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ABSTRACT

This is a survey on results and in particular on recent development on the
question: which compact subsets of the complex plane are removable for bounded
analytic functions. We begin with classical results and here knowledge of only
basic complex analysis is required. Later on some geometric measure theory and
in particular very advanced theory of singular integrals enter into play. But since
in this part we are not giving any detailed proofs, also a reader who is not familiar
with these topics should be able to get an idea what is going on.

In the first parts of this paper I give several proofs for many rather easy
and well-known results. I thus hope that a reader who is not familiar with the
subject could gain some insight into it. In the later parts on more recent results
some ideas of the proofs are only sketched. The complete details get often very
complicated and are best studied in the original papers.

Recent lecture notes of Pajot [P1] cover this topic in much greater detail, also
in historical perspective. There one can find many more references than we give
here for the background and for further reading. Other recent surveys on this
and related topics are [D4], [Me2], [P2], [V1] and [V2]. Much of the background
material can be found in [G], [D2], [C1], [M2] and [Mul].
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1 Removable sets

A classical theorem of Riemann says that an isolated singularity is removable for
bounded complex analytic functions. This means that if

f:U(z0,7)\ {20} = C

is analytic and bounded, then f(zy) can be defined so that f becomes analytic in the
whole disc

U(zo,7) ={2€C:|z— 2] <r}.

There are many easy ways to see this, one is via the Cauchy integral formula. Let
0<e<po<r. Then for e < |z — 29| < p,

_ 1 f©Q . f(€) }
f) = 211 |:/8U(zo,g) ¢—z d /aU(zo,e) ¢—z dc|-

Since f is bounded, the second integral tends to zero as ¢ — 0. Hence for

0<l|z— 2] <o,
1 £(0)
Fe) = 5 /8 e

The right hand side is analytic in U(zg, ¢) and gives the required extension (since
0 < r was arbitrary, we get from this the extension to all of U(zg,r)).

The main question we address in this survey is: with what kind of compact subsets
of C can the singleton {zp} be replaced in the above result? We call such sets
removable:

Definition 1.1 A compact set E C C is removable (for bounded analytic functions)
if the following holds: if U is an open subset of C containing F and f: U\ E — C is
a bounded analytic function, then there is an analytic function g : U — C such that
f(z)=g(z) for z€ U\ E.

Note that if £ has interior points, then E is not removable. Indeed, if zy is an
interior point of F, then z — 1/(z — 2¢) is bounded and analytic in C \ E but it does
not have any analytic extension to C.

The open sets U play no real role here. The following simple result means that it
suffices to check the condition with U = C:

Theorem 1.2 A compact set E C C is removable if and only if every bounded ana-
lytic function f : C\ E — C is constant

Proof. Suppose E is removable and f: C\ E — C is bounded and analytic. Since
the interior of F is empty, the analytic extension of f to C is also bounded and by
Liouville’s theorem constant. Thus also f is constant.
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Conversely, suppose that there are only constant bounded analytic functions in
C\ E. Let U be open with ¥ C U and f : U\ E — C bounded and analytic. The
point of the proof is that for any z € U \ E, we can write

1) = —3—»[/C1-115)-d<-— A, dc},

2w C—=z r, (—2

where I'; and 'y are cycles consisting of finitely many smooth Jordan curves in U
surrounding E and such that z is between them and in the outer domain of I's. The
integral along I'; is independent of I'y (as long as z lies in the outer domain of I'y),
whence it defines a bounded analytic function in C\ E. Hence it must be constant
by our assumption. In the same way the integral along I'; is independent of I';, and
gives an analytic function in U. From these facts we get the required extension of f.

The removable sets can also be characterized as the null-sets of the analytic ca-
pacity v, which was introduced by Ahlfors in 1947 in [A]. For a compact set £ C C,

Y(E) = sup lim [2f(2)],
f zZ—00

where the supremum is taken over all analytic functions f : C\ F — C such that
|f(z)] <1forall z€ C\E and lim, o f(z) = 0. Then E is removable if and only if
v(E) = 0. We leave the verification of this easy fact to the reader.

2 Painlevé’s condition and Hausdorff measures

Now that we found other easy complex analytic reformulations of the removability,
we return to the problem of finding geometric criteria. We started with Riemann’s
classical result that a singleton is a removable set. Of course, we get in the same
way that any finite set is removable. Although the modification is trivial, let’s do
it. But it is slightly more convenient to do it using Theorem 1.2 than the definition.
Solet E = {21,...,2,} C Candlet f: C\ E — C be bounded and analytic. We
may assume |f| < 1 and f(o0) := lim, f(2) = 0. Pick z € C\ E, pick large
radius R such that £ C U(0,R), and then pick for each j an €; > 0 such that
U(zj,e;) C U(0,R)\U(z, o) where ¢ = dist(z, E)/2. By the Cauchy integral formula,

1 £(¢) f(©)
- L de — —=d(|.
f(z) o |:~/6U(0,R) (—z C /(9(U;L=1U(Zj‘&‘j)) (—=z ¢

Since f(co) =0, the first integral tends to zero as R — oo. This gives

fe) =L 1O g (2.1)

27 Joun_,U(z5e5)) €~ #

whence

1 ¢ 1£(Q)l 1 -1 RS
|f(Z)‘S%Z/BU —|d<|§%;§2ﬁé‘j—5j§€j.

]:1 (Zj,Ej) |C_Z|
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Since we can make ) 7, ¢; as small as we please, we get f(z) = 0. Thus f vanishes
identically, and we have proved that F is removable.

Of course, in the above proof we could have chosen the same ¢ for each j. But
we didn’t in order to see that the above argument gives much more. The only thing
we used about E is that we could cover it with discs U(z;,¢;), j = 1,...,n, so that
E;‘L:I ¢; is arbitrarily small. Clearly this is true for any compact countable set. But it
is true also for many uncountable sets, for example, for any compact subset of R € C
with one-dimensional Lebesgue measure zero.

This covering condition was the sufficient condition Painlevé found for removability
more than one hundred years ago. In more modern language it means that E has
1-dimensional Hausdorff measure zero. The integral dimensional Hausdorff measures
HF k= 1,2,..., where defined by Carathéodory in 1914 to generalize the concept
of length, area, and more generally k-dimensional area of k-dimensional surfaces. A
few years later Hausdorff defined and studied s-dimensional Hausdorff measures H*
for 0 < s < co. They are defined for A C C (or A in any metric space) by

H(A) = hmlnf{Zdlam A C U E;, diam(E;) < 5}

j=1

Then, for example, #!(I') is the length of T if T is a rectifiable curve. For any s, H*
is an outer measure for which Borel sets are measurable. For this and other facts on
Hausdorff measures the reader can consult for example [M2].

Now it is easy to check that for compact sets F Painlevé’s condition means that
the one-dimensional Hausdorff measure is zero: H'(E) = 0 if and only if for any € > 0
there are discs U(zj,¢;), j = 1,...,n, such that

Ec UU(zj,sj) and Z€j<5.
j=1 =
Hence we can formulate Painlevé’s result as
Theorem 2.1 If E C C is compact with H'(E) = 0, then E is removable.

Let us now look for some non-removable sets. We already observed that all com-
pact sets with interior points are such. So are all compact sets with positive area, i.e.,
with positive two-dimensional Lebesgue measure £2(E). To see this, it is enough to
check that the function f,

f(z):/EC_ZdEQC, LeC\E,

is bounded, analytic and not constant in C \ E. Such a function is called the Cauchy
transform of the measure £2|E. Cauchy transforms are very important in the study
of removability. For a general finite Borel measure o, which could be non-negative,
real, or complex, the Cauchy transform C, of ¢ is defined by

:/Cizdag,
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at the points z where the integral exists. We often study measures ¢ which live on
some compact set F, that is, o(A) = 0 for all Borel sets A ¢ C\ E. Then C, is
defined and analytic in C\ E. It is constant only if ¢ = 0. But it is not always
bounded.

Let us study the possible boundedness of C, for some non-negative finite measures
. We already noticed that C), is bounded when p = £%|E for some compact set E.
One easy way to check this is to use the obvious inequality

L2 (ENU(zr)) <wr? forallze C,r > 0.
But less is enough: if for some s > 1, and 0 < ¢ < oo,
w(U(z,r)) <er® for z€ C and r > 0,

then C, is bounded. In fact, a well-known formula for non-negative functions g reads
as,

/gdu = /Ooou({ac 2 g(x) > t}) dt.

It is an easy consequence of Fubini’s theorem. Thus

Cul)l = J 2 dnc| < f ey du

= o n({¢s ke > ) de = o w(U1/0) e
< fol up(U(z,u)) du+ [ u=2u(C) du
<ecf u2du+ p(C) = 51 + p(C).

To study the size of general sets, one can use the whole scale of Hausdorff measures
H®, 0<s<2, (H*(C)=0if s > 2). One easily checks that

t<s, H'(A)<oo impliesH*(A)=0.
This leads to the definition of the Hausdorff dimension dim A;

dimA =inf{s:H*(A) =0}
= sup{t: H'(A) = oo}

There is a classical result of Frostman from the 1930’s which says that for Borel sets
A, H*(A) > 0 if and only if there is a non-negative Borel measure g on A C C such
that 1(A) > 0 and p(B(z,r)) < r® for all z € C, r > 0, see [M2, Theorem 8.8].

Suppose that E C C is compact with dim £ > 1. Then H*(E) > 0 for some s > 1
and by Frostman’s result there is 4 on E for which u(B(z,r)) <rsforzeC,r>0.
The estimates we had a little earlier show then that C), is bounded in C\ E. Thus
we have proved

Theorem 2.2 If E C C is compact and dim E > 1, then E is not removable.
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To get some examples of sets to which this theorem applies, we consider Cantor
sets Cy, 0 < s < 2, on the unit square Qo = [0, 1] x [0,1]. They are constructed as
follows. Let A € (0,1/2) be defined by

s =log4/log(1/)).

Let Q1 C Qo, ¢ = 1,...,4, be the four closed squares in the corners of ()¢ with
side-length A. Then inductively if the squares Q. ;, ¢ = 1,... , 4% of side-length \*
have been constructed, each of them gives birth to 4 new squares of side-length A\¥+1,
and altogether we get 471 squares Qg11,i, i = 1,...,4"1. Then C; is defined by

oo 4k

Cs = m U Qk,i-

k=1i=1

It is not difficult to see that 0 < H*(Cs) < oo. Moreover, C, is an example of a
so-called AD-regular set: there is a constant C, 1 < C < oo, such that

r?/C < ’HS(C’S ﬁB(x,r)) <Cr® forxeC,,0<r<l.

In particular, when s > 1 (i.e., A > 1/4), dimCs > 1. Hence by Theorem 2.2, E
is not removable. For s < 1 (and A < 1/4), dimCs < 1, and so H!(Cs) = 0. Thus
by Theorem 2.1, Cy is removable. Let us now look at the most interesting case s = 1
(and A = 1/4). Then C4 has positive and finite “length” (one-dimensional Hausdorff
measure), but it is nothing like a rectifiable curve. It is a standard example of a

purely unrectifiable set:
Hl(Cl N F) =0

for every rectifiable curve T'.

We can use C7 to show that the converse of Theorem 2.1 is false: C; is removable
although H!(Cy) > 0. To see why this is so, let us first look more generally at compact
sets with finite 7! measure.

So let E C C be compact with H1(E) < oo, and let f : C\ F — C be an analytic
function such that |f(z)| < 1for z € C\ E and f(c0) = 0. As in the discussion of
Painlevé’s result, we get a representation as in (2.1). Using the fact that H'(E) < oo,

we can for each m = 1,2,... choose as the discs U(zj,¢;) discs Uy, j, j = 1,...,km,
such that
km
diam(Uy, ;) < 1/m and > diam(Up, ;) < H'(E) + 1.
j=1

Then the formula (2.1) can be re-written as

f(2) :/ ! ~ dom, (2.2)

¢ —
where o, is the complex measure for which
1
gdoy, = —— 9(¢) f(€)d¢
/ 21 Joukm v, ) © 70
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for all continuous functions g. The condition 2?21 diam(U,, ;) < H'(E) + 1 guaran-
tees that the total variations of the measures o, are uniformly bounded, whence we
can extract a weakly converging subsequence o,,; — 0. Then

f(z)z/c%zdag, LeC\E.

A closer, but not difficult, investigation shows (see, e.g., [M2, Ch. 19]) that o is
absolutely continuous with respect to ! with bounded Radon-Nikodym derivative.
This means that there is a bounded Borel function ¢ : £ — C such that

f(z) = / el dH'¢. (2.3)
gC—=%

The above representation formula is very useful in the study of the removability
of sets with finite 7' measure. After that we can often forget about the analytic
functions and use only the boundedness of the right hand side of (2.3). In fact, we
have more than this. By some simple estimates, cf. [M2, Lemma 19.14], one sees that
the corresponding maximal function is bounded, or in other words, there is a constant
C, 1< C < oo, such that

/ 2O qucl < torzec, (2.4)
C\B(z,¢)

Cpp(z) = sup
e>0

(—=z
where u = H|E.

Let us now see how we can use this for the Cantor set C;. To show that C is
removable, we need to show that if f : C\ C} — C is analytic, |f| < 1 and f(o0) =0,
then f = 0. For such an f we find ¢ as above, and we have to show that ¢ = 0 H!
almost everywhere on C;. Suppose not, and first suppose that even ¢ = 1 on C;.
Then this is very easy. If we take z = 0,

1 ¢
=Re—==>0 for all ( € (1.
(—= ¢l
Moreover, Re1/¢ > 4%~2 in some square Qp,i, in each generation (in the one which
touches the real axis and is the second closest to 0). Hence for every m = 2,3,...,

m

1 m
Re/ SAHYC > AP HY O N Q) =) 4FT247R = m)/16,
Cl\U(O,4*m*1) Z ( 1 7k) Z /

k=1 k=1

which violates (2.4). Of course, the assumption ¢ = 1 is a huge oversimplification.
But vaguely speaking the general case can be reduced to this. First, any measurable
function is approximately continuous almost everywhere. Hence near any typical point
of C7, ¢ looks like a constant except for a set of small measure. But 0, which we used
above, is a very special point of C';. On the other hand, typical points of C; look
like corner points (such as 0) at some arbitrary small scales. A precise statement of
this sort says that given any N, then H! almost every point z € C; belongs infinitely
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often N consequtive times to the left lower hand corner square in the construction of
C:. This is easy to prove. Using these principles it is possible to give a rigorous proof
for the fact that C; is removable.

The above arguments on the self-similar Cantor set C; can be generalized. We
essentially used two facts. First, that Cy is AD-regular. Recall that this meant that
there is C, 1 < C < o0, such that

r/C<H' (ENB(zr) <Cr forz€eFE, 0<r<dam(E). (2.5)

Secondly, we used the fact that near its typical points, C; almost lies in a half-plane
at arbitrarily small scales and also a considerable part of it is not too close to the
boundary of that half-plane. For a general £ we can still find many places where
locally E almost lies in a half-plane by touching with discs from the complement.
That is, we use discs U(a,r) such that U(a,r) N E = () but dU(a,r) N E # 0. If
we make an additional assumption that at small scales E is not well approximated
by lines, we can extend the argument we sketched above for C;. A more general
result can be obtained using a result of Besicovitch, see [M2, Theorem 19.17] and the
references there:

Theorem 2.3 Let E C C be compact with H'(E) < oo. Suppose that for H' almost
alla € F,

.. 1

hgl)l(l)lf?’l (EnU(a,r))/r>0 (2.6)

and there are positive numbers o, 6 and € (depending on a) such that
HY(ENU(a,r)N{z:dist(z, L) > or}) > er
for all lines L through a and for all 0 < r < rq. Then E is removable.

Note that according to one of the basic properties of Hausdorff measures we have
for any E with H!(E) < oo,

1/2 < limsupH' (ENU(a,r))/r <1
r—0

for H! almost all a € E, cf. [M2, Theorem 6.2]. So the lower density assumption (2.6)
means that E is AD-regular in a non-quantitative sense.

3 Subsets of rectifiable curves

Theorem 2.3 is about as far as we can get in finding sufficient criteria for removability
without new effective tools. We come back to these later but let us first search for more
non-removable sets. We already know that all compact sets with Hausdorff dimension
bigger than one are such. All non-constant rectifiable curves (that is, curves T with
0 < HYT) < o00) are examples of non-removable sets with positive and finite H!
measure. In fact, for any compact connected set K C C, which is not a singleton, the
Riemann mapping theorem gives a bounded non-constant analytic function in C\ K.
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But let us construct such a function more concretely with the Cauchy integral in the
simple case of line segments, say [0,1] C R C C. Take any continuously differentiable
function ¢ : [0,1] — R such that ¢(0) = ¢(1) = 0. Then

zH/O %dt (3.1)

is a bounded and analytic function C\ [0, 1]. This is an exercise, and not very difficult.
It takes more work to show that if £ C R is compact with H(E) > 0 (for E C R,
H!(F) is just the Lebesgue measure of E), then such a ¢ can still be constructed. An
easier way avoiding the construction is to check first that the imaginary part of g,

1 1
g(z)—/Et_Zd’H t
is bounded; this is easy. Thus g maps to a strip and this strip can be mapped
conformally onto the unit disc.

These arguments show that any compact subset E of a line with #!(E) > 0 is non-
removable. It is hardly surprising that lines can be replaced by sufficiently smooth
curves. But how smooth? Concrete but more laboursome arguments with Cauchy
integrals work up to C?; twice continuously differentiable curves, and a bit further to
C'*¢, namely to the case where the tangent of that curve varies in a Hélder continuous
manner, see, e.g. [C1, p. 100]. But C is already as big a problem as general rectifiable
curves which always have Lipschitz parametrizations. Still the result is true for them,
see [C1, Chapter VII].

Theorem 3.1 Let I' C C be a rectifiable curve and E C T' a compact set with
HY(E) > 0. Then E is not removable for bounded analytic functions.

This means that there is a non-constant bounded analytic function f : C\E — C.
But nobody knows how to construct it. All the proofs rely in one way or another on
duality arguments involving the Hahn-Banach theorem. Another crucial tool is the
Cauchy singular integral operator.

The statement of Theorem 3.1 has been called the Denjoy conjecture. In fact,
Denjoy claimed long ago to have proven it but there was a gap in his proof. The
final proof followed when Calderén proved in 1977 in [C] that the Cauchy singular
integral operator on Lipschitz graphs with small Lipschitz constant is bounded in L?2.
This together with earlier works of several mathematicians gave Theorem 3.1. What
does Calderén’s theorem mean and what is the Cauchy singular integral operator on
subsets of C?

4 The Cauchy singular integral operator

Let us look at this question more generally. Let u be a locally finite non-negative
Borel measure in C, that is, compact sets have finite ;4 measure and Borel sets are p
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measurable. Formally, the Cauchy singular integral operator C), related to p maps a
function g to

Cug(e) = [ £ auc

If z is outside the support of y this is just the Cauchy transform of gdu, and it is
well defined at least if [ |g|du < co. But now we want to study it also at the points
of the support of u, and our main interest is in the case where p is somehow one-
dimensional; for example, length measure on a rectifiable curve or more generally
one-dimensional Hausdorff measure H' on a set £ with 0 < H!(E) < co. Then it is
not clear at all that the above integral should exist, and often it does not, even for
very smooth functions g or even for constant functions. But if y is the length measure
on a sufficiently smooth curve and g is sufficiently smooth, then C,, g(z) exists in the
sense of principal values:

C,g(z) = lim 90 duc.

=0 Je\B(ze) C — 2

For example, if u is the Lebesgue measure on R and ¢ is Holder continuous with
compact support, the above limit exists (and it is 7 times the Hilbert transform of
g). This is due to the cancellation which allows us to write

9 4o = 9(9) ~9(2)
~/6<C—z|<1 ¢(—z ¢ l<<_z|<1 (—=z ¢

Note that we are now in a very similar situation as that where we discussed
the non-removability of subsets of smooth curves with positive length. Indeed, the
boundedness of the function in (3.1) is due to similar cancellations.

If u is the length measure on a sufficiently smooth curve (C1*¢ is again enough) so
that C), g(z) exists for all, say, C*° functions, then the L?-boundedness of C, means
(and is true) that it is bounded in such a subspace of smooth functions. It can then
be extended as a bounded operator to all of L?(u1). But the L?-boundedness among
C*-functions is not trivial even for the Hilbert transform, i.e., when p is the length
measure on R. However, with the help of Fourier transform it is not too hard either
for the Hilbert transform.

If v is the length measure on a general rectifiable curve, the existence of C), g(z)
is not at all clear for smooth functions, and it need not even be true at every point
of the curve. However, C), g(z) exists in this case almost everywhere on the curve
for all g € L'*(p). This is best to prove as a consequence of the L2-boundedness and
the general Calderéon-Zygmund theory of singular integrals. But how to define the
L?-boundedness.

There are various ways and we take the one which can be used for any finite Borel
measure

Definition 4.1 Let p be a finite Borel measure on C. We say that the Cauchy
singular integral operator C,, is bounded in L? () if all the truncated operators C), ¢;

_ 9O
Cp,,e g(Z) - /C\B(z,a) C — 2 dMCa



6. Ataa0 Search for geometric criteria for removable sets of ... 123

are uniformly bounded in L?(y). In other words, there is C' < oo such that

/‘/C\B(z,s) Cg(—_oz e

for all g € L?(u) and all € > 0.

2
dpz < O/|g|2du

Then Calderén’s theorem says that C, is bounded in L?(u) if p is the length
measure on a Lipschitz graph {z + i¢(z) : « € I} where ¢ : I — R has small
Lipschitz constant. As said above, this was the final step needed to finish the proof
of the Denjoy conjecture (Theorem 3.1). Let us try to say a few words how this goes.

So we take a compact set E in a rectifiable curve I' with H!(E) > 0. Using some
basic properties of rectifiable curves we can first show that some compact subset of
FE with positive length lies on a Lipschitz graph with small Lipschitz constant. Thus
we can assume that I' is such to begin with, and we can use the L?-boundedness.
The general Calderén—Zygmund theory of singular integrals then applies and tells us
that the L2-boundedness has many consequences. For example, the corresponding
maximal operator C};, see (2.4) is bounded in any L? for any 1 < p < oco. It need not
be bounded in L', but there is a substitute, the weak type inequality:

H((z e 1G> N) < 5 [ lola

for g € L}(T') and X > 0. It is here where we can bring in the Hahn—Banach theorem
to produce ¢ € L>(u) such that C ¢ € L>(p). Then the Cauchy transform of
@ du is the desired bounded analytic function in C\ T'. This is pretty vague, and one
really applies Hahn—Banach theorem to some regularized Cauchy operators. See [C1,
Chapter VII] for more details.

Calderdn’s theorem was extended to all Lipschitz graphs by Coifman, McIntosh
and Meyer in 1982. Finally David gave in [D1] characterization of curves for which
this holds:

Theorem 4.2 Let I' C C be a rectifiable curve and p = HYT the length measure on
[. Then C, is bounded in L*(p) if and only if T is AD-regular.

Note that for curves I' the AD-regularity means simply that there is C' < oo such
that ! (I‘ N B(z, r)) < Cr for z € C, r > 0; the lower bound is automatic for curves.

Definition of the L2-boundedness above was given for general measures j, so we
can ask for generalizations of the above theorem. For example, what kind of sets
with finite H' measure can be used to replace I'. Among the class of AD-regular
(recall (2.5)) sets a complete answer has been given by Melnikov, Verdera and myself
in [MMV]:

Theorem 4.3 Let E C C be a closed AD-regular set and p = H'|E. Then C,, is
bounded in L?(u) if and only if E is contained in an AD-regqular curve.

Such sets E are called uniformly rectifiable. Their theory, and in particular the
theory of their m-dimensional versions in R", has been developed by David and
Semmes, see [DS].
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5 Menger curvature and Cauchy integral

We shall see soon that Theorem 4.3 can be used to obtain new information about
removable sets. Let us now discuss the proof of Theorem 4.3. One direction is clear:
if F is contained in an AD-regular curve, it follows immediately from David’s theorem
(Theorem 4.2) that C), is bounded in L?(u). For the other direction we need a new
tool which has recently given much more, as we shall see. This is the so-called Menger
curvature. It is defined for triples of points in C. So let z,y,z € C. If they do not lie
on the same line, there is a unique circle passing through them. Let R be the radius
of this circle. The Menger curvature of the triple (x,y, z) is then defined as

1
C(l‘, Y, Z) = E
If z, y and z lie on the same line, we set
c(x,y,z) =0.

In the mid 1990’s Melnikov found the surprising formula in [Mel] which relates this
to the Cauchy kernel: for z7, 29,23 € C,

c(z1,22,23)% = Z 1—. (5.1)

> (20(1) = %0(3)) (Zo(2) = Z0(3))

Here the sum is over all six permutations of {1,2,3}.

The proof of this formula is an exercise. It can be split into two exercises; one in
complex numbers and one in elementary geometry. The first exercise is to show that
the above sum over ¢’s equals

( 4area (T(z1, 22, 23)) )2 (5.2)

|21 — 22| |21 — 23| |22 — 23]

where T'(z1, 29, 23) is the triangle whose vertices are z1, 22, z3. This is not as hard as
it may look. By some symmetries one can quickly pair some terms of the sum leading
to a sum of three terms. Further, one can easily reduce to the case where z; = 0,
2o = 1 and z3 is a general complex number.

The second exercise says that (5.2) equals 1/R?, where R is the above radius. This
is not very difficult. It is actually a theorem of the ancient Greeks.

Melnikov and Verdera used in [MV] the identity (5.1) to give a new proof of the
L?-boundedness of the Cauchy operator on Lipschitz graphs. At that time there
already were 10 or so proofs (see in particular [Mu]), but this is one of the nicest.
The trick is to integrate with respect to all three variables.

We now do this integration to continue the explanation of the proof of Theorem
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4.3. Let p be a finite Borel measure on C. Formally, by Fubini’s theorem and (5.1),

2

I\ e dug| dpz = [f o dpe [ 15 duze duzs
=] ey e s duzs
— % 1 dpzy dpzo duzs

7 (20(1)=%0(3)) (20(2) =20 (3))

= % [f] e(z1, 2o, 23)2 dpzy dpzo dpzs.

This was formal because the first integrals don’t really exist and we should replace
some of them by truncated integrals as in the definition of the L?-boundedness. This
is a technicality which brings in an error term that can easily be controlled. The
main point is that we started from the L2-integral which is finite by our assumption.
Hence also the curvature integral is finite. Using the AD-regularity we can conclude
from this that ¢(z1, 22, 23) cannot be big too often. But when 21, 25 and z3 are close
to each other, this means that they must be nearly collinear and we are in a position
where we can try to start to build the required AD-regular curve. This is not quite
easy, but such constructions were made earlier in closely related situations by Jones
in [J] and by David and Semmes for example in [DS].

6 Rectifiable and purely unrectifiable sets

Before explaining how Theorem 4.3 can be used to get more information about re-
movable sets for bounded analytic functions, let us have a quick overview about the
kind of geometric properties of sets we shall be looking at. We consider ' mea-
surable subsets E of the plane with #!(FE) < co. We have already looked at some
very different ones; rectifiable curves and the Cantor set Cy. All such sets E can be
classified into two classes where, in a rather rough sense, properties of the sets in the
first class are similar to those of rectifiable curves, and in the second to those of (.

Definition 6.1 Let E C C with H!(E) < co. We say that E is rectifiable if there
are rectifiable curves I'1,I'9, ... such that

Hl(E\ [jr) =0.
i=1
We say that E is purely unrectifiable if
HY(ENT)=0
for every rectifiable curve T

It is easy to show that any H! measurable set F with H!(E) < oo can be written
as F = RU P where R is rectifiable and P is purely unrectifiable. It is also true,
but not always so easy, that rectifiable sets behave in many ways as rectifiable curves
and purely unrectifiable sets behave in completely opposite ways. For example, if the
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concept of tangent is defined in an approriate approximate sense, then F is rectifiable
if and only if it has tangent at almost all of its points, and F is purely unrectifiable if
and only if it fails to have tangent at almost all of its points. Another characterization
can be given in terms of orthogonal projections. Let § € S1 = {z € C:|z| =1} be a
unit vector and py the orthogonal projection onto the line Ly = {t0 : t € R}:

po(z) = (0 2)0.

Then (assuming all the time that E is H! measurable and H!(E) < co) E is purely
unrectifiable if and only if

H' (po(E)) =0 for H' almost all § € S*.

These results, and many more, were proven by Besicovitch in the 1920’s and 30’s.
For this theory see [F], [Fe] or [M2]. This can be considered as the beginning of
geometric measure theory. Besicovitch used the terminology of regular and irregular
sets. We have here adopted (essentially) Federer’s terminology, who generalized most
of Besicovitch’s theory to m-dimensional sets in R".

Let us now see how much at this point we can say about removability and non-
removability in terms of rectifiability. Suppose a compact set E is not purely unrecti-
fiable. Then H!(ENT) > 0 for some rectifiable curve I'. Hence ENT is not removable
by Theorem 3.1, and consequently neither is £. Thus we have:

Let E C C be compact with H!(E) < co. If E is removable, it is purely unrecti-
fiable.

What about the converse statement: are all purely unrectifiable compact sets with
finite 7! measure removable? We already know that this is true for the Cantor set
and more generally in the case of Theorem 2.3. A remarkable fact proven by David
in [D3] is that it is true generally:

Theorem 6.2 Let E C C be compact with H'(E) < co. Then E is removable if and
only if it is purely unrectifiable.

Let us first discuss the proof in the case of AD-regular sets. Then this is a con-
sequence of Theorem 4.3 and some general results and methods in the Calderén—
Zygmund theory of singular integrals. We should show that if E is not removable,
then it is not purely unrectifiable. We start with a non-constant bounded analytic
function in C\ F. As in Section 2 this leads to a function ¢ € L°°(E) such that
[ 0(¢)/(¢ = 2z)dH'¢ is bounded in C\ E. This is essentially the same as to say that
Cu¢ € L>™(u), where p = H*|E. In order to apply Theorem 4.3 we need the L?-
boundedness of C,,. We are now rather close to that because of a general T'(b)-theorem
of David, Journé and Semmes, see [D2]. It applies to very general singular integral
operators T' and says that if 7' maps some bounded function b with Reb > § > 0 (in
fact, somewhat less is needed) to L> (or even BMO), then T is bounded in L?. We
have now that C), maps ¢ to L*°, but we have no information on Rey. However,
Christ showed in [C2] how it is possible to modify E to another AD-regular set F
and ¢ to a bounded function 1 on F such that H'(EN F) > 0, Rey > § > 0 and
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C, ¢ € BMO with v = H!|F. Thus C, is bounded in L?(v), and by Theorem 4.3, F,
and hence also E N F, is contained in a rectifiable curve so that £ cannot be purely
unrectifiable.

The proof of Theorem 6.2 follows similar lines but there are a lot of technical
complications. We still have that C, ¢ € L>(u) for some ¢ € L*(u) as above.
The modification from E and ¢ to F and ¢ can be done, but it is now much more
complicated, see [DM]. But even after that the T'(b)-theorems that were available
before the late 1990’s could not be applied since they required that the underlying
measure is doubling;

w(B(z,2r)) < Cu(B(z,r))

for all z in the support of x and for all » > 0. The final step of the proof of Theorem
6.2 was David’s proof in [D3] of a T'(b)-theorem in the non-doubling case. After that
we know that C), is bounded in L?(u) with u = H!|E N F. Then the argument in
Section 5 yields that [¢?du® < oco. Another hard problem was to show that this
implies rectifiability. This was done a little earlier in [L]:

Theorem 6.3 Let E C C be H' measurable with H'(E) < co. If

/// c(x,y, 2)? dux duy duz < oo,

All these together give the proof of Theorem 6.2. Nazarov, Treil and Volberg
developed a different powerful method for the analytic parts of this proof in [NTV].

Coming back to Theorem 6.2 and the properties of purely unrectifiable sets, the
result means that when H!(E) < oo, E is removable if and only if

then E is rectifiable.

H'(po(E)) =0  for H' almost all § € S*. (6.4)

Vitushkin conjectured this already in [Vi] in the 1950’s. And even without the con-
dition H!(E) < oo, but then this fails. T showed in the 1980’s in [M1] that (6.4)
is not invariant under conformal mappings (in fact, the only C? diffeomorphisms
g : R?> — R? which preserve it are the affine mappings). Hence (6.4) cannot be
the same as removability. But this did not tell us which of the implications is false.
Maybe they are both. Jones and Murai showed in [JM] that there exist non-removable
sets for which (6.4) holds, but the other direction is unknown. Another example of

Jones—Murai type using the Menger curvature was given by Joyce and Morters in
[JoM].

7 Sets with infinite ! measure
Let us now see what we know and what we don’t know about removable sets after

David’s theorem. We have the full geometric characterization for compact sets FE
with H!(E) < co. We also know that sets with Hausdorff dimension bigger that one
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are not removable. Thus the only problematic sets E left are those with Hausdorff
dimension one and H!(E) = oo. It is easy to give examples of them by modifying
the construction of the Cantor set C;. Instead of taking the ratio of the side-lengths
to be 1/4 at each step, let it be i at the stage k. If Ay, > 1/4 and A\, — 1/4, then
the Hausdorff dimension of the resulting Cantor set C(\) related to the sequence
A = (\g) is one. If Ay tends to 1/4 sufficiently quickly, then H'(C(\)) < oo, and
C(A) is removable, by the same argument as for Cy. The exact condition for this is

sup4” g, < ©
n

where
Opn = A1...\, = the side-length of @, ;.

Let 4 be the natural uniformly distributed measure on C()\). This means that
w(Qgi) = 47F for every square Qy; of the generation k. If A\, — 1/4 sufficiently

slowly,
1
4 7.1
/ i (7.1)

is bounded, and consequently also the Cauchy transform C), of p. Thus E is not
removable. The exact condition for the boundedness of (7.1) is

1
Z4”Un < 0.

The sequences which are between these two cases are rather problematic and it has
been possible to deal with them only with the Menger curvature methods. It is still
rather easy to show that for p as above (see [M3]) that

/// c(z,y, 2)? duzx duy dpz < oo (7.2)

if and only if
1

Somewhat more generally, see [E], one can show that if (7.3) fails, there is no Borel

measure y on C()\) with linear growth; p(B(z,r)) < er, which would satisfy (7.2).
We can now conclude from the equivalence of (7.2) and (7.3) and the following

general result of Melnikov in [Mel] that C'(\) is not removable if (7.3) holds.

Theorem 7.1 Let E C C be compact. If there exists a non-negative Borel measure
w such that w(E) >0, u(C\ E) =0,

,u(B(z,r)) <r forze C,r >0, and (1)

/// c(z,y, 2)? duzx duy dpz < oo, (2)

then E is not remowvable.
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The proof of Theorem 7.1 is a little similar in spirit to the proof of Theorem 3.1 as
discussed in Section 4. By the computations of Section 5, the condition (7.2) is related
to L2-boundedness which by duality arguments leads to the existence of non-constant
bounded analytic functions in C \ E.

Melnikov conjectured that also the converse holds: the non-removability of E
implies the existence of a measure p with above properties. For the Cantor sets C'(\)
such a measure exists if and only if (7.3) holds. So to verify Melnikov’s conjecture for
these sets we have left to show that if C'(\) is not removable then (7.3) holds. Mateu,
Tolsa and Verdera proved this in [MTV]. Let us say a few words about the proof.
We start again with a non-constant bounded analytic function f : C\ C(\) — C
and show that its existence implies that (7.3) holds. In the case of finite #! measure
we quickly got from this much more information, in particular, the representation
formula (2.3) and even (2.4). Now the situation is much worse. There are bounded
analytic functions which cannot be represented as a Cauchy transform of any complex
measure. But one can work with approximations of C'(\) which have finite length,
for example, with the unions of the boundaries of the 4™ squares of side-length o,
which appear in the construction of C'(A). One does not prove directly (7.3) but as
in the case of finite 4! measure, one proves L?-boundedness using 7T'(b)-theorems, in
particular the form proved by Nazarov, Treil and Volberg in [NTV]. Then one uses
the relations between Cauchy kernel and Menger curvature as before to get (7.3) from
(7.2). The big problem is now to control the constants involved. When #!(C(})) = oo
one needs good new ideas to prevent them from blowing up when closer and closer
approximations of C'(\) are used.

The natural question now is whether Melnikov’s conjecture holds generally. It
does. This has been proven by Tolsa in [T1], and it ends the long search for a
geometric characterization of removable sets of bounded analytic functions. It can be
argued that the existence of such a measure is not really a geometric condition, but
at least it is not complex analytic, and any such characterization has been missing. It
is not always easy to verify this condition, that is, to construct the measure. A nice
test case is that of compact connected sets with more than one point. They are not
removable by Riemann’s mapping theorem, so such a measure exists and Jones has
shown how to construct it. But it is not very easy, see [P1] for this.

Let us still formulate Tolsa’s theorem:

Theorem 7.2 Let E C C be compact. Then E is not removable if and only if there
exists a non-negative Borel measure p such that u(E) >0, u(C\ E) =0,

M(B(Z,T)) <r forze C,r >0, and
fff c(z,y,2)? dux dpy dpz < oo.

The proof follows similar general lines as explained before for the Cantor sets
C(N). That is it involves approximations of E with sets with finite H! measure and
application of the T'(b)-theorem of [NTV].

To show how hugely this result adds to our understanding of the removable sets,
let us look at their invariance under mappings. Before this it was not known if they
are preserved under affine bijections of the plane. For example, if E is removable, is



130 Pertti Mattila

6, 4(2004)

{(z,2y) : (z,y) € E} also removable? It is clear that Theorem 7.2 answers this in
the positive. But it does much more. It is not very difficult to show from this that
removability is preserved under C'*¢ diffeomorphisms. It is much more difficult, but
Tolsa has done it recently in [T2] to show that it is also preserved under bilipschitz
mappings.

Another consequence of Theorem 7.2, or rather a quantitative form of it, is the
semiadditivity of analytic capacity: there exists an absolute constant C such that for
all compact sets £y, Fo,--- C C,

W(QE> < Cgv(Ei)-

It is not known if this holds with C = 1.

Received: March 2003. Revised: June 2003.
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