.9 7.31 36.0 2.22 8.2 2.62 6.1 0.91 2.3 0.87 0.74 A 155 7x3HxH 23.0 6.75 33.5 2.23 7^6 7.0 2.60 5.7 0.92 2.1 0.85 0,74 A 156 7x3Kx^ 7 x 3)| x ft 21.0 6.17 30.9 2.24 2.57 5.3 0.93 2.0 0.82 0.75 A 157 19.1 5.59 28.2 2.25 6.3 2.55 4.9 0.93 1.8 0.80 0.75 A 158 7x3J^xM 17.0 5.00 25.4 2.25 5.7 2.53 4.4 0.94 1.6 0.78 0.75 A 159 7 x 3J<£ X ft 15.0 4.40 22.6 2.26 5.0 2.50 4.0 0.95 1.4 0.75 0.76 A310 7 x 3}4 x M 13.0 3.80 19.6 2.27 4.3 2.48 3.5 0.96 1.3 0.73 0.76 A 89 6x4x1 30.6 9.00 30.8 1.85 8.0 2.17 10.8 1.09 3.8 1.17 0.85 A 91 6x 4 x 18 28.9 8.50 29.3 1.86 7.6 2.14 10.3 1.10 3.6 1.14 0.85 A 160 Gx 4 xK 27.2 7.98 27.7 1.86 7.2 2.12 9.8 1.11 3.4 1.12 0.86 A161 6x4 x 13 25.4 7.47 26.1 1.87 6.7 2.10 9.2 1.11 3.2 1.10 0.86 A 162 6x 4 xji 23.6 6.94 24.5 1.88 6.2 2.08 8.7 1.12 3.0 1.08 0.86 A 163 6x 4 x{J 21.8 6.40 22.8 1.89 5.8 2.06 8.1 1.13 2.8 1.06 0.86 A 164 6x 4 x% 20.0 5.86 21.1 1.90 5.3 2.03 7.5 1.13 2.5 1.03 0.86 A 165 6 x 4 x ft 18.1 5.31 19.3 1.90 4.8 2.01 6.9 1.14 2.3 1.01 0.87 A 166 6x 4 xM 16.2 4.75 17.4 1.91 4.3 1.99 6.3 1.15 2.1 0.99 0.87 A 167 6x 4 x ft 14.3 4.18 15.5 1.92 3.8 1.96 5.6 1.16 1.8 0.96 0.87 A 168 6x 4 x% 12.3 3.61 13.5 1.93 3.3 1.94 4.9 1.17 1.6 0.94 0.88 186 ELEMENTS OF SECTIONS ELEMENTS OF UNEQUAL ANGLES— Continued n 3^ s 2 — -P^ — !-2 "v s ? Il " ^3 Weight Area of Axis 1-1 Axis 2-2 %xiB 3-3 Section Index Size per Foot Sec- tion I r S X I r S y rmin. Inches Lbs. In.2 In* In. In.» In. In* In. In.s In. In. A 92 6x3)4 xl 28.9 8.50 29.2 1.85 7.8 2.26 7.2 0.92 2.9 1.01 0.74 A 93 6x3)4 x $ 27.3 8.03 27.8 1.86 7.4 2.24 6.9 0.93 2.7 0.99 0.74 A 169 6x3)3 25.7 7.55 26.4 1.87 7.0 2.22 6.6 0.93 2.6 0.97 0.75 A 170 6x3M x« xk 24.0 7.06 24.9 1.88 6.6 2.20 6.2 0.94 2.4 0.95 0.75 A 171 6x3)4 22.4 6.56 23.3 1.89 6.1 2.18 5.8 0.94 2.3 0.93 0.75 A 172 6x3*3 xll 20.6 6.06 21.7 1.89 5.6 2.15 5.5 0.95 2.1 0.90 0.75 A 173 6x3^ 18.9 5.55 20.1 1.90 5.2 2.13 5.1 0.96 1.9 0.88 0.75 A 174 6x3)3 x A 17.1 5.03 18.4 1.91 4.7 2.11 4.7 0.96 1.8 0.86 0.75 A 175 6x3)3 iH 15.3 4.50 16.6 1.92 4.2 2.08 4.3 0.97 1.6 0.83 0.76 A 176 6x3)3 x A 13.5 3.97 14.8 1.93 3.7 2.06 3.8 0.98 1.4 0.81 0.76 A 177 6x3)4 xH 11.7 3.42 12.9 1.94 3.3 2.04 3.3 0.99 1.2 0.79 0.77 A301 6x3)4 x A 9.8 2.87 10.9 1.95 2.7 2.01 2.9 1.00 1.0 0.76 0.77 A 178 5x 4 x% 24.2 7.11 16.4 1.52 5.0 1.71 .9.2 1.14 3.3 1.21 0.84 A 179 5x^4 *tf 22.7 6.65 15.5 1.53 4.7 1.68 8.7 1.15 3.1 1.18 0.84 A 180 5x4 xk 21.1 6.19 14.6 1.54 4.4 1.66 8.2 1.15 2.9 1.16 0.84 A 181 5x4 x % 19.5 5.72 13.6 1.54 4.1 1.64 7.7 1.16 2.7 1.14 0.84 A 182 5x4 17.8 5.23 12.6 1.55 3.7 1.62 7.1 1.17 2.5 1.12 0.84 A 183 5x4 xft 16.2 4.75 11.6 1.56' 3.4 1.60 6.6 1.18 2.3 1.10 0.85 A 184 5x 4 x)4 14.5 4,25 10.5 1.57 3.1 1.57 6.0 1.18 2.0 1.07 0.85 A 185 5x4 XiV 12.8 3.75 9.3 1.58 2.7 1.55 5.3 1.19 1.8 1.05 0.85 A 186 5x 4 xH 11.0 3.23 8.1 1.59 2.3 1.53 4.7 1.20 1.6 1.03 0.86 A 187 5 x 3K x % 22.7 6.67 15.7 1.53 4.9 1.79 6.2 0.96 2.5 1.04 0.75 A 188 5x3)3 xti 21.3 6.25 14.8 1.54 4.6 1.77 5.9 0.97 2.4 1.02 0.75 A 189 5x3)4 5x3)4 5 x3)4 xH 19.8 5.81 13.9 1.55 4.3 1.75 5.6 0.98 2.2 1.00 0.75 A 190 Xii 18.3 5.37 13.0 1.56 4.0 1.72 5.2 0.98 2.1 0.97 0.75 A 191 x54 16.8 4.92 12.0 1.56 3.7 1.70 4.8 0.99 1.9 0.95 0.75 A 192 5x3)4 5x3)3 xft 15.2 4.47 11.0 1.57 3.3 1.68 4.4 1.00 1.7 •0.93 0.75 A 193 x )4 13.6 4.00 10.0 1.58 3.0 1.66 4.0 1.61 1.6 0.91 0.75 A 194 5x3)3 5 x3)3 X T 7 J 12.0 3.53 8.9 1.59 2.6 1.63 3.6 1.01 1.4 0.88 0.76 A 195 xM 10.4 3.05 7.8 1.60 2.3 1.61 3.2 1.02 1.2 0.86 0.76 A 96 5x3)3 x A 8.7 2.56 6,6 1.61 1.9 1.59 2.7 1.03 1.0 0.84 0.76 A 196 5x3 xli xM xli x?4 19.9 5.84 14.0 1.55 4.5 1.86 3.7 0.80 1.7 0.86 0.64 A 197 A 198 5x3 18.5 5.44 13.2 1.55 4.2 1.84 3.5 0.80 1.6 0.84 0.64 5x3 17.1 5.03 12.3 1.56 3.9 1.82 3.3 0.81 1.5 0.82 0.64 A 199 A 200 5x3 15.7 4.61 11.4 1.57 3.5 1.80 3.1 0.81 1.4 0.80 0.64 5x3 if, 14.3 4.18 10.4 1.58 3.2 1.77 2.8 0.82 1.3 . 0.77 0.65 A 201 A 202 A 203 A 280 5x3 x )4 12.8 3.75 9.5 1.59 2.9 1.75 2.6 0.83 1.1 0.75 0.65 5x3 x & 11.3 3.31 8.4 1.60 2.6 1.73 2.3 0.84 1.0 0.73 0.65 5x3 9.8 2.86 7.4 1.61 2.2 1.70 2.0 0.84 0.89 0.70 0.65 5x 3 x£ 8.2 2.40 6.3 1.61 1.9 1.68 1.8 0.85 0.75 0.68 0.66 187 CARNEQIE STEEL COMPANY ■ELEMENTS OF UNEQUAL ANGLES— Continued h 1 • 2-— -M^- ^—-r-Z ■" 3T !l ^3 Weight Area of Axis 1-1 Axis 2-2 Axis 3-3 Section Index • Size per Sec- tion Foot I r S X I r S y rmin Inches Lbs. In.2 In." In. In. » In. In.* In. In. s In. In. A 204 iVix 3 x}8 18.5 5.43 10.3 1.38 3.6 1.65 3.6 0.81 1.7 0.90 0.64 A 205 4^x 3 x% 17.3 5.06 9.7 1.39 3.4 1.63 3.4 0.82 1.6 0.88 0.64 A 206 Oix 3 xJJ 16.0 4.68 9.1 1.39 3.1 1.60 3.2 0.83 1.5 0.85 0.64 A 207 4^x 3 x% 14.7 4.30 8.4 1.40 2.9 1.58 3.0 0.83 1.4 0.83 0.64 A 208 4^x 3 x& 13.3 3.90 7.8 1.41 2.6 1.66 2.8 0.85 1.3 0.81 0.64 A209 4J^x 3 xH 11.9 3.50 7.0 1.42 2.4 1.54 2.5 0.85 1.1 0.79 0.65 A210 iYiX 3 x& 10:6 3.09 6.3 1.43 2.1 1.51 2.3 0.85 1.0 0.76 0.65 A211 mx 3 x% 9.1 2.67 5.5 1.44, 1.8 1.49 2.0 0.86 0.88 0.74 0.66 A 97 4J^x 3 IA 7.7 2.25 4.7 1.44 1.5 1.47 1.7 0.87 0.75 0.72 0.66 A212 4 xzy 2 x\% 4 x3J^xM 18.5 5.43 7.8 1.19 2.9 1.36 5.5 1.01 2.3 1.11 0.72 A213 17.3 5.06 7.3 1.20 2.8 1.34 5.2 1.01 2.1 1.09 0.72 A214 4 x3^xji 16.0 4.68 6.9 1.21 2.6 1.33 4.9 1.02 2.0 1.07 0.72 A215 4 x3Kx^ 14.7 4.30 6.4 1.22 2.4 1.29 4.5 1.03 1.8 1.04 0.72 A216 4 x3Kxft 13.3 3.90 5.9 1.23 2.1 1.27 4.2 1.03 1.7 1.02 0.72 A217 4 xzy^xyi 11.9 3.50 5.3 1.23 1.9 1.25 3.8 1.04 1.5 1.00 0.72 A218 4 x3^x& 10.6 3.09 4.8 1.24 1.7 1.23 3.4 1.05 1.3 0.98 0.72 A219 4 x3Kx% 9.1 2.67 4.2 1.25 1.5 1.21 3.0 1.06 1.2 0.96 0.73 A 98 4 x3^xft 7.7 2.25 3.6 1.26 1.3 1.18 2.6 1.07 1.0 0.93 0.73 A 220 4 x 3 ifi 17.1 5.03 7.3 1.21 2.9 1.44 3.5 0.83 1.7 0.94 0.64 A221 4 x 3 x% 16.0 4.69 6.9 1.22 2.7 1.42 3.3 0.84 1.6 0.92 0.64 A 222 4x3 xiJ 14.8 4.34 6.5 1.22 2.5 1.39 3.1 0.84 1.5 0.89 0.64 A 223 4 x 3 x% 13.6 3.98 6.0 1.23 2.3 1.37 2.9 0.85 1.4 0.87 0.64 A 224 4x3 sA 12.4 3.62 5.6 1.24 2.1 1.35 2.7 0.86 1.2 0.85 0.64 A225 4 x 3 x>3 11.1 3.25 5.0 1.25 1.9 1.33 2.4 0.86 1.1 0.83 0.64 A 226 4 x 3 xA 9.8 2.87 4.5 1.25 1.7 1.30 2.2 0.87 1.0 0.80 0.64 A 227 4 x 3 xM 8.5 2.48 4.0 1.26 1.5 1.28 1.9 0.88 0.87 0.78 0.64 A228 4 x 3 xA 7.2 2.09 3.4 1.27 1.2 1.26 1.7 0.89 0.74 0.76 0.65 A 283 4 x 3 xM 5.8 1.69 2.8 1.28 1.0 1.24 1.4 0.89 0.60 0.74 0.65 A 229 3^x 3 x« 15.8 4.62 5.0 1.04 2.2 1.23 3.3 0.85 1.7 0.98 0.62 A 230 3^x 3 xk 14.7 4.31 4.7 1.04 2.1 1.21 3:i 0.85 1.5 0.96 0.62 A231 3^x 3i{| 13.6 4.00 4.4 1.05 1.9 1.19 3.0 0.86 1.4 0.94 0.62 A 232 3J^x 3 xM S^x; 3 x T \ 12.5 3.67 4.1 1.06 1.8 1.17 2.8 0.87 1.3 0.92 0.62 A 233 '11.4 3.34 3.8 1.07 1.6 1.15 2.5 0.87 1.2 0.90 0.62 A 234 zy 2 x 3 xH 10.2 3.00 3.5 1.07 1.5 1.13 2.3 0.88 1.1 0.88 0.62 A 235 3^x 3 xX 9.1 2.65 3.1 1.08 1.3 1.10 2.1 0.89 0.98 0.85 0.62 A236 3^x 3 xK 7.9 2.30 2.7 1.09 1.1 1.08 1.8 0.90 0.85 0.83 0.62 A 237 3Mx 3 rA 6.6 1.93 2.3 1.10 0.96 1.06 1.6 0.90 0.72 0.81 0.63 A286 3^x 3 xM 5.4 1.56 1.9 1.11 0.78 1.04 1.3 0.91 0.58 0.79 0.63 A 238 3^x2Hx}i 12.5 3.65 4.1 1.06 1.9 1.27 1.7 0.69 0.99 0.77 0.53 A 239 3J^x2^x% 11.5 3.36 3.8 1.07 1.7 1.25 1.6 0.69 0.92 0.75 0.53 A 240 3Hx2Hxft 10.4 3.06 3.6 1.08 1.6 1.23 1.5 0.70 0.84 0.73 0.53 A241 3Hx2^xM 9.4 2.75 3.2 1.09 1.4 1.20 1.4 0.70 0.76 0.70 0.53 A 242 3^x2Hxft 8.3 2.43 2.9 1.09 1.3 1.18 1.2 0.71 0.68 0.68 0.54 A 243 3^x2^xM 7.2 2.11 2.6 1.10 1.1 1.16 1.1 0.72 0.59 0.66 0.54 A 244 3^x2KxA 6.1 1.78 2.2 1.11 0.93 1.14 0.94 0.73 0.50 0.64 0.54 A245 3J^x2HxJi 4.9 1.44 1.8 1.12 0.75 1.11 0.78 0.74 0.41 [ 0.61 0.54 ELEMENTS OF SECTIONS ELEMENTS OF UNEQUAL ANGLES— Concluded J- <*-X--»i x Weight Area of Axis 1-1 Axis 2-2 Axis 3-3 Sectioi Size per Sec- tion Index Foot I r S X I r S y rmin. Inches Lbs. In. In* In. In.s In. In.l In. In.a In. In. A 252 3 x2J^xA 9.5 2.78 2.3 0.91 1.2 1.02 1.4 0.72 0.82 0.77 0.52 A253 3 x2^x^ 8.5 2.50 2.1 0.91 1.0 1.00 1.3 0.72 0.74 0.75 0.52 A 254 3 x2Kx& 7.6 2.21 1.9 0.92 0.93 0.98 1.2 0.73 0.66 0.73 0.52 A 255 3 x2J^x% 6.6 1.92 1.7 0.93 0.81 0.96 1.0 0.74 0.58 0.71 0.52 A 256 3 x2Hxft 5.6 . 1.62 1.4 0.94 0.69 0.93 0.90 0.74 0.49 0.68 0.53 A 257 3 x2J^xM 4.5 1.31 1.2 0.95 0.56 0.91 0.74 0.75 0.40 0.66 0.53 A258 3 x 2 x^ 7.7 2.25 1.9 0.92 1.0 1.08 0.67 0.55 0.47 0.58 0.43 A 259 3 x 2 xA 6.8 2.00 1.7 0.93 0.89 1.06 0.61 0.55 0.42 0>56 0.43 A 260 3x2jH 519 1.73 1.5 0.94 0.78 1.04 0.54 0.56 0.37 0.54 0.43 A 261 3 x 2 x& 5.0 1:47 1.3 0.95 0.66 1.02 0.47 0.57 0.32 0.52 0.43 A 262 3 x 2 xM 4.1 1.19 1.1 0.95 0.54 0.99 0.39 0.57 0.25 0.49 0.43 A264 2^x 2 xH 6.8 2.00 1.1 0.75 0.70 0.88 0.64 0.56 0.46 0.63 0.42 A 265 2%X 2 xA 6.1 1.78 1.0 0.76 0.62 0.85 0.58 0.57 0.41 0.60 0.42 A266 2J^x 2 x% 5.3 1.55 0.91 0.77 0.55 0.83 0.51 0.58. 0.36 0.58 0.42 A267 2J^x 2 XA 4.5 1.31 0.79 0.78 0.47 0.81 0.45 0.58 0.31 0<56 0.42 A268 2}/ 2 x 2 xH 3.62 1.06 0.65 0.78 0.38 0.79 0.37 0.59 0.25 0.54 0.42 A269 2J^x 2 xA 2.75 0.81 0.51 0.79 0.29 0.76 0.29 0,60 0.20 0.51 0.43 A 523 2^x 2 x}| 1.86 0.55 0.35 0.80 0.20 0.74 0.20 0.61 0.13" 0.49 0.43 A610 2J4xlJ^xA 2y 2 xiybxU 3.92 1.15 0.71 0.79 0.44 0.90 0.19 0.41 0.17 0.40 0.32 A611 3.19 0.94 0.59 0.79 0.36 0.88 0.16 0.41 0.14 0.38 0.32 A 612 2Mxl^*ft 2.44 0.72 0.46 0.80 0.28 0.85 0.13 0.42 0.11 0.35 0.33 A 270 2Uxiy*xli 5.6 1.63 0.75 0.68 0.54 0.86 0.26 0.40 0.26 0.48 0.32 A271 2XxV4x& 5.0 1.45 0.68 0.69 0.48 0.83 0.24 0.41 0.23 0.46 0.32 A272 2Hxiy 2 xy a 4.4 1.27 0.61 0.69 0.42 0.81 0.21 0.41 0.20 0.44 0.32 A273 2JixlM*A 3.66 1.07 0.53 0.70 0.36 0.79 0.19 0.42 0.17 0.42 0.32 A 274 2Hxiy 2 x}i 2MxlJ^XjV 2.98 0.88 0.44 0.71 0.30 0.77 0.16 0.42 0.14 0.39 0.32 A275 2.28 0.67 0.34 0.72 0.23 0.75 0.12 0.43 0.11 0.37 0.33 A631 2 xlHx% 3.99 1.17 0.43 0.61 0.34 0.71 0.21 0.42 0.20 0.46 0.32 A614 2 xl)^xA 3.39 1.00 0.38 0.62 0.29 0.69 0.18 0.42 0.17 0.44 0.32 A615 2 xlH^H 2.77 0.81 0.32 0.62 0.24 0.66 0.15 0.43 0.14 0.41 0.32 A616 2 xlJ^xA 2.12 0.62 0.25 0.63 0.18 0.64 0.12 0.44 0.11 0.39 0.32 A 525 2 xl^xH 1.44 0.42 0.17 0.64 0.13 0.62 0.09 0.45 0.08 0.37 0.33 A 646 2 xlKxJi 2.55 0.75 0.30 0.63 0.23 0.71 0.09 0.34 0.10 0.33 0.27 A 645 2 xlM*A 1.96 0.57 0.23 0.64 0.18 0.69 0.07 0.35 0.08 0.31 0.27 A618 lVxlJixM lMxlJixA 2.34 0.69 0.20 0.54 0.18 0.60 0.09 0.35 0.10 0.35 0.27 A619 1.80 0.53 0.16 0.55 0.14 0.58 0.07 0.36 0.08 0.33 0.27 A 620 l%x\%xy a 1.23 0.36 0.11 0.56 0.09 0.56 0.05 0.37 0.05 0.31 0.27 A 670 l^xlKxA 2.59 0.76 0.16 0.45 0.16 0.52 0.10 0.35 0.11 0.40 0.26 A 623 IJ^xIKxM 2.13 0.63 0.13 0.46 0.13 0.50 0.08 0.36 0.09 0.38 0.26 A 624 l^xlMxA 1.64 0.48 0.10 46 0.10 0.48 0.07 0.37 0.07 0.35 0.26 189 CARNEGIE STEEL COMPANY ELEMENTS OP EQUAL TEES Size Weight per Foot Area of Sec- tion Axis 1-1 Axis 2-2 Section Index Flange Minimum Thickness I r S X I r S Flange Stem In. In. In. In. Lbs. In.s In.* In. In.a In. In." In. In.s T40 6H 6K 0.40 0.45 19.8 5.80 23.5 2.01 5.0 1.76 10.1 1.32 3.1 T 1 4 4 x X 13.5 3.97 5.7 1.20 2.0 1.18 2.8 0.S4 1.4 T 2 4 4 % % 10.5 3.09 4.5 1.21 1.6 1.13 2.1 0.83 1.1 T 3 3X 3K X X 11.7 3.44 3.7 1.04 1.5 1.05 1.9 0.74 1.1 T 4 3M 3H % 'A 9.2 2.68 3.0 1.05 1.2 1.01 1.4 0.73 0.81 T 6 3 3 X X 9.9 2.91 2.3 0,88 1.1 0.93 1.2 0.64 0.80 T 7 3 3 ft 7 in 8.9 2.59 2.1 0.89 0.98 0.91 1.0 0.63 0.70 T 8 3 3 ' H H' 7.8 2.27 1.8 0.90 0.86 0.88 0.90 0.63 0.60 T 9 3 3 ft ft 6.7 1.95 1.6 0.90 0.74 0.86 0.75 0.62 0.50 T 10 2X 2H H H 6.4 1.87 1.0 0.74 0.59 0.76 0.52 0.53 0.42 T 11 2X 2X 5 Iff ft 5.5 1.60 0.88 0.74 0.50 0.74 0.44 0.52 0.35, T 12 2Ji 2H G IB ft 4.9 1.43 0.65 0.67 0.41 0.68 0.33 0.48 0.29 T 13 2Ji 2Ji M .X 4.1 1.19 0.52 0.66 0.32 0.65 0.25 0.46 0.22 T 14 2 2 TB ft 4.3 1.26 0.44 0.59 0.31 0.61 0.23 0.43 0.23 T 15 2 2 K K 3.56 1.05 0.37 0.59 0.26 0.59 0.18 0.42 0.18 T 16 1M Wi M H 3.09 0.91 0.23 0.51 0.19 0.54 0.12 0.37 0.14 T 17 1M IX M Ji 2.47 0.73 0.15 0.45 0.14 0.47 0.08 0.32 0.10 T"l8 1J4 ix ft ft 1.94 0.57 0.11 0.45 0.11 0.44 0.06 0.32 0.08 T 19 1M m « M 2.02 0.59 0.08 0.37 0.10 0.40 0.05 0.28 0.07 T20 1M 1M A ft 1.59 0.47 0.06 0.37 0.07 0.38 0.03 0.27 0.05 T21 l 1 ft ft 1.25 0.37 0.03 0.29 0.05 0.32 0.02 0.22 0.04 T22 l 1 H H 0.89 0.261 0.02 0.30 0.03 0.29 0.01 0.21 0.02 190 ELEMENTS OF SECTIONS ELEMENTS OF UNEQUAL TEES 2 ^±- Size Weight per Foot Area ' Axis 1-1 Axis 2-2 Section Flange Stem Minimum Thickness of Sec- tion I r S ' V I- r S ' Flange Stem In. In. In. In. Lbs. In.= In* In. In.8 In. In* In. In.s T 50 5 3 y> hi 11.5 3.37 2.4 0.84 1.1 0.76 3.9 1.10 1.6 T 51 5 2H % ft 10.9 3.18 1.5 0.68 0.78 0.63 4.1 1.14 1.6 T 52 iH 3H, A it, 15.7 4.60 5.1 1.05 2.1 1.11 3.7 0.90 1.7 T 54 m 3 y> y a 9.8 2.88 2.1 0.84 0.91 0.74 3.0 1.02 1.3 T 53 4te 3 ft ft 8.4 2.46 1.8 0.85 0.78 0.71 2.5 1.01 1.1 T 56 4H 2U % H 9.2 2.68 1.2 0.67 0.63 0.59 3.0 1.05 1.3 T- 55 4H 2M ft ft 7.8 2.29 1.0 0.68 0.54 0.57 2.5 1.05 1.1 T 57 4 5 34 34 15.3 4.50 10.8 1.55 3.1 ( 1.56 2.8 0.79 1.4 T 58 4 5 ^ % 11.9 3.49 8.5 1.56 2.4 1.51 2.1 0.78 1.1 T 59 4 4*4 H H 14.4 4.23 7.9 1.37 2.5 1.37 2.8 0.81 1.4 T 60 4 H4 H H 11.2 3.29 6.3 1.39 2.0 1.31 2.1 0.80 1.1 T 61 4 3 « % 9.2 2.68 2.0 0.86 0.90 0.78 2.1 0.89 1.1 T 44 4 3 ft ft 7.8 2.29 1.7 0.87 0.77 0.75 1.8 0.88 0.88 T 62 4 2J4 « X 8.5 2.48 1.2 0.69 0.62 0.62 2.1 0.92 1.0 T 63 4 2H ft ft 7.2 2.12 1.0 0.69 0.53 0.60 1.8 0.91 0.88 T 64 4 2 % H 7.8 2.27 0.60 0.52 0.40 0.48 2.1 0.96 1.1 T 65 4 2 ft ft 6.7 1.95 0.53 0.52 0.34 0.46 1.8 0.95 0.88 T 66 3M 4 H M 12.6 3.70 5.5 1.21 2.0 1.24 1.9 0.72 1.1 T 67 3M 4 M M 9.8 2.88 4.3 1.23 1.5 1.19 1.4 0.70 0.81 T 69 3H 3 M 54 10.8 3.17 2.4 0.87 1.1 0.88 1.9 0.77 1.1 T 70 3M 3 K H 8.5 2.48 1.9 0.88 0.89 0.83 1.4 0.75 0.81 T 71 SH 3 ft % 7.5 2.20 1.8 0.91 0.85 0.85 1.2 0.74 0.68 T 72 3 4 M H 11.7 3.44 5.2 1.23 1.9 1.32 1.2 0.59 0.81 T 73 3 4 A ft 10.5 3.06 4.7 1.23 1.7 1.29 1.1 0.59 0.70 T 74 3 4 y> % 9.2 2.68 4.1 1.24 1.5 1.27 0.90 0.58 0.60 T 75 3 3H y* H 10.8 3.17 3.5 1.06, 1.5 1.12 1.2 0.62 0.80 T 76 3 3^ ft ft 9.7 2.83 3.2 1.06 1.3 1.10 1.0 0.60 0.69 T 77 3 3J4 j* H 8.5 2.48 2.8 1.07 1.2 1.07 0.93 0.61 0.62 T 78 3 2>^ ^ X 7.1 2.07 1.1 0.72 0.60 0.71 0.89 0.66 0.59 T 79 3 2^ ft R IB 6.1 1.77 0.94 0.73 0.52 0.68 0.75 0.65 0.50 T 82 2H 3 >A H 7.1 2.07 1.7 0.91 0.84 0.95 0.53 0.51 0.42 T 83 2y 2 3 ft ft 6.1 1.77 1.5 0.92 0.72 0.92 0.44 0.50 0.35 T 86 2J4 IK ft ft 2.87 0.84 0.08 0.31 0.09 0.32 0.29 0.58 0.23 T 87 2 1« M & 3.09 0.91 0.16 0.42 0.15 0.42 0.18 0.45 0.18 T519 1J4 2 ft ft 2.45 0.72 0.27 0.61 0.19 0.63 0.06 0.92 0.08 T605 VA 1H y» K 1,25 0.37 0.05 0.37 0.05 0.33 0.04 0.32 0.05 T 603 IX % No.9 H 0.88 0.26 0.01 0.16 0.01 0.16 0.02 0.31 0.04 CARNEQIE STEEL COMPANY ELEMENTS OF ZEES f /• 1 / » V c / 1 A \z Section Index Size Weight per Foot Area of Sec- tion Axis 1-1 Axis 2-2 Axis 3-3 Depth Flanges Thick- ness I r S I r S rrnin. In. In. In. Lbs. In.s In* In. In.a In* In. In.3 In. Z 3 6H 6ft 6 3% 3ft < 3*S li 34.6 32.0 29.4 10.17 9.40 8.63 50.2 46.1 42.1 2.22 2.22 2.21 16.4 15.2 14.0 19.2 17.3 15.4 1.37 1.36 1.34 6.0 5.5 4.9 0.83 0.82 0.81 Z 2 6H 6ft 6 3ft 3M 8 28.1 25.4 22.8 8.25 7.46 6.68 43.2 38.9 34.6 2.29 2.28 2.28 14.1 12.8 11.5 16.3 14.4 12.6 1.41 1.39 1.37 5.0 4.4 3.9 0.84 0.82 0.81 Z 1 6H 6ft 6 3% 3ft 3^ ft 21.1 18.4 15.7 6.19 5.39 4.59 34.4 29.8 25.3 2.36 2.35 2.35 11.2 9.8 8.4 12.9 11.0 9.1 1.44 1.43 1.41 3.8 3.3 2.8 0.84 0.83 0.83 Z 6 5M 5ft 5 3% 3ft 3K II tt 28.4 26.0 23.7 8.33 7.64 6.96 28.7 26.2 23.7 1.86 1.85 1.84 11.2 10.3 9.5 14.4 12.8 11.4 1.31 1.30 1.28 4.8 4.4 3.9 0.76 0.74 0.73 Z 5 5H 5ft 5 3« 3ft 3M ft 22.6 20.2 17.9 6.64 5.94 5.25 24.5 21.8 19.2 1.92 1.91 1.91 9.6 8.6 7.7 12.1 10.5 9.1 1.35 1.33 1.31 3.9 3.5 3.0 0.76 0.75 0.74 Z 4 5H 5ft 5 3M 3ft 3}£ ft ft 16.4 14.0 11.6 4.81 4.10 3.40 19.1 16.2 13.4 1.99 1.99 1.98 7.4' 6.4 5.3 9.2 7.7 6.2 1.38 1.37 1.35 2.9 2.5 2.0 0.77 0.76 0.75 z g 4K t* 3ft 3ji 3ft 8 23.0 20.9 18.9 6.75 6.14 5.55 15.0 13.5 12.1 1.49 1.48 1.48 7.3 6.7 6.1 11.2 10.0 8.7 1.29 1.27 1.25 4.0 3.6 3.2 0.68 0.67 0.66 Z 8 4H 3ft 3K 3ft ft 8 18.0 15.9 13.S 5.27 4.66 4.05 12.7 11.2 9.7 1.55 1.55 1.55 6.2 5.5 4.8 9.3 8.0 6.7 1.33 1.31 1.29 3.2 2.8 2.4 0.68 0.67 0.66 Z 7 4H 1* 3ft 3H 3ft 8 H 12.5 10.3 8.2 3.66 3.03 2.41 9.6 7.9 6.3 1.62 1.62 1.62 4.7 3.9 3.1 6.8 5.5 4.2 1.36 1.34 1.33 2.3 1.8 1.4 0.69 0.68 0.67 Z12 3ft 2K 2tt ft 14.3 12.6 4.18 3,69 5.3 4.6 1.12 jl.12 3.4 3.1 5;7 4.9 1.17 1.15 2.3 2.0 0.54 0.53 Zll 3ft 3 2M 2ti ft 11.5 9.8 3.36 2.86 4.6 3.9 1.17 1.16 3.0 2.6 4.8 3.9 1.19 1.17 1.9 1.6 0.55 0.54 ZIO 3ft 3 2% 214 ft 8.5 6.7 2.48 1.97 3.6 2.9 1.21 1.21 8.4 1.9 3.6 2.8 1.21 1.19 1.4 1.1 0.56 0.55 ELEMENTS OF SECTIONS ELEMENTS OF CROSS TIES _i \ Depth of Sec- tion Wt. per Foot Area of Sec- tion Width of Flange Thick- ness of Web Axis 1-1 AxU 2-2 Section Index I r S X I r Top Bottom S In. Lba. In.2 In. In. In. In.4 In. In." In. In* In. In.s M28A 6.50 29.8 8.76 5.0 10.0 .438 59.4 2 47 15.0 2.55 30.8 1.88 6.2 M28 6.50 27.8 8.09 5.0 10.0 .313 57.5 2.67 14.3 2.49 30.8 1.95 6.2 M29 5.50 24.0 7.01 5.0 8.0 .375 35.4 2.25 11.3 2.38 16.8 1.55 4.2 M21 5.50 20.0 5.71 4.5 8.0 .250 30.9 2.33 9.7 2.33 14.9 1.62 3.7 M25 4.25 14.5 4.10 4.0 6.0 .250 13.0 1.78 5.5 1.88 6.1 1.22 2.0 M24 3.00 9.5 2.80 3.0 50 .203 4.3 1.24 2.5 1.27 3.1 1.05 1.2 -fit) Depth of Sec- tion Wt. per Foot Area of Sec- tion Width of Section Thick- ness ■ Axis 1-1 Axis 2-2 I r S X I r Section Index Top Bottom S In. Lbs. In. a In. In. In. In.* In. In.s In. Id* In. In.s M27 M20 M18 2.25 2.00 1.50 9.0 6.0 4.0 2.62 1.72 1.21 5.5 4.5 3.4 7.0 6.0 5.0 .250 .188 .156 1.28 0.71 0.31 0.70 0.64 0.50 0.79 0.51 0.31 1.62 1.4] 1.00 16.8 8.4 3.6 2.53 2.22 1.73 4.8 2.8 1.5 Depth of Sec- tion Wt. per Foot Area of Sec- tion Width of Sec- tion Thick- ness Axis 1-1 Axis 2-2 Section Index I r S X I r S In. Lbs. In.a In. In. In.* In. In.s In. In.* In. In.s M26 M19 % 3.20 2.50 0.97 0.74 4il 4 .125 .141 0.059 0.024 0.25 0.18 0.110 0.057 0.54 0.43 2.44 1.15 1.58 1.25 0.99 0.58 193 CARNEGIE STEEL COMPANY ELEMENTS OF TROUGH PLATES Dimensions Weight per Foot Area of Section Axis 1-1 Section Index a b d t ti I r S X In. In. In. In. In. Lbs. In. 2 In.* In. In. » In. M 14 M 13 M 12 M 11 M 10 9H 9)4 9H 5 5 5 5 . 5 3M 3% 3% 3« 3% X Va hi ft ft a 23.2 21.4 19.7 18.0 16.3 6.82 6.30 5.79 5.28 4.78 5.5 5.0 4.6 4.1 3.7 0.90 0.90 0.90 0.91 0.91 22 20 1.8 1.6 1.4 1.21 1.19 1.16 1.12 1.08 ELEMENTS OP CORRUGATED PLATES Dimensions Weight per Foot Area of Section Axis 1-1 Section Index a ,b d t r I r S X In. In. In. In. In. Lbs. In.2 In.* In. InX In. M 35 M 34 M33 M32 M 31 M 30 12A 12A 12A S»A »% 8% 7A 7A 7ft 5% 5X 5X 2% m ift \X X 7 10 % Vs ft H 3% 3% 3% 3% 3% 3% 23.7 20.8 17.8 12.0 10.1 8.1 6.97 6.10 5.22 3.53 2.96 2.38 6.8 5.8 4.8 1.3 0.95 0.64 0.99 0.98 0.96 0.62 0.57 0.52 4.5 3.9 3.3 1.4 1.1 0.80 1.34 1.32 1.31 0.74 0.72 0.70 ELEMENTS OP U. S. STEEL SHEET PILING SECTIONS Section Index Dimensions Weight per Foot Area of Section Axis 1-1 b c d t I r S In. In. In. In. Lbs. In.s In.* In. In.3 M 105 M 104 M103 13 Yi 13M 9Ji 3tt 3*8 2ft 2X 2X IK X 8 42.5 38 16 12.51 11.30 4.71 8.56 8.50 1.45 0.83 0.87 0.56 4.35 4.32 1.13 194 ELEMENTS OF SECTIONS ELEMENTS OF RAIL AND SPLICE BARS f -, — 1 ^ Weight per Yard Depth of Area of Axis 1-1 Weight per Foot Depth of Section Area of Section Axis- 1-1 Section Index Section Section I S X Section Index I S x' Lba. In. In.s In* In.s Id. Lbs. In. In.2 In> In.s In. A. S. C. E. Rails A. S. C. E. Splice Bars 10040 100 5% 9.84 43.97 14.55 2.73 S10040 15.80 4* 4.65 13.43 5.82 1.91 904C 90 5% 8.83 34. 3t 12.1S 2.55 S 904C 13.50 38* 3.97 10.304.7S 1,81 8540 85 6ft 8.33 30.07 11. OS 2.47 S 854C 12.40 318 3.65 8.434.02 1.71 8040 80 5 7.86 26.38 10.07 2.38 S 804C 11.50 SJf* 3.38 7.393.75 1.68 7540 75 m 7.33 22.86 9.1(1 2.30 S 754C 10.70 8V* 3.15 6.02 3.2S 1.65 7040 70 i% 6.81 19.7(1 8.10 2.22 S 704C 10.00 m 2.95 5.823.15 1.61 6540 65 4ft 6.33 16.90 7.37 2.14 S 654C 9.20 3H 2.71 4.852.73 1.56 6040 60 m 5.93 14.56 6.62 2.05 S 604C 8.40 3*} 2.47 4.04|2.3S 1.51 5540 55 4ft 5.38 12.03 5.75 1.97 S 554C 7.50 3ft 2.21 3.412.07 1.41 5040 50 3% 4.87 9.94 4.98 1.88 S 5040 6;62 2H 1.95 2.721.74 1.37 A. E. A. Rails— Type A A. R. A. Splice Babs— Type A 10020 100 6 9.84 48.94 15.04 2.75 S10020 19.04 4?» 5.60 21 .30 7.88 2.02 9020 90 fiH 8.82 HS.70 12.56 2.54 S 9020 16.64 4ft 4.90 16.10 6.36 1.91- 8020 80 5^ 7.86 28.80 10.24 2.31 S 802C 13.43 318 3.95 10.13 4.57 1.72 7020 70 4 H 6.82 21.05 8.21 2.20 S 7020 11.64 w 3.43 7.42 3.63 1.48 6020 60 4^ 5.86 15.41 6.50 2.13 S 6020 10.63 Si4 3.13 6.22 3.16 1.52 A. R. A. Rails— Type B A. R. A. Splice Bars— Type B 10030 100 m 9.85 41.30 13.70 2.63 S10030 16.92 4/7 4.98 14.34 6.30 1.83 9030 90 5S? 8.87 32.31 11.45 2.44 S 9030 14.42 m 4.24 10.16 4.71 1.67 8030 80 m 7.91 25.10 9.38 2.27 S 8030 12.65 •A% 3.72 7.70 3.79 1.59 Light Rails Light Rail Splice Bars 4540 45 m 4.40 8.13 4.25 1.78 S 4540 5.80 2ijS 1.70 1.29 4040 40 21355 therefore the point of maximum bending moment is at point of load W 2 . Maximum bending moment, 21355x9-16000x5-(60x9)x4.5 =109765 ft. lbs. or, 21605x7-(2000x4)x5-(60x7)x3.5 =109765 ft. lbs. „ . . . . 109765 x 12 1317180_ o „ . Required section modulus = — 16000 — ~ 16000 °^ A As the section modulus of the 15 inch 65 pound or the IS inch 55 pound beam is greater than this, either of these sections may be used. If it is decided that the 18 inch 48 pound supplementary beam is strong enough for the 1317180 purpose, the actual fiber stress on that section would be ■ — gi.Q =16082 pounds per square inch. If the allowed fiber stress were 12500 pounds per . , , .-,_.. j i u t, 109765 x 12 131 7180 square inch, the required section modulus would be — 12 500 — = 12500 = 105.38 and the permissible minimum sections would be 20 inch 65 pound, 21 inch 60.5 pound beams, etc. 205 CARNEGIE STEEL COMPANY NOTATION USED IN FORMULAS A =Area of section, in square inches. n =Distance from center line of gravity to extreme fiber, in inches. I =Moment of inertia about center line of gravity, in inches*. Ms=Static moment, in inches 3 . S =Section modulus =I/n, in inches 3 . ,r =Radius of gyration = VI/ A, in inches, f =Bending stress in extreme fiber, in pounds per square inch, fb =Resistance of web, in pounds per square inch. E =Modulus of elasticity, in pounds per square inch. L =Length of section, in feet. 1 =Length of section, in inches, d =Depth of section, in inches, b =Width of section, in inches. t =Thickness of section, in inches. W, Wi, W2=Superimposed loads supported by beam, in pounds. w ^Superimposed load, in pounds per unit length or area. W max =Maximum safe load at point given, in pounds. R, Ri =Reactions at points of support, in pounds. V =Vertical shear, in pounds. M, Mi, M2=Bending moments at points given, in inch pounds. ' M max =Maximum bending moment, in inch pounds. Mr =Maximumresisting moment, in inch pounds=f I/n = f S. D, Di =Deflections at points given, in inches. D max ^Maximum deflection at point given, in inches 206 FLEXURE FORMULAS COMPARISON OP VARIOUS LOADING CONDITIONS ■ The formulas and diagrams on pages 208 to 211 give the various stresses in sections used as beams, resulting from usual conditions of loading. Taking as a unit of comparison a uniformly distributed safe load on beams of equal length and section, supported at the extreme ends, the following table gives the relative maximum safe loads or bending moments and deflections. As a check on the accuracy of a computation, the safe load obtained from the formula for any condition of loading may be multiplied by the reciprocal given in the table corresponding to such loading condition ; the result should be the maximum allowable uniform load as taken from beam safe load tables. Conditions of Loading Case No. Maximum Safe Load Maximum Deflection Relative Reciprocal Relative Beam Supported at Ends Load uniformly distributed over span IX 1 1 1 Load concentrated at center of span V % 2 .80 Two equal loads symmetrically concentrated VII l/4a 4a/l Load increasing uniformly to one end X .9743 1.0264 .976 Load increasing uniformly to center XII % m .96 Load decreasing uniformly to center XI % % 1.08 Beam Fixed at One End, Cantileveb Load uniformly distributed over span II Vi 4 2.40 Load concentrated at end I ¥> 8 3.20 Load increasing uniformly to fixed end III % 2% 1.92 Beam Continuous over Two Supports Equidistant from Ends Load uniformly distributed over span XVI 1. If distance a >0.2071 1 ls/4a2 4a2/la 2. If distance a <0.2071 1 1 l-4a l-4a 1 3. If distance a =0.2071 1 5.8285 .1716 Two equal loads concentrated at ends XV l/4a 4a/l The Marine Trust Co, Bldg. BUFFALO. ^ 1. ~ F&GD C. DCMtNQ, ' CARNEGIE STEEL COMPANY BEAMS UNDER' VARIOUS LOADING CONDITIONS , Bending Moments and Deflections I. CANTILEVER BEAM — Concentrated load at free end Ei (max. shear} Mjmax. ...i M, distance x Mmax, at Hi Wmai/ > Dmax. I = W = Wx = Wl 1 Wl° 3EI II. CANTILEVER BEAM — Uniformly distributed load ~} Ri(max. shear) ■ Mmax. ,. i M, distance x i _.* Mmax. at Ri Wmax. Dmax. = W _ Wx2 ="" 21 _ Wl _ 2 2fS - 1 Wl° ~~ 8EI III. CANTILEVER BEAM — Load increasing uniformly to fixed end x r — ■* ■"I Ri(max. shear) Mmax. _,_ M, distance x Mmax. at Ri Wmax. Dmax. = W W xs Wl 3 3fS 1 Wla 15EI IV. BEAM SUPPORTED AT ENDS — Concentrated load near one end Mlmax. f 1— +■ v- a *--b--*j . h-Vf(a+2b)- Wb R(max. shear if b>a) = — j — Wa Ri(max. shear if a>b)= — j — tt j- * Wbx M, distance x — M max. .atpbintof load Wmax. Dmax. Wab _ fSl ab Wab (a+2b) >/3a (a+2b) 27EI1 208 FLEXURE FORMULAS BEAMS UNDER VARIOUS LOADING CONDITIONS Bending Moments and Deflections V. BEAM SUPPORTED AT ENDS— Concentrated load at center jj max ,B(max. shear) =R t M, distance x M max., at point of load = - Wmax. Wl» W 2 Wi 2 Wl 4 4fS Dmax. 48E1 VI. BEAM SUPPORTED AT ENDS— Two unsymmetrical concentrated loads W R (max. shear if a>{* — -b— *i Ri M, distance a = -fj-(l+a-b) "Wa = Ra=-2j-a-a+b) Mi max., distance b (b>a)= Rib= „. (1+a-b) W 2 M a , distance x Wmax. (b>a) = Rx- Wb a -1 -(x-a) 21fS b(l+a-b) VU. BEAM SUPPORTED ATTENDS — Two symmetrical concentrated loads 7 w Mimax. B ( max - shear) =Ri = —^- Wx ^2 Wa 2 2fS a Wa M, distance x M max.atandbetweenloads= Wmax. = D max. = 12EI (%ia-a2) VIII. BEAM SUPPORTED AT ENDS — Three concentrated loads Wb+Wibi+W 2 b 2 Of r 4-1 {- — t" &2\ *t~"2- — ja r - * tbr— i»-a-»f— +— b--t- ■ ! i R M 2 Mj "' Ri W Wj MatW M max. if W MatWi M max. if Wi+W Mmax. if W t +W 2 MatW 2 Mmax. if Wa 209 _ Wa+Wia t +Waa 2 I = Ra. = or>R = Rai-W(ai-a) = Ror>R = Rior>R! = Ra 2 -W (a 2 -a)-Wj.(a 3 -ai) = Rior> Ri , CARNEQIE STEEL COMPANY BEAMS UNDER VARIOUS LOADING CONDITIONS Bending Moments and Deflections IX. BEAM SUPPORTED AT ENDS— Uniformly distributed load W R(max. shear)=Ki Umax. M, distance x M Rj M max. at center Wjnax. Dmax. " 2 ' 2 Wl -~w 8fS (1-f) 5W1" 384EI BEAM SUPPORTED AT ENDS — Load increasing uniformly to one end _ W — 3 2W — 3 R Bi(max. shear) max. M, distance x M max., distance Wmax. Dmax. Wx x=. 1 V3 2W1 3 * = 9 V3 27fS 21 V"3 .013044 Wis EI XI. BEAM SUPPORTED AT ENDS — Load decreasing uniformly to center R(max. shear)=Ri R" M max. W 2 Ri M, distance x Mmax., distance Wmax. Dmax. = Wx(H-t-+W> 1 Wl 2 _ 12 _ 12fS 3W13 320EI XII. BEAM SUPPORTED AT ENDS — Load increasing uniformly to center R(max. shear)=R! = Ri M, distance x M max., distance - Wmax. Dmax. W = WiW-^-) _ Wl — 6 _ gfS _ Wl» 60EI 210 flexure' formulas BEAMS UNDER VARIOUS LOADING CONDITIONS Bending Moments and Deflections — Concluded XIII. BEAM SUPPORTED AT ENDS— Uniform load partially distributed R(max. shear if aa, = Rx — ■-— - M 2 , dist.x>(a+b), =Bx- W( ^ 2a ~ b) Mmax.,dist.a+-^-,= W(2c+t, H^ 1 ! ! +t'(2c+b)I Wmax = 81 g fS w max. = (2c+b)[4al+b(2c+b)J XIV. BEAM SUPPORTED AT ENDS — Uniform load partially discontinuous W(21-a)+W 1 c 2T Ml R(max. shear il W>Wi) -a—- »*»--b"»t*--C"->! Ri M, distance x a, = Rx =Rx W i(21-c)+ Wa 21 Wx* 2a W (2x-a) 2Wa l-Wa2+Wica „.. Mmax.dist.x 2WI _»_a &\Wa>WiC Wmax. 2T R2a 2fS XV. BEAM. CONTINUOUS OVER TWO SUPPORTS— Two exterior symmetrical loads W Mlmax. R(max. shear)=Ri M, distance x M max., from R to Ri Wmax. D, distance a Di, distance-^ — a ~ 2 . Wx — 2 Wa — 2 2fS a v _ Wa(3al = 4a») 12~EI Wa(l-2a)g = 16EI XVI. BEAM CONTINUOUS OVER TWO SUPPORTS— Uniformly distributed load R = Bi =^-. ■«. *« Jp or^(f 1 1 3 /1(1-40 ) £ M, distance x =E^±5>2 „, if^t^ MiatRandRi^- 1 !^- max.if a> l(Y^-J^) M 2 at center = — g a) max. if a < I( V^-H) Wj max. 21fS max.ifa>l(V^-H) W 2 max. =_ r^: max.ifa carrying capacity of the beam should be computed in accordance with the general formulas of flexure to provide for the combined stresses due to the action of both vertical and horizontal forces; that is to say, the safe loads should be figured around both the axes 1-1 and 2-2, and the unit stress computed so as not' to exceed 16,000 pounds per square inch. Effect of Impact on Stresses. The formulas upon which the tables of safe loads are based assume all loads to be quiescent or static. The effect of moving loads may be taken care of either by reducing the allowable unit stresses, or else by increasing the theoretical loads. See Construction Specifications, page 158, paragraph 2. 214 BEAM SAFE LOADS When the load is suddenly applied, the resultant stresses are greater than those due to an equal static load. When the load is instan- taneously applied, the resultant stresses are double. When an instantaneously applied load produces impact or percus- sion, the resultant stresses are dynamic and are measured by the laws governing the energy of bodies in motion. The following empirical formulas may be used to ascertain the approximate fiber stress and deflection due to a load falling on the center of a beam supported at both ends, when no account is taken of the distortion due to the impact or percussion at the point of application of the load: — Let W =Weight of load, in pounds. Wi=Weight of beam, in pounds. h =Height of fall, in inches. f =Extreme fiber stress due to static load, W+Wi, in pounds per square inch. fd —Extreme fiber stress due to dynamic load, W, in pounds per square inch. D =Deflection due to static load, W+Wi, in inches. Dd=Deflection due to dynamic load, W, in inches. 35 W T , m = 35W+17 W7 Then f d =f(l+\l?^L+l) andDd=D(l+V^ +l') Shearing Stresses. The safe load tables for beams and channels are computed solely with reference to safe unit stresses due to flexure, and the safe loads uniformly distributed on the spans given will not produce average shearing stresses in the web greater than the 10 000 pounds per square inch allowed by the Construction Specifi- cations. When, however, beams are loaded with heavy loads concentrated near the supports, or when beams of short span are loaded with uniformly distributed loads to their full carrying capacity as regards flexure, the bending moments may be small in comparison with the reactions at the supports, and the beams may fail along the neutral plane as a result of longitudinal shearing stresses, or may buckle as a result of the combined longitudinal and vertical web stresses. On such spans the safe shearing or buckling strength of the web may limit the carrying capacity of the beam rather than the resistance of the flanges to bending stresses. Longitudinal shear. At any point in any section of a beam, the horizontal and vertical components of the web stress are equal to each other and proportional to the vertical shear; their intensities are 215 CARNBQIE STEEL COMPANY dependent upon the distance of the point from the neutral axis. In, order to determine the intensity of the vertical shearing stress at a given point in a vertical section of the beam, therefore, it is sufficient to find the equal intensity of the horizontal shearing stress at the same point in the horizontal plane. The longitudinal unit shear is zero at the upper and lower flanges of the beam and a maximum at the neutral plane. It is greatest at the supports and zero where there is no vertical shear. The intensity of the longitudinal shear at any point in any section is the product of the vertical shear, V, for that section and the statical moment, Ms of the section included between the horizontal plane of shear through that point and ( the extreme fibers on the same side of the neutral plane divided by the product of the moment of inertia of the beam around the proper axis and the thickness at the plane of shear; or Longitudinal shear per square inch=— -^ — . 7 " Example — Required the maximum longitudinal shear per square inch in a 24" 80 lb. beam loaded with two symmetrical loads of 100,000 pounds each, disregarding the weight of the beam. M s ofFlangeRectangle=7x.60xll.7 = 49.14 Ms of Flange Triangles =3.25x.542xll.219= 19.76 MsOfWeb =11.40x.50x5.70 = 32.49 ' Total Static Moment 101.39 Moment of Inertia of Beam 1=2087.2 Longitudinal Shea. - ™g°™£* =9715 pounds per square inch. ■ Under usual conditions of loading, the vertical shear need not be taken into consideration. Buckling Values of Beam Webs. The vertical shearing stresses or the vertical compressive components of the web stress may under some conditions exceed the safe resistance of the beam to buckling, and there remains the possibility that a web or web plate which is amply secure as against the safe allowed shear of 10,000 pounds per square inch will not be of sufficient strength when considered as a column. In such cases provision must be made for security against buckling either in the way of stiffeners or by increasing the thickness of the web or web plate. A series of experiments have been carried out on beams of various depths and web thicknesses to arrive at a basis for a simpler method of computation to use in the investigation of the safe buckling 216 3 i i .25j' r~* ! oo 1 W i 00] _> .50" ! o i i-+ Neutral axis Plane of shear BEAM SAFE LOADS resistance of beams with unsupported webs, and from these experi- ments the following formulas have been deduced: ' af a' r-r— ; ,J liiiiiimi Safe end reaction R= f b x t (a +~i") Safe interior load W=2 f b x t (a 1 +-j) Iftj In these formulas R is the end reaction, W the concentrated load, t the web thickness, d the depth of the beam, a 1 half the distance over which the concentrated load is applied and a the whole distance over which the end reaction is applied, while fb is the safe resistance of the web to buckling in pounds per square inch by the formula 19000 — 100 d/2r (d/2=l in column formula). The first formula is general and applies to any condition of loading. The second formula covers the case of a single load concentrated at the center of a span; it can be extended to cover a system of concentrated loads provided the sum of the distances a 1 is not less than a. The tables which immediately follow give for beams and channels with unsupported webs: 1. Allowed web resistance fb, in pounds per square inch com- puted from this compression formula. 2. The distance a, or the distance over which the end reaction must be distributed when the shearing stress, V, in the web is the maximum allowable of 10,000 pounds per square inch.. 3. The allowable end reaction (R) when a is taken' at 3J^" which is the usual length of beam actually resting on the 4" angles ordinarily used in building construction for beam seats. 4. The allowable shear V, on the gross area of beam or channel webs at 10,000 pounds per square inch. In addition to these data which have to do with the maximum loads on beams and channels as computed from the web resistance, these tables also give the maximum bending moments in foot pounds, obtained by the multiplication of the section modulus of each section by the allowed fiber stress of 16,000 pounds and the division of the product by 12 in order to reduce to a foot pound basis^ These maximum bending moments may be used on inspec- tion instead of the table of properties to ascertain the proper size section to be used in any particular instance. 217 CARNEGIE STEEL COMPANY Examples of the Use of Beam Safe Load Tables Example 1. Direct Bending. Required the,proper size of a beam laterally braced to support a superimposed or net load of 30,000 pounds uniformly distributed over a clear span of 20 feet. From the table of safe loads, page 224, it is found that a 15 inch 42 pound beam will support a gross load of 31,400 pounds. The weight of a beam 20 feet long is 840 pounds. The net safe load is, therefore, 31,400—840=30,560 pounds. A 15 inch 42 pound beam will, therefore, carry the net load specified. Example 2. Shear. Required the maximum load which a 20 inch 85 pound beam can support without exceeding the safe web resistance of the section. Prom the table, page 223, the maximum load for this section given in small figures above the upper zigzag line is found to be 265,200 pounds. Example 3. Vertical Deflection. Required the proper size and the deflection of a channel supporting a net load of 10,000 pounds concentrated in the middle of a 14-foot span, assuming that the channel is braced against lateral deflection. The specified load is equivalent on the given span to a uniformly distributed load of 2 x 10,000=20,000 pounds. In the table, page 232, it is found that a 12, inch 30 pound channel will support a gross load of 20,500 pounds or a net load of 20,500— 14 x 30=20,080 pounds. The net safe load concentrated at the middle of the span will be one-half this or 10,040 pounds. The deflection produced by a uniformly distributed load of 20,500 pounds is found from the coefficient given in the same table and page 213 to be 2jf^=0.270". The deflection for the specified load concentrated in the O 270 x 4 middle of the span is approximately j! =0.216". See page 207. Example 4. Vertical Deflection. Required the deflection of a riveted girder 37 inches deep for a span of 35 feet and a fiber stress of 14,000 pounds per square inch. 17 741 Required deflection, see table, page 213, = ■ £ " = 0.479". Example 5. Vertical Deflection. Required the deflection of an angle 6 x 4 x We" about an axis parallel to the short leg for a span of 14 feet and a fiber stress of 16,000 pounds. Required deflection, see table, pages 213 and 214, is 2x (6—1 96) = °- 401 "- Example 6. Vertical Deflection. Required the deflection of a 10 inch beam for a span of 18 feet with a fiber stress of 11,000 pounds. Required deflection, see table, pages 213 and 214, = 16 ' 0Q0 ^ ^ Q =0.369". Example 7. , Lateral Deflection. Required the safe load on a 12 inch 31H pound beam for a span of 16 feet without any lateral support or bracing. Tabular load, page 225, =24,000 pounds. / Ratio ^ th of .^ n = 16 ? 12 =38.4 Flange width 5 Reduced safe load, page 214, 24,000x0.468=11,232 pounds. 218 BEAM SAFE LOADS BEAMS Maximum Bending Moments and Web Resistance Mm ax fb a R Maximum Bending Moment Depth of Weight per Foot Thickness of Web Allowable Web Shear Allowable Buckling Resistance Min. End Bearing End Reaction a=W Foot Pounds Inches Pounds Inches Founds Pounds per Sq. In. Inches Pounds 292130 328390 .320390 312390 264400 256560 248710 240870 231920 £16670 156930 220750 214210 207680 201140 195510 169170 162640 155930 186720 180840 174960 169080 136480 130590 124710 117860 109200 122890 117980 113080 108270 90850 85940 81040 78530 72130 27 21 20 18 15 90.0 115.0 110.0 105.0 100.0 95.0 90.0 85.0 80.0 74.0 60.5 100.0 95.0 90.0 85.0 80.0 75.0 70.0 65.0 90.0 85.0 80.0 75.0 70.0 65.0 60.0 55.0 48.0 75.0 70.0 65.0 60.0 55.0 50.0 45.0 42.0 37.5 .524 .750 .688 .625 .754 .693 .631 .570 .500 .476- .428 .884 .810 .737 .663 .600 .649 .575 .500 .807 .725 .644 .562 .719 .637 .555 .460 .380 .882 .784 .686 .590 .656 .558 .460 .410 .332 141480 180000 165120 150000 180960 166320 151440 136800 120000 114240 89880 176800 162000 147400 132600 120000 129800 115000 100000 145260 130500 115920 101160 129420 114660 99900 82800 68400 132300 117600 102900 88500 98400 83700 69000 61500 49800 10080 13460 12960 12350 13490 13000 12410 11710 10690 10260 10500 15080 14720 14300 13780 13230 13660 12980 12080 15140 14700 14160 13450 14670 14110 13380 12220 10800 16050 15690 15210 14600 15040 14340 13350 12670 11180 20.0 11.8 12.5 13.4 11.8 12.5 13.3 14.5 16.5 17.4 14.8 8.3 8.6 9.0 9.5 10.1 9.6 10.4 11.6 7.4 7.7 8.2 8.9 7.8 8.3 9.0 10.2 12.2 5.6 5.8 6.1 6.5 6.2 6.7 7.5 8.1 9.7 54140 95880 84690 73320 96620 85610 74410 63410 50780 46400 39320 113320 101370 89590 77630 67460 75380 63420 51320 97730 85260 72940 69480 84350 71890 59420 44980 32830 102660 89160 75650 62440 71530 v 58020 44520 37660 26910 219 CARNEGIE STEEL COMPANY BEAMS Maximum Lending Moments and Web Resistances Mmax d t V fb a R Maximum Bending Moment Depth of Beam Weight per Foot Thickness of Web Allowable Web Shear Allowable Buckling Resistance Min. End Bearing End Reaction a=3J#' Foot Founds Inches Pounds Inches Pounds Pounds per Sq. In. Inches Pounds 71330 55.0 .821 98520 16470 4.3 87890 , 67410 50.0 .699 83880 16030 4.5 72830 63490 45.0 .576 69120 15390 4.8 57620 59770 12 40.0 .460 55200 14480 5.3 43300 50730 35.0 .436 52320 14230 5.4 40330 47960 31.5 .350 42000 13060 6.2 29710 44270 28.0 .284 34080 11680 7.3 21560 42320 40.0 .749 74900 16690 3.5 75010 39050 35.0 .602 60200 16120 3.7 58220 35780 10 30.0 .455 45500 15190 4.1 41470 32560 25.0 .310 31000 13410 5.0 24940 30270 22.25 .252 25200 12130 5.7 18340 33120 35.0 .732 65880 16870 3.1 71010 30180 9 30.0 .569 51210 16260 3.3 53200 27240 25.0 .406 36540 15160 3.7 35390 25160 21.0 .290 26100 13620 4.4 22710 22810 25.5 .541 43280 16440 2.9 48920 21500 23.0 .449 35920 15910 3.0 39290' 20190 8 20.5 .357 28560 15120 3.3 29690 18960 18.0 .270 21600 13870 3.8 20600 19470 17.5 .220 17600 12700 4.3 15370 16070 20.0 .458 32060 16350 2.5 39310 14930 7 17.5 .353 24710 15570 2.7 28850 13800 15.0 .250 17500 14150 3.2 18580 11640 17.25 .475 28500 16810 2.1 39930 10660 6 14.75 .352 21120 16050 2.2 28250 9680 12.25 .230 13800 14480 2.6 16650 8080 14.75 .504 25200 17280 1.6 41370 7260 5 12.25 .357 17850 16580 1.8 28120 6450 1 9.75 .210 10500 14870 2.1 14830 4760 10.5 .410 16400 17310 1.3 31940 4500 4 9.5 .337 13480 16940 1.4 25690 4240 8.5 .263 10520 16360 1.4 19360 3980 7.5 .190 7600 15360 1.6 13130 2590 7.5 .361 10830 17560 1.0 26940 2390 3 6.5 .263 7890 17020 1.0 19020 2210 5.5 .170 5100 15950 1.1 11530 220 BEAM SAFE LOADS CHANNELS - Maximum Bending Moments and Web Resistances Mmax d t V fb a R Maximum Bending Moment Depth of Channel Weight per Foot Thickness of Web Allowable Web Shear Allowable Buckling Resistance Min. End Bearing End Reaction a=3H" Foot Pounds Inches Founds Inches Pounds Pounds per Sq. In. Inches Pounds 76490 71590 66680 61780 56880 " 55570 15 55.0 50.0 45.0 40.0 35.0 33.0 .818 .720 .622 .524 .426 .400 122700 108000 93300 78600 63900 60000 15820 15390 14820 14040 ' 12900 12510 5.7 6.0 6.4 6.9 7.9 8.2 93830 80350 66840 53350 39850 36270 64360 60110 55870 53320 51620 48740 13 50.0 45.0 40.0 37.0 '35.0 . 32.0 .791 .678 .565 .497 .452 .375 102830 88140 73450 64610 58760 48750 16150 15680 15020 14470 14020 13000 4.8 5.0 1 5.4 5.7 6.0 6.8 86250 71760 57260 48540 42770 32900 43760 39840 35920 32000 28470 12 40.0 35.0 30.0 25.0 20.5 .758 .636 .513 .390 .280 90960 76320 61560 46800 33600 16260 15730 14950 13670 11570 4.4 4.6 5.0 5.8 7.4 80090 65040 49850 34660 21060 30800 27530 • 24260 20990 17840 10 35.0 30.0 25.0 20.0 15.0 .823 .676 .529 .382 .240 82300 67600 52900 38200 24000 16900 16440 15730 14470 11780 3.4 3.6 3.9 4.4 6.0 83430 66670 49910 33160 16970 , 20950 18010 15070 14020 9 25.0 20.0 15.0 13.25 .615 .452 .288 .230 55350 40680 25920 20700 16470 15550 13590 12220 3.2 3.5 4.4 5.1 58220 40420 22500 16170 15920 14610 13310 12000 10770 8 21.25 18.75 16.25 13.75 11.25 .582 .490 .399 .307 .220 46560 39200 31920 24560 17600 16620 16170 15530 14490 12700 2.8 2.9 3.2 3.5 4.3 53200 43580 34070 24460 15370 12640 11490 10350 9210 8030 7 19.75 17.25 14.75 12.25 9.75 .633 .528 .423 .318 .210 44310 36960 29610 22260 14700 17090 16700 16130 15190 13230 2.3 2.4 2.6 2.9 3.5 56780 46300 35830 25360 14580 8680 7700 6720 , 5780 6 15.5 13.0 10.5 8.0 .563 .440 .318 .200 33780 26400 19080 12000 17150 16640 15730 13810 2.0 2.1 2.3 2.8 48280 36610 25010 13810 5550 4730 3960 5 11.5 9.0 6.5 477 .330 .190 23850 16500 9500 17180 16380 14450 1.7 1.8 2.2 38920 25670 13040 3050 2790 2530 4 7.25 6.25 5.25 .325 .252 .180 13000 10080 7200 16870 16250 15150 1.4 1.5 1.6 24670 18430 12270 1840 1640 1450 3 6.0 5.0 4.0 .362 .264 .170 10860 7920 5100 17560 17030 15940 1.0 1.0 1.1 27020 19110 11520 221 CARNEQIE STEEL COMPANY BEAMS Allowable Uniform Load in Thousands op Pounds Maximum Bending Stress, 16,000 Pounds per Square Inch Depth and Weight of Sections a § Span 27 In. 24 Inch 21 Jp. 11 Feet 90 lbs. 115 lbs. 110 lbs. 105 lbs. 100 lbs. 95 lbs. 90 lbs. 85 lbs. 80 lbs. 74 lbs. 60% lbs. 283.0 860.0 880.2 800.0 861.9 832.6 802.9 273.6 240.0 228.5 179.8 6 352.5 302.2 264.4 235.0 211.5 0.60 7 293.2 256.6 228.0 205.2 284.2 248.7 221.1 199.0 179.3 156.9 139.5 125.5 , 0.81 1.06 8 328.4 291.9 262.7 320.4 284.8 256.3 240.9 214.1 192.7 231.9 206.1 185.5 216.7 192.6 173.3 9 10 259.3 233.4 277.7 249.9 1.34 1.66 11 12 13 14 15 212.2 194.5 179.5 166.7 156.6 238.8 218.9 202.1 187.7 175.1 233.0 213.6 197.2 183.1 170.9 227.2 208.3 192.2 178.5 166.6 192.3 176.3 162.7 151.1 141.0 186.6 171.0 157.9 146.6 136.8 180.9 165.8 153.1 142.1 132.6 175.2 160.6 148.2 137.6 128.5 168.7 154.6 142.7 132.5 123.7 157.6 144.5 133.3 123.8 115.6 114.1 104.6 96.5 ,89.7 83.7 2.00 2.38 2.80 3.24 3.72 16 17 18 19 20 145.9 137.3 129.7 122.8 116.7 164.2 154.5 146.0 138.3 131.4 160.2 150.8 142.4 134.9 128.2 156.2 147.0 138.8 131.5 125.0 132.2 124.4 117.5 111.3 105.8 128.3 120.7 114.0 108.0 102.6 124.4 117.0 110.5 104.7 99.5 120.4 113.4 107.1 101.4 96.3 116.0 109.1 103.1 97.6 92.8 108.3 102.0 96.3 91.2 86.7 78.4 73.8 69.7 66.1 62.8 4.24 4.78 5.36 5.98 6.62 21 22 23 24 25 111.1 106.1 101.5 97.3 93.4 125.1 119.4 114.2 109.5 105.1 122.1 116.5 111.4 106.8 102.5 119.0 113.6 108.7 104.1 100.0 100.7 96.1 92.0 88.1 84.6 97.7 93.3 89.2 85.5 82.1 94.7 90.4 86.5 82.9 79.6 91.8 87.6 83.8 80.3 77.1 88.3 84.3 80.7 77.3 74.2 82.5 78.8 75.4 72.2 69.3 59.8 57.1 54.6 52.3 50.2 7.30 8.01 8.76 9.53 10.35 26 27 28 29 30 89.8 86.4 83.4 80.5 77.8 101.0 97.3 93.8 90.6 87.6 98.6 94.9 91.5 88.4 85.4 96.1 92.6 89.3 86.2 83.3 81.4 78.3 75.5 72.9 70.5 78.9 76.0 73.3 70.8 68.4 76.5 73.7 71.1 68.6 66.3 74.1 71.4 68.8 66.4 64.2 71.4 68.7 66.3 64.0 61.8 66.7 64.2 61.9 59.8 57.8 48.3 46.5 44.8 43.3 41.8 11.19 12.07 12.98 13.92 14.90 31 32 33 34 35 75.3 72.9 70.7 68.6 66.7 84.7 82.1 79.6 77.3 75.1 82.7 80.1 77.7 75.4 73.2 80.6 78.1 75.7 73.5 71.4 68.2 66.1 64.1 62.2 60.4 66.2 64.1 62.2 60.4 58.6 64.2 62.2 60.3 58.5 56.8 62.2 60.2 58.4 56.7 55.1 59.8 58.0 56.2 54.6 53.0 55.9 54.2 52.5 51.0 49.5 40.5 39.2 38.0 36.9 35.9 15.91 16.95 18.03 19.13 20.28 36 37 38 39 40 64.8 63.1 61.4 59.8 58.4 73.0 71.0 69.1 67.4 65.7 71.2 69.3 67.5 65.7 64.1 69.4 67.5 65.8 64.1 62.5 58.8 57.2 55.7 54.2 52.9 57.0 55.5 54.0 52.6 51.3 55.3 53.8 52.4 51.0 49.7 53.5 52.1 50.7 49.4 48.2 51.5 50.1 48.8 47.6 46.4 48.2 46.8 45.6 44.4 43.3 34.9 33.9 33.0 32.2 31.4 21.45 22.66 23.90 25.18 26.48 41 42 56.9 55.6 54.3 53.0 51.9 64.1 62.6 61.1 59.7 58.4 62.5 61.0 59.6 58.3 57.0 61.0 59.5 58.1 56.8 55.5 51.6 50.4 49.2 48.1 47.0 50.1 48.9 47.7 46.6 45.6 48.5 47.4 46.3 45.2 44.2 47.0 45.9 44.8 43.8 42.8 45.3 44.2 43.1 42.2 41.2 42.3 41.3 40.3 39.4 38.5 30.6 29.9 27.82 29.20 43 44 45 29.2 28.5 30.60 32.04 33.52 46 47 48 50.7 49.7 48.6 47.6 46.7 57.1 55.9 54.7 55.7 54.1 53.4 54.3 53.2 52.1 46.0 45.0 44.1 44.6 43.7 42.8 43.3 42.3 41.5 41.9 41.0 40.1 40.3 39.5 38.7 37.7 36.9 36.1 35.02 36.56 38.14 49 50 63.6 52.5- 52.3 61.8 51.0 60.0 48.2 42.8 41.9 41.0 40.6 89.8 30.3 38.5 87.9 -87.1 85.4 34.7 39.74 41.38 Loads above upper horizontal lines will produce maximum allowable shear in webs. Loads below lower horizontal lines will produce excessive deflections. For maximum safe loads, see page 219. 222 BEAM SAFE LOADS BEAMS Allowable Uniform Load in Thousands of Pounds Maximum Bending Stress, 16,000 Pounds per Square Inch Depth and Weight of Sections ■B a Span in d o 20 Inch 18 Inch Vi 3 o Feet 100 95 90 85 80 75 70 65 90 85 80 75 lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbjj. lbs. 868. 6 % 5 353.2 0.41 294.3 252.3 824 294.8 265.2 240.0 259.6 280.0 200.0 290.5 281.0 231.8 202.8 6 285.6 244.8 276.9 237.7 225.6 193.3 216.8 185.9 249.0241.1 213.4206.7 0.60 7 229.9 223.4 178.2 200.0 193.2 0.81 8 220.7 214.2 207.7 201.1 195.5 169.2 162.6 155.9 186.7 180.8 175.0 169.1 1.06 9 196.2 190.4 184.6 178.8 173.8 150.4 144.6 138.6 166.0 160.7 155.5 150.3 1.34 10 176.6 171.4 166.1 160.9 156.4 135.3 130.1 124.7 149.4 144.7 140.0 135.3 1.66 11 160.5 155.8 151.0 146.3 142.2 123.0 118.3 113.4 135.8 131.5 127.2 123.0 2.00 12 147.2 142.8 138.5 134.1 130.3 112.8 108.4 104.0 124.5 120.6 116.6 112.7 2.38 13 135.8 131.8 127.8 123.8 120.3 104.1 100.1 96.0 114.9 111.3 107.7 104.1 2.80 14 126.1 122.4 118.7 114.9 111.7 96.7 92.9 89.1 106.7 103.3 100.0 96.6 3.24 15 117.7 114.2 110.8 107.3 104.3 90.2 86.7 83,2 99.6 96.4 93.3 90.2 3.72 16 110.4 107.1 103.8 100.6 97.7 84.6 81.3 78.0 93.4 90.4 87.5 84.5 4.24 17 103.9 100.8 97.7 94.1 92.0 79.6 76.5 73.4 87.9 85.1 82.3 79.6 4.78 18 98.1 95.2 92.3 89.4 86.9 76.3 72.3 69.3 83.0 80.4 77.8 75.1 5.36 19 92.9 90.2 87.4 84.7 82.3 71.2 68.5 65.7 78.6 76.1 73.7 71.2 5.98 20 88.3 85.7 83.1 80.5 78,2 67.7 65.1 62.4 74.7 72.3 70.0 67.6 6.62 21 84.1 81.6 79.1 76.6 74.5 64.4 62.0 59.4 71.1 68.9 66.7 64.4 7.30 22 80.3 77.9 75.5 73.1 71.1 61.5 59.1 56.7 67.9 65.8 63.6 61.5 8.01 23 76.8 74.5 72.2 70.0 68.0 58.8 56.6 54.2 64.9 62.9 60.9 58.8 8.76 24 73.6 71.4 69.2 67.0 65.2 56.4 54.2 52.0 62.2 60.3 58.3 56.4 9.53 25 70.6 68.5 66.5 64.4 62.6 54.1 52.0 49.9 59.8 57.9 56.0 54.1 10.35 26 67.9 65.9 63.9 61.9 60.2 52.1 50.0 48.0 57.5 55.6 53.8 52.0 11.19 27 65.4 63.5 61.5 59.6 57.9 50.1 48.2 46.2 55.3 53.6 51.8 50.1 12.07 28 63.1 61.2 59.3 57.5 55.9 48.3 46.5 44.6 53.3 51.7 50.0 48.3 12.98 29 60.9 59.1 57.3 55.5 53.9 46.7 44.9 43.0 51.5 49.9 48.3 46.6 13.92 30 58.9 57.1 55.4 53.6 52.1 45.1 43.4 41.6 49.8 48.2 46.7 45.1 14.90 31 57.0 55.3 53.6 51.9 50.5 43.7 42.0 40.2 48.2 46.7 45.2 43.6 15.91 32 55.2 53.6 51.9 50.3 48.9 42.3 40.7 39.0 46.7 45.2 43.7 42.4 42.3 16.95 33 53.5 51.9 50.4 48.8 47.4 41.0 39.4 37.8 45.3 43.8 41.0 18.03 34 51.9 50.4 48.9 47.3 46.0 39.8 38.3 36.7 43.9 42.6 41.2 39.8 19.13 35 50.5 49.0 47.5 46.0 44.7 38.7 37.2 35.6 42.7 41.3 40.0 38.6 20.28 36 49.1 47.7 47.6 46.3 46.2 44.9 44.7 43.5 43.4 42.3 37.6 36.6 36.1 35.2 34.7 33.7 41.5 40.2 38.9 37.6 21'.45 37 40.4 89.1 873 86.6 22.66 38 46.5 45.1 43.7 42.3 41.2 35.6 34.2 32.8 89.8 38.1 36.8 85.6 23.90 39 45.3 43.9 42.6 41.3 40.1 34.7 33.4 32.0 25.18 40 44.1 42.8 41.5 40.2 39.1 33.8 32.5 31.2 26.48 41 43.1 41.8 40.5 89.2 88.1 83.0 81.7 80.4 27.82 42 42.0 1 40.8 89.6 8S.8 37.2 . S2.2 81.0 129.7 29.20 Loads above upper horizontal lines will produce maximum allowable shear in webs. Loads below lower horizontal lines will produce excessive deflections. For maximum safe loads, see page 210. 223 CARNEGIE STEEL COMPANY BEAMS Allowable Uniform Load in Thousands of Pounds Maximum Bending Stress, 16,000 Pounds per Square Inch Depth and Weight of Sections 1.1 Span in 1 18 Inch • i 15 Inch 3 2 Feet 70 65 60 55 48 75 70 65 60 55 50 45 42 lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. 4 5 268.8 229.8 199.8 284.. e 235.2 205.8 177.0 196.8 167.4 1371 188.0 I2S7 245.8 196.6 181.7 145.4 0.27 218.4 208.9 199.£ 188.8 180.9173.2 0.41 6 7 182.0 156.0 174.1 149.2 166.3 14276 165.6 186.8 163.8 140.4 157.3 134.8 150.8 129.2 144.4 123.7 121.1 103.8 114.6 98.2 108.1 92.6 128.0 104.7 89.8 157.1 134.7 0.60 124.8 0.81 8 136.5 130.6 124.7 117.£ 109.2 122.9 118.0 113.1 108.3 90.8 85.9 81.0 78.5 1.06 9 121.3 116.1 110.9 104.S 97.1 109.2 104.9 100.5 96.2 80.8 76.4 72.0 69.8 1.34 10 109.2 104.5 99.8 94.3 87.4 98.3 94.4 90.5 86.6 72.7 68.8 64.8 62.8 1.66 11 99.3 95.0 90.7 85.7 79.4 89.4 85.8 82.2 78.7 66.1 62.5 58.9 57.1 2.00 12 91.0 87.1 83.1 78.e 72.8 81.9 78.7 75.4 72.2 60.6 57.3 54.0 52.4 2.38 13 84.0 80.4 76.7 72.5 67.2 75.6 72.6 69.6 66.6 55.9 52.9 49.9 48.3 2.80 14 78.0 ,74.6 71.3 67.3 62.4 70.2 67.4 64.6 61.9 51.9 49.1 46.3 44.9 3.24 15 72,8 69.6 66.5 62.9 58.2 65.5 62.9 60.3 57.7 48.5 45.8 43.2 41.9 3.72 16 68.2 65.3 62.4 58.9 54.6 61.4 59.0 56.5 54.1 45.4 43.0 40.5 39.3 4.24 17 64.2 61.5 58.7 55.5 51.4 57.8 55.5 53.2 50.9 42.8 40.4 38.1 37.0 4.78 18 60.7 58.0 55.4 52.4 48.5 54.6 52.4 50.3 48.1 40.4 38.2 36.0 34.9 5.36 19 57.5 55.0 52.5 49.6 46.0 51.7 49.7 47.6 45.6 38.3 36.2 34.1 33.1 5.98 20 54.6 52.2 49.9 47.1 43.7 49.2 47.2 45.2 43.3 36.3 34.4 32.4 31.4 6.62 21 52.0 49.7 47.5 44.9 41.6 46.8 44.9 43.1 41.2 34.6 32.7 30.9 29.9 7.30 22 49.6 47.5 45.3 42.9 39.7 44.7 42.9 41.1 39.4 33.0 31.3 29.5 28.6 8.01 23 47.5 45.4 43.4 41.0 38.0 42.7 41.0 39.3 37.7 31.6 29.9 28.2 27.3 8.76 24 45.5 43.5 41.6 39.3 36.4 41.0 39.3 37.7 36.1 30.3 28.6 27.0 26.2 9.53 25 43.7 41.8 39.9 37.7 34.9 39.3 37.8 36.2 34.6 29.1 27.5 25.9 25.1 10.35 26 42.0 40.2 38.4 36.3 33.6 37.8 36.3 34.8 33.3 28.0 26.4 24.9 24.2 11.19 27 40.4 38.7 37.0 34.9 32.4 36.4 35.0 33.5 32.1 26.9 25.5 24.0 23.3 12.07 28 39.0 37.3 35.6 33.7 31.2 35-1 33.7 32.3 30.9 26.0 24.6 23.2 22.4 12.98 29 37.6 36.0 34.4 32.5 30.1 33.9 32.5 31.2 29.9 25.1 23.7 22.4 21.7 13.92 30 36.4 35.2 34.8 33.7 33.3 32.2 31.4 30.4 29.1 28.2 32.8 31.5 30.2 28.9 24.2 22.9 21.6 20.9 14.90 31 81.7 80".4 29.2 27.9 23.4 22.2 20.9 20.8 15.91 32 34.1 32.6 31.2 29.5 27.3 80.7 29.5 28.8 27.1 22.7 21.5 20.8 19.6 16.95 33 33.1 31.7 30.2 28.6 26.5 18.03 34 32.1 30.7 29.3 27.7 25.7 19.13 35 31.2 29.8 28.5 26.9 25.0 20.28 36 30.3 29.0 27.7 26.2 24.3 * 21.45 37 29.5 23.2 27.0 25.6 23.6 22.66 38 28.7 27.5 26.8 24.8 28.0 1 23.90 Loads above upper horizontal lines will produce maximum allowable shear in webs. Loads below lower horizontal lines will produce excessive deflections. For maximum safe loads, see page 219. BEAM SAFE LOADS BEAMS Allowable Uniform Load in Thousands op Pounds Maximum Bending Stress, 16,000 Pounds Per Square Inch Depth and Weight of Sections Span in 15In. 12 Inch 10 Inch |o 8 Feet 37H lba. 55 lbs. 50 lbs. 45 lbs. 40 lbs. 35 lbs. 3iy 2 lbs. 28 lbs. 40 lbs. 35 lbs. 30 lbs. 25 lbs 22^ lbs. 6 e 197.0 167.8 188. 2 110.4 104.6 101.5 81.2 84.0 76.7 149.8 120.4 91.0 71.6 57.2 62.0 52.1 50.4 48.5 3 190.2 142.7 114.1 112.8 84.6 67.7 104.1 78.1 62.5 0.15 4 134.8 107.9 127.0 101.6 0.27 5 95.6 0.41 6 7 8 9 10 99.6 96.1 82.4 72.1 64.1 57.7 95.1 81.5 71.3 63.4 57.1 89.9 77.0 67.4 59.9 53.9 84.7 72.6 63.5 56.4 50.8 79.7 68.3 59.8 53.1 47.8 67.6 58.0 50.7 45.1 40.6 63.9 54.8 48.0 42.6 38.4 66.2 59.1 50.6 44.3 39.4 35.5 56.4 48.4 42.3 37.6 33.9 52.1 44.6 39.0 34.7 31.2 47.7 40.9 35.8 31.8 28.6 43.4 37.2 32.6 28.9 26.0 40.4 34.6 30.3 26.9 24.2 0.60 0.81 1.06 1.34 1.66 11 12 13 14 15 52.4 48.1 44.4 41.2 38.4 51.9 47.6 43.9 40.8 38.0 49.0 44.9 41.5 38.5 36.0 46.2 42.3 39.1 36.3 33.9 43.5 39.8 36.8 34.2 31.9 36.9 33.8 31.2 29.0 27.1 34.9 32.0 29.5 27.4 25.6 32.2 29.5 27.3 25.3 23.6 30.8 28.2 26.0 24.2 22.6 28.4 26.0 24.0 22.3 20.8 26.0 23.9 22.0 20.4 19.1 23.7 21.7 20.0 18.6 17.4 22.0 20.2 18.6 17.3 16.2 2.00 2.38 2.80 3.24 3.72 16 17 18 19 20 36.0 33.9 32.0 30.4 28.8 35.7 33.6 31.7 30.0 28.5 33.7 31.7 30.0 28.4 27.0 31.7 29.9 28.2 26.7 25.4 29.9 28.1 26.6 25.2 23.9 25.4 23.9 22.5 21.4 20.3 24.0 22.6 21.3 20.2 19.2 22.2 20.9 19.7 18.7 17.7 21.2 19.9 18.8 17.8 16.9 19.5 18.4 17.4 16.4 15.6 17.9 16.8 15.9 15.1 14.3 16.3 15.3 14.5 13.7 13.0 15.1 14.3 13.5 12.8 12.1 4.24 4.78 5.36 5.98 6.62 21 22 23 24 27.5 26.2 25.1 24.0 23.1 27.2 25.9 24.8 23.8 25.7 24.5 23.4 22.5 24.2 23.1 22:1 21.2 22.8 21.7 20.8 19.9 19:3 18.4 17.6 16.9 18.3 17.4 16.7 16.0 16.9 16.1 15.4 14.8 16.1 16.4 14.9 14.2 18.6 13.0 12.4 11.8 11.5 11.0 7.30 8.01 8.76 9.53 10.35 25 22.8 21.6 20.3 19.1 16.2 15.8 14.2 26 27 28 29 30 22.2 21.4 20.6 19.9 19.2 21.9 20.7" 19.5 18.4 15.6 14.8 13.6 11.19 12.07 12.98 13.92 14.90 31 32 18.6 18.0 15.91 16.95 Loads above upper horizontal lines will produce maximum allowable ehear in web& Loads below lower horizontal lines will produce excessive deflections. For maximum safe loads, see pages 219 and 220. 226 CARNEGIE STEEL COMPANY BEAMS Allowable Uniform Load in Thousands of Pounds Maximum Bending Stress, 16,000 Pounds per Square Inch Span in Depth and Weight of Sections 9 Inch 8 Inch 7 Inch 'a aj is 3 a Feet 35 lbs. 30 lbs. 25 lbs. 21 lbs. 25% lbs. 23 lbs. 20% lbs. 18 lbs. 17% lbs. 20 lbs. 17% lbs. 15 lbs. 131.8 102.4 73.1 62.2 86.6 71.8 67.1 43.2 85.2 64.1 49.4 86.0 3 88.3 66.2 53.0 44.2 37.9 33.1 29.4 26.5 24.1 22.1 20.4 18.9 17.7 16.6 15.6 14.7 80.5 60.4 48.3 40.2 34.5 30.2 26.8 24.1 22.0 20.1 18.6 17.2 16.1 15.1 14.2 13.4 72.6 54.5 43.6 36,3 31.1 27.2 24.2 21.8 19.8 18.2 16.8 15.6 14.5 13.6 12.8 12.1 60.8 45.6 36.5 30.4 26.1 22.8 20.3 18.2 16.6 15.2 14.0 13.0 12.2 11.4 57.3 43.0 34.4 28.7 24.6 21.5 19.1 17.2 15.6 14.3 13.2 12.3 11.5 10.8 53.9 40.4 32.3 26.9 23.1 20.2 18.0 16.2 14.7 13.5 12.4 11.5 10.8 10.1 42.9 32.1 25<.7 21.4 18.4 16.1 14.3 12.9 11.7 10.7 9.9 9.2 39.8 29.9 23.9 19.9 17.1 14.9 13.3 11.9 10.9 10.0 9.2 8.5 0.15 4 50.3 40.3 33.6 28.8 25.2 22.4 20.1 18.3 16.8 15.5 14.4 13.4 12.6 11.8 11.2 37.9 30.3 25.3 21.7 19.0 16.9 15.2 13.8 12.6 11.7 10.8 10.1 9.5 27.6 22.1 18.4 15.8 13.8 12.3 11.0 10.0 9.2 8.5 7.9 0.27 5 6 7 8 9 10 11 12 13 14 31.1 25.9 22.2 19.5 17.3 15.6 14.2 13.0 12.0 11.1 10.4 9.7 0.41 0.60 0.81 1.06 1.34 1.66 2.00 2.38 2.80 3.24 15 16 8.6 8.0 8.0 7.6 7.4 6.9 3.72 4.24 17 18 10.7 10.1" 10.1 9.6 9.6 9.0 8.9 8.4 9.2 8.6 4.78 5.36 19 20 18.9- 18.3 12.7 12.1 11.6 10.9 10 6 10.1 5.98 6.62 Depth and Weight of Sections = « in 6 Inch 5 Inch 4 Inch 3 Inch oj"5 IS Feet 17% lbs. lbs. 12% lbs. 14% lbs. i2y 4 lbs. 9% lbs. 10% lbs. 9% lbs. 8% lbs. 7% lbs. 7% lbs. 6% lbs. 5% lbs. 1 67.0 42.2 27.6 60.4 85.7 21.0 17.2 12.9 10.3 8.6 7.4 6.4 5.7 5.2 82.8 19.0 12.7 9.5 7.6 6.3 5.4 4.8 4.2 8.8 27.0 21.0 16.9 11.3 8.5 6.8 5.6 4.8 4.2 8.8 8.4 16.2 10.6 8.0 6.4 5.3 4.5 4.0 3.5 3.2 21.7 20.7 10.4 6.9 5.2 4.1 3.5 8.0 2.6 16.8 9.6 6.4 4.8 3.8 3.2 2.7 2.4 10.2 8.8 5.9 4.4 3.5 2.9 2.5 2.2 0.02 2 46.6 31.0 23.3 18.6 15.5 13.3 11.6 10.3 9.3 8.5 7.8 32.3 21.5 16.2 12.9 10.8 9.2 8.1 7.2 6.5 29.1 19.4 14.5 11.6 9.7 8.3 7.3 6.5 5.8 18.0 12.0 9.0 7.2 6.0 5.1 4.5 4.0 3.6 07 3 4 5 6 7 8 9 10 28.4 21.3 17.1 14.2 12.2 10.7 9.5 8.5 7.8 7.1 25.8 19.4 15.5 12.9 11.1 9.7 8.6 7.7 7.0 6.5 0.15 0.27 0.41 0.60 0.81 1.06 1.34 1.66 11 12 6.9 5.4 5.3 4.8 4.7 4.3 2.00 2.38 13 14 7.2 6.7 6.6 6.1 6.0 5.6 2.80 3.24 Loads above upper horizontal 1 inea will produce maximum allowable shear in i Loads below lower horizontal lines will produce excessive deflections. For maximum safe loads, see page 220. 226 BEAM SAFE LOADS O o to o to 3 o o M s GO a « fa i o CO o © lO CM ooooooooo CMlOCOlOCOrHTfiCDCO OS CO IS CO CM CM rH O OS o oooooooo COOU3C»TJ*OiOOJ OS OS CO 1> t> IO "^ CO OOOOOOOOO COrHCDOrHCOrHlOb- COCOmiOCMrHrHOOS CO IN O CO OS CM OOOOOOOOO lOb-OSOCM-tfcOb-rH COCMrHb-COiO^cOCM CO CO CO CM. CM CM CM CM CM O O CO r-i oooooooo IO OS CM IO O CO CO OS NHHOONCDlO CM CM CM CM CM rH tH rH OOOOOOOOO rHlOOSCOOSCOb-OrH OSCOb-b-COCOCMCMrH iHrHrHrHrHrHrHi-lrH b- cm O o CM CO OOOOOOOOO OCMCO©CMCO"#iOCO cOiOTHOSCCb-COlOCO CO CO CO CM CM CM CM CM CM o CM b- rH OOOOOOOO CM IO CO rH IO CO OS rH -*COCMCMrH00b-b- CM CM CM CM CM rH rH rH OOOOOOOOO lOCOCMCDOCOb-OSO OOSOS»lO^COCMCM CMrHrHi— IrHrHrHrHrH CD CM o ■HH CO OOOOOOOOO OSOSOCO-tf^irtiOCO C0b-b-rHO0>00b-»O CO CO CO CO CO CM CM CM CM o CO CO OOOOOOOO rH ^ CO CO rH O CM >0 CO »o -HH CO CO O OS CO CM (N CM CM CN CM rH rH OOOOOOOOO rH th b- o cm io oo o a CNrHOOCDlO^-tfCM CM CM CM CM rH rH rH rH rH CM o CO b- CO OOOOOOOOO O OO CO 00 CO 00 1> b- CM -H O CO CM rH O O) l> ^^•tfCOCOCOCOCNCM o 1— 1 o CM OOOOOOOO co ^ to b- o b- co o 00 b- CD tO IO rH O O CM CM CM CM CM CM CM N OOOOOOOOO OSrH^COlOb-Oi-lO CO CON rH b- CD CD IO •* CMCMCMCMrHrHrHrHrH <* CM o IO o OOOOOOOOO COiO'-tfb-COiOiOCM'-* iO ^ CO CO »0 ■* CO CM O ^ -^ <* CO CO CO CO CO CO o CO 1— 1 CM OOOOOOOO b- CO CO OS CN iO CD b- © OS CO I> b- CO CM rH CO CM CM CM CM CM CM CM OOOOOOOOO ©rHCOlOOrHCO^CM iOiO^C00SC0b-CO»0 CM CM CM CM rH rH rH rHrH co CM o i-C OOOOOOOOO l>iO O CO b- CD iO CM <* •* ^ TH CO CO CO CO CO o b- CO CM OOOOOOOO ■HItJI'HH'HHCDCOCDCO CO CM rH O OS iO ■* CO CO CO CO CO CM CM CN CM OOOOOOOOO CM ■* IO CO CO b- OS CO lO C0b-CO»OO0S00b-CD CM CM CM CM CM rH rH rH rH CN IN o CN 00 OOOOOOOOO CO O CO b- ■* -H CO CO CO ■tfCOrHCOCMrHOSCOiO irjiOiOTH^TPcococo o OS iO CM OOOOOOOO IO ■* CO CM CO O Ol CO CO IO ■* CO CM CO CO IO CO CO CO CO CO CM CM CM OOOOOOOOO OSOSOSOCOCOCOIOO OOSCOCOCMrHOOSCO CO CM CM CM CM CM CM rH rH i— i IN o OS CN iO OOOOOOOOO CDrHb-OlOrHb-rHCO OSCOCDCOCDIOCOCMOS lOlOlO^^TtfTjt^CO o IO CO CM OOOOOOOO O OS b- iO IO b- iO CO o co b- co io o a oo ■HH CO CO CO CO CO CM CM OOOOOOOOO OC0b-b-00b-CD^00 COCMrHO-*COCMrHOS CO CO CO CO CM CM CM CM rH O "O IO iO iO IO O -f O CO ■"* CO oooooooo OS IO O CD CO IO O CD CO b- CD - CM O O CO CD CO rH CO CO ^ O CSCOCOb-b-COCDCDcD o CO <* oooooooo rH CO IO b- rH CO O CM rH © b- IO TP CD IO CO CD IO IO »0 »0 ^i ^ -^ OOOOOOOOO b- rH Tf< CO CO CM IO CO CM rH O CO CO b- CD Tt< CM O lOiO^-tfCOCOCOCOCO CD o CM r-i OS OOOOOOOOO CO rH CO CO CM b- CO »Ob- CM O t> CM O b- IO CM b- OO OS 00 00 b-b-b- CO rHrH o o OS •** OOOOOOOO OOSOSOSrHOSOOb- OS CO ^ CM rH CM O CO O O CD CO- CD iO iO -*i* OOOOOOOOO T)< IO b- CO CO CO O 00 rH COCD^CMCMOOSCDTt) lOiOiO^-^-^COCOCO IO O b- CO o OOOOOOOOO 00 OS rH O CM ■* cO »o O COCOrH^rHCOlOCMb- rHrHrHCSOCOGOWb- rHrHrH o CO to OOOOOOOO IO CM 00 "O iO CM 00^ CO CD CO rH OS O b- IO b-b-b«b-COcO»0»0 OOOOOOOOO ■HHCOCMrHlO-HHCOOSCO CD ■* CM O CO CO ■* rH CO CO CO CO CO tP ^ -tf ■«* CO o OS r-l r-i OOOOOOOOO OQO'OOSb-lOCOtS'HH ■^Ob-b-Tt co o oooooooo OSCDCOOCOCOlOrH IO rH b- CO OS rH b- CO -H4 T(f CO CO CM rH O O OOOOOOOOO lOCOb-COCMCOiOOSCM COOS»OrHOCO(Mb.CM CMrHrHrHOJCOXb-b- o o CO CO CM OOOOOOOOO b-C0©iOCM©b-iOC0 CMCOOSrHiOiJSNiOCO OlO-^rHOOSOSCOt- o iO IO CM oooooooo CD Tt* rH OS tJI CO rH CO COrHCOOCOlOOTfl b- b- CO O IO CO CO CM OOOOOOOOO Tji b- O CO CM iO CO CO Tt< OlTjHOiOOS'*©'Hb- ^ tH tJ4 CO O O OS OS CO J3d Sf J v anoj O OS iO©»OOiOO»OOtJ( rHrHOOOSOSCOWt- »o d CO OW30»OOiOO»0 O OS OS X CO b- b- CO rH O»0O»0O"5OiO00 OSOOCOb-b-COCDiO-tf eaqoaj q^dsa b- cm CM rH CM o CM CO 227 CARNEGIE STEEL COMPANY O o , fa K H 1 P O , Ph !5 tH H O ►J S a o & S P m ►J < 1 « .9 d Pi CO CO CM OOOOOOOOOJ lOOrHoooocMcocoio: rHrHcocMOoasosoo; rH rH rH tH rH iH OOO OO oo 00 00 b- b- CO »0 "3 .s c .a C S - a ■*3 m -*2'-S 0-5 O 0) CM OOOOOOOOO; t-rtiOffltOO^HC]. U310^CO0 H N 01 00 00 i> CO CO U3 rH CM OOOOOOOOO rHrHb-OcOOSCOOSO NOWiONHHOO iHrHrHrHrHrHTHrHrH o o" o o o o o : os rH oo co o b- cm : OS OS 00 00 b- CO CO i 2'= M — OT3 -a & li ■Si. Ee- V S 2 CO CM OOOOOOOOO COQOrH-tfb.OCOOSCS QOb-b-CDCOCOCM'HO THrHtHrHrHrHrHrHiH o o o o o o o : CONCDONCOM 000)©M>!0' r-t rH ■ 01 OOOOOOOOO OCSOOb-iO'rHCOCOiH CMrHrHrHrHrHrHrHrH o o o o o o o; oo rH w as rH as co ; hhOCSMNN; rH rH rH ■ ooooo O lO OS rH O b- CO *o io »o CM OOOOOOOOO COrH»OCOiOCDb-COrH eMrHOOSCOiQrHrHCO (NCNCMrHTHTHrHrHrH o o o oo o ©. ©NiOCONNO: wnhooicooc: rH rH rH tH \ OOOOO NHlOO! Ifl b- b- CD iO W 'Loads are] Loads wiU O CM OOOOOOOOO CDCOcOb-CMCMCMb-rH rHcocMrHoob-coiorH CNCMlNtMiHTHiHrHr-l o oooo o o CO iO l> O CO CD W 00 tH OOOOOOOOO COrHOSb-rHCMOrHOO OONtONHOON COCMCNCMCMCM CO CO b- rH OOOOOOOOO ONCOONM^SO ^NHOiOCONHO COCOCOCOCMCMCMCMCM oo ooooo 00 l> CO ifj O CO CO os oo b- co rH co cm tH tH tH rH rH tH rH ooooo t- 00 OS O rH tH O OS OS 00 tH rH oooo CM rH »0 O OS cot- 1* CO tH OOOOOOOOO 00C0iOC000CO»OrHCM COCOCOeoCMCMCMCMCM o oo oo oo CO rH 00 b- 00 O OS CM rH OS 00 10 10 CO CM CM'tH mhhh OOOOO CM CM CM CM lO CO CM tH O OS rH tH tH r-t O OOO' rHrMOOS O OS 00 b- t-t ^ iO OOOOOOOOO b-otMiococococsco COCMOOOCMOCOb-iO rHrHrHCOCOCOCMCMCM OOO oo oo Tt* O CO CO O rH 00 »o rH cm i-h oo b- S OOOOO O OS b- CD X iO CO CM rH O O O O O 00 b- i> • tH O OS OS rH OOOOOOOOO CMCMeMCMrHrHrHrHrH OOOCOrHb-iOCOCMCS iOrHrHrHCOCOCOCOCM OO O OOO o HiflOl^NCDH OS b- lO rH O OS 00 CM CM CM CM CM rH rH OOOOO CO OS CD CO rH j> iO rH CO CM tH tH rH tH tH 1350 1230 1110 1030 CO r-C OOOOOOOOO CMOSlOCOOb-THCMrH OOlOCOrHCOOOOb-TH iOU5iOiOrHrHC0C0C0 o o o o o o o oo os ih co o r- o CO tH O 00 rH CM rH Pi CO CO CM CM CM CM OOOOO O lO OS rH CO O 00 CO lO rH CM tH tH rH rH 1570 1430 1290 1190 CM rH OOOOOOOOO WWCOHiOOOOCDH 00iO«OOM0«O CD, CO CO CO lO rH rH "TH rH O O O OO O o CO lO CO CM CM CD CD © N O CO 00 CO ^ CO CO CO CO CM CM CM OOOOO lO t-- OS tH CO CO rH OJ 00 CO CM CM rH rH rH OOOO rH 00 rH O 00 CD iO rH tH rH rH rH rH OOOOOOOOO WOCOOHOOtO WN HQO^HOOMHN CGb-b-b-COiO»OiOrH O O OOO oo CM CD O lO IO b- CO r- ■# cm os co th os rH rH rH CO CO CO CM OOOOO OCONiCO 00 O CO rH O CM CM CM CM CM OOOO OS O O CO rH O 00 CD CM CM rH rH o OOOOOOOOO COrHlOcOb-OOOOOOb- OOrHOcOCMGOrHCMb- O CS O) CO N (O CD CD id O O O OO o o rH OS CO 00 CO rH «3 NfOONOCOU) m io io rH rH co co OOOOO OS CM CO rH CM CO tH 00 CD rH CO CO CM CM CM OOOO U3 CM 00 rH CD rH rH O CM CM CM CM Os OOOOOOOOO rHiOb-OSb-OSOcDCM HOHOOtPONh CNrHtHOOOCOQOb-b- tH tH rH-tH o o oo oo o IO CD b- O rH rH 00 O CD CM OS O b- CO b- CD CD "3 US rH rH OOOOO 00 CD CO CM OS >H CO IQ CM OS rH. CO CO CO CM OOOO b- 00 OS 05 CM OS CD rH CO CM CM CM Q0 OOOOOOOOO CDi£>rHC0CDrHCOCMiH CONHiOCONHOOO lOi^COHOOOJOI tH rH rH iH rH iH rH O O OOO OO CM CO rH b- rH O rH OS rH OS rH CO O lO 00 00 b- b- CO CO lO OOOOO OS 00 b- N OS NCO^ON iO rH rH rH CO OOOO rH N rH iO tH b- rH tH rH CO CO CO b- OOOOOOOOO CQCOCO»C0C0C0CMb- OCMrHCDOOOCMQOb- OOSOOb-rHrHeOCMtH CMrHrHtHiHtHtHtHrH OO OO OO o lO rH r> CO 00 CO rH CO O CO b- CM 00 CM HHOffiOOhN OOOOO -H CO rH CM U3 OS CO 00 CO OS CO CD 10 iO rH OOOO rH CO IO tH rH OS rH tH iO rH rH rH co OOOOOOOOO rHCNCOCOOOrHlOCN COMHOHHOTjiO b-cOiOrHOOSOOb-O WNNNIMHHHH O O o o o o o lO 00 H 00 N CD m 00 OS rH CM CM CO 00 lO rH rH CO rH o OS 1-1 rH tH tH rH rH OOOOO O 00 iO rH CO rH CO OS CM b- OS 00 l> 1> CO OOOO CD rH 10 CO b- *o b- CO CO to J3d Hpano j b-b-coco»oiorHrHco 10 lOOlOOWHCO lO "O rH rH CO CO CM lO O iffO io°i rH CO CO CM CM CM WOWH CO CO CM CM Baqonj'q^dgg CM rH 2 / \ OS 228 - If BEAM SAFE LOADS F BEAMS — Allowable Uniform Load in Pounds per Foot V CD .s fl ft CQ 00 rH o o o o o CD CO O IN CO >o IO lO ■* ■* 1 p s § h 5.2 1 n .■8 b- o o CO O CD CD 630:560 590:530 610.540 500 470 430 if Is- - -S.S- "Si" c9 CD rH O O J> CO IO rH ooooo. ooo rHCDINt^Oi: In CO 01 OOlNt^CDCC: IC lO HJ ^ 00000 ooo COQOCNt-Cl CDrHCC 01 CO CO IN IN CO CO <0 : o o c : do«o CO rH ooooo ooo CO N (O ON CO rH i£ O O O 01 01 I>t>cC rH rH : o o c : ioo ffi j ifl IO ^ I-H ooooo ooo t^OlOJiOOO CI CO IN NrHrHOO CO 00 IN rH i-\ r-( r4 rH ooo io oi Tti CD IO 10 : ooo : io o co j ■* ■# CO |— ( OOOOO OOO H N ■* lO ffl CD OS rH IO •<* CO CM CM O 01 01 i— 1 I-H V* I-H i-H T~i ooo r~ o ■* t~ t~ CD : ooo ! CO 00 CO ; io ■* -«i o rH OOOOO OOO M IN « N (O ooo oo r* co io io cm i-h rH i-HtHrHrHrH rHrHrH ooo CO lO 00 OS 00 I> o o o locon CD IO IO o o o o 00 CD * CM CO CO CO CO OS 'ooooo ooo W « CB N « CI IN CD tN rH OS 00 OS IO -* CO CM CM r^ r-t i-I rHrHrH 1150 1050 960 ooo o n ^ 00 t^ CD o o o o I> ■* CM 01 * * * CO 00 ooooo 'ooo irjoi(Nt^co rHt>co 00 CO IO CO ■* O CO N N IN (N IN N CM y-i ^ 1450 1330 1210 1010 910 810 o o o o O) CO CO o 10 io iO U5 IN ooooo ooo OJ rH O O CO W ■* IC N lOMWH CO ^ IN C0C0C0C0C0 CM CM CM 1900 1740 1580 1320 1190 1050 o o o o QOCQOliO IN l> CD CO o o Ol CO o CD CO rS CO OOOOO ooo M N N 0) 00 Tt< CO rH CO O 00 IO CD O 00 CO Tti^COCOCO CO CM CM 2200 2020 1830 1530 1380 1220 o o o OiOOiO 01 00 00 In ' o o o o CN ^1 CO OOOOO OOO N CO 0! HON N IN N O N ^ IN CO iO CO O «3 tJI --aH t}. ** C0C0C0 2590 2370 2150 1800 1610 1430 o o o o CO o -* CO o O O 00 rH r^ o CO IO o CO IO o Ol r£ IO OOOOO ooo COO^rHlO lO lO lO OcDCOOrH CM 01 CD ID »0 15 W5«J "# CO CO 3080 2820 2560 2140 1920 1710 1260 1190 1120 1050 o 00 CD o CO CD o X IO lO OOOOO OOO ooocor»co ^ oo cm CO 00 ■* O CM rH IN -tf N CO CD (0 CO lO t)i ^ 3720 3410 3100 2590 2320 2060 O O O o (M Tff CO tN lO ••# CO CM o CO CO o 1> o iH I- rS OOOOO ooo rHOlOOOlOl WOH5 O tJI © tP (O COO'* os oo r- b- in co io io 4600 4210 3830 3190 2870 2550 o o o o 00 CO IN IN CO N CO IO i~i r-\ 1-4 -H o CN o o 01 o 00 ■^ 11410 10750 10100 9480 O O 00 30 8040 7460 6900 5820 5330 4840 4040 3630 3220 o o o o 00 LQ CM Ol CCOIH Q CM CN CM rH o Ol CN o o CN iH o o rH 1-t r£ CO 14900 14040 13190 o o Tt< CD CO O (M O rH i-t 10490 9750 9010 7600 6960 6320 5280 4740 4210 o o o o rH ^ t- O rH 01 In CD CO CM CM CM o o CO r-i o CO io o CO 20280 19110 17950 o o O CO ^ ,-H rH r-i o o oo r*- ■<* CO rH — 1 O o [N rH 10350 9470 8610 7180 6460 5730 o o o o CO O IN CO «OMO Tt» ■* CO CO o o CO CN o CO CN o CD 01 r£ O O ON CM io 01 N CO CM 22S40 17280 14080 o o r- o IO rH O 01 CM rH O o o 2 o o O IO OS CO ■tf CO tH r-l O O r-l rH 10340 9300 8250 o o o 01 CO CM Ol o t- * o CD iC iO iO o CO CO o CO o CO o CM 00 CN cq IO o o o o 00 IN CD O O (N O iO CO CD CO IO 00 rH t^ I 1 * CO IN CM h OOO CD rH O O N »0 CON H o 00 CN CO CN o o CN O •H 00 rH CO CN rH o c CD CO rH io CD TJH i-H- t-1 o o iO o 9520 9000 8470 o o CO IN o X iO o CO 1> ■tf o 3 lad spunoj lO lO _ iO IO io co d co t-- d n w) CM CM CM rH rH CMrHrH 17.25 14.75 12.25 14.75 12.25 9.75 iO iO 10 iO o os oo" r-" IO IO CO Eraqoaj 'q?d 8 G 00 t» to io ■* CO 229 CARNEGIE STEEL COMPANY MISCELLANEOUS BEAMS Allowable Uniform Load in Thousands op Pounds Maximum Bending Stress, 16,000 Pounds per Square Inch H BEAMS Span Depth and Weight of Sections - Coefficients in Feet 8 Inch 34.0 Pounds . 6 Inch 23.8 Pounds 5 Inch 18.7 Pounds 4 Inch 13.6 Pounds of Deflection 60.0 37 6 81.3 25.0 3 19.0 14.3 11.4 9.5 8.1 7.1 0.15 4 25.4 20.3 16.9 14.5 12.7 11.3 10.1 0.27 5 32.1 26.7 22.9 20.1 17.8 16.0 14.6 13.4 0.41 6 7 8 51.3 44.0 38.5 34.2 30.8 28.0 25.6 23.7 22.0 20.5 19.2 18.1 17.1 0.60 0.81 1.06 9 10 6.8 5.7 1.34 1.66 11 12 9.2 8.5 2.00 2.38 13 14 15 16 17 18 12.S 11.6 2.80 3.24 3.72 4.24 4.78 5.36 CROSS TIE SECTIONS Span Depth and Weight of Sections in Feet 6.5 Inch 27.8 Pounds 5.5 Inch 24.0 Pounds 5.5 Inch 20.0 Pounds 4.25 Inch 14.5 Pounds 3 Inch 9.5 Pounds of Deflection 40.0 41.8 27.5 21.3 12.2 3 40.3 30.2 , 24.2 20.2 17.3 15.1 13.4 12.1 11.0 10.1 19.6 14.7 11.8 9.8 8.4 7.3 6.5 8.9 6.7 5.4 4.5 3.8 0.15 4 5 6 7 38.2 30.6 25.5 21.8 19.1 17.0 15.3 13.9 12.7 11.8 26.0 20.8 17.3 14.8 13.0 11.5 10.4 9.4 8.7 0.27 0.41 0.60 0.81 8 9 8.3 8.0 217 1.06 1.34 10 11 12 5.9 5.3 1.66 2.00 2.38 13 9.8 8.6 e.o 2.80 14 15 16 17 10.9 10.2 9.5 9.0 3.24 3.72 4.24 4.78 Loads above upper horizontal lines will produce maximum allowable shear in webs. Loads below lower horizontal lines will produce excessive deflections. 230 BEAM SAFE LOADS CHANNELS Allowable Uniform Load in Thousands op Pounds Maximum Bending Stress, 16,000 Pounds per Square Inch Depth and Weight of Sections "S a Span in 15 Inch 13 Inch Feet 55 50 45 40 35 33. 50 45 40 37 35 32 1" So lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. 6 245.4 216.0 186-6 167.2 127.8 120.0 205.7 176.8 146.9 129.2 117.6 97.6 3 204.0 153.0 190.9 143.2 177.8 133.4 171.6 128.7 160.3 120.2 0.15 4 123.6 113.8 111.1 111.7 106.6 103.2 97.5 0.27 5 122.4 114.5 106.7 98.9 91.0 88.9 103.0 96.2 89.4 85.3 82.6 78.0 0.41 6 102.0 95.4 88.9 82.4 75.8 74.1 85.8 80.2 74.5 71.1 68.8 65.0 0.60 7 87.4 81.8 76.2 70.6 65.0 63.5 73.6 68.7 63.8 60.9 59.0 55.7 0.81 8 76.5 71.6 66.7 61.8 56.9 55.6 64.4 60.1 55.9 53.3 51.6 48.7 1.06 9 68.0 63.6 59.3 54.9 50.6 49.4 57.2 53.4 49.7 47.4 45.9 43.3 1.34 10 61.2 57.3 53.3 49.4 45.5 44.5 51.5 48.1 44.7 42.7 41.3 39.0 1.66 11 55.6 52.1 48.5 44.9 41.4 40.4 46.8 43.7 40.6 38.8 -37.5 35.4 2.00 12 51.0 47.7 44.5 41.2 37.9 37.0 42.9 40.1 37.2 35.5 34.4 32.5 2.38 13 47.1 44.1 41.0 38.0 35.0 34.2 39.6 37.0 34.4 32.8 31.8 30.0 2.80 14 43.7 40.9 38.1 35.3 32.5 31.8 36.8 34.4 31.9 30.5 29.5 27.9 3.24 15 40.8 38.2 35.6 33.0 30.3 29.6 34.3 32.1 29.8 28.4 27.5 26.0 3.72 16 38.2 35.8 33.3 30.9 28.4 27.8 32.2 30.1 27.9 26.7 25.8 24.4 4.24 17 36.0 33.7 31.4 29.1 26.8 26.1 30.3 28.3 26.3 25.1 24.3 22.9 4.78 18 34.0 31.8 29.6 27.5 25.3 24.7 28.6 26.7 24.8 23.7 22.9 21.7 5.36 19 32.2 30.1 28.1 26.0 23.9 23.4 27.1 25.3 23.5 22.4 21.7 20.5 5.98 20 30.6 28.6 26.7 24.7 22.8 22.3 25.7 24.0 22.3 21.3 20.6 19.5 6.62 21 29.1 27.3 25.4 23.5 21.7 21.2 24.5 22.9 21.3 20.3 19.7 18.6 7.30 22 27.8 26.0 24.3 22.5 20.7 20.2 23.4 21.9 20.3 19.4 18.8 17.7 8.01 23 26.6 24.9 23.2 21.5 19.8 19.3 22.4 20.9 19.4 18.5 18.0 17.0 8.76 24 25.5 23.9 22.2 20.6 19.0 18.5 21.5 20.0 18.6 17.8 17.2 16.2 9.53 25 24.5 22.9 21.3 19.8 18.2 17.8 20.6 19.2 17.9 17.1 16.5 15.6 10.35 26 23.5 22.7 22.0 21.2 20.5 19.8 19.0 18.3 17.5 16.9 17.1 16.5 19.8 18.5 17.2 16.4 15.9 15.0 11.1% 27 19.1 17.8 16.6 15.8 15.8 14.4 12.07 28 21.9 20.5 19.1 17.7 16.3 15.9 18.4 17.2 16.0 15.2 14.7 13.9 12.98 29 21.1 19.7 18.4 17.0 15.7 15.3 13.92 30 20.4 19.7 19.1 17.8 16.5 15.2 14.8 14.90 31 18.5 17.2 15.9 14.7 14.3 15.91 32 19.1 17.9 16.7 15.4 14.2 18.9 16.95 Loads above upper horizontal lines will produce maximum allowable shear in webs. Loads below lower horizontal lines will produce excessive deflections. For maximum safe loads, see page 221. 231 CARNEGIE STEEL COMPANY CHANNELS Allowable Uniform Load in Thousands of Pounds Maximum Bending Stress, 16,000 Pounds per Square Inch Span m Depth and Weight of Sections 1 J 12 Inch 10 Inch 40 lbs. 35 lbs. 30 lbs. 25 lbs. 20% lbs. 35 lbs. 30 lbs. 25 lbs. 20 lbs. 15 lbs. 181.9 175.1 116.7 87.5 70.0 152.6 128.1 98.6 67.2 164.6 185.2 105.8 76.4 48.0 2 123.2 82.1 61.6 49.3 110.1 73.4 55.1 44.0 97.0 64.7 48.5 38.8 0.07 3 106.2 79.7 63.7 95.8 71.8 57.5 85.3 64.0 51.2 56.0 42.0 33.6 47.6 35.7 28.5 0.15 , 4 5 56.9 45.5 0.27 0.41 6 7 8 9 10 58.4 50.0 43.8 38.9 35.0 53.1 45.5 39.8 35.4 31.9 47.9 41.1 35.9 31.9 28.7 42.7 36.6 32.0 28.4 25.6 38.0 32.5 28.5 25.3 22.8 41.1 35.2 30.8 27.4 24.6 36.7 31.5 27.5 24.5 22.0 32.3 27.7 24.3 21.6 19.4 28.0 24.0 21.0 18.7 16.8 23.8 20.4 17.8 15.9 14.3 0.60 0.81 1.06 1.34 1.66 11 12 13 14 15 31.8 29.2 26.9 25.0 23.3 29.0 26.6 24.5 22.8 21.2 26.1 23.9 22.1 20.5 19.2 23.3 21.3 19.7 18.3 17.1 20.7 19.0 17.5 16.3 15.2 22.4 20.5 19.0 17.6 16.4 20.0 18.4 16.9 15.7 14.7 17.6 16.2 14.9 13.9 12.9 15.3 14.0 12.9 12.0 ,11.2 13.0 11.9 11.0 10.2 9.5 2.00 2.38 2.80 3.24 3.72 16 17 18 .19 20 21 22 23 24 21.9 20.6 19.5 18.4 17.5 19.9 18.7 17.7 16.8 15.9 18.0. 16.9 16.0 15.1 14.4 16.0 15.1 14.2 13.5 12.8 12.2 11.6 11.1 10.7 14.2 13.4 12.7 12.0 11.4 15.4 14.5 13.7 13.0 12.3 13.8 13.0 12.2 11.6 11.0 12.1 11.4 10.8 10.2 9.7 10.5' 9.9 9.3 8.8 8.4 8.9 8.4 7.9 7.5 7.1 4.24 4.78 5.36 5.98 6.62 16.7 15.9 15.2 14.6 15.2 14.5 13.9 13.3 13.7. 13.1 12.5 12.0 10.8 10.4 9.9 9.5 11.7 11.2 10.5 10.0 9.2 8.8 8.0 7.6 6.8 6.5 7.30 8.01 8.76 9.53 25 14.0 12.8 11.6 10.2 9.1 10.35 26 18.5 12.8 11.1 9.8 8.8 s 11.19 Loads above upper horizontal lines will produce maximum allowable shear in webs. Loads below lower horizontal lines will produce excessive deflections. For maximum safe loads, see page 221. 232 BEAM SAFE LOADS CHANNELS Allowable Uniform Load in Thousands of Pounds Maximum Bending Stress, 16,000 Pounds per Square Inch Depth and Weight of Sections °B Span 9 Inch 8 Inch 7 Inch ^■J§ Feet 25 lbs. 20 lbs. 15 lbs. 13% lbs. 21% lbs. 18% lbs 16% lbs. 13% lbs. 11% lbs. 19% lbs. 17% lbs. 14% lbs. 12% lbs. 9%' lbs. IS 110.7 81.4 61.8 41.4 93.1 78.4 58.5 39.0 29.2 23.4 19.5 16.7 14.6 13.0 11.7 10.6 9.7 9.0 8.4 7.8 7.3 6.9 6.5 63.8 53.2 35.5 26.6 21.3 17.7 15.2 13.3 11.8 10.6 9.7 8.9 8.2 7.6 7.1 6.7 6.8 6.9 49.1 85.2 88.6 73.9 69.2 44.5 36.8 24.6 18.4 14.7 12.3 10.5 9.2 8.2 7.4 6.7 6.1 5.7 5.3 4.9 4.6 29.4 21.4 16.1 12.9 10.7 9.2 8.0 7.1 6.4 5.8 5.4 4.9 4.6 4.3 4.0, 2 83.8 55.9 41.9 33.5 27.9 23.9 20.9 18.6 16.8 15.2 14.0 12.9 12.0 11.2 10.5 9.9 9.3 V2.0 48.0 36.0 28.8 24.0 20.6 18.0 16.0 14.4 13.1 12.0 11.1 10.3 9.6 9.0 8.5 8.0 63.7 42.5 31.8 25.5 21.2 18.2 15.9 14.2 12.7 11.6 10.6 9.8 9.1 8.5 8.0 7.5 7.1 48.0 32.0 24.0 19.2 16.0 13.7 12.0 10.7 9.6 8.7 8.0 7.4 6.9 6.4 6.0 5.6 5.8 50.6 33.7 25.3 20.2 16.9 14.4 12.6 11.2 10.1 9.2 8.4 7.8 7.2 6.7 6.8 46.0 30.7 23.0 18.4 15.3 13.1 11.5 10.2 9.2 8.4 7.7 7.1 6.6 6.1 "6.7 41.4 27.6 20.7 16.6 13.8 11.8 10.4 9.2 8.3 7.5 6.9 6.4 5.9 5.5 5.2 0.07 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 40.2 30.1 24.1 20.1 17.2 15.1 13.4 12.1 11.0 10.1 9.3 8.6 8.0 7.5 7.1 6.7 37.4 28.0 22.4 18.7 16.0 14.0 12.5 11.2 10.2 9.3 8.6 8.0 7.5 7.0 6.6 6.2 28.7 21.5 17.2 14.4 12.3 10.8 9.6 8.6 7.8 7.2 6.6 6.2 5.7 5.4 6.1 4.8 0.15 0.27 0.41 0.60 0.81 1.06 1.34 1.66 2.00 2.38 2.80 3.24 3.72 4.24 4.78 5.36 19 20 8.8 8.4 7.6 7.2 6.3 6.0 6.9 6.6 5.98 6.62 Depth and Weight of Sections °a Span 6 Inch 5 Inch 4 Inch 3 Inch a "43 to a Feet i5y 2 lbs. 13 lbs. 10% lbs. 8 lbs. 11% lbs. 9 lbs. 6% lbs. 7% lbs. 6% lbs. 5% lbs. 6 lbs. 5 lbs. 1 lbs. IS 1 67.6 34.7 23.2 17.4 13.9 11.6 9.9 8.7 7.7 6.9 6.3 5.8 5.3 6.0 62.8 30.8 20.5 15.4 12.3 10.3 8.8 7.7 6.8 6.2 5.6 5.1 4.7 ■4.4 38.2 26.9 17.9 13.4 10.8 9.0 7.7 6.7 6.0 5.4 4.9 4.5 4.1 3.8 24.0 23.1 15.4 11.6 9.2 7.7 6.6 5.8 5.1 4.6 4.2 3.9 8.6 8.3 47.7 44.4 22.2 14.8 11.1 8.9 7.4 6.3 . 5.5 4.9 4.4 4.0 8.7 38.0 18.9 12.6 9.5 7.6 6.3 5.4 4.7 4.2 3.8 3.4 8.2 19.0 15.8 10.5 7.9 6.3 5.3 4.5 4.0 3.5 3.2 2.9 2.6 26.0 24.4 12.2 8.1 6.1 4.9 4.1 3.5 3.0 2.7 2.4 20.2 11.1 7.4 5.6 4.5 3.7 3.2 2.8 2.6 2.2 14.4 21.7 14.7 7.4 4.9 3.7 2.9 2.5 15.8 13.1 6.6 4.4 3.3 2.6 2.2 10.2 5.8 3.9 2.9 2.3 1.9 0.02 2 3 4 5 6 10.1 6.7 5.1 4.1 3.4 2.9 2.5 2.2 2.0 0.07 0.15 0.27 0.41 0.60 7 8 9 10 11 12 13 14 2.1 1.8 i."9" 1.0 1.7 1.5 0.81 1.06 1.34 1.66 2.00 2.38 2.80 3.24 Loads above upper horizontal lines will produce maximum allowable shear in webs. Loads below lower horizontallines will produce excessive deflections. For maximum safe loads, see page 221. 233 CARNEGIE STEEL COMPANY Eh O o a a p. a P o a < o 3 o s fa H iJ a b-cOCO OOOOOO CD rH CO CO rH CO t-_ t- b- OOOOOO CM t> CM CO CO CM oot-t»cotocD ooooo OrHCDrHCD in id tp •& co S « Sep' CM oooooo ooscocDOsr- oososoot>b- r-l OOOOOO OS ■^00'^ CM 00 co oo b- t-- 1> co ooooo: rHlfjO^O! co »o »o ^i ^ .' n heavy hoi urn loads for !? dotted ho e excessive c CO CM oooooo CD CO i-h CO CO Tfl i-iOOOiOOOO rHrHrH oooooo ]> rH ■<£ rH CO ^* os os co cor- 1-- ooooo; cdo^coco: co co o ■* Tt< : OOOOOO CDQOOCN-tftN CM rHrHOOS OS rHrHiHi-H oooooo cDOSCMQOiOrH oososcoooco OOOOO; CM CD OS CO I>; I>CDifjtOT»^00 i-HOOOSOiCO HrtH ooooo: OS CM »D CO CM : ooooo cOO^oOtM iOiOtJ(c0C0 Load are Load will O CM OOOOOO COCOCOTl^rH ITJ ^ CO CM rH rH rt rH rH rH i-H rH OOOOOO osocNb-coi> MNHOO03 i-trHi-HrHrH ooooo OOOCM-HHN oo co r- co o ooooo CM lO OS CM CO CO»O^TJ1CO : oooo CMCOO» ^COCON OS OOOOOO as os oo i-- co co COO^CONtN j-i rH r-i 1-4 rH rH oooooo coco^co-^co ^COCNrKrHO HHrlHHH ooooo -OOOOrHCO OS 00 CO l> CO ooooo C0rHTPI>O CO CO ^-^Tji oooo COOCOrH ■^^eoco-. 00 OOOOOO OS^U3COOI> 00 t> CO O ■<* CO OOOOOO 0JC0 00CMt>O iO"#COC0CNCN OOOOO coooososo OOS001>t> OOOOO COMON^ b-CDCOiO 1 * oooo CM>01>10- 10-* CO CO t- 2120 1980 1850 1710 1570 1540 OOOOOO co co irj oo co id i> co io -<*■<* co ,H i-H i-H rH rH rH ooooo HOO02C0 CMrHOC0I> r-i-r-\r-i ooooo lO CDt- 00 OS oo i> cole-* oooo 00OCM0S ifjirj-^ico cO rH OOOOOO OS tJI 00 CO CO Tt» cocNOOsr-b- CN CM CM rHrHrH OOOOOO rH 00 lO t» rH (N OOONCOCOlD (M i-H i-H rH rH rH OOOOO t-iOCMOOS COCMrHOCO t-\ i-H i-i i-H ooooo CO COCO CD CO 03 00 1* CD tO oooo irjcob-Tti CDiO-^i^t* 1C O OO O O o (NiOOOCNCO N»OCO CO rH oooo iC-^t^O- t^eowio •* OOOOOO CNCMCNCNtNC- rHOS^lOCOCM CO 0 00 00 rH OS CO ■# CM rH rH OS (M CM CM CM CM rH ooooo OSCOb-rHCO b- CO 1 * CO rH i~i rH r~i i-H T-i ooooo CO CM OS CO CO CMrHOSOOt- i-i i-H oooo CD-HHCNr- coi>coio CO oooooo CM OS CO OSOCNiO OOOb-i-OCO (^ T-i r-1 T-t r-t ooooo COOOOl* ■* CO rH OS CO i-H i-HrH oooo OSIOrHCD ocot*«o CM i-H OOOOOO locoococoas CMOSOTfirHO ■^ CO CO CO CO CO OOOOOO OO^OcDb-rH lO CO rH OS 00 I> CO CO CO CM CM CM OOOOO COrHOOOCO lO CO rH OS oooo cDOtPCO rHOOOt* iH oooooo coco rH oo cor- ON^ONtD lO tJ) -^ t}< CO CO OOOOOO CD b- OS CO i-H CM CM OS CD lO T}i CM ■* CO CO CO CO CO ooooo OS CO 00 (N0O 00 CO CO rH 00 CNCMCNCNrH ooooo ■^CMOCSOO OOOCDCOrH CM rH rHrHi-H OOOO OSOSOCO COrHOOS O T-l oooooo CM CO CO tH lO U3 i-H b- CO OS W "* CO iO >0 ■<*<■* ^ oooooo lOrHb-NCOO rH CO ■<* CM rH OS K3 Tt* -^ Tti ^< CO ooooo oosn-coco iOt-hx»tjcm co co cm cm cm OOOOO COO^OOCO ^CMOSCD^ CMCMrHrHrH 1680 1440 1210 1120 CJ oooooo lOt-OJOCNOS lOOlOrHCO-* t>f-CDCOiOiO OOOOOO CO-*(NNOH CO OS lO CM rH CO to iO *0 iO iD ■"# ooooo CM Tj^lO CD rH COOSlfirHCO Tti CO CO CO «i- OOOOO ■*CMOb-cD ON^Ob- CO CM CM CM rH 2070 1780 1490 1380 CO OOOOOO COlO-^CMrHlO ID OS CO O i-H OS OS 00 00 1> l> CD oooooo iC i-H CO CO lO OS ©iDOscO^O CO l> CO CO CO CO ooooo t-QOOSOCO iO^tH^CO ooooo lO-tfcOtNCO CONOCO CM CO CO CO CM CM 2620 2250 1880 1750 r- oooooo OS OS OS OS OS h- -^COOOOCMO CMrHOOOSOS rHrHiH i-H oooooo i-H i-H CM rH CO CD ID CO rH t*. t* OS oososcooot^ rH OOOOO lOOCDCMiO i-HifJOOCMCD t^cooio-^ ooooo CO OS CO CO r-l O-tfOS-^OS irj-^cococM 3420 2940 2460 2290 co oooooo OrHCMCOTtiOCM ID •* ■* CO CO CO oiooiao TjfcOCOCMCM WOWOU5 CO CO CM CM rH CM W3O10C0 CMNrHrH. saqouj q»*>a ID rH CO CM o OS 234 BEAM SAFE LOADS Eh O O « m t7J a z p o a < o o fa H « O 02 55 55 CO OS ■* *■* CO CO CM rH o oo o o io o -^ OS -* cd CO' io ^ ■* 6 o ooo CM IN CM CO CO iO t}H tF CO CO oooo IO rH t> Tt< CO CO CM CM 11 . li i| CO i— 1 o o o o o 10 OS CO t^ rH N P « lO O oo oo g O T}i OS -^ CO CO iO ^ ^ co oooo rH CD CM N ^ CO CO CM CM o oo o o CO rH ^ t- O CO 00 b* CD CO O O O o o O "tf CO rH IO t^- CD lO iO ^t* oooo: oo co t> cm ; ^ ^ co co ; ooo -h CO CM CO CM CM o O. rH ooo o o WNOOOiH O OS CO IN t^ oo o o o ■tf CD 00 rH CO CO l> CD CD »0 o o o or r» rH Tti co : io io -* co : OOO NHO CO CO CM > O rH O O O o o IN rH O OS CO rH f-i rH ooo oo rH CM CO rJ4 t44 O OS 00 IN CO oooo OS CM ^ CD CO co iO -tf ooo: *# co cm : ■^ co co; OOO -* CM O CM CM CM CI 1570 1440 1310 1190 1060 O O O O O IO ^ CM rH OS NHOOSN y-\ r-l rH oooo CD CD CO N 00 t> CD iO O O O; io i> c ; lO ^ CO; t OOO O GO lO CO CM CM 00 o o o o o OS CO CD C lO OS CO CD iO CO O OOOO CO ■* OS iO o IO r}4 CM rH O r-* rH i~t rH ^ oooo OS CO Tji CM O OS CO t^ 1~i ooo OS OS OS CO io -^ O OC CO iO CM CO CO CO O o o o o o O OS t> CD CO CD CO rH 01 C- NNNHH o o o o o CD CO OS O rH O CO CD IO CO CM •-* i-t i-i i-i OOOO CM CO O ■* ■* CM rH OS ooo rH N- ip OS N CO OOO O O rH iO ^ ^ OOO o r* ■* CO CM CM 3 OOO o o rH l> CM N Tf< OMONO MMNNIN oo ooo OS CO CO ^ CM CO rH OS t* lO CM CM rH rH rH OOOO rH CD t^ OS CD t}4 CM O rH r-i rH rH ooo wow O OS In t-t OOO CO CO 00 »o io ■-# OOO iO iH CO CO CO CM CO o o o o o ■* iO CD 1> OS iO CN OS CD CO CO CO CM CM CM O O O O O rH "O o »o OS KHOCOON CM CM (N (N rH 1930 1710 1490 1280 ooo CO iO 00 CM O 00 ooo 00 CM CD CO CO io OOO rH I> CM -(44 CO CO r*- io o o O o O rH CO CM I s - IO M 00 lO rH CO •Sti CO CO CO CN o oo oo •^ «sJ4 •* CO CM CO O N- ^ rH CO CO, CM CM CM OOOO O ^ CO CO CO O l> IO CM CM rH rH ooo IN iO io -* CM O r-i ^-\ r-t ■ ooo rH -^t 1> co N CO ooo OS CO CO Tjt ^* CO IC o o o o o OS CO CO -* lO O CO CM 00 -^ IO Tt* tJI CO CO o o ; o o o O CD CO OS iO ■^ CO CO CM CM OOOO 00 CO lO lO N ^ rH 00 CM CM CM rH ooo 00 rHI> t^ »0 CM r-i j-^ i-i ooo 00 OS rH OS CO 00 ooo OS CO t* IO >o <* oo o o o os i> co •* io IN t> CM CD IO IO -^ -^ O O O O O as th as ^ t> OS lO O CO rH tJ4 ^i *^1 CO CO OOOO CO -* iO oo -* O CO CM CO CO CM CM OOO OS IN CO rH 00 IQ CM r-l rH ooo ooo CM rH O ooo co »o t* t-- CO 10 •* o o o o o CO rH IO O 00 OS CO CD O CO t- r» co co io OOO O o CM iO CO O CM co r- rH cd o CO IO lO r}t ^J4 OOOO ^ lO CO OS CO 00 CO 00 t* CO CO CM OOO 1> t- CO ^ CO OS CM CM rH ooo CM OS CO 10 CO CM r-t r-t f-t ooo CM CM CO os go In rS CO O O O o o rfl iO CD 00 O o os co i> r*- rH O OO OO IO rH CO rH lO (N lO l> O CM 00 t* CO CD 10 OOOO t» CO OS t-- CO O CO IN 10 lO^CO OOO CM OS CO CO O iO CO CO CM ooo OS CM iO OS X CO r^ rH rH ooo O In »0 CM O OS CO o O O O o lO OS CO I> l> rH OS CO CO IO Tt* CM r-i O OS i-f rH rH r^ O O O O O CO CM O 00 tH CM CM CM rH rH rH O OS CO t- rH r-^ OOOO CM ^ IN CO r- co os rH r*. cd io io OOO CO rH CM OS CM iO ■^ ^t CO ooo rH CO »0 t- ■* CM CM CM CM OOO CO CO OS CD TftCM rH rH rH rS CM ■o o o o o CO rH CO CO CO CO IN O CO t- O 00 l> iO CO CM rH r^ rH r-< OO o o o CO rH lO CO CO rH f- CM N- CM CO rt< CO rH O rH rH rH rH rH 11110 9860 8600 7390 ooo O CD CD rH O O N CO 10 ooo OS lOCM CO CO CO OOO lOO CO CO iH CO CM CM rH CM 31S40 29230 26610 24000 o o CO rH 25280 22990 20700 18410 O o t> 17360 15400 13440 11550 ooo O CO rH rH Tt< OS rH OS t^ rH OOO OSI> CO O lOO CO io »o OOO CO OS rH CD CM OS CO CO CM 9° lad e )unO(j iO iO iO lO iO rH CO* CO CO rH CM rH rH rH rH iO lO iO iO iO IN CM IN CM IN 05 1^* ^ CM OS w^ rH r-t i-t io o io q io co d co rH rH rH io q io rH OS CO lO 10 io CM CM CM In CD iO oqq CO IO Tji ssqoaj 'i^daa » t> CO »0 *t CO 235 C ARNEQIE STEEL COMPANY , EQUAL ANGLES Allowable Uniform Load in Thousands of Pounds Neutral Axis Parallel to Either Lee Maximum Bending Stress, 16,000 Pounds per Square Inch lFoot Maximum Span 1 Foot Maximum Span Size, Thick- ness, Inches Span 360x Deflection Size, Inches / Thick- ness, Inches Span 360 x Deflection Inches Safe Safe Length, Safe Safe Length, Load Load Feet Load Load Feet ,8x8 IX 186.99 8.31 22.5 3Hx3K « 24.00 2.55 9.4 8x8 1A 177.81 7.87 22.6 3^x3>£ X 22.51 2.37 9.5 8x8 1 168.53 7.43 22.7 3^x3Ji ii 20.91 2.18 9.6 8x8 8x8 8x8 X 159.15 149.55 139.84 6.98 6.53 6.08 22.8 22.9 23.0 3Hx3^ 3Ax3y 2 3A*3X 3y 2 x3y 2 X A X A 19.31 17.60 15.89 14.08 2.00 1.81 1.62 1.42 9.7 9.7 9.8 9.9 8x8 % 130.03 5.63 23.1 3^x3^ X 12.27 1.23 10.0 8x8 n 120.00 5.18 23.2 3^x3^ A 10.45 1.04 10.1 8x8 X 109.87 4.73 23.2 3Mx3« a 8.43 0.83 10.2 8x8 8x8 A X 99.63 89.28 4.28 3.82 23.3 23.4 3x3 3x3 x A 13.87 12.69 1.69 1.53 8.2 8.3 3x3 X 11.41 1.37 8.3 6x6 1 91.41 5.48 16.7 3x3 A 10.13 1.21 8.4 6x6 u 86.51 5.16 16.8 3x3 % 8.85 1.04 8.5 6x6 X 81.39 4.84 16.8 3x3 A 7.57 0.88 8.6 6x6 a 76.27 4.51 16.9 3x3 X , 6.19 0.71 817 6x6 ■H 71.04 4.18' 17.0 2^x2}^ X 7.79 1.15 6.8 6x6 H 65.81 3.85 17.1 2HX.2H A' 6.93 1.01 6.9 6x6 X 60.37 3.51 17.2 2^x2}^ X 6,08 0.87 7.0 6x6 A 54.83 3.17 17.3 2^x2^ A 5.12' 0.72 7-1 6x6 X 49.17 2.83 17.4 2^x2}^ ■H 4.16 0.58 7.2 6x6 A 43.41 2.48 17.5 2^x2J^ A 3.20 0.44 7.3 6x6 X 37.65 2.14 17.6 2Mx2J^ X 2.13 0.29 7.4 2x2 A 4.27 0.79 5.4 5x5 1 61.87 4.55 13.6 2x2 % 3.73 0.68 5.5 5x5 58 58.56 4.28 13.7 2x2 A 3.20 0.57 5.6 5x5 X 55.15 4.00 13.8 2x2 X 2.67 0.46 5.7 5x5 5x5 % 51.73 48.32 3.73 3.45 13.9 14.0 2x2 2x2 A X 2.03 1.39 0.35 0.24 5.8 5.8 5x5 a 44.80 3.18 14.1 lHxi'A 7 3.20 0.68 4.7 5x5 % 41.17 2.90 14.2 iMxl% X 2.77 0.60 4.7 5x5 A 37.44 2.62 14.3 lJixlM A 2.45 0.51 4.8 5x5 5x5 5x5 X I 7 ff X 33.60 29.76 25.81 2.34 2.06 1.78 14.4 14.5 14.5 JHxiM iMxlM X ft X 2.03 1.49 1.07 0.41 0.30 0.21 4.9 5.0 5.1 l^xlH X 2.03 0.51 4.0 4x4 4x4 n 32.11 29.97 2.95 2.73 10.9 11.0 iMxlH l^xlj^ l^xlJ4 6 Iff M ft 1.71 1.39 1.07 0.42 0.33 0.25 4.1 4.2 4.3 4x4 \\ 27.84 2.51 11.1 lHxlK X 0.77 0.17 4.4 4x4 4x4 % A 25.60 23.36 2.29 2.07 11.2 11.3 lKxlM WxiH A 1.17 0.97 0.36 0.29 3.3 3.4 4x4 X 21.01 1.85 1114 UixiH A 0.76 0.22 3.5 4x4 A 1S.W 1.63 11.4 lKxlH H 0.52 0.14 3.6 4x4 % 16.21 1.41 11.5 1 x 1 X 0.60 0.22 2 6 4x4 A 13.76 1.19 11.6 1 X 1 A 0.47 0.17 2.7 4x4 ' X 11.20 0.96 11.7 1 X 1 H 0.33 0.12 2.8 236 BEAM SAFE LOADS UNEQUAL ANGLES Allowable Uniform Load in Thousands or Pounds Neutral Axis Parallel to Shorter Lee Maximum Bending Stress, 16,000 Pounds per Square Inch lFoot Maximum Span lFoot Maximum Span Size, Thick- ness, Inches Span 300 x Deflection Size, Inches Thick- ness, Inches Span 360 x Deflection Inches Safe Safe Length, Safe Safe Length, Load' Load Feet Load Load Feet 8x6 1 161.17 7.49 21.5 6 x3H 1 83.52 5.57 15.0 8x6 IS 152.21 7.04 21.6 6 x3H iS 79.04 5.24 15.1 8x6 % 143.04 6.59 21.7 6 x3M % 74.45 4.90 15.2 8x6 a 133.87 6.14 21.8 6 x3« ii 69.87 4.57 15.3 8x6 H 124.48 5.68 21.9 6 x3J^ % 65.07 4.23 15.4 8x6 ii 114.88 5.22 22.0 6 x3Ji ii 60.27 3.89 15.5 8x6 K 105.28 4.76 22.1 6 X3M H 55.36 3.55 . 15.8 8x6 ft 95.47 4.30 22.2 6 x3^ ft 50.35 3.21 15.7 8x6 a 85.55 3.84 22.3 6 x3M X 45.23 2.86 15.8 8x6 ft 75.41 3.37 22.4 6 x3K ft 40.00 2.52 15.9 8 x3H 8 x3M i iS 146.03 138.03 7.53 7.08. 19.4 19.5 6 6 x3H x3X H ft 34.67 29.23 2.17 1.83 16.0 16.0 8 i3M « 129.92 6.63 19.6 8 x3M ii 121.60 6.17 19.7 5 x 4 % 53.23 4.00 13.3> 8 x3V 2 M 113.17 5.72 19.8 5 x 4 ii 50.03 3.73 13.4 8 x3J^ ii 104.58 5.23 19.9 5 x 4 M 46.61 3.46 13.5 8 X3H « 95.79 4.78 20.0 5 x 4 ii 43.20 3.19 13.5 8 x3^ n 13 86.93 4.32 20.1 5 x 4 % 39.79 2.92 13.6 8 x3H X 77.97 3.86 20.2 5 x 4 ft 36.16 2.64 13.7 8 x334 ft 68.80 3.39 20.3 5 x 4 H 32.53 2.36 13.8 7 x334 l 112.85 6.52 17.3 5 5 x 4 x 4 ft 28.80 24.96 2.07 1.78 13.9 14.0 7 x3H H 106.67 6.13 17.4 7 x3H 7 I3« 7 X3J4 7 x3M 7 x3M 7 x3M 7 x3M % li H U % A H 100.48 94.08 87.68 81.07 74.35 67.52 60.59 5.75 5.36 4.97 4.58 4.18 3.77 3.37 17.5 17.6 17.6 17.7 17.8 17.9 18.0 5 5 5 5 5 5 5 x3H x3M x3M x3M x3K x3M x3M x3^ x3H % 11 % ii H ft 52.05 48.85 45.65 42.35 38.93 35.41 31.89 4.04 3.76 3.49 3.21 2.93 2.64 2.36 12.9 13.0 13.1 13.2 13.3 13.4 13.5 7 x3H ft 53.44 2.96 18.1 5 ft 28.16 2.07 13.6 7 x3M % 46.19 2.54 18.2 5 « 24.43 1.79 13.7 6x4 l 85.55 5.56 15.4 5 x3H ft 20.69 1.51 13.7 6x4 i§ 80.96 5.22 15.5 6x4 % 76.27 4.89 15.6 5 x 3 38 47.47 3.77 12.6 6x4 58 71.47 4.55 15.7 5 x 3 M 44.37 3.49 12.7 6x4 K 66.67 4.22 15.8 5 x 3 ii 41.17 3.22 12.8 6x4 1* 61.65 3.88 15.9 5 x 3 « 37.87 2.94 12.9 6x4 % 56.64 3.54 16.0 5 x 3 A 34.45 2.65 13.0 6 x 4^ ft 51.52 3.20 16.1 5 x 3 H 31.04 2.37 13.1 6x4 X 46.19 2.85 16.2 5 x 3 ft 27.52 2.09 13.2 6x4 ft 40.2,5 2.51 16.3 5 x 3 « 23.89 1.80 13.3 6x4 « 35.41 2.16 16.4 5 x 3 A 20.16 1.51 13.4 237 CARNEQIE STEEL COMPANY UNEQUAL ANGLES Allowable Unifokm Load in Thousands of Pounds Neutral Axis Parallel to Shorter Leg Maximum Bending Stress, 16,000 Pounds per Square Inch 1 Foot Maximum Span 1 Foot Maximum Span Size, Inches Thick- ness, Inches Span 360 2: Deflection Size, Inches Thick- ness, Inches Span 360 x Deflection Safe Safe Length, Safe Safe Length, Load Load Feet Load ' Load Feet 4K x 3 it 38.61 3.36 11.5 3 x2K A 12.27 1.53 8.0 4*3 x 3 % 36.05 3.11 11.6 3 x2H X 11.09 1.37 8.1 4^x 3 ii 33.49 2.87 11.7 3 x2K A 9.92 1.22 8.1 4^x 3 H 30.83 2.62 11.8 3 x2H M 8.64 1.06 8.2 4^x 3 A 28.16 2.38 11.8 3 x2H A 7.36 0.89 8.3 4^x 3 X. 25.28 2.13 11.9 3 x2H M 5.97 0.71 8.4 4^x 3 ft 22.40 1.87 12.0 4J^x 3 19.52 1.61 12.1 3x2 X 10.67 1.39 7.7 V/z x 3 A 16.43 1.35 12.2 3x2 A 9.49 1.22 7.8 3x2 « 8.32 1.05 7.9 4 x-3H t» 31.15 2.94 10.6 3x2 A 7.04 0.88 8.0 4 x3H M 29.23 2.73 10.7 3x2 M _ 5.76 0.71 8.1 4 x3H IS 27.20 2.52 10.8 4 x3H % 25.07 2.30 10.9 2Hx 2 . X 7.47 1.15 6.5 4 x3M A 22.93 2.08 11.0 2^x 2 A 6.72 1.02 6.6 4 x3J^ H 20.69 1.86 11.1 2Hx 2 % 5.87 0.88 6.7 4 x3K ft 18.35 1.64 11.2 2Hx 2 A 5.01 0.74 6.8 4 x3J^ H 16.00 1.41 11.3 2J^x 2 M 4.05 0.59 ' 6.9 4 x3M A 13.44 1.18 11.4 2Hx 2 A 3.09 0.44 7.0 2X* 2 H 2.13 0.30 7.1 4x3 li 30.61 2.97 10.3 4x3 n: 28.59 2.75 10.4 2J^xlK A 4.69 0.73 6.4 4x3 ft 26.56 2.53 10.5 2X*1X k 3.84 0.59 6.5 4x3 M 24.53 2.31 10.6 2)^x1)4 A 2.99 0.45 6.6 4x3 A 22.40 2.09 10.7 4x3 4x3 M A 20.16 17.92 1.87 1.64 10.8 10.9 2JixlJ^ X 5.76 1.02 5.6 4x3 M 15.57 1.42 11.0 2J£xlM ft 5.12 0.90 5.7 4x3 A 13.12 1.19 11.0 2Mxl}^ 4.48 0.77 5.8 1 4x3 M 10.67 0.96 11.1 2JixlJ^ ft 3.84 0.65 5.9 2KxlH M 3.20 0.53 6.0 3^x 3 i8 23.47 2.57 9.1 2MX1H A 2.45 0.40 6.0 3J^x 3 K 21.87 2.38 9.2 3Kx 3 II 20.37 2.19 9.3 2 xlH % 3.63 0.70 5.2 3^x 3 18.77 2.00 9.4 2 xlj^ A 3.09 0.58 5.3 3Kx 3 A 17.17 1.81 9.5 2 xlK Ji 2.56 0.47 5.4 3^x 3 H 15.47 1.62 '" 9.5 2 xlX A 1.92 0.35 5.5 8Hx 3 A 13.76 1.43 9.6 2 xlM X 1.39 0.24 5.6 3Hx 3 12.05 1.24 9.7 3^x 3 A. 10.24 1.05 9.8 2 xlM H 2.45 0.47 5.2 3)4 x 3 H 8.32 0.84 9.9 2 xlM A 1.92 0.36 5.3 3Kx2H 3^x2^ 3Hx2^ 3!^x2H U % A 19.73 18.24 16.64 15.04 2.19 2.00 1.82 1.63 9.0 9.1 9.1 9.2 lJixlJi l&xlH lMxlM A X 1.92 1.49 1.00 0.42 0.32 0.21 4.6 4.7 4.8 3Hx2H A 13.44 1.44 9.3 3^x2M Vs 11.73 1.24 9.4 lHxlj* A 1.71 0.44 3.9 3J4x2J4 A 9.92 1.04 9.5 lXxlH K 1.39 0.35 4.0 3Hx2J^ 1 J£ 8.00 0.83 9.6 lKxlK A 1.07 0.26 4.1 238 BEAM SAFE LOADS UNEQUAL ANGLES • Allowable Uniform Load in Thousands of Pounds Neutral Axis Parallel to Longer Leg Maximum Bending Stress, 16,000 Pounds per Square Inch 1 Foot Maximum Span 1 Foot Maximum Span Size, Inches ' Thick- ness, Inches Span 360x Deflection Size, Inches Thick- ness, Inches Span 360x Deflection Safe Safe Length, Safe Safe Length, Load Load Feet Load Load Feet 8x6 1 95.15 5.44 17.5 6 x3M 1 30.93 3.09 10.0 8x6 i5 89.92 5.11 17.6 6 x3M is 29.23 2.90 10.1 8x6 % 84.69 4.79 17.7 6 x3H % 27.63 2.71 10.2 8x6 i% 79.36 4.45 17.8 6 x3K if 25.92 2.52 10.3 8x6 H 73.92 4.13 17.9 6 x3H X 24.21 2.33 10.4 8x6 a 68.37 3.80 18.0 6 x3M ii 22.51 2.14 10.5 8x6 % 62.72 3.48 18.0 6 x3M 6 A 20.69 1.95 10.6 8x6 ft 56.96 3.15 18.1 6 x3H A 18.88 1.76 10.7 8x6 14 51.09 2.81 18.2 6 x3H X 16.96 1.57 10.8 8x6 A 45.12 2.47 18.3 6 x3H A 15.04 1.38 10.9 6x3^ y% 13.12 1.19 11.0 8 x3J4 l 32.21 3.10 10.4 6 x3J^ ft 11.09 1.00 11.1 8 x3M if 30.40 2.90 10.5 8 x3K 8 x3M 8x3^ 8 x3H 8 x3H 8 x3K 8 x3H 8x3^ is x , » ft 28.69 26.88 25.07 23.15 21.33 19.41 17.49 15.57 2.71 2.52 2.33 2.13 1.94 1.74 1.57 1.38 10.6 10.7 10.8 10.9 11.0 11.1 11.2 11.3 5x4 5x4 5x4 5x4 5x4 5x4 5x4 5x4 % if H ii H A x 35.31 33.17 30.93 28.69 26.45 24.11 21.76 19.31 3.15 2.93 2.71 2.50 2.28 2.16 1.84 1.62 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 7 x3H 1 31.57 3.10 10.2 5x4 % 16.75 1.40 12.0 7 x3H if 29.87 2.90 10.3 7 x3J4 ft 28.16 2.71 10.4 5 x3}4 % 26.88 2.71 9.9 7 x3H H 26.45 2.52 10.5 5 x3M ii 25.28 2.53 10.0 7 x3H M 24.64 2.33 10.6 5 x3M X 23.68 2.34 10.1 7 x3M » 22.83 2.14 10.7 5 x3M a 21.97 2.15 10.2 7s3H M 21.01 1.95 10.8 5 x3J^ % 20.27 1.97 10.3 7i3X A 19.20 1.76 10.9 5 x3^ A 18.45 1.78 10.4 7 x3M H 17.28 1.57 11.0 5 x3J^ X 16.64 1.60 10.4 7x3^ A 15.36 1.38 11.1 5x3K ft 14.83 1.41 10.5 7 x3^ H 13.44 1.19 11.2 5 x3M H 12.91 1.22 10.6 5x3J< A. 10.88 1.02 10.7 6x4 1 40.43 3.55 11.4 6x4 6x4 6x4 if M « it 38.29 36.16 33.92 3.33 3.12 2.90 11.5 11.6 11.7 5x3 5x3 if X 18.56 17.39 2.16 2.00 8.6 8.7 6x4 31.68 2.69 11.8 5x3 ii 16.11 1.83 8.8 6x4 29.44 2.47 11.9 5x3 % 14.83 1.67 8.9 6x4 % 27.09 2.26 12.0 5x3 ft 13.55 1.51 9.0 6x4 A 24.64 2.05 12.0 5x3 X ; 12.27 1.35 9.1 6x4 H 22.19 1.84 12.1 5x3 ft 10.88 1.18 9.2 6x4 A 19.73 1.62 12.2 5x3 y% 9.49 1.02 9.3 6x4 % 17.07 1.39 12.3 5x3 A 8.00 0.85 9.4 239 ! CARNEGIE STEEL COMPANY UNEQUAL ANGLES Allowable Unifobm Load in Thousands of Pounds Neutral Axis Parallel to Longer Leg: Maximum Bending Stress, 16,000 Pounds per Square Inch 1 lFoot Maximum Span lFoot Maximum Span Size, Inches Thick- ness, Inches Span 360x Deflection Size, Inches Thick- ness, Inches Span 360x Deflection Safe Safe Length, Safe Safe Length, Load Load Feet Load Load Feet 1H:3 5? 18.24 2.15 8.5 3 x2)4 A 8.75 1.25 7.0 4)4 x 3 M 17.07 1.99 8.6 3 x2J^ X 7.89 1.12 7.0 4^x 3 II 15.89 1.83 8.7 3 x2)4 n 7.04 0.99 7.1 «x3 14.61 1.67 8.8 3 x2)4 6.19 0.85 7.2 Oix 3 ft 13.33 1.51 8.8 3 x2% A 5.23 0.72 7.3 4)4 x 3 K 12.05 1.35 8.9 3 x2)4 M 4.27 0.58 7.4 4}^x 3 A 10.77 1.19 9.0 4)4 x 3 % 9.39 1.03 9.1 3x2 J4 5.01 0.88 5.7 4J4.X 3 6 13 8.00 0.87 9.2 3x2 iA 4.48 0.77 5.8 3x2 3.95 0.67 5.9 4 x3)4 13 24.53 2.56 9.6 3x2 P. 3.41 0.57 6.0 4 x3)4 H 22.93 2.37 9.7 3x2 2.77 0.46 6.1 4 x3K is 21.33 2.18 9.8 4 x3)4 H 19.63 1.98 9.9 2J4x 2. 34 4.91 0.89 5.5 4 x3)4 *. 17.92 1.79 10.0 2)^x 2 A 4.37 0.78 5.6 4 x3)4 a 16.21 1.60 10.1 2)4x 2 % 3.84 0.67 5.7 4 X3J4 A 14.40 1.41 10.2 2)4x 2 A 3.31 0.57 5.8 4 x3)4 k 12.59 1.22 10.3 2Hx 2 tf 2.67 0.46 5.9 4 x3J4 A 10.67 1.03 10.4 2)4x 2 A 2.13 0.35 6.0 4x3 li 17.92 2.15 8.3 2)4x 2 H 1.49 0.23 6.1 4x3 16.75 1.99 8.4 4x3 15.57 1.83 8.5 2J4xl}j ft 1.81 0.41 4.4 4x3 14.40 1.67 8.6 2)4xl.i4 Yi 1.49 0.33 4.5 4x3 13.12 1.51 8.7 2^x1^ A 1.17 0.25 4.6 4x3 M 11.84 1.35 8.8 i 4x3 A 10.56 1.19 8.9 2MX1J4 34 2.77 0.67 4.1 4x3 % 9.28 1.03 8.9 2^x1)4 7 8 2.45 0.58 4.2 4x3 A 7.89 0.87 9.0 2Mxl^ 2.13 0.50 4.3 4x3 Ji 6.40 0.70' 9.1 2^x1)4 A 1.81 0.41 4.4 / 2&X1J4 a 1.49 0.33 4.5 3)4 x 3 it - 17.60 2.17 8.1 2^x1)4 A 1.17 0.25 4.6 3)4 x 3 H 16.43 2.01 8.2 3)4 x 3 H 15.36 1.85 8.3 2 xlii % 2.13 0.51 4.2 3)4 x 3 % 14.19 1.69 8.4 2x1)4 A 1.81 0.42 4.3 3)4 x 3 A 12.91 1.52 8.5 2 xl)4 H 1.49 0.34 4.4 3J4x 3 H 11.73 1.36 8.6 2 xiy 2 A 1.17 0.26 4.5 3)4 x 3 k 10.45 1.20 8.7 2 xl)4 ^ 0.80 0.17 4.6 3)4x 3 9.07 1.04' 8.7 3)4 x 3 3)4 x 3 A H 7.68 6.19 0.87 0.70 8.8 8.9 2 xVtf 2 xVtf A 1.04 0.80 0.28 0.21 3.7 3.8 3)4x2)4 11 10.56 1.51 7.0 3)4x2)4 M 9.81 1.39 7.1 Vtf.-x.VA, M 1.01 0.28 3.6 3)4x2K A 8.96 1.26 7.1 VtfxlX A 0.80 0.22 3.7 3)4x2^ )4 8.11 1.13 7.2 Vtfxltf, 34 0.56 0.15 3.8 3^x2M A ■. 7.25 0.99 7.3 3)4x2)4 M 6.29 0.85 7.4 VAxltf. A 1.17 0.34 3.4 3)4x2)4 A 5.33 0.71 7.5 lHxiJi X 0.99 0.28 3.5 3)4x2)4 K 4.37 0.58 7.6 i)4xlK A 0.78 0.22 3.6 240 BEAM SAFE LOADS TEES Allowable Uniform Load in Thousands of Pounds Neutral Axis Parallel to Flange Maximum Bending Stress, 16,000 Pounds per Square Inch EQUAL TEES Size Weight per Foot, Pounds lFoot Span Maximum Span 360x Deflection Size Weight per Foot, Pounds lFoot Span Maximum Span 360 x Deflection Flange, Inches Stem, Inches Flange, Inches Stem, Inches Safe Load Safe Load Length, Feet Safe Load Safe Load Length, Feet 6H 6H 19.8 52.80 2.77 19.1 2Ji 2M 4.9 4.37 0.69 6.3 4 4 13.5 21.55 1.89 11.4 2K 2M 4.1 3.41 0.53 6.4 4 4 10.5 16.85 1.45 11.6 2 2 4.3 3.31 0.59 5.6 3A 3H 11.7 16.32 1.65 9.9 2 2 3.56 2.77 0.49 5.7 • 3K 3H 9.2 12.69 1.27 10.0 1M IX 3.09 2.03 0.41 4.9 3 3 9.9 11.73 1.41 8.3 1A 1H 2.47 1.49 0.36 '4.1 3 3 8.9 10.45 1.24 8.4 lA lA 1.94 1.17 0.27 4.3 3 3 7.8 9.17 1.08 8.5 lJi 1M 2.02 1.01 0.30 3.4 3 3 6.7 7.89 0.92 8.6 1H IK 1.59 0.78 0.22 3.5 2A 2A 6.4 6.29 0.90 7.0 1 l 1.25 0.49 0.18 2.7 2M 2K 5.5 5.33 0.75 7.1 l l 0.89 0.35 0.12 2.9 UNEQUAL TEES Size Weight per Foot, Pounds lFoot Span Maximum Span 360 x Deflection Size Weight per Foot, Founds lFoot Span Maximum Span 360 x Deflection Flange, Inches ~5 Stem, Inches Flange, Inches Stem, Inches Safe Load Safe Load Length, Feet y Safe Load Safe Load Length, Feet 3 11.5 11.33 1.25 9.0 3A 3 10.8 12.05 1.42 8.5 - 5 2% 10.9 8.96 1.20 7.5 3A 3 8.5 9.49 1.09 8.7 m 3)^ 15.7 22.72 2.37 9.6 3H 3 7.5 9.07 1.04 8.7 VA 3 9.8 9.71 1.07 9.1 3 4 11.7 20.69 1.92 10.8 iA 3 8.4 8.32 0.90 9.2 3 4 10.5 18.35 1.68 10.9 m 2H 9.2 6.72 0.87 7.7 3 4 9.2 16.11 1.47 11.0 VA 2M 7.8 5.76 0.74 7.8 3 3A 10.8 15.89 1.66 9.6 4 5 15.3 33.39 2.40 13.9 3 3A 9.7 14.19 1.46 9.7 4 5 11.9 25.92 1.84 14.1 '3 3A 8.5 12.37 1.26 9.8 4 iA 14.4 27.09 2.15 12.6 3 2A 7.1 6.40 0.89 7.2 4 iH 11.2 21.12 1.65 12.8 3 2A 6.1 5.55 0.76 7.3 4 3 9.2 9.66 1.08 8.9 2A 3 7.1 8.96 1.08 8.3 4 3 7.8 8.21 0.90 9.1 . 2A 3 6.1 7.68 0.91 8.4 4 2H 8.5 6.61 0.87 7.6 2A 1J€ 2.87 0.93 0.25 3.7 4 2A 7.2 5.65 0.73 7.7 2 1J4 3.09 1.60 0.36 4.4 4 2 7.8 4.27 0.70 6.1 1A 2 2.45 2.03 0.37 5.5 4 / 2 6.7 3.63 0.59 6.2 1M 1M 1.25 0.57 0.15 3.7 3)4 ' 4 12.6 21.12 1.90 11.1 1M % 0.88 0.14 0.07 1.9 ■AVz 4 9.8 16.53 1.46 11.3 241 CARNEGIE STEEL COMPANY ZEES Allowable Uniform Load in Thousands of Pounds Neutral Axis Parallel to Flanges Maximum Bending Stress, 16,000 Pounds per Square Inch Size Weight per Foot, Pounds, lFoot Span Maximum Span Flanges, Inches Thickness, Inches 360 x Deflection Depth,. Inches 'Safe Load Safe < Load Length, Feet •6H 3% j£ 34.6 174.93 14.18 12.3 6ft • 3ft H 32.0 162.35 13.30 12.2 6 3M « 29.4 149.76 12.40 12.1 6'A 3% }J 28.1 150.40 12.19 12.3 6ft 3 IB % 25.4 136.75 11.20 12.2 6 334 ft 22.8 123.20 10.20 12.1 6H 3?< J4 21.1 119.68 9.70 12.3 6ft 3 A ft 18.4 104.85 8.59 12.2 6 3J4 % 15.7 90.03 7.45 12.1 5H 3K H 28.4 119.47 11.58 10.3 5ft 3i 5 a H 26.0 110.29 10.82 10.2 5 3K U 23.7 101.01 i 10.03 10.1 5H - m H 22.6 102.08 9.89 10.3 5ft O 5 ft 20.2 91.95 9.02 10.2 5 3K X 17.9 81.92 8.14 10.1 5H -3% ft 16.4 79.36 7.69 10.3 5ft 3 is H 14.0 68.16 6.69 10.2 5 3M ft 11.6 56.96 5.66 10.1 m 3ft M 23.0 77.44 9.32 8.3 4ft 3K ii 20.9 70.93 8.67 8.2 4 3ft % 18.9 64.53 8.01 8.1 4K 3ft ft 18.0 65.92 7.93 8.3 4ft 3H H 15.9 58.67 / T.Y1 8.2 4 3ft ft 13.8 51.52 6.40 8.1 4M 3ft % 12.5 49.81 6.00 8.3 4ft 3K ft 10.3 41.71 5.10 8.2 4 3ft Ji 8.2 33.49 4.16 8.1 3ft 2^ ft 14.3 36.59 5.93 6.2 3 2*4 H 12.6 32.64 5.40 6.1 3ft 2U ft 11.5 31.79 5.15 6.2 3 2» H 9.8 27.41 4.54 6.1 3ft 2« ft 8.5 25.39 4.12 * 6.2 3 2« K 6.7 20.48 3.39 _ 6.1 242 STRUCTURAL DETAILS STANDARD GAGES AND DIMENSIONS FOR BEAMS 'ft Jr sa.— -M Nominal dimensions are: — flange width and "o" in eighths, web thickness in sixteenths. Gages for connection angles are determined by }4 web thickness. Standard gages may be varied it conditions require. Depth Weight per Foot Flange Width Web Thick- ness MWeb Thick-, ness Gage S Grip P Distance Max. -Beam £ h Flange In. Lbs. In. In. In. In. In. In. In. In. In. 27 90.0 9 X K 4 K 22}* 2K Ho K 24 115.0 110.0 105.0 8 8 7% H Hi. K K 4a 4 4 4 IK IK IX 20 X 20X 20X IK IK IK He Ho K K 24 100.0 95.0 90.0 85.0 80.0 7K 7X 7X 7X 7 Hie K He X K 4a He H 4 4 4 4 4 X X K y% x 20 H 20 H 20 H 20 U 20 Ji IK IK IK IK IK He He % K He K 24 74 9 X X 4 % 20 Ho K 21 60 5 8H He Ho 4 He 17}* IK X K 20 100.0 95.0 90.0 85.0 80.0 7X 7X 7H 7K 7 K Hie H K He H. % K He 4 4 4 4 4 1 1 1 1 1 16}* 16 H 16 y, 16H 16 K IK IK IK IK IK X X He K K K 20 75.0 70.0 65.0 6K 6M 6M Hie He X Ho Ho K 4 4 4 K H K 17 17 17 IK IK IK ,K Ho K 18 90.0 85.0 80.0 75.0 7H 7X 7%e 7 Hi. K H He He He Ho 4 4 4 4 l l 1 l 14 K 14J^ 14}* 14 H IK IK IK IK K K K 18 70.0 65.0 60.0 55.0 6M 6M 6K 6 K H He X K Ho He K 3K 3K 3M 3M K | K 15M 15 J€ 15 K 15M IK IK IK IK He K K He K 18 48.0 7K K He 3M X i*K IK K J* 15" 75.0 70.0 65.0 60.0 6H 6X ex 6 K Hi. Hie K He K Ho 3K 3K 3K 3K X K HM HM UK n % IK IK IK IK K He Ho K K 15 55.0 50.0 45.0 42.0 5K 5% 5% 5X Hie He X He He He V 4a 3K 3K 3K K K K K 12 K 12 H 12 K 12}* IK IK 1M IK 8 He K K 15 37.5 6M He Ho 3K He 12 K IK K K 243 CARNEGIE STEEL COMPANY STANDARD GAGES AND DIMENSIONS FOR BEAMS * — R- Y 1 if" 1 / f 1 !°, -4+1 kB- J q, Nominal dimensions are: — flange width and "o" in eighths, web thickness in sixteenths. Gages for connection angles are determined by X web thickness. Standard gages may be varied if conditions require. Depth of Beam Weight per Foot Flange Width Web Thick- ness HWeb Thick- ness Gage e Grip P Distance Max. Rivet in Flange f h In. Lbs. In. In. In. In. In. In. In. In. In. 12 55.0 50.0 45.0 40.0 5% 5H 5% 5U ls /ie %e X Ma X He M 3M 3M 3 3 H X M X 9M 9M 9M 9M 1% 1H 1M IK X He He M 12 35.0 31.5 SX 5 He X He 3 3 He He 95i 9« 1H 1H He X M 12 28.0 6 He H 3 He 9^ Ui He X 10 40.0 35.0 30.0 25.0 5K 5 4% iX H X X He He Me 2M 2% 2% 2% X X X X 8 8 8 8 l l 1 1 He x ■ He X 10 22.25 5X X H 2M % 7M IX He X 9 35.0 30.0 25.0 21.0 \X *x *X 4% X Me . %8 He M He He X 2M 2X 2X 2X X X X X 7 7 7 7 1 l l l He X X He X 8 ,25.5 23.0 20.5 18.0 4M 4j| 4J| 4 He He He K He X 2X 2X 2X 2X X He He He 6M 6M 6M 6M X % X X He He X He, X, 8 17.5 5 t X X 2X X 6 1 He X 7 20.0 17.5 15.0 3X '3M 3X X X X X He 2X 2X 2X I 5M 5M 5M X X X He X He % 6 17.25 14.75 12.25 3% 3H 3^ x X He H 2 2 2 1 4H 4)4 4« X He He X 5 14.75 12.25 9.75 3M 3X 3 X X X He X 1M IX 1M X H % 3X 3X 3X X He X 4 10.5 9.5 8.5 7.5 2% 2K 2^ 2X He x X Me 1J* IX He He Ho He 2V 2% 2M 2« 1 He X 3 7.5 6.5 5.5 2X 2X 2H ■ X X Ho He H H IX ' IX IX He He He IK IK 1« X n K Mo X 244 „ STRUCTURAL DETAILS STANDARD GAGES AND DIMENSIONS FOR CHANNELS Jkxj i ■H/i • t m : J t°i. $ ial ... »nh-- Nominal dimensions are: — flange width and "o" in eighths, web thickness In sixteenths. Gages for connection angles are determined by web thickness. Standard gages may be varied if conditions require. Gages for channels in riveted channel columns are given on pages 297 to 307. Depth of Channel Weight Flange Web Thick- ness HWeb Thick- ness Gage Grip Distance Max. livet in Foot Width g P f h Flange In. Lbs. In. In. In. In. In. In. In. In. In. 55.0 3% »Ho He 2« m a 12K 12 X IM 74 50.0 3M H ^ 2X Hie l'A !He 15 45.0 3% X , He 2 % 12 X l'A Hie Vs 40.0 3X X ! M 2 'A 12 X l'A He 35.0 3X He X 2 % 12X l'A }4 33.0 3'A He He 2 'A 12 X l'A )% 50.0 i'A . ^He H 3 He 10X l'A I 45.0 IX He 2% He 10 X l'A 13 40.0 ft He He 2M He 10 X l'A X X 37.0 X X 2H He 10 X l'A %. 35.0 *X He' X 2J^ He 10 X l'A 32.0 4 fci ■ He 2H He 10X l'A He 40.0 3X 'A M 2 ' X 10 *He 35.0 3'A X He 2 X 10 "ie 12 30.0 3M. X X IM x 10 Ho X 25.0 3X % He l'A & 10 He 20.5 3 He M 1% X 10 % 35.0 3X m» He l'A X &x X X 30.0 3X Hie ^ 1% % SX % & 10 25.0 2X M X l'A ¥ SX A »Aa 'A 20.0 2'A ^ He IX He sx X He 15.0 2X & . H IX He &x X He 25.0 2% X He IX X 7X % Hie 20.0 2% He X IX X 7X Y> Yi 'A 9 15.0 2H %6 He l'A He IH % & 13.25 2X M ^ l'A He- 7X He 21.25 2M 5-S He IX He . ex % Hie 18.75 2X X K- IX He 6X X . He 8 16.25 2X He He IX He 6M Yi X 'A 13.75 2% He He l'A 'A ex X 'A 11.25 2X Ji X l'A 'A ex X He 19.75 2'H M He IX He 5X M Hie 17.25 2X X M IX He ax 'A He 7 14.75 2% He X IX He 5X 'A X X 12.25 2M He He IX 'A 5X '6 & 9.75 2% M H IX 'A 5X 'A Ha 15.5 2X He He l'A 'A iX % 6 % 13.0 2X Ho M l'A 'A IX. 'A J Y>, X 6 10.5 2X He He IX 'A *tt % 3 8.0 2 He x IX H* ±X 'A H .11.5 2H J£ X IX He 3% % He 5 9.0 IX He He IX He 3'A % 'A , X 6.5 iM He J3 IX He 3M % X 7.25 l'A He He He 2'A % & 4 6.25 l'A X X He 2'A 6 He ,X 5.25 1% He ^ He 2% ,x X 6.0 IX % He Y* H 1% " % I4« 3 i 5.6' 114, X H X l'A t He X 1 4.0 IX He X % X l'A X 245 CARNEQIE STEEL COMPANY BEAM CONNECTIONS 27" *5V$ mffi 2U" U ■f 2L s 4"x4"xy 2 "xl'-8: Weight 46 lbs. !*5Mn mm-^r 2L s 4"x4"x'//xl'-2y/ Weight 33 lbs. 2L s 4"x4"x 7 /o"xO-8W Weight 17 lbs. r; 6," 5- 2!42'/; 2L s 6x4"x%"xO-3" Weight 7 His. .Rivets and bolts %" diameter. 24" 2L s 4"x4"xy 2 "xl'-5!4" Weight 39 lbs. r5V4- 20," 18," 15" 2y 2 " h -I L, LfncTJ "' -1 2K4"x4"x?X6"xO-liy/ Weight 23 lbs. ' 10," 9," 8" 2I?6"x4"x%"x 0-514" Weight 13 lbs. C 3" 2I?6"x4x%"xO-2" Weight 5 lbs. Weights given are for %-inch shop rivets and angle connections; about 20 per cent should be added for field rivets or bolts. 246 STRUCTURAL DETAILS BEAM CONNECTIONS— Concluded Limiting Values op Beam Connections Value of Web Connection .Values of Outstanding Legs of Connection Angles I Beams Field Rivets Field Bolts Depth, Inches Weight Founds per Foot Shop Rivets in Enclosed Bearing, Founds H" Rivets or Turned Bolts, Single Shear, Founds Minimum Allowable Span in Feet, Uniform Load t, In. M" Rough Bolts, Single Shear, Founds^ Minimum Allowable Span in Feet, Uniform Load t, In. 27 90 82530 61900 18.9 % 49500 23.6 H 24 80 74 67500 64260 53000 53000 17.5 16.4 % % 42400 42400 21.9 20.4 21 60M 48150 44200 14.2 % 35300 17.8 % 20 65 45000 35300 17.6 V* 28300 22.1 % 18 55 48 41400 34200 35300 35300 13.3 12.8 % ft 28300 28300 16.7 15.4 n % 15 42 37H 36900 29880 35300 35300 8.9 9.7 28300 28300 11.1 10.2 % a 12 3iy 2 28 23600 19170 26500 26500 8.1 9.2 A A 21200 21200' 9.0 9.2 H 10 25 22M 27900 22680 17700 17700 7.4 6.8 14100 14100 9.2 8.6 % % 9 21 26100 17700 5.7 % 14100 7.1 % 8 18 17J^ 24300 19800 17700 17700 4.3 4.4 % % 14100 14100 5.4 5.5 7 15 11300 8800 6.2 % 7100 7.8 *A 6 12M 10400 8800 4.4 Vs. 7100 5.5 % 5 9M 9500 8800 2.9 % 7100 3.6 % 4 7*4 8600 8800 2.2 9 15 7100 2.7 V% 3 5K 7700 8800 1.3 H 7100 1.4 % Allowable Unit Stbebs in Pounds per Sqttabe Inch Single Shear Rivets Shop 12000 Rivets and Turned Bolts... Field 10000 Rough Bolts Field 8000 Bearing Rivets— enclosed Shop 30000 Rivets— one side. ..... .Shop 24000 Rivets and Turned Bolts, Field 20000 Rough Bolts Field 16000 t=Web thickness, in bearing, to develop max. allowable reactions, when beams frame opposite. Connections are figured for bearing and shear (no moment considered). The above values agree with tests made on beams under ordinary conditions of use. Where web is enclosed between connection angles (enclosed bearing), values are greater because of the increased efficiency due to friction and grip. Special connections shall be used when any of the limiting conditions given above are exceeded— Buch as end reaction from loaded beam being greater than value of connection; shorter span with beam fully loaded; or a less thickness of web when maximum allowable reactions are used. — ' ' " 247 CARNEGIE STEEL COMPANY BEAM SEPARATORS AMERICAN BRIDGE COMPANY STANDARD Beama Separator %" Bolts 8 Weight per Foot, Pounds II O on |1 O 8$ 5 8 Dimensions to ! I is 33 St i i s Hi sjjhrt B . M AS 1 ,g 57 a w In. h In. d In. t In Diagrams 24 115-110-105 8% 16M 8 20 12 % 31 3.6 10^ 3.4 0.25 100 8 15M 7% 20 12 % 28 3.6 10 3.2 0.25 24 95 and 90 8 15J4 7% 20 12 % 28 3.6 10 3.2 0.25 85 8 15M 7K 20 12 % 29 3.6 sy 3.1 0.25 80 100 and 95 8 8 15 15Ji 7M 7 20 16 12 12 % 29 22 3.6 2.9 10 3.1 3.2 0.25 0.25 } 20 90 7% 14% 6% 16 12 % 22 2.9 QH 3.1 0.25 ^ I — | 85 and 80 7M 14J4 6% 16 12 % 22 2.9 9 3.0 0.25 ftV- - . 75 7^ 14 6% 16 12 % 22 2.9 9 3.0 0.25 p "T" -- 20 70 7 13K 6H 16 12 Vs. 21 2.9 9 3.0 0.25 r I — ' 65 90 7 8 13M 15Jf 6^ 7 16 14 12 9 % 21 20 2.9 2.5 sy 10 3.0 3.2 0.25 0.25 M 18 85 and 80 8 i5y 8 7% 14 9 % 21 2.5 10 3.2 0.25 75 8 15 7M 14 9 % 21 2.5 10 3.2 0.25 ^4j" i 70 and 65 7 13M 6% 14 9 % 18 2.5 9 3.0 0.25 AN 1 18 60 7 13M 6H 14 9 y 19 2.5 8X 3.0 0.25 3^ 55 7 13 6% 14 9 % 19 2.5 8H 3.0 0.25 l! ^"^ , ! 75 7 13M 6 11 7M y 12 1.6 9 3.0 0.25 i 15 70 and 65 7 13% 6% 11 7X y 12 1.6 9 3.0 0.25 Ssfi L --^-- J 60 6M 12^ 5^ 11 7X y 11 1.6 8 2.7 0.25 55 6H 12% 5% 11 7H y 11 1.6 8 2.7 0.25 %" Cored Holes 15 50 and 45 6X 12Ji 6 11 7K x 12 1.6 8 2.7 0.25 : 42 WA 12 6 11 7J4 M 12 1.6 8 2.7 0.25 12 55 6 11% 5% 8% 5 y 9 1.3 8 2.7 0.25 ' 50 6 HM 5% 8% 5 y 9 1.3 8 2.7 0.25 45 6 HJ€ 5% 8% 5 y 9 1.3 754 2.6 0.25 12 40 and 35 6 liM 5Vi m 5 y 9 1.3 IX 2.6 0.25 31.5 6 11 5K 8% 5 X 9 1.3 7y 2.6 0.25 40 5K 10% 4% 7X y 6 1.1 7y 1.3 0.13 10 \ 35 5K 10J^ 4% 7y X 6 1.1 7 1.3 0.13 30 5M 10M 5 7M y 7 1.1 7 1.3 0.13 25 5M 10 5 7X y 7 1.1 7 1.3 0.131 /fii 1H" 35 5 10 4M ey y 5 0.9 7 1.3 0.13 VH : 30 5 9M 9M 4)4 4>^ 6X 6K y y 5 0.9 ey ey 1.2 0.13 9 25 5 5 0.9 1.2 0.13 j< » 1 1 } 21 5 9K 4M 6^ y. 5 0.9 vy 1.2 0.13 4J 1 25.5 4^ 9 4 5H y 4 0.8 6 1.1 0.13 ^"~ - J? 8 23 4K 8% 4 5X X 4 0.8 6 1.1 0.13 /\'' ! 20.5 and 18 20 4H 4M 8^ 8H 4 4 5H 5 X y 4 4 0.8 0.7 6 6 1.1 1.1 0.13 0.13 i ~ ' r j 7 17.5 4^ 8M 4 5 X 4 0.7 6 1.1 0.13. t -Ti-i "< -W- J 15 4M 8% 4% 5 X 4 0.7 6 1.1 0.13 1%. 17.25 4 7% 3MS 4M X 4 0.6 5H 1.1 0.13 K" Cored Hole 6 14.75 4 7^ 3^ 4^ X 4 0.6 5M 1.1 0.13 12.25 4 7K 3% 4^ X 4 0.6 t>y. 1.1 0.13 For 5", 4" and 3" beams, use 1" gas pipe Z\i", 3" and 2%" long respectively. 248 STRUCTURAL DETAILS TIE RODS AND ANCHORS AMERICAN BRIDGE COMPANY STANDARD 2%"jql}£%"tolH" _! c to c. of rff ^""Tbeama. % INCH TIE EODS _-„V-J Lengths and Weights fob Vabiotjs Distances C. to C. of Beams Weights include two Nuts CtoC. Length Weight C. to C. Length Weight CtoC Length Weight CtoC. Length Weight Ft.-In. Ft.-In. Pounds Ft.-In. Ft.-In. Founds Ft.-In. Ft.-In. Founds Ft.-In. Ft.-In. Pounds 1-0 1-3 2.30 1-3 1-6 2.67 1-6 1-9 3.05 1-9 2-0 3.42 2-0 2-3 3.80 2-3 2-6 4.17 2-6 2-9 4.55 2-9 3-0 4.92 3-0 3-3 5.30 3-3 3-6 5.67 3-6 3-9 6.05 3-9 4-0 6.42 4-0 4-3 6.80 4-3 4-6 7.17 4-6 4-9 7.55 4-9 5-0 7.92 5-0 5-3 8.30 5-3 5-6 8.67 5-6 5-9 9.05 5-9, 6-0 9.42 6-0 6-3 9.80 6-3 6-6 10.17 6-6 6-9 10.55 6-9 7-0 10.92 7-0 7-3 11.30 7-3 7-6 11.67 7-6 7-9 12.05 7-9 8-0 12.42 8-0 8-3 12.80 8-3 8-6 13.17 8-6 8-9 13.55 8-9 9-0 13.92 ANCHORS Swedge Bolt Government Anchor w. XX] Weight includes Nut Diameter Length Weight Inches Feet -Inches Pounds H 1 1M 0-9 1-0 1-0 1-3 1.3 2.3 3.1 6.1 Bttilt-In Anchor Bolts = .t f %» Hod 1' 9" long. Wt., 3 lbs. Angle Anchor Pier #? 6 "x %"x 6" Plates When center to center of anchors is less than width of washer, use washer with two holes. 2 Angles 6" x 4" x% 6 " x 0' 2H" Weight with M" bolts, 7 lbs. 249 CARNEQIE STEEL COMPANY BEARING PLATES The size and thickness of steel bearing plates depend on the end reaction, length of bearing, and unit pressure. The following table gives sizes for beams of usual spans, the allowable safe loads in thousands of pounds and the span of beams giving equivalent end reactions. Standard Bearing Plates Beam to is Bearing Plate Beam to P . 13 1* Bearing Plate Lim. Depth, In. Wt„ Lbs. Size, In. Wt., Lbs. Max. Safe Load Span of Beam, Ft. Depth, In. Wt., Lbs. per Ft. Size, In. Wt., Lbs. Max. Safe Load Span of Beam, Ft. 27 24 21 20 18 15 15 12 90 80 60.5 65 55 60 42 31.50 16 16 16 1<5 16 16 12 12 16x16x1 16xl6x 1 16xl6x 1 16xl6x 1 16x16x1 16xl6x 1 16xl2x 1 12xl2xM 73 73 73 73 73 73 55 31 48.8 37.9 44.0 35.0 34.1 34.1 24.4 20 6 24.0 24.5 14.2 17.8 13.8 12.6 12.9 9.3 10 9 8 7 6 5 4 3 25 21 18 15 12.25 9.75 7.50 5.50 8 8 8 8 6 6 4 4 12x8x% 12x8x% 8x8x5*8 8x8xH 6x6x)4 6x6xH 4x4x^g 4x4x% 21 17 12 12 5 5 2 2 13.1 8.7 16.7 15.4 12.0 10.7 9.0 r 7.2 9^9 11.6 4.5 3.6 3.2 2.4 1.8 1.3 Allowable loads given for standard beams will apply also to supplementary and other beams of equal depth and end reactions. Plates of special sizes may be taken from the table of projection coefficients given below, calculated from the following formula. Let A =length of bearing plate, in inches. B =width of bearing plate, in inches, t =thickness of bearing plate, in inches, b =flange width of beam, in inches. R =reaction on bearing plate, in pounds, w =R-^AxB, allowable unit pressure on masonry. ■g- , B(B-b) - 3w , M= Bf3-zb) = B (B— b) = •*—. A— v wABIB— b) 8 64000 t2 = fS=- or when f= 16000, 3w, the same as the formula for rolled steel slabs, page 265. -Rule : — Take from table on opposite page the proper size bearing plate for the reaction and unit pressure. Multiply the width of the plate by the width minus the width of the beam flange and select from the table below the thickness corresponding to the value for the given unit pressure. Projection Coefficients Unit Pressure, , Thickness of Bearing Plates, in Inches Lbs. per Sq. In. % y* % % % 1 1« i.5€ m IK 1% 1M VA 2 75- 40.0 71.1 111.1 160 218 284 360 444 538 640 751 871 1000 1138 100 30.0 53.8 83.3 120 163 21.3 270 333 403 480 563 653 750 858 125 24.0 42.7 67.7 96 131 171 216 267 323 384 451 523 600 683 150 20.0 35.6 55.6 80 109 142 180 222 269 320 376 436 500 569 175 17.1 30.5 47.6 69 93 122 154 190 230 274 3?2 873 429 488 200 15.0 26.7 41.7 60 82 107 135 167 202 240 282 827 375 427 250 12.0 21.3 33,3 48 65 85 108 133 161 192 225 261 300 341 300 10.0 17.8 27.8 40 54 71 90 111 134 160 188 218 25(1 284 350 8.6 15.2 23.8 34 47 61 77 95 115 137 161 187 214 244 400 Y.5 13.3 20.8 30 41 53 68 83 101 120 141 163 188 213 250 STRUCTURAL DETAILS BEARING PLATES Safe Resistances in Thousands of Pounds Wall Bearing Plates Pressure in Pounds per Square Inch Bear- ing. Inches Length, Inches Width, Inches 75 100 125 150 175 200 250 300 350 400 4 4 4 1.2 1.6 2.0 2.4 2.8 3.2 4.0 4.8 5.6 6.4 4 4 6 1.8 2.4 3.0 3.6 4.2 4.8 6.0 7.2 8.4 9.6 4 4 8 2.4 3.2 4.0 4.8 5.6 6.4 8.0 9.6 11.2 12.8 6 6 6 2.7 3.6 4.5 5.4 6.3 7.2 9.0 10.8 12.6 14.4 6 6 8 3.6 4.8 6.0 7.2 8.4 9.6 12.0 14.4 16.8 19.2 6 6 10 4.5 6.0 7.5 9.0 10.5 12.0 15.0 18.0 21.0 24.0 8 8 8 4.8 6.4 8.0 9.6 11.2 12.8 16.0 19.2 22.4 25.6 8 8 10 6.0 8.0 10.0 12.0 14.0 16.0 20.0 24.0 28.0 > 32.0 8 8 12 7.2 9.6 12.0 14.4 16.8 19.2 24.0 28.8 33.6 38.4 10 10 10 7.5 10.0 12.5 15.0 17.5 20.0 25.0 30.0 35.0 40,0 10 10 12 9.0 12.0 15.0 18.0 21.0 24.0 30.0 36.0 42.0 48.0 10 10 14 10.5 14.0 17.5 21.0 24.5 28.0 35.0 42.0 49.0 56.0 12 12 12 10.8 14.4 18.0 21.6 25.2 28.8 36.0 43.2 50.4 57.6 12 12 14 12.6 16.8 21.0 25.2 29.4 33.6 42.0 50.4 58.8 67.2 12 12 16 14.4 19.2 24.0 28.8 33.6 38.4 48.0 57.6 67.2 76.8 14 14 14 14.7 19.6 24.5 29,4 34.3 39.2 49.0 58.8 68.6 78.4 14 14 16 16.8 22.4 28.0 33.6 39.2 44.8 56.0 67.2 78.4 89.6 14 14 18 18.9 25.2 31.5 37.8 44.1 50.4 63.0 75.6 88.2 100.8 14 14 20 21.0 28.0 35.0 42.0 49.0 56.0 70.0 84.0 98.0 112.0 16 16 16 19.2 25.6 32.0 38.4 44.8 51.2 64.0 76.8 89.6 102.4 16 16 18 21.6 28.8 36.0 43.2 50.4 57.6 72.0 86.4 100.8 115.2 16 16 20 24.0 32.0 40.0 48.0 56.0 64.0 80.0 96.0 112.0 128.0 16 16 . 22 26.4 35.2 44.0 52.8 61.6 70.4 88.0 105.6 123.2 140.8 18 18 18 24.3 32.4 40.5 48.6 56.7 64.8 81.0 97.2 113.4 129.6 18 18 20 27.6 36.0 45.0 54.0 63.0 72.0 90.0 108.0 126.0 144.0 18 18 22 29.7 39.6 49.5 59.4 69.3 79.2 99.0 118.8 138.6 158.4 18 18 24 32.4 43.2 54.0 64.8 75.6 86.4 108.0 129.6 151.2 172.8 20 20 20 30.0 40.0 50.0 60.0 70.0 80.0 100.0 120.0 140.0 160.0 20 20 22 33.0 44.0 55.0 66.0 77.0 88.0 110.0 132.0 154.0 176.0 20 20 24 36.0 48.0 60.0 7*2.0 84.0 96.0 120.0 144.0 168.0 192.0 20 20 26 39.0 52.0 65.0 78.0 91.0 104.0 130.0 156.0 182.0 208.0 22 22 22 36.3 48.4 60.5 72.6 84.7 96.8 121.0 145.2 169.4 193.6 22 22 24 39.6 52.8 66.0 79.2 92.4 105.6 132.0 158.4 184.8 211.2 22 22 26 42.9 57.2 71.5 85.8 100.1 114.4 143.0 171.6 200.2 228.8 22 22 28 46.2 61.6 77.0 92.4 107.8 123.2 154.0 184.8 215.6 246.4 24 24 24 43.2 57.6 72.0 86.4 100.8 115.2 144.0 172.8 201.6 230.4 24 24 26 46.8 62.4 78.0 93.6 109.2 124.8 156.0 187.2 218.4 249.6 24 24 28 50.4 67.2 84.0 100.8 117.6 134,4 168.0 201.6 235.2 268.8 24 24 30 54.0 72.0 90.0 108.0 126.0 144.0 180.0 216.0 252.0 288.0 251 CARNEGIE STEEL COMPANY DETAILS FOR PUNCHING AND RIVETING AMERICAN BRIDGE COMPANY STANDARD CONVENTIONAL SIGNS FOR RIVETING Shop Rivets Countersunk and chipped H-$-8f-fr- Field Rivets' Countersunk and chipped i rih Countersunk but not chipped , Max. height. Y& Shop Rivets „to Vi' high to % : 1,5 andlfc" Rivets Yi _$tf',t i fc t. m Flattened high "Rivets ?|-^-j£--#-^-^- t4---=b- ' ^ ^ ^ t-JH-^^t-t-l-^ sfe ^p- ■$-$"$""$"-: i— cta—cb- qa <£i Cfi— cfr ^ GAGES FOE ANGLES, INCHES Leg 8 7 6 5 4 3X 3 2K 2 1M 1M m IX 1 % gl g2 g3 3 3 4 2M 3 ay* 2K 2J€ 3 2 1M 2y 2 2 m ih IK l Ji Vs %, % K Max. rivet IK 1 K K % K Vs M M H K Vs % H K k-g2,tg3J For column details, 6" leg (}i inch thiek or less) against column shaft, g 2 = 1%", g s = 3". For diagonal angles, etc., gage in middle, where riveted leg equals or exceeds 3" for %," rivets, SH" for K" rivets. Use special gages to adapt work to multiple punch, or to secure desirable details. CLEARANCE FOR "WEB RIVETING 4> a_ RIVETS IN CRIMPED ANGLES STANDARD RIVET DIES =5= r 3 6":lH"_For_5£Eivets n *3 lW^.f __I1_A" _"— Distance x should be 1J4" plus thickness 1%'i-fi'- . '_' l^L _" of c ' 10r ^ m s' es . but never less than 2". -^p 2" For %" Rivets ^2mJ " %" " .2%"! " %" . - jomi •• 1" ■• ■X .---i^'.J.-.. CLEARANCE FOR COVER PLATE RIVETING Dimensions in Inches e d 2% 1 2 °A 2% 2 2»4 2H 25* 3 2^ 3 4 3H 4H 3^ 5 3« 5H 3X 6 3^ t d 2\i 2X 1 2H 2 2 1^ 2.H 252 STRUCTURAL DETAILS RIVET SPACING AMERICAN BRIDGE COMPANY STANDARD MINIMUM STAGGER FOR RIVETS \4> 'tnE^B Dia. Minimum stagger, d, inches of Rivet, c, Inches Inches 1% 1%6 1% l E /io 1% 1A IK 1%6 ik 1% W l!%e IK l 1B Ae2Me 2%o 2%o % If K H 11 H A % IK lft m lft 15 H M A % % 1H lft i% 1A IK 1A IK 1 is IS % A i 11? 1% HI IK lft IK 1A IK 1A lft 1H l K M 1H 2ft 2 US US IK its IK HI IK 1A IK IK 1A IK 1 li DISTANCE CENTER TO CENTER OP STAGGERED RIVETS Values of x for varying values of a and b "1 i b, In. a, Inches 7 /s 1 m IK IK IK IK IK 1% 2 2K 2K 2K 2K 2K 1H 1A IK 1ft HI W IK 2 2ft 2ft 2ft 2% 2K 2% IK 1A IK 'HI 1% iVs US 2A 2K 2K 2K 2ft 2ft 211 212 1% w Hi 1% VA US 2 2H 2ft 2ft 2ft 2K 2,% 2M 2% IK m H8 1% US 2 2K 2ft 2ft 2% 2K 2H 211 218 25! Wi v/ s 1% 2 2A 2K 2ft 2ft 2% 2H 2ft 211 2K m 3 us 2A 2 2H 2A 2ft 2K 2ft 2ft 2K 2H 2K 2ft 2ft 2ft 2% 2K 2K 2M 211 2% 21S 2\% 3 3ft 3K 2K 2ft 2 2H 2A 2A 2M 2A 2ft 2% 2H "2ft 2ft 2K 2K 2ft 2K 2K 2H 211 218 21S 21S 3 3 3ft 3K 3ft 3ft 3K 2% 211 2K 2A 2A 2H 2ft 2% 211 2% 2K 21 S 3 3A 3ft 3K 3K 2% 2K 2K 2ft 2K 2K 213 2,8 2K 2K 218 21 S 2% 3 21S 3A 3 3K 3K 3ft 3ft 3Ji 3K 3K 3K 3lB 3ft 3, 9 „ 2K 211 Values below and to right of upper zigzag line are large enough for J Values below and to right of lower zigzag line are large enough for J MINIMUM RIVET SPACING ' rivets, rivets. IhhUh Dia. of Rivet, Inches k K 'A K K K 1 IK x, Minimum, Inches. i IK W 2 2K 2H 3 3K I- 253 CARNEGIE STEEL COMPANY REDUCTION OF AREA FOR RIVET HOLES Area in Square Inehes=Diameter of Hole by Thickness of Metal Thickness Diameter of Hole in inches of Metal, Inches % % %« % !Me % me % *%• 1 VAa 1% ft .05 .09 .11 .12 .13 .14 .15 .16 .18 .19 .20 .21 U .06 .13 • 14 .16 .17 .19 .20 .22 .23 .25 .27 .28 ft .08 .16 .18 .20 .21 .23 .25 .27 .29 .31 .33 .35 % .09 .19 .21 .23 .26 .28 .30 .33 .35 .38 .40 .42 A .11 .22 .25 .27 .30 .33 .3ff .38 .41 .44 .46 .49 H .13 .25 .28 .31 .34 .38 .41 .44 .47 .50 .53 .56 ft- .14 .28 .32 .35 .39 .42 .46 .49 .53 .56 .60 .63 % .16 .31 .35 .39 .43 .47 .51 .55 .59 .63 .66 .70 a .17 .34 .39 .43 .47 .52 .56 .60 .64 .69 .73 .77 % .19 .38 .42 .47 .52 .56 .61 .66 .70 .75 .80 .84 H .20 .41 .46 .51 .56 .61 .66 .71 .76 .81 .86 .91 % .22 .44 .49 .55 .60 .66 .71 .77 .82 .88 .93 .98 a .23 .47 .53 .59 .64 .70 .76 .82 .88 .94 1.00 1.05 1 .25 .50 .56 .63 .69 .75 .81 .88 .94 1.00 1.06 1.13 1A .27 .53 .60 .66 .73 .80 .86 .93 1.00 1.06 1.13 1.20 1H .28 .56 .63 .70 .77 .84 .91 .98 1.05 1.13 1.20 1.27 1ft .30 .59 .67 .74 .82 .89 .96 1.04 1.11 1.19 1.26 1.34 1M .31 .63 .70 .78 .86 .94 1.02 1.09 1.17 1.25 1.33 1.41 1A .33 .66 .74 .82 .90 .98 1.07 1.15 1.23 1.31 1.39 1.48 i« .34 .69 .77 .86 .95 1.03 1.12 1.20 1.29 1.38 1.46 1.55 ii'« .36 .72 .81 .90 .99 1.08 1.17 1.26 1.35 1.44 1.53 1.62 1M .38 .75 .84 .94 1.03 1.13 1.22 1.31 1.41 1.50 1.59 1.69 STAGGER OF RIVETS TO MAINTAIN NET SECTION 1 Hole Out AMERICAN BRIDGE COMPANY STANDARD 2 Holes Out Dimensions in Inches ^ =t U-J y=diameter of rivet + H" u-b-.iJ a-y=V aZ + b2 - 2 y' ai-2y=>/a2+b2-3y b=-v|2ay+y2 b=-y|2ay+y 2 a %" Rivet %" Rivet ai %" Rivet %" Rivet b b b b ' l 2 3 4 4X 1% m 2^ 2ft m 2il 1M 2 2M 2ft 2 b A 2H 3 ■ 3ft 5 6 6^ 7 8* 8H 3A 3J| 3J4 IB 3% 4 3ft 3M 3% ZH 3% 4 4H 4K a=sum of gauges minus thickness of angle. Yt" rivets, can be taken at y%" less than for J£" rivets. 1" rivets, can be taken at W more than for J£" rivets. 254 RIVETS AND PINS STRESSES IN RIVETS AND PINS Rivets. In transmitting stresses between riveted pieces, it is customary to disregard friction and to proportion rivets to the entire stress to be transmitted. They must be of sufficient size and number to resist shear and to afford such bearing area as not to cause distor- tion of the metal at the rivet holes. In the case of beams which frame opposite and of single web girders, this latter condition often necessi- tates a greater thickness of web than required by the shearing stresses. In a plate girder with %e" web, %" rivets connecting the web with the flange angles would have a bearing value at 24,000 pounds unit stress of 5,630 pounds per rivet, while their value in double shear at 12,000 pounds unit stress is 10,600 pounds per rivet; and it might be necessary to increase the web thickness to Yt' or more in order that the pressure of the rivets upon the metal be not excessive. ?ins. Pins must be calculated for shearing, bending and bearing stresses, but one of the latter two will in most cases determine the size. When groups of bars are connected to the same pin, as in the lower chord of truss bridges, the size of the bars must be so chosen and the bars so placed that at no point on the pin will there be any excessive bending stress. When the size of pin has been determined from the bending stress, the thickness of the bars or web of the post should be investigated to provide sufficient bearing area, the bars being thickened or pin plates added if necessary. The following is the formula for flexure applied to pins: M= f ir d 3 ■+■ 32 or =f A d -s- 8, in which M == moment of forces for any section through pin, f=fiber stress per square inch in bending, A = the area of section, d = diameter, it =3.14159. The forces are assumed to act in a plane passing through the axis of the pin. Example 1. — A pin, see figure, has to, carry a load of 64,000 pounds; required the size at 24,000 pounds fiber stress, assuming the distance between points of support to be 5 inches. Bending moment=64,000 x5-f 4=80,000 inch pounds ; use a 3M inch pin; allowed moment: 80,900 inch pounds. Example 2. — Required the thickness of metal in the I top chord of a bridge to give sufficient bearing area to a 3%-inch pin, having to transmit a stress of 121,400 pounds at an allowed bearing pressure of 24,000 pounds per square inch. The bearing value of a 3%-inch pin for 1 inch thickness of metal is 81,000 pounds; therefore, the thickness of metal required=121,400 -=- 81,000=1 H inch, or each web of the chord must be % inch thick, including pin plates. + JJ J If 255 CARNEGIE STEEL COMPANY RIVETS Shearing anp Bearing Values Values in Pounds, all Dimensions in Inches %-INOH RIVETS— Area .1104 Square Inch C3 Unit, Lbs. per Sq. In. 7000 8000 9000 10000 11000 12000 Single Shear per Rivet 770 880 990 1100 1210 1320 Double Shear per Rivel 1540 1760 1980 2200 2420 2640 .9 Unit, Lba. per Sq. In. 14000 16000 18000 20000 22000 24000 CQ M a a $ a A 660 980 1310 750 1130 1500 840 1270 1690 940 1410 1880 1030 1550 2060 1130 1690 2250 A H 1640 1910 1880 2250 2110 2530 2340 2810 2580 3090 2810 3380 V2-INCH RIVETS— Area .1963 Square Inch CQ Unit, Lbs. per Sq. In. 7000 8000 9000 10000 11000 12000 Single Shear per Rivet 1370 1570 1770 1960 2160 2360 Double Shear per Rivet ( 2750 3140 3530 3930 4320 4710 If 1 Unit, Lbs. per Sq. In. 14000 16000 18000 20000 22000 24000 J s a i 1 13 EH M ft 1310 1750 2190 2630 1500 2000 2500 3000 1690 2250 2810 3380 1880 2500 3130 3750 2060 2750 3440 4130 2250 3000 3750 4500 15 3060 3500 3500 4000 3940 4500 4380 5000 4810 5500 5250 6000 %-INOH RIVETS— Area .3068 Square Inch J3 ' CO ' Unit, Lba. per Sq. In. 7000 8000 9000 10000 ■ 11000 12000 Single Shear per Rivet 2150 2450 2760 3070 3370 3680 Double Shear per Rivet 4300 4910 5520 6140 6750 7360 s Unit, Lbs. per Sq. In. 14000 16000 18000 20000 22000 24000 3 a .9 ! ft H a in 7 IB 1640 2190 2730 3280 3830 1880 2500 3130 3750 4380 2110 2810 3520 4220 4920 2340 3130 3910 4690 5470 2580 3440 4300 5160 6020 2810 3750 4690 5630 6560 ft 4380 4920 5470 5000 5630 6250 5630 6330 7040 6250 7030 7810 6880 7730 8590 7500 8440 / 9380 Values below dotted lines are gueater tban double shear. 256 RIVETS AND PINS RIVETS Shearing and Bearing Values Values in Pounds, Dimensions in Inches %-INCH KIVETS— Area .4418 Square Inch M Unit, Lbs. per Sq. In 7000 8000 9000 10000 11000 12000 2 Single Shear per Rivet 3090 3530 3980 4420 4860 5300 Double Shear per Rivet 6190 7070 7950 8840 9720 10600 Uniti Lbs. per Sq. In. 14000 16000 18000 20000 22000 24000 8 *a a a I 1 3 H H 2630 3000 3380 3750 4130 4500 to 1 5 TO % A B IT! 3280 3940 4590 5250 5910 3750 4500 5250 6000 6750 4220 5060 5910 6750 7590 4690 5630 6560 7500 8440 5160 6190 7220 8250 9280 5630 6750 7880 9000 10130 Vs 6560 7500 8440 9380 1 10310 11250 %-INCH RIVETS— Area .6013 Square Inch M Unit, Lbs. per Sq. In. 7000 8000 9000 10000 11000 12000 3 •a Single Shear per Rivet 4210 4810 5410 6010 6610 7220 Double Shear per Rive£ 8420 9620 10820 12030 13230 14430 Unit, Lbs. per Sq. In. 14000 16000 18000 20000 22000 24000 03 8640 9420 Double Shear per Rivet 11000 12570 14140 15710 17280 18850 Unit, Lbs. per Sq. In. 14000 16000 18000 20000 22000 24000 H 3500 4000 4500 5000 5500 6000 DO i% 4380 5000 5630 6250 6880 7500 V a t— < Vs 5250 6000 6750 7500 8250 9000 a 6130 7000 7880 8750 9630 10500 03 a 7000 8000 9000 10000 11000 12000 PQ £ A 7880 9000 10130 11250 12380 13500 ^ Vs 8750 10000 11250 12500 13750 15000 n 9630 11000 12380 13750 15130 16500 £ %, 10500 12000 13500 15000 16500 18000 'h 11380 13660 14630 16250 17880 19500 Values above upper dotted lines are less than single shear. Values below lower dotted lines are greater than double shear. 257 CARNEQIE STEEL COMPANY PINS Bearing Values in Pounds on Metal One Inch Thick Bearing Va]ue=Diameter of Pin x Bearing Stress per Square Inch Pin Bearing Stresses in Pounds per Square Inch Diameter, Inches Area, Sq. In. 12000 15000 20000 22000 24000 1 1M .785 1.227 1.767 2.405 12000 15000 18000 21000 15000 18800 22500 26300 20000 25000 30000 35000 22000 27500 33000 38500 24000 30000 36000 42000 2 2K 2M 3.142 3.976 4.909 5.940 24000 27000 30000 33000 30000 33800 37500 41300 40000 45000 50000 55000 44000 49500 55000 60500 48000 54000 60000 66000 3 3Ji 3K 3M 7.069 8.296 9.621 11.045 36000 39000 42000 45000 45000 48800 52500 56300 60000 65000 70000 75000 66000 71500 77000 82500 72000 78000 84000 90000 4 4)1 4M 12.566 14.186 15,904 17.721 48000 51000 54000 57000 60000 63800 67500 71300 80000 85000 90000 95000 88000 93500 99000 104500 96000 102000 108000 114000 5 5M 19.635 - 21.648 23.758 25.967 60000 63000 66000 69000 75000 78800 82500 86300 100000 105000 110000 115000 110000 115500 121000 126500 120000 126000 132000 138000 6 6H en 6M 28.274 30.680 33.183 35.785 72000 75000 78000 81000 90000 93800 97500 101300 120000 , 125000 130000 135000 132000 137500 143000 148500 144000 150000 156000 162000 7 7M - 7M 38.485 41.282 44.179 47.173 84000 87000 90000 93000 105000 108800 112500 116300 140000 145000 150000 155000 154000 159500 165000 170500 168000 174000 180000 186000 8 8Ji 8)1 8M 50(265 53.456 56.745 60.132 96000 99000 102000 105000 120000 123800 127500 131300 160000 165000 170000 175000 176000 181500 187000 192500 192000 198000 204000 210000 9 9M 9)1 9M 63.617 67.201 70.882 74.662 108000 111000 114000 117000 135000 138800 142500 146300 180000 185000 190000 195000 198000 203500 209000 214500 216000 222000 228000 234000 10 10 « 10)1 10 H 78.540 82.516 86.590 90.763 120000 123000 126000 129000 150000 153800 157500 161300 200000 205000 210000 215000 220000 225500 231000 236500 240000 246000 252000 258000 11 ll)i 11)1 11 % 12 95.033 99.402 103.869 108.434 113.097 132000 135000 138000 141000 144000 165000 168800 172500 176300 180000 220000 225000 230000 235000 240000 242000 247500 253000 258500 264000 264000 270000 276000 282000 2SS000 258 RIVETS AND PINS 1 PINS Bending Moments In Inch Pounds Bending Moment=(Diameter of Pin)' x 0.098175 x Stress per Square Inch Pin Fiber Stress in Founds per Square Inch Diameter, Inches Area, Sq.In. 15000 18000 20000 22000 22500 24000 25000 1 1M IK 1M .785 1.227 1.767 2.405 1500 2900 5000 7900 1800 3500 6000 9500 2000 3800 6600 10500 2200 4200 7300 11600 2200 4300 7500 11800 2400 4600 8000 12600 2500 4800 8300 13200 2 2M 2J| 7.% 3.142 3.976 4.909 5.940 11800 16800 23000 30600 14100 20100 27600 36800 15700 22400 30700 40800 17300 24600 33700 44900 17700 25200 34500 45900 18800 26800 36800 49000 19600 28000 38300 51000 3 3K 3H 3M 7.069 8.296 9.621 11.045 39800 50600 63100 77700 47700 60700 75800 93200 53000 67400 84200 103500 58300 74100 92600 113900 59600 75800 94700 116500 63600 80900 101000 124300 66300 84300 105200 129400 4 4M 4)| 4M 12.566 14.186 15.904 17.721 94200 113000 134200 157800 113100 135700 161000 189400 125700 150700 178900 210400 138200 165800 196800 231500 141400 169600 201300 236700 150800 180900 214700 252500 157100 188400 223700 263000 5 5K 5)1 5M 19.635 21.648 23.758 25.967 184100 213100 245000 280000 220900 255700 294000 336000 245400 284100 326700 373300 270000 312500 359300 410600 276100 319600 367500 419900 294500 340900 392000 447900 306800 355200 408300 466600 6 6K 6M 28.274 30.680 33.183 35.785 318100 359500 404400 452900 381700 431400 485300 543500 424100 479400 539200 603900 466500 527300 593100 664300 477100 539300 606600 679400 508900 575200 647100 724600 530100 599200 674000 754800 7 ?S 7% 38.485 41.282 44.179 47.173 505100 561200 621300 685500 606100 673400 745500 822600 673500 748200 828400 914000 740800 823100 911200 1005400 757700 841800 931900 1028200 808200 897900 994000 1096800 841800 935300 1035400 1142500 8 8M 8)i 8M 50.265 53.456 56.745 60.132 754000 826900 904400 986500 904800 992300 1085300 1183900 1005300 1102500 1205800 1315400 1105800 1212800 1326400 1446900 1131000 1240400 1356600 1479800 1206400 1323000 1447000 1578500 1256600 1378200 1507300 1644200 9 9K 9% 63.617 67.201 70.882 74.662 1073500 1165500 1262600 1364900 1288300 1398600 1515100 1637900 1431400 1554000 1683500 1819900 1574500 1709400 1851800 2001900 1610300 1748300 1893900 2047400 1717700 1864800 2020100 2183900 1789200 1942500 2104300 2274900 10 10 M 10)1 10 Ji 78.540 82.516 86.590 90.763 1472600 1585900 1704700 1829400 1767100 1903000 2045700 2195300 1963500 2114500 2273000 2439200 2159800 2325900 2500300 2683200 2208900 2378800 2557100 2744100 2356200 2537400 2727600 2927100 2454400 2643100 2841200 3049100 11 11M 12 95.033 99.402 103.869 108.434 113.097 1960100 2096800 2239700 2388900 2544700 2352100 2516100 2687600 2866700 3053600 2613400 2795700 2986200 3185300 3392900 2874800 3075200 3284900 3503800 3732200 2940100 3145100 3359500 3583400 3817000 3136100 3354800 3583500 3822300 4071500 3266800 3494600 3732800 3981600 4241200 259 CARNEQIE STEEL COMPANY ANGLES Allowable Tension Values in Thousands op Pounds Maximum Fiber Stress 16000 Pounds per Square Inch Size, luetics Thick- ness, Inches Weight per Foot, Founds Area, Inches 2 Net Areas and Stresses — Two Holes Deducted %-Inch Rivets %-Inch Rivets jj-6-Inch Rivets Area, Inches 2 Stress Area, Inches 2 Stress Area, Inches - Stress - 8x 8 1 51.0 15.00 13.00 208.0 13.25 212.0 8 x s H 48.1 14.12 12.24 195.8 12.48 199.7 8 x 8 Va 45.0 13.23 11.48 183.7 11.70 187.2 8 x 8 iS 42.0 12.34 10.72 171.5 10.92 174.7 8x 8 % 38.9 11.44 9.94 159.0 10.13 162.1 8 x 8 it 35.8 10.53 9.16 146.6 9.33 149.3 8 x S Vs 32.7 9.61 8.36 133.8 8.52 136.3 8.67 138.7 8 x 8 IS 29.6 8.68 7.55 120.8 7.70 123.2 7.84 125.4 8 x 8 H 26.4 7.75 6.75 108.0 6.87 109.9 7.00 112.0 8 x 6 l 44.2 13.00 11.00 176.0 11.25 180.0 8x 6 it 41.7 12.25 10.37 165.9 10.61 169.8 8x 6 % 39.1 11.48 9.73 155.7 9.95 159.2 8x 6 1% 36.5 10.72 9.10 145.6 9.30 148.8 8 x e « 33.8 9.94 8.44 135.0 8.63 138.1 8 x 6 1 H 31.2 - 9.15 7.78 124.5 7.95 127.2 8 x 6 H 28.5 8.36 7.11 113.8 7.27 116.3 7.42 118.7 8 x 6 A 25.7 7.56 6.43 102.9 6.58 105.3 6.72 107.5 8 x 6 M 23.0 6.75 5.75 92.0 5.87 93.9 6.00 96.0 8 x 6 A 20.2 5.93 5.05 80.8 5.16 82.6 5.27 84.3 6x 6 & 33.1 9.73 7.98 127.7 8.20 131.2 6 x 6 11 31.0 9.09 7.47 119.5 7.67 122.7 6 x 6 M 28.7 8.44 6.94 111.0 7.13 114.1 6 x G 1* ■ 26.5 7.78 - 6.41 102.6 6.58 105.3 6 x (J « 24.2 7.11 5.86 93.8 6.02 96.3 6.17 98.7 6 x 6 A 21.9 6.43 5.30 84.8 5.45 87.2 5.59 89.4 6 x 6 M 19.6 5.75 4.75 76.0 4.87 77.9 5.00 80.0 6 x 6 7 13 17.2 5.06 4.18 66.9 4.29 68.6 4.40 70.4 6 x 6 M 14.9 4.36 3.61 57.8 3.70 59.2 3.80 60.8 6x 4 ft 27.2 7.98 6.23 99.7 6.45 103.2 Ox 4 « 25.4 7.47 5.85 93.6 6.05 96.8 6 x 4 M 23.6 6.94 5.44 87.0 5.63 90.1 6 x 4 H 21.8 6.40 5.03 80.5 5.20 83.2 6 x 4 X 20.0 5.86 4.61 73.8 4.77 76.3 4.92 78.7 6 x 4 A 18.1 5.31 4.18 66.9 4.33 69.3 4.47 71.5 6 x 4 H 16.2 4.75 3.75 60.0 3.87 61.9 4.00 64.0 6 x 4 A 14.3 4.18 3.30 52.8 3.41 54.6 3.52 56.3 6 x 4 « 12.3 3.61 2.86 45.8 2.95 47.2 3.05 48.8 5 x 3H J* 16.8 4.92 3.67 58.7 3.83 61.3 3.98 63.7 5 x 3H % 15.2 4.47 3.34 53.4 3.49 55.8 3.63 58.1 5 x 3M 13.6 4.00 3.00 48.0 3.12 49.9 3.25 52.0 5 x 3M A 12.0 3.53 2.65 42.4 2.76 44.2 2.87 45.9 5 x 3J3 % 10.4 3.05 2.30 36.8 2.39 38.2 2.49 39.8 5 x ZVi A 8.7 2.56 1.93 30.9 2.01 32.2 2.09 33.4 5 x 3 ¥ 12.8 3.75 2.75 44.0 2.87 45.9 3.00 48.0 5 x 3 TB 11.3 3.31 2.43 38.9 2.54 40.6 2.65 42.4 5 x 3 Vs 9.8 2.86 2.11 33.8 2.20 35.2 2.30 36.8 5 x 3 A 8.2 2.40 1.77 28.3 1.85 29.6 1.93 30.9 260 TENSION VALUES ANGLES Allowable Tension Values in Thousands op Pounds Maximum Fiber Stress, 16000 Pounds per Square Inch Thick- Weight per Foot, Area, Net Areas and Stresses —One Hole Deducted Size, K-Inch Rivets %-Inch Rivets ^-Inch Rivets Inches ness, Inches ~ Inches Pounds Area, IncheB 2 Stress ' Area, Inches 2 Stress Area, Inches 2 Stress 6x G JT 33.1 9.73 8.85 141.6 8.96 143.4 6x G il 31.0 9.09 8.28 132.5 8.38 134.1 6x6 H 28.7 8.44 7.69 123.0 7.78 124.5 6x6 a 26.5 7.78 7.09 113.4 7.18 114.9 6x6 % 24.2 7.11 6.48 103.7 6.56 105.0 6.64 106.2 6x 6 A 21.9 6.43 5.87 93.9 5.94 95.0 6.01 96.2 6 x G X 19.6 5.75 5.25 84.0 5.31 85.0 5.37 85.9 6x6 Iff 17.2 5.06 4.62 73.9 4.68 74.9 4.73 75.7 6x6 H 14.9 4.36 3.98 63.7 4.03 64.5 4.08 G5.3 6x4 % 27.2 7.98 7.10 113.6 7.21 115.4 6x4 H 25.4 7.47 6.66 106.6 6.76 108.2 6x4 % 23.6 6.94 6.19 99.0 6.28 100.5 6x4 H 21.8 6.40 5.71 91.4 5.80 92.8 6x4 % 20,0 5.86 5.23 83.7 5.31 85.0 5.39 86.2 6x4 A 18.1 5.31 4.75 76.0 4.82 77.1 4.89 78.2 6x4 X 16.2 4.75 4.25 68.0 4.31 69.0 4.37 69.9 6x4 A 14.3 4.18 3.74 59.8 3.80 60.8 3.85 61.6 6x4 M 12.3 3.61 3.23 51.7 3.28 52.5 3.33 53.3 5x3^ H 16.8 4.92 4.29 68.6 4.37 69.9 4.45 71.2 5x3}^ A 15.2 4.47 3.91 62.6 3.98 63.7 4.05 64.8 5x3H X 13.6 4.00 3.50 56.0 3.56 57.0 3.62 57.9 5s.ZX Iff 12.0 3.53 3.09 49.4 3.15 50.4 3.20 51.2 5x3K X 10.4 3.05 2.67 42.7 2.72 43.5 2.77 44.3 5x3Ji 6 IB 8.7 2.56 2.25 36.0 2.29 36.6 2.33 37.3 5x3 ^ 15.7 • 4.61 3.98 63.7 4.06 65.0 4.14 66.2 5x 3 A 14.3 4.18 3.62 57.9 3.69 59.0 3.76 60.2 5x3 12.8 3.75 3.25 52.0 3.31 53.0 3.37 53.9 5x3 A 11.3 3.31 2.87 45.9 2.93 46.9 2.98 47.7 5x3 51 9.8 2.86 2.48 39.7 2.53 40.5 2.58 41.3 5x3 i"e 8.2 2.40 2.09 33.4 2.13 34.1 ^2.17 34.7 4x4 Js 15.7 4.61 3.98 63.7 4.06 65.0 4.14 66.2 4x4 A 14.3 4.18 3.62 57.9 3.69 59.0 3.76 60.2 4x4 X 12.8 3.75 3.25 52.0 3.31 53.0 3.37 53.9 4x4 11.3 3.31 2.87 45.9 2.93 46.9 2.98 47.7 4x4 % 9.8 2.86 2.48 39.7 2.53 40.5 2.58 41.3 4x4 8.2 2.40 2.09 33.4 2.13 34.1 2.17 34.7 4-x 4 M 6.6 1.94 1.69 27.0 1.72 27.5 1.75 28.0 4x3 X 11.1 3.25 2.75 44.0 2.81 45.0 2.87 45.9 4x3 A 9.8 2.87 2.43 38.9 2.49 39.8 2.54 40.6 4x3 H 8.5 2.48 2.10 33.6 2.15 34.4 2.20 35.2 4x3 7.2 2.09 1.78 28.5 1.82 29.1 1.86 29.8 4x3 M 5.8 1.69 1.44 23.0 1.47 23.5 1.50 24.0 261 CARNEQIE STEEL COMPANY i ANGLES Allowable Tension Values in Thousands of Pounds Maximum Fiber Stress, i6000 Pounds per Square Inch Size, Inches Thick- ness, Inches Weight per Foot, Pounds Area, Inches. 3 Net Areas and Stresses — One Hole Deducted %-Ineh Rivets 5^ -Inch Rivets %-Inch Rivets - Area, Inches 2 Stress Area, Inches 2 Stress Area, Inches 2 Stress 3Hx3H 3^x3^ 3Hx3H 3^x3K • 3^x3M 3^x3M 3Hx3H H A 7 15 % A M 13.6 12.4 11.1 9.8 8.5 7.2 5.8 3.98 3.62 3.25 2.87 2.48 2.09 1.69 3.35 3.06 2.75 2.43 2.10 1.78 1.44 53.6 49.0 44.0 38.9 33.6 28.5 23.0 3.43 3.13 2.81 2.49 2.15 1.82 1.47 54.9 50.1 45.0 39.8 34.4 29.1 23.5 3.51 3.20 2.87 2.54 2.20 1.86 1.50 56.2 , 51.2 45.9 40.6 35.2 29.8 24.0 3Mx 3 3Hx 3 3^x 3 3Mx 3 3^x 3 A s 15 X 10.2 9.1 7.9 6.6 5.4 3.00 2.65 2.30 1.93 1.56 2.50 2.21 1.92' 1.62 1.31 40.0 35.4 30.7 25.9 21.0 2.56 2.27 1.97 1.66 1.34 41.0 36.3 31.5 26.6 21.4 2.62 2.32 2.02 1.70 1.37 41.9 37,1 32.3 27.2 21.9 3^x2K 3^x2H 3^x2^ 3^x2K 3^x2^ A A H 9.4 8.3 7.2 6.1 4.9 2.75 2.43 2.11 1,78 1.44 2.25 1.99 1.73 1.47 1.19 36.0 31.8 27.7 23.5 19.0 2.31 2.05 1.78 1.51 1.22 37.0 32.8 28.5 24.2 19.5 2.37 2.10 1.83 1.55 1.25 37.9 33.6 29.3 24.8 20.0 3x3 3x3 3x3 3x3 3x3 14 U A 9.4 8.3 7.2 6.1 4.9 2.75 2.43 2.11 1.78 1.44 2.25 1.99 1.73 1.47 1.19 36.0 31.8 27.7 23.5 19.0 2.31 2.05 1.78 1.51 1.22 37.0 32.8 28.5 24.2 19.5 2.37 2.10 1.83 1.55 1.25 37.9 33.6 29.3 24.8 20.0 3 x2H 3 x2^ 3 x2}£ A M 6.6 6.6 4.5 1.92 1.62 1.31 1.54 1.31 1.06 24.6 21.0 17.0 1.59 1.35 1.09 25.4 21.6 17.4 1.64 1.39 1.12 26.2 22.2 17.9 2Mx2y 2 2^x2H 2^x2M 2J4x2M A 5.9 5.0 4.1 3.07 1.73 1.47 1.19 0.90 1.40 1.20 0.97 0.74 22.4 19.2 15.5 11.8 1.45 1.24 1.00 0.76 23.2 19.8 16.0 12.2 2^x 2 2^x 2 2^x 2 2J^X 2 A X A 5.3 4.5 3.62 2.75 1.55 1.31 1.06 0.81 ' 1.22 1.04 0.84 0.65 19.5 16.6 13.4 10.4 1.27 1.08 0.87 0.67 20.3 17.3 13.9 10.7 2x2 2x2 2x2 2x2 N A A 4.7 3.92 3.19 2.44 1.36 1.15 0.94 0.71 1.08 0.92 0.75 0.57 17.3 14.7 12.0 9.1 2 X134 •2 xlM 2 xlM A 3.39 2.77 2.12 1.00 0.81 0.62 0.77 0.62 0.48 12.3 9.9 7.7 262 TENSION VALUES BARS Allowable Tension Values in Thousands op Pounds ROUND BARS SQUARE BARS Unit Unit Unit Unit Stress Stress Stress Stress Sine, Inches Area, Inches 2 Weight per Foot, Pounds 16,000 Lbs. per Square 20,000 Lbs. per Square Size, Inches Area, Inches 2 Weight per Foot, Pounds 16,000 Lbs. per Square Inch 20,000 Lbs. per Square Inch Inch Inch y% 0.012 0.042 0.2 0.3 M 0.016 0.053 0.3 0.3 ft 0.028 0.094 0.4 0.6 A 0.035 0.119 0.6 0.7 H 0.049 0.167 0.8 1.0 X 0.063 0.212 1.0 1.3 ft 0.077 0.261 1.2 1.5 A 0.098 0.333 1.6 2.0 % 0.110 0.375 1.8 2.2 % 0.141 0.478 2.3 2.8 ft 0.150 0.511 2.4 3.0 ft 0.191 0.651 3.1 3.8 « 0.196 0.667 3.1 3.9 H 0.250 0.850 4.0 5.0 A 0.249 0.845 4.0 5.0 A 0.316 1.08 5.1 6.3 5-s 0.307 1.04 4:9 6.1 % 0.391 1.33 6.3 7.8 a 0.371 1.26 5.9 7.4 if 0.473 1.61 7.6 9.5 M 0.442 1.50 7.1 8.8 % 0.563 1.91 9.0 11.3 iS 0.519 1.76 8.3 10.4 1% 0.660 2.25 10.6 13.2 K 0.601 2.04 9.6 12.0 Vs 0.766 2.60 12.3 15.3 iS 0.690 2.35 11.0 13.8 H 0.879 2.99 14.1 17.6 1 0.785 2.67 12.6 15.7 1 1.00 3.40 16.0 20.0 lft 0.887 3.01 14.2 17.7 lft 1.13 3.84 18.1 22.6 1H 0.994 3.38 15.9 19.9 IK 1.27 4.30 20.3 25.3 1A 1,11 3.77 17.7 22.2 lft 1.41 4.80 22.6 28.2 1M 1.23 4.17 19.6 24.5 IK 1.56 5.31 25.0 31.3 I A 1.35 4.60 21.6 27.1 lft 1.72 5.86 27.6 34.5 1% 1.48 5.05 23.8 29.7 W% 1.89 6.43 30.3 37.8 1ft 1.62 5.52 26.0 32.5 lft 2.07 7.03 33.1 41.3 1H 1.77 6.01 28.3 35.3 l« 2.25 7.65 36.0 45.0 1A 1.92 6.52 30.7 38.4 lft 2.44 8.30 39.1 48.8 1% 2.07 7.05 i 33.2 41.5 ty% 2.64 8.98 42.3 52.8 in 2.24 7.60 35.8 44.7 US 2.85 9.68 45.6 57.0 iM 2.41 8.18 38.5 48.1 IX 3.06 10.41 49.0 61.3 li3 2.58 8.77 41.3 51.6 lit 3.29 11.17 52.6 65.7 i% 2.76 9.39 44.2 55.2 VA 3.52 11.95 56.3 70.3 us 2.95 10.02 47.2 59.0 US 3.75 12.76 60.1 75.1 2 3.14 10.68 50.3 62.8 2 4.00 13.60 64.0 80.0 2ft 3.34 11.36 53.5 66.8 2ft 4.25 14.46 68.1 85.1 2H 3.55 12.06 56.7 70.9 2H 4.52 15.35 72.3 90.3 2ft 3.76 . 12.78 60.1 75.2 2ft 4.79 16.27 76.6 95.7 2M 3.98 13.52 ( 63.6 79.5 2H 5.06 17.22 81.0 101.3 2 B « 4.20 14.28 67.2 84.0 2ft 5.35 18.19 85.6 107.0 2% 4.43 15.07 70.9 88.6 2% 5.64 19.18 90.3 112.8 2 fa 4.67 15.86 74.7 93.3 2ft 5.94 20.20 95.1 118.8 2J4 4.91 16.69 ' 78.5 98.2 2M 6.25 21.25 100.0 125.0 2A 5.16 17.53 82.5 103.1 2ft 6.57 22.33 105.1 131.3 2% m 2« 5.41 18.40 86.6 108.2 2% 6.89 23.43 110.3 137.8 5.67 19.29 90.8 113.5 2li 7.22 24.56 115.6 144.5 5.94 20.20 95.0 118.8 2% 7.56 25.71 121.0 151.3 2{? 2J6 2il 3 6.21 21.12 99.4 124.3 2}S 7.91 26.90 126.6 158.2 6.49' 22.07 103.9 129.8 2% 8.27 28.10 132.3 165.3 6.78 23.04 108.4 135.5 211 8.63 29.34 138.1 172.6 7.07 24.03 113.1 141.4 3 9.00 30.60 144.0 180.0 263 CARNEGIE STEEL COMPANY GRILLAGE FOUNDATIONS Grillage Beams. In the design of foundations for columns, piers and walls, provision must be made for the uniform distribution of the load over the footing. This is best done by the use of a grillage of steel beams and concrete. This method of construction elimin- ates deep excavations and large masses of masonry and is, therefore, truly economical. For heavy loads on soils of small bearing capacity, three tiers of beams may be necessary; while for lighter loads or better soils two tiers, or even one, may suffice. The lower tier should rest upon a solid bed of concrete of sufficient thickness to distribute the load to the soil. Good practice requires the spaces between the beams in all the tiers to be filled with, and the beams enclosed in, concrete not less than four inches thick. The clear distance between the flanges of the beams in each tier should not be less than 2J^ inches, nor more than three times the flange width. The first requirement is necessary to permit the introduction and proper tamping of the concrete, the second, to insure uniform distribution of the load. When separators are used to hold the beams in position, they should be of gas pipe, as cast iron separators tend to break the continuity of the concrete. Grillage beams should not be painted, as concrete does not adhere well to painted surfaces but is itself an excellent preservative of steel. To determine the area in square feet required for the foundation, divide the total load on the column, pier or wall by the allowable pressure per square foot on the soil. This gives the area of the footing, the shape of which is determined by local conditions. On the assumption that the loads on the soil are uniformly distributed, the number, size and weight of the beams required are determined from the maximum bending moment, the maximum shear, or the maximum web resistance to buckling, as follows: — Let W=Total load on the foundation, in pounds. ~2~ L =Length of beam, in feet. **— a milium llilllllllllllllllli'li'ill a =Length of loaded portion, in feet. d =Depth of beam, in inches. t =Thickness of beam web, in inches. n =Number of beams in a tier. f b =AUowable unit web buckling resistance. The maximum bending moment occurs at the center of the beam and is equal in foot pounds to W (L-a) -s- 8; this formula is identical with the formula of maximum bending moment for a beam of length (L-a) under a uniformly distributed load, W. The proper size of beam in any tier as regards flexure at a fiber stress of 16,000 pounds per square inch may be found in the beam 264 GRILLAGE FOUNDATIONS safe load table for the length corresponding to (li — a), by dividing the total load by the number of beams. Or may be found from the table of maximum bending moments, by dividing the total bending moment by the number of beams; Or from the table of properties, by dividing by the number of beams in the tier the total section modulus required, which , , 3W (L-a) is. equal to — 32 ; 00 o Note, however, that the load on the beam for any span must not exceed the maximum tabular safe load for shear. The maximum vertical shear occurs at the edge of the column base or at a distance in feet of — ^ — from each end of the beam and , , W „ L-a is equal to -jj- x — ^ — Web thickness, t, to resist average shear — L x — ^- x n;ldx 10 oo Or, the average vertical shear — L x — - — x nxdzt , which must not exceed 10,000 pounds per square inch. The maximum buckling stress occurs on a length in inches of 12 a + d/2 and is equal in total per lineal inch of web to x2a+d/2 ' The required thickness of web, t, to resist buckling=~ W nx(12a + d/2)xfb. Or the average web resistance per square inch to buckling= — ,,„ Yjioi + which must not exceed the tabular values for hi (12 a + d/2)xt the allowable buckling resistance on beam webs. Rolled Steel Slabs. To distribute the loads from columns over girders, grillage beams, etc., solid slabs of rolled steel may be advantageously used in the place of cast iron or riveted steel bases, ■e'tc. The size of the slab is usually fixed by the dimensions of the column and its thickness is determined from the maximum bending moment, on the assumption of uniform loading, as follows:— Let -, W=Total load, in pounds. □ | A =Width of slab, in inches, b B b =Length of slab, in inches. "* I t =Thickness of slab, in inches. -* a =Outside dimension of column, in inches. L— ---a------ •>' b =Outside dimension of column, in inches. The maximum bending moment will occur at the center of the slab and equals, in inch pounds, 8 "~ a or § > and at a fiber stress of 16,000 pounds per squa re inch, the re quired thickness t i u + _ \l "3W(A-a) or _ \ ] 3 W (B - W, Of slab, t, — \ — 64 Q 00 B or _ \ 64,000 A 2j65 CARNEQIE STEEL COMPANY "c r- > ^■■?-'/v ; %V?i^v'-?„-.".' :'.:';•'".;-•■= -,^ ••*';•* . ; -' : * ,; V"V .•<■;•■?'''!; -°i "■•';*•.'■' '-- -•j K"> : &i );-°."' Wf ' ■' ' " fey :*l ' ' l"=;-: &i' ' Z]:& I ssi X^, ■">"*- " zfe J t O CO «-.j |:Vv,' 1 »•■ » •• -. « ... O _ . . . . '.-,-,. a #;l ^^g^T |t-.»* | "."-■■:■, °v ,-.-».- -, ■ • •'.-■'. ,'° ■- - 'a.>w: «:i lif- : 1 i .:.:»;| fe ; 1 ;*-f ' "" '~ " _Jir. 1 4:':f ' 1 ".' r J i.e.- :eW»J O.'".' a.- - -"• .' -'° '.--.» .'„• „>.' ~?.M ' ._. l.'.-i' ' '£>^>V-'^V"V^V^^^^^^ e9& 5^3^ * _- -8- -15' 0"- 0"- ---, 5 L 3"- *9-i| 3 C 3 C D C A :^ f -,.■ &3 .', Steel Slab 36x 36"x 6%" 4-24" 90 lb. Beams 10-6" long Example: Eequired to design a grillage foundation for a column load of 1,040,000 pounds on soil with an allowable bearing capacity of 6,000 pounds per square foot. Column composed of 1 web plate, 14" x^",4 flange angles, 6" x 4" x Vg," and 4 flange plates, 14" x K", outside dimensions 14" x 18". Eequired area of f ooting=l, 040,000 ■+■ 6,000=173.33 square feet. Use area 12' 0" x 15' 0"=180 square feet. Assume 3' 0" square as the dimensions of the rolled steel slab or column base and allow 9" for concrete on the sides and ends of beams, then the dimen- sions of the steel grillage will be 10' 6" x 13' 6", concrete being assumed of sufficient thickness and strength to distribute to the edges. ( ft j|""' r 1L f. — .-48--J —36"- — J 14" 36" Rolled Steel Slab Thickness required, t,= Use 5H". V 3 x 1,040,000 x 22 , 64,000 x 36 =5.46 in. 266 QRILLAQE FOUNDATIONS Beams — Section Modulus Method. Bottom tier — L=13.5 feet; a= 3.0 feet: Required total section modulus, S — 3 x 1,0 t°'°»» x 10 - 5 — 1,023.75 ln.» 32,000 Use 13 — 15" 60 lb. beams — Total section modulus=l,055.6 in.s 1,040,000 10^5 1 Average shear 13.5 13 x 15 x .59 3,515 lbs. per sq. in. v. , ,- 1,040,000 „,„„,,_ Average bucklmg stress — 13 x 43 5 x 59 =3,120 lbs. per sq. in. Top tier — L=10.5 feet; a=3.0 feet. 3 x 1,040,000 x 7.5 Required total section modulus, 8',= — u Use 4 — 24" 90 lb. beams — Total section modulus=746.0 in.s 1,040,000 7.5 1 10.5 X 2 731.25 in.» Average shear Average buckling stress^= 4 x 4g' x 63 4 x 24 x .63 600 lbs. per sq. in = 6,140 lbs. per sq. in. Plate Girder Grillage Foundations. In those cases where columns carry very heavy loads, plate girders are used for the top tier of the grillage rather than beams. In the case of symmetrical foundations, the method of computation is the same as has already been illus- trated in the case of beams. The following example indicates the procedure in the quite frequent case of unsymmetrical loading conditions : 840,000 pounds -20-0- 1,260,000 pounds Make up of 1 Plate Girder 4 Flange Angles 6 x 4 x % 2 Flange Plates 14 x % 1 Web Plate 36 x H 2 Web Reinf. Plates % thick, each end between Flange -^ 6'-0- •>* 6r0' Column 14'' pjjj£j] 16" Interior Column 2 Web Reinf. Plates % thick, each end over Flange Angles Stiffener Angles 5 x 8J4 x K Tie Angles 5 x3J^xH 267 CARNEQIE STEEL COMPANY Example: — Required to design a grillage foundation under an exterior or wall column carrying a load of 840,000 pounds, and an interior column with a load of 1,260,000 pounds, on soil with an allowable bearing capacity of 8,000 pounds per square foot. Required footing area of wall column= 8 t°£SP — 105 square feet. o,U0U Use area 8' 0" x 14' 0"= 112 square feet. Required area of interior column footing= ^q^Aq 00 =157.5 square feet. Use area 12' 0" x 14' 0"=168 square feet. ' With these dimensions and areas, the load on the* soil will be uniform at 7,500 pounds per square foot, and the footings the same width, both of which are desirable from the standpoint of uniform settlement. Rolled Steel Slabs for Column Footings: Assume a width of 30" and a length of 32", then the requi red thickness will be as fo llows: — Wall column, t, = ^ 3 * 8%°™ * «" ~ 14) = 4.86 in. ; use 5" Interior column, t, = ^*II&gMZM33 = 5.61 in.; use 5M"- * o4,UUU X oU Plate Girders : Maximum bending moment occurs at the inner beams of the respective footings, and is equal to the load on the column multiplied by the distance of its center from the center of moments. M max. from wall column = 840,000 x 2' 6"=2,100,000 foot pounds. M max. from interior column=l,260,000 x 1' 8"=2,100,Q0O foot pounds. Required section modulus of two girders=— - — 16 000 =1,575.0 in.s Select from girder safe load table, page 284, two girders composed each of 1 web plate 36" x H", 4angles 6" x 4" x %", and 2 flange plates 14" xM"; — Total section modulus, S=2 x 792.3=1,584.6 in.» Maximum shear occurs at the inside edge of the steel slab under the interior column, and is equal in total for the two girders to the load carried by the portion of the footing between that point and the inside edge of the footing, or 1,260,000 x 68 =6800 00 or 340,000 pounds per girder. At 10,000 pounds per square inch, the 36" x }i" plate girder web is good for 180,000 pounds; therefore, it is necessary to use reinforcing web plates where, the shear exceeds that amount. Beams, Lower Tier, Interior Column: Required total section modulus, S, = 3 x 1,2 |° '°oo * 9 ' 6? = 1 ' 142 - 3 '""■* Use 13—18" 55 lb. beams — Total section modulus = 1,149.2 in.s Averageshear= i^ff* x 9|Lx __L_ =4 , 52 oibs.persq.in. Average buckling stress = 13 1 x 2 ^°' x °° 16 =4,900 lbs. per sq. in. For exterior column use 9—18" 55 lb. beams. Note. — In order to facilitate manufacture and shipment, it is- desirable to use for the entire foundation as few sizes and weights of beams as possible, and the rolled steel slabs should be of the same thickness or at least of as few thicknesses as really convenient. 268 QIRDERS y RIVETED BEAM AND PLATE GIRDERS Where single rolled beams are insufficient to carry the loads, the required capacity may be secured by fabrication in various methods. Two beams can be used, connected together by bolts and separa- tors. The total strength of these is twice that of the single beam of the same depth and weight. Care should be taken, however, to see that the loads are applied on them equally, and where it is necessary for the beams to act as a unit, the separators should be of plates and angles and not of cast iron. If the loading is not uniform on the two sections, their strength must be computed separately. The use of single beam girders with plates top and bottom to sustain a given load is often more economical in material than the use of two beams connected by bolts and separators. Box girders formed of two beams with flange plates riveted thereto are often used for supporting interior walls in buildings. They are not, however, as economical in material as single beams with flange plates or plate girders. Their interior surfaces do not admit of repainting and they should, therefore, not be used in exposed places. The most economical section to sustain heavy loads is the single web plate girder and it is sufficient for all ordinary purposes. When not so, two single web plate girders may be used, together with tie plates extending clear across the angles, or box girders may be made of four flange angles, two web plates and top and. bottom flange plates. In case there is unequal distribution of the load, the two girders or half girders must be figured as separate units. In the design of beam or plate girders, care must be taken to see that the web is of sufficient thickness to resist buckling stress and, therefore, attention is called to th,e construction specifications and to the remarks made on page 216 as to shearing stresses in general. The tables which follow give first, a selected line of riveted beam girders of approximately twice the carrying capacity of the single beams of which the sections are built; second, a selected line of riveted plate girders of various depths and carrying capacities such as are customary in-building work; third, elements of riveted plate girders of various depths from which it is possible to select econom- ical sections for almost any ordinary condition of loading. In addition to the properties, the first two tables give the safe loads in thousands of pounds uniformly distributed. In accordance with the construction specifications, these girder tables are based upon the section modulus of the gross area of the section, with bending stress allowed at 16,000 pounds per square inch. 260 \ CARNEGIE STEEL COMPANY RIVETED BEAM GIRDERS Allowable Uniform Load in Thousands op Pounds Maximum Bending Stress, 16000 Pounds per Square Inch *— -12-"-"— ; t— -12--— i i»~i 10-— i f — . 10 i'~, | A ■' *-' ^ a 1 n 1-Beam 27"x90 lba. 1-Beam 24"x80 lbs. 1-Beam 24"x80 lbs. 1-Beam 20"x80 lbs. o 1 0) Feet 2-Plates 12"x%" 2-Plates 12"xM" 2-Plates 10"x^g" 2-Plates 10"xM" Increase Increase Increase Increase 1 in Safe in Safe r"3 Loads for Loads fori Safe Loads Mo Inch Increase Safe Loads Vie Inch Increase in Safe Loads Ms Inch Increase Safe Loads Vie Inch Increase Thickness Thickness ThickneBS of Flange of Flange of Flange of Flange Plates Plates Plates Plates 370 343 15.9 14.8 312 289 14.2 13.2 259. 11.7 10.9 • 9.7 9.0 13 235 218 2.80 14 240 3.24 15 321 13.8 270 12.3 224 10.1 204 8.4 3.72 16 301 13.0 12.2 253 11.5 10.9 210 198 9.5 9.0 191 180 7.9 7.4 4.24 17 283 238 4.78 18 267 11.5 225 10.3 187 8.4 170 7.0 5.36 19 253 10.9 213 9.7 177 8.0 161 6.6 5.98 20 240 10.4 203 9.2 168 7.6 153 6.3 6.62 21 229 9.9 193 8.8 160 7.2 146 6.0 7.30 22 219 9.4 184 8.4 153 6.9 139 5.7 8.01 23 209 9.0 176 8.0 146 6.6 133 5.5 8.76 24 200 8.6 169 7.7 • 140 6.3 127 5.3 9.53 25 192 8.3 162 7.4 135 6.1 122 5.0 10.35 26 185 8.0 156 7.1 129 5.9 118 4.8 11.19 27 178 7.7 150 6.8 125 5.6 113 4.7 12.07 28 172 7.4 145 6.6 120 5.4 109 4.5 12.98 i 29 166 7.1 140 6.4 116 5.2 105 4.3 13.92 ; so 160 6.9 135 6.2 112 5.1 102 4.2 14.90 i 31 155 6.7 131 6.0 109 4.9 99 4.1 15.91 32 150 6.5 127 5.8 105 4.8 96 3.9 16.95 33 146 6.3 123 5.6 102 4.6 93 3.8 18.03 34 141 6.1 119 5.4 99 4.5 90 3.7 19.13 35 137 5.9 116 5.3 96 4.3 87 3.6 20.28 Area 44.33 inches" 41.32 inches 2 35.82 inches 3 38.73 inoW 8 i-i 450.8 inches 8 380.0 inches 3 315.5 inches 3 286.7 inches 3 Weight 151.2 lbs. per ft. 141.2 lbs. per ft. 122.5 lbs. per ft. 1 131.0 lbs. per ft. Safe loads above horizontal lines exceed the web resistance and girders should be provided with stiffeners; for limiting conditions see explanatory notes and Construction Specifications. Weights given for girders do not include stiffeners, rivet heads or other details. 270 GIRDERS RIVETED BEAM GIRDERS— Concluded Allowable Uniform Load in Thousands op Pounds Maximum Bending Stress, 16000 Pounds per Square Inch ' r— 10-— i ,__9':—^ f — 9--* f — 8-—. «-i * * ,' I + 'h ! j^? ~*\{¥ ! "^ ir j ^f^ st 1. 1 3! 1 1 as L_ i 5 i 1 1 *3 3 S S? " § i^5 JUv, i Jt % , ^U 1 1 , 'T T> , 1 Span in Feet V V •"'■^ V ■ V I+ 1 *-' ^ V A 03 '3 1-Beam20"x651ba. 1-Beaml8"x551bs. 1-Beaml5"x601bs. 1-Beaml5"x421bs. 2-Plates 10" x %," 2-Plates c 9"x%" 2-Plates 9"x^" 2-Plates 8"xH" Increase Increase Increase Increase in Safe in Safe in Safe in Safe 5 Loads for joads for joatls for joads for Safe Mo Inch Safe Via Inch Safe Vie Inch Safe ■Ho Inch Loads Increase in Thickness of Flange Plates Loads Increase in Thickness of Flange Plates Loads Increase in Thickness >f Flange Plates Loads Increase in Thickness of Flange Plates 9 10 279 251 14.2 12.7 218 196 11.5 10.3 189 9.4 8.5 137 8.5 7.6 1.34 1.66 170 123 11 12 13 228 209 11.6 10.6 9.8 178 9.4 ' 8.6 7.9 155 142 131 7.7 7.1 6.5 112 102 95 6.9 6.4 5.9. 2.00 2.38 2.80 164 151 193 14 179 9.1 140 7.4 122 6.1 88 5.5 3.24 15 167 8.5 131 6.9 113 5.7 82 5.1 3.72 16 157 8.0 123 6.5 106 5.3 77 4.8 4.24 17 148 7.5 115 6.1 100 5.0 72 4.5 4.78 18 139 7.1 109 5.7 95 4.7 68 4.2 5.36 19 132 6.7 103 5.4 90 4.5 65 4.0 5.98 20 125 6.4 98 5.2 85 4.3 61 3.8 6.62 21 119 6.1 93 4.9 81 4.0 59 3.6 7.30 22 114 5.8 89 4.7 77 3.9 56 3.5 8.01 23 109 5.5 85 4.5 74 3.7 53 3.3 8.76 24 105 5.3 82 4.3 71 3.5 51 3.2 9.53 25 100 5.1 79 4.1 68 3.4 49 3.1 J0.35 26 97 4.9 76 4.0 65 3.3 47 2.9 11.19 27 93 4.7 73 3.8 63 3.1 46 2.8 12.07 28 90 4.6 70 3.7 61 3.0 44 2.7 12.98 29 87 4.4 68 3.6 59 2.9 42 2.6 13.92 30 84 4.2 65 3.4 57 2.8 41 2.5 14.90 31.58 inches? 27.18 inches 2 28.92 inches? 20.48 inches 2 . Si-i 235.2 inches 3 184.1 inches" 159.5 inches 8 115.3 inches 8 - Weight 107.5 lbs. per ft. 93.3 lbs. per ft. 98.3 lbs. per ft. 69.2 lbs. per ft, Saf e loads above horizontal lines exceed th i web resistance ar d girders should be provided eners; for limiting conditions'seo explana ory notes and Con* truction Specificatic ns. We ghts given for girders do not include stil feners, rivet heads o r other details. 271 CARNEGIE STEEL COMPANY RIVETED PLATE GIRDERS Safe Loads in Thousands of Pounds Uniformly Distributed Maximum Bending Stress, 16000 Pounds Per Square Inch -14--* r -14'-'-» --14-->. i-129ft i-12'^ ?- 14"— r 14 ""-i n F p? w !^ f.* i n^ | "*5 W 'fHt' :^pr ^ # s& is : ^ ~S S! 8" p? op J-1 CO o OS 0$ C$1 d y ** \jA L ■ A r^ .j4 fcfr, i_Jt, 1^^. \4h i .rA- 6a 1 ' T f [ ' + f y ■i ei n) 83 £ ■§.§ E 03 a) jo a a ... M-g PES m Si £E -J S If £=EE M s •8 S9 PfeE S 8 ■si § ^ SST&R Xm XtUkS srik; M-* M sul SSJJ3 g-s &*&& £S4il JSTS-a COiDrH rtTtttSl i^ttick ^•*4t« *H"|JH J-JlIM T-t-JvcV T-H->*e!i 20 325 331 301 274 196 196 299 278 6.62 21 310 315 287 261 187 186 285 265 7.30 22 23 296 301 288 274 262 249 238 178 171 178 170 272 253 242 8.01 8.76 283 260 -24 271 276 251 228 164 163 249 232 9.53 25 .260 265 241 219 157 156 239 223 10.35 26 27 250 241 255 245 232 223 211 203 151 150 145 230 222 214 206 11.19 12.07 145 28 29 232 224 236 228 215 208 196 189 140 135 140 214 206 199 192 12.98 13.92 135 30 217 221 201 183 131 130 ,199 186 14.90 31 210 214 194 177 127 126 193 180 15.91 32 203 207 188 171 123 122 187 174 16.95 33 197 201 183 166 119 119 181 169 . 18.03 34 191 195 177 161 115 115 176 '164 19.13 35 186 189 172 157 112 112 171 159 20.28 36 37 ■ 181 176 184 179 167 163 152 109 106 109 106 166 162 155 150 21.45 22.66 148 38 171 174 159 144 103 103 157 147 23.90 39 167 170 155 141 101 100 153 143 25.18 40 41 42 163 159 155 55.50 166 161 158 151 137 134 131 98 96 94 98 95 93 150 146 142 139 136' 26.48 27.82 29.20 147 144 133 Area 52.19 47.75 44.25 34.69 34.70 54.50 47.00 In.2 Si-i 609.7 620.6 565.1 514.0 368.1 366.7 560.7 521.9 In.s Wt.perPt 188.9 177.8 162.6 150.7 118.3 118.1 185.5 160.0 Lbs. Safe loads at ove horizontal lines exceed the end resistance and girders should be provided with stiffeiicrs; for imiting conditions see explanatory notes and Cons ruction Specifications. Weights give n for girders do not include stiffeners, rivet heads , or other details. 272 GIRDERS RIVETED PLATE GIRDERS— Continued Safe Loads in Thousands op Pounds Uniformly Distributed Maximum Bending Stress, 16000 Pounds Per Square Inch - ,.-14—, r -14% 1*12%'; do%; „ 1 r- 14% r -14% r- 14 % l*12-i <\% S-Y !^ fV r^ r nr mw i ^pr f^P^ f^r '? >! A ! 4 5 ^ $ $ 35 a* « ep s 9 £ s ^ a i^ H 1j=4 K Li ► Life, Ublfabi i^^. i¥ L tr#%. Span f T + *'T + ' Y T + T a in Feet Dimensions in Inches o fl .53 "3 "B 8 . s s *bbtj S q .2 3-9 cm bo .3 £ a « s Ph v bO ■8 9 1 Tab Ph id aj s S pi S s 3 p a V CS 01 Pe^S PEE £E ^e &*SE £EE ^EE £EE W-9 M J3-8 mm •g'2-s 3&S .8 "3 49 23 •H-j,c!l TH-^ci JJi JJ.=4 J.4A A,M -h4c4 18 281 249 168 148 258 229 202 176 5.36 19 20 266 253 236 224 160 152 140 244 232 217 206 192 182 167 159 5.98 6.62 133 21 241 214 144 127 221 196 173 151 7.30 22 23 24 230 220 211 204 195 187 138 121 116 111 211 202 193 187 179 172 166 158 152 144 138 8.01 8.76 9.53 132 126 132 25 202 180 121 106 186 165 146 127 10.35 26 27 195 187 173 166 117 112 102 98 178 172 158 153 140 122 118 11.19 12.07 135 28 181 160 108 95 159 147 130 114 12.98 29 174 155 105 92 160 142 126 110 13.92 30 31 169 163 150 145 101 98 89 86 155 150 137 121 118 106 103 14.90 15.91 133 32 158 140 95 83 145 129 114 99 16.95 33 34 35 153 149 145 136 92 89 87 81 78 76 141 136 125 121 118 110 107 104 96 93 91 18.03 19.13 20.28 132 128 133 36 141 125 84 74 129 114 101 88 21.45 37 38 137 121 118 82 80 72 70 125 122 111 108 98 96 86 84 , 22.66 23.90 133 39 130 115 78 68 119 106 93 81 25.18 40 126 112 76 66 116 103 91 79 26.48 43.50 38.91 29.50 26.50 42.75 38.19 34.69 30.95 In.2 Si-, Wt.perFt. 474.3 420.8 284.3 249.1 435.1 386.1 341.5 298.0 In.s 148.1 132.5 100.5 90.1 145.6 130.0 118.1 105.4 Lbs. jve horizontal lines e tceed the end resistance and % irders should be p ovided with stiff eners; fori miting conditions see explanatory notes and Constr uction Specifications Weights givei for girders do not i aclude stiffeners, rivet heads, >r other details. 273 CARNEGIE STEEL COMPANY RIVETED PLATE GIRDERS— Concluded Safe Loads in Thousands of Pounds Uniformly Distributed Maximum Bending Stress, 16000 Pounds Per Square Inch L^!£i r 10%" *-12-'~ --12% --12-'-, r 12-< 1 rl(»«K plO%? pi ► H y !^ w ! "r^ pr T ^ p? T ^ ^v nr nr "S '•? v ■ = i ** 3! 'i? : i a M § us ira M °? Si 3 i=2 !U U fc-, Lf4 h i^jt^. i^^. 4*fe LJt i.Jk= en 03 Q Span o in Dimensions jn Inches Feet 8 " to -gg s Hi ■s § ■ggg •M I4s •^ MM •s§§ J j ■ bo J4 °3 m & t*s ESS ESSE ^PhE &H5 ESSE fefa tss X X X X x § X 3$ xs: xSs xjfe: x$s X$X 2$ x$ an £13 $°8£ ■SB .9 -9^^ 3! X 35 4»M C4 W) THTJH AJ. A-^esi A^CQ -i-i^i ^H-^« tH-J* 153 224 204 181 161 18 134 121 98 5.36 19 145 127 212 193 172 152 115 93 5.98 20 138 121 115 202 192 183 175 163 155 144 138 109 104 88 84 6.62 21 131 7.30 22 126 110 184 167 148 131 99 80 8.01 23 120 115 105 101 176 168 159 153 142 136 126 95 91 77 74 8.76 24 120 9.53 25 110 97 162 147 131 116 87 71 10.35 26 106 102 93 90 155 150 141 136 126 111 107 84 81 68 65 11.19 27 121 12.07 28 99 86 144 131 117 103 78 63 12.98 29 95 92 83 81 139 135 126 113 109 100 96 75 73 61 59 13.92 30 122 14.90 31 89 78 130 118 105 93 70 57 15.91 32 86 84 76 73 126 115 111 102 99 90 88 68 66 55 53 16.95 33 122 18.03 34 81 71 119 108 96 85 64 52 19.13 35 79 69 115 105 93 83 62 50 20.28 36 77 67 112 102 91 80 61 49 21.45 37 75 65 109 99 88 78 59 48 22.66 38 73 64 106 96 86 76 57 46 23.90 39 71 62 104 94 84 74 56 45 25.18 40 69 60 101 92 82 72 55 44 26.48 Area 28.75 25.75 40.00 37.00 33.20 30.20 25.00 21.20 In.2 Si-i 258.9 226.6 378.5 343.6 306.1 270.9 204.6 165.5 In.s Wt.perFt 98.0 87.6 136.0 125.8 113.0 102.8 85.0 72.2 Lbs. Safe loads above horizontal lines exceed the end resistance and girders should be provided with stiff eners; for limiting conditions see explanatory notes and Construction Specifications. Weights given for girders do not include stiffeners, rivet heads, or other details. 274 GIRDERS RIVETED PLATE GIRDERS To obtain a girder suitable to carry any specified loading, determine the maximum end reaction in pounds and the maximum bending moment in inch-pounds. Select from the table a girder having the desired depth, a thickness of web as determined by the maximum end reaction and a suitable section modulus as deter- mined by dividing the bending moment by the permissible stress per square inch. For limiting conditions see explanatory notes and Construction Specifications. Weights given do not include stifleners, rivet heads, or other details. 1 T 1 Weight per Foot, Maximum Section Size in Inche Pounds End Modulus, Reaction . Web Plate in Axis 1-1, Web Flange Flange and Flange Thousands of Pounds Inches 8 Plate Angles Plates Flange Angles Plates 136.6 4x 3 x% 59.5 50.6 168.6 4x 3 xH 69.9 50.6 198.7 5x3HxH 79.9 50.6 236.1 24x% 6 5x3Mx« 92.7 50.6 238.0 5x3HxM 12 xH 79.9 40.8 50.6 372.9 5x3HxH 12 x% 79.9 51.0 50.6 408.5 5x3J4xK 12 x% 92.7 51.0 50.6 142.5 4x 3 x% 64.6 60.8 165.5 5x3^xH 72.2 60.8 174.5 4x 3 xH 75.0 60.8 204.5 4x 3 7L% 85.0 60.8 204.6 5x3Mx^ 85.0 60.8 242.0 24 x% 5x3Hx*A 97.8 60.8 270.9 5x3Hx% 12 xH 72.2 30.6 60.8 306.1 5x3^xM 12 x& 72.2 40.8 60.8 343.6 5x3^xH 12 xH 85.0 40.8 ,60.8 160.8 378.5 5x3)4xJ4 12 xH 85.0 51.0 414.1 5x3^x% 12 xH 97.8 51.0 60.8 151.5 4x 3 x% 61.6 56.3 176.8 5x3M*% 69.2 56.3 186.6 4x 3 xK 72.0 56.3 201.2 6x 4 x% 76.8 56.3 219.6 5x314*14 82.0 56.3 252.0 6x 4 xH 92.4 56.3 260.7 5x3HxM 94.8 56.3 291.3 26 x % 6 5x3MxM 12 x% 69.2 30.6 56.3 301.0 6x 4 x*/a 107.6 56.3 329.5 5x3Hx^ 12 xH 69.2 40.8 56.3 334.8 6x 4 x% 14 x % 76.8 35.7 56.3 370.7 5x3J4xJ4 12 xM 82.0 40.8 56.3 379.4 ex 4 %y a 14 xK 76.8 47.6 56.3 408.6 5x3J4x^ 12 x% 82.0 51.0 56.3 275 < :arneqi E STEEL COMPANY RIVETED PLATE GIRDERS— Continued Section Size in Inches Weight per Foot, Pounds Maximum End Modulus, Reaction AxiH 1-1, Web Flange Flange Web Plate and Flange in Thousands of Founds Inches 8 Plate Angles Plates Flange Angles Plates 428.4 6x 4 xH 14 xH 92.4 47.6 56.3 447.9 5x3Mx^s 12 x^ 94.8 51.0 56.3 472.7 26x<& 6 6x 4 xy 2 14 x% 92.4 59.5 56.3 519.5 6x 4 x% lixy a 107.6 59.5 56.3 563.4 6x 4 x% 14 xDi 107.6 71.4 56.3 158.5 4x 3 x% > 67.2 67.5 183.8 5x-3Hx« 74.8 67.5 193.5 4x 3 xY 2 77.6 67.5 208.1 6x 4 x% 82.4 67.5 226.5 4x 3 x% 87.6 67.5 226.6 5x3KxH 87.6 67.5 258.9 6x 4 x*A 98.0 67.5 267.6 5x3^xJs 100.4 67.5 298.0 5x3Hx% 12 x^ 74.8 30.6 67.5 307.9 6x 4 -aYs 113.2 67.5 336.2 5x3^x^ 12 xK 74.8 40.8 67.5 341.5 2Gx% 6x 4 xH 14 jjj 82.4 35.7 67.5 354.4 6x 4 x% 127.6 67.5 377.4 5x3^xH 12 xH 87.6 40.8 67.5 386.1 6x 4 xH 14 xM 82.4 47.6 67.5 415.2 5xii4x}4 12 x% 87.6 51.0 67.5 435.1 6x 4 xj^ 14 xM 98.0 47.6 67.5 454.5 5x3J4xH 12 x% 100.4 51.0 67.5 479.3 6x 4 x^ lixy s 98.0 59.5 67.5 526.1 6x 4 x% 14x5^ 113.2 59.5 67.5 569.9 6x 4 x^ 14 x % 113.2 71.4 67.5 613.9 6x 4 xM 14 xM 127.6 71.4 67.5 200.^ 4x 3 xH 83.1 78.8 233.4 4x 3 x% 93.1 78.8 233.5 5x3MxJ^ 93.1 78.8 265.8 6x 4 x}£ 103.5 78.8 274.5 5x3Hx% 105.9 78.8 314.8 6x 4 x% 118.7 78.8 361.3 6x 4 xM 133.1 78.8 384.0 26 x %e 5x3J^x^ 12 iH 93.1 40.8 78.8 421.8 5x3KxM 12 xH 93.1 51.0 78.8 441.7 6x 4 x^ 14 xH 103.5 47.6 78.8 461.1 5x3J^xM 12 x« 105.9 51.0 78.8 485.9 6x 4 xH l|xH 103.5 59.5 78.8 532.7 6x 4 x% 14 s^ 118.7 59.5 78.8 576.5 6x 4 x% 14 x % 118.7 71.4 78.8 620.5 6x 4 x% 14 x% 133.1 71.4 78.8 276 GIRDERS RIVETED PLATE GIRDERS— Continued Section Size in Inches Weight per Foot, Pounds Maximum End Modulus, Reaction Axis 1-1, Web Flange Mange Web Plate and Flange in Thousands of Pounds Inches 8 Plate Angles Plates Flange Angles Plates 185.6 5x3}^x% 70.3 56^3 211.0 6x 4 x% 77.9 56.3 230.3 _ 5x3Kx>4 83.1 56.3 264.1 ' 6x 4 xJ4 93.5 56.3 273.2 5x3^x% 95.9 56.3 304.5 5xSy 2 x'A 12 x% 70.3 30.6 56.3 315.3 6x 4 x% 108.7 56.3 344.2 5x3MxK 12x*A 70.3 40.8 56.3 349.8 27x%a 6x 4 x% 14 x% 77.9 35.7 56.3 387.3 5x3M*M 12 xH 83.1 40.8 56.3 396.2 6x 4 x% 14 x y 2 77.9 47.6 56.3 426.7 5x3^x>4 12 xM 83.1 51.0 56.3 447.4 6x 4 xH 14 xH 93.5 47.6 56.3 467.7 5x3Hx s A 12 iH 95.9 51.0 56.3 493.4 6x 4 xy, 14 xH 93.5 59.5 56.3 542.4 6x 4 x% 14 x ^ 108.7 59.5 56.3 588.0 6x 4 x^ 14 x M 108.7 71.4 56.3 193.1 5x3^*% 76.0 67.5 218.5 6x 4 x% , 83.6 67.5 237.8 5x3^x^ 88.8 67.5 271.5 6x 4 x3a 99.2 67.5 280.6 5x3«xJ| 101.6 67.5 311.7 5x3HxM 12 x J3 76.0 30.6 67.5 322.7 6x 4 xJi 114.4 67.5 351.4 5x3Xx'A 12 xM 76.0 40.8 67.5 357.1 6x 4 x% 14 x% 83.6 35.7 67.5 371.4 27 x % 6x 4 xM 128.8 67.5 394.5 hxZyixYi 12 xK 88.8 40.8 67.5 403.4 6x 4 xX 14 xK 83.6 47.6 67.5 417.9 6x 4 xjs" 143.2 67.5 433.8 5x3J4xH M2 x H 88.8 51.0 67.5 454.6 6x 4 xH 14 xH 99.2 47.6 67.5 , 474.8 5x3Hx% 12 x ^ 101.6 51.0 67.5 500.5 6x 4 xj^ 14 x% 99.2 59.5 67.5 549.5 6x 4 xX 14 x H 114.4 59.5 67.5 595.1 6x 4 x% 14 x M 114.4 71.4 67.5 641.2 6x 4 x% 14 xM 128.8 71.4 67.5 245.2 5x3*4x14 94.6 78.8 279.0 27 x %e 6x 4 xj^ 105.0 78.8 288.1 5x3M* 6 A 107.4 78.8 330.2 6x 4 xH 120.2, 78.8 277 CARNEGIE STEEL COMPANY RIVETED PLATE GIRDERS— Continued Section Size in Inches Weight per Foot, Pounds Maximum End Modulus, Reaction Axis 1-1, Web Flange Flange Web Plate and Flange in Thousands of Inches 3 Plate Angles Plates Flange Angles Plates Pounds 378.8 6x 4 x% 134.6 78.8 401.7 5x3}^xH 12 x)i 94.6 40.8 78.8 425.3 6x 4 XJ4 149.0 78.8 440.9 5x3^xJi 12 x% 94.6 51.0 78.8 461.8 27 x %o 6x 4 xM 14 iH 105.0 47.6 78.8 482.0 5x3^x^ 12 x% 107.4 51.0 78.8 507.7 6x 4 xH 14 x^ 105.0 59.5 78.8 556.6 6x 4 x% 14x5^ 120.2 59.5 78.8 602.4 6x 4 x% 14 x% 120.2 71.4 78.8 648.2 6x 4 xM 14 x% 134.6 71.4 78.8 194.5 5x3^xH 71.4 56.3 221.0 6x 4 xM 79.0 56.3 241.1 5x3J^xH 84.2 56.3 276.3 6x 4 xK 94.6 , 56.3 285.8 5x3^x5^ 97.0 56.3 317.8 5x3^x% 12 x Ji 71.4 30.6 56.3 329.7 6x 4 x% 109.8 56.3 359.0 5x3J^xM 12 iH 71.4 40.8 56.3 365.0 28x% 6 6x 4 x% 14 x% 79.0 35.7 56.3 404.0 5x3}^xH 12 xM 84.2 40.8 56.3 413.1 6x 4 xj| 14 xH 79.0 47.6 56.3 444.8 5x3Kx*S 12x% 84.2 51.0 56.3 466.5 6x 4 x^ 14 xH 94.6 47.6 56.3 487.6 5x3^x5^ 12 x^ 97.0 51.0 56.3 514.2 6x 4 xJ4 14 x % 94.6 59.5 56.3 565.4 6x 4 x% 14 x% 109.8 59.5 56.3 612.7 6x 4 xH 14 xM 109.8 71.4 56.3 202.5 5x3Kx^ 77.3 67.5 229.0 Gx 4 x% 84.9 67.5 249.1 5x3KxJ^ 90.1 67.5 284.3 293.8 6x 4 *H 100.5 67.5 5x3}^xM 102.9 67.5 325.6 5x3KxM 12 x H 77.3 30.6 67.5 337.7 28 IH 6x 4 x% 115.7 67.5 366.7 5x3MxM 12 x^ 77.3 40.8 67.5 372.8 6x 4 xJ3 11 x% 84.9 35.7 67.5 388.5 6x 4 xji 130.1 67.5 411.7 5x3HxM 12 xH 90.1 40.8 67.5 420.8 6x 4 xH 14 xH 84.9 47.6 67.5 437.0 6x 4 xK 144.5 67.5 452.5 5x3^xK 12 x^ 90.1 51.0 67.5 278 GIRDERS RIVETED PLATE GIRDERS— Continued Section Modulus, Size in Inches Weight per Foot, Pounds Maximum End Reaction Axis 1-1, Web Flange Flange Web Plate and Flange in Thousands of Pounds * Inches 8 Plates Angles Plates Flange Angles Plates 474.3 6x 4 xH 14 xM 100.5 47.6 67.5 495.3 5x3Kx% 12 x% 102.9 51.0 67.5 521.9 28 jt y % 6x 4 xH 14 xH 100.5 59.5 67.5 573.1 6x 4 x% 14 x% 115.7 59.5 67.5 620.4 6x 4 x% 14 xM 115.7 71.4 67.5 . 668.6 6x 4 x.% 14 xM 130.1 71.4' 67.5 257.1 5x3KxM 96.1 78.8 292.4 6x 4 xH 106.5 78.8 301.8 5x3HxM 108.9 78.8 345.8 6x 4 xH 121.7 78.8 396.5 6x 4 xM 136.1 78.8 419.5 5x3Hx)4 12 xH 96.1 40.8 78.8 445.1 28 x %, 6x 4 x% 150.5 78.8 460.2 5x3Kx^ 12 xM 96.1 51.0 78.8' 482.0 6x 4 xH 14 xH 106.5 , 47.6 78.8 503.0 5x3Hx« 12 xM 108.9 51.0 78.8 529.6 6x 4 x^ 14x5^ 106.5 59.5 78.8 580.8 6x 4 x% 14 x % 121.7 59.5 78.8 628.0 6x 4 x% 14 x M 121.7 71.4 78.8 676.2 6x 4 xM 14 x M 136.1 71.4 78.8 221.8 5x3Hx« 79.9 74.3 250.5 6x 4 x« 87.5 74.3 -. 272.1 5x3^xK 92.7 74.3 310.3 6x 4 x^ 103.1 74.3 320.5 5x3KxM 105.5 '74.3 353.8 5x3^xM 12 xH 79.9 30.6 74.3 366.2 5x3Mx?i 117.5 74.3 368.1 6x 4 xH 118.3 74.3 397.8 5x3MxM 12 xM 79.9 40.8 74.3 404.7 6x 4 xH 14 x % 87.5 35.7 74.3 423.1 30 x % 6x 4 xM 132.7 74.3 446.6 5x3MxM 12xM 92.7 40.8 74.3 456.1 6x 4 x% 14 xK 87.5 47.6 74.3 475.8 6x 4 x% 147.1 74.3 490.3 5x3Hx^ 12 x^ 92.7 51.0 74.3 514.0 6x 4 xM 14 xM 103.1 47.6 74.3 536.7 5x3^xM 12 xM 105.5 51.0 74.3 565.1 6x 4 xH 14 x^ 103.1 59.5 74.3- 620.6 6x 4 x^ 14 x% 118.3 59.5 74.3 671.3 6x 4 x^g 14 x% 118.3 71.4 74.3 ,723.8 6x 4 xM 14 xM 132.7 71.4 74.3 279 CARNEQIE STEEL COMPANY RIVETED PLATE GIRDERS— Continued Section Modulus, Size in Inches Weight per Foot, Pounds Maximum End Reaction Axis 1-1, Inches 3 > Web Plates Flange Angles Flange Plates Web Plate and Flange Angles Flange Plates in Thousands of Pounds 281.4 5x3MxH 99.0 86.6 319.5 6x 4 xH 109.4 86.6 329.7 5x3HxH 111.8 86.6 375.5 5x3HxK 123.8 86.6 , ,377.3 6x 4 x^ 124.6 86.6 432.3 6x 4 x% 139.0 86.6 455.5 \ 5x3^xK 12 x H 99.0 40.8 86.6 485.0 30 x % e 6x 4 xy s 153.4 86.6 499.2 5x3HiH 12 x% 99.0 51.0 86.6 523.0 - 6x 4 xH 14 xX 109-4 " 47.6 86.6 5*45.6 5x3HxM 12xJ< 111.8 51.0 86.6 574.0 6x 4 xK 14 x^ 109.4 59.5 86.6 629.5 6x 4 x s A 14 x% 124.6 59.5 86.6 680.1 6x 4 x% 14 xM 124.6 71.4 86.6 732.6 6x 4 xM 14 x M 139.0 71.4 86.6 290.6 5x3HxH 105.4 99.0 328.8 6x 4 xH 115.8 99.0 338.9 bxZy^xVi 118.2 99.0 384.7 hxZyixVi 130.2 99.0 386.5 6x 4 xH 131.0 99.0 441.5 6x 4 xj| 145.4 99.0 464.4 5x3HxM 12 xY, 105.4 40.8 99.0 494.2 30 xH 6x 4 xj| 159.8 99.0 ' 508.0 5x3HxH 12 xH 105.4 51.0 99.0 531.9 6x 4 xH WxX 115.8 47.6 99.0 554.5 5xZy 2 xYs 12 x% 118.2 > 51.0 99.0 582.8 6x 4 xM 14xJi 115.8 59.5 99.0 638.3 6x 4 x% 14 x% 131.0 59.5 99.0 6S8.9 Ox 4 x% 14 x M 131.0 71.4 99.0 741.3 6x 4 x% 14 x M 145.4 71.4 99.0 251.7 5x3H*M 83.7 81.0 283.7 6x 4 x% 91.3 81.0 307.7 5x3^xJ4 96.5 81.0 308.4 6x 6 x% 101.7 121.5 350.3 6x 4 x)4 106.9 81.0 361.5 33 x% 5xZ)4x% 109.3 81.0 383.6 6x 6 x}^ 120.5 121.5 396.9 5x3^x% 12 xM 83.7 30.6 81.0 412.5 5xZ)4x% 121.3 81.0 414,7 6x 4 x^ 122.1 81.0 445.5 5x3y a xy s 12 xH 83.7 40.8 81.0 453.4 6x 4 x% 14 IX 91.3 35.7 81.0 280 GIRDERS RIVETED PLATE GIRDERS— Continued Section Modulus, Size in Inches Weight per Foot, Pounds Maximum End Reaction Axis 1-1, Web Flange Flange Web Plate and Flange in Thousands Inches 3 Plate Angles Plates Flange Angles Plates of ' Pounds 455.9 6x 6 x% 138.9 121.5 476.1 6x 4 x% 136.5 81.0 477.6 6x 6 s.% 14 xM 101.7 35.7 121.5 499.8 5x3)4xH 12 x Yz 96.5 40.8 81.0 510.0 6x 4 x% 14 x^ 91.3 47.6 81.0 525.4 6x 6 xYl 156.9 121.5 534.1 6x 6 x% 14 sH 101.7 47.6 121.5 548.0 5x3K*H 12x5< 96.5 51.0 81.0 574.7 6x 4 x}i 14 xYt. 106.9 47.6 81.0 590.6 33 x % 6x 6 xYs 14 xM 101.7 59.5 121.5 592.6 6x 6 x% 174.5 121.5 599.9 5x3MxK 12 x% 109.3 51.0 81.0 607.1 6x 6 xYt 14 x H 120.5 47.6 121.5 630.9 6x 4 xH 14 xy s 106.9 59.5 81.0 663.1 6x 6 x^ lixYs 120.5 59.5 121.5 693.0 ' 6x 4 x% 14 x^ 122.1 59.5 , 81.0 719.2 Ox 6 xK 14 x % 120.5 71.4 121.5 732.7 6x 6 xYs lixYa 138.9 59.5- 121.5 748.9 6x 4 x% UxM 122.1 71.4 81.0 788.3 6x 6 x% 14 x% 138.9 71.4 121.5 807.6 6x 4 x% 14 x Yi 136.5 71.4 81.0 854.9 6x 6 x% 14 x % 156.9 71.4 121.5 318.9 5x3HxH 103.5 94.5 361.5 6x 4 x}^ 113.9 94.5 372.7 BxZYiXYi 116.3 94.5 394.8 6x 6 xH 127.5 141.8 423.7 5x3^x^ 128.3 94.5 425.8 6x 4 xj-g 129.1 94.5 467.0 6x 6 x^ 145.9 141.8 487.2 6x 4 x% 143.5 94.5 510.7 33 x % 6 5x3J^xH 12 x)4 103.5 40.8 94.5 536.6 6x 6 xM -163.9 141.8 558.8 5x3^xM 12 x« 103.5 51.0 94.5 585.6 6x 4 xH 14 XH 113.9 47.6 94.5 603.8 6x 6 xy s 181.5 141.8 610.6 5x3iAxYa 12 xM 116.3 51.0 94.5 617.9 6x 6 xYi 14 xYl 127.5 47.6 141.8 641.7 6x 4 x^ 14 x% 113.9 59.5 94.5 673.9 6x 6 xYi 14 xjj 127.5 59.5 141.8 703.8 6x 4 xj| 14 x% 129.1 59.5 94.5 . 281 CARNEQIE STEEL COMPANY RIVETED PLATE GIRDERS— Continued Section Size in Inches Weight per Foot, Pounds Maximum End Modulus, Reaction Axis 1-1, Web . Flange Flange Web Plate and Flange in Thousands of Pounds Inches 3 Plates Angles \ Plates Flange Angles Plates 729.9 6x6 xH 14 x % 127.5 71.4 141.8 743.5 6x 6 ' xJ4 14 x% 145.9 59.5 141.8 759.6 33 x % 6 6x 4 x% 14 xM 129.1 71.4 94.5 799.0 6x 6 x% 14 x K 145.9 71.4 141.8 818.3 6x 4 xM 14 x % 143.5 71.4 94.5 865.6 6x 6 x% 14 x M 163.9 71.4 141.8 330.0 5x3^xH 110.5 108.0 372.6 Ox 4 xy 2 120.9 108.0 383.9 5x3Kx% 123.3 108.0 406.0 6x 6 xK 134.5 162.0 434.9 5x3KxM 135.3 108.0 437.0 Ox 4 s-Vi 136.1 108.0 478.2 Gx 6 xy a 152.9 162.0 498.4 Gx 4 x% 150.5 108.0 521.5 5x3^xK 12 xH 110.5 40.8 108.0 547.8 1 6x 6 x% 170.9 162.0 569.5 5x3J^x}£ 12 x« 110.5 51.0 108.0 596.4 33 xK 6x 4 x$i 14 xH 120.9 47.6 108.0 615.0 6x 6 x% 188.5 162.0 621.4 5x3^x% 12 x% 123.3 51.0 108.0 628.8 6x 6 xK 14 xM 134.5 47.6 162.0 652.5 6x 4 xH 14 x% 120.9 59.5 108.0 684.6 6x 6 xH 14 xM . 134.5 59.5 162.0 714.5 6x 4 x% 14 iH 136.1 59.5 108.0 740.6 6x 6 iM 14 x % 134.5 71.4 162.0 754.3 6x 6 xH 14 x^ 152.9 59.5 162.0 770.3 6x 4 xy s 14 xM 136.1 71.4 108.0 809.7 6x 6 xH 14 x Ji 152.9 71.4 162.0 829.0 6x4 xJi 14 x % 150.5 71.4 108.0 876.3 6x 6 xM 14 x M 170.9 71.4 162.0 318.0 6x 4 x% 95.1 i 87.8 344.4 5x3Y 2 xH 100.3 87.8 346.9 6x 6 x% 105.5 135.0 391.4 6x 4 xH 110.7 87.8 403.7 5x3^x« 113.1 87.8 430.3 36 x% 6x 6 xyi 124.3 135.0 460.0 5x3KxJi 125.1 87.8 462.4 6x 4 x% 125.9 87.8 503.3 6x 4 xM 14 xX 95.1 35.7 87.8 • 510.5 6x 6 x% 142.7 135.0 530.2 6x 4 xM 140.3 87.8 531.6 6x 6 x% 14 x% 105.5 35.7 135.0 282 GIRDERS RIVETED PLATE GIRDERS— Continued Section , Size in Inches Weight per Foot, Pounds Maximum End Modulus, Reaction Axis 1-1, Web Flange Flange Web Plate and Flange in Thousands of Pounds Inches 8 Plates Angles Plates Flange Angles Plates 554.3 5x3HxM 12 xM 100.3 40.8 87.8 ,565.1 6x 4 x% 14 xH 95.1 47.6 87.8 593.2 6x 6 x« 14 x^ 105.5 47.6 135.0 595.3 6x 4 x% 154.7 87.8 606.8 5x3Mx^ 12 x^ i00.3 51.0 87.8 636.5 6x 4 xH 14 i« 110.7 47.6 87.8 654.9 6x 6 xH 14 xH 105.5 59.5 }35.0 664.2 36 x V a 5x3MxJi 12 x% 113.1 51.0 87.8 674.4 6x 6 xH 14 xH 124.3 47.6 135.0 698.0 6x 4 x}4 14 x% 110.7 59.5 87.8 735.5 6x 6 xH 14 x% 124.3 59.5 135.0 766.6 6x 4 xY a 14xM 125.9 59.5 87.8 796.8 6x 6 xM 14 x % 124.3 71.4 135.0 813.1 6x 6 x% 14 X M 142.7 59.5 135.0 827.6 6x 4 x% 14 xM 125.9 71.4 87.8 873.8 6x 6 x% 14 x M 142.7 71.4 135.0 892.8 6x 4 x% Ux% 140.3 71.4 87.8 357.7 5x3Hx^ 108.0 102.4 404.7 6x 4 xJ4 118.4 102.4 417.0 5x3Hx^ 120.8 102.4 443.6 6x 6 xH 132.0 157.5 473.3 5x3HxM 132.8 102.4 475.7 6x 4 xH 133.6 102.4 523.8 6x 6 x^ 150.4 157.5 543.5 6x 4 x% 148.0 102.4 567.2 5x3J^xH 12 x K 108.0 40.8 102.4 608.6 36 x %a 6x 4 xK 162.4 102.4 619.7 5x3^xH 12 xM 108.0 51.0 102.4 649.5 6x 4 xH 14 x^ 118.4 47.6 102.4 677.1 5x3^x^ 12 x^ 120.8 51.0 102.4 » 687.3 6x 6 xH 14 xH 132.0 47.6 157.5 710.8 6x 4 xH 14 x H 118.4 59.5 102.4 748.4 6x 6 xyi 14 x ^ 132.0 59.5 157.-5 779.5 6x 4 x% 14xH 133.6 59.5 , 102.4 809.5 6x 6 x^ 14 x % 132.0 71.4 157.5 825.9 6x 6 x% 14 xK 150.4 59.5 157.5 840.4 6x 4 xH 14 xK 133.6 71.4 102.4 886.6 6x 6 x s A 14 xM 150.4 71.4 157.5 905.5 6x 4 x% 14 xM 148.0 71.4 102.4 283 CARNEQIE STEEL COMPANY RIVETED PLATE GIRDERS— Continued Size in Inches Weight per Foot, Founds Maximum Section End Modulus, Reaction Axis 1-1, Web Flange Flange Web Plate and Flange in Thousands of Inches 3 Plates Angles Plates Flange Angles Plates Pounds 418.0 6s4sX 126.0 117.0 456.9 6x6x^ 139.6 180.0 489.0 6x 4 x % 141.2 117.0 537.1 6x6x% 158.0 180.0 556.9 6x4x % 155.6 117.0 614.5 6x 6x % 176.0 180.0 621. 9, 662.5 6x4x % 170.0 117.0 6x4x H 14 x^ 126.0 47.6 117.0 689.2 6x6x% 193.6 180.0 700.3 6x6x H 14 xH 139.6 47.6 180.0 723.7 6x4x H 14 xYs 126.0 59.5 117.0 761.3 36 x H 6 x6x H 14 x Ys 139.6 59.5 180.0 792.3 6x ix% 14 x Ys 141.2 59.5 117.0 822.3 6x6x H 14 x % 139.6 71.4 180.0 838.8 6x 6x Yi 14 x Ys 158.0 . 59.5 180.0 853.2 6 x 4x ^ 14 x % 141.2 71.4 117.0 899.4 6x 6x M 14 x % 158.0 71.4 180.0 918.3 6 x 4 x % 14 x % 155.6 71.4 117.0 973.7 6x 6x % 14 x % 176.0 71.4 180.0 1039.4 6x4x % 14 x 1 155.6 95.2 117.0 1094.1 6x6x % 14 x 1 176.0 95.2 180.0 1101.1 6x4xK 14 x 1 170.0 95.2 117.0 1164.9 6x 6x Vs 14 x 1 193.6 95.2 180.0 444.7 6x4x J4 141.3 146.3 483.5 6x6x y& 154.9 225.0 515.7 6 x 4 x % 156.5 146.3 563.7 6x 6x% 173.3 225.0 583.5 6x4 x % 170.9 146.3 641.2 6x 6x H 191.3 225.0 648.5 ' 6x 4x K 185.3 146.3 688.4 36 x % 6x4 x K 14 xH 141.3 47.6 146.3 t 715.8 6x6x K 208.9 225.0 726.2 6x 6x y 2 14 xK 154.9 47.6 749.4 6x4 x H 14 xYs 141.3 59.5 146.3 787.0 6x6x % lixYs 154.9 59.5 225.0 818.1 6x4x % 14 x^ 156.5 59.5 146.3 847.9 6 x 6 x \i 14x% 154.9 71.4 225.0 864.6 6x6x Yi 14 xYs 173.3 59.5 225.0 878.8 6x4x Ys 14 x % 156.5 71.4 146.3 924.9 6x 6x Y% 14 xM 173.3 71.4 225.0 284 GIRDERS RIVETED PLATE GIRDERS— Continued r Section - Size in Inches Weight per Foot, Pounds Maximum End Modulus, Reaction Axis 1-1, , Web Flange Flange Web Plate and Flange in Thousands of Pounds Inches 3 Plates Angles Plates Flange Angles Plates 943.9 6x4x M lix% 170.9 71.4 146.3 999.3 6 x 6 x M 14 xM 191.3 71.4 225.0 1045.9 6x6x% 14 x 1 ' 173.3 95.2 225.0 1064.7 36 x % 6i4iX 14 x 1 170.9 95.2 146.3 1119.3 6x 6x U 14 x 1 191.3 95.2 225.0 1126.3 6xix% 14 x 1 185.3 95.2 146.3 1190.1 6x6x % 14 x 1 208.9 95.2 225.0 390.2 6x4x% 102.8 101.3 427.5 &x&x% 113.2 157.5 477.2 6x4xK 118.4 101.3 527.2 6x6x3^ 132.0 157.5 561.4 6i4x« 133.6 101.3 606.6 m QxixYi 14 x% 102.8 35.7 101.3 623.5 6x6x % 150.4 157.5 638.3 6 x4 x y» 16 x'A 102.8 40.8 101.3 642.1 6x4xM 148 101.3 643.2 6x6x % lixYs 113.2 35.7 157.5 675.1 &x&xYa WxYi 113.2 40.8 157.5 678.6 6x4x Y% 14 xM 102.8 47.6 101.3 715.2 6x6x Y% 14xJ4 113.2 47.6 157.5 716.5 6x 6x % 168.4 157.5 719.5 6x4x y % 162.4 101.3 757.7 6x6x% 16x14 113.2 54.4 157.5 763.7 42 x% 6x4xH 14xJ4 118.4 47.6 101.3 787.2 6x6x % 14 xM 113.2 59.5 157.5 806.2 6x4xK 16 x Yi 118.4 54.4 101.3 806.4 6x6xK 186.0 157.5 812.7 6x6x K lixM 132.0 47.6 157.5 835.5 6x4x y 2 lixy s 118.4 59.5 101.3 855.2 6x6x J^ 16x34 132.0 54.4 157.5 884.2 6x6x H 14 xYs 132.0 59.5 157.5 917.3 6x4x Yi lixYs 133.6 59.5 101.3 937.3 6x6xK 16xYs 132.0 68.0 157.5 955.7 6 x 6 x Yi 14 xM 132.0 71.4 157.5 970.4 6 x 4x Yi 16 xY% 133.6 68.0 101.3 977.6 6x6x Yi lixYa 150.4 59.5 157.5 988.7 6x4x% 14 x% 133.6 71.4 101.3 1030.8 6x6xYs 16 xYs 150.4 68.0 157.5 1048.6 6x6x% 14 xM 150.4 71.4 157.5 1066.6 6x4x % 14 x % 148.0 71.4 101.3 1112.4 6x6x5^ 16 xM 150.4 81.6^ 157.5 285 CARNEGIE STEEL COMPANY RIVETED PLATE GIRDERS— Continued ■ t- Section Size in Inches Weight per Foot, Pounds Maximum End Modulus, Reaction Axis 1-1, Web Flange Flange Web Plate and Flange in Thousands of Pounds Inches 8 Plates Angles Plates Flange Angles Plates 1130.4 6x 4x % 16 x % 148.0 81.6 101.3 1138.5 6 x 6x % 14 x % 168.4 71.4 157.5 1194.1 6x6x% IQxH 150.4 95.2 157.5 1202.3 42x% 6x 6x % 16 xM 168.4 81.6 157.5 1283.5 6161M 16 x y s 168.4 95.2 157.5 1286.4 6x4x% 16 x% 162.4 95.2 101.3 1369.9 6x6x % 16xy s 186.0 95.2 157.5 495.3 6x4x H 127.3 118.1 545.4 6x6x H 140.9 183.8 579.5 6x4x % 142.5 118.1 641.6 6x6x y a 159.3 183.8 660.2 6x4x M 156.9 M.8.1 734.7 6x 6 x M 177.3 • 183.8 737.6 6x4x% 171.3 118.1 781.5 6x4x y* 14 x K 127.3 47.6 118.1 824.0 6x4x H 16 x yz 127.3 54.4 118.1 824.6 6x6x% 194.9 183.8 830.4 6x6xM 14 x^ 140.9 47.6 183.8 853.1 6x4xH 14 xY a 127.3 59.5 118.1 872.9 6x6xK 16 xH 140.9 54.4 183.8 901.8 6x6xK 14 x% 140.9 59.5 183.8 934.9 42 x % e 6x4xJ£ lix% 142.5 59.5 118.1 954.9 6x6x H 16 xYt 140.9 68.0 183.8 973.2 6x6xH lixH 140.9 71.4 183.8 988.1 6x4x% 16 xy s 142.5 68.0 118.1 995.3 6x6x % 14 xy s 159.3 59.5 183.8 1008.2 6x4x% 14 x Yi 142.5 71.4 118.1 1048.4 6x6xH 16 x% 159.3 68.0 183.8 1066.2 6x6x Yi 14 xM 159.3 71.4 183.8 1084.1 6 x 4 x % 14 x M 156.9 71.4 118.1 1129.9 6x 6x Y s 16 xM 159.3 81.6 183.8 1147.9 6x4xM 16 x M 156.9 81.6 118.1 1156.0 6x 6x % 14 x % 177.3 71.4 183.8 1211.6 6x6x53 16 x % 159.3 95.2 183.8 1219.8 6 x 6 x % 16 x% 177.3 81.6 183.8 1300.9 6x 6xM 16 xJ4 177.3 95.2 183.8 1387.3 6x GxH lGx% 194.9 95.2 183.8 513.5 6x4xH 136.2 135.0 563.5 6 x 6 x J4 149.8 210.0 597.7 42 xH 6x4x% 151.4 135.0. 659.8 6 x 6x Ye 168.2 210.0 678.4 6x4x % 165.8 135.0 286 GIRDERS RIVETED PLATE GIRDERS— Continued , Section Size in Inches Weight per Foot, Pounds / Maximum End Modulus, Reaction Thousands of Pounds „ Axis 1-1, Web Flange Flange Web Plate and Flange Inches 3 , Plates Angles Plates Flange Angles Plates 752.8 6x 6x % 186.2 210.0 755.8 6x4xH 180.2 135.0 799.2 6x4x H 14 xH 136.2 47.6 135.0 841.7 6 x 4 x H 16 xM 136.2 54.4 135.0 842.7 6x6x V s 203.8 210.0 84S.1 6x6x K 14 xX 149.8 47.6 210.0 870.8 6x4xK 14 s.% 136.2 59.5 135.0 890.6 6x6x H 16 xH 149.8 54.4 210.0 919.4 6x6xM 14 xH 149.8 59.5 210.0 952.6 6x4xM 14 x% 151.4 59.5 135.0 972.6 6x6x y 2 16 x^ 149.8 68.0 210.0 990.8 6x6xH 14 x« 149.8 71.4 210.0 1005.7 6x4x % 16 xM 151.4 68.0 135.0 1012.9 42 xH 6x6x y t 14 xM 168.2 59.5 210.0 , , 1023.7 6x4x ^ 14 x« 151.4 71.4 135,0 1066.0 6x6x% 16 x% 168.2 _ 68.0 210.0 1083.7 6x6x^ 14 x« 168.2 ' 71.4 210.0 1101.7 6x4x % 14 x% 165.8 71.4 135.0 1147.5 6x6xX 16 xM 168.2 81.6 210.0 1165.4 6x4x % 16 x% 165.8 81.6 135.0 1173.6 6x 6x % 14 xM 186.2 71.4 210.0 1229.0 6x6x% 16 s.% 168.2 95.2 210.0 1237.4 6x 6x % 16 xM 186.2 81.6 210.0 1318.4 6x 6x % 16x% 186.2 95.2 . 210.0 1321.2 6x4x % 16 x% 180.2 95.2 135.0 1404.7 6x6x% 16 xH 203.8 95.2 210.0 466.9 6x4x y s 110.4 121.5 512.7 6x6x% 120.8 180.0 567.4 6x4x H 126.0 121.5 628.9 6x 6x K 139.6 180.0 664.9 6 x 4 x Ys 141.2 121.5 714.4 6 x 4 x y % 14 x% 110.4 35.7 121.5 741.3 6x6xM 158.0 180.0 750.8 6x4x H 16 x% 110.4 40.8 121.5 758.5 48 x% 6 x4x % 155.6 121.5 759.5 6x6x% 14 x% 120.8 35.7 180.0 795.9 6x6sM 16 i« 120.8 40.8 180.0 797.0 6x4x H 14 x^ 110.4 47.6 121.5 841.9 6x6x H 14 xH 120.8 47.6 180.0 848.3 6x4x % 170.0 121.5 850.1 6x6xM 176.0 180.0 890.4 6x6x % 16 xH 120.8 54.4 180.0 895.5 6x4x K 14x^ 126.0 47.6 121.5 287 CARNEGIE STEEL COMPANY RIVETED PLATE GIRDERS— Continued N Size in Inches Weight per Foot, Pounds Maximum Section End Modulus, Reaction ^ Axis 1-1, Web Flange Flange Web Plate and Flange in Thousands of Inches 3 Plates Angles PlateB Flange Angles Plates Pounds 924.3 6x 6x % 14 x% 120.8 59.5 180.0 944.0 6x 4x Yt 16 x }4 126.0 54.4 121.5 955.2 6x6x% 193.6 180.0 955.8 6x6x H 14 xY % 139.6 47.6 180.0 977.7 6x4x M 14 x% 126.0 59.5 121.5 1004.3 6x6xM 16 xH 139.6 54.4 180.0 1037.6 6x6x }4 14 xM 139.6 59.5 180.0 1072.7 6x4x y s 14 x% 141.2 59.5 121.5 1098.2 6x 6x y % 16 x« 139.6 68.0 180.0 1119.5 6x6xH 14 x % 139.6 71.4 180.0 1133.3 6 x4 x % 16 x% 141.2 ' 68.0 121.5 1147.1 48 xM 6x6xM 14 x^ 158.0 59.5 180.0 1154.4 6x4x% 14 x % 141.2 71.4 121.5 1207.8 6x6x% 16 x% 158.0 68.0 180.0 1228.4 6x6x^ 14 xM 158.0 71.4 180.0 1245.2 6x4x %, 14 x M 155.6 71.4 121.5 1301.2 6x6x^ 16 x M 158.0 81.6 180.0 1317.9 6x4x % 16 x M 155.6 81.6 121.5 1334.0 6 x 6 x % 14 x% 176.0 71.4 180.0 1394.7 6 x 6 x % 16 x % 158.0 95.2 180.0 1406.7 6 x 6 x H 16 x% 176.0 81.6 180.0 1498.1 6x4x% 16 x% 170.0 95.2 121.5 1499.7 6 x 6 x % 16 xK 176.0 95.2 180.0 1601.3 6x6x y t 16 x% 193.6 95.2 180.0 591.2 6x4x H 136.2 141.8 652.7 6x6xM 149.8 210.0 688.7 6x4x% 151.4 141.8 765.0 6 x 6 x ^ 168.2 210.0 782.3 6s4xK 165.8 141.8 872.1 6x4x y s 180.2 141.8 873.8 6 x 6 x % 186.2 210.0 918.8 6x4x H 14 *y 2 136.2 47.6 141.8 967.3 6x4x J4 16 xM 136.2 54.4 141.8 979.0 48x%e 6x 6x y s 203.8 210.0 979.0 6x6x H 14 x^ 149.8 . 47.6 210.0 1000.8 6x4xH 14 x% 136.2 59.5 141.8 1027.6 6x6x H 16 xH 149.8 ' 54.4 210.0 1060.8 6x6x H 14 x% 149.8 59.5 210.0 1095.8 6 x 4 x % 14 x% 151.4 59.5 141.8 1121.4 6x6x y 2 l§x% 149.8 68.0 210.0 1142.5 6x6x H 14 x % 149.8 71.4 210.0 1156.5 6j4xH 16x5^ 151.4 68.0 141.8 288 QIRDERS RIVETED PLATE GIRDERS— Continued Section / Size in Inches Weight per Foot, Pounds Maximum End Modulus, Reaction Axis 1-1, Web Flange Flange Web Plate and Flange in Thousands of Pounds Inches 3 Plates Angles Plates Flange Angles Plates 1170.3 6x6xM 14 X% 168.2 59.5 210.0 1177.4 6 x 4 x % 14xX 151.4 71.4 141.8 1230.9 6x6x % 16 x% 168.2 68.0 210.0 1251.5 6x6x5^ 14 x % 168.2 71.4 210.0 1268.2 6 x 4 x % 14 xM 165.8 71.4 141.8 1324.3 6x6x% 16 x% 168.2 S1.6 210.0 1341.0 48 x %e 6x4x % 16 x% 165.8 81.6 141.8 1357.0 6x6xM 14 xM 186.2 71.4 210.0 1417.7 6x6x % 16 x% 168.2 95.2 210.0 1429.8 6 x 6 x % 16 x % 186.2 81.6 210.0 1521.0 6x4x% 16 xK 180.2 95.2 141.8 1522.7 6 x 6 x % 16 x% 186.2 95.2 210.0 1624.2 6x6x% 16 x% 203.8 95.2 210.0 615.0 6x4x H 146.4 162.0 676.4 6x6x yi 160.0 240.0 712.4 6 x 4 x % ■\ 161.6 162.0 788.8 6x6x^ 178.4 240.0 806.0 6x4x % 176.0 162.0 895.8 6x4x% 190.4 162.0 897.6 6x 6x % 196.4 240.0 942.1 6x4x H 14 xH 146.4 47.6 162.0 990.6 6x4x y 2 16 xM 146.4 54.4 162.0 1002.3 6x6x y 2 14 xH 160.0 47.6 240.0 1002.7 6x6x % 214.0 240.0 1024.0 6x4x M 14 x% 146.4 59.5 162.0 1050.8 6x6xM 16 xH 160.0 54.4 240.0 1083.9 6x6xH 14 x% 160.0 59.5 240.0 1119.0 6x4x% 14 x% 161.6 59.5 162.0 1144.5 48 x H 6x6x y 2 16 x% 160.0 68.0 240.0 1165.6 6x6x H 14 x M 160.0 71.4 240.0 1179.6 6x4x5^ 16 x% 161.6 68.0 162.0 1193.4 6x6x% 14 x% 178.4, 59.5 240.0 1200.5 6x4xJ< 14 xM 161.6 71.4 162.0 1254.1 6x6xK 16 xX 178.4 68.0 240.0 1274.5 6x 6x % 14 x % 178.4 71.4 240.0 1291.2 6x 4x Yi 14 xM 176.0 71.4 162.0 1347.3 6x6x% 16 xX 178.4 81.6 240.0 1364.0 6x4x % 16 x % 176.0 81.6 162.0 1380.0 6x 6x % 14 x % 196.4 71.4 240.0 1440.6 6x6xM 16 x % 178.4 95.2 240.0 1452.8 6x6xM 16 x ^ 196.4 81.6 240.0 1543.9 6x 4x % 16 xVa 190.4 95.2 162.0 1545.6 6x6x % 16 x K 196.4 95.2 240 1647.1 6x6xJi 16 x% 214.0 95.2 240.0 289 CARNEQIE STEEL COMPANY RIVETED PLATE GIRDERS— Concluded Section Size in Inches Weight per Foot, Pounds / Maximum End Modulus, Reaction Axi3 1-1, Inches 8 Web Plates Flange Angles Flange Plates Web Plate and Flange Angles Flange Plates in Thousands of Pounds 194.7 245.7 294.2 - 340.7 24 x %a 6x6x % 6x6x H 6x6xH 6x 6x % 85.1 103.9 122.3 140.3 67.5 67.5 67.5 67.5 200.6 251.5 300.1 346.6 24 x% 6x6x% 6x6xK 6x6x^ 6x 6x M 90.2 109.0 127.4 145.4 81.0 81.0 81.0 81.0 216.6 ' 272.9 326.7 378.2 26x% 6 6x6xM 6x 6x K 6x6x% 6x6xM 87.2 106.0 124.4 142.4 78.8 78.8 78.8 78.8 223.5 279.8 333.6 385.2 26 x% 6x6x % 6x 6x K 6x6xYs 6x 6x % 92.8 111.6 130.0 148.0 94.5 94.5 94.5 94.5 230.4 286.7 340.5 392.1 26 x % e 6:6x^ 6x6xK 6x6x^ 6 x 6x % 98.3 117.1 135.5 153.5 110.3 110.3 110.3 110.3 227.8 286.8 343.1 397.3 27x% 6 6x6x|^ 6x6xH 6x6x% 6x 6 x % 88.3 107.1 125.5 143.5 78.8 78.8 78.8 78.8 235.2 294.2 350.6 404.7 27 xy a 6x6xM 6x6xK 6 x 6 x y s 6 x 6 x % 94.0 112.8 131.2 149.2 94.5 94.5 94.5 94.5 242.7 301.7 358.1 412.2 27 x %„ 6x6x% 6x 6x K 6 x 6 x % 6 x 6 x M / 99.8 118.6 137.0 155.0 110.3 110.3 110.3 110.3 271.2 338.3 402.6 464.4 30 xM 6x6xM 6 x 6 x y 2 6x6xM 6x 6 x % ( 97.9 116.7 135.1 153.1 108.0 108.0 108.0 108.0 280.4 347.5 411.8 473.6 30x%e 6x 6xM 6x 6x H 6x 6x % 6x 6x % 104.2 123.0 141.4 159.4 126.0 126.0 126.0 126.0 289.6 356.7 421.0 482.8 1 30 xH 6x 6x Yi 6x6x Yi 6x 6x y, 6x 6x a 110.6 129.4 147.8 165.8 144.0 144.0 144.0 144.0 290 COLUMN SAFE LOADS COLUMNS AND STRUTS Compression members in structures are called posts, struts or columns. No exact theoretical formula has been found which will give the strength of such members under various conditions of loading. The formulas in current use are based on the assumption that the members under stress may fail by direct compression, by compression and bending combined, or by bending alone. The empirical formulas based on these assumptions practically agree with results obtained by experiment on full size members. These experiments show that steel columns of ordinary sizes and lengths fail at nearly a constant stress which corresponds to the yield point of that material, and that the load which will cause a column to fail decreases in the ratio of its length to its least lateral dimension. Radius of Gyration. As the strength of a column depends on its ability ,to resist flexural stress, the moment of inertia of its cross section is an important factor in the determination of its carrying capacity. For the purpose of computation, however, it is much more convenient to use the radius of gyration which depends on the moment of inertia. Ratio of slenderness. The ratio of slenderness is the unsupported length of a compression member divided by its radius of gyration, and the unsupported length of a column is determined by such points of support as will prevent deflection of the column in the direction which corresponds to the particular radius of gyration under consideration. Columns of unsymmetrical section have more than one radius of gyration. It is, therefore, necessary to determine the ratio of slenderness for the different radii of gyration of such columns and to use the proper ratio in any particular case. The unit stresses for different ratios of slenderness given in the construction specifications and on page 294 are consistent with present practice in column construction and their use does not involve the refinements of the more complicated formulas, which refinements are often vitiated by uncertainties in the application of loads or other practical features. The construction specifications limit the maximum ratio of slenderness to 120 for main members under steady stresses. For secondary members under temporary stress, such as those used in wind bracing, higher ratios may be used, but in no case should the ratio exceed 200. 291 CARNEGIE STEEL COMPANY Form and Size of Section. Important as it may be to have the metal in the column section distributed as far as possible from the neutral axis, that is, with as large a radius of gyration as possible, considera- tions of ease in fabrication and simplicity in connections are of greater weight. The economical column section is not that which affords the least weight of metal in the shaft, but that which, with a reasonable radius of gyration, provides the least weight of member, shaft and details with the minimum amount of riveting. Modern practice, therefore, eliminates earlier forms of construction which represented the minimum amount of metal for the maximum radius of. gyration, such, for example, as the column composed of three I-beams or one I-beam and two channels placed either with the flanges in or the flanges out. The Z-bar column has also fallen into disuse, likewise a number of patented sections and other sections shown in earlier editions of this publication. The most practical column is one the surfaces of which are readily accessible for painting and, therefore, it is desirable to use open angle and plate columns rather than closed channel and plate columns. The column sections should be of such size as to permit ready framing of beams and girders thereto and so placed in the construc- tion as to permit the simplest details. Experience indicates that eight inches is the smallest desirable dimension in ordinary building work. For struts and light loads, smaller angle columns are still in use, while the H-beams are excellent for such purposes. I-beams and single angles may be used with economy where the conditions of lengths and loading permit. Explanation of Tables. The tables which immediately follow give the safe loads in thousands of pounds on H-beam and I-beam columns and on a selected line of channel and angle columns which, in the light of experience, seem to be desirable for use in ordinary building and bridge construction. In addition to the safe loads, they give moments of inertia and radii of gyration about both axes of symmetry, areas of sections, and weights in pounds per foot without allowance for rivet heads or other details. These tables have been computed for the least radius of gyration in accordance with the formula given in the construction specifica- tions. The values may be adjusted to other formulas or to different values of the ratio of slenderness by use of the comparative table on page 294. This table is also suitable for use in figuring columns so braced against flexure, that their safe strength may be computed for the greater radius of gyration. 292 COLUMN SAFE LOADS Combined Bending and Compression Stresses. It is assumed in the tables that the loads are direct and equally distributed over the cross section of the column or balanced on opposite sides thereof. In the case of beams carried on brackets or other forms of eccentric loading, bending stresses are produced which should be taken into consideration and the column sections so proportioned that the combined fiber stresses do not exceed the allowable axial compres- sive stresses. There is no direct simple solution of this problem; the following trial method is suited to the tables: — w - w i Let W = Direct load, in pounds. Wi=Eccentric load, in pounds. M =Bending moment due to eccentric load, in inch pounds = W]X I = Moment of inertia of column in direction of bending, n = Extreme fiber distance in direction of bending. A =Area of column section, in square inches, f =Allowable axial unit compression, in pounds per square inch; then f should be equal to or greater than W \ Wl ~^~ "T^" * ne ^er stresses due to compression and bending respectively. Rule: — Assume a section in excess of that required for the direct compression W + "Wi and compute the combined fiber stress. If it works out too large or too small, try again . Example: — Required to select a plate and angle column 20 feet long to sustain a balanced load of 210,000 pounds and an eccentric load of 40,000 pounds applied 15 inches from the column center on axis 1-1. Assume a section made up of 14"x%" web plate, four angles 6"x4"x% " and two flange plates 14"x%", page 313. A =32.47, Ii-i = 1351, r2-s=3.09, ratio of slenderness=20xl2-s-3.09=77. Allowable fiber stress, 19,000— 100 1/r =11,300 pounds per square inch, page 294. Actual fiber stress __ 210.000 + 40,000 + 40.000 x 15 x 7.625 _ 7,700+3,390 32.47 1351 11,090 pounds per square inch. 293 CARNEGIE STEEL COMPANY COMPARISON OF COMPRESSION FORMULAS Allowable Unit Stresses in Pounds per Square Inch Ratio American Bridge Co. A. E. E.Ass'n Chicago New York Boston Philadelphia Gordon \ See Construction Specifications 16000-70-L r 14000 max. 16000-7ol r 16000 max. 16000 162S0 12500 12 1 + 20000 r 2 I 2 l 2 r 1 + 11000 r 2 1 + 36000 r 2 13000 14000 16000 16000 16250 12500 5 13000 14000 15650 15980 16215 12490 10 13000 14000 15300 15920 16100 12460 15 13000 14000 14950 15820 15925 12420 20 13000 14000 14600 15690 15680 12365 25 13000 14000 14250 15515 15375 12285 30 13000 13900 13900 15310 15020 12195 35 13000 13550 13550 15075 14620 12090 40 13000 13200 13200 14815 14185 11970 45 13000 12850 12850 14530 13725 11835 50 13000 12500 12500 14220 13240 11690 55 13000 12150 12150 13900 12745 11530 60 13000 11800 11800 13560 12240 11365 65 12500 11450 11450 13210 11740 11185 70 12000 11100 11100 12850 11240 11000 75 11500 10750 10750 12490 10750 10810 80 . 11000 10400 10400 12120 10275 10615 85 10500 10050 10050 11755 9810 10410 90 10000 9700 9700 11390 9360 10205 95 9500 9350 9350 11025 8930 9995 100 9000 9000 9000 10670 8510 9785 105 8500 8650 8650 10315 8115 9570 110 8000 8300 8300 9970 7740 9355 115 7500 7950 • 7950 9630 7380 9140 120 7000 7600 7600 9300 7035 8930 125 6750 7250 6715 8715 130 6500 6900 6405 8510 135 '6250. 6550 6115 8300 140 6000 6200 5840 8095 145 . 5750 5850 7890 150 5500 5500 7690 155 5250 7495 160 5000 7305 165 4750 7120 170 4500 6935 175 4250 6755 180 4000 6580 185 3750 6410 190 3500 6240 195 3250 6080 200 3000 5920 Maximum Ratios of Compression Formula Main Members Secondary Members American Bridge Company American R'yEngrg Ass'n. Chicago Building Law. . . 120 100 120 200 120 150 Compression Formula Main Members New York Building Law . Boston Building Law.. . . Philadelphia Building Law 120 120 140 Secondary Members 120 120 140 294 COLUMN SAFE LOADS COMPARATIVE DIAGRAM OF COMPRESSION FORMULAS Allowable Unit Stresses in Pounds per Square Inch o o o o o o o to LO t* CO £i t-h o O : § ajj- pp|fl ■I *!§ ifjjl ^MHJj o I "- i hi- 1 &l|' M~M:|il' : Hfpifcttil t-H .::'.]:!' j:i : .1 m ijifril O ■ F§ •!.T Epjffltjff S3 liilJti t ffRrr •.4. •if} MjM * T O ; n )iii[l?|p *}"; iili r ~l ~ jjlpfp liU ,iP ;:j)j= o ;.:|: ':| : 1 r 1 "ffrHi* n n 1 lifc TTnffniifn ?W$jM '! |3 A •..: ■■'•tJiinli* "^i !j : : ■£ ; i : S J t Hi| ill-fell!! l^t^lJtltfitBlji T IS Hi ;1 # !| Hij Piminlml Mr* ' 1 ' ' ffiHlii jij ^1 7 ]1 i frUrliii II IHi o -ftp »-H ^fflfe|ffl| ft ! ; : : |l IjUmffhlj: O J ,± $! j. ■'■'■■ ij V ^ftffiHiffH o F^ i wl 1-1 ].l : jjjiji-llljjl[ o mBflmw ! tffl • USSfil -< fi fi|| ':■ !Hi f'l 'i S ] f?1 ill! i; ::]! ,-, T -K|y ^ jjjjJyffiA^ t |_:':. : n : !i'*li'' o 00 = | Iff i tt .jjJiT||[; Tjffffrjj;! IP - iiiN'~ J: la £ T -5 1 \ Sgjj j!:l : :• , ; ■ , ft: -1 f g - ■ x 1 b! ! ' T-\ «j _- - H tH )•!! ! -dj •'!: H — r -1 1 1 :] iuir ihlUTTIlUl : 1: :ftf i-P ' :|-:>- : *° : i T£j\ ;| :i7 si' -^l ■!| ; f j'':| - | L ■):. 2# ■ r'l 1 .. .;!;:, ■■ ■ • :• : .... . ::i. !:: r JS » S-2 'a .2 S " as .3 ' §5 as JS q u S 5, JS II 3"i h S-3 Ij fj a- 0.0 10 g~ rKCQ 6^ a! oca 6 J3 6% 65 5s; =3* 5 » 3*. ,c CO &* & H CM 2 CO O.g •^ 2 CO 2Ph a ..a CO n 502 525 548 571 593 609 632 654 677 700 723 745 768 791 814 12 502 525 548 571 593 609 632 654 677 700 723 745 768 791 814 13 502 525 548 571 593 609 632 654 677 7on 723 745 768 791 814' 14 602 525 548 571 593 609 632 654 677 700 723 745 768 791 814 15 502 525 548 571 593 609 632 654 677 700 723 745 768 791 814 16 502 525 548 571 593 609 632 654 677 700 723 745 •768 791 814 17 502 525 548 571 593 609 632 654 677 700 723 745 768 791 814 18 502 525 548 571 593 609 632 654 677 700 723 745 768 791 814 19 502 525 548 571 593 609 632 654 677 700 723 745 768 791 814 20 502 525 548 571 593 609 632 654 677 700 723 745 768 791 814 21 498 521 543 565 588 601 623 645 668 689 712 734 757 779 802 22 487 509 531 553 575 587 609 631 653 674 695 717 739 761 783 23 476 497 518 540 561 573 594 616 637 658 679 700 722 743 765 24 465 486 506 527 548 559 580 601 622 642 663 684 704 725 746 25 453 474 494 514 535 545 566 586 607 626 646 667 687 707 728 26 442 462 482 502 522 532 552 571 591 610 630 650 670 689 709 27 431 451 469 489 508 518 537 557 576 594 614 633 652 672 691 28 420 439 45V 476 495 504 523 542 561 578 597 616 635 654 672 29 409 427 445 463 482 490 509 527 545 563 581 599 617 636 654 30 397 415 432 450 468 47 V 494 512 530 547 564 582 600 618 635 31 386 404 420 438 455 463 480 497 515 531 548 565 583 600 617 32 375 392 408 425 442 449 466 483 499 515 532 548 565 582 599 33 364 380 396 412 428 435 452 468 484 499 515 531 548 564 580 34 352 368 383 399 415 421 437 453 469 483 499 515 530 546 562 35 341 357 371 386 402 408 423 438 453 '467 482 498 513 528 543 Area, in.2 38.64 40.39 42.14 43.89)45.64 46.83 48.58 50.33 52.08 53.83 55.58 57.33 59.08 60.83 62.58 Ij-i,in.* 1174 125S 1340 1424 1509 1459 1544 1630 1719 1808 1899 1992 2087 2183 2280 n-i, in. 5.52 5.58 5.64 5.70 5.75 5.58 5.64 5.69 5.74 5.80 5.85 5.89 5.94 5.99 fi.04 659 688 717 745 774 779 808 837 865 894 922 951 980 1008 1037 T2-2, in. 4.13 4.13 4.12 4.12J 4.12 4.08 4.08 4.08 4.08 4.07 4.07 4.07 4.07 4.07 4.07 Weight, Lbs. per Foot 1 131.4 137.4 143.3 149.3155.2 159.3 165.2 171.2 177.1 183.1 189.0 195.0 200.9 206.9 212.8 1 Safe load values above heavy line are for ratios of I/r not over 60, those below heavy line are for ratios not over 120 1/r. 301 CARNEGIE STEEL COMPANY 4 *.— 13-'- „ 12 [NCH CHANNEL COLUMNS— Continued J^ t_ ^. ' T '^ r Sake Loads in Thousands of Pounds a j_ ,--10i— i .._! Allowable Fiber Stress per square inch, 13,000 . pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications. I LA: Ms. Weights do details. not include rivet heads or other R 7 .18 —""I »- — -16"--- i 1 1 3 2-12 in. Channels, 2-16 in. Plates "3 J 9 rt 3 •aj 1-3 11 11 •3"» 3^ 4$ fj is ll §S a a SPh 5CL I 5 * sS §E SPh §a< SEu 6.s 8* e.s 6 J 6.3 6 B 6.9 °ji 6.S J3" ^.9 1 3SJ ~5 o J3 « 55 %$ S3 W CO* CO CO" CO CO " CO CO CO CO CO n 619 645 ,671 697 723 749 762 788 814 840 12 619 645 671 697 723 749 762 788 814 840 13 619 645 671 697 723 749 762 788 814 840 14 619 645 671 697 723 749 762 788 814 840 15 619 645 671 697 723 749 762 788 814 840 16 619 645 671 697 723 749 762 788 814 840 17 619 645 671 697 723 749 762 788 814 840 18 619 645 671 697 723 749 762 788 814 840 19 619 645 671 697 723 749 762 788 814 840 20 619 i 645 671 697 723 749 762 788 814 840 21 619 645 671 697 723 749 762 788 814 840 22 619 645 671 697 723 749 762 788 814 840 23 24 25 619 619 645 645 671 671 697 697 723 723 749 749 762 762 788 814 840 787 772 813 797 838 822 610 635 660 686 711 736 747 26 599- 623 648 673 697 721 732 756 781 805 27 587 611 635 659 683 707 718 741 766 789 28 575 599 622 646 669 693 703 726 750 773 29 563 586 609 633 655 678 688 711 734 757 30 552 574 596 619 642 664 674 696 719 741 31 540 562 583 606 628 649 659 681 703 724 32 528 549 571 593 614 635 644 665 687 708 33 516 537 558 579 600 621 630 650 672 692 34 504 525 545 566 586 606 615 635 656 676 35 493 512 532 553 572 592 600 620 640 660 Area, in.-' 47.64 49.64 51.64 53.64 55.64 57.64 58.58 60.58 62.58 64.58 Ii-ii in.* 1581 1678 1777 1878 1980 2084 2015 2119 2225 2333 ri-i, in. 5.76 5.81 5.87 5.92 5.97 6.01 5.87 5.91 5.96 6.01 I 2 -2,ill.4 1121 1164 1206 1249 1292 1334 1349 1392 1434 1477 T2-2. in. 4.85 4.84 4.83 4.83 4.82 4.81 4.80 4.79 4.79 4.78 Weight, Lbs. per Foot 162.0 168.8 175.6 182.4 189.2 196.0 199.2 206.0 212.8 219.6 Safe load values above sigzag tin e are for ratios of /r not over 60, th see below zigzag line are for ratios not over 120 1/r. ' 302 COLUMNS »--lS---— -1 a A . --10F-- L^ - J3 o> JB to ■s » ■s « •2 *> 09 - a m ■2 8? u •a - H rt-^3 FTs E3°43 II H sl ,Sjs H n ai SJ Hi 61 6^ (-> ft) 61 .SB ■*« 5 i* *«* *«* #5 *3 1 £.1 COGQ £g oo3 U3 0Q e . -is Ss «=« £ o H CO CO CO CO CO COrt CO 11 257 268 306 344 413 439 465 491 517 528 554 580 606 632 12 257 268 806 344 413 439 465 491 517 528 554 580 606 632 13 257 268 806 344 413 439 465 491 517 528 554 580 606 632 14 257 268 306 844 418 439 465 491 517 528 554 580 606 632 15 257 268 306 344 413 439 465 491 517 528 554 580 606 632 16 257 268 306 344 413 439 465 491 517 528 554 580 606 635! 17 257 268 806 344 413 439 465 491 517 528 554 580 606 632 18 257 268 806 344 413 439 465 491 517 528 554 580 606 632 19 257 268 806 844 413 439 465 491 517 528 554 580 606 632 20 257 268 306 344 413 439 465 491 517 528 554 580 606 632 21 257 268 306 344 413 439 465 491 517 528 554 580 606 632 22 257 268 306 344 413 439 465 491 517 528 554 580 606 632 23 257 257 268 268 306 306 844 413, 413 439 439 465 465 491 491 517 517 528 554 580 606 632 24 343 527 517 552 542 578 567 604 592 629 25 257 266 301 336 407 432 457 482 507 617 26 252 261 295 329 400 424 448 473 498 507 fi3f 555 580 605 27 247 256 289 322 392 415 440 464 488 497 520 544 569 592 28 243 261 284 316 384 407 431 454 478 486 510 533 557 580 29 238 246 2V8 309 376 899 422 445 468 476 499 522 545 568 30 233 241 272 302 368 390 413 435 458 466 488 511 533 556 31 228 236 266 296 360 382 404 426 448 456 478 499 522 543 32 224 231 260 289 852 378 395 416 438 •446 436 467 488 510 531 33 219 226 254 282 345 365 386 407 428 456 477 498 519 ' 34 214 221 249 276 837 357 377 398 418 435 44fi 466 487 507 35 209 216 243 269 329 348 368 388 408 415 435 454 475 494 Area, in.2 19.80 30.58 23.52 26.48 31.80 33.80 35.80 37.80 39.80 40.58 42.58 44.58 46.58 48.58 Ii-i,in.* 625 640 695 750 1334 1459 1586 1715 1847 1861 1994 2129 2267/ 69R 2406 p-i, in. 5.62 5.58 5.43 6.32 6.48 6.57 6.66 6.74 6.81 6.77 6.S4 6.91 7 04 I 2 -a, in.* 491 504 552 597 747 789 832 875 917 930 973 1016 1058 1101 '2-2, in- 4.98 4.95 4.84 4.75 4.85 4.83 4.82 4.81 4.80 4.79 4.78 4.77 4.77 4.76 Weight, Lbs. per Foot 80.2 84.2 92.1 102.2 106.8 113.6 120.4 127.2 134.0 138.0 144.8 151.6 158.4 165.2 Safe load values above zigzag line are for ratios of 1/r not over 60, thoBe below zigzag line are for ratios not over 120 1/r. 304 COLUMNS 15 INCH CHANNEL COLUMNS— Continued Safe Loads in Thousands op Pounds Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications. Weights do not include rivet heads or other details. 01 i~ .2', a « 2-15 in. Channels, 2-16 in. Plates ■3 S 9 ^ aS ll •ij 1.2 5.9 is 5* o ■S s o.ri ■as lis 25 Sa 1! -fa *5 ■3 S 31« .25 «ri 3$ 9. Is J5 Sri 9 * a5 ja . ".9 4 s P J9 OS - D "2, -*< ■° 2 J= 2 3S is -° 2 3* 11 . 644 670 696 722 748 774 786 812 838 864 890 916 942 968 12 644 b/O 696 722 748 774 786 HI 2 838 864 890 916 942 968 13 644 670 696 722 748 774 786 812 ftaa 864 890 916 942 968 14 644 670 696 722 748 774 786 812 838 864 890 916 942 968 15 644 670 696 722 748 774 786 812 838 864 890 916 942 968 16 644 670 696 722 748 774 786 812 838 864 890 916 942 968 17 644 670 696 722 V48 774 786 812 838 864 890 916 942 968 18 644 6Y0 696 V22 748 774 786 812 838 864 890 916 942 968 19 644 670 696 V22 748 774 786 812 838 864 890 916 942 968 .20 644 670 696 722 748 774 786 812 838 864 890 916 942 968 21 644 670 696 722 748 774 786 812 838 864 890 916 942 968 22 644 670 696 722 748 774 786 812 838 864 890 916 942 968 23 24 644 6/0 665 696 690 722 715 748 741 774 767 786 777 812 802 838 827 864 853 890 879 916 904 942 930 968 639 956 25 627 651 677 701 727 752 761 786 811 836 861 886 912 937 26 614 638 663 687 712 737 746 770 794 819 844 868 893 918 27 602 626 649 6V3 697 721 730 754 778 802 826 850 874 898 28 689 612 636 659 683 706 715 738 761 785 808 832 856 879 29 67 Y 599 622 646 668 691 699 722 745 768 791 814 837 860 30 664 686 609 631 653 676 684 705 728 751 773 796 818 841 31 551 573 595 616 639 661 668 689 711 734 756 778 800 822 32 639 560 581 602 624 646 653 673 695 716 738 760 781 803 33 526 547 568 588 609 630 637 657 678 699 720 741 763 784 34 614 634 654 574 595 615 622 641. 662 682 703 723 744 764 35 501 520 541 560 580 600 606 625 645 665 685 705 725 745 Area, ln2 49.52| 51.52 53.52 55.52 57.52 59.52 60.48 62.48 64.48 66.48 68.48 70.48 72.48 74.48 Ii-i, in.* 2322 2461 2602 2746 2891 3039 2946 3094 3244 3396 3550 3707 3865 4026 n-i,in. 6.85 6.91 6.97 7.03 7.09 7.15 6.98 7.04 7.09 7.15 7.20 7.25 7.30 7 35 l2-2,in.* 1106 1149 1192 1234 1277 1320 1322 1365 1408 1450 1493 1536 1578 1621 r 2 -2, in. 4.73 4.72 4.72 4.71 4.71 4.71 4.68 4.67 4.67 4.67 4.67 4.67 4.67 4.67 Weight, Lbs. per Foot II 168.4 175.2 182.0 188.8 195.6 202.4 205,6 212.4 219.2 226.0 232.8 239.6 246.4 253.2 Safe load values above heavy line are for ratios of 1/r not over 60, those below heavy line atina Tint, nvev 19fl I /r for ratios not over 120 1/r. 305 CARNEQIE STEEL COMPANY 15 INCH CHANNEL COLUMNS— Continued r*- 14%-- — ». ■' n -Ill' .--. . Allowable Fiber Stress per square inch, 13,000 — - pounds for lengths of 60 radii or under, reduced for lengths over 60 radii ; see Construction Specifications. V, i_ . . 7 L.^ U. Weights do not include rivet heads or other — 1 — i=h details. S-Cr- 2 ? • 43 $ to a i s Hi 2-15 in. Channels, 2-18 in. Plates Is 3ph 3 a la n5 is 11 •3» •S J 3* .3 PS 5E ■5 b u 1 u p u« U d <->.2 w d ".a °d O.a Up U a 0} -is co 1 ^ £ ,oic\ ■° 2 ■° 2 ■° 2 ^ 5 J3 » %X w CO CO CO CO CO CO CO rt "* 11 433 462 491 521 550 560 589 619 648 677 686 715 745 774 803 832 12 431- 462 491 521 55(1 56< SHU 61 1 648 677 686 71.5 745 774 803 832 13 43:h 462 491 531 55(1 56( 58M Hit 64H 677 686 715 745 774 Sll. J 832 14 43a 462 491 521 550 56f SKfl Hit; 64* 677 6X6 715 745 774 am 832 15 433 462 491 521 550 560 589 619 648 677 686 715 745 774 803 832 16 433 462 491 521 550 560 589 619 648 677 686 715 745 774 803 832 17 433 462 491 521 550 5HC 58W 61!i 648 677 686 715 745 774 803 832 IS 433 462 491 521 550 56C 58H «l«i 64* 677 6X6 715 745 774 803 832 19 433 462 491 5511 550 56(1 589 610 64* 677 686 715 745 774 803 832 20 433 462 491 521 550 560 589 619 648 677 686 715 745 774 803 832 ' 21 433 462 491 521 550 560 589 619 648 677 686 715 745 774 803 832 22 433 462 491 521 550 56(1 589 HIT) 64* 677 686 715 745 774 803 832 23 433 462 491 521 550 56C 589 61G 648 677 '686 715 745 774 803 832 24 433 462 491 531 550 56(1 589 61U H4H 677 686 715 745 774 803 832 25 433 462 491 521 550 560 589 619 648 677 686 715 745 774 803 832 26 433 462 491 521 550 560 589 619 648 677 686 715 745 774 803 832 27 28 29 433 433 462 462 491 491 521 550 560 589 619 648 677 686 715 745 774 803 832 5?0 549 539 558 549 586 577 615 605 643 632 671 660 680 668 708 696 736 723 764 751 793 779 821 807 428 4.ta 484 S12 30 421 449 476 503 530 540 567 594 621 649 657 684 711 738 766 793 31 414 441 468 494 521 530 557 584 610 637 645 672 698 725 752 779 32 407 433 459 486 512 521 547 574 599 626 634 660 685 712 738 764 33 400 436 451 477 503 512 537 563 589 615 622 648 673 698 725 750 34 393 418 443 469 494 502 527 553 578 603 610 636 660 685 711 736 35 386 411 435 460 485 493 518 543 567 592 599 624 648 672 698 722 Area, in. 2 33.30 1423 35.55 1564 37.80 1707 40.05 1m2 42.30 1999 43.08 2014 45.33 2164 47.58 231 B 49.83 2470 52.08 2627 52.77 2525 55.02 2682 57.27 2841 59.52 3002 61.77 3166 64.02 3332 Ii-i, in. 4 ti-i, in 6.54 8.63 6.72 6.8C 6.87 6.84 6.91 6.98 7.04 7.10 6.92 6.98 7.04 7.10 7.16 7.21 I2-2, in.* 106t 113U 119(1 1251 1312 1332 1393 1453 1514 1575 1589 1649 1710 1771 1832 1892 T2-2i m. 5.67 5.64 6.61 5.59 5.57 5.56 5.54 5.53 5.51 5.50 5.49 5.48 5.46 194.8 5.45 202.4 5.45 210.1 5.44 217.7 Weight, Lbs. per Foot 111.9 119.6 127.2 134.9 142.5 146.5 154.2 161.8 169.5 177.1 179.5 187.1 Safe oad values above zigzag line are for ratios of 1/r not over 60, those below zigzag line are for ratios not over 120 1/r. 308 COLUMNS 15 INCH CHANNEL COLUMNS- —Continued > .-Ill' Safe Loads in Thousands op Pounds Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications. Weights do not include rivet heads or other details. : 9 U 9 ! 1.— — 18"- ---J "S I 2-15 in. Channels, 2-18 in. Plates is Jh o.a as aft a « 2ft J • •S3 Jh o.a •S3 as 6a ■Sss Jft °.-3 i* a rt §ft a * •S3 OS 6.A — ^ Of h c X 3 ft d i s * 6-9 . » ■j I in 1 .a 2? •S 8 * Oh & ,3 fa 6* x-3 3 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 841 841 841 841 841 841 841 841 841 841 841 841 841 841 841 841 841 871 871 871 871 871 871 871 871 871 871 871 871 871 871 871 871 871 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 929 929 929 929 929 929 929 929 929 929 929 929 929 929 929 929 929 958 958 958 958 958 958 958 958 958 958 958 958 958 958 958 958 958 988 988 988 988 988 988 988 988 988 988 988 988 988 988 988 988 1017 1017 1017 1017 1017 1017 1017 1017 1017 1017 1017 1017 1017 1017 1017 1017 1046 1046 1046 1046 1046 1046 1046 1046 1046 1046 1046 1046 1046 1046 1046 1046 1075 1075 1075 1075 1075 1075 1075 1075 1075 1075 1075 1075 1075 1075 1075 1075 1105 1105 1105 1105 1105 1105 1105 1105 1105 1105 1105 1105 1105 1105 1105 1105 1134 1134 1134 1134 1134 1134 1134 1134 1134 1134 1134 1134 1134 1134 1134 1134 1163 1163 1163 1163 1163 1163 1163 1163 1163 1163 1163 1163 1163 1163 1163 1163 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1280 1280 1280 1280 1280 1280 1280 '1280 1280 1280 1280 1280 1280 1280 1280 1280 987 970 953 936 919 902 885 868 852 1015 998 980 963 945 928 911 893 876 1044 1026 1009 991 973 955 937 919 901 1073 1054 1036 1017 999 980 962 943 925 1102 1083 1064 1045 1026 1007 988 969 950 1131 1112 1092 1073 1053 1034 1014 995 975 1159 1139 1119 1099 1079 1059 1039 1019 999 1216 1195 1174 1153 1132 1111 1090 1069 1048 1275 1253 1231 1208 1186 1164 1142 1120 1098 829 814 800 786 771 757 743 728 857 843 828 813 798 783 768 754 885 870 855 839 824 809 793 778 913 897 882 866 850 834 818 802 942 926 909 893 877 860 844 827 Area, in. 2 64.73 66.9! 69.23 71.48 73.73 75.98 78.23 80.48 82.73 84.98 87.23 89.48 93.98 98.48 Ii-i,iB.* n-i,in. l2-2,in.* r2-2»in. 3221 7.05 1903 5.42 338 7.1 196' 5.4 1 355€ 7.17 I 2025 ! 5.41 3727 7.22 2086 5.4C 3900 7.27 2146 5.40 4076 7.32 2207 5.39 4255 7.37 2268 5.38 4436 7.42 2329 5.38 4619 7.47 2389 5.37 4805 7.52 2450 5.37 4994 7.57 2511 5.37 5185 7.61 2572 5.36 5575 7.70 2693 5.35 5976 7.79 2815 5.35 Weight, Lbs. per Foot 220.1 227.' ' 235.4 243.0 250.0 258.3 266.0 273.6 281.3 288.9 296.6 304.2 319.5 334.8 Safe load values above zigzag line are for ratios of 1/r not over 60, those below zigzag line are for ratios not over 120 1/r. 307 CARNEGIE STEEL COMPANY i 12 A 15 INCH CHANNEL COLUMNS— Concluded rr 1 ■ ■■]>- ! ■( £? Safe Loads in Thousands op Pounds U i- .. i Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for Pi lengths over 60 radii; see Construction Specifications. ■ i UL_ ri < l W«lKnws ao hot, mciuue nveu xicaus ui uuuci Y >2 "V details. 2-15 in. Channels 2-15 in. 45 lb. Channels 1 .9 4 351b. 451b. 1 8 5 ■§ S a S to JS 1 8 i s to?S S ■§ 8 to"% 1 S Elf 1 3 E-i I E-S 3 Ell is E Is ■S S E U ' a S fc V n to Q) E v p^ H> pL, 03 E E£ &to &E &to &to a> p_ 03 fU 11 5£ a -a E£ E£ a js Ep « to 5£ 9f E£ E£ a j= a m at a> 9-S E^ 3-2 E£= a a 1 «« * tH ■* -«* -* ** ■* X fe S X •a W M M M X M M M w K M M M CO # S! $ tH ■* ■* ■* U5 10 to to CO CO «o ■■§ s « K ■s n 51 s w » S3 s 8 8 SI 8 S 3 J bo -3 i bO 4 4 to ■9 I a < to ■a 4 -3 -a -3 4 1 s < 8 < 4 ** ** ■«* ■■* ■* ■* *# •* ■** ■* ■* •* •>* •* -* -* **i 6 99|l07'l25 133 149 170 178 198 207 232 236 266 296 312 341 370 386 7 91 07 125 133 149 170 178 198 207 232 236 266 296 312 341 370 386 8 9 82 74 100 93 119 111 125 117 149 170 178 198 207 207 232 232 236 236 266 266 296 296 312 312 341 341 370 370 386 386 14? 164 170 193 10 66 86 103 108 133 154 160 181 207 232 236 266 296 312 341 370 386 H , 58 79 95 99 125 145 150 170 203 230 236 266 296 312 341 370 386 12- 53 71 87 91 116 135 14Q, -160 194 220 236 266 296 312 341 370 386 13 14 48 44 64 57 79 71 82 73 108 99 126 117 r£i3o l2f £49 138 185 175 210 200 235 226 266 296 312 341 370 386 257 288 302 333 363 378 15 40 54 65 68 91 107 111 127 166 190 218 248 278 291 321 350 365 16 17 36 32 50 47 61 57 e'4 60 82 98 101 116 157 148 180 170 209 201 238 229 267 257 280 269 309 297 337 325 351 338 77 90 93 106 IS 28 43 53 55 73 85 88 101 13V 16(1 192 220 24V 258 285 312 325 19 24 4(1 49 51 fifl 81 83 95 13( 15(1 184 210 237 24V 274 299 312 20 36 45 47 64 76 78 90 121 140 175 201 226 236 262 287 298 21 22 33 29 41 37 42 38 60 56 71 67 73 68 84 79 112 130 167 158 191 182 216 206 225 214 250 238 274 261 285 272 107 123 23 25 34 34 51 62 63 74 10? 118 15(1 172 195 203 226 249 258 24 80 47 57 58 68 98 113 141 163 185 192 214 236 245 25 43 52 53 63 93 108 132 154 175 181 203 223 232 26 27 39 34 48 43 48 43 57 52 89 84 103 98 126 121 144 164 170 191 210 218 139 157 164 181 198 207 28 47 «C 93 117 134 152 158 175 192 200 29 75 8* 113 13(1 146 153 16H 186 193 30 71 83 109 125 141 147 164 179 187 Area, in 2 ■7.74 8.2f 9.62 10.25 11.49 13.05 13.67 15.23 15.95 17.87 18.19 20.47 22.75 24.00 26.24 28.44 29.69 Ii-i.m.* 134 14f 176 181 201 232 237 267 279 315 319 361 401 412 451 489 500 n-i.in. 4.16 4.25 4.21 4.211 4.18 4.22 4.17 4.19 4.18 4.20 4.19 4.20 4.20 4.14 4.15 *.15 4.10 I 2 - 2 ,in.4 io.a 16.1 211.2 20.7 30.3 36.3 37.2 43.5 70.6 82.3 119 139 160 165 186 206 213 r2-2,Hl. 1.15 US 1.45 1.42 1.62 1.67 1.65 1.69 2.10 2.15 2.56 2.61 2.65 2.62 2.66 2.69 2.68 Weight, lbs. per Foot 26.5 28.1 32.9 35.0 39.4 44.6 46.8 52.0 54.4 60.8 62.0 70.0 77.6 81.8 89.4 97.0 101.3 Safe load values above and to right of upper zigzag line are for ratios of 1/r not over 60, those between the zigzag lines are for ratios up to 120 1/r, and those below lower zigzag line are for ratios not over 200 1/r. 310 COLUMNS si =4r L PLATE AND ANGLE COLUMNS— Continued Safe Loads in Thousands of Pounds Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications. Weights do details. not include rivet heads or other Web Plate Web PI. 12x« 12x% 6 Web Plate 12 %% Web Plate 12 x H 1 • 1=1 .9 12x| 12xf X CO « CO X X X 11 X X X X CD 3J * X •is 1 5 5 X CO CO M CO M CO 5 5 a X X ->* H X X X M J§ 5 3 K X X M X M X X M X X X M x M £ ■^ 1** -* *# >o aO wa co CO CO CO CO CO CO CO v09 -* M CO 83 -9s -C*t! WWW CO H MCO r-l CO HIM CO H M S CD Ms si 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 964 964 964 964 964 964 964 1010 1010 1010 1010 1010 1010 1010 1055 1055 1055 1055 1055 1055 1055 1101 1101 1101 1101 1101 1101 1101 1146 1146 1146 1146 1146 1146 1146 1198 1198 1198 1198 1198 1198 1198 1198 1198 1198 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1315 1315 1315 1315 1315 1315 1315 1315 1315 1367 1367 1367 1367 1367 1367 1367 1367 1367 1419 1419 1419 1419 1419 1419 1419 1419 1419 1419 1471 1471 1471 1471 1471 1471 1471 1471 1471 1471 1523 1523 1523 1523 1,523 1523 1523 949 924 898 872 847 821 796 770 744 719 693 668 642 617 591 565 540 998 971 945 918 892 865 839 812 786 759 732 706 679 653 626 600 573 546 1046 1018 991 963 935 908 880 853 825 797 770 742 715 687 659 632 604 577 1095 1067 1038 1010 981 953 924 895 867 838 810 781 753 724 696 667 639 610 1144 1114 1084 1055 1025 996 966 937 907 877 848 818 789 759 730 700 671 641 1523 1523 1308 1277 1246 1216 1185 1154 1123 1093 1062 1031 1000 970 939 908 877 847 1364 1333 1301 1269 1237 1206 1174 1142 1111 1079 1047 1015 984 952 920 889 1523 1174 1146 1119 1091 1064 1036 1009 981 954 926 899 871 843 816 788 1229 1201 1172 1144 1115 1087 1058 1030 1001 973 944 916 887 859 830 1388 1356 1323 1290 1258 1225 1192 1160 1127 1094 1062 1029 996 964 931 1443 1409 1375 1342 1308 1274 1241 1207 1173 1139 1106 1072 1038 1005 971 1497 1463 1428 1393 1359 .1324 1289 1254 1220 1185 1150 1115 1081 1046 35 517 1011 Area, in. - 74.19 77.69 81.19 84.69 88.19 92.19 96.19 101.19 105.19 109.19 113.19 117.19 Ii-i,Ja.* ri-i.in. 1 2-2, in. 4 r 2 .2,in- 3776 7.13 899 3.48 4048 7.22 956 3.51 4327 7.30 1014 3.53 4615 7.38 1071 3.56 4910 7.46 1128 3.58 5120 7.45 1493 4.02 5457 7.53 1579 4.05 5484 7.36 1581 3.95 6830 7.44 1666 3.98 6187 7.53 1752 4.01 6552 7.61 1837 4.03 6928 7.69 1922 4.05 Weight, lbs. per root 252.6 264.5 276.4 288.3 300.2 313.8 327.4 344.2 357.8 371.4 385.0 398.6 Safe load values above and to right of upper zigzag line are for ratios of 1/r not over 60, those between the zigzag lines are for ratios up to 120 1/r and those below lower zigzag line are for ratios not over 200 1/r. 315 CARNEGIE STEEL COMPANY f p^fkr h PLATE AND ANGLE COLUMNS— Concluded Safe Loads in Thousands op Pounds Allowable Fiber Stress per square Inch, 13,000 {rounds for lengths of 60 radii or under, reduced for engths over 60 radii; see Construction Specifications. Weights do not include rivet heads or other details. Two Web Plates 14 x K Two Web Plates 14 tl% I g M' 1 n o[3El« o o o o o o o o o o o o o o : ; o o o o o o o o o o o o «*; Ji' — o n - o a _ 181 o o o =J o o o o o o o o o o o o o o o o o o o o Section B-B TYPICAL ANGLE COLUMN Bearing on Steel 318 COLUMN DETAILS TYPICAL COLUMN DETAILS Office Building Construction TYPICAL CHANNEL COLUMN Bearing on Steel TYPICAL SPLICE Angle Column to Channel Column '• TYPICAL SPLICE Angle Columns, different sizes TYPICAL SPLICE Channel Columns, different sizes 319 CARNEGIE STEEL COMPANY CAST IRON COLUMNS Allowable Unit Stresses in Pounds pee Square Inch By Formula of New York Building Law, 1916 9000-40 1/r lbs. per square inch lit Lba. per Sq. In. 1/r — \ — Lbs. per Sq. In. 1/r Lbs. per Sq. In. 9000 30 7800 51 6960- 10 8600 31 7760 52 6920 11 8560 32 7720 53 6880 12 8520 33 7680 54 6840 13 8480 34 7640 55 6800 14 8440 35 7600 56 6760 15 8400 36 7560 57 6720 16 8360 37 7520 58 6680 17 8320 38 7480 59 6640 18 8280 39 7440 60 6600 19 8240 40 7400 61 6560 20 8200 41 7360 62 6520 21 8160 42 7320 63 6480 22 8120 43 7280 64 6440 23 8080 44 7240 65 6400 24 8040 45 7200 66 6360 25 8000 46 7160 67 6320 26 7960 47 7120 68 6280 27 7920 48 7080 69 6240 28 7880 49 7040 70 6200 29 7840 50 7000 The safe load for a cast iron column of given dimensions is determined from the above table by obtaining the ratio of 1/r and multiplying the correspond- ing unit stress by the sectional area of column. , Example: — Required the safe load of a cast iron column, 15 inches square, % inch in thickness, and 16 feet long. Prom table of Hollow Square Sections, page 199, the radius of gyration is 5.78 inches and the sectional area is 49.44 square inches; hence the ratio of 1/r =16x12 -=-5.78 = 33.2, corresponding to a stress of 7672 pounds per square inch, giving a total safe load of 49.44 x 7672 = 379300 pounds. The minimum size of a cast iron column of a certain length to safely support a given load is determined as follows: Divide the length in inches by 70 ; the quotient is the minimum allowable radius of gyratiqn required. Divide the total load by 6200 pounds; the quotient is the minimum sectional area. Example: — Required the minimum size of a round cast iron column, 20 feet long, to support a load of 235000 pounds. The minimum radius of gyration is 20 x 12 -5- 70 = 3.43 inches ; the minimum area is 235000 -s- 6200 =37.90 square inches. From table of Hollow Round Sec- tions, page 198, the nearest minimum size for this radius of gyration and this area is found to be a column 11 inches in diameter and 1 M inches in thickness. 320 CAST IRON COLUMNS ROUND CAST IRON COLUMNS fr --s\ Allowable Loads in Thousands op Pounds (C J ) By Formula of New York Building Law, 1916 ^ y Weights do not include details Outer Dia., Inches Thick- ness, Inches Area, [nchea- Weight per Foot, Founds Least Radius, Inches Effective Length of Column in Feet 8 10 12 14 16 18 20 22 24 26 28 6 •8 8.64 10.55 12.37 14.09 27.0 33.0 38.7 44.0 1.95 1.91 1.88 1.84 61 74 86 97 56 68 80 90 7 *A 12.52 14.73 16.84 18.85 39.1 46.0 52.6 58.9 2.27 2.23 2.19 2.15 92 107 122 136 86 101 115 128 81 95 107 119 8 *4 1H 17.08 19.59 21.99 24.30 53.4 61.2 68.7 75.9 2.58 2.54 2.50 2.46 128 147 164 181 122 139 156 171 116 132 147 162 109 124 139 152 e 22.34 25.13 27.83 30.43 69.8 78.5 87.0 95.1 2.89 2.85 2.81 2.78 171 192 212 232 164 184 203 221 157 175 193 211 149 167 184 200 142 158 174 190 10 i 1H 1M 1M 28.28 31.37 34.36 37.26 88.4 98.0 107.4 116.4 3.20 3.16 3.13 3.09 221 244 267 289 212 235 257 277 204 225 246 266 195 216 235 254 187 206 225 243 178 197 214 231 ' n i« lJi 1% 1J4 34.90 38.29 41.58 44.77 109.1 119.7 129.9 139.9 3.51 3.48 3.44 3.40 276 302 328 352 266 292 316 340 257 281 305 327 247 271 293 314 238 260 281 302 228 250 270 289 219 239 258 277 ; 12 1M 1*A 1H 1% 42.22 45.90 49.48 52.97 131.9 143.4 154.6 165.5 3.83 3.79 3.75 3.71 338 367 395 422 327 355 382 408 316 343 369 394 306 332 357 381 295 320 344 367 285 308 331 353 274 297 319 340 264 285 306 326 13 1*4 iy* 1% 1% 50.22 54.19 58.07 61.85 156.9 169.4 181.5 193.3 4.14 4.10 4.06 4.03 405 437 468 498 394 424 454 483 382 412 440 468 370 399 427 454 359 386 413 439 347 374 399 424 336 361 385 409 324 348 372 395 312 335 358 380 i 14 iyz 1% 1*4 1% 58.91 63.18 67.35 71.42 184.1 197.4 210.5 223.2 4.45 4.41 4.38 4.34 479 514 547 580 467 500 532 564 454 486 518 548 441 472 503 532 429 459 488 516 416 445 473 501 403 431 459 485 390 417 444 469 378 404 429 453 15 l'A ijI 2 68.29 72.85 77.31 81.68 213.4 227.6 241.6 255.3 4.76 4.73 4.69 4.65 560 597 632 668 546 582 617 651 532 567 601 634 518 552 585 617 504 537 569 600 491 523 553 583 477 508 538 566 463 493 522 550 449 478 500 533 436 463 490 516 16 1*4 i% 2 2H 78.34 83.20 87.97 92.63 244.8 260.0 274.9 289.5 5.08 5.04 5.00 4.96 646 685 724 762 631 670 707 744 616 654 690 726 601 638 673 708 587 622 657 690 572 606 640 672 557 590 623 654 542 574 606 636 527 559 589 619 513 543 572 1601 498 527 555 583 321 CARNEQIE STEEL COMPANY SQUARE CAST IRON COLUMNS Ai/LowABiiB Loads in Thousands of Pounds By Formula of New York Building Law, 1916 Weights do not include details Outer Width, Inches Thick- ness, Inches Area, Inches 2 Weight pet Foot, Founds Least Radius, Inches Effective Length of Column in Feet 8 10 12 14 16 18 20 22 24 26 28 6 K H 11.00 13.44 15.75 17.94 34.4 42.0 49.2 56.1 2.26 2.21 2.17 2.12 80 98 114 129 76 92 107 121 71 86 100 113 7 p 1* 15.94 18.75 20.44 24.00 49.8 58.6 63.9 75.0 2.62 2.57 2.53 2.48 120 141 153 179 114 134 145 170 108 127 137 160 103 120 130 151 8 1 1H 21.75 24.94 28.00 30.94 68.0 77.9 87.5 ' 96.7 2.98 2.93 2.89 2.84 168 192 215 237 161 184 205 226 154 175 196 216 147 167 187 205 140 159 178 195 9 1H 1M 27.44 32.00 35.44 38.75 85.8 100.0 110.8 121.1 3.34 3.29 3.25 3.21 215 251 277 302 208 241 267 291 200 232 256 279 192 223 246 268 184 213 235 256 176 204 225 244 10 1 1 . 1% 36.00 39.94 43.75 47.44 112.5 124.8 136.7 148.3 3.70 3.65 3.61 3.57 287 317 347 376 277 307 336 363 268 290 324 350 259 286 312 338 249 275 301 325 240 265 289 312 231 254 277 299 11 1H ljl IK 44.44 48.75 52.94 57.00 138.9 152.3 165.4 178.1 4.06 4.01 3.97 3.93 358 392 425 457 347 380 412 443 337 369 400 429 326 357 387 416 316 345 374 402 305 334 361 388 295 322 348 374 284 310 336 360 12 lji 1« IK 53.78 58.44 63.00 67.44 168.1 182.6 196.9 210.8 4.42 4.37 4.33 4.29 437 475 511 547 426 462 497 532 414 449 483 516 402 436 469 501 391 423 455 486 379 410 441 471 367 398 427 456 356 385 413 441 344 372 399 426 13 l'A 1^ in 63.94 69.00 73.94 78.75 199.8 215.6 231.1 246.1 4.78 4.74 4.69 4.65 524 565 605 644 511 551 590 627 498 537 575 611 486 523 560 595 473 509 544 579 460 495 529 562 447 481 514 546 434 467 499 530 421 453 484 514 409 439 469 497 14 IK 1% 1M IK 75.00 80.44 85.75 90.94 234.4 251.4 267.9 284.2 5.14 5.10 5.05 5.01 619 663 707 749 605 648 690 731 591 633 674 714 577 618 658 696 563 603 641 679 549 588 625 662 535 572 609 644 521 557 593 627 507 542 576 609 493 527 560 592 479 512 544 574 15 , 1H 1M ljl 2 86.94 92.75 98.44 104.00 271.7 289.8 307.6 325.0 5.50 5.46 5.41 5.37 722 769 816 862 707 753 799 843 691 737 782 824 676 721 764 806 661 704 746 787 646 688 729 769 631 672 711 750 616 655 694 731 600 639 676 713 585 623 659 694 570 606 642 676 16 ljl 2 2K 99.75 105.94 112.00 117.94 311.7 331.1 350.0 368.6 5.86 5.82 5.77 5.73 832 884 934 982 816 866 915 963 800 849 896 943 783 831 878 923 767 814 859 903 751 796 840 883 734 779 822 864 718 761 803 844 702 744 785 824 685 726 766 804 669' 709 747 ; 785 -'; 322 FLOOR CONSTRUCTION FLOORS AND FLOOR LOADS Kinds of Loads. Two~kinds of loads are carried by structures. Live loads consist of the weight of carriages, cranes or other handling devices and their supported loads, machinery, merchandise, persons or other moving objects, the support of which is the purpose of the structure, including also wind stresses. Dead loads consist of the actual weight of the structure itself with the walls, floors, partitions, roofs, and all other permanent construction and fixtures. The dead loads stress the structure at all times and it must, therefore, be proportioned to sustain them at all times without reduction. The live loads may be taken at their full values or reduced in accordance with the probabilities that the structure as a whole or its principal members will not be subject at all times to the full theoretical live loading. Dead Loads. The permanent load should be calculated from known weights per unit of the material composing floors, partitions, walls, or other permanent construction. The weight assumed for the steel frame itself should be checked after the sections are determined and then the Bizes readjusted if necessary. Live Loads. Live loads vary with the character of the struc- tures. In buildings they consist of uniform loads per square foot of floor area, concentrated loads, such as heavy safes, which may be applied at any point of the floor, and uniform loads per lineal foot of beams or girders. The load which produces the maximum bending moment or reaction is to be used in proportioning sections. The floor system between beams must of course be of sufficient strength to transmit any concentrated load to the beam. In cities the minimum live loads to be used on the various classes of buildings are fixed by public ordinances, and are given on page 324 for the principal cities of the United States in accordance with the most recent building laws, which are intended to cover general conditions and do not include machinery or other concentrations. If such concentrations, like safes, armatures, generators, or printing presses, occur on floors, special provision should be made for them in the floor framing. Flat roofs of buildings which may be loaded with people, should be treated the same as floors and the same uniform live loads used as given in the table for dwellings, hotels or assembly rooms. 323 CARNEQIE STEEL COMPANY FLOORS AND ROOFS Minimum Live Loads, Pounds pbb Square Foot By Building Laws of Various Cities Description of Building Apartment Houses, etc. : Floors Hospitals, Asylums: Floors • Assembly Booms, etc. . . Hotels: Floors Assembly Rooms, etc. . . Factories : Floors, light manufacture. . " heavier Mercantile Buildings: Stores, light goods . . . " heavier goods. Warehouse floors .... Office Buildings: Floors Assembly Booms, etc. Public Assembly Halls: Auditoriums, fixed seats " movable seats Churches Dance and Drill Halls Theaters Schools : Class Rooms Assembly Rooms, etc. . . Sidewalks."? Stables, Garages, etc. . . . Stairways, Fire Escapes. . Roofs: Flat, slope under 20° . . Steep, slope over 20° . . Wind Pressure . 60 60 125 125a 175a 125 175 250 75 125 75 125 75 75 75 75 200 100 40 20 30 52 50 50 100 125a 125 250 250 100 125 125 125 125 200 125 60 125 70 40 s s 40 50 100 50 100 100a 100 50 100 100 100 100 100 100 40 75 100 100 25 25d 20 60 80 50 80 125a 200a 100b 200 200 60 100 80 100 80 150 80 60 80 200 80 80 40 40d 30e 40 100 120a 120 60 100 100 100 100 75 100 300 40 30 30 70 70 120 70 120 120a 150a 120 150 150 100 120 120 120 120 120 70 120 30 30d 30e 70 125 70 125 125a 125 200 200 70 125 125 125 125 150 125 70 125 125 50c 50c 25 60 60 100 150a 150 150 150 70 100 100 100 100 100 100 100 40 30 a Floor loads do not include weight or impact load of machinery, b Ground or First Floor: Baltimore 150, Cleveland 125, St. Louis 150 pounds, c Dead and live load; snow load 25 pounds, reduced 1 pound for each degree between 20° and 45°. d Load per square foot of superficial roof area; other roof loads are for the projected area, e Wind pressure for high buildings in built-up districts 35 pounds; buildings 14 stories high or • over: 25 pounds at tenth story, 2^£ pounds less each story below. 324 FLOOR CONSTRUCTION Reduced Live Loads. Floor beams in buildings should be computed to sustain floor by floor the full live and dead loads. It is not probable that all the floors will be fully loaded at all times, and, therefore, good practice permits a reduction of the theoretical live load in the computations of column sections. The New York and Pittsburgh building laws do not permit any reduction on columns supporting the roof and top floor. These building laws permit for buildings more than five stories in height on columns supporting each succeeding floor a reduction of 5 per cent of the total live floor load until 50 per cent is reached, which reduced load is to be used for the columns supporting the remaining floors. Pittsburgh build- ing law, however, does not permit any reduction of live floor loads over 150 pounds per square foot (bulk storage). The Chicago building law requires columns to sustain the full live load on roofs, 85 per cent of the full live floor load on the top floor with a 5 per cent reduction on each succeeding floor down to 50 per cent. When the character of the loading will permit, it is also considered good practice to reduce the live load on the main girders to which the primary supporting beams are framed. The amount of the reduction will depend on the probable distribution of the loads. Foundation Loads. Footings should be so designed that the loads they sustain per unit of area shall be as nearly uniform as possible, and the dead loads carried by the footings should include the actual weight of the superstructure and foundations down to the bottom of the footing. The live load should be assumed to be the same as the live load in the lowest tier of columns or in the footings under walls. According to the proposed New York building law, the area of the footing which has the largest percentage of live load to total load shall be determined by dividing the total, load by the unit working stress. From the area thus calculated all the other footings of the building shall be proportioned according to the ratios of their respective dead loads only. In no case ,shall the load per square foot under any portion of any footing due to the combined dead, live, and wind loads, exceed the safe sustaining power of the soil upon which the footing rests. Fireproof Floor Systems. A modern office or mercantile building is essentially a steel framed structure which supports the dead load of the building and its contents and is itself protected on all sides by refractory materials. The floors are made fireproof by the use of terra cotta tiles or arches or of a composite flooring made of concrete or reinforced concrete. While brick arches may still be used in special locations where~ great floor strength is needed, and concrete arches are sometimes thrown between the beams, ~~ 325 CARNEQIE STEEL COMPANY modern practice is limited substantially to the hollow tile arch sprung between the beams and the reinforced concrete slab laid on their tops, the ceiling construction being modified to suit. Each system has advantages of its own. Terra Cotta Arches. Hollow tile arches fill the total depth of the floor beams, and, therefore, tend to stiffen and brace the building; their weight per square foot is light as compared with other forms of fireproof floor construction of equal strength. Hollow terra cotta floor arches are made either flat or segmental. The segmental arch will develop much greater strength than the flat arch of the same width and depth, and may be designed to carry a given load with tile of less depth than flat arches. They are,, therefore, more economical, though not always acceptable from the stand- point of architectural appearance. In office buildings the ceilings under such arches are usually suspended. A correctly designed and constructed flat arch will always develop the full strength of the steel beam which supports it. When arch blocks are the same depth as the beams, they are usually laid to project 1}£ inches below the bottom of the beams,, and *the space above the arch is filled in either with cinder concrete, in which can be laid pipes, conduits, and wooden nailing strips supporting wood flooring, or with thin terra cotta blocks made for this purpose, or with a layer of plastic composition of cement, which forms the wearing surface for the floor. Thrust of Floor Arches. All forms of terra cotta arches produce side thrust on the floor beams. In the flat arch the blocks have tapered faces and the central block or key wedges the others together; in the segmental arch the thrust is that due to all arch action. These thrusts it is found necessary to counterbalance by means of tie rods which connect the floor beams and relieve them from the tendency to deflect sidewise. In the central bays, owing to the action of adjacent arches, the tie rods are sometimes omitted, but it is necessary to investigate outer beams and channels around openings for additional thrust stresses so that the combined fiber stresses produced by vertical loading and horizontal thrusts may not be excessive. With flat arches M inch tie rods spaced apart not over fifteen times the width of the beam flanges will usually be sufficient. The total thrust of arch, the net area of' tie rods required, the maxi- mum distance between tie rods and the section of outer beams for any condition, may be found as follows: 326 FLOOR CONSTRUCTION Let w =load on arch, in pounds per square foot. L =span of arch, in feet. Lb =length of floor beam supporting the arch, in feet. R =effective rise of arch, in inches. l p =thrust of arch per lineal foot, in pounds. P =total thrust of arch per panel, in pounds. A =total net area of tie rods per panel, in square inches. a =net area of one tie rod, in square inches. L s =spacing of tie rods, center to center, in feet. f =allowable combined fiber stress not to exceed 16,000 pounds per square inch. Si-i =Section Modulus of beam, axis 1-1, in inches 3 . S2-2 =Section Modulus of beam, axis 2-2, in inches 3 . Mi_i=Bending Moment due to vertical loading, inch pounds. M 2 -2=Bending Moment due to arch thrust, inch pounds; then, 3wL 2 2R __ 3wL 2 Lb wL^Lb 2fR 10667R 2faR 3wL8Lb 2R 3WL2 10667aR wL2 Mi !2Lb (V 2 wLLb) 3wLLb M 2 -2= 12L S (pLs) 12 M1.1 ■■ p±JS M 2 S1-1 S2-2 In the formula given for M 2-2, the beam is considered continuous and supported at intervals by the tie rods. In segmental arches the effective rise is equal to the vertical distance between the highest point of the concave surface and the springing line or chord ; the effective rise of a flat arch may be taken at 2.4 inches less than the arch depth. The net areas of usual sizes of tie rods are as follows: — Diameter of Hod, Inches' % % ,H 1 Net area, a, square inches 0.202 0.302 0.420 0.550 327 , \ CARNEQIE STEEL COMPANY Example. — A floor panel 18 feet by 6 feet, made of 12 inch flat terra cotta blocks, is to support a uniform load, live and dead, of 150 pounds per square foot. Required the total thrust, total area of rods per panel, maximum spacing of rods, and the proper size beam to carryonerhalf of the panel without other lateral support than the tie rods. Entire panel load is 18x6x150=16,200 pounds. Assume a 12 inch 31.5 pound beam and % inch tie rods, then we have — 3x150x6x6 Thrust of arch per lineal foot, p = = 840 pounds. Total thrust of arch, Total area of tie rods, A = Maximum spacing of tie rods, L s = 2(12—2.4) 3x150x6x6x18 = 2(12 — 2.4) ' 150x6x6x18 "10,667(12 — 2.4) 10667x ,302x(12— 2.4) =15,200 pounds. =0.95 square inches. 150x6x6 6x18x150x18x12 =5.73 feet. 8x2 =218,700 in. lbs. BendingMoment, vertical loading, Mi-i= Bending Moment, horizontal thrust, M 2 - 2 — 840x5.73x5.73xl2 =27 580 in lbs Combined fiber stress, f== : 218,700 , 27,580 =13,330 pounds per square inch. 36 ~ 3.8 If tie rods are spaced 6' 0" centers, then the Bending Moment, horizontal thrust, M2-2=840x6x6=30,240 inch pounds. Combined fiber stress, f == 218,700 , 30,240 =14,030 pounds per square inch. 36 ~ 3.8 When used, tie rods should be placed in the line of thrust if possible, usually 3 inches above the bottom of the beam. MAXIMUM SPACING OF % INCH TIE RODS, Loads of ioo Pounds per Square Foot Span, Effective Rise of Arch, I , in Inches Feet i 5 6 7 8 9 10 11 . 12 13 14 15 3 14.3 4 8.1 10.1 12.1 14.1 5 5.2 6.4 7.7 9.0 10.3 11.6 12.9 14.2 6 3.6 4.5 5.4 6.3 7.2 8.1 8.9 9.8 10.7 11.6 12.5 13.4 7 3.3 3.9 4.6 5.3 5.9 6.6 7.2 7.9 8.5 9.2 9.9 8 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.6 9 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0 10 3.2 3.5 3.9 4.2 4.5 1 4.8 For any other loading, multiply tabular values by 100 and divide by total new load per square foot. The tables which follow give the weights per square foot for terra cotta arches, both fiat and segmental, of various depths, their area in square inches, and the safe loads they will sustain on various spans. These tables should be used as a general guide only, as conditions may make it possible to design more economical arches for a given load than indicated by the tables. Where a paneled ceiling is not objectionable, for example, a shallow arch may be used on raised skewbacks with a considerable economy in material. 328 FLOOR CONSTRUCTION FLAT TERRA COTTA ARCHES MANUFACTUBEBS' STANDAED Safe Loads in Pounds pee Square Foot Factor of Safety = 7 Depth of Arch Blocks, Inches Span of 6 7 8 9 10 '12 15 Arch, ^rea of Arch Blocks, Square Inches Ft.-In. 31 34 37 40 43 49 58 3-0 458 588 735 901 1084 .1487 2210 3-3 386 496 622 763 916 1262 1877 3-6 330 424 531 653 785 1083 1612 3-9 284 365 459 565 679 938 1398 4-0 247 318 399 493 593 820 1223 • 4-3 216 278 350 433 521 722 1079 4-6 190 245 309 382 461 640 951 4-9 168 217 274 340 410 571 855 5-0 149 193 244 304 367 511 767 5-3 172 218 272 330 460 691 5-6 154 196 245 297 416 626 5-9 139 176 222 269 378 569 6-0 159 201 244 344 518 6-3 144 183 222 314 474 6-6 131 166 203 287 435 6-9 152 186 264 400 7-0 139 170 243 369 7-6 144 206 315 8-0 177 272 8-6 153 236 9-0 132 205 9-6 180 10-0 158 This table and the two following are employed in computing the safe loads of floor arches of hollow terra cotta blocks. The area given is that of a cross section at right angles to the webs, and, generally, end-construction blocks of various shapes but of the same depth and cross-sectional area have equal strength. The weight of the terra cotta arch has been deducted from the safe load given in the tables, so that only the dead load of the concrete fill, plastering, etc., must be deducted to obtain the net safe live load for any arch and span ; blocks of different areas and for other factors of safety are calculated as follows: Example. — Required the load per square foot for a 5'-6" span and 8 inch arch blocks with three horizontal and four vertical webs, % inch thick, set in end construction, cross-section through webs of blocks parallel to webs of beams. Sectional area of the blocks is 8"x %"ni+ (12"-4xM")x M"x3=44.2S sq. in. at 0.06 pounds per cu. in., the weight is 44.25x12x0.06=33 pounds. , The net safe load of the 8 inch block given in the table is 196 pounds. Adding the weight of the block, 37x12x0.06=26 pounds, the total safe load is 222 pounds. The net safe load for blocks with an area of 44.25 sq. in. and a safety factor of 5 is (44.25 -s- 37x222x7/5)— 32=340 pounds per sq. ft. 329 CARNEGIE STEEL COMPANY SEGMENTAL TERRA COTTA ARCHES manufacturers' standard Safe Loads in Pounds per Sqtjabe Foot Factor of Safety= =7 > Depth of Arch Blocks, Inches Depth of Arch Blocks, Inches Span of Arch, Ft.-In. Eise of Arch, In. 4 6 S . 10 Span of Arch, Ft.-In. Rise of Arch, In. 4 6 8 | 10 Area of Arch Blocks, Sq. Inches Area of Arch Blocks, Sq. Inches 1 28 36 43 47 28 36 43 47 ! X ' 70S 902 1078 1178 K 366 471 563 615 l 920 1184 1414 1545 1 482 621 741 810 IK 1155 1485 1774 1939 IK 602 774 925 1011 4-0 1M 1353 1740 2079 2272 7-6 IK 715 920 1099 1201 i IX 1545 1986 2373 2593 IK 815 1049 1253 1369 1536 2 1736 2233 2667 2915 2 915 1176 1405 M 616 792 946 1034 M 341 439 525 573 1 812 1044 1247 1363 l 457 588 703 768 IK 1020 1313 1568 1713 IK 562 724 864 944 4-6 IK 1196 1539 1838 2009 8-0 IK 668 859 1026 1122 ; 1M 1381 1775 2121 2318 IK 767 987 1179 1288 2 1536 1975 2359 2578 2 854 1099 1312 1434 X 551 709 847 926 H 319 411 491 536 | l 744 957 1143 1249 1 428 551 658 719 5-0 IK IK 911 1072 1172 1379 1400 1647 1530 1800 8-6 IK IK 527 626 678 806 810 963 885 1052 1M 1238 1592 1902 2078 IK 719 926 1106 1208 2 1379 1773 2118 2315 2 807 1037 1239 1354 K 499 641 766 837 X 300 386 461 504 1 672 864 1032 1128 1 403 518 619 677 ! 5-6 IK 826 1062 1269 1387 IK 501 645 770 842 IK- 984 1266 1512 1652 9-0 IK 590 758 906 990 IK 1119 1439 1719 1879 IK 677 871 1041' 1137 ! 2 1258 1619 1933 2113 2 759 977 1167 1275 j X 455 585 699 764 H 283 364 435 475 1 612 788 941 1028 l 380 489 584 638 6-0 IK 753 969 1157 1265 IK 472 608 726 793 i IK 898 1154 1379 1507 9-6 IK 561 721 862 942 IK 1022 1315 1570 1716 IK 639 823 983 1074 j 2 1148 1476 1763 1927 2 717 923 li02 1204 K 428 551 658 719 X 267 344 411 449 l 562 724 864 944 1 359 462 552 603 6-6 IK 701 902 1077 1177 IK 447 576 688 751 IK 823 1058 1264 1382 10-0 IK 531 683 816 892 IK 947 1218 1455 1590 IK 610 784 937 1024 2 1055 1358 1622 1772 2 683 879 1050 1147 K 394 508 606 662 K 251 330 394 429 1 520 669 799 873 1 342 442 528 577 IK 648 834 996 1089 IK 426 547 655 7i? ; 7-0 IK 762 981 1171 1280 10-6 IK 504 646 776 849 IK 876 1127 1346 1471 IK 581 749 891 974 2 983 1264 1510 1650 2 650 837 1000 1092 330 FLOOR CONSTRUCTION SEGMENTAL TERRA COTTA ARCHES- -Concluded Span Rise Depth of Arch Blocks, Inches Span Rise Depth of Arch Blocks, Inches of Arch, Ft.-In. of Arch, In. 4 6 8- 10 of Arch, Ft.-In. of Arch, In 4 6 8 10 Area of Arch Blocks, Sq. Inches Area of Arch Blocks, Sq. Inches 28 36 43 47 28 36 43 47 X 244 315 376 411 X 151 194 232 254 1 327 421 503 550 1 205 265 316 345 IK 404 519 621 678 IK 256 330 394 430" 11-0 IK 479 617 737 805 17-0 IK 304 392 468 512 1M- 551 709 847 925 IX 351 .452 540 590 2 617 794 948 1036 2 393 506 605 661 X .233 299 358 391 X 141 182 218 238 1 312 401 480 524 1 192 248 296 324 IK 388 499 596 652 IK 240 310 370 404 11-6 IK 460 592 707 773 18-0 IK 287 370 442 482 IX 528 680 812 887 IK 330 425 507 554 2 591 761 909 993 2 371 477 570 623 X 222 285 341 372 X 134 173 206 225 1 297 383 458 500 1 181 233 279 304 IX' 370 477 569 622 IK 227 293 350 382 12-0 \k 439 566 676 738 19-0 IK 271 348 416 455 IX 505 649 776 848 IK 312 402 480 524 2 565 727 869 949 2 351 451 539 589 X 212 273 326 356 X 126 163 194 212 1 284 366 437 478 1 172 221 265 289 IX 354 456 545 595 IK 215 277 331 361 12-6 IK 420 541 646 706 20-0 IK 257 330 395' 431 IX 483 621 742 811 IX 296 381 455 497 2 541 696 832 909 2 332 427 510 558 X 203 261 312 341 X 119 153 183 200 1 272 351 419 458 1 163 209 250 273 IK "339 437 522 570 IK 205 263 315 344 13-0 IK 403 519 620 677 21-0 IK 243 314 375 409 IX 463 596 712 778 IK 281 361 432 472 2 521 670 801 875 2 315 406 485 530 K 186 240 287 313 X 113 145 174 190 1 253 326 390 426 1 154 199 • 237 259 IK 315 406 485 530 IK 194 250 298 326 14-0 IK 374 482 575 629 22-6 IK 232 299 357 399 1M 430 553 661 722 1M 268 344 412 450 2 481 619 740 808 2 301 377 462 505 K 174 225 268 293 X 108 139 166 181 1 234 302 361 394 1 147 190 227 247 IK 292 377 450 491 IX 185 238 284 310 15-0 IK 347 447 534 583 23-0 IK 221 284 340 371 IX 401 515 616 673 IK 255 328 392 428 2 449 577 690 754 2 286 369 440 481 K 162 209 249 272 K 102 132 157 172 1 218 281 336 367 1 140 181 216 236 IX 274 353 421 460 IK 177 227 272 297 16-0 IK 325 419 500 546 24-0 IK 211 272 325 355 IX 374 481 575 628 IX 244 314 375 410 2 420 540 645 705 2 274 353 421 460 331 CARNEQIE STEEL COMPANY TERRA COTTA ARCHES Fob Floor Load of 150 Pounds per Square Foot Depth of Depth of Arch Depth of Span of Approx, Weight, Lbs. per Sq; Ft. nm g '$ to ■E CDC3 § Beam, Blocks, Floor, Arch, _* &6 a 3 OO IS Inches Inches Inches Feet i GO 1 o <3 . r=^ % 6 6 11 5M 6 22 30 4 5 67 ! n — JU !■; ! |! y\ 7 6 12 5H 7 22 38 4 5 , .76 w o "'H !: ; g£ 8 6 13 5H 8 22 45 4 5 84 ; *"H=i O 7 7 12 6 8 ■24 30 4 5 71 « iiiin 1.6 " 8 7 13' ' 6 8 24 38 4 5 79 *■•■' ' ■; ;, .L_1! 9 7 14 6 8 24 45 4 5 86 fn 8 8 ' 13 ny* 8 27 30 4 5 - 74 < rCDD 9 8 14 6M 8 27 38 4 5 82 fa §;.■<,}» So 10 8 15 6X 8 27 45 4 5 89 :V-^ ! | gcs 9 9 14 7X 8 29 30 4 5 76 •°;,v i ! : B"S 10 9 15 7X 9 29 38 4 5 85 sk-H 1 12 9 17 7« 9 29 53 4 5 100 i 10 10 15 8 9 31 30 4 5 79 dU i if? 43 12 10 17 8 9 31 45 4 5 94 tiP^ 1 J ffl 12 15 12 12 17 20 9J^ 9X 10 10 35 35 30 53 4 5 5 84 107 15 15 20 11 12 42 30 4 5 93 For flat arches on raised skews, where the top of the arch is level with the top of the floor beam, deduct about 7 pounds per inch of difference between the height of the floor beam and the arch. Tl Depth Depth Rise Span Approx. Weight, Lbs. perSq.Ft, i i 1 of of Arch of of ■$ ! ! Beam, Blocks, Arch, Arch, 03 C3 '§ C? — o Inches Inches Inches Feet e H o ^ ■2p, so CQ HO o ta O Eh" w 6 7 4 4 H l 4H 5 7 7 20 20 27 28- 4 4 5 5 63 64 K %*» 8 4 ljf 5H 7 20 29 4 5 65 ■i kd = 2ndA s + bf 2nA s + 2b$ Neutral axis in flange — (use formulas for rectangular beams.) Neutral axis in stem — jd = (d-z) U = t(3kd— 2t) ,3(2kd— t) A s jd M = f c bt (kd-jt)jd kd to. = Mkd bt(kd-Jt)id k fgk = 5Il=k7 Rectangular Beams, Reinforced for Tension and Compression. kd = d [^2n(p+p'g-')+na(p+p') a -nCP+P')] , t ^-f-c-, "•""• * -•—•-• i I ■ / — i- ,-. b— - '4.Jrl & jkad+2p'nd'(k-g-) ka+2p'n(k— %■) jd=(d-z) U = *'* = M pjbda nf c (k-£) nf c (l-k) ~~ E *c = 6M "bd.[8fc*45^(k-4)r>4')] Shear and Bond. Rectangular Beams T Beams V bjd v b'jd V' a _ V = "jd u ~ WSo If reinforcing bars are bent up at angles between 20° and 45°,and web members inclined at 46 °, T— 511" 335 CARNEGIE STEEL COMPANY The formulas are based upon the following assumptions: 1. The applied forces are perpendicular to the neutral plane. 2. The deformation of any fiber is proportional to its distance from the neutral axis. 3. The resisting moment of the beam is the sum of the moments above the neutral axis, due to the concrete area in compression, and of those below the neutral axis, due to the steel area in tension. 4. The tensile strength of the concrete is negligible. Bending Moments. If slabs and girders are reinforced over supports to take care of negative bending moments, they act as continuous beams, and the bending moment at the center of the span will be reduced. It is considered good practice to use the following values : Floor slabs, M at center and at supports=xj wl 2 . Beams, M at center and at supports= T V wl 2 for interior spans, and ■£$ wl 2 for end spans. If beams are freely supported at ends, M=J wl 2 . Columns. Columns may be reinforced by means of longitudinal bars, by bands or hoops, or by both. The general effect of the banding or hooping is to permit the use of somewhat higher working stresses; the values of As and p given in the formula which follows, refer to longitudinal steel reinforcement only: P =total load on columns, in pounds. A =total area of column section, in square inches. Ac=area of concrete, in square inches. As=area of steel, in square inches, p =ratio of steel area to total section, As -s-'A. fc =unit compressive stress in concrete, in pounds per sq. inch: P =f c (Ac+nA s )=fcA[l+(n-l)p]. fc= A[1+( P_ 1)p]- Working Stresses. The following working stresses are in current use for reinforcing bars of medium structural steel and good Portland cement and gravel concrete of a 1 :2:4 mixture: fo=unit compressive stress of concrete 650 lb. sq. in. fv=unit shearing stress of concrete, straight horizontal reinforcement .. . 40" " " special shear reinforcement 90 to 120 " " " fu=unit bond stress of concrete, smooth rods and deformed bars 80 to 100 " " " fs =unit tensile stress of steel 16,000" " " ■» rod reinforcement 16,000" " " wire reinforcement 20,000 " " " fk=unit compressive stress of steel 16,000 " " " n =E S h- E =15. 336 FLOOR CONSTRUCTION Substituting in the formulas given for rectangular beams, reinforced for tension only, the values for fc=650, fs=16,000 and [20,000, and n=15, the following constants are obtained for equal moments of resistance Mc=Ms. fc=650 Notation fo=650 fs=16,000 fs=20,000 fs=16,000 fa=20,000 p k i 0^00769 0.37864 0.87379 0.00533 0.32773 0.89076 pi kj fspj=Jfckj 0.00672 0.33085 107.526 0.00474 0.29193 94.877 For approximate calculations, the arm of the resisting couple, jd, may be taken at 0.9d, and ordinarily accepted working stresses of 16,000 for steel and 650 for concrete will not be exceeded if the steel ratio, p, does not exceed 0.008. Explanation of Tables. Reinforced Concrete Slabs: The tables given on page 338 are based upon the preceding formulas for rect- angular beams reinforced for tension only, and upon fiber stresses of 650 pounds per square inch for concrete, 16,000 pounds for steel bar or rod reinforcement, 20,000 pounds for steel wire reinforcement, and for an elasticity ratio of n=15. The bending moments are given in foot pounds per foot of width; below and to the left of the zigzag lines the values are determined by the maximum allowable fiber stress on steel; above and to the right they are determined by the maximum allowable stresses in concrete. The first column gives the total thickness of the slab, the sec- ond, the distance from the center of the steel to the bottom of the slab, and the third the approximate weight of concrete slabs one foot square. Example. — Required the reinforcement for a slab continuous at four sides and 5 inches thick .to carry a superimposed load of 150 pounds per square foot over a clear span of 8 feet. Assuming the weight of the concrete slab in pounds at twelve times the thickness of the slab in inches, then the weight of the slab per foot is 12x5=60 pounds, and the total weight, W, for a span of 8 feet is (60+150)x8=1680 pounds. M=WL -8-12=1680x8 -s-12=1120 foot-pounds. If medium structural steel bars or rods are used, the required area, by the upper table, page 338, is 0.24 square inches, and the sizes may be taken from page 122. If triangle mesh is used, the steel area required by lower table, page 338, computed for a 5 inch slab, Is, by interpolation, 0.185 square inches, requiring by table, page 339, triangle mesh style number 208. 337 CARNEGIE STEEL COMPANY REINFORCED CONCRETE SLABS Bending Moments in Foot Pounds per Foot of Width Allowable Fiber Stress: Steel, 16,000 and Concrete, 650 Pounds per Sq. Inch Slab of lSq. It. ij •3-S .2 S org Q a" ■si SI .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00 1.10 1.25 1.50 2% U % % K % 1 1 1 1 1 IK IK IK IK l'A m 2 30 36- 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126 132 138 144 209 272 335 398 461 497 558 621 686 751 783 353 599 858 1135 1245 1584 1766 1894 2312 2760 2922 3431 3974 4254 4173 4465 5097 5734 6069 5309 5982 6338 7063 7826 5494 6206 6574 7330 8120 8525 9359 5674 6410 6790 7575 8392 8817 9681 10575 11037 9079 9972 10898 11376 9432 10369 11337 11858 3 4 525 650 775 900 961 1087 1213 1340 1466 1531 1658 1785 1849 1977 2104 5 1235 1412 1600 1787 1975 2162 2257 2446 2634 2730 2919 3109 3205 3395 3586 3681 5M 6 2101 2349 2596 2844 2969 3218 3467 3594 3845 4096 4222 4475 4726 4852 7. 7K 3205 3515 3669 3977 4288 4444 4757 5068 5224 5537 5850 6007 8 m 9 4728 5099 5283 5656 6027 6213 6588 6960 7148 m 10 6543 6974 7192 7625 8058 8276 10H 11 8163 8652 9145 9393 9939 10936 12 10224 10500 11969 12494 Allowable Fiber Stress : Steel, 20,000 and Concrete, 650 Pounds per Sq. Inch SlaboflSq.Ft Is Qrf 11 "* .04 .06 .08 .10 .12 .14 .16 .18 .20 .25 .30 .35 .40 .45 .50 IV, H % % U % l l l l 1 lJi IK IK 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 108 140 173 205 237 160 207 256 304 352 377 421 211 273 338 401 465 500 560 624 691 261 338 419 498 577 621 697 777 859 939 978 295 311 325 499 342 520 724 353 538 750 377 574 808 1068 1354 599 858 1135 1439 1605 1950 900 1194 1516 1690 2056 2449 1245 1584 1766 2151 2563 3002 3466 1644 1834 2236 2666 3124 3609 3863 4387 3 404 499 594 688 740 832 928 1025 1120 1168 1260 1358 468 578 689 798 857 965 1076 1189 1300 1356 1466 1578 1637 1749 VA 656 783 907 972 1097 1222 1352 1479 1543 1670 1797 1863 1990 2119 4 m 876 1015 1087 1228 1367 1514 1657 1729 1872 2015 2088 2231 2375 969 1123 1201 1359 1512 1675 1833 1913 2072 2231 2311 2471 2630 5 1486 1682 1875 2075 2271 2370 2568 2765 2864 3063 3261 1894 2312 6 2234 2469 2703 2821 3057 3292 3412 3649 3886 2760 7 2858 3131 3268 3542 3815 3955 4230 4506 3235 3741 m 8 3711 4023 4334 4493 4806 5120 4005 4556 9 m 10 4850 5026 5378 5730 5122 5416 5945 6335 338 FLOOR CONSTRUCTION TRIANGLE MESH CONCRETE REINFORCEMENT AMEBIC AN STEEL AND WIRE 00M PANT STAND AHD Ultimate Strength (minimum), 85,000 lbs. per square inch Elastic Limit (mini- mum), 55,000 lbs. per square inch Longitudinal Wires, Spaced 4" Centers Cross Wires, Spaced 4" Centers Triangle Mesh is a woven fabric of cold drawn steel wire, providing a continuous reinforcement, an even distribution of metal, and a perfect bond. Made with both single and stranded tension members in lengths up to 300 feet and in widths up to 56 inches. TRIANGLE MESH— STYLES, AREAS, AND WEIGHTS Longitudinal and Cross Wires (No. 14 A. S. & W. Co. Gage), Spaced 4 Inches. Triangle Mesh Style Longitudinal Wire Triangle Mesh Number Thicknes, Net Area Total Area Approx. Weight of A.S.&W.Co. per Foot Width, per Foot Width, per 100 Sq. Ft., Pounds Strands Wire Gage Sq. Inches Sq. Inches 032 No. 12 .026 .032 22 040 " 11 .034 .040 ! 25 049 " 10 .043 , .049 ! 28 058 " 9 .052 .058 32 068 " 8 .062 .068 35 080 " 7 .074 .080 40 093 " 6 .087 .093 45 107 " 5 .101 .107 50 126 " 4 .120 .126 57 ' 146 " 3 .140 .146 65 153 Ji" .147 .153 68 168 " 2 .162 .168 74 180 2 " 6 .174 .180 78 208 2 " 5 .202 .208 89 245 2 " 4 .239 .245, 103 267 3 " 6 .261 .267 111 287 3 " 5H .281 .287 119 309 3 " 5 .303 .309 128 336 3 " W .330 .336 138 365 3 " 4 .359 ,365 149 395 3 " 3H .389 .395 ■ 160 Length of Eolls: 150, 200 and 300 feet. Width of Rolls: 16, 20, 24, 28, 32, 36, 40, 44, 48, 52 and 56 inches, approximately. Triangle Mesh is furnished either with or without galvanising; unless otherwise specified material will be shipped not galvanized. 339 CARNEGIE STEEL COMPANY BUCKLE PLATES p\H T^~^ [^ 1 / \ / / 1 y V / \ / \ / Buckle Plates, as generally used on highway bridges with paved floors, are subjected to a concentrated live load due to the weight of a wagon or truck wheel and to a uniform dead load due to the weight of the roadway paving. Buckle Plates should be placed with the buckle turned down; then the live load which can be placed on a buckle in addition to the uniform dead load can be obtained from the following formula. Let: P =Total allowable concentrated load on buckle plate, in pounds. w =Uniform load, in pounds per square foot. d =Bise of buckle, in inches. 1 =Length of buckle, in inches. b =Width of buckle, in inches. t =Thickness of buckle plate, in inches, p = t /300Jdt-0|25wlbX poundS)Perbuckle . \ 6 a + 15 t / The following table gives, for a fiber stress of 9000 pounds, the maximum concentrated live load in pounds allowed on buckles (turned down), in addition to a uniform load assumed to be the average weight of paving, etc., of 120 pounds per square foot. Thickness of Buckle Plate, Inches Rise, d, in Inches 2 2H 3 3H Vt, He % 20000 30000 41000 53000 22000 33000 45000 58000 22000 34000 47000 61000 22500 34000 47500 63000 The total allowable uniformly distributed load which a buckle plate will safely support may be obtained from the formula: W = 12 fdt pounds, per buckle. When the buckles are turned up, use one-third of above values. 340 FLOOR PLATES BUCKLE PLATES AMEBIOAN BEIDGE COMPANY 8TANDABD s [ ja Size of Buckle Radii of Buckle Number of Widths of Flanges and Fillets d fc Ridel, Side b, In. Sidel, Side b, in One End Flanges Fillets Side Flanges a Ft.-In. Ft.-In. Ft.-In. Ft.-In. Plate li.ls h bi, b2 1 3-11 4- 6 sv« 6- &V% 8- 9K lto 8 ?. 4- 6 3-11 ■AV, 8- 9K 6- 8% lto 7 3 3-11 3- 6 3 7- 9K 6- 3 lto 8 °f 5 3?' s «ii 4 3- 6 3-11 3 6- 3 7- 9H lto 9 fi 3- H 3- 9 3 7- IK 7- IK lto 8 II S II 11 3 t O fi 3- 1 3- 9 3 4-10K 7- 1% 7- IK lto 10 7 3- 9 3- 1 3 4-10K lto 8 £ E f ■all S a -s 8 3- 8 3- 8 2 10-2 10- 2 lto 8 CD 5 9 2- 8 3- 8 2 5- 5 10- 2 lto 11 e fc 10 3- 8 2- 8 2 10- 2 5- 5 lto 8 © * % 8 'fi ss» 11 2- 2 3- 8 2 3- 7M 10- 2 lto 14 8£ ■a* .fcS § "S la Mo 12 3- 8 2- 2 2 10- 2 3- 7M lto 8 - a" 13 3- 3- 2 6-10 6-10 lto 10 © ^ b 2 a - 1 14 3- 9 2- 9 3 3-10K 3-10K lto 11 •a T3 eS 19 2- 6 2- 9 2U 3-10M 4- 7K lto 12 a a* ti in" ^ ?,0 2- 9 2- 6 2U 4- 7% 3-10M lto 11 2* !>> &*l 21 2- 6 2- 6 2Y, 3-10M 3-lOJi lto 12 ■3 w«m IR 3 « s li ?2 3- 5 3- 6 3 6-11 A 6- 3 lto 9 ^ffl C8 23 3- fi 3- fi 3 6- 3 5-lli 9 , lto 9 S s 24 3- 6 3- 9 3 6- 3 7- IK lto 9 -"a 5; L seco VoLseca W L seca ViL sec'a L( l— Vi sec* a) H.L- +sec ! atan , a' ViL sec 1 a 4W n=3L/H^3 2cottt 6W COMPOUND FINK STRUSS COMPOUND FAN TRUSS Member Length Member Stress Length, Aa Bb Dr La Lc Lg ob, ef cd be, do dg (e + %Vd7+4 X.W + \p+4p*n'+5)xW + W+4<' 4 »'+ 3 ) xW + VnH4< %11 * +1 > * W — 'An " \n'+4 — to — to xW xW xW \i L seca % L seca M L sec'a V& L sec'a L (1-* sec'a) W Lsecatana W L secatana W L sec'a ft L sec'a % L sec'a A. Bb Cc Df Eg Fb La Ld Li ab, be, 'B.ga de cd, ef ei bi h \^+4"('to'+ll)xW + Vn'+4<* Mm!+9 ' xW + "^+4(' , "''+ 7 ) » W ■•"VaW'W+S) «W + W+4('««»'+ 3 ) xW + \ n ! +4 ('«n'+l) xWK.Lseca V17 L seca Wi L seca L 'u L seca Vi; L seca 4.- L seca — 'to xW — %n xW — *0 xW , nA/n'-HO n'+W _. + «(.'+4) xW HL sec'a % L sec'a L(l-W sec'a) \n'+4 — to — to xW xW xW xW HL^j* ViL sec'a ViL sec'a v&L sec'a Coefficients lor Calculating Lengths of Truss Members ValueB of n 3 sy, 2 cot 30° 4 °% 5 6 Values of a 33°41'24" 30°15'23" 30° 26°33'54" 22°37'12" 21°48' 5" 18°26' 6" sec a sec» a sec a tan a 1.2018 1.4444 0.8012 0.8958 1.1577 1.3403 0.6753 0.7778 1.1547 1.3333 0.6667 0.7698 1.1180 1.2500 0.5590 0.6718 1.0833 1.1736 0.4514 0.5781 1.0770 1.1600 - 0.4308 0.5608 1.0541 1.1111 0.3514 1 /sec2o +sec2atan2a 0.4969 348 ROOF CONSTRUCTION TRUSSES — Coefficients of Stresses 2W n = L/H = 2 cot a 3W Member n = Span -f- Height = 2 cot a n = Span -h- Height = 2 cot a 3 24/7 2 cot 30° 4 24/5 5 6 3 24/7 2 cot 30° 4. 24/5 5 6 Aa 2.70 2.98 3.00 3.35 3.90 4.04 4.74 Aa 4.51 4.98 5.00 5.59 6.50 6.73 7.91 Bb 2.15 2.47 2.50 2.91 3.52 3.67 4.43 Bb 3.54 3.96 4.00 4.55 5.38 5.59 6.64 La 2.25 2.57 2.60 3.00 3.60 3.75 4.50 Co 3.40 3.95 4.00 4.70 5.73 5.99 7.27 Lc 1.50 1.71 1.73 2.00 2.40 2.50 3.00 La 3.75 4.30 4.33 5.00 6.00 6.25 7.50 ab 0.83 0.86 0.87 0.89 0.92 0.93 0.95 Ld 2.25 2.57 2.60 3.00 3.60 3.75 4.50 be 0.75 0.86 0.87 1.00 1.20 1.25 1.50 ab, be 0.93 0.99 1.00 1.08 1.18 1.21 1.34 cd 1.50 1.71 1.73 2.00 2.40 2.50 3.00 4W n = = L/H=2cota 6W n = Span -^ Height = 2 cot a n = Span -r- Height = 2 cot a Member 3 24/7 2 cot 30° 4 24/5 5 6 Member 3 24/7 2 cot 30° 4 24/5 5 6 Aa 6.31 6.95 7.00 7.83 9.10 9.42 11.07 Aa 9.92 10.91 11.00 12.30 14.30 14.81 17.39 Bb 5.76 6.44 6.50 7.38 8.72 9.05 10.75 Bb 8.95 9.91 10.00 11.25113.18 13.66 16.13 Ce 5,2(1 5.94 6.00 6.93 8.33 8.68 10.43 Cc 8.81 9.91 10.00 11.4013.53 14.07 16.76 Df 4.65 5 43 5.50 6.48 7.95 8.31 10.12 Df 8.25 9.40 9.50 10.96 13.15 13.70 16.44 La 5,25 6.00 6.07 7.00 8.40 8.75 10.50 Eg 7.28 8.41 8.50 9.91 12.02 12.55 15.18 Lo 4,50 5.14 5.20 6.00 7.20 7.50 9.00 Fh 7.14 8.40 8.50 10.06 12.38 42.95 15.93 i* 3 00 3.43 3.46 4.00 4.80 5.00 6.00 La 8.25 9.43 9.53 11.00 13.20 13.75 16.50 ab, ef 0,83 n.8B 0.87 0.89 0.92 0.93 0.95 Ld 6.75 7.71 7.79 9.00 10.80 11.25 13.50 cd 1.66 1.73 1.73 1.79 1.85 1.86 1.90 Li 4.50 5.14 5.20 6.00 7.20 7.50 9.00 bc.de 75 0.86 0.87 1.00 1.20 1.25 1.50 ab,bc,fg,gh 0.93 0.99 1.00 1.08 1.18 1.21 1.34 dg 150 171 1.73 2.00 2.40 2.50 3.00 de 2.50 2.59 2.60 2.68 2.77 2.79 2.85 H 2 25 2.57 2,60 3.00 3.60 3.75 4.50 cd, ef 1.50 1.71 1.73 2.00 2.40 2.50 3.00 ei 2.25 2.57 2.60 3.00 3.60 3.75 4.50 hi 3.75 4.29 4.33 5.00 6.00 6.25 7.50 The pitch of a trues is the ratio of the rise or height to the span length of the truss. Pitch = H/L = i/n. n = L/H = i /pitch. To obtain the stress in any member of a given truss, multiply the corresponding coefficient by the panel load W. Compression members are designated by + and tension members by — 349 CARNEGIE STEEL COMPANY TRUSSES — Formulas fob Stresses and Lengths w ^c w 2W 3W PRATT TRUSS-4 PANELS PRATT TRUSS— « PANELS Member Aa, Bb La Lc ab be ' Stress Ml/n 2 + 4xW % n xW Yi n xW + 1 xW — Ki/n^+iexW Length Member L sec a. K L L H b HV Lfl + 16h - Aa, Bb Cd La Lc Le ab cd be de + i/na+ 4 + 1 + % xwy 8 xWY« xWV4 xW% xWWi xW% xW% — y 41 /na+16 Length Lsec o L sec o L L L h h xWyei/ L8+16hg xWy 8 jv/l£+36h2_ 4W. n=L/H=2cota 5W PRATT TRUSS— 8 PANELS PRATT TRUSS— 10 PANELS Member Stress Length Member Stress Length Aa, Bb +%i/n2+ 4xW Ya L sec a Aa, Bb +%l/n2+4 xW A L sec o Cd +%T/n2+ 4xW % L sec a Cd + 2/112+4 xW A L sec a DI +%-j/n2+ 4xW % L sec a DI xW A L sec a La — % n xW % L Eh + 8 /2-J/n 2 +4 xW A L sec a Lc — % n xW y 8 l La -% n xW A L Le — % u xW Vs L Lc —2 n xW A L Lg — n xW y* l Le -% n xW A L ab + 1 ■ xW % h Lg -% n xW A L cd +% xW y 2 h Li -% n- xW % L ef + 2 xW — Vii/^+iSxW % h ab cd ef gh + 1 +% + 2 +% xW xW xW xW % h be %-l/L2+16h2 % b. de ^V4-J/n2+36xW — i4i/n2+64xW %i/L2+ 361i2 % h ig %V' L ' 2 + 64h2 % h be — y 41 /u2+ 16xW Al/L2+16 h* de -%i/n2+ 36xW Al/L2+ 36hS its — y 4 l/n2+ 64 xW Al/L*+ 64h» hi — yVrtf+lOOxW A-j/La+lOOha 350 ROOF CONSTRUCTION TRUSSES — Coefficients of Stresses W w 1 1 I I I I I I — » t. 2W Lr n=L/H=2cot o n = Span -4- Height = 2 cot a Member n = Span -s- Height = 2 cot a Member 3 24/7 2 cot 30° 4 24/5 5 6 3 24/7 2 cot 30° 4 24/5 5 6 Aa,Bb La Lc ab' be 2.70 2.25 1.50 1.00 1.25 2.98 2.57 1.71 1.00 1.32 3.00 2.60 1.73 1.00 1.32 3.35 3.00 2.00 1.00 1.41 3.90 3.60 2.40 1.00 1.56 4.04 3.75 2.50 f.00 1.60 4.74 4.50 3.00 1.00 1.80 Aa.Bb Cd La Lo Le ab cd be de 4.51 3.61 3.75 3.00 2.25 1.00 1.50 1.25 1.68 4.96 3.97 4.29 3.43 2.57 1.00 1.50 1.32 1.73 5.00 4.00 4.33 3.46 2.60 1.00 1.50 1.32 1.73 5.59 4.47 5.00 4.00 3.00 1.00 1.50 1.41 1.80 6.50 5.20 6.00 4.80 3.60 1.00 1.50 1.56 1.92 6.73 5.39 6.25 5.00 3.75 1.00 1.50 1.60 1.95 7.91 6.32 7.50 6.00 4.50 1.00 1.50 1.80 2.12 4W n= = L/H=2cota 5W n = Span -v- Height = 2 cot a n = Span -=- Height = 2 cot a Member 3 24/7 2 cot 30° 4 24/5 5 6 3 24/7 2 cot 30° 4 24/5 5 6 Aa.Bb 6 31 6.95 7.00 7.83 9.10 9.42 11.07 Aa, Bb 8.11 8.93 9.00 10.06 11.70 12.12 14.23 Cd 5 41 5.95 6.00 6.71 7.80 s.ns 9.49 Cd 7.21 7.94 8.00 8.94 10.40 10.77 12.65 Df 4 51 4 97 5.00 5.59 6.50 6.73 7.91 Df 6.31 6.95 7.00 7.83 9.10 9.42 11.07 La 5.25 6 00 6.0B 7.no 8.40 8.75 10.5U Eh 5.41 5.95 6.00 6.71 7.80 8.08 9.49 Lc 4 50 5 14 5.20 6.00 7.20 7.50 9.90 La- 6.75 7.71 7.79 9.00 10.80 11.25 13.50 Le 3 75 4.29 4 33 5.00 6.00 6.25 7.50 Lc 6.00 6.86 6.93 8.00 9.60 10.00 12.00 Lg 3 00 3 43 3.46 4.00 4.80 5.00 6.00 Le 5.25 6.00 6.06 7.00 8.40 8.75 10.50 ab 100 1 on 1 no 1.00 1.00 1.00 1.00 Lg 4.50 5.14 5.20 6.00 7.20 7.50 9.00 cd 150 1.50 1.50 1.50 1.50 1.50 1.50 Li 3.75 4.29 4.33 5.00 6.00 6.25 7.50 ef 2 00 ?00 snn 2.on 2.nn 2.00 2.00 ab 1.00 1.0U 1.00 1.00 1.00 1.00 1.00 be 1 25 1 32 132 1.41 1.56 1.60 1.80 cd 1.50 1.50 1.50 1.50 1.50 1.50 1,50 de 1 68 1 73 1.73 1.80 1.92 '1.95 2.12 ef 2.00 2.00 2.00 2.00 2.00 2.00 2.00 fg ?,U 218 218 2.24 2.33 2.36 2.50 gh 2.50 2.50 2.50 2.50 2.50 2.50 2.50 be 1.25 1.32 1.32 1.41 1.56 1.6( 1.8U de 1.68 1.73 1.73 1.8C 1.92 1.95 2.12 fg 2.14 2.18 2.18 2.24 2.33 2.36 2.50 hi 2.61 2.64 2.65 2.69 2.77 2.80 2.92 351 CARNEGIE STEEl, COMPANY CORRUGATED SHEETS Corrugated sheets are used for roofs and sides of buildings. They are usually laid directly upon the roof purlins and held in place by means of clips of steel hoops which encircle the purlin and are placed about 12 inches apart. Special care must be taken that the projecting edges of the sheets at the eaves and gable ends of the roof are well secured, otherwise the wind will loosen the sheets. Corrugated slieets are made in the sizes given on opposite, page, the size most generally used has nominally 2}^-inch corrugations, actual width 2% inches, abput J^inch in depth. The gages frequently used for roofing are Nos. 20 and 22, U. S. Standard Gage. By one corrugation is meant the double curve between corres- ponding points^ and by depth of corrugation the greatest deviation of the curved surfaces from the straight line. One and one-half corrugations are allowed for lap in the width of the sheet and 6 inches in the length for the usual quarter pitch roof; one corrugation in width and 4 inches in the length of the sheet is usually allowed for sidings. Corrugated sheets of 2, 2J^ and 3 corrugations are furnished in standard lengths of 5, 6, 7, 8, 9 and 10 feet and with a standard covering width of 24 inches, when laid with a lap of either one or one and one-half corrugations. By experiment it has been determined that corrugated sheet steel, y% inch deep and 0.035 inch thick, spanning 6 feet, began to give a permanent deflection with a load of 30 pounds per sq. foot, and that it collapsed with a load of 60 pounds per sq. foot. The distance between centers of purlins should, therefore, not exceed 6, feet and should preferably be less than this. Approximately the uniformly distributed safe load of corrugated sheets may be obtained from the formulas given below, using the following notations:— W=Total allowable uniform load, in pounds. b==Curvilinear width of sheet, in inches (b=1.075x covering width). 1— Unsupported length of sheet, in inches. t=Thickness of sheet, in inches. d=Depth of corrugations, in inches. f=Allowable fiber stress, in pounds per sq. inch. Thpn . w _ 8fS __ 8f _ 4bdt _ 32fbdt ±ne W I T X ~T5 16T 25,600 bdt for f= 12000, W — 352 ROOFS AND ROOFINQ CORRUGATED SHEETS AMERICAN SHEET AND TIN PLATE COMPANY Description op Sheets Areas op Sheets Corrugations Width, Inches -8 s-s CO Sq. Ft. in 1 Sheet Sheets in 100 Sq. Ft. Width, Inches Depth, Inches Num- ber per Sheet Full Sheet Cover- ing Corrugations Corrugations Nomi- nal Actual 5" 3",2J3", 2" 1M", %" 5" 3",2V 2 ", 2" 1M". %" 5 3 *2H 2^ 2 lii % 5 3 2% 2% 2 1M H % A A k 6 9 10 13 20 40 28 26 27 K 26 26 25 25 25 24 24 24 24 23y 4 24% 60 72 84 96 108 120 144 11.67 14.00 16.33 18.67 21.00 23.33 28.00 10.83 13.00 15.17 17.33 19.50 21.67 26.00 10.42 12.50 14.58 16.67 18.75 20.83 25.00 8.57 7.14 6.12 5.36 4.76 4.29 3.57 9.23 7.69 6.59 5.77 5.13 4.62 3.85 9.60 8.00 6.86 6.00 5.33 4.80 4.00 Standard lengths 5, 6, 7, 8, 9 and 10 ft. Maximum length, 12 ft. except for j Sizes denoted *2$4 are for the 27^" width. ' corrugation. Painted Sheets— Weights in Pounds per 100 Square Feet. Cor- rug., In. Thickness, United States Standard Gage 10 12 14 16 18 20 21 22 23 24 25 26 27 28 29 5 470 336 269 215 162 148 135 122 108 95 81 75 68 3 472 338 270 216 163 149 136 122 109 95 82 75 68 *1V, 615 478 342 274 219 165 151 137 124 110 97 83 76 69 2V, 607 472 338 270 216 163 149 136 122 109 95 82 75 m 2 270 216 163 149 136 122 109 95 82 75 68 1 H 169 155 141 127 113 99 85 78 71 % 113 99 85 78 71 Galvanized Sheets — Weights in Pounds per 100 Square Feet. Cor- Thickness, United States Standard Gage In. 10 12 14 16 18 20 21 22 23 24 25 26 27 28 29 5 3 *2K 2J^ 2 lJi % 631 623 486 488 494 488 352 353 358 353 285 286 290 286 286 231 232 235 232 232 178 178 181 178 178 186 164 165 167 165 165 172 151 151 153 151 151 158 137 138 140 138 138 144 124 125 126 125 125 130 130 111 111 113 111 111 116 116 97 98 99 98 98 102 102 90 91. 92 91 91 95 95 84 84 85 84 84 88 88 77 77 78 77 77 81 81 The weights per 100 square feet given in preceding tables do not include allowances lor end or side laps. The following table gives the approximate number of square feet of sheeting necessary to cover an area of 100 square feet and is based on sheets of standard width, 96 inches long. If longer or shorter sheets are used, the number of square feet required will vary accordingly r Sq. Feet op 2^£ In. Standard Sheets to Cover Area op 100 Sq. Ft. Side Lap End Lap, Inches 1 2 3 4 5 6' 1 Corrugation 2 109 116 123 111 117 124 112 118 126 113 120 127 114 121 129 116 122 130 353 CARNEQIE STEEL COMPANY STEEL SHEET PILING The introduction of steel sheet piling in substitution for wood has made possible the extension and indeed the practical rejuvena- tion of the cofferdam method of making excavations. Its use has led to great ultimate economies, greater safety in working and to the extension in size and depth of open excavations to limits which otherwise were regarded as impossible of attainment. The cellular cofferdam, first used in the Black Rock Lock, Buffalo, is a very successful method for the elimination of the expensive, slow, and not always reliable, pneumatic caisson on work of large magnitude. Steel sheet piling by its positive interlock enables the sub-surface diaphragms of diaphragm dams to be made with a certainty not possible with wooden sheet piling, and with an economy not possible with concrete by reason of the elimination of the excavation necessary in the case of the ordinary puddle core, concrete core or masonry core wall. A diaphragm made of such imperishable materials fulfills all the requirements of the ordinary core wall with the additional advantage of accommodating itself, by its flexibility, to slight irregularities of settlement in the dam. It is also used in the construction of curtain walls, sea walls and loading slips, founda- tions for cylinder piers, sewers and trenches, etc. In addition to temporary cofferdams, steel sheet piling has found large use in the construction of permanent retaining walls for buildings. Driven before excavation in soils containing quick- sand or water-bearing strata, its use prevents the undermining of adjacent building foundations by movement of the strata. It also prevents in many cases the delay; expense and danger of under- pinning adjacent buildings. It may be employed in this way alone or reinforced by steel buckstays as shown in the illustration, which represents the method followed by D. H. Burnham & Company in constructing retaining walls for the Marshall Field and Stevens Building, Chicago, where sheeting with its attached buckstays was driven its full depth and the basement and sub-basement floors placed as the excavation went forward. The rigidity of the buck- stays with the bracing supported by the floors eliminated the necessity and expense of shoring. After excavation concrete was filled in between the buckstays and the total expense did not exceed 60 per cent, of its cost by the ordinary method. Types. The Carnegie Steel. Company manufactures United States Steel Sheet Piling, Friestedt Interlocking Channel Bar Piling, and Symmetrical Interlock Channel Bar Piling. 354 STEEL SHEET PILING United States Steel Sheet Piling is a simple, plain, rolled section ready for use as it comes from the mill without further fabrication. Each piece is complete in itself and all pieces of the same width are interchangeable. Its profile incorporates the advantages of the ball and socket joint, with sufficient clearance in the interlock for ease in driving and sufficient space for the use of a packing substance between its adjacent edges to insure watertightness. United States Steel Sheet Piling is more easily driven and pulled than any other section hitherto placed on the market. The reason for this is believed to be the absence of a leading groove combined with the line contact obtained in the joints. Friestedt Interlocking Channel Bar Piling is a fabricated section made of channels and zee bars; unsymmetrical as regards adjacent pieces, one channel having two zee bars full length and the next adjacent channel being plain, that is, without zee bars. Symmetrical Interlock Channel Bar Piling is a fabricated section made of channels and zee bars in which each piece has a short zee bar on one edge and a long zee bar on the other. The long zee bar forms the interlock with the next adjacent section, while the short zee reinforces the top of the pile and serves to distribute the blow from the pile driving hammer over the width of the section. All the sections have positive interlocks continuous throughout the entire length in both lateral and horizontal directions, affording maximum strength against sidewise deflection, distortion or sepa- ration of the pieces due to pressures, deformation in driving, etc. ~~- 355 CARNEQIE STEEL COMPANY strength of Section. When driven and under pressure, steel sheet piling must have strength similar to that possessed by any other beam loaded equally or unequally with earth or water pressure, and the resistance of the piling to transverse bending can be calcu- lated by the known laws of flexure from the properties of the section as given in the tables on page 351. In the case of Symmetrical Interlock Channel Bar Piling, the center line of the assemblement is not the center line of the individual members., Calculations are referred, therefore, to a theoretical neutral axis and give the pro- perties of the sections on the assumption that when interlocked they will act as a unit. In the case of United States Steel Sheet Piling, the properties of the individual pieces are the same as the properties of the sections interlocked in place. During driving the sections are forced to act as loaded columns, and the tables, therefore, show the radius of gyration of the sections for computing their compressive resistance under load or the blow of the pile driving hammer. The radius of gyration of the section, however, need not bear any definite proportion to its lengthy and blocks of wood may be bolted to the leads of the pile driver if the piling shows a tendency to spring. As the piling actually enters the earth, it is supported laterally and stiffened by the adjacent soil, and the blows of the hammer need but overcome the friction. In an ordinary cofferdam braced in the usual manner, strength in the interlock to resist the tearing apart of the sections by direct tension in a longitudinal direction is not often required, but if it is, United States Steel Sheet Piling is recommended for use, as its longitudinal strength is greater than that of the fabricated sections. This interlock strength in a longitudinal direction depends on the type of section, the opening of the jaw, the character of the soil, etc., and can only be determined by tests. The average longitudinal strength per lineal inch of medium steel sections is as follows: 9" United States Steel Sheet Piling 5,600 pounds 12 J^" United States Steel Sheet Piling 9,800 " 15" 39 lb. Symmetrical Interlock Channel Bar Piling 1,500 Steel sheet piling is usually made of medium steel manufactured to standard specifications. Where the construction is permanent and possible corrosion is a serious factor, it may be made of steel containing about 0.25% copper, experiments on which, as well as analyses of old structures, indicate that such an addition goes very far towards making the steel practically indestructible. Full information on this specialty and its various uses is given in a separate pamphlet entitled "Steel Sheet Piling," copies of which can be had on request. 356 STEEL SHEET PILING UNITED STATES STEEL SHEET PILING — -b ->■ Elements op Sections, Axis x-x Section Index Description Interlocked or Single Section Regular Corner, Weight, Pounds per Lineal Foot Width b, Inches Single Section Weight, Lbs. per Sq. Ft. I In.* r In. S In.8 S* In.8 h 2 In. Lbs. per Lin. Ft. Area, Sq. In. M 106 M 104 M 103 13 X 13 M 9j| 42.5 38 16 12.51 11.30 4.71 38 35 21 8.56 8.50 1.45 0.83 0.87 0.56 4.35 4.32 1.13 3.93 ,3.91 11.47 13 M 13 H 9H 42.5 38 16 SYMMETRICAL INTERLOCK CHANNEL BAR PILING Composition and Dimensions of Sections s Channels I Zees Dimensions, Inches '- Si iz; Section Depth, In. Lbs. ¥1 Size, In. Lbs. a b c d< t < a ( g ,h 2 l 10"x28 lbs. 10 15 3HX.H 4.8 liV H 3 2 1 IK 5 9 '?. 10"x34 lbs. 10 20 3J^xM 4.8 1 A « 3 2 1 1H b 9 3 12"x34 lbs. 12 20.5 3^x^ 8.6 1% 14i »H 2M IX i-% 6 10 AS 4 12"x39 lbs. 12 25 3^x% 8.6 1% 1H 3H 2J4 i-Vf. i% 6 10 % 5 15"x39 lbs. 15 33 4MxH 9.2 1« 1A 4H 3 1^ i-K V*4 13 J4 6 15"x45 lbs. 15 40 4Mx% 9.2 l« 1ft 4H 3 1H i-% V*i 13J3 Elements of Sections, Axis x-x Description Interlocked Section Single Section Regular Corner, Weight, Pounds per' Lineal 1 Foot -3 1 21 s lis Single Section Weight, Lbs. per Sq. Ft. I In* r In. S In.8 S* In.8 I In.* r In. S In.s z Lbs. per Lin. Ft. Area, Sq. In. 1 2 3 4 5 6 10 10 12 12 15 15 21 26 30 35 44 51 5.87 7.29 8.54 9.86 12.60 14.46 28 34 34 39 39 45 7.09 10.26 14.59 18.66 28.96 36.82 1.10 1.19 1.31 1.38 1.52 1.60 3.64 5.27 6.63 8.48 11.44 14.55 4.85 7.03 7.32 9.36 10.17 12.93 5.52 6.61 11.18 12.63 19.33 21.60 0.97 0.95 1.14 1.13 1.24 1.22 2.24 2.50 3.95 4.23 5.68 6.07 26 31 38 42 51 58 S* is the average section modulus per horizontal foot of wall interlocked in place. 357 CARNEQIE STEEL COMPANY STRUCTURAL TIMBER The strength of structural timbers depends upon a number of factors; the kind of wood, the age of the tree, the time of the year in which it was felled, the method of sawing, the character of the seasoning and therewith its moisture content, the proportion of heartwood to sap wood and the proportion of knots to clear wood. In consequence of these variable factors, the working unit stresses approved by the building laws of different cities vary widely, as well also as the unit stresses given in the proceedings of the various engineering associations. They go back in some cases to the studies made in 1895 by the Association of Railway Superintendents of Bridges and Buildings. The most recent studies in this direction have been made by the American Railway Engineering Association, and the tables for wooden beams and columns which follow are based on the working, unit stresses for structural timbers adopted by that Association. The table of working unit stresses has been reprinted, by permission, from the Manual, edition of 1911. These unit stresses vary with the class of construction. They are intended, as noted, for railway bridges and trestles. For highway bridges and trestles and for buildings and similar structures, the unit stresses may be increased in accordance with the more quiescent character of the loading and freedom from deleterious weather conditions. The values are based on carefully selected timbeT purchased in accordance with the standard specifications of the Association and subject to careful inspection. The commercial timbers which are in common use in building construction will not meet these specifications, and, therefore, the unit stresses approved by good building practice as evidenced in the building laws of various cities are rightly lower. The tables as they stand are in accord with the average practice as represented by these building laws, and may, therefore, be used as they stand for ordinary building work executed with the commercial grades of timber, such as can be purchased in the open market. The allowable loads may be adjusted to other species of wood than those stated in the headings of the tables and to other unit stresses by the direct proportion which such unit stresses bear to those for which the tables are computed. In the case of columns the values may be adjusted to any working unit stress by direct proportion based on the relations of 1/d. 358 TIMBER SAFE LOADS WORKING UNIT STRESSES FOR STRUCTURAL TIMBER ADOPTED BT THE AMERICAN RAILWAY ENGINEERING ASSOCIATION The working unit stresses given in the table are intended (or railroad bridges and trestles. For highway bridges and trestles, the unit stresses may be increased 25 per cent. For buildings and similar structures, in which the timber is protected from the weather and practically free from impact, the unit stresses may be increased 50 per cent. To compute the deflection of a beam under long continued loading instead of that when the load is first applied, only 50 per cent, of the corresponding modulus of elasticity given in the table is to be employed. 1 •rt n •n ■0 T! T) Ti TI •n TI n ■a S 1 " o o o o O o o o o o o a 3 CO CO CO CO CO CO CO CO p x gx J9ao > * a en. _ g iflSuai 1 i-H J, 1 1 1 1 1 1 1 1 1 1 1 s fl-B o a o o O o o o © o o o o o o o o o o o N CO rH o 00 o CN a rH a CO ■a 3 n £ i-i I-l rH ^ l-H r^ ^ tH p x gx Japan o lO lO O lO o o o lO lO »o 10 ■2 a 1 o CN ■O CN CO o OS ffl 00 1> 00 CO 1> a CD 00 CO Ol 1 s BS3jq.g o o o o o o o o o o 1 o o o o o o o o 1 a » .3 3 a a ■33-1 3np[io^ CN CO rH rH o rH 00 o J-i CN a 0) CO r-l |s5 3iBraii|f^ o o o o o o O O o o o o o o o o o o o o g s CO 00 ■* o (N CO CN »o CO 01 on >o CO CO *s BS3J)g o o o o o o o o o o C5 o ^ I * II If * -a £■3 CO o o o rH TJ ayBtOTHfl © o o O O' o o * o o y -a 3 .1 8 83EJOAy o CO CO CO 00 rH lO CN CO CN CN b- CN ■8 I s g CL. BMJJg o o o O © o o o o o o .9 S FZ ^■S'g b- r~ o lO CO N CO 00 CN r-f (N | £2° o o o o o o o o o o o ■° "3 a3ej3Ay o> CO CN o CD CD CO CD o CO o 113 00 S rS o o o O o o o o CD o o £ t •3 o a o o O o o o o o o o "g°l a3BJ3Ay o o o o o o o o o o o o o o o o o o o o o o o o Ifil r-\ on CO r-i © IN 00 o lO o lO M s s -0 CD ■* r-< CO rH 300 533 502 474 449 427 833 784 741 702 667 1200 1129 1067 1011 960 1633 1537 1452 1375 1307 2133 2008 1896 1796 1707 2640 2933 8227 2541 2400 2274 2160 2807 2667 3227 21 635 914 1244 1625 2057 2540 3073 3320 22 23 24 25 606 580 556 873 835 800 768 1188 1136 1089 1045 1552 1484 1422 1365 1964 1878 1800 1728 2424 2319 2222 2133 2933 2806 2689 2581 3491 3339 3200 3072 26 27 28 29 30 V 738 711 686 1005 968 933 901 871 1313 1264 1219 1177 1138 1662 1600 1543 1490 1440 2051 1975 1905 1839 1778 2482 2390 2305 2225 2151 2954 2844 2743 2648 2560 31 32 33 34 35 . 843 817 1101 1067 1034 1004 975 1394 1350 1309 1271 1234 1720 1667 1616 1569 1524 2082 2017 1956 1S9S 1844 2477 2400 2327 2259 2194 36 37 38 39 40 948 1200 1168 1137 1108 1080 1481 1441 1404 1368 1333 1793 1744 1698 1655 1613 2133 2076 2021 1969 1920 Horizontal lines indicate the limit for resistance to shear in the horizontal direction of the grain. 362 TIMBER SAFE hOt IDS RECTANGULAR WOODEN BEAMS— ONE INCH THICK LONGLEAF PINE Allowable Unifobm Load in Pounds Maximum Bending Stress, 1300 Pounds per Square Inch Span Depth of Beam in Inches Feet 2 4 G 8 10 12 u 16 18 20 22 24 2 3 4 5 320 640 289 193 144 116 578 462 6 7 8 9 10 96 S3 72 385 330 289 257 231 960 1280 1600 ( 867" 743 650 578 520 1156 1027 924 1444 11 12 13 14 15 210 193 473 433 400 371 347 840 770 711 660 616 1313 1204 1111 1032 963 1920 2240 2660 1891 1733 1600 I486 1387 2178 2022 1887 2465 16 17 18 19 20 325 578 544 514 487 462 903 850 802 760 722 1300 1224 1156 1095 1040 1769 1665 1573 1490 1416 2311 2175 2054 1946 1849 2880 3200 3520 2753 2600 2463 2340 3041 2889 3496 21 22 23 24 25 688 657 628 602 991 945 904 867 832 1348 1287 1231 1180 1132 1761 1681 1608 1541 1479 2229 2127 2035 1950 1872 2751 2626 2512 2407 2311 3329 3178 3040 2913 2796 8840 3782 3617 3467 3328 26 27 28 29 30 800 770 743 1089 1049 1011 976 944 1422 1370 1321 1275 1233 1800 1733 1671 1614 1560 2222 2140 2064 1992 1926 2689 2589 2497 2411 2330 3200 3082 2971 2869 2773 31 32 33 34 35 913 885 1193 1156 1121 1088 1057 1510 1463 1418 1377 1337 1864 1806 1751 1699 1651 2255 2185 2119 2056 1998 2684 2600 2521 2447 2377 36 37 38 39 40 ' 1027 1300 1265 1232 1200 1170 1605 1562 1521 1482 1444 1942 1890 1840 1793 1748 2313 2249 2189 2133 2080 Horizontal lines indicate the limit for resistance to shear in the horizontal direction of the grain. 363 CARNEGIE STEEL COMPANY RECTANGULAR WOODEN BEAMS— ONE INCH THICK shortleaf pine, western hemlock and white oak Allowable Uniform Load in Pounds Maximum Bending Stress, 1100 Pounds per Square Inch Span in Feet Depth of Beam in Inches 2 4 6 8 10 12 14 16 18 20 22 24 2 3 4 5 6 7 •8 9 10 11 12 13 14 15 16 17 18 19 20 21 *22 23 24 25 26 27 28 29 30 31 32 33 .34 35 . 36 37 38 39 40 347 693 1040 1387 , 1733 2080 2427 \ 2773 S120 3467 3813 4160 245 163 122 98 82 70' 61 1 652 489 391 326 279 245 217 196 178 163 880 733 629 550 489 440 400 367 338 314 293 275 1304 1117 978 869 782 711 652 602 559 522 ,489 460 435 412 391 1528 1358 1956 1222 1111 1019 940 873 816 764 719 679 643 611 583 556 531 509 1760 1600 1467 1354 1257 1173 1100 1035 978 926 880 838 800 765 733 704 677 652 629 2396 2178 1996 1843 1711 1597 1497 1409 1331 1261 1198 1141 1089 1042 998 958 921 887 856 826 799 773 749 2607 2407 2235 3046 2829 2086 1956 1841 1738 1647 1564 1490 1422 1361 1304 1252 1203 1159 1118 1079 1043 1009 978 948 920 894 869 2640 2475 3259 3055 3697 3480 3287 2329 2200 2084 1980 1886 1800 1722 1650 1584 1523 1467 1414 1366 1320 1278 1238 1200 1165 1131 1100 1070 1042 1015 990 2876 2716 4141 3911 3705 3520' 3352 3200 3061 2933 2816 2708 2608 2514 2428 2348 2271 2200 2133 2071 2011 1956 1903 1853 1805 1760 2573 2444 2328 2222 2126 2037 1956 1880 1811 1746 1686 1630 1577 1528 1482 1438 1397 1358 1321 1287 1254 1222 3113 2958 2817 2689 2572 2465 2366 2275 2191 2113 2040 1973 1908 1849 1793 1740 1690 1643 1599 1557 1517 1479 horizon per, middle, an ;al direction of d lower hegrai horizontal lines indicate the limits for resistance to shear in the i of Shortleaf Pine, White Oak, and Hemlock respectively. 364 TIMBER SAFE LOADS RECTANGULAR WOODEN BEAMS— ONE INCH THICK white pine Allowable Uniform Load in Pounds Maximum Bending Stress, 900 Pounds per Square Inch Span Depth of Beam in Inches Feet 2 4 6 8 10 12 14 16 18 20 22 24 2 187 S78 1 3 4 133 100 80 5 320 6 67 57 50 267 229 200 178 160 560 747 7 8 514 450 400 360 9 10 711 640 145 133 327 300 277 257 240 582 533 492 457 427 933 1120 1307 11 12 909' 833 769 714 667 13 14 1108 1029 960 • 15 1307 16 17 225 400 377 356 337 320 625 588 556 526 500 900 847 800 758 720 1225 1153 1089 1032 980 1493 1630 18 19 1422 1347 1280 20 1620 21 476 455 435 417 686 655 626 600 576 933 891 852 817 784 1219 1164 1113 1067 1024 1543 1473 1409 1350 1296 1867 2053 22 23 1818 1739 1667 1600 24 25 2017 1936 i 554 533 514 754 726 700 676 653 985 948 914 883 853 1246 1200 1157 1117 1080 1538 1481 1429 1379 1333 1862 1793 1729 1669 1613 2240 26 27 2,8 29 30 2215 2133 2057 1986 1920 31 32 33 34 35 632 613 826 800 776 753 731 1045 1013 982 953 926 1290 1250 1212 1176 1143 1561 1513 1467 1424 1383 1858 1800 1746 1694 1646 36 37 38 39 40 711 900 876 853 831 810 1111 1081 1053 1026 1000 1344 1308 1274 1241 1210 1600 1557 1516 1477 1440 Horizontal lines indicate the limit for resistance to shear in the horizontal direction of the grain. 365 CARNEGIE STEEL COMPANY RECTANGULAR WOODEN BEAMS— ONE INCH THICK SPRUCE Allowable Unifohm Load in Pounds Maximum Bending Stress, 1000 Pounds per Square Inch Span Depth of Beam in Inches Feet 2 4 6 8 10 12 14 16 18 20 22 24 1 2 187 873 •3 4 148 111 89 5 356 ■6 7 74 63 56 296 254 222 198 178 560 747 , 8 ■a 500 444 400 10 711 n 162 148 364 333 308 286 267 646 593 547 508 474 933 1120 12 13 14 926 855 794 741 15 1067 16 250 444 418 395 374 356 694 654 617 585 556 1000 941 889 842 800 1807 1493 y i 17 18 19 1281 1210. 1146 1089 20 1422 21 529 505 483 463 762 727 696 667 640 1037 990 947 907 871 1354 1293 1237 1185 1138 1680 1867 22 23 1636 1565 1500 1440 24 25 1852 1778 26 615 593 571 838 807 778 751 726 1094 1053 1016 981 948 1385 1333 1286 1241 1200 1709 1646 1587 1533 1481 2053 27 28 1992 1921 1854 1793 2240 29 30 2207 2133 31 32 33 34 35 703 681 918 889 862 837 813 1161 1125 1091 1059 1029 1434 1389 1347 1307 1270 1735 1681 1630 1582 1537 2065 2000 1939 1882 1829 36 37 38 39 40 790 1000 973 947 923 900 1235 1201 1169 1140 1111 1494 1453 1415 1379 1344 1778 1730 1684 1641 1600 Horizontal lines indicate the limit for resistance to shear in the horizontal direction of the grain. 366 TIMBER SAFE LOADS WOODEN COLUMNS The safe load tables of wooden columns which follow, based upon the working unit stresses adopted by the American Railway Engineering Association, give the allowable direct compressive loads for square and round columns. The safe loads of rectangular columns may be found from the safe loads of square columns by direct proportion of areas, using the safe load unit stress of the square column whose side is equal to the least side of the rectangular section. / The following table gives the safe load in pounds per square inch of sectional area for ratios of J^ effective length of column, in inches d least side or diameter, in inches * ranging between limits of 15 and 30. Unit Working Stresses in Pounds per Square Inch: Longleaf Douglas Fir, Pine, White Pine, Red Cedar, I d Pine, White Oak Western Hemlock Spruce, Bald Cypress Tamarack Redwood Pine 1300 (1— l/d60) 1200 (1— 1/dDOJ 1100(1— l/d60) 1000(1— l/d60) 900(1— l/d60; 800(1— l/d60) IS 975 900 825 750 675 600 16 953 880 807 733 660 587 17 931 860 788 717 645 573 18 910 840 770 700 630 560 IS 888 820 752 683 615 547 20 867 800 733 667 600 533 21 845 780 715 650 585 520 m 823 760 697 633 570 507 23 802 740 678 617 555 493 24 780 720 660 600 540 480 25 758 700 642 583 525 467 ?.fi 737 680 623 567 510 553 ?,7 715 660 605 550 495 440 28 693 640 587 533 480 427 29 672 620 568 517 465 413 30 650 600 550 500 450 400 Example 1. — Required the allowable load for a column of white oak 10" x 8", 14 feet long. The safe load given in the table for a square white oak column 8" x 8", 14 feet long, is 54,100 pounds. The load for the 10" x 8" section is 10 x 54,100 ■+■ 8 = 67,600 pounds. Example 2. — Required the allowable load for a spruce pile, 9" diameter and 18 feet long. The unit stress given in the above table for the corresponding ratio of 1/d, 18 x 12 -s- 9 = 24 is 660 pounds, and the sectional area for a 9" round is 63.62 square inches. The safe load, therefore, is 63.62 x 660=42,000 pounds. 367 CARNEGIE STEEL COMPANY SQUARE WOODEN COLUMNS Safe Loads in Thousands of Pounds American Railway Engineering Association Formulas Length, Feet Side of Square, Inches 4 6 8 10 12 14 16 18 20 Sag fe 0; f -9IH 1 O iH S 6 7 8 9 10 11 12 14 16 18 20 16.0 86.1 62.4 97.6 140.4 191.1 249.6 315.9 \ 390.0 15.6 14.6 13.5 12.5 11.4 10.4 34.3 32.8 31.2 29.6 28.1 25.0 62.4 60.3 58.2 54.1 49.9 45.8 41.6 93.6 88.4 83.2 78.0 137.3 131.0 124.8 189.3 182.0 249.6 "OlrH « is 5 6 7 8 9 10 11 12 14 16 18 20 14.1 32.4 67.6 90.0 129.6 176.4 230.4 291.6 360.0 14.4 13.4 12.5 11.5 10.6 9.6 31.7 30.2 28.8 27.4 25.9 23.0 57.6 55.7 53.8 49.9 46.1 42.2 38.4 86.4 81.6 76.8 72.0 126.7 121.0 115.2 174.7 168.0 230.4 w cu o "mo •H CO S 6 7 8 9 10 11 12 14 16 . 18 20 10.4 23.3 41.5 64.8 93.3 127.0 165.9 209.9 259.2 10.4 9.7 9.0 8.3 7.6 6.9 22.8 21.8 20.7 19.7 18.7 16.6 41.5 40.1 38.7 35.9 33.2 30.4 27.6 62.2 58.7 55.3 51.8 91.2 87.1 82.9 •125.8 121.0 165.9 5 6 7 8 9 10 11 12 14 16 18 20 9.4 21.2 87.7 68.9 84.B 115.5 160.8 190.9 235.6 9.4 8.8 8.2 7.5 6.9 6.3 20.7 19.8 18.9 17.9 17.0 15.1 37.7 36.4 35.2 32.7 30.2 27.6 25.1 56.5 53.4 50.3 47.1 82.9 79.2 75.4 114.4 110.0 150.8 Loa ds in sms 11 figures above horizontal lines are the maximum allowable safe loads. 369 CARNEQ1E STEEL COMPANY SPECIFIC GRAVITIES AND WEIGHTS Substance Metals, Alloys, Ores Aluminum, caat-hammered. " bronze "... Antimony ..:.... i .. . Arsenic Bismuth Brass, cast-rolled Bronze, 7.9 to 14% Sn.... Chromium Cobalt Copper, cast-rolled " ore, pyrites Gold, cast-hammered Iron, cast, pig . . . . ( " wrought 1-eisen . . ferro-silicon... ore, hematite. limonite. in bank, loose. . . Lead " ore, galena . Magnesium ore, pyrolusite.. Mercury Molybdenum Nickel ' " monel metal Platinum, cast-hammered. . Silver, cast-hammered Tin, cast-hammered " babbit metal " ore, cassiterite Tungsten Vanadium Zinc, cast-rolled ; " ore, blende Various Solids Carbon,amorphous,graphitic Cork Ebony. Fats Glass, common, plate. . . ' " crystal " flint : Phosphorus, white Porcelain, china ReBins, Rosin, Amber. . Rubber, caoutchouc. . . Silicon Sulphur, amorphous.. . . Wax Specific Gravity 2.55-2.75 7.7 6.62^6.72 &73 9.70-9.78 8.4-8.7 7.4-8.9 6.80-6.92 8.72-8.95 8.8-9.0 4.1-4.3 19.25-19.35 7.2 7.6-7.9 7.8-7.9 7.5 6.7-7.3 5.2 3.6^.0 4.9-5.2 2.5-3.0 11.28-11.35 7.3-7.6 1.74 7.20-7.42 3.7-4.6 - 13.59 9.01 8.57-8.90 8.8-9.0 21.1-21.5 10.4-10.6 7.2-7.5 7.1 6.4-7.0 18.7-19.1 5.5-5.7 6.9-7.2 3.9-4.2 1.88-2.25 0.24 1 22 0.92-0.94 2.40-2.72 2.90-3.00 3.15-3.90 1.83 2.30-2.50 1.07 0.93 2.49 2.05 95-0.98 Weight, Pounds per Cu. Ft. 165 481 416 358 608 534 509 428 552 556 262 1205. 450 485 490 ' 468 437 325 160-180 130-160 237 315 172 706 465 109 456 259 848 562 545 556 1330 656 459 443 418 1180 350 440 253 129 15 76 58 160 184 220 114 150 67 58 155 128 60 Substance Specific Gravity Timber, U. S. Seasoned Ash, white-red Cedar, white-red Chestntit Cypress Fir, Douglas spruce Elm, white Hemlock Hickory Locust Maple, hard " white Oak, chestnut..- " live " red, black " white... Pine, Oregon " red " white " yellow, long-leaf. . " " short-leaf. Poplar Redwood, California. . . Spruce, white, black . . . Walnut, black " white Moisture Contents: Seasoned timber 15 to 20% Green timber up to 50% . . Various Liquids Alcohol, 100% Acids, muriatic 40% . . . " nitric 91%... " sulphuric 87%... Lye, soda.. 1 66%... Oils, vegetable " mineral, lubricants.. Petroleum Gasoline Water, 4°C, max. density. " 100°C " ice. " snow, fresh fallen . . " sea water Gases, Air = Air, 0°C, 760 mm. Ammonia. . ._ Carbon dioxide Carbon monoxide. Gas, illuminating. " natural Hydrogen Nitrogen Oxygen 0.62-0.65 0.32-0.38 0.66 0.48 0.51 0.40 0.72 0.42-0.52 0.74^0,84 0.73 0.68 0.53 0.86 0.95 0.65 0.74 0.51 0.48 0.41 0.70 0.61 0.48 0.42 0.40-0.46 0.61 0.41 0.79 1.20 1.50 1.80 1.70 .91-0.94 .90-0.93 0.88 -.66-0.69 1.0 0.9584 1.88-0.92 .125 .02-1.03 1 Weight, Pounds per Cu. Ft. 1.0 0.5920 1.5291 0.9673 0.35-0.45 0.47-0.48 0.0693 0.9714 1.1056 The specific gravities of solids and liquids refer to water at 4°C, those of gases to air at 0°C. and 760 mm pressure. The weights per cubic foot are derived from average specific gravities except where stated that weights are for bulk, heaped or loose material, etc. 370 PHYSICAL PROPERTIES OF SUBSTANCES SPECIFIC GRAVITIES AND WEIGHTS Substance Specific Gravity Weight, Pounds per Cu.it. Substance Specific Gravity Weight, Pounds per Cu.Ft. Minerals Asbestos Barytes Basalt Bauxite Borax Chalk Clay, marl Dolomite Feldspar, orthoclase Gneiss, serpentine Granite, syenite Greenstone, trap Gypsum, alabaster Hornblende Limestone, marble Magnesite Phosphate rock, apatite . . Porphyry Pumice, natural Quartz, flint Sandstone, bluestone Shale, slate Soapstone, talc Stone, Quarried, Piled Basalt, granite, gneiss Limestone, marble, quartz. Sandstone Shale Greenstone, hornblende . . . Bituminous Substances Asphalt am . . ; Coal, anthracite " bituminous " lignite... v " peat, turf, dry " charcoal, pine " " oak " coke Graphite...'. Paraffine Petroleum, crude " refined " benzine " gasolene Pitch Tar, bituminous Coal and Coke, Piled Coal, anthracite " bituminous, lignite . " peat, turf " charcoal " coke 2.1-2.; 4.50 2.7-3.: 2.55 1.7-1.; 1.8-2.1 1.8-2.' 2.9 ■ 2.5-2.' 2.4-2. 2.5-3. 2.8-3.: 2.3-2.; 3.0 2.5-2.: 3.0 3.2 2.6-2: 0.37-0. 2.5-2. 2.2-2. 2.7-2. 2.6-2. 1.1-1.5 1.4-l.K 1.2-1.5 1.1-1.4 0.65-0.85 0.28-0.44 .0.47-0.57 1.0-1.4 1.9-2.3 0.87-0.91 0.88 0.79-0.82 0.73-0.75 0.66-0.69 1.07-1.15 1.20 153 281 184 159 109 137 137 181 159 159 175 187 1.59 187 165 187 200 172 40 165 147 175 169 95 82 92 107 81 97 84 78 47 23 33 75 131 56 55 50 46 42 69 75 47-58 40-54 20-26 10-14 23-32 Ashlar Masonry Granite, syenite, gneiss. . Limestone, marble Sandstone, bluestone Mortar Rubble Masonry Granite, syenite, gneiss. . Limestone, marble Sandstone, bluestone — Dry Rubble Masonry Granite, syenite, gneiss — Limestone, marble Sandstone, bluestone Brick Masonry Pressed brick Common brick Soft brick Concrete Masonry Cement, stone, sand " slag, etc *' cinder, etc Various Building Mat'l Ashes, cinders Cement, Portland, loose. . " " set Lime, gypsum, loose Mortar, set Slags, bank slag. " screenings . . . ' machine slag ' slag sand 2.3-3.0 2.3-2.8 2.1-2.4 2.2-2.8 2.2-2.6 2.0-2.2 1.9-2.3 1.9-2.1 1.8-1.9 2.2-2.3 1.8-2.0 1.5-1.7 2.2-2.4 1.9-2.3 1.5-1.7 2.7-3.2 1.4-1.9 Earth, etc., Excavated Clay, dry " damp, plastic Clay and gravel, dry Earth, dry, loose " " packed '* moist, loose " mud, flowing " " packed . . : — Riprap, limestone " sandstone " shale Sand, gravel, dry, loose — " " " packed. " " " wet Excavations in Water Sand or gravel " " " and clay... Clay River mud Soil Stone riprap 165 160 140 155 150 130 130 125 110 140 120 100 144 130 100 40-45 90 183 65-75 103 67-72 98-117 96 49-55 63 110 100 76 95 78 96 108 115 80-85 90 105 90-105 100-120 118-120 60 65 80 90 70 65 The specific gravities of solids and liquids refer to water at 4°C, those of and 760 mm pressure. The weights per cubic foot are derived from avi except where stated that weights are for bulk, heaped or loose material, etc. jes to air at (PC. specific gravities, 371 CARNEGIE STEEL COMPANY CONTENTS OF STORAGE WAREHOUSES Material Pounds per Cubic Foot of Space, of Pile, Feet Pounds per Square Foot of Floor ' Recommended Live Loads, Pounds per Square Foot Produce, Grain, Fruit, Etc. Grain, in bulk Barley and Corn Oate Rye and Wheat Fruit and Vegetables, in bulk Apples, Pears, etc < Potatoes, Turnips, etc Miscellaneous Produce, packed Beans, in bags Corn, in bags Cornmeal, in barrels Oats, in bags.,. Rice, in bags Wheat, in bags Wheat Flour, in barrels Hay, in bales, not compressed — Hay, in bales, compressed Straw, in bales, compressed Groceries Miscellaneous Articles, packed Butter, Lard, etc., in barrels CaWed Goods, Preserves, etc.in cases Coffee, green, in bags Coffee, roasted, in bags'. Dates and Figs, in cases, average. . . Meat, Beef, Pork, etc., in barrels. . . Molasses, in barrels Salt, finely ground, in sacks Soap Powder, in cases Starch, in barrels Sugar, in barrels Tea, in chests Wines, Liquors, etc., in barrels Dry Goods, Cotton, Wool, Etc. Cotton, in bales, compressed, average. " unbleached goods, in bales " tickings and duck, in bales . . . " printed goodB, in bales " printed goods, in cases " quilts and flannels, in cases... " yarn, in cases Hemp, in bales, compressed " Manila, in bales, compressed. . " Sisal, in bales, compressed " Tow, in bales, compressed ..... " Burlaps, in bales, compressed. . Jute, in bales, compressed Linen, bleached goods, in cases " damask goods, in cases Wool, in bales, not compressed " in bales, compressed " dress goods, flannels, incases... " worsted goods, in cases Hags, in bales, compressed Excelsior, in bales, compressed 37 26 48 44 40 31 37 26 58 39 40 14 24 19 32 58 30 39 33 65 37 48 60 38 25 43 25 48 25 24 35 19 31 16 25 22 26 24 29 43 41 35 50 13 48 18 27 19 19 6'A 304 352 320 248 240 234 290 312 280 126 216 171 192 348 240 312 264 325 185 240 300 288 175 215 200 240 225 216 280 171 248 144 200 176 234 216 261 258 246 245 250 117 240 162 243 171 171 } 250 to 300 250 to 300 } 200 to 250 372 PHYSICAL PROPERTIES OF SUBSTANCES CONTENTS OF STORAGE WAREHOUSES Material Pounds per • Cubic Foot of Space, Height of Pile, Feet Pounds per Square Foot of Floor Recommended Live Loads, Pounds per Square Foot Drugs, Oils, Paints, Etc. Chemicals: Acids, Muriatic and Nitric, in carboys 45 60 30 33 31 45 88 62 30 45 53 40 52 34 36 35 33 28 48 38 37 43 70 39 132 86 174 59 73 50 53 278 63 74 75 40 14 60 46 64 31 101 13 23 16 50 35 64 42 1% 1% 1% 7 3% 5 3% m 5 5 5 5 6 „ 6 6 6 6 6 6 6 VA 5 w 6 6 5 5 VA 5 VA 6 8 9 6 6 6 6 4 10 10 10 6 6 6 6 75 100 50 231 103 225 294 170 150 225 -265 200 312 204 216 210 198 168 288 228 222 258 315 195 495 409 L 609 354 438 250 265 417 315 333 450 320 126 360 276 384 186 404 130 230 160 300 210 384 252 ■ 200 to 250 \ 300 to 400 \ 300 to 400 , • 300 to 400 Alum, Pearl Alum, in barrels Bleaching Powder, in hogsheads CopperSulphate,BlueVitriol,inbbls. Soda, Caustic Soda, in iron drums . . . Soda, Soda Ash, in hogsheads Soda Crystals, Sal Soda, in barrels . . . Soda Nitrate, Niter, in barrels Zinc Sulphate, White Vitriol, inbarrels Oils, Fats, Resins, etc.: Oils, Animal, Lard, etc., in barrels . . " Vegetable, Linseed, inbarrels.. , " Mineral, Lubricants, in barrels. . " Petroleum, Kerosene, in barrels. " Naphtha, Gasolene, in barrels . Dye Staffs, Paints, etc.: Red Lead, Litharge, dry, in barrels. . Building Materials Lime, Quick Lime, ground, in barrels . . . Plaster of Paris, ground, in barrels Sheet Metal and Wire Wire, insulated copper, in coils " magnet wire, on spools Miscellaneous Chinaware, Glassware, in crates Hardware, door and sash checks, in cases Hides, raw, not compressed, in bales — " newspaper, manila, strawboards. . 373 CARNEGIE STEEL COMPANY STRENGTH OF MATERIALS Stkesses per Square Inch Metals and Alloys Stresses in Thousands of Founds HP .8 £ IB si II MP s ■ §.§ ~R 111 Aluminum, cast " bars, sheets wire, hard " annealed 2—7% Ni, Cu, Fe, etc. Aluminum Bronze, 5% to 7U% Al . 10% Al. Copper, cast , plates, rods, bolts. . . ^ wire, hard " wire, annealed Brass, 17% Zn " 23%" " 30%".....- " 39%" > " 50%" ' cast, eommon " wire, hard " " annealed Bronze 8% Sn " 13%" " 20%" " 24%" " 30%" gun metal, Cu, 1 Sn " Manganese, cast 110% Sn.. " rolled/ 2% Mn. " Phosphorus, cast 19% Sn... wire/1% P.... " Silicon, cast, 3% Si 5%Si " " wire " Tobin,cast 1 38% Zn. " rolled »%%Sn. " coldrolledj %%Pb. Delta Metal, cast 155—60% Cu . . " platesl38— 40% Zn... " bars f 2— 4%Fe... " wire J 1—2% Sri... German Silver, 25% Zn, 20% Ni. . . Iron, see next page Gold, cast " wire " copper, 5 Au, 1 Cu Lead, cast " pipe, wire " rolled sheets Platinum, wire, unannealed " " annealed Silyer,_cast Steel, see next page Tin, cast _" antimony, 10 Sn, 1 Sb Zinc, cast " rolled sheete 15 24-28 30-65 20-35 40-50 75 85-100 25 32-35 55-65 36 32.6 28.1 41.1 31 18-24 80 50 28.5 \29.4 33 22 5.6 25-55 60 100 50 100 55 75 108 100 45 85 100 20 30 50 1.8 2.2-2.5 3.3 53 32 40 3.5-4.6 11 4-6 7-16 6.5 12-14 16-30 14 25 40 60 6 10 10 8.2 7.6 8.6 17.4 17.9 40 120 40 32 42 75 117 30 42 53 78 114 147 125 22 23.2 22.3 26.9 39 33.5 20 43.7 34.5 56.7 32 12.1 52 30 36 1.5-1.8 IS 10,000,000 18,000,000 15,000,000 9,000,000 14,000,000 10,000,000 10,000,000 4,500,000 8,000,000 1,000,000 1,000,000 720,000 4,000,000 13,000,000 26.7 35.8 20.7 20.7 5.0 5.5 3.3 0.04 374 PHYSICAL PROPERTIES OF SUBSTANCES STRENGTH OF MATERIALS Stresses per Square Inch Metal and Alloys Stresses in Thousands of Pounds Ht> ss.s S 1 - 1 ev-3 as nu ■9 3 •ajo . Steel Shapes, Plates, Bars* bridges " buildings locomotives " ships Boiler Plates* " " fire box " " flange plates . Rivets* " boilers " bridges buildings " cars " ships Concrete Bars* " plain, structural grade " intermediate — " hard " deformed.struct'l grade " intermediate " hard " cold twisted 55-65 55-65 50-65 55-65 58-68 55-65 52-62 45-55 46-56 46-56 48-58 55-65 55-70 70-85 80 55-70 70-85 80 l /2 tens. soft medium, hard .... Forgings* Steel Alloys Nickel Steel,* 3.25% Ni. " shapes, plates, bars . . . " rivets " eye bars, unannealed . . " annealed Copper Steel, 0.50% Cu 60 70 80 40 50 33 40 50 55 27 31.5 tensile tensile tensile tensile tensile tensile tensile tensile tensile tensile 94 tens. % tens. S A tens. %. tens % tens. 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000. 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 27.3-23.0 25.4-21.5 30.0-23.0 27.3-23.0 25.9-22.1 27.3-23.0 28.8-24.2 33.3-27.3 32.6-26.8 30.4-25.0 31.3-25.9 27.3-23.0 25.4-20.0 18.6-15.3 15.0 22.7-17.9 16.1-13.2 12.5 5.0 22.0 18.0 15.0 Steel Springs and Wire Springs, untempered Wire, unannealed " annealed " bridge cable Wrought Iron Shapes Bars Wire, unannealed - " annealed Cast Iron Common . . Gray Malleable . 85-100 70-80 95-110 90-105 60-68 65-110 120 80 200 48 50 60 15-18 18-24 27-35 50 45 55 52 37-38 40-70 60 40 95 26 27 tensile tensile 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 17.6-15.0 21,4-18.8 15.8-13.6 20.0 29.0-23.0 tensile tensile % tens 15-20 46 30 25-33 30 28,000,000 28,000,000 15,000,000 25,000,000 12,000,000 40 * See Specifications of the Society of Testing Materials. 375 CARNEGIE STEEL COMPANY STRENGTH OF MATERIALS Stresses in Pounds per Square Inch Building Materials Ultimate Average Stresses Compress. Tension Bending Modulus of Elasticity Compress. Bearing Shearing Safe Working Stresses Stone Granite, gneiss, bluestone. Limestone, marble Sandstone Slate Masonry Granite v Limestone, bluestone Sandstone Rubble " coursed Brick, medium burned " hard burned " pressed, paving brick Terra Cotta Cement, Portland Neat,. 28 days 90 days 1:3 sand, 28 days 90 days Concrete, P. C. Granite, trap rock Furnace Slag Lime and Sandstone, hard Lime and Sandstone, soft Cinders. Granite, trap rock Furnace Slag Lime and Sandstone, hard Lime and Sandstone, soft Cinders I Granite, trap rock. . . . Furnace Slag Lime and Sandstone, hard Lime and Sandstone, soft Cinders [Granite, trap rock Furnace Slag j Lime and Sandstone, hard Lime and Sandstone, soft [Cinders I Granite, trap rock Furnace Slag Lime and Sandstone, hard Lime and Sandstone, soft Cinders Miscellaneous Glass, common. Plaster 12.000 8,000 5,000 10,000 10,000 15,000 6,000 5,000 7,040 7,350 1,290 1,490 3,300 3,000 3,000 2,200 800 2,800 2,500 2,500 1,800 700 2,200 2,000 2,000 1,500 600 1,800 1,600 1,600 1,200 500 1,400 1,300 1,300 1,000 400 30,000 700 1,200 800 150 3,000 1,600 1,500 1,200 5,000 7,000,000 7,000,000 3,000,000 14,000,000 1,200 800 500 1,000 420 350 280 140 170 170 210 1,200 800 500 1,000 600 500 400 250 250 300 300 200 150 150 176 740 740 320 340 Modulus of Elasticity Reinforced Concrete 3,000,000 for ult. compression over 2,900. 2,500,000 for ult. compression up to 2,900. 2,000,000 for ult. compression up to 2,200. 750,000 for ult. compression under 800. Safe Working Stresses in Percent of Ultimate Compression f Plain Concrete Piers, length 4 dia. 22.5% Compression i Reinforced Columns, " 12 " 22.5% I Reinforced Beams, 32.5% Bearing Surface twice the loaded area 35.0% (Horizontal Bars.no web reinforcement 2.0% " " vertical stirrups 4.5% Bent Bars and vertical stirrups 5.0% Same, securely attached 6.0% [ Drawn Wire 2.0% Bond Stress < Plain'reinforcing bars 4.0% [ Deformed Bars, best type 5.0% For complete data see Transactions of the American Society of Civil Engineers, Vol LXXXI-No. 1398, Dec. 1917 3,000 70 i.000 8,000,000 For ultimate and working stresses of Structural Timber, see page 359, 376 PHYSICAL PROPERTIES OF SUBSTANCES EXPANSION OF BODIES BY HEAT The linear coefficient of expansion of a body is the rate at which the unit of length changes, under constant pressure, with an increase of unit or one degree of temperature; the square surface coefficient of expansion is, approximately, two times, and the cubical or volumetric coefficient three times the linear coefficient of expansion. A bar, if not fixed, undergoes a change in length=ltn, where 1 is the length of the bar in inches, t the number of degrees, n the corresponding linear coefficient; if fixed at both ends, the internal stress per unit of area==tnE, pounds per square inch, where E is the modulus of elasticity, and the total temperature stress=AtnE, pounds, where A is the cross section of the bar in square inches. To find the increase of a bar due to an increase in temperature, from the table, multiply the length of the bar by the increase in degrees and by the coefficient for 100 degrees, and divide by 100. Coefficients of Expansion for 100 DEGREES=100n Substance Metals and Alloys Aluminum, wrought . . . wire Bronze Copper German Silver Gold lion, cast, gray " i wrought " wire Lead Nickel. . ..:'. J . Platinum.... Platinum-Iridium, 15%Ir Silver : Steel, cast.... " hard,., " medium " soft Tin Zinc, rolled Miscellaneous Solids Glass Graphite Gutta-percha Paraffin ?/ Porcelain Linear Expansion Centigrade Fahrenheit .00231 .00188 .00193 .00181 .00168 .00183 .00150 .00106 .00120 .00124 .00286 .00126 .00090 .00081 .00192 .00110 .00132 .00120 .00110 .00210 .00311 .00085 .00079 .05980 .02785 .00036 .00128 .00104 .00107 .00101 .00093 .60102 .00083 .00059 .00067 .00069 .00159 .00070 .00050 .00045 .00107 .00061 .00073 .00067 .00061 .00117 .00173 .00047 .00044 .03322 .01547 .00020 Substance Stone and Masonry , Ashlar masonry Brick masonry Cement, Portland Concrete "■ masonry Granite Limestone Marble Rubble masonry. . . Sandstone Slate Timber Fir 1 M ^P le parallel tofiber| Pine J 'Fif 1 'Maple [perpendicular Oak f to fiber.. Pine J Liquid Substances Alcohol Acid, nitric. "' sulphuric....'... Mercury Oil, turpentine Linear Expansion Centigrade Fahrenheit .00063 .00055 .00107 .00143 .00120 .00084 .00080 .00100 .00166 .00063 .00110 .00104 .00035 .00031 .00059 .00079 .00067 .00047 .00044 .00056 .00092 .00035 .00061 .00058 .00037 .00021 .00064 .00036 .00049 .00027 .00054 .00030 .0058 .0032 .0048 .0027 .0054 .0030 .0034 .0019 Volumetric Expansion .104 .058 .110 .061 .063 .035 '■ .018 .010 .090 .050 Expansion OF Water , Maximum Density= =1 C° Volume || C° Volume C° Volume C° Volume :C° Volume C° Volume 4 1.000126 10 1.000000 II 20 1.000257 1.001732 30 40 1.004234 1.007627 50 60 1.011877 . 1.016954 70 80 1.022384 1.029003 90 100 1.035829 1.043116 377 CARNEGIE STEEL COMPANY EQUIVALENTS OF MEASURE Lengths 1 meter, m = 10 decimeters, dm = 100 centimeters, cm = 1000 millimeters, mm. 1 meter, m = 0.1 decameter, dkm=0.01 hectometer, hm = 0.001 kilometer, km. 1 meter, m = 39.37 inches, U. S. Standard = 39.370113 inches, British Standard. 1 millimeter, mm =1000 microns, yu.= 0.03937 inch = 39.37 mils. Inches, Feet, Yard, Rods, Chains, Miles, U. S. Kilo- m in. ft. yd. r. ch. Statute Nautical km. 1 39.37 3.28083 1.09361 0.19884 0.04971 0.§6214 0.05396 0.001 0.02540 1 0.08333 0.02778 0.o5051 0.ol263 0.J 1578 O.ol371 O.o 2540 0.30480 12 1 0.33333 0.06061 0.01515 0.|l894 0.01645 O.o 3048 0.91440 36 3 1 0.18182 0.04545 0.? 5682 0.04934 0.29144 5.02921 198 16.5 5.5 1 0.25 0.?3125 0.?2714 O.o5029 20.1168 792 66 22 4 1 0.01250 0.01085 0.02012 1609.35 63360 5280 1760 320 80 1 0.86839 1.60935 1853.25 72962.5 6080.20 2026.73 368.497 92.1243 1.15155 1 1.85325 1000 39370 3280.83 1093.61 198.838 49.7096 0.62137 0.53959 1 1 yard, U.S. = 1.0000029 yards British 1 yard British = 0.9999971 yard V. S. 1 chain, Gunter's= 100 links 1 link = 7.92 inches. 1 cable length, U. ST=120 fathoms = 960 spans = 720 feet = 219.457 meters. 1 league, U. S. = 3 statute miles, = 24 furlongs. 1 international geographical mile= : H6 at equator = 7422 m =4.611808 U. S. statute miles. 1 international nautical mile =%o° at meridian =1852 m =0.999326 U. S. nautical miles. 1 U.S. nautical mile=%o° of circumference of sphere whose surface equals that of the earth = 6080.27 feet= 1.15155 statute miles =1853.27 meters. 1 British nautical mile = 6080.00 feet = 1.15152 statute miles = 1853.19 meters. Surfaces and Aeeas 1 sq. meter, m 2 = 100 sq. decimeters, dm* = 10000 sq. centimeters, cm*. 1 sq. meter, m* = 0.01 are, a =0.0001 hectare, ha. 1 sq. millimeter, mm* =0,01 cm* =0.00155 sq. inch = 1973.5 circular mils. 1 are, a = l sq. decameter, dkm =0.0247104 acre. Sq. Meters, m 2 Sq. Inches, sq. in. Sq. Feet, sq. ft. Sq. Yards, sq. yd. Sq. Rods, sq. i. Acres, A Hectares, ha. Sq. Miles, Statute Sq. Kilo- meters, km* 1 1550.00 10.7639 1.19599 0.03954 0.S2471 0.0001 0.03861 O.ol 0.S6452 1 O.o 6944 0. 7716 0.o2551 0.ol594 0.o6452 0.§2491 0.1! 6452 0.09290 144 1 0.11111 O.o3673 0.^2296 O.o9290 0.J3587 0.o9290 0.83613 1296 9 1 0.03306 0.S2066 0.J8361 0.§2529 0.g3228 0. 8361 25.2930 39204 272.25 30.25 1 0.00625 0.§9766 0.12529 4046.87 6272640 43560 4840 160 1 0.40469 0.S1563 O.o4047 10000 15499969 107639 11959.9 395.366 2.47104 1 0. 3861 0.01 2589999 27878400 3097600 102400 640 259.000 1 2.59000 1000000 10763867 1195985 39536.6 247.104 100 0.38610 1 1 sq. rod, sq. pole, or sq. perch =625 sq. links =Meo acre. 1 sq. chain, Gunter's=16 sq. rods = Mo acre. 1 acre = 4 sq. roods = 160 sq. rods. Square of 1 acre = 208.7103 feet square. Notations o. o, o, etc., indicate that the o, o. o, etc., are to be replaced by 2, 3, 4, etc., ciphers. Example— lsq. rod =0.o9766 = 0.000009766 sq. miles. 378 MEASURES AND WEIGHTS EQUIVALENTS OF MEASURE Volume and Capacity 1 cu. meter, m» = 1000 cu. decimeter,- dm» = 1000000 cu. centimeters, cm' 1 liter, 1=10 deciliters, dl=100 centiliters, cl = 1000 .milliliters, ml = 1000 cu. centimeters, cm». or cc. 1 liter, 1 = 0.1 decaliter, dkl = 0.01 hectoliter, hl = l cu. decimeter, dm« Cubic Cubic Inches, cu. in. Cubic Feet, cu. ft. Cubic Yards, cu. yd. U. S. Quarts U. S. Gallons U.S. Decimeter, dm»,l Liquid, 1. qt. Dry, d.qt. Liquid, 1. gal. Dry, d. gal. Bushels, bu. 1 61.0234 0.03531 0.ol308 1.05668 0.90808 0.26417 0.22702 0.02833 0.01639 1 0.o5787 0.o2143 0.01732 0.01488 0.o4329 0.? 3720 0. 4650 28.3170 1728 1 0.03704 29.9221 25.7140 7.48055 6.42851 0.80356 764.559 46656 27 1 807.896 694.279 201.974 173.570 21.6962 0.94636 57.75 0.03342 O.o 1238 1 0.85937 0.25 0.21484 0.02686 1.10123 67.2006 0.03889 0.ol440 1.16365 1 0.29091 0.25 0.03125 3.78543 231 0.13368 0.54951 4 3.43747 1 0.85937 0.10742 4.40492 268.803 0.15556 O.o5761 4.65460 4 1.16365 1 0.125 35.2393 2150.42 1.24446 0.04609 37.2368 32 9.30920 8 1 U. S. Dry Measure: 1 bushel = 4 pecks =8 gallons = 32 quarts = 64 pints. U. S. Liquid Measure: 1 gallon=4 quarts=8 pints=32 gills=128 fluid ounces. U.S. Apoth. Measure: 1 fl. ounce, f J =8 fl. drams, 13=480 minims, iii = 29.574 cu. cm*. British Imperial gallon dry and liquid measure = 1.03202 U. S. dry gal. = 1.20091 U. S. liquid gal. British Imperial gallon =277.410 cu. in. = 4545.9631 cm». Weight of water at maximum density, 4°C, 45° Lat., and sea level. 1 cu. ft. = 62.4283 lbs. av. = 28.3170 kg 1 cu. in. = 0.57804 oz. av. = 16.3872 g. 1 gal., U. S. liquid = 8.34545 lbs. = 3.78543 kg. 1 gal., British Imperial = 10.0221 lbs. =4.5459631 kg. Masses and Weights 1 gram, g = 10 decigrams, dg = 100 centigrams, eg = 1000 milligrams, mg. 1 gram, g = 0.1 decagram, dkg = 0.01 hectogram, hg = 0.001 kilogram, kg. 1 kilogram, kg — 1 cu. decimeter of water or liter, 4°C, 45° Lat. and sea level = 15432.35639 grains, U. S. and British Standard. Kilo- grams, Ounces Pounds Tons Grains, gr- Troy, Avoir, Troy, Avoir, Net, Short, Gross, Long, 2240 lbs. Metric, kg- oz. t. oz. av. lb. t. lb. av. 2000 lbs. 1000 kg. 1 15432.4 32.1507 35.2740 2.67923 2.20462 0.8 1102 0.O9842 0.001 0. 6480 1 1 0.o2083 0. 2286 O.ol736 0.ol429 0.07143 0.06378 0.o6480 0.03110 480 1 1.09714 0.08333 0.06857 O.o 3429 0. 3061 0.o3110 0.02835 437.5 0.91146 1 0.07595 0.06250 0.^3125 0.o2790 O.o2835 0.37324 5760 12 13.1657 1 0.822S6 0.o4114 O.o3674 0.o4464 0. 3732 0.45359 7000 14.5833 16 1.21528 1 0.00050 0. 4536 907.185 14000000 29166.7 32000 2430.56 2000 1 0.89286 0.90719 1016.05 15680000 32666.7 35840 2722.22 2240 1.12 1 1.01605 1000 15432356 32150.7 35274-0 2679.23 2204.62 1.10231 0.98421 1 1 ounce avoir. = 16 drams, avoir. \ 1 ounce troy = 20 pennyweight, dwt. 1 ounce aDOth., 3 =8 drams, 3=24 scruples, 9=480 grains, gr=31.1035 g 1 hundredweight =1/20 long ton=4 quarters=8 stone= 112 lbs. =50.80241 Notations o, o. J. etc., indicate that the g. o. o> etc., are to be replaced by 2, 3, 4, etc., ciphers. Example— 1 grain = 0.o2083 = 0.002083 oz. t. 1 grain=0. 6480=0.00006480 kg. 379 CARNEGIE STEEL COMPANY EQUIVALENTS OF MEASURE Forces ob Weights per Units op Length, Linear Weights 1 dyne per centimeter = 0.00101979 g/cm = 0.000183719 poundal/in. 1 gram per centimeter = 980.5966 dynes/cm = 0.180154 poundal/in. 1 poundal per inch = 5443.11 dynes/cm = 5.55081 g/cm = 0.0310832 poun d/in. Gross Tons, 2240 lbs., per Mile Metric Centi- Grains Pounds Pounds Pounds Kilograms Net Tons, Tons, per Inch, per Inch, per Foot, per Yard, per Meter 2000 lbs., 1000 kg, meter g/cm gr./m. lb./in. lb./ft. lb./yd. kg/m per Mile per Kilometer 1 39.1983 0.o5600 0.06720 0.20159 0.10 0.17740 0.15839 0.10 0.02551 1 0.ol429 0.ol714 0.o5143 0.o2551 0.o4526 O.o4041 0.o2551 178.579 7000 1 12 36 17.8579 31.6800 28.2857 17.8579 14.8816 583.333 0.08333 1 3 1.48816 2.64000 2.35714 1.48816 4.96054 194.444 0.02778 0.33333 1 0.49605 0.88000 0.78571 0.49605 10 391.983 0.05600 0.67197 2.01591 1 1.77400 1.58393 1, 5.63698 220.960 0.03157 0.37879 1.13636 0.56370 1 0.89286 0.56370 6.31342 247.475 0.03535 0.42424 1.27273 0.63134 1.12 1 0.63134 10 391,983 0.05600 0.67197 2.01591 1 1.77400 1.58393 1 Forces or Weights per Units op Area, Pressure 1 dynepersq. centimeter=0.00101979 g/cm 2 =0.000466646 poundals/in 2 . 1 grampersq.centimeter= 980.5966dynes/cm 2 =0.457592 poundals/in 2 . 1 poundal persq. inch =2142.95 dynes/cm 2 =2.18536 g/cm 2 =0.0310832 pound/in 2 Kilograms per Sq. Centi- meter, kg/cm 2 Pounds per Sq. Inchy lb./in. 2 Pounds per Sq. Foot, lb./ft 2 Net Tons, 2000 lbs! per/ Sq. Foot Atmos- pheres, Standard, 760 mm Columns of Mercury, Hg. 13.59593 Sp. G. Columns of Water, Max. Density 4° C . ' Milli- meters Inches Meters ^Feet . , 1 0.07031 0.o4882 0.97648 1.03329 O.o 1360 0.03453 0.10 0.03048 14.2234 1 O.o6944 13.8889 14.6969 0.01934 0.49119 1.42234 0.43353 2048.17 144 1 2000 2116.35 2.78468 70.7310 204.817 62.4283 1.02408 0.07,200 0.00050 1 1.05818 l/ol392 0.03537 6.10241 0.03121 0.96778 0.06804 O.o4725 0.94502 1 0.ol316 0.03342 0.09678 0.02950 735.514 51.7116 0.35911 718.216 760 1 25.4001 73.5514 22.4185 28.0572 2.03588 0.01414 28.2762 29.9212 0.03937 1 2.89572 0.88262 10 0.70307 0.54882 9.76482 10.3329 0.01360 0.34534 1 0.30480 32.8083 ; 2.30665 0.01602 32.0367 j 33.9006 ; 0.04461 ' 1.13299 3.28083 1 Forces or Weights per Units op Volume, Density 1 dyne per cu. centimeter=0.00101979 gram/cma =0.00118528 poundals/ins. 1 gram per cu. centimeter =980.5966 dynes/cm= = 1.162283 poundaIs/in». 1 poundal per cu. inch =843.683 dynes/cm8=0.860378g/cms=0.0310832pound/ins. Grams per Cu. Centi- meter, g/cm 8 Pounds per Cu. Inch, lb./in.a Pounds per Cu. Foot, lb./ft.s Pounds . per ' Cu.Yard. lb./yd.s Kilograms per Cu.Meter. kg/ms Pounds per ' Bushel, U. S. Pounds per Gallon, Dry, U.S. Pounds. per Gallon, Liquid, U. S. Kilograms per Hectoliter, kg/hi 1 • 27.6797 0.01602 0.o5933 0.001 0.01287 0.10297 0.11983 0.01 0.03613 1 0.§5787 0.52143 0.53613 b.o 4650 0.§3720 0.o4329 0.03613 62.4283 1728 1 0.03704 0.06243 0.80356 6.42851 7.48052 0.62428 1685.56 46656 27 1 1.68556 21.6962 173.570 201.974 16.8557 1000 27679.7 16.0184 0.59327 1 12.8718, 102.974 119.826 10 77.6893 2150.42 1.24446 0.04609 0.07769 1 S 9.30920 0.77689 01 etc., indicate that the %, 3, 5> etc Example— 1 kg/m» = 0.J3613 9.71116 268.803 0.15556 0.o5762 0.o97H 0.125' 1 , 1.16365^ 0.09711 8.34545 .231 0.13368 0?o4951 0.o8345 0l'l0742 0.85937 1 0.08345 100 2767.97 1.60184 0.05933 0.10 1.28718 10.2974 11.9826 \ Notations 01 oj 2, 3,4, etc. ciphers, are to be replaced by : 0.00003613 lb./in». 380 MEASURES AND WEIGHTS • EQUIVALENTS OF MEASURE Energy, Work, Heat 1 dyne-centimeter=l erg =0.00101979 gram-eeiitimeter= 0.5737612 foot-pound. 1 gram-centimeter=980.5966 ergs=0.o7233 foot-pound. 1 foot-pound =13557300 ergs= 13825.5 gram-centimeters. Kilogram- meters, kg-m Fooi> Pounds, ft.-lbs. Horsepower-hour Poncelet- hours, lOOkg-m-h Kilowatt- hours, kw-h Joules, 10' ergs, j-s Thermal Units U. 8, H. P.-L Metric, 75kg-m-h B. T. U. b.t.u. Calorie, kg-cal 1 0.13826 273745 270000 360000 367123 0.10198 107.577 426.900 7.23300 1 1980000 1952910 2603880 2655403 0.73761 778.104 3087.77 0.o3653 0.o5051 1 0.98632 1.31509 1.34111 0.03725 0.o3930 0.ol559 O.o3704 0.o5121 1.01387 1 1.33333 1.35972 0.?3777 O.o 3984 0.ol581 0.B2778 0.§3840 0.76040 0.75 1 1.01979 0.o2833 0.02988 O.0II86 0.o2724 0.§3766 0.74565 0.73545 0.98060 1 O.o 2778 0.o2930 0:oll63 9.80597 1.35573 268434C 2647610 3530147 3600000 1 1054.90 4186.17 0.5" 9296 0.ol285 2544.65 2509.83 3346.44 3412.66 O.o9480 1 3.96832 0.6 ! 2342 0.o3239 641.240 632.467 843.289 859.975 O.o2389 0.25200 1 Power, Rate of Energy and Heat 1 erg per sec=ldyne-cm/sec.=O.OD101979gram-cm/sec.=0.o737612 foot-pounds/sec. 1 gram-centimeter per second =980.5966 ergs/sec. =0.o7238 foot-pounds/sec. 1 foot-pound per second =13557300 ergs/sec =13825.5 gram-cm/sec. Kilogram- meters per ' Second, kg-m/s Foot^ pounds per Second, ft.-lbs./s Horsepower Poncelet, 100 • kg-m/s Kilowatt, kw. Watts, ' lO^ergs/s Thermal Units per Sec. U. S., 550 ft.-lbs./s Metric, 75 kg-m/s B. T. U. btu/s Calorie kg-cal/s' 1 0.13826 ,76.0404 V 75 100 101.979 0.10198 107.577 426.900 7.23300 1 550 542.475 723.300 737.612 0.73761 778.104 3087.77 0.01315 O.0I8I8 1 0.98632 1.31509 1.34111 0.ol341 1.41474 5.61412 0.01333 0.51843 1.01387 1 1.33333 1.35972 O.ol360 1.43436 5.69200 0.01 O.ol383 0.76040 0.75 1 1.01979 O.o 1020 1.07577 4.26900 O.o9806 O.ol356 0.74565 0.73545 0.98060 / 1 0.001 1.05490 4.18617 9.80597 1.35573 745.650 735.448 980.597 1000 1 1054.90 4186.17 0.o9296 0.ol285 0.70685 0.69718 0.92957 0.94796 0.B9480 1 3.96832 0.o2342 0.o3237 0.17812 0.17569 0.23425 0.23888 0. 2389 0.25200 1 Velocities and Accelerations 1 kine=l centimeter per second =0.0328083 foot per second. . 1 radian per second=>57.2958 degrees per sec.=0.159155 revolutions per sec. 1 gravity=980.5966 centimeters per sec. per sec.=32.1717 feet per sec. per sec. Meters per Second, m/s Feet per Second, ft./s ■ Miles per Hour, M/h Knots per Hour, U.S. Kilo- meters Hour, km/h Meter per sec/sec m/s2 Feet per sec/sec ft./s* Miles per hour /sec M/h-s Kilometer per hour/sec km/h-s 1 0.30480 0.44704 0.51479 0.27778 3.28083 1 1.46667 1.68894 0.91134 2.23693 0.68182 1 1.15155 0.62137 1.94254 0.59209 0.86839 1 0.53959 3.6 1.09728 1.60935 1.85325 1 1 0.30480 0.44704 0.27778 3.28083 1 1.46667 0.91134 2.23693 0.68182 1 , 0.62137 3.6 1.09728 1.60935 1 Notations o, o, n> etc., indicate that the ojo> o, etc., are to be replaced by 2, 3, i, etc., ciphers. Example— 1 Calorie=0.oll63=0.001163 kilowatt-hours. 381 * CARNEQIE 5TEEL COMPANY METRIC CONVERSION TABLES Inches to Centimeters — 1 in.=2.540005 cm 1 2 3 ' 4 5 6 7 8 9 2.540 5.080 7.620 10.160 12.700 15.240 17.780 20.320 22.860 1 25.400 27.940 30.480 33.020 35.560 38.100 40.640 43.180 45.720 48.260 2 50.800 53.340 55.880 58.420 60.960 63.500 66.040 68.580 71.120 73.660 3 76.200 78.740 81.280 83.820 86.360 88.900 91.440 93.980 96.520 99.060 . 4 101.600 104.140 106.680 109.220 111.760 114.300 116.840 119.380 121.920 124.460 5 127.000 129.540 132.080 134.620 137.160 139.700 142.240 144.780 147.320 149.860 6 152.400 154.940 157.480 160.020 162.560 165.100 167.640 170.180 172.720 175.260 7 177.800 180.340 182.880 185.420 187.960 190.500 193.040 195.580 198.120 200.660 8 203.200 205.740 208.280 210.820 213.360 215.900 218.440 220.980 223.520 226.060 9 228.600 231.140 233.680 236.220 238.760 241.300 243.840 246.380 248.920 251.460 Inches 2 to Cbntimetebs 2 — 1 in. 2 =6.45i625 cm 2 1 2 '3 4 5 6 7 8 9 6.452 12.903 19.355 25.807 32.258 38.710 45.161 51.613 58.065 1 64.516 70.968 77.420 83.871 90.323 96.774 103.226 109.678 116.129 122.581 2 129.033 135.484 141.936 148.387 154.839 161.291 167.742 174.194 180.646 187.097 3. 193.549 200.000 206.452 212.904 219.355 225.807 232.259 238.710 245.162 251.613 4 258.065 264.517 270.968 277.420 283.872 290.323 296.775 303.226 309.678 316.130 5 322.581 329.033 335.485 341.936 348.388 354.839 361.291 367.743 374.194 380.646 6 387.098 393.549 400.001 406.452 412.904 419.356 425.807 432.259 438.711 445.162 7 451.614 458.065 464.517 470.969 477.420 483.872 490.324 496.775 503.227 509.678 8 516.130 522.582 529.033 535.485 541.937 548.388 554.840 561.291 567.743 574.195 9 580.646 587.098 593.550 600.001 606.453 612.904 619.356 625.808 632.259 638.711 Inches 3 to Centimeters 3 — 1 in. 3 =l6.38716 cm 3 >& -.0.. 1 2 3 4 5 6 7 8 9 16.39 32.77 49.16 65.55 81.94 98.32 114.71 131.10 147.48 l 163.87 180.26 196.66 213.03 229.42 245.81 262.19 278.58 294.97 311.36 2 327.74 344.13 360.52 376,90 393.29 409.68 426.07 442.45 458.84 475.23 3 491.61 508.00 524.39 540.78 557.16 573.55 589.94 606.32 622.71 639.10 4 655.49 671.87 688.26 704.65 721.04 737.42 753.81 770.20 786.58 802.97 5 819.36 835.75 852.13 868.52 884.91 901.29 917.68 934.07 950.46 966.84 6 983.23 999.62 1016.00 1032.39 1048.78 1065.17 1081.55 1097.94 1114.33 1130.71 7 1147.10 1163.49 1179.88 1196.26 1212.65 1229.04 1245.42 1261.81 1278.20 1294.59 8 1310.97 1327.36 1343.75 1360.13 1376.52 1392.91 1409.30 1425.68 1442.07 1458.46 9 1474.84 1491.23 1507.62 1524.01 1540.39 1556.78 1573.17 1589.55 1605.94 1622.33 Inches 4 to Centimeters 4 — 1 in. 4 =4i. 62347 cm 4 ^ 1 2 3 4 5 6 1 8 9 41.62 83.25 124.87 166.49 208.12 249.74 291.36 332.99 374.61 l 416.23 457.86 499.48 541.11 '582.73 624.35 665.98 707.60 749.22 790.85' 2 832.47 874.09 915.72 957.34 998.96 1040.59 1082.21 1123.83 1165.46 1207.08 3 1248.70 1290.33 1331.95 1373:57 1415.20 1456.82 1498.44 1540.07 1581.69 1623.32 4 1664.94 1706.56 1748.19 1789.81 1831.43 1873.06 1914.68 1956.30 1997.93 2039.55 5 2081.17 2122.80 2164.42 2206.04 2247.67 2289.29 2330.91 2372.54 2414.16 2455.78 6 2497.41 2539.03 2580.66 2622.28 2663.90 2705.53 2747.15 2788.77 2830.40 2872.02 7 2913.64 2955.27 2996.89 3038.51 3080.14 3121.76 3163.38 3205.01 3246.63 3288.25 8 3329.88 3371.50 3413.12 3454.75 3496.37 3537.99 3579.62 3621.24 3662.87 3704.49 9 3746.11 3787.74 3829.36 3870.98 3912.61 3954.23 3995.85 4037.48 4079.10 4120.72 382 MEASURES AND WEIQHTS METRIC CONVERSION TABLES Centimeters to Inches — lcm=o.3937 in. ^ 1 2 3 4 5 6 V 7 8 9 0.3937 0.7874 1.1811 1.5748 1.9685 2.3622 2.7559 3.1496 3.5433 1 3.9370 4.3307 4.7244 5.1181 5.5118 5.9055 6.2992 6.6929 7.0866 7.4803 2 7.8740 8.2677 8.6614 9.0551 9.4488 9.8425 10.2362 10.6299 11.0236 11.4173 3 11.8110 12.2047 12.5984 12.9921 13.3858 13.7795 14:1732 14.5669 14.9806 15.3543 4 15.7480 16.1417 16.5354 16.9291 17.3228 17.7165 18.1102 18.5039 18.8976 19.2913 5 19.6850 20.0787 20.4724 20.8661 21.2598 21.6535 22.0472 22.4409 22.8346 23.2283 6 23.6220 24.0157 24.4094 24.8031 25.1968 25.5905 25.9842 26.3779 26.7716 27.1653 7 27.5590 27.9527 28.3464 28.7401 29.1338 29.5275 29.9212 30.3149 30.7086 31.1023 8 31.4960 31.8897 32.2834 32.6771 33.0708 33.4645 33.8582 34.2519 34.6456 35.0393 9 35.4330 35.8267 36.2204 36.6141 37.0078 37.4015 37.7952 38.1889 38.5826 38.9763 Centimeters 3 to Inches 2 — 1 cm 8 =0.i5499969 in. 3 . Mk 1 2 3 4 5 6 7 8 9 0.1550 0.3100 0.4650 0.6200 0.7750 0.9300 1.0850 1.2400 1.3950 1 1.5500 1.7050 1.8600 2.0150 2.1700 2.3250 2.4800 2.6350 2.7900 2.9450 2 3.1000 3.2550 3.4100 3.5650 3.7200 3.8750 4.0300 4.1850 4.3400 4.4950 3 4.6500 4.8050 4.9600 5.1150 5.2700 5.4250 5.5800 5.7350 5.8900 6.0450 4 6.2000 6.3550 6.5100 6.6650 6.8200 6.9750 7.1300 7.2850 7.4400 7.5950 5 7.7500 7.9050 8.0600 8.2150 8.3700 8.5250 8.6800 8.8350 8.9900 9.1450 6 9.3000 9.4550 9.6100 9.7650 9.9200 10.0750 10.2300 10.3850 10.5400 10.6950 7 10.8500 11.0050 11.1600 11.3150 11.4700 11.6250 11.7800 11.9350 12.0900 12.2450 8 12.4000 12.5550 12.7100 12.8650 13.0200 13.1750 13.3300 13.4850 13.6400 13.7950 9 13.9500 14.1050 14.2600 14.4150 14.5700 14.7250 14.8800 15.0350 15.1900 15.3450 Centimeters 3 to Inches 3 — 1 cm 3 =o.06i0234in. 3 . *& 1 2 3 4 5 6 7 8 9 0.06102 0.12205 0.18307 0.24409 0.30512 0.36614 0.42716 0.48819 0.54921 l 0.61023 0.67126 0.73228 0.79330 0.85433 0.91535 0.97637 1.03740 1.09842 1.15944 2 1.22047 1.28149 1.34251 1.40354 1.46456 1.52559 1.58661 1.64763 1.70866 1.76968 3 1.83070 1.89173 1.95275 2.01377 2.07480 2.13582 2.19684 2.25787 2.31889 2.37991 4 2.44094 2.50196 2.56298 2.62401 2.68503 2.74605 2.80708 2.86810 2.92912 2.99015 5 3.05117 3.11219 3.17322 3.23424 3.20526 3.35629 3.41731 3.47833 3.53936 3.60038 6 3.66140 3.72243 3.78345 3.84447 3.90550 3.96652 4.02754 4.08857 4.14959 4.21061 7 4.27164 4.33266 4.39368 4.45471 4.51573 4.57675 4.63778 4.69880 4.75983 4.82085 8 4.88187 4.94290 5.00392 5.06494 5.12597 5.18699 5.24801 5.30904 5.37006 5.43108 9 5.49211 5.55313 5.61415 5.67518 5.73620 5.79722 5.85825 5.91927 5.08029 6.04132 Centimeters* to Inches* — 1 cm^O.0240249 in. 4 . ^ 1 ? 3 4 5 ' 6 7 8 9 0.02402 0.04805 0.07207 0.09610 0.12012 0.14415 0.16817 0.19220 0.21622 l 0.24025 0.26427 0.28830 0.31232 0.33635 0.36037 0.38440 0.40842 0.43245 0.45647 2 0.48050 0.50452 0.52855 0.55257 0.57660 0.60062 0.62465 0.64867 0.67270 0.69672 3 0.72075 0.74477 0.76880 0.79282 0.81685 0.84087 0.86490 0.88892 0.91295 0.93697 4 0.96100 0.98502 1.00905 1.03307 1.05710 1.08112 1.10515 1.12917 1.15320 1.17722 5 1.20125 1.22527 1.24930 1.27332 1.29734 1.32137 1.34539 1.36942 1.39344 1.41747 6 1.44149 1.46552 1.48954 1.51357 1.53759 1.56162 1.58564 1.60967 1.63369 1.65772 7 1.68174 1.70577 1.72979 1.75382 1.77784 1.80187 1.82589 1.84992 1.87394 1.89797 8 1.92199 1.94602 1.97004 1.99407 2.01809 2.04212 2.06614 2.09017 2.11419 2.13822 9 2.16224 2.18627 2.21029 2.23432 2.25834 2.28237 2.30639 2.33042 2.35444 2.37847 383 CARN EGIE STEEL COMPANY METRIC CONVERSION TABLES Feet to Meters — 1 ft.=o.3048006 m *& e 1 2 3 4 5 6 7 8 9 0.3048 0.6096 0.9144 1.2192 1.5240 1.8288 2.1336 2.4384 2.7432 1 3.0480 3.3528 3.6576 3.9624 4.2672 4.5720 4.876E 5.1816 5.4864 5.7912 2 6.0960 6.4008 6.7056 7.0104 7.3152 7.6200 7.924E 8.2296 8.5344 8.8392 3 9.1440 9.4488 9.7536 10.0584 10.3632 10.6680 10.972S 11.2776 11.5824 11.8872 4 12.1920 12.4968 12.8016 13.1064 13.4112 13.7160 14.020S 14.3256 14.6304 14.9352 5 15.2400 15.5448 15.8496 16.1544 16.4592 16.7640 17.0688 17.3736 17.6784 17.9832 6 18.2880 18.5928 18.8976 19.2024 19.5072 19.8120 20.1168 20.4216 20.7264 21.0312 7 21.3360 21.6408 21.9456 22.2504 22.5552 22.8600 23.1648 23.4696 23.7744 24.0792 8 24.3840 24.6888 24.9936 25.2984 25.6033 25.9081 26.2129 26.5177 26.8225 27.1273 9 27.4321 27.7369 28.0417 28.3465 28.6513 28.9561 29.2609 29.5657 29.8705 30.1753 POUNI s per Foot to Kilograms per Meter — 1 lb./ft.=i.488i6i kg/m ^ 1 2 3 ' i 5 6 7 8 9 1.488 2.976 4.464 5.953 7.441 8.929 10.417 11.905 13.393 1 14.882 16.370 17.858 19.346 20.834 22.322 23.811 2.5.299 26.787 28.275 ' 2 • 29.763 31.251 32.740 34.228 35.716 37.204 38.692 40.180 41.669 43.157 3 44.645 46.133 47.621 49.109 50.597 52.086 53.574 55.062 56.550 58.038 4 59.526 61.015 62.503 63.991 65.479 66.967 68.455 69.944 71.432 72.920 5 74.408 75.896 77.384 78.873 80.361 81.849 83.337 84.825 86.313 87.802 6 89.290 90.778 92.266 93.754 95.242 96.730 98.219 99.707 101.195 102.683 7 104.171 105.659 107.148 108.636 110.124 111.612 113.100 114.588 116.077 117.565 ■8 - 119.053 120.541 122.029 123.517 125.006 126.494 127.982 129.470 130.958 132.446 9 133.934 135.423 136.911 138.399 139.887 141.375 142.863 144.352 145.840 147.328 POTJNE s per Sq. Inch to Kg. per So,. Cm.— 1 lb. /in. 2 =o.0703067 kg/cm 2 ^ 1 2 3 4 5 6 7 8 9 0.07031 0.14061 0.21092 0.28123 0.35153 0.42184 0.49215 0.56245 0.63276 1 0.70307 0.77337 0,84368 0.91399 0.98429 1.05460 1.12491 1.19521 1.26552 1.33583 2 1.40613 1.47644 1.54675 1.61705 1.68736 1.75767 1.82797 1.89828 1.96859 2.03889 3 ' 2.10920 '2.17951 2.24981 2.32012 2.39043 2.46073 2.53104 2.60135 2.67165 2.74196 4 2.81227 2.88257 2.95288 3.02319 3.09349 3.16380 3.23411 3.30441 3.37472 3.44503 5 3.51534 3.58564 3.65595 3.72626 3.79656 3.86687 3.93718 4.00748 4.07779 4.14810 6 4.21840 4.28871 4.35902 4.42932 4.49963 4.56994 4.64024 4.71055 4.78086 4.85116 7 4.92147 4.99178 5.06208 5.13239 5.20270 5.27300 5.34331 5.41362 5.48392 5.55423 8 5.62454 5.69484 5.76515 5.83546 5.90576 5.97607 6.04638 6.11668 6.18699 6.25730 9 .i 6.32760 6.39791 6.46822 6.53852 6.60883 6.67914 6.74944 6.81975 6.89006 6.96036 Inch- Pounds to Kilogram-Centimeters — 1 in-lb.=i. 152127 kg-cm ^ 1 2 \ 3 4 5 6 7 8 9 1.152 2.304 3.456 4.609 5.761 6.913 8,065 9.217 10.369 l 11.521 12.673 13.826 14.978 16.130 17.282 18.434 19.586 20.738 21.890 2 23.043 24.195 25.347 26.499 27.651 28.803 29.955 31.107 32.260 33.412 3 34.564 35.716 36.868 38.020 39.172 40.324 41.477 42.629 43.781 44.933 4 46.085 47.237 48.389 49.541 50.694 51.846 52.998 54.150 55.302 56.454 5 57.606 58.758 59.911 61.063 62.215 63.367 64.519 65.671 66.823 67.975 6 69.128 70.280 71.432 72.584 73.736 74.888 76.040 77.193 78.345 79.497 7 80.649 81.801 82.953 84.105 85.257 86.410 87.562 88.714 89.866 91.018 i 8 92.170 93.322 94.474 95.627 96.779 97.931 99.083 100.235 101.387 102.539 9 103.691 104.844 105.996 107.148 108.300 109.452 110.604 111.756 112.908 114.061 384 MEASURES AND WE1QHTS METRIC CONVERSION TABLES Meters to Feet — 1 m=3. 2808333 ft. ^ 1 2 • 3 4 5 6 7 8 9 3.281 6.562 9.843 13.123 16.404 19.685 22.966 26.247 29.528 1 32.808 36.089 39.370 42.651 45.932 49.213 521493 65.774 59.055 62.336 2 65.617 68.898 72.178 75.459 78.740 82.021 85.302 88.583 91.863 95.144 3 98.425 101.706 104.987 108.268 111.548 114.829 118.110 121.391 124.672 127.953 4 131.233 134.514 137.795 141.076 144.357 147.638 150.918 154.199 157.480 160.761 5 164.042 167.323 170.603 173.884 177.165 180.446 183.727 187.008 190.288 193.569 6 196.850 200.131 203.412 206.693 209.973 213.254 216.535 219.816 223.097 226.378 7 229.658 232.939 236.220 239.501 242.782 246.063 249.343 252.624 255.905 259.186 8 262.467 265.748 269.028 272.309 275.590 278.871 282.152 285.433 288.713 291.994 9 295.275 298.556 301.837 305.118 308.398 311.679 314.960 318.241 321.522 324.803 Kilograms Per Meter to Pounds Per Foot — 1 kg/m=o.67!97 lb. /ft. 1 2 3 4 5 6 7 8 ' 9 0.6720 1.3439 2.0159 2.6879 3.3599 4.0318 4.7038 5.3758 6.0477 1 6.7197 7.3917 8.0636 8.7356 9.4076 10.0796 10.7515 11.4235 12.0955 12.7674 2 < 13.4394 14.1114 14.7833 15.4553 16.1273 16.7993 17.4712 18.1432 18.8152 19.4871 3 20.1591 20.8311 21.5030 22.1750 22.8470 23.5190 24.1909 24.8629 25.5349 26.2068 4 26.8788 27.5508 28.2227 28.8947 29.5667 30.2387 30.9106 31.5826 32.2546 32.9265 5 33.5985 34.2705 34.9424 35.6144 36.2864 36.9584 37.6308 38.3022 38.9743 39.6462 6 40.3182 40.9902 41.6621 42.3341 43.0061 43.6781 44.3500 45.0220 45.6940 46.3659 7 47.0379 47.7099 48.3818 49.0538 49.7258 50.3978 51.0697 51.7417 52.4137 53.0856 8 53.7576 54.4296 55.1015 55.7735 56.4455 57.1175 57.7894 58.4614 59.1334 59.8053 9 60.4773 61.1493 61.8212 62.4932 63.1652 63.8372 64.5091 65.1811 65.8531 66.5250 Kg. per Sq. Cm. to Pounds per Sq. Inch — 1 kg/cm 2 =i4.2234lbs./in. 2 ^ 1 2 3 4 5 6 7 8 9 14.22 28.45 42.67 56.89 71.12 85.34 99.56 113.79 128.01 1 142.23 156.46 170.68 184.90 199.13 213.35 227.57 241.80 256.02 270.24 2 284.47 298.69 312.91 327.14 341.36 355.59 369.81 384.03 398.26 412.48 3 426.70 440.93 455.15 469.37 483.60 497.82 512.04 526.27 540.49 554.71 4 568.94 583.16 597.38 611.61 625.83 640.05 654.28 668.50 682.72 696.95 5 711.17 725.39 739.62 753.84 768.06 782.29 796.51 810.73 824.96 839.18 6 853.40 867.63 881.85 896.07 910.30 924.52 938.74 952.97 967.19 981.41 7 995.64 1009.86 1024.08 1038.31 1052.53 1066.76 1080.98 1095.20 1109.43 1123.65 8 1137.87 1152.10 1166.32 1180.54 1194.77 1208.99 1223.21 1237.44 1251.66 1265.88 9 1280.11 1294.33 1308.55 1322.78 1337.00 1351.22 1365.45 1379.67 1393.89 1408.12 Kilogram-Centimeters to InchtPounds — 1 kg/cm=0. 86796 in,/lb. ^ 1 2 3 4, 5 6 7 8 9 l , 2 3 4 5 6 7 8 9 8.6796 17.3592 26.0388 34.7184 43.3980 52.0776 60.7572 69.4368 78.1164 0.8680 9.5476 18.2272 26.9068 35.5864 44.2660 52.9456 61.6252 70.3048 78.9844 1.7359 10.4155 19.0951 27.7747 36.4543 45.1339 53.8135 62.4931 71.1727 79.8523 2.6039 11.2835 19.9631 28.6427 37.3223 46.0019 54.6815 63.3611 72.0407 80.7203 3.4718 12.1514 20.8310 29.5106 38.1902 46.8698 55.5494 64.2290 72.9086 81.5882 4.3398 13.0194 21.6990 30.3786 39.0582 47.7378 56.4174 65.0970 73.7766 82.4562 5.2078 13.8874 22.5670 31.2466 39.9262 48.6058 57.2854 65.9650 74.6446 83.3242 6.0757 14.7553 23.4349 32.1145 40.7941 49.4737 58.1533 66.8329 75.5125 84.1921 6.9437 15.6233 24.3029 32.9825 41.6621 50.3417 59.0213 67.7009 76.3805 85.0601 7.8116 16.4912 25.1708 33.8504 42.5300 51.2096 59.8892 68.5688 77.2484 85.9280 385 CARNEGIE STEEL COMPANY METRIC CONVERSION TABLE Inches to Millimeters 39.37 Inches, U. S. Standard=l meter=100 centimeters=1000 millimeters. Inches He Ys %6 Vi B /ie % Ha- 0.00 1.59 3.18 4.76 6.35 7.94 9.53 ll. 11 1 25.40 26.99 28.58 30.16 31.75 33.34 34.93 36.51 2 50.80 52.39 53.98 55.56 57.15 58.74 60.33 61.91 3 76.20 77.79 79.38 80.96 82.55 84.14 85.73 87.31 4 101.60 103.19 104.78 106.36 107.95 109.54 111.13 112.71 5 127.00 128.59 130.18 131.76 133.35 134.94 136.53 138.11 6 152.40 153.99 155.58 157.16 158.75 160.34 161.93 163.51 7 177.80 179.39 180.98 182.56 184.15 185.74 187.33 188.91 8 203.20 204.79 206.38 207.96 209.55 211.14' 212.73 214.31 9 228.60 230.19 231.78 233.36 234.95 236.54 238.13 239.71 10 254.00 255.59 257.18 258.76 260.35 261.94 263.53 265.11 11 279.40 280.99 282.58 284.16 285.75 287.34 288.93 290.51 12 304.80 306.39 307.98 309.56 311.15 312.74 314.33 315.91 13 330.20 331.79 333.38 334.96 336.55 338.14 339.73 341.31 14 355.60 357.19 358.78 360.36 361.95 363.54 365.13 366.71 15 381.00 382.59 384.18 385.76 387.35 388.94 390.53 392.11 16 406.40 407.99 409.58 411.16 412.75 414.34 415.93 417.51 17 431.80 433.39 434.98 436.56 438.15 439.74 441.33 442.91 18 457.20 458.79 460.38 461.96 463.55 465.14 466.73 468.31 19 482.60 484.19 485.78 487.36 488.95 490.54 492.13 493.71 20 508.00 509.59 511.18 512.76 514.35 515.94 517.53 519.11 21 533.40 534.99 536.58 538.16 539.75 541.34 542.93 544.51 22 558.80 560.39 561.98 563.56 565.15 566.74 568.33 569.91 23 584.20 585.79 587.38 588.96 590.55 592.14 593.73 595.31 24 609.60 611.19 612.78 614.36 615.95 617.54 619.13 620.71 25 635.00 636.59 638.18 639.76 641.35 642.94 644.53 646.11 26 660.40 661.99 663.58 665.16 666.75 668.34 669.93 671.51 27 685.80 687.39 688.98 690.56 692.15 693.74 695.33 696.91 28 711.20 712.79 714.38 715.96 717.55 719.14 720.73 722.31 29 736.60 738.19 739.78 741.36 742.95 744.54 746.13 747.71 30 762.00 763.59 765.18 766.76 768.35 769.94 771.53 773.11 31 787.40 788.99 790.58 7i92.16 793.75 795.34 796.93 798.51 32 812.80 814.39 815.98 817.56 819.15 820.74 822.33 823.91 33 838.20 839.79 841.38 842.96 844.55 846.14 847.73 849.31 3* 863.60 865.19 866.78 868.36 869.95 871.54 873.13 874.71 35 889.00 890.59 892.18 893.76 895.35 896.94 898.53 900.11 36 914.40 915.99 917.58 919.16 920.75 922.34 923.93 925.51 37 939.80 941.39 942.98 944.56 946.15 947.74 949.33 950.91 38 965.20 966.79 968.38 969.96 971.55 973.14 874.73 976.31 39 990.60 992.19 993.78 995.36 996.95 998.54 1000.13 1001.71 40 1016.00 1017.59 1019.18 1020.76 1022.35 1023.94 1025.53 1027.11 41 1041.40 1042.99 1044.58 1046.16 1047.75 1049.34 1050.93 1052.51 42 1066.80 1068.39 1069.98 1071.56 1073.15 1074.74 1076.33 1077.91 43 1092.20 1093.79 1095.38 1096.96 1098.55 1100.14 1101.73 1103.31 44 1117.60 1119.19 1120.78 1122.36 1123.95 1125.54 1127.13 1128.71 45 1143.00 1144.59 1146.18 1147.76 1149.35 1150.94 1152.53 1154.11 46 1168.40 1169.99 1171.58 1173.16 1174.75 1176.34 1177.93 1179.51 47 1193.80 1195.39 1196.98 1198.56 1200.15 1201.74 1203.33 1204.91 48 1219.20 1220.79 1222.38 1223.96 1225.55 1227.14 1228.73 1230.31 49 1244.60 1246.19 1247.78 1249.36 1250.95 1252.54 1254.13 1255.71 50 1270.00 1271.59 1273.18 1274.76 1276.35 1277.94 1279.53 1281.11 386 MEASURES AND WEIGHTS METRIC CONVERSION TABLE Inches to Millimeters 39.37 inches, U. S. Standard=l metei^=100 centimeters=1000 millimeters Inches % %6 % »/io % !%« % 1B A a 12.70 14.29 15.88 17.46 19.05 20.64 22.23 23.81 1 38.10 39.69 41.28 42.86 44.45 46.04 47.63 49.21 2 63.50 65.09 66.68 68.26 69.85 71.44 73.03 74.61 3 88.90 90.49 92.08 93.66 95.25 96.84 98.43 100.01 4 114.30 115.89 117.48 119.06 120.65 122.24 123.83 125.41 5 139.70 141.29 142.88 144.46 146.05 147.64 149.23 150.81 6 165.10 166.69 168.28 169.86 171.45 173.04 174.63 176.21 7 190.50 192.09 193.68 195.26 196.85 198.44 200.03 201.61 8 215.90 217.49 219.08 220.66 222.25 223.84 225.43 227.01 9 241.30 242.89 244.48 246.06 247.65 249.24 250.83 252.41 10 266.70 268.29 269.88 271.46 273.05 274.64 276.23 277.81 11 292.10 293.69 295.28 296.86 298.45 300.04 301.63 303.21 12 317.50 319.09 320.68 322.26 323.85 325.44 327.03 328.61 13 342.90 344.49 346.08 347.66 349.25 350.84 352.43 354.01 14 368.30 369.89 371.48 373.06 374.65 376.24 377.83 379.41 15 393.70 395.29 396.88 398.46 400.05 401.64 403.23 404.81 16 419.10 420.69 422.28 423.86 425.45 427.04 428.63 430.21 17 444.50 446.09 447.68 449.26 450.85 452.44 454.03 455.61 18 469.90 471.49 473.08 474.66 476.25 477.84 479.43 481.01 19 495.30 496.89 498.48 500.06 501.65 503.24 504.83 506.41 20 . 520.70 522.29 523.88 525.46 527.05 528.64 530.23 531.81 21 546.10 547.69 549.28 550.86 552.45 554.04 555.63 557.21 22 571.50 573.09 574.68 576.26 577.85 579.44 581.03 582.61 23 596.90 598.49 600.08 601.66 603.25 604.84 606.43 608.01 24 622,30 623.89 625.48 627.06 628.65 630.24 631.83 633.41 25 647.70 649.29 650.88 652.46 654.05 655.64 657.23 658.81 26 673.10 674.69 676.28 677.86 679.45 681.04 682.63 684.21 27 698.50 700.09 701.68 703.26 704.85 706.44 708.03 709.61 28 723.90 725.49 727.08 728.66 730.25 731.84 733.43 735.01 29 749.30 750.89 752.48 754.06 755.65 757.24 758.83 760.41 30 774.70 776.29 777.88 779.46 781.05 782.64 784.23 785.81 31 800.10 801.69 803.28 804.86 806.45 808.04 809.63 811.21 32 825.50 827.09 828.68 830.26 831.85 833.44 835.03 836.61 33 850.90 852.49 854.08 855.66 857.25 858.84 860.43 862.01 34 876.30 877.89 879.48 881.06 882.65 884.24 885.83 887.41 35 901.70 903.29 904.88 906.46 908.05 909.64 911.23 912.81 36 927.10 928.69 930.28 931.86 933.45 935.04 936.63 938.21 37 952.50 954.09 955.68 957.26 958.85 960.44 962.03 963.61 38 977.90 979.49 981.08 982.66 984.25 985.84 987.43 989.01 39 1003.30 1004.89 1006.48 1008.06 1009.65 1011.24 1012.83 1014.41 40 1028.70 1030.29 1031.88 1033.46 1035.05 1036.64 1038.23 1039.81 41 1054.10 1055.69 1057.28 1058.86 1060.45 1062.04 1063.63 1065.21 42 1079.50 1081.09 1082.68 1084.26 1085.85 1087.44 1089.03 1090.61 43 1104.90 1106.49 1108.08 1109.66 1111.25 1112.84 1114.43 1116.01 44 1130.30 1131.89 1133.48 1135.06 1136.65 1138.24 1139.83 1141.41 45 1155.70 1157.29 1158.88 1160.46 1162.05 1163.64 1165.23 1166.81 46 1181.10 1182.69 1184.28 1185.86 1187.45 1189.04 1190.63 1192.21 47 1206.50 1208.09 1209.68 1211.26 1212.85 1214.44 1216.03 1217.61 48 1231.90 1233.49 1235.08 1236.66 1238.25 1239.84 1241.43 1243.01 49 1257.30 1258.89 1260.48 1262.06 1263.65 1265.24 1266.83 1268.41 50 1282.70 1284.29 1285.88 1287.46 1289.05 1290.64 1292.23 1293.81 387 CARNEQIE STEEL COMPANY METRIC CONVERSION TABLE Pounds Avoirdupois to Kilograms 1 Pound=0.45359 Kilograms Pounds 1 2 3 4 5 6 7 8 9 0.45 0.91 1.36 1.81 2.27 2.72 3.18 3.63 4.08 1 4.54 4.99 5.44 5.90 6.35 6.80 7.26 7.71 8.16 8.62 2 9.07 9.53 9.98 10.43 10.89 11.34 11.79 12.25 12.70 13.15 3 13.61 14.06 14.51 14.97 15.42 15.88 16.33 16.78 17.24 17.69 4 18.14 18.60 19.05 19.50 19.96 20.41 20.87 21.32 21.77 22.23 1 5 22.68 23.13 23.59 24.04 24.49 24.95 25.40 25.85 26.31 26.76 6 27.22 27.67 28.12 28.58 29.03 29.48 29.94 30.39 30.84 31.30 7 31.75 32.21 32.66 33.11 33.57 . 34.02 34.47 34.93 35.38 35.83 • 8 36.29 36.74 37.19 37.65 38.10 38.56 39.01 39.46 39.92 40.37 9 40.82 41.28 41.73 42.18 42.64 43.09 43.54 44.00 44.45 44.91 10 45.36 45.81 46.27 46.72 47.17 47.63 48.08 48.53 48.99 49.44 11 49.90 50.35 50.80 51.26 51.71 52.16 52.62 53.07 53.52 53.98 12 54.43 54.88 55.34 55.79 56.25 56.70 57.15 57.61 58.06 58.51 13 58.97 59.42 59.87 60.33 60.78 61.23 61.69 62.14 62.60 63.05 14 63.50 63.96 64.41 64.86 65.32 65.77 66.22 66.68 67.13 67.59 15 68.04 68.49 68.95 69.40 69.85 70.31 70.76 71.21 71.67 72.12 16 72.57 73.03 73.48 73.94 74.39 74.84 75.30 75.75 76.20 76.66 17 77.11 77.56 78.02 78.47 78.93 79.38 79.83 80.29 80.74 81.19 18 81.65 82.10 82.55 83.01 83.46 83.91 84.37 84.82 85.28 85.73 19 86.18 86.64 87.09 87.54 88.00 88.45 88.90 89.36 89.81 90.26 20 90.72 91.17 91.63 92.08 92.53 92.99 93.44 93.89 94.35 94.80 21 95.25 95.71 96.16 96.62 97.07 97.52 97.98 98.43 98.88 99.34 22 99.79 100.24 100.70 101.15 101.60 102.06 102.51 102.97 103.42 103.87 23 104.33 104.78 105.23 105.69 106.14 106.59 107.05 107.50 107.96 108.41 24 108.86 109.32 109.77 110.22 110.68 111:13 111.58 112.04 112.49 112.94 25 113.40 113.85 114.31 114.76 115.21 115.67 116.12 116.57 117.03 117.48 26 117.93 118.39 118.84 119.29 119.75 120.20 120.66 121.11 121.56 122.02 27 122.47 122.92 123.38 123.83 124.28 124.74 125.19 125.65 126.10 126.55 28 127.01 127.46 127.91 128.37 128.82 129.27 129.73 130.18 130.63 131.09 29 131.54 132.00 132.45 132.90 133.36 133.81 134.26 134.72 135.17 135.62 30 136.08 136.53 136.98 137.44 137.89 138.35 138.80 139.25 139.71 140.16 31 140.61 141.07 141.52 141.97 142.43 142.88 143.34 143.79 144.24 144.70 32 145.15 145.60 146.06 146.51 146.96 147.42 147,87 148.32 148.78 149.23 33 149.69 150.14 150.59 151.05 151.50 151.95 152}41 152.86 153.31 153.77 34 154.22 154.68 155.13 155.58 156.04 156.49 156.94 157.40 157.85 158.30 35 158.76 159.21 159.66 160.12 160.57 161.03 161.48 161.93 162.3S 162.84 36 163.29 163.75 164.20 164.65 165.11 165.56 166.01 166.47 166.92 167.38 37 167.83 168.28 168.74 169.19 169.64 170.10 170.55 171.00 171.46 171.91 38 172.37 172.82 173.27 173.73 174.18 174.63 175.09 175.54 175.99 176.45 39 176.90 177.35 177.81 178.26 178.72 179.17 179.62 180.08 180.53 180.98 40 181.44 181.89 182.34 182.80 183.25 183.70 184.16 184.61 185.07 185.52 41 185.97 186.43 186.88 187.33 187.79 188.24 188.69 189.15 189.60 190.06 42 190.51 190.96 191.42 191.87 192.32 192.78 193.23 193.68 194.14 194.59 43 195.04 195.50 195.95 196.41 196.86 197.31 197.77 198.22 198.67 199.13 44 199.58 200.03 200.49 200.94 201.40 201.85 202.30 202.76 203.21 203.66 45 204.12 204.57 205.02 205.48 205.93 206.38 206.84 207.29 207.75 208.20 46 208.65 209.11 209.56 210.01 210.47 210.92 211.37 211.83 212.28 212.73 47 213.19 213.64 214.10 214.55 215.00 215.46 215.91 216.36 216.82 217.27 48 217.72 218.18 218.63 219.09 219.54 219.99 220.45 220.90 221.36 221.81 49 222.26 222.71 223.17 223.62 224.07 224.53 224.98 225.44 225.8S 226.34 388 MEASURES AND WEIQHTS METRIC CONVERSION TABLE Pounds Avoirdupois to Kilograms 1 Pound=0.45359 Kilograms Founds 3 6 50 51 52 53 54 55 56 57 58 59 €0 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 226.80 231.33 235.87 240.40 244.94 249.48 254.01 258.55 263.08 267.62 272.16 276.69 281.23 285.76 290.30 294.84 299.37 303.91 308.44 312.98 317.51 322.05 326.59 331.12 335.66 340.19 344.73 349.27 353.80 358.34 362.87 367.41 371.95 376.48 381.02 385.55 390.09 394.63 399.16 403.78 408.23 412.77 417.31 421.84 426.38 430.91 435.45 439.98 444.52 449.06 227.25 231.79 236.32 240.86 245.39 249.93 254.47 259.00 263.54 268.07 272.61 277.14 281.68 286.22 290.75 295.29 299.82 304.36 308.90 313.43 317.97 322.50 327.04 331.58 336.11 340.65 345.18 349.72 354.26 358.79 363.33 367.86 372.40 376.94 381.47 386.01 390.54 395.08 399.61 404.15 408.69 413.22 417.76 422.29 426.83 431.37 435.90 440.44 444.97 449.51 227.70 232.24 236.78 241.31 245.85 250.38 254.92 259.45 263.99 268.53 273.06 277.60 282.13 286.67 291.21 295.74 300.28 304.81 309.35 313.89 318.42 322.96 327.49 332.03 336.57 341.10 345.64 350.17 354.71 359.25 363.78 368.32 372.85 377.39 381.92 386.46 391.00 395.53 400.07 404.60 409.14 413.68 418.21 422.75 427.28 431.82 436.36 440.89 445.43 449.96 228.16 232.69 237.23 241.76 246.30 250.84 255.37 259.91 264.44 268.98 273.52 278.05 282.59 287.12 291.66 296.20 300.73 305.27 309.80 314.34 318.88 323.41 327.95 332.48 337.02 341.56 346.09 350.63 355.16 359.70 364.23 368.77 373.31 377.84 382.33 386.91 391.45 395.99 400.52 405.06 409.59 414.13 418.67 423.20 427.74 432.27 436.81 441.35 445.88 450.42 228.61 233.15 237.68 242.22 246.75 251.29 255.83 260.36 264.90 269.43 273.97 278.51 283.04 287.58 292.11 296.65 301.19 305.72 310.26 314.79 319.33 323.86 328.40 332.94 337.47 342.01 346.54 351.08 355.62 360.15 364.69 369.22 373.76 378.30 382.83 387.37 391.90 396.44 400.98 405.51 410.05 414.58 419.12 423.66 428.19 432.73 437.26 441.80 446.33 450.87 229.06 233.60 238.14 242.67 247.21 251.74 256.28 260.82 265.35 269.89 274.42 278.96 283.50 288.03 292.57 297.10 301.64 306.17 310.71 315.25 319.78 324.32 328.85 333.39 337.93 342.46 347.00 351.53 356.07 360.61 365.14 369.68 374.21 378.75 383.29 387.82 392.36 396.89 401.43 405.97 410.50 415.14 419.57 424.11 428.64 433.18 437.72 442.25 446.79 451.32 229.52 234.05 238.59 243.13 247.66 252.20 256.73 261.27 265.81 270.34 274.88 279.41 283.95 288.48 293.02 297.56 302.09 306.63 311.16 315.70 320.24 324.77 329.31 333.84 338.38 342.92 347.45 351.99 356.52 361.06 365.60 370.13 374.67 379.20 383.74 388.28 392.81 397.35 401.88 406.42 410.95 415.49 420.03 424.56 429.10 433.63 438.17 442.71 447.24 451.78 229.97 234.51 239.04 243.58 248.12 252.65 257.19 261.72 266.26 270.79 275.33 279.87 284.40 288.94 293.47 298.01 302.55 307.08 311.62 316.15 320.69 325.23 329.76 334.30 338.83 343.37 347.91 352.44 356.98 361.51 366.05 370.59 375.12 379.66 384.19 388.73 393.26 397.80 402.34 406.87 411.41 415.94 420.48 425.02 429.55 434.09 438.62 443.16 447.70 452.23 230.42 234.96 239.50 244.03 248.57 253.10 257.64 262.18 266.71 2*1.25 275.78 280.32 284.86 289.39 293.93 298.46 303.00 307.54 312.07 316.61 321.14 325.68 330.22 334.75 339.29 343.82 348.36 352.89 357.43 361.97 366.50 371.04 375.57 380.11 384.65 389.18 393.72 398.25 402.79 407.33 411.86 416.40 420.93 425.47 430.01 434.54 439.08 443.61 448.15 452.69 230.88 235.41 239.95 244.49 249.02 253.56 258.09 262.63 267.17 271.70 276.24 280.77 285.31 289.85 294.38 298.92 303.45 307.99 312.53 317.06 321.60 326.13 330.67 335.20 339.74 344.28 348.81 353.35 357.88 362.42 366.96 371.49 376.03 380.56 385.10 389.64 394.17 398.71 403.24 407.78 412.32 416.85 421.39 425.92 430.46 435.00 439.53 444.07 448.60 453.14 389 CARNEQIE STEEL COMPANY PROPERTIES OF THE CIRCLE Circumference of Circle of Dia. i = ir = 3.14159265 Circumference of Circle = 2ir Dia." of Circle = Circumference x 0.31831 Diameter of Circle of equal periphery as square = side x 1.27324 Side of Square of equal periphery as circle = diameter x 0.78540 Diameter of Circle circumscribed about square = side x 1.41421 Side of Square inscribed in Circle = diameter x 0.70711 Arc, a = r * 8Q = 0.017453 r A ° • , . 180° a a Angle, A= ffr =57.29578 — •d ,. 4b 2 + c 2 -p.. , , 4b 2 + c 2 Radius, r = -^ Diameter, d = —t* A° Chord, c = 2V 2br— b 2 = 2 r sin — ^— Rise, b = r-J^V 4r 2 -c 2 = -|- tan -^j- = 2 r sin 2 — Rise, b= r+y-yr 2 -x 2 . y=b-r+Vr 2 -x 2 x=Vr 2 -(r+y-b) 2 it = 3.14159265, log = 0.4971499 — = 0.3183099, log = 1.5028501 T 2 = 9.8696044, log = 0.9942997 1 ^2= 0.1013212, log =1.0057003 lj «■ = 1.7724539, log = 0.2485749 \— = 0.5641896, log =7.7514251 Yg^= 0.0174533, log = 2*.2418774 ^ = 57.2957795, log = 1.7581226 390 MENSURATION TABLES Triangle : AREA OF PLANE FIGURES Base x y 4 < / Af)irl=A |""* <— * radius =1 -b Radius, 1 = sin 4 A 4- cos* A = sin A cosec A — cos A sec A= tan A cot A _ x . . COB A 1 Cotangent A- 8in A - tanA din A coa A -, , cot A 1 Cosecant A- cwA - BinA tin (A ± B) = sin A cos B + cos A sin B cos (A + B) = cos A cos B + sin A sin B (in A + sin B = 2 sin M (A + B) cos ^(A— B> »in A — sinB = 2 cos \i (A + B) sin }^ (A— B) cos A + cob B = 2 cos Ji (A'+ B) cos }i (A— B) cos B — cos A = 2 sin M (A + B) sin M (A— B) sin 2 A = 2 sin A cos A cos 2 A = cos' A — sin a A * tiA--a\ tan A±tanB *">CA±B) =., TtallAtHl B i/t , B . cot A cot B + 1 cot(A±B) = cotfiictA > aj.. sin (A + B) tanA + tanB= m \ m i tan A — tan'B = ■ Bin (A— B) cos A cos B cot A + cot -B =' cot A — cot B = tan2A = cot 2 A = ■ sin.(B + A) sin 4 sin B Bin(B— A) sin A sin B 2 tan A 1— tan* A cot*A-l flio ^ A = ^fI=pEl cos i / 4A.= yj±±^£ tan^A=-j cot H A = sin* A cos* A = - sin* A — sin* B »= sin (A + B) sin (A — B) ; cos A.+ cosB — ' , , . 1— coa 2 A .. . l+cos2 A tan A c l+corf2A Mt A - 1-COS2A cos* A — sin* B = cos (A + B) cos (A — B) sin. A drain B cos B — cos A — cot H (A + B) Quadrant 1 II . ni IV Angle Angles 0"to90» 90»t«I80» 180° to 270° 270 4 to360 1 ' 30° 1 45« 1 Ml* Functions Values vary from Equivalent values sin fOto+1 -Hto+0 -Oto-1 — 1 to-0 X ^v? MV? cos f 1 to +0 -Oto-1 -lto-0 +0to+l Hyfs ^v? X tan fOto+co -co to— ■HOto+co -co to-0 HV3 1 V3 cot +coto+0 -Oto— co fee to+0 -Oto— CO >/3 1 Hy[3 Angle a < 9V> Angle c sin COB tan cot *' * e +° *° * 8 >• 0°+a +sin a + COBS +tana +cota (s ^' ~bc Tbc * s (s-a) B Bin JB- V^^.coaJB- V 8 ^ .tanJB- X/^' ^ C ninlC— \/( s - a )( B - b ) con l C— \/ 8(s -°> taniC— -\/fe-a) (s-b) oint,^ y ab ,cosjl- ^ ab ,ianji. ^ g ^ Area Area = -j/ s (s-a) (s-b) (s-c) a, A, B b, c a sin B a sin C a sin (A + Bj . sin A sin A sin A Area . , . „ a 2 sin B sin C Area = J a b sin C = 2 sin A a, b, A B . _, b sin A sin B - a c a sin C b sin C / a ' a + b2 2 ab cos c c sin A sin B " Area Area = i a b sin C a, b, C A tan A = b ^ a S1 c n os ° . tan J (A-B, - * + £ cot J C c c = ■/ a 2 + b 2 -2 ab cos O = **™° Area Area = J ab sin C a? = b 2 + c 2 — 2bc cos A, b 2 =a 2 + c 2 — 2 a c cos B. c 2 = a 2 + b 2 — 2 ab cos O 393 CARNEQIE STEEL COMPANY AREA OF CIRCULAR SECTIONS Circular Sector, m o n p J» Area=J4 (length of arc, m p n x radius, r) =area of circle x arc, mpn in degrees . 360 =0.0087266 x square of radius, r^,x angle of arc, mpn, in degrees. Circular Segment, mpn, less than half circle. Area=area of sector, m o n p — area of triangle, m o n = (length of arc, m p n, x radius, r) — (radiuB, r, — rise, b) x chord, e 2 Circular Segment, man, greater than half circle. Area=area of circle— area of segment, mnp Circular Segment, from'Table I, page 395. Given: rise, b, and chord, c. Area=product of rise and chord, b x c, multiplied by the coefficient given opposite the quotient of -fi- : Intermediate coefficients for values of -jj- not given in tables are obtained by interpolation, Example— Given: rise=1.49 andchord=3.52, P 1 .49 A JQOO nnnfflnimif f\ T C A O =1.49 x 3.52 x 0.7542=3.9556. 3.52 — "■' Area=b x c x coefl Circular Segment, from Table II, pages 396 and 397. Given: rise, b, and diameter, d = 2r. Area=square of diameter, d 3 , multiplied by the coefficient given opposite the quotient of —r. Intermediate coefficients for values of -j- not given in tables are obtained by interpolation. Example -Given: rise=2%e"and diameter=5%2. -|- = 2%« -^ 5%2 = 0.478528. Coefficient by interpolation =0.371233. Area=d2 x coeff . = 25.94629 x 0.371233 = 9.6321. Circular Zone, t uwv Area-— area of circle — (area of segment, tpu + area of segment, vqw). Circular Lune, m p n s Area=segment, mpn- segment, m s n. 394 MENSURATION TABLES AREAS OF CIRCULAR SEGMENTS Table 1— Fob Ratios op Rise and Chord L_— iv^-Chord.C--^— - J Area^=C x b x coefficient A" Coeffi- b A Coeffi- b A° Coeffi- b A° Coeffi- b cient C cient C cient . C cient C 1 .6667 .0022 46 .6722 .1017 91 .6895 .2097 136 .7239 .3373 2 .6667 .0044 47 .6724 .1040 92 .6901 .2122 137 .7249 .3404 ' 3 .6667 .0066 48 .6727 .1063 93 .6906 .2148 138 .7260 .3436 4 .6667 .0087 49 .6729 .1086 94 .6912 .2174 139 .7270 .3469 5 .6667 .0109 50 .6732 .1109 95 .6918 .2200 140 .7281 .3501 6 .6667 .0131 51 .6734 .1131 96 .6924 .2226 141 .7292 .3534 7 .6668 .0153 52 .6737 .1154 97 .6930 .2252 142 .7303 .3567 8 .6668 .0175 53 .6740 .1177 98 .6936 .2279 143 .7314 .3600 9 .6669 .0197 54 .6743 .1200 99 .6942 .2305 144 .7325 .3633 10 .6670 .0218 55 .6746 .1224 100 .6948 .2332 145 .7336 .3666 11 .6670 .0240 56 .6749 .1247 101 .6954 .2358 146 .7348 .3700 12 .6671 .0262 57 .6752 .1270 102 .6961 .2385 147 .7360 .3734 13 .6672 .0284 58 .6755 .1293 103 .6967 .2412 148 .7372 .3768 14 .6672 .0306 59 .6758 .1316 104 .6974 .2439 149 .7384 .3802 15 .6673 .0328 60 .6761 .1340 105 .6980 .2466 150 .7396 .3837 16 .6674 .0350 61 .6764 .1363 106 .6987 .2493 151 .7408 .3871 17 .6674 .0372 62 .6768 .1387 107 .6994 .2520 152 .7421 .3906 18 .6675 .0394 63 .6771 .1410 108 .7001 .2548 153 .7434 .3942 19 .6676 .0416 64 .6775 .1434 109 .7008 .2575 154 .7447 .3977 20 .6677 .0437 65 .6779 .1457 110 .7015 .2603 155 .7460 .4013 21 .6678 .0459 66 .6782 .1481 111 .7022 .2631 156 .7473 .4049 22 .6679 .0481 67 .6786 .1505 112 .7030 .2659 157 .7486 .4085 23 .6680 .0504 68 .6790 .1529 113 .7037 .2687 158 .7500 .4122 24 .6681 .0526 69 .6794 .1553 114 .7045 .2715 159 .7514 .4159 25 .6682 .0548 70 .6797 .1577 115 .7052 .2743 160 .7528 .4196 26 .6684 .0570 71 .6801 .1601 116 .7060 .2772 161 .7542 .4233 27 .6685 .0592 72 .6805 .1625 117 .7068 .2800 162 .7557 .4270 28 .6687 .0614 73 .6809 .1649 118 .7076 .2829 163 .7571 .4308 29 .6688 .0636 74 .6814 .1673 119 .7084 .2858 164 .7586 .4346 30 .6690 .0658 75 .6818 .1697 120 .7092 .2887 165 .7601 .4385 31 .6691 .0681 76 .6822 .1722 121 .7100 .2916 166 .7616 .4424 32 33 34 35 .6693 .0703 77 .6826 .1746 122 .7109 .2945 167 .7632 .4463' .6694 .0725 78 .6831 .1771 123 .7117 .2975 168 .7648 .4502 .6696 .0747 79 .6835 .1795 124 .7126 .3004 169 .7664 .4542 .6698 .0770 80 .6840 .1820 125 .7134 .3034 170 .7680 .4582 36 37 38 39 40 6700 .0792 81 .6844 .1845 126 .7143 .3064 171 .7696 .4622 .6702 .6704 .6706 .6708 .0814 82 .6849 .1869 127 .7152 .3094 172 .7712 .4663 .0837 83 .6854 .1894 128 .7161 .3124 173 .7729 .4704 0859 84 .6859 .1919 129 .7170 .3155 174 .7746 .4745 .0882 85 .6864 .1944 130 .7180 .3185 175 .7763 .4787 41 42 43 44 45 .6710 .6712 .6714 .6717 .6719 .0904 .0927 .0949 .0972 .0995 86 87 88 89 90 .6869 .6874 .6879 .6884 .6890 .1970 .1995 .2020 .2046 .2071 131 132 133 134 135 .7189 .7199 .7209 .7219 .7229 .3216 .3247 .3278 .3309 .3341 176 177 178 179 180 .7781 .7799 .7817 .7835 .7854 .4828 .4871 .4914 .4957 .5000 395 CARNEQIE STEEL COMPANY AREAS OF CIRCULAR SEGMENTS Table II, for Ratios op Rise and Diameter Area=d 2 x Coefficient b Coefficient b Coefficient b T Coefficient b Coefficient b Coefficient .001 .000042 .051 .015119 .101 .041477 .151 .074590 .■201 .112625 .002 .000119 .052 .015561 .102 .042081 .152 .075307 .202 .113427 .003 .000219 .053 .016008 .103 .042687 .153 .076026 .203 .114231 .004 .000337 .000471 .054 .016458 .104 .043296 .154 .076747 .204 .115036 .005 .055 .016912 .105 .043908 .155 .077470 .205 .115842 .006 .000619 .056 .017369 .106 .044523 .156 .078194 .206 .116651 .007 .000779 .057 .017831 .107 .045140 .157 .078921 .207 .117460 .008 .000952 .058 .018297 .108 .045759 .158 .079650 .208 .118271 .009 .001135 .059 .018766 .109 .046381 .159 .080380 .209 .119084 .010 .001329 .060 .019239 .110 .047006 .160 .081112 .210 .119898 .011 .001533 .061 .019716 .111 .047633 .161 .081847 .211 .120713 .012 .001746 .062 .020197 .112 .048262 .162 .082582 .212 .121530 .013 .001969 .063 .020681 .113 .048894 .163 .083320 .213 .122348 .014 .002199 .064 .021168 .114 .049529 .164 .084060 .214 .123167 .015 .002438 .065 .021660 .115 .050165 .165 .084801 .215 .123988 .016 .002685 .066 .022155 .116 .050805 .166 .085545 .216 .124811 .017 .002940 .067 .022653 .117 .051446 .167 .086290 .217 .125634 .018 .003202 .068 .023155 .118 .052090 .168 .087037 .218 .126459 .019 .003472 .069 .023660 .119 .052737 .169 .087785 .219 .127286 .020 .003749 .070 .024168 .120 .053385 .170 .088536 .220 .128114 .021 .004032 .071 .024680 .121 .054037 .171 .089288 .221 .128943 .022 .004322 .072 .025196 .122 .054690 .172 .090042 .222 .129773 .023 .004619 .073 .025714 .123 .055346 .173 .090797 .223 .130605 .024 .004922 .074 .026236 .124 .056004 .174 .091555 .224 .131438 .025 .005231 .075 .026761 .125 .056664 .175 .092314 .225 .132273 .026 .005546 .076 .027290 .126 .057327 .176 .093074 .226 .133109 .027 .005867 .077 .027821 .127 .057991 .177 .093837 .227 .133946 .028 .006194 .078 .028356 .128 .058658 .178 .094601 .228 .134784 .029 .006527 .079 .028894 .129 .059328 .179 .095367 .229 .135624 .030 .006866 .080 .029435 .130 .059999 .180 .096135 .230 .136465 .031 .007209 .081 .029979 .131 .060673 .181 .096904 .231 .137307 .032 .007559 .082 .030526 .132 .061349 .182 .097675 .232 .138151 .033 .007913 .083 .031077 .133 .062027 .183 .098447 .233 .138996 .034 .008273 .084 .031630 .134 .062707 .184 .099221 .234 .139842 .035- .008638 .085 .032186 .135 .063389 .185 .099997 .235 .140689 .036 .009008 .086 .032746 .136 .064074 .186 .100774 .236 .141538 .037 .009383 .087 .033308 .137 .064761 .187 .101553 .237 .142388 .038 .009764 .088 .033873 .138 .065449 .188 .102334 .238 .143239 .039 .010148 .089 .034441 .139 .066140 .189 .103116 .239 .144091 .040 .010538 .090 .035012 .140 .066833 .190 .103900 .240 .144945 .041 .010932 .091 .035586 .141 .067528 .191 .104686 .241 .145800' .042 .011331 .092 .036162 .142 .068225 .192 .105472 .242 .146656 .043 .011734 .093 .036742 .143 .068924 .193 .106261 .243 .147513 .044 .012142 .094 .037324 .144 .069626 .194 .107051 .244 .148371 .045 .012555 .095 .037909 .145 .070329 .195 .107843 .245 .149231 .046 .012971 .096 .038497 .146 .071034 .196 .108636 .246 .150091 .047 .013393 .097 .039087 .147 .071741 .197 .109431 .247 .150953 .048, .013818 .098 .039681 .148 .072450 .198 .110227 .248 .151816 .049 .014248 .099 .040277 .149 .073162 .199 .111025 .249 .152681 .050 .014681 .100 .040875 .150 .073875 .200 .111824 .250 .153546 396 MENSURATION TABLES AREAS OF CIRCULAR SEGMENTS Table II, For Ratios op Rise and Diameter — Concluded ■a Area=da x coefficient b d Coefficient b d Coefficient b d Coefficient b d Coefficient b d Coefficient .251 .154413 .301 .199085 .351 .245935 .401 .294350 .451 .343778 .252 .155281 .302 .200003 .352 .246890 .402 .295330 .452 .344773 .253 .156149 .303 .200922 .353 .247845 .403 .296311 .453 .345768 .254 .157019 .304 .201841 .354 .248801 .404 .297292 .454 .346764 . .255 .157891 .305 .202762 .355 .249758 .405 .298274 .455 .347760 .256 .158763 .306 .203683 .356 .250715 .406 .299256 .456 .348756 .257 .159636 .307 .204605 .357 .251673 .407 .300238 .457 .349752 .258 .160511 .308 .205528 .358 .252632 .408 .301221 .458 .350749 .259 .161386 .309 .206452 .359 .253591 .409 .302204 .459 .351745 .260 .162263 .310 .207376 .360 .254551 .410 .303187 .460 .352742 .261 .163141 .311 .208302 .361 .255511 .411 .304171 .461 .353739 .262 .164020 .312 .209228 .362 .256472 .412 .305156 .462 .354736 .263 .164900 .313 .210155 .363 .257433 .413 .306140 .463 .355733 .264 .165781 .314 .211083 .364 .258395 .414 .307125 .464 .356730 .265 .166663 .315 .212011 .365 .259358 .415 .308110 .465 .357728 .266 .167546 .316 .212941 .366 .260321 .416 .309096 .466 .358725 .267 .168431 .317 .213871 .367 .261285 .417 .310082 .467 .359723 .268 .169316 .318 .214802 .368 .262249 .418 .311068 .468 .360721 .269 .170202 .319 .215734 .369 .263214 .419 .312055 .469 .361719 .270 .171090 .320 .216666 .370 .264179 .420 .313042 .470 .362717 .271 .171978 .321 .217600 .371 .265145 .421 .314029 .471 .363715 .272 .172868 .322 .218534 .372 .266111 .422 .315017 .472 .364714 .273 .173758 .323 .219469 .373 .267078 .423 .316005 .473 .365712 .274 .174650 .324 .220404 .374 .268046 .424 .316993 .474 .366711 .275 .175542 .325 .221341 .375 .269014 .425 .317981 .475 .367710 .276 .176436 .326 .222278 .376 .269982 .426 .318970 .476 .368708 .277 .177330 .327 .223216 .377 .270951 .427 .319959 .477 .369707 .278 .178226 .328 .224154 .378 .271921 .428 .320949 .478 .370706 .279 .179122 .329 .225094 .379 .272891 .429 .321938 .479 .371705 .280 .180020 .330 .226034 .380 .273861 .430 .322928 .480 .372704 .281 .180918 .331 .226974 .381 .274832 .431 .323919 .481 .373704 .282 .181818 .332 .227916 .382 .275804 .432 .324909 .482 .374703 .283 .182718 .333 .228858 .383 .276776 .433 .325900 .483 .375702 .284 .183619 .334 .229801 .384 .277748 .434 .326891 .484 .376702 .285 .184522 .335 .230745 .385 .278721 .435 .327883 .485 .377701 .286 .185425 .336 .231689 .386 .279695 .436 .328874 .486 .378701 .287 .186329 .337 .232634 .387 .280669 .437 .329866 .487 .379701 .288 .187235 .338 .233580 .388 .281643 .438 .330858 .488 .380700 - 289 .188141 .339 .234526 .389 .282618 .439 .331851 .489 .381700 .290 .189048 .340 .235473 .390 .283593 .440 .332843 .490 .382700 .291 .189956 .341 .236421 .391 .284569 .441 .333836 .491 .383700 .292 .190865 .342 .237369 .392 .285545 .442 .334829 .492 .384699 .293 .191774 .343 .238319 .393 .286521 .443 .335823 .493 .385699 294 .192685 .344 .239268 .394 .287499 .444 .336816 .494 .386699 !295 .193597 .345 .240219 .395 .288476 .445 .337810 .495 .387699 .296 .194509 .346 .241170 .396 .289454 .446 .338804 .496 .388699 !297 .195423 .347 .242122 .397 .290432 .447 .339799 .497 .389699 ]298 .196337 .348 .243074 .398 ►291411 .448 .340793 .498 .390699 299 .197252 .349 .244027 .399 .292390 .449 .341788 .499 .391699 '.300 .198168 .350 .244980 .400 .293370 .450 .342783 .500 .392699 I 3 97 CARNEGIE STEEL COMPANY SURFACE AND VOLUME OF SOLIDS S=Latebal or Convex Surface. V=Voltjme 7'ir Parallelopiped •*' S=perimeter, P, perp. to sidesxlat. length, 1: PI .'- V=area of base, B x perpendicular height, h: Bh V=area of section, A, perp. tosldesxlat. length, 1: Al Prism, Right or Oblique, Regular or Irregular S=perimeter, P, perp. to sides x lat. length, 1: PI V=area of base, B x perpendicular height, h: Bh V=areaof section, A,perp,tosidesxlat.Iength, 1: Al Cylinder, Right or Oblique, Circular or Elliptic, etc S =perimeter of base, C x perp. height, h : Ch S =perimeter, P, perp. to sides xlat. length, 1: PI V=area of base, B x perpendicular height, h: Bh V=area of section, A, perp. to sides x lat. length, 1 : Al Frustum of any Prism or Cylinder V=area of base, B x perp. distance, h, from base to center of gravity of opposite face: Bh For cylinder: H A. di + la) Pyramid or Cone, Right and Regular S=perimeter of base, Bi^ slant height, 1: V=area of base, B x % perp. height, h: %BI %Bh Pyramid or Cone, Right or Oblique, Regular or Irregular V=area of base, B x % perp. height, h : % Bh V=^Mi volume of prism or cylinder of same base and perpendicular height V=% volume of hemisphere of same base and h / / perpendicular height , Frustum of Pyramid or Cone, Right and Regular, Parallel Ends S=(sumi of perimeter of base, B, and top, b) x% slant „.--\ height, 1: ^KB + b) YA 'h / Y\ V=(sumof areas of base, B, and top, b + square y=-li_£_'_"_Y_V4.-* root of their products) xy 8 perp. height, h: • J/s h (B + b + t/^bV) Frustum of any Pyramid or Cone, Parallel Ends h / / "V=(sum of areas of base, B, and top, b + square root of their products) x Mi perp. height, h : %h(B + b + 1 /Bb i) -b- — Wedge, Parallelogram Face V=Va (sum of three edges, aba x perpendicular height, hxperpendicular width, d) : y a dh(2a + b) Prismatoid V=% perp. height, h (sum of areas of base, B, and top b, + 4 x area of section, M, parallel to bases and midway between them) : y 8 h (B + b + 4 M) The Prismatoid formula applies also to any of the foregoing solids with parallel bases, to pyramids, cones, spherical sections, and to many solids with irregular surfaces. 398 MENSURATION TABLES SURFACE AND VOLUME OF SOLIDS— Concluded S=Latekal or Convex Surface. V=VoLtrME Sphere S=4 7rrs = v d 2 = 3.14159265 d 2 V=4' s 7T r« = V a 7r ds = 0.52359878 da Spherical Sector S =y 2 ir r (4 b + c) — c *• -I r rS-*-E~>| r t>~ -fr — * Spherical Segment S=2 7T r b = % 7T (4 b 2 + C 2 ) V=y 3 ir b 2 (3 r-b) = y 2< nr b (3 c 2 + 4 b 2 ) Spherical Zone S =2 tv r b V=% 4 ir b (3 a 2 + 3 c 2 + 4 b 2 ) Circular Ring S=4 ir 2 Er V=2 ir 2 R r 2 Ungula of Right, Regular Cylinder Base=Half Circle 3=2 rh 5 =(2 r m-o x arc, b a b) Base=Segment, b a b h r-o =(% ms-o x area, b a b) -jrj- Base=Segment, c a c h S=(2r n + p x arc, c a c) r + p h r + p Ellipsoid V=(%1i* + p x area, c a c) V=%r 2 h Base=Circle S=rirh V=y 2 r 2 ir h Paraboloid V=M> ir r a b V=% ir r 2 h Batio of corresponding volumes of a Cone, Parabo- loid, Sphere, and Cylinder of equal height :%:%:%: 1 Bodies Generated by Partial or Complete Revolution 1 =length of a curve 1 rotating about an axis 1-1 ii=area of a plane i on one side and in plane of axis r=distanceof center of gravity of line or plane from axis 1-1 and for any angle of revolution, a", 2t 3 qq°— length of arc described by center of gravity. S=length of curve x length of arc about axis = 1 2 r **° For complete revolution S=2rirl 360 V=area of plane x length of arc about axis A 2 r ir al For comp i e te revolution V= 2 r ir A 360 399 CARNEQIE STEEL COMPANY Functions of Numbers, 1 to 49 Square Cube Square Root Cubic Root Logarithm 1000 ' Reciprocal No.= Diameter No. Circum. Area 1 1 1 1.0000 1.0000 0.00000 1000.000 ' 3.142 0.7854 2 4 8 1.4142 1.2599 0.30103 500.000 6.283 3.1416 3 9 27 1.7321 1.4422 0.47712 333.333 9.425 7.0686 4 16 64 2.0000 1.5874 0.60206 250.000 12.566 12.5664 5 25 125 2.2361 1.7100 0.69897 200.000 15.708 19.6350 6 36 216 2.4495 1.8171 0.77815 166.667 18.850 28.2743 7 49 343 2.6458 1.9129 0.84510 142.857 21.991 38.4845 8 64 512 2.8284 2.0000 0.90309 125.000 25.133 50.2655 9 81 729 3.0000 2.0801 0.95424 111.111 28.274 63.6173 10 100 1000 3.1623 2.1544 1.00000 100.000 31.416 78.5398 11 121 1331 3.3166 2.2240 1.04139 90.9091 34.558 95.0332 12 144 1728 3.4641 2.2894 1.07918 83.3333 37.699 113.097 13 169 2197 3.6056 2.3513 1.11394 76.9231 40.841 132.732 14 196 .'2744 3.7417 2.4101 1.14613 71.4286 43.982 153.938 15 225 3375 3.8730 2.4662 1.17609 66.6667 47.124 176.715 16 . 256 4096 4.0000 2.5198 1.20412 62.5000 50.265 201.062 17 289 4913 4.1231 2.5713 1.23045 58.8235 53.407 226.980 18 324 5832 4.2426 2.6207 1.25527 55.5556 56.549 254.469 19 361 6859 4.3589 2.6684 1.27875 52.6316 59.690 283.529 20 400 8000 4.4721 2.7144 1.30103 50.0000 62.832 314.159 21 441 9261 4.5826 2.7589 1.32222 47.6190 65.973 346.361 22 484 10648 4.6904 2.8020 1 34242 45.4545 69.115 380.133 23 529 12167 4.7958 2.8439 1.36173 43.4783 72.257 415.476 24 576 13824 4.8990 ,2.8845 1.38021 41.6667 75.398 452.389 25 625 15625 5.0000 2.9240 1.39794 40.0000 78.540 490.874 26 676 17576, 5.0990 2.9625 1.41497 38.4615 81.681 530.929 27 729 19683 5.1962 3.0000 1.43136 37.0370 84.823 572.555 28 784 21952 5.2915 3.0366 1.44716 ' 35.7143 87.965 615.752 29 841 24389 5,3852 3.0723 1.46240 34.4828 91.106 660.520 30 900 27000 5.4772 3.1072 1.47712 33.3333 94.248 706.858 31 961 29791 5.5678 3.1414 1.49136 32.2581 97.389 754.768 32 1024 32768 5.6569 3.1748 1.50515 31.2500 100.531 804.248 33 1089 35937 5.7446 3.2075 1.51851 30.3030 103.673 855.299 34 1156 39304 5.8310 3.2396 1.53148 29.4118 106.814 907.920 35 1225 42875 5.9161 3.2711 1.54407 28.5714 109.956 962.113 36 1296 46656 6.0000 3.3019 1.55630 27.7778 113.097 1017.88 37 1369 50653 6.0828 3.3322 1.56820 27.0270 116.239 1075.21 38 1444 54872 6.1644 3.3620 1.57978 26.3158 119.381 1134.11 39 1521 59319 6.2450 3.3912 1.59106 25.6410 25.0000 122.522 1194.59 40 1600 64000 6.3246 3.4200 1.60206 125.66 1256.64 41 1681 68921 6'.4031 3.4482 1.61278 24.3902 128.81 1320.25 42 1764 74088 6.4807 3.4760 1.62325 23.8095 131.95 1385.44 43 1849 79507 6.5574 3.5034 1.63347 23.2558 135.09 1452.20 44 1936 85184 6.6332 3.5303 1.64345 22.7273 138.23 1520.53 45 2025 91125 6.7082 3.5569 1.65321 22.2222 141.37 1590.43 46 2116 97336 6.7823 3.5830 1.66276 21.7391 144.51 1661.90 47 2209 103823 6.8557 3.6088 1.67210 21.2766 147.65 1734.94 48 2304 110592 6.9282 3.6342 1.68124 20.8333 150.80 1809.56 49 2401 117649 7.Q000 3.6593 1.69020 20.4082 153.94 1885.74 400 MATHEMATICAL TABLES FlTNCTiqNS of Numbers 50 TO 99 1000 No.= Diameter No. Square Cube Square Hoot Cubic Root Logarithm Reciprocal Circum. ' Area 50 2500 125000 7.0711 3.6840 1.69897 20.0000 157.08 1963.50 51 2601 132651 7.1414 3.7084 1.70757 19.6078 160.22 2042.82 52 2704 140608 7.2111 3.7325 1.71600 19.2308 163.36 2123.72 53 2809 148877 7.2801 3.7563 1.72428 18.8679 166.50 2206.48 54 2916 157464 7.3485 3.7798 1.73239 18.5185 169.65 2290.22 55 3025 166375 7.4162 3.8030 1.74036 18.1818 172.79 2375.83 56 3136 175616 7.4833 3.8259 1.74819 17.8571 175.93 2463.01 57 3249 185193 7.5498 3.8485 1.75587 17.5439 179.07 2551.76 58 3364 195112 7.6158 3.8709 1.76343 17.2414 182.21 2642.08 59 3481 205379 7.6811 3.8930 1.77085 16.9492 185.35 2733.97 60 3600 216000 7.7460 3.9149 1.77815 16.6667 188.50 2827.43 61 3721 226981 7.8102 3.9365 1.78533 16.3934 191.64 2922.47 62 3844 238328 7.8740 3.9579 1.79239 16.1290 194.78 3019.07 63 3969 250047 7^9373 3.9791 1.79934 15.8730 197.92 3117.25 64 4096 262144 8.0000 4.0000 1.80618 15.6250 201.06 3216.99 65 4225 274625 8.0623 4.0207 1.81291 15.3846 204.20 3318.31 66 4356 287496 8.1240 4.0412 1.81954 15.1515 207.35 3421.19 67 4489 300763 8.1854 4.0615 1.82607 14.9254 210.49 3525.65 68 4624 314432 8.2462 4.0817 1.83251 14.7059 213.63 3631.68 69 4761 328509 8.3066 4.1016 1.83885 14.4928 216.77 3739.28 70 4900 343000 8.3666 4.1213 1.84510 14.2857 219.91 3848.45 71 5041 357911 8.4261 4.1408 1.85126 14.0845 223.05 3959.19 72 5184 373248 8.4853 4.1602 1.85733 13.8889 226.19 4071.50 73 5329 389017 8.5440 4.1793 1.86332 13.6986 229.34 4185.39 74 5476 405224 8.6023 4.1983 1.86923 13.5135 232.48 4300.84 75 5625 421875 8.6603 4.2172 1.87506 13.3333 235.62 4417.86 76 5776 438976 8.7178 4.2358 1.88081 13.1579 238.76 4536.46 77 5929 456533 8.7750 4.2543 1.88649 12.9870 241.90 4656.63 78 6084 474552 8.8318 4.2727 1.89209 12.8205 245.04 4778.36 79 6241 493039 8.8882 4.2908 1.89763 12.6582 248.19 4901.67 80 6400 512000 8.9443 4.3089 1.90309 12.5000 251.33 5026.55 81 6561 531441 9.0000 4.3267 1.90849 12.3457 254.47 5153.00 82 6724 551368 9.0554 4.3445 1.91381 12.1951 257.61 5281.02 83 6889 571787 9.1104 4.3621 1.91908 12.0482 260.75 5410.61 84 7056 592704 9.1652 4.3795 1.92428 11.9048 263.89 5541.77 85 7225 614125 9.2195 4.3968 1.92942 11.7647 267.04 5674.50 86 7396 636056 9.2736 4.4140 1.93450 11.6279 270.18 5808.80 87 7569 658503 9.3274 4.4310 1.93952 11.4943 273.32 5944.68 88 7744 681472 9.3808 4.4480 1.94448 11.3636 276.46 6082.12 89 7921 704969 9.4340 4.4647 1.94939 11.2360 279.60 6221.14 90 8100 729000 9.4868 4.4814 1.95424 11.1111 282.74 6361.73 91 8281 753571 9.5394 4.4979 1.95904 10.9890 285.88 6503.88 92 8464 778688 9.5917 4.5144 1.96379 10.8696 289.03 6647.61 93 8649 804357 9.6437 4.5307 1.96848 10.7527 292.17 6792.91 94 8836 830584 9.6954 4.5468 1.97313 10.6383 295.31 6939.78 95 9025 857375 9.7468 4.5629 1.97772 10.5263 298.45 7088.22 96 9216 884736 9.7980 4.5789 1.98227 10.4167 301.59 7238.23 97 9409 912673 9.8489 4.5947 1.98677 10.3093 304.73 7389.81 98 9604 941192 9.8995 4.6104 1.99123 10.2041 307.88 7542.96 99 9801 970299 9.9499 4.6261 1.99564 10.1010 311.02 7697.69 401 CARNEGIE STEEL COMPANY Functions of Numbers, 100 to 149 No. Square Cube Square Root Cubic Hoot Logarithm 1000 X Reciprocal No. = Diameter Circum. Area 100 10000 1000000 10.0000 4.6416 2.00000 10.0000 314.16 7853.98 101 10201 1030301 10.0499 4.6570 2.00432 9.90099 317.30 8011.85 102 10404 1061208 10.0995 4.6723 2.00860 9.80392 320.44 8171.28 106 10609 1092727 10.1489 4.6875 2.01284 9.70874 323.58 8332.29 104 10816 1124864 10.1980 4.7027 2.01703 9.61538 326.73 8494.87 105 11025 1157625 10.2470 4.7177 2.02119 9.52381 329.87 8659.01 106 11236 1191016 10.2956 4.7326 2.02531 9.43396 333.01 8824.73 107 11449 1225043 10.3441 4.7475 2.02938 9.34579 336.15 8992.02 108 11664 1259712 10.3923 4.7622 2.03342 9.25926 339.29 9160.88 109 11881 1295029 10.4403 4.7769 2.03743 9.17431 342.43 9331.32 110 12100 1331000 10.4881 4.7914 2.04139 9.09091 345.58 9503.32 111 12321 1367631 10.5357 4.8059 2.04532 9.00901 348.72 9676.89 112 12544 1404928 10.5830 4.8203 2.04922 8.92857 351.86 9852.03 113 12769 1442897 10.6301 4.8346 2.05308 8.84956 355.00 10028.7 114 12996 1481544 10.6771 4.8488 2.05690 8.77193 358.14 10207.0 115 13225 1520875 10.7238 4.8629 2.06070 8.69565 361.28 10386.9 116 13456 1560896 10.7703 4.8770 2.06446 8.62069 364.42 10568.3 117 13689 1601613 10.8167 4.8910 2.06819 8.54701 367.57 10751.3 118 13924 1643032 10.8628 4.9049 2.07188 8.47458 370.71 10935.9 119 14161 1685159 10.9087 4.9187 2.07555 8.40336 373.85 11122.0 120 14400 1728000 10.9545 4.9324 2.07918 8.33333 376.99 11309.7 121 14641 1771561 11.0000 4.9461 2.08279 8.26446 380.13 11499.0 122 14884 1815848 11.0454 4.9597 2.08636 8.19672 383.27 11689.9 123 15129 1860867 11.0905 4.9732 2.08991 8.13008 386.42 11882.3 124 15376 1906624 11.1355 4.9866 2.09342 8.06452 389.56 12076.3 125 15625 1953125 11.1803 5.0000 2.09691 8.00000 392.70 12271.8 126 15876 2000376 11.2250 5.0133 2.10037 7.93651 395.84 12469.0 127 16129 2048383 11.2694 5.0265 2.10380 7.87402 398.98 12667.7 128 16384 2097152 11.3137 5.0397 2.10721 7.81250 402.12 12868.0 129 16641 2146689 11.3578 5.0528 2.11059 7.75194 405.27 13069.8 130 16900 2197000 11.4018 5.0658 2.11394 7.69231 408.41 13273.2 131 17161 2248091 11.4455 5.0788 2.11727 7.63359 411.55 13478.2 132 17424 2299968 11.4891 5.0916 2.12057 7.57576 414.69 13684.8 133 17689 2352637 11.5326 5.1045 2.12385 7.51880 417.83 13892.9 134 17956 2406104 11.5758 5.1172 2.12710 7.46269 420.97 14102.6 135 18225 2460375 11.6190 5.1299 2.13033 7.40741 424.12 14313.9 136 18496 2515456 11.6619 5.1426 2.13354 7.35294 427.26 14526.7 137 18769 2571353 11.7047 5.4551 2.13672 7.29927 430.40 14741.1 138 19044 2628072 11.7473 5.1676 2.13988 7.24638 433.54 14957.1 139 19321 2685619 11.7898 5.1801 2.14301 7.19424 436.68 15174.7 140 19600 2744000 11.8322 5.1925 2.14613 7.14286 439.82 15393.8 141 19881 2803221 11.8743 5.2048 2.14922 7.09220 442.96 15614.5 142 20164 2863288 11.9164 5.2171 2.15229 7.04225 446.11 15836.8 143 20449 2924207 11.9583 5.2293 2.15534 6.99301 449.25 16060.6 144 20736 2985984 12.0000 5.2415 2.15836 6.94444 452.39 16286.0 145 21025 3048625 12.0416 5.2536 2.16137 6.89655 455.53 16513.0 146 21316 3112136 12.0830 5.2656 2.16435 6.84932 458.67 16741.5 147 21609 3176523 12.1244 5.2776 2.16732 6.80272 461.81 16971.7 148 21904 3241792 12.1655 512896 2.17026 6.75676 464.96 17203.4 149 22201 3307949 12.2066 5.3015 2.17319 6.71141 468.10 17436.6 402 MATHEMATICAL TABLES Functions op Numbers, 150 to 199 No. Square Cube Square Root Cubio Root Logarithm 1000 X Reciprocal No. = Diameter Circum. Area 150 22500 3375000 12.2474 5.3133 2.17609 6.66667 471.24 17671.5 151 22801 3442951 12.2882 5.3251 2.17898 6.62252 474.38 17907.9 152 23104 3511808 12.3288 5.3368 2.18184 6.57895 477.52 18145.8 153 23409 3581577 12.3693 5.3485 2.18469 6.53595 480.66 18385.4 154 23716 3652264 12.4097 5.3601 2.18752 6.49351 483.81 18626.5 155 24025 3723875 12.4499 5.3717 2.19033 6.45161 486.95 18869.2 156 24336 3796416 12.4900 5.3832 2.19312 6.41026 490.09 19113 4 157 24649 3869893 12.5300 5.3947 2.19590 6.36943 493.23 19359.3 158 24964 3944312 12.5698 5.4061 2.19866 6.32911 496.37 19606.7 159 25281 4019679 12.6095 5.4175 2.20140 6.28931 499.51 19855.7 160 25600 4096000 12.6491 5.4288 2.20412 6.25000 502.65 20106.2 161 25921 4173281 12.6886 5.4401 2.20683 6.21118 505.80 20358.3 162 26244 4251528 12.7279 5.4514 2.20952 6.17284 508.94 20612.0 163 26569 4330747 12.7671 5.4626 2.21219 6.13497 512.08 20867.2 164 26896 4410944 12.8062 5.4737 2.21484 6.09756 515.22 21124.1 165 27225 4492125 12.8452 5.4848 2.21748 6.06061 518.36 21382.5 166 27556 4574296 12.8841 5.4959 2.22011 6.02410 521.50 21642.4 167 27889 4657463 12.9228 5.5069 2.22272 5.98802 524.65 21904.0 168 28224 4741632 12.9615 5.5178 2.22531 5.95238 527.79 22167.1 169 28561 4826809 13.0000 5.5288 2.22789 5.91716 530.93 22431.8 170 28900 4913000 13.0384 5.5397 2.23045 5.88235 534.07 22698.0 171 29241 5000211 13.0767 5.5505 2.23300 5.84795 537.21 22965.8 172 29584 5088448 13.1149 5.5613 2.23553 5.81395 540.35 23235.2 173 29929 5177717 13.1529 5.5721 2.23805 5.78035 543.50 23506.2 174 30276 5268024 13.1909 5.5828 2.24055 5.74713 546.64 23778.7 175 30625 5359375 13.2288 5.5934 2.24304 5.71429 549.78 24052.8 176 30976 5451776 13.2665 5.6041 2.24551 5.98182 552.92 24328.5 177 31329 5545233 13.3041 5.6147 2.24797 5.64972 556.06 24605.7 178 31684 5639752 13.3417 5.6252 2.25042 5.61798 559.20 24884.6 179 32041 5735339 13.3791 5.6357 2.25285 5.58659 562.35 25164.9 180 32400 5832000 13.4164 5.6462 2.25527 5.55556 565.49 25446.9 181 32761 5929741 13.4536 5.6567 2.25768 5.52486 568.63 25730.4 182 33124 6028568 13.4907 5.6671 2.26007 5.49451 571.77 26015.5 183 33489 6128487 13.5277 5.6774 2.26245 5.46448 574.91 26302.2 184 33856 6229504 13.5647 5.6877 2.26482 5.43478 578.05 26590.4 185 34225 6331625 13.6015 5.6980 2.26717 5.40541 581.19 26880.3 186 34596 6434856 13.6382 5.7083 2.26951 5.37634 584.34 27171.6 187 34969 6539203 13.6748 5.7185 2.27184 5.34759 587.48 27464.6 188 35344 6644672 13.7113 5.7287 2.27416 5.31915 590.62 27759.1 189 35721 6751269 13.7477 5.7388 2.27646 5.29101 593.76 28055.2 190 36100 6859000 13.7840 5.7489 2.27875 5.26316 596.90 28352.9 191 36481 6967871 13.8203 5.7590 2.28103 5.23560 600.04 28652.1 192 193 194 195 196 197 198 199 36864 7077888 13.8564 5.7690 2.28330 5.20833 603.19 28952.9 37249 7189057 13.8924 5.7790 2.28556 5.18135 606.33 29255.3 37636 7301384 13.9284 5.7890 2.28780 5.15464 609.47 29559.2 38025 7414875 13.9642 5.7989 2.29003 5.12821 612.61 29864.8 38416 7529536 14.0000 5.8088 2.29226 5.10204 615.75 30171.9 38809 39204 39601 7645373 14.0357 5.8186 2.29447 5.07614 618.89 30480.5 7762392 14.0712 5.8285 2.29667 5.05051 622.04 30790.7 7880599 14.1067 5.8383 2.29885 1 5.02513 625.18 31102.6 403 CARNEGIE STEEL COMPANY Functions of Numbees, 200 to 249 No. Square Cube Square Boot Cubic ' 1000 X Reciprocal No. =: Diameter Root Logarithm Circum. Area 200 ,40000 8000000 14.1421 5.8480 2.30103 5.00000 628.32 31415.9 201 40401 8120601 14.1774 5.8578 2.30320 4.97512 631.46 31730.9 202 40804 8242408 14.2127 5.8675 2.30535 4.95050 634.60 32047.4 203 41209 8365427 14.2478 5.8771 2.30750 4.92611 637.74 32365.5 204 41616 8489664 14.2829 5.8868 2.30963 4.90196 640.88 32685.1 205 42025 8615125 14.3178 5.8964 2.31175 4.87805 644.03 33006.4 206 42436 8741816 14.3527 5.9059 2.31387 4.85437 647.17 33329.2 207 42849 8869743 14.3875 5.9155 2.31597 4.83092 650.31 33653.5 208 43264 8998912 14.4222 5.9250 2.31806 4.80769 653.45 33979.5 209 43681 9129329 14.4568 5.9345 2.32015 4.78469 656.59 34307.0 210 44100 9261000 14.4914 5.9439 2.32222 4.76190 659.73 34636.1 211 44521 9393931 14.5258 5.9533 2.32428 4.73934 662.88 34966.7 212 44944 9528128 14.5602 5.9627 2.32634 4.71698 666.02 35298.9 213 45369 9663597 14.5945 5.9721 2.32838 4.69484 669.16 35632.7 214 45796 9800344 14.6287 5.9814 2.33041 4.67290 672.30 35968.1 215 46225 9938375 14.6629 5.9907 2.33244 4.65116 675.44 36305.0 216 46656 10077696 14.6969 6.0000 2.33445 4.62963 678.58 36643.5 217 47089 10218313 14.7309 6.0092 2.33646 4.60829 681.73 36983.6 218 47524 10360232 14.7648 6.0185 2.33846 4.58716 684.87 37325.3 219 47961 10503459 14.7986 6.0277 2.34044 4.56621 688.01 37668.5 220 48400 10648000 14.8324 6.0368 2.34242 4.54545 691.15 38013.3 221 48841 10793861 14.8661 6.0459 2.34439 4.52489 694.29 38359.6 222 49284 10941048 14.8997 6.0550 2.34635 4.50450 697.43 38707.6 223 49729 11089567 14.9332 6.0641 2.34830 4.48430 700.58 39057.1 224 50176 11239424 14.9666 6.0732 2.35025 4.46429 703.72 39408.1 225 50625 11390625 15.0000 6.0822 2.35218 4.44444 706.86 39760.8 226 51076 115431761 • 15.0333 6.0912 2.35411 4.42478 710.00 40115.0 227 51529 11697083 15.0665 6.1002 2.35603 4.40529 713.14 40470.8 228 51984 11852352 15.0997 6.1091 2.35793 4.38596 716.28 40828.1 229 52441 12008989 15.1327 6.1180 2.35984 4.36681 719.42 41187.1 230 52900 12167000 15.1658 6.1269 2.36173 4.34783 722.57 41547.6 231 53361 12326391 15.1987 6.1358 2.36361 4.32900 725.71 41909.6 232 53824 12487168 15.2315 6.1446 2.36549 4.31034 728.85 42273.3 233 54289 12649337 15.2643 6.1534 2.36736 4.29185 731.99 42638.5 234 54756 12812904 15.2971 6.1622 2.36922 4.27350 735.13 43005.3 235 55225 12977875 15.3297 6.1710 2.37107 4.25532 738.27 43373.6 236 55696 13144256 15.3623 6.1797 2.37291 4.23729 741.42 43743.5 237 56169 13312053 15.3948 6.1885 2.37475 4.21941 744.56 44115.0 238 56644 13481272 15.4272 6.1972 2.37658 4.20168 747.70 44488.1 239 57121 13651919 15.4596 6.2058 2.37840 4.18410 750.84 44862.7 240 57600 13824000 15.4919 6.2145 2.38021 4.16667 753.98 45238.9 241 58081 13997521 15.5242 6.2231 2.38202 4.14938 757.12 45616.7 242 58564 14172488 15.5563 6.2317 2.38382 4.13223 760.27 45996.1 243 59049 14348907 15.5885 6.2403 2.38561 4.11523 763.41 46377.0 244 59536 14526784 15.6205 6.2488 2.38739 4.09836 766.55 46759.5 245 60025 14706125 15.6525 6.2573 2.38917 4.08163 769.69 47143.5 246 60516 14886936 15.6844 6.2658 2.39094 4.06504 772.83 47529.2 247 61009 15069223 15.7162 6.2743 2.39270 4.04858 775.97 47916.4 248 61504 15252992 15.7480 6.2828 2.39445 4.03226 779.12 48305.1 249 62001 15438249 15.7797 6.2912 2.39620 4.01606 782.26 48695.5 404 MATHEMATICAL TABLES Functions op Numbers, 250 to 299 No. Square Cube Square Root Cubic Root Logarithm 1000 Reciprocal No. = Diameter Circum. Area 250 62500 15625000 15.8114 6.2996 2.39794 4.00000 785.40 49087.4 251 63001 15813251 15.8430 6.3080 2.39967 3.98406 788.54 49480.9 252 63504 16003008 15.8745 6.3164 2.40140 3.96825 791.68 49875.9 253 64009 16194277 15.9060 6.3247 2.40312 3.95257 794.82 50272.6 254 64516 16387064 15.9374 6.3330 2.40483 3.93701 797.96 50670.7 255 65025 16581375 15.9687 6.3413 2.40654 3.92157 801.11 51070.5 256 65536 16777216 16.0000 6.3496 2.40824 3.90625 804.25 51471.9 257 66049 16974593 16.0312 6.3579 2.40993 3.89105 807.39 51874.8 258 66564 17173512 16.0624 6.3661 2.41162 3.87597 810.53 52279.2 259 67081 17373979 16.0935 6.3743 2.41330 3.86100 813.67 52685.3 260 67600 17576000 16.1245 6.3825 2.41497 3.84615 816.81 53092.9 261 68121 17779581 16.1555 6.3907 2.41664 3.83142 819.96 53502.1 262 68644 17984728 16.1864 6.3988 2.41830 3.81679 823.10 53912.9 263 69169 18191447 16.2173 6.4070 2.41996 3.80228 826.24 54325.2 264 69696 18399744 16.2481 6.4151 2.42160 3.78788 829.38 54739.1 265 70225 18609625 16.2788 6.4232 2.42325 3.77358 832.52 55154.6 266 70756 18821096 16.3095 6.4312 2.42488 3.75940 835.66 55571.6 267 71289 19034163 16.3401 6.4393 2.42651 3.74532 838.81 55990.2 268 71824 19248832 16.3707 6.4473 2.42813 3.73134 841.95 56410.4 269 72361 19465109 16.4012 6.4553 2.42975 3.71747 845.09 56832.2 270 72900 19683000 16.4317 6.4633 2.43136 3.70370 848.23 57255.5 271 73441 19902511 16.4621 6.4713 2.43297 3.69004 851.37 57680.4 272 73984 20123648 16.4924 6.4792 2.43457 3.67647 854.51 58106.9 273 74529 20346417 16.5227 6.4872 2.43616 3.66300 857.65 58534.9 274 75076 20570824 16.5529 6.4951 2.43775 3.64964 860.80 58964.6 275 75625 20796875 16.5831 6.5030 2.43933 3.63636 863.94 59395.7 276 76176 21024576 16.6132 6.5108 2.44091 3.62319 867.08 59828.5 277 76729 21253933 16.6433 6.5187 2.44248 3.61011 870.22 60262.8 278 77284 21484952 16.6733 6.5265 2.44404 3.59712 873.36 60698.7 279 77841 21717639 16.7033 6.5343 2.44560 3.58423 876.50 61136.2 280 78400 21952000 16.7332 6.5421 2.44716 3.57143 879.65 61575.2 281 78961 22188041 16.7631 6.5499 2.44871 3.55872 882.79 62015.8 282 79524 22425768 16.7929 6.5577 2.45025 3.54610 885.93 62458.0 283 80089 22665187 16.8226 6.5654 2.45179 3.53357 889.07 62901.8 284 80656 22906304 16.8523 6.5731 2.45332 3.52113 892.21 63347.1 285 81225 23149125 16.8819 6.5808 2.45484 3.50877 895.35 63794.0 286 81796 23393656 16.9115 6.5885 2.45637 3.49650 898.50 64242.4 287 82369 23639903 16.9411 6.5962 2.45788 3.48432 901.64 64692.5 288 82944 23887872 16.9706 6.6039 2.45939 3.47222 904.78 65144.1 289 83521 24137569 17.0000 6.6115 2.46090 3.46021 907.92 65597.2 290 84100 24389000 17.0294 6.6191 2.46240 5.44828 911.06 66052.0 291 84681 24642171 17.0587 6.6267 2.46389 3.43643 914.20 66508.3 292 293 294 295 296 297 298 299 85264 24897088 17.0880 6.6343 2.46538 3.42466 917.35 66966.2 85849 25153757 17.1172 6.6419 2.46687 3.41297 920.49 67425.6 86436 25412184 17.1464 6.6494 2.46835 3.4Q136 923.63 67886.7 87025 25672375 17.1756 6.6569 2.46982 3.38983 926.77 68349.3 87616 88209 88804 89401 25934336 17.2047 6.6644 2.47129 3.37838 929.91 68813.4 26198073 17.2337 26463592 17.2627 6.6719 6.6794 2.47276 2.47422 3.36700 3.35570 933.05 936.19 69279.2 69746.5 26730899 1 17.2916 6.6869 2.47567 3.34448 1 939.34 70215.4 405 CARNEQIE STEEL COMPANY Functions of Numbers, 300 to 349 1000 No.=Diameter No. Square Cube Square Root Cubic Root Logarithm X Reciprocal Circum. Area 300 90000 27000000 17.3205 6.6943, 2,47712 3.33333 942.48 70685.8 301 90601 27270901 17.3494 6.7018 2.47857 3.32226 945.62 71157.9 302 91204 27543608 17.3781 6.7092 2.48001 3.31126 948.76 71631.5 303 91809 27818127 17.4069 6.7166 2.48144 3.30033 951.90 72106.6 304 92416 28094464 17.4356 6.7240 2.48287 3.28947 955.04 72583.4 305 93025 28372625 17.4642 6.7313 2.48430 3.27869 958.19 73061.7 306 93636 28652616 17.4929 6.7387 2.48572 3.26797 961.33 73541.5 307 94249 28934443 17.5214 6.7460 2.48714 3.25733 964.47 74023.0 308 94864 29218112 17.5499 6.7533 2.48855 3.24675 967.61 74506.0 309 95481 29503629 17.5784 6.7606 2.48996 3.23625 970.75 74990.6 310 96100 29791000 17.6068 6.7679 2.49136 3.22581 973.89 75476.8 311 96721 30080231 17.6352 6.7752 2.49276 3.21543 977.04 75964.5 312 97344 30371328 17.6635 6.7824 2.49415 3.20513 980.18 76453.8 313 97969 30664297 17.6918 6.7897 2.49554 3.19489 983.32 76944.7 314 98596 30959144 17.7200 6.7969 2.49693 3.18471 986.46 77437.1 315 99225 31255875 17.7482 6.8041 2.49831 3'.17460 989.60 77931.1 316 99856 31554496 17.7764 6.8113 2.49969 3.16456 992.74 78426.7 317 100489 31855013 17.8045 6.8185 2.50106 3.15457 995.88 78923.9 318 101124 32157432 17.8326 6.8256 2.50243 3.14465 999.03 79422.6 319 101761 32461759 17.8606 6.8328 2.50379 3.13480 1002.2 79922.9 320 102400 32768000 17.8885 6.8399 2.50515 3.12500 1005.3 80424.8 321 103041 33076161 17.9165 6.8470 2.50651 3.11526 1008.5 80928.2 322 103684 33386248 17.9444 6.8541 2.50786 3.10559 1011.6 81433.2 323 104329 33698267 17.9722 6.8612 2.50920 3.09598 1014.7 81939.8 324 104976 34012224 18.0000 6.8683 2.51055 3.08642 1017.9 82448.0 325 105625 34328125 18.0278 6.8753 2.51188 3.07692 1021.0 82957.7 326 106276 34645976 18.0555 6.8824 2.51322 3.06749 1024.2 83469.0 327 106929 34965783 18.0831 6.8894 2.51455 3.05810 1027.3 83981.8 328 107584 35287552 18.1108 6.8964 2.51587 3.04878 1030.4 84496.3 329 108241 35611289 18.1384 6.9034 2.51720 3.03951 1033.6 85012.3 330 108900 35937000 18.1659 6.9104 2.51851 3.03030 1036.7 85529.9 331 109561 36264691 18.1934 6.9174 2.51983 3.02115 1039.9 86049.0 332 110224 36594368 18.2209 6.9244 2.52114 3.01205 1043.0 86569.7 333 110889 36926037 18.2483 6.9313 2.52244 3.00300 1046.2 87092.0 334 111556 37259704 18.2757 6.9382 2.52375 2.99401 1049.3 87615.9 335 112225 37595375 18.3030 6.9451 2.52504 2.98507 1052.4 88141.3 336 112896 37933056 18.3303 6.9521 2.52634 2.97619 1055.6 88668.3 337 113569 38272753 18.3576 6.9589 2.52763 2.96736 1058.7 89196.9 338 114244 38614472 18.3848 6.9658 2.52892 2.95858 1061.9 89727.0 339 114921 38958219 18.4120 6.9727 2.53020 2.94985 1065.0 90258.7 340 115600 39304000 18.4391 6.9795 2.53148 2.94118 1068.1 90792.0 341 116281 39651821 18.4662 6.9864 2.53275 2.93255 1071.3 91326.9 342 116964 40001688 18.4932 6.9932 2.53403 2.92398 1074.4 91863.3 343 117649 40353607 18.5203 7.0000 2.53529 2.91545 1077.6 92401.3 344 118336 40707584 18.5472 7.0068 2.53656 2.90698 1080.7 92940.9 345 119025 41063625 18.5742 7.0136 2.53782 2.89855 1083.8 93482.0 346 119716 41421736 18.6011 7.0203 2.53908 2.89017 1087.0 94024.7 347 120409 41781923 18.6279 7.0271 2.54033 2.88184 1090.1 94569.0 348 121104 42144192 18.6548 7.0338 2.54158 2.87356 1093.3 95114.9 349 121801 42508549 18.6815 7.0406 2.54283 2.86533 1096.4 95662.3 MATHEMATICAL TABLES Functions of Numbers, 350 to 399 No. Square Cube Square Boot Cubic Root Logarithm 1000 X Reciprocal No. —Diameter Circum. Area 350 122500 42875000 18.7083 7.0473 2.54407 2.85714 1099.6 96211.3 351 123201 43243551 18.7350 7.0540 2.54531 2.84900 1102.7 96761.8 352 123904 43614208 18.7617 7.0607 2.54654 2.84091 1105.8 97314.0 353 124609 43986977 18.7883 7.0674 2.54777 2.83286 1109.0 97867.7 354 125316 44361864 18.8149 7.0740 2.54900 2.82486 1112.1 98423.0 355 126025 44738875 18.8414 7.0807 2.55023 2.81690 1115.3 98979.8 356 126736 45118016 18.8680 7.0873 2.55145 2.80899 1118.4 99538.2 357 127449 45499293 18.8944 7.0940 2.55267 2.80112 1121.5 100098 358 128164 45882712 18.9209 7.1006 2.55388 2.79330 1124.7 100660 359 128881 46268279 18.9473 7.1072 2.55509 2.78552 1127.8 101223 360 129600 46656000 18.9737 7.1138 2.55630 2.77778 1131.0 101788 361 130321 47045881 19.0000 7.1204 2.55751 2.77008 1134.1 102354 362 131044 47437928 19.0263 7.1269 2.55871 2.76243 1137.3 102922 363 131769 47832147 19.0526 7.1335 2.55991 2.75482 1140.4 103491 364 132496 48228544 19.0788 7.1400 2.56110 2.74725 1143.5 104062 365 133225 48627125 19.1050 7.1466 2.56229 2.73973 1146.7 104635 366 133956 49027896 19.1311 7.1531 2.56348 2.73224 1149.8 105209 367 134689 49430863 19.1572 7.1596 2.56467 2.72480 1153.0 105785 368 135424 49836032 19.1833 7.1661 2.56585 2.71739 1156.1 106362 369 136161 50243409 19.2094 7.1726 2.56703 2.71003 1159.2 106941 370 136900 50653000 19.2354 7.1791 2.56820 2.70270 1162.4 107521 371 137641 51064811 19.2614 7.1855 2.56937 2.69542 1165.5 108103 372 138384 51478848 19.2873 7.1920 2.57054 2.68817 1168.7 108687 373 139129 51895117 19.3132 7.1984 2.57171 2.68097 1171.8 109272 374 139876 52313624 19.3391 7.2048 2.57287 2.67380 1175.0 109858 375 140625 52734375 19.3649 7.2112 2.57403 2.66667 1178.1 110447 376 141376 53157376 19.3907 7.2177 2.57519 2.65957 1181.2 111036 377 142129 53582633 19.4165 7.2240 2.57634 2.65252 1184.4 111628 378 142884 54010152 19.4422 7.2304 2.57749 2.64550 1187.5 112221 379 143641 54439939 19.4679 7.2368 2.57864 2.63852 1190.7 112815 380 144400 54872000 19.4936 7.2432 2.57978 2.63158 1193.8 113411 381 145161 55306341 19.5192 7.2495 2.58093 2.62467 1196.9 114009 382 145924 55742968 19.5448 7.2558 2.58206 2.61780 1200.1 114608 383 146689 56181887 19.5704 7.2622 2.58320 2.61097 1203.2 115209 384 147456 56623104 19.5959 7.2685 2.58433 2.60417 1206.4 115812 385 148225 57066625 19.6214 7.2748 2.58546 2.59740 1209.5 116416 386 148996 57512456 19.6469 7.2811 2.58659 2.59067 1212.7 117021 387 149769 57960603 19.6723 7.2874 2.58771 2.58398 1215.8 117628 388 150544 58411072 19.6977 7.2936 2.58883 2.57732 1218.9 118237 389 151321 58863869 19.7231 7.2999 2.58995 2.57069 1222.1 118847 390 152100 59319000 19.7484 7.3061 2.59106 2.56410 1225.2 119459 391 152881 59776471 19.7737 7.3124 2.59218 2.55754 1228.4 120072 392 153664 60236288 19.7990 7.3186 2.59329 2.55102 1231.5 120687 393 154449 60698457 19.8242 7.3248 2.59439 2.54453 1234.6 121304 394 155236 61162984 19.8494 7.3310 2.59550 2.53807 1237.8 121922 395 156025 61629875 19.8746 7.3372 2.59660 2.53165 1240.9 122542 396 156816 62099136 19.8997 7.3434 2.59770 2.52525 1244.1 123163 397 157609 62570773 19.9249 7.3496 2.59879 2.51889 1247.2 123786 398 158404 63044792 19.9499 7.3558 2.59988 2.51256 1250.4 124410 399 159201 63521199 19.9750 7.3619 2.60097 2.50627 1253.5 125036 407 CARNEGIE STEEL COMPANY Functions, of Numbers 400 to 449 ' 1000 X Reciprocal No.= diameter No. Square Cube Square Root Cubic Boot Logarithm Cireum. Area 400 160000 64000000 20.0000 7.3681 2.60206 2.50000 1256.6 125664 401 160801 64481201 20.0250 7.3742 2.60314 2.49377 1259.8 126293 402 161604 64964808 20.0499 7.3803 2.60423 2.48756 1262.9 126923 403 162409 65450827 20.0749 7.3864 2.60531 2.48139 1266.1 127556 404 163216 65939264 20.0998 7.3925 2.60638 2.47525 1269.2 128190 405 164025 66430125 20.1246 7.3986 2.60746 2.46914 1272.3 128825 406 164836 66923416 20.1494 7.4047 2.60853 2.46305 1275.5 129462 407 165649 67419143 20.1742 7.4108 2.60959 2.45700 1278.6 130100 408 166464 67917312 20.1990 7.4169 2.61066 2.45098 1281.8 130741 409 167281 68417929 20.2237 7.4229 2.61172 2.44499 1284.9 131382 410 168100 68921000 20.2485 7.4290 2,61278 2.43902 1288.1 132025 411 168921 69426531 20.2731 7.4350 2.61384 2.43309 1291.2 132670 412 169744 69934528 20.2978 7.4410 2.61490 2.42718 1294.3 133317 413 170569 70444997 20.3224 7.4470 2.61595 2.42131 1297.5 133965 414 171396 70957944 20.3470 7.4530 2.61700 2.41546 1300.6 134614 415 172225 71473375 20.3715 7.4590 2.61805 2.40964 1303.8 135265 416 173056 71991296 20.3961 7.4650 2.61909 2.40385 1306.9 135918 417 173889 72511713 20.4206 7.4710 2.62014 2.39808 1310.0 136572 418 174724 73034632 20.4450 7.4770 2.62118 2.39234 1313.2 137228 419 175561 73560059 20.4695 7.4829 2.62221 2.38663 1316.3 137885 420 176400 74088000 20.4939 7.4889 2.62325 2.38095 1319.5 138544 421 177241 74618461 20.5183 7.4948 2.62428 2.37530 1322.6 139205 422 178084 75151448 20.5426 7.5007 2.62531 2.36967 1325.8 139867 423 178929 75686967 20.5670 7.5067 2.62634 2.36407 1328.9 140531 424 179776 76225024 20.5913 7.5126 2.62737 2.35849 1332.0 141196 425 180625 76765625 20.6155 7.5185 2.62839 2.35294 1335.2 141863 426 181476 77308776 20.6398 7.5244 2.62941 2.34742 1338.3 142531 427 182329 77854483 20.6640 7.5302 2.63043 2.34192 1341.5 143201 428 183184 78402752 20.6882 7.5361 2.63144 2.33645 1344-.6 143872 429 184041 78953589 20.7123 7.5420 2.63246 2.33100 1347.7 144545 430 184900 79507000 20.7364 7.5478 2.63347 2.32558 1350.9 145220 431 185761 80062991 20.7605 7.5537 2.63448 2.32019 1354.0 145896 432 186624 80621568 20.7846 7.5595 2.63548 2.31481 1357.2 146574 433 187489 81182737 20.8087 7.5654 2.63649, 2.30947 1360.3 147254 434 188356 81746504 20.8327 7.5712 2.63749 2.30415 1363.5 147934 435 189225 82312875 20.8567 7.5770 2.63849 2.29885 1366.6 148617 436 190096 82881856 20.8806 7.5828 2.63949 2.29358 1369.7 149301 437 190969 83453453 20.9045 7.5886 2.64048 2.28833 1372.9 149987 438 191844 84027672 20.9284 7.5944 2.64147 2.28311 1376.0 150674 439 192721 84604519 20.9523 7.6001 2:64246 2.27790 1379.2 151363 440 193600 85184000 20.9762 7.6059 2.64345 2.27273 1382.3 152053 441 194481 85766121 21.0000 7.6117 2.64444 2.26757 1385.4 152745 442 195364 86350888 21.0238 7.6174 2.64542 2.26244 1388.6 153439 443 196249 86938307 21.0476 7.6232 2.64640 2.25734 1391.7 154134 444 197136 87528384 21.0713 7.6289 2.64738 2.25225 1394.9 154830 445 198025 88121125 21.0950 7.6346 2.64836 2.24719 1398.0 155528 446 198916 88716536 21.1187 7.6403 2.64933 2.24215 1401.2 156228 447 199809 89314623 21.1424 7.6460 2.65031 2.23714 1404.3 156930 448 200704 89915392 21.1660 7.6517 2.65128 2.23214 1407.4 157633 449 201601 90518849 21.1896 7.6574 2.65225 2.22717 1410.6 158337 408 MATHEMATICAL TABLES • Functions of Numbers,' 450 to 499 No. Square Cube Square Hoot Cubic Hoot Logarithm 1000 No.=Diameter Reciprocal Circum. Area ^ 450 202500 91125000 21.2132 7.6631 2.65321 2.22222 1413.7 159043 451 203401 91733851 21.2368 7.6688 2.65418 2.21729 1416.9 159751 452 204304 92345408 21.2603 7.6744 2.65514 2.21239 1420.0 160460 453 205209 92959677 21.2838 7.6801 2.65610 2.20751 1423.1 161171 454 206116 93576664 21.3073 7.6857 2.65706 2.20264 1426.3 161883 455 207025 94196375 21.3307 7.6914 2.65801 2.19780 1429.4 162597 456 207936 94818816 21.3542 7.6970 2.65896 2.19298 1432.6 163313 457 208849 95443993 21.3776 7.7026 2.65992 2.18818 1435.7 164030 458 209764 96071912 21.4009 7.7082 2.66087 1 2.18341 1438.8 164748 459 210681 96702579 21.4243 7.7138 2.66181 2.17865 1442.0 165468 460 211600 97336000 21.4476 7.7194 2.66276 2.17391 1445.1 166190 461 212521 97972181 21.4709 7.7250 2.66370 2.16920 1448.3 166914 462 213444 98611128 21.4942 7.7306 2.66464 2.16450 1451.4 167639 463 214369 99252847 21.5174 7.7362 2.66558 2.15983 1454.6 168365 464 215296 99897344 21.5407 7.7418 2.66652 2.15517 1457.7 169093 465 216225 100544625 21.5639 7.7473 2.66745 2.15054 1460.8 169823 466 217156 101194696 21.5870 7.7529 2.66839 2.14592 1464.0 170554 467 218089 101847563 21.6102 7.7584 2.66932 2.14133 1467.1 171287 468 219024 102503232 21.6333 7.7639 2.67025 2.13675 1470.3 172021 469 219961 103161709 21.6564 7.7695 2.67117 2.13220 1473.4 172757 470 220900 103823000 21.6795 7.7750 2.67210 2.12766 1476.5 173494 471 221841 104487111 21.7025 7.7805 2.67302 2.12314 1479.7 174234 472 222784 105154048 21.7256 7.7860 2.67394 2.11864 1482.8 174974 473 223729 105823817 21.7486 7.7915 2.67486 2.11416 1486.0 175716 474 224676 106496424 21.7715 7.7970 2.67578 2.10970 1489.1 176460 475 225625 107171875 21.7945 7.8025 2.67669 2.10526 1492.3 177205 476 226576 107850176 21.8174 7.8079 2.67761 2.10084 1495.4 177952 477 227529 108531333 21.8403 7.8134 2.67852 2.09644 1498.5 178701 478 228484 109215352 21.8632 7.8188 2.67943 2.09205 1501.7 179451 479 229441 109902239 21.8861 7.8243 2.68034 2.08768 1504.8 180203 480 230400 110592000 21.9089 7.8297 2.68124 2.08333 1508.0 180956 481 231361 111284641 21.9317 7.8352 2.68215 2.07900 1511.1 181711 482 232324 111980168 21.9545 7.8406 2.68305 2.07469 1514.2 182467 483 233289 112678587 21.9773 7.8460 2.68395 2.07039 1517.4 183225 484 234256 113379904 22.0000 7.8514 2.68485 2.06612 1520.5 183984 485 235225 114084125 22.0227 7.8568 2.68574 2.06186 1523.7 184745 486 236196 114791256 22.0454 7.8622 2.68664 2.05761 1526.8 185508 487 237169 115501303 22.0681 7.8676 2.68753 2.05339 1530.0 186272 488 238144 116214272 22.0907 7.8730 2.68842 2.04918 1533.1 187038 489 239121 116930169 22.1133 7.8784 2.68931 2.04499 1536.2 187805 490 240100 117649000 22.1359 7.8837 2.69020 2.04082 1539.4 188574 491 241081 118370771 22.1585 7.8891 2.69108 2.03666 1542.5 189345 492 242064 119095488 22.1811 7.8944 2.69197 2.03252 1545.7 190117 493 243049 119823157 22.2036 7.8998 2.69285 2.02840 1548.8 190890 494 244036 120553784 22.2261 7.9051 2.69373 2.02429 1551.9 191665 495 245025 121287375 22.2486 7.9105 2.69461 2.02020 1555.1 192442 496 246016 122023936 22.2711 7.9158 2.69548 2.01613 1558.2 193221 497 247009 122763473 22.2935 7.9211 2.69636 2.01207 1561.4 194000 498 248004 123505992 22.3159 7.9264 2.69723 2.00803 1564.5 194782 499 249001 124251499 22.3383 7.9317 2.69810 2.00401 1567.7 195565 409 CARNEQIE STEEL COMPANY Functions op Numbers 500 to 549 No. Square Cube Square Root Cubic Root Logarithm 1000 No.=Diameter Reciprocal Circum. Area 500 250000 125000000 22.3607 7.9370 2.69897 2.00000 1570.8 196350 501 251001 125751501 22.3830 7.9423 2.69984 1.99601 1573.9 197136 502 252004 126506008 22.4054 7.9476 2.70070 1.99203 1577:1 197923 503 253009 127263527 22.4277 7.9528 2.70157 1.98807 1580.2 198713 504 254016 128024064 22.4499 7.9581 2.70243 1.98413 1583.4 199504 505 255025 128787625 22.4722 7.9634 2.70329 1.98020 1586.5 200296 506 256036 129554216 22.4944 7.9686 2.70415 1.97628 1589.6 201090 507 257049 130323843 22.5167 7.9739 2.70501 1.97239 1592.8 201886 508 258064 131096512 22.5389 7.9791 2.70586 1.96850 1595.9 202683 509 259081 131872229 22.5610 7.9843 2.70672 1.96464 1599.1 203482 510 260100 132651000 22.5832 7.9896 2.70757 1.96078 1602.2 204282 511 261121 133432831 22.6053 7.9948 2.70842 1.95695 1605.4 205084 512 262144 134217728 22.6274 8.0000 2.70927 1.95312 1608.5 205887 513 263169 135005697 22.6495 8.0052 2.71012 1.94932 1611.6 206692 514 264196 135796744 22.6716 8.0104 2.71096 1.94553 1614.8 207499 5i5 265225 136590875 22.6936 8.0156 2.71181 1.94175 1617.9 208307 516 266256 137388096 22.7156 8.0208 2.71265 1.93798 1621.1 209117 517 267289 138188413 22.7376 8.0260 2.71349 1.93424 1624.2 209928 518 268324 138991832 22.7596 8.0311 2.71433 1.93050 1627.3 210741 519 269361 139798359 22.7816 8.0363 2.71517 1.92678 1630.5 211556 520 270400 140608000 22.8035 8.0415 2.71600 1.92308 1633.6 212372 521 271441 141420761 22.8254 8.0466 2.71684 1.91939 1636.8 213189 522 272484 142236648 22.8473 8.0517 2.71767 1.91571 1639.9 214008 523 273529 143055667 22.8692 8.0569 2.71850 1.91205 1643.1 214829 524 274576 143877824 22.8910 8.0620 2.71933 1.90840 1646.2 215651 525 275625 144703125 22.9129 8.0671 2.72016 1.90476 1649.3 216475 526 276676 145531576 22.9347 8.0723 2.72099 1.90114 1652.5 217301 527 277729 146363183 22.9565 8.0774 2.72181 1.89753 1655.6 218128 528 278784 147197952 22.9783 8.0825 2.72263 1.89394 1658.8 218956 529 279841 148035889 23.0000 8.0876 2.72346 1.89036 1661.9 219787 530 280900 148877000 23.0217 8.0927 2.72428 1.88679 1665.0 220618 531 281961 149721291 23.0434 8.0978 2.72509 1.88*24 1668.2 221452 532 283024 150568768 23.0651 8.1028 2.72591 1.87970 1671.3 222287 533 284089 151419437 23.0868 8.1079 2.72673 1.87617 1674.5 223123 534 285156 152273304 23.1084 8.1130 2.72754 1.87266 1677.6 223961 535 286225 153130375 23.1301 8.1180 2.72835 1.86916 1680.8 224801 536 287296 153990656 23.1517 8.1231 2.72916 1.86567 1683.9 225642 537 288369 154854153 23.1733 8.1281 2.72997 1.86220 1687.0 226484 538 289444 155720872 23.1948 8.1332 2.73078 1.85874 1690.2 227329 539 290521 156590819 23.2164 8.1382 2.73159 1.85529 1693.3 228175 540 291600 157464000 23.2379 8.1433 2.73239 1.85185 1696.5 229022 541 292681 158340421 23.2594 8.1483 2.73320 1.84843 1699.6 229871 542 293764 159220088 23.2809 8.1533 2.73400 1.84502 1702.7 230722 543 294849 160103007 23.3024 8.1583 2.73480 1.84162 1705.9 231574 544 295936 160989184 23.3238 8.1633 2.73560 1.83824 1709.0 232428 545 297025 161878625 23.3452 8.1683 2.73640 1.83486 1712.2 233283 546 298116 162771336 23.3666 8.1733 2.73719 1.83150 1715.3 234140 547 299209 163667323 23.3880 8.1783 2.73799 1.82815 1718.5 234998 548 300304 164566592 23.4094 8.1833 2.73878 1.82482 1721.6 235858 549 301401 165469149 23.4307 8.1882 2.73957 1.82149 1724.7 236720 410 MATHEMATICAL TABLES Functions op Numbers, 550 to 599 No. Square Cube Square Root Cubic Hoot Logarithm 1000 No.=Diameter Reciprocal Circum. Area 550 302500 166375000 23.4521 8.1932 2.74036 1.81818 1727.9 237583 551 303601 167284151 23.4734 8.1982 2.74115 1.81488 1731.0 238448 552 304704 168196608 23.4947 8.2031 2.74194 1.81159 1734.2 239314 55a 305809 169112377 23.5160 8.2081 2.74273 1.80832 1737.3 240182 554 306916 170031464 23.5372 8.2130 2.74351 1.80505 1740.4 241051 555 308025 170953875 23.5584 8.2180 2.74429 1.80180 1743.6 241922 556 309136 171879616 23.5797 8.2229 2.74507 1.79856 1746.7 242795 557 310249 172808693 23.6008 8.2278 2.74586 1.79533 1749.9 243669 558 311364 173741112 23.6220 8.2327 2.74663 1.79211 1753.0 244545 559 312481 174676879 23.6432 8.2377 2.74741 1.78891 1756.2 245422 560 313600 175616000 23.6643 8.2426 2.74819 1.78571 1759.3 246301 561 314721 176558481 23.6854 8.2475 2.74896 1.78253 1762.4 247181 562 315844 177504328 23.7065 8.2524 2.74974 1.77936 1765.6 248063 563 316969 178453547 23.7276 8.2573 .2.75051 1.77620 1768.7 248947 564- 318096 179406144 23.7487 8.2621 2.75128 1.77305 1771.9 249832 565 319225 180362125 23.7697 8.2670 2.75205 1.76991 1775.0 250719 566 320356 181321496 23.7908 8.2719 2.75282 1.76678 1778.1 251607 567 321489 182284263 23.8118 8.2768 2.75358 1.76367 1781.3 252497 568 322624 183250432 23.8328 8.2816 2.75435 1.76056 1784.4 253388 569 323761 184220009 23.8537 8.2865 2.75511 1.75747 1787.6 254281 570 324900 185193000 23.8747 8.2913 2.75587 1.75439 1790.7 255176 571 326041 186169411 23.8956 8.2962 2.75664 1.75131 1793.8 256072 572 327184 187149248 23.9165 8.3010 2.75740 1.74825 1797.0 256970 573 328329 188132517 23.9374 8.3059 2.75815 1.74520 1800.1 257869 574 329476 189119224 23.9583 8.3107 2.75891 1.74216 1803.3 258770 575 330625 190109375 23.9792 8.3155 2.75967 1.73913 1806.4 259672 576 331776 191102976 24.0000 8.3203 2.76042 1.73611 1809.6 260576 577 332929 192100033 24.0208 8.3251 2.76118 1.73310 1812.7 261482 578 334084 193100552 24.0416 8.3300 2.76193 1.73010 1815.8 262389 579 335241 194104539 24.0624 8.3348 2.76268 1.72712 1819.0 263298 580 336400 195112000 24.0832 8.3396 2.76343 1.72414 1822.1 264208 581 337561 196122941 24.1039 8.3443 2.76418 1.72117 1825.3 265120 582 338724 197137368 24.1247 8.3491 2.76492 1.71821 1828.4 .266033 583 339889 198155287 24.1454 8.3539 2.76567 1.71527 1831.6 266948 584 341056 199176704 24.1661 8.3587 2.76641 1.71233 1834.7 267865 585 342225 200201625 24.1868 8.3634 2.76716 1.70940 1837.8 268783 586 343396 201230056 24.2074 8.3682 2.76790 1.70648 1841.0 269703 587 344569 202262003 24.2281 8.3730 2.76864 1.70358 1844.1 270624 588 345744 203297472 24.2487 8.3777 2.76938 1.70068 1847.3 271547 589 346921 204336469 24.2693 8.3825 2.77012 1.69779 1850.4 272471 590 348100 205379000 24.2899 8.3872 2.77085 1.69492 1853.5 273397 591 349281 206425071 24.3105 8.3919 2.77159 1.69205 1856.7 274325 592 350464 207474688 24.3311 8.3967 2.77232 1.68919 1859.8 275254 593 351649 208527857 24.3516 8.4014 2.77305 1.68634 1863.0 276184 594 352836 209584584 24.3721 8.4061 2.77379 1.68350 1866.1 277117 595 354025 210644875 24.3926 8.4108 2.77452 1.68067 1869.2 278051 596 355216 211708736 24.4131 8.4155 2.77525 1.67785 1872.4 278986 597 356409 212776173 24.4336 8.4202 2.77597 1.67504 1875.5 279923 598 357604 213847192 24.4540 8.4249 2.77670 1.67224 1878.7 280862 599 1 358801 214921799 24.4745 8.4296 2.77743 1.66945 1881.8 281802 411 , CARNEGIE STEEL COMPANY Functions of Numbers 600 to 649 1000 X Reciprocal No-=Diameter No. Square Cube Square Boot Cubic Root Logarithm Circum. Area 600 360000 216000000 24.4949 8.4343 2.77815 1.66667 1885.0 282743 601 361201 217081801 24.5153 8.4390 2.77887 1.66389 1888.1 283687 602 362404 218167208 24.5357 8.4437 2.77960 1.66113 1891.2 284631 603 363609 219256227 24.5561 8.4484 2.78032 1.65837 1894.4 285578 604 364816 220348864 24.5764 8.4530 2.78104 1.65563 1897.5 286526 605 366025 221445125 24.5967 8.4577 2.78176 1.65289 1900.7 287475 606 367236 222545016 24.6171 8.4623 2.78247 1.65017 1903.8 288426 607 368449 223648543 24.6374 8.4670 2.78319 1.64745 1906.9 289379 608 369664 224755712 24.6577 8.4716 2.78390 1.64474 1910.1 290333 609 370881 225866529 24.6779 8.4763 2.78462 1.64204 1913.2 291289 610 372100 226981000 24.6982 8.4809 2.78533 1.63934 1916.4 292247 611 373321 228099131 24.7184 8.4856 2.78604 1.63666 1919.5 293206 612 374544 229220928 24.7386 8.4902 2.78675 1.63399 1922.7 294166 613 375769 230346397 24.7588 8.4948 2.78746 1.63132 1925.8 295128 614 376996 231475544 24.7790 8.4994 2.78817 1.62866 1928.9 296092 615 378225 232608375 24.7992 8.5040 2.78888 1.62602 1932.1 297657 616 379456 233744896 24.8193 8.5086 2.78958 1.62338 1935.2 298024 617 380689 234885113 24.8395 8.5132 2.79029 1.62075 1938.4 298992 618 381924 236029032 24.8596 8.5178 2.79099 1.61812 1941.5 299962 619 383161 237176659 24.8797 8.5224 2.79169 1.61551 1944.6 300934 620 384400 238328000 24.8998 8.5270 2.79239 1.61290 1947.8 301907 621 385641 239483061 24.9199 8.5316 2.79309 1.61031 1950.9 302882 622 386884 240641848 24.9399 8.5362 2.79379 1.60772 1954.1 303858 623 388129 241804367 24.9600 8.5408 2.79449 1.60514 1957.2 304836 624 389376 242970624 24.9800 8.5453 2.79518 1.60256 1960.4 305815 625 390625 244140625 25.0000 8.5499 2.79588 1.60000 1963.5 306796 626 391876 245314376 25.0200 8.5544 2.79657 1.59744 1966.6 307779 627 393129 246491883 25.0400 8.5590 2.79727 1.59490 1969.8 308763 628 394384 247673152 25.0599 8.5635 2.79796 1.59236 1972.9 309748 629 395641 248858189 25.0799 8.5681 2.79865 1.58983 1976.1 310736 630 396900 250047000 25.0998 8.5726 2.79934 1.58730 1979.2 311725 631 398161 251239591 25.1197 8.5772 2.80003 1.58479 1982.3 312715 632 399424 252435968 25.1396 8.5817 2.80072 1.58228 1985.5 313707 633 400689 253636137 25.1595 8.5862 2.80140 1.57978 1988.6 314700 634 401956 254840104 25.1794 8.5907 2.80209 1.57729 1991.8 315696 635 403225 256047875 25.1992 8.5952 2.80277 1.57480 1994.9 316692 636 404496 257259456 25.2190 8.5997 2.80346 1.57233 1998.1 317690 637 405769 258474853 25.2389 8.6043 2.80414 1.56986 2001.2 318690 638 407044 259694072 25.2587 8.6088 2.80482 1.56740 2004.3 319692 639 408321 260917119 25.2784 8.6132 2.80550 1.56495 2007.5 320695 640 409600 262144000 25.2982 8.6177 2.80618 1.56250 2010.6 321699 641 410881 263374721 25.3180 8.6222 2.80686 1.56006 2013.8 322.705 642 412164 264609288 25.3377 8.6267 2.80754 1.55763 2016.9 323713 643 413449 265847707 25.3574 8.6312 2.80821 1.55521 2020.0 324722 644 414736 267089984 25.3772 8.6357 2.80889 1.55280 2023.2 325733 645 416025 268336125 25.3969 8.6401 2.80956 1.55039 2026.3 326745, 646 417316 269586136 25.4165 8.6446 2.81023 1.54799 2029.5 327759 647 418609 270840023 25.4362 8.6490 2.81090 1.54560 2032.6 328775 648 419904 272097792 25.4558 8.6535 2.81158 1.54321 2035.8 329792 649 421201 273359449 25.4755 8.6579 2.81224 1.54083 2038.9 330810 i 412 MATHEMATICAL TABLE Functions op Numbers, 650 to 699 No. Square Cube Square Root Cubic Root Logarithm 1000 X Reciprocal No.=Diameter Circum. Area 650 422500 274625000 25.4951 8.6624 2.81291 1.53846 2042.0 331831 651 423801 275894451 25.5147 8.6668 2.81358 1.53610 2045.2 332853 652 425104 277167808 25.5343 8.6713 2.81425 1.53374 2048.3 333876 653 426409 278445077 25.5539 8.6757 2.81491 1.53139 2051.5 334901 654 427716 279726264 25.5734 8.6801 2.81558 1.52905 2054.6 335927 655 429025' 281011375 25.5930 8.6845 2.81624 1.52672 2057.7 336955 656 430336 282300416 25.6125 8.6890 2.81690 1.52439 2060.9 337985 657 431649 283593393 25.6320 8.6934 2.81757 1.52207 2064.0 339016 658 432964 284890312 25.6515 8.6978 2.81823 1.51976 2067.2 340049 659 434281 286191179 25.6710 8.7022 2.81889 1.51745 2070.3 341084 660 435600 287496000 25.6905 8.7066 2.81954 1.51515 2073.5 342119 661 436921 288804781 25.7099 8.7110 2.82020 1.51286 2076.6 343157 662 438244 290117528 25.7294 8.7154 2.82086 1.51057 2079.7 344196 663 439569 291434247 25.7488 8.7198 2.82151 1.50830 2082.9 345237 664 440896 292754944 25.7682 8.7241 2.82217 1.50602 2086.0 346279 665 442225 294079625 25.7876 8.7285 2.82282 1.50376 2089.2 347323, 666 443556 295408296 25.8070 8.7329 2.82347 1.50150 2092.3 348368 667 444889 296740963 25.8263 8.7373 2.82413 1.49925 2095.4 349415, 668 446224 298077632 25.8457 8.7416 2.82478 1.49701 2098.6 350464 669 447561 299418309 25.8650 8.7460 2.82543 1.49477 2101.7 351514 670 448900 300763000 25.8844 8.7503 2.82607 1.49254 2104.9 352565 671 450241 302111711 25.9037 8.7547 2.82672 1.49031 2108.0 353618 672 451584 303464448 25.9230 8.7590 2.82737 1.48810 2111.2 354673 673 452929 304821217 25.9422 8.7634 2.82802 1.48588 2114.3 355730 674 454276 306182024 25.9615 8.7677 2.82866 1.48368 2117.4 356788 675 455625 307546875 25.9808 8.7721 2.82930 1.48148 2120.6 357847 676 456976 308915776 26.0000 8.7764 2.82995 1.47929 2123.7 358908 677 458329 310288733 26.0192 8.7807 2.83059 1.47710 2126.9 359971 678 459684 311665752 26.0384 8.7850 2.83123 1.47493 2130.0 361035 679 461041 313046839 26.0576 8.7893 2.83187 1.47275 2133.1 362101 680 462400 314432000 26.0768 8.7937 2.83251 1.47059 2136.3 363168 681 463761 315821241 26.0960. 8.7980 2.83315 1.46843 2139.4 364237 682 465124 317214568 26.1151 8.8023 2.83378 1.46628 2142.6 365308 683 466489 318611987 26.1343 8.8066 2.«3442 1.46413 2145.7 366380 684 467856 320013504 26.1534 8.8109 2.83506 1.46199 2148.8 367453 685 469225 321419125 26.1725 8.8152 2.83569 1.45985 2152.0 368528 686 470596 322828856 26.1916 8.8194 2.83632 1.45773 2155.1 369605 687 471969 324242703 26.2107 8.8237 2.83696 1.45560 2158.3 370684 688 473344 325660672 26.2298 8.8280 2.83759 1.45349 2161.4 371764 689 474721 327082769 26.2488 8.8323 2.83822 1.45138 2164.6 372845 690 476100 328509000 26.2679 8.8366 2.83885 1.44928 2167.7 373928 691 477481 329939371 26.2869 8.8408 2.83948 1.44718 2170.8 375013 692 478864 331373888 26.3059 8.8451 2.84011 1.44509 2174.0 376099 693 480249 332812557 26.3249 8.8493 2.84073 1.44300 2177.1 377187 694 481636 334255384 26.3439 8.8536 2.84136 1.44092 2180.3 378276 695 483025 335702375 26.3629 8.8578 2.84198 1.43885 2183.4 379367 696 484416 337153536 26.3818 8.8621 2.84261 1.43678 2186.5 380459 697 485809 338608873 26.4008 8.8663 2.84323 1.43472 2189.7 381553 698 487204 340068392 26.4197 8.8706 2.84386 1.43266 2192.8 382649 699 488601 341532099 26.4386 8.8748 2.84448 1.43062 2196.0 38374C 413 CARNEGIE STEEL COMPANY Functions op Numbbbs, 700 to 749 1000 -X Reciprocal No.— Diameter No. Square Cube Square Root Cubic Root Logarithm Circum. Area 700 490000 343000000 26.4575 8.8790 2.84510 1.42857 2199.1 384845 701 491401 344472101 26.4764 8.8833 2.84572 1.42653 2202.3 385945 702 492804 345948408 26.4953 8.8875 2.84634 1.42450 2205.4 387047 703 494209 347428927 26.5141 8.8917 2.84696 1.42248 2208.5 388151 704 495616 348913664 26.5330 8.8959 2.84757 1.42045 2211.7 389256 705 497025 350402625 26.5518 8.9001 2.84819 1.41844 2214.8 390363 706 498436 351895816 26.5707 8.9043 2.84880 1.41643 2218.0 391471 707 499849 353393243 26.5895 8.9085 2.84942 1.41443 2221.1 392580 70S 501264 354894912 26.6083 8.9127 2.85003 1.41243 2224.2 393692 709 502681 356400829 26.6271 8.9169 2.85065 1.41044 2227.4 394805 710 504100 357911000 26.6458 8.9211 2.85126 1.40845 2230.5 395919 711 505521 359425431 26.6646 8.9253 2.85187 1.40647 2233.7 397035 712 506944 360944128 26.6833 8.9295 2.85248 1.40449 2236.8 398153 713 508369 362467097 26.7021 8.9337 2.85309 1.4*0252 2240.0 399272 714 509796 363994344 26.7208 8.9378 2.85370 1.40056 2243.1 400393 715 511225 365525875 26.7395 8.9420 2.85431 1.39860 2246.2 401515 716 512656 367061696 26.7582 8.9462 2.85491 1.39665 2249.4 402639 717 514089 368601813 26.7769 8.9503 2.85552 1.39470 2252.5 403765 718 515524 370146232 26.7955 8.9545 2.85612 1.39276 2255.7 404892 719 516961 371694959 26.8142 8.9587 2.85673 1.39082 2258.8 406020 720 518400 373248000 26.8328 8.9628 2.85733 1.38889 2261.9 407150 721 519841 374805361 26.8514 8.9670 2.85794 1.38696 2265.1 408282 722 521284 376367048 26.8701 8.9711 2.85854 1.38504 2268.2 409415 723 522729 377933067 26.8887 8.9752 2.85914 1.38313 2271.4 410550 724 524176 379503424 26.9072 8.9794 2.85974 1.38122 2274.5 411687 725 525625 381078125 26.9258 8.9835 2.86034 1.37931 2277.7 412825 726 527076 382657176 26.9444 8.9876 2.86094 1.37741 2280.8 413965 727 528529 384240583 26.9629 8.9918 2.86153 1.37552 2283.9 415106 728 529984 385828352 26.9815 8.9959 2.86213 1.37363 2287.1 416248 729 531441 387420489 27.0000 9.0000 2.86273 1.37174 2290.2 417393 730 532900 389017000 27.0185 9.0041 2.86332 1.36986 2293.4 418539 731 534361 390617891 27.0370 9.0082 -2.86392 1.36799 2296.5 419686 732 535824 392223168 27.0555 9.0123 2.86451 1.36612 2299.6 420835 733 537289 393832837 27.0740 9.0164 2.86510 1.36426 2302.8 421986 734 538756 395446904 27.0924 9.0205 2.86570 1.36240 2305.9 423138 735 540225 397065375 27.1109 9.0246 2.86629 1.36054 2309.1 424293 736 541696 398688256 27.1293 9.0287 2.86688 1.35870 2312.2 425447 737 543169 400315553 27.1477 9.0328 2.86747 1.35685 2315.4 426604 738 544644 401947272 27.1662 9.0369 2.86806 1.35501 2318.5 427762 739 546121 403583419 27.1846 9.0410 2.86864 1.35318 2321.6 428922 740 547600 405224000 27.2029 9.0450 2.86923 1.35135 2324.8 430084 741 549081 406869021 27.2213 9.0491 2.86982 1.34953 2327.9 431247 742 550564 408518488 27.2397 9.0532 2.87040 1.34771 2331.1 432412 743 552049 410172407 27.2580 9.0572 2.87099 1.34590 2334.2 433578 744 553536 411830784 27.2764 9.0613 2.87157 1.34409 2337.3 434746 745 555025 413493625 27.2947 9.0654 2.87216 1.34228 2340.5 435916 746 556516 415160936 27.3130 9.0694 2.87274 1.34048 2343.6 437087 747 558009 416832723 27.3313 0.0735 2.87332 1.33869 2346.8 438259 748 559504 418508992 27.3496 9.0775 2.87390 1.33690 2349.9 439433 749 561001 420189749 27.3679 9.0816 2.87448 1.33511 2353.1 440609 MATHEMATICAL TABLES Functions of Numbers, 750 to 799 No. Square Cube Square Root Cubic Root Logarithm 1000 Reciprocal No.=Diameter Circum. Area 750 562500 421875000 27.3861 9.0856 2.87506 1.33333 2356.2 441786 751 564001 423564751 27.4044 9.0896 2.87564 1.33156 2359.3 442965 752 565504 425259008 27.4226 9.0937 2.87622 1.32979 2362.5 444146 753 567009 426957777 27.4408 9.0977 2.87680 1.32802 2365.6 445328 754 568516 428661064 27.4591 9.1017 2.87737 1.32626 2368.8 446511 755 570025 430368875 27.4773 9.1057 2.87795 1.32450 2371.9 447697 756 571536 432081216 27.4955 9.1098 2.87852 1.32275 23,75.0 448883 757 573049 433798093 27.5136 9.1138 2.87910 1.32100 2378.2 450072 758 574564 435519512 27.5318 9.1178 2.87967 1.31926 2381.3 451262 759 576081 437245479 27.5500 9.1218 2.88024 1.31752 2384.5 452453 760 577600 438976000 27.5681 9.1258 2.88081 1.31579 2387.6 453646 761 579121 440711081 27.5862 9.1298 2.88138 1.31406 2390.8 454841 762 580644 442450728 27.6043 9.1338 2.88196 1.31234 2393.9 456037 763 582169 444194947 27.6225 9.1378 2.88252 1.31062 2397.0 457234 764 583696 445943744 27.6405 9.1418 2.88309 1.30890 2400.2 458434 765 585225 447697125 27.6586 9.1458 2.88366 1.30719 2403.3 459635 766 586756 449455096 27.6767 9.1498 2.88423 1.30548 2406.5 460837 767 588289 451217663 27.6948 9.1537 2.88480 1.30378 2409.6 462041 768 589824 452984832 27.7128 9.1577 2.88536 1.30208 2412.7 463247 769 591361 454756609 27.7308 9.1617 2.88593 1.30039 2415.9 464454 770 592900 456533000 27.7489 9.1657 2.88649 1.29870 2419.0 465663 771 594441 458314011 27.7669 9.1696 2.88705 1.29702 2422.2 466873 772 595984 460099648 27.7849 9.1736 2.88762 1.29534 2425.3 468085 773 597529 461889917 27.8029 9.1775 2.88818 1.29366 2428.5 469298 774 599076 463684824 27.8209 9.1815 2.88874 1.29199 2431.6 470513 775 600625 465484375 27.8388 9.1855 2.88930 1.29032 2434.7 471730 776 602176 467288576 27.8568 9.1894 2.88986 1.28866 2437.9 472948 777 603729 469097433 27.8747 9.1933 2.89042 1.28700 2441.0 474168 778 605284 470910952 27.8927 9.1973 2.89098 1.28535 2444.2 475389 779 606841 472729139 27.9106 9.2012 2.89154 1.28370 2447.3 476612 780 608400 474552000 27.9285 9.2052 2.89209 1.28205 2450.4 477836 781 609961 476379541 27.9464 9.2091 2.89265 1.28041 2453.6 479062 782 611524 478211768 27.9643 9.2130 2.89321 1.27877 2456.7 480290 783 613089 480048687 27.9821 9.2170 2.89376 1.27714 2459.9 481519 784 614656 481890304' 28.0000 9.2209 2.89432 1.27551 2463.0 482750 785 616225 483736625 28.0179 9.2248 2.89487 1.27389 2466.2 483982 786 617796 485587656 28.0357 9.2287 2.89542 1.27226 2469.3 485216 787 619369 487443403 28.0535 9.2326 2.89597 1.27065 2472.4 486451 788 620944 489303872 28.0713 •9.2365 2.89653 1.26904 2475.6 487688 789 622521 491169069 28.0891 9.2404 2.89708 1.26743 2478.7 488927 790 624100 493039000 28.1069 9.2443 2.89763 1.26582 2481.9 490167 791 625681 494913671 28.1247 9.2482 2.89818 1.26422 2485.0 491409 792 627264 496793088 28.1425 9.2521 2.89873 1.26263 2488.1 492652 793 628849 498677257 28.1603 9.2560 2.89927 1.26103 2491.3 493897 794 630436 500566184 28.1780 9.2599 2.89982 1.25945 2494.4 495143 795 632025 502459875 28.1957 9.2638 2.90037 1.25786 2497.6 496391 796 633616 504358336 28.2135 9.2677 2.90091 1.25628 2500.7 497641 797 798 799 635209 506261573 28.2312 9.2716 2.90146 1.25471 2503.8 498892 636804 508169592 28.2489 9.2754 2.90200 1.25313 2.507.0 500145 638401 510082399 28.2666 9.2793 2.90255 1.25156 2510.1 501399 415 CARNEGIE STEEL COMPANY Functions op Numbeks, 800 to 849 No. Square Cube Square Boot Cubic Root Logarithm 1000 Reciprocal No.=Diameter Circum. Area 800 640000 512000000 28.2843 9.2832 2.90309 1.25000 2513.3 502655 801 641601 513922401 28.3019 9.2870 2.90363 1.24844 2516.4 503912 802 643204 515849608 28.3196 9.2909 2.90417 1.24688 2519.6 505171 803 644809 517781627 28.3373 9.2948 2.90472 1.24533 2522.7 506432 804 646416 519718464 28.3549 9.2986 2.90526 1.24378 2525.8 507694 805 648025 521660125 28.3725 9.3025 2.90580 1.24224 2529.0 508958 806 649636 523606616 28.3901 9.3063 2.90634 1.24069 2532.1 510223 807 651249 525557943 28.4077 9.3102 2.90687 1.23916 2535.3 511490 808 652864 527514112 28.4253 9.3140 2.90741 1.23762 2538.4 512758 809 654481 529475129 28.4429 9.3179 2.90795 1.23609 2541.5 514028 810 656100 531441000 28.4605 9.3217 2.90849 1.23457 2544.7 515300 811 657721 533411731 28.4781 9.3255 2.90902 1.23305 2547.8 516573 812 659344 535387328 28.4956 9.3294 2.90956 1.23153 2551.0 517848 813 660969 537367797 28.5132 9.3332 2.91009 1.23001 2554.1 519124 814 662596 539353144 28.5307 9.3370 2.91062 1.22850 2557.3 520402 815 664225 541343375 28.5482 9.3408 2.91116 1.22699 2560.4 521681 816 665856 543338496 28.5657 9.3447 2.91169 1.22549 2563.5 522962 817 667489 545338513 28.5832 9.3485 2.91222 1.22399 2566.7 524245 818 669124 547343432 28.6007 9.3523 2.91275 1.22249 2569.8 525529 819 670761 549353259 28.6182 9.3561 2.91328 1.22100 2573.0 526814 820 672400 551368000 28.6356 9.3599 2.91381 1.21951 2576.1 528102 821 674041 553387661 28.6531 9.3637 2.91434 1.21803 2579.2 529391 .822 675684 555412248 28.6705 9.3675 2.91487 1.21655 2582.4 530681 823 677329 557441767 28.6880 9.3713 2.91540 1.21507 2585.5 531973 824 678976 559476224 28.7054 9.3751 2.91593 1.21359 2588.7 533267 825 680625 561515625 28.7228 9.3789 2.91645 1.21212 2591.8 534562 826 682276 563559976 28.7402 9.3827 2.91698 1.21065 2595.0 535858 827 683929 565609283 28.7576 9.3865 2.91751 1.20919 2598.1 537157 828 685584 567663552 28.7750 9.3902 2.91803 1.20773 2601.2 538456 829 687241 569722789 28.7924 9.3940 2.91855 1.20627 2604.4 539758 830 688900 571787000 28.8097 9.3978 2.91908 1.20482 2607.5 541061 831 690561 573856191 28.8271 9.4016 2.91960 1.20337 2610.7 542365 832 692224 575930368 28.8444 9.4053 2.92012 1.20192 2613.8 543671 833 693889 578009537 28.8617 9.4091 2.92065 1.20048 2616.9 544979 834 695556 580093704 28.8791 9.4129 2.92117 1.19904 2620.1 546288 835 697225 582182875 28.8964 9.4166 2.92169 1.19760 2623.2 547599 836 698896 584277056 28.9137 9.4204 2.92221 1.19617 2626.4 548912 837 700569 586376253 28.9310 9.4241 2.92273 1.19474 2629.5 550226 838 702244 588480472 28.9482 9.-4279 2.92324 1.19332 2632.7 551541 839 703921 590589719 28.9655 9.4316 2.92376 1.19190 2635.8 552858 840 705600 592704000 28.9828 9.4354 2.92428 1.19048 2638.9 554177 841 707281 594823321 29.0000 9.4391 2.92480 1.18906 2642.1 555497 842 708964 596947688 29.0172 9.4429 2.92531 1.18765 2645.2 556819 843 710649 599077107 29.0345 9.4466 2.92583 1.18624 264S.4 558142 844 712336 601211584 29.0517 9.4503 2.92634 1.18483 2651.5 559467 845 714025 603351125 29.0689 9.4541 2.92686 1.18343 2654.6 560794 846 715716 605495736 29.0861 9.4578 2.92737 1.18203 2657.8 562122 847 717409 607645423 29.1033 9.4615 2.92788 1.18064 2660.9 563452 848 719104 609800192 29.1204 9.4652 2.92840 1.17925 2664.1 564783 849 720801 611960049 29.1376 9.4690 2.92891 1.17786 2667.2 566116 416 MATHEMATICAL TABLES Functions of Numbers, 850 to 899 Square Root Cubic Root 1000 No. = Diameter No. Square Cube Logarithm X Reciprocal Circum. Area 850 722500 614125000 29.1548 9.4727 2.92942 1.17647 2670.4 567450 851 724201 616295051 29.1719 9.4764 2.92993 1.17509 2673.5 568786 852 725904 618470208 29.1890 9.4801 2.93044 1.17371 2676.6 570124 853 727609 620650477 29.2062 9.4838 2.93095 1.17233 2679.8 571463 854 729316 622835864 29.2233 9.4875 2.93146 1.17096 2682.9 572803 855 731025 625026375 29.2404 9.4912 2.93197 1.16959 2686.1 574146 856 732736 627222016 29.2575 9.4949 2.93247 1.16822 2689.2 575490 857 734449 629422793 29.2746 9.4986 2.93298 1.16686 2692.3 576835 858 736164 631628712 29.2916 9.5023 2.93349 1.16550 2695.5 578182 859 737881 633839779 29.3087 9.5060 2.93399 1.16414 2698.6 579530 n860 739600 636056000 29.3258 9.5097 2.93450 1.16279 2701.8 580880 861 741321 638277381 29.3428 9.5134 2.93500 1.16144 2704.9 582232 862 743044 640503928 29.3598 9.5171 2.93551 1.16009 27d8.1 583585 863 744769 642735647 29.3769 9.5207 2.93601 1.15875 2711.2 584940 864 746496 644972544 29.3939 9.5244 2.93651 1.15741 2714.3 586297 865 748225 647214625 29.4109 9.5281 2.93702 1.15607 2717.5 587655 866 749956 649461896 29.4279 9.5317 2.93752 1.15473 2720.6 589014 867 751689 651714363 29.4449 9.5354 2.93802 1.15340 2723.8 590375 868 753424 653972032 29.4618 9.5391 2.93852 1.15207 2726.9 591738 869 755161 656234909 29.4788 9.5427 2.93902 1.15075 2730.0 593102 870 756900 658503000 29.4958 9.5464 2.93952 1.14943 2733.2 59446S 871 758641 660776311 29.5127 9.5501 2.94002 1.14811 2736.3 595835 872 760384 663054848 29.5296 9.5537 2.94052 1.14679 2739.5 597204 873 762129 665338617 29.5466 9.5574 2.94101 1.14548 2742.6 598575 874 763876 667627624 29,5635 9.5610 2.94151 1.14416 2745.8 599947 875 765625 669921875 29.5804 9.5647 2.94201 1.14286 2748.9 601320 876 767376 672221376 29.5973 9.5683 2.94250 1.14155 2752.0 602696 877 769129 674526133 29.6142 9.5719 2.94300 1.14025 2755.2 604073 878 770884 676836152 29.6311 9.5756 2.94349 1.13895 2758.3 605451 879 772641 679151439 29.6479 9.5792 2.94399 1.13766 2761.5 606831 880 774400 681472000 29.6648 9.5828 2.94448 1.13636 2764.6 608212 881 776161 683797841 29.6816 9.5865 2.94498 1.13507 2767.7 609595 882 777924 686128968 29.6985 9.5901 2.94547 1.13379 2770.9 610980 883 779689 688465387 29.7153 9.5937 2.94596 1.13250 2774.0 612366 884 781456 690807104 29.7321 9.5973 2.94645 1.13122 2777.2 613754 885 783225 693154125 29.7489 9.6010 2.94694 1.12994 2780.3 615143 886 784996 695506456 29.7658 9.6046 2.94743 1.12867 2783.5 616534 887 786769 697864103 29.7825 9.6082 2.94792 1.12740 2786.6 617927 888 788544 700227072 29.7993 9.6118 2.94841 1.12613 2789.7 619321 889 790321 702595369 29.8161 8.6154 2.94890 1.12486 2792.9 620717 890 792100 704969000 29.8329 9.6190 2.94939 1.12360 2796.0 622114 891 793881 707347971 29.8496 9.6226 2.94988 1.12233 2799.2 623513 892 795664 709732288 29.8664 9.6262 2.95036 1.12108 2802.3 624913 893 797449 712121957 29.8831 9.6298 2.95085 1.11982 2805.4 626315 894 799236 714516984 29.8998 9.6334 2.95134 1.11857 2808.6 627718 895 801025 716917375 29.9166 9.6370 2.95182 1.11732 2811.7 629124 896 802816 .719323136 29.9333 9.6406 2.95231 1.11607 2814.9 630530 897 804609 721734273 29.9500 9.6442 2.95279 1.11483 28i8.0 631938 898 806404 724150792 29.9666 9.6477 2.95328 1.11359 2821.2 633348 899 808201 726572699 29.9833 9.6513 2.95376 1.11235 2824.3 634760 417 CARNEGIE STEEL COMPANY Functions of Numbees, 900 to 949 . 1000 No.=Diameter No. Square Cube Square Boot Cubic Root Logarithm X Reciprocal Circum. Area 900 810000 729000000 30.0000 9.6549 2.95424 1.11111 2827.4 636173 901 811801 731432701 30.0167 9.6585 2.95472 1.10988 2830.6 637587 902 813604 733870808 30.0333 9.6620 2.95521 1.10865 2833.7 639003 903 815409 736314327 30.0500 9.6656 2.95569 1.10742 2836.9 640421 904 817216 738763264 30.0666 9.6692 2.95617 1.10619 2840.O 641840 905 819025 741217625 30.0832 9.0727 2.95665 1.10497 2843.1 643261 906 820836 743677416 30.0998 9.6763 2.95713 1.10375 2846.3 644683 907 822649 746142643 30.1164 9.6799 2.95761 1.10254 2849.4 646107 908 824464 748613312 30.1330 9.6834 2.95809 1.10132 2852.6 647533 909 826281 751089429 30.1496 9.6870 2.95856 1.10011 2855.7 648960 910 828100 753571000 30.1662 9.6905 2.95904 1.09890 2858.8 650388 911 829921 756058031 30.1828 9.6941 2.95952 1.09769 2862.0 651818 912 831744 758550528 30.1993 9.6976 2.95999 1.09649 2865.1 653250 913 833569 761048497 30.2159 9.7012 2.96047 1.09529 2868.3 654684 914 835396 763551944 30.2324 9.7047 2.96095 1.09409 2871.4 656118 915 837225 766060875 30.2490 9.7082 2.96142 1.09290 2874.6 657555 916 839056 768575296 30.2655 9.7118 2.96190 1.09170 2877.7 658993 917 840889 771095213 30.2820 9.7153 2.96237 1.09051 2880.8 660433 918 842724 773620632 30.2985 9.7188 2.96284 1.08932 2884.0 661874 919 844561 776151559 30.3150 9.7224 2.96332 1.08814 2887.1 663317 920 846400 778688000 30.3315 9.7259 2.96379 1.08696 2890.3 664761 921 848241 781229961 30.3480 9.7294 2.96426 1.08578 2893.4 666207 922 850084 783777448 30.3645 9.7329 2.96473 1.08460 2896.5 667654 923 851929 786330467 30.3809 9.7364 2.96520 1.08342 2899.7 669103 -924 853776 788889024 30.3974 9.7400 2.96567 1.08225 2902.8 670554 925 855625 791453125 30.4138 9.7435 2.96614 1.08108 2906.0 672006 926 857476 794022776 30.4302 9.7470 2.96661 1.07991 2909.1 673460 927 859329 796597983 30.4467 9.7505 2.96708 1.07875 2912.3 674915 928 861184 799178752 30.4631 9.7540 2.96755 1.07759 2915.4 676372 929 863041 801765089 30.4795 9.7575 2.96802 1.07643 2918.5 677831 930 864900 804357000 30.4959 9.7610 2.96848 1.07527 2921.7 679291 931 866761 806954491 30.5123 9.7645 2.96895 1.07411 2924.8 680752 932 868624 809557568 30.5287 9.7680 2.96942 1.07296 2928.0 682216 933 870489 812166237 30.5450 9.7715 2.96988 1.07181 2931.1 683680 , 934 872356 814780504 30.5614 9.7750 2.97035 1.07066 2934.2 685147 935 874225 817400375 30.5778 9.7785 2.97081 1.06952 2937.4 686615 936 876096 820025856 30.5941 9.7819 2:97128 1.06838 2940.5 688084 937 877969 822656953 30.6105 9.7854 2.97174 1.06724 2943.7 689555 938 879844 825293672 30.6268 9.7889 2.97220 1.06610 2946.8 691028 939 881721 827936019 30.6431 9.7924 2.97267 1.06496 2950.0 692502 940 883600 830584000 30.6594 9.7959 2.97313 1.06383 2953.1 693978 941 885481 833237621 30.6757 9.7993 2.97359 1.06270 2956.2 695455 942 887364 835896888 30.6920 9.8028 2.97405 1.06157 2959.4 696934 943 889249 '838561807 30.7083 9.8063 2.97451 1.06045 2962.5 698415 944 891136 841232384 30.7246 9.8097 2.97497 1.05932 2965.7 699897 945 893025 843908625 30.7409 9.8132 2.97543 1.05820 2968.8 701380 946 894916 846590536 30.7571 9.8167 2.97589 1.05708 2971.9 702865 947 896809 849278123 30.7734 9.8201 2.97635 1.05597 2975.1 704352 948 898704 851971392 30.7896 9.8236 2.97681 1.05485 2978.2 705840 949 900601 854670349 30.8058 9.8270 2.97727 1.05374 2981.4 707330 418 MATHEMATICAL TABLES Functions op Nxjmeees, 950 to 999 1000 X No. = Diameter No. Square Cube Square Root Cubic Hoot jogarithm Reciprocal Circum. Area 950 902500 857375000 30.8221 9.8305 2.97772 1.05263 2984.5 708822 951 904401 860085351 30.8383 9.8339 2.97818 1.05152 2987.7 710315 952 906304 862801408 30.8545 9.8374 2.97864 1.05042 2990.8 711809 953 908209 865523177 30.8707 9.8408 2.97909 1.04932 2993.9 713306 954 910116 868250664 30.8869 9.8443 2.97955 1.04822 2997.1 714803 955 912025 870983875 30.9031 9.8477 2.98000 1.04712 3000.2 716303 956 913936 873722816 30.9192 9.8511' 2.98046 1.04603 3003.4 717804 957 915849 876467493 30.9354 9.8546 2.98091 1.04493 3006.5 719306 958 917764 879217912 30.9516 9.8580 2.98137 1.04384 3009.6 720810 959 919681 881974079 30.9677 9.8614 2.98182 1.04275 3012.8 722316 96Q 921600 884736000 30.9839 9.8648 2.98227 1.04167 3015.9 723823 961 923521 887503681 31.0000 9.8683 2.98272 1.04058 3019.1 725332 962 925444 890277128 31.0161 9.8717 2.98318 1.03950 3022.2 726842 963 927369 893056347 31.0322 9.8751 2.98363 1.03842 3025.4 728354 964 929296 895841344 31.0483 9.8785 2.98408 1.03734 3028.5 729867 965 931225 898632125 31.0644 9.8819 2.98453 1.03627 3031.6 731382 966 933156 901428696 31.0805 9.8854 '2.98498 1.03520 3034.8 732899 967 935089 904231063 31.0966 9.8888 2.98543 1.03413 3037.9 734417 968 937024 907039232 31U127 9.8922 2.98588 1.03306 3041.1 735937 969 938961 909853209 31.1288 9.8956 2.98632 1.03199 3044.2 737458 970 940900 912673000 31.1448 9.8990 2.98677 1.03093 3047.3 738981 971 942841 915498611 31.1609 9.9024 2.98722 1.02987 3050.5 740506 972 944784 918330048 31.1769 9.9058 2.98767 1.02881 3053.6 742032 973 946729 921167317 31.1929 9.9092 2.98811 1.02775 3056.8 743559 974 948676 924010424 31.2090 9.9126 2.98856 1.02669 3059.9 745088 975 950625 926859375 31.2250 9.9160 2.98900 1.02564 3063.1 746619 976 952576 929714176 31.2410 9.9194 2.98945 1.02459 3066.2 748151 977 954529 932574833 31.2570 9.9227 2.98989 1.02354 3069.3 749685 978 956484 935441352 31.2730 9.9261 2.99034 1.02249 3072.5 751221 979 958441 938313739 31.2890 9.9295 2.99078 1.02145, 3075.6 752758 980 960400 941192000 31.3050 9.9329 2.99123 1.02041 307S.8 754296 981 962361 944076141 31.3209 9.9363 2.99167 1.01937 3081.9 755837 982 964324 946966168 31.3369 9.9396 2.99211 1.01833 3085.0 757378 983 966289 949862087 31.3528 9.9430 2.99255 1.01729 3088.2 758922 984 968256 952763904 31.3688 9.9464 2.99300 1.01626 3091.3 760466 985 970225 955671625 31.3847 9.9497 2.99344 1.01523 3094.5 762013 986 972196 958585256 31.4006 9.9531 2.99388 1.01420 3097.6 763561 987 974169 961504803 31.4166 9.9565 2.99432 1.01317 3100.8 765111 988 976144 964430272 31.4325 9.9598 2.99476 1.01215 3103.9 766662 989 978121 967361669 31.4484 9.9632 2.99520 1.01112 3107.0 768214 990 980100 970299000 31.4643 9.9666 2.99564 1.01010 3110.2 769769 991 982081 973242271 31.4802 9.9699 2.99607 1.00908 3113.3 771325 992 984064 976191488 31.4960 9.9733 2.99651 1.00806 3116.5 772882 993 986049 979146657 31.5119 9.9766 2.99695 1.00705 3119.6 774441 994 988036 982107784 31.5278 9.9800 2.99739 1.00604 3122.7 776002 995 990025 985074875 31.5436 9.9833 2.99782 1.00503 3125.9 777564 996 992016 988047936 31.5595 9.9866 2.99826 1.00402 3129.0 779128 997 994009 991026973 31.5753 9.9900 2.99870 1.00301 3132.2 780693 998 996004 994011992 31.6911 9.9933 2.99913 1.00200 3135.3 782260 999 998001 997002999 31.6070 9.9967 2.99957 1.00100 | 3138.5 783828 419 CARNEQIE STEEL COMPANY Natural Trigonometric Functions DO I a SINES 1 o O 0' 10' 20' 30' 40' 50' 60' 0.00000 0.00291 0.00582 0.00873 0.01164 0.01454 0.01745 89 i 0.01745 0.02036 0.02327 0.02618 0.02908 0.03199 0.03490 88 2 0.03490 0.03781 0.04071 0.04362 0.04653 0.04943 0.05234 87 3 0.05234 0.05524 0.05814 0.06105 0.06395 0.06685 0.06976 86 4 0.06976 0.07266 0.07556 0.07846 0.08136 0.08426 0.08716 85 5 0.08716 0.09005 0.09295 0.09585 0.09874 0.10164 0.10453 84 6 0.10453 0.10742 0.11031 0.11320 0.11609 0.11898 0.12187 83 7 0.12187 0.12476 0.12764 0.13053 0.13341 0.13629 0.13917 82 8 0.13917 0.14205 0.14493 0.14781 0.15069 0.15356 0.15643 81 9 0.15643 0.15931 0.16218 0.16505 0.16792 0.17078 0.17365 80 10 0.17365 0.17651 0.17937 0.18224 0.18509 0.18795 0.19081 79 11 0.19081 0.19366 0.19652 0.19937 0.20222 0.20507 0.20791 78 12 0.20791 0.21076 0.21360 0.21644 0.21928 0.22212 0.22495 77 13 0.22495 0.22778 0.23062 0.23345 0.23627 0.23910 0.24192 76 14 0.24192 0.24474 0.24756 0.25038 0.25320 0.25601 0.25882 75 15 0.25882 0.26163 0.26443 '0.26724 0.27004 0.27284 0.27564 74' 16 0.27564 0.27843 0.28123 0.28402 0.28680 0.28959 0.29237 73 17 0.29237 0.29515 0.29793 0.30071 0.30348 0.30625 0.30902 72 18 0.30902 0.31178 0.31454 0.31730 0.32006 0.32282 0.32557 71 19 0.32557 0.32832 0.33106 0.33381 0.33655 0.33929 0.34202 70 20 0.34202 0.34475 0.34748 0.35021 0.35293 0.35565 0.35837 69 21 0.35837 0.36108 0.36379 0.36650 0.36921 0.37191 0.37461 68 22 0.37461 0.37730 0.37999 0.38268 0.38537 0.38805 0.39073 67 23 0.39073 0.39341 0.39608 0.39875 0.40142 0.40408 0.40674 66 24 0.40674 0.40939 0.41204 0.41469 0.41734 0.41998 0.42262 65 25 0.42262 0.42525 0.42788 0.43051 0.43313 0.43575 0.43837 64 26 0.43837 0.44098 0.44359 0.44620 0.44880 0.45140 0.45399 63 27 0.45399 0.45658 0.45917 0.46175 0.46433 0.46690 0.46947 62 28 0.46947 0.47204 0.47460 0.47716 0.47971 0.48226 0.48481 61 29 0.48481 0.48735 0.48989 0.49242 0.49495 0.49748 0.50000 60 30 0.50000 0.50252 0.50503 0.50754 0.51004 0.51254 0.51504 59 31 0.51504 0.51753 0.52002 0.52250 0.52498 0.52745 0.52992 58 32 0.52992 0.53238 0.53484 0.53730 0.53975 0.54220 0.54464 57 33 0.54464 0.54708 0.54951 0.55194 0.55436 0.55678 0.55919 56 34 0.55919 0.56160 0.56401 0.56641 0.56880 0.57119 0.57358 55 35 0.57358 0.57596, 0.57833 0.58070 0.58307 0.58543 0.58779 54 36 0.58779 0.59014 0.59248 0.59482 0.59716 0.59949 0.60182 53 37 0.60182 0.60414 0.60645 0.60876 0.61107 0.61337 0.61566 52 38 0.61566 0.61795 0.62024 0.62251 0.62479 0.62706 0.62932 51 39 0.62932 0.63158 0.63383 0.63608 0.63832 0.64056 0.64279 50 40 0.64279 0.64501 0.64723 0.64945 0.65166 0.65386 0.65606 49 41 0.65606 0.65825 0.66044 0.66262 0.66480 0.66697 0.66913 48 42 0.66913 0.67129 0.67344 0.67559 0.67773 0.67987 0.68200 47 43 0.68200 0.68412 0.68624 0.68835 0.69046 0.69256 0.69466 46 44 0.69466 0.69675 0.69883 0.70091 0.70298 0.70505 0.70711 45 to 33 60' 50' 40' 30' 20' 10' 0' m I COSINES MATHEMATICAL TABLES Natural Trigonometric Functions 1 a COSINES J CO 0' 10' 20' 30' 40' 50' 60' l.ooobo 1.00000 0.99998 0.99996 0.99993 0.99989 0.99985 89 1 0.99985 0.99979 0.99973 0.99966 0.99958 0.99949 0.99939 88 2 0.99939 0.99929 0.99917 0.93905 0.99892 0.99878 0.99863 87 3 0.99863 0.99847 0.99831 0.99813 0.99795 0.99776 0.99756 86 4 0.99756 0.99736 0.99714 0.99692 0.99668 0.99644 0.99619 85 5 0.99619 0.99594 0.99567 0. 99*540 0.99511 0.99482 0.99452 84 6 0.99452 0.99421 0.99390 0.99357 0.99324 0.99290 0.99255 83 7 0.99255 0.99219 0.99182 0.99144 0.99106 0.99067 0.99027 82 8 0.99027 0.98986 0.98944 0.98902 0.98858 0.98814 0.98769 81 9 0.98769 0.98723 0.98676 0.98629 0.98580 0.98531 0.98481 80 10 0.98481 0.98430 0.98378 0198325 0.98272 0.98218 0.98163 79 11 0.98163 0.98107 0.98050 0.97992 0.97934 0.97875 0.97815 78 12 0.97815 0.97754 0.97692 0.97630 0.97566 0.97502 0.97437 77 13 0.97437 0.97371 0.97304 0.97237 0.97169 0.97100 0.97030 76 14 0.97030 0.96959 0.96887 0.96815 0.96742 0.96667 0.96593 75 15 0.96593 0.96517 0.96440 0.96363 0.96285 0.96206 0.96126 74 16 0.96126 0.96046 0.95964 0.95882 0.95799 0.95715 0.95630 73 17 0.95630 0.95545 0.95459 0.95372 0.95284 0.95195 0.95106 72 18 0.95106 0.95015 0.94924 0.94832 0.94740 0.94646 0.94552 71 19 0.94552 0.94457 0.94361 0.94264 0.94167 0.94068 0.93969 70 20 0.93969 0.93869 0.93769 0.93667 0.93565 0.93462 0.93358 69 21 0.93358 0.93253 0.93148 0.93042 0.92935 0.92827 0.92718 68 22 0.92718 0.92609 0.92499 0.92388 0.92276 0.92164 0.92050 67 23 0.92050 0.91936 0.91822 0.91706 0.91590 0.91472 0.91355 66 24 0.91355 0.91236 0.91116 0.90996 0.90875 0.90753 0.90631 65 25 0.90631 0.90507 0.90383 0.90259 0.90133 0.90007 0.89879 64 26 0.89879 0.89752 0.89623 0.89493 0.89363 0.89232 0.89101 63 27 0.89101 0.88968 0.88835 0.88701 0.88566 0.88431 0.88295 62 28 0.88295 0.88158 0.88020 0.87882 0.87743 0.87603 0.87462 61 29 0.87462 0.87321 0.87178 0.87036 0.86892 0.86748 0.86603 60 30 ' 0.86603 0.86457 0.86310 0.86163 0.86015 0.85866 0.85717 59 31 0.85717 0.85567 0.85416 0.85264 0.85112 0.84959 0.84805 58 32 0.84805 0.84650 0.84495 0.84339 0.84182 0.84025 0.83867 57 33 0.83867 0.83708 0.83549 0.83389 0.83228 0.83066 0.82904 56 .34 0.82904 0.82741 0.82577 0.82413 0.82248 0.82082 0.81915 55 35 0.81915 0.81748 0.81580 0.81412 0.81242 0.81072 0.80902 54 _ 36 0.80902 0.80730 0.80558 0.80386 0.80212 0.80038 0.79864 53 37 0.79864 0.79688 0.79512 0.79335 0.79158 0.78980 0.78801 52 38 0.78801 0.78622 0.78442 0.78261 0.78079 0.77897 0.77715 51 39 0.77715 0.77531 0.77347 0.77162 0.76977 0.76791 0.76604 50 40 0.76604 0.76417 0.76229 0.76041 0.75851 0.75661 0.75471 49 41 0.75471 0.75280 0.75088 0.74896 0.74703 0.74509 0.74314 48 42 0.74314 0.74120 0.73924 0.73728 0.73531 0.73333 0.73135 47 43 0.73135 0.72937 0.72737 0.72537 0.72337 0.72136 0.71934 46 44 0.71934 0.71732 0.71529 0.71325 0.71121 0.70916 0.70711 45 1 S a u 60' 50' 40' 30' 20' 10' 0' i 37 Q SINES 421 CARNEQIE STEEL COMPANY Natural Trigonometric Functions do $ 6 V a TANGENTS SO ■** 1 to s S © 0' 10' 20' 30' 40' 50' 60' 0.00000 0.00291 0.00582 0.00873 0.01164 0.01455 0.01746 89 1 0.01746 0.02036 0.02328 0.02619 0.02910 0.03201 0.03492 88 2 0.03492 0.03783 0.04075 0.04366 0.04658 0.04949 0,05241 87 3 0.05241 0.05533 0.05824 0.06116 0.06408 0.06700 0.06993 86 4 0.06993 0.07285 0.07578 0.07870 0.08163 0.08456 0.08749 85 5 0.08749 0.09042 0.09335 0.09629 0.09923 0.10216 0.10510 84 6 0.10510 0.10805 0.11099 0.11394 0.11688 0.11983 0.12278 83 7 0.12278 0.12574 0.12869 0.13165 0.13461 0.13758 0.14054 82 8 0.14054 0.14351 0.14648 0.14945 0.15243 0.15540 0.15838 81 9 0.15838 0.16137 0.16435 0.16734 0.17033 0.17333 0.17633 80 10 0.17633 0.17933 0.18233 0.18534 0.18835 0.19136 0.19438 79 11 0.19438 0.19740 0.20042 0.20345 0.20648 0.20952 0.21256 78 12 0.21256 0.21560 0.21864 0.22169 0.22475 0.22781 0.23087 77 13 0.23087 0.23393 0.23700 0.24008 0.24316 0.24624 0.24933 76 14 0.24933 0.25242 0.25552 0.25862 0.26172 0.26483 0.26795 75 15 0.26795 0.27107 0.27419 0.27732 0.28046 0.28360 0.28675 74 16 0.28675 0.28990 0.29305 0.29621 0.29938 0.30255 0.30573 73 17 0.30573 0.30891 0.31210 0.31530 0.31850 0.32171 0.32492 72 18 0.32492 0.32814 0.33136 0.33460 0.33783 0.34108 0.34433 71 19 0.34433 0.34758 0.35085 0.35412 0.35740 0.36068 0.36397 70 20 0.36397 0.36727 0.37057 0.37388 0.37720 0.38053 0.38386 69 21 0.38386 0.38721 0.39055 0.39391 0.39727 0.40065 0.40403 , 68 22 0.40403 0.40741 0.41081 0.41421 0.41763 0.42105 0.42447 67 23 0.42447 0.42791 0.43136 0.43481 0.43828 0.44175 0.44523 66 24 0.44523 0.44872 0.45222 0.45573 0.45924 0.46277 0.46631 65 25 0.46631 0.46985 0.47341 0.47698 0.48055 0.48414 0.48773 64 26 0.48773 0.49134 0.49495 0.49858 0.50222 0.50587 0.50953 63 27 0.50953 0.51320 0.51688 0.52057 0.52427 0.52798 0.53171 62 28 0.53171 0.53545 0.53920 0.54296 0.54674 0.55051 0.55431 61 29 0.55431 0.55812 0.56194 0.56577 0.56962 0.57348 0.57735 60 30 0.57735 0.58124 0.58513 0.58905 0.59297 0.59691 0.60086 59 31 0.60086 0.60483 0.60881 0.61280 0.61681 0.62083 0.62487 58 32 0.62487 0.62892 0.63299 0.63707 0.64117 0.64528 0.64941 57 33 0.64941 0.65355 0.65771 0.66189 ,0.66608 0.67028 0.67451 56 34 0.67451 0.67875 0.68301 0.68728 0.69157 0.69588 0.70021 55 35 0.70021 0.70455 0.70891 0.71329 0.71769 0.72211 0.72654 54 36 0.72654 0.73100 0.73547 0.73996 0.74447 0.74900 0.75355 53 37 0.75355 0.75812 0.76272 0.76733 0.77196 0.77661 0.78129 52 38 0.78129 0.78598 0.79070 0.79544 0.80020 0.80498 0.80978 51 39 0.80978 0.81461 0.81946 0.82434 0.82923 0.83415 0.83910 50 40 0.83910 0.84407 0.84906 0.85408 0.85912 0.86419 0.86929 49 41 0.86929 0.87441 0.87955 0.88473 0.88992 0.89515 0.90040 48 42 0.90040 0.90569 0.91099 0.91633 0.92170 0.92709 0.93252 47 43 0.93252 0.93797 0.94345 0.94896 0.95451 0.96008 0.96569 46 44 0.96569 0.97133 0.97700 0.98270 0.98843 0.99420 1.00000 45 60' 50' 40' 30' 20' 10' 0' BO Si COTANGENTS 422 MATHEMATICAL TABLES Natural Trigonometric Functions DO a « hi iH 38 .003965 .0080 .008 .0060 .0048 39 .003531 .0075 .0075 .0052 40 .003144 .0070 .007 .0048 Unless otherwise specified, all orders for flat rolled steel in gages will be executed by Carnegie Steel Company to Birmingham Wire Gage. 428 MEASURES AND WEIQHTS DECIMAL OP AN INCH AND OP A FOOT Fractions of Inch or Foot AS s Fractions of Inch or Foot lis Ms? Fractions of Inch or Foot 8- A "S _ 1-3,8 Fractions of Inch or Foot ft ft ft H ii n a .0052 .0104 .015625 .0208 .0260 .03125 .0365 .0417 .046875 .0521 .0573 .0625 .0677 .0729 .078125 .0833 .0885 .09375 .0990 .1042 .109375 .1146 .1198 .1250 .1302 .1354 .140625 .1458 .1510 .15625 .1615 .1667 .171875 .1771 .1823 .1875 .1927 .1979 .203125 .2083 .2135 .21875 .2240 .2292 .234375 .2396 .2448 .2500 Yi n H 1 ift 1H 1A 1M lft 1% 1A 1H lft 1^8 Hi IK lii 1% lit 2 2A 2K 2ft 2M 2ft 2Ji 2ft 2H 2 ft 21* 2M 211 2% 218 Jl H H ii S3 i! « 45 a .2552 .2604 .265625 .2708 .2760 .28125 .2865 .2917 .296875 .3021 .3073 .3125 .3177 .3229 .328125 .3333 .3385 .34375 .3490 .3542 .359375 .3646 .3698 .3750 .3802 .3854 .390625 .3958 .4010 .40625 .4115 .4167 .421875 .4271 .4323 .4375 .4427 .4479 .453125 .4583 .4635 .46875 5% .4740 514 .4792 5M .484375 .4896 .4948 .5000 3ft 3H 3ft 3H 3ft 3M 3ft 3)4 3ft 3% 3\h 3% 3lf 3% 318 4 4ft 4K 4ft 4« 4ft iYi 4ft i% 414 4% 4}« 4« 411 5 5ft 5H 5ft 5H 5ft 5« 5ft 5M 5ft 558 5% 513 6 M Ii 14 II li M If SI 429 .5052 .5104 .515625 .5208 .5260 .53125 .5365 .5417 .546875 .5521 .5573 .5625 .5677 .5729 .578125 .5833 .5885 .59375 .5990 .6042 .609375 .6146 .6198 .6250 .6302 .6354 .640625 .6458 .6510 .65625 .6615 .6667 .671875 .6771 .6823 .6875 .6927 .6979 ;703125' .7083 .7135 .71875 .7240 .7292 .734375 .7396 .7448 .7500 6ft 6K 6ft 6ft 6% 6ft 6^ 6ft 014 6Ji 618 ey s 618 7ft 7ft 7M 7ft TA 7ft 7H 7ft 7% 7H 7M 711 7^8 71S 8 8ft 8M 8ft 8M 8ft &*A 8ft 8MS 8ft 814 SH 811 8Js 818 9 SI §5 II 18 ill Si .7552 .7604 .765625 .7708 .7760 .78125 .7865 .7917 .796875 .8021 .8073 .8125 .8177 .8229 .828125 .8333 .8385 .84375 .8490 .8542 .859375 .8646 .8698 .8750 .8802 .8854 .890625 .8958 .9010 .90625 .9115 .9167 .921875 .9271 .9323 .9375 .9427 .9479 .953125 .9583 .9635 .96875 .9740 .9792 .984375 .9948 1.0000 CARNEGIE STEEL COMPANY SUBJECT INDEX Page American Bridge Co . . . specifications for steel structures 158-164 A. S. T. M.. standard specifications 4-57 billet steel reinforcement bars '. 24-27 Boiler and fire box steel tor locomotives , 49-53 boiler rivet steel for locomotives '54-57 nickel steel, structural 11-17 ship rivet steel 33-37 structural steel for bridges 4-10 " " buildings 18-23 " " cars : . 38-43 " locomotives 44-48 " " ships 28-32 Anchors standard wall and pier anchors 249 Angles elements of sections 171,184-189 profiles, dimensions and weights 90-97 safe loads, explanatory notes 212 safe load tables 236-240 standard connections 246,247 structural details for punching and riveting . 252-254 tension values 260-262" Angles, Back to Back . . radii of gyration 173, 200-202 Arches, Floor Arches . . . explanatory notes 326-328 terra cotta, safe load tables and weights 3,29-332 Areas circles, diameters 1 to 999 400-415) circular segments 394-397 method of increasing sectional areas 59 net areas of angles 260-262 plane figures 391 rectangular sections \ . . . .' 116-118 reduction of area for rivet holes 254 square and round bars 122, 123 structural shapes 174-195 surface of solids 398, 399 Band Edge Flats ...... list of sizes ; 114 Bars cold twisted square bars, sizes and weights 124 concrete reinforcement bars, sizes and weightsl24-133 eye bars, sizes and dimensions 150 hanger bars, sizes and weights 133 lattice bars, dimensions for columns 162 merchant bars, list of sizes „. .114,115 rounds and squares, weights and areas 122, 123 splice bars, profiles, dimensions and weights. .138, 139 standard test bars, see A. S. T. M. Specifications 4-57 tension values, rounds and squares 263 upset screw ends, sizes and dimensions 148, 149 430 INDEX Page Beams, H-Beams see H-Beams 71, 179, 230, 296 Beams, I-Beams bending moments, tables 219, 220 common dimensions 60 details, connection angles 246, 247 " bearing plates 250 " separators .... . 248 standard gages for punching 243, 244 elements of sections 170, 174, 175 grillage, notes and calculations 264-268 profiles, weights and dimensions .',..... 61-70 sale loads, explanation of tables 212-218 sale load tables 222-229 web resistance, tables 219, 220 Beam Columns safe load tables 296 Beam Girders explanatory notes 269 sale load tables 270, 271 Beam Stresses explanatory notes 203-205, 212-218 bending stresses 203, 204 buckling stresses 216, 217 deflection, lateral 160, 204, 214 vertical 208-213 flexure formulas for various loading conditions. . 206-2 1 1 impact stresses 214, 215 shearing stresses, longitudinal and vertical. 203, 215, 216 tensile and compressive stresses 204 Bearing Plates explanatory notes 250 sale resistance ^ 251 standard lor beams 250 Bearing Values pins and rivets, explanatory notes 255 pins, tables 258 rivets, tables 256, 257 Bending Momenta explanatory notes 203 beams, tables 219, 220 channels, tables 221 pins, tables 259 various loading conditions, formulas .208-211 Bolts standard dimensions 144, 145 screw threads, standard dimensions 144, 145 weights, bolts with hexagon heads and nuts . . . 147 weights, bolts with square heads and nuts 146 Bolt Heads and Nuts. . . standard dimensions 144, 145 weights 146, 147 Buckle Plates explanatory notes 340 sale load table ■ 340 sizes and dimensions 341 Buckling of Webs explanatory notes 216-218 web resistance ol beams and channels, tables . 219-221 Building Laws extract, from building laws of various cities . . . 324 Bulb Sections bulb angles, bulb tees 72-80, 179-183 bulb angles, elements 180-183 " profiles, weights and dimensions... 73-80 bulb tees, elements 179 " " " profiles, weights and dimensions 72 431 CARNEGIE STEEL COMPANY Page Cast Iron Columns .... allowable unit stresses 320 hollow round and square, elements 198, 199 " safe loads 321,322 Ceilings deflection of plastered ceilings 212, 213 weight of ceilings 332 Center of Gravity. .... see Neutral Axis 165-171, 174-197 Channels, Ship and Car. elements of sections 177, 178 profiles, weights and dimensions 85-89 Channels, Structural. . . bending moments, table 221 common dimensions 60 details, standard gages for punching 245 elements of sections 170, 176-178 profiles, weights and dimensions 81-89 safe loads, explanation of tables 212-218 safe load tables 231-235 web resistance, table 221 Checkered Plates . . - elements and safe loads 344 profiles, weights and dimensions 110 Circles areas and circumferences, dia. 1 to 999 400-419 properties of the circle; 390 Circular Plates extreme sizes, carbon steel Ill, 112 Circular Segments areas, tables of coefficients 394-397 Clevises sizes and weights 152 Coefficients circular segments,, 395-397 deflection under uniform load 213 expansion due to heat 377 Cold Twisted Squares . . . sizes ajid weights 124 Columns, Cast Iron .... allowable unit stresses 320 hollow round and square, elements 198, 199 safeloads 321,322 Columns, Steel explanatory notes 291-293 calculation of elements 172, 173 " " stresses 293 compression formulas 294, 295 elements, angle and plate columns 309-316 " channel and plate columns 297-308 " miscellaneous beam columns 296 safe loads, angle and plate columns 309-316 " " channel and plate columns 297-308 " " miscellaneous beam columns 296 typical details for mill and office buildings 317-319 Columns, Wood allowable unit stresses 367 square and round, safe loads 368, 369 Compound Sections .... calculation of elements 172, 173 Concrete, Masonry strength, unit fiber stresses 376 specific gravity and weight 371 Concrete, Reinforced . . . explanatory notes 333-337 beams and slabs, formulas 333-336 bending moments of slabs 338 columns, formulas „ . 336 reinforcements, deformed bars, etc 124-133 round and square bars 122, 123 triangle mesh 339 432 INDEX Page Connection Angles standard for beams 246, 247 Construction Specif ns. . American Bridge Company 158-164 Conversion Tables measures, metric and U. S. Standard 378-389 Corrugated Plates elements of sections 194 profiles, weights and dimensions 109 assembled sections, elements and safe loads . . 343 Corrugated Sheets explanatory notes 352 sizes and weights 353 Cotter Pins sizes and dimensions 154 Cross Tie Sections elements of sections 193 profiles, weights and dimensions 134, 135 safe load tables 230 Cubes and Cube Roots . . numbers 1 to 999 400-419 Decimal Table equivalents of an inch and of a foot 429 Deflection, Lateral explanatory notes and formula 160, 204, 214 Deflection, Vertical. . . . explanatory notes 204,212 coefficients, calculation and table 213 coefficients for beams and channels . . 222-226, 230-233 limit for plastered ceilings 212 formulas for loading under various conditions . 208-211 Deformed Bars sizes and weights 124-131 Elasticity elastic limit of substances 374, 375 modulus of elasticity of substances . . 206, 359, 374-376 Elements of Sections. . . explanatory notes 165 formulas for calculation of elements 166-173 structural shapes 174-202 Equivalent Measures. . . metric and U. S. standard 378-389 Expansion, Heat table of coefficients 377 Eye Bars sizes, dimensions and weights 150 Fiber Stresses concrete, reinforced concrete 376 masonry, stone 376 metals, alloys 374, 375 miscellaneous substances 376 structural steel 158, 159, 375 structural timber '. 359 Fireproof Floors see Floor Construction 323-339 Flat Rolled Steel list of sizes 111-114 tables of weights 119-121 Flexure of Beams explanatory notes and formulas 203-211 Floor Construction. . '. . explanatory notes 323-328 fireproof floor systems 325, 326 live loads, various building laws 324 reinforced concrete beams and slabs 333-339 terra cotta arches, safe loads and weights 329-332 thrust in arches 326-328 Floor Plates buckle plates 340,341 checkered plates 344 corrugated plates, assembled 343 trough plates, assembled 342 433 CARNEQIE STEEL COMPANY Pagb Formulas bending moments and deflection 206-211 elements of sections 166-173 geometric and trigonometric 390-394, 398, 399 root trusses, stresses and length of members. .348-351 stresses in beams, bending 203-205 buckling 216,217 " " " impact 214,215 shearing 215,216 stresses in columns, cast iron 320 structural steel '. 294,295 " " " structural timber 359 stresses in bearing plates and steel slabs . . 250, 264, 265 Functions numbers 1 to 999 400-419 trigonometric 420-425 Gases specific gravity and weight 370 Gages angles, for punching."?*. 246 beams, for punching 243, 244 Birmingham wire gage 426 channels, for punching 245 comparative table of various gages 428 United States standard gage 427 Gage Variation steel plates, see A. S. T. M. Specifications .... 4-57 Girders explanatory notes -^ 269 angle and plate girders, safe loads 272-290 beam and plate girders, safe loads 270, 271 elements of compound sections 172, 173 grillage foundations. 264-268 Grillage Foundations . . explanatory notes and calculation 264-268 Grips of Rivets length of field rivets 156 H-Beams beam safe load tables 230 column safe load tables 296 elements of sections 179 profiles, dimensions and weights 71 Half Rounds list of sizes 115 Hexagons list of sizes 115 Hollow Sections rounds and squares, elements 198, 199 cast iron columns 320-322 Impact Stresses effect on beams 214,215 Increase of Sections . . . method of rolling 59 Lateral Deflection explanatory notes and formula 160, 204, 214 Lattice Bars dimensions for columns 162 Liquids coefficients of expansion. 377 specific gravity and weight 370 Live Loads, Floors ... building laws of various cities 324 Logarithms numbers 1 to 999 400-419 Longitudinal Shear. . . . explanation and formula 215, 216 Loop Rods sizes and dimensions 151 434 INDEX Page Masonry and Stone .... coefficients of expansion 377 specific gravity and weight 371 strength, unit fiber stresses 376 Materials coefficients of expansion 377 specific gravity and weight , 370-373 strength, unit fiber stresses 374-376 Measures and Weights. . equivalents of U. S. and metric 378-389 Mensuration mathematical formulas 390-399 Metals and Alloys coefficients of expansion 377 specific gravity and weight 370 strength, unit fiber stresses ,. 374, 375 Metric Tables weights and measures 378-389 Minerals specific gravity and weight 371 Modulus of Elasticity . . various substances 206, 359, 374-376 Moments of Inertia .... definition and formulas 165-171 structural sections, tables 174-197 Neutral Axis definition and formulas 165-171 structural shapes, tables 174-197 NutB dimensions and weights 144-147 recessed pin nuts, sizes and dimensions 154 sleeve nuts, sizes and dimensions 153 Nut Steel Flats list of sizes 114 Octagons list of sizes 115 Ordering Materials general instructions 58 Piling, Steel Sheet explanatory notes 354-356 elements, rolled and assembled sections 194, 357 profiles, rolled sections '. 108 Pi n8 explanatory notes • ■ • • 255 bearing values, tables 258 bending Moments, tables 259 cotter pins, sizes and dimensions 154 Pipe black and galvanized 142, 143 Plate Girders see Girders 172, 173, 264-290 Plates, Flat Rolled Steel, extreme sizes Ill 113 carbon steel, sheared, rectangular and circular . Ill, 112 " " , universal rectangular Ill nickel steel, sheared, rectangular 113 " , universal, rectangular 113 Plates, Floor Plates buckle plates, explanatory notes and sizes 340, 341 checkered plates, elements and safe loads 344 " " profiles, weights, dimensions 110 corrugated plates, elements and safe loads .... 194, 343 ■< " profiles, weights, dimensions 109 trough plates, elements and safe loads 194, 342 •• " profiles, weights, dimensions 109 Plates, Wall Plates. ... see Bearing Plates 250, 251 Profiles of Sections dimensions and weights 61-110, 124-141 Punching details for punching and riveting 252-254 construction specifications 163 Parting explanatory notes '. 347 _ 435 CARNEGIE STEEL COMPANY Page Radius of Gyration definition . 165 -angles back to back, tables 200-202 formulas for elements of sections 166-173 structural shapes, tables 174-195 Rails elements of A. R. A. and A. S. C. E. sections 195 profiles, weights and dimensions 136, 137 Rails and Accessories . . weights and dimensions ^ 140 Rail Clips profiles, dimensions and weights 141 Ratio of Slenderness. . . definition 291 N unit stresses for compression formulas 294 Recessed Pin Nnts , sizes and dimensions 154 Reciprocals numbers 1 to 999". 400-419 Rectangular Plates .... extreme sizes, carbon-and nickel steel 111-113 Rectangular Sections . . . areas 116-118 moments of inertia 196, 197 Reinforced Concrete ... see Concrete, Reinforced 122-133, 333-339 Riveting construction specifications 161, 162 details for punching and riveting 252-254 Rivets areas of rivet holes 254 conventional signs 252 dimensions 155 lengths for various grips 156 stresses, shearing and bearing values 255-257 structural details for riveting 252-254 weights , 157 Roofs explanatory notes 345-347 live loads, building laws of various cities 324 snow and wind loads 345 trusses, stresses and length of members 348-351 weights, roof covering and roof trusses 346, 347 Screw Threads Franklin Institute, TJ. S. and A. B. Co. standards 144 Section Modulus definition and formulas 165-173 structural shapes 174-195 Segments, Circular .... coefficients of areas 395-397 Separators standard for beams 248 Shearing Stresses longitudinal and vertical 203, 215, 216 Sheared Plates extreme sizes, carbpn-and nickel steel 111-113 Shearing Values, Rivets, tables.' 256, 257 Ship and Car Channels . see Channels, Ship and Car 85-89, 177, 178 Skelp list of sizes 114 Sleeve Nuts sizes and dimensions 153 Snow Loads roofs and trusses 345 Specifications American Bridge Company 158-164 American Society for Testing Materials, 4-57 Specific Gravity various substances „ 370, 371 Splice Bars elements of A. R. A. and A. S. C. E. sections 195 profiles, dimensions and weights 138, 139 Square and Round Bars area and weight 122, 123 Square Edge Flats list of sizes. 114 Squares, Square Roots . numbers 1 to 999 400-419 Strength of Materials . . unit fiber stresses 374-376 Stresses see Beam Stresses .- 160, 203-218 436 INDEX Page Tees elements ol sections -. .171, 190, 191 profiles, weights and dimensions 98-105 safe load tables 241 Terra Cotta arches, ceilings, furring, partition, roofing 326-332 Test Bars standard, see A. S. T. M. -Specifications 4-57 Threads length of bolt threads 145 standard dimensions of screw thread 144 Thrust in Arches effect in floor construction 326-328 Tie Rods length and weight 249 spacing 328 Timber, Structural . . . . A. R. E. A. unit stresses and explanatory notes. 358, 359 beams, deflections, limiting loads and spans. . . 361 explanatory notes 360 " safe load tables 362-366 coefficients of expansion 377 columns, explanatory notes 367 safeload tables 368, 369 specific gravity and weight 370 Triangle Mesh concrete reinforcement 339 Trigonometric Formulas functions of angles and triangles 392, 393 Trigonometric Functions natural 420-425 Trough Plates elements of sections 194 profiles, weights and dimensions 109 riveted sections, elements and safe loads 342 Trusses explanatory notes •. 347 stresses and length of members 348-351 weights of trusses 347 Turnbuckles size and dimensions 153 Unit Stresses see Fiber Stresses 158, 159, 359, 374-376 Universal Mill Plates. . . extreme sizes, carbon- and nickel steel Ill, 113 Upset Screw Ends square and round bars 148, 149 Vertical Shear explanation 215 formulas for various conditions of loading 207-211 Volume and Surface . . . solids 398, 399 Web Resistances beams and channels 219-221 Weights flat rolled steel, tables 119-121 rounds and squares 122, 123 shapes 61-110, 124-141 various substances 370-373 Weights and Measures. . metric and U. S. Standard 378-391 Wind Loads, Pressure. . building specifications of various cities 324 roofs and trusses 345 Wire and Sheet Metal. . standard gages • ■ .426-428 Wooden Beams, Columns see Timber, Structural 360-367 Zee Bars elements of sections 170, 192 profiles, weights and dimensions 106, 107 safe load tables ' 242 437 CARNEQIE STEEL COMPANY PRODUCTS Pig Ieon and Furnace "Products Ferro- Manganese and Spiegeleisen Open-Hearth and Bessemer Steel, Allot Steels Ingots, Billets, Blooms, Slabs, Sheet Bars Armor and Vault Plate Plates for Bridges, 1 Ships, Tanks, Boilers, and Cars Rolled Structural Shapes Beams, Channels, Angles, Tees, Zees Steel Mine Timbers and Steel Sheet Piling Bar Mill Products Concrete Reinforcement Bars, Agricultural Shapes Miscellaneous and Special Shapes Electric Tool Steels , Merchant Bars Squares, Rounds, Half Rounds, Hexagons, Ovals, Half Ovals Flats, Skelp, Bands, Hoops, Cotton Ties Hoops for Slack Barrel Cooperage Tire and Vehicle Spring Steel Track Material Rails and Splice Bars, Duquesne Rail Joints, Track Accessories, Steel Cross Ties Forgings Standard Forged and Heat-Treated Axles Connecting Rods, Crank Shafts and Arch Bars Wheels and Gear Blanks, i Automobile, Flywheels, Pipe Flanges,. Shaft Couplings Locomotive Pistons Derricks and Drilling Rigs I 438 CARNEGIE STEEL COMPANY WORKS COKE WORKS Clalrton By-product Coke Works Clairton, Pa. Farrell By-Product Coke Works Farrell, Pa. BLAST FURNACES Carrie Furnaces Rankin, Pa. Edith Furnace Pittsburgh, N. S., Pa. Isabella Furnaces Etna, Pa. Lucy Furnaces Pittsburgh, Pa. Neville Furnace Neville Island, Pa. Niles Furnace Niles, O. Steubenville Furnace Steubenville, O. Zanesville Furnace . Zanesville, O. STEEL WORKS, FURNACES AND ROLLING MILLS Bellaire Steel Works and Furnaces Bellaire, O. Clairton Steel Works and Furnaces Clairton, Pa. Columbus Steel Works and Furnaces Columbus, O. Duquesne Steel Works and Furnaces. . South Duquesne, Pa. Edgar Thomson Steel Works and Furnaces Bessemer, Pa. Farrell Steel Works and Furnaces Farrell, Pa. Homestead Steel Works Munhall, Pa. Mingo Steel Works and Furnaces Mingo Junction, O. New Castle Steel Works and Furnaces New Castle, Pa. Qhio Steel Works and Furnaces Youngstown, O. Sharon Steel Works and Furnace Sharon, Pa. ROLLING MILLS Clark Mills Pittsburgh, Pa. Greenville Mills Greenville, Pa. , McCutcheon Mills Pittsburgh, N. S., Pa. McDonald Bar Mills McDonald, O. Monessen Mills : Monessen, Pa. Painter Mills Pittsburgh, N. S., Pa. Upper Union Mills Pittsburgh, Pa. Lower Union Mills Pittsburgh, Pa. Upper Union Mills Youngstown, O. , fibwer Union Mills Youngstown, O. FORGE AND WHEEL WORKS Howard Axle Works Homestead, Pa. Schoen Steel Wheel Works McKees Rocks, Pa. WAREHOUSES ' Baltimore Warehouse Baltimore, Md. Cleveland Warehouse Cleveland, O. New England Warehouse Allston, Mass. Pittsburgh Warehouse Pittsburgh, Pa. Waverly Warehouses Newark, N. J: 439 — WW Marine l f usiuo, p'"&'_ " ' RF> r AL0. M- *« OFFICES GENERAL OFFICES: Pittsburgh, Carnegie Building. DISTRICT OFFICES: Birmingham, Brown-Marx Building, Boston, 120 Franklin Street, Buffalo, The Marine Trust Company Building, -■ Chicago, 208 South La Salle Street, . Cincinnati, Union Trust Building, Cleveland, Rockefeller Building, ' Denver,, First National Bank Building^ Detroit, Ford Building, New Orleans, Maison Blanche, New York, Hudson Terminal, 30 Church Street, Philadelphia, Widener Building, Pittsburgh, Carnegie Building, St. Louis, Third National Bank Building, St. Paul, Pioneer Building. EXPORT REPRESENTATIVES: UNITED STATES STEEL PRODUCTS CO., New York, Hudson Terminal, 30 Church Street. k PACIFIC COAST REPRESENTATIVES: » UNITED STATES STEEL PRODUCTS CO., PACIFIC COAST DEPT. Los Angeles, Jackson Street and Central Avenue, Portland, Selling Building, San Francisco, Rial to Building, Seattle, Fourth Avenue South and Connecticut Avenue. the Marine Trust Co. Bldg, - — - 1-u ^.j awu B jX te ^ *~