
One strength of this book lies in its clear, practical resources. For example, Part II includes charts for assessing progress along a continuum. These tools help groups evaluate their development across competencies referred to in the text as "pillars." Examples under the "leadership" pillar include continuum assessments for ecosystem perspective, change agent, core values, and relationships. Users of the continuum models will find value in the framework's acknowledgment that building an ecosystem can be a slow and constantly evolving process. Ecosystem groups are given developmental benchmarks for ongoing reflection rather than fixed standards. The book also provides easily identifiable and clearly defined key terms, highlighted throughout the text, making it accessible for readers unfamiliar with ecosystem or advocacy topics. Another core strength of this title is its reliance on real-world examples of successful ecosystem advocacy. Cited throughout the book and featured as a focus in Part V, these tangible case studies can be applied to the reader's own advocacy efforts. Strengthening Library Ecosystems is a valuable resource for libraries of all types and the people who support them. Its focus on fostering connections between libraries makes it a good fit for any collection. This book is also a beneficial acquisition for groups looking to build or strengthen ecosystem efforts due to its excellent compendium of existing tools and resources from ALA and its affiliates. Furthermore, this book is essential for anyone engaged in legislative action, public awareness campaigns, or broader coalition development, standing as both a call to collective action and a guide to building resilient, unified library ecosystems.— *Madeline Mc*-Connell, University of New Mexico

Writing Science in Plain English, Second Edition. Anne E. Greene. University of Chicago Press, 2025. 131 pp. Paperback, \$19.00. 978-0-226-82503-8

A bright student once told me that she had never been "any good at English composition" after I gave her feedback to improve the clarity of a science report. Certainly, as a professor or instructor, encountering those who do not realize that clear writing and science go hand in hand is not unfamiliar. Scientists must often express their ideas, reasoning, and process to a wide variety of readers. Spoiler: most of us are quite bad at it. We tend to write in a dry style, use complex words to describe simple concepts, use jargon to impress, and create acronyms that only a handful of experts in the field could appreciate or ever use again. Consequently, this limits impact, confuses readers, and induces naps for the intended audience. Obviously, there is much work to be done. Yet, writers are often expected to learn science writing by chance or simply by emulating writing, both good and bad examples. This model

perpetuates commonly held [bad] conventions that decrease writing effectiveness. Students, like the one mentioned above, fail to recognize the utility of their English composition courses in science. Good science is not just completed, it must also be understood to be impactful. It is easy to identify clear scientific writing, it is harder to learn to write clearly and harder still to teach the skill to others. Greene's *Writing Science in Plain English* makes a compelling case for why and how to compose clear and scientific writing. This second edition provides an updated, strong set of guiding principles for developing clear science writing and breaking the cycle. A biologist with experience in teaching writing for the sciences, Greene begins with a brief overview of what is at stake. She cites evidence that as discipline specific jargon and

use of acronyms increases, the number of citations decreases. She argues for a narrative style of storytelling which makes writing more readable and memorable. This approach increases impact. The chapters that follow are short and focused, offering specific techniques for improvement. For example, she shows how using concrete nouns as subjects followed closely by action verbs builds sentences that are easy to follow. Before accusing the author of inducing naps herself, suggestions are followed by real examples of poor writing followed by suggested revisions to increase clarity. Other chapter topics include strategies for choosing words with care, omitting excess words, and organizing ideas at the sentence, paragraph, and document level to match readers' expectations. True to the journalistic style professed in the work, the book's strength is its succinctness. Each chapter is just a few pages, and the total length is very manageable. What is particularly compelling is the explicit connection between solid scientific writing and reader comprehension. The second edition adds additional sources to support her assertions, increasing her credibility. More than just a manual, the book includes examples of the practicality of the suggestions. The book also has exercises for the reader to develop mastery of the skills and check their comprehension with answers in the appendix. This active learning format makes reading and engaging with the material much like how a typical science textbook is organized, helping hold the reader's attention. The only critique is that most of the examples and exercises come from biology, Greene's field. While there are a few examples from other sciences sprinkled in, readers unfamiliar with biology might hesitate to revise the exercise texts, worried about changing their meaning. In the end, the edited passages did make more sense to a biology outsider which solidified the utility of the techniques.

As stated, many scientists never receive formal training in scientific writing. Greene's book is a solid place to start. This book is a good addition to the collection of any scientific writer wanting to add clarity to their written word or to increase reviewer's comprehension of their ideas. Additionally, the book is an excellent choice for anyone teaching a science writing course at the undergraduate or graduate level. Greene masters the context of clear and effective writing strategies for scientists, even as the advice is useful for any technical writing. The second edition also includes a teacher's guide with resources including lecture materials, additional assignments, and in-class activities. This makes adoption in a course easy. Overall, Writing Science in Plain English offers a high-impact, easy-to-use guide for anyone who desires to make their scientific writing more approachable, concise, and effective. — Royce Dansby-Sparks, University of North Georgia.